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ABSTRACT
PART I

The exact high temperature series expansions for
the Ising model specific heat are studied using series
analysis techniques. The estimates for the critical
exponent o from the series on the face-center cubic,
body-center cubic, and simple cubic lattices are found
to converge and the analysis indicates that the critical
exponent of the Ising model specific heat is o = 0.114.
This value is in disagreement with the present accepted
value of o = 1/8.

The exact high temperature series exXpansion for
the XY model specific heat on the face-center cubic
lattice 1s analyzed. The analysis of the specific heat
series and its derivative is found to be consistent with
a specific heat index of a = 0, corresponding to a loga-
rithmic singularity. A functional form for the XY model
specific heat, which is consistent with the analysis, is
presented.

The estimates of the critical exponent for the
specific heats of the Ising and XY models are compared
with experiment. A good agreement with exXperimental

systems is found for both models.
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PART II

A new test of scaling theory in the critical
region is proposed. The low temperature series
expansions for the two and three dimensional Ising
model magnetization on critical paths of the form
(Tc— T)/TcrrHp is studied using series analysis
techniques and the estimates of the critical exponent
on these paths is compared with the predictions of
scaling theory. A good agreement with scaling theory

is found in both two and three dimensions.
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PART I

SPECIFIC HEAT SERIES



CHAPTER 1
HIGH TEMPERATURE EXPANSION OF THE ISING MODEL

SPECIFIC HEAT FUNCTION



In this chapter a brief review of some of the
standard techniques used to derive high temperature
series expansions is pPresented. A thorough review of
the various methods of deriving high temperature series
expansions for the Ising model has been given by Domb
(1960). It is not the intention of the author to give
a lengthy review of the concepts of graph theory,
which is widely used in deriving the high temperature
series expansions. For g greater insight into such
concepts, the reader is referred to Domb (1960) or
Sykes, Essam, Heap, and Hiley (1966).

The Hamiltonian of the spin one-half Ising model
with nearest neighbor interactions may be written in

the form (Domb 1960)

N
H=-J ] o.0,-mH § ¢ (1.1)
<i,3> *d 121 1

where oy = tl is the spin variable associated with the
ith site on the lattice, m is the magnetic moment, H
the external field, J is the interaction energy between
neighboring sites, and N is the number of sites on the
lattice. The ¢ variables take the values 1 according
to whether the magnetic moment is parallel or anti-
parallel to the magnetic field.

The thermodynamics cf the Ising model are com-

puted from the partition function, which from the



Hamiltonian (1.1) takes the form

N
Z,, = z exp[ (J/KT) 2 0,0+ mH/KT o
N = Lo =1 <1,3> 14 121

(1.2)
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where the outermost sum is over the 2N possible values
of o4 for the N lattice sites.
Since the o variables commute (1.2) can be writ-
ten as a product
N

Z, = @I exp K(o.0,) I exp(L o,) (1.3)
N <i,j> R 51 1

where K = J/KT and L = mH/kT., The oicj satisfy the

relations

(030)%= (00" = ...= 1, (03050 = (030,23 = (0,0, ...
(1.4)
and hence
exp(Koicj) = cosh K + cricJ sinh K ., (1.5)

The first product in (1.3) can be expanded as

follows (van der Waerden 1941)

I (cosh K + oicj sinh K)==costh/2 K 1o (1 + oicJ tanh K)

<i,j> <1,
= (cosh K)qN/2 [1 + (tanh X) Z 0;0.
<ij> T 9
2
+ (tanh X) ) 0;050,05%...] (1.6)

<i,j><k, 8>



where gqN/2 1s the number of nearest neighbor bonds in
the lattice. When H is set eQual to zero the second
factor in (1.3) becomes unity and the zero field par-

tition function 1s simply written as

Zy = (cosh x)aN/2 ) [1+tanh K } 0;9
01=t1,....cN=i1 <i,J>
2
+ tanh“K ) 04050,0, + ...] (1.7)
AJ><k,0> T Y

A graph theoretical interpretation of (1.7) can
now be given. With each (oioj) one associates a nearest
neighbor bond (an edge of a graph) of the lattice and
any configuration with an odd number of edges meeting
at a vertex will have an odd oy left in the summation,
and will give zero contribution. Hence the only non-
zero contribution arises from closed graphs, each
vertex of which 1is the meeting point of an even number
of edges or in the terminology of graph theory the
vertex is of even degree. Thus with each term of (1.7)
one can assoclate one graph, whose vertices are all of
even degree. Such graphs, connected and separated, are
called no-field graphs.

The partition function (1.7) can now be written

as

gN/2
ZN.=2N(cosh K)IN/2ry 4 Y p(r) tanh®K1 . (1.8)
r=1



where gN/2 1s the number of nearest neighbor bonds in
the lattice. When H is set equal to zero the second
factor in (1.3) becomes unity and the zero field par-

titlon function is simply written as

Zy = (cosh g)anN/2 ) [(1+tanh K ) 0,0,
01=i1,....cN=il <i,j>
+ tanh’K ) 040:0,0, + «..] (1.7)
<i,J><k 4> J

A graph theoretical interpretation of (1.7) can
now be given. With each (oioj) one asscciates a nearest
neighbor bond (an edge of a graph) of the lattice and
any configuration with an odd number of edges meeting
at a vertex will have an odd oy left in the summation,
and will give zero contribution. Hence the only non-
zero contribution arises from closed graphs, each
vertex of which is the meeting point of an even number
of edges or in the terminology of graph theory the
vertex is of even degree. Thus with each term of (1.7)
one can assoclate one graph, whose vertices are all of
even degree. Such graphs, connected and separated, are
called no-field graphs.

The partition function (1.7) can now be written

as

gN/2
ZN=2N(cosh k)aN/2pq 4 Y p(r) tanhTk1l . (1.8)
r=1
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where p(r) denotes the total number of ways of embedding
in the lattice all graphs of r edges whose vertices are
all of even degree. The p(r) are in general polynomials
of degree r in N. Any such graph gives a contribution
of 2 for each vertex when the sum over the appropriate

N in (1.8) arises when one per-

Gi is done. Hence the 2
forms the sum over all states.
Instead of (1.8) what one is really interested in

is the dimensionless Helmholtz free energy per site

defined as
- g% = lim {log Zy}/N . (1.9)
N-co
Hence
- %% = log 2 + (q/2) log(cosh K)
qN/2 r
+ lim{logll+ J p(r)v 1}/N (1.10)
N0 r=1

where v = tanh K. It has been shown by Domb (1960) that
qN/2

lim {log [1 + § p(r) v'1}
N-+w r=1

corresponds to taking the terms linear in N in the par-
tition function. Thus denoting p; as the coefficient of

the term linear in N in p(r),

- ﬁ% = log 2 + (q/2) log(cosh K)
gN/2
£ 3 pi v¥ (1.11)

r=1



The zero field specific heat per site can be
obtained from (1.11) by differentiating twice with
respect to the temperature, i.e, |

2

32 S
C/KT = =— (=F/k) . (1.12)
H 3T2



CHAPTER 2

SERIES ANALYSIS TECHNIQUES



2.1 Critical Exponents

In theoretical and experimental results one usually
assumes that the thermodynamic variables have a simple
power law behavior near the critical point of a ferro-
magnetic system (or analogous systems). Therefore near
the critical point it ié assumed that the thermodynamic

function, f(x), of interest is of the form
£f(x) ~ A(x - xc)Y (x » xc) (2.1)

where X, is the critical point, Yy the eritical exponent
and A is the critical amplitude.

A precise and general definition of a critical
exponent to describe the behavior near the critical
point of a general function f(x) is given by

qs log f(x)
Y = 1im m (2.2)

X>X
c

where f(x) and (x-xc) are positive. Of course the exis-
tence of the exponent y does not mean f(x) is simply
proportional to (x—xc)Y. One must always expect correc-
tion terms of higher order, since (2.1) represents only
the dominant asymptotic behavior.

For a complete definition of all critical exponents,
including those used by the author, the reader is refer-

red to Fisher (1967).



2.2 Ratio Method

The ratio method for analyzing series expanslions
has been used first by Domb and Sykes (1957a and b) to
estimate critical points and exponents. The method
has been reviewed by Fisher (1967) and more recently
by Gaunt and Guttmann (1973).

If the dominant singularity of a function occurs
at some value X, and is of the form (2,1) then the

coefficients a, in the expansion

_ n
f(x) = a, x

n

le~18

0

will tend in the limit of large n to the binomial co-
efficients in the expansion of (2.1). The ratios I

of the successive coefficients an and an-l willl then

tend to
a
+
W, = =2 ~(1——Y—~—[nl]) M, (2.3)
n-1
where U, = xc_l. If the successive values of W, are

plotted against 1/n, the location of the singularity
can be estimated by extrapolating to the intercept

n = «, The value of ¥y can be estimated from the limit-
ing slope of the plot. 1If X, has been determined by

this or any other means a sequence y(n) of estimagtes
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for y can be formed by rearranging (2.3) as
y(n) = n(1 - HpX,) =1 . (2.4)

To aid the extrapolation of the sequence y(n) one often
plots these values against 1/n and extrapolates to the
intercept n = » to get an estimate of Y.

In general the series expansion for f(x) exhibits
non-physical singularities as well as physical ones.
The physical singularity is usually the closest singu-
larity to the origin on the positive real axis. When
there are no non-physical singularitieé nearer to the
origin than the physical singularity the ratios are all
positive and when the non-physical singularities 1lie
well outside the circle of convergence defined by the
physical singularity, then the ratios will converge
rapidly. If the dominant singularity lies on the nega-—
tive real axis the signs of the series coefficients will
alternate and when the dominant singularities are complex,
the signs will be irregular. For these cases, different
techniques must be émployed. It should also be mentioned

that more complex singularities may arise such as
-\ u
f(x) ~ A(x - x,) "[an(x - x )" . (2.5)

If (2.5) occurs (2.3) still holds but convergence may be

extremely slow.
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The ratio method has proved most useful when
applied to high temperature Ising model susééptibility
series, since in these cases the dominant singularity
is on the positive real axis. The low temperature
series presented in Chapter 4 does not in general fall
into this category, due to the présence of complex
pairs of Singularities symmetric about the negative
real axis and nearer the origin than the physical singu-

larity.

2.3 Transformations of Expansion Variables

It is possible, however, in some cases to transform
the physical singularity nearer to the origin than the
complex singularities. This is accomplished by trans-
forming the series eXpansion variable. A conformal

transformation of the form

]
S s (2,6)

is the type of transformation most often used.

Wortis (1969) applied a transformation of this form
to the antiferromagnetic Susceptibility series of the
Ising model on the f.c.c. lattice. After thus trans-
forming the Curie point to infinity the resulting series

was Successfully analyzed by the ratio method.
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More general non conformal transformations can
also be used. Betts, Elliott, and Ditzian (1971)
introduced a non conformal transformation of the form
ax'

X = 5 (2.7)
1 - Db(x')

and successfully analyzed the triangular lattice
fluctuations series with it. In Chapter 4, the
results of the use of several transformations of this
form are discussed.

A branch point singularity of the form (2.1)
can be transformed into a simple pole by taking the
logarithmic derivative of the series for f(x).

The form becomes

é%-log £(x) ~ z%;: (2.8)

and a ratio analysis of (2.8) can be used as a test

of how well the series is represented by the form
(2.1), since from (2.3) the ratios should approach

the constant value U, - If an estimate of X, is avail-
able a further extension of the transformation (2.8)

of the form

F(x) = (x-x_) % log £(x) (2.9)

is possible. If f£(x) has the form (2.1) then F(xc)
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should converge to y. If the series expansion of F(x)
is sufficiently regular an upper or lower confidence
limit can be put on the estimate of the exponent.

This can be done by evaluating the truncated seriles

to F(x) at the critical point x , using each successive
coefficient of the expansion to F(x). If the series
is regular, the last value of F(xc) can be used as an
upper or lower confidence limit, depending on whether
the sequence of estimates to F(xc) appear to be con-
verging on y from above or below. This new technique
in series analysis is being put forward by the author
and is used in the analysis of several series in

Chapter 4.

2.4 Padé Approximant Method

The Padé approximant method, which was first
applied to the Ising model by Baker (1961), approxi-
mates a function by the ratio of two polynomials.
Following the convention of Fisher (1967), the [L,M]

Padé approximant to a power series is defined by

P, (x) P+ P.X +...+ D xL
_ L _ -0 1 L
M 1+ q,X +...+ QX
The coefficients Pgs Pp -+ Pos Qys «-- qy are calcu~

lated by requiring the expansion of [L,M] to agree

exactly with the given power series, f(x),up to the
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order (L+M) = R, where R is the order of the term at
which f(x) is truncated.

The convergence of Padé approximants to f(x)
has been studied by Baker, Gammel, and Wills (1961)
and Baker (1965, 1968). This problem will not be
considered here but their result, that the [N,N]
diagonal approximants may be expected to converge to
£(x), will be used. Essam and Fisher (1963) also find
that the [N,N+1] and [N,N-1] approximants seem to
converge just as well and have used them to estimate
the function. The nature of Padé approximant is such
that it can represent a simple pole in a function
exactly, so it is desirable if possible to transform
the function being examined so the singularity is of
that form. Convergence in the region of such a pole is
rapid while in the region of a branch point it is
considerably slower.

In order to use the Padé approximant method most
effectively for functions of the form (2.1), the series
should be transformed using (2.8), a process which
converts the singularity into a simple pole.

If an accurate estimate of the critical exponent
vy is available, estimates of the critical point can be

obtained by forming Padé approximants to
()17~ AT Y (x-x )7 (2.11)

which has a simple pole at x = Xy
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If an accurate estimate of the critical point is
avallable, the series can be transformed using (2.9)
and the Padé€ approximants to F(x) can be evaluated at
the critical point X, to obtain estimates of the criti-
cal index v.

One can also use the Padé approximant method to
calculate estimates of the amplitude. Taking Padé

approximants to the function
(x-xc)tf(x)l"l/Y = o~y (2.12)

and evaluating them at the critical point, will give

estimates of A.



CHAPTER 3

ANALYSIS OF ISING MODEL SPECIFIC HEAT SERIES

16
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As noted in Chapter 1 series expansions of the
specific heat in zero field can be obtained as a
éeries in ascending powers of K =J/kT or v=tanh K.
The extrapolations of the critical indices were
found to be quite insensitive to a choice between
these variables and therefore analysis is presented
in the natural variable v only. The critical behavior
of the Ising model specific heat expansions has been
studied on the face-centered cubic, body-centered cubilc,
simple cubic (Sykes et al 1972b), hydrogen peroxide,
hypertriangular (Leu, Betts and Elliott 1969), diamond
(Essam and Sykes 1963), crystobalite (Gibberd 1970),
and the octrahedral (Oitmaa and.Elliott 1970) lattices.

Since the f.c.c. lattice is the most closely
packed of the lattices considered, more "information"
about the structure is contained in the earller co-
efficients of the f.c.c. expansion, Hence it is expec-
ted that the series for the f.c.c. lattice will approach
its limiting behavior more rapidly than the series for
the other lattices. In the analysis which follows,this
lattlce will be the one principally considered, since
the emphasis is on methods of analysis. However, most of
the calculations have been repeated for the other lattices,
and where the results are sufficiently good for infe-

rences to be made about the behavior of the series. They
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support all conclusions based on the analysis of the
f.c.c. lattice.

The ratio method has been discussed in detail
in Section 2.2. In the case of the specific heat

the assumed limiting behavior is of the form
- - -a
Cy/k A1 v/v, )T (3.1)

Equation (2.3) for the limiting behavior of the ratios

of successive coefficients of the series becomes

u ~(1+°‘% v . (3.2)

Ir v, is fixed an estimate of a can be obtained from
the slope of the ratio curve (when plotted against 1/n),
and from the sequence Y(n) defineqd by equation (2.4),

To form this Sequence the most recent estimate for Vs
based on the high temperature Susceptibility expansion

(Sykes et al 1972a),is used. This estimate is

Vo = 0.101740 + 0.000005

or (3.3)
Vc = 9.8290 + 0.0005

The Seéquence, together with the sequence of ratios
u, 1is given in Table 3.1. The Sequence y(n) in Table
3.1 seems to be converging to a constant value; for

n=29....14 the values of vy(n) are very close



Table 3.1

Ratios of the f.c.c. specific heat, together
with sequence of estimates y(n) of the critical ex-

ponent using the critical point vV, = 0.10174,

n Hp Y(n)

3 8.0000 -0.44218
4 8.2083 -0.3405
5 .2437 -0.1935
6 .3458 -0.0946
7 .5495 —6.0888
8 .7371 -0.1113
9 8717 -0.1235

11 .0489 -0.1269

12 .1130 -0.1259
13 .1673 ' ~0.1248

8
8
8
8
8
10 8.9709 -0.1270
9
9
9
14 9

.2139 -0.1240
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together. The sequence y(n) (solid line) is plotted
versus 1/n in Figure 3.1. Also shown are similar
‘sequences for the b.c.c. (dotted line) and s.c. (broken
line) lattices, which were the only other lattices with
regular ratios. For loose packed lattices, such as

the b.c.c. and s.c. lattices, only even terms are
present in the specific heat expansion and (2.4) must

be slightly modified. The modified form is

'a2n
a2n-2

Y(n) = n Q1 - ve) -1, (3.4)

To form these Sequences, the following values of v,

(Sykes et al 1972a) have been used

;1 4.58L44 + 90,0002
(3.5)

1 6.4055+ 0.0010

Simple cubic v

Body centered cubic v;

There is a close similarity in the behavior of
the three Sequences; they seem consistent with the
view that a for the Ising model is determined only
by the dimensionality of the lattice and not by its
detailed structure. They are also consistent with
the view that o is very close to 1/8. To obtain a
value of y(1l4) for the face centered cubic of -0,1250
requires l/vc= 9.8280. Thus if the limit is exactly

1/8 the sequences must pass through a minimum.



FIGURE 3.1

ESTIMATES FOR THE CRITICAL INDEX o FOR
THE f.c.c., b.c.c., AND s.c. LATTICES

CALCULATED FROM (3.2) AND (3.4)
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In Figure 3.2 the ratios Wy for the f.c.c. series
are plotted against 1/n in the usual way. In addition
in this Figure we have shown two lines (dotted) which
have slopes corresponding to o = 1/8 and o« = 0 and
which have the intercept v, = 9.8290. The last six
points of the ratio plot appear to lie on the line
corresponding to o = 1/8. This is‘a graphical expres-
sion of the fact that the last six values of y(n) are
very close to -1/8. It illustrates in a striking‘
fashion how unlikely it would be for the ratios, after
having settled down to such regular behavior which points
to the known intercept, to indicate subsequently another
simple value for a. The ratio méthod strongly suggests
a is very close to an 1/8 on the f.c.c. lattice. The
evidence of the b.c.c¢c. and s.c. also tends to support
this assumption.

When the Padé approximate methods of Section 2.4
are applied directly to the specific heat seriles the re-
sults are very inconclusive. In Table 3.2 the location
of the physical pole and the residue for a few Padé
approximants to the logarithmic derivative of the
specific heat on the f.c.c. lattice are given. Notice
that the Padé approximants have not converged to the

critical point as well as the ratio method and also



FIGURE 3.2

RATIOS wy VS. 1/n FOR THE ISING MODEL

SPECIFIC HEAT ON THE f.c.c. LATTICE
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of Padé approximants to d/dv log(c /v2)

Appfgxlir;ant Singularity Residues
[4,77 0.10249 | 0.4225
[5,61 0.10256 0.4290
[6,5] 0.10264 0.4359
[7,4] 0.10261 0.4329
[4,6] 0.1028% 0.4520
[5,5] 0.10215 0.3932
[6,4) 0.10289 0.4575
[7,3] 0.10340 0.4978
[3,6] 0.10356 0.5052
[4,5] 0.10440 0.5526
[5,47 0.10744 0.5486
[6,3] T 0.10465 0.5651

RATIO

RESULT (0.10174) (0.125)
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the critical exponent 1s not even close to the estimate
from the ratio method. Since there is a good estimate
of Voo Pade approximants to the funection (2.9) evalua-
ted at v = 0.10174 will give an estimate of o. These
are listed in Table 3.3. Notice that they give a =
0.35 in strong contrast to the ratio result. There 1is
also a large spread in the values for both Tables.

Hunter (1968) found that the mimiec function
Cy/R ~ A{Q1 - v/vc)‘“- 1 - av/v,} (3.6)

best approximated the f.c.c. specific heat series. If
this conjecture is right it would explain why. direct
Padé analysis of the specific heat gives such poor:
results. The form of the mimic function suggests the
second derivative of the specific heat with respect to
v is the function to analyze with Padé approximant
methods; The first derivative with respect to v should
also give better results when analyzed. To test this
conjecture Padé approximant analysis similar to that
done on CH is performed on(d/dv)CH and (d/dv)2CH.

The results are given in Tables 3.4 and 3.5. In Table
3.4 the location of the physical singularity and cor-
responding estimates of o for the Padé approximants to
the logarithmic derivative of both (d/dv)CH and

(d/dv)2CH are given. These Padé approximants give



Table 3.3

Estimates of a from evaluating Padé approximants

to (v—vc)(d/dv) log(CH/vz).

Approximant value
[L,M]
C4,71 0.3499
[5,61] 0.3463
[6,5] 0.3601
[7,41] 0.3440
(4,61 0.3542
[5,51 0.3573
[6,41 0.3575
(7,31 0.3555
[3,6] 0.5563
[4,51 0.3633
[5,4] 0.3589
[6,31 0.3615
[3,51 0.3836
[4,43 0.1925
[5,31 0.3490
[6,2] 0.7150

RATIO

RESULT (0.125)
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Table 3.4
Estimates of Vo and o from series expansions for
Cé and Cﬁ from the poles ang resldues of Pade approxi-

mants to g(v).

2
8= o5 log( & o) [ew)= & v log(C— — Cy)
Approximant Location of Estimate of Location of|Estimate of

[L,M] singularity{o from singularity|a from
residue residue

[4,7] 0.10170 0.1080 0.10177 0.1276
[5,6] 0.10174 0.1136 0.10212 0.2055
[6,5] 0.10174 0.1136 0.10218 0.2191
[7,43 0.10173 0.1128 0.10218 0.2190
[4,6] 0.10184 0.1274 0.10230 0.2446
[5,5] 0.10173 0.1132 0.10222 0.2261
[6,4] 0.10134 0.1004 0.10215 0.2132
[7,31 0.10171 0.1103 0.10222 0.2264

[3,61] 0.10036 ~0.0016 0.10565 1.428
[4,5] 0.10146 | 0.0840 0.10199 0.1826
[5,4] 0.10168 0.1070 0.10218 0.2116
[6,3] 0.10168 0.1066 0.10218 0.2175
(3,51 0.10107 0.0541 0.09454 -0.1382
C4,47 0.10082 0.0384 0.10300 0.3778
[5,3] 0.10164 0.1026 0.10216 0.2146
[6,2] 0.10183 0.1215 0.10011 -0.1360

RATIO

RESULT (0.10174) (0.1250) (0.10174) (0.1250)




Table 3.5
Estimates of a from series expansions for Cé and
Cg based on evaluation of Pade approximants to F(v) at

v o=v,= 0.10174 for the f.c.c. lattice.

- 4 = a
F(v)—(vc—v) I F(v)—(v—vc) v
1 d d
Approximant| log(7 g% Cq) 8 10g(a;? Cy)
[L,M] Value Value
[4,713 - 0.1142 0.1208
[5,6] 0.1141 0.1207
(6,51 0.1142 0.1075
[7,&] 0.1141 0.3577
[4,61] 0.1138 0.1214
[5,51] 0.1141 0.1452
[6,4] 0.1141 0.2371
£7,31 0.1140 0.2353
[3,61] 0.1194 0.1865
(4,51 0.1149 0.1354
[5,4] 0.1140 0.1338
[6,31] 0.1149 0.3950
£3,5] 0.1214 0.1792
[L,47 0.1095 0.1405
[5,3] 0.1133 0.1478
(6,21 0.1130 0.1432
RATIO
RESULT (0.125) (0.125)
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results quite consistent with the ratio method. In
Table 3.5 evaluations of the Padé approximants to
function (2.9) for the (d/dv)CH and (d/dv)2CH are
given. Again both give results consistent with the
ratio method. From these Tables it is seen that Padé
analysis of the first derivative of the specific heat
seems to give the most consistent results. This was
also trué for the other seven Ising models specifilc
heat series analyzed. Table 3.5 gives an estimate of
a = 0.114 from the analysis of the first derivatilve.
This is very close to the ratio result.

The widely held view that the specific heat of
a three dimensional Ising model of a ferromagnet
diverges at the critical temperature, from above,
inversely as an one eighth power is consistent with
the analysis presented here, but the author believes
the analysis shows o to be slightly less than 1/8.

However the evidence that o is close to 1/8 is strong.

In Figure 3.1 the sequences for y(n) appear to
be linear in 1/n for the last few terms. Linearly ex-
trapolating this sequence to n = « yields y(x)=0.114.
This is in agreement with Table 3.5. Thus a value of

o = 0.114 is possibly a "better'choice for a.



CHAPTER 4

ANALYSIS OF THE XY MODEL HIGH TEMPERATURE
SPECIFIC HEAT SERIES
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This chapter is concerned with the analysis of
exact high temperature series expansions of the spin
1/2 XY model of ferromagnetism or of a guantum lattice
fluid. This model was originally introduced by
Matsubara and Matsuda (1956) as a model of a quantum
lattice fluid. The spin 1/2 XY model is of great
theoretical interest as probably the simplest quantum
mechanical many-body system (excluding "diagonal"
models like the Ising model) and it is also of experi-
mental interest as a model of an insulating ferromagnet
or antiferromagnet.

Methods for derivations of the expansions will
not be given here but the interested reader is referred
to Betts, Elliott and Lee (1970) and Betts (1973).
Eleven coefficients in the specific heat series for
the f.c.c. and b.c.c. lattices have beeh derived by
Betts and his co-workers at the University of Alberta
(Betts, Elliott and Lee 1969, 1970 and Betts and Lee
1968). Only the f.c.c. lattice will be studied here
since the series on the b.c.c. lattice gave very poor
results and no conclusions could be made about the
critical behavior of the specific heat on this lattice.

From a ratio analysis of the fluctuation series,
Betts, Elliott and Lee (1970) estimated the critical

temperature Kc = J/kTC to be
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Kc = 0.2210 * 0.0006
or (4.1)

K;1= 4.524 + 0.013

on the f.c.c. lattice. This value of the critical tem-
perature has been accepted as the "best" estimate of
the critical point for the specific heat series. As

in the case of the Ising model the XY model will be
assumed initially to be of the form (2.1).

Figure 4.1 contains a standard ratio plot for
the specific heat on the f.c.c. lattice. The ratio
of successive coefficients U, is plotted versus 1/n.
Also shown are two lines (dashed) which have slopes
corresponding to a = 1/4 and o = 0 and which have the
intercept K;l = 4.524, The ratios exhibit a very
strong oscillation and very little can be estimated
about their limiting behavior.

When the Padé approximants were applied
directly to the specific heat the‘results were very
inconclusive. In Table 4.1 estimates of the location
of the critical point Kc and the exponent o from the
poles and residues respectively of Pade approximants
to the logarithmic derivative of the f.c.c. specific
heat are given. This Table gives the estimates Kb:

0.235 and o = 0.6. This is in strong conflict with



FIGURE 4.1

RATIOS My VS. 1/n FOR THE XY MODEL

SPECIFIC HEAT ON THE f.c.c. LATTICE
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Table 4.1

Estimates of Kc and a from Padé approximants

to (4/dK) log(Cy/K2).

Apﬁzfﬁ%mant Singularity Residue
[3,5] 0.1273 0.001
4,47 0.2352 0.602
[5,31 0.2352 0.603
[6,2] 0.2304 0.503
[2,51] 0.2352 0.599
[3,4] 0.2365 0.635
[4,3] 0.2360 0.622
[5,2] 0.2364 0.633
[2,4] 0.2772 -3.98
£3,31] 0.2351 0.600
[4,2] 0.2352 0.602
(5,11 0.2274 0.202
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Kc = 0.2210 from the fluctuation Series. Also o is
expected to be much smaller than 0.6. When the Padé
approximants to functioﬁ (2.9) are evaluated at

K, = 0.2210 to get an estimate of @, a value of g = 38
is obtained. This is clearly not g very good estimate,
and it indicates that (2.1) may not be g véry good
choice for the form of the specific heat.

In an effort to improve the ratios several trans-
formations Ofbthe form (2.6) and (2.7) have been tried.
No Euler transformation improves the ratios but
several transformations of the form (2.7) do improve

the ratios. The three "best" transformations tried

are

K = K . (4.2)
1.0[1 - (K')=3

K = = K! 5 (14-3)
1.5I1 - (x')“]

|
K = ~ (4.4)
1.601 - (K')°]
In Figure 4.2 the ratios corresponding to these
transformations are plotted versus 1/n, 1In order to
plot all three on the graph, the ratios are divided

1
by the transformed critical temperature Kc for each
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FIGURE 4.2

RATIOS u, VS. 1/n FOR THE TRANSFORMED
f.c.c. SPECIFIC HEAT USING TRANSFORMA-

TIONS (4.2), (4.3), AND (4.14).
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transformation. The circles correspond to a = 1/1.4,

b =1 and Ké = 0.2844, the triangles to a = 1/1.5,
b = 1 and Ké = 0.3014, and the x's to a = 1/1.6,
b = 1 and Ké = 0.3179. Also shown are three lines

(dotted) corrééponding toa = 1/4, o = 1/8, and o = 0,
and which have the known intercept of unity. Notice
that in these ratios the oscillation is still present
but cohsiderably damped. A precise estimate of o is
not possible, but all three sets of ratios appear to

< 1/8.

oscillate abouf a value of a

Padé approximants to the logarithmic derivative
of (d/dK)CH and (d/dK)ZCH do not give a useful estimate
of o.. These approximants do not locate the physical
singularity with ahy consistency. The Padé approximants
to the function (2.9) for (d4/dK)Cy and (d/dK)ZCH give
estimates of o which are clearly in error.

The specific heat series for the XY model seems
intractable to the standard Padé approximant techniques.
When the ratio plots in Figures (4.1) and (4.2) are
re-examined a possible explanation for this failure of
the Padé approximant methods is found. The ratios in
both Figures seem to oscillate about a = 0. If o = 0
the assumed form (2.1) for the specific heat is wrong.
The form

Cy/k ~-Alog(l - K/K ) + B (k>+K,)  (4.5)
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would be more appropriate. If this assumption is true
the first temperature derivative of the specific heat
would have a simple pole and Padé approximants to
(d/dK)CH should converge rapidly in the neighbourhood
of the critical point. In Table 4.2 the physical root
of the Padé approximants to (d/dK)CH are listed. The
approximants seem to be converging rapidly towards the
assumed critical point Kc= 0.2210. The "best" estimate
of Kc from this Table is Kc= 0.2203. This estimate is
remarkably close to the estimate from the fluctuation
series. The convergence in this Table is extraordinary,
especially when compared with the convergence of the
estimates of Kc in Table 4.1 which assumes a function
of the form (2.1) near the critical point. Clearly,
(d/dK)CH must be very close approximation to a simple
pole in the critical region, and the XY model specific
heat will be closely approximated by (4.5), except
possibly very near the critical point.

If the form (4.5) is assumed, then estimates of
the critical amplitude A can be obtained by evaluating

Padé approximants to
(K - Kc)(d/dK) CH (4.6)

at the critical point Kc= 0.2210. Estimates are given
in Table 4.3. A best estimate A from this Table is

A = 0.254 + 0.06. Hence



Table 4.2

Estimates of K, from Padé approximants to

(d/dK)CH.

Appggxﬁ?ant Physical root
[4,61 0.2199
[5,5] 0.2199
[6,4] 0.2208
[7,31 0.2205
(3,61 0.2201
[4,5] 0.2200
[5,4] 0.2111
[6,3] 0.2219
[3,5] 0.2198
[h4,4) 0.2176
[5,3] 0.2181
[6,2] 0.2096
[2,5] 0.2191
[3,4] 0.2102
[4,3] 0.2163
[5,2] 0.2100




Table 4,3

4o

Estimates of A from evaluating Padé approximants

to (X - Kc)(d/dK)CH at Kc

0.2210.

Approximant
[L,M] Value
Cy,61 0.2510
[5,5] 0.2365
[6,4] 0.2548
[7,31 0.2547
£3,6] 0.2583
[4,5] 0.2586
[5,4] 0.2533
[6,3] 0.2546
[3,51] 0.2542
4,47 0.2516
[5,3] 0.2596
[6,2] 0.2554
[2,5] 0.2498
[3,4] 0.2501
[4,3] 0.2463
£5,2] 0.2508
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CH/k-—O.254 log(l-—K/Kc) - 0.254 (K-*KC) . (4.7)

A possible simple "mimic" function for the XYy model

specific heat is
Cy/k~=0.254[10g(1 - K/K,) + K/K, 1 + ¢(K) (4.8)

where ¢(X) is the correction polynomial.

The proposed functional form (4.7) for the limit-
ing behavior of the XY model specific heat is tentative.
More terms for the f.c.é. Specific heat series will be

needed to vefify this assumed behavior.



CHAPTER 5

COMPARISON WITH EXPERIMENT
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5.1 The Ising Model

Recently (Huiskamp 1972) good agreement has been
found between experimental measurements of the specific
heat on the Ising-like material Rb300015 and numerical
predictions for the simple cubic Ising model specific
heat. The experimental results were found to fit

rather well to the curve

~-1/8

C/k ~ A[(1- Tn/T) - l-Tn/8T] (5.1)

where T = 1.14 K is the antiferromagnetic Neél point.
This is the same functional form as suggested by
Hunter (1968) for the three dimensional specific heat

of the Ising model. The specific heat of Cs CoCl5 also

3
appeared to fit the functional form (5.1) very well
(Huiskamp 1972).

These are the only Ising-like materials which at
present seem to give an estimate of a = 1/8. Most of
the other Ising~like materials seem to be fitted better
to a curve with o ~ 0.31 (Cooke et al 1972). There
seems to be some experimental evidence for o = 1/8 but
at present the evidence is not overwhelmingly in favor
of this value. Hopefully higher resolution and better

estimates of the critical temperatures in experiments

will soon resolve this problem.
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5.2 The XY Model

Heu near the superfluid transition temperature
TA is expected to behave like an XY model system
(Matsubara and Matsuda 1956). This substance has also
been examined in more detalil experimentally than any
other "XY like" material. 1In fluid.systems like Heu,
the heat capacity at constant pressure is the analogue
of the specific heat at constant field in magnetic
systems.

Ahlers (1969) has found that the experimental
curve for Cp does not disagree with a = 0 and his three
alternative interpretations of the data all had o <
0.001. More recent experimental results on He4 by

Ahlers (1972) (private communication) fit very well

(assuming a = a') to

% [1 + br¥1itT % - 11 + B

for (5.2)

and

0.5 < x < 0.9

This is a very good agreement with the assumed
theoretical behavior of the XY model. The results of

Chapter U4 are not precise enough to rule out the
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possibillity that o is a small power and experiments

do not rule out that a = 0. Experimental and theore-
tical calculations seem to generally agree, but work
needs to be done in both fields to resolve whether o

1s a small power or is equal to zero.



PART II

A NEW TECHNIQUE IN THE ANALYSIS OF EXACT

SERIES EXPANSIONS IN LATTICE STATISTICS



CHAPTER 6

LOW TEMPERATURES SERIES EXPANSIONS FOR

THE ISING MODEL OF A FERROMAGNET
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In this chapter a new technique in the analysis
of exact series expansion in lattice statistiecs will be
presented. This technique is applied to the exact low
temperature-high field expansion of the magnetization of
the Ising model.

The low temperature series expansion is an expan-
sion about the ordered state. For temperatures slightly
above absolute zero the ordered state will be perturbed
by thermal excitations. The probability of any pertur-
bation from the ordered state is given by the appropriate
Boltzmann factor. In general, overturning of almost any
spin causes an increase in enérgy and the most important
perturbation at the lowest temperature will correspond
to a relatively few overturned spins. Then one can group
the perturbations conveniently according to the number
of overturned spins, the energy of any particular per-
turbation depending on the relative positions of these
spins. More precisely, the increase in energy of a

perturbation is given by
AE = 2J(gs - 2r) + 2mHs (6.1)

where q is the coordination number, H the applied field,
s the number of overturned spins and r the number of

nearest neighbour pairs in the overturned configuration.
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Denoting exp(-2J/kBT) by z and exp(—2mH/kBT) by
i, the Boltzmann factor corresponding to (6.1) will be
qu-2r us. At sufficiently low temperatures both z and
H will be small ahd the partition function and free
energy can be expanded as a double series in powers of
z and u.

Denoting N as the number of sites on a lattice,
the number of perturbations for the ordered state cor-
responding to a gilven Boltzmann factor will be a polynomial
in N. The configurational free energy per spin is propor-
tional to the logarithm of the configurational partition func-
tion and it can be shown (Domb 1960) that this corresponds
to taking the coefficient of the first power of N in the
partition function. Hence, letting the linear part of
the total number of ways of choosing s spins with r bonds

by [s3rl, then the logarithm of the partition function

per site is given by

log A = ) [s;r] gds-2r s . (6.2)
all s,r

It is customary to group the expansion (6.2) as a

series either in powers of yu, written as

log A = ) L (z) T (6.3)
s

where Ls(z) are called the low temperature polynomials
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and are finite polynomials in 2z, or in powers of 2z,

wriltten as
log A=) v (w) 2" (6.4)
n .

where the wn(u) are finite polynomials in u. Using this

notation the free energy per spin will then be given by

F=-2qJ-mH=-kTlogh . (6.5)

When using the method outlined above, one usually
groups the perturbations according to the topology of
their nearest neighbor linkages. To illustrate the
use of this method, consilder the perturbations of four
spins and three nearest neighbor bonds on the f.c.c,
lattice. [4;3]1 consists of the following perturbations
together with the number of ways of putting each pertur-

bation on the lattice

//1y/’ 282 N

\Y’ LY N
ZZEX (8 N° - 200 N)
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Hence, the coefficient of zl‘2 uu is 126. Many
very sophisticated techniques have been developed for
counting such low-temperature configurations (Domb 1960,
Sykes et al 1965, 1973).

The tests in this chapter were made possible by
recently extended data on the low temperature expansion
of the free energy on the two and three dimensional
Ising models (Sykes et al 1965, 1973). The low tempera-
ture series éxpansion on the two dimensional lattices
are now complete to the L21(Z) polynomial in the (6.3)
grouping and the wl6(u) polynomial in the (6.4) grouping
for the honeycomb, LlS(Z) and wez(u) for the square, and
Llo(z) and W3é(U) for the triangular. The three dimen-
sional diamond lattice is complete to Ll7(z) and w3o(u).
The tests were also used on the hydrogen peroxide lattice
data, developed by Dr. D.D. Betts and his group at the
University of Alberta. The hydrogen peroxide lattice

1s complete to L21(Z) and wl6(u).
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SCALING AND THERMODYNAMIC RELATIONS FOR INDICES
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7.1 Thermodynamic Inequalities

The only rigorous relations thus far proposed among
the critical-point exponents are a set of inequalities.

Using the Stability-convexity relations

(H,T) <92F> (7.1)
Cy(H,T) = =T (&L) > ¢ 7.1
M 372 M
and
2
L =@ . (7.2)

Xp(H,T) = Vo2

with standard thermodynamic manipulations Rushbrooke (1963)

rigorously proved for any system
a'+2B+Y'22- (7-3)

(We use the widely accepted notation for critical expo-
nents; see Fisher (1967), for example).

A further important inequality
a' + B(1 + 6§) > 2 (7.4)

was rigorously established by Griffiths (1965), by the
use of very general convexity properties of the free
energy.

For the Ising model, Buckingham and Gunton (1968)

proved the inequalities

2 -mn<dls -1)/(6 + 1) (7.5)
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and

2 -ngdy'/(2B + y') g dy'/(2 - a') (7.6)

where 4 1s the dimensionality and more recently Fisher

(1969) showed
Yy £ (2 - n)v . (7.7)

Very recently Griffiths (1972) proved for the
Ising model that the magnetization on any path, which

in the critical region is of the form,

T « HP s (7.8)

must have a critical exponent with a value less than or
equal to B. The proof of this inequality follows direct-
ly from the convexity of the Gibbs free energy.

Ir Mp(H,T) denotes the magnetization on the path
defined by (7.8), Bp the critical exponent of Mp(H,T)
near the critical point’M(0+, T) the spontaneous magne-

tization, and 1 the reduced temperature (TC—T)/TC, then

B
Mo (H,T) = 1 b (7.9)
and

M0, , T) « ° | (7.10)

Since the Gibbs function is convex



54
> 0 . (7.11)

This implies the projection of the slope in the H direc-
tion, on the M(H,T) surface is always positive. There-
fore along an isotherm in the positive H direction the
magnetization will remain unchanged or increase in
value. This is shown geometrically in Figure 7.1. The
solid curved line represents the spontaneous magnetiza-
tion, the broken curved line is any path of the form
(7.8) and T, is the critical point.

Therefore

M, (H,T) > M(O,, T) . (7.12)
Equations (7.9), (7.10), and (7.12) imply

B
1P > B (7.13)

Hence, as T approaches zero

B 2 ep for all p . (7.14)

In a private communication Griffiths has stated
that he has shown from the Kelly-Sherman inequalities

(Kelly and Sherman 1968, Griffiths 1967) that

for all p > 1 . (7.15)

O
v
w



FIGURE 7.1

THE ZERO FIELD PATH AND A TYPICAL PATH

OF THE FORM 1 « hP ON THE M(H,T) SURFACE
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By making some quite plausible but more special
and less fundamental assumptions, a variety of further
inequalities can be derived (Stanley 1971, Stephenson
1971). The above inequalities are of particular utility
when used with results derived from series analysis and

experiments.

7.2 Scaling Theory

It has been conjectured by Essam and Fisher (1963)
that (7.3) can be replaced by the equality but so far
no rigorous proof exists although the conjecture is con-
sistent with experimental and model calculations and the
non-rigorous scaling-law theory of exponents which predicts
that the inequalities (7.3-7.7, 7.1l4, 7.15) are equalities.
The scaling hypothesis was suggested by Widom
(1965 a,b), Domb and Hunter (1965), Kadanoff et al (1967)
and Patashinskii and Pokrovskii (1966). The basic postu-
late of the static scaling hypothesis asserts that the
Gibbs potential G(t,H) is a generalized homogeneous func-
tion. A function f(X,Y) is by definition homogeneous if

for all values of the parameter A,

b

£(2%x, A°Y) = Af(X,Y) . (7.16)

Thus from the general definition of (7.16), the static

scaling hypothesis states
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(221, AP1) = A¢(H,T) . (7.17)

Differentiating both sides of (7.17) with respect to the
field derivative H,

M(H,t) = 2371 m(23H, 2Pv) . (7.18)

Letting A = (l/'r)l/b and evaluating (7.18) along the

axis H = 0, B 1s found to be

B = b . (7-19)

Setting A = H'l/? in (7.18) and evaluating the equation

along the critical isotherm it is found that

= 2 . (7.20)

Equations (7.19) and (7.21) can be solved simultaneously
for the scaling parameters a and b, and then substituted

into (7.18) to give the magnetic equation of state,

M(H,7) = A~1 m(a8m, A1/B1) (7.21)
where (new A) = (old A)1/1+6.
Putting A = 7P or A = g=1/8 , two alternate forms for
(7.21) are possible;
: - B A
M(H,T) = 1 Ml(H/T ) (7.22)

and

(i, ) = B My (o/mt/h) (7.23)
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where Ml and M2 are analytic in the vicinity of the
origin and A = BS&.

One can obtain additional exponents by taking the
second derivative of (7.17) with respect to the field
to get the isothermal susceptibility and by differen-
tiating twice with respect to temperature to obtain the

specific heat at constant field. This ylelds

y =8(s -1) , (7.24)

y' =

a' + B(s +1) =2 (7.25)

ot + 28y =2, | (7.26)
and

a =a' . (7.27)

It should be clear how to obtain all the critical
exponents in terms of the scaling parameters a and b ,
and how these two parameters are eliminated to obtain
a whole host of equalities among the exponents. It is
also noted that the inequalities of section 7.1 all

become equalities in scaling theory.

7.3 Tests of Scaling Theory

For experimental magnetic systems or, with appro-
priate identification of variables, for fluids the scal-

ing hypothesis can be tested by fitting a scaled equation
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of state to the data (M. Vicentini-Missoni et al, 1969
and references therein). More sensitive tests can be
achieved with theoretical models, in particular the
Ising model. The critical exponents derived from series
analysis techniques can be used to test the various
equalities (equations 7.24-7.27 etc...) predicted by
scaling theory (Kadanoff et al 1967). The scaled equa-
tion of state éan be constructed by fhe use of analytic
continuation methods on series expansions and then the
theoretical expectations resulting from the form of the
equation of state are checked against series expansion
results (Gaunt and Domb 1970). The critical behavior of
the magnetization and its temperature derivatives can be
examined on the critical isotherm and the estimates

of the critical exponents compared with scaling predic-
tions (Betts and Filipow 1972). The series expansions
of the higher derivatives of the free energy with respect
fo the magnetic field can be studied above and below the
critical point to verify scaling predictions (Essam and
Hunter 1968). All these tests have given good agreement
with scaling and none contradicts scaling. Relations
among critical amplitudes are also obtainable from scal-
ing theory (Watson 1969, Betts, Guttmann and Joyce 1971)
and they too seem to be satisfied by models such as the
Ising model (Gaunt and Domb 1970, Betts and Filipow 1972).
The next chapter will put forward a new test of the

predictions of scaling theory.



CHAPTER 8

A NEW TEST OF SCALING IN THE CRITICAL REGION
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Equations (7.22) and (7.23) yield predictions of
the critical exponents of the magnetization and its
derivatives along the 1 and H axes and these are the
exponents usually examined and tested. The above
scaling theory equations also tell us something about
the magnetization along any path which in the critical
region is of the form (7.8).

Along this path (7.22) and (7.23) become

M(H,T)

TBMl(T(l-pA)/p) (8.1)

and :

M(H,T)

From equations (8.1) and (8.2) it can be seen that
the quadrant H >2 0 , T > 0 1is divided into two regions

1/66. For curves with p < 1/88 all

by the curve 1t = H
exponents have their T axis value as given by (7.22)
while for p > 1/B86 all exponents have their H axis value
determined from (7.23).

These predictions from scaling theory are much
stronger than the thermodynamic inequalities (7.14) and
(7.15) by Griffiths. It is noted that thermodynamic
inequalities have once again been shown to be equalities
in scaling theory. The predictions can be tested in the

case of the two and three dimensional Ising models where

extensive data are available in the low temperature-high
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field expansion of the free energy. From Chapter 6 one

sees that the free eénergy 1s expressed as g power series

in the variables y = exp(—ZmH/kBT) and z = exp(-2J/kBT).

It is convenient to replace z by s = z/zc in the expan-
sions. Figure 8.1 depicts schematically the (s,u) plane
showing the critical point, (1,1), the path U =1 and

8 = 1 along which the behavior of thermodynamic functions

is usually examined and the critical curve s=1- (l_u)l/BG
(broken line) dividing the area of interest into two regions

and the paths
s =1 - (1~ y)P (8.3)

along which the critical behavior of the magnetlzatlon
was investigated in this thesis,

From (6.3) and (6.5) and the definition of the
magnetization, the magnetization in the variables u and

Z is given by

M(u,2) = ml1-2u(3L/3u),] . (8.4)

Using thils definition a computer program was
written to derive series for various paths defined by
(8.3) from the low temperature polynomials of the honey-
comb, square, triangular, hydrogen peroxide, and diamond
lattices. In the cases of the Square, triangular and

diamond lattices s was defined as s = u/uc= (Z/Zc)2.



FIGURE 8.1

PATHS ON WHICH THE MAGNETIZATION WAS STUDIED
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For the derivation of these series (8.3) must be expanded
by the binomial expansion. If p is non-integral, the
truncated series expansion will be a very poor represen-
tation of (8.3) near the critical point. For this

reason only integral values of p can be used in (8.3).
This will give series for the diagonal path s =y and
above. Below the diagonal path (8.3) must be inverted,

i.e.
L=1-@ =P (8.5)

This can be expanded for integral values of 1/p and series
below the diagonal path can be studied. A second consi-
deration is that for a curved path, the closer the path

is to the diagonal path the more of the expansion data

is used. For this reason only small integral values of

p and 1/p are studied.

The paths along which the magnetization was studied
for the five lattices are shown schematically in figure
8.1 and these are the paths for p = 3, 2, 1, 1/2, and
1/3, plus the critical isotherm and zero field paths.

For the two dimensional Ising model B6 = 1.875 and for
the three dimensional Ising model g6 ~ 1.56. Thus,
scaling theory predicts the magnetization on the critical
isotherm and on the critical paths for p = 1, 2, and 3
must have critical indices equal to 1/6 for both the two

and three dimensional Ising models. The zero field
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magnetization and the magnetization on the critiecal paths
for p = 1/2 and 1/3 must have critical indices equal to
B for both models.

The critical points for the two dimensional lattices
are known exactly, so all the series derived for these
lattices are exact. For the three dimensional lattices
the critical points are not known exactly. The locations
of the critical points have been determined by the
author from a reanalysis of the high temperature suscep-
tibility series of both.lattices (Essam and Sykes 1963,
Leu, Betts and Elliott 1969). 'The critical points used
were zcb= 0.317393 for the hydrogen peroxide lattice and
u, = 2,° = 0.227832 for the diamond lattice.

The series derived by this method are very long
on some of the paths. This length is deceptive since
there is actually less configurational information in
these long series than there is in the series for the
spontaneous magnetization or the magnetization on the
critical isotherm, which are much shorter. For instance,
on the honeycomb lattice the spontaneous magnetization
is complete to 216, the magnetization on the critical
isotherm is complete to ugl, and the magnetization on
the path for p = 2 is complete to 339. The magnetization

series for all the paths on the five lattices are given

in the Appendix.



CHAPTER 9

ANALYSIS OF THE SERIES
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9.1 Arbitrary Curved Path Series

Most of the magnetization series on the various
paths have coefficients which vary erratically in sign
and magnitude, and therefore the ratio method (Domb and
Sykes 1957) and variations of it cannot be used. The
critical isotherm series, the zero field magnetization
series, and some of the diagonal series have smoother
ratios but unfortunately in no case have the ratios
become linear in 1/n. They all exhibit an irregular
oscillation probably due to_the influence of competing
non-physical singularities of the order of unit distance
from the origin in the complex plane of y or s. Figure
9.1 is a plot of the smoothest set of ratios. In this
figure, the ratios of the coefficlients of the magnetiéa—
tion of the trilangular lattice on the critical isotherm
are plotted against 1/n. From this plot it is estimated
1/6 = 0.064 £ 0.02. In Table 9.1 successive linear
approximations to the exponent, given an exact value of
the critical point U, = 1, are tabulated, using equation
(2.4). This series is fluctuating too much to give a
precise estimate of 1/8. The ratios of the coefficients
for this particular series are far more regular than the
ratios of the other 32 series analyzed. The estimates
from ratio plots, though imprecise, have been done to

give confidence limits and to check other results. The



FIGURE 9.1

RATIOS ¥, V8. 1/n FOR THE MAGNETIZATION

OF THE TRIANGULAR LATTICE ON THE CRITICAL

ISOTHERM.
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Sequence of approximations to the exponent given

the critical point M= 1l for the triangular magnetiza-

tion on the critical isotherm, using the equation Y(n)=

n(l - un) - 1.

n y(n)
1 0.07407
2 0.18519
3 0.05051
4 0.04088
5 0.05510
6 0.07728
7 0.05631
8 0.05896
9 0.06892
10 0.06117
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ratio method agreed with other methods on all series
except the diagdnal series. The reasons for this
discrepancy will be discussed later.

Four different techniques other than the ratio
method were used to analyze the series to obtain
estimates of the critical exponents and three of the
tests gave very precise and consistent resu;ts and
the fourth method gave better confidence limits, on
some of the series, than the ratio method. The three
tests which gave very consistent results were all
variations of Padé approximant techniques.

The first method consists of the determining of
the poles and residues of the Padé approximants (Baker
1961) to the logarithmic derivative of the magnetization
on the various paths. The poles give estimates of the
critical point and the residues give estimates of the
critical exponent. In Table 9.2, the location of the
pole and the value of the residue for a few of the Padé
approximants are tabulated for the path s=1- (1—11)1/2
on the square and hydrogen peroxide lattices. It was
noted that the location of the pole and the value of
the reéidue seem to follow a smooth relationship for
all Padé approximants. When plotted the two estimates
form a very smooth curve for both series. The inter-
section of this curve with the line s = 1 is a "best"

estimate of the exponent. The resulting curves for the
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Table 9.2

Padé approximants to (d/ds)log M(s) on the path
s = z/zc =1 - (1.~ u)% on the square and the hydrogen

peroxide lattices.

Hydrogen Peroxide Square
Apngﬁ%mant Singularity |Residue Ap%i?ﬁﬁmant Singularity |Residue
[16,20] 0.9991 0.3131 11,131 0.99948 0.1253
(17,191 0.9987 0.3109 f12,12] 1.00064 0.1279
18,181 0.9994 0.3149 [13,113 1.00076 |0.1281
(19,171 0.9988 0.3114 [14,10] 1.00010 0.1269
[20,16] 0.9976 0.3051 (15, 91 1.00021 0,1271
{15,201 0.9989 0.3121 [ 9,141 1.00081 0.1281
[16,19] 0.9985 0.3098 11,12] 1.00157 0.1292
(17,181 0.9978 0.3065 [12,11] 1.00084 0.1282
[18,17] 1.0121 0.4348 (13,101 1.00088 0.1283
(19,161 0.9975 0.3048 14, 91 0,99983 0.1264
[15,19] 0.9982 0.3087 [10,12] 1.00246 0.1300
[16,18] 0.9978 0.3064 (11,111 1.00345 0.1306
(17,171 0.9978 0.3064 [12,10] 1.00071 0.1280
[18,16] 0.9970 0.3025 13, 91 1.00168 0.1295
£19,15] 0.9976 0.3052 [14, 81 0.99814 0.1235
14,191 0.9987 0.3109 [18,131] 1.00166 0.1292
[15,181] 0.9984 0.3096 [ 9,12] 1.00213 0.1298
(16,171 0.9978 0.3065 £10,11] 1.00194
17,161 1.0043 0.3501 (11,101 1.00149
(18,151 0.9975 0.3047 [12, 91 0.99917
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path s = 1 - (1 - u);5 on.the triangular and hydrogen

peroxide were Very similar to the curve shown in

Figure 9.4 which‘is the same plot for the honeycomb

diagonal series. The intersection points are found

to be 0.1265 on the Square lattice and 0.319 on the

hydrogen peroxide lattice. The pPlot of location of

the critical point versus the residue forms a very

regular and smooth curve for all the other series and

appears to give a very precise estimate of the exponents.
The second method consists of determining the Padé

approximants to the series for

(1 - w(da/du) log M(p)
or

(1 ~ s)(d/ds) log M(s)
or

(z - zc)(d/dz) log M(2) (9.1)

and evaluating the Padé approximants at the critical
points (y =1, s = l, or z = zc) to give estimates of
the critical eéxponents. Table 9.3 represents typical
Padé evaluation tables for the two and three dimensional
lattices studied. From this Table a "best" estimate of
the critical €éxponent for the triangular and diamond on
the path s = 1 - (1 - u);§ is 0.12495 and 0.3115 respec-

tively. The scatter of the numerical values of the
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evaluations of the Padé approximants to (9.1) in Table
9.3 are typical bf the scatter in the Padé evaluations
of all the series tested. It was also noted that the
higher degree Padé evaluations éppear to be converging
towards the scaling predictions. In all cases the
results from this method agree very well with method 1.

The third method invelves making Pad€ approximants
to various powers of the magnetization on a given path
and then plotting the location of the pole versus the
power for a few of the Padé approximants. The intersec-
tion of these curves with the line corresponding to the
critical point gives a "best" estimate of the exponent.
Figure 9.2 is such a plot for the series on the path
s=1-(1- 12 for the square lattice. From this plot
a "best" estimate of the exponent is 0.0654. This method
gives results very consistent with methods 1 and 2.

These methods were the only methods which gave any
~consistent results for many of the series. A fourth
method which worked successfully on the series for the
zero field magnetization and the magnetization on both the
critical isotherm and the diagonal paths was the numerical
evaluation of the series to the function (9.1) at the
critical point using successively higher coefficients
of the series. This series should form a sequence of
estimates converging on the critical exponent. If the

sequence is regular the last value can be taken as either
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Table 9.3

Evaluation of Pade approximants to_(l—s)(d/ds)log M
at the critiecal point s = 1 for the prath s= z/zc= l-(l-u)%

on the triangular and diamond lattices.

Triangular ' Diamond
ApproXimant Value Approximant Value
(12,147 0.12491 £15,171] 0.31201
[13,13] 0.124998 [16,16] 0.31258
[14,12] 0.124996 - [17,15] 0.31200
(15,113 0.12478 (18,147 0.30910
(11,1473 0.12503 [14,173 0.31142
(12,133 0.12481 £15,16] 0.31183
[13,12] 0.12502 [16,15] 0.31177
[14,113 0.12492 £17,14) 0.30659
[11,13] 0.12492 [14,167 0.31240
[12,12] 0.12502 [15,153 0.31143
[13,11] 0.12502 [16,14; 0.31627
(14,107 0.12482 [17,13] 0.30975
[10,13] 0.12497 [13,16] 0.31779
[11,12] 0.12520 [14,15] 0.31059
[12,11] 0.12502 (15,147 0.31012
[13,10] 0.11994 [16,13] 0.29340
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an upper or lower bound. These sequences for the magne-
tization on the critical isotherm for the honeycomb and
hydrogen peroxide lattices are shown in Table 9.4. From
these sequences it can be estimated that 1/6 > 0.0659
for the honeycomb lattice and 1/6 > 0.1840 for the hydro-
gen peroxide lattice. When the inaccuracies in the
critical point are considered it is found that 1/6> 0.180
for hydrogen peroxide. Thus we get lower bounds for 1/6
in both two and three dimensions and we can use these
values as confidence limits. All the confidence limits
quoted in this section are a result of this method or
the ratio method. |

Tables 9.5 and 9.6 are a summary of the results of
these various methods. The number of significant figures
quoted represents the apparent precision of the various
consistent results and has nothing to do with the actual
accuracy of the results. Since many of these seemingly
very precise results differ from lattice to lattice the
various estimates of the exponents have not converged
as much as the methods seem to indicate. For this reason
no confidence limits are quoted where the ratio method
and method 4 gave no results.

The two dimensional results agree remarkably with
scaling on all paths but the diagonal. In all cases

other than the diagonal the estimates are within a few



Table 9.4

17

Value of (u - 1)(d/du) log M at the critical point

U = 1 using each successive coefficient of the critical

isotherm magnetization series for the honeycomb and hydro-

gen peroxide lattices.

Degree of Polynomial

Numerical value of polynomial

evaluated Honeycomb Hydrogen Peroxide
1 0.05742 0.10951
2 0.06262 0.13546
3 0.06199 0.15098
by 0.05884 0.16053
5 0.06318 0.16643
6 0.06518 0.16997
7 0.06503 0.17191
8 0.06348 0.17274
9 0.06486 0.17386
10 0.06554 0.17522
11 0.06522 0.17659
12 0.06507 0.17783
13 0.06556 0.17895
14 0.06561 0.17993
15 0.06561 0.18077
16 0.06570 0.18151
17 0.06577 0.18217
18 0.06584 0.18282
19 0.06590 0.18341
20 0.06590 0.18396
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percent of scaling predictions.

In three dimensions the results also agree quite
well with scaling but are of an order of magnitude less
precise. This is due to the imprecision in the estimate
of the critical point énd the critical exponents B and

1/6.

9.2 Analysis of Diagonal Series

The analysis of the diagonal series for all lattices
represents a very difficult problem. Figure 9.3 is a
ratio plot for the honeycomb lattice. Also shown are
straight lines corresponding to Bl = 1/15, Bl = 1/8,
and Bl = 1/7. In Table 9.7 a sequence of approximates
to the exponent, given a value of the critical point
u =1, is tabulated. From the Figure 9.3 and Table 9.7
there is no evidence that with the number of terms availa-
ble, the scaling value of §1=Ld5 holds and the spontaneous
magnetization value of 1/8 is also implausible. The ratios
do however fit rather well to the line corresponding to
B, = /7. |

When method 1 is used on this series the results
are more consistent with scaling theory. In Table 9.8
the locations of the poles and resulting residues are
tabulated for a few higher and central Padé approximants

fo the logarithmic derivative of the magnetization.



FIGURE 9.3

RATIOS u, VS. 1/n FOR THE HONEYCOMB

MAGNETIZATION ON THE DIAGONAL PATH.
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Table 9.7

Sequence of approximations to the exponent given
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the critical point u,= 1 for the honeycomb magnetization

on the diagonal path.

n y(n)
1 0.0
2 1.0000
3 -0.4115
] 0.1675
5 0.4910
6 ~0.1398
7 0.0694
8 0.4754
9 -0.0185
10 0.1478
11 0.2799
12 0.0959
13 0.1462
14 0.2142
15 0.1174
16 0.1700
17 0.1612
18 0.1417
19 0.1569
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Table 9.8

Padé approximants to magnetlzation on the diagonal

path on the honeycomb lattice.

Approximant d/dn log M

LL,M] Singularity Residue
L 7,101 1.0029 0.0835
[ 8, 9] 1.0014 0.0803
L 9, 81 1.0027 0.0832
[10, 71 1.0026 0.0830
[11, 63 1.0003 0.0774
[ 6,101 1.0031 0.0839
L 7, 91 1.0033 . 0.0842
[ 8, 83 1.0029 0.0835
L 9, 71 1.0029 0.0835
[10, 6] 1.0030 0.0837
(11, 5] 0.9969 0.0665
L 6, 9] 1.0032 0.0841
L 7, 8] 1.0032 0.0841
[ 8, 71 1.0025 0.0828
[ 9, 67 1.0043 0.0861
L 5, 9] 1.0031 0.0839
[ 6, 8] 1.0033 0.0842
[ 7, 71 1.0028 0.0833
[ 8, 63 1.0028 6.0832
[ 9, 5] 1.0029 0.0835
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The two estimates are plotted in Figure 9.4 and a very
smooth curve results. The intersection of this curve
with § = 1 is at the point 0.0765.

A short evaluation table ¢f Padé approximants to
the function (9.1) at the critical point uw = 1 for the
honeycomb diagonal series, is given in Table 9.9. A
"pest" estimate of the critical exponent from this
table is Bl = 0.0765.

When method 3 is used on this series the power
which reproduces the known critical point the best is
-13.0 which corresponds to a critical exponent of
0.0769. 1In Table 9.10 the evaluation of the seriles
to function (9.1) at the critical point y = 1 using
successively higher coefficient of the series 1s tabu-
lated for the honeycomb diagonal series. Note the
sequence is slowly convergent but very regular., This
makes the upper bound of 0.07968 very probable.

When these five methods are used on the derivative
to the diagonal series, the estimate for the critical
exponent of the derivatives is -0.85714 for all five
methods. This corresponds to a critical expénent for
the magnetization on the diagonal of 0.14294 # 0.0001
or 1/7. The results seem to fall into two contradictory
groups. For the analysis of the derivative and the ra-

tios of the magnetization on the diagonal, 1/7 is given
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FIGURE 9.4

LOCATION OF THE POLE VS. THE RESIDUE AS

DETERMINED FROM PADE APPROXIMANTS TO

(d4/du)log M(u) ON THE HONEYCOMB DIAGONAL

PATH.
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Table 9.9

Evaluation of Pade approximants to (1-p)(d/dau)
log M(p) at the critical point u = 1 for the diagonal

series on the honeycomb lattice,

Approximant Value
[ 8,101 0.0752
L 9, 91 0.0764
(10, 81 0.0764
[11, 71 0.0758
L 7,101 0.0779
L 8, 9] 0.0783
[ 9, 8] 0.0766
f1o, 71 0.0803
L 7, 91 0.0858
[ 8, 81 0.0641
L9, 71 0.0788
[10, 61 0.0787
[ 6, 9] 0.0789
[ 7, 81 0.0792
[ 8, 71 0.0773

9, 61 0.0810




Table 9.10
Value of (u - 1)(d/du) log M(u) at the critical
point u = 1 using each successive coefficient of the

diagonal series for the honeycomb series.

Degree of Polynomial Numerical value of

evaluated polynomial
1 0.07695
2 Ol09279
3 0.09057
4 0.08280
5 0.08704
6 0.08729
7 0.08312
8 0.08429
9 0.08376
10 0.08238
11 0.08233
12 0.08194
13 0.08123
14 0.08104
15 0.08062
16 0.08026
17 0.07999
18 0.07968
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very cemelusively. For 211 analysis on the magnetization
oiher than the ratio method, 0.0765 is given very consis-
tently ard method 4 seems to conclusively rule out Bl =
1/7. Also thermodynamics rules out a 1/7, since
i/7 > 1/8 = 8. This grouping of the results of the
analysis into a 1/7 and a 1/13 is a feature of all the
other two dimensional lattices studied. The diagonal
series on the three dimensional lattices have a similar
but less marked grouping of the results of the analysis.
A possible reason for this contradictory grouping
e=m be found by a study of all the roots to the Padé
approximants to the logarithmic derivative of the honey-
co=b dizgomal series. Padé analysis of the logarithmic
derivative reveals the pattern of singularities illus-v
trated in Figure 9.5. Note all the non-physical singu-
larities zre of the order of unit distance from the

origin, and this pattern might affect the ratios very

sericusiy. Also the pole just beyond unity on the real
axis skows 2 very strange behavior. This pole appears
to b= comverging on the point s = 1. Through the five
highest degree cof Padé€ spproximants this pole moves
ste=diiv fro- 1.3 to 1.1, while the location of the
Dhysiczl pele st s = 1 stays fixed. This pole has a
positive residue that is about an eighth of that of the

Thysiczl pele but is growing rapidly as the pole
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FIGURE 9.5

SINGULARITIES OF THE DIAGONAL SERIES ON THE HONEYCOMB

LATTICE
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approaches unity. This behavior seems to indicate the
presence of two confluent singularities.

Also when the derivative of the dlagonal series
1s multiplied by (1 - 1)®7 to eliminate the apparent
pole at s = 1, the analysis shows thét there is a very
significant singularity still remaining at s = 1.
This also seems to support the presence of two confluent
poles. The grouping of the values of the exponent into
two groups can also be explained by the presence of a
confluent pole. For example the following function

might give the behavior
M(u) = A(Q1 - u)1/15 +10(1 - u)1/7) . (9.2)

The ratios of the series expansion to this func-
tion will be dominated in the earlier terms by the
exponent = 1/7. Since 1/7 >> 1/8 = 1/15 the contribu-
tion from the 1/7 singularity might totally mask the
1/15 singularity in the derivative but not in the mag-
netization itself. The occurrence of two confluent
singularities has been the assumed behavior of the
dliagonal series and the value closest to the scaling
value has been accepted as the "best" value for the
critical exponent. Evidence has been found, on the
paths for p = 3, 2, 1/2 and 1/3, which indicates the

occurrence of a confluent pole for these paths also,
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1t is thought that the appearance of a confluent singu-
larity might be a general feature of all paths other

than the zero field and critical isotherm paths.



CHAPTER 10

FUTURE ANALYSIS

92
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Sulitable conformal transformations might sharpen
estimates of the critical point and the confidence
limits for many of the series. A good choice of a trans-
formation of the series expansion variable will smooth
out the ratios and make function (9.1) regular. Trans-

formations of the form

- b *
S ‘= H = %—b%?— . (10.1)

worked well on the .diagonal series for the five lattices.

As an example the transformation

s = _ 0.84 %
W= 170,16 s%

- (10.2)

has been used on the diagonal series for the square
lattice. The ratios become flat and give an estimate

of one seventh for the critical exponent. Also, when

this transformation is used on the square diagonal series,
the evaluation of the series to function (9.1) at the
critical point u = 1 using successively higher coefficients
of the series becomes regular as shown in Table 10.1.

From this table it can be seen that an upper bound of
0.07964 is very probable. This technique might also be

used profitably on the other series analysed.

The paths corresponding to

z/z2  « uP (10.3)



Table 10.1
Value of (s¥-1)(d/ds#*)log M(s*) at the critical
point U = s¥= 1 using each successive coefficient of
the transformed diagonal series on the square lattice,

when p = s = 0.84 s¥/(1 - 0.16 s¥*),

Degree of Polynomial Numerical Value of
evaluated polynomial

7 ' 0.08216

8 0.08957
9 0.08331
10 0.08725
11 0.08348
12 0.08481
13 0.08311
14 0.08355
15 0.08249
16 0.08252
17 0.08190
18 " 0.08176
19 0.08132
20 ' 0.08111
21 0.08077
22 0.08056
23 0.08029
24 0.08008
25 0.07984

26 0.07964
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might also be analysed for small integral values of p
and 1/p. Near the critical point these curves become
straight lines of slope p. Therefore, according to
scaling,these paths should have the same exponent as
the diagonal path. 'The analysis of the series on these
paths will give estimates of the critical exponents just
above and below the diagonal curve. The preliminary
analysis indicates that these paths all have a critical
exponent of 1/15 plus or minus 5 %. This gives more
validity to the conclusion that scaling theory holds on
the diagonal path.

The effect of confluent singularities on the ratios
and Padé approximants to truncated series has never been
studied in any detail. The conclusions of this thesis
show the need for such studies on known functions.

All the analysis completed so far agrees very well
with the predictions of scaling theory. Thus one more
positive test of the validity of the scaling hypothesils

has been added.



APPENDIX

Ising model low temperature magnetization series

on paths of the form z/zc= 1-(1-u)P for the honey-

comb, square, triangular, hydrogen peroxide, and diamond

lattices.
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