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Abstract 

My Ph.D. thesis addresses three foundational questions in conservation biology: i) what 

is biodiversity and how is it best measured? ii) how does variation in habitat configuration, 

habitat composition, and environmental conditions affect emergent patterns of species diversity? 

and iii) how do these same factors relate to genomic variation within single species?  

Our analyses of temporal patterns of butterfly species diversity resolved that negative 

relationships between species richness (total number of species) and species evenness (relative 

abundances of species) may compromise the efficacy of many diversity indices. As 

environmental conditions become more favorable, richness often increases while evenness 

decreases, meaning indices that conflate these two components of diversity (e.g., information 

entropies) show little change through time. Based on these findings, we outline analytical 

recommendations for citizen-science and long-term monitoring programmes. 

Building on this work, we established a series of research projects that utilized lake 

islands as a naturally fragmented landscape for investigating effects of habitat configuration and 

composition on the diversity of butterflies and vascular plants. Overall, species richness was 

generally unrelated to degree of fragmentation, supporting stochastic assembly of species 

consistent with the sample-area effect. However, by developing a novel modelling framework 

that addresses abundances and occurrences of individual species, we were able to resolve that, 

after controlling for the sample-area effect, variation in island area and isolation 

disproportionately affect smaller, less-mobile butterfly species. Importantly, these analyses 

clearly demonstrate how emergent patterns of species richness can obscure important, species-

specific responses to fragmentation. Our findings question previous, richness-based support for 

the recently proposed and widely debated habitat amount hypothesis, which posits that 
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conservation efforts should focus solely on preserving the maximum amount of habitat 

irrespective of its degree of fragmentation. Additionally, we carried out a series of experimental 

releases of butterflies in the lake-island matrix. Tracking movements of released individuals 

suggested there is significant disparity in species’ ability to navigate fragmented landscapes and 

that visual senses play a primary role in habitat detection. 

The last section of my thesis addresses gene flow and climate-associated genomic 

variation within Dod’s Old World swallowtail butterfly, Papilio machaon dodi, throughout its 

Canadian range. Using a combination of genomic analyses and habitat suitability models, we 

identified two distinct evolutionary lineages (north vs south) that are genetically and ecologically 

divergent, maintained by local adaptation to climatic conditions. Based on climate change 

projections, we predicted that the northern lineage is likely to be extirpated and displaced by the 

southern lineage within 50 years. After controlling for climate-associated genetic variation, 

configurations of suitable habitat were unrelated to genetic connectivity within P. m. dodi. This 

result challenges a foundational method in ecology: the use of habitat suitability models to infer 

patterns of connectivity between isolated populations when genetic data are unavailable. 

The combination of these thesis projects demonstrates clear utility for integrating 

biogeography, landscape ecology, and population genomics to address cumulative effects of 

habitat fragmentation, habitat loss, and climate change on the ecology and evolution of species. 

Much of my thesis work suggests that an autecological approach, addressing responses of 

individual species to geographic and environmental factors, may be most sensible from a 

theoretical perspective and most effective from a conservation perspective. However, continued 

work and consilience among biogeography, landscape ecology, and population genomics are 
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required to resolve whether generalizations across taxa are viable and applicable to conservation 

practice.  
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highlighted in bold. 

Table 6-1. The number of Speyeria cybele and S. atlantis released at 30, 40, 50, and 60 m that 

were successful and unsuccessful in navigating to the target island. A subset of butterflies were 

exposed to a series of intense flashes immediately before release. This method induced flash 

blindness through bleaching of photoreceptive rhodopsins, without affecting olfaction. 

Table 6-2. Summary of generalized linear model (GLM) and generalized linear mixed model 

(GLMM) results. Coefficient estimates and their corresponding P-values are given in 

parentheses. Coefficient estimates for continuous variables (release distance, wind speed, angular 

subtense, and distance flown) are standardized. Models 1 and 2 (GLMs) were fitted using a 

binomial distribution with a logit link function. Navigation success was measured as the success 

or failure of navigation to the target island. Models 3 and 4 (GLMs) were fit using a gamma 

distribution with a log link function. Flight speed was measured as total flight time to 10 m. 

Flight tortuosity was measured as the standard deviation of turn angles. Models 5 and 6 

(GLMMs) were fitted using a Tweedie distribution with a log link function. Deviation from wind 

direction and deviation from island direction were measured as absolute deviations in flight 

orientations from the wind bearing and the bearing towards the target island’s centre, 

respectively, after 2.5, 5, and 10 m of flight. Individual ID was treated as a random effect to 

account for lack of independence between successive flight orientations of individuals.  
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Table 7-1. Relative support for path analysis structural equation models (SEMs) inferred using 

Akaike’s information criterion (AIC). The causal path network in the full model included two 

regression pathways; one from geographic distance to genetic distance and one from 

environmental distance to genetic distance. Reciprocal causal models (RCM) were used to infer 

which single measures of geographic and environmental distance were most strongly related to 

genetic distance and used in place of geographic and environmental distance (Euclidean distance 

and temp.warm distance, respectively). Akaike’s information criterion (AIC) scores are reported 

for the full model, a model excluding environmental distance (geography only), and a model 

excluding geographic distance (environment only).   

Table 7-2. Relative support for effects of geographic and environmental distances on genetic 

distance inferred using linear mixed effects models with maximum likelihood population effects 

(MLPE). Akaike’s information criterion (AIC) scores are reported for each model.  
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List of figures 

Figure 2-1. Scatter plots of a) Butterfly abundance (N) and proportion of rare species (Rarity) as 

they relate to species richness; b) Simpson’s reciprocal index (D), the Shannon-Wiener index (H 

'), and the exponential of the Shannon-Wiener index (exp H ') as they relate to species richness; 

and b) Pielou’s evenness (J ') and species evenness (D/S) as they relate to species richness. All 

eight variables are in units of standard deviation. r = corresponding pairwise product-moment 

correlation coefficient. 

Figure 3-1. Map of the study area, located in Sabaskong Bay, Lake of the Woods, Ontario, 

Canada. All study islands were located within 20 km of the study camp, approximately 6 km 

northwest of Morson, Ontario. 

Figure 3-2. Cumulative species richness relative to cumulative island area for the complete 

species assemblage (a, c, and e) and the potential resident species subset (b, d, and f). 

Accumulation of species richness occurs from the smallest to the largest island (small-to-large 

SAC; represented by closed circles connected by solid lines) and from the largest to smallest 

island (large-to-small; represented by closed triangles connected by dashed lines). Saturation 

index values are estimated as the area under the small-to-large SAC divided by that of the large-

to-small SAC. 

Figure 3-3. SAR extrapolations for the complete species assemblage (a, c, and e) and the 

potential resident species subset (b, d, and f). Solid and dashed lines represent log-log least-

squares linear SAR regressions and their 95% confidence intervals, respectively. Area 

coefficients of log-log SAR regressions are reported as z-values, approximating exponents of the 

species-area power model (S = cAz ).Closed and open circles represent species richness for 

individual islands and their aggregate richness, respectively (a constant of one was added to all 
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richness values to allow for log-transformations). Axes were back-transformed from logarithmic 

to linear scales for straightforward interpretation of species richness and area values. SLOSS 

index values were estimated as 100% × (Sss − Ssl) ∕ Sss, where Sss represents the aggregate 

observed richness of study islands and Ssl represents the SAR’s richness estimate for continuous 

habitat of equivalent areal extent. 

Figure 3-4. The probability of observing butterfly species on at least one island where their larval 

food plant was not detected relative to (a) average wingspan (mm) and (b) a species mobility 

index (Burke et al. 2011). Species’ wingspans were log-transformed to improve model fit. Solid 

lines represent GLMs (logit link) used to assess relationships between variables. Relationships 

were significant for both average wingspan (P = 0.011) and species mobility (P = 0.0075). 

Figure 4-1. Map of the study area, located in Lake of the Woods, Ontario, Canada. Study islands 

(n = 30) in the small and large island sets are highlighted with small and large circles, 

respectively. Each island is labelled by size class (ha). Inset maps indicate the regional and 

continental location of the study area. 

Figure 4-2. ISARs derived from the (a) small (n = 15), (b) large (n = 15), and (c) complete (n = 

30) island sets. Open circles represent the observed vascular plant species richness for single 

islands, while filled circles represent the aggregate species richness of study islands used to 

generate the ISAR. Dashed lines represent 95% confidence intervals for ISAR regressions 

(estimated using least-squares). The SLOSS index was estimated as 100% × (Sss − Ssl) ∕ Sss, 

where Sss is the aggregate species richness of study islands, and Ssl is the ISAR species richness 

estimate for a single theoretical island of equal area. 

Figure 4-3. Cumulative number of vascular plant species (a, b, and c) and habitats (d, e, and f) 

relative to cumulative island area. Accumulation of species and habitats occurred from the 
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smallest island to largest island (small-to-large curve, represented by closed circles connected by 

solid lines) and from the largest island to smallest island (large-to-small curve, represented by 

closed triangles connected by dashed lines). The saturation index was estimated as the area under 

the small-to-large curve relative to that of the large-to-small curve.   

Figure 4-4. Multigroup path model structure accounting for species richness, habitat diversity 

(richness), island area (log-transformed), and island isolation (proportion of water within 500-m 

buffer). Habitat diversity, island area, and island isolation each directly affects species richness. 

Island area also directly affects habitat diversity, thereby having an additional indirect effect on 

species richness. All unstandardized path coefficients were constrained to single estimates for the 

small and large island set, without significantly reducing model fit, except for those measuring 

the direct effect of island area on species richness, which were estimated for the small and large 

island set independently. Residual variances (1 – R2) for species richness and habitat diversity in 

the small and large island set are reported adjacent to arrows unconnected to other variables. 

Coefficients associated with the dashed double-headed arrow connecting island area and island 

isolation represent intercorrelation, which is not treated as a causal path. The direct, indirect, and 

total effects of habitat diversity, island area, and island isolation on species richness are reported 

in Table 4-2. 

Figure 5-1. Map of the study area, located in Sabaskong Bay, Lake of the Woods, Canada. 

Butterfly abundance, occurrence, and species richness data were collected for 30 study islands, 

varying in area from 0.09 to 8.4 ha, using repeated full island surveys. 

Figure 5-2. a) Standardized log likelihood values for linear mixed effects (abundance and 

occurrence) and linear (species richness) models where responding variables were random 

placement residuals. Explanatory variables for each model are listed in Table 5-2 and Figure 5-3. 
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Separate models were built using different island isolation buffer sizes, quantifying the 

proportion of open water within 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 

5000 m of island shores. To permit comparisons of relationships between log likelihood values 

and buffer sizes among abundance, occurrence, and species richness model sets, log likelihood 

scores were standardized for each model set by subtracting the mean and dividing by standard 

deviation. Model support significantly declined across increasing isolation buffer sizes in all 

instances. b) Log-log island species-area relationship (ISAR) for butterflies occurring on 30 

study islands. Random placement richness values were calculated using a random placement 

model (model 3; see Materials and Methods). Dashed green lines are 95% confidence intervals 

for random placement values, calculated using Coleman’s (1981) formula for variance. Dashed 

purple lines represent 95% confidence intervals for the log-log ISAR linear regression (solid 

purple line), parameterized using observed richness values for all 30 islands. 

Figure 5-3. Standardized regression coefficients and 95% confidence intervals from linear 

models relating random placement residuals to island characteristics and species’ functional 

traits for a) species’ abundances, b) species’ occurrences, and c) species richness. Included in all 

models were island area, measured in m2, and island isolation, measured as the proportion of 

water within the most supported buffer size (250 m for abundance and occurrence; 1500 m for 

species richness). Within abundance and occurrence models, the proportion suitable habitat 

(“suitable habitat”) was measured for each species as the area of suitable habitat on each island 

divided by the area of the island. Presence/absence of each species’ preferred larval host plants 

was included as a binary variable. Wingspan was included as a measure of species’ body size 

and as a proxy of dispersal ability. Each species’ total abundance and prevalence were used as an 

inverse measure of rarity in abundance and occurrence models, respectively. Species identity was 
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included as a random effect in abundance and occurrence models. Within the species richness 

model, habitat diversity was estimated as the total number of habitat types recorded on each 

island. Plant diversity was measured as vascular plant species richness. The shading of each 

variable’s point estimate (coefficient) and confidence interval is proportional to its P-value, with 

darker shades indicating greater significance. Coefficients with 95% confidence intervals not 

overlapping zero were inferred to be significant at  = 0.05.  

Figure 6-1. Visual representation of experimental releases. The boat was secured at varying 

distances from the target island’s shore (30, 40, 50, or 60 m), such that the bearing to the island’s 

center was 90° to the wind direction. Butterflies were sexed, marked, and released one at a time. 

For each released individual, flight time and flight orientation at 2.5, 5, and 10 m of travel were 

recorded. Angular subtense of the target island, θs, was estimated as the angular difference 

between the left and right shore bearings. Deviations in flight orientations from wind direction 

(θw) and island direction (θi), given by θdw’ and θdi’, respectively, were estimated at 2.5, 5, and 

10 m of travel using eq. 2. 

Figure 6-2. The proportion (success rate) of Speyeria cybele and Speyeria atlantis that 

successfully navigated to the target island after experimental release at 30, 40, 50, and 60 m. 

Flashed butterflies were exposed to a series of intense flashes immediately before release. This 

method induced flash blindness through bleaching of photoreceptive rhodopsins, without 

affecting olfaction. Reduced success rates of flashed butterflies indicate that butterflies rely 

primarily on visual senses to detect and navigate to suitable habitat patches during interpatch and 

dispersal movements. 

Figure 7-1. Visual representation of the methods used to generate geographic and environmental 

distances between the 161 sequenced Papilio machaon dodi included in this study. Various 
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spatial data layers (a – g) and 375 P. m. dodi records (161 sequenced individuals and 214 

georeferenced P. m. dodi Global Biodiversity Information Facility (GBIF) records) were used to 

build a Maxent habitat suitability model, which was then used to predict habitat suitability across 

the study area, with higher values indicating greater suitability. High habitat suitability generally 

followed the eroding banks of major rivers in southern Alberta and Saskatchewan, Canada (Red 

Deer, Old Man, South Saskatchewan, and Milk Rivers). Euclidean distances (i) represent the 

minimum distances between sequenced individuals. A resistance surface was parameterized as 

the inverse of habitat suitability and used to estimate least-cost path and circuit distances (j and 

k). The background in inset j is a projected cost surface, representing the cumulative costs 

incurred by individuals moving across the landscape from each occurrence point. Environmental 

distances (e – g) were estimated by taking the absolute difference between values of 

environmental variables extracted from the occurrences of sequenced individuals. Inset pictures 

are the adult and larval stage of P. m dodi. 

Figure 7-2. Population genetic structure within Papilio machaon dodi in Alberta and 

Saskatchewan, Canada, inferred using the model-based clustering program Structure. An optimal 

K  value of 2 was best supported by the ΔK method and rate of change in the likelihood of K 

across K = 1:10 for the first set of Structure runs addressing all individuals. Hierarchical runs 

addressing the northern and southern clusters independently suggested no overt subclustering 

within the northern cluster and the existence of two subclusters within the southern cluster. We 

present admixture plots derived from the first set of Structure runs for both K = 2 (exhibiting the 

two primary clusters) and K = 3 (including the two southern subclusters) for simplicity. For K = 

2, individuals collected near and north of Dorothy, Alberta, were generally assigned to a northern 
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cluster, while individuals collected within and south of Dinosaur Provincial Park, Alberta, were 

assigned to a southern cluster. 

Figure 7-3. Pairwise heatmap visualizing reciprocal causal modelling (RCM) results. Values in 

each cell represent results of RPM-A - RPM-B, with red and blue colours indicating positive and 

negative values, respectively. Rows and columns contain the focal and alternative variables, 

respectively, for model A within each reciprocal model. Therefore, the figure should be 

interpreted by rows and not columns; variables on the y-axis with more positive (red) values in 

their corresponding rows are better supported. 

Figure 7-4. Associations between allele frequencies of loci (n = 1,382) and a) mean temperature 

of the warmest quarter of the year (temp.warm), mean temperature of the coolest quarter 

(temp.cool), and mean annual precipitation (precip.) in latent factor mixed models (LFMM) with 

K = 2. Black dots are loci with significant associations to the relevant environmental variable 

based on a q-value threshold of 0.05 (−log10 q-value ~1.3). Single loci often had multiple 

significant environmental associations due to spatial correlation of environmental variables. 

Open circles represent the strongest association (based on median |z|-scores) for each locus with 

a significant environmental association. Loci are arranged on the x-axis in order of position 

within scaffolds, which are in turn arranged by increasing size.  
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1 Chapter 1: Introduction  

1.1 Consilience 

“Consilience” is a principle, describing situations wherein evidence from multiple 

disciplines converge on similar inferences (sensu Wilson, 1998). The more distant the 

disciplines, the greater the probability that their shared inferences are accurate due to increased 

independence of their respective models. Discrepancies among such inferences are also 

informative, helping to resolve important biases that may be inherent to paradigms of one or both 

of the implicated disciplines. It follows that researchers, or at least of subset of them, should 

immerse themselves in multiple disciplines (or subdisciplines) that address overlapping questions 

that are of broad interest to their field. Of course, increases to research breadth come at a cost of 

reductions to depth—the optimal balance within the trade-off is unique to each researcher.  

Throughout my Ph.D., I have tended to prioritize breadth of research, aiming to resolve 

inconsistencies among subdisciplines within ecology and evolutionary biology, including 

biogeography, landscape ecology, and population genomics. This dissertation is comprised of a 

series of studies that have played an integral part in my development as a practitioner of these 

subdisciplines. Throughout, I address a series of integral questions, including: i) what is 

biodiversity and how is it best measured? ii) how does variation in habitat configuration, habitat 

composition, and environmental conditions affect emergent patterns of species diversity? and iii) 

how do these same factors relate to genomic variation within single species? 

1.2 A primer on biodiversity 

 A rainforest is more diverse than a monoculture. But what do we mean by this? Is a 

rainforest more diverse due to its greater number of species? What if we chose to compare two 
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rainforests that are equivalent in their total number of species, but, over a one hour stroll, an 

observer is likely to encounter a greater number of species in one rainforest compared to the 

other due to differences in their respective species abundance distributions? Clearly, there are 

multiple facets of biodiversity that are worthy of consideration, both from a theoretical and an 

applied conservation perspective. 

Researchers within subdisciplines of ecology and evolutionary biology often differ in 

their working definitions of biodiversity. Indeed, we do not have a single measure at our disposal 

that adequately captures the multiple facets of the concept. However, most researchers, and 

particularly conservation biologists, tend to agree that, regardless of the particular measure, more 

biodiversity is generally better (sensu Soulé 1985). Within conservation biology, the terms 

“species diversity” and “biodiversity” are often used interchangeably, although genetic/allelic 

and landscape/ecosystem diversity are also included within the biodiversity concept (Magurran 

2013) and their importance is increasingly recognized within conservation frameworks (e.g., see 

Chapter 7). Chapters 2 – 5 of this thesis consider diversity at the level of species. At this level of 

organization, two principal components of diversity must be considered: i) species richness, a 

count of the total number of species present; and ii) species evenness, a measure of how evenly 

the abundances of individuals are distributed among those species (Hurlbert 1971; Magurran 

2013). Compound indices that simultaneously account for both species richness and evenness are 

often estimated in an attempt to distil variation in species diversity to a single number. The most 

common of these indices are information entropies, such as the Shannon-Wiener index, 

Simpson’s index, and their various transformations (Hill 1973; Izsák & Papp 2000). Each of 

these indices give less weight to rare species, meaning index values will increase if either species 

richness or evenness increases. This has led some researchers to infer that compound indices 
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may represent panaceas for quantifying variation in biodiversity (e.g., see reviews in Rosenzweig 

1995; Gotelli & Graves 1996; Magurran 2013). However, few studies have addressed the ability 

of compound indices to resolve variation in species diversity across space, and even fewer, 

through time (reviewed in Chapter 2). 

Chapter 2 details a study (MacDonald et al. 2017) that explicitly evaluates the ability of 

different indices to resolve changes in the diversity of a species assemblage through time. To 

quantify diversity patterns in a single species assemblage, I aggregated 10 years of data from 

John Acorn’s long-term butterfly monitoring programme in Edmonton, Canada, which I 

contributed to over the course of my undergraduate studies. I then used the resulting dataset to 

show that negative relationships between species richness and species evenness may compromise 

the efficacy of multiple compound indices. Year-to-year, as environmental conditions became 

more favorable, richness generally increased, while evenness decreased. Indices that conflate 

these two measures (e.g., information entropies) therefore failed to resolve important changes in 

the diversity of the assemblage through time. Species richness, although a very simple measure, 

adequately captured variation in the diversity of the species assemblage and has the added 

benefit of ease of interpretation. I therefore concluded that, when analyzing long-term diversity 

datasets, direct measures of species evenness may be used in conjunction with richness to deepen 

our understandings of trends in diversity. However, combining these two components into single 

measures (e.g., information entropies) may not produce measures that consistently align with our 

intuitive sense of biodiversity. 

1.3 Habitat configuration and composition 

Chapters 3 – 5 of this thesis focus on relationships between species diversity and the 

configuration and composition of habitat on fragmented landscapes. Habitat fragmentation is 
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generally defined as a process, wherein a large expanse of continuous suitable habitat is broken 

into a number of small fragments that are delineated by a matrix of unsuitable habitat (Fahrig 

2003). The development of conservation biology is marked by an ongoing debate, addressing 

whether anthropogenic habitat fragmentation poses significant threats to species diversity. 

Although conservation biologists are most interested in habitat fragmentation from a process-

oriented perspective, habitat fragmentation is most often addressed within the literature as a 

landscape pattern, quantifying the relative configuration (e.g., area and isolation) of individual 

habitat fragments (e.g., see reviews in Fahrig 2003; 2013; 2015; 2018; Hadley & Betts 2016; 

Fletcher et al. 2018). 

Relationships between habitat configuration and species diversity have been of great 

interest since Levins’s (1969) extrapolation of the theory of island biogeography to habitat 

fragments on terrestrial landscapes (MacArthur & Wilson 1963; Wilson & MacArthur 1967). If 

edges of terrestrial habitat fragments delimit populations similar to oceanic island shores, 

isolated populations occupying small fragments may be more prone to stochastic extinction and 

inbreeding depression than populations occupying larger fragments or unfragmented habitat 

(Diamond 1972; Diamond 1975; Wilson & Willis 1975; Connor & McCoy 1979; Saccheri et al. 

1998; Gonzalez 2000). As per the theory of island biogeography, the relative configuration of 

habitat fragments is also predicted to affect species diversity because species immigration and 

rescue effects generally decrease as fragments become more isolated from neighboring habitat 

(Brown & Kodric-Brown 1977; Hanski 1998). Increasing proportions of habitat edges associated 

with fragmented habitat have also been linked to changes in species diversity, with reductions 

more common than promotions (Haddad et al. 2015; Hadley & Betts 2016).  
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By these and related mechanisms, the process of habitat fragmentation may result in a 

greater loss of species than what is associated with habitat loss alone (Haila 2002; Fletcher et al. 

2018). Such applications of ecological theory are powerful heuristics, made apparent in the 

inferences of many ecologists: “Habitat fragmentation is considered by many biologists to be the 

single greatest threat to biological diversity” (Noss 1991 p. 27); “Habitat fragmentation is a 

major cause of biodiversity erosion” (Tabarelli et al. 1999 p. 119); “Habitat fragmentation is a 

leading cause of extinction” (Bruna & Oli 2005 p. 1816); and “… the pattern and process of 

habitat fragmentation been shown to have substantial and lasting effects on biodiversity” 

(Fletcher et al. 2018 p. 10). However, it is become increasingly recognized that many of these 

inferences are supported by observations or experimental designs that have not sufficiently 

decoupled the correlated effects of fragmentation per se from those of habitat loss (Fahrig 2003; 

2013; 2015; 2018; Hadley & Betts 2016; Fletcher et al. 2018).  

In a seminal review of the fragmentation literature, Fahrig (2003) concluded that, in 

contrast to widely held sentiments that fragmentation reduces species diversity, fragmentation 

effects are generally negligible after sufficiently controlling for deleterious effects of habitat loss. 

In the minority of reviewed studies where fragmentation effects were significant, 21 of 30 were 

positive, suggesting that fragmentation is actually more likely to increase, rather than reduce, 

species diversity. Fahrig (2013) later reviewed 14 studies addressing whether single large or 

several small habitat fragments, equivalent in total area, support a higher diversity of species 

(i.e., the Single Large Or Several Small “SLOSS” debate; Diamond 1975; Abele & Connor 

1979; Ovaskainen 2002; Tjørve 2010). In all instances, several small habitat fragments were 

found to support at least as many species as single large fragments. Accordingly, Fahrig (2013) 

advanced the habitat amount hypothesis, which predicts that the diversity of species persisting on 
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fragmented landscapes is primarily a function of the amount of remaining habitat and not its 

degree of fragmentation. The primary mechanism underlying this prediction is the sample-area 

effect, describing that larger fragments contain more species simply because they sample more 

individuals from the abundance distribution of the regional species pool. Mechanistically, this 

hypothesis is indecipherable from the passive sampling hypothesis, developed in the context of 

oceanic islands more than 30 years prior (Connor & McCoy 1979). However, applied to 

conservation practice, the habitat amount hypothesis states that conservation biologists need not 

consider habitat fragmentation as a factor affecting species persistence and should instead focus 

on preserving the maximum amount of habitat possible, irrespective of its configuration.   

More recently, Fahrig (2017) reviewed 381 studies addressing fragmentation effects on 

both species diversity and individual species. Studies were categorized as controlling for habitat 

loss either experimentally (n = 48), statistically (n = 273), or using SLOSS-based methods (n = 

60). Overall, fragmentation effects were positive in 76% (290/381) of studies. For studies 

considering patterns or responses of species diversity (namely, species richness), 90% (114/127) 

of fragmentation effects were positive. Of particular interest, all 60 studies that used SLOSS-

based methods to control for habitat loss reported positive fragmentation effects, with several 

small patches containing more species than single large patches of equal area (see Fahrig 2020 

for further discussion on SLOSS-based inferences). In contrast, studies addressing patterns or 

responses of single-species were more variable in their results, with 68% (158/232) reporting 

positive fragmentation effects. Across all studies reviewed by Fahrig (2017), fragmentation 

effects were more often positive than negative or neutral for both species diversity and single 

species; however, disparity in the consistency of these findings is of interest (90% vs. 68%, 

respectively). Greater congruence may be expected if emergent patterns of species diversity are 
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indeed viable indicators of fragmentation effects on individual species—the level at which 

species diversity is ultimately structured. 

Inferring fragmentation effects from emergent patterns of species diversity may be 

susceptible to the ecological fallacy (sensu Robinson 1950), which addresses biases that may 

arise when observed effects on aggregated variables (e.g., species richness) differ from causal 

relationships at finer levels of organization (e.g., single species). Indeed, responses to 

fragmentation have been shown to vary widely among species (Henle et al. 2004; Ewers & 

Didham 2006; Öckinger et al. 2009; Hanski 2015). Functional traits, including body size 

(Gehring & Swihart 2003; Henle et al. 2004; Prugh et al. 2008; Barbaro & Van Halder 2009; 

Warzecha et al. 2016), mobility/dispersal ability (Roland & Taylor 1997; Lens et al. 2002; Ewers 

& Didham 2006; Öckinger et al. 2009; MacDonald et al. 2018a), perceptual range (MacDonald 

et al. 2019), degree of ecological specialization (Tscharntke & Brandl 2004), rarity/conservation 

status (Ewers & Didham 2006), and trophic position (Tscharntke et al. 2002; Thies et al. 2005; 

Ewers & Didham 2006) are predicted to relate species’ sensitivity to fragmentation. Still, there 

are very few empirical studies that have related interspecific variation in fragmentation effects to 

functional traits, or resolved how species-specific fragmentation effects scale to emergent 

patterns of species diversity (Melbourne et al. 2004; but see Barbaro & Van Halder 2009; 

Öckinger et al. 2009).  

Even within single landscapes and taxa, species also vary widely in their habitat 

requirements. More than 50 years ago, Williams (1964) inferred that patterns of species diversity 

across ecological islands are likely driven by variation in their diversity of habitat types (i.e., the 

habitat diversity hypothesis), rather than area per se. Recent studies on both true islands and 

habitat fragments support this inference (Nilsson 1988; Rosenzweig 1995; Kadmon & Allouche 
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2007; Hortal et al. 2009; MacDonald et al. 2018b). This suggests that habitat composition is an 

important consideration in fragmentation research (MacDonald et al. 2018b) and that 

fragmentation effects may be most sensibly inferred on a species-by-species basis (sensu Hanski 

2015). 

In Chapters 3 and 4, I present two studies (MacDonald et al. 2018a; 2018b) that decouple 

the correlated effects of habitat fragmentation and habitat loss for butterfly and vascular plant 

species assemblages persisting on a naturally fragmented landscape of lake islands; Lake of the 

Woods, Canada. These studies utilize SLOSS-based analyses to show that highly fragmented sets 

of islands generally contain an equivalent or greater diversity of species than less fragmented sets 

of islands or a single island of an equal total area. However, I hypothesized that SLOSS-based 

analyses may obscure important fragmentation effects on individual species, and that 

interspecific variation in these effects may be related to measurable functional traits. These 

hypotheses were supported by a number of analyses. For example, when differentiating between 

potentially reproducing and transient butterfly species on each island based on the presence or 

absence of their preferred larval food plants, fragmentation effects on the diversity of potentially 

reproducing species became apparent (Chapter 3; MacDonald et al. 2018a). Interestingly, the 

probability of butterfly species occurring on islands without their preferred larval food plants 

was positively related to both wingspan and estimated mobility, suggesting that functional traits 

may be related to interspecific variation in species’ responses to fragmentation. Together, these 

results suggest that inferring fragmentation effects from emergent patterns of species diversity 

may constitute an example of ecological fallacy. Additionally, using a structural equation 

modelling framework, I show in Chapter 4 (MacDonald et al. 2018b) that: i) mechanisms 

predicted by theory of island biogeography, the sample-area effect, and the habitat diversity 
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hypothesis may act in a complementarily manner to structure patterns of vascular plant diversity 

on fragmented landscapes; and ii) the relative importance of these mechanisms changes with 

island/fragment area. 

In Chapter 5 (MacDonald et al. 2021), I present a novel modelling framework for 

disentangling mechanisms that underlie species-area relationships across true islands and habitat 

fragments. This is an important and timely contribution, as each of the described mechanisms 

informs a potentially different conservation directive regarding the relative importance of 

ameliorating habitat loss and habitat fragmentation. Specifically, the framework uses random 

placement models to control for variation in species’ abundance, species’ occupancy, and species 

richness associated with the sample-area effect, allowing deterministic effects of island/fragment 

area and isolation to be resolved using linear mixed effects models. Most interestingly, this 

framework facilitates the simultaneous evaluation of whether and how these effects of area and 

isolation vary among species in relation to their functional traits. Applying these models to our 

Lake of the Woods butterfly data showed that the island species-area relationship did not 

significantly deviate from random placement in relation to island area, isolation, or habitat 

diversity, supporting stochastic assembly mechanisms consistent with the sample-area effect. 

This result aligns with SLOSS-based analyses of Chapter 3 (MacDonald et al. 2018a) and 

conforms to predictions of habitat amount and passive sampling hypotheses (Connor & McCoy 

1979; Fahrig 2013). However, further analyses, made possible by the novel modelling 

framework, show that species’ abundances were significantly lower on smaller and more isolated 

islands than what is predicted by the sample-area effect. Integrating functional traits into this 

abundance model resolved that the effect of island area was significantly greater for smaller, less 

mobile, and rare butterfly species. Species’ occurrences also significantly deviated from 
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predictions of the sample-area effect in relation to island isolation, but not area. This case study 

clearly demonstrates that richness-based analyses can result in incorrect inferences on the 

mechanisms underlying species-area relationships, obscuring important effects of 

island/fragment area and isolation on individual species.  

1.4 Movement in the matrix 

Movements of organisms among habitat fragments is a principal ecological process 

contributing to both metapopulation persistence and diversity patterns on fragmented landscapes 

(e.g., Hanski 1998; Wiens 2001; Stevens et al. 2012). Quantifying variation in species’ ability to 

navigate fragmented landscapes is therefore integral to understanding how habitat fragmentation 

affects species diversity. Related investigations often involve estimating species’ perceptual 

ranges—the maximum distance at which individuals are able to detect suitable habitat or critical 

resources using their sensory organs (Weins 1989). To infer perceptual range, a popular method 

is to release individuals at varying distances from habitat fragments and observe their movement 

through the matrix of unsuitable habitat. For butterflies in particular, it is often assumed that 

individuals rely on visual senses for habitat detection (see literature review in Chapter 6). 

However, this assumption has not been explicitly investigated.  

In Chapter 6, I assess the extent and sensory determinants of perceptual range for two 

butterfly species that frequent lake islands of Lake of the Woods: the great spangled fritillary 

[Speyeria cybele (Fabricius, 1775)] and Atlantis fritillary [Speyeria atlantis (W.H. Edwards, 

1862]. This was achieved by experimentally releasing individuals at various distances from a 

lake island (“release islands”), representing an isolated habitat fragment situated in a matrix of 

unsuitable habitat (open water). For each species, the probability of successfully navigating to 

the release island significantly decreased with increasing release distance, but at different rates. 
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No specific distance thresholds for perceptual range were observed for either species. Based on 

this result, I suggested that previous estimates of perceptual range thresholds for a variety of 

butterfly species are likely statistical artefacts. Instead, perceptual range may be best thought of 

as a continuum of probabilities, reflecting the likelihood of habitat detection across a range of 

distances, rather than a fixed distance measure. To infer whether butterflies rely on visual senses 

when navigating fragmented landscapes, I exposed a subset of individuals to a series of intense 

light flashes before release to induce flash blindness (compromising visual senses) without 

affecting olfactory senses. Flashing individuals completely inhibited individuals’ ability to 

navigate to the release island, suggesting that visual senses are the principal determinant 

perceptual ranges of these species and are integral to detecting habitat fragments. In parallel 

work, not included in this thesis, I am investigating relationships between perceptual range and 

fragmentation effects (inferred from models detailed in Chapter 5) for 13 other butterfly species 

occurring on islands of Lake of the Woods.  

1.5 Integrating landscape ecology and population genomics 

 An overarching conclusion of my research on lake islands was that an autecological 

approach, considering the responses of individual species to habitat configuration and 

composition, is most sensible from a theoretical perspective and most effective from a 

conservation perspective. For example, Chapter 5 shows that addressing variation in the 

abundances and occurrences of individual species can resolve important, species-specific 

fragmentation effects that are obscured by emergent patterns of species richness. However, it is 

difficult to infer from abundance and occurrence data whether individuals occupying isolated 

habitat fragments represent distinct populations, or how effective dispersal, resulting gene flow, 

is affected by habitat configuration and composition. Genetic data confer the greatest power for 



 12 

addressing such questions (Saccheri et al. 1998; Sork et al. 1999; Keyghobadi et al. 2005; 

Cushman et al. 2006; Shirk et al. 2010; Richardson et al. 2016) and genomic data have the added 

benefit of resolving adaptive variation and adaptive potential within species (Schwartz et al. 

2010; Rellstab et al. 2015; Balkenhol et al. 2017; Storfer et al. 2018). Resolving determinants of 

genomic variation within species requires equal parts landscape ecology, to map spatial variation 

habitat configuration, habitat composition, and environmental conditions, and population 

genomics, to quantify genomic variation at both the individual and population level. Landscape 

genomics represents the integration of these two disciplines (Sork et al. 1999; Richardson et al. 

2016; Storfer et al. 2018).  

 Chapter 7 details a study (MacDonald et al. 2020) that uses a landscape genomics 

approach to quantify determinates of genetic divergence within a single butterfly species, Dod’s 

Old World swallowtail (Papilio machaon dodi McDunnough, 1939), throughout its Canadian 

range (southern Alberta and Saskatchewan). A principal goal of this study was to evaluate three 

overarching hypotheses that explain genetic divergence: i) isolation by distance (Wright 1943), 

which predicts that geographic distance or physical barriers to dispersal moderate gene flow, 

thereby permitting drift and genetic divergence between spatially separated individuals or 

populations; ii) isolation by resistance (McRae 2006), which predicts that, in addition to spatial 

separation, variation in the relative resistance organisms experience when dispersing through 

heterogeneous landscapes moderates gene flow, drift, and genetic divergence; and iii) isolation 

by environment (Wang & Summers 2010), which predicts that differences in environmental 

conditions contribute to genetic divergence via the combination of: a) reduced fitness/negative 

selection on individuals that have dispersed across environmental gradients; b) reduced 

fitness/negative selection on dispersers’ offspring in non-natal environments (i.e., outbreeding 
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depression); or c) reduced propensity of individuals to disperse across environmental gradients 

due to local adaptation to environmental conditions (Wang & Summers 2010; Wang et al. 2013). 

Together, predictions of isolation by distance, resistance, and environment may be evaluated in a 

multiple working hypothesis/strong inference framework (sensu Chamberlin 1890; Platt 1998) to 

infer the relative importance of geographic and environmental factors that affect species’ 

demography, movement, and adaptation within heterogeneous landscapes and environments. 

To quantify genomic variation within P. m. dodi, I used double digest restriction-site 

associated DNA sequencing (ddRADseq) and an assortment of bioinformatic pipelines to 

discover and map thousands of single nucleotide polymorphisms (SNPs) throughout the genomes 

of 192 sequenced individuals. Using a combination of these SNP data and ecological niche 

models, I identified two cryptic evolutionary lineages (north vs south) that are genetically and 

ecologically divergent, maintained by local adaptation to spatial variation in climatic conditions. 

Relating pairwise genetic divergence to a series of geographic and environmental distances 

resolved that mechanisms predicted by isolation by distance and isolation by environment are 

contributing to genomic variation within P. m. dodi. Interestingly, after controlling for climate-

associated genetic variation, connectivity of suitable habitat (isolation by resistance) was not 

related to genetic connectivity. This unique result challenges a foundational method in landscape 

ecology: the use of habitat suitability models to infer connectivity among isolated populations 

when genetic data are unavailable. Following this inference, I suggested that it may be 

instructive to understand adult life stages of many terrestrial invertebrates as not only the life 

stage in which mating and reproduction occur, but also as “dispersal machines,” exhibiting 

greater vagility and broader habitat tolerances than larval life stages. Such characteristics are 

likely to facilitate long-distance dispersal resulting in gene flow across heterogeneous 
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landscapes, varying in habitat configuration and composition. As a consequence of the dispersal 

machine concept, I concluded that considerable support for isolation by resistance in vertebrates 

cannot necessarily be extrapolated to organisms with disparate life histories; particularly, if the 

life cycles of focal taxa include a discrete dispersal life stage with substantially different habitat 

constraints than other life stages. The success of this study demonstrates clear utility for 

integrating theory and methods from landscape ecology and population genomics to address the 

cumulative effects of habitat fragmentation, habitat loss, and climate change on the ecology and 

evolution of species. 
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2 Chapter 2: Negative relationships between species richness and evenness render common 

diversity indices inadequate for assessing long-term trends in butterfly diversity 

2.1 Abstract 

 Species richness and evenness, the two principal components of species diversity, are 

frequently used to describe variation in species assemblages in space and time. Compound 

indices, including variations of both the Shannon–Wiener index and Simpson’s index, are 

assumed to intelligibly integrate species richness and evenness into all-encompassing measures. 

However, the efficacy of compound indices is disputed by the possibility of inverse relationships 

between species richness and evenness. Past studies have assessed relationships between various 

diversity measures across survey locations for a variety of taxa, often finding species richness 

and evenness to be inversely related. Butterflies are one of the most intensively monitored taxa 

worldwide, but have been largely neglected in such studies. Long-term butterfly monitoring 

programs provide a unique opportunity for analyzing how trends in species diversity relate to 

habitat and environmental conditions. However, analyzing trends in butterfly diversity first 

requires an assessment of the applicability of common diversity measures to butterfly 

assemblages. To accomplish this, we quantified relationships between butterfly diversity 

measures estimated from 10 years of butterfly population data collected in the North 

Saskatchewan River Valley in Edmonton, Alberta, Canada. Species richness and evenness were 

inversely related within the butterfly assemblage. We conclude that species evenness may be 

used in conjunction with richness to deepen our understandings of assemblage organization, but 

combining these two components within compound indices does not produce measures that 

consistently align with our intuitive sense of species diversity. 

2.2 Introduction 
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Due to their charismatic nature and popularity among naturalists, butterflies are among 

the most intensively monitored taxonomic groups worldwide (Thomas 2005; Nowicki et al. 

2014). Consequently, butterfly diversity has been invoked as an indicator of biological diversity 

and environmental health (Fleishman & Murphy 2009; Schmucki et al. 2015). Many ecological 

traits make butterflies promising ecological indicators. For example, because of their relatively 

short life cycles, butterfly populations respond rapidly to environmental stimuli, making them 

sensitive surrogates for trends in habitat and environmental conditions (van Swaay & Warren 

1999; Nowicki et al. 2008). Additionally, given that many butterflies complete their life cycles 

within small patches of habitat, their movements and distributions can also be used to map 

habitat conditions at relatively fine scales (van Swaay et al. 2006). Finally, butterfly diversity 

generally correlates with the diversity of many other terrestrial, herbivorous insect groups 

(Thomas 2005). Together, such groups comprise a significant proportion of terrestrial biological 

diversity (Nowicki et al. 2008). These traits, coupled with high detectability, make butterflies 

excellent subjects for long-term diversity monitoring projects. Indeed, Thomas (2005, p. 340) 

suggests that butterflies “are often the most—or only—practical insect group to study across the 

world.” The question therefore arises: how should the diversity of butterfly assemblages be 

assessed?  

Ecologists have long struggled to find a simple index that is commensurate with the 

common notion of biological diversity, a.k.a. “biodiversity” (Humphries et al. 1995). The terms 

“species diversity” and “biodiversity” are often used interchangeably, although genetic/allelic 

and landscape/ecosystem diversity also fit within broad definitions of biodiversity (Magurran 

2013). Species diversity is most often parsed into two principle components: i) species richness, 

a count of the total number of species; and ii) species evenness, a measure of how evenly 
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sampled individuals are distributed among species (Hurlbert 1971; Magurran 2013). If data on 

the relative abundances of species are available, compound indices accounting for both species 

richness and evenness, most commonly (but not always; see Jost 2006) giving less weight to rare 

species, may be calculated. The most common and widely used of these indices are variations of 

the Shannon-Wiener index and Simpson’s index (Hill 1973; Izsák & Papp 2000). It has been 

suggested, however, that not all compound indices are true indices of diversity, but are entropies, 

reflecting distinct properties of species assemblages relating to diversity (Jost 2006). 

Rooted in information theory, the Shannon-Wiener index is an entropy, measuring 

uncertainty in the outcome of a diversity sampling process. It has also been shown that most 

other nonparametric compound indices, including Simpson’s index, are generalized entropies 

(Tóthmérész 1995; Ricotta 2003; Keylock 2005). Entropies measure properties of species 

assemblage data, but are not themselves true measures of species diversity (Jost 2006). 

Furthermore, these entropies are nonlinear, complicating their interpretations. Transformations of 

entropies to Hill numbers, indicating the “effective number of species,” result in units akin to 

species richness, allowing for more intuitive, linear comparisons of species diversity (Table 2-1). 

The effective number of species represents the species richness of a theoretical assemblage, 

equivalent in diversity to a sampled assemblage (yielding the same value for the root entropy), 

but with a perfectly even species abundance distribution (Hill 1973; Jost 2006; Chao et al. 2014). 

The most common of these transformations is Simpson’s reciprocal index, calculated as the 

inverse of Simpson’s index. Jost (2006) recommends exponentiating the Shannon-Wiener index 

to give an effective number of species; however, comparisons of untransformed Shannon-Wiener 

index values are still common.  
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Table 2-1. Conversion of common indices to Hill numbers (true diversities), where pi represents 

the proportion of individuals within an assemblage belonging to species i. 

Index Formula 
Transformation to Hill 

numbers (true diversities) 
Transformed index name 

Species richness 
0

1

S

i

i

S p
=

=   
0H S=    Species richness (S) 

Shannon-Wiener 

index 
1

' ln
S

i i

i

H p p
=

= −   
1 exp 'H H=  

Exponential of Shannon-

Wiener index (exp H ') 

Simpson's index 
2

1

S

i

i

p
=

=   
2

1
H D


= =  

Simpson's reciprocal index 

(D) 

 

 

Contrasting with their appeal as all-encompassing species diversity measures, both 

entropies and their transformations have been criticized for their potential to mask variation 

among the various components of diversity (Hurlbert 1971; Purvis & Hector 2000; Bock et al. 

2007). For instance, species richness and evenness can counteract each other within compound 

indices if they are negatively correlated (Buzas & Hayek 1996), effectively hiding spatial or 

temporal gradients in species diversity. This potential for error within indices, coupled with 

conflicting behaviour between indices, has led some authors to conclude that compound indices 

are largely meaningless (Hurlbert 1971). Thus, species richness is frequently cited as the most 

reliable and straightforward measure of species diversity, and remains the central means for 

identifying biodiversity hotspots and monitoring trends in biodiversity worldwide (Andelman & 

Willig 2003; Wilsey et al. 2005; Magurran 2013). When using species richness as a single 

measure of species diversity, it is has been traditionally assumed that: i) species richness is 

positively correlated with evenness; and ii) species richness accounts for much of the spatial and 

temporal variation in diversity (Wilsey et al. 2005). These assumptions suggest that relationships 

between species richness and evenness are consistent between species assemblages, and that 
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these two components represent different interpretations of a coherent ecological property known 

as “diversity.”   

 Empirical studies have tested the assumption that species richness and evenness are 

positively correlated, and whether inconsistencies in the relationships between the two 

components can compromise the efficacy of compound indices. In partitioning the Shannon-

Wiener index into species richness and evenness, Buzas & Hayek (1996) found that species 

richness and evenness can affect the Shannon-Weiner index in a counteracting manner when 

negatively related. Stirling and Wilsey (2001) compared empirical relationships between species 

richness, species evenness, and the Shannon-Wiener index to null relationships generated from 

Caswell’s neutral model (simulation of log-normal and log-series species abundance 

distributions; Caswell 1976) and found that relationships were generally weak and inconsistent 

across taxa. Through spatial comparisons of plant diversity, Ma (2005) found no consistent 

patterns between species richness and evenness, with the two components having different 

responses to edaphic factors. Wilsey et al. (2005) found that species richness and evenness were 

positively correlated within invertebrate communities, weakly positively correlated within 

vertebrate communities, and negatively correlated within plant communities. Bock et al. (2007) 

found neutral to moderately negative correlations between species richness and evenness within 

angiosperm, grasshopper, butterfly, bird, and rodent communities in a savanna landscape. In that 

study, butterfly diversity was assessed on four occasions in four different survey plots. No 

significant negative correlations between species richness and evenness were found for the 

butterfly assemblage, although the small sample size in this study brings into question their 

statistical power to resolve relationships. To our knowledge, all past studies addressing 

relationships between diversity measures analyzed data across multiple survey locations, 
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effectively addressing relationships between diversity indices across assemblages that may be 

influenced by different biophysical factors. In conservation biology, assessing temporal 

variability of diversity indices for single localities and species assemblages is just as important.  

 Long-term, standardized biodiversity monitoring programs are essential for assessing the 

conservation status of species and ecosystems (Schmucki et al. 2015), as well as for measuring 

the impacts of environmental change on biodiversity (van Swaay et al. 2011). Butterfly diversity 

monitoring programs, beginning with the establishment of the United Kingdom Butterfly 

Monitoring Scheme (UKBMS) in 1976, have appeared in a growing number of countries over 

the last two decades (Schmeller et al. 2009; Schmucki et al. 2015). Corresponding long-term 

population datasets are likewise expanding. Long-term population datasets are especially 

relevant for butterflies, among other invertebrate taxa, as they frequently exhibit inter-annual 

fluctuations in their populations and shifts in phenology that may indicate changes in habitat and 

environmental conditions (Roy et al. 2001; Saarinen et al. 2003; Westwood & Blair 2010; 

Schmucki et al. 2015). Butterfly monitoring programs generally place emphasis on the collection 

of density and abundance data, which can be used to generate species diversity indices (Stephens 

et al. 2015). Therefore, assessing the viability of species richness, species evenness, and 

compound indices as measures of butterfly diversity is paramount.  

 Expanding on the works of Bock et al. (2007), we implemented a higher sampling 

frequency and longer study duration to assess variability in butterfly species diversity indices 

through time. Specifically, we examined ten years of butterfly population data from surveys 

completed over a 16 year period within the largest protected urban green space in North 

America, the North Saskatchewan River Valley in Edmonton, Alberta, Canada. The objectives of 

this study were to: i) resolve how different indices of species diversity correlate through time; 
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and ii) measure the relative variability of diversity indices to identify which indices best capture 

temporal variation in butterfly assemblages. We hypothesized that butterfly assemblages have a 

propensity towards unevenness as species’ abundances increase under more favourable 

environmental conditions. To test this hypothesis, butterfly abundance and measures of diversity 

were correlated with annual precipitation and mean growing season temperature—environmental 

factors have been shown to positively affect temperate butterfly abundances in past work (e.g., 

Pollard 1988; Roy et al. 2001). 

2.3 Materials and Methods  

2.3.1 Study area 

Butterfly surveys were completed within the North Saskatchewan River Valley in 

Edmonton, Alberta, Canada, a municipally protected green space. The specific location of this 

ongoing study is a south-facing slope along the north bank of the North Saskatchewan River, 

from Government House Park to the mouths of Ramsay and McKinnon Ravines. The survey 

location has historically been maintained as a natural recreation area, and is set in a matrix of 

mixed forest comprised primarily of balsam poplar (Populus balsamifera), trembling aspen 

(Populus tremuloides), and white spruce (Picea glauca). Grassy areas line the transect route, as 

well as numerous willows (Salix spp.), alders (Alnus spp.), and caragana (Caragana 

arborescens). Approximately 60% of the grassy areas along the transect route are mowed 

regularly, with remaining sections left unkempt. Unkempt grassy areas border the mowed areas 

along the entire transect route. Nectar resources were generally concentrated within unkempt 

areas. However, mowed areas do not exceed more than 100 meters in breadth, meaning nectar 

resources were not substantially fragmented. 
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2.3.2 Survey methods 

A modified form of fixed-route transects, or “Pollard walks,” was employed to quantify 

butterfly diversity and abundances. This method was first conceptualized by Ernest Pollard in the 

early 1970s, and has since been implemented around the world in a wide array of butterfly 

monitoring schemes (Pollard 1977; Pellet et al. 2012). Butterfly surveys approximately 1 to 1.5 

hours in duration and following a single transect route were completed in 10 different years over 

a 16-year period (1999, 2000, 2002, 2007, 2009, 2010, 2011, 2012, 2013, and 2014). Surveys 

with low butterfly activity relative to other surveys within a two week window were eliminated. 

From the remaining data, eight transect counts were randomly selected from four four-week 

blocks within each year (two surveys selected per block), from the period between May 1st and 

August 31st. Starting at the GPS coordinates 53°32.336’N, 113°32.432’W, c. 629 meters 

elevation, the transect route extends roughly 1,350 meters westward along the base of the south-

facing hill slope, to the mouths of Ramsay and McKinnon Ravines, and about half way up a 

cleared grassy hillside to the stairs leading up to St. George’s Crescent, before doubling back 

1,050 meters eastward, running parallel to the North Saskatchewan River. Total length of the 

transect route was approximately 2,400 meters. Surveys started between 12:00 and 15:45, subject 

to the condition that butterfly activity was apparent. Surveys were only completed in sunny 

conditions (less than 40% cloud cover) if temperatures were between 13°C and 17°C. At 

temperatures over 17°C, surveys were completed regardless of cloud cover, but only if butterflies 

were obviously active. Transect counts were not completed in high wind conditions, or during 

any form of precipitation. Only butterflies occurring north of the transect route while traveling 

west were recorded. Similarly, only butterflies occurring to the south of the transect route while 

doubling back and travelling east were recorded. This method limits the possibility of “double 
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counts,” where individuals are recorded twice in one survey. However, when observing the first 

individual of any species during a survey, there exists no possibility of a double count, thus 

individuals belonging to “new species” were recorded irrelevant of their orientation relative to 

the set transect route.  

2.3.3 Diversity analyses 

Eight variables related to species diversity were estimated for each survey year, 

including: butterfly abundance (N), species richness (S), Simpson’s reciprocal index (D), the 

Shannon-Wiener index (H '), the exponential of the Shannon-Wiener index (exp H '), Pielou’s 

evenness (J '), species evenness (D/S), and proportion of rare species (Rarity). Butterfly 

abundance was calculated in each survey year as the sum of individuals observed across all eight 

surveys. Species richness was the total number of species observed in each survey year. 

Simpson’s reciprocal index was calculated as
2

11/ S

i iD p==  , where ip represents the proportion of 

total butterfly abundance belonging to species i. The Shannon-Wiener index was calculated as

1' lnS

i i iH p p== − . The exponential Shannon-Wiener index was calculated as exp 'H . Pielou’s 

evenness was calculated as ' '/ lnJ H S= . Species evenness was calculated as /D S . Rarity was 

calculated in each year as the proportion of species that had relative abundances less than 1/ S  

(Camargo 1992). Coefficients of variation (CV) and pairwise product-moment correlations 

between all eight variables over the 10 survey years were used to infer which measures best 

captured variation in species diversity and how the different measures covaried through time, 

respectively. Diversity variables were also correlated with annual precipitation and mean 

growing season temperature (April through August; calculated from daily highs) of both the 

same and the previous year, as these environmental factors have been shown to positively affect 
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butterfly abundances and diversity (Pollard 1988; Roy et al. 2001). Historical weather data was 

obtained through Environment Canada (http://climate.weather.gc.ca/). 

2.4 Results 

A total of 37 butterfly species were recorded over the 10 survey years. Table 2-2 

summarizes estimates for eight variables relating to species diversity: butterfly abundance (N), 

species richness (S), Simpson’s reciprocal index (D), the Shannon-Wiener index (H '), the 

exponential of the Shannon-Wiener index (exp H '), Pielou’s evenness (J '), species evenness (D / 

S), and proportion of rare species (Rarity). Total annual butterfly abundance ranged from 285 to 

1,270 individuals and species richness ranged from 16 to 30 species. Coefficients of variation 

(CV) show that, of the three measures of species diversity most commonly reported—species 

richness, Simpson’s reciprocal index, and the Shannon-Weiner index (Hill 1973)—species 

richness was the most variable (sensitive) through time (CV = 21.6), with Simpson’s reciprocal 

index only slightly less variable (CV = 20.1). The untransformed Shannon-Wiener index proved 

to be the least variable among common diversity indices (CV = 10.8); however, exponentiating 

the Shannon-Wiener index appeared to improve discriminating power (exponential of the 

Shannon-Wiener index; CV = 20.7). Species evenness, as measured by D/S, proved to be the 

most variable index of all (CV = 29.7), likely resulting from the negative correlation between the 

index’s two constituent parts: Simpson’s reciprocal index and species richness. Of all population 

variables, butterfly abundance was the most variable, with a coefficient of variation of 58.8.  

 

Table 2-2. Butterfly abundance (N), species richness (S), Simpson’s reciprocal index (D), the 

Shannon-Wiener index (H '), the exponential of the Shannon-Wiener index (exp H '), Pielou’s 

evenness (J '), species evenness (D / S), and proportion of rare species (Rarity) calculated for 10 
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years of butterfly surveys completed within the North Saskatchewan River Valley in Edmonton, 

Alberta, Canada. Coefficient of variation (CV) is given for each metric. 

Year N S D H ' exp H ' J ' D / S Rarity 

1999 436 20 3.79 1.91 6.72 0.64 0.19 0.8 

2000 419 18 3.6 1.68 5.34 0.58 0.2 0.72 

2002 361 23 5.48 2.17 8.77 0.69 0.24 0.78 

2007 434 19 4.04 1.79 5.98 0.61 0.21 0.78 

2009 367 20 3.77 1.75 5.75 0.58 0.19 0.8 

2010 318 17 3.7 1.76 5.81 0.62 0.22 0.82 

2011 285 16 4.2 1.77 5.87 0.64 0.26 0.75 

2012 970 28 3.43 1.61 4.99 0.48 0.12 0.85 

2013  1 270 30 2.84 1.5 4.47 0.44 0.09 0.9 

2014 840 23 2.79 1.58 4.85 0.5 0.12 0.82 

CV 58.8 21.6 20.1 10.8 20.7 13.7 29.7 6.3 

 

 

Table 2-3. Pairwise product-moment correlation coefficients for butterfly abundance (N) and 

seven indices related to species diversity— species richness (S), Simpson’s reciprocal index (D), 

the Shannon-Wiener index (H '), the exponential of the Shannon-Wiener index (exp H '), 

Pielou’s evenness (J '), species evenness (D/S), and proportion of rare species (Rarity)—derived 

from 10 years of butterfly population data. 

  N S D H ' exp H ' J ' D/S 

S 0.91***       

D -0.67* -0.35      

H ' -0.69* -0.37 0.94***     

exp H ' -0.61 -0.28 0.93*** 0.99***    

J ' -0.92*** -0.74* 0.85** 0.90*** 0.85**   

D/S -0.93*** -0.83** 0.79** 0.72* 0.67* 0.93***  

Rarity 0.82** 0.81** -0.52 -0.47 -0.41 -0.71* -0.79** 

significance is denoted by * P < 0.05; ** P < 0.01; *** P < 0.001 
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Pairwise product-moment correlations show that species richness was positively 

correlated with butterfly abundance (P < 0.001) and of proportion rare species (P < 0.01), but 

was negatively correlated with Pielou’s evenness (P < 0.05) and species evenness (D/S; P <0.01; 

Figure 2-1; Table 2-3). Species richness correlated more strongly with untransformed butterfly 

abundances (r = 0.91) than natural log-transformed butterfly abundances (r = 0.90). No 

significant correlations were observed between species richness and Simpson’s reciprocal index 

(P > 0.05), the Shannon-Weiner index (P > 0.05), or the exponential of the Shannon-Wiener 

index (P > 0.05), although correlation coefficients between species richness and compound 

indices were consistently negative. Butterfly abundance was positively correlated with 

proportion of rare species (P < 0.01), and was negatively correlated with all diversity indices 

accounting for species evenness (Simpson’s reciprocal index [P < 0.05], the Shannon-Wiener 

index [P < 0.05], Pielou’s evenness [P < 0.001], and species evenness [D/S; P < 0.001]), save the 

exponential of the Shannon-Wiener index, with which it was still negatively related (P < 0.1). 

Both measures of evenness were positively correlated with all three compound indices 

(Simpson’s reciprocal index, the Shannon-Weiner index, and the exponential of the Shannon-

Weiner index). 
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Figure 2-1. Scatter plots of a) Butterfly abundance (N) and proportion of rare species (Rarity) as 

they relate to species richness; b) Simpson’s reciprocal index (D), the Shannon-Wiener index (H 

'), and the exponential of the Shannon-Wiener index (exp H ') as they relate to species richness; 
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and b) Pielou’s evenness (J ') and species evenness (D/S) as they relate to species richness. All 

eight variables are in units of standard deviation. r = corresponding pairwise product-moment 

correlation coefficient. 

 

Relationships between diversity measures and environmental conditions (annual 

precipitation and mean growing season temperature) of the same year were consistently stronger 

than relationships between diversity measures and environmental conditions of the previous year. 

Butterfly abundance (N), species richness (S), and proportion of rare species (Rarity) were 

positively related to annual precipitation and mean growing season temperature of the same year 

(Table 2-4). Contrastingly, indices accounting for evenness (D, H ', exp H ') and measuring 

evenness explicitly (J ', D/S) were negatively related to annual precipitation and mean growing 

season temperature of the same year.  

 

Table 2-4. Pairwise product-moment correlation coefficients for eight variables related to 

butterfly diversity and annual precipitation (mm) and mean growing season temperature (°C; 

April – August; based on daily highs) of the same year for Edmonton, Alberta, Canada. 

 N S D H ' exp H ' J D / S Rarity 

Precipitation 0.52 0.25 -0.65* -0.60 -0.58 -0.51 -0.45 0.34 

Temperature 0.45 0.28 -0.48 -0.50 -0.52 -0.48 -0.43 0.42 

significance is denoted by * P < 0.05; ** P < 0.01; *** P < 0.001  

 

2.5 Discussion 
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Species richness, butterfly abundance, and proportion of rare species were all positively 

correlated within our long-term butterfly population dataset. All three measures were also 

positively related to annual precipitation and to mean growing season temperature. These 

findings agree with other studies suggesting that butterfly populations respond quickly to 

favourable environmental conditions (i.e., higher precipitation and warmer temperatures; Pollard 

1988; Roy et al. 2001). It seems likely that, in years of higher precipitation and warmer 

temperatures, increases in species richness are driven by increases in the abundances, and thus 

detection, of rare species. Notably, conditions for butterflies improved significantly in 2012, a 

year in which numerous irruptive species also made appearances, and with conditions also 

favourable the following year, 2013 produced the highest butterfly abundance and species 

richness values. By 2014, conditions were returning to less favourable measures. 

 In contrast, increases in butterfly abundance and species richness were associated with 

decreases in the two measures of species evenness (J ' and D/S). These relationships can be 

explained in terms of either: i) increases in the abundances (and thus detection) of rare species, 

which decreases evenness; or ii) disproportional increases in abundances of common species 

(Pollard et al. 1995), which also decreases evenness. Our results support both possibilities, as the 

proportion of rare species was negatively correlated with both measures of evenness, and rapid 

population growth within common species was observed in years with favourable environmental 

conditions (e.g., Thymelicus lineola, Glaucopsyche lygdamus, and Pieris rapae). Our measure of 

rarity was not independent of the abundances of common species and thus separating the effects 

of these two factors on evenness was not possible.  

Population increases in common species are expected to reduce species evenness when 

relative magnitudes of population increase are unequal among species within assemblages (sensu 
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Gosselin 2006). It is therefore predictable that butterfly assemblages may inherently become 

“less even” under favorable environmental conditions. Our results support this hypothesis. This 

relationship may indicate (but does not demonstrate) interspecific competition within 

assemblages, where rapid increases in the populations of common species moderate population 

increases in other species, effectively depressing species evenness (Stirling and Wilsey 2001; 

Mulder et al. 2004; Bock et al. 2007). Interspecific competition has been shown to decrease 

species evenness within plant assemblages (Mulder et al. 2004), but to our knowledge, this 

relationship remains to be empirically tested within butterfly assemblages. Considering that 

butterfly species vary in both host and nectar plant species (Hawkins and Porter 2003; Kitahara 

et al. 2008), niche overlap and interspecific competition are not expected to be the primary 

determinants of abundance distributions. More likely, negative relationships between butterfly 

abundance and measures of species evenness within our data may indicate differences in 

reproductive potential across species coupled with interspecific variation in environmental 

preferences. These hypotheses warrant further study.   

Most interestingly, species richness in our study was not correlated with Simpson’s 

reciprocal index, the Shannon-Weiner index, or the exponential of the Shannon-Wiener index. 

Both measures of species evenness, however, were positively correlated with the three 

compound indices. These results suggest that the compound indices weigh the evenness 

component of diversity more heavily than the richness component. This obscures the importance 

of species richness—the measure that accords best with our intuitive sense of biodiversity (Ma 

2005; Magurran 2013). Indeed, coefficients of variation suggest that species richness captured 

more variability than any of the three compound indices, although Simpson’s reciprocal index 

and the exponential of the Shannon-Wiener index proved to be almost as variable as species 
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richness. The untransformed Shannon-Weiner index had the lowest coefficient of variation 

among species richness, measures of species evenness, and the three compound indices, 

suggesting that it has the greatest potential to mask temporal variability in species diversity.  

Besides the possibility of negative correlations between constituent parts, the Shannon-

Wiener index has been criticized for its potential to “compress” data due to the log 

transformation of species proportion values, effectively weakening the discriminating power of 

the index (Magurran 2013). To compensate for this data compression, the Shannon-Wiener index 

may be exponentiated (Jost 2006), yielding a measure of the effective number of species. Within 

our butterfly population dataset, exponentiating the Shannon-Wiener index effectively improved 

the discriminating power while maintaining approximate relationships with other diversity 

measures. However, both untransformed and exponentiated Shannon-Wiener index values were 

weakly negatively related to species richness, suggesting the two indices are not consistent with 

our intuitive sense of diversity. The Shannon-Wiener index does, however, serve as an entropy, 

effectively measuring a distinct property of species assemblage data.  

Using logarithms with a base of two in the Shannon-Wiener index results in the average 

minimum number of yes/no questions required to determine the species identity of a sampled 

individual (Jost 2006). A more even distribution of individuals among species will require more 

dichotomous questions, on average, to determine individuals’ species identities. This indicates 

higher uncertainty within abundance distributions, and yields higher Shannon-Wiener index 

values. Additionally, as Simpson’s index represents the probability that two species randomly 

selected from an assemblage will be of the same species, the inverse of this probability 

(Simpson’s reciprocal index) is positively related to the uncertainty of individuals’ species 

identities. These relationships effectively explain why compound indices were strongly related to 
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species evenness in our butterfly assemblage, with increases in evenness corresponding with 

increases in uncertainty in the identities of sampled individuals. Compound indices and species 

evenness therefore represent similar interpretations of abundance distributions. These results, 

coupled with weak, negative relationships to richness, suggest that compound indices do not 

integrate species richness and species evenness into all-encompassing measures that align well 

with the traditional biodiversity concept. While entropies and their respective transformations are 

mathematically related to species richness (Gosselin 2006; Jost 2006), their empirical 

relationships with richness have been shown to be largely inconsistent (e.g., Stirling and Wilsey 

2001; Wilsey et al. 2005; Bock et al. 2007), and, as our study confers, often negative.  

Distinctions between richness, evenness, and entropies (including their transformations to 

Hill numbers) are necessary because the three approaches to measuring diversity convey 

different information on distinct, but related, properties of assemblage organization. By analogy, 

Jost (2006, p 363) states that, “the radius of a sphere is an index of its volume but is not itself the 

volume, and using the radius in place of the volume in engineering equations will give 

dangerously misleading results. This is what biologists have done with diversity indices.” 

However, this too may be misleading. Relationships between radii and volumes are consistent 

across spheres of all sizes, and a sphere’s radius serves as a proxy for other properties relating to 

size (e.g., diameter, circumference, surface area, and volume). Although species evenness, 

species richness, and compound indices all measure different aspects of single species 

assemblages, the broad extension of the sphere metaphor to measures of assemblage diversity is 

unadvisable. Unlike the properties of a sphere, relationships between measures of species 

diversity are unpredictable, varying across space (Ma 2005), between taxa (Stirling and Wilsey 

2001; Wilsey et al. 2005; Bock et al. 2007), and, as our study shows, through time. One measure 
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of species diversity cannot adequately proxy another; thus, single measures cannot be used to 

assess all properties of an assemblage’s diversity in isolation. Despite this point, however, 

species richness is thought to be more central to the concept of diversity than other measures (Ma 

2005; Jost 2006; Magurran 2013), and does, on its own, provide meaningful information on 

species assemblages.  

In conclusion, when analyzing long-term butterfly population datasets, species evenness 

may be used in conjunction with richness to deepen our understandings of changes in butterfly 

diversity through time; however, combining these two components within compound indices 

does not produce measures that consistently align with our intuitive sense of biodiversity. 

Compound indices measure different, but not independent, properties (organization) of species 

assemblages. Entropies, including Simpson’s index the Shannon-Wiener index, measure 

uncertainty, not diversity, which is a property of data, not ecological communities. Entropies 

may convey meaningful information about butterfly assemblage data if used in conjunction with 

more intelligible measures, such as richness, and the transformations of entropies into Hill 

numbers result in values that are easier to interpret. Species richness is the most viable measure 

of butterfly species diversity. However, other diversity indices accounting for abundance 

distributions can provide additional information, effectively deepening our understandings of the 

enigmatic ecological property that is diversity.   
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3 Chapter 3: Decoupling habitat fragmentation from habitat loss: butterfly species mobility 

obscures fragmentation effects in a naturally fragmented landscape of lake islands 

3.1 Abstract 

Since the publication of the theory of island biogeography, ecologists have postulated 

that fragmentation of continuous habitat presents a prominent threat to species diversity. 

However, negative fragmentation effects may be artifacts; the result of species diversity 

declining with habitat loss, and habitat loss correlating positively with degree of fragmentation. 

In this study, we used butterfly assemblages on islands of Lake of the Woods, Ontario, Canada to 

decouple habitat fragmentation from habitat loss and test two competing hypotheses: i) the island 

effect hypothesis, which predicts that decreasing fragment size and increasing fragment isolation 

reduces species diversity beyond the effects of habitat loss; and ii) the habitat amount hypothesis, 

which negates fragmentation effects and predicts that only total habitat area determines the 

diversity of species persisting on fragmented landscapes. Using eight independent size classes of 

islands (ranging from 0.1 to 8.0 ha) that varied in number of islands while holding total area 

constant, species diversity comparisons, species accumulation curves, and species–area 

relationship extrapolations demonstrated that smaller insular habitats contained at least as many 

butterfly species as continuous habitat. However, when highly mobile species occurring on 

islands without their larval food plants were excluded from analyses, island effects on potentially 

reproducing species became apparent. Similarly, generalized linear models suggested that effects 

of island isolation and vascular plant richness on insular butterfly richness were confounded by 

species of high mobility. We conclude that inter-fragment movements of highly mobile species 

may obscure important fragmentation effects on potentially reproducing populations, questioning 

support for the habitat amount hypothesis. 
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3.2 Introduction 

Within continuous habitats, island archipelagoes, and fragmented landscapes, species 

richness increases with total area surveyed (MacArthur & Wilson 1963, Wilson & MacArthur 

1967; Wilson & Willis 1975). Indeed, the positive species–area relationship (SAR) is widely 

cited as the closest thing ecology has to a law (Schoener 1976; Lomolino 2000). As a corollary 

of the SAR, loss of habitat results in loss of species (He & Hubbell 2011); however, the 

configuration of remaining habitat is widely thought to also have an effect on species diversity 

(Mendenhall et al. 2014; Haddad et al. 2017). Linked to the process of habitat loss, variation in 

the size and isolation of habitat fragments may be described as degree of habitat fragmentation 

(Fahrig 2003). While some have gone so far as to assert that “habitat fragmentation is considered 

by many biologists to be the single greatest threat to biological diversity” (e.g., Noss 1991 p. 27), 

in many studies, habitat fragmentation has not been distinguished from habitat loss. After 

decoupling habitat fragmentation from habitat loss, effects of fragmentation appear to vary 

widely within and among both landscapes and taxa (Quinn & Harrison 1988; Debinski & Holt 

2000; Fahrig 2003; Mendenhall et al. 2014). 

Over the past half-century, ecologists have related a variety of theories to the 

fragmentation problem; perhaps the most prevalent and influential being the theory of island 

biogeography (MacArthur & Wilson 1963, Wilson & MacArthur 1967). Drawing on the 

heuristic power of island biogeography, ecologists have frequently likened the ecologies of 

oceanic archipelagos to those of fragmented landscapes (Haila 1986 1990; Ovaskainen 2002; 

Fahrig 2013; Haddad et al. 2017). As with oceanic islands, species diversity within habitat 

fragments is predicted to reach equilibria between colonization and extinction rates, principally 
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determined by fragment size and isolation. We refer to this application of equilibrium theory as 

the “island effect hypothesis,” which predicts that habitat fragmentation reduces species diversity 

below what is predicted based on habitat loss alone. A key assumption of this hypothesis is that 

fragment edges delimit species assemblages, such that population processes, including 

colonization and extinction, occur at the level of habitat fragments. If fragments are too small to 

support viable populations following their isolation, a gradual loss of species (“faunal 

relaxation”) will reduce species diversity at a rate inversely related to fragment size (Diamond 

1972; 1975; MacArthur & Wilson 1963; Wilson & MacArthur 1967; Connor & McCoy 1979; 

Gonzalez 2000). Consequentially, slopes of species–area curves (z values) across isolated habitat 

fragments are predicted to be steeper than those within continuous habitats (Gonzalez 2000; 

Haddad et al. 2017). In the context of habitat fragmentation, the ultimate “steady-state” legacy of 

an island effect will be several small habitat fragments supporting fewer species than continuous 

habitat of equivalent area (Gonzalez 2000; Fahrig 2013). 

In contrast to the island effect hypothesis, the recently proposed “habitat amount 

hypothesis” suggests that the size and isolation of habitat fragments have little effect on species 

diversity (Fahrig 2013). The central premise of this hypothesis is that fragment edges do not 

delimit populations, such that only the aggregate amount of habitat determines the number of 

species persisting on fragmented landscapes. It follows that negative relationships between 

habitat fragmentation and species diversity are best interpreted as artifacts; the result of species 

diversity declining with habitat loss, and habitat loss correlating positively with degree of 

fragmentation (Harrison & Bruna 1999; Fahrig 2003; 2013; Yaacobi et al. 2007). Faunal 

relaxation (or the gradual loss of species) following habitat loss is therefore predicted as a 

landscape-level process, unrelated to the configuration of remaining habitat. In sum, predictions 
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of the habitat amount hypothesis are indistinguishable from the passive sampling hypothesis, 

developed in the context of oceanic islands (Connor & McCoy 1979). Both hypotheses predict 

that species richness increases with fragment/island size only because of the sample area effect: 

larger sample areas contain more individuals, which, for a given abundance distribution, belong 

to more species (Fahrig 2013). If the sample area effect best explains patterns of species diversity 

on fragmented landscapes, species–area curves across isolated habitats will approximate those of 

continuous habitats (Haddad et al. 2017). In consequence, fragmented and continuous habitat of 

equivalent total area should support equivalent numbers of species (Gonzalez 2000; Fahrig 

2013). 

While differences in species–area slopes between fragmented and continuous habitat 

have been interpreted as evidence against the habitat amount hypothesis (Haddad et al. 2017), 

Gotelli & Graves (1996 p. 227) states that, “…the most sensible view is that slopes of species–

area curves are simply fitted constants, with little or no biological significance.” Indeed, slopes 

of species–area curves have been found to vary unpredictably within and between both sampling 

locations and taxa (Connor & McCoy 1979), with z values clustering in certain ranges by chance 

and because of reporting biases in the literature (Gotelli & Graves 1996; Gonzalez 2000). In 

contrast with z value interpretations, comparing species diversity across sets of habitat fragments 

(while controlling for total habitat area) is a tractable method for assessing habitat 

fragmentation–species diversity relationships (Yaacobi et al. 2007; Gavish et al. 2012; Fahrig 

2013). Such analyses bear on the long-standing SLOSS debate, addressing whether single large 

or several smaller fragments, equivalent in total area, contain (and therefore protect) more 

species (Diamond 1975; Abele & Connor 1979; Simberloff & Abele 1982; Ovaskainen 2002; 

Tjørve 2010). In a recent review of the fragmentation literature, Fahrig (2013) examined 14 
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studies addressing SLOSS directly. All studies reported equivalent or higher species richness 

within several smaller habitat fragments compared to fewer larger fragments or continuous 

habitat, suggesting that fragmentation does not reduce species diversity after habitat loss is 

controlled for. An additional study (Yaacobi et al. 2007) assessed patterns in species diversity on 

a fragmented agricultural landscape and reported similar findings. 

Interestingly, studies supporting the habitat amount hypothesis (Yaacobi et al. 2007; 

Fahrig 2013) do not attempt to disentangle fragmentation effects on individual species, or 

differentiate between potentially reproducing species and transient species observed to occupy 

habitat fragments. While the sample area effect may best explain patterns of entire species 

assemblages on fragmented landscapes, assessments of fragmentation–species diversity 

relationships may be misleading if variation in fragmentation effects among species are not 

considered (Ewers & Didham 2006; Öckinger et al. 2009; Betzholtz & Franzén 2011; Franzén & 

Betzholtz 2012; Hanski 2015), and in particular, if potentially reproducing species are not 

distinguished from transient species temporarily occupying individual habitat fragments. Indeed, 

inter-fragment movements of highly mobile species from larger habitat fragments (supporting 

reproducing populations) to smaller fragments containing additional resources (e.g., Fretwell and 

Calver 1969; Dreisig 1995) have great potential to obscure fragmentation–species diversity 

relationships. Although several smaller and fewer (or single) large fragments may be observed to 

contain equivalent numbers of species, it should not be assumed that smaller fragments are 

capable of supporting viable populations in the absence of larger fragments present on the 

landscape. 

In this study, we surveyed butterfly species diversity on lake islands in Sabaskong Bay, 

Lake of the Woods, Ontario, Canada. The tens of thousands of islands in Lake of the Woods 
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represent a suitable system for decoupling habitat fragmentation from habitat loss to assess how 

habitat configuration relates to patterns of species diversity. Islands of Sabaskong Bay are 

remnant fragments of continuous habitat that was flooded 3000–4000 years ago in the early 

Subboreal period (Yang and Teller 2005), permitting an assessment of fragmentation effects on a 

landscape where insular biotas have likely relaxed to equilibria following habitat loss and 

fragment isolation (MacArthur and Wilson 1963,  Wilson and MacArthur 1967; Haila 2002). 

Furthermore, akin to oceanic islands, habitat boundaries in this system are strictly delimited by 

water, and butterflies cannot utilize surrounding aquatic habitats at any life stage. This 

effectively controls for “matrix effects,” whereby the matrix of unsuitable habitat contributes to 

species diversity, or differentially facilitates the inter-fragment movements of individuals 

(Ricketts 2001; Haila 2002). 

By differentiating between potential resident and transient butterfly species based on 

occurrences of larval food plant species, we were able to investigate fragmentation effects on 

both the complete species assemblage and a subset of potential resident (reproducing) species. 

The detection of negative fragmentation effects in our study system would indicate that several 

smaller insular habitats do not support butterfly species diversity to the same extent as 

continuous habitat of equivalent area. Such a result may be attributed either to an island effect, or 

to decreases in habitat suitability or habitat diversity within smaller islands (Gotelli & Graves 

1996). In contrast, support for the habitat amount hypothesis would indicate that insular and 

continuous habitats contribute equally to butterfly species diversity, and that fragment edges do 

not delimit butterfly populations at the scales addressed. 

3.3 Methods 
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3.3.1 Study design and focal taxon  

Thirty islands within Sabaskong Bay were selected to represent a nested-set sampling 

design that effectively decoupled habitat fragmentation from habitat loss (Table 3-1; Figure 3-1). 

Specifically, islands were organized into two island sets that were used to assess fragmentation 

effects across two distinct ranges of island sizes. The first (small) island set contained 15 islands 

organized into four size classes, including eight 0.1-ha islands, four 0.2-ha islands, two 0.4-ha 

islands, and a single 0.8-ha island. The second (large) island set followed an identical pattern 

using islands ranging from 1.0 to 8.0 ha. By doubling the area of individual islands per twofold 

reduction in number of replicates, we were able to vary the degree of fragmentation across size 

classes while holding total habitat area constant. (See MacDonald et al. 2018a Electronic 

Supplementary Material [Appendix 1] for study island selection criteria.) 

 

Table 3-1. Nested-set sampling design. Within island sets, aggregate area is maintained across 

sizes classes by doubling the size of constituent study islands when the number of replicates is 

reduced by half. 

Island set 
Size class 

(ha) 

Number of 

replicates 

Aggregate 

area (ha) 

Small 0.1 8 0.8 

Small 0.2 4 0.8 

Small 0.4 2 0.8 

Small 0.8 1 0.8 

Large 1.0 8 8.0 

Large 2.0 4 8.0 

Large 4.0 2 8.0 

Large 8.0 1 8.0 

 

https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM1_ESM.pdf
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Figure 3-1. Map of the study area, located in Sabaskong Bay, Lake of the Woods, Ontario, 

Canada. All study islands were located within 20 km of the study camp, approximately 6 km 

northwest of Morson, Ontario. 

 

Butterflies were chosen as the focal taxon for this study because: i) they are commonly 

used as model organisms in ecology and data on their biology are widely available (Baguette & 

Van Dyck 2007); ii) the majority of butterfly species complete their lifecycles within relatively 
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small patches of habitat (van Swaay et al. 2006; Nowicki et al. 2008), meaning butterfly diversity 

may serve as a proxy habitat suitability within islands; iii) butterflies cannot utilize aquatic 

habitats at any morphological stage, rendering the matrix of open water surrounding islands 

completely uninhabitable; and iv) butterfly occurrences representing potential resident 

(reproducing) and transient (non-reproducing) populations may be distinguished on individual 

islands by the presence or absence of their known larval food plants. Coupled with high 

detectability and established sampling methods (Pollard 1977), these traits make butterflies well-

suited study organisms for assessing relationships between fragmentation and species diversity in 

our study system. 

3.3.2 Survey methods 

Butterfly species richness and abundance were estimated on each of the 30 islands 

through repeated full-island surveys, standardized to a survey time of 40 min per ha. This 

protocol ensured that sampling effort per unit area was consistent across islands of all sizes, 

eliminating the need for rarefaction, extrapolation, or other diversity corrections (Chao et al. 

2014). Four rounds of butterfly surveys were completed by a single observer. Each island was 

visited at intervals between 10 and 14 days during peak flight season (from 01-June-2015 to 20-

Aug-2015). Our survey protocol was similar to that outlined by Pollard (1977) to ensure that 

butterfly activity was optimal and consistent between surveys (see MacDonald et al. 2018a 

Electronic Supplementary Material [Appendix 1] for survey protocol details). Vascular plant 

species richness was surveyed by a second observer on all 30 islands using repeated vegetation 

surveys. Plant surveys were also standardized to a time of 40 min per ha, with four surveys 

completed per island (see MacDonald et al. 2018b [Thesis Chapter 4] for further details). 

Fourteen habitat classes, defined using vegetation and substrate characteristics, were used to 

https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM1_ESM.pdf
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quantify habitat diversity within each island (see MacDonald et al. 2018a Electronic 

Supplementary Material [Appendix 1; Table A1] for habitat class descriptions). 

3.3.3 Analyses 

3.3.3.1 Comparisons of species diversity 

For each of the eight island size classes, we estimated the effective number of species 

using species richness, the exponential of the Shannon–Wiener index, and Simpson’s reciprocal 

index (Jost 2006; MacDonald et al. 2017; (see MacDonald et al. 2018a Electronic Supplementary 

Material [Appendix 1] for index equations). We hypothesized that if fragmentation decreased 

butterfly diversity, diversity measures would be lowest within the smallest sizes class 

(representing higher degrees of fragmentation) and increase with larger size classes (representing 

lower degrees of fragmentation). Such a result would support the island effect hypothesis. Other 

arrangements of species richness across size classes would suggest that fragmentation did not 

reduce species diversity, but would not necessarily support the habitat hypothesis. The habitat 

amount hypothesis specifically predicts that species diversity is unrelated to the number of 

habitat fragments when total habitat area is held constant. This prediction would equate to an 

even distribution of species diversity across size classes. 

3.3.3.2 Species accumulation curves (SACs) and saturation index 

For the two island sets separately and together, cumulative species richness was plotted 

against cumulative island area in two different ways: i) increasing order of island size (small to 

large); and ii) decreasing order of island size (large to small). Slight variation in island area 

within size classes allowed for the sorting of islands in a reasoned manner. Data points were 

connected with straight lines to generate SACs, which were constrained to pass through the 

https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM1_ESM.pdf
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origin to allow for area-under-the-curve comparisons (Quinn & Harrison 1988; Gavish et al. 

2012). Similar slopes between large-to-small and small-to-large SACs would suggest that species 

richness increased with cumulative area, irrespective of the number of fragments. Steeper slopes 

of large-to-small SACs would suggest that fewer/single larger islands contained more species, 

while steeper small-to-large SACs would indicate that several smaller islands contained more 

species. 

Differences in slopes between large-to-small and small-to-large SACs were quantified 

using a saturation index (Quinn & Harrison 1988). This index is estimated as the area under the 

small-to-large SAC divided by that of the large-to-small SAC. To estimate area under the SACs, 

integrals were calculated using the trapezoidal rule. Saturation index estimates less than one 

would indicate negative fragmentation effects, which lend support to the island effect hypothesis. 

Index estimates equal to one would indicate that fragmentation did not affect species diversity, 

supporting the habitat amount hypothesis. Index estimates greater than one would indicate that 

fragmentation increased species diversity. This positive fragmentation effect is not predicted by 

either the island effect or habitat amount hypothesis, but may result from several smaller islands 

intersecting the distributions of more species than fewer or single larger island (Tjørve 2010; 

Fahrig 2013). Alternatively, several smaller islands may contain a higher diversity of habitat 

types than fewer or single larger island, which may support a higher diversity of species 

(Williams 1964; Nilsson et al. 1988). 

3.3.3.3 SAR extrapolation and SLOSS index 

For the two island sets separately and together, a log–log least-squares linear regression 

was applied to island area and species richness to attain a SAR (Yaacobi et al. 2007; Gavish et al. 

2012). To allow the logarithmic transformation of a single 0.1-ha island with a species richness 
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of zero, a constant of one was added to all richness values. Each SAR was extrapolated to the 

aggregate area of all islands used to build the SAR (small island set = 3.21 ha; large island set = 

32.13 ha; both island sets together = 35.34 ha). Substituting this aggregate area into the SAR 

regression (and subtracting a constant of one to account for the original transformation) yielded a 

species richness estimate for continuous habitat equivalent in area to all study islands. In SLOSS 

terms, this richness estimate (Ssl) represents the “single large” conservation strategy, while the 

aggregate observed richness of study islands (Sss) represents the “several small” conservation 

strategy (Gavish et al. 2012). 

To test whether estimated (Ssl) and observed (Sss) richness values were significantly 

different, 95% confidence intervals were extrapolated for each of the SARs. If the SAR predicted 

a significantly higher number of species than observed (Ssl > Sss), habitat fragmentation reduced 

species richness, supporting the island effect hypothesis. Conversely, if SAR regressions 

accurately predicted aggregate observed richness (Ssl ≈ Sss), habitat configuration was not related 

to species richness, supporting the habitat amount hypothesis. If the SAR predicted a 

significantly lower number of species than observed (Ssl < Sss), habitat fragmentation increased 

species richness. A SLOSS index, estimated as 100% × (Sss − Ssl)/ Sss, indicates the proportion of 

species richness of several small fragments relative to that of a single large fragment (Boecklen 

1997; Gavish et al. 2012). For example, a SLOSS index value of 20% (or − 20%) would indicate 

that the study islands representing the several small conservation strategy (Sss) contained 20% 

more species (or 20% fewer species) from the species pool than continuous habitat representing 

the single large conservation strategy (Ssl). 
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3.3.3.4 Area-independent effects on butterfly species diversity (GLMs) 

Generalized linear models (GLMs) and an information theoretic approach (Burnham & 

Anderson 2004) were used to test for effects of island isolation, habitat diversity, vascular plant 

species richness, and island shape (relative habitat edge) on butterfly species richness. Negative 

binomial regressions were used to account for overdispersion within island butterfly species 

richness data (Ver Hoef & Boveng 2007). Variance inflation factors (VIFs) were used to test for 

collinearity among explanatory variables, with a value of 10 used as a maximum cutoff (Craney 

& Surles 2002). Models were ranked for support using the small sample size corrected Akaike’s 

Information Criterion (AICc ), where smaller AICc values indicate higher relative model support 

(Burnham & Anderson 2004). Coefficients from our best-supported GLMs were standardized to 

permit comparisons of the relative importance of island attributes in structuring butterfly species 

richness. 

Island area (log-transformed) was included as a covariate in most models to control for 

the expected positive SAR. A univariate log (area) model therefore represented an “ecological 

null” model for assessing the relative effects of other island characteristics on butterfly species 

richness. To test for the effects of island isolation on butterfly species richness, we quantified the 

proportion of open water (1 − proportion landmass) within various buffer sizes calculated from 

island edges (250, 500, 1000, 2500, and 5000 m). This measure of isolation is independent from 

the area of specific study islands. Proportion of uninhabitable matrix surrounding fragments has 

been shown to be a stronger predictor of dispersal and fragment immigration than distance-based 

metrics, justifying this measure (Moilanen & Nieminen 2002; Tischendorf et al. 2003). Beyond 

the size and isolation of islands, habitat diversity and plant diversity may contribute to patterns in 

butterfly species richness. Habitat diversity is expected to positively relate to butterfly richness 
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because butterfly species vary in their habitat requirements (i.e., the habitat diversity hypothesis, 

Williams 1964; Nilsson et al. 1988). Not unrelated, vascular plant species richness may serve as 

a proxy for larval food plant diversity, breadth and seasonal availability of nectar resources, and 

habitat diversity. Both habitat diversity and plant richness are expected to positively relate to 

island area (Nilsson et al. 1988; Gotelli & Graves 1996). However, habitat diversity and plant 

richness should make a statistical contribution to GLMs beyond the variation explained by island 

area if they contribute to patterns in butterfly richness (Gotelli & Graves 1996). 

Within single islands, edges and interiors may differentially support butterfly 

populations. Edge effects therefore represent another causal mechanism that may affect patterns 

in butterfly species richness (Saunders et al. 1991; Murcia 1995; Stasek et al. 2008). To capture 

variability in the amount of island edge independent of island area, a relative edge index was 

estimated as the perimeter of a given study island made relative to the perimeter of a theoretical 

island identical in size but perfectly circular in shape. Values approaching one represented 

islands with minimal habitat edge, with higher values indicating increased habitat edge. Negative 

relationships between the relative edge index and butterfly richness would indicate that the 

increased habitat edge associated with fragmentation reduced butterfly diversity. 

3.3.3.5 Potential resident and transient butterfly occurrences 

While multiple studies addressing entire species assemblages support the habitat amount 

hypothesis (Fahrig 2013), responses to fragmentation may vary between species (Henle et al. 

2004; Ewers and Didham 2006). Within single taxa, such variability in responses is often linked 

to species’ mobility (Roland and Taylor 1997; Lens et al. 2002; Ewers and Didham 2006; 

Öckinger et al. 2009). In the case of lake islands, butterfly species of high mobility may utilize 
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resources on small islands that do not contain their larval food plants, thereby temporarily 

contributing to observed species diversity without constituting reproducing populations. 

To test this hypothesis, we first used GLMs (logit link) to relate the probability of 

observing a butterfly species on at least one island where their larval food plant was not detected 

to: i) species' wingspans (mm; Burke et al. 2011; Hall et al. 2014); and ii) a species mobility 

index generated by Burke et al. (2011). Species’ wingspans were log-transformed to improve 

model fit (Burke et al. 2011). The prevalence (number of occurrences) of both butterfly species 

and their larval food plants was controlled for in GLMs as covariates. We then classified 

butterfly species occurrences on all 30 study islands as either “potential resident” or “transient” 

based on the presence or absence of known larval food plants [larval food plant associations 

were compiled from records summarized by Hall et al. (2014) and Acorn and Sheldon (2017)]. 

We were not able to distinguish between potential resident and transient populations of one 

butterfly species, Feniseca tarquinius, based on food plant occurrences because larvae are known 

only to feed on woolly aphids (Eriosomatinae; Hall et al. 2014; Acorn & Sheldon 2017). 

Feniseca tarquinius was therefore excluded from the subset of potential resident species. Danaus 

plexippus, Vanessa virginiensis, V. cardui, and V. atalanta are migratory species and are not 

known to complete their life cycles within our study area (Hall et al. 2014; Acorn & Sheldon 

2017), so were also excluded. 

We proceeded to repeat our analyses (“comparisons of species diversity,” “species 

accumulation curves [SACs] and saturation index,” “SAR extrapolation and SLOSS index,” and 

“area-independent effects on butterfly species diversity [GLMs]”) using only the potential 

resident species subset of the complete species assemblage. Through this reanalysis, we were 
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able to investigate whether inter-island movements of highly mobile species obscured 

fragmentation effects on potentially reproducing populations. 

3.3.3.6 Spatial patterns in species turnover 

To further investigate ecological mechanisms structuring butterfly diversity, 28 pairwise 

comparisons of butterfly species turnover (using the complete species assemblage), habitat 

turnover, plant species turnover, and inter-island distance were made between islands within the 

0.1- and 1.0-ha size classes. This isolated relationships between the complete butterfly 

assemblage, the vascular plant assemblage, habitat composition, and the spatial distribution of 

islands, while holding habitat area constant. Butterfly species turnover, plant species turnover, 

and habitat turnover were estimated using the Jaccard pairwise dissimilarity index (Baselga & 

Orme 2012). We tested for relationships between butterfly species turnover and inter-island 

distance because several small islands spread over a larger spatial extant may intersect the 

distributions of more species than fewer or single larger island (sensu Tjørve 2010; Fahrig 2013). 

This effect of several small islands “sampling” a larger species pool due to their broader spatial 

distribution may therefore obscure fragmentation effects using SLOSS-based analyses. Failure to 

detect positive relationships between species turnover and inter-island distance would indicate 

that the spatial distribution of small islands did not confound SLOSS-based analyses. Mantel 

tests (999 permutations) were used to assess whether relationships were significant. All statistical 

analyses were performed in the program R (R Core Team 2017). 

3.4 Results 

Complete species assemblage: A total of 82 butterflies belonging to 13 species and 786 

butterflies belonging to 33 species were observed on islands within the small and large island set, 

respectively (Table 3-2). Butterfly diversity of the small island set was almost perfectly nested 
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within that of the large island set, with 12 of the 13 species observed in the small fragment also 

observed in the large island set. (See MacDonald et al. 2018a Electronic Supplementary Material 

for species occurrence/abundance data by island [Online Resource 1] and the documented range 

expansion of Euphyes dion [Appendix 1].) 

Potential resident species subset: A total of 53 butterflies belonging to ten species and 

684 butterflies belonging to 29 species were observed on islands within the small and large 

island sets, respectively. Potential resident butterfly diversity of the small island set was perfectly 

nested within that of the large. 

  

https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1007%2Fs00442-017-4005-2/MediaObjects/442_2017_4005_MOESM1_ESM.pdf
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Table 3-2. Butterfly abundance (N), species richness (S), the exponential of the Shannon-Wiener 

index (exp H'), and Simpson’s reciprocal index (D) for the complete species assemblage and the 

potential resident species subset. The complete species assemblage included all occurrences, 

whereas potential resident species subset was limited to species’ co-occurrence on islands with 

their known larval food plant species.  

Complete species assemblage:       

Small island 

set 

Smallest 

eight islands  

Next four 

islands 

Next two 

islands  

Largest 

island  

Aggregate 

area  

(~0.1 ha) (~0.2 ha) (~0.4 ha) (~0.8 ha) (~3.2 ha) 

N 40 10 23 9 82 

S 6 7 4 5 13 

exp H' 3.02 5.74 2.68 4.33 5.64 

D 2.35 4.55 2.37 3.86 3.58 

Large island 

set 

Smallest 

eight islands 

Next four 

islands 

Next two 

islands 

Largest 

island 

Aggregate 

area 

(~1.0 ha) (~2.0 ha) (~4.0 ha) (~8.0 ha) (~32.0 ha) 

N 156 188 261 181 786 

S 18 21 18 22 33 

exp H' 6.99 12.46 9.34 9.94 13.73 

D 4.19 10.02 6.47 5.74 10.2 

Resident species subset:       

Small island 

set 

Smallest 

eight islands  

Next four 

islands 

Next two 

islands  

Largest 

island  

Aggregate 

area  

(~0.1 ha) (~0.2 ha) (~0.4 ha) (~0.8 ha) (~3.2 ha) 

N 16 6 23 8 53 

S 3 5 4 4 10 

exp H' 1.59 4.76 2.68 3.51 4.39 

D 1.29 4.5 2.37 3.2 2.93 

Large island 

set 

Smallest 

eight islands  

Next four 

islands 

Next two 

islands  

Largest 

island  

Aggregate 

area  

(~1.0 ha) (~2.0 ha) (~4.0 ha) (~8.0 ha) (~32.0 ha) 

N 130 161 217 176 684 

S 16 18 17 21 29 

exp H' 5.73 11.16 8.52 9.32 12.69 

D 3.24 8.94 5.48 5.45 9.19 
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3.4.1 Comparisons of species diversity 

Complete species assemblage: Each of the two smallest size classes contained more 

butterfly species than the two largest size classes in the small island set (Table 3-2). While the 

exponential of the Shannon–Wiener index and Simpson’s reciprocal index did not exhibit this 

relationship, MacDonald et al. (2017) demonstrate that these indices may fail to capture variation 

in butterfly species diversity and caution their interpretation. Overall, effective numbers of 

species for the complete species assemblage showed no clear relationship to degree of 

fragmentation in the large island set. 

Potential resident species subset: Effective numbers of species generally showed no clear 

relationship to island size class in either the small or large island set; the exception being the 

relatively high number of species in the largest size class (single 8-ha island; S = 21) compared 

with other size classes in the large island set. 

3.4.2 Species accumulation curves (SACs) and saturation index 

Complete species assemblage: When species accumulation was plotted against 

cumulative fragment area for the small island set, the small-to-large SAC lay considerably above 

the large-to-small SAC (saturation = 1.22; Figure 3-2). These results indicate that fragmented 

habitat generally contained more butterfly species than continuous habitat at this scale. 

Incongruently, slopes of SACs were quite similar for the large island set (saturation = 0.96) and 

for both island sets together (saturation = 0.98). This suggests that the positive fragmentation 

effect observed between the small island set’s SACs was not preserved when both island sets 

were aggregated for SAC analysis. 
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Potential resident species subset: The small-to-large and large-to-small SACs were 

overlapping for the small island set (saturation = 1.03). This result indicates that fragmented and 

continuous habitat contained equivalent numbers of potential resident butterfly species at this 

scale. In contrast with this pattern, large-to-small SACs lay above small-to-large SACs for the 

large island set (saturation = 0.92) and both island sets together (saturation = 0.89). Such results 

indicate a negative fragmentation effect on potentially reproducing butterfly populations. 

Overall, saturation was lower for the resident species subset than for the complete species 

assemblage at all scales (small, large, and both island sets together). 
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Figure 3-2. Cumulative species richness relative to cumulative island area for the complete 

species assemblage (a, c, and e) and the potential resident species subset (b, d, and f). 

Accumulation of species richness occurs from the smallest to the largest island (small-to-large 

SAC; represented by closed circles connected by solid lines) and from the largest to smallest 

island (large-to-small; represented by closed triangles connected by dashed lines). Saturation 

index values are estimated as the area under the small-to-large SAC divided by that of the large-

to-small SAC. 

 

3.4.3 SAR extrapolation and SLOSS index 

Complete species assemblage: Compared to SAR species richness estimates for 

continuous habitat, we observed higher aggregate richness across study islands in the small 

island set (Ssl = 6.14; Sss = 13; SLOSS index = 53%) and lower aggregate richness across study 

islands in the large island set (Ssl = 64.42; Sss = 33; SLOSS index = − 95%; Figure 3-3). When all 

30 islands were combined for SAR extrapolation (both island sets), the SAR richness estimate 

for continuous habitat was very close to the aggregate richness observed across all study islands 

(Ssl = 33.33; Sss = 34; SLOSS index = − 1%). For all three SAR extrapolations, aggregate 

richness observed across study islands fell within the extrapolated SAR’s 95% confidence 

intervals. 

Potential resident species subset: Compared to SAR species richness estimates for 

continuous habitat, we observed approximately equivalent aggregate richness across study 

islands in the small island set (Ssl = 9.55; Sss = 10; SLOSS index = 5%), lower aggregate richness 

across study islands in the large island set (Ssl = 73.04; Sss = 29; SLOSS index = − 152%), and 

lower aggregate richness when both island sets were considered together (Ssl = 40.20; Sss = 29; 
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SLOSS index = − 40%). Again, however, aggregate richness observed across study islands fell 

within the extrapolated SAR’s 95% confidence intervals for all thee SAR extrapolations. Of 

particular interest, SLOSS index estimates were lower for the potential resident species subset 

than for the complete assemblage at all scales (small, large, and both island sets together). 

Furthermore, slopes of SARs (z values) were greater for the potential resident species subset than 

for the complete species assemblage at all scales. 
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Figure 3-3. SAR extrapolations for the complete species assemblage (a, c, and e) and the 

potential resident species subset (b, d, and f). Solid and dashed lines represent log-log least-

squares linear SAR regressions and their 95% confidence intervals, respectively. Area 

coefficients of log-log SAR regressions are reported as z-values, approximating exponents of the 

species-area power model (S = cAz ).Closed and open circles represent species richness for 

individual islands and their aggregate richness, respectively (a constant of one was added to all 

richness values to allow for log-transformations). Axes were back-transformed from logarithmic 

to linear scales for straightforward interpretation of species richness and area values. SLOSS 

index values were estimated as 100% × (Sss − Ssl) ∕ Sss, where Sss represents the aggregate 

observed richness of study islands and Ssl represents the SAR’s richness estimate for continuous 

habitat of equivalent areal extent. 

 

3.4.4 Area-independent effects on butterfly species diversity (GLMs) 

Complete species assemblage: The best-supported model explaining patterns of butterfly 

species richness across study islands accounted for island area and vascular plant richness, with 

both variables relating positively to butterfly richness (Tables 3-3 & 3-4). Standardized 

coefficients indicate that island area had a greater effect than vascular plant richness on butterfly 

richness. The inclusion of a log(area):plant richness interaction term decreased model support, 

indicating the relationship was consistent across islands sizes. After controlling for the positive 

relationship between island area and butterfly species richness, the inclusion of island isolation 

measures (proportion of open water within 250-, 500-, 1000-, 2500-, and 5000-m buffers) 

decreased model support in all cases. However, three isolation measures (250-, 5000-, and 500-m 

buffers, in descending order of support) decreased model support by less than two AICc points, 
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indicating isolation effects were uncertain. As both the island effect and habitat amount 

hypothesis predict, the proportion of open water within the best-supported buffer size (250 m) 

was negatively related butterfly richness. Model support was reduced with inclusion of habitat 

richness and the relative island edge index, suggesting that habitat diversity and edge effects did 

not contribute to patterns in butterfly species richness beyond the variation explained by island 

area. 

Potential resident species subset: When transient butterfly species were excluded from 

the complete assemblage, island area and island isolation (250-m buffer) were found to best 

explain variation in potential resident butterfly richness. In this model, island isolation was 

negatively related to butterfly richness and had a greater effect than island area. Models 

accounting for other isolation buffers decreased model support by more than two AICc points, 

indicating they were not well-supported. Vascular plant richness decreased model support 

wherever included, suggesting it was not related to insular patterns in richness of potential 

resident species. The standardized effects of both island area and isolation on butterfly richness 

were always greater for the resident species than for the complete species assemblage. VIFs were 

less than 10 for all models, suggesting collinearity was not problematic (Craney & Surles 2002). 

 

Table 3-3. Island characteristics regressed on butterfly species richness (complete species 

assemblage and the potential resident species subset). The complete species assemblage included 

all occurrences, whereas potential resident species subset was limited to species’ co-occurrence 

on islands with their known larval food plant species. Models were ranked for support using the 

corrected Akaike’s Information Criterion (AICc) where smaller AICc values indicate better-

supported models. Relative model weights based on AICc are given by wi.  
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Complete species assemblage: AICc AICc wi 

log(area)1 + plant richness2 129.37 0 0.16 

log(area) (ECOLOGICAL NULL) 130.08 0.72 0.11 

log(area) + isolation (250 m)5 130.28 0.92 0.1 

log(area) + isolation (5000 m)9 130.46 1.09 0.09 

log(area) + isolation (500 m)6 130.92 1.55 0.08 

log(area) + plant richness + isolation (250 m) 131.02 1.65 0.07 

plant richness 131.17 1.8 0.07 

log(area) + plant richness + habitat richness3 131.33 1.96 0.06 

log(area) + plant richness + log(area) × plant richness 131.43 2.07 0.06 

log(area) + isolation (2500 m)8 132.19 2.83 0.04 

log(area) + isolation (1000 m)7 132.46 3.09 0.03 

log(area) + habitat richness 132.46 3.1 0.03 

log(area) + relative edge4 132.53 3.17 0.03 

log(area) + isolation (250 m) + log(area) isolation (250 m) 132.89 3.52 0.03 

log(area) + habitat richness + log(area) × habitat richness 135.04 5.67 0.01 

log(area) + relative edge + log(area) × relative edge 135.06 5.7 0.01 

NULL 168.13 38.77 0 

Resident species subset:       

log(area) + isolation (250 m) 114.34 0 0.35 

log(area) + isolation (5000 m) 116.58 2.24 0.12 

log(area) + isolation (2500 m) 116.58 2.24 0.12 

log(area) + plant richness + isolation (250 m) 117.39 3.05 0.08 

log(area) + isolation (250 m) + log(area) × isolation (250 m) 117.62 3.28 0.07 

log(area) + isolation (500 m) 117.85 3.51 0.06 

log(area) (ECOLOGICAL NULL) 118.35 4.01 0.05 

log(area) + plant richness + log(area) × plant richness 118.46 4.12 0.05 

log(area) + plant richness 118.88 4.54 0.04 

log(area) + relative edge 120.64 6.3 0.02 

log(area) + plant richness + habitat richness 120.75 6.41 0.01 

log(area) + isolation (1000 m) 120.79 6.45 0.01 

log(area) + habitat richness 120.83 6.49 0.01 

log(area) + habitat richness + log(area) × habitat richness 121.68 7.34 0.01 

log(area) + relative edge + log(area) × relative edge 122.1 7.76 0.01 

plant richness 122.49 8.15 0.01 

NULL 159.79 45.45 0 
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Table 3-4. Standardized coefficients () for parameters from the best-supported models shown in 

Table 3-3, where island characteristics were regressed on butterfly species richness for the 

complete species assemblage and the potential resident species subset. The complete species 

assemblage included all observed butterfly occurrences, whereas potential resident species subset 

was limited to butterfly species’ co-occurrence on islands with their known larval food plant 

species.  

Complete species assemblage: 

AICc  SE  SE  SE 

log(area) log(area) plant 

richness 

plant 

richness 

isolation 

(250 m) 

isolation 

(250 m) 

log(area)1 + plant richness2 129.37 0.456 0.21 0.33 0.19   

log(area) 130.08 0.806 0.09     

log(area) + isolation (250 m)3 130.28 0.826 0.09     -2.25 1.44 

Resident species subset:               

log(area) + isolation (250 m) 114.34 1.072 0.107   -3.982 1.608 

log(area) 118.35 1.026 0.103     

log(area) + plant richness 118.88 0.692 0.256 0.299 0.215     
1 natural log of island area (m2), 2 island vascular plant species richness, 3 proportion of open water within a 250-m 

buffer (calculated from island edge) 

 

3.4.5 Potential resident and transient butterfly occurrences 

Logistic regressions indicate that the probability of observing a butterfly species on at 

least one island without their larval food plants was positively related to wingspan (P = 0.011) 

and species mobility (P = 0.0075; Figure 3-4). These relationships remained significantly 

positive after accounting for the prevalence (number of occurrences) of both butterfly species 

and their food plants. 
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Figure 3-4. The probability of observing butterfly species on at least one island where their larval 

food plant was not detected relative to (a) average wingspan (mm) and (b) a species mobility 

index (Burke et al. 2011). Species’ wingspans were log-transformed to improve model fit. Solid 

lines represent GLMs (logit link) used to assess relationships between variables. Relationships 

were significant for both average wingspan (P = 0.011) and species mobility (P = 0.0075). 

 

3.4.6 Spatial patterns in species turnover 

In accordance with GLMs addressing the complete species assemblage, Mantel tests 

indicated that butterfly species turnover was weakly positively related to plant species turnover 

in the 0.1- and 1.0-ha size classes (r = 0.26, P = 0.18 and r = 0.32, P = 0.13, respectively); 

although, these relationships were not significant. Contrasting with GLMs, butterfly species 

turnover and habitat turnover were significantly positively related in the 1.0-ha size class (r = 

0.41, P = 0.045), but showed no strong relationship in the 0.1-ha size class (r = 0.10, P = 0.33). 
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Butterfly species turnover was unrelated to inter-island distance in both the 0.1- and 1.0-ha size 

classes (r = 0.10, P = 0.35 and r = − 0.019, P = 0.55, respectively), indicating that the spatial 

distribution of several small islands did not contribute to their aggregate species richness. 

3.5 Discussion 

3.5.1 Fragmentation and species diversity 

As predicted by the positive SAR, smaller islands were depauperate relative to larger 

islands at all scales addressed in this study. However, controlling for total habitat area 

demonstrated that this positive SAR is largely an artifact of the sample area effect: smaller 

sample areas contain fewer individuals, which for a given abundance distribution, belong to 

fewer species (Connor and McCoy 1979; Fahrig 2013). Direct comparisons of species richness 

across island size classes and SAC analyses of the complete species assemblage within the small 

island set suggest that several smaller islands actually contained more butterfly species than 

fewer larger islands, or a single large island of equivalent total area. Although this positive 

fragmentation effect was apparent in SAR extrapolation (Ssl < Sss), the effect was not statistically 

significant, questioning the statistical power of the analysis. Most interestingly, this positive 

fragmentation effect was neutralized when transient butterflies were removed from analyses. 

Direct comparisons of species richness, SAC analysis, and SAR extrapolation all support the 

directionality of this pattern. This suggests that inter-island movements of highly mobile 

butterfly species, from larger island or mainland habitats with larval food plants to small islands 

without larval food plants, inflated the number of species small islands were observed to support. 

Positive relationships between both wingspan and mobility and the probability of observing 

butterfly species on islands without their larval food plants support this hypothesis. 
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To explain positive fragmentation effects in the context of the habitat amount hypothesis, 

Fahrig (2013) points out that several small fragments spread over a larger area are more likely to 

intersect the distributions of more species than single large fragments (e.g., Tjørve 2010). Given 

this relationship, the habitat amount hypothesis and underlying sample-area effect would predict 

positive relationships between degree of fragmentation and species diversity when SLOSS-based 

analyses are used. However, pairwise comparisons of butterfly species turnover across the 

smallest islands in both island sets (0.1- and 1.0-ha islands) showed no relationship to pairwise 

comparisons of distance. It is therefore reasonable to conclude that islands within our study area 

“sampled” a spatially consistent species pool and that the cumulative species richness of several 

small habitat fragments is generally unrelated to their spatial distribution at the scales addressed. 

A more likely explanation for positive fragmentation effects involves the inter-fragment 

movements of highly mobile species from larger habitat fragments, supporting reproducing 

populations, to smaller fragments, containing additional resources. Such movements are indeed 

predicted by ideal free distribution theory for nectar-feeding insects if smaller fragments contain 

higher densities of nectar resources (Dreisig 1995). Alternatively, several smaller islands may 

contain a higher diversity of habitat types compared with fewer or single larger islands, 

supporting a higher diversity of species (Williams 1964; Nilsson et al. 1988). However, GLMs 

accounting for both habitat diversity and habitat area do not support this latter hypothesis. 

In contrast with the positive fragmentation effect observed in the small island set, the 

complete species assemblage shows no clear trend in species richness across island size classes 

in the large island set, supporting the habitat amount hypothesis. In partial conflict with this 

pattern, SAC analysis and SAR extrapolation both suggest a neutral to weakly negative 

fragmentation effect. Excluding transient species from the analyses revealed stronger negative 
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fragmentation effects on potentially reproducing butterfly populations for all analyses. The 

largest island in the large island set (8 ha of continuous habitat) contained a higher number of 

potential resident species than other size classes (8 ha of fragmented habitat). Similarly, SAC 

analyses show that fewer or single larger islands contained more potential resident species than 

several smaller islands summing to an equivalent area. Excluding transient species from SAR 

extrapolation in the large island set made negative fragmentation effects more apparent, although 

still not statistically significant. 

Two principal conclusions may be drawn: i) negative fragmentation effects are more 

apparent in the large island set compared to the small, suggesting scale dependency; and ii) 

negative fragmentation effects are more apparent when excluding transient species that do not 

represent reproducing populations. This latter conclusion also holds true when both island sets 

were combined for SAC analysis and SAR extrapolation. We suspect that negative fragmentation 

effects observed across all 30 islands are likely a combined result of stochastic extinctions of 

populations isolated to smaller islands, as predicted by the island effect hypothesis, and 

decreased habitat suitability within these islands, such as the exclusion of potential larval food 

plants. 

3.5.2 Implications of scale dependency 

While SAC analysis may be the simplest method for archipelago- or landscape-wide 

comparisons of species diversity (Quinn & Harrison 1988), scale separation in our study shows 

that SACs have potential to obscure important aspects of fragmentation-species diversity 

relationships. We observed a considerable difference between small-to-large and large-to-small 

SACs for the complete species assemblage in the small island set, indicated by a saturation index 

estimate of 1.22. However, this pattern of species accumulation across small islands was not 
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preserved when both island sets were aggregated for analyses, where the saturation index was 

estimated at 0.98. 

Although the small and large island sets contained equivalent numbers of islands, 

cumulative island area was tenfold greater in the large island set than in the small island set. 

Similarly, aggregate species richness was approximately twice as high in the large island set than 

in the small island set for the complete species assemblage. When all 30 islands were combined 

for SAC analysis, constrained integrals show that the small island set contributed only 3.09% to 

the area under the small-to-large SAC and 12.32% to the area under the large-to-small SAC. This 

demonstrates that patterns of species accumulation across larger fragments have potential to 

dominate those across smaller fragments, particularly when the range of fragment sizes is great 

and the abundance of small fragments is high—an arrangement common to many datasets. 

Within single archipelagos and landscapes, island/fragment areas may vary by several orders of 

magnitude, with smaller islands/fragments typically more abundant than larger ones (Quinn & 

Harrison 1988; Lomolino and Weiser 2001; Fahrig 2003; 2013). In the context of habitat 

fragmentation, it should not be assumed that ecological patterns and processes are consistent 

across these scales (Johnson 1980; Lomolino and Weiser 2001). 

3.5.3 Scale separation and the SAR 

SAR richness estimates for continuous habitat did not significantly differ from the 

aggregate observed richness of study islands for any of the six SAR extrapolations. Such a result 

may be attributed to either neutral fragmentation effects, or lack of statistical power to resolve 

relationships. While previous studies report P-values for SAR slope estimates (e.g., Yaacobi et 

al. 2007; Gavish et al. 2012), this method does not provide for the meaningful discrimination of 

insignificant results. Extrapolating SAR confidence intervals to infer the significance of 
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fragmentation effects is a novel approach that explicitly accounts for variation in statistical 

power between SAR extrapolations. As we observed in this study, confidence interval 

discrimination may increase the probability of a type II error (concluding that fragmentation was 

not related to diversity when in fact it was). However, this method reduces the possibility of type 

I error, because it accounts for uncertainty in SAR extrapolations stemming from small sample 

sizes or “noisy” species richness data. Reduced regression confidence and the subsequent 

broadening of confidence intervals likely explain why SAR extrapolation failed to detect both 

the positive fragmentation effect observed in the small island set for the complete species 

assemblage and the negative fragmentation effect observed in the large island set for the resident 

species subset. With other factors held constant, regression confidence increases with sample 

size—a relationship observed when all 30 islands were pooled for SAR extrapolation. However, 

when all 30 islands were included in the SAR, negative fragmentation effects were still not 

significant for the potential resident species subset. Contrasting with this result, SACs over all 30 

islands demonstrate clearly that single or fewer larger islands contained more potential resident 

species than several small islands summing to an equivalent area. Accounting for regression 

confidence therefore brings into question the SAR extrapolation method’s statistical power to 

resolve fragmentation effects. 

Further questioning the viability of the SAR extrapolation method, the aggregation of 

fragment sizes required to raise SAR regression confidence to levels sufficient for resolving 

fragmentation effects has the inherent potential to obscure scale-dependent relationships. Scale 

separation should be considered necessary when the range of fragment sizes within datasets is 

great, such that fragmentation–species diversity relationships shift in relation to fragment size. 

However, many datasets do not contain a sufficient number of fragments to allow for scale 
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separation while maintaining an adequate sample size [e.g., Quinn & Harrison (1988) and 

Boecklen (1997), where datasets reviewed contained as few as six and five fragments, 

respectively]. Moreover, small sample sizes are often paired with broad ranges in fragment size 

[e.g., Rosin et al. (2011), where only 31 fragments ranged in size by over two orders of 

magnitude]. Such relationships also question whether z values should be used to infer 

fragmentation effects, as these analyses inherently assume uniformity in both SARs and 

fragmentation–species diversity relationships across broad ranges of fragment sizes. 

Examples of shifts in SARs across island sizes are made clear by the small island effect 

(Lomolino & Weiser 2001), which states that insular species richness may not predictably 

increase with area below a threshold island or fragment size (Triantis et al. 2006). Below this 

threshold, species richness is largely determined by area-independent variables, such as 

intraspecific and interspecific interactions, stochastic events, island isolation, and habitat 

diversity (Nilsson et al. 1988; Lomolino 2000; Lomolino & Weiser 2001; Schoener et al. 2001; 

Triantis et al. 2006; Rosin et al. 2011). Area-independent variables influencing species richness 

add uncertainty to species–area regressions, further decreasing the probability of detecting 

fragmentation effects in SAR extrapolations or z value comparisons. Future studies should test 

for shifts in the SAR (e.g., Lomolino and Weiser 2001) before proceeding with such analyses. 

Theoretically, islands or fragments below the small island effect threshold should be excluded. 

3.5.4 Area-independent relationships 

The habitat amount hypothesis predicts that fragment isolation and species diversity will 

negatively correlate when mean isolation inversely relates to the amount of habitat on a 

landscape: if fragment edges do not delimit populations, negative relationships between fragment 

isolation and species richness may be an artifact of local species pools decreasing with habitat 
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amount (Fahrig 2013). However, the habitat amount hypothesis would not predict strong 

relationships between isolation and species richness if the spatial distribution of fragments is 

small, such that there is little spatial variation in the composition or abundances of species within 

a study area. This appears to be the case in our study system, as Mantel tests show no 

relationship between inter-island distances and differences in composition of the complete 

butterfly assemblage. Lack of strong relationships between island isolation and species richness 

in GLMs using the complete species assemblage is therefore best interpreted as support for the 

habitat amount hypothesis. Incongruently, when only considering the potential resident species 

subset, island isolation (250-m buffer) was found to be the most important factor structuring 

patterns of species richness in our best-supported model. This result suggests that when highly 

mobile, transient butterfly species occurring on islands without their food plants are excluded 

from fragmentation analyses, island effects on potentially reproducing populations become 

apparent. This result brings into question the neutral to positive fragmentation effects reported by 

multiple studies cited to support the habitat amount hypothesis (Fahrig 2013), as well as those 

concluded by Yaacobi et al. (2007). 

Our best-supported GLM explaining variation in butterfly species richness within the 

complete species assemblage included both island area and vascular plant species richness. As 

previously documented (e.g., Erhardt 1985; Sparks & Parish 1995; Simonson et al. 2001; 

Croxton et al. 2005; Kitahara et al. 2008; but see Hawkins & Porter 2003), plant richness and 

butterfly richness were found to positively relate. Plant diversity may positively relate to 

butterfly diversity through the intermediate variables of food plant availability (Hawkins & 

Porter 2003), nectar resource availability (Kitahara et al. 2008), or habitat diversity (sensu 

Williams 1964; Nilsson et al. 1988). Interestingly, when excluding transient butterfly species 
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occurring on islands without their larval food plants, vascular plant richness was a poor predictor 

of butterfly richness. This difference suggests that the positive relationship between plant and 

butterfly richness within the complete species assemblage was driven by inter-island movements 

of highly mobile butterfly species to islands of particularly high plant diversity. 

3.5.5 Conclusions 

When considering the complete species assemblage, habitat fragmentation did not reduce 

butterfly species diversity in our study system. This result suggests that habitat configuration has 

little effect on the number of butterfly species persisting on fragmented landscapes, supporting 

the habitat amount hypothesis. However, butterfly species vary widely in mobility (Burke et al. 

2011), and are therefore likely to vary widely in their responses to habitat fragmentation (Ewers 

& Didham 2006; Dover & Settele 2009). Our study shows that differentiating between 

potentially reproducing species and highly mobile, transient species observed within individual 

habitat fragments yields critical insight into the negative effects of habitat fragmentation on 

species diversity. 
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4 Chapter 4: The theory of island biogeography, the sample‐area effect, and the habitat 

diversity hypothesis: complementarity in a naturally fragmented landscape of lake islands 

4.1 Abstract 

Aim: Investigate relationships between fragmentation and species diversity in the context of the 

theory of island biogeography, sample‐area effect, and habitat diversity hypothesis. 

Location: Lake of the Woods, Canada. 

Taxon: Vascular plants 

Methods: Vascular plant species diversity was inventoried on 30 islands, organized into two 

island sets. Each island set contained four size classes that varied in degree of fragmentation 

while controlling for the sample‐area effect (small island set: 8 × 0.1‐ha, 4 × 0.2‐ha, 2 × 0.4‐ha, 

and 1 × 0.8‐ha islands; large island set: identical pattern utilizing 1.0‐ha to 8.0‐ha islands). 

Fragmentation effects were then examined using SLOSS‐based analyses, addressing whether 

single large or several small islands contained more species/habitats: (a) direct comparisons of 

species and habitat richness across size classes; (b) extrapolations of species–area relationships; 

and (c) analyses of species and habitat accumulation curves. Multigroup path analysis was next 

used to quantify effects of habitat diversity, island area, and isolation on species richness for both 

island sets. Finally, pairwise and multiple‐site dissimilarity was estimated for both species and 

habitats across 0.1‐ha and 1.0‐ha islands to investigate whether: (a) variation in species 

composition was related to habitat composition; and (b) species dissimilarity increased with 

inter‐island distance. 

Results: SLOSS‐based analyses indicated that several small islands contained more species than 

single large islands in both island sets. This pattern was also observed for habitats, but only in 
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the small islands set. Path analysis suggested that island area had significant direct and indirect 

(mediated by habitat diversity) effects on species richness. Habitat diversity and island isolation 

had significant positive and negative effects on species richness, respectively, independent of 

island area. Species and habitat dissimilarities were significantly related across 0.1‐ha but not 

1.0‐ha islands, and showed no relationship to inter‐island distance. 

Main conclusions: The overall positive relationship between fragmentation and species richness 

may be attributed to greater habitat diversity and increased species dissimilarity across smaller 

islands relative to larger islands. However, negative isolation effects indicate that landscape 

configuration is still an important conservation consideration. These results each align with 

different predictions of the theory of island biogeography, sample‐area effect, and habitat 

diversity hypothesis, questioning the exclusivity of these theoretical frameworks. 

4.2 Introduction 

The diversity of species on islands has been a topic of considerable research in ecology 

for well over a century (e.g., Darwin 1859; Wilson & MacArthur 1967), resulting in a variety of 

theoretical explanations for variation in insular communities (Gotelli & Graves 1996; 

Rosenzweig 1995; Watson 2002). Ecologists have applied these explanations to diversity 

patterns on fragmented landscapes, interpreting isolated fragments as ecological islands situated 

in a sea of unsuitable habitat (Haila 2002). However, fragmentation effects on individual species 

and entire communities appear to be largely idiosyncratic, limiting the generality of 

fragmentation–species diversity relationships (Debinski & Holt 2000; MacDonald et al. 2018a). 

Still, a single recurrent pattern stands out; area is a good predictor of species richness at both the 

fragment and landscape level (Nilsson et al. 1988; Rosenzweig 1995; Fahrig 2013; but see 

Lomolino & Weiser 2001). Three principal frameworks addressing distinct ecological processes 
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have been proposed to account for this positive species–area relationship: i) the theory of island 

biogeography (MacArthur & Wilson 1963; Wilson & MacArthur 1967); ii) the sample‐area 

effect (Connor & McCoy 1979; Fahrig 2013); and iii) the habitat diversity hypothesis (Williams 

1964). 

Developed in the context of oceanic islands, the theory of island biogeography interprets 

insular species richness as an equilibrium between extinction and immigration rates, arising from 

the effects of island area and isolation on demographic processes (MacArthur & Wilson 1963; 

Wilson & MacArthur 1967). Larger islands generally support larger populations relative to 

smaller islands, decreasing probabilities of inbreeding depression and stochastic extinction 

(Hanski 1999). Gilpin & Diamond (1976) add that larger islands also present larger dispersal 

targets, increasing probabilities of colonization (i.e., the target area effect). Of conservation 

interest, summing probabilities of colonization and persistence across species provides a 

mechanistic explanation for the species–area relationship across ecological islands, whether they 

are oceanic or terrestrial. Island configuration is also invoked as a predictor of species richness, 

as rates of species immigration (Simberloff & Wilson 1969) and rescue effects (Brown & 

Kodric‐Brown 1977) generally decrease as islands become further isolated from sources of 

species immigration, such as the mainland or other islands. 

While lack of empirical evidence and a plethora of competing models have led many 

ecologists to infer that the theory of island biogeography has been largely overturned (Gotelli & 

Graves 1996; Lomolino 2000), equilibristic interpretations of species richness on fragmented 

landscapes still appear to constitute a dominant scientific paradigm (sensu Kuhn 1967) in 

ecology (Haila 2002; Mendenhall et al. 2014). Demographic effects predicted by the theory of 

island biogeography suggest that decreasing fragment area and increasing fragment isolation 
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pose considerable threats to species diversity, thereby warranting continued investigation 

(Diamond 1975; May 1975; Wilson & Willis 1975; Rybicki & Hanski 2013; Haddad et al. 

2017). If fragmentation indeed reduces species diversity via processes predicted by the theory of 

island biogeography, “island effects” should ultimately result in several smaller fragments 

containing fewer species than single larger fragments of equal area (Fahrig 2013). Independent 

of fragment area, species richness is also predicted to decrease as fragment isolation increases 

(Diamond 1975; Wilson & Willis 1975; Gotelli & Graves 1996). Such predictions are often 

framed in terms of the ongoing “SLOSS” debate, addressing whether conservation efforts should 

prioritize the protection of single large or several small conservation reserves (Diamond 1975; 

Simberloff & Abele 1982; Tjørve 2010). If fragmentation reduces species richness, finite 

conservation efforts may be best allocated to “single large” conservation strategies (Simberloff & 

Abele 1976; 1982) and maximizing connectivity within fragmented landscapes (Rybicki & 

Hanski 2013; Haddad et al. 2017). 

Contrasting with the theory of island biogeography, the habitat amount hypothesis 

(Fahrig 2013) replaces fragment area and isolation with a single predictor of species richness, 

total habitat area. Not unlike the passive sampling hypothesis, developed in the context of 

oceanic islands (Connor & McCoy 1979), the habitat amount hypothesis uses the sample‐area 

effect to explain positive species–area relationships across isolated fragments: larger sample 

areas generally contain more individuals, belonging to more species (Burns et al. 2010; Fahrig 

2013). In SLOSS terms, the sample‐area effect specifically predicts that single large and several 

small fragments will contain equivalent numbers of species when total area is held constant. The 

habitat amount hypothesis also interprets negative relationships between fragment isolation and 

species richness as sampling artefacts, based on two premises: i) total habitat area is the principal 
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determinant of local species pools because fragment edges do not typically delimit populations 

(i.e., extinction and colonization occur at the landscape level, and not within individual 

fragments); and ii) fragment isolation generally increases as total habitat area decreases. Species 

richness may therefore decrease with fragment isolation simply because of reductions in total 

habitat area at the landscape level, rather than increases in degree of fragmentation per se (Fahrig 

2013). 

Heuristics outlined by the habitat amount hypothesis offer a compelling gestalt switch 

(sensu Kuhn 1962) away from viewing fragments as natural spatial units for measuring and 

interpreting species richness. However, the hypothesis fails to account for variation in habitat 

composition both within and between fragments, as well as interspecific variation in habitat 

associations. Habitat associations differ considerably between species (Hortal et al. 2009), 

challenging applications of single habitat definitions to entire communities and begging the 

question as to whether relationships between habitat amount and species richness are even 

meaningful (Hanski 2015). Indeed, there is a strong theoretical and empirical basis to suggest 

that habitat diversity is a principal determinant of species richness within islands, fragments, and 

entire landscapes (Rosenzweig 1995; Kadmon & Allouche 2007; Hortal et al. 2009). 

The habitat diversity hypothesis (Williams 1964) represents a third explanation of 

positive species–area relationships that is predicated on interspecific variation in habitat 

associations. Specifically, the habitat diversity hypothesis predicts that area per se has minor 

effects on demographic processes, and hence species richness, and instead serves as a surrogate 

variable for habitat diversity (Gotelli & Graves 1996). Larger sample areas generally contain 

more habitats, which support more species (Rosenzweig 1995; Williams 1964). A specific and 

testable prediction of the habitat diversity hypothesis is that species diversity and habitat 
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diversity will positively correlate independent of island or fragment area (e.g., MacArthur & 

MacArthur 1961). Nevertheless, it remains controversial whether habitat diversity or area per se 

is more important in structuring patterns of species richness on fragmented landscapes, and the 

habitat diversity hypothesis makes no specific predictions of fragmentation effects. While there 

is support for effects of habitat diversity on species richness independent of area (Kohn & Walsh 

1994; Hortal et al. 2009; Burns et al. 2010), there is also support for direct effects of area per se 

on demographic processes affecting species richness (Buckley 1982; Nilsson et al. 1988). An 

important consideration in such investigations is scale, as the relative importance of habitat 

diversity and area per se has been shown to vary with island or fragment area (Rosenzweig 1995; 

Sfenthourakis & Triantis 2009). For instance, species–area relationships often become 

unpredictable below threshold island or fragment sizes (i.e., the small island effect; Lomolino & 

Weiser 2001; Triantis et al. 2006). Below these thresholds, habitat diversity and isolation 

frequently replace area as the strongest predictor of species richness (Sfenthourakis & Triantis 

2009). 

In this study, we estimated vascular plant species diversity and habitat diversity on 30 

lake islands through repeated full‐island surveys. We then used a series of SLOSS‐based 

analyses, path analysis, and analyses of species and habitat dissimilarity (β‐diversity) to 

investigate ecological processes underlying the species–area relationship and their implicated 

fragmentation effects. While species and habitat dissimilarity are widely understood as principal 

determinants of aggregate species richness (γ‐diversity) in a variety of insular systems 

(Simberloff 1988; Gotelli & Graves 1996; Rosenzweig 1995), their importance is seldomly 

explicitly recognized in SLOSS‐based investigations of fragmented landscapes (e.g., Yaacobi et 

al. 2007; Gavish et al. 2012; but see Wright & Reeves 1992; Tjørve 2010). Results of this study 



 77 

indicate that patterns of species and habitat dissimilarity are important considerations that 

warrant continued investigation in the context of fragmentation–species diversity relationships. 

4.3 Materials and Methods 

4.3.1 Study area 

Observations were made on islands within Sabaskong Bay at the southeastern corner of 

Lake of the Woods, Ontario, Canada (Figure 4-1). Sabaskong Bay is located in transitional zone 

between boreal forest to the north, Laurentian forest to the southeast, and, to a lesser extent, 

tallgrass prairie to the southwest. Local flora is therefore a mix of boreal tree species (e.g., Pinus 

banksiana, Betula papyrifera, and Picea glauca), Laurentian tree species (e.g., Acer spicatum, 

Tilia americana, and Pinus strobus), and few tree species from the Eastern prairies (e.g., 

Quercus macrocarpa and Fraxinus pensylvanica). All study islands are included within the Lake 

of the Woods Conservation Reserve, where residential and commercial developments are 

prohibited (Ontario Ministry of Natural Resources 2006). Island isolation is hypothesized to have 

occurred between 3000 and 4000 years ago, when differential rates of isostatic rebound and 

outlet restriction caused the progressive southward transgression of the remnants of Glacial Lake 

Agassiz, inundating Sabaskong Bay (Yang & Teller 2005). Islands within this system therefore 

represent “old high‐contrast fragments,” appropriate for inferring long‐term fragmentation 

effects on species richness (sensu Watson 2002).  
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Figure 4-1. Map of the study area, located in Lake of the Woods, Ontario, Canada. Study islands 

(n = 30) in the small and large island sets are highlighted with small and large circles, 

respectively. Each island is labelled by size class (ha). Inset maps indicate the regional and 

continental location of the study area. 

 

4.3.2 Sampling design 

A nested set sampling design was used to decouple the effects of island configuration 

from those of island area (i.e., decouple the effects of fragmentation per se from those of habitat 

loss; sensu Fahrig 2003; 2013). Specifically, 30 study islands were randomly selected from a list 

of candidate islands and organized into two sets of non‐overlapping size classes (Table 4-1; see 
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MacDonald et al. 2018b Supporting Information Appendix S1 for island selection criteria). Four 

size classes in the small island set consisted of eight 0.1‐ha islands, four 0.2‐ha islands, two 0.4‐

ha islands, and a single 0.8‐ha island. The large island set followed an identical logarithmic 

pattern using islands ranging from 1.0 to 8.0 ha. Within each island set, degree of fragmentation 

decreased across increasing size classes, with the largest size class (a single island) representing 

the “single large” conservation strategy, and the smallest size class (a highly fragmented set of 

islands) representing the “several small” conservation strategy (Gavish et al. 2012). 

 

Table 4-1. Summary of the nested set sampling design used to decouple degree of fragmentation 

from total island area across two distinct ranges of island sizes. Within island sets, total island 

area is maintained across sizes classes by halving the number of replicates per twofold increase 

in the individual areas of constituent islands. Degree of fragmentation decreased across 

increasing size classes. Aggregate vascular plant species richness and habitat richness are 

reported by size class. 

Island Set 
Size class  

(ha) 

Number of 

islands 

Total area 

(ha) 

Species 

richness 

Habitat 

richness 

Small 0.1 8 0.8 114 9 

Small 0.2 4 0.8 112 11 

Small 0.4 2 0.8 95 8 

Small 0.8 1 0.8 106 7 

∑ Small   15 ~3.2 179 12 

Large 1.0 8 8.0 177 12 

Large 2.0 4 8.0 195 13 

Large 4.0 2 8.0 194 14 

Large 8.0 1 8.0 167 12 

∑ Large  15 ~32.0 272 14 

∑ Complete  30 ~35.2 281 14 

 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjbi.13460&file=jbi13460-sup-0001-Supinfo.docx
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Vascular plant species diversity was estimated on each island through repeated full‐island 

surveys, conducted between 1 June 2015 and 20 August 2015. Handheld GPS units were used to 

ensure adequate coverage of all areas and habitats on islands during each survey. To maintain 

consistency in survey effort across all islands, survey time was standardized to 40 min per ha per 

survey. Four repeated surveys were completed on each island, resulting in a seasonal total of two 

hours and 40 min per ha. This is consistent with recent sampling‐effort recommendations for 

boreal plant communities (Zhang et al. 2014). Specimens that could not be identified in the field 

were collected and identified with a microscope and keys (e.g., Voss & Reznicek 2012; Chadde 

2013) and voucher specimens were deposited in the University of Alberta Vascular Plant 

Herbarium. Twenty‐three unidentified specimens were recorded as distinct morphospecies and 

included in richness totals. 

Habitat diversity was estimated on each island using the number and relative area of 14 

distinct habitat types, defined using structural properties of vegetation and geological features. 

(See MacDonald et al. 2018b Supporting Information Table S1.1 in Appendix S1 for habitat type 

descriptions.) While this habitat classification scheme is not entirely independent of plant 

diversity, no individual plant species were used in the delineation of habitat types. Only higher 

level taxonomic information was used (e.g., coniferous vs. deciduous forest), limiting the 

circularity of habitat diversity–species diversity relationships. The exclusion of all vegetation 

characteristics, in favour soil physical and chemical components, in a habitat classification 

scheme may be appropriate for testing environmental filtering and related hypotheses (e.g., Kraft 

et al. 2015), but not necessarily the habitat diversity hypothesis, which considers both biotic and 

abiotic factors affecting species richness (Williams 1964; Nilsson et al. 1988; Rosenzweig 1995). 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjbi.13460&file=jbi13460-sup-0001-Supinfo.docx
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4.3.3 Comparisons of species and habitat richness 

To investigate the effects of fragmentation while controlling for the sample‐area effect, 

aggregate species richness was compared across island size classes within the small and large 

island set. If fragmentation reduced species richness via island effects (sensu Diamond 1975; 

May 1975; Wilson & Willis 1975), aggregate species richness should be lowest within the 

smallest size classes in each island set (highest degree of fragmentation), and increase across 

larger size classes (lower degrees of fragmentation). Any other arrangement of species richness 

would suggest that fragmentation did not reduce species richness, but would not necessarily 

support the habitat amount hypothesis. The underlying sample‐area effect specifically predicts 

species richness as unrelated to degree of fragmentation when total area is held constant, 

equating to an even distribution of species richness across size classes. A third possible result is 

species richness increasing with degree of fragmentation. This positive fragmentation effect 

would align with the habitat diversity hypothesis if several smaller islands contained a greater 

number of habitats than fewer or single larger islands. To test for this possibility, aggregate 

habitat richness was compared across island size classes within each island set. Pearson product‐

moment correlations were then used to assess relationships between species richness and habitat 

richness across islands in the 0.1‐ha and 1.0‐ha size classes, effectively controlling for island 

area. 

4.3.4 Species–area relationship extrapolation 

To further investigate the effects of fragmentation on species diversity, island species–

area relationships (ISAR) were estimated using linear models for the small, large, and complete 

island sets (all 30 study islands together). As suggested by Rosenzweig (1995) for insular plant 

communities, semi‐log ISARs were used. Each ISAR was extrapolated to generate a species 
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richness estimate for a single theoretical island, equivalent in area to all islands used to generate 

the ISAR (3.21, 32.13, and 35.34 ha for the small, large, and complete island set, respectively). 

This ISAR species richness estimate was then compared to the aggregate species richness of 

study islands used to generate the ISAR (e.g., Yaacobi et al. 2007; Gavish et al. 2012; Matthews 

et al. 2016). In SLOSS terms, the aggregate species richness of study islands is analogous to the 

“several small” conservation strategy (Sss), while the ISAR species richness estimate for a single 

theoretical island is analogous to the “single large” conservation strategy (Ssl; Gavish et al. 2012; 

MacDonald et al. 2018). A SLOSS index, estimated as 100% × (Sss − Ssl)/ Sss, was used to 

compare the aggregate species richness of study islands to the ISAR species richness estimate in 

each island set (Boecklen 1997). Similar extrapolations were not used for island habitat–area 

relationships, as resulting habitat richness estimates for single theoretical islands exceeded the 

total number of defined habitat types in our a priori habitat classification scheme, indicating they 

were not meaningful. 

If fragmentation reduced species richness at any given size scale (small, large, or 

complete island set), the aggregate species richness of study islands will be lower than the ISAR 

species richness estimate for the corresponding theoretical island (Sss < Ssl). If islands passively 

sampled species, as predicted by the habitat amount hypothesis, the aggregate species richness of 

study islands will be approximately equivalent to the ISAR species richness estimate (Sss ≈ Ssl). If 

habitat fragmentation positively affected species richness, the aggregate species richness of study 

islands will be greater than the ISAR species richness estimate (Sss > Ssl). Extrapolated ISAR 

95% confidence intervals were used to determine the significance of fragmentation effects 

(MacDonald et al. 2018a). 
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4.3.5 Accumulation of species and habitats 

To assess patterns of species and habitat accumulation across islands in the small, large, 

and complete island set, cumulative species richness and habitat richness were plotted against 

cumulative island area in two ways: i) increasing order of island area (small to large); and ii) 

decreasing order of island area (large to small; Quinn & Harrison 1988). The resulting 

accumulation curves were made to pass through the origin, permitting direct area‐under‐the‐

curve comparisons (Quinn & Harrison 1988; Gavish et al. 2012). A saturation index, estimated 

as the area under the small‐to‐large accumulation curve relative to that of the large‐to‐small 

accumulation curve, was used to quantitatively compare accumulation patterns. Integrals were 

calculated using the trapezoidal rule. 

Steeper slopes of large‐to‐small accumulation curves relative to small‐to‐large 

accumulation curves (saturation index < 1) may be driven by two diversity patterns: i) a nested 

pattern of species or habitat richness with respect to island area (Matthews et al. 2016); or ii) 

fewer or single larger islands containing more species or habitats than several smaller islands 

(Quinn & Harrison 1988; Gavish et al. 2012). In either case, steeper large‐to‐small accumulation 

curves would suggest that fragmentation negatively affected the richness of species or habitats. 

Similarity between the slopes of small‐to‐large and large‐to‐small accumulation curves 

(saturation index ≈ 1) would indicate that numbers of species or habitats increased with 

cumulative area, irrespective of degree of fragmentation. This result would suggest that islands 

passively sampled species or habitats (Fahrig 2013). A third possibility, steeper small‐to‐large 

accumulation curves (saturation index > 1), would indicate that several smaller islands contained 

more species or habitats than fewer or single larger islands, suggesting a positive fragmentation 

effect on species or habitat richness. 
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4.3.6 Path analysis 

If habitat diversity and island isolation contribute to patterns of insular species richness, 

they should make a statistical contribution to variation in species richness beyond that explained 

by area per se (Gotelli & Graves 1996). However, strong collinearity between habitat diversity 

and area questions the efficacy of multiple and residual regression techniques (Connor & 

Simberloff 1978; Freckleton 2002). Furthermore, area is hypothesized to be a principal 

determinant of habitat diversity, thereby having both direct and indirect effects on species 

richness (Williams 1964; Rosenzweig 1995; Triantis et al. 2006; Hortal et al. 2009). We 

therefore used path analysis with correlated causes (a structural equation model) to assess both 

direct and indirect effects of predictor variables according to an a priori model structure (Li 

1975; Grace & Pugesek 1997; 1998). Path analysis is particularly useful for distinguishing the 

effects of multiple collinear variables (e.g., habitat diversity and area per se) on multiple 

response variables (for similar applications, see Kohn & Walsh 1994; Triantis et al. 2005; 

Triantis et al. 2006; Sfenthourakis & Triantis 2009; Burns et al. 2010). Multigroup path analysis, 

grouped by small and large island set, permitted comparisons of relationships between the two 

ranges of island sizes used in SLOSS‐based analyses. This effectively determines the extent to 

which ecological processes within the small and large island set may be approximated by a 

single model. 

Multigroup path analysis was completed by constructing an initial multigroup path 

model, wherein all path coefficients were estimated using maximum likelihood and permitted to 

vary between the small and large island set. Path coefficients were then iteratively constrained to 

a single estimate for the small and large island set together (complete island set), and chi‐squared 

difference tests were used to assess whether model fit was significantly reduced (α = 0.05) 
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relative to the unconstrained multigroup path model (Grace 2003). If model fit was not 

significantly reduced by a given constraint, we retained the single estimate, as this represents a 

more parsimonious model. This result would indicate that ecological processes moderating the 

relationship in question were consistent across the small and large island set. Alternatively, if 

model fit was significantly reduced by constraining coefficients for a given path to a single 

estimate, the respective estimates were permitted to vary between the small and large island set. 

This result would suggest that underlying ecological processes significantly differed between the 

small and large island set, suggesting size scale‐dependency of the relationship. 

Our a priori multigroup path model structure consisted of four variables: vascular plant 

species richness, habitat diversity, island area, and island isolation. Within this model structure, 

habitat diversity, island area, and island isolation each directly affects species richness. Island 

area also directly affects habitat diversity, thereby having an additional indirect effect on species 

richness. This indirect effect was estimated as the product of: i) the direct effect of island area on 

habitat diversity; and ii) the direct effect of habitat diversity on species richness. The total effect 

of island area on species richness was then estimated by summing direct and indirect effects 

(e.g., Kohn & Walsh 1994). Habitat diversity was included in competing models as either habitat 

richness or the exponential of Shannon's entropy, estimated using the relative area of habitat 

types on each island (Jost 2006). The best‐supported measure of habitat diversity was determined 

using both R2SP RICH and R2HAB DIV, estimated as 1 – the standardized variance 

unexplained by the path model (“residual variance”) for species richness and habitat diversity, 

respectively. This method effectively minimizes the proportion of variance in endogenous 

variables left unexplained by the path model. As with ISARs, island area was log‐transformed to 

account for non‐linear relationships (Rosenzweig 1995). Island isolation was estimated at 
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multiple scales as the proportion of water (1 – proportion of landmass) within 250‐, 500‐, 1000‐, 

2500‐, and 5000‐m buffers. Buffers were generated from island edges, meaning isolation 

estimates are independent from island area. Proportion‐based measures have been shown to be 

better predictors of immigration rates and related ecological processes than distance‐based 

measures to nearest neighbour or landmass (Fahrig 2013). The best‐supported isolation buffer 

size was determined using Akaike's information criterion (AIC), where smaller AIC values 

indicate higher relative model support (Burnham & Anderson 2004). AIC comparison is possible 

in this instance because island isolation is exogenous within the multigroup path model. Finally, 

a likelihood ratio test was used to assess the overall fit of the multigroup path model. Here, a 

non‐significant result (α = 0.05) indicates that the covariance structure of the multigroup path 

model did not significantly differ from the observed covariance structure, equating to good 

model fit (Grace 2008; Grace et al. 2010). Multigroup path analysis and related statistical tests 

were completed using the R package ‘lavaan’ (Rosseel 2012). 

4.3.7 Dissimilarity of species and habitats 

The theory of island biogeography predicts that species composition may vary 

substantially across islands of comparable area and isolation, with little variation in species 

richness (MacArthur & Wilson 1963; Wilson & MacArthur 1967; Simberloff & Wilson 1969). 

The same may be true for habitats. Cryptic turnover of species and habitats may therefore 

obscure relationships predicted by the habitat diversity hypothesis (e.g., positive correlations 

between species richness and habitat richness across islands of equal area). To account for the 

identities of individual species and habitats, pairwise dissimilarity was estimated for both species 

and habitats across islands in the 0.1‐ha and 1.0‐ha size classes using the Jaccard pairwise 

dissimilarity index: dJ-PAIR = [b + c ∕ (a + b + c)], where a is the number of species or habitats 
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shared between two islands (i and j), b is the number of species or habitats occurring on i but not 

j, and c is the number of species or habitats occurring on j but not i. This index is a monotonic 

transformation of beta diversity, accounting for both turnover and nestedness, and reflects the 

proportion of unshared species or habitats observed on two islands (Anderson et al. 2011; 

Baselga 2012). Positive relationships between species dissimilarity and habitat dissimilarity 

would indicate that species diversity and habitat diversity were positively related independent of 

area, supporting the habitat diversity hypothesis. To investigate whether overall rates of species 

and habitat dissimilarity changed with island area, multiple-site dissimilarity was estimated for 

the 0.1-ha and 1.0-ha size classes using the Jaccard multiple-site dissimilarity index, referred to 

here as dJ-MULT, derived by Baselga (2012). Averages of pairwise dissimilarities are shown to 

produce misleading results, justifying this approach (Baselga 2012). All dissimilarity indices 

were estimated using the R package ‘betapart’ (Baselga & Orme 2012). 

Pairwise species dissimilarity was also compared with inter‐island (Euclidean) distance 

across islands in the 0.1‐ and 1.0‐ha size classes. Several smaller fragments may be more likely 

to intersect the distributions of more species than fewer or single larger fragments, effectively 

sampling a higher diversity of species (Tjørve 2010; Fahrig 2013) Given this possibility, the 

sample‐area effect may theoretically result in the spurious observation of positive fragmentation 

effects when using SLOSS‐based analyses. Positive relationships between pairwise species 

dissimilarity and inter‐island distance would indicate that the expanded spatial distribution of 

several smaller islands, relative to fewer or single larger islands, contributed to their aggregate 

species richness. Lack of such relationships would suggest that islands did not significantly differ 

in their pools of potential immigrants, and that their diversities were not significantly spatially 

autocorrelated. Simple Mantel tests (999 permutations) were used to assess whether relationships 
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between pairwise species dissimilarity, pairwise habitat dissimilarity, and inter‐island distance 

were significant (Anderson et al. 2011). All statistical analyses were performed using the 

statistical software R version 3.4.3 (R Core Team 2017). 

4.4 Results 

4.4.1 Comparisons of species and habitat richness 

A total of 179 and 272 vascular plant species were observed within the small (0.1 to 0.8 

ha) and large (1.0 to 8.0 ha) island sets, respectively (Table 4-1). Aggregate species richness 

across all 30 study islands was 281, indicating that vascular plant diversity of the small island set 

was largely nested within that of the large island set. Although aggregate species richness did not 

consistently increase or decrease with degree of fragmentation in the small island set, each of the 

two smallest size classes (0.1 and 0.2 ha) contained more species than the two largest size classes 

(0.4 and 0.8 ha). No clear trend in aggregate species richness was observed across size classes in 

the large island set. 

Similar relationships were observed for comparisons of habitat richness across size 

classes. In the small island set, the two smallest size classes contained more habitats than the two 

largest size classes, with habitat richness ranging from 7 to 12. Habitat richness was less variable 

in the large island set, ranging from 12 to 14 (all habitat types present). This suggests that a total 

area of 8.0 ha accumulates most of the defined habitat types to near saturation. There was no 

clear trend in habitat richness across size classes at this size scale. Species richness and habitat 

richness were positively correlated across 0.1-ha islands (rPearson = 0.893, P = 0.003), but not 1.0-

ha islands (rPearson = 0.056, P = 0.896).  
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4.4.2 Species-area relationship extrapolation 

The aggregate species richness of study islands was greater than the ISAR species 

richness estimate for a single theoretical island (Sss > Ssl) for the small, large, and complete island 

set (Figure 4-2 a, b, and c, respectively). However, not all differences were significant. 

Aggregate species richness across islands in the small island set was observed to be 179; 

significantly higher than the ISAR species richness estimate of 126.93 for a theoretical 3.21-ha 

island (95% CI = [75.92, 177.94]). Here, the SLOSS index estimate indicated that a fragmented 

set of islands of this configuration is expected, on average, to contain 29.1% more species than a 

single large island of equal area. In the large island set, aggregate species richness was observed 

at 272, which did not significantly differ from the ISAR species richness estimate of 243.72 for a 

theoretical 32.13-ha island (95% CI = [210.73, 276.71]). Notwithstanding, the SLOSS index 

estimate indicated that a fragmented set of islands is expected to contain 10.4% more species 

than a single large island. In the complete island set (all 30 study islands), aggregate species 

richness was observed at 281; significantly greater than the ISAR species richness estimate of 

188.78 for a theoretical 35.34-ha island (95% CI = [164.55, 213.01]). The SLOSS index estimate 

for the complete island set indicated that a fragmented set of islands is expected to contain 32.8% 

more species than a single large island. 
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Figure 4-2. ISARs derived from the (a) small (n = 15), (b) large (n = 15), and (c) complete (n = 

30) island sets. Open circles represent the observed vascular plant species richness for single 

islands, while filled circles represent the aggregate species richness of study islands used to 

generate the ISAR. Dashed lines represent 95% confidence intervals for ISAR regressions 

(estimated using least-squares). The SLOSS index was estimated as 100% × (Sss − Ssl) ∕ Sss, 

where Sss is the aggregate species richness of study islands, and Ssl is the ISAR species richness 

estimate for a single theoretical island of equal area. 

 

4.4.3 Accumulation of species and habitats 

 When cumulative species richness was plotted against cumulative island area, the small-

to-large accumulation curve lay above the large-to-small accumulation curve in the small, large, 

and complete island sets (Figure 4-3 a, b, and c). This visual inspection of curves aligns with 

saturation index estimates of 1.071, 1.097, and 1.161, respectively. These results suggest two 

diversity patterns: i) species richness was not consistently nested in relation to island area; and ii) 

several smaller islands generally contained more species than fewer or single larger islands 

equivalent in areal extent. These observations equate to a positive effect of fragmentation on 

species richness (Gavish et al. 2012).  

 Visual inspection of habitat accumulation curves (Figure 4-3 d, e, and f) suggested that 

small-to-large and large-to-small curves only differed substantially in the small island set, where 

habitats accumulated with area more rapidly across small islands than large. In the large and 

complete island sets, habitats accumulated with area irrespective of island size, even though 

saturation index estimates were positive at all size scales. It is clear that saturation index 

estimates > 1 for the large and complete island sets stemmed from the constraint of passing 
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accumulation curves through the origin (Quinn & Harrison 1988, Gavish et al. 2012). Saturation 

index estimates under these circumstances (large variation in island area with few types of 

accumulating entities) are therefore unreliable. Considering only visual inspection of habitat 

accumulation curves, it is interesting that the positive fragmentation effect on habitat richness 

observed in the small island set was not persevered when all 30 islands were used to build habitat 

accumulation curves for the complete island set. To explain this result, MacDonald et al. (2018a) 

suggest that accumulation patterns across larger islands may dominate those across smaller 

islands; particularly, when the range of island sizes is great and the abundance of small islands is 

high.   
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Figure 4-3. Cumulative number of vascular plant species (a, b, and c) and habitats (d, e, and f) 

relative to cumulative island area. Accumulation of species and habitats occurred from the 

smallest island to largest island (small-to-large curve, represented by closed circles connected by 

solid lines) and from the largest island to smallest island (large-to-small curve, represented by 

closed triangles connected by dashed lines). The saturation index was estimated as the area under 

the small-to-large curve relative to that of the large-to-small curve.   

 

4.4.4 Path analysis 

Habitat richness and the proportion of water within a 500-m buffer were the best-

supported measures of habitat diversity and island isolation, respectively. The final multigroup 

path model accounting for these variables yielded a non-significant likelihood ratio test, 

indicating that the model’s covariance structure provided an adequate description of the total 

observed covariance matrix. All coefficient estimates, including those measuring the indirect 

effect of island area on species richness, were significant at  = 0.05 (Table 4-2, Figure 4-4). 

Unstandardized coefficients relating island area to habitat diversity, habitat diversity to species 

richness, and island isolation to species richness were constrained to single estimates for the 

small and large island set without significantly decreasing model fit (respective standardized 

coefficient estimates reported in Table 4-2 and Figure 4-4 vary between the small and large 

island set due to disparity in the variance of individual variables between the small and large 

island set). This result suggests that ecological processes underlying these relationships are 

approximately equivalent between the two ranges of island sizes. In contrast, constraining 

coefficients measuring the direct effect of island area on species richness to a single estimate for 

the small and large island set significantly reduced model fit. The direct effect of island area on 



 95 

species richness was therefore estimated for the small and large island set independently. This 

effect of area per se was greater across islands in the large island set, suggesting size scale-

dependency. Overall, the final multigroup path model explained 81.2% and 91.6% of the 

variation in species richness and 34.4% and 55.3% of variation in habitat diversity (richness) in 

the small and large island set, respectively.  

 

Table 4-2. Standardized multigroup path coefficient estimates for the effects of habitat diversity 

(richness), island area (log-transformed), and island isolation (proportion of water within 500-m 

buffer) on vascular plant species richness. All unstandardized path coefficients were constrained 

to single estimates for the small and large island set, without significantly reducing model fit, 

except for those measuring the direct effect of island area on species richness, which were 

estimated for the small and large island set independently. The indirect effect of island area on 

species richness (mediated by habitat diversity) was estimated as the product of the direct effect 

of island area on habitat diversity and the direct effect habitat diversity on species richness. The 

total effect of island area on species richness was then estimated as the sum of its direct and 

indirect effects. Multigroup path analysis model structure is given in Figure 4-4.  

Island set Variable Direct effect Indirect effect Total effect 

S
m

al
l Habitat diversity 0.491***   

Area 0.502*** 0.288* 0.790*** 

Isolation  -0.146*   

L
ar

g
e 

Habitat diversity 0.323***   

Area 0.675*** 0.240* 0.915*** 

Isolation -0.151*   

  Significance is denoted by * P < 0.05; ** P < 0.01; *** P < 0.001 
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Figure 4-4. Multigroup path model structure accounting for species richness, habitat diversity 

(richness), island area (log-transformed), and island isolation (proportion of water within 500-m 

buffer). Habitat diversity, island area, and island isolation each directly affects species richness. 

Island area also directly affects habitat diversity, thereby having an additional indirect effect on 

species richness. All unstandardized path coefficients were constrained to single estimates for the 

small and large island set, without significantly reducing model fit, except for those measuring 

the direct effect of island area on species richness, which were estimated for the small and large 

island set independently. Residual variances (1 – R2) for species richness and habitat diversity in 

the small and large island set are reported adjacent to arrows unconnected to other variables. 

Coefficients associated with the dashed double-headed arrow connecting island area and island 
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isolation represent intercorrelation, which is not treated as a causal path. The direct, indirect, and 

total effects of habitat diversity, island area, and island isolation on species richness are reported 

in Table 4-2. 

 

4.4.5 Dissimilarity of species and habitats 

Pairwise dissimilarities of species composition and habitat composition were 

significantly related across islands in the 0.1-ha size class (rMantel = 0.525, P = 0.021), but not in 

the 1.0-ha size class (rMantel = - 0.186, P = 0.756). This size scale-dependency may be driven by 

partial habitat saturation in areas approaching 1.0 ha, resulting in reduced habitat dissimilarity 

across larger islands. Greater multiple-site habitat dissimilarity across islands in the 0.1-ha size 

class than in the 1.0-ha size class (dJ-MULT = 0.784 and 0.583, respectively) corroborate this 

hypothesis. Multiple-site species dissimilarity was also greater across islands in the 0.1-ha size 

class than in the 1.0-ha size class, although the difference was less pronounced (dJ-MULT = 0.887 

and 0.792, respectively). No significant relationship was observed between pairwise species 

dissimilarity and inter-island distance across islands in either the 0.1-ha or 1.0-ha size class 

(rMantel = - 0.221, P = 0.839 and rMantel = - 0.093, P = 0.659, respectively). 

4.5 Discussion 

Results of this study accord well with those of others, suggesting that fragmentation may 

not reduce species diversity (e.g., Yaacobi et al. 2007; Gavish et al. 2012; reviews in Fahrig; 

2003; 2013; 2017). This expanding literature has led some ecologists to infer that the sample-

area effect may adequately account for positive species-area relationships in the majority of 

fragmented landscapes (e.g., Fahrig 2013; 2017). Unexplained by the sample-area effect, 



 98 

however, we observed a general trend of species richness actually increasing with degree of 

fragmentation after controlling for total area sampled with SLOSS-based analyses. This positive 

fragmentation effect was most pronounced in the small island set, where all SLOSS-based 

analyses indicated that species richness increased with increasing degrees of fragmentation. 

Fragmentation-species richness relationships were more ambiguous in the large island set, where 

no clear pattern in species richness was observed across size classes, and the aggregate species 

richness of study islands did not significantly differ from the ISAR species richness estimate. 

However, the SLOSS index estimate indicated that a fragmented set of islands, equivalent in 

configuration to the large island set, is still expected to contain 10.4% more species than a 

theoretical single large island. Others have interpreted similar differences between aggregate 

species richness and ISAR species richness estimates as meaningful, so long as the ISAR was 

significant (e.g., Yaacobi et al. 2007; Matthews et al. 2016). While we have cautioned 

interpretation of SLOSS index estimates under these circumstances (e.g., MacDonald et al. 

2018a), species accumulation curves also indicated a weak positive fragmentation effect at this 

size scale, suggesting that the directionality of the SLOSS index estimate for the large island set 

was accurate. Considering all 30 islands together (complete island set), both ISAR extrapolation 

and species accumulation curves indicated that fragmented sets of smaller islands contained 

more species than fewer or single larger islands, suggesting that fragmentation at this scale may 

increase species richness. 

To account for similar observations in the context of habitat amount hypothesis (i.e., 

sample-area effect), Fahrig (2013) points out that several smaller fragments may intersect the 

distributions of more species because of their expanded spatial distribution relative to fewer or 

single larger fragments. Several small fragments may thereby passively sample a higher diversity 
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of species, resulting in the spurious observation of positive fragmentation effects. Indeed, 

theoretical species-diversity models suggest that several small conservation reserves capture 

more species when species turnover increases with distance (Tjørve 2010). However, such 

processes are unlikely to operate within single fragmented landscapes; the scale at which 

fragmentation effects are most often inferred (review in Debinski & Holt 2000). In this study, 

pairwise species dissimilarity was not related to inter-island distance at either of the two island 

sizes addressed. We therefore find it reasonable to conclude that: i) the expanded spatial 

distribution of several small islands did not confound SLOSS-based analyses; and ii) the 

observation that several smaller islands contained a greater number of species than fewer or 

single larger islands is best interpreted as a positive effect of fragmentation on species richness. 

While the sample-area effect undoubtedly contributes to positive species-area relationships in a 

variety of systems, including this one, a more likely explanation of the positive fragmentation 

effect observed here involves a combination of habitat diversity and the small island effect. 

In the small island set, SLOSS-based analyses of habitat richness suggested that several 

smaller islands contained more habitat types than fewer or single larger islands. This pattern of 

habitat richness aligned well with that of species richness, as would be predicted by the habitat 

diversity hypothesis. Further support for the habitat diversity hypothesis in the small island set is 

conferred by three additional relationships. First, species richness and habitat richness were 

positively correlated across 0.1-ha islands, demonstrating that species richness and habitat 

richness were positively related independent of island area at this size scale (MacArthur & 

MacArthur 1961; Williams 1964; Rosenzweig 1995). Second, pairwise species dissimilarity was 

significantly related to pairwise habitat dissimilarity across this same grouping of islands, 

indicating that the former correlation was not spurious. Third, path analysis demonstrated that 
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habitat richness had a significant positive effect on species richness, independent of area per se. 

Together, these relationships suggest that the positive fragmentation effect on species richness 

may be at least partially attributed to a positive fragmentation effect on habitat richness. Several 

smaller islands contained more habitats than fewer or single larger islands, and more habitats 

supported more species. These relationships were more prominent across islands within the small 

island set than those within the large, supporting that both fragmentation effects and ecological 

processes underlying species-area relationships are size scale-dependent (sensu Rosenzweig 

1995; Lomolino & Weiser 2001, Triantis et al. 2006). 

An additional, and perhaps complimentary, explanation of positive fragmentation effects 

is contributed by the small island effect. The small island effect specifically predicts the 

existence of threshold island sizes, below which, species richness does not consistently increase 

with area (e.g., Lomolino & Weiser 2001, Triantis et al. 2006; Sfenthourakis & Triantis 2009). A 

more generalized prediction here may be that the effect of area per se on species richness will be 

less prominent for smaller islands than larger islands. Multigroup path analysis supported this 

generalized prediction, indicating that direct and total effects of island area on species richness 

were smaller in the small island set than in the large island set. Working backwards through 

these area effects, it is clear that losses of species associated with reductions in area should be 

less prominent across smaller islands than across larger islands. Fragmented sets of smaller 

islands may therefore be expected to contain more species than fewer or single larger islands; 

particularly, if the areas of individual small islands are below a small island effect threshold. 

Interestingly, this prediction that fragmented sets of smaller islands may contain more 

species than fewer or single larger islands may not be in opposition with the theory of island 

biogeography. In accordance with the small island effect, the theory of island biogeography 
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predicts that extinctions will become increasingly frequent and stochastic as island size 

decreases, to the eventual extent that extinction rates are decoupled from island area (Wilson & 

MacArthur 1967). These high, area-independent extinction rates may equilibrate with 

immigration rates at nonzero richness values, with particularly high rates of temporal species 

turnover. Assuming that demographic processes and assemblage dynamics are independent 

across islands (Wilson & MacArthur 1967; Hanski 1999; Leibold et al. 2004), high rates of 

temporal species turnover within small islands should translate to increased species dissimilarity 

across small islands, effectively increasing their aggregate species richness. Evidence for these 

relationships was observed in our study system, wherein multiple-site species dissimilarity was 

greater across smaller islands (0.1 ha) than larger islands (1.0 ha). Together with the positive 

fragmentation effect on habitat diversity, the small island effect and increased species 

dissimilarity across small islands may explain why the positive fragmentation effect on species 

richness was most pronounced in the small and complete island set, which both contained our 

smallest study islands.  

If there is validity to these relationships, species richness within and among small 

fragments may not consistently decrease with reductions in fragment area. However, this 

conclusion should not be interpreted as conclusive evidence that fragmentation does not threaten 

species diversity. Species richness within small fragments may be largely comprised of early 

seral species of low conservation concern (Debinski & Holt 2000), with threatened species with 

higher extinction thresholds restricted to larger fragments or extirpated from fragmented 

landscapes entirely (Fukamachi et al. 1996; Rybicki & Hanski 2013). Furthermore, the 

prediction that high extinction rates may equilibrate with immigration rates at nonzero richness 

values for small islands is predicated on the existence of a mainland within the dispersal ranges 
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of species, serving as a continuous source of immigration (Wilson & MacArthur 1967). In the 

absence of mainland equivalents on many fragmented landscapes, similar source-sink dynamics 

are also predicted among fragments by metapopulation and metacommunity theory; particularly, 

when ranges of fragment areas within single landscapes are great (e.g., “mass effects”; Hanski 

1999; Leibold et al. 2004). Ecologists should therefore proceed carefully when inferring the 

conservation significance of SLOSS, as large fragments may be necessary for the maintenance of 

species richness at the landscape level. 

 An additional shortfall of SLOSS-based analyses is that they do not permit direct 

investigation of the effects of isolation on species richness, which, in many respects, operate 

independent of the effects of area per se (Wilson & MacArthur 1967; Hanski 1999). Negative 

relationships between fragment isolation and species richness have been observed in other 

studies where SLOSS-based analyses suggested neutral to positive fragmentation effects overall 

(reviews in Fahrig 2013; 2017). To account for these relationships in the context of the habitat 

amount hypothesis, Fahrig (2013) suggests that species richness may decrease with fragment 

isolation simply because of reductions in: i) the total amount of habitat surrounding fragments; 

and ii) corresponding pools of potential immigrants (i.e., “source pools”, sensu Gotelli & Graves 

1996). However, we question whether it is reasonable to suppose that source pools vary within 

single landscapes, to the extent that individual fragments differ significantly in the number and 

composition of species they sample. If islands indeed sample species passively, dissimilarity in 

species composition between islands of similar areas should serve as an adequate proxy for 

dissimilarity in their respective source pools. In this study, pairwise species dissimilarity 

(accounting for both turnover and nestedness) was not related to inter-island distance. This 

suggests, but does not prove, a general homogeneity of source pools within our study area. The 
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negative isolation effect observed may therefore be best-interpreted as a negative fragmentation 

effect, as predicted by the theory of island biogeography, rather than a sampling artefact, as 

suggested by the habitat amount hypothesis.  

In conclusion, while SLOSS-based observations indicated that fragmentation increased 

species richness overall, it should not be assumed that all aspects of landscape configuration 

associated with the fragmentation construct align in the directionality of their effects. Increased 

habitat diversity, the small island effect, and increased species dissimilarity may all positively 

affect aggregate species richness among several small fragments, while increasing isolation 

negatively affects species richness within individual fragments. The history of ecology is marked 

by an ongoing debate on the ecological processes moderating these relationships and how our 

understandings of such processes are best applied to conservation. Within this debate, the theory 

of island biogeography, the sample-area effect, and the habitat diversity hypothesis are most 

often framed as addressing mutually exclusive processes representing opposing schools of 

thought. Indeed, the epistemological comfort afforded by exclusive subscription to a scientific 

paradigm is attractive due to the relative ease of operating under a single framework. However, 

such perspectives are generally incompatible with the complexity of ecological systems; 

particularly, when considering emergent ecological properties such as species diversity. Results 

of this study, among others (e.g., Buckley 1982; Kadmon & Allouche 2007; Burns et al. 2010), 

suggest that multiple processes operate simultaneously to structure species diversity in insular 

systems, and ought to be viewed as mutually complementary, rather than exclusive. 

  



 104 

5 Chapter 5: Distinguishing effects of area per se and isolation from the sample-area effect 

for true islands and habitat fragments 

5.1 Abstract 

The island species area relationship (ISAR) is an important tool for measuring variation 

in species diversity in variety of insular systems, from true-island archipelagoes to fragmented 

terrestrial landscapes. However, it suffers from several limitations. For example, due to the 

sample-area effect, positive relationships between species and area cannot be directly interpreted 

as evidence for deterministic effects of area per se. Additionally, richness-based analyses may 

obscure species-level responses to area and isolation that may better inform conservation 

practice. Here, we use random placement models to control for variation in abundance, 

occupancy, and richness associated with the sample-area effect, allowing deterministic effects of 

area and isolation, and how they vary with species’ functional traits, to be resolved using linear 

mixed effects models. We demonstrate the utility of this approach using a butterfly assemblage 

persisting on a naturally fragmented landscape of lake islands. The ISAR did not significantly 

deviate from random placement in relation to island area, isolation, or habitat diversity, 

supporting stochastic assembly consistent with the sample-area effect. Such inferences support 

the habitat amount hypothesis, which prioritizes preserving the maximum amount of habitat 

irrespective of its fragmentation. However, species-level analyses demonstrated that species’ 

abundances were significantly lower for both smaller and more isolated islands than what is 

predicted by the sample-area effect. Moreover, effects of area per se were significantly greater 

for smaller, less mobile, and rare species. Species’ occurrences also significantly deviated from 

predictions of the sample-area effect in relation to island isolation. Thus, our approach illustrates 

that richness-based analyses not only result in incorrect inferences on mechanisms underlying 



 105 

ISARs, but also obscure important effects of area per se and isolation on individual species that 

vary with functional traits. We therefore suggest that these effects should not be solely inferred 

from richness-based analyses, but rather evaluated on a species-by-species basis. 

5.2 Introduction 

From true islands to habitat fragments on terrestrial landscapes, positive relationships 

between species richness and the area of islands or fragments are among the oldest and most 

widely documented patterns in ecology (Arrhenius 1921; MacArthur & Wilson 1963; 

Rosenzweig 1995; Gotelli & Graves 1996; He & Legendre 2002; Hanski et al. 2013). These 

island species-area relationships (ISARs, sensu Triantis et al. 2003, or “Type IV” curves, sensu 

Scheiner 2003) have received considerable attention, in part due to their importance to 

conservation frameworks (e.g., see reviews in Shafer 1990 Lomolino 2000; Whittaker & 

Fernández‐Palacios 2007). Although there are several documented divergences between the 

biogeographies of true islands and terrestrial habitat fragments (e.g., Laurance 2008; Mendenhall 

et al. 2014; Itescu 2019; Farneda et al. 2020), studies addressing true-island systems can still help 

resolve what mechanisms underlie ISARs and how fragmentation effects are best measured 

(Diamond 1975; Simberloff & Abele 1976; 1982; Haila 2002; Haddad et al. 2015; MacDonald et 

al. 2018a; 2018b). There are, however, at least two enduring problems with the use of ISARs in 

conservation that are generalizable to both true islands and habitat fragments: i) ISARs may 

emerge from a combination of different mechanisms, each of which potentially informs a 

different conservation directive (Connor & McCoy 1979; Kadmon & Allouche 2007; 

MacDonald et al. 2018b); and ii) ISARs are emergent patterns of diversity that can mask 

differential responses to habitat area among species that may require independent consideration 

for successful conservation planning (Ewers & Didham 2006 Öckinger et al. 2009; Franzén et al. 
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2012; Hanski 2015 MacDonald et al. 2018a). Here, we propose an approach to addressing each 

of these problems within a single modelling framework. 

5.2.1 Mechanisms underlying ISARs 

Three hypotheses, each with distinct underlying mechanisms and conservation 

implications, have been proposed to account for ISARs and related spatial patterns of species 

richness: i) the passive sampling hypothesis (Connor & McCoy 1979); ii) area per se, as outlined 

by the theory of island biogeography (MacArthur & Wilson 1963; Wilson & MacArthur 1967); 

and iii) the habitat diversity hypothesis (Williams 1964). The passive sampling hypothesis, 

originally developed within the context of oceanic islands, predicts that islands randomly sample 

individuals from the regional species pool in abundances proportional to their area (Connor & 

McCoy 1979). As larger islands sample more individuals, they sample more species according to 

the abundance distribution of the regional species pool (i.e., the “sample-area effect”). Thus, 

passive sampling serves as a useful null hypothesis, assuming random assembly of both 

individuals and species.  

Area per se hypothesizes a disproportionate reduction in species richness as island area 

decreases, steepening the slope of ISARs within archipelagoes or fragmented terrestrial 

landscapes relative to species-area relationships within landscapes comprised of continuous 

habitat (Diamond 1972; Diamond 1975 Wilson & Willis 1975; Connor & McCoy 1979; Saccheri 

et al. 1998; Gonzalez 2000; Haila 2002; Haddad et al. 2015; MacDonald et al. 2018a; 2018b). 

From a mechanistic perspective, area per se essentially invokes the theory of island 

biogeography, where species richness arises as a dynamic equilibrium between rates of 

extinction and colonization, which in turn depend on island area and isolation (MacArthur & 

Wilson 1963; Wilson & MacArthur 1967). More isolated populations occupying small islands 
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are predicted to be more prone to stochastic extinction and small, isolated islands are less likely 

to be re-colonized from external source populations than larger, well-connected islands (Levins 

1969; Hanski & Gyllenberg 1993; Orrock & Wattling; 2010). Thus, the theory of island 

biogeography addresses effects of both island area and isolation, predicting that immigration 

rates and rescue effects decrease as islands become increasingly isolated from neighboring 

habitat (i.e., the mainland or other islands), negatively affecting species’ probabilities of 

occurrence and therefore species richness (MacArthur & Wilson 1963; Wilson & MacArthur 

1967; Brown & Kodric-Brown 1977; Hanski 1994; 1998 1999).  

As an alternative to dynamic balances between demographic rates predicted by the theory 

of island biogeography, Williams (1964) proposed that ISARs are driven by variation in habitat 

diversity among islands. The habitat diversity hypothesis predicts that island/fragment area 

correlates with species richness only insofar as area correlates with the intermediate variable of 

habitat diversity; larger sample areas generally contain more habitats, which support more 

species (Williams 1964; Nilsson 1988 Rosenzweig 1995; Gotelli & Graves 1996). It follows that 

the presence or proportion of suitable habitat within islands/fragments should affect abundances 

and occurrences of individual species (Buckley 1982; Haila & Järvinen 1983). However, few 

studies have investigated how habitat associations of single species relate to emergent patterns of 

species richness in this context (but see Haila et al. 1983). Still, multiple studies addressing 

species richness support the habitat diversity hypothesis (Nilsson 1988; Kadmon & Allouche 

2007; Hortal et al. 2009). It has also been inferred that mechanisms predicted by the passive 

sampling hypothesis, theory of island biogeography, and habitat diversity hypothesis may 

simultaneously contribute to ISARs (Connor & McCoy 1979; Kadmon & Allouche 2007; 

MacDonald et al. 2018b; Chase et al. 2019). 
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5.2.2 Complications in extending ISARs to conservation 

Due to its success on true islands, conservation biologists were quick to recognize the 

potential for the theory of island biogeography to be applied to fragmented habitat on terrestrial 

landscapes, initially in the design of nature reserves (e.g., Diamond 1972; Diamond 1975; 

Wilson & Willis 1975). However, the extension of ISAR-based inferences from true islands to 

habitat fragments is complicated by differences in their extents of insularity and interactions 

between habitat and non-habitat (i.e., matrix) areas (Itescu 2019). Whereas edges of true islands 

clearly delimit suitable habitat from a homogeneous matrix of unsuitable habitat (open water), 

species occurring on habitat fragments may utilize resources of heterogeneous terrestrial 

matrices and these matrices may differentially constrain or facilitate colonization rates of species 

(i.e., “matrix effects”; Dunning et al. 1992; Ricketts 2001). Thus, understanding habitat 

fragments as analogous to true islands may be problematic. More specifically, fragmentation 

effects observed within true-island systems may differ from those typical of fragmented 

terrestrial landscapes (Laurance 2008; Mendenhall et al. 2014; Farneda et al. 2020).  

5.2.3 SLOSS-based inferences 

Irrespective of the mechanisms underlying ISARs, observations that species richness 

generally decreases as island/fragment area decreases and isolation increases have contributed to 

long-standing inferences that habitat fragmentation poses a major threat to species diversity 

(Diamond 1972; 1975; Noss 1991; Haila 2002; Bruna & Oli 2005; Hanski 2015; Fletcher et al. 

2018). However, many of these inferences are founded on observations or experimental designs 

that have not sufficiently decoupled the effects of area per se and isolation from the sample-area 

effect (i.e., decoupled habitat fragmentation from habitat loss; sensu Fahrig 2003; 2013; 2017; 

Hadley & Betts 2016). In the majority of studies successfully decoupling habitat fragmentation 
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from habitat loss, single large habitat fragments are generally found to contain an equivalent or 

lesser number of species than sets of several small habitat fragments summing to an equivalent 

total area (Quinn & Harrison 1988; Fahrig 2003; 2013; 2017; Yaacobi et al. 2007; MacDonald et 

al. 2018a; 2018b; Fahrig 2020; Deane et al. 2020). Such comparisons contribute to the ongoing 

Single-Large-Or-Several-Small (“SLOSS”) debate, addressing how finite conservation efforts 

should prioritize the area and configuration of fragmented habitat and nature reserves (Diamond 

1975; Abele & Connor 1979; Ovaskainen 2002; Tjørve 2010). In light of SLOSS-based 

observations that species richness is often equal or greater within sets of several small habitat 

fragments, Fahrig (2013) advanced the habitat amount hypothesis, predicting that the number of 

species persisting on fragmented landscapes is only a function of total habitat amount at the 

landscape scale irrespective of its spatial subdivision and configuration. The principal 

mechanism underlying the habitat amount hypothesis is the sample-area effect, as originally 

articulated by the passive sampling hypothesis (Connor & McCoy 1979). However, the habitat 

amount hypothesis extends implications of the sample-area effect to predict that there should 

also be no detectable effect of fragment isolation on species’ abundances, species’ occurrences, 

or species richness after the sample-area effect has been accounted for (Fahrig 2013). 

5.2.4 The importance of understanding how species-level patterns affect ISARs 

While the sample-area effect surely contributes to patterns of species richness within a 

variety of true-island systems and fragmented terrestrial landscapes, richness-based analyses may 

obscure important effects of both area per se and isolation on individual species (Ewers & 

Didham 2006; Öckinger et al. 2009; Franzén & Betzholtz 2012; Hanski 2015; MacDonald et al. 

2018a). Indeed, area per se and isolation effects have been inferred to vary widely among 

species, even within single landscapes and taxa (Henle et al. 2004; Ewers & Didham 2006; 
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Nowicki et al. 2009; Öckinger et al. 2009 Hanski 2015; Hillebrand et al. 2018; MacDonald et al. 

2018a). Functional traits, including body size (Gehring & Swihart 2003; Henle et al. 2004; 

Larsen et al. 2008; Prugh et al. 2008; Barbaro & Van Halder 2009; Warzecha et al. 2016), 

mobility/dispersal ability (Roland & Taylor 1997; Lens et al. 2002; Ewers & Didham 2006; 

Öckinger et al. 2009; MacDonald et al. 2018a; 2019), degree of ecological specialization 

(Tscharntke & Brandl 2004), rarity/conservation status (Ewers & Didham 2006), and trophic 

position (Tscharntke et al. 2002; Thies et al. 2005 Ewers & Didham 2006) are hypothesized to 

relate species’ sensitivity to area per se and isolation. Still, relatively few empirical studies have 

investigated how functional traits relate to interspecific variation in responses to area per se and 

isolation or how this interspecific variation scales to emergent patterns of species richness, such 

as those reflected in ISARs (Melbourne et al. 2004; but see Barbaro & Van Halder 2009; 

Öckinger et al. 2009). 

5.2.5 Distinguishing mechanisms underlying ISARs 

Due to the sample-area effect, observations that species’ abundances, species’ 

probabilities of occurrence, or species richness positively correlate with island/fragment area 

cannot be directly interpreted as evidence of effects of area per se (Connor & McCoy 1979; 

Fahrig 2003; 2013; 2017; Fletcher et al. 2018). Three established methods may be used to 

control for the sample-area effect: i) comparing sets of islands/fragments that sum to equal areas 

but differ in degree of fragmentation, including the nested-set designs of Yaacobi et al. (2007) 

and MacDonald et al. (2018a; 2018b) and comparisons of species accumulation curves proposed 

by Quinn & Harrison (1988); ii) extrapolating a species-area regression to the total area of all 

islands/fragments used to build the regression and comparing predicted and observed species 

richness (-diversity) (e.g., Rosenzweig 2004; Yaacobi et al. 2007; Santos et al. 2010; Gavish et 
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al. 2012; MacDonald et al. 2018a; 2018b); and iii) comparing equal-area sampling plots across 

islands/fragments (Westman 1983; Kelly 1989; Quinn et al. 1987 Stevens et al. 1986; Fahrig 

2013; Watling et al. 2020). However, for methods 1 and 2 (SLOSS-based comparisons), 

substantial species turnover among several small islands/fragments can increase their aggregate 

richness relative to single large islands/fragments, such that important effects of area per se on 

individual species are obscured (sensu Simberloff 1976; MacDonald et al. 2018b; Deane et al. 

2020). Assuming species are uniformly distributed within islands/fragments, inferences drawn 

from method 3 may be robust for sessile taxa (e.g., vascular plants; Westman 1983; Quinn et al. 

1987; Kelly 1989), but remain tenuous for vagile species that move frequently within 

islands/fragments, as individual sampling plots may accumulate all vagile species within single 

islands/fragments if sampling effort is high. Additionally, if rare species are particularly sensitive 

to area per se or isolation, these effects are likely to go undetected when sampling at small 

spatial grain sizes dictated by method 3; rare species and important habitat types within 

islands/fragments may be missed entirely in comparisons of small sampling plots (Karger et al. 

2014). Finally, each of the three established methods only contrast the sample-area effect with 

those of area per se (methods 1 & 2) or area per se and isolation (method 3); evaluating effects 

of isolation and habitat diversity requires additional analyses. A fourth method, recently 

proposed by Chase et al. (2019), employs parameters derived from individual-based rarefaction 

curves across various spatial scales within islands/fragments to distinguish between the sample-

area effect and effects of area per se and habitat diversity. While this framework can effectively 

distinguish mechanisms underlying ISARs, it cannot simultaneously evaluate effects of isolation, 

assess whether area per se and isolation differentially affect species in relation to their functional 
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traits, or be applied to existing datasets lacking abundance data for subplots stratified within each 

island/fragment across diagnosable habitat heterogeneity.  

In this paper, we present a novel application of random placement and linear mixed 

effects models that can simultaneously evaluate: i) how area per se, isolation, and habitat 

diversity affect species’ abundances, species’ occurrences, and species richness across true 

islands or terrestrial habitat fragments; and ii) whether interspecific variation in these responses 

relates to variation in species’ functional traits. This modelling framework is applicable to any 

dataset for which abundance data were collected for sets of true islands or habitat fragments with 

sampling effort standardized per unit area. We assess the utility of the framework using a 

butterfly assemblage persisting on a naturally fragmented landscape of true islands; Lake of the 

Woods, Canada. Methodological developments and basic inferences presented here are equally 

applicable to both true islands and terrestrial habitat fragments, so long as the edges of habitat 

fragments can be consistently delimited.  

5.3 Materials and Methods 

5.3.1 Overview of the modelling framework 

Starting with the assumption that all individuals of each species are randomly distributed 

across true islands or habitat fragments in abundances proportional to their areas, random 

placement models can be used to calculate expected species’ abundances, expected probabilities 

of species’ occurrences, and expected species richness for each island or fragment (Arrhenius 

1921; Gotelli & Graves 1996 Coleman 1981; He & Legendre 2002). Resulting random 

placement values are equivalent to values of species’ abundances, species’ probabilities of 

occurrence, and species richness predicted by the sample-area effect. Predictions of the passive 

sampling/habitat amount hypotheses, theory of island biogeography, and habitat diversity 
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hypothesis may be then simultaneously evaluated by modelling relationships between random 

placement residuals (observed values minus random placement values) and the area, isolation, 

and habitat diversity of individual islands/fragments. Variables measuring species’ functional 

traits may be introduced to abundance and occurrence models via interaction terms with 

island/fragment area and isolation to evaluate whether effects of area per se and isolation 

interspecifically vary contingent on the measured traits. 

5.3.2 Random placement models 

 We present random placement models in ascending order of mathematical complexity, 

from species’ abundances, to species’ occurrences, to species richness. Within random placement 

models, aj is the area of the jth island/fragment, AT is the total area of all islands/fragments, ni is 

the abundance of species i summed across all islands/fragments, and S is the total number of 

species observed. Islands or fragments that were not surveyed are not included in random 

placement models. According to the sample-area effect, the expected abundance of species i on 

island/fragment j is simply proportional to j’s area (model 1) and the occurrence probability 

follows the random placement model (model 2). The random placement model for expected 

richness on any island/fragment is simply the sum of the expected probabilities of occurrence 

over all species (model 3). This random placement richness model was first proposed a century 

ago by Arrhenius (1921) and later reinvented by Coleman (1981) with the inclusion of the 

variance.  

(1)  𝐸(𝑛𝑖𝑗) = 𝑛𝑖(
𝑎𝑗

𝐴𝑇
)  

(2)  𝐸(𝑂𝑖𝑗) = 1 − (1 −
𝑎𝑗

𝐴𝑇
)𝑛𝑖  
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(3)  𝐸(𝑆𝑗) = ∑ {1 − (1 −
𝑎𝑗

𝐴𝑇
)𝑛𝑖}𝑆

𝑖=1  

5.3.3 Modelling of random placement residuals 

Subtracting random placement abundance and occurrence probability values from 

observed abundance and occurrence values for each species on each island/fragment produces 

abundance and occurrence residuals. The direction and magnitude of these residuals measure 

how abundances and occurrences of each species deviate from predictions of the sample-area 

effect. In the modelling framework described below, all species’ abundance residuals and all 

species’ occurrence residuals are concatenated across species for use in single linear mixed 

effects models; one model addressing all species’ abundances and one model addressing all 

species’ occurrences. Abundance residuals require standardization (subtracting the mean and 

dividing by standard deviation) before concatenation across species, as the range of possible 

values is greater for common species than rare species. While this is not the case for occurrence 

residuals (values bound between -1 and 1), standardization is still recommended to generate 

values that are commensurate among species. Richness residuals are similarly calculated for each 

island/fragment by subtracting random placement richness values from observed richness values. 

Standardization is recommended to facilitate comparisons of effect sizes among abundance, 

occurrence, and richness analyses. 

5.3.3.1 Species’ abundances and occurrences 

 Linear mixed effects models are used to relate abundance and occurrence residuals to 

island/fragment variables while controlling for species identity as a random effect. If area per se 

affects species’ abundances or occurrences beyond variation associated with the sample-area 

effect, residuals will be positively related to area, indicating a disproportionate concentration of 
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species’ abundances or occurrences on larger islands/fragments. If isolation negatively affects 

species’ abundances or occurrences, residuals will be negatively related to measures of isolation 

specific to individual islands/fragments, indicating a disproportionate concentration of species’ 

abundances or occurrences on less isolated islands/fragments. Each of these results align with 

predictions of the theory of island biogeography. Alternatively, the absence of significant 

relationships between residuals and area or isolation would indicate that the sample-area effect 

sufficiently accounts for variation in species’ abundances or occurrences across 

islands/fragments of varying area or isolation. The combination these results would confer 

support for the passive sampling/habitat amount hypotheses. The proportion of species-specific 

suitable habitat and presence of species-specific resources within each island/fragment may also 

be included in linear mixed effects models. Positive relationships between abundance or 

occurrence residuals and these variables would indicate that availability of specific habitats or 

resources within islands/fragments are important considerations that affect species’ abundances 

or occurrences, as predicted by the habitat diversity hypothesis.  

If data on species’ functional traits are available, functional trait variables may be 

introduced to linear mixed effects models via interaction terms with island/fragment area and 

isolation. Here, a significant interaction between a functional trait variable and island/fragment 

area or isolation would indicate that area per se or isolation differentially affects species’ 

abundances or occurrences contingent on the measured trait. Total abundance and number of 

occurrences (prevalence) for each species are also of interest, as rarity is cited as a predictor of 

species’ sensitivity to fragmentation (Ewers & Didham 2006). A significant positive interaction 

between total abundance or prevalence and island/fragment area would indicate that rare species 

are disproportionately concentrated or likely to occur on larger islands/fragments. Similarly, a 
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significant negative interaction between total abundance or prevalence and island/fragment 

isolation would indicate that rare species are disproportionately concentrated or likely to occur 

on less isolated islands/fragments. 

5.3.3.2 Species richness 

 A similar modelling process may be applied to species richness using linear models. 

Significant relationships between richness residuals and island/fragment area or isolation would 

indicate that area per se or isolation significantly affects richness after controlling for the sample-

area effect. Each of these results align with predictions of the theory of island biogeography. 

Conversely, the absence of significant relationships between residuals and area and isolation 

would indicate that the sample-area effect sufficiently accounts for variation in species richness 

across islands/fragments of varying area or isolation. This combination of results would suggest 

that only habitat amount at the archipelago- or landscape-scale affects richness, as predicted by 

the passive sampling/habitat amount hypotheses. Predictions of the habitat diversity hypothesis 

may also be simultaneously evaluated by including measures of habitat diversity in linear 

models. Significant relationships between richness residuals and habitat diversity would indicate 

that, despite correlations between habitat diversity and island/fragment area, variation in habitat 

diversity among islands/fragments affects species richness beyond variation associated with both 

the sample-area effect and effects of area per se. 

5.3.4 Application of the modelling framework 

5.3.4.1 Study area 

We assessed the utility of this modelling framework using a butterfly assemblage 

persisting on a ~1250 km2 lake-island complex located in Sabaskong Bay, Lake of the Woods, 
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Canada (Figure 5-1). Differential isostatic rebound and outlet restriction resulted in the flooding 

of the study area and isolation of land-bridge islands approximately 3000 – 4000 YA (Yang & 

Teller 2005). Given this substantial time-since-isolation, we infer that species assemblages have 

relaxed to equilibria (>1000 generations; based on categories suggested by Fahrig et al. 2020). 

Butterflies represent a suitable taxon for this investigation, as most species complete their life 

cycles within relatively small patches of habitat, their detectability is generally high, and their 

diversity correlates with that of many other terrestrial taxa (Thomas 2005; Nowicki et al. 2008; 

MacDonald et al. 2017; 2018a). Butterflies do not utilize open water at any life stage, meaning 

the matrix separating islands in this system is entirely unsuitable. This effectively controls for 

matrix effects (Ricketts 2001; Dunning et al. 1992), but also limits the generalizability of our 

inferred fragmentation effects to terrestrial landscapes (Laurance 2008; Mendenhall et al. 2014; 

Farneda et al. 2020). 
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Figure 5-1. Map of the study area, located in Sabaskong Bay, Lake of the Woods, Canada. 

Butterfly abundance, occurrence, and species richness data were collected for 30 study islands, 

varying in area from 0.09 to 8.4 ha, using repeated full island surveys. 

 

Thirty islands, ranging in area from 0.1 to 8.0 ha, were randomly selected from lists of 

candidate islands compiled according to the methods of MacDonald et al. (2018a). Islands were 

only considered as candidates if they were isolated from other landmasses by at least 100 m, 

beyond the inferred visual ranges of butterflies (Rutowski 2003; MacDonald et al. 2019). The 

relative isolation of each study island was quantified at multiple scales as the proportion of water 

within 250-, 500-, 1000-, 1500-, 2000-, 2500-, 3000-, 3500-, 4000-, 4500-, and 5000-m buffers. 
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Buffers were generated from island edges, meaning isolation measures are independent from and 

uncorrelated with island area. We opted for these proportion-based measures because they have 

been shown to predict immigration rates, rescue effects, and related ecological processes more 

accurately than distance-based measures (Moilanen & Nieminem 2002; Tischendorf et al. 2003; 

Prugh 2009). Habitat diversity was estimated on each island as the relative proportion of 14 

habitat types, defined using structural properties of vegetation and geological features (see 

MacDonald et al. 2021 Supporting Information for habitat type descriptions). 

5.3.4.2 Survey protocol 

 Butterfly abundance data were collected for each of the 30 islands using repeated full-

island surveys. Each island was visited four times at intervals between 10 and 14 days during the 

peak flight season (01-June-2015 to 20-Aug-2015). Sampling effort was standardized to 40 min 

per ha per survey across all islands, eliminating the need for sampling effort and diversity 

corrections (e.g., rarefaction or extrapolation; e.g., Chao et al. 2014; Fahrig et al. 2020). Care 

was taken to visit all habitat types during each survey and handheld GPS units were used to 

ensure uniform coverage of islands. Recording observer tracks and capturing individuals 

whenever possible (kept as voucher specimens or released at the end of each survey) minimized 

the possibility of double counts, where individuals are recorded multiple times in single surveys. 

To ensure optimal and standardized butterfly activity, surveys were restricted to the hours of 

10:45 to 15:45 and were not conducted in wind speeds over 15 km/hr or in temperatures below 

13°C. If temperatures were below 17°C, surveys were only conducted in sunny conditions (cloud 

cover < 40%). Surveys were conducted in temperatures above 17°C, regardless of cloud cover 

(MacDonald et al. 2017).  

https://doi.org/10.1111/ecog.05563
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The diversities of vascular plants and butterflies have been observed to positively 

correlate with one another in a variety of systems, primarily due to larval host plant associations 

(Erhardt 1985; Sparks & Parish 1995; Simonson et al. 2001; Croxton et al. 2005; Kitahara et al. 

2008; Nowicki et al. 2009; MacDonald et al. 2018a; Riva et al. 2020). Accordingly, vascular 

plant species richness was quantified on each island using repeated full-island surveys (four 

surveys total), standardized to 40 min per ha per survey [see MacDonald et al. (2018b) for 

further details on vascular plant surveys]. A total survey time of two hr and 40 min per ha is 

consistent with recent recommendations for boreal plant communities (Zhang et al. 2014). Only 

presence-absence data were collected for vascular plants, precluding use of our modelling 

framework [but see Simberloff & Gotelli (1984) for random colonization models applied to 

presence-absence data]. 

5.3.4.3 Data analysis 

 We calculated values of species’ abundances, species’ probabilities of occurrence, and 

species richness predicted by random placement for each of the 30 study islands using random 

placement models (1, 2, and 3, respectively). Abundance, occurrence, and richness residuals 

were estimated as observed values minus random placement values. We next used linear mixed 

effects models to simultaneously: i) quantify relationships between either abundance residuals or 

occurrence residuals and island variables, including area, isolation, proportion of suitable habitat, 

and presence/absence of preferred larval host plants; ii) evaluate whether area per se or isolation 

differentially affects species’ abundances or occurrences contingent on their functional traits. 

Separate models were built for each isolation buffer size (250, 500, 1000, 1500, 2000, 2500, 

3000, 3500, 4000, 4500, and 5000 m). Each of these models had the same number of parameters 

(k) and only differed in the buffer size used to measure island isolation. We therefore directly 
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compared models with log likelihood (e.g., Lamb et al. 2018), where the model with the 

maximum log likelihood identified the optimal buffer size. Relationships between log likelihood 

and buffer sizes were quantified using Pearson's product moment correlation coefficients. The 

proportion of suitable habitat for each species was estimated as the total area of suitable habitat 

types divided by the total area of the island. Habitat types were classified as suitable for a species 

if we observed at least one individual within them during the repeated full-island surveys. The 

presence/absence of preferred larval host plants (compiled from Hall et al. 2014; Acorn & 

Sheldon 2017) for each species on each island was included as a binary variable. We included 

species’ wingspan (mm; as reported in Burke et al. 2011) in models as a functional trait variable, 

serving as a measure of both body size and mobility/dispersal ability (Ewers & Didha 2006; Lens 

et al. 2002; Roland & Taylor 1997; Öckinger et al. 2009; MacDonald et al. 2018a; 2019). Other 

functional traits predicted to relate to species’ sensitivity to fragmentation (e.g., degree of 

ecological specialization, trophic position) were either not measured or did not vary substantially 

among butterfly species and so were not investigated. As an inverse measure of species’ rarity, 

we included species’ total abundance and prevalence in abundance and occurrence models, 

respectively. To evaluate whether area per se or isolation differentially affected species’ 

abundances or occurrences contingent on their functional traits, we included the following 

interaction terms: wingspan:area, wingspan:isolation, rarity:area, and rarity:isolation. All non-

binary predictor variables were standardized (subtracting the mean and dividing by standard 

deviation), permitting comparisons of effect sizes. The structure for both abundance and 

occurrence linear mixed effects models was as follows, where “habitat” is the proportion of 

suitable habitat for each species on each island and “plants” is the presence/absence of each 

species’ preferred larval host plants: 
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f(residuals) ~ 1(area) + 2(isolation) + 3(habitat) + 4(plants) + 5(wingspan) + 6(rarity) + 

7(wingspan:area) + 8(wingspan:isolation) + 9(rarity:area) + 10(rarity:isolation) + (1|species 

id) + e 

Linear models were fitted for species richness following the same basic protocol as 

abundance and occurrence linear mixed effects models. Predictor variables included island area, 

isolation, habitat diversity, and vascular plant species richness. The most supported isolation 

buffer size was again assessed using log likelihood comparisons among models differing only in 

buffer size. Habitat diversity was estimated as the number of habitat types on each island. All 

predictor variables were standardized. The structure for richness linear models was as follows, 

where “habitat” is the total number of habitat types recorded on each island and “plants” is 

vascular plant species richness:  

f(residual) ~ 1(area) + 2(isolation) + 3(habitat) + 4(plants) + e  

5.4 Results 

A total of 869 butterflies belonging to 34 species were observed during repeated full 

island surveys. Butterfly abundance data are reported in MacDonald et al. (2021) Supporting 

Information. One species, Feniseca tarquinius, uniquely feeds on woolly aphids in its larval 

stage (Hall et al. 2014; Acorn & Sheldon 2017). Only one individual of this species was 

observed across all surveys. We excluded it from abundance and occurrence models, which 

included presence/absence of preferred larval host plants as a predictor variable. All individuals 

belonging to all species were included in richness models. 

https://doi.org/10.1111/ecog.05563
https://doi.org/10.1111/ecog.05563
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5.4.1 Species’ abundances 

Comparing log likelihood among linear mixed effects models differing only in isolation 

buffer size resolved that the proportion of water within 250 m (smallest buffer size) was most 

supported (Table 5-1; Figure 5-2 a). Model support significantly declined across increasing 

buffer sizes (r = -0.709; P = 0.015), indicating that the amount of habitat immediately 

surrounding individual islands better predicted species’ abundances than the amount of habitat at 

broader spatial scales. Within the most supported model, abundance residuals were significantly 

related to both island area and isolation (Table 5-2; Figure 5-3). Area per se had a significant 

positive effect on species’ abundances, while isolation had a significant negative effect, in 

accordance with mechanisms predicted by the theory of island biogeography. The absolute 

magnitude of the effects of area per se and isolation, inferred from standardized regression 

coefficients, were approximately equivalent. Together, these results indicate that the sample-area 

effect cannot account for variation in species’ abundances across islands of varying area and that 

habitat configuration, and not just total area, has important effects on species’ abundances in this 

system. Other island variables, including the proportion of suitable habitat and presence/absence 

of preferred larval host plants, were not related to species’ abundances. 

Coefficients of the wingspan:area and rarity:area interaction terms were significantly 

negative, indicating that effects of area per se systematically varied across species in respect to 

these functional traits. Causality behind the wingspan:area interaction is clear; effects of area per 

se on abundance were greater for smaller, less mobile butterfly species. However, for rarity:area, 

it cannot be resolved whether effects of area per se on abundance were greater for rare species, 

or whether these species were rare within the dataset because they experience greater effects of 

area per se. Comparisons of the relative abundances of species between the mainland 
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(continuous habitat) and islands (fragmented habitat) would help resolve the causal direction of 

this relationship; however, this was beyond the scope of this study. Relationships between 

abundance residuals and functional trait variables were not significant. This result is expected, as 

abundance residuals were standardized for each species individually before they were 

concatenated for use in linear mixed effects models. 

 

Table 5-1. Log likelihood values for linear mixed effects (abundance and occurrence) and linear 

(species richness) models. For species’ abundances, species’ occurrences, and species richness, 

separate models were built for a range of isolation buffers, measuring the proportion of open 

water within 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000 m of island 

shores. Model support significantly declined across increasing isolation buffer sizes in all 

instances. The most supported buffer size for each model set is highlighted in bold.  

Isolation buffer (m) Abundance Occurrence Species richness 

250 -1329.83 -1340.37 -36.79 

500 -1330.22 -1340.71 -37.45 

1000 -1330.99 -1342.89 -37.67 

1500 -1332.11 -1341.77 -36.61 

2000 -1332.00 -1340.52 -37.02 

2500 -1332.05 -1340.72 -37.79 

3000 -1332.17 -1341.71 -38.12 

3500 -1332.13 -1342.61 -38.36 

4000 -1332.01 -1343.28 -38.45 

4500 -1331.86 -1343.60 -38.48 

5000 -1331.87 -1343.53 -38.44 

 

 

Table 5-2. Standardized regression coefficient estimates (“coef.”), standard errors (“s.e.”), and P-

values (“P”) from linear models fitting random placement residuals for species’ abundances, 

species’ occurrences, and species richness. Included in all models were island area, measured in 
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m2, and island isolation, measured as the proportion of water within the most supported buffer 

size (250 m for abundance and occurrence; 1500 m for species richness). Within abundance and 

occurrence models, the proportion suitable habitat (“habitat”) was measured for each species as 

the area of suitable habitat on each island divided by the area of the island. Presence/absence of 

each species’ preferred larval host plants (“plants”) was included as a binary variable. Wingspan 

was included as a measure of species’ body size and as a proxy of dispersal ability. Each species’ 

total abundance and prevalence were used as an inverse measure of rarity in abundance and 

occurrence models, respectively. Species identity was included as a random effect in abundance 

and occurrence models. Within the species richness model, habitat diversity (“habitat”) was 

estimated as the total number of habitat types recorded on each island. Plant diversity (“plants”) 

was measured as vascular plant species richness. Significant coefficients ( = 0.05) are 

highlighted in bold. 

  Abundance Occurrence Species richness 

Variable coeff. s.e. P coeff. s.e. P coeff. s.e. P 

area 0.087 0.032 0.007 0.005 0.033 0.884 0.294 0.292 0.323 

isolation -0.069 0.032 0.028 -0.073 0.032 0.022 -0.320 0.173 0.076 

habitat 0.020 0.032 0.535 0.016 0.033 0.635 -0.763 0.395 0.075 

plants 0.018 0.082 0.830 -0.070 0.083 0.400 0.110 0.484 0.822 

wingspan -0.001 0.035 0.973 -0.015 0.035 0.661    

rarity -0.004 0.032 0.892 -0.001 0.033 0.988 
   

wingspan:area -0.117 0.031 <0.001 -0.057 0.031 0.069 
   

wingspan:isolation 0.012 0.031 0.708 0.006 0.031 0.838 
   

rarity:area -0.081 0.031 0.009 -0.009 0.032 0.783 
   

rarity:isolation 0.012 0.031 0.688 0.041 0.032 0.196       
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Figure 5-2. a) Standardized log likelihood values for linear mixed effects (abundance and 

occurrence) and linear (species richness) models where responding variables were random 

placement residuals. Explanatory variables for each model are listed in Table 5-2 and Figure 5-3. 

Separate models were built using different island isolation buffer sizes, quantifying the 

proportion of open water within 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 

5000 m of island shores. To permit comparisons of relationships between log likelihood values 

and buffer sizes among abundance, occurrence, and species richness model sets, log likelihood 

scores were standardized for each model set by subtracting the mean and dividing by standard 

deviation. Model support significantly declined across increasing isolation buffer sizes in all 

instances. b) Log-log island species-area relationship (ISAR) for butterflies occurring on 30 

study islands. Random placement richness values were calculated using a random placement 

model (model 3; see Materials and Methods). Dashed green lines are 95% confidence intervals 

for random placement values, calculated using Coleman’s (1981) formula for variance. Dashed 
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purple lines represent 95% confidence intervals for the log-log ISAR linear regression (solid 

purple line), parameterized using observed richness values for all 30 islands. 

 

 

 

Figure 5-3. Standardized regression coefficients and 95% confidence intervals from linear 

models relating random placement residuals to island characteristics and species’ functional 

traits for a) species’ abundances, b) species’ occurrences, and c) species richness. Included in all 

models were island area, measured in m2, and island isolation, measured as the proportion of 

water within the most supported buffer size (250 m for abundance and occurrence; 1500 m for 

species richness). Within abundance and occurrence models, the proportion suitable habitat 

(“suitable habitat”) was measured for each species as the area of suitable habitat on each island 

divided by the area of the island. Presence/absence of each species’ preferred larval host plants 
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was included as a binary variable. Wingspan was included as a measure of species’ body size 

and as a proxy of dispersal ability. Each species’ total abundance and prevalence were used as an 

inverse measure of rarity in abundance and occurrence models, respectively. Species identity was 

included as a random effect in abundance and occurrence models. Within the species richness 

model, habitat diversity was estimated as the total number of habitat types recorded on each 

island. Plant diversity was measured as vascular plant species richness. The shading of each 

variable’s point estimate (coefficient) and confidence interval is proportional to its P-value, with 

darker shades indicating greater significance. Coefficients with 95% confidence intervals not 

overlapping zero were inferred to be significant at  = 0.05.  

 

5.4.2 Species’ occurrences 

 As with abundance linear mixed effects models, the most supported isolation buffer size 

for predicting occurrence residuals was 250 m (Table 5-1; Figure 5-2 a). Model support 

significantly declined across increasing buffer sizes (r = -0.746; P = 0.008). Within the most 

supported model, occurrence residuals showed no relationship to island area, suggesting that the 

sample-area effect sufficiently accounts for variation in species’ occurrences across islands that 

vary in area (Table 5-2; Figure 5-3). This result confers support for the passive sampling/habitat 

amount hypotheses. However, occurrence residuals were significantly negatively related to 

island isolation, suggesting that island configuration has important effects on species’ 

occurrences, as predicted by the theory of island biogeography. Other island variables, including 

the proportion of suitable habitat and presence/absence of preferred larval host plants, were not 

significantly related to occurrence residuals. 
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Effects of functional trait variables (wingspan and rarity) and their interaction with island 

variables were not significant at  = 0.05. However, the coefficient of the wingspan:area 

interaction term was marginally significant at P = 0.069, suggesting that smaller, less mobile 

species were less likely than larger, more mobile species to occur on small islands. In other 

words, butterfly species richness on small islands may be disproportionately comprised of large 

butterfly species with high mobility.  

5.4.3 Species richness  

The most supported isolation buffer size for predicting species richness residuals was 

1500 m, which was only marginally more supported than the smallest (250 m) buffer size (Table 

5-1; Figure 5-2 a). Notwithstanding, model support still significantly declined across increasing 

buffer sizes (r = -0.833; P = 0.001). Within the most supported model, residuals were not 

significantly related to island area, isolation, habitat richness, or vascular plant species richness 

(Table 5-2; Figure 5-3). It should be noted, however, that the directionality of the island isolation 

coefficient aligned with predictions of the theory of island biogeography, and was significant at 

  = 0.10. Failure to resolve a significant effect at   = 0.05 suggests that richness-based analyses 

confer less analytical power than abundance- and occurrence-based analyses. If we adopt the 

most commonly used significance threshold of   = 0.05, our linear model would suggest that the 

sample-area effect sufficiently accounts for variation in richness observed across our study 

islands, conferring support for the passive sampling/habitat amount hypotheses and random 

assembly of species. 

5.5 Discussion 
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Distinguishing mechanisms that underlie variation in species’ abundances, species’ 

occurrences, and emergent patterns of species richness is not only of great interest within the 

context of fundamental ecology, but is also of paramount importance to applied ecology and 

understanding how habitat fragmentation affects species diversity (Diamond 1975; Simberloff & 

Abele 1976; 1982; Haila 2002; Haddad et al. 2015; Chase et al. 2019). Here, we detail a novel 

modelling framework to test hypotheses on which conservation directives are contingent (Fahrig 

2003; 2013; 2017; Haddad et al. 2015; Hanski 2015; Fletcher et al. 2018). Applying this 

modelling framework to a butterfly assemblage persisting on a naturally fragmented landscape of 

true islands, we were able to resolve that: i) island area per se and isolation significantly affect 

species’ abundances and occurrences contingent on their functional traits; and ii) important 

effects of area per se and isolation are not always apparent in aggregate diversity measures, such 

as those reflected in ISARs. Although there are several documented divergences between the 

biogeographies of true-island systems and fragmented habitat on terrestrial landscapes, findings 

from our study clearly demonstrate that fragmentation effects should not be inferred from 

richness-based analyses, but rather evaluated on a species-by-species basis. 

5.5.1 Inferences from the ISAR 

Our modelling framework resolved that spatial patterns in butterfly species richness (i.e., 

the ISAR) did not significantly deviate from random placement in relation to island area, 

isolation, habitat diversity, or vascular plant diversity. These ISAR-based inferences align with 

those of MacDonald et al. (2018a), who used a series of SLOSS-based analyses to infer that 

butterfly species richness in this naturally fragmented landscape approximately conform to 

predictions of the sample-area effect, with no significant effects of area per se or isolation. 

Therefore, all analyses addressing effects of area per se and isolation on butterfly species 



 131 

richness in this system support the passive sampling/habitat amount hypotheses and Fahrig’s 

(2003; 2013; 2017) general conclusion that effects of fragmentation (i.e., area per se and 

isolation) are generally negligible after controlling for deleterious effects of habitat loss; only 

habitat amount at the landscape-scale affects species richness via its influence on regional 

species pools. 

While there seems to be considerable support for the passive sampling/habitat amount 

hypotheses in the literature (e.g., Fahrig 2003; 2013; Marti 2018; Watling et al. 2020), a recent 

meta-analysis by Fahrig (2020), including 157 SLOSS comparisons from 58 studies, found that 

several small islands/fragments contained more species than single large islands/fragments in 

72% of comparisons, equivalent numbers of species in 22% of comparisons, and fewer species in 

6% of comparisons. Removing studies with biased sampling effort in relation to island/fragment 

area shifted these figures to 58%, 37%, and 5%. Regardless, these results suggest that species 

richness varies with degree of fragmentation more often than not. Thus, the sample-area effect 

implicated in the passive sampling/habitat amount hypotheses cannot consistently account for 

SLOSS-based richness patterns. Furthermore, methods employed by Fahrig (2020)—

specifically, comparisons of Quinn & Harrison (1988) species accumulation curves—suffer from 

an important limitation: substantial species turnover among several small islands/fragments can 

inflate their aggregate richness, such that important deviations from random placement (e.g., 

effects of area per se) are obscured (sensu Simberloff 1976 MacDonald et al. 2018b; Deane et al. 

2020). This relationship may explain why several small islands/fragments are generally found to 

contain more species than single large fragments in the majority of SLOSS-based studies. While 

results of Fahrig’s (2020) meta-analysis are of great interest to both fundamental and applied 

ecology, they cannot necessarily be used to distinguish effects of area per se from the sample-
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area effect and cannot resolve additional effects of isolation or habitat diversity. Future 

investigations focusing on species richness would benefit from the inclusion of ISAR-based 

analyses that assess deviations from random placement on an island-by-island or fragment-by-

fragment basis, such as those included within the modelling framework presented here. 

Additional deviations from random placement may be resolved by visually examining the 

ISAR and random placement richness values (e.g., Figure 5-2 b). In this study, observed richness 

values were generally less than random placement richness values (all islands except four). This 

pattern cannot be attributed to effects of area per se, because the direction and magnitude of 

richness residuals was relatively consistent across islands of varying area (Figure 5-2 b), as 

indicated by the insignificant coefficient of island area within the species richness linear model 

(Table 5-2). Rather, this relationship is best explained by spatial species aggregation, wherein 

conspecific individuals are more likely to co-occur on islands than what is predicted by random 

placement, reducing the species richness of individual islands (He & Legendre 2002). Therefore, 

although spatial patterns of species richness did not significantly deviate from random placement 

in respect to either island area or isolation, they did deviate from random placement in respect to 

spatial species aggregation. It is therefore clear that failure to resolve significant effects of area 

per se and isolation on species richness cannot be taken as direct evidence for random assembly 

of individuals and species, the fundamental prediction of the habitat amount/passive sampling 

hypotheses (c.f. Fahrig 2003; 2013; 2017; 2020). Rigorous evaluation of random assembly 

requires comparison of observed richness to expected richness predicted by null models, such as 

the random placement models presented here.  
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5.5.2 Inferences from species’ abundances and occurrences 

 Inferring whether fragmentation is “good” or “bad” (sensu Fahrig 2017; Fletcher et al. 

2018) based on emergent patterns of species richness is potentially susceptible to “ecological 

fallacy” (sensu Robinson 1950), which describes biases that may arise when observed effects on 

aggregated variables (e.g., species richness) differ from causal relationships at more reductive 

and informative levels of organization (e.g., species’ abundances and occurrences). Indeed, our 

abundance and occurrence models resolved important effects of area per se and isolation that 

were not apparent in either ISAR- or SLOSS-based analyses [this study and see MacDonald et al. 

(2018a), respectively]. This discrepancy among inferences suggests that conflating responses of 

all species into a single aggregate measure (e.g., species richness) reduces our power to detect 

important relationships on which conservation directives should be contingent. Two such 

relationships were resolved when considering the entire species assemblage in abundance and 

occurrence models: i) there was a disproportionate concentration of individuals on larger and 

less-isolated islands relative to what was predicted by the sample-area effect (passive 

sampling/habitat amount hypotheses); and ii) species were more likely to occur on less-isolated 

islands than what was predicted by the sample-area effect. It is therefore clear that the sample-

area effect described by the passive sampling/habitat amount hypotheses cannot adequately 

account for spatial patterns in butterfly abundances and occurrences in this naturally fragmented 

landscape, which are better predicted by mechanisms outlined by the theory of island 

biogeography. It should be noted that the directionality of area per se and isolation effects were 

consistent among abundance, occurrence, and richness models, but only statistically significant 

( = 0.05) in the first two analyses, wherein species’ responses were not aggregated into a single 

measure.  
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Most interestingly, our modelling framework simultaneously resolved that effects of area 

per se on species’ abundances and occurrences varied significantly with species-specific 

functional traits, suggesting that mechanisms outlined by the theory of island biogeography are 

not neutral with respect to species identity. Whether species’ sensitivity to fragmentation varies 

predictably with functional traits is a long-standing and pertinent question in conservation 

biology (Roland & Taylo 1997; Lens et al. 2002; Gehring & Swihart 2003; Henle et al. 2004; 

Tscharntke & Brandl 2004; Thies et al. 2005; Ewers & Didham 2006; Prugh et al. 2008; Barbaro 

& Van Halder 2009; Öckinger et al. 2009; Hanski 2015; Warzecha et al. 2016; MacDonald et al. 

2018a; 2019). In this study, effects of area per se were significantly greater for butterfly species 

with smaller wingspans. For Canadian butterflies, wingspan is one of the strongest correlates of 

estimated mobility and dispersal ability (Burke et al. 2011); thus, we can infer that effects of area 

per se are greatest for small species of limited mobility (c.f. Larsen et al. 2008). This relationship 

may be explained by larger and more mobile butterfly species having the ability to move among 

multiple small islands to meet their resource requirements. These “transient” species may 

thereby exhibit patterns of abundance and occurrence that approximate random placement 

(MacArthur & Wilson 1967: Chapter 2; Rosenzweig 2004; MacDonald et al.. 2018a). Such 

patterns would be predicted by ideal free distribution theory (sensu Dreisig 1995) if two 

conditions are met: i) islands of varying area contain equivalent densities of resources; and ii) the 

mobility/dispersal ability of individuals is sufficient to render costs of inter-island movements 

negligible. By contrast, island edges may be perceived as impassible barriers for smaller and less 

mobile species, with energy expenditures and mortality risks associated with movement through 

the open-water matrix being too high for regular inter-island movements. Island edges may 

therefore delimit populations of smaller and less mobile species, which are generally restricted to 
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larger islands that contain all resources required for mate location, reproduction, resting, 

roosting, predator escape, and feeding (i.e., the functional resource-based habitat concept; Dennis 

et al. 2002). This hypothesis is supported by analyses of MacDonald et al. (2018a), who resolved 

that the probability of butterfly species occurring on at least one island without their preferred 

larval host plants was positively related to species’ wingspan and estimated mobility. Considered 

together, these results suggest that functional traits may be used to predict species’ sensitivity to 

fragmentation and that species identity should not be ignored when investigating mechanisms 

that underlie ISARs or in conservation planning. It is, however, important to recognize that the 

open-water matrix of this study landscape may be more unsuitable and less permeable than those 

of many fragmented terrestrial landscapes (Dunning et al. 1992; Ricketts 2001; Laurance 2008; 

Mendenhall et al. 2014; Itescu 2019; Farneda et al. 2020). It is therefore unclear the degree to 

which these relationships between species’ functional traits and effects of area per se and 

isolation are generalizable to conservation efforts addressing terrestrial landscapes fragmented 

through anthropogenic activities.  

The abundance and occurrence modelling framework proposed here may also be 

implemented on a species-by-species basis by regressing island/fragment variables (area, 

isolation, presence/amount of suitable habitat or specific resources, etc.) on abundance and 

occurrence residuals for each species in separate linear models. This method of analysis 

precludes the simultaneous integration of functional trait analyses within models, but has the 

added advantage of identifying single species that are particularly sensitive to habitat 

fragmentation (area per se and isolation) or other island/fragment variables of interest. This 

simple decomposition of our modelling framework may be used to resolve whether particular 

species require independent consideration within conservation frameworks.  
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5.5.3 Isolation vs. habitat amount 

 The relative isolation of islands addressed in this study was quantified across multiple 

scales as the proportion of water within 11 buffer sizes, ranging from 250 to 5000 m. These 

measures are equal to 1 minus the amount of landmass (habitat) within each buffer distance. 

Fahrig (2013) suggests that the habitat amount hypothesis would be supported by species’ 

abundances, species’ occurrences, or species richness of equal-area sampling plots (stratified 

across fragments of varying area and isolation) correlating with the amount of habitat on the 

surrounding landscape more strongly than with the area of the individual fragments on which the 

sampling plots are located. This is because landscapes containing less habitat should contain 

fewer individuals (belonging to fewer species) due to the sample-area effect, meaning fragments 

within such landscapes will have smaller species pools from which their own diversities are 

randomly sampled. However, the “appropriate distance” for quantifying the amount of habitat 

surrounding equal-area sampling plots is undefined and, most problematically, the area of 

individual fragments on which sampling plots are located becomes increasingly correlated with 

habitat amount as this distance is reduced. Thus, it may not be possible to decouple fragment 

area from habitat amount using Fahrig’s (2013) proposed method; particularly, for taxa that 

respond to habitat amount and configuration at fine spatial scales, including butterflies (Thomas 

& Abery 1995; MacDonald et al. 2017; 2018a; 2019; Saura 2020).  

Within our modelling framework, variation in species’ abundances, species’ occurrences, 

and species richness associated with full-island surveys and the sample-area effect is nullified in 

the calculation of random placement residuals. Abundance, occurrence, and richness residuals 

can therefore be correlated with island/fragment area and the amount of surrounding habitat in a 

fashion similar to Fahrig’s (2013) proposed method of using equal-area sampling plots. 
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However, because the area of individual islands/fragments is not included in our measures of the 

amount of surrounding habitat (our buffers are generated from island/fragment edges), the 

problem of island/fragment area becoming increasingly correlated with habitat amount at fine 

spatial scales is avoided. After controlling for effects of area per se, abundance and occurrence 

residuals were significantly related to island isolation. Model support significantly declined 

across increasing isolation buffer sizes for species’ abundances, species’ occurrences, and 

species richness, suggesting that that the amount of habitat immediately surrounding islands, 

rather than the amount of habitat at broader landscape scales, has the greatest effect on butterflies 

in this system. Importantly, island area and isolation were effectively decoupled, as indicated by 

the absence of correlation between island area and isolation (e.g., 250 m buffer; r = 0.082; P = 

0.668). Thus, in contrast with mechanisms outlined by the habitat amount hypothesis, isolation 

effects observed in this study are better attributed to the fact that individual butterflies moving 

through the open-water matrix are less likely to encounter more isolated islands (Andrén 1994), 

reducing species’ abundances and probabilities of occurrence, as predicted by the theory of 

island biogeography. This inference is further corroborated by analyses of MacDonald et al. 

(2018a), which showed that butterfly species turnover among islands of equal areas—a proxy for 

variation in species pools if islands indeed randomly sample species—was unrelated to 

Euclidean distance between islands. This result suggests a uniform species pool throughout the 

study landscape. Again, the degree to which these findings apply to fragmented terrestrial 

landscapes, wherein the suitability and permeability of matrices may vary, is unclear. For studies 

addressing fragmented terrestrial landscapes, isolation measures should not only account for the 

proportion of suitable habitat within various buffer distances, but also include measures of matrix 

suitability and permeability, if they are available (e.g., MacDonald et al. 2020). 
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5.5.4 Habitat fragmentation and the narcissus effect 

It is important to recognize a bias within this case study, and potentially other study 

designs addressing spatial patterns of species’ abundances, species’ occurrences, or species 

richness across true islands or terrestrial habitat fragments. Here, we investigated effects of area 

per se and isolation on a naturally fragmented landscape of true islands with substantial time-

since-isolation (3000 – 4000 YA; Yang and Teller 2005). Therefore, species that are particularly 

sensitive to fragmentation are unlikely to occur on islands at all. Although our modelling 

framework resolved significant effects of area per se and isolation on butterfly species’ 

abundances and occurrences, effects of area per se and isolation on the regional species pool 

were likely underestimated, as the species assemblage of adjacent continuous habitat was not 

quantified. This bias may be described as the “narcissus effect”, which addresses situations 

wherein a null model or study design unintentionally accounts for or excludes effects that are of 

interest (sensu Colwell & Winkler 1984). It is possible that this bias contributed to results of 

Fahrig’s (2017) review, where 68% (158/232) of studies addressing single species reported 

positive fragmentation effects; species that are particularly sensitive to fragmentation may be 

completely missed in many studies. We therefore suggest caution in interpreting results from 

study designs that are susceptible to the narcissus effect and encourage future studies to compare 

the identities and functional traits of species between islands/fragments and adjacent continuous 

habitat to assess potential biases resulting from the historic exclusion of fragmentation-sensitive 

species. This may be accomplished using our proposed modelling framework by surveying 

continuous habitat equal in area to the sum of all surveyed islands/fragments. Abundance data 

from continuous habitat may then be used in place of total abundances across all 

islands/fragments (ni) to calculate abundance, occurrence, and richness random placement values 
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for each island/fragment using the random placement models described above. Subtracting these 

random placement values from observed abundance, occurrence, and richness values for each 

island/fragment will result in abundance, occurrence, and richness residuals that may be used in 

our linear mixed effects models (abundance and occurrence) and linear models (richness) to 

resolve whether there are additional effects of area per se and isolation on the regional species 

pool. 

5.5.5 Conservation implications 

Considerable uncertainty exists in the literature regarding the influence of area per se and 

isolation (i.e., habitat fragmentation) on populations and communities of wildlife (Fahrig 2003; 

2013; 2017; Haddad et al. 2015; Hanski 2015; Fletcher et al. 2018). There is an immediate need 

to resolve this debate, as habitat loss and fragmentation are widespread and increasing (Hanski et 

al. 2013; Ibisch et al. 2016; Deane et al. 2020; Chase et al. 2020). We demonstrate here that 

ISAR- and SLOSS-based inferences, founded on emergent patterns of species richness, have the 

potential to obscure important interspecific variation in responses to area per se and isolation. To 

infer support for the passive sampling, habitat amount, and related hypotheses from emergent 

patterns of species richness that spuriously conform to predictions of the sample-area effect is to 

simplistically cut rather than carefully untie the Gordian knot of ecological complexity. We 

suggest that, in addition to emergent patterns of species richness, information at more reductive 

and informative levels of organization (e.g., species’ abundances and occurrences) should be 

included in studies aiming to measure and understand effects of habitat fragmentation. 
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6 Chapter 6: Perceptual range, targeting ability, and visual habitat detection by greater 

fritillary butterflies Speyeria cybele (Lepidoptera: Nymphalidae) and Speyeria atlantis 

6.1 Abstract 

Butterflies are widely invoked as model organisms in studies of metapopulation and 

dispersal processes. Integral to such investigations are understandings of perceptual range; the 

maximum distance at which organisms are able to detect patches of suitable habitat. To infer 

perceptual range, researchers have released butterflies at varying distances from habitat patches 

and observed their subsequent flight behaviors. It is often assumed that butterflies rely on visual 

senses for habitat detection; however, this assumption has not been explicitly investigated. Here, 

we assess the extent and sensory determinants of perceptual range for the great spangled fritillary 

(Speyeria cybele (Fabricius, 1775)) and Atlantis fritillary (Speyeria atlantis (W.H. Edwards, 

1862)). This was achieved by experimentally releasing butterflies over open water at various 

distances from a lake island, representing an isolated habitat patch in a dichotomous habitat-

matrix landscape. To infer whether butterflies rely on vision for habitat detection, we exposed a 

subset of butterflies to a series of intense light flashes before release to induce flash blindness 

(bleaching of photoreceptive rhodopsins) without affecting olfaction. Flashed individuals were 

30.1 times less likely to successfully navigate to the target island after release, suggesting 

butterflies rely primarily on visual senses to navigate fragmented landscapes. For unflashed 

butterflies, the likelihood of successful navigation decreased by a factor of 2.1 for every 10 m 

increase in release distance. However, no specific distance threshold for perceptual range was 

observed. We therefore suggest that perceptual range is best viewed as a continuum of 

probabilities (targeting ability), reflecting the likelihood of habitat detection across a range of 

distances. 
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6.2 Introduction 

The movement of organisms between patches of suitable habitat is a principal ecological 

process contributing to both metapopulation persistence and diversity patterns on fragmented 

landscapes (Hanski 1998; Wiens 2001; Stevens et al. 2012). Butterflies (Lepidoptera: 

Papilionoidea), in particular, have proven to be important model organisms in related studies, as 

their adult movements are easily observable (e.g., Haddad 1999; Dover & Fry 2001; Riva et al. 

2018), individuals may be marked for recapture (e.g., Ehrlich & Davidson 1960; Baguette 2003; 

Nowicki et al. 2014), and patch occupancy may be inferred due to their high detectability and 

well-documented host plant relationships (e.g., Hanski et al. 1996; Tiple et al. 2011; MacDonald 

et al. 2017; 2018a; Grant et al. 2018). However, despite a considerable history of study, 

information is generally lacking on how butterflies actually detect and navigate to patches of 

suitable habitat while moving through matrices of unsuitable habitat (Baguette & Van Dyck 

2007; Schtickzelle et al. 2007). Related investigations are often predicated on estimating 

butterflies’ perceptual range; the maximum distance at which individuals are able to detect 

patches of suitable habitat using their sensory organs (Wiens 1989). 

To estimate perceptual range, butterflies may be released at varying distances from 

habitat edges, and their flight behaviors subsequently observed. Employing these or related 

methods, the perceptual ranges of multiple butterfly species have been estimated: the bay 

checkerspot (Euphydryas editha bayensis Sternitzky, 1937 (Lepidoptera: Nymphalidae)) at 50 m 

(Harrison 1989); the sleepy orange (Eurema nicippe (Cramer, 1779) (Lepidoptera: Pieridae)) and 

cloudless sulphur (Phoebis sennae (Linnaeus, 1758) (Lepidoptera: Pieridae)), both at 8 m 

(Haddad 1999); the Fender’s blue (Icaricia icarioides fenderi (Macy, 1931) (Lepidoptera: 

Lycaenidae)), between 10 and 22 m (Schultz et al. 2001); the bog fritillary (Boloria 
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[Proclossiana] eunomia (Esper, 1800) (Lepidoptera: Nymphalidae)), between 15 and 30 m 

(Schtickzelle et al. 2007); and the speckled wood (Pararge aegeria (Linnaeus, 1758) 

(Lepidoptera: Nymphalidae)), at either 50 or 100 m, depending on whether individuals originated 

from fragmented or contiguous landscapes, respectively (Merckx & Van Dyck 2007). 

Contrasting with these studies, Fahrig & Paloheimo (1987) observed that female cabbage white 

butterflies (Pieris rapae (Linnaeus, 1758) (Lepidoptera: Pieridae)) did not orient towards patches 

of their host plants from distances greater than 1 m. While this was interpreted as evidence that 

visual senses of P. rapae are quite limited (Fahrig & Paloheimo 1987), it is unclear whether 

patches of host plants contrasted visually with the matrix in which butterflies were released, and 

whether the experiment facilitated use of olfactory senses. 

Taken together, results of these studies demonstrate that perceptual ranges of butterflies 

are both variable and considerable, despite limitations of the compound eye (Rutowski 2003). 

Indeed, structural properties of butterfly ommatidia suggest that even large objects, several 

meters high, may not be resolvable at distances greater than 20–30 m (Rutowski 2003). Other 

senses, namely olfaction, may account for detection of suitable habitat and nectar resources 

beyond these distances (Cardé & Willis 2008). At finer spatial scales, visual and olfactory senses 

may work synergistically in larval host plant detection. For example, studies addressing the 

pipevine swallowtail (Battus philenor (Linnaeus, 1771) (Lepidoptera: Papilionidae)) in southeast 

Texas suggest that, while females identify suitable larval host plants by visual recognition of leaf 

shapes (Rausher 1978), individuals develop relevant search images by building associations 

between leaf shapes and appropriate chemical compositions (Papaj 1986). Other investigations of 

butterflies’ senses and their relationships to habitat or resource detection have been largely 

limited to comparisons of genetic and morphological traits among species, populations, sexes, or 
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individuals that differ in movement, dispersal, or migratory behaviors (e.g., Hill et al. 1999; 

Berwaerts et al. 2006; Niitepõld et al. 2009; Altizer et al. 2010; Turlure et al. 2016; reviews in 

Silberglied 1984; Weiss 2001). 

Despite this considerable body of literature, little has been done to experimentally 

decouple contributions of butterflies’ multiple senses to detecting patches of suitable habitat 

while moving through matrices of unsuitable habitat. Offering some insight, Dover & Fry (2001) 

simulated suitable habitat corridors (hedgerows) in an agricultural landscape using windbreak 

materials, and passively observed flight behaviors of passing butterflies, including the scarce 

copper (Heodes virgaureae (Linnaeus, 1758) (Lepidoptera: Lycaenidae)), heath fritillary 

(Mellicta athalia (Rottemburg, 1775) (Lepidoptera: Nymphalidae)), high brown fritillary 

(Argynnis [Fabriciana] adippe (Dennis & Schiffermüller, 1775) (Lepidoptera: Nymphalidae)), 

and niobe fritillary (Argynnis [Fabriciana] niobe (Linnaeus, 1758) (Lepidoptera: Nymphalidae)). 

Their erected structures resembled habitat visually, but not chemically, and were still observed to 

influence flight patterns. This suggests that butterflies rely at least partially on visual senses to 

detect suitable habitat. However, individuals were only observed to fly along simulated 

hedgerows when they were encountered, and specific distances at which butterflies responded to 

or oriented towards hedgerows were not reported. 

In this study, we investigate the extent and sensory determinants of perceptual range for 

two species of greater fritillary butterflies, the great spangled fritillary (Speyeria cybele 

(Fabricius, 1775) (Lepidoptera: Nymphalidae)) and Atlantis fritillary (Speyeria atlantis (W.H. 

Edwards, 1862) (Lepidoptera: Nymphalidae)), occurring in the Lake of the Woods region, 

Ontario, Canada. On islands of Lake of the Woods, both S. cybele and S. atlantis have been 

observed to consistently avoid open water during flight movements, indicating that they perceive 
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islands as discrete patches of suitable habitat situated in a matrix of unsuitable habitat (Z. G. 

MacDonald, unpublished data; and see MacDonald et al. 2018a). Preferred larval host plants of 

S. cybele and S. atlantis are Viola species. While Viola commonly occur on these islands 

(MacDonald et al. 2018b), we cannot be sure whether host plants exist in sufficient quantities 

within single islands to sustain isolated populations. Notwithstanding, we define islands as 

suitable habitat under the functional resource-based concept (sensu Dennis et al. 2003), as each 

contains resources sufficient for mate location, resting, roosting, feeding, and predator escape. 

Under this habitat concept, the open-water matrix is entirely unsuitable. The high-contrast nature 

of this relatively dichotomous habitat-matrix system thereby serves as a suitable natural arena for 

inferring perceptual range via experimental releases. Furthermore, the open-water matrix 

controls for unwanted matrix heterogeneity that might affect butterfly flight behavior (e.g., 

Nowicki et al. 2014). 

To estimate perceptual range of both S. cybele and S. atlantis, we released individuals 

over open water at varying distances from a single island and observed their flight behaviors. To 

investigate the extent to which butterflies rely on visual senses to detect and navigate to patches 

of suitable habitat during dispersal movements, we developed a novel method of exposing 

individuals’ photoreceptors to a series of intense light flashes before release. We hypothesized 

that this method would induce flash blindness through bleaching of photoreceptive pigments 

(rhodopsins; e.g., Bernard 1983a;b; Briscoe et al. 2003), reducing butterflies’ ability to detect 

and navigate to the target island. Such a result would suggest visual senses are a primary means 

by which S. cybele and S. atlantis detect and navigate to patches of suitable habitat while moving 

through matrices of unsuitable habitat. 

6.3 Methods 
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6.3.1 Study area and experimental design 

Our study area was located at the southeast corner of Lake of the Woods, Ontario, 

Canada. We collected a total of 41 S. cybele and 54 S. atlantis at three mainland sites within 20 

km of Morson, Ontario, between 1 July and 30 July 2016. All collected specimens were judged 

to be in good condition with minimal wear to wing margins. Collection of specimens was 

completed between 10:00 and 14:00 on days with ambient temperatures above 20°C, cloud cover 

less than 75%, and wind speeds below 25 km h−1. Collection sites were located at least 10 km 

from the lake shore, and were equivalent in habitat composition and structure, comprised of 

meadows situated within mixed stands of boreal and laurentian tree species (e.g., Pinus strobus, 

P. banksiana, Betula papyrifera, Acer spicatum, Picea glauca, and Tilia americana). After 

collection, butterflies were temporarily housed in small, polypropylene containers, kept within a 

cooler maintained between 20 and 25°C. Collected butterflies were then immediately transported 

via motorboat to a single island, located at 49.1139° N, −94.2071° E, for experimental release on 

the same day as collection. This ‘target’ island is approximately 1.0 ha in area, and was 

specifically selected for experimental releases because of its approximately circular shape, 

uniform habitat composition (mixed woodland and shoreline meadow), uniform habitat height 

(~25 m), and considerable isolation from other landmasses (>300 m). We secured the boat’s 

position at varying distances from the target island’s shore (30, 40, 50, or 60 m), using a laser 

range finder (RX-1200i TBR DNA; Leupold & Stevens, Inc., Beaverton) and a combination of 

anchors and a stern tie. For all releases, the boat was positioned relative to the target island such 

that the bearing to the island’s center was 90° to the wind direction (Figure 6-1). This effectively 

controlled for biases that may arise from butterflies being blown towards or away from the island 

after their release, changing the effective release distance. 
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Figure 6-1. Visual representation of experimental releases. The boat was secured at varying 

distances from the target island’s shore (30, 40, 50, or 60 m), such that the bearing to the island’s 

center was 90° to the wind direction. Butterflies were sexed, marked, and released one at a time. 

For each released individual, flight time and flight orientation at 2.5, 5, and 10 m of travel were 

recorded. Angular subtense of the target island, θs, was estimated as the angular difference 

between the left and right shore bearings. Deviations in flight orientations from wind direction 

(θw) and island direction (θi), given by θdw’ and θdi’, respectively, were estimated at 2.5, 5, and 

10 m of travel using eq. 2. 
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Once the boat was secured at specific distances from the target island, butterflies were 

sexed, marked, and released one at a time. All releases were completed between 14:00 and 18:00 

on days with ambient temperatures above 20°C, cloud cover less than 75%, and wind speeds 

below 25 km h−1. Each butterfly was released from a 1.5-m aerial net, held away from the edge 

of the boat towards the target island’s center. Keeping as still as possible, the extended net was 

left open for butterflies to leave at their own will. A second observer recorded the emerging 

orientation of butterflies, as well as their total flight time and flight orientation after 2.5, 5, and 

10 m of travel. Each butterfly was then visually tracked, using a binocular, until it successfully 

navigated to the target island or flew out of sight (at distances greater than 100 m). 

To investigate the role of vision in habitat detection, we sought to devise a method to 

inhibit butterflies’ visual senses without affecting their other senses or flying ability. Painting 

over, or otherwise covering, butterflies’ compound eyes would not achieve this, as this would 

introduce chemical compounds to sensory areas and add mass to the butterfly itself. To avoid 

these confounds, we attempted to induce flash blindness by exposing butterflies’ photoreceptors 

to a series of intense light flashes before release. A powerful external photographic flash was 

used as a flash source (EM-140 DG Macro Flash, guide number = 14 at ISO 100, Sigma 

Corporation, Kawasaki, Japan). Triggering the flash for 1/6,000 s at a distance of 10 cm 

produced an estimated 100,352,000 lux (lumens m−2); approximately 1,024 times the intensity 

of ambient sunlight. Flashing butterflies at 10 cm from the left, right, dorsal, ventral, posterior, 

and anterior surfaces of their compound eyes, such that the majority of ommatidia were directly 

exposed to the flash. Butterflies were kept in their polypropylene containers within a dark cooler 

before flashing to maximize deleterious effects of flashing on rhodopsins (Bernard 1983a; 
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1983b; Briscoe et al. 2003). Approximately half of S. cybele and S. atlantis released at each 

distance were flashed immediately before release. 

Flash blindness is caused by bleaching of rhodopsins involved in visual 

phototransduction within rhabdomeres (Przewłocki et al. 1983). Past work has shown that 

exposing butterflies’ compound eyes to repeated flashes may bleach rhodopsins either 

temporarily or permanently, depending on the number and intensity of flashes (Bernard 1983a; 

1983b; Briscoe et al. 2003). It is also reported that butterfly rhodopsins involved in the detection 

of ultraviolet, blue, green, and red light are all susceptible to bleaching (Bernard 1983a; 1983b; 

Briscoe et al. 2003). We did not complete work to assess whether this flash method induced 

temporary or permanent bleaching of rhodopsins (i.e., temporary or permanent flash blindness). 

However, if flashed butterflies consistently failed to detect and navigate to the target island from 

distances at which unflashed butterflies were generally successful, it would be reasonable to 

conclude that: i) the flash method effectively inhibited butterfly photoreceptor function through 

bleaching of rhodopsins, resulting in flash blindness; and ii) Speyeria spp. rely primarily on 

visual senses to detect and navigate to patches of suitable habitat while moving through matrices 

of unsuitable habitat. 

6.3.2 Data analyses 

A series of generalized linear models (GLMs) were used to assess what environmental 

and organism-specific variables affected butterflies’ probability of successful navigation, flight 

speed and tortuosity, and flight orientation. All statistical analyses were performed using the 

statistical software R version 3.4.3 (R Core Team, 2017). 
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6.3.2.1 Probability of successful navigation 

Model 1: Binomial GLMs (logit link) were used to measure the effects of release 

distance, wind speed, species identity, sex, and visual impairment (flashing) on the probability of 

successfully navigating to the target island (success/failure). Interactions between relevant 

experimental variables were assessed using first-degree interaction terms. Sunlight (direct vs 

diffuse), percentage cloud cover (estimated as 1 – the proportion of blue sky visible to 

observers), ambient temperature, butterfly collection location, day of release, and time in 

captivity were included as noise variables. All experimental variables were fitted regardless of 

their significance, with relevant interaction terms and noise variables included in the final model 

only if significant. Standardized coefficients were estimated for all continuous variables. To 

interpret the effects of experimental variables on the likelihood of navigation success, odds ratios 

were estimated using original units of experimental variables to permit straight-forward 

interpretation. 

Model 2: Perceptual ranges of butterflies are most often reported as a single distance 

measures, irrespective of patch size or habitat characteristics (e.g., Harrison 1989; Schultz et al. 

2001; Merckx & Van Dyck 2007; Schtickzelle et al. 2007). However, analyses of butterflies’ 

ommatidial structures suggest that the sizes of objects may determine the maximum distances at 

which they are detectable (i.e., single object thresholds; Rutowski 2003). Therefore, the ability to 

detect habitat patches may decrease with increasing distance simply because of decreasing 

angular subtense, rather than increasing distance per se. To decouple these variables, we 

estimated the angular subtense of the target island for each experimental release as the angular 

difference between the left and right shore bearing (Figure 2-1). Although the target island was 

approximately circular in shape, angular subtense still varied independent of release distance, 
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depending on the location of the release boat (i.e., the direction from which the island was 

viewed). As would be expected, angular subtense and release distance were negatively correlated 

(r = −0.775). This strong correlation limited our ability to partition variance in the probability of 

successful navigation between angular subtense and release distance using residual or multiple 

regression techniques (Freckleton 2002). However, if sizes of habitat patches or islands 

determine the maximum distances at which they are detectable, a competing model accounting 

for angular subtense should explain more variation in navigation successes than a model 

accounting for release distance. We tested this hypothesis by substituting the target island’s 

angular subtense into the previous binomial GLM built using release distance. The significance 

of the two variables, as well as McFadden’s pseudo R2, was compared between the two 

competing models. 

6.3.2.2 Flight speed and tortuosity 

Models 3 and 4: GLMs were next used to measure the effects of release distance, wind 

speed, species identity, sex, and flashing on: i) flight speed, estimated as total flight time after 10 

m of travel; and ii) flight tortuosity, estimated as the standard deviation of turn angles between 

first emergence, 2.5, 5, and 10 m of travel. Calculating the standard deviation of turn angles is 

non-trivial, since bearings wrap from 359° around to 0° (Batschelet 1981). Therefore, to estimate 

turn angles (d’), we standardized flight orientations at each distance (2.5, 5, and 10 m; d) 

relative to flight orientations at the previous distance (emergence, 2.5, and 5 m; d-1), using the 

following conditional equation (eq.1):  
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𝜃𝑑
′ = {

 𝜃𝑑 − 𝜃𝑑−1, |𝜃𝑑 − 𝜃𝑑−1| ≤  180°
 𝜃𝑑 − 𝜃𝑑−1 + 360°, 𝜃𝑑 − 𝜃𝑑−1 <  −180°
 𝜃𝑑 − 𝜃𝑑−1 − 360°, 𝜃𝑑 − 𝜃𝑑−1 > 180°

 

 

This equation produces reliable turn angle estimates, so long as absolute differences in 

sequential flight orientations are less than 180°, which they were in all instances. Within flight 

speed and flight tortuosity GLMs, experimental variables were fit regardless of their 

significance, with relevant interaction terms and noise variables included only if significant. 

Success/failure of navigation to the target island was fit as a binary covariate in both models, to 

assess whether flight speed and tortuosity varied between butterflies that were successful and 

unsuccessful in navigating to the target island. Total flight time after 10 m of travel and standard 

deviations of turn angles both took on positive continuous values that were best fit using a 

gamma distribution (log link). 

6.3.2.3 Determinants of flight orientation 

Models 5 and 6: Perceptual range is often inferred by determining the maximum distance 

at which the proportion of released butterflies orienting towards habitat significantly differs from 

what is expected under random flight orientations (e.g., Fahrig & Paloheimo 1987; Schtickzelle 

et al. 2007). Specifically, this random flight null assumption assumes that the proportion of 

butterflies failing to detect the a nearby habitat patch, but still flying towards it, will be 

proportional to the angular subtense of the patch divided by 360°. However, contrasting with this 

null assumption, wind direction appeared to determine initial flight orientations for the majority 

of released butterflies in our study, independent of whether butterflies detected and navigated to 

the target island or not. If wind direction indeed determined the flight orientations of the majority 
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released butterflies, the proportion of butterflies failing to detect a habitat patch, but still flying 

towards it, will be less than what is predicted by the random flight null assumption. 

As a corollary of these relationships, we expect that, for butterflies that successfully 

detected and navigated to the target island (hereafter, “successful butterflies”), deviations in 

flight orientations from wind direction should increase with distance flown, while deviations in 

flight orientations from island direction should decrease with distance flown. Such relationships 

correspond to reorientation away from the wind direction, towards the target island. This 

reorientation is not predicted for butterflies that were unsuccessful in detecting and navigating to 

the target island (“unsuccessful butterflies”), and deviations in flight orientations from wind 

direction and island direction should not vary with distance flown. To build statistical models to 

test these predictions, we first estimated: i) absolute deviations in flight orientations at 2.5, 5, and 

10 m (d) from wind direction (w), given by dw’; and ii) absolute deviations in flight 

orientations at 2.5, 5, and 10 m (d) from the bearing to the centre of the target island (i), given 

by di’. This was achieved using the following conditional equation (eq. 2):  

 

𝜃𝑑𝑥
′ = {

|𝜃𝑑 − 𝜃𝑥|, |𝜃𝑑 − 𝜃𝑥| ≤  180°
|𝜃𝑑 − 𝜃𝑥 + 360°|, 𝜃𝑑 − 𝜃𝑥 <  −180°
|𝜃𝑑 − 𝜃𝑥 − 360°|, 𝜃𝑑 − 𝜃𝑥 > 180°

 

 

where w or i takes the place of x and dw’ or di’ takes the place of dx’ for estimating 

deviations in flight orientations from wind direction or island direction, respectively. Two 

generalized linear mixed models (GLMMs) were used to assess whether: i) deviations in flight 

orientations from wind direction increased with distance flown; and ii) deviations in flight 
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orientations from island direction decreased with distance flown. Dependent variables used in 

these GLMMs were: i) absolute deviations in flight orientations from wind direction; and ii) 

absolute deviations in flight orientations from island direction. Experimental variables in both 

GLMMs included distance flown (2.5, 5, and 10 m), wind speed, and success/failure of 

navigation to the target island. Release ID was treated as the random effect within GLMMs to 

control for lack of independence between successive flight orientations of individuals. An 

interaction term between distance flown and success/failure was used to assess whether 

relationships between deviations in flight orientations and distance flown differed between 

successful and unsuccessful butterflies. Flashed butterflies were not included within GLMMs to 

avoid introducing unwanted noise in flight orientations. Tweedie distributions (log link) were 

used to accommodate non-negative continuous response variables and right skew (Dunn & 

Smyth 2005).  

Within the first GLMM, a significant positive interaction between distance flown and 

success would indicate that deviations in flight orientations from wind direction increased with 

distance flown for successful butterflies. Within the second GLMM, a significant negative 

interaction between distance flown and success would indicate deviations in flight orientations 

from island direction decreased with distance flown for successful butterflies. Nonsignificant 

main effects of flight distance in both models would suggest that these relationships were only 

observed for successful butterflies, that is, deviations in flight orientations from wind direction 

and island direction were unrelated to distance flown for unsuccessful butterflies. Together, these 

results would indicate that instances of successful navigation generally involved a reorientation 

away from wind direction and towards island direction after release, questioning the validity of 

the random flight null assumption. 
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6.4 Results 

6.4.1 Probability of successful navigation 

For both S. cybele and S. atlantis, the proportion of unflashed butterflies successfully 

navigating to the target island generally decreased with increasing release distance (Figure 6-2). 

At the maximum release distance of 60 m, 50.0% of unflashed S. cybele were successful (Table 

6-1). At 50, 40, and 30 m, 54.5, 85.7, and 80.0% of unflashed S. cybele were successful. At 60 

m, no unflashed S. atlantis were successful. This increased to 16.7% at 50 m, and to 50.0% at 

both 40 and 30 m. Flashing substantially reduced percentages of successful navigation for both 

species at all distances. Considering all releases at all distances, only 11.1% of flashed S. cybele 

and no flashed S. atlantis were successful in navigating to the target island. This contrasts with 

the 66.6% of unflashed S. cybele and 33.3% of unflashed S. atlantis that were successful in 

navigating to the target island overall. 
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Table 6-1. The number of Speyeria cybele and S. atlantis released at 30, 40, 50, and 60 m that 

were successful and unsuccessful in navigating to the target island. A subset of butterflies were 

exposed to a series of intense flashes immediately before release. This method induced flash 

blindness through bleaching of photoreceptive rhodopsins, without affecting olfaction. 

    Speyeria cybele Speyeria atlantis 

Release 

distance (m) 

Navigation 

to island 
Not flashed Flashed Not flashed Flashed 

30 
successful: 4 1 4 0 

unsuccessful: 1 4 4 6 

40 
successful: 6 1 3 0 

unsuccessful: 1 8 3 6 

50 
successful: 6 1 1 0 

unsuccessful: 5 8 5 3 

60 
successful: 2 0 0 0 

unsuccessful: 2 4 4 2 
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Figure 6-2. The proportion (success rate) of Speyeria cybele and Speyeria atlantis that 

successfully navigated to the target island after experimental release at 30, 40, 50, and 60 m. 

Flashed butterflies were exposed to a series of intense flashes immediately before release. This 

method induced flash blindness through bleaching of photoreceptive rhodopsins, without 

affecting olfaction. Reduced success rates of flashed butterflies indicate that butterflies rely 

primarily on visual senses to detect and navigate to suitable habitat patches during interpatch and 

dispersal movements. 

 

The first binomial GLM accounting for probability of successful navigation to the target 

island corroborated these relationships (Model 1, Table 6-2). Release distance had a significant 

negative effect on the probability of successful navigation. An odds ratio of 0.93 (95% CI: 0.87, 

0.98) indicates that the likelihood of successful navigation decreased by a factor of 1.08 for 

every 1 m increase in release distance, or by a factor of 2.15 for every 10 m increase in release 

distance. The effect of an interaction between species and distance was non-significant, 

suggesting that decreases in the likelihood of successful navigation associated with increases in 

release distance were approximately equivalent between species. However, S. cybele had a 

significantly higher probability of successful navigation than S. atlantis overall. An odds ratio of 

2.48 (95% CI: 0.76, 9.13) indicates that released S. cybele were 2.48 times more likely to 

successfully navigate to the target island than S. atlantis. No significant difference between sexes 

was observed. Flashing butterflies had a significant negative effect on the probability of 

successful navigation. An odds ratio of 0.03 (95% CI: 0.01, 0.13) indicates that flashed 

butterflies were 30.13 times less likely to successfully navigate to the target island than 

unflashed butterflies. Substituting angular subtense of the target island into the binomial GLM 
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accounting for release distance reduced model fit (McFadden's pseudo R2: Model 1 = 0.36; 

Model 2 = 0.31), and angular subtense was not significantly related to the probability of 

successful navigation (Model 2, Table 6-2).  

 

Table 6-2. Summary of generalized linear model (GLM) and generalized linear mixed model 

(GLMM) results. Coefficient estimates and their corresponding P-values are given in 

parentheses. Coefficient estimates for continuous variables (release distance, wind speed, angular 

subtense, and distance flown) are standardized. Models 1 and 2 (GLMs) were fitted using a 

binomial distribution with a logit link function. Navigation success was measured as the success 

or failure of navigation to the target island. Models 3 and 4 (GLMs) were fit using a gamma 

distribution with a log link function. Flight speed was measured as total flight time to 10 m. 

Flight tortuosity was measured as the standard deviation of turn angles. Models 5 and 6 

(GLMMs) were fitted using a Tweedie distribution with a log link function. Deviation from wind 

direction and deviation from island direction were measured as absolute deviations in flight 

orientations from the wind bearing and the bearing towards the target island’s centre, 

respectively, after 2.5, 5, and 10 m of flight. Individual ID was treated as a random effect to 

account for lack of independence between successive flight orientations of individuals.  
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Dependent variable Experimental variables 

 release 

distance1 
wind speed2 species3 sex4 flashing5  

Mod. 1: navigation 

success 
-0.777* 0.024 2.117** 0.909 -3.405***  

 angular 

subtense6 
wind speed species sex flashing  

Mod. 2: navigation 

success 
0.378 -0.136 1.750** 0.78 -3.132***  

 release 

distance 
wind speed species sex flashing success7 

Mod. 3: flight speed 0.049' -0.200*** -0.041 0.071 0.226*** 0.111 

Mod. 4: flight 

tortuosity 
0.066 -0.522*** 0.405' -0.177 0.540* 0.524* 

 distance 

flown 
wind speed species sex success 

distance 

flown  

success 

Mod. 5: deviation 

from wind direction 
-0.025 -0.523*** 0.155 -0.115 0.537* 0.190' 

Mod. 6: deviation 

from island direction 
0.017 0.158** 0.054 -0.129 -0.429*** -0.176 *** 

1continuous: distance at which butterflies were released from the island (m); 2continuous: wind speed at time of 

release (kmph) ; 3categorical: Speyeria cybele or S. atlantis, with S. atlantis treated as the reference category; 
4categorical: male or female, with females treated as the reference category; 5categorical: exposure to a series of 

flashes to induce flash blindness (see 6.2 Methods), with flashing treated as the reference category; 6continuous: 

difference between the left and right shore bearings of the target island estimated for each release; 7categorical: 

eventual success/failure of navigation to the target island, with failure treated as the reference category; 8continuous: 

distance travelled by butterflies from the release boat after release (2.5, 5, or 10 m). Significance is denoted by: ' P < 

0.10; * P < 0.05; ** P < 0.01; *** P < 0.001 

 

6.4.2 Flight speed and tortuosity 

Wind speed was observed to have a significant negative effect on flight time after 10 m, 

indicating that higher wind speeds were generally associated with faster movement (Model 3, 
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Table 6-2). Flashing butterflies had a significant positive effect on flight time to 10 m, indicating 

that flashed butterflies generally flew slower than unflashed butterflies. Flight time to 10 m was 

not observed to significantly relate to release distance, species, sex, or eventual success/failure of 

navigation to the target island.  

Flight tortuosity, measured as the standard deviation of turn angles for each individual, 

significantly decreased with increasing wind speed (Model 4, Table 6-2). Flashing had a 

significant positive effect on flight tortuosity. These results, in combination with those of the 

flight speed model (Model 3), suggest that: i) higher wind speeds were generally associated with 

faster, less tortuous flights; and ii) flashed butterflies exhibited slower, more tortuous flights than 

unflashed butterflies. The positive relationship between success and flight tortuosity (Model 4) 

suggests that flight paths of successful butterflies were significantly more tortuous than those of 

unsuccessful butterflies. This is consistent with the hypothesis that instances of successful 

navigation generally involved reorientation from wind direction to island direction, increasing 

observed tortuosity. S. cybele may have exhibited more tortuous flights on average than S. 

atlantis, but this effect was only significant at  = 0.10 (P = 0.058). Flight tortuosity did not 

significantly vary with release distance or sex. The effects of relevant interactions and noise 

variables in Models 3 and 4 were non-significant. 

6.4.3 Determinants of flight orientation 

 GLMMs accounting for absolute deviations in flight orientations from wind direction 

(Model 5; Table 6-2) and island direction (Model 6; Table 6-2) each indicated that both wind 

speed and success were significantly related to flight orientations. Wind speed was observed to 

have a significant negative effect on absolute deviations in flight orientations from wind 

direction, and a significant positive effect on absolute deviations in flight orientations from 
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island direction. Flight orientations of successful butterflies were significantly nearer to island 

direction and further from wind direction than unsuccessful butterflies.  

  Within the GLMM accounting for absolute deviations in flight orientations from wind 

direction (Model 5), the positive interaction between distance flown and success suggests that 

deviations in flight orientations from wind direction increased with distance flown for successful 

butterflies. This interaction was, however, only significant at  = 0.10 (P = 0.068). Within the 

GLMM accounting for deviations in flight orientations from island direction (Model 6), the 

negative effect of the interaction between distance flown and success indicated that deviations in 

flight orientations from island direction decreased with distance flown for successful butterflies. 

The main effects of distance flown on absolute deviations in flight orientations from both wind 

direction and island direction were near zero and non-significant in Models 5 and 6. Collectively, 

these results indicate that successive flight orientations of successful butterflies, but not 

unsuccessful butterflies, tended away from the wind direction and towards the island direction as 

butterflies travelled further from the release location. Therefore, instances of successful 

navigation generally involved a reorientation from wind direction to island direction after 

release. Flight orientations of unsuccessful butterflies were almost always aligned with the wind 

direction until they drifted out sight.  

6.5 Discussion 

6.5.1 Quantifying perceptual range 

 As expected, the probability of S. cybele and S. atlantis successfully detecting and 

navigating to the target island significantly decreased with increasing release distance. The effect 

of release distance on probability of success was substantial, with the likelihood of butterflies 

successfully navigating to the target island decreasing by a factor of 2.15 for every 10 m increase 
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in release distance. Similar observations have led many ecologists to infer the existence of 

maximum distance thresholds, beyond which, butterflies are unable to detect habitat patches or 

habitat features using their sensory organs. Based on such thresholds, Schtickzelle et al. (2007) 

and Dover & Settele (2009) suggest that a distinction between “apparent fragmentation” and 

“functional fragmentation” may be meaningful. While apparent fragmentation may describe any 

landscape with discrete habitat patches, functional fragmentation is reserved for landscapes 

wherein inter-patch distances exceed the perceptual ranges of focal taxa (Dover & Settele 2009).  

In the context of this framework, single distance measures of perceptual range are 

appealing due to the relative simplicity of applying specific thresholds of patch isolation to infer 

whether landscapes are functionally fragmented—ecologists need only estimate single distance 

measures of perceptual range for focal taxa. For butterflies, in particular, a straight-forward 

method has been to determine the maximum distance at which the proportion of released 

individuals orienting towards habitat significantly differs from what is expected given random 

flight orientations (i.e., a random flight null assumption; e.g., Fahrig & Paloheimo 1987; Merckx 

& Van Dyck 2007; Schtickzelle et al. 2007). However, in this study, GLMMs (Models 5 and 6) 

suggested that instances of successful navigation generally involved a reorientation from wind 

direction (not random direction) to island direction after release. For unsuccessful butterflies, the 

mean of absolute deviations in flight orientations from wind direction after 2.5, 5, and 10 m of 

flight were 19.4°, 18.6°, and 18.0°, respectively. These deviations were less than 90° in all 

instances; far from 180°, the expected mean associated with random flight orientations. 

Therefore, if experimental releases are conducted with wind direction perpendicular to the 

direction of the target habitat patch (as would be recommended), the proportion of butterflies 

failing to detect habitat patches, but still orienting towards them, will be lower than what is 
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predicted by random flight orientations. These results suggest that the random flight null 

assumption is biased towards overestimating null proportions of butterflies successfully orienting 

towards adjacent habitat patches, and is therefore inappropriate for determining thresholds of 

perceptual range.  

Qualitative observations of flight behaviour support this conclusion. In all instances of 

success navigation, we observed a surprisingly punctuated shift in flight behaviour, from a 

“fluttering” flight averaging with the wind direction, to a “directed” flight towards the target 

island. We interpret this change in flight behaviour as meaningful perception of, and 

reorientation towards, the target island based on several observations. Almost all individuals that 

did not successfully navigate to the target island vanished from sight following the wind 

direction. We did not observe a single instance wherein an individual exhibited a directed flight 

toward the target island, but failed to successfully navigate to it. Furthermore, there were very 

few instances (3 flashed S. cybele) wherein an individual maintained a fluttering flight in the 

direction of the target island, until it arrived at the island’s shore, without adopting a directed 

flight. We therefore find it reasonable to conclude that: i) most, if not all, instances of failed to 

navigation to the target island represented failure to detect the target island; and ii) most 

instances of successful navigation to the target island represented meaningful detection of the 

target island. It is also reasonable to infer that unsuccessful and successful butterflies were 

similarly searching for suitable habitat, and that butterflies drifting with the wind direction were 

not simply exhibiting an escape response. While flight paths of successful butterflies were 

significantly more tortuous than unsuccessful butterflies (Model 4), this difference was caused 

by the consistent reorientation of successful butterflies from wind direction to island direction 

following detection of the target island (Models 5 and 6). Flight patterns of successful and 
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unsuccessful butterflies were generally indecipherable before successful butterflies detected and 

reoriented towards the target island. 

While the probability of S. cybele and S. atlantis successfully detecting and navigating to 

the target island significantly decreased with increasing release distance, no obvious distance 

threshold was observed for either species. We see little reason to infer that single distance 

measures (i.e., thresholds) of perceptual range are ecological meaningful a priori. While 

ommatidial structure suggests the existence of single object thresholds (sensu Rutowski 2002), 

the probability of a dispersing butterfly detecting a nearby habitat patch is subject to a plethora of 

factors unique to landscapes, individuals, and environmental conditions. Indeed, the level of 

visual contrast between habitat patches and the matrix (sensu Rutowski 2002), the evolutionary 

history of individuals (e.g., Merckx & Van Dyck 2007), the perceived suitability of the matrix 

(e.g., Nowicki et al. 2014), and the wind speed and direction (this study) represent but a few 

factors that warrant continued investigation. Accounting for factors unique to landscapes, 

individuals, and environmental conditions (as in multiple logistic regression), perceptual range 

may be best viewed as a continuum of conditional probabilities, reflecting the likelihood that 

butterflies will detect habitat patches across a range of distances, rather than a single distance 

measure per se. This approach has the added benefit of permitting quantitative comparisons of 

probabilities of detecting habitat patches at distances below perceptual range thresholds, should 

they be found to exist in future research. To avoid confusion of terms in the literature, we 

suggest this concept may be referred to as “targeting ability.” 

6.5.2 Targeting ability and habitat fragmentation 

In contrast with single distance measures of perceptual range, the concept of targeting 

ability does not evoke punctuated distinctions between apparent and functional fragmentation 
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(sensu Schtickzelle et al. 2007; Dover & Settele 2009). We find there is little evidence to suggest 

that this dichotomous distinction, predicated on thresholds of patch isolation and perceptual 

range, is ecologically meaningful. For example, the degree of asynchrony between subpopulation 

dynamics in metapopulations have been shown, both theoretically and empirically, to vary 

continuously with patch isolation (review in Hanski 1999). Furthermore, within fragmented 

landscapes, dispersal ranges of butterflies are commonly observed as 10 – 1000 fold greater than 

the greatest distance estimates of perceptual range (e.g., 37 km for the cranberry fritillary 

[Boloria aquilonaris, Baguette 2002]; see Introduction for review of perceptual range estimates). 

During dispersal events, the probability of a butterflies encountering habitat patches is well-

approximated by a variety of functions, such as negative exponential or inverse power, where 

increasing patch isolation has continuous, rather than threshold, effects on the probability of 

patch colonization (Hanski et al. 2000; Baguette 2002; Nowicki et al. 2014). Even when inter-

patch distances and movements do not exceed estimated perceptual range thresholds (i.e., short-

range dispersal), organisms are still likely to experience increased mortality risk or deferred costs 

when moving between patches. Thus, punctuated distinctions between apparent and functional 

fragmentation may bear little resemblance to ecological patterns and processes on many 

fragmented landscapes.  

Of greater ecological relevance, Baguette & Van Dyck (2007) advance a conceptual 

distinction between different perspectives of landscape connectivity, “structural” and 

“functional,” without emphasizing specific thresholds of patch isolation in relation to perceptual 

range. Within this framework, structural connectivity addresses the spatial configuration of 

habitat patches and landscape elements, such as the vicinity and presence of barriers, while 

functional connectivity addresses how landscape structure affects behaviours of dispersing 
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individuals. In other words, functional connectivity contributes to the concept of structural 

connectivity by accounting for perceptual grain; the smallest spatial scale at which organisms 

perceive landscape heterogeneity (Weins 1989). Perceptual grain is most often inferred via 

estimates of single distance (threshold) measures of perceptual range (Baguette & Van Dyck; 

2007). Including addition facets of habitat detection associated with the concept of targeting 

ability (e.g., factors unique to landscapes, individuals, and environmental conditions) may further 

the instructive power of the functional connectivity heuristic.  

6.5.3 Targeting ability of Speyeria cybele and S. atlantis 

Despite considerable overlap in their evolutionary and life histories (Hall et al. 2014; 

Acorn & Sheldon 2017), a significant difference in targeting ability was observed between S. 

cybele and S. atlantis. Overall, S. cybele were 2.48 times more likely to successfully navigate to 

the target island than S. atlantis. A noted difference in compound eye structure between the two 

species is colour, with compound eyes of live S. cybele and S. atlantis appearing brown and grey, 

respectively (Acorn & Sheldon 2017). This difference may be attributed to variation in the 

composition of screening pigments, which filter light passing both onto photoreceptive 

rhodopsins and between separate ommatidia (Stavenga 2002). Red screening pigments of the 

Japanese yellow swallowtail butterfly (Papilio xuthus) are inferred to act as short-wavelength 

absorbance filters, facilitating long-wave sensitivity of rhabdomeres (Arikawa et al. 1999). Via 

this mechanism, dark-orange screening pigments of the monarch butterfly (Danaus plexippus) 

have been shown to contribute to color discrimination in the long-wavelength range (Blackiston 

et al. 2011). Together, these studies suggest a link between screening pigment composition visual 

sensitivity under various light conditions. However, additional research will be required to 
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resolve whether interspecific variation in screening pigment composition among Speyeria 

species relates to variation in visual targeting ability.   

Of greater interest to this study are relationships between interspecific variation in 

targeting ability and functional traits known to relate to dispersal, such as wingspan and 

estimates of mobility (Burke et al. 2011; Stevens et al. 2012). Wingspans of S. cybele and S. 

atlantis in Ontario have been measured at 70 – 100 and 55 – 70 mm, respectively (Acorn & 

Sheldon 2017). Burke et al. (2011) have estimated the mobility of S. cybele and S. atlantis at 

7.10 and 7.00, respectively, using a qualitative index (based on expert opinion) ranging from 0 to 

10. In accordance with positive interspecific relationships between wingspan, mobility, and 

dispersal ability of butterflies (e.g., Stevens et al. 2012), the larger and more mobile of the two 

species, S. cybele, had significantly greater targeting ability than did the smaller and less mobile 

of the two species, S. atlantis. In the context of the functional connectivity heuristic (sensu 

Baguette & Van Dyck 2007), inter-island movements and dispersal are likely to be less costly, 

both in terms of mortality risk and deferred costs, for S. cybele than S. atlantis. Speyeria cybele 

may therefore have greater a greater propensity and ability to navigate fragmented landscapes 

than S. atlantis. However, this inference is drawn from a single comparison of two congeneric 

species. More comprehensive studies, addressing disparity in targeting abilities across a greater 

number of species, is required to appropriately evaluate the hypothesis that targeting ability is a 

practical measure of the degree to which organisms perceive landscapes as fragmented. It is also 

worth noting that this study was completed in a landscape of extreme habitat-matrix contrast. 

Comparisons of related studies addressing terrestrial landscapes of greater complexity would be 

valuable for understanding how organisms perceive fragmented landscapes with lower habitat-

matrix contrast (e.g., for a comparisons of diversity patterns on a true-island archipelago and an 
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anthropogenically fragmented landscape, see Mendenhall et al. 2014; or butterfly movement 

through different scales of linear forest fragmentation, see Riva et al. 2018).  

6.5.4 Determinants of targeting ability 

Given the prominence of morphological traits associated visual senses, butterflies have 

long been hypothesized, and even assumed, to rely primarily on vision to detect and navigate to 

habitat patches during dispersal movements (Silberglied 1984; Rutowski 2002; Turlure et al. 

2016). However, to the best of our knowledge, this hypothesis has evaded explicit empirical 

investigation using experimental techniques. Thus, an interesting finding of this study is that 

repeated exposure to an intense flash significantly reduced the ability of both S. cybele and S. 

atlantis to detect and navigate to suitable habitat from a range of distances. This effect of 

flashing was substantial, with flashed individuals 30.13 times less likely to successfully navigate 

to the target island than unflashed individuals. The proportion of flashed butterflies successfully 

navigating to the target island was near zero or zero at all distances. Given these findings, we 

infer that visual senses of S. cybele and S. atlantis play a primary role in navigating fragmented 

landscapes when visual habitat-matrix contrast is high. However, we cannot rule out that 

olfaction may be used synergistically with vision, as demonstrated for long-range detection of 

nectar resources (Cardé & Willis 2008) and identification of larval host plants (Rausher 1981; 

Papaj 1986; Garlick 2007; Kinoshita et al. 2015). Notwithstanding, results of our study support 

the long-held assumption that visual senses are a primary means by which the butterflies detect 

and navigate to patches of suitable habitat while moving through matrices of unsuitable habitat. 

In light of this conclusion, it is both unexpected and interesting that angular subtense of 

the target island did not explain more variation in navigation success than distance per se. If 

visual senses do indeed account for long-range habitat detection in butterflies, the apparent sizes 
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of habitat patches (angular subtense) should relate to their probability detection (i.e., single 

object thresholds; sensu Rutowski 2002). However, GLMs indicated that probability of 

successful navigation was not significantly related to angular subtense, despite the fact that 

angular subtense was strongly correlated with release distance. Taken at face value, this finding 

suggests that: i) there are intrinsic effects of distance per se on butterflies’ ability to detect 

habitat patches; and ii) perceptual range and targeting ability may not vary with patch size. 

However, this latter conclusion contrasts with the common and reasonable assumption that 

patches or islands of larger areas present larger dispersal targets (sensu Wilson & MacArthur 

1967; Hanski 1999). It is worth noting here that the target island was approximately circular in 

shape, meaning angular subtense did not vary substantially independent of release distance in 

this study. We therefore question whether the conclusion, that perceptual range and targeting 

ability may not vary with patch size, is meaningful. Relationships between patch size and patch 

detectability, and their relevance to the dispersal process, requires further investigation.  

A superior assessment of relationships between patch size and patch detectability would 

empirically determine, across a range of release distances, variation in the probability of 

butterflies detecting habitat patches that vary substantially in area and thus angular subtense. 

Including habitat patches that also vary in habitat height would permit two-dimensional 

estimations of angular subtense, deepening inferences that may be drawn. Measures should be 

taken to quantify relative levels of visual contrast between habitat patches and their immediate 

surroundings if patch or matrix compositions are heterogeneous. As butterflies are inferred to 

have colour vision (Silberglied; 1984; Kinoshita; 1999; Arikawa; 2003; Blackiston et al. 2011), 

quantifying visual contrast across a variety of wavelengths may permit decoupling of specific 

visual ques used by butterflies to detect habitat or resource patches in heterogeneous landscapes. 
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7 Chapter 7: Gene flow and climate-associated genetic variation in a vagile habitat 

specialist 

7.1 Abstract 

Previous work in landscape genetics suggests that geographic isolation is of greater 

importance to genetic divergence than variation in environmental conditions. This is intuitive 

when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, 

but has not been thoroughly examined for habitat specialists with strong dispersal capability. 

Here, we evaluate the effects of geographic and environmental isolation on genetic divergence 

for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's 

Old World swallowtail butterfly, Papilio machaon dodi. In Canada, P. m. dodi are generally 

restricted to eroding habitat along major river valleys where their larval host plant occurs. A 

series of causal and linear mixed effects models indicate that divergence of genome‐wide single 

nucleotide polymorphisms is best explained by a combination of environmental isolation 

(variation in summer temperatures) and geographic isolation (Euclidean distance). Interestingly, 

least‐cost path and circuit distances through a resistance surface parameterized as the inverse of 

habitat suitability were not supported. This suggests that, although habitat associations of many 

butterflies are specific due to reproductive requirements, habitat suitability and landscape 

permeability are not equivalent concepts due to considerable adult vagility. We infer that 

divergent selection related to variation in summer temperatures has produced two genetic 

clusters within P. m. dodi, differing in voltinism and diapause propensity. Within the next 

century, temperatures are predicted to rise by amounts greater than the present‐day difference 

between regions of the genetic clusters, potentially affecting the persistence of the northern 

cluster under continued climate change. 
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7.2 Introduction 

A principal aim in ecology and evolutionary biology is to resolve factors and understand 

processes that influence genetic divergence at both the individual and population level (Mayr 

1963; Coyne & Orr 2004; Nosil 2012). When genetic divergence has a strong spatial component, 

causes are generally attributed to spatial variation in evolutionary processes, such as gene flow, 

genetic drift, and selection (Slatkin 1987; Rousset 1997; Bohonak 1999; Schwartz et al. 2010). 

However, inferring the relative contributions of these processes is challenging. Landscape 

genetics addresses this by quantitatively relating patterns of genetic divergence to geographic 

and environmental landscape factors (Sork et al. 1999; Cushman et al. 2006; Shirk et al. 2010; 

Richardson et al. 2016).    

Multiple heuristics have been invoked to conceptualize relationships between genetic 

divergence and landscape factors, with each implicating specific evolutionary processes. The 

first, isolation‐by‐distance (IBD; Wright 1943), predicts that geographic distance or physical 

barriers to dispersal reduce gene flow and permit drift between spatially separated individuals or 

populations. Because dispersal is limited in most species (Greenwood 1980), Euclidean and 

genetic distances are often positively correlated, supporting IBD (Rousset 1997; Vekemans & 

Hardy 2004; but see Meirmans, 2012). A second heuristic, isolation-by-resistance (IBR; McRae 

2006), may be seen as a modification of IBD and predicts that patterns of genetic divergence will 

be best explained by geographic distances accounting for variation in the relative resistance 

organisms experience when dispersing through heterogeneous landscapes. To assess IBR, 

resistance surfaces are often parameterized as the inverse of habitat suitability, generally 

modelled using occurrences of focal taxa and geographic and environmental/ecological predictor 
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variables (McRae & Beier 2007; Wang et al. 2008; Storfer et al. 2010; Wang et al. 2012a; but 

see Peterman et al. 2014). Optimal pathways (e.g., least-cost path distances) or a multitude of 

possible pathways of varying probability derived from circuit theory (circuit distances) may then 

be estimated across resistance surfaces and related to patterns of genetic divergence (McRae & 

Beier 2007). When resistance surfaces are parametrized in this way, positive correlations 

between genetic distance and resistance-based distances suggest that organisms are more likely 

to disperse within suitable habitat and experience high movement resistance/cost within 

unsuitable habitat. IBR thereby equates the concept of habitat suitability to that of landscape 

permeability (the ease with which organisms move through a landscape), or in circuit theory 

terms, conductance. A third heuristic, isolation‐by‐environment (IBE; Wang & Summers 2010), 

predicts that spatial variation in environmental/ecological conditions contributes to genetic 

divergence via the combination of a) reduced fitness and negative selection on individuals that 

have dispersed across environmental gradients, b) reduced fitness and negative selection on 

dispersers’ offspring in non-natal habitats (outbreeding depression), or c) reduced tendency of 

individuals to disperse due to local adaptation to environmental conditions (Dobzhansky 1937; 

Nosil 2004; 2012; Nosil et al. 2005; Crispo et al. 2006; Lee & Mitchell‐Olds 2011; Wang & 

Bradburd 2014). After controlling for geographic distance, positive correlations between genetic 

distance and differences in environmental/ecological conditions confer support for IBE.  

Although often framed as competing hypotheses, complementarity of IBD, IBR, and IBE 

has been documented in multiple studies (Coyne & Orr 2004; Thorpe et al. 2008; Crispo et al. 

2006; Wang et al. 2012a; Sánchez-Ramírez et al. 2018; Van Buskirk & van Rensburg 2020). 

Within such investigations, it can be instructive to invoke Euclidean, least-cost path, and circuit 

distances as measures of geographic isolation (IBD + IBR) for contrast with measures of 
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environmental/ecological isolation (IBE) estimated as differences in biotic or abiotic conditions. 

For example, Wang et al. (2012a) compared the effects of geographic isolation (estimated as 

least‐cost path and circuit distances) and ecological isolation (estimated as differences in values 

of 24 environmental variables) on genetic divergence for 17 Anolis species. Genetic divergence 

was significantly related to geographic and ecological isolation for 15 and 13 species, 

respectively, with inferred effects of geographic isolation being, on average, more than twice as 

strong as those of ecological isolation. Similar results have been reported for a variety of other 

vertebrate taxa, including the Trinidad Guppy (Poecilia reticulata; Crispo et al. 2006), Agassiz’s 

Desert Tortoise (Gopherus agassizii; Sánchez-Ramírez et al. 2018), and the Common Frog 

(Rana temporaria; Van Buskirk & van Rensburg 2020), suggesting that geographic distance, 

spatial features, and arrangements of suitable habitat are of greater importance to genetic 

divergence than variation in environmental/ecological conditions (but see support for IBE in 

epigenetic data, Wogan et al. 2019).  

Across these studies, greater support for IBD + IBR than IBE contrasts with the 

hypothesis that factors contributing to genetic divergence are predominantly 

environmental/ecological (Foll & Gaggiotti 2006; Thorpe et al. 2008; Nosil 2012). However, 

past comparisons of geographic and environmental isolation have tended to address vertebrate 

taxa with relatively specific habitat associations that are maintained through their life cycles. It is 

therefore intuitive that patterns of genetic divergence are generally best explained by resistance-

based geographic distances, as configurations of suitable habitat typically moderate spatial 

variation in movement and dispersal in such taxa (Coulon et al. 2004; Vignieri 2005; Broquet et 

al. 2006; Crispo et al. 2006; McRae 2006; Epps et al. 2007; McRae & Beier 2007; Wang et al. 

2008; 2009; Sánchez-Ramírez et al. 2018). But other taxa, including many terrestrial 
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invertebrates, have discrete dispersal life stages (generally the adult) with broader habitat 

tolerances than larval stages, which may have important consequences for processes affecting 

genetic divergence (Phillipsen et al. 2015). For example, Keller & Holderegger (2013) found that 

short-distance movements of the southern damselfly (Coenagrion mercuriale) generally 

followed corridors of reproductive and larval habitat (streams), while long-distance dispersal, 

inferred from patterns of genetic divergence, was best explained by Euclidean distance across 

unsuitable habitat (agricultural land). Although IBE was not evaluated for C. mercuriale, genetic 

divergence within this taxon and similar taxa with discrete dispersal life stages may be expected 

to show stronger relationships to environmental isolation than geographic isolation, as 

evolutionary processes predicted by IBD and IBR become subsidiary to those predicted by IBE. 

The aim of our study was to evaluate IBD, IBR, and IBE for a taxon with high habitat 

specificity, a discrete dispersal stage, and distribution across a variable environment. The Old 

World swallowtail butterfly (Papilio machaon L.) species group has been the subject of 

considerable study in North America (e.g., Sperling 1987; 1990; Dupuis & Sperling 2015; 2016; 

Dupuis et al. 2016; 2019). One subspecies in particular, P. m. dodi McDunnough 1939, is well 

suited for this investigation. Adult P. m. dodi search for mates by hilltopping along prominent 

edges of river valleys, leading to clustering of occurrence records along the Red Deer, South 

Saskatchewan, Old Man, and Milk Rivers in southern Alberta and Saskatchewan, Canada 

(Sperling 1987; Bird et al. 1995; Dupuis et al. 2019; occurrence records are visualized in Figure 

7-1, inset h). After mating, females travel downslope from hilltops to oviposit on their larval host 

plant, Artemisia dracunculus L., which is generally restricted to south-facing eroding slopes of 

river valleys. We therefore hypothesize that these river valleys constitute suitable habitat under 

the functional resource-based concept (sensu Dennis et al. 2002), providing resources sufficient 
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for mate location, reproduction, resting, roosting, and feeding. This unique habitat configuration 

may be described as a dendritic ecological network of suitable habitat corridors situated in a 

matrix of unsuitable agricultural and prairie habitat. Such configurations have proven practical 

for decoupling Euclidean and resistance-based distances (e.g., Keller & Holderegger 2013). 

Additionally, occurrences of P. m. dodi in Canada span an area of approximately 53,000 km2 that 

is sufficiently variable in environmental conditions to assess IBE (environmental gradients are 

visualized in Figure 7-1, insets e – g).  
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Figure 7-1. Visual representation of the methods used to generate geographic and environmental 

distances between the 161 sequenced Papilio machaon dodi included in this study. Various 
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spatial data layers (a – g) and 375 P. m. dodi records (161 sequenced individuals and 214 

georeferenced P. m. dodi Global Biodiversity Information Facility (GBIF) records) were used to 

build a Maxent habitat suitability model, which was then used to predict habitat suitability across 

the study area, with higher values indicating greater suitability. High habitat suitability generally 

followed the eroding banks of major rivers in southern Alberta and Saskatchewan, Canada (Red 

Deer, Old Man, South Saskatchewan, and Milk Rivers). Euclidean distances (i) represent the 

minimum distances between sequenced individuals. A resistance surface was parameterized as 

the inverse of habitat suitability and used to estimate least-cost path and circuit distances (j and 

k). The background in inset j is a projected cost surface, representing the cumulative costs 

incurred by individuals moving across the landscape from each occurrence point. Environmental 

distances (e – g) were estimated by taking the absolute difference between values of 

environmental variables extracted from the occurrences of sequenced individuals. Inset pictures 

are the adult and larval stage of P. m dodi. 

 

7.3 Materials and methods 

We used a series of causal models to assess and contrast the effects of geographic 

isolation (IBD + IBR) and environmental isolation (IBE) on genetic divergence within P. m. 

dodi. Resistance-based distances were estimated using a resistance surface parameterized as the 

inverse of predicted habitat suitability to assess whether adult butterflies are more likely to 

disperse within suitable habitat. Such a result would suggest that: i) configurations of suitable 

habitat are important considerations for predicting gene flow on heterogeneous landscapes; and 

ii) habitat suitability may be used as a proxy of landscape permeability. However, although 

habitat associations of P. m. dodi appear to be specific and geographically restricted, the 
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dispersal ability of P. machaon is estimated to be among the greatest of all Canadian butterflies 

(Burke et al. 2011). We therefore hypothesize that, considering only measures of geographic 

isolation, relationships between genetic divergence and Euclidean distance (IBD) will be 

stronger than those between genetic divergence and least-cost path or circuit distances (IBR), 

despite a resistance surface predicting greatest landscape permeability (lowest resistance) along 

the dendritic ecological network of suitable habitat.  

Environmental isolation may also play a significant role in structuring genetic divergence 

within P. m. dodi. Sperling (1987) noted distinct differences in the butterfly’s phenology, 

diapause propensity, and voltinism across its Canadian range, possibly implicating divergent 

selection related to variation in summer temperatures as a driver of spatial genetic divergence. If 

IBE is detected, mechanisms by which environmental isolation structures genetic divergence 

may be inferred from patterns of population clustering, and we can make several subsequent 

predictions. First, if IBE is primarily driven by reduced fitness and negative selection on 

individuals that have dispersed across environmental gradients, genetic clustering should indicate 

some spatial discordance of individual cluster assignments (i.e. migrants found in non-natal 

populations) without admixture between clusters indicative of successful hybridization. Second, 

if IBE operates via reduced fitness and negative selection on genetically intermediate 

individuals, some admixture indicative of F1 hybridization between migrant and natal 

individuals may be evident, but substantial admixture among clusters should be absent due to 

selection against these admixed genotypes. Third, if individuals exhibit a reduced tendency to 

disperse across environmental gradients due to local adaptation, there should be little or no 

spatial discordance of individual cluster assignments or admixture among clusters. Finally, we 

also identified loci under putative divergent selection between genetic clusters (FST outliers) and 
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assessed environmental associations of allele frequencies for individual loci. If population 

structure is driven by local adaptation to environmental conditions, we hypothesize that FST 

outlier and environmental association analyses will identify similar sets of candidate loci under 

putative selection.   

7.3.1 Sample collection 

We collected adult and larva P. m. dodi with aerial net surveys and host plant searches, 

respectively, between May 15 and August 31, 2017. We visited most known P. m. dodi 

occurrence locations in Canada and aimed to collect 5-10 individuals every 25-50 km along the 

Red Deer, South Saskatchewan, Old Man, and Milk Rivers, where suitable habitat is present 

(collection locations are visualized in Figure 7-1, inset h). As with previous studies (Sperling 

1987; 1990; Dupuis & Sperling 2015; 2016; Dupuis et al. 2016; 2019), we attempted to locate 

and collect P. m. dodi between major river valleys (e.g., smaller eroding slopes with A. 

dracunculus and the largest hilltopping features within sight). However, consistent with our past 

work and historical records (e.g., Bird et al. 1995), we did not observe any individuals outside of 

known suitable habitat along major river valleys. Adults were generally collected on 

prominences along major river valleys used as hilltopping features. Adult females descend from 

hilltops immediately after mating while males remain in search of additional mates, which means 

that males are more frequently encountered during sampling (Dupuis et al. 2019). Larvae were 

collected from patches of A. dracunculus on eroding slopes, typically 100–500 m2 in area, below 

hilltopping features. Individuals collected within 500 m of each other were given the same 

collection location, recorded as the centroid of the hilltopping feature or A. dracunculus patch. 

After collection, adult individuals were frozen live and stored at -20°C. Larvae were raised to 4th 

or 5th instar on clippings of A. dracunculus, preserved in 95% ethanol, and stored at -20°C.      
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7.3.2 DNA extraction and library preparation 

We extracted genomic DNA from thoracic tissue of adults (n = 148) and larvae (n = 32) 

using DNeasy Kits (Qiagen, Hilden, Germany). Extractions followed the manufacturer’s 

protocol, with the addition of bovine pancreatic ribonuclease A treatment (RNaseA, 4 ul at 

100mg/ml; Sigma‐Aldrich Canada Co., Canada). Genomic DNA was then ethanol precipitated 

and stored in 50 ul Millipore water at -20°C. Double digest restriction-site associated DNA 

sequencing (ddRADseq) libraries were prepared from 200 ng input DNA and MspI and PstI. We 

followed a modified version of Poland et al. (2012) for wet lab procedures and used a standard 

dual index Illumina adapter system following Peterson et al. (2012). Details of our library 

preparation protocol and adapters are provided in MacDonald et al. (2020) Data S1 and S2, 

respectively. A final, pooled library of 180 individuals was sequenced with single-end, 75-bp 

sequencing on a single high output flowcell of an Illumina NextSeq 500. 

7.3.3 Bioinformatic processing 

Following Illumina sequencing, we used “process_radtags” in the program Stacks 2.0 

(Rochette et al. 2019) to demultiplex FASTQ reads and filter those with quality scores below 20 

within a sliding window 15% of the read length. All reads were truncated to 67 bp after 

removing the 8-bp Illumina index sequences, identified with one mismatch permitted. We then 

searched for and removed remnant Illumina adaptor sequences and removed the first 5 bp from 

the 5’ end of each read (corresponding to the PstI restriction site) using the program Cutadapt 

1.9.1 (Martin 2011). Filtered and trimmed reads were aligned to a P. machaon reference genome 

comprised of 63,187 scaffolds (NCBI Accession GCA_001298355.1) using Burrows-Wheeler 

Aligner 0.7.17 (BWA-MEM) (Li and Durbin 2009; Li 2013). We then converted files from SAM 

to BAM format using SAMtools 1.9 (Li et al. 2009) and used “gstacks” and “populations” within 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0002-DataS2.xlsx
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Stacks 2.0 to call SNPs and generate output files, stipulating a single population containing all 

individuals. Genotype calls were exported in variant call format (VCF), and individuals with 

more than 50% missing data were removed from the dataset (three adults and three larvae). 

Finally, we used VCFtools 0.1.14 (Danecek et al. 2011) to filter genotypes with read depths less 

than five and filter loci with minor allele frequencies less than 0.05, percentages of missing data 

greater than 5%, and those within <10 kb of each other to reduce the probability of retaining loci 

that are in physical linkage. This thinning interval was based on linkage decay documented in 

other butterfly species; e.g., linkage decays to baseline within 1 kb – 10 kb in Heliconius spp. 

(Martin et al. 2013) and within 100 bp in Danaus plexippus (Zhan et al. 2014). 

Multiple larval samples were often collected from single or adjacent A. dracunculus 

plants. Full-sibling relationships between individuals are therefore probable due to females 

ovipositing multiple eggs on single plants, which may bias estimates of genetic relatedness and 

inferences of population structure (O'Connell et al. 2019). To identify full sibs, we used the 

package “SNPRelate” (Zheng et al. 2009) implemented in the R environment (v3.5.1; R core 

team) to estimate kinship coefficients for all pairs of sequenced individuals. For diploid 

organisms, the expected kinship coefficient between full sibs is 0.25. Only pairs of larvae 

collected from single locations had kinship coefficients greater than 0.22, where a natural break 

in values occurred. For each of these larval pairs, we removed the individual with the greater 

percentage of missing data (13 individuals total). We then reverted to the original BAM files, 

recalled SNPs with Stacks, and filtered VCF files as above using the reduced dataset of 161 

individuals comprised of 136 adult males, 8 adult females, and 17 unsexed larvae.   
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7.3.4 Population structure 

Two independent methods were used to quantify population structure. We first used the 

model-based clustering program Structure 2.3.4 (Pritchard et al. 2000) in a hierarchical fashion 

(Vähä & Primmer 2006) to assess K-values ranging from 1 to 10. For the first set of runs in the 

hierarchical analysis, 10 independent runs were completed for each value of K using the 

admixture model and correlated allele frequencies. The burn-in period and number of Markov 

chain Monte Carlo (MCMC) repetitions were set to 100,000 and 1,000,000, respectively. 

Location priors (n = 27 collection sites) were used to inform the MCMC algorithm. The alpha 

prior (relative admixture levels between populations) was set to 0.5, based on the inverse of the 

expected value of K = 2 informed by overt clustering in preliminary principal component 

analysis (PCA; see Data S1, Fig. S1) (Wang 2017). Two approaches were then used to determine 

the optimal K from Structure outputs; the ΔK method (Evanno et al. 2005), implemented in the 

program Structure Harvester (Earl & vonHoldt 2011), and the rate of change in the likelihood of 

K across K = 1:10 (Pritchard et al. 2000). For the second set of runs in the hierarchical analysis, 

we completed independent Structure analyses on each cluster identified in the first analysis using 

settings identical to the first set of runs. Q-values > 0.8 from the first set of runs denoted 

assignment of individuals to specific clusters, effectively excluding individuals with substantial 

admixture. 

In addition to Structure analyses, we also assessed population structure using 

discriminant analysis of principal components (DAPC), which conducts discriminant analysis 

(DA) on principal components (PCs) generated in PCA (Jombart et al. 2010). Assignments of 

individuals to a priori population clusters for DAPC were inferred using the “find.clusters” 

function (adegenet package) with default parameters, retaining all PCs, to find the optimal K 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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value based on Bayesian Information Criterion (BIC) scores in successive K-means clustering 

analysis across K = 1:20. DAPC was then completed using the R package “adegenet” v2.1.1 

(Jombart 2008). We used the “xvalDapc” function (adegenet package), stipulating 100 replicates, 

to determine the optimal number of PCs to retain in DAPC using stratified cross-validation of 

DAPC across increasing numbers of principal components (PCs). Missing genotypes were 

imputed as the mean of the available data per locus for this cross-validation.  

7.3.5 Habitat suitability 

To map habitat suitability for P. m. dodi within our study landscape, we created a habitat 

suitability model using Maxent software (Phillips et al. 2006), implemented through the R 

package “dismo” (Hijmans et al. 2011). Briefly, Maxent uses machine-learning maximum 

entropy modelling to predict habitat suitability across a landscape using georeferenced 

occurrence localities and a set of geographic information systems (GIS) predictor variables 

(spatial data layers). For georeferenced occurrence localities, we used both the collection 

locations of the 161 sequenced individuals from this study and georeferenced P. m. dodi 

occurrences downloaded from the Global Biodiversity Information Facility (GBIF; accessed 

from https://doi.org/10.15468/dl.axez0s, 5th December 2018). Of the 259 occurrences available 

from GBIF, 214 were within the study landscape. Geographic and environmental GIS data layers 

included elevation, a terrain ruggedness index, a heat load index (based on terrain slope and 

aspect), land cover (12 categories), and three Worldclim 2 (Fick and Hijmans 2017) bioclimatic 

variables: mean temperature of warmest quarter (temp.warm), mean temperature of coldest 

quarter (temp.cool), and mean annual precipitation (precip.). These environmental variables were 

selected based both on biological relevance and to minimize collinearity (see MacDonald et al. 

2020 Data S1 for further details). Each GIS data layer was reprojected to an equal-area 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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projection (NAD83[CSRS98]/UTM zone 12N) at 30-m resolution using the R package “raster” 

(Hijmans & van Etten 2012). Further details and sources for GIS data layers may be found in 

MacDonald et al. 2020 Data S1. Correlation coefficients were less than 0.7 for all pairs of GIS 

data layers, and so all seven were included in the habitat suitability model. 

To evaluate the predicative power of the habitat suitability model, 20% of occurrence 

localities were withheld for cross-validation and receiver operating characteristic (ROC) analysis 

(Phillips et al. 2006). Following evaluation, we used the model to predict habitat suitability 

across the study landscape using the “predict” function (raster package), with each grid cell 

receiving habitat suitability values ranging from 0–1, where higher values indicate greater habitat 

suitability. Information on the validity of the Maxent process and its application to P. m. dodi is 

available in MacDonald et al. (2020) Data S1. 

7.3.6 Geographic distance 

 We estimated geographic isolation between sequenced individuals using three different 

pairwise distance metrics; Euclidean distance, least-cost path distance, and circuit distance. 

Euclidean distances represent minimal distances required to travel between locations and do not 

account for landscape characteristics. In contrast, least-cost path distances are estimated by 

searching for single, optimal routes that minimize cumulative costs associated with travelling 

through heterogeneous landscapes (Wang et al. 2009). Least-cost path analysis thereby assumes 

that organisms have complete knowledge of such landscapes and are able to consistently 

navigate optimal routes. Circuit-based analyses relax this assumption, with distances estimated 

by summarising costs associated with all possible paths through heterogeneous landscapes 

(McRae & Beier 2007).   

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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Pairwise Euclidean distances between the collection locations of the 161 sequenced 

individuals were estimated using the “spDists” function in the R package “sp” (Pebesma and 

Bivand 2005). To estimate least-cost path and circuit distances, we first parameterized a 

resistance surface as the inverse of habitat suitability scores predicted by the habitat suitability 

model (McRae & Beier 2007; Wang et al. 2008; Storfer et al. 2010; Wang et al. 2015). We then 

estimated pairwise least-cost path distances using the “costDistance” function in the R package 

“gdistance” (van Etten 2018) and pairwise circuit distances using the program Circuitscape 5.0 

(McRae 2006), both with an eight-neighbour connection scheme. To increase computational 

efficiency, we aggregated the resolution of the resistance surface to 300 m, as connectivity 

inferences are shown to be generally robust to such aggregations (McRae & Beier 2007). 

Collectively, these analyses produced three pairwise matrices of geographic distances.  

7.3.6 Environmental distance 

 Environmental isolation between sequenced individuals were estimated using the same 

Worldclim 2 bioclimatic variables included in the habitat suitability model (temp.warm, 

temp.cool, and precip.). We extracted values for each of the three bioclimatic variables for 

collection locations of sequenced individuals using the “extract” function in the R package 

“raster”. Following Wang et al. (2012a), environmental distances were estimated by taking 

absolute differences of these values. Resulting differences were organized into three pairwise 

matrices of environmental distances.    

7.3.7 Determinants of genetic divergence 

 To evaluate how variation in geographic and environmental isolation relate to that of 

genetic divergence within P. m. dodi, we used two forms of causal modelling and an individual-

based (c.f. population-based) approach. To quantify genetic divergence, we first used the “dist” 
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function within the R package “adegenet” to estimate pairwise genetic distance (sum of squared 

Euclidean distances between ith and the jth genotype) between sequenced individuals, 

commensurate with the geographic and environmental distance matrices generated above. This 

simple individual-based measure of genetic distance has been shown to effectively quantify 

genetic divergence in a variety of simulations (e.g., Shirk et al. 2017) and in field studies (e.g., 

Sánchez-Ramírez et al. 2018).  

7.3.7.1 Reciprocal causal modelling (RCM) 

Our first set of causal models addressed relationships between genetic distance and 

geographic and environmental distances using reciprocal causal modelling (RCM) with partial 

Mantel tests (Cushman et al. 2006; 2013). We used the “mantel.partial” function within the R 

package “vegan” (Oksanen et al. 2007) to perform partial Mantel tests (999 permutations) for 

genetic distance and each combination of the 6 geographic and environmental distances, totalling 

to 30 tests organized into 15 reciprocal causal models. For each comparison of relationships 

between genetic distance and two geographic/environmental distances (one reciprocal model), 

we first estimated the partial Mantel’s R coefficient (RPM) between genetic distance and one 

geographic/environmental distance (focal variable) conditioned on the other 

geographic/environmental distance (alternative variable), comprising partial Mantel test A. We 

then estimated the reciprocal RPM, comprising partial Mantel test B. If RPM-A > RPM-B, the focal 

variable from partial Mantel test A is better supported, and vice versa. Results of RPM-A - RPM-B 

were summarized in a heatmap similar to Ruiz-Gonzalez et al. (2105). Notwithstanding this 

RCM framework, if both RPM-A and RPM-B were significant, we inferred partial support for 

relationships between genetic distance and each of the two geographic or environmental 

distances used in the reciprocal model.  
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7.3.7.2 Structural equation modelling (SEM)  

Our second set of causal models employed structural equation modelling (SEM), a 

method originally developed by Wright (1921), to quantify the relative strength of effects of 

geographic distance and environmental distance on genetic distance according to an a priori 

causal path network. SEM analyses have proven particularly useful for distinguishing effects of 

multiple collinear variables (e.g., geographic and environmental distances; Grace 2006; Wang et 

al. 2012a). Our causal path network included two regression pathways; one from geographic 

distance to genetic distance and one from environmental distance to genetic distance. Geographic 

and environmental distance were linked by a covariance pathway. Results of the RCM analysis 

were used to infer which single measures of geographic and environmental distance were most 

strongly related to genetic distance. To test whether geographic and environmental distance 

contributed meaningfully to observed variation in genetic distance, we compared Akaike’s 

information criterion (AIC) scores for the full model, a model excluding geographic distance, 

and a model excluding environmental distance (sensu Wang et al. 2012a). Lower AIC scores 

indicated superior model fit. Models with AIC scores exceeding the best supported model by 10 

or more points were unsupported (Burnham & Anderson 1998). SEM analyses were completed 

using maximum-likelihood estimation in the R package “lavaan” (Rosseel 2012). To account for 

nonindependence among pairwise data, we randomly permuted rows and columns of distance 

matrices to generate null distributions for path coefficients assuming no relationships between 

variables exist (Fourtune et al. 2018). Unbiased standard errors and P-values for path coefficients 

were then calculated by comparing observed coefficients to their null distributions. This was 

completed using a modification of the “permutation.based.pathanalysis” R code provided by 

Fourtune et al. (2018). 
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7.3.7.3 Validation of the causal model framework 

To investigate whether inferences from casual models were contingent on method of 

analysis, we also employed linear mixed effects models with maximum likelihood population 

effects (MLPE; Clarke et al. 2002). MLPE linear mixed effects models have been shown to be 

one of the highest performing methods for quantifying relationships between distance matrices 

while controlling for nonindependence among pairwise data (Shirk et al. 2017). Relationships 

between genetic distance and each of the six measures of geographic and environmental isolation 

were quantified in independent models. The identities of sequenced individuals involved in 

pairwise distance values were included in models as mixed effects to control for 

nonindependence within distance matrices (Clarke et al. 2002). MLPE linear mixed effects 

models were fit using the “MLPE.lmm” function within the R package “ResistanceGA” 

(Peterman 2018). We set REML=FALSE to allow for the estimation of valid AIC scores that 

were used to evaluate relative model support (Row et al. 2017; Shirk et al. 2017; Peterman 

2018). 

7.3.8 Population divergence of candidate loci 

 To identify candidate loci under putative divergent selection, we used Bayescan 2.1 (Foll 

& Gaggiotti 2008) to estimate allele frequencies and FST values for 1,382 loci. When population 

assignment of individuals is sensible, Bayescan is generally recognized as the most effective 

method for identification of FST outlier loci (Narum & Hess 2011; De Mita et al. 2013; Lotterhos 

& Whitlock 2014). Q-values > 0.8 from the Structure analysis (K = 2) denoted assignment of 

individuals to either the northern or southern cluster, effectively excluding individuals with 

substantial admixture from this analysis. We used default parameters to run Bayescan (prior odds 

set to 10, thinning interval to 10, number of pilot runs to 20, length of pilot runs to 5000, and 
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burn-in length to 50,000), except for the number of outputted iterations, set to 10,000. To reduce 

the likelihood of false positives associated with multiple tests, we assessed significance of FST 

outliers using q-values generated by Bayescan according to the False Discover Rate (FDR) 

criterion (Benjamini & Hochberg 1995). FST outlier loci were identified using a q-value-

threshold of 0.05 (-log10 q-value ~ 1.3). Fifteen Bayescan runs were completed using this 

protocol, and a union of the resulting lists of FST outlier loci was taken to generate a final list of 

loci under putative divergent selection. We also used the “snpzip” function (adegenet package) 

with default settings to identify which loci contributed most significantly to between-population 

structure in DAPC, with population assignment based on K-means clustering analysis. This 

analysis uses the relative contribution of each SNP to DAPC to perform hierarchical clustering 

and classify loci as either “structural” or “non-structural”. 

7.3.9 Environmental associations of individual loci 

 While Bayescan is effective for identifying loci under putative divergent selection among 

discrete populations, an individual-based approach may be more effective for identifying 

candidate loci potentially under selection across environmental gradients (Frichot et al. 2013). To 

accomplish this, we used latent factor mixed modelling (LFMM), implemented in LFMM 1.3 

(Frichot et al. 2013) via the R package “LEA” (Frichot & François 2015). LFMM tests for 

correlations between allele frequencies of individual loci and environmental variables (each 

included in an independent model as a fixed effect), while controlling for background population 

structure using latent factors equal in number to the optimal value of K. This reduces the 

likelihood of false positives arising from spurious relationships between allele frequencies and 

environmental variables due to autocorrelation of space, demography, and the environment 

(Frichot et al. 2013; Lotterhos & Whitlock 2014), which can be problematic for other analysis 
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methods, such as those employed in BayEnv2 (Günther & Coop 2013; Lotterhos & Whitlock 

2014).   

Environmental variables included in LFMM analyses were temp.warm, temp.cool, and 

precip.. We completed five independent LFMM runs with 10,000 iterations and a burn-in of 

5,000, stipulating two latent factors (K = 2 inferred from both Structure runs and DAPC). Results 

were then combined by calculating the median |z|-scores across the five LFMM runs, which 

represent the strength of the genetic-environment association for each locus. To validate the 

number of latent factors used in LFMM, we visually inspected adjusted P-values histograms for 

each environmental variable, estimated using the genomic inflation factor (λ) procedure (Devlin 

and Roeder 1999). Distributions that are relatively flat with a peak near zero indicate the selected 

number of latent factors adequately controlled for potentially confounding effects of spatial 

genetic structure (Frichot & François 2015). Finally, to control for false positives associated with 

multiple tests, we again used the FDR criterion (Benjamini & Hochberg 1995), producing q-

values for each association. Loci with q-values < 0.05 were inferred as having significant 

environmental associations. 

7.3.10 Genomic contexts of candidate loci 

 To map the location of candidate loci within the P. m. dodi genome, we used BEDTools 

v2.27.1 (Quinlan & Hall 2010) to extract 5 kb of flanking sequence on the 5’ and 3’ ends of each 

candidate locus identified by either Bayescan or LFMM analyses. This length of flanking 

sequence was selected in reference to previous thinning of loci within 10 kb of each other. We 

then used the BLAST function within Lepbase (Challis et al. 2016) to match resulting sequences 

to annotated genes within Lepbase’s butterfly and moth CDS databases. As this search queried 

multiple species’ genomes, we evaluated possible interspecific matches based on percent match 
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of the query, phylogenetic distance to the matched species, and the number of distinct genomes 

(multiple species) in which each gene was reported. Putative gene functions were compiled from 

the UniProt Consortium (2018) using gene accession codes included within the Lepbase output. 

7.4 Results 

ddRAD sequencing resulted in a total of 293,036,249 single-end, 75-bp reads across the 

original set of 180 sequenced individuals. After running “process_radtags” and associated filters, 

273,664,014 reads remained, of which, 192,902,810 were aligned to the P. machaon reference 

genome. After removing individuals with >50% missing data and putative full-sibs, 108,049,831 

reads were used to call 104,038 SNPs for the final set of 161 sequenced individuals. Filtering of 

loci resulted in a total of 1,382 SNPs with a mean read depth of 71.99 (min = 11.76, max = 

1950.7), comprising the dataset used in all subsequent analyses.  

7.4.1 Population structure 

Our first set of Structure runs predicted an optimal K-value of K = 2 using both the ΔK 

method (Evanno et al. 2005) and the rate of change in the likelihood of K across K = 1:10 

(Pritchard et al. 2000; see MacDonald et al. 2020 Data S1, Fig. S2 a). Individuals collected near 

and north of Dorothy, Alberta, were generally assigned to a northern cluster, while individuals 

collected within and south of Dinosaur Provincial Park, Alberta, were assigned to a southern 

cluster (Figure 7-2). Spatial discordance of two individuals’ cluster assignments (i.e. migrants 

found in non-natal populations) suggests that dispersal between the regions occurs. Nine 

individuals had an approximate 50/50 split of Q-values, suggesting that hybridization between 

migrant and natal individuals occurs. However, little admixture was observed beyond these 

putative F1 hybrids. In the second set of Structure runs, no subclustering was evident in the 

northern cluster, while the existence of two subclusters was best supported within the southern 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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cluster (MacDonald et al. 2020 Data S1, Fig. S2 b, c). Q-values for individuals of these two 

subclusters (K = 2 in the southern cluster only analysis) were very similar to those for K = 3 in 

the first set of runs (including all individuals). For simplicity, we therefore present in Figure 7-2 

admixture plots from the first set of Structure runs (all individuals) for both K = 2 and K = 3. 

 

Figure 7-2. Population genetic structure within Papilio machaon dodi in Alberta and 

Saskatchewan, Canada, inferred using the model-based clustering program Structure. An optimal 

K  value of 2 was best supported by the ΔK method and rate of change in the likelihood of K 

across K = 1:10 for the first set of Structure runs addressing all individuals. Hierarchical runs 

addressing the northern and southern clusters independently suggested no overt subclustering 
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within the northern cluster and the existence of two subclusters within the southern cluster. We 

present admixture plots derived from the first set of Structure runs for both K = 2 (exhibiting the 

two primary clusters) and K = 3 (including the two southern subclusters) for simplicity. For K = 

2, individuals collected near and north of Dorothy, Alberta, were generally assigned to a northern 

cluster, while individuals collected within and south of Dinosaur Provincial Park, Alberta, were 

assigned to a southern cluster. 

 

Similar to the first set of Structure runs, DAPC based on K-means clustering analysis and 

BIC across K = 1:20 suggested K = 2 was best supported. An optimal number of 20 PCs was 

retained for DAPC. Assignments of individuals to northern and southern clusters were nearly 

identical between the first set of Structure runs and DAPC, save four admixed individuals with 

Q-values around 0.5 that were assigned to the southern cluster by Structure (based on Q-values > 

0.5) and the northern cluster by DAPC.  

7.4.2 Habitat suitability 

 The Maxent habitat suitability model adequately predicted habitat suitability across our 

study landscape, indicated by an out-of-sample AUC score of 0.948. As hypothesized, high 

suitability generally followed the eroding banks of major rivers, taking on the form of a dendritic 

ecological network (Figure 7-1, inset h). Contributions of each variable to the habitat suitability 

model were estimated by measuring the drop in AUC after values of each variable were 

randomly permuted (permutational importance): terrain ruggedness = 47.7, temp.cool = 34.2, 

elevation = 4.8, precip. = 4.4, temp.warm = 0.2, and heat load = 0.1. A resistance surface 

parameterized as the inverse of habitat suitability scores permitted estimation of least-cost path 

and circuit distances (Figure 7-1, insets j and k). 
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7.4.3 Determinants of genetic divergence 

7.4.3.1 Reciprocal causal modelling (RCM)  

Results of RCM are summarized in a heatmap (Figure 7-3), with red and blue colours 

indicating positive and negative values for RPM-A - RPM-B, respectively (sensu Ruiz-Gonzalez et 

al. 2105). Focal and alternative variables used in partial Mantel test A for each reciprocal model 

are on the y- and x-axes, respectively. For ease of interpretation, variables on the y-axis with 

more positive (red) values in their corresponding rows are better supported. Overall, the 

strongest correlates of genetic distance after partialling out relationships with alternative 

variables were Euclidean distance and temp.warm distance. Euclidean distance was significantly 

correlated with genetic distance after partialling out temp.warm distance (RPM  = 0.23; P = 0.001) 

and the reciprocal partial Mantel test was also significant (RPM  = 0.19; P = 0.001). All other 

partial Mantel tests using either the Euclidean or temp.warm distances as alternative variables 

were not significant, indicating other measures of geographic and environmental distances were 

unsupported.   
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Figure 7-3. Pairwise heatmap visualizing reciprocal causal modelling (RCM) results. Values in 

each cell represent results of RPM-A - RPM-B, with red and blue colours indicating positive and 

negative values, respectively. Rows and columns contain the focal and alternative variables, 

respectively, for model A within each reciprocal model. Therefore, the figure should be 

interpreted by rows and not columns; variables on the y-axis with more positive (red) values in 

their corresponding rows are better supported. 
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7.4.3.2 Structural equation modelling (SEM)  

Based on results of RCM analysis, Euclidean distance and temp.warm distance were used 

as single measures of geographic and environmental distance, respectively, in our causal path 

network. The full model, including direct paths from both geographic distance (Euclidean 

distance) and environmental distance (temp.warm distance) to genetic distance, was better 

supported than alternative models excluding either geographic or environmental distance (Table 

7-1). Path coefficients for Euclidean distance and temp.warm distance were 0.120 (P < 0.001) 

and 0.331 (P < 0.001), respectively, suggesting each is positively related to genetic distance. 

Covariance of the two predictor variables in the model was 0.592; thus, relative effect sizes 

should be interpreted with caution. However, model selection based on AIC indicated that 

variation in Euclidean distance and temp.warm distance each have important relationships to 

variation in genetic distance beyond that associated with their covariance structure. 
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Table 7-1. Relative support for path analysis structural equation models (SEMs) inferred using 

Akaike’s information criterion (AIC). The causal path network in the full model included two 

regression pathways; one from geographic distance to genetic distance and one from 

environmental distance to genetic distance. Reciprocal causal models (RCM) were used to infer 

which single measures of geographic and environmental distance were most strongly related to 

genetic distance and used in place of geographic and environmental distance (Euclidean distance 

and temp.warm distance, respectively). Akaike’s information criterion (AIC) scores are reported 

for the full model, a model excluding environmental distance (geography only), and a model 

excluding geographic distance (environment only).   

SEM structure AIC  AIC 

Full model 34147.52 0 

Environment only 34288.77 141.25 

Geography only 35203.77 1056.25 

 

 

7.4.3.3 Validation of the causal model framework 

Results of MLPE linear mixed effects models aligned with those of our causal models. 

Overall, the best supported variable affecting genetic distance was temp.warm distance followed 

by Euclidean distance (Table 7-2). This result supported the use of Euclidean and temp.warm 

distances as single distance measures for geographic and environmental distances, respectively, 

in SEM. AIC scores for MLPE linear mixed effects models with Euclidean and temp.warm 

distances were > 2 points lower than all other models, suggesting that alternative measures of 

geographic and environmental isolation were unsupported (Burnham & Anderson 1998).  
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Table 7-2. Relative support for effects of geographic and environmental distances on genetic 

distance inferred using linear mixed effects models with maximum likelihood population effects 

(MLPE). Akaike’s information criterion (AIC) scores are reported for each model.  

Distance measure AIC  AIC 

Temp.warm 32955.55 0 

Euclidean 33147.24 191.69 

Circuit 33152.41 196.86 

Least-cost 34623.89 1668.34 

Precip. 35055.58 2100.03 

Temp.cool 35590.9 2635.35 

 

 

7.4.4 Population divergence of candidate loci 

 All 15 independent Bayescan runs identified the same list of 33 outlier loci based on 

elevated FST values (2.39% of 1,382 SNPs). Positive alpha values for each of these 33 loci 

indicated they were under putative divergent selection, rather than purifying or balancing 

selection. To visualize the data, -log10 q-values were plotted against FST values estimated in the 

first Bayescan run for all 1,382 SNPs (see MacDonald et al. 2020 Data S1, Fig. S3). The mean of 

FST values for putative outlier loci was 0.169 (SD = 0.092), ranging from 0.030 to 0.272. The 

“snpzip” function (adegenet package) identified 17 structural loci that significantly contributed 

to between-population structure in DAPC. Each of these 17 structural loci were contained within 

the list of 33 candidate loci identified by Bayescan. 

7.4.5 Environmental associations of individual loci 

 Histograms of adjusted P-values were uniformly distributed for all three environmental 

variables, suggesting K = 2 adequately controlled for confounding effects of spatial genetic 

structure (see MacDonald et al. 2020 Data S1, Fig. S4). LFMM identified a total of 78 loci with 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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significant environmental associations (q-values < 0.05; Figure 7-4). Single loci often had 

multiple significant environmental associations, likely due to spatial correlation of environmental 

variables. We therefore only considered the strongest association for each locus based on median 

|z|-scores (De Kort et al. 2015; Martins et al. 2018). In total, 52 of 57 loci significantly associated 

with temp.warm were more strongly associated with temp.warm than any other environmental 

variable, 12 of 27 for temp.cool, and 14 of 43 for precip.. A total of 25 loci were identified in 

both LFMM and Bayescan analyses; 23 of which were most strongly associated with 

temp.warm, 0 with temp.cool, and 2 with precip.. LFMM identified 56 loci with significant 

environmental associations that were not identified as candidate loci by Bayescan, while 

Bayescan identified 8 candidate loci that were not identified by LFMM as having significant 

environmental associations. 
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Figure 7-4. Associations between allele frequencies of loci (n = 1,382) and a) mean temperature 

of the warmest quarter of the year (temp.warm), mean temperature of the coolest quarter 

(temp.cool), and mean annual precipitation (precip.) in latent factor mixed models (LFMM) with 

K = 2. Black dots are loci with significant associations to the relevant environmental variable 

based on a q-value threshold of 0.05 (−log10 q-value ~1.3). Single loci often had multiple 

significant environmental associations due to spatial correlation of environmental variables. 

Open circles represent the strongest association (based on median |z|-scores) for each locus with 

a significant environmental association. Loci are arranged on the x-axis in order of position 

within scaffolds, which are in turn arranged by increasing size.  

 

7.4.6 Genomic contexts of candidate loci 

Using both Bayescan and LFMM, a total of 86 candidate loci were identified as being 

under putative divergent selection or having significant environmental associations. Results of 

our Lepbase BLAST search are summarized in MacDonald et al. (2020) Data S2, including 

putative genes matched to each of the 86 sequences and their functional annotation. Although 

several biological and cellular processes were evident from these candidates, no striking patterns 

were apparent to justify specific narratives of local adaptation. 

7.5 Discussion 

7.5.1 Geographic isolation and dispersal machines 

 Overt clustering of P. m. dodi occurrences along major river valleys in southern Canada 

is generally understood to be a function of both the ecologically restricted occurrences of its 

larval host plant, A. dracunculus, and the presence of hilltopping features along river valley 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0002-DataS2.xlsx
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edges (Sperling 1987; Bird et al. 1995; Dupuis et al. 2019). Accordingly, results of our habitat 

suitability model support the inference that suitable habitat takes on the form of a dendritic 

ecological network with the intervening landscape comprised primarily of unsuitable habitat. 

Examination of a corresponding cost surface (Figure 7-1, inset j) shows that individuals 

dispersing between river valleys are predicted to experience high resistance/costs. IBR based on 

habitat suitability therefore predicts that dispersal and resultant gene flow should follow the 

dendritic ecological network (Figure 7-1, insets j and k). However, both RCM and MLPE linear 

mixed effects models suggested that variation in genetic distance was better explained by 

Euclidean distance than by resistance-based distances accounting for arrangements of suitable 

habitat. It is possible that other landscape features, beyond configurations of suitable habitat, 

influence dispersal of P. m. dodi and thereby support IBR. For example, Peterman et al. (2014) 

outlines a methodological approach for optimizing resistance surfaces using a nonlinear 

optimization algorithm and any combination of spatial variables. However, we did not have a 

priori mechanistic hypotheses predicting what variables might influence P. m. dodi dispersal 

beyond those associated with habitat suitability. Lack of support for IBR based on habitat 

suitability in this system was of principal interest and demonstrates a clear decoupling of 

landscape permeability from habitat suitability (cf. Coyne & Orr 2004; Crispo et al. 2006; 

McRae 2006; McRae & Beier 2007; Thorpe et al. 2008; Wang et al. 2009; Sánchez-Ramírez et 

al. 2018). 

In addition to mating and reproduction associated with adult life stages of invertebrates, it 

may be instructive to think of adult P. m. dodi as dispersal specialists within the taxon’s greater 

life cycle, with greater vagility and more general habitat tolerances than larval stages. Such traits 

enable long-distance dispersal of adults across considerable stretches of unsuitable habitat, 
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implicated in the spatial discordance of the cluster assignments of three adult individuals (i.e. 

migrants found in non-natal populations; see Figure 7-2 and MacDonald et al. 2020 Data S1 Fig. 

S1). Indeed, for many vagile butterfly species occupying fragmented landscapes, instances of 

long-distance dispersal between patches or corridors of suitable habitat are rare, but are known to 

have important consequences for gene flow, metapopulation dynamics, and emergent diversity 

patterns (Hanski 1998; Wiens 2001; Nowicki et al. 2014; MacDonald et al. 2018). We therefore 

propose that habitat suitability and landscape permeability should be evaluated as distinct 

concepts for taxa with discrete dispersal life stages, even if they are habitat specialists. As a 

mental shortcut, we suggest a “dispersal machine” concept, similar to Dawkins’s (1978) selfish 

gene perspective on evolution by natural selection, in which genes metaphorically build 

“survival machines” (i.e., bodies of organisms) to facilitate their own stability and replication. In 

landscape genetics, it may be instructive to understand adult life stages of many terrestrial 

invertebrates as not only the life stage in which mating and reproduction occur, but also as 

“dispersal machines,” exhibiting greater vagility and broader habitat tolerances than larval life 

stages. Such characteristics are likely to facilitate long-distance dispersal resulting in gene flow 

across heterogeneous landscapes. As a consequence of the dispersal machine concept, 

considerable support for IBR in past research cannot necessarily be extrapolated to organisms 

with disparate life histories; particularly, if the life cycles of focal taxa include a discrete 

dispersal life stage with substantially different habitat constraints.  

7.5.2 Environmental isolation 

Beyond the effects of geographic isolation on genetic divergence, this study provides 

multiple lines of evidence for strong associations between genetic variation and environmental 

conditions. First, analyses of population structure within P. m. dodi indicated the presence of two 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fmec.15604&file=mec15604-sup-0001-DataS1.docx
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prominent genetic clusters, with their spatial separation corresponding to a cline in mean 

temperature of the warmest quarter (temp.warm). Although any correlative relationship between 

spatial genetic structure and an environmental variable may be a product of spatial 

autocorrelation with a third unconsidered but causative variable, our results accord our a priori 

hypotheses relating summer temperatures to variation in phenology, diapause propensity, and 

voltinism within P. m. dodi, suggesting this relationship is both meaningful and worthy of further 

consideration. Second, RCM, SEM, and MLPE linear mixed effects models indicated that 

genetic distance among individuals was strongly associate with environmental distance 

(specifically, temp.warm distance) beyond its covariance structure shared with geographic 

distance (Euclidean distance). Finally, Bayescan identified 33 FST outlier loci inferred to be 

under putative spatially divergent selection between the two primary genetic clusters. Of these 33 

FST outlier loci, 23 were also identified by LFMM analysis as having allele frequencies that were 

significantly associated with temp.warm values, meaning most loci identified as being under 

putative spatially divergent selection were also significantly associated with variation in summer 

temperatures. 

Referring back to our original hypotheses, mechanisms by which environmental isolation 

structures genetic divergence may be inferred from patterns of population structure. Spatial 

discordance of a few individuals’ cluster assignments suggests that some dispersal of adult 

individuals between natal and non-natal regions of the study area occurs (and see Dupuis and 

Sperling 2016). Additionally, some admixture indicative of F1 hybridization between migrant 

and natal individuals is evident (individuals with ~50/50 split of Q-values in Structure plots). 

However, further admixture among the two primary genetic clusters was not prevalent, possibly 

due to reduced fitness and negative selection on admixed genotypes. We therefore infer that 
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mechanisms by which environmental isolation contributes to genetic divergence in P. m. dodi 

may be a combination of reduced fitness and negative selection on both individuals that have 

dispersed across environmental gradients and genetically intermediate individuals resulting from 

hybridization. 

7.5.3 Adaptation to local environmental conditions 

 Our combination of analyses suggests that variation in environment conditions has 

significant effects on genetic structure within P. m. dodi, possibly attributed to divergent 

selection across environmental gradients resulting in local adaptation. BLAST searches of 

candidate loci (both FST outliers and loci with significant associations) and their flanking 

sequences did not resolve annotated genes with biological functions sufficient to justify specific 

narratives of local adaptation. However, a total of 52 loci were significantly and most strongly 

associated with mean temperature of the warmest quarter (temp.warm)—the period in which 

development, reproduction, and diapause initiation occur. Nineteen of these 52 loci were evenly 

distributed along a single scaffold (NW_014538813.1, length 6.9 Mb) within the P. machaon 

reference genome, corresponding to the spike in −log10 q-values observed in LFMM analysis 

(Figure 7-1, inset a). Seventeen of these 19 loci were identified by Bayescan as being under 

putative divergent selection based on elevated FST values. Considered together, these results 

suggest the existence of an island of genomic differentiation (sensu Turner et al. 2005; Harr 

2006) between northern and southern P. m. dodi populations, possibly corresponding to local 

adaptation to environmental conditions. However, the relatively low quality of the P. machaon 

genome assembly (>60 thousand scaffolds) precludes more in-depth comparative genomic 

analyses of this region. 
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Local adaptation to environmental conditions has been documented in a number of 

butterfly species, with variation in voltinism and diapause propensity across environmental 

gradients being a focal point of much past work (e.g., Friberg et al. 2008; Aalberg Haugen & 

Gotthard 2015; Pruisscher et al. 2018; Ryan et al. 2018). Papilio machaon dodi is known to 

exhibit variation in voltinism and diapause propensity across its Canadian range, with northern 

and southern populations exhibiting one and two generations per year, respectively (Sperling 

1987; Bird et al. 1995). Additionally, we have noted that a proportion (~25%) of pupae reared 

from northern populations (near Drumheller, AB) require two distinct cooling cycles before 

emergence occurs, while pupae reared from southern populations (near Taber, Alberta) 

consistently emerge after a single cooling cycle (unpublished data, and see Sperling 1987; 

Dupuis et al. 2016). We hypothesize that this facultative second diapause in northern populations 

represents an ecological “hedging of bets” (sensu Seger & Brockmann 1987), distributing risks 

of high mortality and low fecundity due to poor environmental conditions across multiple years 

(Hanski 1988; Tuljapurkar 1990; Dupuis et al. 2016). Specific mechanisms by which variation in 

voltinism and diapause propensity might contribute to divergent selection between northern and 

southern P. m. dodi populations are not entirely clear, but there are several possibilities. 

Following hybridization between natal and migrant individuals in the northern extent of the 

study area, genetically intermediate offspring may experience high mortality if over-winter 

diapause is not induced in the first generation, as individuals of a second generation will lack 

sufficient day-degree accumulation and resources to complete their life cycle and enter over-

winter diapause before temperatures drop to lethal levels. Conversely, genetically intermediate 

individuals emerging in the southern extent of the study area may experience reduced fecundity 

and fitness relative to natal individuals if only one generation of genetically intermediate 
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offspring emerge annually and/or a proportion of genetically intermediate individuals undergo a 

second diapause, resulting in a partially semivoltine lifecycle. By these mechanisms, divergent 

selection on voltinism and diapause propensity may maintain the integrity of the two genetic 

clusters. However, further work is required to evaluate the validity of these hypotheses.  

7.5.4 Environmental determinants of genetic diversity vs. species occurrence 

The environmental variables that were most strongly associated with genetic variation in 

P. m. dodi (temp.warm, followed by precip., followed by temp.cool) differed from those 

identified as the best for predicting occurrences in our habitat suitability model (temp.cool, 

followed by precip., followed by temp.warm). While summer temperatures may influence 

population structure in P. m. dodi via spatially divergent selection related to phenology, diapause 

propensity, and voltinism, winter temperatures may influence habitat suitability and limit the 

range of P. m. dodi due to limited cold tolerance of pupae. Indeed, winter temperatures have 

been inferred to limit ranges of other Papilio species (e.g., Kukal et al. 1991; Yoshio & Ishii 

2001; Scriber et al. 2012). Considered together, our inferences suggest that the 

environmental/ecological conditions that influence divergent selection and possibly facilitate 

ecological speciation (Foll & Gaggiotti 2006; Thorpe et al. 2008; Nosil 2012) may differ from 

those that limit species’ ranges and structure emergent patterns of species diversity (e.g., due to 

environmental filtering; sensu Kraft et al. 2015). Landscape genetic analyses, comparing the 

environmental/ecological conditions that influence divergent selection to those that limit species’ 

ranges, are required for multiple species to assess the generality of this finding.   

7.5.5 Anticipated changes to genetic structure in Papilio machaon dodi 

 Currently, no members of the P. machaon species group are listed as being of 

conservation concern in Canada. However, recognition of cryptic evolutionary significant units 
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(sensu Ryder; 1986), such as the northern and southern genetic clusters identified in this study, 

may affect future conservation in light of continued climate change. Our study resolved that a 

northern genetic cluster, which includes the type specimen for P. m. dodi (Kondla 1981), is 

geographically restricted and occupies a climatic niche that is distinct from more southerly 

populations in Alberta and Saskatchewan. If genetic divergence between the northern and 

southern genetic clusters is indeed driven by local adaptation to environmental conditions, 

continued climate change and rising summer temperatures may lead to the displacement of the 

northern genetic cluster as genotypes and associated traits of southern populations become more 

favorable across the northern extent of the range of P. m. dodi.  

Quantitative data support these predictions. Mean temperature of the warmest quarter 

differed by an average of 1.60°C between collection locations of individuals belonging to the 

northern and southern genetic clusters (excluding migrants). Based on the ClimateWNA model 

(Wang et al. 2012b), which provides climate data from 24 general circulation models, mean 

annual temperature for Alberta is predicted to rise by 2.8 – 4.2 °C by the end of the century, 

contingent on emission scenarios (Schneider 2013). Accordingly, growing degree-days, based on 

a break point of 5°C, are estimated to increase 33-56% (Schneider 2013). Within Alberta and 

Saskatchewan, changes in mean annual temperature, growing degree-days, and vegetation 

composition are expected to be most pronounced in central and southern regions, including the 

current range of P. m. dodi (Schneider 2013; Zhang et al. 2015; Barber et al. 2016). There is 

some evidence that vagile North American butterfly species may track their climatic niches 

poleward as temperatures warm; however, more often than not, these range expansions are not 

sufficient to offset contractions toward the equator (Lewthwaite et al. 2019). Indeed, there exist 

few opportunities for P. m. dodi to track its climatic niche northward as temperatures rise. Steep 
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south-facing riverbanks that might provide adequate A. dracunculus habitat are sparse north of 

the current range of P. m. dodi and successional changes to the composition of riverbank 

vegetation that could provide suitable habitat are unlikely to match the pace of the southern 

genetic cluster’s northward expansion. We therefore hypothesize that genotypes unique to the 

northern genetic cluster may be displaced by the end of the century. 
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8 Chapter 8: Conclusions and synthesis 

 What is biodiversity and how is it best measured? How does variation in habitat 

configuration, habitat composition, and environmental conditions affect emergent patterns of 

species diversity? How do these same factors relate to genomic variation within single species? 

These three questions were the focal points of my Ph.D. thesis. Addressing them required a 

combination of biogeography, landscape ecology, and population genomics, with sprinklings of 

philosophy here and there. The overarching aim of this work was to contribute to consilience of 

these subdisciplines within ecology and evolutionary biology, helping to resolve consistencies 

and inconsistencies among their inferences.  

In Chapter 2, my analyses of temporal patterns of butterfly diversity showed that negative 

relationships between species richness and evenness can compromise the efficacy of many 

diversity indices; particularly, those based on information entropies. This was, to my knowledge, 

the first study to explicitly evaluate the ability of common diversity indices to resolve changes in 

the diversity of species assemblages through time. Overall, species richness was one of the best 

performing indices, exhibiting substantial interannual variation. Furthermore, it is widely thought 

to best align with most peoples’ intuitive sense of species diversity. I therefore recommended 

that, for citizen-science and related long-term butterfly monitoring programmes, species richness 

may serve as a single, viable indicator of diversity trends. Additionally, if abundance data are 

available, direct measures of species evenness should be used in conjunction with richness to 

deepen our understandings of variation in species assemblages. However, conflating species 

richness and evenness in compound indices (specifically, information entropies) produces 

measures that can fail to capture variation in species diversity through time. Furthermore, these 

measures generally do not align with peoples’ intuitive sense of species diversity. To understand 
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why, it is instructive to revisit the heuristic question: “Why is a rainforest more diverse than a 

monoculture?” Is it because, on average, the number of yes/no questions required to determine 

the species identity of a randomly selected individual will be greater for a rainforest than a 

monoculture? Is it because the probability that two randomly selected individuals will belong to 

the same species is lower for a rainforest than a monoculture? Clearly not, but these are verbal 

translations of measures given by information entropies (Shannon-Winer and Simpson’s index, 

respectively). While such measures quantify interesting properties of abundance distributions 

that may be used to characterize species assemblages, they do not conform to most peoples’ 

intuitive sense of species diversity. In citizen-science and related long-term butterfly monitoring 

programmes, deferring to simpler measures, namely species richness, not only helps to erode an 

overwhelming statistical machismo that pervades ecology, but also adequately captures variation 

in the diversity of species butterfly assemblages through time. 

 Chapters 3 and 5 refute the basic inference of Chapter 2, showing that patterns of 

butterfly species richness have great potential to obscure important response of individual 

species to habitat amount, fragmentation, and configuration. These studies compared abundances 

and diversities of species across 32 lake islands varying in both area and isolation. After 

controlling for total habitat amount, species richness was generally unrelated to degree of 

fragmentation, supporting stochastic species assembly mechanisms. However, further analyses, 

using a novel modelling framework detailed in Chapter 5, resolved that habitat fragmentation has 

important effects on smaller, less-mobile butterfly species. These effects were not apparent in 

richness-based analyses. This basic finding questions previous, richness-based support for the 

recently proposed and widely debated habitat amount hypothesis (e.g., Fahrig 2003; 2013; 2017; 

2020), which posits that conservation efforts should focus solely on preserving the maximum 
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amount of habitat irrespective of its degree of fragmentation. In Chapter 6, I carried out a series 

of experimental releases of butterflies in the lake-island matrix. Tracking movements of released 

individuals suggested there is significant disparity in species’ ability to navigate fragmented 

landscapes and that visual senses play a primary role in habitat detection. Considered together, 

our work addressing butterfly assemblages on lake islands suggests that species’ identities and 

functional traits are necessary considerations in conservation frameworks and that efforts to 

minimize habitat fragmentation should continue as foundations for mitigating biodiversity loss. 

Chapter 4, which addressed patterns of vascular plant diversity across the same set of lake 

islands, resolved that scale of fragmentation and habitat heterogeneity within individual 

fragments may also be important considerations in this field of research. 

The last section of my thesis, Chapter 7, addressed gene flow and climate-associated 

genomic variation within a single butterfly species: Dod’s Old World swallowtail butterfly, 

Papilio machaon dodi. Genomic analyses and habitat suitability models were used to identify 

two distinct evolutionary lineages (north vs south) that were previously unrecognized. A series of 

landscape genetic and genomic analyses resolved that the integrity of the evolutionary lineages is 

likely maintained by spatially divergent selection resulting in local adaptation to climatic 

conditions. Interestingly, after controlling for climate-associated genetic variation, configurations 

of suitable habitat were unrelated to genetic connectivity within P. m. dodi. This challenges a 

foundational method in ecology: the use of habitat suitability models to infer patterns of 

connectivity between isolated populations when genetic data are unavailable. Although 

landscape composition and the scale of analysis differ considerably between Chapters 3 – 6 and 

Chapter 7, they share a common inference that habitat configuration may not be an important 

consideration for the conservation of highly vagile butterfly species. Landscape genetic/genomic 
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analyses of less vagile species are a necessary next step to inferring whether effects of habitat 

configuration on genomic patterns vary with species’ functional traits, as suggested in Chapter 5. 

Overall, the combination of my thesis projects demonstrates clear utility for integrating 

biogeography, landscape ecology, and population genomics to address cumulative effects of 

changes to habitat configuration, habitat composition, and environmental conditions. I believe 

that continued consilience among these subdisciplines is required for the successful conservation 

of butterflies, among other taxa. Much of the work presented in this thesis has suggested that an 

autecological approach may be most sensible from a theoretical perspective and most effective 

from a conservation perspective. However, continued work and consilience among 

subdisciplines in ecology and evolutionary biology will resolve whether generalizations across 

taxa are viable and applicable to conservation practice.    
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