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Abstract

Hip displacement is a prevalent disorder in children with cerebral palsy, defined as

the lateral displacement of the femur head from under the acetabulum, and leads

to severe pain and difficulties in daily activities. As a result, hip surveillance pro-

grams have been developed to monitor and diagnose hip displacement in children

with cerebral palsy, and ensure that appropriate interventions are made at the right

time. These programs involve regular assessments of hip displacement. Migration

Percentage (MP), defined as the ratio of the distance between the lateral borders of

the femur head and the acetabulum (A) to the total width of the femur head (B), is

the gold standard parameter of hip displacement measurement and is measured using

anteroposterior X-ray imaging (MP=A/B). However, the frequent X-ray imaging in

hip surveillance programs exposes children to ionizing radiation, increasing the risk

of cancer development later in life.. Recently, ultrasound (US) has been proposed as

a non-invasive and widely accessible alternative for hip assessments. Yet, the inher-

ently fuzzy and noisy nature of US images makes accurately identifying edges and

landmarks challenging, leading to time-consuming and user-dependent manual mea-

surements. To tackle these issues, this study aimed to develop a fast, reliable, and

fully automatic algorithm to measure the MP from US images.

In the developed methodology, for each of the “A” and “B” measurements, UNets

were trained to segment the hip features on the coronal hip scans. A convolution

neural network was trained to score and select frames for measurement. More UN-

ets were trained to identify the measurement features on the selected frames, and

statistical analysis was applied to aggregate and finalize the measurements.
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To verify the developed method, a total of 38 children with an average age of 9±3.4

years old were recruited, and 62 hips were scanned in total. From the 62 scanned hips,

36 were utilized for training, 8 for validation, and 18 for testing. An experienced rater

provided the X-ray measurements for all scanned hips as the ground truth. The mean

absolute difference (MAD) and intra-class correlation coefficient (ICC(2,1)) of the test

measurements were 6.5% ± 5.5% and 0.86. The clinical acceptance rate was 72%,

and the sensitivity and specificity of classification of displaced hips (MP>30) were

found to be 100% and 93%. The measurement time for each hip was 105.6 seconds on

average, which was 3 times faster than manual measurements. Hence, the developed

method demonstrated good reliability, accuracy, and speed in MP measurements,

marking a significant step towards replacing X-ray with US in hip assessments.
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Chapter 1

Introduction

1.1 Background

Cerebral palsy (CP) is a neurological condition caused by non-progressive brain dam-

age, resulting in movement disorders [1]. According to 49 relevant studies, the pooled

average prevalence of CP is estimated at 2.11 per 1,000 live births, with 95% con-

fidence intervals of 1.98-2.25 [2]. Although the damage is neurological, CP creates

various musculoskeletal issues, with hip displacement being the second most prevalent

one, affecting approximately 35% of the population [3]. Hip displacement is defined as

the gradual displacement of the femur head from under the acetabulum [4]. Hip dis-

placement can cause significant physical and functional limitations, including chronic

pain, osteoarthritis, and a severely diminished health-related quality of life [5–7], and

if left untreated, it could lead to complete dislocation of the femur head. Hip dis-

location is preventable through early identification and appropriate intervention [8],

which includes postural management, orthoses, tone management and surgery. In-

terventions should be selected in agreement with the child’s clinical and functional

status [9]. As a result, hip surveillance programs have been developed to monitor

and track the hip displacement progression, incorporating regular hip assessments.

Currently, The gold standard for diagnosing hip displacement is the migration per-

centage (MP), defined as the ratio of the distance between the acetabulum and the

femur head (“A”) to the total width of the femur head (“B”) [4, 10].
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The accepted method for MP measurement is anteroposterior X-ray imaging. Al-

though a single radiograph of the hip has a radiation dose of 0.1-0.7 mSv, regular

exposure to ionizing radiation during surveillance programs increases the risk of can-

cer development in later stages. The risk is even higher for children, especially when

the exposure area is close to the reproductive organs. Ultrasound (US) is a widely ac-

cessible, safe, and non-invasive diagnostic tool that uses mechanical waves for imaging

and does not harm the tissues. A recent study has proposed a method for measuring

MP from US scans, suggesting the measurement of the lateral head distance from

coronal scans and the total width of the femur head from transverse scans [11].

1.2 Motivation

Each US hip scan contains 100-1000 frames, with only a few suitable for measure-

ment. The inherent fuzziness and noise in US images make identifying the necessary

features for measurement time-consuming and user-dependent. For a single hip, the

measurement process could take up to 10 minutes. Therefore, developing a fully au-

tomated method could conserve valuable clinician time, standardize measurements,

and pave the way for replacement of radiography with US imaging in hip surveillance

programs.

1.3 Objectives

1. To precisely label and prepare a dataset for developing an automated AI-based

algorithm for MP measurements using US images.

2. Develop a model for automatic and fast measurement of lateral head distance

(“A”) from coronal US scans.

3. Develop a model for automatic and fast measurement of total width of the femur

head (“B”) from transverse US scans.
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4. To evaluate and analyse the developed models and measurements.

1.4 Thesis Outline

This thesis consists of five chapters. It starts with an introduction to hip displacement,

surveillance programs, and MP in Chapter 1. The objectives of this research are also

listed.

Chapter 2 provides in-depth background about CP, hip displacement, its prevalence

and consequences, prevention methods, and hip surveillance programs. Furthermore,

a literature review on MP, including its accuracy and reliability, is given. It also

includes details about related studies on measurement modalities, including X-ray

and US. Finally, an overview of the applications of machine learning and deep learning

in hip assessments is provided.

Chapter 3 presents three initial studies on manual measurements and labeling by

the author. These studies establish the author’s intra- and inter-rater reliability in

1) MP measurements using X-ray, 2) frame selection in US scans, and 3) lateral head

distance measurement in US frames. The purpose of these studies was to provide the

author with the required background and reliability for manual labeling.

Chapter 4 reports the details of dataset preparation, labeling, model development,

and the developed measurement algorithm.

Chapter 5 describes the training procedure and model optimization for the pro-

posed method, the performance of the trained networks, the results of the test dataset

in “A”, “B”, and MP measurements, and a detailed discussion of the results and com-

parison with the literature.

Chapter 6 summarizes the thesis work, provides concluding remarks about the

research, and suggests future recommendations.
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Chapter 2

Literature Review

Cerebral Palsy (CP) is the leading cause of disability in children, and hip displace-

ment ranks as the second most prevalent orthopedic problem in children with CP.

Given this, many studies have been conducted on the diagnosis and prevention of

hip displacement. In this chapter, we present a literature review of the related stud-

ies. We begin in Section 2.1 with an introduction to CP, outlining the diagnostic

criteria and the various levels of severity. Section 2.2, focuses on hip displacement

and dislocation, highlighting preventive strategies and the pivotal role of migration

percentage (MP) in diagnostics. Section 2.3 discusses the reliability of using MP in

radiographical studies. Section 2.4 reviews studies on the use of ultrasound (US) in

hip assessments, comparing it with the radiological method. Finally, in Section 2.5,

we explore studies employing machine learning in hip examinations.

2.1 Cerebral Palsy

CP is defined as a group of disorders that affect the ability of a person to move and

maintain balance and posture. It is caused by abnormal development or damage the

during fetal or neonatal period. The motor impairments seen in CP frequently occur

alongside issues with sensation, perception, cognitive functions, and communication,

as well as behavioral disturbances. Individuals with CP may also experience epilepsy

and additional musculoskeletal complications [12]. Although the damage to the brain
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is static, the consequent musculoskeletal problems can vary over time [3, 10]. The

main features of such problems are joint instability, torsional deformity of bones, and

muscle-tendon contracture [13]. The prevalence of CP is approximately 2 per 1000

among newborn infants, making it the primary cause of physical disability affecting

children [3, 10, 13].

Identifying CP is primarily based on clinical evaluations. Key indicators that can

collectively point towards a CP diagnosis include delay in achieving motor milestones,

irregular neurologic assessments, retention of primitive responses, and abnormal pos-

tural reactions [14].

2.1.1 Gross Motor Function Classification System

The Gross Motor Function Classification System (GMFCS) is a five-level classifica-

tion system used to assess the severity of CP based on the individual’s movement

abilities. Level I indicates normal mobility, while level II indicates the ability to walk

independently but with limitations in running or jumping. Children classified at level

III require assistive devices to walk and use a wheelchair for longer distances. Level

IV indicates limited walking abilities and a reliance on a wheelchair for mobility, and

level V indicates an inability to sit, walk, or stand independently [15].

2.2 Hip Displacement and Dislocation

Hip displacement is the displacement of the femur head from the lateral border of

the acetabulum. Hip dislocation refers to the condition when the femoral head is

completely displaced from under the acetabulum [16].

2.2.1 Hip Displacement in Children with Cerebral Palsy

In children with CP, hip displacement is the second most frequent musculoskeletal

problem after equinus, affecting approximately 35% of children with CP, compared

to 0.2% in the general population [3, 10].
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Children with CP have normal hips up to the age of approximately 18 months,

but the spasticity, contracture and imbalance of the hip muscles leads to gradual

displacement of the femur head from under the acetabulum and increased pain and

functional disability over time [3, 17]. As a result of the asymptomatic nature of the

hip displacement and increased focus on other problems such as seizure and feeding

difficulties, hip displacement is usually diagnosed late [3].

2.2.2 Migration Percentage

Migration percentage (MP) refers to the distance between the lateral margin of the

femur head and the Perkins’ line (A) divided by the total width of the femur head (B,

measured parallel to Hilgenreiner’s line) multiplied by 100. Hilgenreiner’s line is the

line connecting the triradiate cartilages, and Perkins’ line is drawn perpendicularly to

Hilgenreiner’s line from the most lateral point of the acetabulum [4, 18]. Figure 2.1.

depicts a schematic view of the pelvis, Hilgenreiner’s and Perkins’ lines, and “A” and

“B” distances.

MP is considered the gold standard method [10] for hip displacement measurement

because of its higher intra- and inter-observer agreement (intraclass correlation coeffi-

cient (ICC) = 0.95-0.97 and 0.91-0.93) compared to other hip assessment parameters

such as the acetabular index (intra-rater ICC = 0.91-0.92 and inter-rater ICC = 0.80-

0.81) and the femoral neck-shaft angle (intra-rater ICC = 0.76-0.95 and inter-rater

ICC = 0.58-0.89) [20, 21]. Additionally, MP is easier to measure, especially when the

femur head is not entirely spherical and less influenced by the rotational position of

the femur head [17].
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Figure 2.1: A schematic view of pelvis. The Hilgenreiner’s and Perkins’ are indicated
as H and P, and “A” and “B” distances are depicted [19].

2.2.3 Definition of Hip Displacement and Dislocation by MP

There have been slightly different definitions of hip displacement and dislocation based

on MP value. In [16], hip displacement or subluxation is defined as 10%<MP<99%

and hip dislocation is defined as MP>100%. In [22, 23], 33%<MP<80% denotes hip

displacement and hip dislocation refers to MP>80%. The most commonly accepted

definition of hip displacement in the literature is an MP>30% [3].

A classification scale based on MP is proposed to describe hip morphology in

patients with CP for both clinical and research purposes [24]:

• I: Normal hip – MP<10%

• II: Near normal hip – 10%<MP<15%

• III: Dysplastic hip - 15%<MP<30%
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• IV: Subluxated hip - 30%<MP<100%

• V: Dislocated hip – MP>100%

• VI: Salvage surgery

2.2.4 MP Progression and Hip Displacement Factors in CP
Children

Terjesen et al. [17] studied 76 children with CP and reported gait function level and

age as the most influential variables affecting MP progression. The children who could

not walk showed an MP progression rate of 12% per year, while for those who could

walk with or without support, the progression rate was only 2% per year. In addition,

MP progression in younger children tended to be higher than in older children.

Research has shown correlation between the GMFCS level and the severity and

incidence of hip displacement. Robin et al. [13] measured the overall MP to be 8.1%,

13.0%, 25.0%, 36.8%, and 46.2% for GMFCS level I to level V, respectively. Soo et

al. [3] reported the incidence of hip displacement, defined as MP>30%, to be 0%,

15,1%, 41.3%, 69.2%, and 89.7% GMFCS level I to level V, respectively. Figure 2.2

demonstrates the mean MP and the incidence of hip displacement in different levels

of GMFCS. In addition, 6.5% of children with CP in the study had hip dislocation, all

having a GMFCS level of IV or V, and the incidences were 12% and 26%, respectively.

Figure 2.2: The mean MP (left) and the incidence of hip displacement (right) accord-
ing to different levels of GMFCS [3, 13].
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2.2.5 Hip Displacement Consequences

Progressive hip displacement can lead to hip dislocation [16]. Hip dislocation results in

severe pain and significant problems with mobility, sitting balance, perineal hygiene,

and decubitus ulceration [13, 17]. Unilateral hip dislocation is associated with the

development of scoliosis, and pelvic obliquity [3, 22]. Some authors have reported that

an MP progression rate of 7% or greater can be correlated with a future inability to

walk [25]. An MP of 15% at 30 months of age carries 50% chance of developing hip

dislocation, while an MP of 60% is considered unstable and requires immediate action

[26].

2.2.6 Hip Dislocation Prevention

Hip dislocation can be prevented by surveillance, early identification, and taking

appropriate measures. Studies have demonstrated a substantial decrease in hip dis-

location incidence by implementing a prevention program [8, 27]. Early intervention

has been reported to yield better long-term outputs and decrease the chance of treat-

ment failure in children at the risk of developing hip displacement. Onimus et al. [28]

reported the chance of a successful operation to be 90% when the MP is less than

33%, and the patient has an age of less than 4 years. Hence, early diagnosis of hip

displacement in children with CP is crucial.

2.2.6.1 Surveillance and Early Identification

Numerous research studies suggest that hip surveillance is a helpful strategy for pre-

venting hip dislocations [26]. Hip surveillance involves identifying any early indica-

tions of progressive hip displacement, such as the child’s GMFCS level, age, degree

of gait function, and high value of MP on radiological examination [16]. Certain

studies propose that all children with spastic quadriplegia and those unable to walk

independently before reaching 30 months of age should undergo hip surveillance [23,

26]. Other studies suggest that hip surveillance programs should begin as early as
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12 months of age [25]. A preventive intervention is recommended before reaching an

MP level of 60% in the literature [27].

2.2.6.2 Radiological Examination

The best way to evaluate the degree of hip displacement is by measuring MP using

standardized procedures [4, 26]. The standard procedure involves taking pelvic X-ray

images of the patient while they are lying in supine position, ensuring both symmetry

in the anterior/posterior tilt and the neutral positioning of the femurs relative to

the pelvis [20], as shown in Figure 2.3. Regular measurement of MP is part of the

hip surveillance programs. The recommended age of the initial radiograph and the

frequency of subsequent radiographs is variant among different studies, e.g., starting

from 12 months of age and repeating every 6 or 12 months until 8 years of age or

skeletal maturity [25], starting from 18 months of age [27], beginning from 30 months

of age and repeating every 6 months [23] or every 12 or 24 months [3]. In some

sources, the suggested frequency depends on age, GMFCS level, and MP [16].

Figure 2.3: Standard positioning for pelvic X-ray imaging [16].

10



2.3 Studies on MP Measurement on Radiographs

2.3.1 MP Reliability

There have been several studies on the reliability of MP measurements from radiog-

raphy. Initially, there was some skepticism around the reliability of MP since in one

study, the 95% confidence interval for intra- and inter-rater errors were reported as

high as 13% and 22.4%, respectively. However, the raters had a limited experience

which could have adversely affected the results [29]. Subsequent studies showed that

MP is a reliable parameter if measured appropriately. Parrott et al. [20] conducted

a study with 5 experienced raters and hip radiographs of 20 children to quantify

the repeatability of MP measurements. Their study showed that an experienced

rater is expected to measure MP within ±5.8% and ±8.3% of the actual value on a

single radiograph and on two radiographs of the same hip taken at different times,

respectively. Availability of digital images like DICOM files with zooming ability and

software-aided measurements has enabled more accurate MP measurements. A study

with 16 raters from around the world obtained a 95% confidence interval of 6.4% for

MP measurements from digital X-ray images [18]. Another study found the intra-

and inter-rater error for software-assisted digital measurements of MP to be 3-7%

and 1%, respectively [30]. Kim et al. [31] compared a modified method of MP mea-

surement that takes into account the lateral edge of the acetabular sourcil, with the

classic method of MP measurement, which uses the acetabular roof as the reference

point. Their results showed that the classic method offers more reliability in terms of

both intra- and inter-rater reliability, specifically the latter one.

2.3.2 Effect of Positioning on MP Measurements

Cliffe et al. [32] showed that with correct positioning under the supervision of an

experienced pediatric radiographer and using wedges and pillows for maintenance,

the mean variation for a single observer was 3.2% (SD 3.5) and 3.3% (SD 3.2) for
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the repeated measurement. In addition, the mean difference for different observers

was 3.7% (SD 3.8). Terjesen et al. [33] measured the mean variation in MP between

supine and standing positions to be less than 1% in individuals who have already

been treated for hip dislocation.

2.3.3 Threshold of MP for Operative and Non-operative In-
tervention

Hägglund et al. [34] studied the threshold value of different radiological parameters,

including MP, for operative and non-operative intervention in children with CP. They

analyzed 1067 radiographs of 272 children aged 6.5-13.5 years at the last examination

and recommended 33%<MP<40% as an indicator for non-operative intervention and

MP≥40% as the threshold for operative intervention.

Table 2.1 shows a summary of radiological studies on MP measurement.

2.3.4 Limitations

The use of radiography in medical imaging exposes patients to ionizing radiation,

which imposes many risks to their health, including an increased chance of developing

cancer later in life. The associated risk increases if the patient is younger. As a result,

a safer alternative is required for hip surveillance programs in children.
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Table 2.1: Summary of radiological studies on MP measurement.

Num
of
hips

Num
of
raters

intra-rater reliability inter-rater reliability

Faraj
et al. [29]

44 2 Intra-session:
MeAD=3.2%
(95thpercentile=12.7%)
Inter-session:
MeAD=1.7-3.2%
(95thpercentile=12.6-
12.9%)

MeAD=2.8%
(95thpercentile 22%)

Parrott
et al. [20]

20 5 ICC=0.95-0.97
MD=-1.94-2.78%
(SD=1.59-5.75%)

ICC=0.91-0.93
SD=1.28-6.45%

Shore
et al. [18]

50 16 ICC = 0.95
MAD=3.2% (SD=2.9%)

ICC = 0.94

Segev
et al. [30]

20 10 SD=3.31–7.91% ICC=0.83–0.92
SD=1.03–1.04%

Terjesen
et al. [33]

102 2 MD=-1.3--0.2% MD=-1.2-1.5% (SD=2.6-
3.7%)

Kim
et al. [31]

152 2 ICC = 0.94-0.97
MD=-1.94-2.78
(SD=1.59-5.75%)

ICC = 0.95

Cliffe
et al. [32]

40 2 intra-session:
ICC = 0.97
MD=3.2%
inter-session:
MD=3.3%

ICC = 0.96
MD=3.7% (SD=3.8%)

Num, number; MeAD, median absolute difference; MD, mean difference;
MAD, mean absolute difference; ICC, intraclass correlation coefficient.

2.4 Ultrasound for Hip Assessment

US is an inexpensive and widely accessible diagnostic tool. The primary advantage

of US is that it does not expose children to ionizing radiation, which makes it a safe

and repeatable option for medical imaging. Since in neonates and children under 12
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months of age, most parts of the pelvis are cartilaginous and not ossified, US can

be utilized for the diagnosis and follow-up of hip dysplasia [35]. The application of

US as a diagnostic tool for hip examination in infants with potential congenital hip

dysplasia is widely acknowledged [36–38]. However, in older children, visualization of

most of the acetabulum is impossible in US imaging due to the extensive ossification

center within the femoral head. Despite this limitation, since other bony and soft

components of the hip joint are visible in US images, it is possible to evaluate the

extent of femoral head coverage by the acetabulum by using US images [39].

Terjesen et al. [39] realized in their follow-up examinations of children with con-

genital dislocation of the hip (CDH) that US can be a useful diagnostic tool even

for children above two years of age. They conducted a study to evaluate to what

extent US can replace radiography in CDH diagnosis. The 95% confidence interval

for determining an unknown distance from a single US measurement was found to be

the observed value (mm) ± 1 mm.

2.4.1 Lateral Head Distance

Lateral head distance (LHD) is defined as the distance between the lateral tangent

of the ossification center of the femoral head to the lateral bony rim of the acetabu-

lum. LHD corresponds to the variable “A” in MP definition [35, 39–42]. Figure 2.4.

illustrates a US image and LHD on a schematic view of the hip.

LHD has been widely explored as a parameter for hip screening in literature. Ter-

jesen et al. [39] reported >7mm, >8mm, >10mm, and >12mm as the LHD threshold

for hip displacement in children aged 2-3, 4-7, 8-12, and ≥13 years, respectively.

The resulting accuracy for normal (MP<33%) and dislocated (MP>100%) hips was

99.5% and 100%, respectively, while for subluxated hips (30%<MP<100%) it was

only 57.1%. In a subsequent study, Agnar et al. [42] obtained a specificity of 89%,

but only after excluding a substantial number of uncertain cases in comparison to

the abnormal ones. (9 vs. 17). Šmigovec et al. [40] reported >5mm and >4.8mm
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Figure 2.4: A sagittal US image (left) and schematic view (right) of the right hip
sonogram), indicating the lateral outline of the femur head (arrow), lateral bony ac-
etabular rim (triangle), joint capsule (cirecle), and labrum (square). LHD is depicted
in the schematic view [41].

as the LHD threshold for hip displacement (MP >33%) in children aged 24-60 and

>60 months. Although the resulting classification rate was relatively high (86%), the

positive predictive was low, especially in children aged >60 months (46.2%), which

means there is a high probability (44.8%) of MP<33% when LHD>5mm.

2.4.2 Comparison of Ultrasound and Radiography measure-
ments

Lateral head distance by radiography (LHDR) is defined as LHD measured from

radiography. There have been a few papers in the literature that compare LHD with

LHDR. Terjesen et al. [39] reported the mean discrepancy, the 90% confidence interval,

and the correlation coefficient of LHD and LHDR to be 0.3mm (SD 1.65-1.84), 3mm,

and 0.84, respectively. Agnar et al. [41] reported -0.3mm, 3mm, and 0.59 as the mean

difference, 95% confidence interval, and correlation coefficient of LHD and LHDR in

a study of 30 hips, respectively. Another study reported the mean difference and the

correlation coefficient of LHD and LHDR measurements as 0.7 (SD 1.6) and 0.85,

respectively [42].

To the best of the author’s knowledge, only a few studies exist on intra- and
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inter-observer reliability of LHD measurements by US. Šmigovec et al. [40] reported

that the difference between the two raters was within ±1.0mm in 95% of the LHD

measurements. The ICC of two raters in LHD measurements was reported as 0.84

[39], 0.94 [35], and 0.98 [40] in the literature.

2.4.3 MP measurement on Ultrasound

Since complete visualization of the femur head is not possible in US images, direct

measurement of MP has not been explored until recently. However, the correlation

coefficient between LHD and MP was reported as 0.8 [39] and 0.79-0.83 [42].

Kay et al. [43] introduced a new index called lateral head coverage (LHC), defined

as the portion of the femur head not covered by the acetabulum. LHC was expected

to be inversely correlated to MP. In order to measure LHC, a sphere was fitted to

the visible parts of the femur head in 3D US images of the hip, and its diameter was

taken as an estimation of the total width of the femoral head. They measured MP

and LHC from radiographs and sonograms of 24 hips and found that MP is correlated

with LHC with a correlation coefficient of -0.86. In addition, the inter- and intra-

class correlation coefficients of the measurements were 0.973 (95% CI 0.925-0.998)

and 0.982 (95% CI 0.976-0.991).

Pham et al. [44] conducted experiments by varying the LHD in two 3D printed hip

phantoms for different MP values. Transverse (scanning along the plane that divides

the body into left and right halves) and coronal (scanning along the plane that divides

the body into front/anterior and back/posterior sections) scans were performed by a

2D US device to measure the variables “A” and the “B”. “B” was then estimated

by fitting a circle using Taubin’s method [45] to visible parts of the femur head in

sagittal view. Radiological measurements of MP on these phantoms were obtained as

well. In the US measurements, the errors recorded for the two phantoms were 2.20%

and 0.68%, while in the X-ray measurements, the errors were higher at 3.23% and

9.83%, respectively. In a subsequent study, Pham et al.[11] evaluated their developed
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method on 10 hips from children with CP. The MAD between the MPUS and MPXray

measurements was 3.5% ± 2.8%, demonstrating good agreement between the imaging

modalities. Figure 2.5 displays the Anteroposterior X-ray, coronal and transverse US

scans of a participant’s left hip, and the measurements “A” and “B”. “A” represents

the vertical distance (in the rotated coronal image) between landmarks indicating

the lateral margins of the acetabulum and femoral head. “B” is the diameter of a

circle fitted to the femoral head’s upper edge in the transverse US scan. Pham’s

experiments showed the potential of making accurate MP measurements using US.

Figure 2.5: (a) Anteroposterior X-ray; US coronal (b) and transverse (c) scans; 1,
femoral head; 2, lateral acetabular margin. [11].
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2.5 Application of Machine Learning in Hip Ex-

amination Image Processing

Convolutional neural networks (CNNs) have been used to segment the acetabular

roof and ilium in US images of hip infants. The segmented parts were then used

to estimate the alpha angle in Graf’s method for developmental dysplasia of the hip

(DDH) diagnosis [46–48]. CNNs with residual blocks were employed for osteonecrosis

of the femoral head diagnosis [49]. RNNs have been utilized to detect the frames

with diagnostic features in 3D US volumes for DDH examination [50]. Segmentation

networks have been used for anatomical landmark detection in hip radiographs, e.g.,

Mask R-CNN [51], UNet [52, 53], Hourglass, and HRNet [53].

Automatic algorithms for MP measurements from radiographs have been developed

as well. Liu et al. [54] converted the task of landmark detection into a segmentation

problem and used a modified UNet to detect the required landmarks for MP mea-

surements from hip radiographs. Pham et al. [55] used a two-staged pipeline of CNNs

to find the landmarks in hip radiographs from children with CP. The first CNN gave

an estimation of the coordinates of the landmarks, and the second network located

the landmarks with more accuracy.

2.6 Chapter Summary

CP is a group of disorders that impacts an individual’s moving and maintaining bal-

ance ability at different levels. Hip displacement is a common issue in children with

CP. If not diagnosed and treated early, hip displacement can lead to hip dislocation

and cause pain and disability in daily activities. Currently, the best method for mea-

suring the severity of hip displacement is to measure the MP value on anteroposterior

pelvis radiograph. However, taking radiographs expose these children to ionizing ra-

diation, which is undesriable. US is a safer alternative for MP measurement. Machine

learning has the potential to assist healthcare professionals in reliable and expeditious
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measurements of MP from US images.
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Chapter 3

Studies on Manual Measurements
and Labeling on X-ray and
ultrasound Images

In this chapter, we report three validation studies conducted on X-ray and ultra-

sound (US) images to assess the reliability and accuracy of manual measurements

and labelings. The chapter is structured as follows:

Firstly, in Section 3.1, we present a study conducted by the author to evaluate the

reliability and accuracy of migration percentage (MP) measurements on radiographs.

In Section 3.2, a brief study on the validation of manual frame selection is provided.

Finally, in Section 3.3, we present a concise study on manual landmark detection on

coronal US frames.

3.1 Manual Radiographic Measurements Study

The author approached the task of hip displacement analysis without any previous

experience. To acquire the necessary knowledge and develop a comprehensive un-

derstanding of the problem, a diligent study was taken on radiographs. As part of

this study, the author personally conducted MP measurements on the radiographs,

meticulously assessing the intra- and inter-reliability of these measurements.
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3.1.1 MP Measurement Process on Radiographs

Figure 3.1 illustrates a sample hip radiograph along with the indated points, lines, and

measured distances. The MP measurement process involved several steps. Firstly,

the Hilgenreiner line was drawn, which connects the lower parts of both triradiate car-

tilages (A1, A2). Secondly, Perkin line was drawn, defined as the line perpendicular

to the Hilgenreiner line and passing through the lateralmost point of the acetabu-

lum (B1, B2). The next step involved measuring the width of the femur head. To

accomplish this, the two marginal points of the femur head were identified (C1, D1

and C2, D2), and lines were then drawn from these marginal points, perpendicular

to the Hilgenreiner line. The distance between the lines passing through (C1, D1)

or (C2, D2) was measured as the total width of the femur head (“B”). Finally, the

distance between the Perkin line and the closest lateral point of the acetabulum to

the Perkin line (C1 or C2) was determined as “A.” In cases where the femur head

was entirely located below the acetabulum, the value of “A” was set to zero. Equa-

tions (3.1) to (3.7) provide the mathematical equations used to calculate MP based

on the coordinates of the reference points.

Assuming the explicit equation of a line, it can be represented as:

y = m0 · x+ h0, (3.1)

with m0 being the slope of the line and h0 denoting the y-intercept value. The slope

of the line passing through the points A1 and A2 (Hilgenreiner line) can be calculated

as:

m′ =
yA1 − yA2

xA1 − xA2

. (3.2)

Furthermore, the slope of the line perpendicular to the Hilgenreiner line can be de-

termined as m = −1/m′, where m′ represents the slope of the Hilgenreiner line. As a

result, we can calculate the y-intercept of the lines perpendicular to Hilgenreiner line

that pass through points B1, C1, and D1 as:
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Figure 3.1: Sample hip radiograph illustrating the Hilgenreiner line (H), Perkin line
(P), eight reference points for “A”, “B”, and MP measurements.

hB1 = yB1 −m · xB1 (3.3)

hC1 = yC1 −m · xC1 (3.4)

hD1 = yD1 −m · xD1 (3.5)

Therefore, the variables “A” and “B” correspond to the distances between parallel

lines passing through B1 and C1, and the parallel lines passing through D1 and C1,

respectively. These values can be computed as follows:

A = max

(︃
sgn(m′) · hB1 − hC1√

1 +m2
, 0

)︃
, (3.6)

B =
|hD1 − hC1|√

1 +m2
. (3.7)

The variables “A” and “B” can be computed for the left hip by following a similar

approach.
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3.1.2 Materials and Methods

Anteroposterior pelvis radiographs from 50 children (aged 4-10 years) who had been

diagnosed with cerebral palsy (GMFCS II-V) from a previous study[55] were used.

The inclusion criteria were: (1) individuals with no prior history of pelvis or femoral

surgeries, and (2) radiographic images exhibiting distinct visibility of both the femoral

head and acetabular structures.

The MP measurements in this study were performed by the author, who will be

referred to as R1, on two separate occasions with a one-week interval between them

to minimize memory bias. Prior to the measuring sessions, R1 received explicit in-

structions regarding the measurement procedure during a training session with an

experienced rater. Additionally, R1 received further feedback after the initial mea-

suring session to improve the accuracy and consistency of their measurements. To

mitigate potential bias, R1 measured the radiographs in a random order during each

session. This approach prevented reliance on memorization or any predetermined

sequence. Subsequently, the R1’s measurements were compared with those acquired

by two experienced raters (R2 and R3) and a previously validated and published AI

method [44].

The reliability of the R1’s MP measurements was assessed by calculating the mean

absolute difference (MAD) ± standard deviation (SD) between the R1’s measure-

ments and those of R2, R3, and AI. The intra- and inter-method intraclass correla-

tion coefficient (ICC) of the MP measurements were calculated assuming a two-way

mixed effects, absolute agreement, single rater/measurement model (ICC(2,1)). The

ICC was assessed qualitatively according to the definitions provided by Koo [56]:

poor (ICC <0.50), moderate (0.50-0.75), good (0.75-0.90), and excellent (ICC>0.90).

Furthermore, the percentage of manual measurements falling within the clinically

accepted range (MAD<10%) was determined, assuming the measurements from R2,

R3, and AI as the reference values. All statistical analyses were performed using IBM
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SPSS Statistics 27 software.

To streamline the MP measurement process, a semi-automatic application was de-

veloped by the author using tkinter library of Python. This application allows the

user to input a set of images, which are then presented in random order. The user

identifies the 8 required points in the specified order. After confirmation, the applica-

tion automatically performs the entire measurement process based on Equations (3.2)

to (3.7). Each radiograph is then annotated and saved for later review. Figure 3.2

shows a screenshot of the application alongside a sample annotated image.
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(a)

(b)

Figure 3.2: (a) A screenshot of the developed application for the semi-automatic
measurement of MP on hip radiographs. (b) The generated annotated image for later
review.
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3.1.3 Intra and Inter-rater Reliabilities

The ICC(2,1) between the R1’s first and second measurements was 0.776, indicating a

good level of reliability. However, the MAD ± SD between the two sessions was 5.32%

± 7.32%, higher than the reported intra-rater MAD ± SD of 3.2% ± 2.9% in [18].

This greater absolute difference likely was due to the R1’s inexperience, specifically

errors made during the first session. These errors included incorrectly identifying the

lateral point of the acetabulum and failing to report the correct measurement for

some radiographs.

For assessing inter-rater reliability, measurements by the R1 were compared to those

of R2, R3, and an AI-based method. Table 3.1 summarizes the comparison results.

The ICC(2,1) for the first set of measurements was lower than the second set, due to

the feedback provided after the initial measurements. This feedback allowed the first

rater to correct previously identified mistakes. The ICC(2,1) values for the second

set of measurements indicated good agreement with R2 (0.808), R3 (0.798), and the

AI (0.789). Furthermore, the average error decreased between the first and second

measurements, demonstrating the positive impact of feedback and error correction on

measurement accuracy. The Bland-Altman plot in Figure 3.3 compares the first and

second measurements by R1 against the AI measurements. The first measurements

exhibited a bias of -6.04 with limits of agreement (LoA) of -23.28 to 11.20. The second

measurements showed a reduced bias of -3.52 and narrower LoA (-20.56 to 13.52).
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(a)

(b)

Figure 3.3: The Bland-Altman plot of the first MP measurements (a) and the second
MP measurements on X-ray images, with bias (black line) and LoA (red lines).
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Table 3.1: Summary of inter-rater reliability of MP measurements on radiographs.

R2 R3 AI

R1,1 ICC(2,1)
MAD±SD
CA percentage

0.731
7.81% ± 7.36%
70%

0.705
7.73% ± 7.98%
74%

0.722
7.92% ± 7.15%
69%

R1,2 ICC(2,1)
MAD±SD
CA percentage

0.808
6.39% ± 6.57%
73%

0.798
6.07% ± 7.03%
78%

0.789
6.84% ± 6.42%
73%

R1,j, j-the measurement of first rater; R2,R3, experienced raters; AI, mea-
surements by AI-based method; CA percentage, percentage of the mea-
surements within the clinical acceptance error.

3.1.4 Summary

This study provided R1 with essential background knowledge on hip displacement

and MP measurement using X-ray images. Throughout the study, R1 received con-

structive feedback, enabling them to achieve high accuracy in MP measurements by

its conclusion.

3.2 Manual Ultrasound Frame Selection Study

Each US scan typically comprises 100-1000 frames. However, only a small subset (25-

100 frames) contains the necessary features for measurement. Accurate measurement

depends heavily on identifying these frames appropriately. Our developed algorithm

addresses this challenge by using convolutional neural networks (CNNs) for frame

selection. These CNNs are trained using manually labeled frames. To ensure the

reliability of the manual frame selections, we conducted a brief study comparing the

author’s labeling against those of two experienced raters (R2 and R3).

3.2.1 Materials and Methods

At the time of conducting the manual frame selection There were a total of 54 hip US

scans from 15 children available, with 27 scans in the coronal view and 27 scans in
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the transverse view. To determine the appropriate range of frames within each view,

each rater independently identified the beginning and ending frames. This process was

repeated by each rater, with a one-week interval between the measurement sessions.

Prior to the second rating, constructive feedback was provided to the R1 with the

intention of achieving a unified definition of the measurement features. In order to

assess the agreement between R1 vs. R2 and R3, we utilized the ICC(2,1) to calculate

the level of agreement for the beginning and ending frames in both the coronal and

transverse view scans.

3.2.2 Results of Intra- and Inter- Rater Reliabilities

The results for coronal view frame selection are presented in Tables 3.2 and 3.3.

For selection of the beginning frame, the average ICC(2,1) was 0.764, with 6 out

of 8 comparisons exceeding 0.75. This indicates an overall good level of agreement

with R2 and R3. The selection of ending frame showed even higher ICC values,

averaging 0.835, with all comparisons exceeding 0.75. This suggests an excellent

level of agreement with R2 and R3 in identifying ending frames. Additionally, the

R1’s intra-rater reliability in coronal view frame selection was assessed. The ICC(2,1)

between the first and second measurements was determined to be 0.881 for selection of

beginning frames and 0.890 for selection of ending frames, indicating good reliability

and consistency in frame selection by the first rater.

Table 3.2: Summary of manual beginning frame selection in coronal view.

R2,1 R2,2 R3,1 R3,2

R1,1 0.787 0.756 0.721 0.764

R1,2 0.79 0.817 0.726 0.751

Ri,j, j-th measurement of rater i; R1, The first rater; R2,R3, The experi-
enced raters; Average ICC: 0.764.
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Table 3.3: Summary of manual ending frame selection in coronal view.

R2,1 R2,2 R3,1 R3,2

R1,1 0.842 0.823 0.806 0.844

R1,2 0.85 0.884 0.827 0.811

Ri,j, j-th measurement of rater i; R1, The first rater; R2,R3, The experi-
enced raters; Average ICC: 0.835.

The results for the transverse view frame selection are presented in Tables 3.4

and 3.5. The R1 demonstrated excellent intra-rater reliability in transverse view

frame selection. ICC(3,1) values were 0.975 for beginning frames and 0.979 for end-

ing frames, indicating highly consistent frame selection. For the inter-rater reliability

in selection of beginning frames, the average ICC was calculated to be 0.888. Among

the 8 comparisons with R2 and R3, half showed good agreement (ICC >0.75) and

half showed excellent agreement (ICC >0.9) in selecting beginning frames for the

transverse US scans. The average inter-rater ICC for selection of ending frames com-

parisons was 0.903, indicating strong agreement with R2 and R3. Similarly, half of the

comparisons demonstrated good agreement (0.75 <ICC <0.9) and half demonstrated

excellent agreement (ICC >0.9).

Table 3.4: Summary of manual beginning frame selection in transverse view.

R2,1 R2,2 R3,1 R3,2

R1,1 0.852 0.974 0.786 0.969

R1,2 0.85 0.934 0.785 0.958

Ri,j, j-th measurement of rater i; R1, The first rater; R2,R3, The experi-
enced raters; Average ICC: 0.888.
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Table 3.5: Summary of manual ending frame selection in transverse view.

R2,1 R2,2 R3,1 R3,2

R1,1 0.887 0.965 0.780 0.950

R1,2 0.897 0.966 0.818 0.964

Ri,j, j-th measurement of rater i; R1, The first rater; R2,R3, The experi-
enced raters; Average ICC: 0.903.

3.2.3 Summary

This study established R1’s capability in consistent and accurate US frame selection

across both transverse and coronal views, as evidenced by high intra- and inter-rater

reliability scores. Notably, ICC values were higher for transverse frame selection,

likely due to the clearer definition of anatomical features within those views.

3.3 US Landmark Detection Study

The accurate detection of acetabulum and femur head landmarks on coronal frames is

crucial for measuring variable “A” and, thereby, MP. To train corresponding neural

networks (which will be explained in Chapter 4), these landmarks were manually

labeled. We conducted a comparative study to ensure the reliability of these labels,

comparing the R1’s labeling against that of an experienced rater (R3). This study

aimed to validate the consistency and accuracy of the R1’s labeling, ensuring a reliable

foundation for the landmark detection process.

3.3.1 Materials and Methods

For the landmark detection study, 10 hip scans were randomly selected from a pool

of 27 coronal US scans (taken from 15 children). Five frames from each scan were

randomly chosen, ensuring they were among the frames commonly selected by R1

and R3 in the previous study (see Section 3.2). To assess intra-rater reliability, the

R1 labeled these frames twice, with a one-month interval between labeling sessions.
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Feedback was provided between the measurement sessions to eliminate unclarities in

landmark definitions. For inter-rater reliability, the same frames were independently

labeled by R3, and their results were compared with those of the first rater.

To facilitate the labeling process, a Python application was developed. This ap-

plication allowed the user to select the desired frames and loads them for labeling.

The frames were displayed to the user in a random order, without revealing the file-

names to prevent memorization. The user could click on the frames to determine

the landmarks, zoom in by dragging the mouse on a specific area, and clear any

selected dots if necessary. Once the landmarks were specified, the application gener-

ated a CSV file containing the coordinates of the landmarks and their corresponding

vertical distances, which corresponded to variable “A”. After the specified points

were confirmed, each frame was automatically labeled and saved for future review.

Figure 3.4 depicts a flowchart of the developed application, and Figure 3.5 displays

a screenshot of the application developed for US frame labeling and the resulting

output frame.
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Figure 3.4: Flowchart of the developed semi-automatic application for “A” measure-
ment.
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(a)

(b)

Figure 3.5: A screenshot (a) of the dedicated application designed for evaluating the
reliability of “A” measurements on hip scans. (b) The generated annotated image for
later review.
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3.3.2 Results of Accuracy and Intra- and Inter- Rater Reli-
abilities

Table 3.6 summarizes the pair-wise comparisons between the R1’s first and second

measurements and the R3’s measurements. The average difference between the first

and second R1 measurements was -0.2mm ± 0.8mm, with LoA of (-1.8mm, 1.4mm),

deviating from the previously reported LoA of ±1.0mm in [39]. This discrepancy

likely stemmed from the R1’s initial inexperience and some ambiguity in landmark

definition during the first measurement session. Additionally, the greater difference

value can be attributed to our study’s higher average LHD (6.9mm vs. 3.7mm in

[39])), a consequence of higher average participant age. Despite these factors, the

excellent intra-rater ICC value demonstrated the R1’s overall reliability. The Bland-

Altman analysis of the first and second measurements by R1 is presented in Figure 3.6,

displaying the bias, LoA, and the measurements falling in the LoA.

Overall, the mutual ICCs between R1 and R3 were above 0.9 in both sessions,

indicating excellent agreement between R1 and R3 measurements, and higher than

the reported ICC of 0.84 for inter-rater agreement in literature [39]. The average

difference between the measurements of R1 and R3 decreased in the second mea-

surement comparing to the first measurements. In addition, the LoA in the second

measurements narrowed down. All demonstrating the improvement in R1’s measure-

ment accuracy from the first measurement session to second measurement session.

Figure 3.7 presents Bland-Altman plots comparing the first rater’s first and second

measurements to those of R3.
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Figure 3.6: Bland-Altman plot of the first and second LHD measurements on US
images by the author, including average difference and LoA.

Table 3.6: Summary of the intra- and inter- reliability of the LHD measurements by
the first rater (author).

ICC(3,1)
Average Difference

(mm)
LoA (mm)

R1,1 vs R1,2 0.949 -0.2 ± 0.8 (-1.8, 1.4)

R1,1 vs R3,1 0.913 0.5 ± 1.0 (-1.5, 2.5)

R1,2 vs R3,1 0.949 0.3 ± 0.7 (-1.1, 1.7)
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(a)

(b)

Figure 3.7: Bland-Altman plots of the author’s first (a) and second (b) measurements
vs. the experienced rater (R3), including average differences and LoA.
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3.3.3 Summary

In the course of this study, the author focused on learning to accurately identify

landmarks on coronal frames. Upon the study’s completion, the author’s ability to

identify landmarks was deemed both accurate and reliable.

3.4 Chapter Summary

To validate key aspects of our measurement process, we conducted several studies.

First, a study on X-ray images demonstrated excellent intra- and inter-rater reliability

for the author’s MP measurements. We then developed an application to streamline

this process, significantly reducing manual measurement time. This study established

the author’s understanding of hip displacement and MP measurement, as well as their

ability to measure MP from radiographs.

Additionally, we validated the author’s manual US frame selection, a crucial step for

our proposed CNN-based algorithm. This study showed good to excellent agreement

between the author’s selections and those of two experienced raters, confirming their

ability to correctly select and label US frames according to the selection criteria.

Finally, we authenticated the author’s acetabulum and femur head landmark labels,

finding excellent intra-rater reliability and agreement with an experienced rater. This

validates the author’s ability to accurately identify landmarks on coronal frames.

These labelings are used later for model training.
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Chapter 4

Algorithms for Automated
Measurements

In this chapter, we provide a comprehensive explanation of the development and

validation procedure of the developed method for migration percentage (MP) mea-

surement from ultrasound (US) images. The chapter structure will unfold as follows:

Firstly, in Section 4.1, we present an overview of the training and testing workflow,

outlining the key steps involved in the model’s development and evaluation. In Sec-

tion 4.2, we describe the procedure of data acquisition for this study. Subsequently

in Sections 4.3 and 4.4 the preprocessing steps and overall architecture models that

are used are presented. In Section 4.5, the details of dataset preparation and training

procedure for measurement of both variables “A” and “B” are presented. Sections 4.6

and 4.7 describe the algorithm for using the trained models and making new mea-

surements. we discuss how the model is validated and tested in Section 4.8. Finally,

a summary of the chapter is given in Section 4.9. Portions of this chapter were

submitted in the paper: Yousefvand, R., Pham, T-T., Le, L.H., Andersen, J., Lou,

E. H, “Applying Deep Learning for Automatic Measurement of Migration Percent-

age from Ultrasound Images in Children with Cerebral Palsy,” Medical & Biological

Engineering & Computing, 2024, (Submitted).
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4.1 Overview of the Developed Method

Figure 4.1 illustrates the general data flow in this study. As it can be seen, initially

all training, validation and test data are preprocessed. The train and validation sets

are used to develop and optimize the networks. Some of the optimized networks are

used in the training procedure of the other networks. Finally, the test dataset is used

to evaluate the trained model.

Figure 4.1: General data flow in model development and testing.

The model training process for variable “B” measurement consists of five stages: a)

image preprocessing, b) manual frame selection and labeling, c) segmentation model

training, d) automatic frame selection, and e) edge detection model development.

This process closely mirrors the steps for variable “A”, with the key difference being

the landmark detection model development in step e.

Validation/testing follows a similar process: a) image preprocessing, b) segmenta-

tion, c) automatic frame selection, and d) either edge detection (for “B”) or landmark

detection (for “A”). Finally, e) statistical inference is performed. Figure 4.2 (referenc-

ing the figure) illustrates these procedures in detail. Note: orange arrows represent

test/validation data, while blue, red, and black arrows indicate “good”, “bad”, and

“aggregated” frames within the training data.
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(a)

(b)

Figure 4.2: Diagram illustrating data flow for training and testing/validation of vari-
ables “B” (a) and “A” (b). Blue, red, and black arrows indicate good, bad, and mixed
frames during training; green arrows depict test/validation flow.
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4.2 Data Acquisition

A total of 38 children (26 male, 12 female) with an average age of 9 years were

recruited from a local rehabilitation hospital. The inclusion criteria for participation

in the study were as follows:

• Diagnosed with cerebral palsy (CP)

• Age between 4 and 16 years

• No history of intervention surgeries

• Participation in a surveillance program

• An anteroposterior radiography image taken within two months

Permission from the institutional research ethics board was obtained prior to con-

ducting the study. Written parental consent and participant assent was obtained

from both the participants and their parents before the scanning procedure. For the

US scanning, a hand-held Clarius C3 convex scanner (Figure 4.3) with an operating

frequency of 2 to 6 MHz was used. The scanning parameters included the muscu-

loskeletal mode, 4 MHz frequency, and 6 cm imaging depth. During the scanning

process, the patients were positioned in a supine position on a bed, and their lower

limbs were adjusted to be as parallel as possible. Prior to the scanning, ultrasonic gel

was applied to the scanning regions of the hips to prepare for the US. The ultrasonic

gel was already warmed to prevent startling reactions in children caused by a cold

substance, making the scanning procedure smoother. The coronal view scans were

obtained by scanning the lateral side with the transducer along the superior-inferior

axis. For transverse view scans, the frontal view of the hip was scanned with the

transducer positioned horizontally to the superior-inferior axis. Figure 4.4 depicts

the patient positioning for both coronal and transverse scanning. A total of 104 scans
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were obtained, with one coronal and one transverse scan acquired for each hip. Fig-

ure 4.5 shows the whole setup for scanning in a clinical room, including the Clarius

scanner, the bed, the pillow, the laptop used to display the scanned frames and save

the data.

Figure 4.3: A picture of the hand-held Clarius C3 convex scanner used for obtaining
hip sonograms in this study.
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(a)

(b)

Figure 4.4: Correct positioning for US hip scanning. The red color shows the scanning
area for coronal (a) and transverse (b) view scans.
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Figure 4.5: Hip scanning setup with the bed for supine positioning, pillow for support,
US scanner, laptop for data collection, and tissues for post-scan cleanup.

4.3 Preprocessing

As outlined in Section 4.1, our method for measuring “A” and “B” begins with a

preprocessing step. This step is essential to address the inherent noise and fuzziness

of US images, which can hinder image quality. We employ the windowing technique

to reduce noise and enhance contrast. Windowing works by restricting pixel values

to a specific range and rescaling them to optimize the image’s dynamic range. The

following equation demonstrates how windowing modifies pixel values:

p′ =

⎧⎪⎨⎪⎩
0 p<a,
p−a
b−a

∗m a<p<b,

m p>b,

(4.1)

where the dynamic range of the image is denoted as [0, m], with a and b being

arbitrary pixel values within that range. The original and modified pixel values are

represented by p and p′, respectively. Figure 4.6 provides a visual representation of

preprocessing effects on a transverse US frame, illustrating the image prior to and
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(a) (b)

(c) (d)

Figure 4.6: Transverse US frame: (a) original, (b) after windowing preprocessing.
Coronal US frame: (c) original, (d) after windowing preprocessing

following the application of windowing.

4.4 Neural Network Architecture and Training

4.4.1 CNN Architecture and Training

Convolutional neural networks (CNNs) are multilayered neural networks based on

convolution and are designed to extract patterns and features from images. CNNs

have revolutionized fields like image classification, object detection, and etc. In

this study, we use four widely used CNNs: ResNet152, ResNet50, VGG19, and

DenseNet121 for frame classification, and as part of the UNet architecture which

will be explained in Section 4.4.2. These architectures were selected due to their
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proven performance in image-related tasks. To leverage transfer-learning techniques

for training CNNs, pre-trained CNNs were utilized. The original output layer of each

CNN was replaced with a single-output layer to enable binary classification. During

the training, the weights of all layers except the last layer were kept frozen. Binary

cross-entropy (BCE) loss function was used for training.:

L = − 1

N

N∑︂
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), yi ∈ 0, 1, (4.2)

Where y(i) is the label of i-th sample and p(yi) is the predicted probability for that

label.

4.4.2 UNet Architecture

UNet is a deep learning architecture commonly used for image segmentation tasks.

It consists of an encoder-decoder structure, where the encoder captures contextual

information from the input image and the decoder generates a segmented output.

Skip connections are utilized to combine features from different resolutions, enabling

precise localization of objects in the image [57]. To leverage transfer learning, we

used a pre-trained CNN as the encoder component in the UNet architecture. The

decoder part of the UNet was constructed by appending four upsampling layers to

the outputs of four CNN layers and incorporating skip connections. The overall

UNet architecture is illustrated in Figure 4.7. During training, the weights of the

CNN were kept frozen to retain the knowledge learned from its previous task. The

network was trained using the sparse categorical cross-entropy (SCCE) loss function,

which quantifies the dissimilarity between the predicted and the actual probability

distribution of the target variable. The mathematical equation for the SCCE loss

function is presented in Equation (4.3).

L =
1

N

N∑︂
i=1

− log(p(yi)), (4.3)
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Figure 4.7: A sample UNet architecture with the encoder and decoder blocks.

where y(i) is the label of i-th sample and p(yi) is the predicted probability for that

label. In this study, we used UNets for segmentation, edge detection, and landmark

detection which will be explained further.

4.4.3 Residual Blocks

Training very deep CNNs faces a challenge called vanishing gradients, that is, the gra-

dients, which are used to update the weights of the network during backpropagation,

become very small as they propagate backward from the deeper layers to the earlier

layers. The residual block, as depicted in Figure 4.8, introduced skip connections that

allowed the network to learn residual mappings. By adding the original input to the

output of the block, the gradient can flow directly from the output to the input, by-

passing intermediate layers. This helped alleviate the vanishing gradient problem by

providing a direct path for gradients to reach earlier layers, enabling effective training

of deep CNNs [58].

ResNet architectures, such as ResNet-50 and ResNet-152, were groundbreaking in

their use of residual blocks to enable the training of significantly deeper networks [59].

Their success in image recognition tasks demonstrated the power of this approach in

overcoming the challenges of training very deep CNNs.
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Figure 4.8: Residual block in the ResNet architecture. The skip connection adds the
output from layer l to layer l+2, enabling the gradient flow and improving training
efficiency.

4.4.4 VGG19

VGG19 is a highly influential CNN architecture known for its simplicity and striking

performance. VGG19 features a 19-layer architecture consisting primarily of convo-

lutional layers with small 3x3 filters. This design emphasizes depth, enabling the

extraction of increasingly complex features from input images. The network’s key

contribution lies in demonstrating that a substantial increase in depth leads to im-

proved performance in large-scale image recognition tasks [60]. An overal view of

VGG19 architecture is displayed in Figure 4.9.

Figure 4.9: VGG19 overall architecture.

4.4.5 DensNet121

Densely Connected Convolutional Networks (DenseNets) are a compelling develop-

ment in deep learning architectures for image classification tasks. At their core,

DenseNets address the vanishing gradient problem that can hinder the training of

very deep networks. They achieve this by establishing direct connections between all

pairs of layers with the same feature map size. A sample block of DenseNet architec-
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ture is displayed at Figure 4.10. DenseNet121 is a specific and popular configuration

of the DenseNet architecture, offering a balance of accuracy and computational ef-

ficiency. Its innovative structure has demonstrated remarkable performance across

various image recognition benchmarks [61].

Figure 4.10: A 3-layer DenseNet block, showing how all pairs of layers with the same
feature map size are connected. Each layer consists of a Batch Normalization (BN)
layer, a ReLU activation layer, and a Convolution2D (Conv2D) layer. The outputs
of all previous layers are concatenated before feeding into the next layer.

4.4.6 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a data clus-

tering algorithm distinguished by its capacity to identify clusters of arbitrary shapes

while relying solely on data point density. DBSCAN requires two parameters: ep-

silon (ϵ), defining the radius of a point’s neighborhood, and minimum samples (m),

specifying the threshold number of samples needed to constitute a cluster. Three

data point classifications exist within DBSCAN: core points, border points, and noise

points. A core point possesses at least m other points within its ϵ-neighborhood. A

border point lies within a core point’s ϵ-neighborhood but lacks sufficient neighbors to

be classified as a core point. Noise points fall outside the influence of any core points.

DBSCAN initiates by randomly selecting an unvisited data point. If this point fulfills
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(a) (b) (c)

Figure 4.11: Visual examples of DBSCAN performance on different cluster configu-
rations.

the criteria of a core point, a cluster is formed, and neighboring data points are incor-

porated. Newly identified core points trigger further cluster expansion; this process

iterates until the cluster reaches its maximum extent. Upon completion, data points

unassigned to a cluster are designated as noise points. Figure 4.11 depicts the appli-

cation of DBSCAN clustering to randomly generated data exhibiting diverse cluster

shapes [62].

We utilized DBSCAN clustering to refine the outputs of UNets and mitigate po-

tential noise. DBSCAN was applied to cluster the labeled pixels, facilitating noise

removal. The resulting clusters were then sorted by total area, and only the largest

cluster was retained. This means that pixel values in the smaller clusters were set to

‘0’.

4.5 Datasets Development

To calculate MP, Equation (4.4) is used. We will explain the model development

steps for each parameter in the following.

MP =
A

B
∗ 100 (4.4)
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4.5.1 Augmentation

Training deep networks require a substantial amount of data, which may not always be

feasible to obtain in certain scenarios. To address this problem, data augmentation is

used to increase the size and diversity of the training dataset through different image

transformations. Applying data augmentation helps to increase the generalizability

and robustness of the model and avoid overfitting problems [63].

Given the limited availability of data in this study, we used image augmentation

to increase the size of the training datasets. The image transformations used for aug-

mentation are affine transformations including scaling, translation, and rotation, as

well as cropping, noise injection, multiplying all pixel values by a random number, and

elastic transformations. In subsequent sections, where augmentation is discussed, it

should be noted that the aforementioned transformations were applied to the original

datasets in a randomized order.

4.5.2 B-Measurement Datasets Development

Figure 4.12 depicts the general steps for development of B-measurement datasets.

Among the 62 transverse US hip scans, 36 were designated for training and 8 for

validation. Each scan comprised 100-1000 frames, yet only 25-200 of these frames

displayed characteristics suitable for B-measurement. For each scan within the train-

ing and validation sets, a sequence of frames showcasing a visible femur head was

identified as the target range. From each specified range, a maximum of 25 frames

were selected and categorized as “good” frames, resulting in a total of 872 “good”

frames. Excluding these, along with an additional buffer of 10% of the total frame

number on both ends of the target range, 25 evenly distributed frames were cho-

sen from the remaining frames and labeled as “bad” frames, resulting in a total of

900 “bad” frames. Figure 4.13 illustrates the selection process of “good” and “bad”

frames from a hip scan.
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Figure 4.12: B-measurement dataset development process

Figure 4.13: The manual procedure of “good” and “bad” frame sampling.

4.5.2.1 Femur Head Segmentation Dataset

For all selected “good” transverse frames, the femur head masks were manually drawn

and generated. Using augmentation, the frames and corresponding segmentation

masks number was increased by a factor of 8, yielding a final dataset of 6968 images

and 6968 segmentation masks. The data set was named as “transverse femur head

segmentation dataset” and used to train UNet-1 for femur head segmentation. Fig-

ure 4.14 displays a sample transverse frame with the manually delineated femur head

and the generated segmentation mask.
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Figure 4.14: A sample transverse US frame with the manually drawn femur head and
its corresponding generated segmentation mask.

4.5.2.2 Femur Head Edge Detection Dataset

For all “good” frames, a bounding box with a margin was created around the femur

head using the segmentation masks from Section 4.5.2.1, according to Equations (4.5)

and (4.6). The bounding box was used to filter out the femur head, and new frames

containing only the area within the bounding box were generated. The margin is

used to ensure the entire femur head was in the filtered frames. Figure 4.15 depicts

a sample US frame, the segmentation mask with the corresponding bounding box,

and the created filtered frame by applying the bounding box as a filter. In addition,

for all “good” frames the upper edge of the femur head was manually drawn and

used to create edge masks. Figure 4.16 depicts a sample frame, the manually drawn

femur head edge, and the generated edge mask. The number of filtered frames and

the corresponding edge masks was increased by a factor of 8. The 6976 augmented

filtered frames were used as input and the 6976 augmented edge masks were used as

target to train UNet-2 for femur head edge detection and was named as “femur head

edge detection” dataset.
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x1 = min{Ax} −mx, x2 = max{Ay}+mx, (4.5)

y1 = min{Ay} −my, y2 = max{Ay}+my. (4.6)

Here (x1, y1) and (x2, y2) represent the coordinates of the top-left and bottom-

right corners of the cropping box, respectively. Ax and Ay denote the sets of x and y

coordinates of the segmented pixels, while mx and my indicate the cropping margins

in x and y directions.

Figure 4.15: A sample transverse US frame (a) with its corresponding segmentation
mask (b). Dashed and solid rectangles indicate bounding boxes (no margin and with
margin, respectively). Filtered frame (c) created using the bounding box with margin
as a filter.

Figure 4.16: A sample transverse US frame with the manually delineated femur head
edge and its corresponding generated mask.
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4.5.2.3 Transverse Frame Classification Dataset

The selected “good” and “bad” transverse frames were augmented by a factor of 4.

The augmented frames were then given to UNet-1, and its outputs were named as

“transverse frame classification” dataset with a total size of 7088 images and were

used to train CNN-1 for classification of transverse frames into good and bad frames.

Figures 4.17 and 4.18 illustrate the UNet-1 output for a sample “good” transverse

frame and a sample transverse “bad” frame, respectively.

Figure 4.17: A sample good transverse US frame (a) and the femur head (b) segmen-
tation mask obtained using UNet-1.

Figure 4.18: A sample bad transverse US frame (a) and the femur head (b) segmen-
tation mask obtained using UNet-1.
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4.5.3 A-Measurement Datasets Development

Figure 4.19 depicts the general steps for development of A-measurement datasets.

Among the 62 coronal US hip scans, 36 were used for training and 8 for validation.

For each scan within the training and validation sets, a sequence of frames showcasing

a visible femur head and acetabulum was identified as the target range. Similar to our

approach in Section 4.5.2, up to 25 frames within the specified range were selected as

“good” frames, and 25 frames outside the target range were selected as “bad” frames,

resulting in a total of 871 “good” frames and “900” bad frames.

Figure 4.19: A-measurement dataset development process

4.5.3.1 Acetabulum and Femur Head Segmentation Datasets

For every “good” frame selected, both the femur head and the acetabulum were

manually delineated, resulting in the creation of separate masks for each structure

in each frame (871 acetabulum masks and 871 femur head masks). To expand the

dataset size 8 times, augmentation techniques were applied independently to the
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masks of the acetabulum and femur head. The augmented masks for the acetabulum,

along with their corresponding frames, served as the training data for UNet-3, and

named as “acetabulum segmentation” dataset. Similarly, the training data for UNet-

4 consisted of the augmented femur head masks and their corresponding frames,

named as “coronal femur head segmentation” dataset. Each dataset contained 6968

images and their corresponding segmentation masks. Figure 4.20 shows a sample

coronal frame, manually delineated boundaries and created acetabulum and femur

head segmentation masks.

Figure 4.20: A coronal US frame with manually delineated acetabulum (blue), femur
head (red), and corresponding generated segmentation masks.
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4.5.3.2 Acetabulum and Femur Head Landmark Datasets

For each “good” frame selected, two landmarks, L1 and L2, were manually marked as

a single pixel: L1 representing the lateral margin of the femur head, and L2 indicating

the lateral border of the acetabulum. Separate masks for L1 and L2 were then gener-

ated, yielding 871 acetabulum landmark masks and 871 femur head landmark masks.

The size of each landmark within its mask was expanded to a 7×7 square. Figure 4.22

displays a sample frame with manually delineated landmarks and generated masks

for each landmark. Furthermore, for every frame, the corresponding segmentation

masks from Section 4.5.3.1 were dilated and applied as binary masks to create two

types of filtered frames: one containing the acetabulum and the other containing the

femur head. The dilation was to make sure the boundaries of the femur head and

acetabulum are included in the filtered frames. Figure 4.21 displays a sample coronal

frame, the acetabulum and femur head segmentation masks, and the corresponding

filtered frames. The filtered frames served as the input, and the landmark masks as

the targets, for training UNets dedicated to landmark detection. The dataset was

expanded eightfold by separately augmenting the input images and corresponding

ground truth segmentation masks for the femur head and the acetabulum. These

augmented datasets were named “acetabulum landmark detection” and “femur head

landmark detection”, respectively, and each contained 6968 images and 6968 target

masks. Utilizing these augmented filtered frames and landmark masks, UNet-5 was

specifically trained for detecting the femur head landmark, while UNet-6 focused on

the acetabulum landmark.

4.5.3.3 Coronal Frame Classification Dataset

The selected “good” and “bad” frames were augmented by a factor of 4. The aug-

mented frames were given to UNet-5 and UNet-6, and their outputs were merged into

a single mask with the pixel values of 127 and 255 for UNet-5 and UNet-6 outputs, re-

spectively. The merged outputs were used to train CNN-2 for classifying “good” and
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Figure 4.21: A sample coronal frame (a) with segmentation masks (b, c) applied as
filters, resulting in filtered frames (d, e).

“bad” frames in coronal US images, named as “coronal frame classification” dataset,

containing 7084 images. Figures 4.23 and 4.24 display sample good and bad coro-

nal frames respectively, along with the UNet-3 and UNet-4 output and the created

mergerd mask for each frame.
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Figure 4.22: A sample US frame with manually delineated landmarks for the acetab-
ulum (L1) and femur head (L2), and their corresponding generated masks.
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Figure 4.23: A sample good coronal US frame (a), acetabulum (b) and femur head
(c) segmentation masks obtained using UNet-3 and UNet-4, and the resulting merged
mask (d).

Figure 4.24: A sample bad coronal US frame (a), acetabulum (b) and femur head (c)
segmentation masks obtained using UNet-3 and UNet-4, and the resulting merged
mask (d).
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4.6 Obtaining “B” Measurements

In this section we will explain the flow diagram of making new measurements for new

hip transverse view songorams, as depicted in Figure 4.2a with green arrows. New

measurements are made in six steps as described below:

1. Preprocessing: All US frames are preprocessed using the windowing function

described in Section 4.3.

2. Segmentation: The preprocessed US frames are given to UNet-1 for segmenta-

tion. The outputs of UNet-1 are filtered by DBSCAN clustering.

3. Frame Selection: The filtered outputs from UNet-1 are fed into CNN-1. The

output from the softmax layer at the end of CNN-1 is used to estimate the

probability of detecting the femur head in each frame, referred to as the frame

score. A range of frames with the highest probability for femur head detection

is selected by applying a discrete filter to these estimated probabilities. Details

on applying the discrete filter are provided in Section 4.6.1.

4. Edge detection: The ROI is determined and filtered (as described in Sec-

tion 4.5.2.2) for all selected using the corresponding filtered UNet-1 of that

frame. Afterwards, the selected frames with the determined ROI are given to

Unet-2 for edge detection. The outputs of UNet-2 are filtered by DBSCAN

clustering.

5. Circle fitting: A circle is fitted to filtered outputs of UNet-2 using the Taubin

method. The Taubin method will be explained in Section 4.6.2. The diameter

of the fitted circle is considered as an estimation of variable “B”.

6. Statistical Inference: In this step, a final estimated value for variable “B” is

estimated. First, outlier measurements are omitted by IQR method as described
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in Section 4.6.3. Finally, the mean and standard deviation of the measurements

are calculated to have an estimation of “B” and possible measurement error.

4.6.1 Discrete Signal Filtering for Frame Selection

After obtaining the frame scores for all frames (L) in the hip sonogram, a filter is

convolved with the scores to obtain a smoother function. The maximum point of this

signal is determined, and a ratio of it, is used as the threshold for frame selection.

Finally, all frames near the maximum point that have a filtered probability higher than

the threshold are selected. Equations (4.7) to (4.10) show the exact mathematical

equations used to select the desired frames.

yf [n] = yr[n] ∗ f [n] (4.7)

n0 = argmax
n

yf [n] (4.8)

Ni = argmin
n

{yf [n] | ∀x, n ≤ x < n0 : yf [x] > r · f [n0]} (4.9)

Nf = argmax
n

{yf [n] | ∀x, n0 ≤ x < n : yf [x] > r · f [n0]} (4.10)

where f [n] is the applied filter, yr[n] is the raw predicted scores, yf [n] is the scores

convolved with filter, n0 is the number of the frame with highest score in yf [n], r

is the desired ratio for determining the threshold, and Ni, Nf are the first and last

frame in the selected range.

In this study we used two filters for achieving the filtered scores: the moving average

filter and the Gaussian filter. Equations (4.11) and (4.12) display the mathematical

equations for the moving average and the Gaussian filters, respectively.

f [n] =

{︄
1, 0 ≤ n ≤ N,

0, o.w.,
(4.11)

where N is the length of the moving average filter.

f [n] =
1√
2πσ

exp− n2

2σ2
, (4.12)

64



where σ is the standard deviation of the Gaussian filter.

A sample of the predicted probabilities for a given sonogram is depicted in Fig-

ure 4.25. Figures 4.26 and 4.27 display the filtered probabilities by the moving average

and Gaussian filters, and the selected frames by each filter, respectively.

Figure 4.25: The calculated probabilities by CNN-1/2 for a sample US hip scan.
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Figure 4.26: Filtered probabilities with moving average filter, highlighting maxi-
mum point, selection threshold, and resulting frame selection in a sample US sono-
gram.

Figure 4.27: Filtered probabilities with Gaussian filter, highlighting maximum
point, selection threshold, and resulting frame selection in a sample US sonogram.
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4.6.2 Taubin Method

Given a set of data points, fitting a circle is equivalent to optimizing Equation (4.13):

F(a, b, R) =
N∑︂
i=1

[(xi − a)2 + (yi − b)2 −R2]2, (4.13)

where a, b, R are the coordinates and radius of the circle and (xi, yi) are the coordi-

nates of the data points. Equation (4.13) can be written as:

F =
N∑︂
i=1

[(ri −R)(ri +R)]2 =
N∑︂
i=1

d2iD
2
i , (4.14)

where ri =
√︁

(xi − a)2 + (yi − b)2, di = ri − R, and Di = ri + R. Observe that

Di = di + 2R, hence with the assumption of |di| ≪ R we will have:

F ≈ 4R2

N∑︂
i=1

d2i . (4.15)

It can be shown that minimizing Equation (4.15) is equivalent to minimization of:

F(A,B,C,D) ≈
N∑︂
i=1

(Azi +Bxi + Cyi +D)2, (4.16)

subject to the constraint

4A2z + 4ABx+ 4ACy +B2 + C2 = 1, (4.17)

where

z =
N∑︂
i=1

x2
i + y2i , z = (

N∑︂
i=1

zi)/n, x = (
N∑︂
i=1

xi)/n, y = (
N∑︂
i=1

yi)/n.

and

a = − B

2A
, b = − C

2A
,R2 =

B2 + C2 − 4AD

4A2
.

Equation (4.16) is a quadratic function of D, therefore by keeping A,B,C as con-

stant values we can obtain the minimum of F with respect to D as:

D = −Az −Bx− Cy. (4.18)
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Substituting Equation (4.18) into Equations (4.16) and (4.17), we will have to

minimize:

F(A,B,C,D) ≈
N∑︂
i=1

[A(zi − z) +Bxi + Cyi]
2, (4.19)

subject to:

4zA2 +B2 + C2 = 1. (4.20)

Introducing a new variable, A0 = 2z1/2A, we have to minimize:

F(A,B,C,D) ≈
N∑︂
i=1

[A0
zi − z

2z1/2
+Bxi + Cyi]

2, (4.21)

subject to

A2
0 +B2 + C2 = 1. (4.22)

We can solve the optimization problem by reducing it to an eigenvalue problem.

The Equation (4.21) can be written in matrix form as

F(A,B,C,D) = ∥X0A0∥2 = A0
T (XT

0 X0)A0, (4.23)

where A0 = (A0, B, C)T and

T =

⎡⎢⎢⎢⎣
(z1− z1)/(2z1

1/2) x1 y1
...

...
...

(zn − zn)/(2zn
1/2) xn yn

⎤⎥⎥⎥⎦ . (4.24)

The constraint in Equation (4.22) means ∥A0∥ = 1, i.e. A0 must be a unit vector.

Therefore, the minimum of Equation (4.24) is attained on the unit eigenvector of the

matrix X0
TX0 corresponding to its smallest eigenvalue.

4.6.3 Interquartile Range Method

The Interquartile Range (IQR) is a measure of variability in a dataset that is cal-

culated as the difference between the third quartile (Q3) and the first quartile (Q1).

The quartiles divide a dataset into four equal parts, with Q1 representing the 25th

percentile and Q3 representing the 75th percentile. Any data point that falls below

68



Q1 − 1.5IQR or above Q3 + 1.5IQR is considered an outlier. The IQR method is

a relatively simple and robust method for identifying outliers, but it may not detect

all outliers. Therefore, we use it iteratively until no outlier is detected. Figure 4.28.

depicts how the IQR method works in a box plot.

Figure 4.28: The IQR method for detecting outliers

4.7 Obtaining “A” Measurements

This section presents the flow diagram for making new measurements on new hip

coronal view sonograms, as shown in Figure 4.2b with green arrows. The process of

obtaining new “A” measurements involves five steps, which are described below:

1. Preprocessing: All US frames are preprocessed using the windowing function

described in Section 4.3.

2. Segmentation: The preprocessed frames are fed to UNet-3 and UNet-4 for seg-

mentation. UNet-3 identifies the femur head, while UNet-4 segments the ac-

etabulum. The outputs of both networks are filtered using DBSCAN clustering.

3. Frame Selection: The filtered outputs of UNet-3 and UNet-4 for each frame are

merged into a single mask as explained in Section 4.5.3.3. The masks are then
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fed into CNN-2, and the probability of detecting the femur head and acetabulum

in each frame, referred to as the frame score, is estimated by the output from the

softmax layer at the end of CNN-2. A range of frames with the highest detection

probability is selected using a discrete filter, as described in Section 4.6.1.

4. Landmark detection: The filtered outputs of UNet-3 and UNet-4 are used to

determine and filter the ROI in selected frames and create separate images

containing acetabulum and femur head ROIs, as described in Section 4.5.3.2.

The image with acetabulum ROI is given to UNet-5 and the image with femur

head ROI is given to UNet-6. UNet-5 processes the femur head frame to detect

the femur head landmark area, while UNet-6 processes the acetabulum frame

to detect the acetabulum landmark area. The outputs of UNet-5 and UNet-6

are filtered using DBSCAN clustering.

5. Vertical Distance Calculation: The centroids of the segmented area around the

acetabulum and femur head landmarks are calculated. These centroids represent

the detected locations of the landmarks. As the US images in the coronal view

correspond to 90 ◦rotated radiographs (refer to Figure 2.4), the vertical distance

between L1 and L2 is measured as the “A” value.

6. Statistical Inference: Outlier measurements are identified and removed using

the iterative IQR method (see Section 4.6.3). Finally, the mean and standard

deviation of the measurements are calculated to estimate the “A” value and

assess possible measurement errors.

4.8 Model Training and Evaluation

All 62 hip scans were split into three parts: train (36), validation (8), and test (18)

datasets. The training dataset is used for developing the algorithm and training the

deep networks of the model. While training, the validation set was used to find the

70



optimums number of epochs. In addition, the performance of the trained models

using various architectures and parameters on validation set was used to find the best

models. Finally, the test dataset was used for the final evaluation of the developed

model.

4.9 Chapter Summary

We gathered US scan data of CP children at a local hospital, adhering to ethical

approvals and a standard protocol. A total of 54 hip scans were obtained. We

developed an automated method to measure MP from these US images. This method

involved two algorithms: one to quantify the femoral head width (“B”), and the

other to measure the femoral head displacement from the acetabulum (“A”). To

determine “B”, we segmented the femoral head from transverse US frames using a

UNet. A CNN and a discrete signal filter assisted in frame selection. We then detected

the femoral head edge (using another UNet), fit a circle to the edge with Taubin’s

method, and aggregated measurements for the final “B” value. Similarly, for “A”,

we segmented the femoral head and acetabulum from coronal US frames. A CNN

and discrete signal filter aided in frame range selection. We then detected landmarks

on the acetabulum and femoral head, ultimately deducing the “A” value from these

measurements. Finally, we outlined our strategy for training, optimizing, and testing

the developed method.
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Chapter 5

Training and Evaluation of AI
Model

This chapter outlines the training, validation, and testing stages of the developed

method. Section 5.1 details the training, validation, and optimization procedure of

the developed method. Section 5.2 presents the model’s evaluation results on the test

sets. A comprehensive discussion of these results is provided in Section 5.3, followed

by a summary of the chapter’s findings in Section 5.4. Portions of this chapter

were submitted in the paper: Yousefvand, R., Pham, T-T., Le, L.H., Andersen,

J., Lou, E. H, “Applying Deep Learning for Automatic Measurement of Migration

Percentage from Ultrasound Images in Children with Cerebral Palsy,” Medical &

Biological Engineering & Computing, 2024, (Submitted).

5.1 Training Deep Learning Models

In this section we present the training plots for UNets and convolutional neural net-

works (CNNs) with different architectures in the developed algorithm. The best

architecture for UNets and CNNs was selected according to the performance on vali-

dation set.
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5.1.1 UNet training

UNets were used in the developed algorithm for segmentation, edge detection, and

landmark detection. The details about the architecture of the UNet models can be

found in Section 4.4.2. Each UNet model was trained using the SCCE loss function,

and Adam optimizer was used to update the weights of the models with a learning rate

of 0.0001. To assess the performance of the models on both training and validation

datasets, we utilized the dice coefficient as the evaluation metric. Equation (5.1) gives

the formula for calculation of dice coefficient. Throughout the training process, we

monitored the average dice coefficient of validation set, and if it failed to improve for

ten consecutive epochs, we considered it as an indication to stop training.

y =
2|X ∩ Y |
|X ∪ Y |

, (5.1)

where X and Y are predicted and ground truth masks.

For each UNet, four CNNmodels, DenseNet121, ResNet152, ResNet50, and VGG19

were tested as the encoder to obtain the best UNet structure. After training each

UNet with different encoders, the architecture that achieved the highest average dice

coefficient on validation set was selected.

5.1.1.1 Segmentation Networks

UNet-1 was used to segment the femur head from transverse ultrasound (US) frames

and UNet-3 and UNet-4 were used to segment the femur head and acetabulum from

coronal US frames. “transverse femur head segmentation” dataset (Section 4.5.2.1)

was used for training the UNet-1 and “acetabulum segmentation” and “coronal femur

head segmentation” datasets (Section 4.5.3.1) were utilized for training UNet-3 and

UNet-4, respectively.

Figures 5.1 to 5.3 display the training and validation losses as well as the average

dice coefficient values on the training and validation sets during the training process of

UNet-1, UNet-3, and UNet-4, respectively. Furthermore, Table 5.1 presents the final
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dice coefficient values achieved on the validation set for UNet-1, UNet-3, and UNet-4,

respectively. From these results, it is evident that overall, VGG19 outperformed other

encoders, obtaining a higher average dice coefficient for UNet-1, UNet-3, and UNet-4.

Therefore, we employed VGG19 as the encoder for these models.
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(a)

(b)

Figure 5.1: The SCCE loss (a) and dice coefficient (b) values for the training and
validation sets during the UNet-1 training process.
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(a)

(b)

Figure 5.2: The SCCE loss (a) and dice coefficient (b) values for the training and
validation sets during the UNet-3 training process.
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(a)

(b)

Figure 5.3: The SCCE loss (a) and dice coefficient (b) values for the training and
validation sets during the UNet-4 training process.
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5.1.1.2 Edge Detection Network

We used UNet-2 for edge detection on transverse US frames. The “femur head edge

detection” dataset, as described in Section 4.5.2.2, was utilized for training UNet-2.

Since the number of edge pixels was very small compared to the total number of pixels

in each mask, we employed a weighted SCCE loss function to prioritize the accurate

identification of edge pixels, assigning a coefficient of 3 to errors for the edge pixels.

The training and validation losses as well as the dice coefficient values during training

are depicted in Figure 5.4. Moreover, the final dice coefficient values for all models

are summarized in Table 5.1. The results indicated that VGG19 outperformed other

encoders overally, obtaining a higher average dice coefficient for UNet-1 and UNet-4,

and a close to the highest for UNet-3. For the sake of consistency and superior overall

performance of VGG19 across all three models, we decided to employ VGG19 as the

encoder for these models.
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(a)

(b)

Figure 5.4: The weighted SCCE loss (a) and dice coefficient (b) values for the training
and validation sets during the UNet-2 training process.
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5.1.1.3 Landmark Detection Networks

We employed UNet-5 and UNet-6 to detect acetabulum and femur head landmarks

on coronal US frames. The “acetabulum landmark detection” and “femur head land-

mark detection” datasets (refer to Section 4.5.3.2) were utilized for training UNet-5

and UNet-6, respectively. During training, we utilized a weighted SCCE loss func-

tion, where landmark pixels were assigned a weight 10 times higher than background

pixels. The training and validation losses as well as the dice coefficient values of all

networks during training are depicted in Figure 5.6 for UNet-5 and Figure 5.5 for

UNet-6. Table 5.1 displays the final dice coefficient values for UNet-5 and UNet-6,

respectively. As observed, UNet models with VGG19 as the encoder demonstrated

better performance, leading to their selection as the encoder for both UNet-5 and

UNet-6.

Table 5.1: The mean Dice coefficient values of the validation set after the training of
UNet models with various encoder architectures.

ResNet50 ResNet152 VGG19 DenseNet121

UNet-1 0.81 0.81 0.84 0.83

UNet-2 0.53 0.55 0.56 0.53

UNet-3 0.64 0.62 0.63 0.66

UNet-4 0.74 0.72 0.77 0.66

UNet-5 0.32 0.31 0.43 0.38

UNet-6 0.41 0.43 0.42 0.40
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(a)

(b)

Figure 5.5: The weighted SCCE loss (a) and dice coefficient (b) values for the training
and validation sets during the UNet-5 training process.
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(a)

(b)

Figure 5.6: The weighted SCCE loss (a) and dice coefficient (b) values for the training
and validation sets during the UNet-6 training process.
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5.1.2 Classification Networks

We used CNN-1 and CNN-2 to classify US frames into “good” and “bad” frames,

defined as frames with and without visible desired features, respectively. “trans-

verse frame classification” (Section 4.5.2.3) and “coronal frame classification” (Sec-

tion 4.5.3.3) datasets were used for training CNN-1 and CNN-2, respectively. We

trained four CNN models, DenseNet121, ResNet152, ResNet50, and VGG19, using

the binary cross-entropy (BCE) loss function and the Adam optimizer with a learning

rate of 0.0001. The training process was halted after 10 epochs if no improvement in

validation loss was observed. Classification accuracy was chosen as the metric to eval-

uate the models’ performance. For both transverse and coronal frame classification,

we have depicted the training and validation losses and accuracy values in Figures 5.7

and 5.8, respectively. Additionally, Table 5.2 presents the final validation accuracy

values for each CNN model for both transverse and coronal frame classifications.

Our findings indicated that ResNet50 achieved highest accuracy for coronal classifi-

cation. For transverse classification, ResNet50 and DenseNet121 achieved the highest

accuracy with the same value. Based on consistency and simpler architecture, we

selected ResNet50 as the preferred model for transverse frame classification.

Table 5.2: The mean accuracy values of the validation set after the training of CNN
models with various architectures.

ResNet50 ResNet152 VGG19 DenseNet121

CNN-1 0.92 0.86 0.89 0.92

CNN-2 0.86 0.74 0.83 0.85
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(a)

(b)

Figure 5.7: The BCE loss (a) and accuracy (b) values for the training and validation
sets during the CNN-1 training process.
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(a)

(b)

Figure 5.8: The BCE loss (a) and accuracy (b) values for the training and validation
sets during the CNN-2 training process.
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5.1.3 Comparison of Moving Average and Gaussian Filters
for Frame Selection

We used CNN-1 and CNN-2 to score US frames, with our primary objective being to

select a continuous range of frames that includes those with the highest probability.

To achieve this, we applied two distinct filters, the moving average (MA) and Gaussian

filters (detailed in Section 4.6.1), to the scores of individual frames. We tested values

of 20, 30, and 40 to determine the optimal window length (N) for the MA filter.

Heuristic analysis of frame score functions and selected frames for the scans within

the training dataset led to the selection of 30. The value of standard deviation (σ)

for the Gaussian filter was also heuristically selected as 1 after examining results with

0.5, 1, and 2.

The first and last frames of the chosen range, determined by each filter, were com-

pared against the first and last frames of the manually selected range by R1. Our

evaluation metric of choice was ICC(2,1). A summary of the comparative results is

presented in Table 5.3. The outcomes reveal that, on average, the moving average

filter achieved a higher ICC(2,1) value in contrast to the Gaussian filter for determi-

nation of both the starting and ending frames of the selected range of coronal and

transverse US scans.

Table 5.3: Comparison of ICC(2,1) values for moving average and Gaussian filters vs.
the manual selections in coronal and transverse views.

Filter
Coronal Transverse

Average
begin end begin end

MA 0.97 0.96 0.92 0.93 0.94

Gaussian 0.95 0.80 0.94 0.89 0.89
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5.2 Comparison of Measurements on Test Set by

Human and AI Model in Different Modalities

We tested the final optimized model on the test dataset consisting of 18 hips, with

each hip having a coronal and a transverse US scan. In our evaluation, we compared

the “B”, “A”, and MP measurements obtained by the AI model on US (AI-BUS,

AI-AUS, and AI-MPUS), with the measurements by R1 on US (M-BUS, M-AUS, and

M-MPUS) and the measurements by R2 on X-ray as the ground truth (BXray, AXray,

and MPXray). The required time for the manual US measurements by R1 was also

obtained as 300s on average.

5.2.1 “B” Measurements

Figures 5.9 to 5.11 display the comparisons of M-BUS with BXray, AI-BUS with BXray,

and AI-BUS with M-BUS, respectively. Overall, the estimated “B” value was lowest

with M-BUS, followed by AI-BUS, and highest with BXray. This suggested an under-

estimation of the “B” value when using US images. Additionally, high R-squared

values indicated strong correlations within all comparisons.
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Figure 5.9: M-BUS vs. BXray measurements on the test set, with the fitted regression
line.

Figure 5.10: AI-BUS vs. BXray measurements on the test set, with the fitted
regression line.
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Figure 5.11: AI-BUS vs. M-BUS measurements on the test set, with the fitted
regression line.
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Table 5.4 summarizes the measured range, average and SD of BXray, M-BUS, and

AI-BUS. In addition, Table 5.5 provides a full comparison between the mentioned

measurements. When Compared to X-ray measurements, the AI model achieved a

lower mean absolute error (MAD) than the manual US measurements. Furthermore,

AI model demonstrated an excellent level of agreement with BXray while manual US

measurements depicted a good level of reliability. In addition M-BUS and AI-BUS had

the lowest MAD and highest ICC(2,1), demonstrating their strong agreement and

alignment.

Table 5.4: The measured range, average and SD of BXray, M-BUS, and AI-BUS.

BXray M-BUS AI-BUS

Measured range (mm) 17.5 - 51 17.6 - 49.6 18.1 - 51.6

Average (mm) ± SD (mm) 33.5 ± 8.2 31.5 ± 7.7 33.0 ± 8.7

Table 5.5: Pairwise statistical comparisons of AI-BUS, M-BUS, and BXray measure-
ments for the test set.

MAD(mm) ± SD(mm) ICC(2,1)

AI-BUS vs BXray 3.4mm ± 2.3mm
0.90

(0.76-0.96)

M-BUS vs BXray 3.7mm ± 4.2mm
0.79

(0.47-0.92)

AI-BUS vs M-BUS 2.9mm ± 2.2mm
0.91

(0.76-0.97)

The Bland-Altman plots for comparisons between BXray, M-BUS, and AI-BUS are

shown in Figures 5.12 to 5.14. M-BUS and AI-BUS had the lowest mean difference

(MD) of 1.6mm and tightest LoA (-4.9, 8.1) among the three comparisons. Moreover,

Comparing to X-ray, the AI model exhibited lower MD (-1.3mm) and a significantly
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improved lower LoA bound (-8.7) than manual measurements (-12.3). The upper

bounds of LoA for manual (6.5) and AI measurements (6.1) were close.

Figure 5.12: Bland-Altman plot illustrating the agreement between M-BUS and
BXray measurements on test set, with the differences plotted against their average.

Figure 5.13: Bland-Altman plot illustrating the agreement between AI-BUS and
BXray measurements on test set, with the differences plotted against their average.
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Figure 5.14: Bland-Altman plot illustrating the agreement between AI-BUS and
M-BUS measurements on test set, with the differences plotted against their average.

To evaluate the performance of the networks involved in “B” measurements indi-

vidually, the test data was manually labeled by R1 (as described in Section 4.5.2)

and compared with the outputs of the networks. The dice coefficients for UNet-1 and

UNet-2 were 0.84 and 0.55, respectively. Additionally, CNN-1 demonstrated an ac-

curacy of 86.72%, with accuracies of 88.67% for “good” frames and 84.54% for “bad”

frames. The ICC(2,1) for selection of beginning and ending frames was 0.85 and 0.97.

5.2.2 “A” Measurements

Figures 5.15 to 5.17 compare M-AUS, AI-AUS, and AXray measurements. Notably, both

M-AUS and AI-AUS underestimated the “A” value compared to AXray. Additionally,

AI-AUS and M-AUS measurements demonstrated close alignment, indicated by a fitted

line slope of 1.01. High R-squared values suggested strong correlations between all

compared measurements.
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Figure 5.15: M-AUS vs. AXray measurements on the test set, with the fitted regres-
sion line.

Figure 5.16: AI-AUS vs. AXray measurements on the test set, with the fitted
regression line.
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Figure 5.17: AI-AUS vs. M-AUS measurements on the test set, with the fitted
regression line.
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Table 5.6 summarizes the measured range, average and SD of AXray, M-AUS, and

AI-AUS. In addition, Table 5.7 provides a full comparison between the mentioned

measurements. Referencing X-ray measurements as the baseline, the M-AUS had a

lower MAD than the AI-AUS. Both M-AUS and AI-AUS exhibited moderate agreement

with AXray. Additionally, M-AUS and AI-AUS showed excellent mutual agreement and

a significantly lower MAD than in comparisons with AXray.

Table 5.6: The measured range, average and SD of AXray, M-AUS, and AI-AUS.

AXray M-AUS AI-AUS

Measured range (mm) 2 - 13.5 1.4 - 11.4 1.9 - 12.5

Average (mm) ± SD (mm) 8.3 ± 3.1 6.1 ± 3.3 6.3 ± 3.1

Table 5.7: Pairwise statistical comparisons of AI-AUS, M-AUS, and AXray measure-
ments for the test set.

MAD(mm) ± SD(mm) ICC(2,1)

AI-AUS vs AXray 2.4 ± 2.0
0.62

(0.09-0.85)

M-AUS vs AXray 2.7 ± 1.6
0.63

(0.04-0.87)

AI-AUS vs M-AUS 0.9 ± 0.7
0.94

(0.85-0.98)

The Bland-Altman plots (Figures 5.18 to 5.20) illustrate comparisons between

AXray, M-AUS, and AI-AUS. Compared to X-ray, both manual US and AI measure-

ments showed similar mean differences (MD of -2.2mm and -2.0mm respectively).

Manual US demonstrated a slightly tighter LoA range (-6.5mm to 2.1mm) compared

to AI (-6.7mm to 2.7mm). Additionally, direct comparison of AI-AUS and M-AUS

showed negligible bias (MD of 0.2mm) and a narrow LoA (-2.0mm, 2.4mm).
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Figure 5.18: Bland-Altman plot illustrating the agreement between M-AUS and
AXray measurements on test set, with the differences plotted against their average.

Figure 5.19: Bland-Altman plot illustrating the agreement between AI-AUS and
AXray measurements on test set, with the differences plotted against their average.

To evaluate the performance of the networks involved in “A” measurements indi-

vidually, the test data was manually labeled by R1 (as described in Section 4.5.2) and
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Figure 5.20: Bland-Altman plot illustrating the agreement between AI-AUS and
M-AUS measurements on test set, with the differences plotted against their average.

compared with the outputs of the networks. The dice coefficients for UNet-3, UNet-4,

UNet-5, and UNet-6 were 0.61, 0.80, 0.41, and 0.25, respectively. Additionally, CNN-

2 demonstrated an accuracy of 79.95%, with accuracies of 96.23% for “good” frames

and 65.56% for “bad” frames. The ICC(2,1) for selection of beginning and ending

frames was 0.95 and 0.94.

5.2.3 MP Measurements

Figures 5.21 to 5.23 compare M-MPUS, AI-MPUS, and MPXray measurements. As

expected due to underestimation of “A” value, both M-MPUS and AI-MPUS under-

estimated the “MP” value compared to MPXray. Additionally, AI-AUS and M-AUS

measurements demonstrated close alignment, indicated by a fitted line slope of 1.03.

High R-squared values suggested strong correlations between all compared measure-

ments.
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Figure 5.21: M-MPUS vs. MPXray measurements on the test set, with the fitted
regression line.

Figure 5.22: AI-MPUS vs. MPXray measurements on the test set, with the fitted
regression line.
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Figure 5.23: AI-MPUS vs. M-MPUS measurements on the test set, with the fitted
regression line.
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Table 5.8 summarizes the measured range, average and SD of MPXray, M-MPUS,

and AI-MPUS. In addition, Table 5.9 provides a full comparison between the men-

tioned measurements. Referencing X-ray measurements as the baseline, the M-MPUS

achieved a lower MAD than the AI-MPUS. Both M-MPUS and AI-MPUS exhibited

good agreement with MPXray. Additionally, M-MPUS and AI-MPUS showed excellent

mutual agreement and a significantly lower MAD than in comparisons with MPXray.

Furthermore, the AI model achieved a 72% (13 out of 18) clinical acceptance (CA)

rate, exceeding the 67% CA rate of manual US measurements. CA rate is defined as

the percentage of measurements with less 10% error.

Table 5.8: The measured range, average and SD of MPXray, M-MPUS, and AI-MPUS.

MPXray M-MPUS AI-MPUS

Measured range (%) 7 - 73 4 - 65 4 - 69

Average (%) ± SD (%) 26.7 ± 15.5 21 ± 14.6 21.6 ± 15.4

Table 5.9: Pairwise statistical comparisons of AI-MPUS, M-MPUS, and MPXray mea-
surements for the test set.

MAD(%) ± SD(%)
CA rate
(%)

ICC(2,1)

AI-MPUS vs MPXray 6.5 ± 5.5 72
0.86

(0.52-0.95)

M-MPUS vs MPXray 7.6 ± 4.9 67
0.84

(0.43-0.95)

AI-MPUS vs M-MPUS 2.7 ± 1.8 100
0.98

(0.94-0.99)

The confusion matrices comparing AI-MPUS and M-MPUS against MPXray for hip

displacement diagnosis are depicted in Figure 5.24. Hip displacement was defined as

MP>30, a critical threshold in hip surveillance programs. The confusion matrices for
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(a) (b)

Figure 5.24: (a) Confusion matrix depicting MPXray vs. M-MPUS classifications. (b)
Confusion matrix depicting MPXray versus AI-MPUS classifications.

both M-MPUS and AI-MPUS demonstrate identical results, with an overall accuracy

of 94.4%, specificity of 93%, and sensitivity of 100%.

The Bland-Altman plots (Figures 5.25 to 5.27) illustrate the comparisons between

MPXray, M-MPUS, and AI-MPUS. When compared to X-ray, manual US measure-

ments demonstrated a lower MD (-5.2%) and a narrower LoA (-18.5% to 8.1%) than

AI measurements (-5.7% MD, -19.4% to 8.0% LoA). Furthermore, direct comparison

between AI-MPUS and M-MPUS revealed a negligible bias (MD of 0.6%) and a narrow

LoA (-5.7% to 6.9%).

5.2.4 Measurement Time

Using an NVIDIA Tesla V100 16GB GPU, an Intel Xeon Gold 6138 dual processor,

and 64GB of RAM, the average measurement time ± SD for coronal-view US frames

was 0.16 ± 0.04 seconds, and for transverse-view US frames, it was 0.12 ± 0.04

seconds. The average number of frames for coronal and transverse scans was 360 and

400, respectively. Consequently, on average, the AI model required 57.6 seconds for

a coronal scan and 48 seconds for a transverse scan, and a total of 105.6 seconds to
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Figure 5.25: Bland-Altman plot illustrating the agreement between M-MPUS and
MPXray measurements on test set, with the differences plotted against their average.

Figure 5.26: Bland-Altman plot illustrating the agreement between AI-MPUS and
MPXray measurements on test set, with the differences plotted against their average.

report the MP measurement for a single hip.
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Figure 5.27: Bland-Altman plot illustrating the agreement between AI-MPUS and
M-MPUS measurements on test set, with the differences plotted against their aver-
age.

5.3 Analysis and Discussion on Measurements on

Test Set

5.3.1 “B” Measurements

By evaluating results on “B” measurements using various metrics, it can be concluded

that the model has achieved both accurate and reliable measurements. The excellent

agreement between the AI-BUS and M-BUS signifies that the model is well-trained and

capable of reproducing measurements that closely match manual ones. Furthermore,

the AI measurements demonstrated excellent agreement (ICC(2,1)>0.9) with BXray

as well, surpassing the performance of M-BUS. This indicates that the AI model

has successfully learned a consistent and reliable method of measurement, effectively

reducing potential human errors.

Overall, the performance of the networks involved in “B” measurements on test set

(UNet-1 and UNet-2) was close to their performance on validation set (Sections 5.1.1.1

and 5.1.1.2), indicating effective training and generalization capabilities. Further-
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more, a high level of agreement was observed in the frame selection on the test set

between R1 and the developed AI model, as quantified by ICC(2,1), which indicates

the effectiveness of the developed automatic frame selection method.

5.3.2 “A” measurements

The AI model demonstrated excellent agreement with manual US measurements, sig-

nifying proficient model development and training. However, both the AI measure-

ments and manual US measurements demonstrated moderate agreement with X-ray

measurements. A thorough examination of outcomes across various scans indicated

that a major source of error is the segmentation of the acetabulum. This challenge

primarily stems from the significant variation in acetabulum shape among patients,

which complicates the model’s learning process for accurate acetabulum segmenta-

tion, particularly with limited data. Moreover, in some instances, the quality of the

scans was poor, making it difficult to identify the acetabulum. In summary, while

measuring in the US framework is inherently challenging due to the need for precise

identification of edge points—which is difficult in US images due to the absence of

sharp edges and gradual changes in pixel intensity—improvements can be achieved

through acquiring more data and enhancing scan quality.

Overall, the performance of the networks involved in “A” measurements (UNet-3,

UNet-4, UNet-5, and UNet-6) on test set was close to their performance on validation

set (Sections 5.1.1.1 and 5.1.1.2), indicating good training and generalization. Also,

there was excellent level of agreement in frame selection in test set between the R1 and

the developed AI model, quantified by ICC(2,1). However, the low dice coefficient for

acetabulum segmentation indicates challenges in accurately defining this structure.

These difficulties likely propagate to subsequent stages of the networks, particularly

the classification of “bad” coronal frames.
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5.3.3 MP measurements

The MAD of the AI measurements compared to X-ray measurements was 6.5% ±

5.5%. This is slightly higher than the reported MAD of 4.5%-4.9% when comparing

manual and AI-based measurements both taken on X-rays [55]. Considering the fact

that we used a different modality (US), higher MAD is expected. To investigate the

extent to which the differences in modalities affect the measurements, we sought the

expertise of R2, an experienced rater, to perform the measurements on US frames.

The assumption was that an experienced rater could achieve the best possible results

on US. R2 measurements on US and X-ray resulted in an MAD of 6.4% ± 5.2%,

showing only a difference of 0.1% with AI measurements.

The mean variation between the AI measurement on US and X-ray measurements

-5.2% compared to the -5.7% mean variation of manual measurements on US vs X-

ray. Reported mean differences between two raters on X-ray range from -1.2% to

3.7% [32, 33].

Moreover, the lower and upper bounds of LoA for AI measurements vs X-ray mea-

surements were -18.5% to 8.1%, compared to -19.4% and 8.0% for manual measure-

ments on US vs X-ray measurements. The clinical acceptance rate for AI measure-

ments was 72% compared to 67% for R1 measurements on US. Notably, the reported

clinical acceptance rate on radiology is 90% [55].

From the literature, the reported sensitivity and specificity values are 88% and 89%,

respectively, for classifying MP>25% as abnormal [42]. Another study found sensi-

tivity and specificity values of 89% and 100% when classifying a hip with MP>33% as

displaced [39]. Therefore, the developed AI model achieved a comparable sensitivity

(100%) and higher specificity (93%). Nevertheless, further research involving a larger

sample size is necessary to validate these findings.

Based on these findings, it can be concluded that the performance of AI can be

slightly improved with expert labeling and by increasing the diversity in datasets,
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especially by focusing on “A” measurements. Although some variations will still

exist in hip assessment by radiology and US due to using a different modality, US can

be utilized as a primary method for hip examinations, reducing the need for many

unnecessary X-ray imagings.

5.3.4 Measurement Time

The developed method demonstrated a substantial efficiency gain, with a measure-

ment time of 105.6 seconds compared to the manual US measurement’s estimated time

of 300 seconds. This represents a 65% reduction in measurement time. Code analysis

with checkpoints revealed that approximately 33% of the runtime is dedicated to data

handling, while 67% is used for GPU-based computations. This breakdown suggests

potential avenues for optimization, such as streamlining data handling processes.

5.4 Chapter Summary

We optimized the architecture of deep networks used in the proposed method by

trying four common architectures in the literature according to the corresponding

evaluation metrics of each task. In addition, we compared Gaussian and moving av-

erage filters and selected the filter with better performance to be used in the proposed

method. Furthermore, we obtained the results of the test set which showed moderate

performance in “A” measurement, excellent performance in “B” measurements, and

good performance in “MP” measurements. We explored each variable measurement

by different metrics, and compared the results with literature. The results showed

with enough training data, the proposed method has the potential to show a perfor-

mance close to a human rater and facilitate replacing X-ray with US imaging in hip

surveillance programs. Finally, we demonstrated the method’s efficiency by showing a

65% reduction in measurement time when using the automatic process versus manual

measurement.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusion

Migration percentage (MP), defined as the ratio of the distance between the lateral

border of the acatabulum and the femur head (A) to the total width of the femur

head (B), is the key parameter in hip displacement assessments and has to be mea-

sured regularly. Currently, anterposterior radiography is used for MP measurements,

exposing children to ionizing radiations. Recently, a method has been proposed to

measure MP from ultrasound (US) images, which is very time-consuming, and user-

dependent. In this thesis, we proposed a fully automatic AI-based method to measure

“A”, “B”, and, consequently, “MP”. The AI method was developed from the 0 to

100, including the manual labeling, training the models, and evaluation of the model.

AI measurements were compared with manual ultrasound measurements provided by

the author and X-ray measurements provided by an experienced rater for evaluation.

The model was able to deliver the final measurements in 105.6 seconds on average,

significantly improving the manual measurement time.

For “B” measurements, the AI model showed excellent agreement with both ul-

trasound (ICC(2,1) = 0.91) and X-ray measurements (ICC(2,1) = 0.90), exceeding

the agreement between manual US and X-ray measurements (ICC(2,1) = 0.79). This

likely stems from the richer dataset used for ”B” measurements, likely containing more

diverse examples. This allowed the model to learn highly generalizable measurements,
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potentially surpassing the consistency of less experienced manual assessments.

For “A” measurements, the developed method demonstrated moderate agreement

with X-ray measurements (ICC(2,1) = 0.58) and excellent agreement with ultrasound

measurements (ICC(2,1) = 0.94). Although the discrepancy with X-ray results is

expected due to the inherent differences between imaging modalities, further analysis

revealed that a key source of error lies in acetabulum segmentation. This is likely

due to the high anatomical variability of the acetabulum and limitations within the

training dataset.

For MP measurements, the AI model showed good agreement with X-ray measure-

ments (ICC(2,1) = 0.85). Considering MP=30 as a threshold for hip displacement

classification, the model showed high accuracy (94.4%), sensitivity (100%) and speci-

ficity (93%). Although the confirmation of the method and results require further

evaluation on larger datasets, this preliminary study sets the step for replacing X-ray

with US in hip assessments.

6.2 Contributions

Getting back to the objectives defined in Section 1.3, the contributions of this work

are:

1. A comprehensive dataset containing approximately 1450 coronal and 1450 trans-

verse US frames was prepared, with corresponding labels for segmentation, edge

detection, and landmark detection tasks. Datasets containing approximately

3000 coronal and 3000 transverse frames were labeled as good/bad for frame

classification. To the best of our knowledge, this is the first dataset of its kind,

paving the way for significant advancements in the field.

2. An automated method for measuring lateral head distance (variable “A”) was

developed, achieving an average measurement time of approximately 58 seconds,

significantly reducing the manual measurement time.
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3. An automated method for measuring the total width of the femur head (variable

“B”) was developed, achieving an average measurement time of approximately

48 seconds, significantly reducing the manual measurement time.

4. The model’s performance, using the developed “A” and “B” measurement meth-

ods, was evaluated on a test dataset. Results demonstrate good reliability, ac-

ceptable accuracy and clinical acceptance rate, and excellent sensitivity and

specificity.

6.3 Future Recommendations

• This study’s main limitation was the scarcity of data. Collecting a larger dataset

with greater diversity in different factors such as MP value, acetabulum and

femur head shape, image quality, etc., could significantly improve results –

especially in “A” measurements – and lead to more conclusive findings.

• Image quality plays a vital role in measurement accuracy. Therefore, training

operators to identify low-quality US scans and repeat scans when necessary

can significantly improve results. Additionally, automated image quality rating

systems can provide valuable support in this process.

• There is room for research and exploration in unsupervised learning, especially

in feature representation learning, which is becoming more popular in medical

image processing, and eliminate the need for manual labeling.

• Investing in software optimization can significantly improve calculation speed.

This may involve upgrading code, streamlining how data is handled, and using

tools to pinpoint areas for improvement.
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