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o ABSTRACT IR
'This thesis discusses estimating procedures in Llogit
_analysis. The classical methods are outlined and their
advizfaées and weaknesses ‘discdssed.' A new sampling
procedure, the First Zero..samp{ing procedure, 1is then
presented: Its main advantage is that "it- concentrates
'observatlons ih the extreme=QUantile'area of the response

function. so it applies to analyses where th se values are

the quantities of interest. The First Zero dwstriﬁ*fﬁon\a;d
Timit

its ‘two limit1ng d1str1butlons are derived. One

result holds in the general oase." while° the other holds
‘under more * restrictive limit conditions. How fast this
convergence takes place is descr1bed graphlcally Estimates
of locat1on and scale parameters of the responsef function
are derived for.  each of these distributions.) The
performance of these esimates is compared under various
sampling’ 51tuat10ns,b and cond1t10ns . are determined when
each of the estlmateséoffens advantages over the others.
The est1mates are also compared to classwcal est1mates and -
it is found that in some cases First Zero estlmates offer

improved efflc}pncy and/or s1mp11c1ty over the class1cal L

I

Ones L4 L. . ;
. /\ ) : A “‘xr?l_ .
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el A
AT s

The Classical Methods \J

-wfu;f

1.1 Introduction. The f ‘,h;;i::>§p investigation

; tmgay be applied to a

originates in pharmacology, althoug‘

number of other sjituations’ g?he concern?is to establfsh the
- N

relation between a stimulus* nd a response. A common

example is in examining the pote cy of a certain drug. We
are concerned with gquantal res onses. ‘A .quantal response is

e.zero-one responséq(or life -deéath, cured-not cured etc. ).

In short, any response that can be cla551f1ed in such a way
that a specific condition can be observed as either
occurring or not occurring is - a quantal response
experiment. In the examp1e mentioned above, ie.'that of
‘examining the potency ot,a certain drug, the proportion of
the popylation that'will respond with a 1 to the dose z is
‘a function’ofaz. As z increases, the proportion of "1
responses increases_to 1, and as z“decreases the proportion
; iof 1 resoonses decreaees to 0. In fact, the dose itself is
not usually the quantity of’interest but the logarithm of
‘the dose. 1f “we write x=1n{z] (erther natura] or common

- logs may be used since they are just linear transforms of
each other), then we shall by an abuse of the language call

X 'the_ dose. For a given dose x, the proportion of 1



/

responses at that dose is a function of x we will denote by
F(x). F(x) is called the response function It can be
easily seen that F is a distribution function. ‘Many

functions have been proposed for F, but ¢ oniy ‘two have
gained * any ,widespread acceptance 1f F has the form of a
normal distribution function, the analySis is 'called a
Probit ~ analysis. (Originally, when computations weré—
performed by hand, the term probit described - d hormal
variate shifted to the right by five stan&hrd deviations

This transformation avoided the use of negative numbers

Although this is still done today. any situation using the
normal response function is‘termed probit even though the

actual "pr6bit" units are not used.) When F is given the
form of the Logistic distribution. the anhﬂysis ‘is termed

Logit

At present, probit analysis 1is more commonly used.

]

This is mainly due to Finney. In his books, ’“Statisticaln

Method in Biological Assay® and "Probit Analysis” he

" recommends the use of" the normal distribution as, the

"natural® one We quote from the former: "When 'the reason
for unlike behaViour of similarly. treated subjects is

'primarily their intrinsic differences in susceptibi]ity,

the.specification in terms of a frequency distribution of

individual tolerances is matural, and ... the assumption of

a normal distribution of log . tolerances seems the most
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reasoneble procedure in the absence of evidence for any
altern‘datiye." In the latter he does admit: "These two are
very similar indeed in all respects except for very small
or ’very““largé P, and extremely large experiments would be
needed ‘to show one as a better f1t than the other. No one
should believe that either forbula for P represents perfect
truth, and therefore perhaps nothing other than persona]
incﬁination can decide which is to be used." However,
Finney uses probit egg]ysis exclusively and since his books
have become> the author1t1es in the area of bioassay, most
researchers follow su1t and use the normal as well. Berkson
[ 2], however, claims: "In view of the wide use ofy the
normal curve to represeﬁt'the distribotion of biological
traits and also because of‘d1rect experimental evidence of
the normal distr1but1on of suscept1b111ty, it is to be
iconceded that the integral of the norma 1 curve recommends <
itself. However, the logistic function is very near to the
integratedAnormal curve, it applies to a> wide range of
physicochemical phenomehe and therefore may-have a better
'theoret1c basis than the integrated normal curve. Moreoverl
there are reasons for bel1ev1ng it to be easier to handle‘
statisticaliy" We concur with Berkson and in the methods
we propose. we assume we . are dealing w1th a logit analysis
For completeness‘we.include a gbrlef description of 'the

standard hethod. of probit analysis. We then conclude the

a



chap'ear w!th a summary of the Robbins Nonro procedure.
which 18 the most - commnly used form o? sequontial
approxi”mation in this Held |
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1.2 Classical Probit Analysis. Most-of' what is given in

this section: is a very brief summary of the techniques

outlined,,'in'Finheys book "Probit Analysis*. The same

- method could yery~_eaeily be adapted to use the_]ogistjc]

distribution. At this point, however. it is the method that
is of interest and not the model. We will describe the
procedure used for estimatin:\\grug toxicity. The meet

commonly sought valwe “is LD50, or Lethal Dose 50. This is

. the dose that would kill 50 percent' 6f the popplatiqn under

consideration. (Similarly, LDQO is the dose that would Kill
80 ‘percent of the population.) A dual quantity which is_—

equivalent statlstlcally is the EDBO the Effect1ve Dose

50, Thls term wou ld be used to descr1be a drug’s med1cxnal:

potency and refers to the dose that would cure 50 percent
of the populat1on We assume that alT tr1als are
independent meaning that no subJect rece1ves more than one
dose. : , ,‘ _

l if a subject receives an_administration of dose X, the
probability that tt diee'(ie. has a requnSe of 1) is |

-

T (1.2.1) F(X) = f(2‘7|’ o2V % eXp{'(X,’p)2/2o‘2)}d)$-‘

In- th1s case, ‘the parameters of 1nterest are 1l and o ( . is

the LD50). Commonly.. the -transformation Y= u+Bx is made

making the parameters o and g the parameters . of 1nterest

./_‘ ) v

[N
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wherea =-yu/0 and 8=1/0,  The method of estimation is maximum
likelihood. A typical experiment would take k samples (K
would normaf]y range from 2 to 5) of n subjectsseach (n may .

_range from 5 to 500. ‘It is not necessary to have the same
' 2

number -in each eample but it does simplify calculations)
and administer each subject in the ith sample with dose X

For example, if k=3, typical va{?es for Xl'x2' and Xzawould
be chosen hopefully near LD20, LD50, and LD8O respect1ve]y

The number r; of 1 responses 1n¢the ith sample is observed.

i
rs has a binomial(n,Pi) distribution where Pi=F(xi)' The

o

A

joimt density of the ri’s is

k
L = ()P "i(1-P )Ty
=1
" “leading to a log fikelihood equation of
e
L = 5 {r, InlP_ 1 + (n-r_)In[1-P 1}.
s8q i it i

(Note that the n'é‘in the above w\li'be subecripted by i if
the sample size varies from sample to sample.) .

To maximize. InL we taKe the partial dé?%vatlve of InL with

respect to @ and 3, set these equal tpAO, and solve. Ie.
alnL k. B : v -y
s = 0=1L {r /P - (n-r )/(1-P )} 0Pj

RO =1 . 1 1 i S Ty

R )



- (1.2:2)

3P
-r 1/ (1-Py )} B

These cannot. be solved explicitly,. but. a two parameter
iteration procedure can be used to’ estjmate a and 3:
Suppose that aland sliare approximations of a vand R

Second approximations to «a and,‘g will be of the form
dl + Ao, éﬁd 31+ AB - Usihg the Taylor;Maclaurin expansion

of InL, these seconduapbroximatidns must satisfy both of

a1nL 221nL 'azlnL
a +A0T5T + 8B Fomes = 0
(1.2.3) _
- . 3InlL 9%21nL 9%*InL  _ .
. ~3§—-+AB—3§7--+AQ 3008 -'0. C )

These two linear eq'uations' éan be solved for Ao and ag .
annéy recommends simplifying the second order partial
derivatives in (1.2.3) by substitUt{ng‘%‘?q_/n”in~these
derivatives aftef‘differentiation, giving expected values
. rather than empiricalf The next step shou]d now be cleab.
In general, it is best to have the iteration continue until
fconvergence oééurs. The covariance matrix of ‘¢ and g Cis

‘asymptotic to

/



»

Iy

P

v

_p 8%InL - _p 3%1nL. 1
da? . aaBB
V =
r _g 2%1InL _p-241nL
dadB - 0B

and conf1dence bounds can be set for a and b (the est1mates
of o ‘and B respect1vely) The above applles for: any form

that the,P s may take. Spec1f1cally, 1n prob1t ana]ys1s,

i

respectiVely, we  have (reballing the transformation
Yi=a+BXi)
aP;

- i_ -

Thus, (1.2:.3) in probit analysis becomes

k oy
ba ) nw +4b Z nw,X: = F o (r./n-P. )/ glatbX,) -1
' i=1 2 1"'1 ]'=1 71 ] . 1 :
(1.2.4)
k k- Lk | o
pa y nw, X, +ab J W, X, 2 =.£1“nwixi(ri/n-Pi)/¢(abei2

i=] i=1 : 1=

where . iwi = ¢2(asbX;)/[Py(1-P ).

1 - A

If a and b are the present estimates; theh by solving these_,

-

|

has_ the form (1.2.1), and if we wr1te¢ (x) and ¢ (x) as \\

the sta:gard normal density and distribution functions



equations for Aa and Ab the next estimates a’ and b’ may be

calculated by

a’ =a+aa and b’ =b +ab.
The'precedure_continues in this fashion  until convergence
occurs. \ | ‘

Usually a- Chi-squared test is done to check the
goodness of f1t of the observed and estimated data. Thene'
is a reasonably h1gh risk of hav1ng a small expected value
in some of the extreme samples whlch could cause problems.
in the validity of the test. ‘ ‘ "

The above analysis has-proved;ﬁfself over the severa]
years since Finney first presented it in 19h7 (in fact the
mefhod had been available as early as 1935. See [ 4], [5],
and [ 6]). One advantage’it has isdthet samples where the'
proportion of.responses-ie either 0 or.1 dO‘not affect thei
" procedure. (It is pdssible-to have unreiiable results ifw’a‘
large number of the samples fall into this category, but
this should not happen frequentiy in actual .prectice.) It
is also not necessaryvto have equal sample'sizes,.and there
are no theo&efical problems arising from'having e sample'
151ze of. one Th1s is important to understand s1nce the
me thod has been ‘erroneous ly criticized on both of these

counts [8]. A possible prob]em whlch might be encountered

.4
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is the sensitivit§ of the convergence scheme to the choice
of start1ng estimates for the parameters. Finney devotes a
large section of h1s book to getting 1n1t1a1 estimates '
graphically This’ was pract1ca1 when computatwons were donen
by hand and accurate 1n1tial values  shortened the
procedure. But now with the wfdespread avﬁilability of"
' compurers,“ithjs cumber some tovhaye to rely on ’‘eyeball’
procedures to gef the initial values. The method does have
other‘ drawbacks in certain situations, which. we will
" mention léterf‘when we compare this method to both the
Robbins- Monro procedure and the method we propose

‘We have presented here the classical probit analysis,
The theory is the same for.logit\analysis ékcebt for two
major differences. The first is the further s1mpl1f1cat1on

poss1b1e because of the form of the loglstwc d1str1but1on

which is
Flx) = 1/(1+e 7%
Making the transformation Y=g(X-g) gives

L ap, | o
Pi:F(Xi)i 75 r-BP 1~ -P, ), and B (X ~6)P (1- -P, ).

By def1n1ng W P (1 P, ) the correspondzng form of (1.2.3)

in logit analys1s is B



f'v' 11’

AeiZ BwW, + AB Z (x,-e)w = -.Zl(ri/n-Pi);,
i=1 i=1" :

(1.2.6) .
; o T\

- A8 (x -e) +AB (x -e)2 = (r./n=P, ) (X.-6).
, 121 . 1§1 i iz "0 ! >

. The second adVantage is that from (1.2.6) it is
apparent‘that

k ' k- . -
;1 ry and,ié"1 rixi :

"

are sufficient- statf!t1cs for 6 ‘and 3 ' respect1vely No

G suff1c1ent statistics are- forthcom1ng in probit analysis,
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- .

1.3 Sequential Approximatidh. This method of approximation

gets its name from the type of procedure it requires. n

the case of establishing drug potency, it would be

necessary to make an administration at a certain level -and -

-then observe*the response before the nexf‘édhihistration is
made. This 1is because the next dose ié a function of the
prevfous dosé and the responsé. In general }erms, we Qish
to estimate _ the root of a function R(x) when the
obséryatiqns are subject to random error. HenCel what iS
observed is R(x)+ ¢ where ¢ .is a random variable whose

distribution may depehd on x. In probit or logit analysié.

R(x) has theform F(x)jOJS (in the case of estimating the

LD50) where F(x) is the normal or logistic distribution
function réspectively. .qubins..and Monro [14] sroposed a
sequential method that wpu]d éefine X1 arbitrarily and thén
define . | | | S |

(1-3‘1) Xn-{-l = Xn = an(R(xn)+E)

where a -is a positive des;easing sequehce of"conStants

 §uch.that A-: .f# t,f .v) o :‘ ~  - _ f“\'

0 - - : w ! . ’
a diverges and § a,? converges.

n 1 . , - n=1 E :

, I~28

" They showed thét wheh R increases at most l%nearlyiand the
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variance Of the e's is uniformly bounded, then X converges

to the root of R(x) in probability. Blum [ 7] later showed

that in fact &1 converges to the root almost surely. Since .

then there have been numerous papers that have wéakened the

_requirements on R and have dealt with various applications

of ‘the method to other situat1ons,lf3r example Kiefer and
Wolfowitz [13] have altered the method to’ allow the maximum
or minimum of a funct1on to be approximated . sequentially.
Others have considered the problem.of R"having miltiple
roots. A considerable .amount of effort has gone .into
finding the optimum values ”for, the sequence {a } For

example, it has been shoWn that among, all sequences of ~the

- form c/n%, the. opt1ma1 form is a =c/n.

Th1s procedure whenucompared,to classical analysis has
advantages ‘and ndieadVantages.'Its primary disadvantage is
its‘ sequential nature. When’ testing;vthe potency of
inskcticides it is  highly undesirable’ to fumigate

individual .cockroaches_hwith' individual doseS‘ and  theh

observe the life or death response before the next test is

pebformed; Cockroaches are7cheap and the cost of testing

high 'so invthis situation sequential analysis is not cost

- effective.. Simi]arly,7tn testing the carcinogenic effect of

a new drug on mice; it is again h1gh1y undes1rable to wa1t“

- the substant1al pertod of t1me requ1red for the effects to

‘ become not1ceable before the next adm1n1strat1on is made.

-
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In this case the method is not time effective..
‘The method, however, does have several significant

advantages. Chief of theée, perhaps, is its simplicity

,Finney-when-describing the use of probit analysis without a
computer required several pages of %ﬁplanation as well as l

some extensive examples. The sequential procedure, on the
other  hand, could be done by hand or small pocket

calculator +ight in the labora*ory by someone with a

_minimum of theoretical or computational skill. Also, there

are many experimental’ situations involving expensive

animals (for example Rhesus monkeys) ahd fast acting drugs

--that make the method very cost and time efficient. Another

situation where this method is cost and time effi¥ent is

in the testing of plastic pipe for breaking strength Here
u'a given weight (the dose) is dropped from a fixed height on

T a sample piece. of pipeﬁrand the response of breaking or not

h

breakiné is recordeot The wvery nature of _RE:)testing

procedure 'lends ‘itself  very nicely to . quential

;approximation Another of this method’s definite advantages

is that 'it is nonparametric. The ability to estimate and

predict various LD values in’fprobit or logit analysis a

Hrelies heav11y on the underlying distribution that is

chosen In fact the estimates themseres depend upon the

- assumption of the model .,for\- their validity " .The

’ Robbins Monro procedure however,,will converge to the LDSO\
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regardless of the underlying distribution function. It also
hae the added advantage of placingxmbst of the observations
_near the root of interest. This . prevents the rather
. wasteful occurrence rof~-takin§ a--batch- of observations
nowhere near the root and then finding either 0 .or 100
percent 'response in that greqp. As well, the experimenter
has the choice‘of,making the experiment consist of.a fixed

number of observations or lettiny it continue until the |

desired level of ecqyracy is achieved.

For the most part we have . referred to the
Robbins-Monro proeedure as it is used to estimate the deO.
One reason forJ this is ‘that this‘quantity is of greet
1nterest among researchers today and is used‘gextensively
for cOmparlng drugs. Another reason, however, is that the
method, although thdoretically asymptotically unbiased,
demohétratesdgcoheiderable bias whenvlused to approximate
noncentral QGEhtities (for‘example LD75 or LDS5) in finfte
samples. _Wetheri)ﬂ bhae considered this problem [16] and -
cohcludes_that “Routinel1'(the ROBbiﬂSfMOHPO proceddre) is .
very .efffcieht foh/estimation of L.5 (ie;‘LDSO). both as a-
methoq‘ of placing obeervations and as a method of
_estimation. It is very robust to errors in the starting
value of the sequence and also to the value of the constant
¢ (recafl a,=c/n). Actusal’ small sample variances 'follow;

eJosely'vapproxjmationsl given by asymptotic fdrmu1ee'based
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onh a simple model However, Routine 1 1s unsuitable for
- estimating even moderately extreme Lp, such as L.75, being
subject to a heavy bias and yielding large’' variances."
Finney’s. method must also. be _altered for the case whén
extreme quantiles.are to be estimated, and he recommends
usihg a sequentfal method (where practicable)'proposed
originally by Bartlett [1]. Jhis\involves sampling at a
fixed dose until _the desired number of responses is
erved, thus yieldihg a 4negative binomial rather than
bifomial distribution for the number of zeros at eagh dose.
Tsutakawa -[15] has also proposed a method for'determiﬁing
what the optimal choices of dose would be. .Wetheri]l [17]
has. suggestéd a Robbins - Monro - like procedure whiéh
would have smaller bias of .extreme quantilerestimates. His
UDTR (Up and Down rule on a Transformed Response curve) is
- a variation of the up and “down’ procedure first‘put forth by
D1xon and Mood [9]. 4
The est1mat1on procedure we propose originated from
Studyjpg . this particular problem. Our aim was to find a
procedure which would ‘effic%éntly estiméfe extreme
oquantfleé_ such ‘as LD75 LDQS or LD389. Such procedures are‘
becpming 1mportant in areas-such,as env1ronmental control
and establishing safe levels for toxic drugs. We feel there
’;Eg a .need for a method that provides high accuracy with

fewer 0 responses than the classical methods.  In
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o
particular, our methods wil provide the same accuracy of
estimates with fewer deaths in situations such as testing

the polluting effects of certain-chemicals on wildlife.



CHAPTER 11

The First Zero Distribution
4 . ! .

’ -

2.1 Introduction. We decided to caJl the distribution which
we concentfated on the First Zero Distribution. We assumed
we were dealing with the logistic model (or Logit) which

has the distrtBution function

F(x)=1/(1 + g B(x-0)) .

o W

8 is the scale parameter (B is 1nversely proportional to.

the standard deviation) and o is the location parameter (0A~

is the mean of the distribution). In the model,. subjects
are administered various doses of a drug. The subjects Jare
observed for either of two possible reactions 1 response
vVS. non- ‘response, death vs. survival, _etc. - &that are

classtfied as efther 0 or 1. We will denote doses by x and

responses by Y. Hence at any given dose X, the probability \\\\\\

\

of having a response Y = 1 is F(x). We are interested in-

determin1ng relatively .large dosage levels, for example

LDS5. The test procedure goes as follows: Choos® an

arbitrary starting__point X1 (hopefully,chosen near LD95)

and -an increment value . The first subject is administered.

ddse Xl,end the reactton‘ohservedﬁ If the response Y1 is uO
i

pyoo-

18

=
N
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then N = j and we estimate LD95 accordingly;"(N will -be the

random variable COrrespondigb to the number of subjects
.treated before a, 0 is observed.) If the response Y is 1,
“then we set >Xé = 'Xl ‘.A and the next eubjeef Mis
administered dose Xz. If the reépqnse Y2 is Q, then we sef

N = 2 and the estimate of LD95 s caleulated._lf the

response Yé is 1, then we set X, = X, - 5 and repeat. The |

3 2
testing continues in this fashion until a 0 is observed

(whence the name First Zero WDistribution). ince we are

stepping to the left, a 0 must occur with probability 1.
The estimaté is based on xl' *&, and A. Hence, N may be
defined: = - o

i N=inf{j'YJ;-0}H

v Equ1valent]y, we may base the estimate on X , 4, and D
where D is the random variable defined by ,
X1 Ky =aN-1) | \'

The result1ng d1str1butlon can be exp11c1t1y written.
Assum1ng the - subJects responses to be .independent, 4the
'probab1l1ty of a responsé{ of Yi=1m'from 'thei i’ th
administraion ‘is

| )

P(Yi=1) = FIXg) = 1/(1 + eB(X;-0))

where X islthe dbse administered to that subj ct. Hence,

~a,
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>

P(X.<X ) = 1 1/(1 + &B(X;-0) ),
N n 1:1 :

Although we have the expllcit First Zero D1str1but1on,

: it Vdi;s not lend itself to-easy man1pu1at1ons. especially
in the area of parameter estimation. We had hoped to find
simpler disffibuticns' which would approxjmate'the‘First

Zero Distribution and thereby facilitate the estimation
proceaure. In this we were successful: as X1 goes to
fnﬁinity~and A goeslfo zero a function of D has.a Iimiting‘

Exponential_dfstributjon.
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‘2.2 Weak__Convergence of eBD-1 to Exponential. To help
simplify notation we introduce the quantity
(2.2.1) m = e"B(xl"e)/(eBA-1).

(2]

Theorem 2.2.1: Let the constant z>0 be given. Then
Pim(eBD-1) < 2) . 1-e2
as R S \and A +‘ 0.

1 i

Proof: Define d and n by

(2:2.2) d = (inivz/m)/s
‘and -
(2;2;5)‘ n =1+ ld/y]
= 1 +’gre?1%st intéger‘part of‘dyA.. -
Note that

(2.2.4) 0 < na-d <A ' N . : o
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‘and also that

/.

- {2.2.5) 'z = m(eBd-1),

Now o P(D)d) p(Y1=1'Y2=1',',"'Yn=1)'

n o
1 1/(1+e'B(Xi-9))
i=1 .

o
1"

and hence

- ) |
(2:2.6) -In'P(D>d) = § 1In(1+e "B{(X;-0))
- i=1
Using the inequality a-a? < In(1+affe < é; for éll a>0

termwise bn (2.2.6) gives’

n
Y

(2;2}7)‘ e'B(Xi“e) -HE 'é¢28(xi-e)
i sl

1

. S -1n P(D>d)

b




23
< -1n P(D>d)

' n-1 ,,.
. S e -B(.XI-G').Z eB.A.',
i=0

Sumh}ng‘the ggometric series gives
(2.2.9) e“?‘xl‘e?(eﬂ»"?‘-1')./(eBA-1)
- e 2B(X{0)(g28nb ) /o280 1)
s‘-ln P(D>d)

S e7B(X,70) (eBnd-1)/(eBh-1),

which is equivalent. to
(2.2.10) m(eBnA-1) - m2(e2BnA-1)(eBA-1)/(eBA+1)

A

—

< -1n P(D>d)

< m(eBnd-q1),

We wish to show that the second term in the left hand side
;f of (2.2.10) goes to zero as X; tends to ihfinity and 4

—

tends to 0; ie. We‘wiSh.to show that
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(2.2.11) m2(e2Bnb-1)(eBAq)/(eBA1) , .
~ To see this, note that
0 s m2(e2BNb.q) (eBh.1)/(eBlyy)
< mz(eZB"A-t)(esA-1)
S m2(e28(d48)-1) (eBA1) ¢ [from (2.2.4)]
'S m2(e2BA(1+z/m)2-1) (eBA-1) [ from §2,.2)]
< m2(e2BA-1 + 27e2BA/m + zzéZBA/mz)(e.BA—ﬂ |
S (e8041)e7280x170)uppg B (X170-20) 5 (BB g) 280
e P ' [from(221)]
The 'fjrst two ter?'ms go to 0 as X tends to 1nf1mty The |
last term goes to 0 as & tends to 0
Next we w1$h to show that
(2.2.12) (BMqyyefdagy, 4 0
This follows from

/

'1ist(é3"A*1)/(e3d-1) [from (2.2.4)]
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(eB(d*A)-1)/(eBd-1)  [from (2.2.4))

<
= (eBb(1+z/m)-1)/(z/m)  [from (2.2.2)] \
= m(eBA-1)/z + eBA
| o
- e -B(,x\l'e)/z + e BA

T
o
! !

 The left term tends to 0 as X ténds to _1nf1n1ty and the
r1ght term tends to- 1 as tends to 0. Now noting_that

P(D>d) = P(m(eBD-1) > m(eBd-1))
: | e
we 'have, by .applying  (2.2.11) and (2.2,12) to (2.2.10),

>

-In P(m(ePP-1) > 2) » 2

which is the réSult we wénted.
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2.3 Graphic' Comparison of the First  Zero and Exponehtiall‘

Distributions; The above theorem guarantees\convergence of.

'm(‘eBD-_ 1) “to the “Exponén‘tfi'a1‘"'"‘dist'r{bUt‘i‘bn Jin limiting < .

sftuations  For practical. purposes 1t is lmportant to know
how fast this convergence takes place. The fOIIOW1ng graphs

1ndicate the Kind of approximation that can be’ expected for

6="0, B = 1, and various values of X1 and” A. As can, be

seen, the ,approximat1pn 1s reasonably good for even small
values of Xy (ie. Values as centﬁél' as -LD75) and large
va]ues of A (ie. values as large as 5/3).4As expectéd the
f1t improves as e1ther e1ther X gets larger or p  gets’
}smal]er When both occur, a very good approximatidh isn
obta1ned (eg. X = LDQQ ‘and 4 % 02/3) The lack of fit for
v e1ther X central or A ]arge seens to be pnlmar1ly due td.
the s1tuat1on of approx1mat1ng a dlscrete d1str1but1on by a

-

. contlnuous one : ' s
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2.4 Weak Converqence of Bixu-e)+ln(eBA*1) to Extreme Valﬁe

The results of section 2.2 hold regardless of the relative

i3,

. rates of convergence. of X to infinity and 2 to zero I

fact this relative convergence takes place under cer ai:\\\*\\

conditions, another . limiting distribution can be shownyto

apply. Recall that . ‘

< |

(2.4.1) 0 = x, - X,

nv’and.

&

(2.4.2) m o= eB(X;-0)/ (B0 1)

Corollary 2. 4.1: Let the constant z be g1ven Then as X1

tends to 1nf1n1ty and A tends to 0 1n such a way that m
-tends to 0 we have,that

P(B(X ~6)+1n(eBh1) < 2) 4 exp(-e-2).

~ Proof: Putting x=e~Z we have that
. -7 C .

1-e~X = ]imVp(m(eBD_1) < x) Lfrom Theorem 2.2. 1]}

= 1im P(me®? < x)  [since m~ 0]



1im P(me < x) [from‘(2.4.1)l

lim P(e ™ 1) S x) .. [from (2.4.2)}

lim b(-e(xN- 0)-1n(eBb-1) < -z).
Hence P(B(XNse)fln(eBA-1) < z) » expl-e~?),

exp(-e”Z) is the standard iorm‘of- the Extreme  Value .
distribution | (sometimes called Gumbel’ s Extreme Value
distribution or the Type I Extreme Value distribution)

vTo understand the imp]ications of this -result we
shouid- look - more ciosely at the oondition that m- 0 From
/7(2 4.2) and Using the fact that (eBA-1)/BA+ 1 ash » 0 we.'

see that

m> 0 iFF e BX{ oo iFf sxlﬂn(,;)';.m. |

These hequivaient' conditions indicate more ﬂoiearly -the
relative siies' of X1 ‘and A . In ‘general terms the

requirement may be expressed by stating that A may not
,.converge to 0 too qu10kly o
One further conSideration should be made In practicel'

Theorem 2. 2 1 Will be interpreted to mean that since



Tim P(m(e®D-1) s z) = 1-e-2

..we may .conclude,. for finite values ofsxi and nanzero values

of A, fhat

‘.

(2.4.3) Plm(eBl1) 5 2) 2 1- .72,

Using (2.4.1) we can restate (2.4.3) in the equivalent form

e

(2.4.4)' P(XNSZ)' exp-(exp-s(z-é)-exp-s(x1-6)}/(e3A-f)
or more éihply

T -
Léxp-{exp-s(zjt)'- exp-B(Xl-t)} '

(2.4.5) P(X, sz)

’whebé"

T |
(2.4.6) t = 8- (in(e®®1))/8.
This is the ;form of a Truncated Extreme Value random -
variable which is truncated above at X;. That is (2.4.5)
represents | | : - ”

'// .

(2.8.7) . P(X <z | XusX)) .
L .S U
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for an Extreme Value random variable X,. with location

-

parameter t and scale parameter g .
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2.5 Graphlc Comparison of the F1rst Zero and Extreme Value

Distributlons The above theorem guarantees- convergence of

‘B(X “8) L ln(eBA 1) to Extreme Valuein -certain--limiting -~ -

.s1tuat1ons Aga1n we have graphed the two distributions on
the follow1ng pages to 1nd1cate the kind of fit that can be
expected for f1n1te cases. As for the graphs compar1ng the
AExponent1al and First Zero. distributions, we have ‘assumed 8
‘and B to be 0 and 1 respectively As can be seen. ‘the

iappnoximat1on _is closer for large values of X; and large

~ 'values of A(wh1ch yield a small value of m). In the best

f1tt1ng graph . X1 is equal to the LD99 and A 1s equal to
5 Thus the correspondlng value of m is 0.0156. Compare
this to the fit  for the cases X -LDQQ and‘A“ 02 (glV1ng
‘. méLSQPOl X LD75 andlA" 5 (g1v1ng Qi .5138}, and Xy =LD75
and 4 . =.02 (g1v1ng m~16 50) It becomes quite ev1dent that
the t1t deter1orates rap1dly as' m 1ncreases ( | '

» In order to compare this approxxmatton to that
obta1ned from the exponent1al form we ‘have on tﬁk samel'_
"graph 1ncluded the Truncated Extreme Value approx1mation of
(2.4.5). As expected v all - cases :thep- Truncated,

: approx1mat1on is better than the nontruncated one. Only 1n

two 3ases, namely X =LD95 ‘and. LDQQ and A =L5,.is"the- 2

N 4

;nontruncated flt competet1ve We would therefore expect the
- Extreme Value apprOX1mat10n to have l1m1ted appllcattons

;jWe shall see, however,g-in"p certa1n ~ s1tuat1ons th]s’

-
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-approximation does prove surprisingly useful.

AL
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CHAPTER 111
Estimating the Parameters

3 1 Introduction The maih reaeon for approx1mat1ng a

d1str1but1on is to facilitate the process of est1mat1ng the
parameters. We will be concerned with three parameters: B8
(or perhaps 1/8 ), 8, and r where r is a p- fracti-le other

than 6. For example, if p=.75 then- r= LD75 If p=.5, then':

r=LD50= . Since the" logistic® distribution 1is a two -

parameter distribution, any two of these parameters

deterhine the third. Usually of interest are the scale

'/’fparameter and one. location parameter, We wxll also consider

8

- the s1mp1er prob]em of est1mat1ng 6 and r when g is Known.

There are three sources of est1mates the Exact First Zero -

: 1
D1str1but10n the Exponent1a] approx1mat10n, . and the

Extreme Value apprOX1mat10n In addition,  for each

d1str1butlon there are var1ous types of est)mates These
include max1mum ‘ l1ke11hood (ML) est1mates,‘5'moment f
est1mates, and unlformly m1n1mum var1ance ‘unbiased (UMVU)e
est1mates Thus if we talk about the Exponent1a1 UMVUE we"

are referr1ng toe the UmMvu estlmate obtained from thef'

Exponent1a1 ‘approximation. Note that,this ie‘hot a "true”

UMVUE. It is UMVU - for the’' Expomential distribution but

“undoubtedly bias will be introduced from the finite

—
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approx1matton By the same token, the ExponentIal MLE will
1be asymptotically unbiased with respect to estimat1ng its
_;chAperemetere»hut,maywnot,have,thlseproperty,withnurespect‘.
"tO'the First/Zero parameters
Each of the next three sections in th1s chapter is

deVoted_ to 'deriving estimates from : each | of the

distributions: section 3.2 covers est1mates from the Exact~'

‘F1rst Zero d1str1but1on sect1on 3.3. dlSCUSS&S Exponent1al
estimates, .and sectwon ' 3 4 descr1bes Extreme Value
estimates. Thelr relative performance wﬂll be eva]uated in

the next chapter



3.2 Exact Maximum Likelihobd od Estimates. Given the explicit

First Zero distribut1on, it is’ poss1b1e to. obtaln the Exact

A;Maximum L1Kelihood Estimates for 6 and B (or for r and g ).

The d1str1but1on functlon for each 0 observed is

o ; ?(XN- Xn ) =,P(Y1=1'Y2=1""'Yn-1=1’Yﬁ=0)

fol)F(xz)"'f(xn-1’[1’F1xn)1 I R

{ n F(X ) Yexp- B(X -e)
- 1—1 .

where F(x)iis the lagistic distribution function

o

{

CF(x) =.1/[1+eXp-B(x-e)l.

For k such iterat%oﬁs,with.starting points

P ST STRTRTI SH “. T T

T2 k

and first zeros at X ", X_,..., X
S BELE B AT
" the likelihood functicn.is™

83
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-
L=PXy =X, Xy =X L eees Ko =X )
, le; ny N2 n, | Nk N
(B 0 News b x - 6
=1.0, L0 j [ 1exp=g p A - 8.
m.3.1»1A1-~~Jj i=1 nj
This leads to the log likelihood function
| R |
, Kk N ' k o
in(L) = 3§ ln(F(X ) -8 F (X -e).
gerdsr o Ty TyE o Ty
i : ‘ /

Taking'partial'deriVatiVes with respect to 6 and 8 gives

, k,- n; o
Al . Ly FIX; Jexp-g(X, = o) + kg
L g=ri=1 ' i '

and .

. (X, - e).
1 “’j»

(S avrb L

3 \v*_k ' o .  ."‘ |
CLICORE sz F(X Jexp-g(X. -0) -

. CEA J=11i=1 A N jjﬂv o

‘Setting these,-equai tdﬁ}O“ abd reddcihg_ ]eads.'t6  the

eqdati@ns:‘ .

ok Ny r ok
(32n.z ZHx ) = ngi) =0 _
' : =1

J= 1 i=1 _i:~ J
’:and,
K n, |

) , k R
(3. 2. 2) z xi F(X AR Jf X; = 0.
R e T ,’j. J 1i=1 5 -
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These -cannot. be solved expllcitly but are; manageable B

'numerioaTTy The standard procedure. is to do a two

‘~mparameter Newton Raphson Fecursion. IfB is kﬁoah.f then a“‘>'~

one parameter recurs1on may be used on (3 2 1) to flnd the
value ofe ' ' | _
In practice the values of X1 and/orA will be changed[

durtng the course of the exper1ment However. for.the sake_

of the comparison we will be doing in the,nexi chapter, Weh_'

also cons ider the case with the'further"restrictions that
all .the start1ng pownts and all the increment s1zes are'
' equal Under these condittons the - process i 's,.sxmpljf1ed'

noticeab1y°and.by deflningﬁ u

’oveﬁmax h’rfnZ’;"’ n !

T . . . . O

4

we can then defjﬁe.tﬁe‘vaiues-Forjj <£is<n

ll

‘ the_qumber of n 3 that are 2 1":

Joiln, 2 il
Sl i o§=1 ..
-~ where -

t [nj_ '1], . t»jf njzi

V‘OJIAif ny <.
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This reduces (3.2.1) and (3.2.2) to

) X | | .
(-3, 2 3) E WiF(X]) S X (nJ “ ) E 0
i=1 ‘ j:l ]

and

oo ' k n . ‘ '
(3.2.4) 7§ . - Y wX (1-F(X.)) = 0.
| 41 th EREY LR I i
If we“denote‘the ﬁeft side of (3 2.3) by G (considered;aS'a

function of e and g ) and write G as the partaal derivat1ve

\ 3_~.: of G w1th respect to e. then if 3 is known and 91 is an

estimate for e, the next Newton Raphson recursive estlmate

for e is: .
6% 8,=6/G
N ] . S R !
‘-i<Where'G*and‘G -are evaluated at ei'
o ini the same way, denot1ng the left hand s1de of : :

(3 2 4) by H 1f N and 31 are est1mates for 9 and ‘31 then

1
the next estimates are'."

, oyt (HG - GH, )/(G H, - GBHB)_ -

o -
i

' and"f , , ‘ E
By * (G - HGe),/‘-‘GeHe " G

: /

. 2 :
ol
i
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where again the right hand sides are evaluated at 8, Blt

For the logistic distribution function F we have

oF

- _ _' ’ _ aF - _ . R } .
, 36 = BF(x)(t F(x)) and 55 ° (x\p)F(x)(t Flx)).
Using these we can obtain the quantities \\\\\\\
W F(X )

H, = 7 mixi(§i~e)F(Xi)(1-f(Xi)t..~’

where: a]l fbur sums are taKen for 1\9£ _i < h;' The same -
procedure can be followed w1th unequal start1ng pomnts and »
"Increment sizes., . The: equat1ons are ‘s1m11ar ,with thev w_s |
"replaced by a second summation sign.. 'f %L; -:;V | ‘
: Th1s method is v1rtually ident1cal to F1nney s method
’The only d1fference is that the sample size at each X iS“hj

'varlable and the samples tend to be closer together than 1n

. the classica] case Otherwise the maxamum l1kel1hood

_‘equations are -the same and S0 must also be the solut1ons

.‘The difference 1n the iterat1on scheme is. due to the 'fact-

. K25

halr
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that Finney uses a first term expansion ot the distribution

function befqré deriving the recursion.

: mThév~equations»wof-courseﬁare'much simpreh“For“the>one B

parameter recursion that is used when B is known.

/
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3.3 Exponential Estimates. First we will consider the case
when g is known. Theorem 2.2.1 _shows‘thatf under the proper

“conditions
Pim(eBP-1) ¢ z) 51 - e 2
somfor‘ this section we w‘i}l'assume;, that

(3.3.1) P(eBl-1 < z) = 1 - e~M2Z,

If X, and 4’are subscripted.by 1, we will write

m; =

e‘ﬂ(xl»ibfe)/(%.sAi;”
The density derived from'(3.3.1) 2

©(3.3.2)  £(z) = me "X

, _' For' K. such vamables mth all stargmg pcnnts equal and all .
' 'increment sizes equal (and hence on]y one common value for
: m) we have the jomt dens1ty S ES

I.

7(.3,‘.'3.3) | L= f(zl. 7'2"f“’ 3

. LA
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?

4

Ve are 1nterested in estimates of ln(m) Since the sum of K
\@Lndent Exponential variables with mean 1/m is a Ganma

_ random variable with mean k/m and variance k/m’-. we may use

the fact that the expected value Qf the log of this random
variable is =

) k ' :
ElIn J z,] = -In(m) + y1x) ' "
i=1 | A ‘

-

where |p‘ (k) 'is the Digamha function which for'an"inteéer K

is equal to
.i 4 . ° )
v (K) = - Yif k=1
o k_i . - ’ . < -J*:‘
-X+ 7/ if K1 e .
- =1 Lk
"PlNote:‘y = '?E'ufer’_s ‘constant = ."'577,2156645.;'.]
- Recalling that T
. : ' . | A y\ .- .¥ "
m = e-B(X;-8)/(e B4 1)
we have that ‘ W T I .
. X

T S N VR
In}zls= B(X; - e) + Infe 1) ?“K)

o

. and 50 if-we put B, = X, - X and eBDi -1 zi we have that ,

n
I'.,)_"\_. 1

?y,

»
- 4“51 -

/ /,V-rf
’ A

RV
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. - : . BA i K A
"(8.8.4) § =X ,+ [In(e" -1)+¥(k)-1n. Z ( %118
o . ‘:‘ . ‘ - 'l— ‘ - .

‘ - - - '
~ds an 'unbi'ased“est'imat‘e' of ¥ ."Since ¥ 'is a function “of “the
complete sufficient statistic, 1t follows that [:] is a UM\?UE

L.,
of ‘9. : o ' " o .
We “can also find ﬁ'ae maximum hkelihood estimate for
, Taking the log of (3.3.3) and usmg subscripts on m to
o allow for diffefent starting pomts and increment s1zes
.gives -
¥ . v - ..’
(3.3.5) In(L) = ¥ Inlmj) - yomizi. :
B i=1 . =1
Taking th‘e‘par't,ial_ déri‘yative of 1h(L% w.r.t. o gives .
. . l.n | ‘ o | ”’. R .. . '!:\ ; .
_.L"_(_L_)." KB '-3 z m]z1 . . o
L . e L S
'iSe;ting_this equéi“igibrahd"solyiyg for o yields_ L
- (3.3.6) 6" = nnm in fe ) (e 1-1)/(eef“ m)/s

'3’?-3;' This est:mate ‘of course can be used even vﬁ'i!th unequal'_."»

wﬁ"’\«ﬁ@startmg pOints and mcrement sizes. However, in order to;;.,

coupar‘e it with the UMVUE, let us assr.‘!‘n"ié that starting
pgints" and incremeht sizes a’r'e thé'« same Th,en (3 3, 8)‘

i gx
4 - R, ¢ "1" P
° B o : ¢ {’ ». f !
X ; . . L ye
- . \Y . '
. £ Ly
v B 2
) - o e
. 3 I . Ta
. ® » : v -
» 4
- . N /
. . S
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| k ' AR |
Dintk)-In ge‘BXI (eBDi-1)/(eB21)}1/

D> .
1

(3-3.7)

/

R ~'1»+ Tinte BA1)+In(k) - 1n- 2(e501 1)1/3
o ' i=1

lgki " The difference between ‘the UMVUE and the MLE is - ©
o S W »: ;. ‘
F{ LIV umugé- &E lw (K) - 1n(kﬂ/3
T:.-i;?. Whlqhaisya-éantant 50 Var(UMVUE) = Var(MLE) and the bias of
L 5[ tﬁ%JﬁLE ?an actually be calcu]ated

Ll A% R
;j'fy‘ Mhen 8 “is not Known, the dlstr1but1on (3.3.1) should
A g " = e . : :
) _ be rewp1tten ' I AR
g . . v’{- Lo
e o D 8d _' . L
-(3.3.8) P(D <d) =1 - exp-mle .-1) o

e

- and the eenneébonding deneity is.
Lo (3.3.9).f(d) 5f§ﬁ98de*pfm(és¢iﬂy

TR { L 'fi,- . R

so the new logglikelihood‘forjggeuch variadles is

' . L L ﬂ *Ti‘\ LT .
. . b- . \ oy ' o _..4 o . | ’,,// _

’» -

 (3 3 10) ln(L) I@ln(ﬁ)+ Z In(m ) +B Zd Zm (e3d1-1)

1 . i=1." =1
. & 2 : ‘ “ '
Sunce we already have the MLE for e (3 3. 6) we need only

’ solve for B (3 3.6) g1ves an exp]1c1t solutwon for e Thus

. Y * §
. ) dm . ‘~rk
B S L W Yoo %
) : S ! e Ty |
g" ‘:‘ . &’g . ¢ e =
% C »o ) S
‘o 2 . -
~ ( .
£



when .we take the partlal derivatwe of (3 3 10) and set it
equal to 0 we may substltute (3 3. 6) into the equahon

leaving it. a functlon on1y of B, the d's, A's, and "ixl"'s",;"‘

Thus the most difficult calculations require only‘& 51?" .
‘Barameter‘ recurs1on to .ve for B . Th1s value may t ]‘,:,.
- substituted into (3.3.6) to find &. "Rather than giv%se
.equat1ons we will 1nstead consider the neater -solut1on$

when all the X.'s and A’s are gqual.' In 'this‘ca's_,e (3.3\.}10)_ ,

1 ,
becomes == T S L e
(3.3.11) In(L) = Kln(g) + kin(m) + g Z d my (eBdi-1)
f8xS. T SRS R

'r_ an‘dv -ta_King" the’partia.ll' derivative w.ﬁr'.‘t'. B y'.iélds | D ‘ ‘ G

'u‘\‘
(3.3.12) Yl w/p vpmme 5o
C k. Ak
o -2y (eBdioy) s&i.z,d:.eﬁdi.
. 38 . s K ] .-
Y i=1 ‘ R ’1=,-1 5 ,_,j,’_'i*
o e BE R SR
-Substituting (3.3.7} into mgives_ . S,
’ v N . A . : ’ _“ ‘ . ) N ’ J’ p . ' ' "
N T PR
m= eg.(xl-le)./(e 1) 7 i
ot e kY (eP%-1). -
" and s;;lbs.titvu-t'ifhg‘ thias' into (3.3. 12) gives;'
J‘*‘ ¢
. ¥
s
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. k J .
d; @471 (Fhi-1).
1 ‘i:l .

®

B (W b

i

”S'étf:i"n'g' this édu'a‘l.'\. to 0 givés - an . equat[on—wmch .7 may be

solved for § numerically.

o
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3.4 Extreme Value Estimates. From Corollary 2:4.1 we Know

that under certain conditions"~ff g
P( s(x - e) +: 1n(eBA-1) < z)+ exp- e Z
For this section we wi 11 assume that

R _(3.4.1) P(XN < x) = exp-é%§geb& - '{'e - lln(eBAv-1)']/3}). ,

Putting s = - [In(ePB-1)]/g |
we can Ireparametrize. (3.4.1) to the form - . 8-
(3.4.2) P(X < x) = exp-exp-glx-s).” o

This is simp'ly an Extreme Value distribution (somﬁnnes
-called a Type I Extreme Value distmbutlon) w1th mean g +

Y/ g and varfance- 1#/(632) The estimates we are interested

s 1n are the moment estimates, f_cSund by so1vi}ng_ -
.§8:4.3) g zn/(6 times the sample va‘r'iance_a);5 O @-
(3?.?’4) *
. e
’hs‘.&.}' f "., ‘ ‘. .
N> & o Pl - ; :
Ttns Tast equatmn can bg*solved for e giving
: S e S -
L b :
s S S
> e v O



's1mp]1c1ty of- the moment est

(3.4.5) © = sample mean - [y - ln(e L

e

_ We' will not cons1der aﬁ?’Max1md//t1kel1hood est1’ate§w

.from the Extreme Value d1stribut1on for two maJor reasons,

First the moment estimates for 1/8 and s given above are
approx1mately 55% and 95% efficient respect1vely',[12].

While this may be low as far as estxmating B is concerned'

’.the high eff1c1ency of the location parameter-makes 1t very

competetive. since the b1as due to lack of f1t wil]
dominate the effect of a 5% loss of eff1c1ency The second
reason is that the ML est1mates from the Extreme Value
approx1mat1on are roughly as computatlonally d1ff1cult as
those from the Exponent1a1 approxwmat1on. and since -the-

F

Exponential approx1mat1on is. better, the ML estlmates based '

thereon should also be more deg rable. It is primar11y the

es that makes them so

A

attract1ve We will see that they also perform surpris1ngly,'

K well under cert%ﬂn samp11ng 31tuat1ons

We could of course ca}culate ‘est1mates from the\

‘";Truncated Extreme Value approx1mat1on However, since ‘thfs
‘was simply a: transformat1on - of . the\ Exponentlal
'approx1mation, it is therefore no surprise to f1nd that thed

;,UMVUE of g8 when 3 is’ known and the ML est1mates in the.

general, case are ;)dent1cal to those from. the Exponent1al
approx1mat¥on andfwe will not reproduce them here ' |

e .

' -'»":,g,.:" & N



CHAPTER 1V

Relative Performance of éstimates

[

;

4.1 IntrodUCtton In Chapter ‘III we presented a rather

.large." ltst of pos31ble est1mates Wh]Ch could be used We

hawe actually looked at several others but beoause of their
 poor overa]l.performance we did not feel they ‘were'uworth
‘including- in the development or, comparisons 'The esttmates‘
QCan be c]ass1f1ed into two natura4 groupings: estimates ‘of
9v or r when:B is known and estimates of 9, r, and B in the
genera}‘case Sect1on 43g W1ll treat the flrst group and
'section 4 3 w1ll coﬁéern 1tself wgth the second group. In
addition there is the natural quest1on of what would happen_
if the “mode 1 were 1ncorrect That‘1s what 1f 1nstead .of
rhav1ng, the assumed logit - model, the‘ actual underlytng
response function were probit?’ Such a quest1on is obviously
jmportant and w111 be cons1dered in section 4.4. 'We «wtl]“
o then end the chapter with .a‘~compar1s/hr of Firstheroi _
. egt1mates and c1a551cal log1t anatysis festimates jn?[one'

Partwcular testing s1tuat1on I , -*faéi S

'Thé~f nature . of: the estimates ‘gehékaily made 4iteitef

1mposs1ble to get the exp11c1t moments of the sample .
estlmates , As; a result most - ‘of . the compartsons that were

i made were done by means of Monte Carlo 51mu1atlons. A
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pseudo-random'number generator,-the one supplied by the APL

_installation at "the University of Alberta, was used to

‘simulate the targe'sampies needed to be able to compare the

bias and variance of'-the‘ different estimates. Wherever

.pssible we used~ paired comparisons and _we also used‘

‘d1ffevent startiﬁ@ seeds on different runs in order to make

-

. the results of separate simulations 1ndependent" “We " also

kept track of the start1ng seeds for each s1mulat1on w1th\:

~'the~resu]t that each of the s1mu1at1ons/ejs ‘completely,‘

reproduc1dle

 For the sake - of 'standardizing the comparison

procedune,wwe'wil] always have thev,Starting' points equal
andﬁﬂjnérement -sizes ‘equal.’ We do this for two reasons.

First,.fhaViab”'a randomly varying- starting .potnt“' and

_increment _size would add varlance to the estxmates that.

- might obscure relat1ve performance Second de m1n1ng an_

opt1mal method of vary1ng X and A sequent1a11y is not a

s1mple process. and very‘ﬂlkely the method ,1tself would f

depend on the type of estlmate Th1s cons1derat1on w1ll be

d1scussed aga#n in: the next chapter ‘in the sect1ons dea11ng-

‘with recommendat1ons and further research

t The under1y1ng response functlon wil] be the standardv

log1st1c funct1on

"

Rl 5101+ eX )




B

which has ¢ and g equal to 0 and 1 respectiVely Ve tested

_ for three different starting points: LD75, LDY5, and »--Lnggf»;_-w

whose numeric values are In: B, 1n 19, and 1n 99. Three

increment sizes were- used as'Well .02.-.1. ‘and .5.' With

"shorter programs: We also USed three different sample sizes

5,10, and 20.. For- longer programs fewer sample sizes ‘were

used. Here sample size refers to the number of 0’s in the

. sample and not the actua] number of observations
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4,2 Estimates~When B.is known When B8 is known, 1t,vis

‘ irrelevant which root ls to. be estwmated We - also have the’ T

atypmcal statistlcal s1tuat1on of hav1ng no penalty “for.
extrapolatlon This fel\gws since if r is the p-fractile
root (fe. F(r)=p), then | |

/

P g+ {'_ln(p/lt-pl)}/s'. o /

Hence if g is any estiﬁate of g then

e
| TR+ (inlp/l1-pl)}/g .
| ‘ L, . ) , ‘ A j..'j’
is an estimate of r with - T . R
. ~ - . . : o‘j".
Bias(r) = Bias(g) and: var(f) =_Var(g). L
.‘.Thus we may talk sxmply of the b1as of an estlmate w1thout
referrwng to the ro&ﬁ'vt is est1mat1ng | -
Table 4.2.1 summar1zes the results of twenty:seven>'
' separate srmu]ations - one s1mulat1on for each"of - the
.t starting points, 1ncrement 51zes. and‘sample s1zes Four o

esttmates were considered the Exact MLE | the 'Exponent1al
- MLE, the Exponentlal GNVUE and the Extreme Value Moment'
“_Estimate For each simulatton. one thousand samples were -

'ejgenerated and the four esttmates caleulated for,Athat=

. . A . ) .o
- i RS ."‘, L . . . N

.

i,
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sample. From the table it is appdrent that the Exact end
o Exponential MLE' are essentialty the same thh r@bard to
twaoth absolute b1as and variance, except perhaps when b is.
'large. in which case the Exact MLE might have elightjy
smailer:.variénce. The Exponentiel  UMVUE has . the same
variance. as the Exponential,MLE and it has lese bias than
the other two. The Extrenie Value}Moment Estimate is never:
really _competitiye;_eince;the qnly4instances that its b{ae
is acceptably smalllits’vgriance is‘ae_high as that of the
other eetimates. The Extreme Value and Exponential
‘:eetimates ‘anef‘all very straighforward * to calculate
‘explicit]y,k'Whtle‘ the Exact estnmates require a recurs1on,
to locate the root of the ML equat1on As a result.. “the
thxponent1al UMVUE seems to have “the edge. as Far as
7~des1rab111ty is- concerned but it may only be used when all
starting po1nts and increment s1zes are equal Otherwise,
for a genera! test1ng srtuat1on where for one- reason or
another the starting po1nts or increment sizes are changed,
the Exponential MLE would seem to be the best choice. - The
cne‘exception'to this might be in the situation where large
_ valuee' of A were to be used and then the slight decrease
g1n varlance might justlfy the extra computatlon necessary

to use the Exact MLE.
. , .



o

4.3 Estimates wheng is not known. In the general case, we

- will only consider three estimates: the Exact MLE, - the

Exponential MLE, and the Extreme Value Moment Estimates
The Exponential UMVUE may only be used when 3 is Known.
Four quantities must be taken into account when ccmparing

different estimates: the starting point, incremerit size,

- sample size, and also the root to be estimated since

pdlfferent estimates will- have different abilities to
extrapolate. A fifth factor which»may be qlite critical in

 practice is the computational aspects of the estimate. The

Exact estimates‘requihe a two parametér recursion to solve

- Extreme Valug.estimates may. be calculated explicitly For

;for the estimates while the Exponential estimates reqdire-
-Zonly a one parameter recursion and, simplest of all the

this reason, the Exact estimates are the most sensgtive“to '

choice of starting approximafions As a case in point, for

one. simulation with starting point LDQS 1ncrement size

.02, and sample size 10 we used the starting approx1mations:
~of 0 and 1 (the true values) for 6 and B respectively Even
50, we had to’ generate 2369 samples before we found 1000
" for - which = the procedure converged' The - Exponential
estimates are much more rikely to yield a result.. In. the

above example, tooo of the first 1115 samples yﬂeided'

ended up doing was to calculate the “Exponentlal estimates

e e

,solutions for the Exponential ML estimates uhat we finally-



. for the ’sample and then use these values as the starting
approximations for the Exact estimate procedure- When this

was done, the proportion of samples that yielded Exact

- estimates increased dramatically We.did not find a ~single

case when the Exact procedure converged and the- Exponential,

. procedure diverged. The problem of divergence generally'

, 4 : ‘ \
~ decreased as A -and Xl“ increased The Extreme Value
' estimates . were undefined only when all the stopping points

were equal, a’rare occurrence espeCially when the sample

siies were at least 10. We arbitrarily decided that a;

procedure would be considered to have diverged ‘when the
j value of B had gone below .1 or above 10. We«qnly compared

- the estimates when all three converged This tends to favor .

firstly the Exaét esttmates and secondly the Exponential

‘estimates since they were not penalized in any way for‘v'

‘ diverging He ‘had considered giving ‘the limrt values of

R

uovkd have had the effect of reverSIag jhe ad!pntages with

,the= Extreme Value coming fiast and tha Exponéntial coming.

_ second This question of divergencedu 14 béiﬁgntioned again

in the next chapter ‘'when the questien of how this affectsi
First Zero techniques\ with respect to ClasSical methods'

‘ under cost restrictions is discussed J=4g‘ i
““tnother“pornt we should mention is that - of adding a

Continuity Correction Factor (CCF) .to the. values of. D in

“either - .1 or 10 to B when the- procedure dive‘rged. and this

4
[



e e By

IR T3

the Exponential;knd Extreme Value approximationst We found
that ‘a. CBF did not help either the fit or the estdmates in

the Extreme Value case and 50 we didanot include one therea;.a;

N W

Ustng a CCF in the Exponential estimate for r whén B8 was’

'wu—known actually hunt their<performance and”again we did“nolfﬁ

,'L» include one tjﬂowever. in “the general 35?’ it becomes

apparent  that. ‘leaving out the CC£ adver y. affects the ~
performance of the estimates This 1s primarily due to the

vprocedure for estimating 3 ¥ which is why the CCF. was not

- ﬁecessary for the case Wheh B was known Adding the CCF

- slightly increases the bias¢ of/ the estimate of g and

;»4sign1fiéantly reduce, the variggce of the-estimdtes of the .

‘f' wegadd the quantity of A/2 before 1he Exponentigl estimatesvf,'ff

Ve

7 \the Exact and Exponential MLE'"i Table 4. 3 1 contains theff

decreases Jts variance,, These fWO factors ~éombine to

root r ?or these reasons., the Exponential

"'-:’2..

* are calculated > 0 o Y
P Tables 4. 3. l aqﬂ 4.3,2; summargze the resultS' of

,eighteen 51mulated sampling situations qp each simulation ,"

nsamples were generated until 1000 were found for which all

’

three estimates converged. hFor each sample, all three’

estimates were calculated and also the difference between'“ o

results for samples containing 10 zeros and 4.3, 2 for'd

I

samples c0ntaining 20 zeros For each sample estimates were .
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~smallest root. In general we &g

. M " : N N .
. R .
R . . P
) . tov vt . @
. 4 o ) ) ' * - d o ) g .
. ¢ : (3 ]

. —— e
calculated -for B and the two closest roots to the sample

- points, - these. belng the startlng, poxnt and  the. -next

3 fhat extma i tion, very

‘:'ded high var anceg; and

‘“‘théy—rﬁ\;éf,;*hat “been “inZluded ~in the | tab_les. Whén the "

start1ng polnt is. e1ther LD75. or’ Lbes ~and A = .02, the
ampllng region stays very close to the start1ng po1nt and
" in these cabes we : only gave estlmates For these roots

From the tables. the followkng general remarks may be

. 2

made e _'l . s

. .,

18] In% all cases, the Exponen!ﬁgl est1mate of B is better

: than thd Exact It has bo‘th 165 3bsblu,te blas andl sm?lgr

R . ) ‘,'vr' . . N v
var1ance.; N s '§ - b‘,‘lﬁ,tﬁ,% \ b’f
(it)‘ The Extreme Value estlmate of” the root has-.less Mean_
Sl -
Square Error (MSE) than e1ther of the other est1mates_ in

@’}« astlmates. based on ‘samples contaypang 10“zeros. and n
b

) oﬁlyaToses out f r 20szeros when X 1099 andA 02 It_

also has less bﬁas when & LD99 and A= .5 for 20. zeros f

W

(111) For A ‘Q and X 2 LDQS the Exponent1al and Exact

\estimates are ‘ V1rtually lnd1st1ngu1shable w1th the_-

\

L

:ﬂ-‘_

Egponential aperhaps havrmg’a sl1ght edge The results are f_

NN

s1m1lar for x. LDQQ and A =..T,=1-” . f;',_;if

PR

(1v) As the number of zeros 1n the sample 1ncreases, ‘the -~TV~

b1as of the Exact MLE must of course converge to zero.-It

| ~Is apparent that'the EXponent1al MLE W1ll also converge to'

. .- N . . N P . . - e ’
- R . . . IS - e e -
* . . R . 5 . Y
.

A J S
L ]

aw



~ procedures when the number of ‘zeros 1n the | sample 'was |

%‘?

sanples tend to get selected from a, very small regiom Jl‘ns

% t‘lm:ate of"

wbﬁ | | - | ) . N

a value very close to ‘zéro in most 'cases” since the
approximatlon ls very good for )('1 2 D95 and 4 < . 1.
However the bjas of.the Extreme V‘alue does not decrease aas

the number of zeros mcreases but mstead remains

~-;essentlally constant. Thus -we - could actually calculate_

- under a fixed: sampling situation for what humber of zeros

th MSE of the Exact or Exponehhal est1mates would become

*s than that of the Extreme Value. However for X1 lar%.e

(say at least LD95)- and A» large (eg. .5) th1s would requ}'re

o a very large sample before the ML est1mates achieved thls
goal.. 4 R o -

v'Ej_»‘,»:. o Although 1t is notgiven 1n“the tables, solutions tor
:ge' both the Exact ar;dlExponenhal est1mates are not hlselv;”_;
yl,, "be found when Xf— LDfﬂnd "D = p2, In our s1mulat1o"' P

-

'10 zeros }n the sample 236$samp§es were generated ~be ore”

L

1000 were found that y1elded solutlons' for both est1mat1on.
LRREES . & S
. Jncreased to 20 1000. (@f tﬂe f1rst 1649 samples gave |
c{wergent solutlons The,problem d:m1mshed as Xl, and/or

d/or the number of zeros .mcréased The reason’ for th1s;f

can be seen smce\when X1 1s central and A .is small th'e",-"

;';:"'.a

l.‘

1s asynptotlcally optrmum for estimatmg the root but fop

o smaller sanple s12es 1t allows consxderable var'nat'aon in
'B keca?l f;—'f weset arbwtrary lnmts on

s

?. y F v ...' . 3 ': . . . R J( . ,. . . : )
R A O Lo E D o . - .- o . : B .

-




g - -
R R : 80,
i R : g “.
o

’6‘ the permlssible values of g at.1'1 and 10 For such a small,"

. samphng range the probabllity Qf g fallmg outs1de th1s o
Lt v
- ;;ange becomes sigmficantly larde Increasing X and/or A o

increases the Saﬂl‘ing range an(! reduces the' pblem . wﬁ*

l

: *“- e
Increasing the sample size reduces the varianc? 6f the R

estimates  and therefore reduces - the ) roba,glhty of & "‘k‘

non-convergence. R S | }f " . L e
. . . ' N - . ’ - . ; . ’ . P — J'r
> » VR - ) “ )
3 i 4 3 4‘. R ,@ -
{‘?S.‘.,-_ N .5! . ;.

ST o R . S e
. ’ Y . ! v ’ s . b SRR Sy ’ ! N one A -y -
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4 4 Performance of Est1mates in Probit Analysis When the

- response functlon is -not logistlc, 1tw1s 1mportant to Know

how the estlmatea of the parameters w1ll be affected byt

/-'w
-

applyIng loétt analysts' to .a prob1t model For our .
stmulatwonS“ uping the 1og1s&1c d1stribut1on we used the
model with K equal tongaﬁd B qual to 1. Th1s produced a‘
ggistribution W1th 3mean O’and var1ance@m2/6 (= 1. 6449. 1)

l

FBr our Normal response funct1on we w111 ‘use a Normal,

oW

% .
dtgtribut1on wwth th1s sametmeaa,and vau1ance so that thEu

\

'fbiases ,var1énces, and mean sbuared eﬁror of the: est1mam4'
“qMLég be 1n a sehse oomparable tg those 1n the tables of the"
v g

varev1ous ésect1om th 1ncrement sizes wil] rematn the same,

.'but of course ﬁheh7@th 95fh dnd 99th percent1les 'changb >

"Thelr valges for the above Normal d1str1butlon are 865

_d g, 11, and 2 98 respectrQnﬂy Ihese Values rare much closer i

to. zero than were thoseﬁfrom the log1stic dlstr1but1on due*?e ;

‘{NyQ@wHCOUPSG to the 11dhter ta1ls of%the ﬁormal dws:ﬂ'

5,fAn alternate method of compar1ng the two response funct1ons]‘

' 'gwould be tb‘choose a Normai&dtstr1but1on w1th mean 0. dj =

v-the same 95th percent1le as the loéistlc s If the pr1me

root of 1nterest were Known thts would perhaps be a better_f

e method but s1nce we were 1nterested 1n a range bf vatues,f~_i‘=

-] we deched to set the means and var1ances equal
“fff'k in the 1ast sectzon,. we estlmated two of LDSO
L LD75 LDQ5”;and LD99 'dependlng on the start1ng p01nt




have not perﬁqamed a fullsanalySIS, but have only 1nc1uded'

,;those combinat1ons of starttnb po1nts and 1ncrement s:zes

for whlch one of the Exponential or Extreme VaIUe estimates

Because of the s1milarity of the ‘Expdnential and ‘Exaét'

‘ esttmates. as well .as the .computational leT1culty of the

latter, we have omitfed 1t 1n the compar1son

Table 4 4 1 sEEMar1zes the results of the s1mulat1on

~performed wel] eﬁbugh “to bef”‘sed “aetual Practice.

»

.~

B

From the tab]e. and compar1ng correspondlng values fremh'

Table 4. 3. 1, several observatlons may be made : e

&

(i) The bﬁas os’ﬁghe est1mates is surpr1s1nglyw "~

v'cons1der1ng th, .ence 1n the mode]s Of course -hesef;e

~“_:biases W1TI not a

el

ch 0 as_ the sample size 1ncreases as}ﬂﬁéj

~-«they would in the logtt model "but in many cases the numberﬂﬂ;'-

iy 1

of zeros in the sample must be very lange before the square

R
’of the blas becqmes a maJor factor 1n the méhn Squaredv :

E V,attributed to the shape of the 0urves and the fact that the -

AError (MSE) LT
(11) The varlance of the pngget est1mates is generally '

'ﬁr 6

..B

%/smaller | than _éfOrm,‘7_g?logtﬁ est1mates | Thls can beﬁt

Hftextreme‘quant1les of thxs Normal d1str1but1on are ,muchg.

'?ficloser together than the-log1st1c extremes

f:(tii) The MSE of theLExtreme Value est1mates is 1ess thanl

'n-fthe MSE of the EXponential est1mate 7nxal] cases Thls

‘rfdue to the lower varvance of the EV est1mates However.-Ahsv,‘.
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is case the Exponential 'ftes do not have the_
advantage of ssmalier asymptotic bias ~and - in ‘certain

i sampiing 51tuations it i likely that the "MSE  of the

Extreme Value estimates would always be Jes:-z\than that of ...

K

“the Exponentaal estimbtes. : .
(iv) The bias is a function of the mean and variance of the ’
.' r-esponse function and also. )(1 A ', and the ’ ‘to b@
| estimated Thus, by changing X ’and Aappropmately the
’ '-vestimates cbu'ld be made to be unbiased in the pr'obit mode], '
without losmg their\) asyrrptotic properties in the logit“~ -V
mod 1. We wi]] mention this fact' agam in the next @chapter}f..i
'm the section discﬁing fur’t =

,« .

-

B possib]e research

. l ¥
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‘ _ggggrison First Zeng and CIassjgal Est1matg It is . ot

necessyry to R\bw not " only how the First Zero estimates

perform in relation to one another but' also how they»

’perform with_ respect to the_cJaSS1ca1_analysts estimatesrwmmwmu

This could be thought of as. comparing the‘ sampling |
procedures. since the Exact MLE is theoretically the
classical estimate adjusted for the Eirst Zero saﬁgﬁing
,f:ftechnlque To do this. we ran thre&ﬁﬁYmu&ations acCording fo
':ureasonably standard procedures as recomhbnded by Finney in
his book "Probit Analys1s y

'Vpencentiles in each simulafﬂon andgxégk equa1 size samples- BN

t four different s

‘;fh f1xed sampie stze and a varIablet'umber of zeros 1r\@i“:t
. each sample F1rst Zero analys1s has. a fiﬁed numben of
~izeros 1Lnd a varIable sample s1ze Wé dec '” to compare o
samples where the number of zeros in, 5Pe Fyrst Zero samplev‘;'
a"w;jf;set equal ..e expected number of zeros xn the_-

‘,pClassical sample.thﬁﬂltng the sat tlon where the cost of
; - éE! i) .
1083, funct10n Also:v*

e death is a mﬂJor component of th
.3‘necessary for comparison pupposeg 15 the expected ;1rst CL'*hh
,t and thisirs also provided 1n the table C

f»{Zero samp]e:s1




~and s’tarting at Lbgg for ‘the First Zero estimates. The
First Zero values are reproduced here again from Table
- 4.3.2 to facilitate’ the cm\parison We considered only |
e{-,,--esanples containing 20 -Zzeros in the- First Zero analysis and = .
samples having a mean of 20 Zeros in’ the classical d
'ana'lysis We also included the estimates of 8 in the
con'parison making B and LD95 - the parameters of interest
The results are sunmarized in Tabl'e 4.5.1. From the o

o table. several eorrments may be made Scme of these are" . _
-ii)' For a i’ixed nunber of - zeros a%o‘ apprd&imately the same_
‘sanple size. each of. the Fir4st Zero estimates of both g .and -
' ?LDQS are better than the correspov‘%;ln‘g ﬁlassical estmates .
"}The:?only e‘xception to this is the Extreme Value estimate of ‘

BWhenA -10 o 3. . ',-‘ h'l . :" ’ . .‘.&

!‘)-

(ii) Since the Exact ML estimates are essentially the same

-‘7-: as the Classwal ones "‘«it woqu seeq that that the First R -

: Zero procedure might be a. more ef'fieient sarrpling technibue .

,__least when (the number of zeros is a limiting fact‘é?*f‘“
4' f.‘determimng the samplmg method L R -J'; L
| '(1ii) It appears that underl certajn sanplnng situat«ions,, -

,‘for estimat'mg extrgme quantiles lb’git ana]ysw. a’,t.‘ u

P

A
28 N

-"‘.j”v-j_the( Extieme” Valuewff;moment estimates can prd(ride aml

o ~_:'_'_signif‘icant. inenease ,in efficiency over the usua‘l Maximum

“_'-[_;;_.‘;LWenhood methpds, for even reasonably large ‘samples; By

”T".'-t_-he same token in many instances- the Exponential estimat/es .




TABLa.a 5.1 . 37

: BIAS AND VARIANEE (IN BRACKETS) OF ESTIMATES
OF B AND LD9SY FIRST ZERD SAMPLES CONTAIN 20 -
ZERQS. CLASSICAL ANALYSIS SAMPLES HAVE A MEAN
OF 20 ZEROS PER SAMPLE. R .
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are’ as»good or better ahaﬁ Exact or Classical. ~estimates

‘with the added bonus of being eas&r to caléulate. "The

Extreme Value estimtes are’ by far the most atti'actiye =

o
S

e e n e e U £

‘"coutsutaﬁonaTTy. ﬁowevéi__— P



CHAPTER V

Conclusions

5.1 Cbst, Loss, and Risk Consigerations.=The First Zerou

sémpling technique is desirable for two reasons: ~sampling
is done near the root of interest and the number of zenos
in the sample can be controlled. As mentioned preyiodsly,
by changing the values of X1 and'A, tne'proportion of zeros
‘to observations in the sgmple and the MSE of the estimates
can be varied. This becomes imborfant when the relative
costs of taking an ovbservation and having a zero are
considered. As‘an example, let us say that the cost .per
obsérvatinn is C1 and the additional cost of a zero is C
(as 1n the case when a zero corresponds to a death). If the
tota] cost of the exper1ment was to be C and the number of
observatIOns were N1 and the number of Zeros were N2 then
we would want to minimize the MSE (or perhaps some otber
loss funct1on) subject to
N1C1 NG, s .

In practice, it is rare that both Nl and Nz would be known‘
" before the experiment begins; generally one is fixed anhd
the other 1is wvariable. Hence, another possibility is to
minimize the MSE subject to the alternate constraint

* -E(Nl)Cl + E(N,)Cy s C
where E(X)‘is the expected value of the random vaniable X.

«
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In Firsf Zero sampling it is then necessaﬁy to know the
expected number of observations per zero. For the values we
have discussed these quantities have been calculated and
| are . presented in Table 5.1.1. For clas: ical sampling, the
total number of observations would be et and tne expected
number of zeros calculated. |
Let wus {llustrate the above by means of a rather

extensive example using the latter of the two above
constraint conditions. We assume we wish to eﬁfimate LDY95.

Further we assume that C;=1, C2=5.ﬂand C=300. We Cannot.!do
a - complete anaTysis of the optimal sampling stfategy for

" each estimate, but we shall try tQ give a représentatfve
. survey of the competing estimates. To. ce]culate the
expected cost, we had to fix the number of zeros in the
First Zero samples and calculate the expecteq‘number“of
obserVations, while in the Classical samples the numbet ofg
observations was fixed and the expected number ofvzeros
calculated. For the sampling method we indicate the
" starting point and increment size for FihstAZero sampling
aﬁd”&he dose levels and anber’of-replicates at’éa¢h level

for the Cladsical technique. The results are summarized in
Table 5.1.2. The MSE was calculated by generating 1000
samples for each of ,tHe estimates; fhe simulations used
different seeds and thus may be considered independent.

Again estimates = were not penalized in the case of



TABLE 5.1.1

EXPECTED NUMBER OF OBSERVATIONS
PER ZERO IN THE LOGIT MODEL

X, - INCREMENT SIZE
, 02 5
LD75 3.84  3.42  2.63
LDI5 5.6  10.0  5.12
LDIS 47.0 21.2  8.05
TABLE 5.1.2

91-

COMPARISON OF MSE 'OF VARIOUS .ESTIMATES
OF LD95 WITH COST RESTRAINTS

TYPE OF
ESTIMATE,

ExﬂONENTIAg
EXPONENTIAL
g
EXPONENTIAL .
EXT VALUE

EXT VALUE

EXT VALUE. _

CLASSICAL
CLASSICAL
CLASSICAL
CLASSICAL
CLASSICAL
CLASSICAL

-

SAMPLING METHOD

LDY5, .02
LD9Y, .1
LD9Y, .5
LDY5, .02
LD9Y, .1
LD99, .5

60eLD392,94,96,98
50eLD81,87,93,99

216LD20, 40,60, 80

1200LD32, 98
100eLD82,98
428LD10, 80

E(Nl)

218
233
185

218

233
185
240
200

84
240
200

84

E

n

(N2)

14
1
23
14
11
23
12
20
42
12
20
42

E(COST)

288
- 288
300
288
288
300.
300
300
294
300
300

294

MSE

.259
(126
159
.076
092

099
.253
.203
.905
167
. 155
.380

=3
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divergence, since divergent solutions were 'ignoﬁgd. This
quesfion is important enough to warrant further attention.

Both First Zero and Classical techniques ,will not yield

~solutions - for certain samples. The only general statement

that can bé madé is that the Extreme Value estimates
dfverge less "in all situations in Table 5.1.2 than any of
the other estimates. Between the ExbonentigT and Classical
estfmates it depends on the sizggijon; some Exponential
estimates diverge less than some_. Classical ’estimatqs and
vice versa. The bottom 1line perhaps is compariné those
cases with the least MSE for each technique. In this case
the ﬁxpoﬁential both had smaller MSE and diverged less than
the Classical estimates. L . '
From the table, several observatfons may be made:

(1) The Extreme Qa]ue estimate is clearly the winner in
thigksituation. It is‘also rgmgrkably unaffecpgd by choice
of starting point and increment size. ’Although the
combination giving thé smallest M§E was X1=LD95 and o =.02,
the majoru part of the MSE was the biaé of the estimate.

9
Thus perhaps one of the other combinations would be

preferraéle in a iarger experiment.

(id).- Although not given in the table, it should be

mentioned that the bias of all the estimates except one was

£y : .
quite small. The absolute bias of the Exponential estimates

was less than .025, and that of the Classjcal estimates

!
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less than .1. As mentioned above, the Extreme Value
estimate for XIQLDQS and 4=.02 was the worst.at -.259, but
the other EV estimates had absolute biases less than .05.

(ii1) We have included varijous allocations\of observations
for fhe Classical method in' patterns roughly similar to
those"proposed for example by Finney, Wetherill, and
TsutakaWa. For this situatidn, the minimum MSE is achieved
by placing two groups of 100 observations at each of LD82

and LD98. Apparently, fewer, dose levels with larger numbers .

- of observations per dose seems to be more efficient.

(iv) The Exponential estimate, while not matching the
Extreme Value estimate, seems to be better than ' the

‘Classical estimates. Since both are Maximum Likelihood

" estimates, this would seem to indicate that First Zero

sampling is a more efficient method of placing observations

than the Classical one, at least under certain restraint

 conditions. An obvious modification to Classical sampling

.'would be to vary the number of observations at each .dose.

>

This is essehtially what 1is accomplished by Wetherill's
UDTR rule and é compar i son- of théﬁ performance, of this
estimate to First Zero estimates: for extreme.quantileé
would be an ihteresting topic of further research.
‘{v) In actual practice, the true value 9f the sampling
" doses and spacing: will not be known but will be randomly

distributed. *Their distribution*will either be determined
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by priog Knowledge, or by previous iterations of the root
finding proceés. These random variations ihtroduce another
éomponent ihto the MSE, Suf‘the expected MSE is just the
‘ xpected value of the MSE given these values.. It is
Cheréfore important that the 'MSE not change much if the -
doses or increments are changed. The Extreme Value estimate
has this property, and bofh, fhe Exponential and Extreme
Value .estimaﬁes have relatively‘ stable cost functions,

whereas the Classical method does not. \\_
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5.2 Sequential Approximation Procedures. Our original aim

l

when :we stagted' research in this area was to develop a | j’

sequential approximation procedure that improved‘ on the | /

Robbins - Monroe one defined by (1.3.1);‘In th(é‘we were - f

not entirely gyccessful if one requiret that the prdéedurq

must both (a)>have the nth dose contain all the‘information_a

from theé first’p-i observations and (b) use the nth dose. as

the present estimate.df the root in‘order to be considered

a éequential estimatiqn ;focedure. We do not believe this

Qoal can be achievéd wfthout‘significant loss of efficiency

.in the estimates. The reason for this is the type of errors

that occur at extreme quantiles. For example, sampling near

LDSS will resulp in‘two types of errors, the one‘resulting

frdq/observing a one which gives an error of .05 with

pfobability .85 and that ofrbbserving a zero which gives an

error of .95, with probability .05. ‘Thus the error

assbciated with a zero is nineteen times as large és that

agsociated with a one. Any Robbins - Monro type procedure .

will céuse a jump to thé right nineteen times as large as

the jump to the left when a_%gro'is observed. Hoping to be

in the vicinity of the root under these circumstances would

'Pequing a»vééy smali incremeat size. ®
However, our methods could be considered "almost*

sequential approximafion ‘pr0cedures: Anytime éfteé the -

'"‘f\\first‘zero is observed you will have a cbntinuously updated
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estimate of the ' root. The sampling procedure  itself
(requires sequential samplfng. And the choice of X; will
generally be made in such a way‘that the sampling will be
“done in the vicinity of the root. If simplicity is a prime
‘consideration,ltheﬁ °thg Extreme Value sMpment estimates
_should be given consideration. This prscedure only requires
recording .the sum and sum 6f squares of the stopping
poiﬁts, ésd COglé easily .be .p;sgsammed into a‘ psckét
calculator such as the Texas Instrumgnts model 57, 58, or
59. If rigor' is requiredJ’and ‘computing facilities are
available then the Exact ML estimaﬁss\offer full efficiency
with perhaps even the added aanntage of more eff;::ency
than the classical analysis. In either case ths‘ procedure
could be programmed to indicate what dose is required af
each stage and when the desired accuracy was achieved. The -
methods are also fairly resistant to incorrect assumptions
about the form of the response function waich’“makes “them

desirable in situations where there ére doubts abodt the

model.
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considerations and also the unknown parameterse and B. In

97

5:3'Recommenaations. Two cases should be considered here: g
known and g unknown. When g is Known the best choice would
be the Exponential UMVUE since its bias is generally less
tham= the other two. Starting at a fairly central véiue with
a smaller fncrement size seems to give smaliler Lariance
than starting at a more extreme quantile and using a Iarger

increment. If the original starting point is inappropriate

X1 may be changed and the 'observations ‘used in the

T

- Exponential ML estimate in the more general sampling

situation.

When B is not known\uthe cnoice of estimate depends on
nore factors. Already mentioned in the previous section is
s1mp11c1ty Here the Extreme Value estlmate wins easily.
The choice of A is critical since it will govern the number

of observat1ons per zero, and the estimate makes no-

allowance. for changing A . The original starting point is

not a major concern, however. since the start1ng point - is

not used in ca]culat1ng she est1mate Xpr must of course
eventually be set to a suff1c1ent]y ]arge valiue’ to ensure
reasonably small bias. |

\: The_ optimalb values of X1 and A will oepend on cost o

4

practice these parameters will not be Known and so X1 and A

will have to berchanged'during,the sampling. The general

technique would be to sample until a 0 is observed. Based
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on the sampl1ng up to that point est1mates qf the reoot r

and ‘g would be calculated Usmng th@se~~est1mates the
: optimal values of X and A wou!d be found-fof the next set
of observations. Following this prpﬁédur ould guarantee
that X1 and A would convebge to. fhﬁﬁtﬁoptlmal values. What
the optlmal values would béb@s an opén, question which we
mention in the next seotlon '
| Another consideration is the loss function'to be-useo.
If the number of zeros is small to medium and squared error
loss is used then again the Extreme Value~Moment estimates
will likely be the best choice. However, if unbiasedness is
important; then one of the other two estimatee will be
better. especially if the root is fairly central. If the '
samble‘is small then a " large starting point and large
increment size should be used to increase the probabifity
of obtajning a convergent solutton. H a large sample is to
be used, then a smaller increment should eventuatly be used,
'in order to concentrate the observations about the root. If
B is to be estimated, then e1ther the Exponential MLE (less
| bias) or the Extreme Value Moment estimate (less MSE under
certain cond1t1ons) should- be used. .
Finally, the ~cost considerations must be taken into
account in the choice of Xl and A as _outlined in Section 3
5.1 and these factors are fixed for all the estimates. What

determines the choice of estimate. will ,be  which one
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performs best (whatever the loss function) under the given

constraints.

55
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5.4 Further Research. Here we would lIke to mentvon brlefly

some - questions that this the51s raises and possible
nesearéh proBlems arisiﬁg from them. '

(a) In the case when 8 is known, it wgufd be useful to know
the exact relationship betwegn the MSE and the choice of X1
and 4 . This would;rgquire straighfforward but extensive and

large scale simulations to obtain either a function or

~___graph of the one as a function of the other two.

(b) As menfiohed previously, it would be useful to Know the
optimal values of X, and A" for estimating the root.
Unfortunately these values will be functions of the root to
be estimated, the loss function used, the _distribution
- parameters, and the cost restra1nts. It would be 1mposs1ble
Fo tabulate such values under‘all possible combinations of
Jthege factors and so‘a'study on the reiationships betweeén
these factors and the choice of X, and 4 would have to be
made in order to understand their behidvior in the "general
| case. ;/ﬁ \
(c}) Along this }line it wéuld be useful to diétinguish
between models Ghile sampling only from ‘- the extreme
QUantiles To/do this a goodness of fit test could be used
to determine wheﬂher the d1str1but1on of the stopping point
(for example) was approximately Extreme Value, but what is
the Tlimiting First Zero distribution in the probit model?

It mighf be possible to do such a test using many fewer

G
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zeros than are now required if the limiting distributions
of the differenf response functidns were‘“known.‘ The

¥
advantage here is that the distributwons d1ffer the most in .

the tails and that is preCISely where the F1rst Zero method
concentrates the.observations. : .
(d) Finally it would be nice to Know 3fathé ﬁiaaf'ZerQVTJ;
sampling method fs more efficient than .classical
techniques. Under the requirements that bthé ﬁﬁﬁBeF'af‘ '
observations/zero be eqUal"ﬂto' the >éxpected; number of
observations/zero, is the propésed . procedure the bést way
of sélecting a sample from-lihe talls of a response
function? ‘Again, this = would require faiflabge‘ scale
simulgfion involving runnihg~the classical analys1s wwth
different sample ﬂ§1zes at each dose and d*fferent numbers .

i

of doses.
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"PENDIX

For completeness we include here tHe program listing of all
the APL programs used in the calculations and simulations
presented in the thesis. Below is an index to the programs.
fheg ams are listed alphabet1ca11y, one per page unless
more thgh one page 1is required. The index indicates the

programg that were used for each table or figure.

-~

Where Used : . List of Programs Used

Figures 2.3.1-2.3.9 SINKEXP,- GEN

Figures 2.5.1-2.5.9 ™ SINKEV,' GEN

Table 4.2.1 % © THETA, GEN

Table 4.3.1 " BETA, GEN, BEXPML

Table 4.3.2 BETA, GEN, BEXPML

Table 4.4.1 | NOREV. NORSIM, NORMAL, GENOR

Table 4.5.1 FIN, BETA, GEN, BEXPML

.Table 5.1.1. .GEN

Table 5.1.2 FIN, EVMOM, EVEX, GEN, BEXPML
104
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.
(0] Xl‘ﬁETA DEL;S;SS;T;CNT;XI:]:NTH;NB;TH;B;P;PJ;FAC;DEN;
A;B;C;D;E;NC;ERR;R;F;G;H;N;VT;DD
(1} 7<0A1[2) ~
) ?

[2] , :
13] '"THIS FUNCTION FINDS THE EXACT, EXPONENTIAL, AND EXTR

_ , : - EME: ;
(4] 'VALUE ESTIMATES FOR BETA, THETA, LD75, LDgs, AND LD9
. B2 9. ’ '
{53 'SPECIFICATIONS: )
[GJv f X1 DELT A SAMPLE SIZFE SIMULATION SIZE

: SEED:*

[7) 637212 0 15 0 20 o ¥X1,DEL,NUMDEATHKS,SIMSIZE ,[JRL "
[8]w S+SS«E« 6 5 pNC+CNT+Q - o
L8] MP+10000x+\GEN Xx1,DEL

(10] R«@ 1 3 19 gg ‘ )

(11] MAINLOOR:N+1++/(?NUMDEATHSplOOOO)o.>P

(12) » CALCULATE THE EXPONENTIAL ESTIMATES

[13] B+BEXPML DD«DELxN-0.5

[14) TH+X1+(+B)X®NUMDEATHSX('1+*BXDEL)++/'1+*BXDD

(153 NC<NC+ERR«(B<0.1)vB>9.9 .

(161 ~ERR/MAINLOOP .

(171 E(1;)«(-1,R)+B,TH+R+B

[18] a CALCULATE THE ExacT ESTIMATES

[19] TI«0 -

[(20] WPe+/(7[/N)o.<N

[21] XI«X1+4DELx1-1pWT .

(221 LOOP:»(10>1«I1+1)/CONTINVE

(23] > (1<NC«NC+1)/MAINLOOP _

[24]‘CONTINUE:PI+1+1+*~BXXI—TH : ‘

[25] A«+/FAC+PIXF<WTx1-PJ .

(261 He+/FACxXI :

L [27] C«+/FACXXIxXI

(28] D«+/XI[N]

(28] Ge+/XIxF

(30 F<«NUMDEATHS-+/F 3

[31] NC+NC+ERR«0.0001>lDEN«(BxAxc4Tﬂxﬂ)-BxﬂxH—TﬂxA

[(32] -ERR/MAINLOOP ‘

[(33] NTH«TH+(+DEN)X((H-THXA)XGfD)+FXC-THXH

[34] NB«B+(+DEN)x (FxBxH)+BxAXG-D" ‘

[35] NC«NC+ERR+(NB<0.1)v(NB>xn)v25<INTH

[36] -ERR/MAINLOOP - - : ) ,

[37] *((0.01<l(B+NB)-B)v0.01<|(TH*NTH)-TH)/LOOP -

[38] E[3;)«(-1,R)+B,TH+R+B

- [39] a CALCULATE THE EXTREME VALUE ESTIMATES

(40] 'B+((NUMDEATHSX+/DDXDD)~(A++/DD)*2)+NUMDEATHSXNUMDEATH-

N S-1 ’

[41] B«(01)+(6xB)*0.5

[u2] Tﬂ+cx1+(o.5xDEL)-A+NUMDEATHS)+(+B)x'0.5712457+e“1+*3x
. DEL :

(43] FE[S5;1«(-1,R)+B,TH+R+B -

[44]) @ CALCULATE THE DIFFERENCES

[45) E[2;1«E[1;]-E[3:]

[46] E[u4;)«E[3:]-E[5:]



E[63]1«E[5:]-F[1;]

S+S+E
SS+SS+EXE
+(SIMSIZE>CNT«CNT+1)/MAINLOOP
Yoo ' . BIAS
) ‘ VARIANCE'
100p" "+ BETA THETA LD75
L
A« 6 8 p'EXPON EXACT

A«A, 8 3 ¥S+N+SIMSIZE

A, (6 8 p' '), B8 3 ¥(SS+N-1)-(SxS)+NxN-1

106

LDS5 LD39g

EX VAL

'CPU TIME ',(¥0.001x[J4I[2]-7),(10 O ¥NC),' DIVERGED'
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B+~BEXPML D;K;EBD;SEBD;DBAR;FB;FPB:NEWB:DEBD
ATHIS FUNCTION USES A NEWTON-RAPHSON ITRRATION
nTO FIND THE ML SOLUTION FOR BETA FROM THE
- REXPONENTIAL APPROXIMATION. SINCE THE VALUE
AOF BETA=0 1S A FALSE SOLUTION, A PRELIMINARY
RSEARCH 1S MADE TO FIND A REASONABLE STARTING
RPOINT. IF NO SUCH POINT IS FOUND, THE VALUE
ROF BETA<0.1 OR BETA=10 IS RETURNED.

K+pD o .

B+0 :

AGAIN:B«B+2.

+(B>9.9)/0
LOOP: SEBD++/EBD<*BxD

DEBD++ /DxEBD

DBAR«(+/D)+K

FB«(SEBD-K)+(BxDBARXSEBD-K) - BxDEBD

+(0<FB)/AGAIN :

FPB+~(DBARXSEBD-K)+(BxDBARXDEBD)-Bx+/EBDxDx2 -

NEWB+B-FB+FPB

»((B>0.1)A0.01<|(B+NEWB)-B)/LOOP



. [16]
(17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30)

[31]

[32].

[33]
[34]
[35]
[36]
. [37]
[38]

[39]
Es0]

[41]
[42]

(43])
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EVEX T X1;DEL;ND;NS;S;SS;CNT;P;1:TH{B;N;B:D:E:2C.ERR;
RiAV:VAR;SKIP; A

T«0AI[2]

"THIS FUNCTION COMP;kES THE MAXIMUM LIKELINOOD ESTIMA
TES'

"FROM THE EXPONENTIAL APPROXIMATION TO THE MOMENT EST
IMATES®

"FROM THE EXTREME VALUE APPROXIMATION.'
"ENTER THE STARTING POINT X1:°'

X1+ .

*ENTER THE INCREMENT SIZE DELTA:'
DEL+[]

'"ENTER THE NUMBER OF DEATHKS IN EACH SAMPLE::®

ND<[]

'"ENTER THE NUMBER OF SAMPLES IN THE SIMULATfON:'

NS<+[]

'ENTER THE RANDOM NUMBER GENERATING SEED::*

OrL+0

'ENTER A 1 IF YOU Do NOT WISH TO SEE INTERMEDIATE RES
. ULTS,

' A0 I? TOU DO:'

" SKIP+[]

S+SS«E+« 3 5 pZC*3pCNT+0
P+<10000x+\GEN X1,DEL

R«® 1 3 19 98 .
AGAIN:D«DELxD. 5++/(7NDp10000)°
B«<BEXPML D

TH+X1+(*B)X®NDX( 1+xBxDEL)%+/~1-%BxD
ZCL1])«ZC[1]+ERR+(B<0.1)vB>8. 9
E[(1;])«(1-ERR)XB,TH+R*B

VAR+0O. 01[((+/DxD) ND-1)- ((AV«(+/D)*ND)*2)XND +ND-1

ZC[2J+ZC[2]+ERR+(B<0 1)v9.9<B«(01)+(6xVAR)*0.5

E[{2;]«(1-ERR)xB, (X1 AV-DEL+ 2)+( B)xR+70.577216+@" 1+xB
) xDEL -

E[(3; ]*(OzE[l IJXE[2 11)xE[231-E[1% ]
'ZC[3]“ZC[31+0 E[1;11xE[2;1]

S+«S+E

SS«SS+EXE

+SKIP/JUMP

6 2 »P

(3 5 ¢ '), 6 2 v¥E
JUMP:+{HE-CNT<CNT+1)/AGAIN

(I«1)p

A« 3 1% p 'EXPONENTIAL ESTEX?REME VAL ESTDIFFERENCE
: . \

OUTPUT: (5p" '),A[I;:]

/

Lprs ' Lp

'QUANTITYVESTIMATED; BET A THETA
¥ ' 95 LDs9"
(I23)/'ACTUAL VALUE ' 83 ¥ 1 0 1.099 2.944 4y, 5
’ 95

'MEAN OF ESTIMATES ', 9 3 ¥S[I;]+N+«NS-ZC[I]

'VAR OF ESTIMATES ', 9 3 V(SSFI JEN-1)-

-1

(5[1'1*2) ENxN
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{

"ALSO THERE WERE ' ,(¥ZC[I]),' SAMPLES WHICH GAVE NO S
| OLUTION'

1 1)

+(321«I+1)/OUTPUT .

"THE CPU TIME REQUIRED WAS ',v0.001x0AI[2)-T °

.
b a
N :
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»

EVMOM;Xl;DEL:XN;P;NS:ND;R;S;SS;E;VAR;AV;T;CNT;ZC;B;ER

R )
'"THIS PROGRAM. CALCULATES THE ESTIMATES OF 'BETA, THETA
‘ . LD715S,
'LD3S5, AND LD99 yUSING THE MOMENT ESTIMATES FROM THE E
' ’ XTREME'
'"VALUE DISTRIBUTION/'
T«0AI[2]. ‘ o
'ENTER THE STARTING POINT X1i:°'
X1+D ) ; .
'"ENTER THE INCREMERT SIZE DELTA:'
« DEL<[]
'ENTER THE NUMBER OF DEATHS IN EACH SAMPLE
ND+[]
'"ENTER THE NUMBER OF SAMPLES IN THE SIMULATION:'
NS+ !
'"ENTER THE RANDOM NUMBER GENERATING SEED:"
ORrRL] . '
S«SS+E+5pZC+CNT+0

P+<10000x+\GEN X1,DEL
R<® 13 19 99 - ‘
AGAIN:XN«X1-DELx+/(?NDp10000) o .>p
ZC<ZCHERR<O=VAR«((#/XNxXN)+ND-1)<((AV<(+/XN)*ND) %2 ) xN
, D+ND-1

+ERR/AGAIN S

B<(01)+(6XVAR)%0.5

S<S+E<B,AV+(+B)xR+70.577216+@" 1+xBxDEL

SS«SS+EXE . . -
>(NS>CNT«CNT+1) /AGAIN

',D'

'"QUANTITY' ESTIMATED BETA THET 4 LD7S LD
: 95 - - Lpbag!

'ACTUAL VALUE ', 9 3 ¥1,R :

'MEAN OF ESTIMATES ', 9.3 ¥S§+NS :

'"VAR OF ESTIMATES ', 9° 3 ¥(SStNS-1)- (SXS) NSXNS 1

'ALSO THERE WERE ',(¥Z(C),' SAMPLES WITH NO SOLUTION

'‘THE CPU TIME REQUIRED VAS ',¥0, 001XDAI[2] -T

vE
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FIN:P;X:;K:N; NS X2;TiNC;B;TH;NB;NTH,A;C:D:E; DEN F:FF:X
FF,GiH;ERR;S:SS:CNT:R:TI.

"THIS PROGRAM USES FINNEYS METHOD TO ESTIMATE'

'"BETA, THETA, LD75, LDS5, AND LD99. A FIXED®

"NUMBER OF SAMPLES OF THE SAME. SIZE ‘ARE TAKEN'

"AND THE NUMBER OF DEATHS IN EACH SAMPLE ARE'?

'‘USED TO FIND THE MAX LIK SOLUTION

"ENTER THE PERCENTILES AT WHICH S4M} LES ARE TAKEN:'

P«0.01x(10),0

"ENTER THE SAMPLE SIZE:'

K]

'"ENTER THE NUMBER OF SAMPLES IN THE SIMULATION:'

NSO \J

'ENTER THE RANDOM NUMBER SEED:

ORL+{]

X2«XxX+@P+1-pP

R«® 1 3 19 99

S«Ss«spNC«CNT«DJO+oxT+DAI[2]

P+Q+\10000x (Po, *1K)x((1 Pe, *K-IK)x((pP) K)p (1K) K

0Oro«1

MAINLOOP: N++/((K.pX)p7(pX)910000)>P

I+B«1+TH«0 ,
AGAIN: A++/FF+Fx1-F+1+1+*-BXX-TH ~
ERR+0.0001> | DEN«KxBx (AxD+«+/XxXFF) - (C++/XFF«XXFF)*2
NC+«NC+ERR«ERRv10<I«JI+1

~ERR/MAINLOOP ‘ _ ,
NTH+TH+(%DEN)X((G++/N-KXF)fo-THXC)+(H++/XXN-KXF)XC-T
: ' HxA
NB+B+ (+DEN)xBx (HxA)-GxC
NC+N0+ERR+(NBﬁp 1)V(NB>10)V25<|NTH

+ERR/MAINLOOP:

- »((0.01<|(B<NB)-B)v (0. 01<|(TH+NTH) TH))/AGAIN
S«S+E«B,TH+R+B ] \\/
SS+SS+EXE ‘

+(NS>CNT<CNT+1) YMAINLOOP

] T "

"QUANTITY ESTIMATED BET4 THETA Lp7s * LD
‘ , : 35 LD9g" '

"ACTUAL VALUE ', 9 3 ¥1,R :

t e )

"MEAN OF ESTIMATES ', 9 3 ¥S+NS

"VAR OF ESTIMATES ', 8 3 ¥(SS:NS- 1)~(SxS)vNSXNS 1

' A

. "THE EXPECTED NUMBER OF DEATHS IS‘',¥Kx+/1-31+x-X

'ALSO THERE WERE ' ,(¥NC),' SAMPLES VHICH DID NOT CONY
’ " ERGE . ¢

"THE CPU TIME REQUIRED WAS ',¥0.001x[JAI[2]-T
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“[0) R<«GEN PAR;X1;DELTA;NUM;PSUM;R;Q:N:P:PI
(1) n THIS FUNCTION GENERATES THE PROBABILITIES FOR
(2} o THE FIRST ZERO DISTRIBUTION. THETA AND BETA
[3) a ARE ASSUMED TO BE © AND 1 RESPECTIVELY
(4] X1«PAR[1] .
[S) DELTA+PAR[2]
[6] NUM«PAR[pPAR]+500x(pPAR)<3
"[7]  PSUM+~Re1-Q+1+1+x-X1
[8] N<«i1
[9] LOOP:P+«QxPI«1-1+1+%-X1- DELTAXN
[10) PSUM«PSUM+P

(11] -R¢R,P
[12] Q«@x1-PI
[£3] NeN+1

[14] +((N<NUM)APSUM<0.9999)/LO0P
» { . -
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[0) R<+«GENOR PAR;Xl:DELTA;NUM;PSUM:R;Q;N:P;PI
(1] a THIS FUNCTION GENERATES THE PROBABILITIES FOR
(2] a THE FIRST ZERO DISTRIBUTION WHEN THE .
{31"s UNDERLYING DISTRIBUTION IS NORMAL(0,1)
(4] X1«PAR[1]

(5] DELTA+«PAR[2] : :

(6] NUM«PAR[pPARI+S00x (pPAR)<3

(7] PSUM«R+1-Q+«NORMAL X1

[8] Ne1

[9]) LoOP:P«QxPI«1-NORMAL X1-DELTAxN

[10] PSUM+PSUM+P

[11) ReRr,P : \
[12] Q«@x1-pPI -
[13] NeN+1

C[14] +((N<NUM) APSUM<0.989) /LOOP
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[0] »x1 NOREY DEL;XN;P:NS;ND:R:S;SS;E;VAR;AW:T;CNT:ZC:B;ER

R
[1'] .v ' . :
(2] '‘THIS PROGRAM CALCULATES THE ESTIMATES OF BETA, .-THETA
o v LD75,"
(3] *LD95, AND LD89 USING THE MOMENT ESTIMATES FROM THE E
R | - XTREME"
[4] ‘VALUE DISTRIBUTION WHEN THE ACTUAL DISTRIBUTION IS N
: : ORMAL"
[5] '"WITH MEAN 0 AND VARIANCE PIx2/6."
(6] &{4r[2) ; L
[71] 'SPECIFICATIONS: '
[8] ' X1 DELTA SAMPLE SIZE SIMULATION SIZE
# ) SEED!

[9) 737213017018 ¢ ¥X1,DEL,NUMDEATHS ,STMSIZE .[IRL
[10] ND<NUMDEATHS 4 .
[11] NS+SIMSIZE |

[12] S«S8«E«5p2C+CNT<0 : \

[13]  P«1000x+\GENOR(X1,DEL)x(6x0.5)+01

[14] Re® 1 3 19 99

L15) AGAIN:XN«X1-DELx+/(?NDp1000)o.>p

[16] ZC*ZC+ERR+UEVAR*((+/XNXXN)+ND71)—((AV*(+/XN)+ND)*2)KN

- D+ND-1
[17) -<+ERR/AGAIN s
[18]) B«(01)+(6xVAR)*0.5 :
[19] S*S+E+B.AV+(+B)XR+‘0.577215+®‘1+*BXDEL P
[20])] S§S«SS+ExF . .
[21] +(NS>CNT«CNT+1)/AGAIN . ~ '
[22] 'QUANTITY ESTIMATED =  BETA THETA * LD75s LD

: ' 95 LD9g:!

(23] 'ACTUAL VALUE \ '+ 9 3 ¥E«0,N75,N95,N98

[24]) 'BIAS OF ESTIMATES ', 9 3 Y(S+NS)~1,F

(251 'VAR OF ESTIMATES ', g 3 Y(SS+NS~1)- (SX8)E+NEXNS-1

[26) (¥ZC),' SAMPLES GAVE NO SOLUTION. CPU TIME ", (¥0.001x
. Qarc23-r)

(271 v _ | , )

(28] * v : - o ‘ N
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R«NDRMAL.X;XSQ:P;REM;N;ERR;SIGN;L:H
AR THIS FUNCTION RETURNS A NORMAL(0D,1)
A DISTRIBUTION FUNCTION VALUE
A THE ACCURACY IS TO 4 DECIMAL PLACES

L+«X>"4. : .

H+X<y ’ -

XeXxLxh . )

SIGN+X<0

XSQeXxXx+|X

Pe(x"0.5%xX5Q)x(02)x"0.5 .

ERR«0.0001+P

R«REM<«X o \\j

N«1 .

LOOP:N+N+2

REM+~REMxXSQ+N

R<R+REM

+(v/REM>ERR)/LOOP i

R+«SIGN+(1-2xSIGN)x0.5+PxR
.- R«(RxL)+0.5x~4H
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(0] X1 NORSIM DEL;T3;R:KyNyP;NS;D;B:NOSOL:TH;E;SUM;SSQ:ERR
(13 ' ~ ,
[2] 'THIS FUNCTION CALCULATES THE EXPONENTIAL ESTIMATES'
(3] 'WHEN THE ACTUAL UNDERLYING DISTRIBUTION IS NORMAL.
(4] 7+0AI1[2] _
[5] R+«@® 1 3 19 99
(61 ‘'SPECIFICATIONS:' .
{71 X1 _DELTA SAMPLE SIZE SIMULATION SIZE
. .~ SEED
[8] 6 3 6 2 11 0 18 0 18 0 ¥X1,DEL,NUMDEATHS,SIMSIZE ,(ORL
(9] K<«NUMDEATHS \
[10] N«SIMSIZE L°
[11] P«1000x+\GENOR(X1,DEL)+{01)x6%-0.5
[12] SUM+«SSQ«5pNS+«NOSOL+0
[13] MAINLOOP:D+DELx0.5++/(?2Kp1000)ec,>P
[{14] B<«BEXPML D
[15] ,NOSOL+N0$0L+ERR+(B>10)vB<0 1 .
(16) -ERR/MAINLOOP
[17) TH«X1+(+B)x@®Kx( 1+xBxDEL)++/ 1+%xBxD
(18] E<«B,TH+R+B S
[19]> SUM<SUM+E - s
[20] SSQ«SSQ+Ex2 .
[21] >(N>NS<NS+1)/MAINLOOP ‘ . .
[22] 'QUANTITY ESTIMATED BETA  THETA LD75 LD

' . 95 LDSS'
(23] 'ACTUAL VALUE ) ', 8 3 ¥E<«O0,N75,N95, N99
[24] 'MEAN BIAS® ', 9 3 ¥(SUMtN)-1,F

[25]1 'VAR OF ESTIMATES ', 9 3 ¥(SSQ+N-1)- (SUM*2)+NXN-1
[26] (¥NOSOL),' SAMPLES GAVE NO SOLUTION. CPU TIME ',¥0.00
‘ : . 1x0AIf231-7
[27J [] [] . - ’ X

(28]

v e D

PR oS JRIE TP SUVIREPCIEIE S
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X1 SINKEV DELTA;P;D;DROP:ADD:V

(o]

(1) a GET BASIC PROBABILITIES ' ' ,
(2] P«+\OGEN X1,DELTA '

[33 De«(® 1+*xDELTA)+®X1+DELTAxi-1pP

(4) a TRIM BELOW

[5] DROP++/D<"3

[{6] P<DROP:P

(7] D+DROP+D

[8) a TRIM ABOVE

[9) DROP«+/D>4.5

101 D«(-DROP)+D

11] D+‘2+,D.(o.5xD+1¢D).[1.5] 16D

12] +«(+DROP)+P

13] P+ 2+,P,P,[1.5] P

14] n CALCULATE THE TRUNCATED PROBABILITIES s

™y e ey e

[15) Y3€x-x-D
[16] Y3«Y3+-14Y3
[17) n FILL OUT THE VECTORS-TO 4.5 °~
[18] V«73.1+0.2x138 (ﬁk
[19) ADD<+/D[pDl2V
[20] D<«D,ADD:V
[21] P<P,ADD+38p1
[22] Y3«Y3,ADD+38p1
(23] a PUT INTO DISCRETE FORM IE STEPS

[24] X<D

[25] Yi<P

[26] Y2ex-x- X
(271 (¥pX), 3,

“[28] ((pX), ss)p(((uxpx) 13)p 13 u ¥X,Y1,Y2,[1. 5] Y3),



X1 SINKEXP DEL;DROP
P+~+\GEN X1,DEL

“pe((%x-X1)+ 1+xDEL)* " 1+*DELx" 1+1pP

DROP++/D25
D<((-DROP)4D),5
pe~2+,D, (0. 5xD+1¢D) {1.5) 14D

"P+<(1- DROP)+P

P«-2+,P,P,[1.5) P
E«l-x- D
(¥vpD), 2,

" ((pD), uz)p((<3xpn) 13)p 13 4 ¥D,E,[1.5] P),

118
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[5]
{6]
(7]
[8]
(8]
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TT11)

(12]
[13]
[14]
"[15]
[16]

[17].

18]
[19]
[20]

[21]

[22]
[23]
[24]

[25].

[26]
[27]

[28]°

[29]
[30]
£31]

[32]
[33]
[{34]
[35]

[36]
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THETA «PAR;X1;DEL;XI;WI;THNTH,E;G;GP;ND;NS;CNT;T;P:S;
: - SSIWEXiN;EX:iDiTOT:TO:A ;B
'"THIS PROGRAM CALCULATES THE EXACT, EXPONENTIAL, AND

, - EXTREME VALUE"'.
"ESTIMATES OF THETA AND THEIR DIFFERENCE WHEN BETA IS

KNOWN TO BE 1.°
X1+<PAR[1] ‘
DEL<PAR[2]
ND«PAR[3]
NS+SIMSIZE
"SPECIFICATIONS' ¥
' X1 DELTA DEATHS  SAMPLES SEED®
10 3 10 2 10 0 10 0 14 0 ¥X1,DEL,ND,NS,0ORL :
T«0AI(2] .
P«<10000x+\GEN X1,DEL
S+S5+«8pTOT+CNT+0 "
A+-0.57721567-®  1+*DEL
B« (®ND)-PSI ND
MAINLOOP: N<1++/(?NDp10000) o .
+(=/N)/MAINLOOP
E«TH«X1+®(NDx " 1+xDEL)++/ 1+*DELxN-1
WI+«+/(A[/N)e.sN
WEX«WIXEX«*x-XI+«X1+DELx1-1pWI
THLOOP:G+(-ND)++/WEXxD<3EX+*Tlag

GP«(xTH)x+/WEXxDxD
NTH«TH+G+GP _
+>(25<|NTH)/MAINLOOP o
>(0.01<|(TH<NTH)-TH)/THLOOP ;
NTH«A+X1+DELx1-TO+«(+/N)+ND y
TOT<TOT+T0 o , .
S+S+E«TH,(TH-E) ,E,B,(E-B), (E-B+NTH) NTH ,NTH-TH
SS«SS+ExE ' .
+>(NS>CNT<«CNT+1)/MAINLOOP

'"TYPE OF EXACT B _ EXPONENTIAL

- EXT VAL’
'ESTIMATE MLE MLE UMVUE
' ’ : MOMENT'

'"BIAS', 9 3 ¥S=NS
'"WAR ', 9 3 ¥(SS+NS-1)-(8xS)+ NSXNS 1 .
'CPU TIME ',(¥0.001x[JAI[2]-7T), OBS/DEATH', 6 2 ¥TO

- T+NS
Oeldelde



