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ABSTRACT

This thesis deals with three problems: convergence rates of subdivision schemes,
spectral properties of a transition operator associated with a multivariate refinement

equation, and the computation of the smoothness order of refinable functions.

Subdivision schemes consist of a class of numerically stable, easily implemented
algorithms for the generation of parameterized curves and surfaces. There are many
papers concerned with the convergence of subdivision schemes. Here we investigate
the convergence rates of subdivision schemes and propose a method to construct
modified subdivision schemes which will accelerate the convergence rates. We study

the univariate case in Chapter 2 and multivariate case in Chapter 3.

In Chapter 4 of this thesis, we investigate the spectral properties of the tran-
sition operator 7, and apply these properties to the study of the approximation
and smoothness properties of the normalized solution of the refinement equation
¢ = D ez 9(M - — ). In particular, we provide a detailed analysis of the spec-
trum of the transition operator associated with a box spline. The results are then

applied to interpolatory subdivision schemes induced by box splines.

The last problem we study in this thesis is the computation of the smoothness
order of refinable functions. By using the theory established in Chapter 4, we pro-
pose a method to calculate the smoothness order of refinable functions by finding the
spectrum of T} restricted to different invariant subspaces. Special attention is given
to computing the smoothness order of symmetric refinable functions. Numerical

computations are presented to support our theoretical analysis.



To my parents and my family



ACKNOWLEDGEMENT

First and forever, I would like to thank my supervisor Professor Rongqing Jia
for introducing me to Wavelets and Approximation Theory during my studies at
the University of Alberta. I am deeply indebted to him for his valuable guidance,

incessant encouragement, and generous support through my entire Ph.D program.

I would also like to express my heart-felt thanks to Professor Sherman Riemen-

schneider for his kind concern, valuable discussion, and financial assistance in my

Ph.D study.

It is my great pleasure to acknowledge my gratitude to Professors Zeev Ditzian,
Yanping Lin, and Yaushu Wong for their very helpful courses in different fields and

their encouragements during my study here.

Special thanks also go to Professors Alfred S. Cavarreta and Hong Zhang for

their interest in my research and their comments on this dissertation.

Finally, I would like to acknowledge the financial supports from University of
Alberta PhD Scholarship and the Department of Mathematical Sciences, University
of Alberta.



Table of Contents

1 Introduction
1.1 Convergence Rates of Subdivision Schemes . ... ... ... .. ..

1.2 Spectral Properties of the Transition Operator Associated with a Mul-

tivariate Refinement Equation . ... ... . . .. ... ... .

1.3 Computations of the Smoothness Order of Refinable Functions . . . .

2 Convergence Rates of Subdivision Schemes

2L Itroduction ...
2.2 Numerical Bxamples ... ... oL
28 MainResults . ... .o
24 Applications ...
2.5 Extension to the Nonstable Case ....... . .. . . . . .. .

3 On the Convergence Rates of Multivariate Subdivision Schemes

SLoBboduction ...

10

10

14

17

23

33

38



Table of Contents

4 Spectral Properties of the Transition Operator Associated with a

Multivariate Refinement Equation 52
41 Imtroduction . . ............. ... 52
4.2 The Spectrum of the Transition Operator. . .............. 59
4.3 Invariaat Subspaces of the Transition Operator ............ 69
44 The Transition Operator Associated with a Box Spline ........ 79

5 Computation of the Smoothness Order of Refinable Functions 96

S1 Imfroduction .. .............. .. ...\, 96

5.2 A Method to Compute the Smoothness Order of Refinable Functions 101

5.3 Computation of the Smoothness Order of Symmetric Refinable Func-

Bibliography 123



CHAPTER 1

Introduction

In this thesis, we will study refinable functions and subdivision schemes. As outlined
in the following séctions, we will study the convergence rates of subdivision schemes
in Chapter 2 for the univariate case, and in Chapter 3 for the multivariate case.
In Chapter 4, we will investigate the spectral properties of the transition operator
associated with a multivariate refinement equations. As an application, we discuss
the numerical procedures for computing the smoothness order of refinable functions

in Chapter 5.

1.1 Convergence Rates of Subdivision Schemes

The basic question addressed in Chapter 2 & 3 of the thesis is the convergence rates

of subdivision schemes.

Subdivision methods originated in the geometric problem of smoothing the

corners of a given polyhedral surface. They offered efficient ways of displaying

1



1.1 Convergence Rates of Subdivision Schemes 2

curves and surfaces as well as methods to design particular shapes. Subdivision
schemes also play an important role in wavelet analysis. The theory of convergence
of subdivision schemes has been investigated in a general setting by Micchelli and
Prautzsch [42] [44]. They approached the problem through the study of control
point transformation matrices which define the basic subdivision schemes. The uni-
form convergence of subdivision schemes for the univariate case has been studied
by Dyn, Gregory and Levin [20]. They analyzed the convergence of control poly-
gons to a €° curve in terms of the convergence to zero of a derived scheme for the
differences f% , — f¥. A kind of specific interpolatory scheme was proposed and stud-
ied by Dubuc in {19]. Deslauriers and Dubuc investigated symmetric interpolatory
subdivision scheme and provided a general construction method in [18]. Cavaretta,
Dahmen, and Micchelli investigated subdivision schemes systematically in [1]. It
was proved in [1] that if the solution to the refinement equation associated with
mask a is continuous and has stable shifts, then the subdivision scheme associated
with mask a converges uniformly. Jia discussed the L, cases, 1 < p < oo, in [35]
for the univariate case, and characterized the convergence of subdivision schemes in
L, in terms of the joint spectral radius of two matrices associated with the corre-
sponding mask. Other properties of the limit function of a subdivision scheme were
also investigated. Multivariate refinement equations and subdivision schemes were
studied in the joint work of Han and Jia in [26]. The L,-convergence of a multivari-
ate subdivision scheme was characterized there in terms of the p-norm joint spectral

radius of a collection of matrices associated with the refinement mask.

There are many papers concerned with the convergence of subdivision schemes,

see [2] for a survey. It is quite natural to pose the following question: how do we
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describe the convergence rates of a subdivision scheme? There are several authors
who have worked on this topic. Dahmen and Micchelli in 7] showed that in general,
the coefficients of the refined control nets of a box spline surface converge to the
surface at the rate of the refinement, that is, in a linear order. Dahmen, Dyn
and Levin also investigated the convergence rates of subdivision schemes for box
spline surfaces in [6]. They pointed out that the subdivision schemes can attain
a quadratic convergence rate under certain conditions. Prautzsch in [43] studied
the acceleration of the convergence rate of subdivision schemes for box splines by
exploiting the quadrature formulas. It was shown in [16] by C. de Boor, K. Hollig
and S. Riemenschneider that the subdivision scheme of box splines converges to the
box spline surface at a quadratic rate if the box spline functions are continuously
differentiable. The convergence rates of subdivision schemes for box splines, a special

class of subdivision schemes, were investigated in the existing literatures.

Generally, we know that the subdivision scheme converges to the corresponding
function in linear order. Our purpose is to investigate the relationship between the
convergence rate of subdivision schemes and the properties of the solution to the
refinement equation with general masks so that we can explore modified subdivision
schemes to achieve faster algorithms of generating the refinable function. We take a
new approach to this problem by using quasi-interpolation and apply this method
to refinable functions with general mask. We first investigate the convergence rates
of subdivision schemes if the corresponding refinable functions are continuous. The
construction of modified subdivision scheme is established under certain conditions
such that the convergence rate attained is as high as the smoothness order of the

refinable functions. Specifically, we construct an explicit scheme such that the sub-
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division scheme can attain quadratic order.

In Chapter 2, we discuss the univariate case; in Chapter 3, we investigate the

multivariate case. These two chapters are based on [49].

1.2 Spectral Properties of the Transition Oper-
ator Associated with a Multivariate Refine-

ment Equation

The second problem we discuss in this thesis is spectral properties of the transition

operator associated with a multivariate refinement equation.

Let a be an element in £o(Z*). The transition operator T, is the linear operator

on £y(Z*) defined by

T,v(a) := Z a(Ma—-pBv(B) acZ’, (1.2.1)

Bez*

where v € £y(Z*). The subdivision operator S, is the linear operator on £(Z*)
defined by

Ssu(a) := Z a(la— MBu(B) ac€ Z’, (1.2.2)
pez:

where u € {(Z*). We introduce a bilinear form on the pair of linear spaces £5(Z*)
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and ¢(Z*) as follows:

(u,0) = ) u(—a)u(a) u€lZ*),v € b(Z*). (1.2.3)
xEZ*
Then {(Z*) is the dual space of {5(Z*) with respect to this bilinear form. It is

easily seen that
(Sau, v) = (u, T,v) Vu € lZ?), v € b(Z*).

Hence, S, is the algebraic adjoint of T, with respect to the bilinear form given in
(1.2.3). The subdivision and transition operators play an important role in our
study of approximation and smoothness properties of the solution to the refinement

equation.

In Chapter 4, we will investigate the properties of the transition operators Tj.
Regarding this topic, Deslauries and Dubuc [18] discussed the spectral properties of
the transition operator and applied those properties to their study of interpolatory
subdivision schemes for s = 1. For the multivariate case (s > 1), the subdivision
operator was introduced by Cavaretta, Dahmen, and Micchelli [1] in their investi-
gation of stationary subdivision schemes. In [24], Goodman, Micchelli, and Ward

established a spectral radius formula for the subdivision operator.

Spectral properties of the continuous refinement operator were investigated by
Goodman, Micchelli, and Ward in [25]. Spectral properties of the subdivision and
transition operators associated to a vector refinement equation were studied by Jia,

Riemenschneider, and Zhou [39], Goodman, Jia, and Micchelli [23].
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In [27], Han and Jia showed that the transition operator T, has only finitely
many nonzero eigenvectors. Jia studied the subdivision and transition operators
associated with a refinement equation and dilation matrix 2/ in [37]. Eigenvalues
and invariant subspaces of the operators are investigated. The spectral properties
of the subdivision and transition operators are then used to study approximation
and smoothness properties of the solution to the refinement equation. The spectral
properties of the subdivision operator and the transition operator with a general
dilation matrix M were also studied by Jia [29], and the results were applied to the
study of approximation properties of a refinable function. In [30] Jia analyzed the
smoothness of refinable functions in terms of their masks. He characterized the op-
timal smoothness of a multivariate refinable function in terms of the spectral radius
of the corresponding transition operator restricted to a suitable finite dimensional

invariant subspace.

Chapter 4 focuses on the spectral properties of the transition operator associ-
ated with a multivariate refinement equation and their applications to the study of
the approximation and smoothness properties of the corresponding refinable func-
tion. Suppose the dilation matrix M has eigenvalues oy, 02, -+ , 0,. Write o for the
s-tuple (o1,--- ,0,). For a multi-index iz = (g1, -+ , ), define o# := g7 - - - g¥+. We
shall show that the spectrum of the transition operator T, contains {oc™* : |u| < k},
provided ¢ has accuracy k. This gives an upper bound for the accuracy of ¢ in
terms of the refinement mask a. We shall also investigate invariant subspaces of
the subdivision and transition operators. We prove a necessary and sufficient con-
dition for a finite dimensional shift-invariant subspace of polynomials restricted to

integers to be invariant under the subdivision operator. Furthermore, we clarify
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the relationship among the spectra of the transition operator restricted to different
invariant subspaces. As a special class of refinable functions with respect to the
dilation matrix M = 2I, the spectrum of the transition operators of box splines
on the three-direction mesh is found. This result is then applied to interpolatory
subdivision schemes induced by box splines. In particular, we find a way to greatly
simplify the computation of the smoothness order of the refinable functions which

are convolutions of box spline with refinable distributions.

The results in Chapter 4 is based on the joint research with Jia in {40].

1.3 Computations of the Smoothness Order of Re-
finable Functions

We will investigate the computations of the smoothness order of refinable functions

in Chapter 5.

Wavelets are generated from refinable functions. If the refinable mask is given,
the question of how to calculate the smoothness order of the corresponding refinable

function is an important topic in the study of wavelets.

The binary case where s = 1 and M = (2) has been studied in some papers.
Eirola in [22] established a formula for the critical exponent of ¢, under the condition
that @(e¥X) # 0, where ¢ denotes the normalized solution of the refinement equation
with mask a, ¢ € L;(IR), and G(e¥) denotes the symbol of mask a. The L, cases were
investigated by Villemoes in [48]. Cohen and Daubechies [3] studied the regularity of

refinable functions for the case where the refinement mask is not necessarily finitely
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supported.

The results in both [22] and [48] rely on factorization of the symbol of the
mask. In the multivariate case, however, the symbol of the refinement mask is of-
ten irreducible. Jia studied the smoothness properties of the general multivariate
functions on Sobolev spaces in [30] and provided a conclusive characterization for
the smoothness of a multivariate refinable function in terms of the refinement mask
and the dilation matrix. He characterized the optimal smoothness of a multivariate
refinable functions in terms of the spectral radius of the corresponding transition
operator restricted to a suitable finite dimensional invariant subspace. Some esti-
mate of the smoothness of multivariate refinable functions were obtained by Cohen

and Daubechies [4], by Goodman, Micchelli, and Ward [25], and Shen [46, 45).

In the multivariate case, there is no general numerical procedure to compute the
smoothness order of the refinable functions if the mask is given. In [46], the authors
constructed a class of bivariate interpolatory subdivision schemes and established
the regularity criteria in terms of the refinement mask. In order to give a general
numerical procedure in terms of the refinable mask, we intend to propose a procedure
to identify the spectral radius of the corresponding transition operator restricted to
a suitable finite dimensional invariant subspace based on the relationship among the
spectra of transition operator restricted to different invariant subspaces established
in Chapter 4. So that we can calculate the smoothness order of refinable functions.

Several examples are provided to illustrate this method.

We observe that usually, the mask has certain symmetric properties. For in-
stance, the bivariate interpolatory subdivision schemes in [46] have symmetry with
respect to the origin. The interpolatory refinement masks in [26] enjoy full symme-
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try. We intend to employ the symmetries of the refinement mask, so that we can
shrink the matrix size of the corresponding transition operator restricted to a suit-
able finite dimensional invariant subspace substantially. Based on the relationship
of the transition operator restricted to different invariant subspaces established, we
can compute the spectral radius of the corresponding transition operator restricted
on the finite dimensional invariant subspace. Then we can obtain the estimate of
smoothness order of corresponding refinement functions. In this way, we can over-

come the difficulty mentioned in [46]). Numerical examples are provided.



CHAPTER 2

Convergence Rates of Subdivision

Schemes

2.1 Introduction

Subdivision schemes play an important role in computer graphics and wavelet anal-
ysis. There has been an intensive study of subdivision schemes (see, e.g., [1], [18],
[20], [35]). These papers were mainly concerned with the convergence of subdivision

schemes.

In this chapter, we study rates of the convergence of subdivision schemes. We
show that the convergence rates of a subdivision scheme can attain the same or-
der as the smoothness order of the corresponding refinable function under certain

conditions.

Let L. (IR) denote the Banach space of all functions f on IR such that || flle < o0,

10
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where || ]|, is the essential supremum of |f] on IR. We use €(IR) to denote the space

of all continuous functions on IR.

Let @ = (a(j))jez be a finitely supported sequence on Z such that 3., a(j) = 2.
Consider the mapping Q. from Lo (R) to Lo (IR) given by

Quf =) a(i)f(2-—3), f € Leul(R). (2.1.1)
i€z
Let ¢ be a compactly supported function in C(R). Forn =1,2,--- , let f, := Q%¢.
Each f, can be expressed as

fa= aa(f)8(2"- - j), (2.1.2)
i€Z
where a, is a finitely supported sequence on Z, and is independent of the choice of

¢. Indeed, a, can also be computed by an iteration scheme. Applying the operator
Q. to both sides of (2.1.2), we obtain

farr =Y an(i)[ 3 alk)b2*t - 25— k)]

JEZ keZ

It follows that

tnpr(!) =) a(l —2j)aq(4), 1€ Z.
i€EZ

This motivates us to introduce the linear operator S, on £,,(Z) given by

Sed(@) =) a(i—2§)A(j), i€ Z,

JjEZ

where A € £,(Z). The operator S, is called the subdivision operator associated
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with a (see [1]). Thus, the coefficient sequences a,, n =1,2,... in (2.1.2), can be

computed by

a, =9

@n = Saan_; = S74, n=1,2,....

More generally, if A € £,(Z), then

Do AGDQH(- —d) =) SAk)H(2" - — k).

i€Z kezZ
In particular, if ¢ is the hat function ¢,:

1+4z if-1<z<0,
$(z)=¢ 1—z if0<z <],

0 elsewhere

then the iteration scheme

fn=Q2¢o’ n=011123°'- ’

is called the subdivision scheme associated with the mask a. Clearly, (2.1.2)
implies that f,(5/2") = an(j) for all n and j. This subdivision scheme is said to

converge in the L,-norm, if there is a function f € C(IR) such that
Iim [|fo = flleo =0.

Consequently, f = Q. f- In other words, the limit function f satisfies the refinement
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equation

f£=Y a2 -7 (2.1.3)

jeZ

Moreover, the function f is compactly supported. The sequence a is called the
refinement mask, and any function f satisfying the refinement equation is called

a refinable function.

K a is a mask with .. a(j) = 2, then it is known (see [1], [11], [12]), that
there is a unique compactly supported distribution f satisfying f(O) = 1 and the

refinement equation (2.1.3), where f is the Fourier transform of f :

Q) = /R f@)e=dz, CeR

This distribution f is said to be the normalized solution to the refinement equa-

tion with mask a.

We say that the shifts of a function f € L, (IR) are stable if there are two

positive constants C; and C; such that

CilAlo < |30 2XGVSC = )| _S CallAlloos VA € ().
i€z *
The concept of stability plays an important role in study of the subdivision schemes.

See [38] for a characterization of stability.

Let a be a finitely supported sequence such that .. a(j) = 2. Let f be the
normalized solution to the refinement equation with mask a. Cavaretta, Dahmen,

and Micchelli showed in [1] that if f is a continuous function with stable shifts, then
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the subdivision scheme associated with a converges uniformly.

The main purpose of this chapter is to investigate the convergence rates of
subdivision schemes. Some existing literatures ([16], [5], (6], [47]) regarding this
question have only investigated the convergence rates of subdivision schemes for box
splines and of control polygons for splines. It was proved, under some additional

assumptions, that the convergence rates attain quadratic order.

We take a new approach to this problem by using quasi-interpolation and by
applying this method to refinable functions with general masks. Under certain
conditions, we shall prove that the convergence rates of subdivision schemes become

as high as the smoothness order of the refinable functions.

This chapter is organized as follows. In section 2.2, we discuss the convergence
rates for some concrete examples. Section 2.3 is devoted to the proofs of the main
results on convergence rates of subdivision schemes. In section 2.4, we construct an
explicit scheme with quadratic convergence rates and work out some examples to
demonstrate applications of our results. In section 2.5, we discuss the convergence

rates of subdivision schemes for refinable functions with unstable shifts.

2.2 Numerical Examples

In this section, we examine one example to see what happens to the convergence

rates of subdivision schemes.

Example 2.1 The Daubechies scaling functions ¢n with N = 6 and N = 10
(see [10] p. 195 ).
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Let ¢, and ¢,, denote these functions. Then these functions have the following

properties

$(0) =1, &(0)#0;
$(0) =1, &, (0)#0.

Moreover, ¢,, lies in C3(IR) and ¢, lies in C*(IR). Let us define

error(n) = ||@n — @n-1lco,
ratio(n) = —m—.
error(n — 1)

Subdivision schemes are used to generate these two scaling functions, and the
Jollowing tables of data show that the subdivision schemes for ¢g and ¢;0 converge

to these two functions in linear order.

Daubechies Compactly Supported Scaling Function N=6

n error(n) ratio(n)

1 0.60029705493217

2 0.84704758658837 0.57812641880708
3 0.17111057142867 0.49804642870737
4 0.08619451675874 0.50878577761202
5 0.04328833569945 0.50221681528914
6 0.02169540380335 0.50118359721614
7 0.01084380155161 0.49982022228762
8 0.00542205403846 0.50001413366468
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9

0.00271104881382

10 0.00185555118821

Daubechies Compactly Supported Scaling Function N=10

o

@ 0 Y Sty N W ™ M~

error(n)

0.85047442878509
0.47008776973873
0.28700962556742
0.11852331739780
0.05987479483912
0.02970105015112
0.01485217051217
0.00742626055645
0.00371814515272

10 0.00185657264454

From this example, we see that, in general, the ordinary subdivision scheme

0.50000892731091
0.50000995059612

ratio(n)

0.55278592787683
0.50418164611929
0.50007807586949
0.500954{543391488
0.50022994574907
0.50005589994719
0.50001180801323
0.50000200295906
0.50000001836204

16

can attain only linear convergence, regardless of the smoothness order of the cor-

responding refinable function. Thus, it is desirable to accelerate the convergence

rates. This will be achieved by choosing a suitable initial function p instead of ¢q.
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2.3 Main Results

We use quasi-interpolation to investigate the convergence rates of subdivision schemes.

First of all, we need two lemmas.

For a nonnegative integer k, we denote by II; the set of all polynomials of degree
less than or equal to k. By 4o, we denote the sequence on Z given by dg, = 0 if
p#0and &, =1 if p =0. Let WE(IR), 1 < k < o0, denote the Sobolev space of
all functions f on IR such that ||f|lxc0 < o0, where

k
1flleco =D 1Flo-

i=0

For a nonnegative integer ; and a function f on IR, we use D* f to denote the
pth order derivative of f. The modulus of continuity of a function f in C(IR) is

defined by
w(f,h) = sup ||If = f(- = Y)llws k>0
lvi<h

Lemma 2.2 Suppose that p is a compactly supported continuous function on IR
satisfying
D*p(2rp) = 6,,6,, Vp=0,1,...,k—1, k>1.

Then

> pl)e(-—7)=p V¥p€ e
JEZ

If f € C(RR), then

sup|f(z) ~ 3 f(ki)e(z/h — 5)|< Cuslf, ),

jeZ
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where C is a positive constant. Moreover, for every function f € WE (IR),

£ -3 faet/n—5)||_< ChHIFP -
jeZ

The first conclusion of this lemma was proved by Schoenberg in [47]. The second
conclusion can be proved like Theorem 2.1 by de Boor and Fix in [14].

Lemma 2.3 If $ € WE (IR) is refinable, then

D*$(2mB) =0, forall € Z\{0}, 0< u<k.

See ([1], p. 158) for the proof.

The following result gives an estimate for the convergence rate of the subdivision

scheme in terms of the modulus of continuity of the corresponding refinable function.
Theorem 2.4 If the shifts of ¢ are stable and ¢ is continuous, then

l6n — ¢lleo < Cuo(p, 1/27).

Proof: Since 4‘5(0) =1, then by Lemma 2.2 and Lemma 2.3, we have
le~ 3" eGr2msen~ 5)||_< cus, 1/27).
i€z *®
But

¢ =Y an(5)$(2" — j).

i€z
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It follows that

| antige -3 - 3= girzmaie - )| _< Cwts, 1/,

i€Z ieZ

Using the stability of the shifts of ¢, we obtain

an(3) — #(3/2%)

< Cuw(é, 1/2), Vj € Z.

Since

$n =) anlf)éo(2™ — 3},

JEZ

we have

I = Bl = |3 anli)do(2- =) — 4]

jeZ

< |2 (@) - s/ N0(” - =i)||_+]}6 - 3 #5720 )|
iz i€z

< SUp;cz an(j) - ¢(J/2n)
<2Cuw(¢, 1/27).

+Cw(é, 1/27)

This completes the proof of this theorem. "

Corollary 2.5 If § € WL (IR) has stable shifts, then

1
¢ = e < C(5).

For a compactly supported distribution ¢ on IR and a sequence b € £(Z), the
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semi-convolution of ¢ with b is defined by

b= Z é(- — a)b(a).

aCZ

We use quasi-interpolation to investigate the convergence rates if the refinable func-

tions have higher order of smoothness.

Theorem 2.6 Let ¢ be the normalized solution of the refinement equation with mask
a. Suppose that ¢ € WE(IR) and the shifts of ¢ are stable. Let p be a compactly

supported continuous function satisfying the following conditions:

D*j(28w) = D*$(2Bx), BE Z, p=0,1,2,... ,k—1.
Define

bn =Y Sr(j)e(2*- - j).

JIEZ
Then
1
6~ énlle < C(0)"

Proof: Since ¢ € WX (IR), by Lemma 2.3 we have
Dd(2Bm) =0, a=0,1,...,k—1, B € Z\{0}.

Since ¢ is compactly supported, we can find a finitely supported sequence b such
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that 1 := ¢ * b satisfies
D*§(20x) = boub08, B =0,1,... ,k—1, VB € Z.
By Lemma 2.2, we have
6= 3 sz )| _< )
jeZ
We define T = p *' b. Since
D*j(287) = D*$(26x), VB € Z, p=0,1,... .k —1,
7 satisfies the following conditions

(D#"‘:)(zﬂﬂ') = Jollaﬁﬁ, ©= 0’ 1s-°’ ak - 1, Vﬂ € Z.

Furthermore, the following estimate is also valid:

[6= 3= sr2yr - )| _< ey
JEZ

It follows from ¥ = ¢ %’ b that

k-1

$(2z —j) = ) b(O)$(2"z — £ - ).

=0

21

(2.3.1)

(2.3.2)
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Hence,
#(z) — Y #(i/2")h(2" — j)
JEZ -
=Y a6z — ) — > 6(3/2") D b()¢(2"z — j ~ )
J€EZ Jj€Z =0
=D (aa(§) — en(i))é(2"z ~ 5),
ieZ
where
k-1 J )
() = Zb(f)ﬁﬁ(z—n), jEZ.
=0

Therefore, by the stability of the shifts of ¢, we obtain
Ry’
lan — ealleo < G- (23.3)

Since p is a continuous function with compact support, (2.3.3) implies

b= 3 #0122 = )| _= | 22 [eal) = enlil] o2 — )||_< )
i€z i€z
(2.3.4)

In light of (2.3.2) and (2.3.4), we have

Ién=lle < =3 #l/2)r(2=5)|_+
jEZ

da= 3 4G22 =3)||_< Gl
JEZ

This completes the proof. L]

If we choose p to be the hat function, then we have the following corollary:
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Corollary 2.7 Suppose ¢ € W2 (IR) is refinable and has stable shifts. If 43(0) =1,
and ¢'(0) = 0, then

1
16— dalloo < C (52"

In particular, the above estimate is valid if ¢ is symmetric.

Proof: Form Lemma 2.3, we have
$(2km) = go(2kn) =0, ¢'(2kw) = @}(2kx) =0,
for k € Z\{0}. Since ¢o(0) = 1, #(0) = 0, it follows from Theorem 2.6 that

1
"¢ - ¢n"oo < 0(2_,,,)2'

2.4 Applications

Let us consider some more examples.

Example 2.8 The Coiflet scaling function ¢ with K =4 (see p. 261 of [10]).
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The mask of this function is:

This function is symmetric and lies in C*(IR). Hence, by Corollary 2.7, the
When

convergence rate of the subdivision scheme should attain quadratic order.

W d ~ O

a(n)
0.0006509610
-0.0011522249
-0.0051945240
0.0118624590
0.0188672350
-0.0574642340
-0.0396526490
0.29586673900
0.5581264500
0.3071573300
-0.0471127390
-0.0680381270

a(n)
0.0278186400
0.01778583870

-0.0107568190

-0.0040010129
0.0026526659
0.0008955945

-0.0004165006

-0.0001838298
0.0000440804
0.0000220829

-0.0000023049

-0.0000012622

24

using the subdivision scheme to generate this function ¢, we see from the following

table of data that the convergence rate of the subdivision scheme of this function

does indeed attain quadratic order.

n

1

Coiflet Scaling Functions K =4

error(n)

0.10596367136144

ratio(n)



2.4 Applications

0.5
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Figure 2.1: Coiflet Scaling Function K = 4 Generated by Subdivision

Scheme

© % N O % A W o

10

0.08780335997008
0.01101803240551
0.00297898575879
0.00077602528342
0.00019817023902
0.00005010944722
0.00001260457856
0.00000316289857
0.00000079661251

0.85208914219655
0.29586300258771
0.27087366102712
0.26049982989386
0.25586569910070
0.25286060849215
0.25154096198294
0.25093251289853
0.25186154279125

The plot of this scaling function generated by the ordinary scheme is shown in Fig-

ure 2.1.
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In the discussion of the previous section, in order to accelerate the rates of
convergence of subdivision schemes, we need to calculate D*$(0) where ¢ is the
corresponding refinable function. Generally, ¢ has no closed form. The following
lemma gives a formula to compute D“$(0) in terms of its mask where p = 1,2. In

fact, we can get D#$(0) for any u in this way.

Lemma 2.9 Suppose ¢ is a refinable function with mask a. If $(0) = 1 and

E a(j) =2, then
i€Z _
$(0) = -3 ja(s),

j€Z

#0) = ~£[3 7at) + (X dati))’]-

JEZ j€EZ

Proof: Since ¢ = } .., a(5)#(2- — j), we take Fourier transforms of both sides,

HE) = 5 3 ali)eH12(e/2)

I€Z

Then, taking the first and second derivatives on both sides of the above identity, we

have

O = -3 3 dal) e/ + Latern) Y alire,

jeZ j€EZ
#(©) = —5 > Fali)e RPHE/D-5HE/2) Y jali)eF I+ 1H €/ Y ali)e 0,
i€z JIE€EZ jezZ
Letting £ = 0, we obtain

#0) = -1 Y ja(s)

IEZ
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and
2 1 - . .
#0) = —2[ 3 %) + (3 ja(3))?] -
i€z i€Z
This completes the proof. =

Using Lemma 2.9, we can construct an explicit scheme which attains quadratic

convergence or der.

Theorem 2.10 Suppose that ¢ € W2 (IR) has stable shifts. For eachn=1,2,...,

let c, be the sequence on Z given by

cn(§) = aa(§) +id'(0)(an(§) — au(j — 1)) j € Z,

where

¥0)=~5 > jals)

JEZ

Let ¢, be the function given by

o= eal(i)bo(2* - —i)-

jEZ
Then
1
"¢ - ¢n"oo S C('z_n)z'

Proof: Let p:= (1 — i¢'(0))do + i¢'(0)bo(- — 1). Then #(0) = 1 and §(0) = (0).
By Theorem 2.6 we have
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"4S - ,.Z;““U)P@“ : —j)”oog C(zin)z_

Hence
[6 = 3= catidotz® - ~3)||_< o=
JEZ
where
ea(s) = (1 = i¢(0))an(4) + i¢'(0)an(j — 1).
This completes the proof. "

Since the Daubechies scaling function ¢ lies in C?(IR), we use the modified
scheme of Theorem 2.10 to generate this function. The following data table shows
that the convergence rate of the modified subdivision scheme attains quadratic order.
The plot of the scaling function ¢s generated by the modified scheme in [0, 6] is

shown in Figure 2.2.

Daubechies Compactly Supported Scaling Function N = 6 by Using the
Modiﬁed Scheme

n error(n) ratio(n)

1 1.28332076464445

2 0.39421909995542 0.30718672277125
3 0.11275797464216 0.28602869484232
4 0.02933304238854 0.26014162174892
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12

Figure 2.2: Daubechies Compactly Supported Scaling Function N = 6 Gen-

erated by Modified Scheme

5 0.00855539153727 0.29166396802452
6 0.00236111038657 0.27597923207597
7 0.00061593351080 0.26086603756442
8 0.00015900313025 0.25814982862199
9 0.00004040363165 0.25410588823943
10 0.00001034255359 0.25598079100019
11 0.00000264592951 0.25582942257449
12 0.00000068137812 0.25751937736998

On the other hand, since Daubechies scaling function ¢;o has a smoothness

order of three, from Theorem 2.6, we can choose a proper function

p = Ms(-)b(0) + Ma(- — 1)b(1) + Ms(- — 2)b(2),
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where Mj is the cubic B-spline and

b0) = =432 3"a(3) + (S dali)f) + §Zja(j) -5

b(1) = (ZJ a(j) + (Z ja(7))*) - EJ“(J) +=

b(2) = ZJ a(7) +(ZJG(J))2 ZJG(J

so that
p(0) = $10(0) =1, Dj(0) = D10(0), D?5(0) = D?10(0).

Here the B-splines are defined as:
1 for z € [0,1],

0 for z € R\[0,1],
M,(z) = [ Mo_y(z —t)dt, forn>2.

M (z) =

The following table of data shows us that the convergence rate attains cubic order
when Z S26(7)p(- — 7) is used to approximate ¢yq.
i€Z
Daubechies Compactly Supported Scaling Function N = 10 By Using
The Modified Scheme

n error(n) ratio(n)

1 0.06715925929284

2 0.01069205551909 0.15920448843053
3 0.00159795221905 0.14945229345255
4 0.00021711224919 0.13586904952582
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0.5f

.05 1 L — L . L L. A
[} 1 2 3 4 S [ 7 8 9 10

Figure 2.3: Daubechies Compactly Supported Scaling Function N = 10
Generated by the Modified Scheme

5 0.00002831518418 0.13041725782694
6 0.00000362257127 0.12793740796356
7 0.00000046482767 0.12831429262674
8 0.00000005832976 0.12548684978242
9 0.00000000736893 0.12633225303859

10 0.00000000093224 0.12650954751911

In Figure 2.3, the plot of the scaling function of ¢ generated by the modified
scheme is displayed in [0, 10].

Figure 2.4 and Figure 2.5 are the error graphs, where errl(x) and err2(x) denote
the errors of the subdivision schemes and the modified schemes respectively. From
these two figures, the reader can see the great improvement obtained by using the

modified scheme.
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Figure 2.4: Error Figure of Daubechies Wavelet Scaling Function N =6

eror graph
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Figure 2.5: Error Figure of Daubechies Wavelet Scaling Function N =10
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2.5 Extension to the Non-stable Case

In the previous sections, we considered the convergence rates of subdivision schemes
for refinable functions with stable shifts. In this section, we extend our results to

the non-stable case.

Our starting point is the following lemma, which was established in §5 of [35].

Lemma 2.11  Suppose a is a finitely supported sequence on Z such that

> ez (7) = 2. Let ¢ be a nontrivial distribution such that

$=>_ a(j)¢(2- —j)-

jez

Then there ezists a finitely supported sequence b with > ez b(j) = 2 such that any

nontrivial solution 1 of the refinable equation
Y=Y b2 —7)
i€Z

has linearly independent shifts and

6= c(k)p(- — k)

kezZ

for some finitely supported sequence c. Consequently, ¢ and v have the same smooth-

ness.

Using this lemma, we shall prove the following theorem.
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Theorem 2.12 Suppose ¢ € WE (IR) satisfies the refinement equation with mask
a and qZ(O) = 1. Let ¢ = c¥' 1 where c is a finitely supported sequence and ¢ is a
refinable function with linearly independent shifts. Let p be a compactly supported

continuous function satisfying the following conditions:
D*j(2xB) = D*$(2xf), B € Z, p=0,1,--- ,k—1.

Then
|#- 3= spetivetz - —i)|_< c)*

JjEZ

Proof: From Lemma 2.11, we see that ¢ € WX has stable shifts. By Theorem 2.6,

we have

IIZS“J(J);»@" =) —¥|_< ci*

From ([1] p.21) we have

Syek) = ) _ e(i)Spo(k - 2°3).

j€ezZ
Since c is a finitely supported sequence, we have

¢~ S sretiee ),
= ”ZCU (=)= )2 —j) Zc(e)s"ao ~2g)|

JjEZ jEZ
[ e - - S wsnre - -0) | < cGo-
JjEZ ez

The proof of Theorem 2.12 is complete. =
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Example 2.13 Let a be the sequence given by its symbol
W) = 2R+ 20 = 2 4 1),

where k is a positive integer. Let ¢ be the normalized solution to the refinement
equation with mask a. It has been shown in ([2, p.163]) that the subdivision scheme
associated with a converges uniformly if and only if k > 2. Moreover, the shifts of ¢
are not stable. Let &(z) = (2% + 28 +1)/3, then

B(z) == a(2) :((:2)) — 21k(] 4 5)F.

The normalized solution v to the refinement equation with mask b is a B-spline of

order k. Clearly, the shifts of 1 are linearly independent. Moreover,
¢=1v+ c=(P(-) +¥(- - 3) + ¢(- —6))/3.

Let us consider k = 4. In this case, b(z) = &+~ é(z) = (2°+ 2z +1)/3. Hence

23 3
¥ is the B-spline of order 4 and both v and ¢ € W3 (R). In the computation, we

choose p to be
p(z) = d(0)Ms(z) + d(1)Ma(z — 1) + d(2) Ms(z — 2),
where Mz(z) is the B-spline of order 3, such that

p(0) = M5(0), 5'(0) = Ms'(0), 4"(0) = Ms"(0).
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It follows that

Applying Theorem 2.12 to ¢, we get the following tables of data which conform to
Theorem 2.12.

p(z) =

—M::,(.'l:) + Ms(.‘B —_ 1) - —Ms(z —_ 2)

Using the Ordinary Scheme for k& = 4

]

© o O O Gy N Ly e

10

error(n)

0.57812500000000
0.58125000000000
0.09008789062500
0.03875782421875
0.01806640625000
0.00871944427490
0.004{34750818527
0.00217117869175
0.00108507182449
0.00054253695998

ratio(n)

0.91891891891892
0.16957720588235
0.43021680216802
0.4661{179228346
0.48263302364852
0.49859865470840
0.49940703875877
0.49976279125574
0.50000096559046

Using the Modified Scheme for k = 4

n

1

error(n)

0.03645838883384

2 0.00455729166667

ratio(n)

0.12500000000007

36
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0.25

0.1}

The nor—stable exampie k=4 generated by using pcubsub.m

po—

Figure 2.6: Example When k = 4 Generated by Modified Scheme

3
4
5
6
7
8
9

1 2 3 4 S

0.00056966145833
0.00007120768229
0.00000890096029
0.00000111262004
0.00000018907750
0.00000001738469
0.00000000217809

10 0.00000000027164

7

8 9 10

0.12499999999918
0.12500000005266
0.12500000042130
0.12499999550610
0.12500001797559
0.12500001797559
0.12500021570704
0.12500172565333
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The plot of this function generated by the scheme of Theorem 2.12 is shown in

Figure 2.6.



CHAPTER 3

On the Convergence Rates of

Multivariate Subdivision Schemes

3.1 Introduction

In this chapter, we will investigate the convergence rates of multivariate subdivision

schemes.

First we introduce some notation. A multi-index is an s-tuple g = (p1,--- ,4,)
with its components being nonnegative integers. We use Z3 to denote the set of
multi-indices. The length of p is |g| := g1 + --- + p,, and the factorial of p is
pt == p!---p,l. For two multi-indices g = (g1, ,4,) and v = (v1,--- ,v,), we
write v < p if y; < pj for j = 1,-- ,s. Let D; denote the partial derivative with
respect to the jth coordinate. For u = (uy,--- ,u,), D¥ is the differential operator
D‘l‘l ces Df,". .

38
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The Fourier transform of a function f € L;(IR*) is defined to be

Q= [ s ce R

where z - £ denotes the inner product of two vectors z and ¢ in IR®.

Consider the functional equation of the form

F=Y a(a)f(2--a) (3-1.1)

aEZ*

where f is an unknown function defined on s-dimensional Euclidean space IR* and
a is a finitely supported sequence on Z*. The equation is called a refinement
equation, and the sequence a is called the refinement mask. Any function which

is a solution to the refinement equation is called a refinement function.

In ([1], Chap. 5), it was proved that, if 3 .z a(a) = 2°, then there exists
a unique compactly supported distribution f satisfying the refinement equation

subject to the condition f (0) =1.

For 1 < k < o0, let WX (IR®) denote the Sobolev space of all functions f on IR’

such that || fllx,c0 < o0, where

"f"knoo = maJ(Oﬁ[alSk"Daf"oo-

In order to solve the refinement equation, we start with a compactly supported

function ¢ € C(IR’) and use the iteration scheme f, := Q¢, n =0,1,2,-- - , where
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Q. is the bounded linear operator on L (IR®) given by

Qup:= Y a(a)p(2-—a), é€C(R"). (3.1.2)

Y A

This iteration scheme is called a subdivision scheme (see [1]). Note that in [11]

and [12] a subdivision scheme is referred to as a cascade algorithm.

Let ¢o be the function given by

¢ := f[x(z,-), for z = (zy,--- ,z,) € R’ (3.1.3)

i=1

where

1+t forte[-1,0)

x(t)=4 1—t forte(0,1]

0 for t € R\[-1,1].
We say that the subdivision scheme associated with mask a converges uniformly,
if there is a function f € C(IR*) such that nlingo 1Qado — flleo = 0, where ¢ is the
function given by (3.1.3).

Let £(Z*) denote the linear space of all sequences on Z*, and let £5(Z*) denote
the linear space of all finitely supported sequences on Z*. By £,,(Z*) we denote
the Banach space of all sequences a on Z* such that ||a]|e < 00, where ||a]|o is the

supremum of a on Z°.

For a given sequence a € £,,(Z*), let S, be the linear operator given by

SA(@) == ) ala—20)X(B), o€ Z, (3.1.4)

BeZz*
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where A € € (Z*). The operator S, is called the subdivision operator associated
with a (see [1]). By § we denote the sequence on Z* given by §(a) =1 for a = 0
and é(a) = 0 for a € Z*\{0}. Then for ¢ € C(IR*) we have

Qb= Sab6(c)d(2- — ). (3.1.5)

a€EZ*

By induction on n, it is easily seen that

Qup= D Sré(a)(2"-—a). (3.1.6)

a€Z*
In our study of convergence rates, the concept of stability plays an important
role. The shifts of a function ¢ in L, (IR*) are said to be stable if there are two

positive constants C; and C; such that

CullMleo 11 Y- M@)d(- — @)oo < CalfMleos VA € &40(2Z°).
acZ*
© (3.1.7)
It was proved by Jia and Micchelli in [38] that a compactly supported function
¢ € C(IR’) satisfies the Lo,-stability condition if and only if for any ¢ € IR®, there

exists an element 8 € Z* such that $(§ +27B) #0,ie, 3 gz [H(€ + 2nB)|? # 0.

It was shown in [1] that if the solution to the refinement equation associated with
masx @ is continuous and has stable shifts, then the subdivision scheme associated

with mask a converges uniformly.

In this chapter, we will give some results about the convergence rates of the

multivariate subdivision schemes. There are several papers which deal with the
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convergence rates of subdivision schemes [6], [43], [16]. But all focused on box
splines, a kind of special refinable function. In [6], Dahmen, Dyn, and Levin proved
that, if a box spline is twice continuous differentiable and has stable shifts, the
corresponding subdivision scheme converges to this box spline surface with quadratic
order. In [16], a similar result was derived using a different approach. Here we will
discuss general refinable functions.

For a compactly supported distribution ¢ on IR* and a sequence b € {(Z*), the

semi-convolution of ¢ with b is defined by

p*b:= Z é(- — a)b(a).

aEZ*

For a nonnegative integer k, we denote by Il the linear span of all polynomials

of s variables of degree at most k.

The modulus of continuity of a function f in C(IR®) is defined by

w(fah) -= sup "f_ f(' - y)"oo’ h > 0.
lvi<h

3.2 Main Results

We investigate the convergence rates of subdivision schemes by using quasi interpo-
lation. By do, we denote the sequence on Z* given by o, = 0 if £ # 0 and o, = 1

if p = 0. To obtain our main results, the following two lemmas are needed.
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Lemma 3.1 Suppose p is a compactly supported continuous function on IR*. If p

satisfies the Strang-Fiz conditions,
D*p(2nB) = Sopdop |ul <k—1, k21,
where p = (p1,--- ,p,) € Z3, B=(Br,---,B:) € Z3, then
> pe(-—j)=p VYpell,.

JjEZ*

If f € C(R®), then

sup|f(z) = 3 f(hie(a/h — )| Culf, ).

jez-

Moreover, for every function f € WE (IR*),

F=3 £ReCIR = 5)|| < CHH fllkco-
Il .

jez*
This lemma was proved by de Boor and Jia in [17].

Lemma 3.2 If § € WE(IR®) is refinable, then

D*¢(2nB) =0, for all B € Z*\{0}, lu| <k, u € Z:.

See ([1], p. 158) for the proof.

(3.2.1)

(3.2.2)

(3.2.3)

The following result is about the convergence rate of the subdivision scheme for

the continuous refinable functions with stable shifts. It describes the convergence
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rates in terms of the modulus of continuity.

Theorem 3.3 Let ¢ be the normalized solution of the refinement equation with mask

a. If ¢ is continuous and has stable shifts, then

li$n — dllo < Cw(g, 1/27),

where ¢, = Z an(7)#o(2" — 7).

jez*
Proof: Since ¢(0) = 1, then by Lemma 3.1 and Lemma 3.2, we have

e~ 3 strmeer - i)||_< cuts, 172,
JEZs

But

é= > an(i)(2™ - ).

jez*

It follows that

| 3 ez =5 = 3 dirzace - i)|_< cute, 1720,

i€z jezs

Using the stability of the shifts of ¢(z), we have

sup |an(5) — ¢(3/2")] < Cuw(4, 1/2%).
JEZS

Moreover,
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e = lles = | 3 anlideo(@" - =) - 4

jez*

|| 2 (i) - #rzNgol = )| _+6 - 3 #ti/2aten - )|
i€zZ*

jezZ*
< Cstuez- lan(j) - ¢(j/2n)| + Cw(4, 1/27)
< 2Cw(g, 1/27)

This completes the proof of the theorem. n

Corollary 3.4 If § € WL(IR®) has stable shifts, then

¢ = Bl < CC5).

The next result deals with the convergence rate of a subdivision scheme if the

refinable function has higher smoothness order.

Theorem 3.5 Let ¢ be the normalized solution of the refinement equation with
mask a. Suppose ¢ € WE(IR®) has stable shifts. Let p be a compactly supported

continuous function satisfying the following conditions:
D*§(2nf) = D*p(2xB), B € Z*, p € Z3, |u| <. (3-24)
and let ¢ 1= 372 S26(5)p(2% - —7). Then

6= Blls < C()"- (3.2.5)
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Proof: Since ¢ € Wk (IR*), by Lemma 3.2 we have D*$(2x8) = 0, for all || < k-1,
and all 8 € Z*\{0}. Since ¢ is compactly supported, we can find a finitely supported
sequence b such that 1 := ¢ */ b satisfies

D*(2rB) = doubos, B € Z*, p € ZY, |pl < k.

By Lemma 3.1, we have

6= 3 sGr2wee - )|_s< e (3.26)

jezZ*

With the above b, we define 7 := p ¥’ b. Then 7 satisfies

D*7(267) = Soubos, w1 € Z3, lpl <k, Be€Z’.

Furthermore, by Lemma 3.1, we have the following estimate

[6- > etrzmymer - -a)|_s e (327)
JjEZ*
Since
Y(z)= ) b(1)é(z—17), z€ R,
v€Z*
and

Y@z -j)= ) Wné@z—v-j), je 2z,
YEZ*
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we have

B(z)— D (/2" (2 z — 5)

JjEZ*

= 3 (@) — ealié(@z ~ ),

jez*
where ¢, (7) = 3. ez b(7)#(5 — 7/2"). Hence, by the stability of the shifts of ¢, we

have
e
lan — calloo < 0(2—n) . (3.2.8)
Since 5(0) =1, we obtain

s = dle < [|60) = X /207 = )| _+[éa = X s0i/2)r (2 =)

JEZ* jEZ*

Considering (3.2.8), we have

b= 30 #0/2)r@ = )| _=|| T [wai) — eail]o@ - 9)|_< OG-
jezs i€z (3.2.9)

From (3.2.7) and (3.2.9), we can obtain (3.2.5). This completes the proof of this

theorem. n

Remark: The suppb = {y € Z}, |7| < k}.
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Corollary 3.6  Suppose that ¢ € W2 (IR*) with stable shifts, and $(0) = 1,

D,-qz(O) =0, 7 =1,---,s. In particular, if ¢ is symmetric, letting p = ¢q, then

1
"¢ - ¢n"co < 0(5;)2

Proof: Since p = ¢o =[]}, x(z;), for £ = (z1,--- ,z,) € IR*, we have

. Y 1l—e %

A(§) = H(T)2°
j=1 I

This implies that 5(0) = 1 and

D;p(0) =0, j=1,---,s.

We obtain the desired conclusion by applying Theorem 3.5. ]

3.3 Examples

Let us look at an example.

Example 3.7 [30] Let a be the sequence on Z? given by its symbol
a(z):==(1+z)+(1+z)+(1+azn)l+t+Q—t)z+ 1 - t)z + (1 —t)z12)/8,

where t is a real number. Let ¢ be the normalized solution of the refinement equation

1

16> then the mask is

with the mask a corresponding to the parameter t. If we let t =
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the following matriz:

[0 15 1 az )
128 4 128
5 1 & 1
128 2 128 4
L 8 1 15
4 128 2 128
17 L 15 g
128 4 128

From the result of [30], ¢ has stable shifts, and its L, smoothness is 2.5 Hence

the Lo, smoothness is at least 1.5. Using Lemma 2.9, we have

§0,0) = ;Y alinja) =1, DA9g0,0) = — 3 juali, o),

1.2 J1Jd2

. P, .
Dg(0,0) = 7 Y~ jza(ji, 52),

FI )

and
$0(0) =1, o (0)=0.

Now, applying Theorem 3.5 to this ¢, we choose a function

p(z1,z2) = (0, 0)do(z1)do(z2) + b(1,0)do(z1 — 1)do(z2) + 8(0, 1)do(z1)do(z2 — 1),

where g is the hat function and

1 . e . 3 1 . e . 3
b(l, 0) = Z ZJla(Jla.h) = 'é': b(o, 1) = ZZJ2a(J11.72) = '2"1

Itz J1.J2

5(0,0) =1 — b(1,0) — 5(0,1) = —2,
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such that
5(0,0) = $(0,0) =1, D™M4(0,0) = D*¢(0,0), DO 4(0,0) = DV(0,0).

> jeze Sa(3)p(2* - —j) is used to approzimate the function ¢. The following tables
of data demonstrates that the convergence rate is linear if we use the ordinary sub-

division scheme, and is nearly quadratic if we choose the above p.

Error Table of Example 3.7 by the Subdivision Scheme

n error(n) ratio(n)

1 0.441400000

2 0.224660840 0.50897335749887
8 0.110506300 0.491880560938799
4 0.05{768664 0.4956157612784
5 0.027255653 0.49765049956308
6 0.018605696 0.49918804000086
7 0.006795951 0.49949307995710

Error Table of Example 3.7 by the Modified Scheme

n error(n) ratio(n)

1 0.718700000

2  0.198906437 0.27675864338389
g 0.058881021 0.26837251627005
4 0.014145521 0.26499157818656
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0.6+

0.5
0 o

Figure 3.1: Example When ¢t = 1/16 Generated by Modified Scheme

5 0.008728967 0.26361468057628
6 0.000981053 0.26308975112947
7 0.000257958 0.26293482615108

Plot for this function generated by the modified scheme is shown in Figure 3.1.



CHAPTER 4

Spectral Properties of the
Transition Operator Associated
with a Multivariate Refinement

Equation

4.1 Intro ciuction

In this chapter, we will investigate the spectral properties of the transition opera-
tor associated with a multivariate refinement equation and their application to the
study of the approximation and smoothness properties of the corresponding refinable

function.

52
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A refinement equation is a functional equation of the form

$= > a(a)p(M-—a) (4.1.1)

aEZ*

where a is a finitely supported sequence on Z*, and M is an s x s integer matrix
such that lim, ;o M~ = 0. The matrix M is called dilation matrix, and the
sequence a is called the refinement mask. Any function satisfying a refinement

equation is called a refinable function.

If a satisfies

> a(a) =m:=|det M|, (4.1.2)
a€Z*

then it is known that there exists a unique compactly supported distribution ¢
satisfying the refinement equation (4.1.1) subject to the condition ¢(0) = 1. This
distribution is said to be the normalized solution of the refinement equation
(4.1.1). This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in
Chapter 5 of [1] for the case in which the dilation matrix is 2 times the s x s
identity matrix I. The same proof applies to the general refinement equation (4.1.1).
Throughout this chapter we assume that (4.1.2) is satisfied.

A multi-index is an s-tuple p = (yy,.. . ,,) with its components being nonneg-

ative integers. Define
e f1 =
zt =z ---2¥, T =(z4,---,z,) € R.

We may regard zj" - - - z¥* as a monomial of total degree |u| := p; + - -+ + y,. For a
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nonnegative integer k, we denote by II; the set of all polynomials of degree at most
k. A sequence u on Z* is called a polynomial sequence, if there exists a polynomial
p such that u(a) = p(a) for all @ € Z*. The degree of u is the same as the degree
of p. For a multi-index g = (p1,--- ,4,), if p = Y., CuZ* is a polynomial, then we
use p(D) to denote the differential operator >, cuD*.

By {(Z*) we denote the linear space of all sequences on Z*, and by L(Z*)
the linear space of all finitely supported sequences on Z*. For o € Z*, we de-
note by d, the element in £o(Z*) given by §,(a) = 1 and 6,(8) = 0 for all
B € Z*\{a}. In particular, we write & for §. The difference operator V; is de-
fined by Vju := u — u(- — ¢;), u € £(Z*), where e; is the jth coordinate unit vector

in [R*. For a multi-index p = (g1, ... , #5), V* is the difference operator V5! ... Vs,

Let a be an element in £(Z*). The transition operator T, is the linear

operator on {y(Z*) defined by

Tov(a) := > a(Ma—B)(B), a«c Z°, (4.1.3)
BeZ*

where v € £o(Z*). The subdivision operator S, is the linear operator on £(Z*)
defined by

Sau(a) := > a(a~MBu(B), «c Z°, (4.1.4)
BeZ*

where u € {(Z*). We introduce a bilinear form on the pair of the linear spaces
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4 (Z*) and ¢(Z*) as follows:

(v, v) := ) u(—a)v(a), u€Z*), vE b(Z). (4.1.5)
aEZ*

Then £(Z*) is the dual space of £5(Z?*) with respect to this bilinear form. It is

easily seen that
(Sau, v) = (u, Tov) Yu € 4(Z°*),v € £(2Z*).

Hence, S, is the algebraic adjoint of T, with respect to the bilinear form given in

(4.1.5).

In [27], Han and Jia showed that the transition operator T, has only finitely

many nonzero eigenvalues. By supp a we denote the set {a € Z* : a(a) # 0}. Let

Q= (i M™"(supp a)) NnZ2Z:. (4.1.6)

n=1

We use {({2) to denote the linear space of all sequences supported in Q. It is easily
seen that £({2) is invariant under T,. Moreover, if v is an eigenvector of T, corre-
sponding to a nonzero eigenvalue of T;, then v must lie in £(). Consequently, any

nonzero eigenvalue of T, must be eigenvalue of the matrix

(e(Me — f))apen-

In particular, T, has only finitely many nonzero eigenvalues. The spectral radius of
T, denoted by p(Ts), is defined as the spectral radius of the matrix (a(Ma—§))q sea.
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In [37] and [30], Jia investigated the approximation properties of a refinable
function in terms of its refinement mask using the subdivision and transition op-
erators. Let us review some basic results about approximation with shift-invariant

spaces.

A compactly supported distribution ¢ on /R* and a sequence b € ¢(Z*), the

semi-convolution of ¢ with b is defined by

o+'b:= Z (- — a)b(a).

a€EZ*

Let S(¢) denote the linear space {¢ #' b : b € ¢(Z*)}. We call S(§) the shift-

invariant space generated by ¢.

For a compactly supported distribution ¢ on IR* is said to have accuracy k,
if S(#) contains IT_; (see [28]). If ¢ has accuracy k and ¢(0) # 0, then for any
polynomial sequence u of degree at most k — 1, the semi-convolution ¢ # u is a
polynomial of the same degree. Conversely, for any p € IT;_;, there exists a unique
polynomial sequence u such that p = ¢ +’ u. See ([13], Proposition 1.1) and ([31],
Lemma 8.2) for these results. Suppose 1 < p < oo and ¢ is a compactly supported
function in L,(IR*) such that $(0) # 0. It was proved in [36] that S(¢) provides

approximation order k if and only if ¢ has accuracy k.

Let ¢ be the normalized solution of the refinement equation (4.1.1) with mask

a and dilation matrix M. We say that a satisfies the sum rules of order k, if

> aly+MBYp(y+ MB) = > o(MB)p(MB) Vp € M and v € Z".
Bez* BEZ*
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It was proved in [37] and [29] that ¢ has accuracy k provided that a satisfies the
sum rules of order k. Let

Vi i= {v €t(Z): Y plajo(a) =0Vpe nk}.

x€EZ*

Then a satisfies the sum rules of order k if and only if Vi_; is invariant under the

transition operator 7,. See the proof in [37].

We denote by W7 (IR’®) the Sobolev space of all functions f € L,(IR*) for which
[ 1f@Pa+ ey < .
The smoothness order v(f) of a function f € Ly(IR?) is defined by
U(f) = sup{v : f € WE(B")}.

Let ¢ be the normalized solution of the refinement equation (4.1.1) with mask a and

dilation matrix M. We assume that M is isotropic, i.e., M is similar to a diagonal

matrix diag{oy,... ,0,} with |o1| = ... = |o,]. Let b be the sequence given by
b(a) =Y a(e+B)aB)/m ac Z°, (4.1.7)
BeZ*

where m = |det M| and @ denotes the complex conjugate of a. Suppose a satisfies
the sum rules of order k. Then b satisfies the sum rules of order 2k. Hence V3i_; is
invariant under T}, the transition operator associated to b. In (30], Jia analyzed the

smoothness of refinable function in terms of their masks. Let p; denote the spectral
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radius of Ti|v;,_,. Suppose ¢ lies in L,(IR*). It was proved in [30] that

v(8) = —(log,, pi)s/2. (4.1.8)

If, in addition, k > —(log,, px)s/2 and the shifts of ¢ are stable, then equality holds
in (4.1.8). Note that the shifts of ¢ are stable if and only if, for any ¢ € IR®, there
exists an element 8 € Z* such that ¢(€ + 287) # 0 (see [38]).

The smoothness analysis of refinable functions is applicable not only to ap-
proximation theory and wavelet analysis, but also to numerical solutions of partial
differential equations. In this regard the reader is referred to the recent work of

Lorentz and Oswald [41].

The following is an outline of this chapter.

Section 4.2 is devoted to a study of the spectrum of the transition operator.
Suppose the dilation matrix M has eigenvalues ay,... ,0,. Write o for the s-tuple
(01,... ,0,). By convention, for a multi-index & = (uy,...,4,) we have

TR ) § Hs 8 . _ LTHL —~Hs
obi=o' .. 0P oTHi=o M LioTH.

We shall show that the spectrum of the transition operator T, contains {o~* : |¢| < k},
provided ¢ has accuracy k. This gives an upper bound for the accuracy of ¢ in terms

of the refinement mask a.

In Section 4.3 we shall investigate invariant subspaces of the subdivision and
transition operators. We give a necessary and sufficient condition for a subspace of

polynomial sequences to be invariant under the subdivision operator. Furthermore,
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we clarify the relationship among the spectra of the transition operator restricted

to different invariant subspaces. In particular, we establish the following formula:

SPeC(Talt(ﬂ)) = spec(TaIl(ﬂ)an_l) U {0'—“ : Ilul < k}’

where () is given in (4.1.6). Thus, the spectral radius of T,|v,_, can be found from
the spectrum of T, [¢g). This result is significant for calculating the smoothness order

of a refinable function in terms of its mask.

Box splines are refinable functions with respect to the dilation matrix M = 21,,
where I, denotes the s x s identity matrix. In section 4.4 we shall find explicitly
the spectrum of the transition operator associated with a box spline on the three-
direction mesh. This result is then applied to interpolatory subdivision schemes
induced by box splines. In particular, we find a way to greatly simplify the compu-
tation of the smoothness order of refinable functions which are convolution of box

splines with refinable distributions.

4.2 The Spectrum of the Transition Operator

The spectrum of a square matrix A is denoted by spec(A), and it is understood to
be the multiset of its eigenvalues. In other words, multiplicities of eigenvalues are

counted and listed in the spectrum of a square matrix. The transpose of a matrix

A is denoted by AZ.

Suppose T is a linear mapping on a finite dimensional vector space V over .
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Let {v1,.-. ,vs} be an ordered basis of V. If
T(v;)=byvr + -+ +byiv,, i=1,...,n,

then (b;j)1<i,i<n is called the matrix representation of T’ with respect to {vy,... , v, }.

The spectrum of T is the same as the spectrum of the matrix (b:;)1<:.j<n-

Suppose ¢ is the normalized solution of the refinement equation (4.1.1) with
mask ¢ and dilation matrix M. Let supp ¢ denote the support of ¢. From (4.1.1) we
observe that ¢(z) # 0 implies ¢(Mz — a) # 0 for some a € supp a. It follows that

z € M~ (supp a) + M~*(supp ¢).
Hence we have

supp ¢ C M~!(supp a) + M~ (supp ¢).

A repeated use of the above relation yields
supp¢ C > M~ (suppa) + M™(supp¢), n=1,2,....
=1

Consequently, we obtain

supp ¢ C E M™"(supp a) (4.2.1)
n=1
It follows that Z* Nsupp ¢ C 2, where Q is the set given in (4.1.6).
Let T, and S, be the transition operator and the subdivision operator given

in (4.1.3) and (4.1.4), respectively. It is known that S, is the adjoint of T}, with
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respect to the bilinear form given in (4.1.5). Let Q be a nonempty finite subset of
2. Suppose {(Q2) is invariant under T;,. By —{ we denote the set { —a: a € Q}.
Clearly, £(—£2) is the dual space of £(f) with respect to the bilinear form

(m,v) =) u(—au(a), u€l-Q),ve Q). (4.2.2)
a€N

Let Q := Qq be the linear mapping from ¢(Z*) to £(—) given by

u(—a), for a€ —Q,
Cau(a) = (4.2.3)
0, for a ¢ -1,

Then @S, maps £(—Q) to £(—). We claim that (QS,)|e(-q) is the algebraic adjoint
of T,|yq). Indeed, for u € £(—) and v € £() we have

(QSau,v)a = (QS.u,v) = (Seu, v) = (u, Tov) = (u, Tyv)q.

This justifies our claim. Consequently, the spectra of (QS.)[¢(—q) and T|yq) are the

same. Moreover, for u € £(Z*) and v € {(Q2) we have

(QSC(QU - u)) U) = (Qu - u, Tav) = 01

since Tov € £(Q) and Qu — u vanishes on £(—). Thus, @S:(Qu — u)(a) = 0 for
all @ € {(—Q). But, by the definition of Q, we have QS,(Qu — u)(a) = 0 for all
a € Z*\(—9). This shows QS.(Qu — u) = 0. In other words,

Q5.Q = Q5. (4.2.4)
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For u € £(Z*), we have

Z u(a)g(- —a) = z S.u(a)dp(M - — a). (4.2.5)

aEZ* aEZ*

Indeed, since ¢ satisfies the refinement equation (4.1.1), we obtain

dou@e(-—a)= ) u(@) > aB)M-—Ma—pB)= > w(n)$(M-—7),

a€Z* aEZ* BeZ* YeEZ*

where

w(y) = ) a(y—Ma)u(a), 7€ Z".
a€EZ*

Hence w = S,u. This verifies (4.2.5).

By K(¢) we denote the linear space given by
K(¢):=={uelZ"): ¢+ u =0}
It follows from (4.2.5) that K(¢) is invariant under the subdivision operator S,.

Lemma 4.1 Let Q := Qq be the linear mapping from £(Z*) to £(—Q) given by
(4.2.8), where Q = Z° N Y. M~"L for some compact set L D suppea. Ifu is a

n=1

sequence on Z* such that p := ¢ ' u is a nonzero polynomial, then Qu ¢ Q(K(¢)).
Proof: Set
Gr :={(z1,...,zs) ER* : |zy|+ ...+ |z,| <7}, r>0.

By (4.2.1), the compact set supp ¢ is disjoint from the closed set Z*\QQ; hence there
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exists some r > 0 such that
(supp 6+ G,) N (Z*\) = 0.

Suppose z € G, and a € Z*. Then ¢(z + ) # 0 implies z + o € supp ¢. It follows
that a € supp ¢ + G,. Consequently,

a € Z* N (suppé + Gr) C Q.

In other words, z € Gr and a ¢ Q imply ¢(z + a) = 0. Therefore
p)= ) u(@)pz—a)= Y u(-a)p(z+a) =Y u(-a)p(z+a), z€G..
aEZ® a€Z* aed

If Qu € Q(K(¢)), then there would exist some w € K(¢) such that Qu = Qu. It
follows that u(—a) = w(—a) for all @ € Q. Thus, for all z € G,

p(z) =) u(-a)d(z+a) =) uw(-a)p(z+a) = Y w(—a)d(z+a)=0,

aeN a€f) aCZ*

which is impossible, because p is 2 nonzero polynomial. This verifies Qu ¢ Q(KX(¢)).

We are in a position to establish the main result of this section.

Theorem 4.2 Let ¢ be the normalized solution of the refinement equation with mask
@ and dilation matriz M. If ¢ has accuracy k, then the spectrum of the transition

operator T, contains {o™* : |u| < k}, where o = (04,...,0,) is the s-tuple of the
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eigenvalues of M and p is any multi-indez u = (py,... , ).

Proof: Let  be the set given in (4.1.6), and let Q := Qq be the linear mapping
from YZ?*) to £(—N) as defined in (4.2.3). Since the spectra of (QS;)[y-q) and
T:lyq) are the same, it suffices to show that the spectrum of (QS:)]¢—q) contains

{o7* : |u| < k}. For this purpose, we introduce the set

W:={u€lZ*): ¢+ uecll,}.

By (4.2.5), W is invariant under S,. Clearly, Q(W) is a subspace of £(—Q). The
theorem will be proved by finding the matrix representation of Q.S, with respect to
a suitable basis of Q(W).

There exists an invertible matrix H = (h;j)1<i <, such that HMH™! is a tri-

angular matrix:

= -

o111

HMH™ =

(o3 cee O
i sl uJ

Fori:=1,...,5 and z = (z1,...,2z,) € R?, let li(z) := hyz1 + ... + hi;z.. Then

Hz can be represented as [I1(z),... ,l;(z)]T. It follows that

ll(M.'B) o11
: = HMZ = Hzx
I,(Mz Os1 ++. Oag
(Mz) - : : (4.2.6)

on ll(z)




4.2 The Spectrum of the Transition Operator 65

For simplicity , we write o; for o0j;, j =1,...,s. Thus, 0y,..., 0, are
the eigenvalues of the matrix M. For two multi-indices 4 = (g1, ..., ) and
v = (n,...,v), we write g < v if there exists some j,1 < j < s, such that

K < Vi, and Hitl = Viglyeee g [bs = Vs.

For a multi-index p = (g1, ... ,4s), let p, be the polynomial given by
pai= Ut
Clearly, p, (lu| < k) are linearly independent. With the help of (4.2.6) we obtain

pu(Mz) = [L(Mz)]" ... [l(Mz))*
= (ouli(z))* (e21li(z) + o22la(z))*2 - - - (ga1ls(z) + - - - + T5als(2))**
= U”Pu(z) + Qu(z)a z e R,

where g, is a linear combination of p,, i.e., g, = zc,,p,,, where |v| = |p]| and v < p.

14

It follows that

pu(z) = 07¥p(Mz) —07"q.(z), z € R’.

A repeated use of the above idea yields

pu(z) = 07#p,(Mz) + ru(Mz), (4.2.7)

where r, is a linear combination of p, with |v| = |u| and v < pu.

By the assumption, ¢ has accuracy k. Thus, for each g with |g| < k, the
polynomial p, lies in S(¢). Since $(O) # 0, there exists a unique polynomial sequence
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u, € {(Z*) such that

Pa= Y uu(2)(- —a). (4.2.8)

a€Z*

It follows from (4.2.7) and (4.2.8) that

Pu=0""p,(Mz) +r,(Mz) = ) [o7"uu(a) + vu(a)] $(M - —a),
et (4.2.9)

where v, is a linear combination of u, with || = |z| and v < p. On the other hand,

we deduce from (4.2.8) and (4.2.5) that

Pu= Z u,(@)é(- —~ a) = Z Seuy(a)p(M - — a).

a€EZ* a€EZ*
Comparing this equation with (4.2.9), we obtain
Sauy, = o™ uy + v, + wy,

where w, € K(¢). By (4.2.4) it follows that

QRS(Quy) = QSauy = o7*(Qu,) + Qu, + Qu,. (4.2.10)

Let U:=U+...+ Uk_1, where each U; (j =0, 1,...,k — 1) is the linear span
of u, |p| = j. Then W = U + K(¢). By Lemma 4.1, Q(U) N Q(X(¢)) = {0}.
Hence Q(W) is the direct sum of Q(U) and Q(K(¢)). Moreover, Q(U) is the direct
sum of Q(Uh),...,Q(Uk-1). Choose a basis Y for Q(K(¢4)). For each j, the set
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Y; :={Quy : |u| = 7} is a basis for Q(U;). The order of this basis is arranged in
such a way that Qu, precedes Qu, when v < pu. Consequently, YUY U...UYi,
is a basis for Q(W). With respect to this basis, (4.2.10) tells us that @S, has the

following matrix representation:

E Fhb A ... Fr,
E 0 ... O
El oo 0 1

Er

Whereeach E; ( =0,... ,k—1) is a triangular matrix with = (Ju| = ;) being the
entries in its main diagonal. We conclude that the spectrum of (QS.)lo(w) contains

{o7* : |u| < k}, as desired. .

Example 4.3 Let M be the matriz

and let a be the sequence on Z?* such that a(a) =0 for a € Z*\[-1,1]? and
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0 -1 0 -1 0
-1 0 10 0 -1
(a(alaa2))-25a,,g,52=3—12' 0 10 32 10 O
-1 6 10 0 -1

0 -1 0 -1 0

e -

Let ¢ be the normalized solution of the refinement equation (4.1.1) with mask a and
dilation matriz M given as above. Then ¢ has accuracy 4 but does not have accuracy

5.

It can be easily checked that a satisfies the sum rules of order 4. Hence ¢ has
accuracy 4. Let us show that ¢ does not have accuracy 5. The matrix M has two
eigenvalues 0y = 1417 and g, = 1 — i, where ¢ denotes the imaginary unit. We have

suppa C [-2,2)? and

D M ([=2,2) = {(z1,72) € B? : |z1] < 6, |z] < 6,21 — 75| < 8, |71 + 25| <8}

n=1

The set Q := Z%n (322, M~([—2,2]?)) has exactly 129 points. Among the 129

n=1

eigenvalues of the matrix A := (a(Ma — 8))agea the following are of the form
oy “1oy " for some double-index (p1,p2) with py +ps < 4:

1, 0.5 —0.5i, 0.5+ 0.5, —0.54, 0.5, 0.5,

—0.25 — 0.25¢, 0.25 — 0.25z, 0.25 + 0.25¢, —0.25 + 0.257,

—-0.25, 0.25:, —0.251.
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Since ¢ has accuracy 4, we expect that A has eigenvalues o] “* ;2 for all 10 double-
indices (g, p2) with g; + p2 < 3. The above computation confirms our expectation.
But A has only three eigenvalues of modulus 0.25. Therefore, by Theorem 4.2, ¢

does not have accuracy 5. x

This example is the Example 4.3 taken from [29], where another method was

used to achieve the conclusion that the optimal accuracy of ¢ is 4.

4.3 Invariant Subspaces of the Transition Opera-

tor

In this section we investigate invariant subspaces of the subdivision and transition
operators. We are particularly interested in invariant subspaces of the subdivision
operator which consist of polynomial sequences. The results are then applied to

smoothness analysis of refinable functions in terms of their masks.

Let II denote the linear space of all polynomials of s variables. For a compactly
supported distribution ¢ on IR*, the intersection S(¢)NII is shift-invariant, i.e.,
p € S(¢) N1II implies p(- — @) € S(¢) N1II for all @ € Z*. It was proved in ([33),
Theorem 3.1), that a shift-invariant subspace P of II is D-invariant, that is, p € P

implies all its partial derivatives belong to P.

Suppose ¢ is a compactly supported distribution on IR* such that #(0) # 0. Let
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P be a finite dimensional D-invariant subspace of II. Then P C S(¢) if and only if
p(—iD)$(2B) =0 Vp € P and B € Z°\{0}.

Suppose P C 5(¢). Then u € P|z. implies p := ¢+’ u lies in P. Conversely, for each
p € P, there exists a unique polynomial sequence u € P|zs such that p = ¢+’ u. See
[13] and [33] for these results.

Now let ¢ be the normalized solution of the refinement equation with mask a
and dilation matrix M, where } .. a(a) = m = |det M|. Let T be a complete set
of representatives of the distinct cosets of Z*/M Z*, and let © be a complete set of
representatives of the distinct cosets of Z*/M7 Z*. Recall that a satisfies the sum
rules of order k implies ¢ has accuracy k. The converse of this statement is valid
under the additional condition that

N()n (2r(MT)"10) =0, (4.3.1)

where

N(¢):={6 € R*: §(¢ +22B) =0 VB € Z*}.

These results can be extended to shift-invariant subspaces of II. Let P be a
finite dimensional shift-invariant subspace of II. If

> a(y+MB)p(—7—MB)= Y a(MB)p(~Mp) Vpe Pandy €T,
peat pezt (4.3.2)

then P C S(¢). Conversely, if P C S(#) and (4.3.1) is valid, then a satisfies the
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conditions in (4.3.2). The proof is similar to that of Lemma 3.3 in [29].

It was proved in [29] that a satisfies the sum rules of order k if and only if
IIt-1|z+ is invariant under the subdivision operator S,. In order to extend this

result to shift-invariant subspaces of II, additional work is needed.

Theorem 4.4 Let M be a dilation matriz, and let a be an element in £o(Z*) such
that ), cz. a(a) = m = |det M|. Suppose P is a finite dimensional shift-invariant
subspace of II. Then P|z. is invariant under S, if and only if a satisfies the condi-

tions in (4.3.2) and p € P implies p(M~!.) € P.

Proof: Suppose U := P|zs is invariant under S,. Let us first show that Sely is

one-to-one. Let u be an element in U such that S,u = 0. Then

> ala—MB)u(B) =0 Yae Z°. (4.3.3)
Bez*
Suppose u # 0. Since u is a polynomial sequence, there exists a multi-index 2 and a
complex number ¢ # 0 such that V¥u(8) = ¢ for all 8 € Z*. It follows from (4.3.3)
that
> a(a— MB)V*u(B) =0 Vac Z*.

Bez*
Hence 3 5 . a(a—MpB) = 0 for all « € Z*. This contradicts to the assumption that
Y eezs @(a) = m # 0. Therefore, S,|y is one-to-one. But U is finite dimensional.

Hence S,|v is one-to-one and onto.

Next, we show that p € P implies P(M-) € P. Let p € P. Since S, |y is onto,
there exists f € P such that p|z: = So(f|z:), that is, p(a) = ez a(a—MB)f(B)
for all @ € Z*. It follows that
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p(Ma)= ) a(Ma—MB)f(B)= Y o(MB)f(a—p) Vac Z’.

Bez* Bezs

Let ¢(z) := 3" gcz. a(MB)f(z—B), = € IR*. Since P is shift-invariant, ¢ belongs to
P. Thus, q and p(M-) agree on the lattice Z*. Therefore, we have p(M-) =q € P.

Forp € P, let

u(y):= ) a(MB+v)p(~MB —7), € Z*.
BeZ*

We claim that u is a polynomial sequence. Indeed, by using Taylor’s formula, we
obtain
p(—MB —7) =) t,(~MB)(—7)*,
n
where ¢, := D¥p/ul. Since P is D-invariant, f, € P for every multi-index .
Set gu(z) := t,(Mz) for z € R’. By what has been proved, we have g, € P. Let

Uy := qu|zs. Then for v € Z°,

u(r) = ) a(MB+7)p(-MB—7)= Y a(MB+7)_ tu(~MB)(—)*

pez* pez*
=D a(MB+7) Y a(-BI=1)*= Y > aly+ MB)uu(~B)(—7)*
peZ" » BEZ* u
=Y (1" Y aly+ MBYu (=) = > Sauu(7)(—7)*.
B pez* B

Since U is invariant under S,, S,u, € U. Hence u is a polynomial sequence. By the
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definition of u, we have

u(y+Mn) = ) o(MB + Mn +v)p(—MB — Mn — v)
pezz?

= > a(M(B+n)+7)p(—M(B +n) —7) = u(7)
Bez*

for all n € Z* and v € Z*. Therefore, u itself must be a constant sequence. This
shows that a satisfies the condition in (4.3.2). Consequently, P C S(¢), where ¢ is

the normalized solution of the refinement equation with mask @ and dilation matrix

M.

It remains to prove that p € P implies p(M~!.) € P. Let p € P. Then there
exists a unique u € U such that p = ¢ *' u. From (4.2.5) we deduce that

p(M™z) = Z u(a)p(M™ 1z — a) = Z Ssu(a)é(z — a).

aEZ* aEZ*
Since U is invariant under S,, we have S,u € U. This shows p(M~1.) € P.

Now suppose a satisfies the condition in (4.3.2) and p € P implies p(M~!-) € P.
We wish to show that U = P|z. is invariant under S,. Let p € P and u = p|z.. We
first show that S,u is a polynomial sequence. Set ¢(z) := p(M~'z), z € IR*. By

our assumption ¢ € P. An application of Taylor’s formula gives
a(MB) =g(—a+MB+a) =) g(~a+ MB)*,
B

where g, = D*p/p!. Since P is D-invariant, we have g, € P for all multi-index . It
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follows that

Seu(@) = Y ala—MB)p(B) = Y a(a— MB)g(MB)

Bez* BeZ*
= Z a(a — Mp) Zq,,(—a + MpB)a*
BezZ* B
=2 ala— MB)gu(~a + MB)| o
» pezZs

Since a satisfies the conditions in (4.3.2), ¢, := Z a(a — MB)q.(ax — MP) is
pez*
independent of a. Therefore, S,u(a) = 3, c,a® for all @ € Z*. This shows that

Sau is a polynomial sequence.

To finish the proof, we have to show that S,u € U. We observe that

Seu(M7) = ) a(M(y=B))u(B)= ) a(MB)p(y-B), 7€ Z".

Bez* Bez*

Since P is shift-invariant, there exists f € P such that

Y a(MBYp(y - B) = f(v) V€ Z*.

ez

Let g(z) := f(M™z), z € R*. Then g € P and
Seu(Mq) = f(v) = 9(M7) Vye Z'.

This shows that S,u and g agree on the lattice M Z*. But both S,u and g|z. are
polynomial sequences. Therefore, S,u = g|z. € U. We conclude that U is invariant

under S,. u
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The following theorem clarifies the relationship among the spectra of the tran-

sition operator restricted to different invariant subspaces.
Theorem 4.5 Let U be a finite dimensional subspace of £(Z*), and let
V= {v €b(Z*): Z u(—a)v(a)=0Vue U}. (4.3.4)
acZ?*

Then U is invariant under the subdivision operator S, if and only if V is invariant
under the transition operator T,. Let Q be a finite subset of Z* such that Q) is
invariant under T,, and let Q := Qq be the linear mapping from £(Z*) to £(—9) as
defined in (4.2.8). If U is invariant under S, and if Qlu is one-to-one, then

spec(Tuluay) = spec(Taleainv) U spec(Si o). (4.3.5)

In particular, the above relation is valid when Q = Z* U Y2, ML for some

n=1

compact set L D suppa and U = P|z. for some finite dimensional shift-invariant

subspace P of Il which is invariant under S,.

Proof: Let (u, v) be the bilinear form defined in (4.1.5). Then v € V if and only if
(u, v) = 0 for all u € U. Suppose U is invariant under S,. Then for v € V we have

(u, Tov) = (Sau,v) =0 Yuel.

Hence v € V implies T,v € V. This shows that V is invariant under T,.

Choose a basis {uy,...,un} for U. Then there exist vy,...,v, € £o(Z*) such
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that (uj, v) = dj for j,k = 1,... ,n, where §;; stands for the Kronecker sign. It
is easily seen that £o(Z*) is the direct sum of V and the linear span of vy,...,v,.
Indeed, for any v in V N span{vy,---,v,}, we have (u;,v) =0, fori = 1,--- ,n,
since v € V. On the other hand, there exist {¢; }2, such that v = 0, qu;
since v € span{v,---,v,}. Then (uj,v) = ¢j, for j =1,--- ,n. Hence all ¢; =0,
j =1,---,n, which implies that v =, i.e., V N span{vy,--- ,v,} = {0}. Next, for
a given v € £(Z°), let ¢ == (u;,v),i=1,2,--- ,n. Then v — 3% | c;v; € V. Hence
&(Z*) C V + span{vy,--- ,vn}. Obviously, V + span{vy,--- ,u,} C £(Z*). We
prove that £o(Z*) = V + span{vy,--- ,v.}.

Suppose V is invariant under T,. We wish to show that U is invariant under S,.

Let u € U and w = S,u. Then
(w, v) = (Sau, v) = (u, Tov) =0 VveV.
Moreover, with ¢; := (w, v;), j =1,... ,n, we have
(w—(au1+...+cu,),v;) =0 Vi=1,...,n.
For any v € V, we have

(w—(crur + ...+ crtn),v) = (w,v) — Zq(u;, v) =0.

=1

Since £o(Z*) = V+span{vy, - -+ ,va}, it follows that {w — (cruy + ... + cun),y) =0
for all y € & (Z*), i.e., w—(ciuy + --- + catts) = 0. This shows that

w =t +...+ cruy, € U. In other words, U is invariant under S,. This proves
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the first statement of the theorem.

Now suppose U is invariant under S;. Choose a basis {u;,... ,u.} for U. Since
Qlv is one-to-one, {Quy,...,Qu.} is a basis for Q(U). We supplement elements
Urqly..r yUn 0 €(—Q) such that {Quy,...,Qur,tr41,... ,us} forms a basis for

{(—Q). Clearly, Qu; = u; for j =r +1,...,n. Suppose

QSa(Quj) =) bia(Qui), forj=1,...,n. (4.3.6)
k=1

Let B := (bji)icjken- Then BT, the transpose of B, is the matrix of the linear
mapping (QSa)l¢-a) With respect to the basis {Quy,...,Qun}. Since U is invariant
under S,, Q(U) is invariant under @S, in light of (4.2.4). Therefore, b;z = 0 for

Jj=1,...,rand k=r+1,...,n. In other words, B is a block triangular matrix:

where E = (bjt)icjik<r and F = (bjk)r41<5k<n- Since () is invariant under T, by

(4.2.4) we have QS,Q = @S.. Thus, it follows from (4.3.6) that

Q(Sau;) = QSa(Quj) = ) bin(Que) = QD bjswe), j=1,---,r.
k=1

k=1

By our assumption that Q|u is one-to-one, we obtain

Sauj = Ebﬂ‘uk’ ji=1,...,r

=1

Therefore, ET is the matrix of S,|u with respect to the basis {u;,... ,u,}.
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Note that £(—) is the dual space of £(f2) with respect to the bilinear form
(u, v)q defined by (4.2.2). Let {v1,... ,v,} be the basis of £(2) dual to {Quy, ... ,Qu.},
that is,

(Quj, ve) =5 for jk=1,...,n.

Cleatly, {vr41,-.. ,vn} is a basis for £(Q2) N V. It was proved in Section 2 that
(QS.)le¢-ny) is the adjoint of Ti|gq) with respect to the bilinear form (u, v)q. Con-
sequently, by (4.3.6) we have

(Quj, Tavi)a = (@S.Quj, vi)a
= (Z b;e(Que), vk)a =bjk, JHk=1,...,n.

=1

This shows that B = (bjx)i1<jk<n is the matrix of T;|,q) with respect to the basis
{v1,...,vn}. But {v,41,... ,v,} is a basis for £(Q) N V. Hence F = (bjx)r41<jk<n IS

the matrix of Tq|(q)nv With respect to this basis. To summarize, we obtain

spec(T|qq)) = spec(B) = spec(E) U spec(F) = spec(Sa|v) U spec(Teyn)nv)-

This verifies (4.3.5).

Finally, suppose U = P|z. for some shift-invariant subspace P of Il and U is
invariant under S,. Theorem 4.4 tells us that P C S(¢), where ¢ is the normalized
solution of the refinement equation (4.1.1) with mask a and dilation matrix M. Sup-
pose that Q =Z°N Y>> ML for some compact set L D suppa. Let v € U and
p:=¢+ u. If u#0, then p # 0; hence Qu 7# 0 by Lemnma 4.1. This shows that Q|
is one-to-one. Therefore, (4.3.5) is valid for this case. .
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4.4 The Transition Operator Associated with a

Box Spline

Box splines are refinable functions with respect to the dilation matrix M = 2I,,
where I, denotes the s x s identity matrix. The reader is referred to the mono-
graph [16] by de Boor, Héllig, and Riemenschneider for a comprehensive study of
box splines. In this section we shall find explicitly the spectrum of the transition
operator associated to a box splines on the three-direction mesh. The result is then
applied to interpolatory subdivision schemes induced by box splines. Finally, we
provide a method to simplify the computation of the smoothness order of refinable

functions which are convolutions of box splines with refinable distributions.
For an element a € £o(Z*) we use d(z) to denote its symbol:
i2)= 3 a(a)s®, ze@\{0}).
a€Z*
The convolution of two sequences a and b in £y(Z*) is defined by
a*b(a) := Z a(la—p)b(B), ae Z®’.
Bez*

If c=a=*b, then

&(z) =a(2)b(z), ze @\{0})".



4.4 The Transition Operator Associated with a Box Spline 80

For r =1,2,..., let a, be the element in {;(Z) defined by its symbol:
i (z)=(1+2)7 /2L

The B-spline B, of order r can be viewed as the normalized solution of the refine-
ment equation ¢ = . a-(x)$(2 - — a). We have suppB, = [0, r]. Let us find the
spectrum of the transition operator T, restricted to Z N [0,r]. We observe that
the linear space ¢(Z N [0,r]) is invariant under T.,. Moreover, II._;|znfp,—1] has

dimension r, the same as dim(II,_;). Hence, by Theorems 4.2 and 4.5, we have

1 1
spec(Ta, | znfo,r—1)) = {1, 30 F} .

Furthermore, T, 8, = 21776, + w for some w € £(Z N [0,r — 1]). Therefore, we

conclude that

1 1 1
spec(a,(2a — ﬂ))oga.ﬁgr = {1, 5+ 5o F} .

Evidently, the spectrum of the transition operator associated to the tensor product

of two B-splines can be easily found.

Now let us consider box splines on the three-direction mesh in IR?. For r,s,t > 1,

let a,,+ be the element in ¢y(Z?) defined by its symbol:

&,-','-g(zl, 2'2) = (1 + Zl)r(]. + Zz):(l + 2122)t/2r+‘+t-2, (2'1, 22) € Gz.
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The box spline B, is defined as the normalized solution of the refinement equation
¢ = E ar.a.t(a)¢(2 T a)‘
a€EZ3

The three families of mesh lines are Ly := {(k, z2) : z2 € R}, Lar := {(z1,k) : z1 € R},
and Lai := {(z1,21 + k) : z1 € R}, where k£ € Z. On each connected component

of IR?\ Urez (L1x U Lok U Lai), Br.: agrees with a polynomial of degree at most

r + s +t — 2. The support of B,,; is the hexagon

Krpt:={ner+ €2 +yse3: 01 <0<y <5,0<ys < B}
(4.4.1)

where e; = (1,0),ez = (0,1), and e3 = (1,1). Let O, := Z? N K, 4. Our goal is

to find the spectrum of the transition operator associated to the mask a,, :

Tragv(@) = Y arae(2a—B)(B), v€l(Z?).

Bez?

Also, we use Sy, to denote the corresponding subdivision operator. Let
Tree =220 ((1/2,1/4) + K at)-

We claim that £(T,,,) is invariant under the transition operator 7. Let v € £(Trst).
We observe that T, ,v(a) # 0 implies 2a — 8 € K, for some 8 € I',. It follows
that

1 1
aec ‘é’(rr,s.t + Kr,a,t) g 5((1/2) 1/4) + Kr,:.t + Kr,:,t) = (1/41 1/8) + Kr,n,t-
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It easily seen that
Z°n ((1/4,1/8) + K,.x) = 20 ((1/2,1/4) + K+ uz) = Tr oz

This shows T;,.v € {(T,,;), thereby verifying our claim.

Let IP,,; :=IINS(B,,t). It was proved in [15] that
PP, .:={p€Il: DiD3p =0, D](D1 + D;)'p = 0, D3(D, + D2)’p = 0}.
In particular, PP, st C II;4,4¢-2. The dimension of PP.,; was found in [8]:

dim( /P, ;) = rs + st + tr.

The shifts of the box spline B, , . are locally linearly independent (see [8] and
[32]). On the basis of this fact, Dahmen and Micchelli [8] established the following
interesting result: Given any data {f, : « € I'}, there exists a unique polynomial
p in [P,z such that p(a) = f, for all a € T, ,; since the dimension of IP,,; is the

same as the dimension of T, .

The following theorem provides complete information about the spectrum of

the matrix (a,,.:(2a — 8))a,seq....-

Theorem 4.6 Letr,s,t be positive integers such thatr < s < t. The spectrum of the
matriz (ar,s :(2¢—f))a ger,., . consists of eigenvalues 1/29,5 =0,1,... ,r+s+t—2.

The multiplicity p; of each eigenvalue 1/27 is given by pu; =3 + 1 for
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ji=0,1,...,r+s—1 and
pi =min{r,r+s+t—j—1}+min{s,r+s+t—j5—1}, j=r+s,... ,r+s+t—2.

Moreover, the spectrum of the matriz (a,,:(2a — B))a.peq,.. is the union of the

spectrum of (ar,s(2a — B))a,ger,,.. with the multiset

1 ) ) . 1
{W=J=1,---,r,1=1,--- 153 =1,... ’t}u{§?+.—+e-‘z‘}°

Proof: Let U := I, ,:|z2, where IP,,; := II N S(B,,;), and let

V= {v € 6(Z?) : E u(—a)v(a) =0 Vu € U} .

a€Z?

For each v € I'y,;¢, by Theorem 4 in [8], we can find a unique ¢, € IP,,; such that
(7) =1 and g,(a) = 0 for all @ € T, :\{7}- Set p,(z) := ¢,(—z) for z € R2.
Then p, € PP, ,;:. Suppose v € {(I',,;:) N V. Then

o) = Y alap(@= > p(—aju(a)=0 Vyel,,,.

Qerr.a,t aerr.a.t

Hence v = 0. In other words, {(T,,.) NV = {0}. Therefore, by Theorem 4.5 we

obtain

spec(T,.,,,g Il(l‘r,..:)) = SPeC(Sm.t!U)-

For j =0,1,..., by H; we denote the linear space of homogeneous polynomials
of degree j. Let
Uji={u€U: B, ¥ ue H}.
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Then U is the direct sum of U;, 7 = 0,1,...,r+ s+t —2. Let u € U; and

p = B:,: ¥ u € HH;. By (4.2.5) we obtain

k)

o(z) = Z u(a)Br sz — @) = Z Srsu(a)B,,:(2z — @), € R
a€Z? a€Z?

On the other hand, since p is a homogeneous polynomial of degree j, we have

p(z) =277p(2z) = E 279u(a)B, ,+(2z — @), z € IR
aEZ?

But the shifts of B, ,, are linearly independent. Thus, the above two equations yield
St = 277u for all u € Uj. In particular, U; is invariant under S, ;. Therefore
spec(Sr,slu) consists of eigenvalues 277,j = 0,1,...,r + s +t — 2. Let p; denote
the multiplicity of the eigenvalue 277, The preceding discussion tells us

Hi = djm(Uj) = dim(Prr’it n Hj)'

In order to find dim(/P, ;N H;) we employ the polynomial space F.,; intro-
duced in [33]. For a triple v = (1,1,14) of nonnegative integers, let p, be the

polynomial given by
(21, 22) 1= 2P 2P (71 + 22), (z1,22) € R

The space F,; is defined to be the linear span of all polynomials p, for which
1 <1, 12 < s, v3 <t and at most one equality holds. For two polynomials p and
q, let

(p, 9) == p(D)q(0).
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It was proved in ([33], Theorem 4.1) and in ([34], Theorem 4.1) that JF,, is the dual
space of [P, with respect to this bilinear form. We observe that (p, ¢} = 0 provided
p € Hj,q € Hy, and j # k. Hence F,,; N H; is the dual space of [P, ,; N H;. This
shows that

dim(P,,. N H;) = dim(F,,. N H;).

Note that r < s <¢. When j =0,1,...,r+s—1, we have F,,.N H; = HHj; hence

pj=dim(H;)=7+1. Whenj=r+s,... ,r +s+1¢ —2, the union of
{zizk(z1+ 22y " F imax{0,j —r—t+1} <k <s—1}

and

{ztz5(z1 + 22 "% i max{0,j —s~t+1} <k <r—1}

forms a basis for F, N H;. Therefore, for j =r+s,...,r + s+t — 2 we have

p; = dim(F.,: N H;) = min{r,r +s+t—j—1} + min{s,r + s+t —j —1}.

This proves the first statement of the theorem.

In order to find the spectrum of (a,s,:(2a — 8))a,sen...., We observe that

Qr,a,t\rr,s,t = {(0, 0)} U E1 U Ez U E3,

where By = {(5,0) : j = 1,...,r}, B2 = {(0,7) : j = 1,...,s}, and Ej is the set
{(,s+s):j=1,...,t}. In what follows we omit the subscripts r, s,t. Then for
v € £(E,) we have

Tv=Tv+w
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where w € ¢(T') and Tyv € {(E,) is given by
Ti(5,0) =) a(2j —k,0v(k,0), j=1,...,r

k=1

But

> a(k,0)2F = (1 + z,)7 /242, 2 eC.
keZ

Thus, from the analysis for the transition operator associated to a B-spline, we

obtain

spec((a(2 — k&, 0)hgjaer) = {1/27H " Tin=1,...,r}.

This shows that
spec(T|¢ruE,)) = spec(T|yry) U {1/27 1 :n=1,...,r}.
Similarly, we have
spec(T |erurur,)) = spec(Tlyrue,)) U {1/27 "1 :n=1,...,s}.

spec(T|qrue,ur,uEs)) = spec(Tlyrupur,)) U {1/27F "1 in=1,...,¢}.

and

SPCC(TII(Q)) = spec(TIl(FU31UEQUE3)) u {1/2r+3+t_2}.

The proof of the theorem is complete. .

We used MAPLE to compute the eigenvalues of the matrices (g, «(2a—0 ))aBeRn e
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for 2 < r,s,t < 4. The computation confirmed the assertion made in Theorem 4.6.

Theorem 4.6 has an interesting application to interpolatory subdivision schemes.
For simplicity, we assume that the dilation matrix M is 2 times the identity matrix.
An element a € £,(Z*) is called an interpolatory mask if it satisfies (4.1.2) and
a(2a) = é(a) for all a € Z*. Let ¢ be the normalized solution of the refinement
equation with an interpolatory mask a. If the subdivision scheme associated with the
mask a converges uniformly (see [27]), then ¢ is fundamental, i.e., ¢ is continuous
and ¢(a) = §(a) for all @ € Z*. In [18] Deslauriers and Dubuc introduced a general
method to construct symmetric interpolatory subdivision schemes on R. In [21],
Dyn, Levin, and Micchelli analyzed convergence of the so-called butterfly scheme
which is induced by the box spline B;;;. More generally, using convolutions of
box splines with distributions, Riemenschneider and Shen {46] constructed a family
of bivariate interpolatory subdivision schemes with symmetry. Recently, Han and
Jia [26] provided a general way for construction of bivariate interpolatory refinement
masks such that the corresponding fundamental and refinable functions attain the

optimal approximation order and smoothness order.

Let r, s, t be positive integers. We assume that both r 4+ ¢ and s + ¢ are even
integers. Thus, the box spline B, ,; is symmetricabout the point ((r+t)/2, (s+t)/2).
Its shift By, ¢(z1 — (r + t)/2,z2 — (s +t)/2) ((z1,z2) € IR?) is refinable with the
mask k given by its symbol

h(z1,2) = z;(r-l-t)/z z;(l+t)/2(1 +2)" (1 + 22)°(1 + z125)t /2 Fo4E2,

Clearly, h is supported on (—(r+t)/2, —(s+t)/2) + K, where K, ,+ is the hexagon



4.4 The Transition Operator Associated with a Box Spline 88
given in (4.4.1). Let

r+t—-2 _s+t—

2
r = Zz n [( 9 ’ 9 ) + Kr—l,:—l.t-1]~

The following result was established by Riemenschneider and Shen [46] for the case
r=s =1 < 8. We extend their result to the general case.

Theorem 4.7 There ezists a unique sequence c supported on ' such that the mask

a given by a = h * ¢ is interpolatory.

Proof: We have
a(2a) = > h(2a - B)(B), a€ Z>.

Bez?
The mask a is supported on (—r —t+1, —s —t+1) + Kar_ 2,-1,2t-1. It can be easily
verified that a € I if and only if

2ae Z*N[(~r—t+1,—-s—t+1)+ Kar—1,25-1,2¢-1].

It follows that a(2a) = 0 for @ € Z2\I'. Hence, a is interpolatory if and only if

> h(2a—B)e(B) =§(c) Vael.

Ber
Thus, it suffices to show that the matrix (h(2c — 8))ager is invertible.

Let T} be the transition operator associated to h. Then ¢(T) is invariant under

Th. Let
r+t s+t

2 2

Q:=2Zn[(- ) + Kene]-
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By Theorem 4.6, all the eigenvalues of T;|yq) are powers of 1/2. But I’ C , so that
the spectrum of Ti|(r) is contained in spec(Thly(q))- Hence all eigenvalues of (Th|yr))
are nonzero. This shows that the matrix (A(2a — 8))a,ger is invertible. The proof

of the theorem is complete. .

The following theorem provides a method to simplify the computation of the
smoothness order of refinable functions which are convolutions of box splines B,

with refinable distributions. In what follows we use T to denote the torus
{(z1,22) €C?: |7y| = 1, 2| = 1}.

Theorem 4.8 Let ¢ be an element in £o(Z?) such that Y .52 c(a) =4, and let a

be given by its symbol

i(z) = (1 ;zl)r (1 ;’2)' (U%)ra(z), 2= (z,2) € T,

where v is a positive integer. Let ¢ be the normalized solution of the refinement

equation ¢ = Y a(a)$(2 - —a). Write z3 for z12z;. Let aj (5 = 1,2,3) be given

by

a;(z) = (1 ‘;z") iz), zeT?

and let b; (7 =1,2,3) be given by

bi(2) = la;(2)|*/4, =ze€T>
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Let p := maxi<j<3s{p(T};)}- If p > 1 and if the shifts of ¢ are stable, then

V() = 2r —log, p. (4.4.2)

Proof: Let b € £5(Z?) be given by

b(z) = la(=)I*/4, zeT™

By (4.1.8) we have v(¢) > —log, p2r, where psr := p(Tilv,,_,). Moreover, if

2r > —log, par, and if the shifts of ¢ are stable, then v(¢) = —log, psr. For

J=1,2,3, we use A; to denote the difference operator on £y(Z?) given by

Ajv:=—v(- —e;) +2v—v(-+¢;), vE€L(Z?),

where e; = (1,0),e; = (0,1), and e3 = (1,1). Let V be the linear span of AJA}dg,

ASA%dg, and ATALg, B € Z2?, and let

U:={u€lZ?®:(uv)=0 YveV}

where (u, v) is the bilinear form given in (4.1.5). Then u belongs to U if and only

if u satisfies the following system of partial difference equations:

ATALu =0, AJASu =0, AALu = 0.
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By [9] Proposition 2.1 we have

U= Pzr,zr.zrlm .

Note that £(Z?) is the dual space of £o(Z?) with respect to the bilinear form (u, v).
Suppose w € £o(Z?)\V. Then there exists an element u € £(Z?) such that (u,v) =1
and (u,v) = 0 for all v € V. This shows

V={vet(Z?:(uv)=0 YueU}.

Since U is invariant under tne subdivision operator S;, V is invariant under tae
transition operator T, by Theorem 4.5. Let Uy := II|z2. Then we have Uy,_; C U
a'nd V g mr—l-

We observe that ) > 27"supp b is contained in the convex hull of supp b. Let

Q be the intersection of Z? with the convex hull of supp b. By Theorem 4.5 we have

spec(Tilqq)) = spec(Tslga)nv) U spec(Silv)

and

spec(Thlen)) = spec(Thlya)nvi,-.) U spec(Silu,,_, )-

From the proof of Theorem 4.6 we see that the difference of spec(S|v) and spec(Sh|v,,_,)

consists of eigenvalues 277 (j =4r,... ,6r — 2) with certain multiplicities. Hence

p2r = p(Ti|ya)nvs,.,) = max{py,27},
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where pv := p(T4|¢)nv)- For convenience, we set Aji3 := A;, 7 = 1,2,3. In order to
find pv, let W; be the minimal invariant subspace of T} generated by the sequences
A% A0, BE Z?. Then V =W, + W, + W3, so

pv = maxig;cs{p(Tilw;)}-

Let S, denote the subdivision operator associated to a as defined in (4.1.4). It
follows from Theorem 4.1 in [27] and Theorem 3.3 in [30] that

lim [ViV3S2813™ = 2v/p(Tilwy)-

Since d(z) = 272"(1 + 21)"(1 + 22)"@3(z), by [35] Theorem 3.3 and [26] Theorem 3.1
we have

. roroncyl/n _ 9-2r 1: 1/n
lim [[V;V3S230" = 2% lim [152,51".

But bs(z) = las(2)[/4, z € T?. Hence

Jim 152,81 = 2v/p(Ter)-
The preceding discussion tells us that
p(Tilw;) = 2" (Ts;)
is true for j = 3. Clearly, this relation is also valid for § =1 or j = 2. It follows that

pv = maxicics{p(Tilw;)} = 2™ maxi¢jca{p(T3;)} = 27*p.
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By our assumption, p > 1. Hence g3, = max{pv, 274} = py > 27", It follows that

2r > —log, pa.. If, in addition, the shifts of ¢ are stable, then

U(¢) = —log, p2r = —log, pv = 2r — log, p.
This verifies (4.4.2). .
The following example demonstrates the power of Theorem 4.8 in the compu-

tation of the smoothness order of refinable functions which are convolution of box

splines with refinable distributions.
Example 4.9 Forr =1,2,..., let h, be the mask on Z* given by its symbol
he(21,22) = 27727 (1 + 21) (1 + 22)"(1 + z122)"/2%72.
By Theorem 4.7, there ezists a unique sequence c, supported in
Ql—-rl=r)+K 1,11

such that a, := h, * ¢, is an interpolatory mask. Let ¢, be the normalized solution

of the refinement equation
¢ = Z ar(a)¢e(2- —a).
a€Z?

The smoothness order v(¢,) was computed in [{6] forr = 2,3,...,8. Theorem 4.8

enables us to simplify the computation significantly so that we obtain v(¢,) for
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v(4)

v(fr)

5.89529419

6.33524331

10

6.42640635

6.81143594

11

6.17848062

7.28259907

12

6.68092993

7.74953085

13

6.41506309

8.21284369

14

6.89718935

8.67302201

15

6.61823707

9.13045707

16

7.08520104

9.58546997

94

r=29,...,16 in the above table.

The interpolatory mask a, is obtained by solving the system of linear equations

3" he(2a - B)e(B) = 6(a) VYaeT,, (443)

Berr

where I, := Z?* N ((1 ~r,1 = r) + K,_1,-1,-1). For large r, the coefficient matrix
(hr(2c — B))aper, is ill-conditioned. To overcome this difficulty, we use MAPLE
to find the exact solution of (4.4.3) for r = 9,...,16. By Theorem 4.7 for each
B € T'r, c(B) is 2 quotient of one integer divided by a power of 2. The computation
confirms our assertion.

In (18], Deslauriers and Dubuc showed that, for each r = 1,2... , there exists a
unique interpolatory mask B, supported on [1—2r,2r —1] such that B, is symmetric
about the origin and its symbol ,(z) is divisible by (1+z)%. Let £, be the normalized
solution of the refinement equation ¢ = 3°_ > b.(a)$(2-— ). The smoothness order
v(f;) was computed in [22] for r = 1,2,...,20. For the purpose of comparison, we

have listed the values of v(f.) (r =9,...,16) in the above table.
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Suppose a is an interpolatory mask supported on the square (1—2r,2r —1]? and
¢ is the corresponding refinable function. It was proved in [26] that v(d) < v(fr),
provided ¢ has accuracy 2r. Thus, we say that a is optimal if ¢ has accuracy 2r and
v(4) = v(fr). It was shown in [46] that a, is optimal for r = 2, ... ,8. However, the
above table demonstrates that a, is not optimal forr =9, ... , 16. Moreover, v(¢,)
is not an increasing fun.ction of r. In particular, ¥(¢13) < v($10) and v(d1s) < v(dy2).

It seems that v(¢s-) and v(¢zr-1) are increasing functions of r, respectively. n



CHAPTER 5

Computation of the Smoothness

Order of Refinable Functions

5.1 Introduction

In this chapter, we are concerned with functional equations of the form

$= ) aa)$(M - -a) (5.1.1)

a€Z*

where ¢ is the unknown function defined on the s-dimensional Euclidean space R* ,
and q is a finitely supported sequence on Z*. Wavelets are generated from refinable
functions. The approximation and smoothness properties of wavelets are determined
by the corresponding refinable functions. It is important to know the smoothness

order of refinable functions.

If the refinement mask is given, methods of calculating the smoothness order of

96
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the corresponding refinable function is an important topic in the study of wavelets.
See Eirola [22], Villemoes [48], R. Q. Jia [35, 30], Cohen and Daubechies [4].

For v > 0, we denote by Wy (IR*) the Sobolev space of all functions f € L.(IR*)
for which [, | f(€)I*(1 + [€]*)%d¢ < co. The smoothness order of f is defined by
v(f) :=sup{v : f € W}(IR*)}. In this chapter, we propose two numerical procedures
to calculate the smoothness order of the refinable function if the refinement mask is

given.

In [30], Jia investigated the smoothness properties of multivariate refinable func-
tions in Sobolev spaces. He characterized the optimal smoothness order of a mul-
tivariate refinable function in terms of the spectral radius of the corresponding

transition operator restricted to a suitable finite dimensional invariant subspace.
Before we go to detail, let us introduce some useful notation.

Let M be an s x s matrix with its entries in €. We say that M is isotropic if M is

similar to diagonal matrix diag{c, ... ,0,} with |o1| = ... = |0,|. Let m := | det M]|.

A sequence u on Z* is called a polynomial sequence if there exists a poly-
nomial p such that u{a) = p(a) for all « € Z*. The degree of u is the same as the
cegree of p. For a nonnegative integer k, let IT; pe the linear space of all polynomia’

sequences of degree at most k, and let
Vi := {v € b(2Z*) : Z pla)v(a)=0 Vpe Hk} . (5.1.2)
a€Z*

We observe that V; is shift-invariant, that is, v € Vi implies v(- — @) € V4 for every
a€Z’.
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Now, we are in a position to state the theorem proved in [30], which is the basis

for our numerical procedures.

Theorem 5.1 Let ¢ be the normalized solution of the refinement equation (5.1.1)
with the dilation matriz M and the mask a. Suppose that the dilation matriz M is
isotropic. Let b := a * a*[m, where a* is the sequence given by a*(a) = a(Ta).,
a € Z*. If k is the largest integer such that S(p) contains Ii_;, then Var_, is an
invariant subspace of Ty. Moreover, if the shifts of ¢ are stable, then

v(¢) = (—logn p)s/2, (5.1.3)
where p is the spectral radius of the linear operator Ty|v,, _,-

One might ask how we can select the largest integer k? Well, this k can be de-
termined by checking the order of the so-called sum rules satisfied by the refinement
mask. For an s x s dilation matrix M, let T be a complete set of representatives of
the distinct cosets of Z*/MZ*. Let k be a positive integer, an element a € £5(2Z*)

is said to satisfy the sum rules of order k if for all p € IT;_,

> AMBYp(MB) =3 a(MB+7)p(MB+7) V€T
pez* BeZz: (5.1'4)

The following result proved in [29] gives the relationship between the order of

sum rules and the approximation order provided by a refinable function ¢.

Theorem 5.2 Let ¢ be the normalized solution of the refinement equation (5.1.1)

with the dilation matriz M and mask a. If the refinement mask a satisfies the sum
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rules of order k, then S(¢) contains II;_,. Conversely, if S(¢) contains I;_;, and
if the shifts of ¢ are stable, then a satisfies the sum rules of order k.

From Theorem 5.1, it turns out that the critical exponent of the normalized
solution of (5.1.1) can be computed by finding pk, pr := p(Ti|w;,_,), Where the
spectral radius of T} is restricted to V43 if ¢ satisfies the sum rules of order k.

The next question is: how to calculate p;?

Let us review some facts. Suppose that a is an element of £o(Z*) and M is a

dilation matrix. Let H be a compact set such that H D supp a and

Q:= (ZM‘“H) Nz := {ZM‘“hn : hn € HVn € N p N 2Z".
n=1 n=1
(5.1.5)

Then suppé N Z* C Q and £(f2) is invariant under the transition operator T.
Moreover, for any v € {(Z*), there exists some integer r such that TTv € £(Q),
(see [27]). From this fact, we can draw several useful consequences. If v € £,(Z*)
is an eigenvector of T, corresponding to an eigenvalue o, then o"v = TTv € £(Q) for
sufficiently large r. Hence o # 0 implies v € (), and v ¢ £(S2) implies o = 0. This
shows that T, only has finitely many nonzero eigenvalues. For an invariant subspace

V of T,, we define the spectral radius of Ty |v by

o(Telv) == p(Telya)nv). (5.1.6)

In particular, p(T.) := p(Te|¢q)). Note that the subdivision operator S, and the

transition operator T, have the same nonzero eigenvalues (see [36]).
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From the above discussion, it follows that we can find pi by finding the spec-
tral radius of T|v;,_,ne(a)- Since we know that p(T3) = p(Tileq)), we can represent
Ti|¢(q) in matrix form. By finding the spectrum of the corresponding matrix, we can
determine the spectrum of T}. From the spectrum of T}, we can find the spectral ra-
dius of Ty v, _,ny(n2), by picking out the eigenvalues whose corresponding eigenvectors
are not in V3r-1. In [46], Riemenschneider and Shen proposed a numerical procedure
based on this idea. The first step is to find all eigenvalues and eigenvectors of T} leays
and then throw out those eigenvalues whose corresponding eigenvectors are not in

Var—1 by checking if the corresponding eigenvector v = (vp) satisfies

> 0.

> B

B

maXo<|¢|<2k~1

In this chapter, we will apply the theory of Chapter 4 to the smoothness analysis
of refinable functions in terms of their mask. We will provide a theorem to identify
p(Ts|v;,_,) from the spectrum of Ty|yq). By this technique, we can handle refinement
masks of large size. Then we will consider a refinable function possessing a certain
symmetric property. By taking advantage of the symmetric property, we can find
px by calculating the spectrum of T, restricted to a subspace of WN £(Q) where W
is an invariant subspace of S;. This shrinks the matrix size substantially. Numerical

examples are provided.
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5.2 A Method to Compute the Smoothness Order

of Refinable Functions

As we discussed before, the main problem in the computing smoothness order of an

refinable function is to find the spectral radius of T|v;, _,-

In Chapter 4, Theorem 4.5 tells us the relationship among the spectra of the
transition operator restricted to different invariant subspaces. That is, if U is a

finite dimensional subspace of ¢(Z*), we define

V= {v € b(Z*): Z u(—a)v(a) =0 Vu € U} .

a€Z*

Let Q be a finite subset of Z* such that £(Q) is invariant under T,. Let Q := Qq
be the linear mapping from £(Z*) to £(—Q) as defined in (4.2.3). If U is invariant

under S,, and if Q| is one-to-one, then we have

spec(T.|qa)) = spec(Tulyn)nr) N spec(Sa|u)-

The case U = Ii_;|zs is of particular interest. Suppose a satisfies the sum
rules of order k. Then U is invariant under S;, by Theorem 4.4. By Theorem 4.2

we have spec(S;|v) = {67* : [¢]| < k}. Thus, we have the following theorem.

Theorem 5.3 Let ¢ be the normalized solution of the refinement equation (5.1.1)
with a mask a and an isotropic dilation matriz M. Let b be the sequence given by

b := a *a*/m, where a* = a(—a), a € Z*. Suppose a satisfies the sum rules of
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order k. Then

spec(Tola)) = sped( Tylemyrvas,) U {07 : 1 < |p] < 2k}, (5.2.1)
where Q := Z* N Y ., M~"(supp b).

For the univariate case (s = 1), this formula was established by Deslauriers and

Dubuc in ([18], Theorem 8.2).

We can find pi from spec(Ti|eq)) by using the formula in (5.2.1). Rounding
errors might occur in the computation of the spectrum of Tjlq). But we know
a priori that o™# (|u| < 2k) are eigenvalues of T}|«q). In the list of the computed
eigenvalues of T}¢(q), remove the complex number closest to o~# for each p, || < 2k.
Then pi is the maximum of the absolute value of the remaining eigenvalues. The

following examples illustrate this technique.

Example 5.4 Let M be the matriz

and let a be the mask given in Ezample {.3. Let us determine the smoothness order

of the normalized solution ¢ of the refinement equation with mask a and dilation M.

Let b be the mask computed from a by using b = a *a*/m, where m = | det M.

Then supp b C [—4,4]? and the set Y2, M~"([~4,4]%) is

n=1

{(z1,22) € R? : |21| < 12, |z2]| € 12, |71 — 22| < 16, |21 + 22| < 16}.
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The set Q := Z2N (Y2, M~ ([—4,4]*)) has exactly 481 points. We arrange the
481 eigenvalues of the matrix (b(Ma — ﬂ))a geq 10 the order of descending absolute
values. The following is a list of the first 22 eigenvalues.

1, 0.5+0.5z, 0.5 — 0.5z, 0.5, 0.5¢, —0.5z,

~0.25 + 0.25i, —0.25 — 0.254, 0.25 + 0.25, 0.25 — 0.254,
~0.25, —0.25, 0.25i, 0.25i, 0.25,
0.1832744177, 0.125 + 0.1253, 0.125 — 0.125¢,
—0.125 + 0.125i, —0.125 — 0.125¢, —0.125 + 0.125, —0.125 — 0.125

Note that the matrix M has two eigenvalues oy = 1+t and o, = 1 — 7. In the
above list, 21 eigenvalues are of the form oy *'o;** for double indices (ui,u2) with
p1+p2 < 5. Therefore, ps =~ 0.1832744177. From the results in [27] we know that the
subdivision scheme associated to mask a and dilation matrix M converges uniformly.
Moreover, the mask a is interpolatory (see Section 4.4). Hence the shifts of ¢ are
stable. By (5.1.3) we obtain

v(¢) = —log, 0.1832744178 ~ 2.44792267.

We conclude that v(¢) ~ 2.44792267 u

Let us look at another example given in [46].
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Example 5.5 Forr =1,2,---, let h, be the mask on Z? given by its symbol
he(z1,22) = 27723 (L + 21) (1 + z2) (1 + z125)" /2% 2.
By Theorem 4.8, there ezists a unique sequence ¢, supported in
l-rnl-r)+Kir1,1

such that a, := h, * ¢, is an interpolatory mask. Let ¢, be the normalized solution

of the refinement equation
¢ = Z a,.(a_)¢,.(2 - —a).
a€Z?

Let b, := a, * a7 [4. We compute the smoothness order v($,), r = 2,--- ,8 by using

Theorem 5.8 and Theorem 5.1. We display the result in Table 5.1.
Since the interpolatory mask a, is supported on [1 — 2r,2r — 1]2. Then
suppb, C [2 —4r,4r —2]%, and ) 27"([2 - 4r,4r — 2J*) = [2 — 4r, 4r — 2J7,

n=1

ie., Q:= Z*N[2 — 4r,4 — 2r]®. We can compute all the eigenvalues of the matrix
(Br(2a — B)), geq- Since b, satisfies the sum rules of order 2r, we throw away 21l
for each p, |u| < 2r. Then p, is the maximum of the absolute value of the remaining

eigenvalues. Since a, is interpolatory, the shifts of ¢ are stable. We conclude that

u(¢,.)=—log4p,., r=12,.--.
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Table 5.1: Numerical results

r | Size of a, | Size of b, | size of T, |¢a) | £(Tsle@)nvie-,) v(é,)

2 Tx7 13 x 13 169 x 169 | 0.135697788100 | 2.4407654451
3] 11x11 21 x 21 441 x 441 0.049027566992 | 3.1751315103
4] 15x15 | 29x29 841 x 841 | 0.020814492581 | 3.7931339005
5| 19x19 | 37x37 | 1369 x 1369 | 0.009697524658 | 4.3440838721
6] 23x23 | 45x45 | 2025 x 2025 | 0.004729686883 | 4.8620198038
7] 27x27 | 53 x53 | 2809 x 2809 | 0.002362188508 | 5.3628300925
8] 31 x31 | 61x61 | 3721 x3721 | 0.001197453657 | 5.8529072308

We compute v(g,), r =2,--- ,8 in the above table. .

5.3 Computation of the Smoothness Order of Sym-

metric Refinable Functions

In this section, we will investigate the computation of the smoothness order of a
refinable function by taking advantage of the symmetric properties of the refinable
function. We focus on the bivariate case, the dilation matrix M = 2I where I is 2x2
identity matrix, and m := | det M| = 4. Usually, we hope the function which we are
going to study has some good properties, for example, symmetry, smoothness, etc.
In [46], Riemenschneider and Shen claimed that there is a closed connection between
smoothness and symmetry, that is, with the increased symmetry comes increased
smoothness. Han and Jia [26] provided a general method for the construction of
bivariate interpolatory refinement masks such that the corresponding fundamental

refinable functions attain the optimal approximation order and smoothness order.
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Specifically, these interpolatory refinement masks are minimally supported and enjoy
full symmetry. By Theorem 5.3, we can identify pi from the spectrum of T\ eay-
But if the size of the mask a becomes big, it is difficult to carry out the numerical
procedure to calculate the spectrum of Tilqn). Our goal is to find an invariant
subspace W of S; such that the spectrum of Tileynw will contain an eigenvalue
whose absolute value is the spectral radius of Ti|v;,_,. By considering the matrix
representation of T} on £(2)NW, we can reduce substantially the size of the matrix of
Ti|qa)nw, so that we can carry out the numerical procedure easily. Several examples

are explicitly computed.

Let a € £(Z?) be a refinable mask. Let b = a * a*/m, and

- -]
Q= (Z %suppb) N Z? = supp bn Z>.
n=1

Let T denote the transition operator associated with b. Since £(() is invariant under
Ty (see [27]), we consider the matrix representation of Ti|yq). We use T to denote

the matrix of Tileq). It is easy to see that b is symmetric with respect to the origin,
ie., b(—a) = b(a).

As we mentioned before, we consider the matrix representation T' of T} re-
stricted to £(Q2) N W. Then we find the spectrum of Tilyq)nw by calculating the
eigenvalues of matrix T. We identify the spectral radius of Ti|«q)n;,_, from the
spectrum of Tj|ya)nw. The key is that we have to choose W such that the spectrum
of Tb|¢e)nw contains the eigenvalue such that its absolute value is the spectral radius
of Ts|e@)avs,._, - To do this, we also have to provide criterion to identify the spectral

radius of Ty|¢q)nv;,_, from the spectrum of Ti|yaynw-
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The following theorem clarifies the relationship among the spectra of the tran-
sition operator restricted to different invariant subspace. It can be derived from

Theorem 4.5 in Chapter 4.

Theorem 5.6 Let U be a finite dimensional subspace of £(Z?) and suppose U is

tnvariant under S,. Define

Vi={v€l(Z?): (u,v)=0, YuecU} (5.3.1)

Let W be a subspace of £(Z?) such that W N U is an invariant subspace of S, and
W N Q) is an invariant subspace of T,, and let Q := Qgq be the linear mapping
from ¢(Z?) to £(—Q). If Qlu is one to one, then

spec (Talqa)nw) = spec(Tul|yqa)nvaw) U spec (S.luaw)- (5.3.2)

Next, we will use the above formula to calculate the smoothness order of a
refinable function if the associated mask a has certain symmetric properties. Before
proceeding further, we investigate properties which are related to the symmetric

properties of refinement masks.

In the following, we assume that the mask a satisfies the sum rules of order k.
It follows that b = a * a®/m satisfies the sum rules of order 2k. Let Uy := II;|z2.
From ([35], we know that Uiy is invariant under S; and Ve is invariant under

T;. From (5.3.2), we will have
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spec (Tilqaynw) = spec(Tilyaynvas_,aw) U spec (Sslva,_aw)-

(5.3.3)
We define
W = {w € £Z?) : w(a) = w(—a),Va & Z%). (5.3.4)
Since b(a) = Tpeze a(a + A)a(B)/m, then
b-a)= 3 a(—a+Ba@)m= Y ala—Ba(BV/m = ).
peze pez? (5.3.5)

Thus, we have the following result.

Lemma 5.7 If b satisfies b(a) = b(—a) for all a € Z? and satisfies the sum rules
of order 2k, then Wy Usk—, is invariant under Sy. Moreover, W N£() is invariant

under T}.

Proof: For w € W, and a € Z?2,

Sro(—a) = 3 b — 28)(8)
B
=D _b(—(er+26))w(B) =) ba + 28)w(6)
B B
= Z b(a — 28)w(—pB) = Sw(a).
8

This means that W; is invariant under S;. Since Uzx—; is invariant under S;, so is
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Uzk-1 N W,

For any w € W2 N £(Q), Thw € £(R) since £(R) is invariant under T;. For each

a € , we have

Tyw(—a) =) b(—2a—Bw(B) = Y _ b(2a + B)w(B)
B . B
=Y b(2a — B)w(—P) = Trw(a).
B

Hence W, N £(R) is an invariant subspace of Tj. .

Consider the case where the mask b has the following symmetric properties:

b1, a2) = b(—an, az2) = b(—ay, —e;) = b(ey, ~az) Ve € suppb.
(5.3.6)
Let W; be the subspace of £(Z?) given by
Wi = {w € fZ?): w(e,a) =w(—a1,az)
= w(—ay, —ar) = w(ay, —az) Y(a, ;) € Z?}.

Then, we have the following lemma:

Lemma 5.8 If b satisfies (5.9.6) and the sum rules of order 2k,, then Wy N Uap—s

is invariant under Sy. Moreover, Wy N £(2) is invariant under T;.
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Proof: For w € W, and o € Z?,

Spw(~an, a2) = ) b(—a1 — 281, @z — 2B2)w(By, Bz)
= blar+ 2[31,; — 2B2)w(B1, B2)

= zﬁ‘,b(al —2B1, a3 — 2Bs)w(—P, Bz)

= éjb(al ~ 21,02 — 282)w(By, Ba) = Syw(an, ).

In the same way we can prove that

Syw(—ay, —a2) = Syw(ay, —az) = Syw(ay, az).

Since b satisfies the sum rules of order 2k, it implies that Us_; is invariant

under S;. We have proved W is invariant under S;. So is Uai—; N W
For any w € Wy N £(2), Tyw € £(N) since £(N) is invariant under Tj.

For each a € (1, we have
Tyw(—, ) = Eb(—%u - 1,20z — B2)w(B1, Bz)
8
= Z b(2ay + 1, 2a; — Ba2)w(By, B2)
B

= W20 ~ f1, 20z — B)u(~fr, Bo)
B

= Z b(2al - .Bls 2a — ﬂz)w(ﬂl, ﬂg) = wa(al, 02).
8

Similarly, we can prove that
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Tsw(—ay, —az) = Thiw(ay, —ap) = Tyw(ay, az).

Hence Wy N {(R) is an invariant subspace of T;. .

Suppose that b satisfies the following symmetric properties: V (a1, a;) € 22

b(al, az) = b(dz, 01) = b(—al, —ag) = b(—az, —ag)

= b(~az, 1) = b(—a1, @2) = b(az, —ay) = b(ay, —az). (5.3.7)
Let W3 be the subspace of ¢(Z?) given by

Ws :={w € {Z?) : w(ay,a) =w(az, 1) = w(—az, 1) = w(—ay, a3)

= w(~ay, —a3) = w(—az, —) = w(az, —a;) = w(a;, —az)}. (5.3.8)
Then, we have the following result:

Lemma 5.9 If b satisfies (5.8.7) and sum rules of order 2k, then Wy N Usyt—,y is

invariant under Sy. Moreover, Wi N () is invariant under T}.

The proof of this lemma is similar to Lemma 5.7 and Lemma 5.8. So we will

not give the details.

Before we proceed further, let us demonstrate the advantage of using £(Q) N W,
£Q)NWy, and £(Q)NWs. Suppose supp a = [—L, L}2. Then supp b = [-2L, 2L)? and
= supp bN Z?2. Then the matrix size of Ti|ea)nws, is only about 1/2 of the size of

Ti|¢(a); the matrix size of Til¢a)nw, is about 1/4 of the size of Tsle(n); and the matrix
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size of Ty|¢(a)nw, is only about 1/8 of the size of T}|(q). From the above analysis, we
see the substantial reduction of the size of the matrix by restricting T} to a smaller
invariant subspace. In order to exploit this idea in calculating the smoothness
order of refinable functions, we have to ensure that the spec(T; leq@)nw) contains the

eigenvalue such that its absolute value is the spectral radius of Ts|v;,_,n(q)-

Let us review some known results. For j =1,... s, let A; denote the difference

operator on {3(Z*) given by
Aju:=2u —u(-—e;) —u(-+e;), ue€ly(Z*).

We use § to denote the sequence on Z? given by §(0) = 1 and é(8) = 0 for all
B € Z*\{0}. Jia [30] proved the following theorem:

Theorem 5.10 Suppose that the normalized solution ¢ of the refinable equation lies

in Ly(IR?). Let b:= a * a*/m and, for a positive integer k, let
p = maz{p(Tily;) : j =1,2},
where Y; is the minimal Ty-invariant subspace generated by Af& Then
v(¢) 2 v :=—log, p.
Moreover, if k > v, and if the shifts of ¢ are stable, then v($) = v.

We will choose Q2 in such a way that A%d € £(Q), j = 1,2. Since A%§+ A% € W;
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and Wg C W, C W,, then
AR+ Ak e Q) W, £=2,4,8. (5.3.9)

Let W(A%S + A%S) to denote the minimal invariant subspace of T} generated by
Ak + A%S. Hence

W(AS + A5 C Q) NWN Vary, £=2,4,8. (5.3.10)

The shift operator 7° on £(Z?) is defined by
Pu=u(--p), uvelZ?.

An element v € £,(Z?) induces the Laurent polynomial #(z) = 3, cz v(a)z?,

which in turn induces the difference operator

(1) = Z v(a)re.

a€Z?

The following theorem clarifies the relationship between p(Tj|w) and p(Tily;),
j=12

Theorem 5.11 Let W = W(A%§ + A%S) denote the minimum invariant subspace
of Ty generated by AX§ + A%6,, and Y; and Y; the minimum invariant subspaces of

T; generated by A%S and ALS respectively. If a has the following properties:
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a(ay, az) = a(—ay, az) = a(—ay, —az) = a(ay, —ar)

= a(az, @) = a(—az, 1) = a(—az, ~u) = a2, —a1) (5.3.11)

then

p(Tilw) = p(Tilv:) = p(Tilys)- (5.3.12)

Proof: Since b = a * a*/m, then b possesses the same symmetry as ¢ does. Let
v; = V5§ and w; = A%, j = 1,2. Then 5;(2z) = (1 — 2;)* and B;(z) = (1 — z;)%,
J =1,2. Let W;(7)b, denote Afby, 1i,(7)b, denote Asb,, while b, = SP4. Let #,(7)an
denote Via,, 72(7)a, denote Via,, while a, = S*4. Note that the symbol of #;(7)a,
is 91(2)@n(2), D2(7)an is 52(2)@x(z). And also, the symbol of @, (7)b, is 5:1(z)ba(z),

Wo(7)by is W2(2)ba(z). Moreover,
B1(2)ba(2) = [51(7)an(z)[* 2 0

@2(2)bn(2) = [B2(T)an(2)]* > 0.
Consider
ﬁf .IEO,21r]3 (’I’l(eie)gn(eie) + ‘7’2(3'.6)511(6{6))‘15
= Gy ‘[Eo,z,r],(lﬁl(eff)&n(e"f) [2 + |52(e%)an(e¥)]?) d
= [|51(7)axll + [|52(7)an]l3-

Since 1, (€%)b, (%) > 0, Wa(e%)b, () > 0, for all £ € R?, it follows that
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(@1(7) + B2(7))5a(0) < [[(@1(7) + B2(7))balco
S (2_:)5’ f[o,g,.»]? (ﬁl(eie) + ﬁz(e‘.{))zﬂ(eis)df
= (B1(r) + B2(7))54(0).

From [30], Lemma 3.2, we have

(@1(7) + B2(7))8a (0) = T (w1 + w2)(0)
S ITP (w1 + w2 lloo < N|(B1(7) + @2(7))bnloo
= (@1(r) + Ba2(7)) b4 (0).

Since W = W(A!é + A%S) is the minimal invariant subspace of T} generated by
A%§ + A%6, we obtain

L
p(Tiw) = lim I3 (A6 + A%6) 1

= lim (@) + B @)
. ~ 2 4 s 2\ &
= lim (I151(r)onll + I5a(r)eal)*. (53.13)
Since a satisfies (5.3.11), then ||[V£a, |2 = || V5a.||2. Hence

1
P(Tolw) = lim (2[[51(r)anll?) ™ = p(Tily,).

This completes the proof of the theorem. n

From Theorem 5.10, we have p(Tb|ya)nv;._,) = max{p(Tily,), p(Tolv2)} -
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From Theorem 5.11 and W C £(Q2) N V2x—1 N W, where £ = 2,4, 8, we obtain

P(Tilea)vany) = p(Tilw) < p(Tilyayvisiowe) < p(Tolm)nvan_, )

for £ = 2,4,8. Hence

p(Tolw) = p(Tilea)yvae_row)s € =2,4,8.

We can calculate the smoothness order of ¢ by considering the spectrum of T} le@)nwrs
£=2,4,8, since the following formula is valid:

spec(Tilqa)nw,) = spec(Tilyaynwenvs,—, ) U spec(Silu,,_,aw,), €=2,4,8.

Let us investigate the spec(S;|v,,_,nw) where W = W;, W,, Ws. Since

Uzk—1 = span{z{*z5* : 0 < py + p2 < 2k — 1},

then

W2 N Usg-1 = span{zy*z5? : 1 + p2 = even, 0 < py + 5 < 2k — 1}

Wi U1 = span{zj'z3® : 3 = even, uz = even,0 < p; + p2 < 2k — 1}
Ws N Uzp—y = span{zi'zy® + z§%z5" : pu; = even, p2 = even, 0 < py + 2 < 2k — 1}

The following lemmas describe the spectra of S, restricted to different invariant

subspaces.
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Theorem 5.12 Let 3 be the normalization solution of the refinement equation with
mask b and dilation matriz 2I. Suppose ¢ has accuracy 2k. If b satisfies (5.8.5),
then

spec(Sslupusnms) = {27 : = (41, 12), |l = even, 0 < [p] < 2k — 1};
(5.3.14)

If b satisfies (5.8.6), then

spec(Shlue_,nw,) = {27 2 4 = (1, p2), 11 = even, pz = even, 0 < |p] < 2 — 1};
(5.3.15)

If b satisfies (5.8.7), then

spec(Seluz_sows) = {27¥ 1 g = (p1, pa), g1 = even, 3 = even, iy < 12,0 < || < 2k —1}.
(5.3.16)

Proof: We shall prove (5.3.14). (5.3.15) and (5.3.16) can be proved by the same
approach.

Since b satisfies (5.3.5), then y(z) = (—=z) for z € IR?. Let p, be a polynomial
given by

pu(z) = z{'z4?, w1 +p2 =evenand 0< |u| <2 —1,z € R

Clearly, p, (x| < 2k, p1 + iz = even) are linearly independent. Since

p“(2:z:) — 2u'1+u:zlluzl;z = 2“‘+”’p,,(z), z€ R2,
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we obtain
pu(z) =2-atelp (22), =z e R (5.3.17)

By the assumption, 1 has accuracy 2k. Thus, for each g with |u| < 2k, |z| = even,
the polynomial p, lies in S(3). Since 15(0) # 0, there exists a unique polynomial
sequence u, € £(Z?) such that p, = Z uy(a)yP(- — a). We claim that u, has the
same symmetry as p, does. Indeed, :?z:e pu(z) = pu(—2z) and ¢¥(z) = ¥(—z), we

have
Pu(=2)= Y wlap(—z—a)= Y wla)p(-(z+a)) = ) w(—a)b(z—a),
x€Z3 a€Z? a€Z?
pu(z) = I/Z(Pu(z) + pu(—z)) =1/2 Z (u,,(a) + “u(—a))¢(z - a).
acZ?
Hence, u,(a) = u,(—a), i.e., v, € Wa N Uze—;. It follows from (5.3.17) that

pu(z) =27¥p,(22) = Y 27Mu,(a)y(2z — o). (5.3.18)
acZ?

On the other hand, we deduce from p, = Z uu(a)P(- — a),
a€Z2

pu(z) = Z uu(a)¥(z —a) = Z uy(a) Z b(B8)¥(2z — 2a - B)

a€Z? aeZ3? Bez?

=Y $(2z—17) D ua)b(y—2a) = > Spuu(v)¥(2z —7).

1€2Z? ecZ? ~EZ2 (5.3.19)
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Let K(¢) := {u € €(Z?) : ¢ ¥ u = 0}. Comparing (5.3.18) and (5.3.19), we

obtain
Syuy =27 My, +w,, w, € K(). (5.3.20)

By Lemma 5.7, we know that W5 N Ujt_; is invariant under S;. This means that
wy, € Wa N Uzg—1. Since wy, is a polynomial sequence, there exists a multi-index v
and a complex number ¢ # 0, where |y| < 2k — 1, such that V7w,(8) = ¢ for all
B € Z*. Because w, € K(v), it implies that

Y wu(a)p(z —a) =0. (5.3.21)
acZ?
It follows from (5.3.21) that

> V'wu(e)p(z —a) =0.

a€Z?

Hence ), cz2 ¥(z — @) = 0 for all z € R?. This contradictions to the assumption
that ¥(0) # 0. Hence w, = 0.

We want to show that polynomial sequences u, (Ju| = even,0 < || < 2k—1) are
linear independent. Considering that ) c,u, = 0, where ¢, is a complex number,

we have
Zcﬂpl-‘ = Ecp Z w(a)p(-—a) = Z P(z — a) Zc“u,,(a) =0.
B 7 a€Z? a€Z? “

It implies that ¢, = 0 since the p, (|| = even,0 < |g| < 2k —1) are linear indepen-

dent. We prove that the polynomial sequences u, (Ju| = even,0 < |u| < 2k —1) are
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the base of W2 N Uyi—1. Hence we obtain (5.3.14). .

Next, we will use the ideas discussed in this section to calculate the smoothness
order of refinable functions possessing symmetric properties. Let us look at a family
of interpolatory refinement masks constructed in [26]. In [26], Han and Jia proposed
a general way for the construction of bivariate interpolatory refinement masks such
that the corresponding fundamental and refinable functions attain the optimal ap-
proximation order and smoothness order. These interpolatcry refinement masks are
minimally supported and enjoy full symmetry. We will use the theory discussed
in the previous section to compute the smoothness order of the refinable functions
corresponding to the given masks in [26]. Since the masks possess symmetric prop-
erties given in (5.3.5), (5.3.6), and (5.3.7), we will compute the spectra of T}|w;ne(q),
Tilwine), and Tilwyngq). By picking out the spectra of Tilwynu,_,, Tolwintaa_ys
and Tilwynu,,_, from the spectra of Tilwynga), Tolwine), and Tilw,nyq), we can de-
termine the spectral radius of Ty|w,nea)nvse_; » Tslwine@)n vi,—y» a0d Tylwyaga)n v, -
The following tables display the computation results. From these tables, we also

can see the corresponding matrix size shrinks dramatically.

NOTE: "X”, in Table 5.2, Table 5.3, Table 5.4, and Table 5.5, means that
MATLAB cannot handle a matrix of that size.
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Table 5.2: Numerical results
Mask of a | Size of a | Size of b | Size of Tylya) | o(Til¢a)nv;,_,) | Smoothness
g2 Tx7 13 x 13 169 x 169 | 0.135697790000 | 2.44076543
g3 11 x11 | 21 x21 441 x 441 0.049027566993 | 3.17513151
g4 15x15 | 29 x29 841 x 841 | 0.020814492583 | 3.79313390
g5 19 x19 | 37 x37 | 1369 x 1369 | 0.009697524682 | 4.34408387
g6 23 x 23 | 45 x45 | 2025 x 2025 | 0.004729686899 | 4.86201980
g7 27 x 27 | 53 x53 | 2809 x 2809 | 0.002362190206 | 5.36282957
g8 31 x31 | 61 x61 | 3721 x 3721 | 0.001197424203 | 5.85292497
g9 35x35 | 69 x69 | 4761 x 4761 X
gl0 39x39 | 7T x77 | 5929 x 5929 X
gll 43 x 43 | 85 x85 | 7225 x 7225 X
gl2 47 x 47 | 93 x93 | 8649 x 8649 X
Table 5.8: Numerical results
Mask of a | Size of Ty|ya)aw, | o(Tslea)nwinvse_,) | Smoothness
g2 85 x 85 0.135697788100 2.44076544
g3 221 x 221 0.049027566993 3.17513151
g4 421 x 421 0.020814492582 3.79313390
g5 685 x 685 0.009697524680 4.34408387
g6 1013 x 1013 0.004729686897 | 4.86201980
g7 1405 x 1405 0.002362190320 5.36282953
g8 1861 x 1861 0.001197423176 5.85292559
g9 2381 x 2381 0.000613569351 6.33524298
gl0 2965 x 2965 0.000317050682 6.81149944
gll 3613 x 3613 0.000165047791 7.28241427
g12 4325 x 4325 X
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Table 5.4: Numerical results

Mask of a | Size of (Tilayaw,) | o(Tsle@)nwiav;,_,) | Smoothness
g2 49 x 49 0.135697790000 2.44076543
g3 121 x 121 0.049027566993 | 3.17513151
g4 225 x 225 0.020814492581 | 3.79313390
g5 361 x 361 0.009697524681 | 4.34408387
g6 529 x 529 0.004729686847 | 4.86201980
g7 729 x 729 0.002361903321 | 5.36291719
g8 961 x 961 0.001197425101 9.85292443
g9 1225 x 1225 0.000613578261 | 6.33523251
gl0 1521 x 1521 0.000317113728 6.81135602
gll 1849 x 1849 0.000164904914 7.28303899
gl2 2209 x 2209 0.000085744994 7.75479401

Table 5.5: Numerical results

Mask of a | Size of (Tilqaynws) | A(Thleq)n wenvie_,) | Smoothness
g2 28 x 28 0.135697788100 2.44076544
g3 66 x 66 0.049027566993 | 3.17513151
g4 120 x 120 0.020814492524 | 3.79313390
g5 190 x 190 0.009697524680 | 4.34408387
g6 276 x 276 0.004729686837 | 4.86201981
g7 378 x 378 0.002362190292 | 5.36282954
g8 496 x 496 0.001197423725 5.85292526
g9 630 x 630 0.000613569509 6.33524279

g10 780 x 780 0.000317095407 | 6.81139769
gll 946 x 946 0.000165017194 | 7.282548012
gl2 1128 x 1128 0.000085914583 | 7.753368720
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