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ABSTRACT 

Travel time is increasing critical in Advanced Traveler Information System (ATIS) 

for traffic management. Several years ago, traditional methods for e.g. travel time 

measurement and average historical methods were often used. However, they are 

expensive and inflexible. Besides, lots of mathematical models have been built to 

tackle this problem. The Static Travel Time Estimation (STTE) method and the 

Dynamic Travel Time Estimation (DTTE) method are two of the major ones. 

When speeds on the route have little variation, they can provide similar results. 

However, when speeds vary a lot, results from the STTE are not as accurate as the 

DTTE. Therefore, to get accurate estimated travel time, the research would be 

focused on the DTTE method. The DTTE method consists of Piece-wise Linear 

Speed-based (PLSB) model and imaged trajectory algorithm. PLSB model 

provides section travel times, and imaged trajectories algorithm help to get route 

travel times. Besides, to evaluate models’ performance, traffic scenarios with and 

without VSL control are applied. Results in the thesis show that the DTTE 

method can stably provide more accurate estimations than the STTE method. 
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CHAPTER 1. INTRODUCTION 

This chapter mainly presents the background of peak hour travel time estimation 

on freeway using loop detector data. Also it indicates research problems, 

motivation, objectives and the thesis structure.  

1.1 Background 

With the development of Advanced Traveler Information System (ATIS), route 

travel time estimation has become increasingly important. As noted in a report 

from the California Department of Transportation," rapid changes in link travel 

time represent perhaps the most robust and deterministic indicator of an incident 

(and) link travel time... is perhaps the most important parameter for ATIS 

functions such as congestion routing"
［1］. This means that evaluating travel time 

estimation method's performance when slow speeds happen can describe methods’ 

accuracy more suitably.  

In ATIS, models usually used in travel time estimation can be divided into three 

types: historical, current and predictive. Prediction models also can be 

distinguished as two kinds according to their analysis principles: statistical models 

and analytical models.
［2］  

Statistical models can be characterized as methods using a time series of historical 

and current traffic variables such as travel times, speeds, and volumes as input. 

Numerous statistical methods have been proposed, such as the ARIMA model, 
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linear model, and neural networks. However, travel time estimation based on 

statistical models would be influenced by traffic behaviors and chaotic elements 

heavily. To avoid random factors, analytical models are proposed. These models 

predict data by using microscopic or macroscopic traffic simulators, such as 

METANET, NETCELL, and MITSIM. They usually require dynamic Origin-

Destination (OD) matrices as input and predicted travel times evolve naturally 

from the simulation results. 

Speed and flow data for research are collected by several loop detectors installed 

along the research segment for 24 hours. To enhance estimation accuracy, the 

segment is divided into several sections with considering loop detectors’ positions. 

Two travel time estimation methods are proposed: the Static Travel Time 

Estimation (STTE) method and the Dynamic Travel Time Estimation (DTTE) 

method
［3］. 

The STTE method supposes that vehicles maintain speeds without any changing 

when crossing a section. Sometimes in the calculation, the speed would be the 

average value of speeds measured from adjacent loop detectors on the same time 

stamp 
［5］. 

The DTTE method assumes that speeds are changed linearly in each section. And 

to track vehicles’ travel time when speeds are changed dynamically, vehicle 

trajectories are imaged to help estimate travel time along a segment
［6］. 
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The thesis will be focused on the method of DTTE, for the reason that in practice, 

speeds are dynamically changing. If they are assumed to be static, the calculation 

error should be increased. To verify this assumption, results from two methods are 

compared. And a field testing from 122 St to 159 St on the Whitemud Drive in 

Edmonton is proposed.  

1.2 Problem statement  

Although plenty of models are used for travel time estimation, including 

regression model, Bayesian model, and historical method and so on, most of them 

are not accurate under special traffic conditions. These definitely will bring errors 

of travel time estimation. Thus, in order to achieve accurate estimation, models 

should be based on real-time data, and its prediction time length should be small.  

1.3 Research motivation 

The testing road is an important urban freeway in Edmonton. In peak hour, 

congestion always happens there. The city of Edmonton once used probe vehicles 

to find real-time travel time. Then it is found that results from probe vehicles can 

be influenced by experimenter easily, and expense is high for long term 

monitoring.   

In August 2015, Variable Speed Limit (VSL) control testing was implemented on 

the research route.  This is a traffic management measure to control driving 

conditions by giving flexible suggestion speeds to drivers. To find whether it 

improved driving environment or not, travel time is a critical indicator.  
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Thus, if travel time estimation models in the thesis is proved to be accurate. It can 

satisfy previous demands and be applied in further research.  

1.4 Research objectives 

The study is focused on proposing a travel time estimation method which can 

accurately estimate travel time for vehicles in a freeway. Specific objectives are 

shown as follows: 

1. Design field experiments which can exactly satisfy research requirements.   

2. Compare results from the STTE and the DTTE methods. 

3. Evaluate the VSL control’s performance by using the DTTE method. 

1.5 Structure of thesis 

The thesis includes 5 chapters: 

Chapter 1 introduces the background of travel time estimation in peak hour; 

describes actual problems and presents research motivation and objectives.  

Chapter 2 is the literature review chapter. This chapter reviews several travel time 

measurement methods, static travel time estimation methods and dynamic travel 

time estimation models, summarizes their weaknesses and compares them with 

estimation model used in the thesis. 

Chapter 3 describes methodology application frameworks including data source, 

framework and models. 
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Chapter 4 discusses differences of two methods, evaluates their accuracy 

compared with reference travel time data and uses the DTTE method to assess the 

VSL control measure’s performance. 

Chapter 5 makes a conclusion and provides suggestions for future work. 
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CHAPTER 2. LITERATURE REVIEW  

This chapter provides a systematic review of travel time estimation methods. 

Techniques and methodologies are conclusively introduced. In addition, their 

difference with models used in the thesis are also summarized. 

2.1 Travel time measurement 

Travel time data can be recorded by various techniques and methods.  Drivers can 

determine the travel time by making use of instance license plate recognition, 

toll- gates, and in-car system
［4］.  Measurements methods can be divided into 

three types: (1) Site-based measurement (2) Vehicle-based measurement (3) 

Sensor-based measurement
［7］. Site-based methods match vehicles license plate 

characters and arrival times at selected routes and fixed points, for example, the 

registration plate matching techniques 
［ 8 ］

 and cellular telephone systems. 

Vehicle -based methods mainly record information of traffic stream 
［ 9 ］

, 

including floating car 
［8］ and probe vehicle methods

［10］. Sensor-based methods 

collect raw data from stationary sensor as loop detectors
［11］ , transponders

［12］ or 

radio beacons ［12］installed on roads. 

2.2 Static travel time methods 

Static travel time methods usually do not have any model assumption. Naive 

methods are applied for their less computational effort and easy implementation 
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［ 14 ］
. According to data types used, they can be classified into two types: 

instantaneous travel time methods and historical average methods. 

2.2.1 Instantaneous travel time methods 

The basic assumption is that the prevailing traffic conditions (speeds, densities, 

queues etc.) will remain constant. When conditions are stable without too much 

variation, the estimation of this method can be accurate, especially on freeway. 

But when speed is dramatically changing, its estimation accuracy will be 

deteriorated 
［15］. 

2.2.2 Historical average 

For long-term travel time estimation, the historical average method can be treated 

as a valuable approach in many cases.  But its application is conditioned on a 

given time when average time trend has similar linear trend with historical time. 

In reality, when travel time distribution is scattered, estimators’ ability would be 

poor 
［14］ .To overcome this problem, hybrid models which combined historical 

and real-time data together are proposed. For example, using GPS probe data 

with historical data to build a hybrid model framework for estimating travel time

［16］. Aude’s research shows that this model indeed achieves a 16% improvement 

compared to simple historical average methods. 
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2.3 Dynamic travel time estimation models 

2.3.1 Classification of model types 

Dynamic travel time estimation model implies that when building model, speeds 

taken into consideration are dynamically changing. A rich body of literatures 

have been devoted to the development of route level dynamic travel time 

estimation. They can be divided into three major categories: parametric methods 

(e.g. linear regression, time series models, dynamic traffic assignment models, 

kalman filtering techniques), nonparametric statistical methods (e.g. neural 

network models, simulation models, Bayesian models, Support Vector 

Regression), and hybrid integration methods 
［17］. 

1) Parametric methods 

Many previous studies are based on parametric methods. The term ‘parametric’ 

indicates that only the parameters of the model need to using data; the structure of 

the model is predetermined. ‘Unseen’ cases such as incidents can be modeled. 

Another advantage of these methods is that usually less data is needed compared 

to non-parametric models. Some parametric models have shown good 

performance, in accuracy as well as computational effort. Van Hinsbergen and 

Van Lint
［ 18］

 combined linear regression model and locally weighted linear 

regression model in a Bayesian framework to improve estimation accuracy and 

reliability. Although their proposed combination methodology exhibits accurate 

results, their model may produce larger estimation errors when each sub-model in 

the model layer is biased. Chen and Chien 
［19］ compared link-based and path-
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based travel time estimation models using Kalman filtering algorithm with 

simulated synthetic probe data. Chien and Kuchipudi
［20］ re-evaluated Chen and 

Chien’s model with historical and real-time automatic vehicle identification data. 

They found estimation accuracy is highly determined by both probe vehicle 

market penetration rate and network congestion level.  

2) Nonparametric statistical methods 

Nonparametric statistical methods are also frequently used. The term non-

parametric is not meant to imply that these models completely lack parameters 

but that the number and nature of the parameters are flexible and not fixed in 

advance. Model structure also need to be determined from data. Therefore, more 

data is required than for parametric models. But, unseen cases such as incidents 

pose a problem as the model structure is derived from data. Park and Rilett 
［21］ 

proposed two clustering-based modular Artificial Neural Network (ANN) models 

for freeway short-term link travel time forecasting. Considering the fact of link 

travel time correlation, Rilett and Park 
［ 22 ］

 applied a spectral-based neural 

network to the corridor travel time estimation. Park and Lee 
［23］ showed that the 

Bayesian model and neural network model can provide good estimates for link 

travel time. Bajwa et al. 
［24］ used a pattern recognition method to search in a 

database for traffic patterns similar to current conditions. However, abnormal 

traffic patterns caused by non-recurrent congestions or incidents deteriorate the 

performance of their model. 

3) Hybrid frameworks 
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Hybrid frameworks integrated two or more models for travel time estimation. Juri 

et al.
［25］ reported the use of a two-stage hybrid integration model for online 

travel time estimation within a roll-horizon framework. In each roll, freeway 

entry volume is estimated by a time series model and these volumes are fed into a 

cell transmission-based traffic model to generate desired travel time estimation. 

Kuchipudi and Chien
［ 26］ tested a hybrid model incorporating path-based and 

link-based models with real-world data, in order to achieve promising estimation 

results under different traffic conditions. 

2.3.2 Model examples review  

In order to better illustrate referred models, several of them are introduced in 

following part. 

1) Regression travel time estimation models 

Travel-time calculation depends on vehicle speed, traffic flow and occupancy, 

which are highly sensitive to weather conditions and traffic incidents. So to reach 

optimal accuracy can be difficult. But, daily, weekly and seasonal patterns can 

still be observed at a large scale. This is the basic operation principle of 

regression models. 

Regression models for travel time estimation including support vector regression

［27］, Gaussian process regression
［28］ and multivariate nonparametric regression

［29］.  Support vector regression model makes use of support vector machine 

theory by Vanpnik of the AT&T Bell Laboratories, which is based on the 



 
 

11 
 

structural risk minimization principle
［27］. Gaussian process regression is used 

mainly for its capability for fitting arbitrary-shaped curves and free from 

pathological behavior for regions with few data points
［ 30］

. The multivariate 

nonparametric regression model can be described as a k nearest neighbor (k-n n) 

model. Recent observations are matched with those contained in a data base of 

historical observations. From all of the matched data, either the k nearest matches 

or all the matched below a given distance threshold are located. The successive 

observations from these “best” matches are averaged to obtain the forecasts
［29］.  

2) Bayesian travel time estimation model 

The Bayesian dynamic model views the forecast process as a stochastic process 

and provides estimated travel times along their associated confidence interval to 

account for traffic dynamics and uncertainly. This is according to the concept of 

Bayesian inference.  

The Bayesian forecasting framework, which is developed from probabilistic 

inference, provides a linkage between the priori information and the posteriori 

travel time distribution using the new measurements from the updated 

information set
［ 32 ］

.  The study requires both historical travel times and 

prevailing traffic information as inputs. 

2.4 Literature review summary 

Research in the thesis hopes to provide real-time travel times information. Hence 

travel time estimation here should be dynamic and up-dated. Travel time 
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measurements are inflexible and cannot achieve estimation process. For Static 

travel time methods, they can estimate travel time under ordinary traffic 

conditions, but when congestion and special accidents happen, their accuracy will 

be influenced a lot. Model used here is one of hybrid frameworks. It combines the 

METANET model and the STTE method together. Compared with models 

referred before, it not only decreases noise from historical data, but also can 

handle simulations of special traffic status. And The STTE and DTTE’s major 

differences are shown as below: 

Table 1: Major difference between STTE and DTTE 

STTE DTTE 

Regard situation changing Consider situation changing 

Not so accurate under 

special traffic environment 

Be accurate used in 

unseen cases 

Be conditioned by historical data Available for real time estimation 
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CHAPTER 3. METHODOLOGY AND 

IMPLEMENTATION 

This chapter introduces model framework and methodologies implementation in 

research.  It presents how to estimate travel time based on measured data, 

including loop detector data and video data. The framework is composed by four 

steps. 

3.1 Data Source types 

3.1.1 Loop detector data  

Loop detectors are installed to measure speed, volume and density data. They 

usually are installed under the road surface. When a vehicle appears in the scale of 

an installed loop detector, the inductance will be induced. And the resulting 

increase in oscillator frequency is detected by the electronics unit and the 

controller will quickly interpret this as a vehicle 
［33］. 

Real-time traffic information is recorded every 20 seconds.  As shown in Fig. 1, 

along the experiment site, there are 8 main lanes, 4 on-ramp and 5 off-ramp loop 

detector stations.  
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Figure 1. Loop detector station positions in research segment 

3.1.2 Video data 

For video can transmit images which are easy to interpret, it is widely used in 

transportation research. A video image processor (VIP) system typically consists 

of one or more cameras, a microprocessor-based computer for digitizing and 

analyzing imageries and software for interpreting images
［34］. Camera Sensors are 

often installed higher than road face. 

From 122 Street to 159 Street in the Whitemud Drive, the city of Edmonton has 

installed 8 camera observation points for real-time traffic condition monitoring.  

Time stamps and images of vehicles are recorded by video. Vehicles passing 

through the route with same appearance are regarded as reference vehicles. 

Meanwhile, their time stamps arriving the route’s entrance and exit are recorded. 



 
 

15 
 

Time interval between time stamps can be considered as vehicles’ travel time 

during the segment. Measured reference travel time data can be used to evaluate 

estimation models’ accuracy. 

3.2 Research implementation  

3.2.1 Research framework 

Before being applied in practice, travel time estimation models’ accuracy should 

be evaluated. Thus, results from both the DTTE and STTE methods are compared 

with reference travel time data. In addition, in order to prove the DTTE method’s 

advantages in experiments than the STTE method, several indexes are proposed to 

doing particular analysis. The framework of research can be divided into 4 steps:  

The first step is the prediction step. In this step, the METANET model will be 

used to predict density and speed data based on real-time measured data.   

The second step is travel time estimation step. Data estimated in the first step 

would be used as the input data for travel time estimation. Travel times are 

calculated by the DTTE and STTE methods individually. 

 The third step is the evaluation step. Estimation results are evaluated by reference 

travel times. If error is small, the estimation process is regarded to be accurate. 

The fourth step is the methods comparison step. Mean Absolute Relative Error 

(MARE) is used to access two methods’ accuracy for the whole testing time. Root 

Mean Square Error (RMSE) value is introduced to weigh which method can 

steadily perform better.  
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The whole framework is shown as follows: 

 

Figure 2. Whole framework of models procession 

3.2.2 The METANET prediction model 

A METANET-based prediction model 
［35］ is used to simulate traffic status. It is a 

macroscopic model to predict speed and density data certain time steps later.  This 

means that based on measured data, the METANET model can predict what the 

speed and density data would be in the same position after certain time interval.  
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Below is a brief explanation of the prediction model. To apply the METANET 

model, the freeway corridor is divided into several sections (i =1, 2...N) of length 

𝐿𝑖  and lanes 𝜆𝑖  (as shown in Fig.6). The evolution of traffic density 𝜌𝑖 (𝑘)  in 

vehicles per kilometer per lane (veh/km/ln) and traffic speed 𝜈𝑖 (𝑘) in kilometers 

per hour (km/h) at each time index t (where, t= kT , T=the discrete time step, k = 

the time step presently in the calculation) are calculated by Eq. 1 and 2 
［36］: 

𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇

𝐿𝑖𝜆𝑖
(𝜆𝑖−1𝑞𝑖−1(𝑘) − 𝜆𝑖𝑞𝑖(𝑘) + 𝑟𝑖 (𝑘) − 𝑠𝑖(𝑘)) 

Where,   

q: Boundary flow between segments in vehicles per hour (veh/h); 

R: On-ramp meter rates; 

S: Off-ramp flow. 

 

𝜈𝑖(𝑘 + 1) = 𝜈𝑖(𝑘) +
𝑇

𝜏
{𝑉[𝜌𝑖(𝑘)] − 𝜈𝑖(𝑘)} +

𝑇

𝐿𝑖
𝜈𝑖(𝑘)[𝜈𝑖−1(𝑘) − 𝜈𝑖(𝑘)] −

𝜂𝑇[𝜌𝑖+1(𝑘)−𝜌𝑖(𝑘)]

𝜏𝐿𝑖[𝜌𝑖(𝑘)+𝜅]
      

Where, 𝑉[𝜌𝑖 (𝑘)] = 𝜈𝑓,𝑖 𝑒𝑥𝑝 [−
1

а𝑖
(

𝜌𝑖 (𝑘)

𝜌𝑐𝑟,𝑗
)

𝛼𝑖

] 

 : Reaction term parameter in hours (h); 

 : Anticipation parameter (km2 per hour, km2/h); 

 : Positive constant (veh/km/ln)—these are global parameters that are calibrated 

from measured data. 

(2)

(1)
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(3)

 

Figure 3. Segmentation of Freeway Links 

In order to make the simulated result similar to actual loop detector data after 

optimization at the greatest extent, fundamental diagram (FD) related parameters 

[ν𝑓, 𝜌𝑐𝑟 , 𝛼]  of the METANET model were calibrated to be [80, 35, 2.8] based on 

field traffic data. Similarly, with the given demand inputs for mainline and on-

ramps, the global parameters [𝜏, ν, κ] in Eq. 2 were optimized by Sequential 

Quadratic Programming at 0.02, 28.8, and 10, respectively. 

But when the VSL control strategy is proposed, the FD (speed-density relation) 

has been replaced as it appears in the original METANET with the optimal 

control variable μ
［37］: 

𝜈𝑖(𝑘 + 1) = 𝜈𝑖(𝑘) +
𝑇

𝜏
{𝜇𝑖(𝑘) − 𝜈𝑖(𝑘)} +

𝑇

𝐿𝑖
𝜈𝑖(𝑘)[𝜈𝑖−1(𝑘) − 𝜈𝑖(𝑘)] −

𝜂𝑇[𝜌𝑖+1(𝑘)−𝜌𝑖(𝑘)]

𝜏𝐿𝑖[𝜌𝑖(𝑘)+𝜅]
    

μis an optimal control variable, which is defined by the VSL control system. 

Doing so, the VSL control variable becomes a free control variable.  

Thus, under situations without and with VSL control, equations used in 

METANET models are different in some extent. 
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(4)

(5)

(6)

3.2.3 The Static Travel Time Estimation (STTE) method 

The STTE method assumes that speeds of vehicles passing through a section is 

the average of speeds measured by adjacent loop detectors in the same time 

section. So in each half part of a section, speeds of vehicles would be fixed. Eq. 4 

can explain this directly 
［38］: 

ν(x, t) =  {
ν(𝑑𝑖, t)        ∀ 𝑥 ∈ (𝑥𝑖, 𝑥𝑖 +

𝑠

2
)   𝑎𝑛𝑑 𝑡 ∈ [𝑡, 𝑡 − 𝐷𝐼] 

  ν(𝑑𝑖+1, t)        ∀ 𝑥 ∈ (𝑥𝑖 +
𝑠

2
, 𝑥𝑖+1)  𝑎𝑛𝑑 𝑡 ∈ [𝑡, 𝑡 − 𝐷𝐼] 

  

Where: xi and xi+1 are the distance positions for the loops di and di+1. 

And section travel time can be calculated from Eq. 5:  

𝑡𝑖(𝑘) =
1

2
(

𝐿𝑖

�̅�𝐴,𝑘
+

𝐿𝑖

�̅�𝐵,𝑘
)  

The segment travel time T is the sum of section travel times: 

T =∑ t i(k)k
i       
 

 

3.2.4 The Dynamic Travel Time Estimation (DTTE) method 

The dynamic travel time estimation method is composed of two parts: the piece-

wise linear speed-based (PLSB) model and the trajectory assumption model. The 

PLSB model 
［39］

 can calculate section-level travel time. A route consists of 

several sections. Meanwhile, during vehicles’ traveling, speeds are changed in 

different time interval. Thus, in order to estimate route travel time precisely, the 

trajectory assumption model is introduced which can image vehicles’ trajectories.   

1) Section travel time estimation  
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(7)

The piece-wise linear speed–based (PLSB) model is used to calculate section 

travel time, t. For PLSB model, the time for a vehicle passing over space [𝑥0,𝑥1 ] 

is defined as the time needed for a vehicle i passing a particular section k. The 

speed v(x, t) depicts the steepness of its trajectory. Compared with static travel 

time estimation method, the PLSB assumes that the steepness is a linear changing 

line instead of a horizontal line. Periods p and p+1 here are fixed times of 20 

seconds. In a period, measured data from loop detectors including speed and 

density are fixed. 

For the whole segment, speed data measured from loop detectors in each section 

are changed every 20 seconds in testing site,  then, speed of section V (k) 

=𝑣20𝑛 (𝑘), n=1, 2, 3……K, 𝑣20𝑛(𝑘) is fixed in section k during time period 20n.  

But if the n is changed, vehicles still do not exit section k. When such a situation 

happens, speed being used in estimation would be also changed. Considering the 

speed on section k is a convex combination of the time average speeds at up and 

downstream detectors, denoted by V (d,p) and V(d+1,p) respectively. To discover 

when vehicles exiting section k, speed is changed or not, the condition as follow 

is used
［6］: 

𝑥𝑖
0 + (

𝑉(𝑑,𝑝)

𝐴
+ 𝑥𝑖

0 − 𝑥0) ∗ (𝑒𝐴(𝑡1−𝑡𝑖
0) − 1)＞𝑥1    

Figure 4 depicts trajectories of vehicles without and with condition 7 hold. When 

condition is hold, travel time for vehicles passing through section is less than 𝑡1 as 

shown in Fig. 4(a). Otherwise, if condition is not hold, after the time period of 𝑡1, 

vehicles will not exit the position 𝑥1, and at this time, the speed for calculation 

should be changed. 
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(a) 

 

(b) 

  Figure 4. Vehicle trajectory (a) condition is hold; (b) conditions is not hold  

Following equations are used to calculate the exit location and time
［6］: 

 

{𝑥𝑖
∗ ,𝑡𝑖

∗} = {
{𝑥1 ,𝑡𝑖

0 +
1

𝐴
𝑙𝑛 (

𝑉(𝑑,𝑝)

𝐴
+𝑥1−𝑥0

𝑉(𝑑,𝑝)

𝐴
+𝑥𝑖

0−𝑥0

)},     𝑐ondition holds

{𝑥𝑖
0 + (

𝑉(𝑑,𝑝)

𝐴
+ 𝑥𝑖

0 − 𝑥0) ∗ (𝑒𝐴∗(𝑡1−𝑡𝑖
0) − 1) , 𝑡1} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 A= 
V(d+1,p)−V(d,p)

xd+1−xd
 , and A≠0        

(8)

(9)
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Where, 

i : A vehicle; 

p, P: Measurement period and total number of measurement periods, respectively;  

𝑡0, 𝑡1: Start and end of measurement period p, respectively;  

𝑥0, 𝑥1: Start and end location of section k, respectively;  

𝐿𝑘: Length of section k;  

{x0
ikp, t0ikp}: Entry location and time of a vehicle in section k, period p; 

{x*
ikp, t*ikp}: Exit location and time of a vehicle in section k, period p; 

xi(t): Trajectory of vehicle i as a function of time;  

vi(t): Speed of vehicle i as a function of time; 

V(k,p): Mean speed on section k during time period p. 

Care must be taken if A’s value is close to zero. This could lead to numerical 

problems. In practice this is applied when the upstream and downstream observed 

speeds are nearly equalled.  

2) Route- level travel time estimation (trajectory assumption algorithm) 

Using the PLSB model, section level travel time can be estimated. But for the 

route which is composed of several sections, the trajectory assumption algorithm 

in Fig. 5 is proposed. 



 
 

23 
 

 

Figure 5. Imaged trajectory algorithm for route-level travel time 
［6］

 

The trajectory algorithm for a single vehicle trajectory can be schematically 

presented, as in Fig.5. It assumes that the time interval P is defined; in the space-

time diagram, time stamps would be n*P (0, P, 2*P, 3*P….i*P). When a vehicle 

enters region (k,p) at location (x0,t0), it exits at (x*, t*). Assuming that the whole 

travel time during this section is p (0 ≤ p ≤ i*P), if p＜P, the vehicle enters next 

section, and the travel time will be accumulated; this algorithm will be repeated 

until the sum of time p＞P.  
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Otherwise, when the time p ＞  P，at this time, if the vehicle exits the exit 

position x0, following calculation will use the speed at position (x1, t1), P＜t1＜

2*P, if it does not exit the location x*, vehicle will travel with the speed at the 

position (x0, t1) until it passes the location x0. 

3.3 Summary of case study and method implementation 

The estimation process can be divided into three steps: prediction step, travel time 

estimation step, and evaluation step.  If estimation model is proved to be accurate, 

an application case study would be proposed to verify models’ practicability in 

transportation research.  

Meanwhile, in thesis, one macroscopic prediction model, two travel time 

estimation methods and a trajectory model are introduced. The prediction model 

is the METANET model, which is used to predict traffic statues. Two travel time 

estimation methods are the STTE method and the DTTE method. Because travel 

time calculated from the DTTE method is only section-level time, so, to get route 

travel time, the trajectory assumption model is used.  
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CHAPTER 4. CASE STUDY AND 

RESULTS ANALYSIS 

This chapter analyses estimation results without and with VSL control. To 

evaluate accuracy, results are compared with reference travel time. Besides, 

indexes as MARE and RMSE are introduced to figure out differences between two 

methods. Further, a case study example is introduced to prove the DTTE 

method’s practicability and applicability.  

4.1 A field testing  

4.1.1 Research corridor 

The experiment route is a segment on the Whitemud Drive, from the 122 Street to 

the 159 Street. The total length is 6.8 kilometers. 

In the Edmonton’s transportation network, the Whitemud Drive is an east-west 

direction main road with heavy flow. In peak hour, congestion always happens. 

The research route has traffic control accessed and sensors infrastructure installed. 

Sensors, including loop detectors and cameras, can provide real time and 

historical data for transportation research. The research uses loop detector data for 

travel time estimation and videos as reference data to evaluate the accuracy of 

predictions. 
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4.1.2 Route division 

According to the PLSB method, the corridor can be divided into different short 

sections. In order to guarantee travel time estimation models’ feasibility under 

various conditions, section division should satisfy two major requirements:   

1) Loop detectors on sections’ entrances and exits should work normally in 

experiment days. 

2) Sections’ lengths should be different. 

Considering previous requirements, section division is shown in Fig. 6: 

 

Figure 6. Sections division of the research route 

Lengths of divided sections are presented in Tab. 1. Because the Vehicle Detector 

System (VDS) 1026 does not work, so it is hard to estimate traffic status in this 

position. Then the section from 122 Street to 53 Avenue on the Whitemud Drive 

becomes the longest one of 2050 meters, 
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Table 2. Distance of sections 

 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

4.1.3 Prediction time length division 

For speed prediction, length of time interval directly has an influence on 

prediction accuracy. A case study of Aug. 17th is shown in Fig.7:  

 
Figure 7. RMSE values profile when prediction time length added (Aug.17th) 
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Prediction Length Pre=how many 20s

Section Section location Distance 

(No.) (At Whitemud Drive) (Meters) 

1 122 St - 53 Ave 2050 

2 53 Ave - 58 Ave 550 

3 58 Ave - Fox Dr 1000 

4 Fox Dr - 142a St 1000 

5 142a St - 149 St 600 

6 149 St - 156 St 700 

7 156 St - 159 St 900 
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Table 3 RMSE values of different prediction time lengths (Aug. 17th) 

Prediction Length = 
(20 sec) 

RMSE 

1 0 

2 4.07 

3 4.38 

4 4.40 

5 4.33 

6 4.23 

7 4.28 

8 4.33 

9 4.37 

15 4.36 

24 4.53 

30 4.70 

36 4.89 

45 5.20 

 

Figure 7 and table 2 show that when prediction length is increasing, validation 

accuracy will be decreased. Meanwhile, concluding from historical data, travel 

times in this route from 122 St. to 159 St. are usually less than 15 minutes, to 

142a St. is less than 10 minutes, and to 53 Ave. is no more than 5 minutes. Thus, 

in order to improve prediction accuracy from just using a constant prediction 

length, the route is divided into zone with three prediction lengths, which can be 

seen in Fig.8. 
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Figure 8 Prediction time length division 

4.1.4 Scenario choosing 

Concluding from past transportation works, variables contributing to a better 

estimation of travel times are often as follows 
［5］: 

• Time of day 

• Mean speed 

• Maximum speed 

• Number of vehicles 

• Most recent travel time 

• Mean speed in bottlenecks 

• Mean speed in between congested areas  
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• Maximum speed in between congested areas  

• Length of congested area 

Among referred variables, time of days and mean speed are two major factors 

considered here. First, estimations are processed in PM peak hour, from 4:30 - 

6:30 PM. In peak hour, influences from speed variation and driving behaviors on 

travel time are more apparent than under freeway condition. Thus, if the model 

under congestion environments performs well, it can also be used in other time 

periods. 

Meanwhile, in August, the city of Edmonton implemented the Variable Speed 

limit (VSL) control strategy on this route. This is a kind of strategy in traffic 

management system aiming to decease travel time on route level by giving 

adaptable suggested speed to drivers.   

So, to evaluate estimation methods’ accuracy under referred two traffic conditions, 

four weeks in May and August are chosen individually for following reasons:  

1) Edmonton is a city with snowy days happening nearly half of a year. 

Such weather may influence estimation results. Selecting these two 

months can avoid data noise from snow weather for there are mostly 

sunny days in May and August. 

2) The route has heavy flow every day, including lots of heavy trucks. 

Loop detectors are installed under road surface, so traffic events may 

cause damage on them, which leads to missing data. In these two 
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months, measured data are complete to provide a favourable 

environment for research. 

3) VSL control was applied in August, and there had been no specific 

strategy carried out in May. Thus, choosing these two months with 

different traffic conditions can evaluate the estimation model’s 

applicability under various situations. 

4.2 Results analysis 

4.2.1 Travel time estimation evaluation (without VSL control) 

Measured and predicted speeds are compared in validation part. The RMSE is 

used to judge whether predictions are accurate or not. If RMSE value is small, 

predictions are considered to be similar with reference travel times during the 

whole travelling.  

To better illustrate estimations with no VSL control, results from five days in May 

when apparently congestion happened are chosen and shown in the following part. 

They are May 4th, 5th, 6th, 14th and 27th.  
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

Figure 9. White Mud Drive (WMD) West Bound (WB) contour map without VSL control 

(a) May 4th; (b) May 5th; (c) May 6th; (d) May 14th; (e) May 27th; 

Figure 9 shows that the most serious congestion appeared on May 27th. It is 

obvious since speeds of the whole route were decreased to 45 km/h in PM peak 

hour. 

On May 14th, vehicles’ speeds travelling from 122 St to the 147 St are lower than 

60 km/h. After passing this corridor, there was no congestion, and average speeds 

are increased to 80km/h. 

On remaining days, speeds from the 122 Street to the Terwillegar Dr. are near 60 

km/h, usually slower than other sections, where speeds are about 80 km/h.  

1) Speed prediction analysis 
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Figure 10 depicts speed validation of sample days. Red lines describe predicted 

speeds, and black lines represent measured speeds.  

In May, machine’s breakdown led to data missing on VDS 1026, so speed 

prediction of this link cannot be completed. Thus, speed validation is only 

finished for 6 links.  

 

(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 
(e) 

 

Figure 10. Speed prediction validation without VSL control (a) May 4th; (b) May 5th; (c) 

May 6th; (d) May 14th; (e) May 27th; 
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Overall, the METANET model presents satisfactory performance in May. Even 

on May 27th, the whole route was congested in Peak hour, its RMSE values are 

still under 5.  

On May 4th, 5th and 6th, speeds faced continuous variation, which indeed 

influenced model performance to some extent. Thus, RMSE values of these three 

days are 6.63, 6.52, and 6.31 individually. But, compared with measured speeds, 

validation errors near 6 are still considered to be acceptable.  So, the METANET 

model can be applied in the scenario without VSL control. 

Table 4. Index of travel speed validation without VSL control  

Data 

(M/D) 
RMSE Value 

05/04 6.63 

05/05 6.52 

05/06 6.31 

05/14 4.06 

05/27 3.85 

When the accuracy of the METANET model is demonstrated, its predicted speeds 

can be used as input data of travel time estimation. Travel time calculated from 

STTE method and DTTE method are compared with reference times. To analyse 

methods’ performances, several indexes are introduced, i.e. the Mean Absolute 

Relative Time Error (MARE) (%) value 
［ 40］

, the Root Mean Squared Error 

(RMSE). 
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(10)

(11)

MARE = ∑ |
t̂(P)−t̅(𝑃)

t̂(P)
|P   

 

RMSE = √
1

P
∑ (t̂(p) − t̅(P))2P

P=1     

Where: 

P: The number of time periods with travel time estimated. 

t̂(P): Estimated travel time in the time period p.  

t̅(P): The average reference travel time in the time period p. 

For each day, estimated travel times from the STTE method and the DTTE 

method are compared.  Following graphs present results.  
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(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 

Figure 11. Comparison of the STTE and DTTE estimation results (a) May 4th; (b) May 5th; 

(c) May 6th; (d) May 14th; (e) May 27th;  

On May 4th, estimated travel time is 371 seconds for the STTE method, and 350 

seconds for the DTTE method.  Compared with the reference travel time 359 

seconds, the DTTE’s performance is better than the STTE method’s. During the 

two hours period, the DTTE’s MARE value is 2.70% and RMSE is 9.71. They are 
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both lower than results outputted from the STTE method (3.18% for MARE and 

35.06 for RMSE).  

The reference time on May 5th is 377 seconds, estimated travel time for the STTE 

method is 392 seconds and that for the DTTE method is 359 seconds.  Even 

though the two methods’ MAREs are nearly the same, but when considering 

RMSE value, for the DTTE is 17.56, apparently better-behaved than the STTE 

method’s 40.37. 

Sudden outpouring of snow increased travel time on May 6th. So the reference 

travel time is 383 seconds, when estimated travel time based on STTE method is 

410 seconds, and 369 seconds for the DTTE method.  The two methods’ MARE 

values are all less than 10%.  But DTTE’s MARE value is 3.90% and RMSE is 

14.94, while STTE’s MARE value is 7.01% and its RMSE is 51.08. So the 

DTTE’s performance is better-behaved than the STTE method for this day. 

On May 14th, the reference travel time is 377 seconds, estimated travel time based 

on the STTE method is 399 seconds and 361 seconds for the DTTE method.  The 

MARE value for STTE is 6.03%, when the DTTE’s MARE value is only 4.26%.  

And the STTE’s RMSE bias is 50.20, almost triple the DTTE’s 16.05.  

Most severe congestion happened on May 27th, which made speeds along the 

whole route to be under 45 km/h in the peak hour. The average reference travel 

time is 426 seconds.  The STTE method’s time is 440 seconds, and for the DTTE 

method is 412 seconds. Their MAREs are all near 3.5%. The STTE’s RMSE is 
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34.46, and DTTE’s is 14.67. The DTTE method can be more reliable to do 

accurate estimation.  

Table 5. Evaluation of the DTTE and STTE method’s performance without VSL control 

Date Method Type 
Index 

Travel Time MARE RMSE 

05/04 
STTE 371 3.18% 35.06 

DTTE 350 -2.70% 9.71 

Reference travel time 359   

05/05 
STTE 392 4.14% 40.38 

DTTE 359 -4.58% 17.22 

Reference travel time 376   

05/06 
STTE 410 7.01% 51.08 

DTTE 369 -3.90% 14.94 

Reference travel time 383   

05/14 
STTE 399 6.03% 50.20 

DTTE 361 -4.26% 16.05 

Reference travel time 377   

05/27 
STTE 440 3.23% 34.46 

DTTE 412 -3.44% 14.67 

Reference travel time 427   
 

In PM peak hours, when speeds vary a lot, estimation accuracy decreased. 

Meanwhile, their MARE and RMSE values are increased. Then, on May 6th, 

MARE values of both the DTTE and STTE are almost higher compared to other 

days.  

Over all, in sample days, MARE and RMSE values of the DTTE method are less 

than the STTE method’s. Thus it achieves better travel time estimations than the 

STTE method when there was no VSL control applied. During the whole peak 
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hour, the DTTE method’s results are more reliable to produce similar results with 

reference times. 

4.2.2 Travel time estimation evaluation (with VSL control) 

 
(a) 
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(b) 

 
（c） 
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(d) 
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(e) 

Figure 12. White Mud Drive (WMD) West Bound (WB) contour map with VSL control 

(a) Aug. 25th; (b) Aug. 26th; (c) Aug. 31st; (d) Sept. 2nd; (e) Sept.3rd; 

After the VSL control strategy was applied, speeds were increased, and 

congestion was efficiently relieved during peak hour compared with situations in 

May. But traffic jam still occurred from 122 St to Terwillegar Drive during some 

times. To explain estimation models’ function under VSL control environment, 

five days are also selected. They are Aug.25th, Aug. 26th, Aug. 31st, Sept. 2nd and 

Sept. 3rd. 

On the whole, in these five days, speeds were around 75 km/h, this is a speed near 

limit speed (80km/h) for the Whitemud Drive. But, slow speeds around 60km/h 

still appeared from 122 St to Terwillegar Dr in several days. And on Aug.26th, low 

speeds even happened along the whole testing segment, this though was caused by 

special traffic accidents. 

2) Speed prediction analysis 

After Aug. 11st, VDS 1026 was repaired, and it could work normally. The number 

of loop detector stations in main lanes whose measured data can be predicted is 7. 

They are VDS 1028, VDS 1030, VDS 1032, VDS 1035, VDS 1036, VDS 1016 

and VDS 1007. 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 
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(e) 

 

Figure 13. Speed prediction validation with VSL control (a) Aug. 25th; (b) Aug.26th; （c）

Aug.31st; (d) Sept 2nd; (e) Sept. 3rd; 

Compared with predictions in May, even links are added, RMSE values are still 

small. Thus, the METANET model under VSL control condition can perform well. 

And in several days, RMSE values are even less than days in May. This is caused 

due to the reason that after control strategy is applied, traffic condition improved, 

and this is beneficial to speed validation.   

Peak hour speeds in August did not sharply change for most days. Obvious 

variation only happened on Aug. 26th. And its RMSE value is the highest one with 

7.02. For other days, their RMSE are all around 5.  

Table 6. Index (RMSE value) of travel speed validation with VSL control  

Data 

(M/D) 
RMSE 
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08/25 5.27 

08/26 7.02 

08/31 4.93 

09/02 4.91 

09/03 4.68 

 

VSL control’s implementation influences density, speed and travel time in this 

segment. To verify whether the model is still under the VSL control, five 

representative days would also be analysed in Fig.14. 
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(d) 

 

 
(e) 

Figure 14. Comparison of the STTE and DTTE estimation result (a) Aug. 25th; (b) Aug 

26th; (c) Aug. 31st; (d) Sept. 2nd; (e) Sept.3rd;  

On Aug.25th, the reference travel time is 338 seconds. Estimated travel time is 362 

seconds for the STTE method and 351 seconds for the DTTE method. The MARE 

of DTTE is 2.53%, higher than the STTE’s 0.77%. But the DTTE’s RMSE is 

16.84, lower than the STTE’s 24.96. So, both the methods can achieve favorable 

results. 
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The day with the lowest average speed in peak hour is Aug.26th. It’s estimated 

time based on the STTE method is 376 seconds and 379 seconds for the DTTE 

method. Their MARE values are similar and under 5%. But the STTE’s RMSE is 

40.30, much higher than the DTTE’s 16.85.  

On Aug. 31st, improved traffic condition decreased the average reference time to 

342 seconds. The DTTE estimated travel time is 335 seconds. It’s MARE and 

RMSE values are 2.08% and 7.14. The STTE method’s estimation is 326 seconds, 

MARE is 1.71%, and RMSE is 8.99.  On this day, results from the two methods 

are similar. Therefore, as can be seen, if speeds do not have a drastic variation, the 

two methods can gain satisfactory and similar estimation.   

Reference travel time is 365 seconds on Sept. 2nd. The STTE method’s estimated 

time is 381 seconds, and the MARE is 4.29%. Corresponding, the DTTE’s 

estimation s 359 seconds, its MARE is 1.52%, better than the STTE’s.  

On Sept. 3rd, the STTE’s estimated travel time is 326 seconds, the DTTE’s is 326 

seconds, and the reference travel time is 338 seconds. On this day, both methods 

MARE and RMSE values have little difference. 

Table 7. Evaluation of the DTTE and STTE method’s performance with VSL control 

Date  

(M/D) 
Method Type 

Index 

Travel Time MARE RMSE 

08/25 
STTE 363 0.77% 24.96 

DTTE 351 2.53% 16.74 

Reference travel time 338 

  08/26 STTE 376 3.70% 40.30 
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DTTE 379 4.65% 16.85 

Reference travel time 362 

  

08/31 
STTE 337 1.71% 8.99 

DTTE 335 2.08% 7.14 

Reference travel time 343 

  

09/02 
STTE 381 4.29% 39.22 

DTTE 359 1.52% 13.81 

Reference travel time 365 

  

09/03 
STTE 326 3.55% 16.23 

DTTE 326 3.47% 15.67 

Reference travel time 338 

  

The results after VSL control was carried out show that, average vehicles speeds 

and estimation accuracy are increased. The DTTE method’s estimation errors are 

under 5% for all sample days. RMSE value is less than 50. Results show models 

perform better when the VSL control strategy is applied.  This means vehicles’ 

speeds experienced less variation and travelling conditions are improved.  

Meanwhile, travel time estimation could be more preferable. Thus, models can be 

used in VSL control environment. 

4.2.3 Comparison of two methods with and without VSL control 

In the research, five days with and without VSL control are separately selected to 

be analysed in detail. Evaluation is focused on two aspects, speed validation and 

travel time estimation. And indexes as RMSE and MARE are proposed to help 

complete it.  

With no VSL control, reference travel times in sample days are all longer than 

350 seconds. On May 27th, it is even more than 400 seconds.  Under this situation, 

MAREs of the DTTE method are all less than 5%. In contrast, the DTTE’s 
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MAREs are all more than 5%, except it On May 4th (4.74%). Besides, considering 

the index of RMSE, the STTE method’s RMSE values are all much higher than 

the DTTE’s. Compared with the STTE method, the DTTE method’s performance 

is considered to be more favorable.  

When the VSL control was applied, it helped vehicles change speeds more 

smoothly by giving suggested speeds. Results show that reference travel times are 

near 350 seconds in sample days. Even the highest one on Sept. 2nd, is only 366 

seconds, does not exceed 400 seconds. Improved traffic conditions decreased 

speeds variation. Thus, in days when congestion is not apparent as Sept. 3rd and 

Aug. 31st, MAREs and RMSEs of two methods are very similar.  But, in other 

days, the DTTE method’s performance is better the STTE’s. In conclusion, with 

VSL control, the DTTE method is still more favorable. 

4.3 Application example 

Travel time is important in Transportation Management System (TMS). Thus, if 

estimation models here are confirmed to be accurate and practical, they can be 

widely used in transportation research. 

Meanwhile, VSL control system is used for alleviating recurrent congestion on 

commuting routes. It is effective when the spatial distribution of the traffic speed 

on the highway segment exhibits a dramatic reduction from free-flow speed to a 

congested or stop-and-go level due to volume surge over a short distance. This 

control system can smooth the transition between free-flow speed and stop-and-go 

congested conditions, increases average speed, reduce route travel time under 
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congested environment. And, to evaluate the VSL control system, travel time is a 

crucial criterion 
［41］. 

As mentioned, the city of Edmonton had carried out the VSL strategy on the 

research route.  When the DTTE model’s accuracy is affirmed, it can be used to 

analyse the VSL control system’s influence, using travel time as a crucial index. 

4.3.1 Comparison group 

Days before and after the VSL control with similar traffic demand profile during 

peak hours are chosen to be comparison groups to analyse the VSL control’s 

influence on travel time changing. 16 comparison groups are matched. Here, five 

of them are presented. 

Table 8. Comparison groups of VSL control and Non-VSL control case 

VSL control case Non-VSL control case 

Aug.13rd May 21st 

Aug.17th May 5th 

Aug.18th May 5th 

Aug.28th May 14th 

Sept.4th May 28th 
 

Matching comparison groups, traffic demand is a critical criterion.  Traffic 

demand is mainly reflected by vehicle density. If days have similar density 

distribution, they can be matched. 
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 
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(e) 

Figure 15. Comparison time groups with similar density. (a) Aug.13rd VS May 14th; (b) 

Aug.17th VS May 4th; (c) Aug.18th VS May 5th; (d) Aug.28th VS May 14th; (e) Sept. 4th VS 

May 28th; 

Figure 15 depicts that these five groups have density distribution spots which are 

nearly the same. So, their travel demands are similar. Travel time estimated in 

these days can be used to judge the VSL control’s influence. 

4.3.2 VSL control performance evaluation 

Following figures and tables present travel time changing in peak hour before and 

after the VSL control applied in the research route. 
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Index type May 21
st Aug.13

th 
Average travel time (sec) 349  340  
Saved Travel Time (sec) - 9 
Saved Travel Time Rate (%） - 2.51% 

 (a) 
 

 
 

Index type May 5
th Aug.17

th 
Average travel time (sec) 360  355  
Saved Travel Time (sec) - 4  
Saved Travel Time Rate (%） - 1.14% 

(b) 
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Index type May 5
th Aug. 18

th 
Average travel time (sec) 359  370  
Saved Travel Time (sec) - -11 
Saved Travel Time Rate (%） - -3.09% 

(c) 
 

 
 

Index type May 25th Aug. 31st 
Average travel time (sec) 350  335  
Saved Travel Time (sec) - 14  
Saved Travel Time Rate (%） - 4.06% 

(d) 
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Index type May 28
th Sept. 4

th 
Average travel time (sec) 390  352  
Saved Travel Time (sec) - 38  
Saved Travel Time Rate (%） - 9.74% 

(e) 

Figure 16. VSL control performance evaluation based on travel time changing of 

comparison groups (a) Aug.13rd VS May 21st; (b) Aug.17th VS May 5th; (c) Aug.18th VS 

May 5th; (d) Aug.31st VS May 25th ; (e) Sept.4th VS May 28th; 

Travel time of the comparison group, May 21st and Aug. 13th are 327seconds and 

344 seconds, respectively. 17 seconds is saved after the VSL control’s application. 

Saving rate is 5.02%.  

Travel time on Aug.17th is 355 seconds and 359 seconds on May 5th. Saved time 

is 4 seconds, saving rate is 1.14%.  

For May 5th and Aug. 17th, because on Aug.18th, special accidents happened, it 

caused flow accumulation and increased travel time. Thus average travel time is 

370 seconds in this day, 11 seconds higher than May 5th. 
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Travel time is 350 seconds on May 25th. When the traffic conditions is improved 

by the VSL control, 14 seconds is decreased.   

The highest saving rate of 9.74% is produced by the group of May 28th and 

Sept.4th. Average travel time before the VSL control is 390 seconds, and 38 

seconds is saved.  

 
 

Index type Non-control VSL control 
Average travel time (sec) 354  346  
Saved Travel Time (sec) - 8  

Saved Travel Time Rate (%） - 2.19% 
 

Figure 17. VSL control performance evaluation based on average travel time changing  

Averaging the travel time for 20 days in each month; it is 354 seconds without 

VSL control, and 346seconds with VSL control. 8 seconds is saved, and it is 

about 3.74% comparing with travel time without VSL control. Thus, the VSL 

control improves traffic conditions on this road, and relieves traffic pressure in the 

peak hour.  
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This case shows that travel time estimation models in the thesis can effectively 

evaluate the VSL control’s influence and be applied in related transportation 

research.   
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CHAPTER 5. CONCLUSIONS AND 

FUTURE WORK 

This chapter summarizes research work and discusses limitations in research. 

Also, it provides some suggestions for future work and following research. 

5.1 Research summary and limitations 

The research consists of two major steps. The first step is data prediction. 

METANET is used to forecast traffic status certain time interval later, based on 

measured traffic data. Another step is the travel time estimation step, the Dynamic 

Travel Time Estimation method is mainly used. Loop detectors measure speed 

and density data every 20 seconds. Meanwhile, at different time stamps a car 

arriving at the same position; its speeds should be different. Considering the speed 

dynamically changing in estimation, the trajectory assumption algorithm is 

introduced. It simulates vehicles’ trajectories, and from this, time stamps of 

assumed vehicles reaching section exit positions can be confirmed. Then, whole 

route’s travel time can be figured out by adding section travel times together. 

In transportation research, there are a multitude of methods and models on travel 

time estimation. Besides the DTTE method, static travel time estimation (STTE) 

method is also widely used. It assumes that vehicles travel through segments 

without any speeds variation and does not consider influences brought out by 

dynamic speeds. To find strengths of the DTTE method, the STTE estimations 

method is also introduced here for comparison.  
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To evaluate models’ accuracy, field experiments were carried out on the 

Whitemud Drive, from 122 Street to 159 Street. The VSL control strategy’s 

application would affects drivers’ personal behaviour, and control variable 

parameters are added in a models building. Thus, travel times are estimated under 

conditions with and without VSL control.  

Speeds in May are lower than in August, and significant congestion almost daily 

happened in PM peak hour. Summarizing the experiment results, for speed 

predictions, RMSE in two months are all under 10. Even in most congested days, 

when speeds are around 40 km/h, RMSE values are still under 8. 

In May, comparing with reference travel times, MAREs of the STTE method vary 

from 3.18% to 7.01%. In contrast, the DTTE’s MARE values are all under 5%. 

Even on May 5th with the highest MARE, it is still only 4.58%. Further, the 

DTTE’s RMSEs of five days are less than 20. But the STTE’s are all higher than 

30, even jumping to 51.08 on May 27th. RMSE values of two methods in May 

show that estimation travel times based on the DTTE method are closer to 

reference travel times.  

PM peak hour congestion is improved after the VSL control is applied, speeds 

varied more smoothly. So, speeds variation is much more stable than it was in 

May. This caused the STTE’s MARE to be a little bit lower than the DTTE’s on 

Aug. 25th, Aug.26th and Aug.31st. But the STTE’s RMSEs are still much higher 

than the DTTE’s. So, the DTTE method still provides better results.  
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In conclusion, the METANET model can achieve accurate predictions in research. 

Both the travel time estimation methods can be accurate when speeds’ are not 

changing sharply. But, in peak hour with apparent speeds variation, the DTTE 

method shows better performance than the STTE method in most days. 

Meanwhile, the DTTE’s RMSEs are smaller than the STTE’s in all sample days. 

This means that the DTTE method can estimate travel time accurately all the time, 

but the STTE method cannot be guaranteed for that.    

However, there are still some limitations in the research. Loop detector data are 

measured every 20 seconds, and they cannot provide traffic information for 

specified vehicles. If vehicles’ information can be tracked, travel time estimation 

accuracy would be enhanced. 

5.2 Future work 

Even though the DTTE method can make accurate estimations as shown in the 

thesis, there is still some room to improve accuracy and study its practicality in 

different cases. Some potential future works are listed: 

1) Improve quality of reference travel time such as using probe vehicles 

to collect information. 

2) The research segment’s length is 7.5 km. May be in next step, this 

route can be extended to test whether models can also be suitable for a 

longer route. 

3) Evaluate the DTTE’s accuracy on road with flow interrupted. 



 

68 
 

Further, the application case in this thesis shows that the DTTE method can be 

also used to evaluate the VSL control’s performance. Thus, once models’ accurate 

estimation ability is verified, it can be widely used in Transportation Management 

System. 
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