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Abstract

Recent advances in reinforcement learning (RL) and Human-in-the-Loop (HitL) learn-

ing have made human-AI collaboration easier for humans to team with AI agents.

Leveraging human expertise and experience with AI agents in intelligent systems can

be efficient and beneficial. Still, it is unclear to what extent human-AI collaboration

will be successful and how such teaming performs compared to humans or AI agents

only. In this work, we show that learning from humans is effective and that human-

AI collaboration outperforms human-controlled and fully autonomous AI agents in a

complex simulation environment. In addition, we have developed a new simulator for

critical infrastructure protection, focusing on a scenario where AI-powered drones and

human teams collaborate to defend an airport against enemy drone attacks. We de-

velop a user interface to allow humans to assist AI agents effectively. We demonstrate

that agents learn faster while learning from policy correction compared to learning

from humans or agents. Furthermore, human-AI collaboration requires lower mental

and temporal demands, reduces human effort, and yields higher performance than if

humans directly controlled all agents. In conclusion, we show that humans can provide

helpful advice to the AI agents, allowing them to improve learning in a multi-agent

setting.
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Chapter 1

Introduction

Protecting critical infrastructure, such as an airport, against security threats is a

complex, sensitive, and expensive task, leading to a history of exploring automated

and autonomous solutions [1]. However, fully automated and autonomous solutions

in critical applications are not advisable due to the current limitations in technology

maturity and trained operators. These might lead to poor performance, significant

infrastructure damage, and increased risks of other collateral damages. Additionally,

training humans to use such solutions effectively remains a considerable challenge.

On the other hand, continuous surveillance of such systems, quick assessment, and

handling of potential threats would benefit from AI capabilities. In many cases, AI

agents need assistance achieving full autonomy within a reasonable timeframe due to

the system’s complexity or the scarcity of data [2]. Another significant challenge is

the AI agent’s ability to capture contextual understanding. For instance, consider an

airport security scenario where an AI system affiliated with the airport authorities

detects rapid movement on a surveillance camera or drone during nighttime. This

system might classify the movement as an intruder, lacking the contextual nuance to

recognize it as a routine patrol by the local police forces at the airport’s perimeter.

Humans generally possess domain expertise, experience, and contextual under-

standing in solving complex problems that are difficult for AI agents to learn or

replicate. For example, considering the above example, a human operator might
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recognize the drone as a routine patrol based on the circumstances surrounding the

drone’s presence and behavior. At the same time, the AI agent lacks the knowledge

to respond appropriately. Human decision-making becomes essential in safety-critical

applications, where scenarios may be partially anticipated. Considering the value of

human expertise, it is necessary to effectively leverage human knowledge and situa-

tional awareness in collaborative environments, especially for critical applications like

defense or security. These applications are likely to benefit from systems that combine

the strengths of both human operators and autonomous systems. This integration

aims to decrease system costs and enhance task performance while maintaining mean-

ingful human control in dangerous or critical operations. Such a hybrid approach is

crucial to mitigate potential risks in these high-stakes environments [3].

Recently, reinforcement learning (RL) has successfully solved many complex decision-

making problems, such as mastering the game of Go [4], deploying super pressure

balloons in the stratosphere [5], and generating synthetic drugs [6, 7]. Although es-

tablished domains like Atari and Mujoco serve as benchmarks for cutting-edge RL

research [8, 9], the introduction of simulators for complex domains facilitating human-

AI collaboration has been less explored [10, 11]. In addition, a notable challenge in

deep RL is its sample inefficiency [12], requiring millions of interactions with the

environment, making it difficult to adapt to real-world problems. To mitigate this,

advice giving techniques such as demonstrations [13–15], action-advice [16–18], pref-

erence [19–21] and reward shaping [22–25] have been used to guide RL agents to

relevant parts of the state-space. However, most of this work has been restricted to

game domains and advice by trained agents. A significant and relatively unexplored

aspect concerns the potential improvement of human-agent collaboration through hu-

man demonstrations in complex, real-world environments. Furthermore, the current

literature on human-agent collaboration reveals a noticeable scarcity of intelligent user

interface design and integration for humans to provide effective advice. This scarcity

frequently leads to misunderstandings between humans and AI agents, hindering the
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use of the human operator’s expertise.

To address the challenges of complex real-world domains, we develop a novel sim-

ulator and user interface for the specific problem of the airport’s restricted zone

protection system. The use case consists of a fleet of ally drones trying to protect

restricted airspace against multiple intruding drones. Following recommendations

from air defense domain experts, the simulator is designed to mimic the dynamics

of a real-world scenario. These dynamics include the drones’ velocity, flight dynam-

ics, the specifications of the ground radar sensor, the sensing payloads (radar and

electro-optical), and the neutralization payloads embedded in the blue drones. Such

real-world dynamics make the environment complex. The complexity of the environ-

ment means that a naive RL agent would require many environment interactions to

learn an optimal policy. Given the cost and risk associated with these interactions

in the specified domain, the trained agent needs to be sample-efficient. We demon-

strate that learning from human or agent demonstrations can minimize the number

of required environment interactions for the mentioned complex environment.

Prior research [26–28] indicates that when one person oversees multiple agents in

complex systems, the increased monitoring demand can negatively affect their work-

load and cognitive load, ultimately hindering performance. Instead, we demonstrate

that better decision-making capabilities of the trained agents can reduce the human

operator’s workload and increase the performance of the human-agent team. The

main goal of creating human-agent collaborations is to capitalize on the strengths of

agents and humans while mitigating their weaknesses. For instance, intelligent agents

excel in tasks such as analyzing vast data sets and making rapid decisions based on

specific patterns, outperforming humans [29]. In contrast, humans exhibit superior

decision-making abilities rooted in their moral values and contextual understanding,

compared to agents [30]. A characteristic feature of the specific defense domain use

case is that operations are versatile, often highly unpredictable, and decision-making

capabilities with contextual understanding play a crucial role. To maintain the ex-
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ercise of authority and direction by humans, we also use human policy correction to

correct the trained agent’s policy. We show that online policy correction is the most

effective form of advice to improve agent learning and achieve the best performance.

In addition, we demonstrate that the cognitive workload of humans is lower while

doing policy correction than that of humans controlling an untrained agent (drones

in this domain). We use non-expert human and agent demonstrations to showcase

the robustness of our approach to address the limited availability of human experts.

1.1 Thesis Contributions

The key contributions of this thesis include the following:

1. Introduces a novel multi-agent simulator for defense-specific airport protection

use case modeling real-world dynamics with multiple ally and enemy drone

agents.

2. Uses state-of-the-art deep RL algorithms to train multiple agents inside the

novel simulator.

3. Develops a user interface inside the simulator, which enables human operators

to dynamically take control of single or multiple agents to produce in-context

demonstrations, thus enabling human-agent collaboration.

4. Demonstrates empirically that trained agent demonstrations or a mixture of

human and agent demonstrations help the agent to learn faster.

5. Compares and evaluates multiple advice-giving techniques, i.e., learning from

demonstration and policy correction.

6. Compares the human cognitive workload for various advice-giving techniques

using a user study demonstrating that policy correction requires less effort than

humans having full control over the agents.
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1.2 Thesis Outline

We start with background in Chapter 2, laying the foundation by of reinforcement

learning. Then, we transition into the deep reinforcement learning algorithms in

Chapter 2.2.2. Chapter 2 continues with a review of learning from humans, high-

lighting different ways of getting demonstrations from humans and agents. We then

review human-AI collaboration approaches, highlighting how they differ from our

work. Chapter 3 focuses on the problem formulation, encompassing the design of

the relevant environment, the intricacies of the Markov decision process (MDP) for-

mulation, and the platforms that enable Human-in-the-Loop interactions. Chapter

4 presents an overview of the experimental setup, describing the environment con-

figurations, and explaining the performance metrics. In Chapter 5, we report the

experimental results of our proposed method. In addition, we describe our user study

design and report the results. Lastly, in Chapter 6, we reflect upon the limitations

encountered throughout the research journey and suggest potential future work and

advancements in complex real-world airport security scenarios.
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Chapter 2

Background

In this chapter, we introduce the necessary background details on which our work is

built. First, we present the concepts of RL and its extension into deep RL. We then

transition into our deep RL algorithm and it’s mathematical formulations for agent

training. Following this, we explore how agents can learn from human demonstrations.

In addition, we review existing literature on human-AI collaboration, highlighting its

effectiveness in complex sequential decision-making tasks.

2.1 Reinforcement Learning

Reinforcement learning is a paradigm in which agents learn by interacting with an

environment to maximize the expected sum of rewards. The RL framework often mod-

els problems as a Markov decision process (MDP), defined by a tuple ⟨S,A, T,R, γ⟩.

Here, S represents the state space, and A denotes the action space. A state space

s ∈ state space S is considered Markov if it encapsulates all past agent-environment

interactions necessary for future decisions. Formally, a state s is Markov if:

P (St+1|St, At) = P (St+1|S1, A1, S2, A2, ..., St, At)

At each time-step t, an agent in state s ∈ S selects an action a from action-set A. The

environment’s transition probability, T , then determines the probability p(s′, r|s, a)

of transitioning to state s′ and receiving reward r given the current state s and action

a. The reward function R : A × S → R maps states and actions to scalar-valued
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rewards. The agent receives a reward rt after interacting with the environment. The

agent’s objective is to maximize the expected sum of discounted rewards, Gt, at any

time-step, t:

Gt
.
=

∞∑︂
k=0

γkrt+k+1

2.2 Deep Reinforcement Learning

Deep RL enhances the capabilities of traditional RL by integrating the representa-

tional power of deep learning. This combination empowers agents to tackle complex

sequential decision-making tasks in single-agent and multi-agent environments [31,

32]. Recent studies [33–36] have highlighted its potential in critical real-world ap-

plications and use a variety of algorithms to train DRL agents. The subsequent

sub-sections contain details related to Deep Q Networks and Duelling Double Deep

Q Networks.

2.2.1 Deep Q Networks (DQN)

Deep Q Networks [9] (DQN), a value-based RL method, have been instrumental in

achieving state-of-the-art results in various RL tasks, showcasing the potential of

combining deep learning with RL. DQN employs a deep neural network to approx-

imate the Q-value function, thereby mapping state-action pairs to their anticipated

rewards. Given a state s and an action a, the Q-value undergoes an update based on

the Bellman equation:

Q(s, a)← Q(s, a) + α
(︂
r + γ max

a′
Q(s′, a′)−Q(s, a)

)︂
(2.1)

Here, α denotes the learning rate, r signifies the reward, γ represents the discount

factor, and s′ is the subsequent state. The introduction of neural networks in DQN,

as opposed to traditional Q-tables, is pivotal for handling environments with large or

continuous state spaces. Neural networks, with their function approximation capa-
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bilities, enable DQN to generalize across such vast spaces, making it feasible to learn

effective policies even when storing or updating a Q-value for every possible state-

action pair is impractical. This aspect of DQN is particularly beneficial in complex

environments with high-dimensional inputs, such as raw pixel data from video games,

where it has shown remarkable proficiency, notably in mastering Atari 2600 games

using only pixel inputs.

2.2.2 Duelling Double Deep Q-Network (D3QN)

In this work, we employ Duelling Double Deep Q-Network [37] (D3QN) for agent

training, a significant advanced variation of DQN. D3QN builds upon the foundational

principles of double DQN [38] and duelling DQN [39], integrating the strengths of both

architectures to achieve enhanced performance in complex environments, solving the

high dimension catastrophe.

DQN uses deep neural networks to estimate Q values, updated via the Bellman

equation. DQN adopts two separate neural networks: the prediction and target

networks. The prediction Q-network is employed to predict the Q value of each ac-

tion corresponding to the current state and update every iteration. In contrast, the

target Q-network is used to predict the Q value of each action in the subsequent state

and updated after N iterations to prevent the non-stationary target from dimensional

calculation explosion. However, in performing the maximization operation, the agent

tends to select an overestimated value higher than the actual value. In DQN, over-

estimation occurs because it uses the same Q-values to select and evaluate actions,

leading to optimistic bias and inflated reward predictions. Double DQN solves this

overestimation problem by decoupling the action selection and evaluation of the target

network in DQN. Specifically, Double DQN uses two Q-networks, each with different

weights θ and θ−. The network with weights θ is used for action selection, while θ−

estimates the greedy policy’s value. The Q-value update in Double Q-Learning is

given by:
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Q(s, a; θ) = Rt + γQ(s′, argmaxa′Q(s′, a′; θ); θ−) (2.2)

Where θ and θ− represents the parameters of the prediction network and target

network, respectively.

On the other hand, duelling DQN further refines the DQN approach, adding a duel

neural network architecture known as the dual network and optimizes the Q network.

While DQN has shown promise, certain scenarios render the Q-value dependent solely

on the state. Duelling DQN addresses this by decomposing the Q-value representation

into two distinct functions: the state value function V (s) and the action advantage

function A(s, a). This decomposition allows for a more nuanced representation, en-

hancing the agent’s ability to learn and make decisions. This architecture is expressed

as:

Q(s, a; θ, α, β) = V (s; θ, α) + A(s, a; θ, β) (2.3)

Here, V (s) represents the value of state s, and A(s, a) represents the advantage of

taking action a in state s. The parameters θ are shared across both functions, while

α and β are unique to the state value and advantage functions, respectively.

However, the equation in 2.3 struggles to distinguish between the roles of value

and advantage in the final output. To address this, the actual combination used in

duelling DQN is:

Q(s, a; θ, α, β) = V (s; θ, α) +

(︄
A(s, a; θ, β)− 1

|A|
∑︂
a′

A(s, a′; θ, β)

)︄
(2.4)

Modifications in 2.4 ensure that for each state s, the advantages of all actions average

to zero.

D3QN effectively combines the dueling architecture with double DQN to solve

overestimation, instability and the difficulty of convergence problems of DQN. Based

on the above improvements, we select D3QN as our baseline algorithm for agent
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learning in this complex real-world airport security scenario. One primary reason for

choosing D3QN as a baseline was our discrete action space, as the DQN series of

algorithms are suitable for tasks with a discrete action space.

2.3 Learning from Humans

In this section, we discuss using demonstrations to guide RL agents and then review

prior work on their applications in DRL. In addition, we give an overview of the

technique we adopted to learn from human demonstrations and how we modify it for

our airport security scenario.

2.3.1 Leveraging Demonstration to Guide Deep RL

Learning from demonstrations [40] has been a common approach to making Deep

RL sample-efficient. Hester et al. [13] first leveraged demonstrations inside a deep Q-

network (DQN) using a supervised loss function to account for deviations from expert

demonstrations. Later, demonstrations were used to speed up training with DDPG

in complex robotics tasks [41, 42] using specific techniques like behavior cloning loss

and prioritized replay buffers. Goecks et al. [43] provided a unified loss function by

integrating loss function components from prior works. Existing literature [44–48]

focuses on feedback or demonstration efficient algorithms where the authors primar-

ily investigate several sampling and exploration strategies [49–52], improve feedback

efficiency using imitation learning [19], unsupervised pre-training [21], and reward

relabelling [53].

Some existing work has used dueling double deep Q network [37] (D3QN) to

solve real-world complex tasks like security patrolling [54], path planning for un-

manned aerial vehicles (UAV) in a dynamic environment [55], unmanned ground ve-

hicle (UGV) control [56], manufacturing [57], vehicle-to-vehicle communication [58],

UAV autonomous aerial combat [59, 60]. However, existing literature primarily fo-

cuses on improving autonomous agent performance, while our goal is for an agent to
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learn from humans and improve human-AI collaboration performance in multi-agent

settings. Our approach differs from those mentioned above, as we do not focus on

sampling techniques or improving feedback efficiency through imitation learning. Our

objective is to leverage human demonstrations in complex real-world defense scenarios

to enhance the performance of human-AI collaboration.

2.3.2 Deep Q-Learning from Demonstration (DQfD)

We used Deep Q-learning from demonstration [13] for the discrete action scenario,

combining human demonstrations with agent experiences for stability and efficiency.

DQfD, integrated into the D3QN framework, accelerates policy optimization by lever-

aging expert experience. It employs an additional supervised loss function alongside

Q-learning loss, ensuring that the agent prioritizes actions from expert demonstra-

tions. In DQfD, the agent is pre-trained with demonstrations using a margin classifi-

cation loss to mimic expert behavior closely. The margin classification loss is defined

as below:

JE(Q) = max
a∈A

[Q(s, a) + l (aE, a)]−Q (s, aE)

where aE signifies the action executed by the demonstrator in state s. The margin

function l(aE, a) is zero when a = aE and positive otherwise. The n-step return is

used to propagate the values of the demonstrator’s trajectory to preceding states.

The n-step return is defined as:

rt + γrt+1 + . . . + γn−1rt+n−1 + max
a

γnQ (st+n, a)

The subsequent n-step loss, accounting for the n-step return, is denoted as Jn(Q).

An L2 regularization loss was also introduced to prevent over-fitting to the limited

demonstration dataset. The comprehensive loss used for network updates is:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q) (2.5)
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where λ1, λ2, and λ3 parameters control the weighting between the losses. Hester

et al. [13] employed DQfD in a single-agent RL context. In this work, we extend

its application to a multi-agent RL setting, training all five ally drones based on

demonstrations and the collective experiences of all agents. Further details are in

Chapters 3 and 4.

2.4 Human-AI Collaboration

In this section, we summarize existing works investigating human-AI collaboration

and its performance on various tasks.

Human-AI collaboration is emerging as a critical field, integrating human and

AI capabilities for diverse applications [61–63]. Research has concentrated on enabling

natural and efficient collaboration in human-AI systems, focusing on the communica-

tive impact of shared actions [64] and balancing performance gains with compatibil-

ity with human mental models [65]. Effective human-AI collaboration in complex

physical scenarios relies on seamless agent performance in simulations [66]. Notably,

human-AI collaboration can expedite sequential manipulation tasks [67] and enhance

resource distribution [68, 69]. Autonomous AI agents, distinct from expert systems,

can learn tasks without preprogramming [70]. Choudhury et al. [71] compare deep

learning-based human models with structured “theory of mind” models. Sandrini

et al. [72] address the human-AI teaming planning and allocation problem using a

minimum-time formulation. Jahanmahin et al. [73] explore human-centered robot

interaction in industrial settings, while Tambe et al. [74] did human-AI teaming in

stackelberg game settings. Our research examines the utility of human involvement

in such settings, highlighting the need for shared autonomy and clear agent commu-

nication in real-time human-AI collaboration.

For tasks requiring human-agent collaboration, autonomous agent pilots are of-

ten paired with human counterparts to work together effectively [75, 76]. Similarly,

cognitive assistants are used to support astronauts during pivotal space missions, en-
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hancing their decision-making capabilities [77]. Another burgeoning area of research

encompasses deploying human-AI collaborative teams in rescue operations [78] and

the evolution of semi-autonomous vehicles, where human operators and autonomous

agents collaboratively navigate to destinations. Numerous existing studies [79–81]

employ DQN or its variations to empower UAVs to autonomously formulate control

commands and execute air combat tasks, responsive to the information derived from

their environmental contexts. However, human involvement was missing or limited

in all these prior works. Recently, Zhang et al. [82] used D3QN with an expert

experience storage mechanism for decision-making in a simulated UAV Air Combat.

They use expert experience with D3QN similar to ours and demonstrate effective

use of training data and faster algorithm convergence. However, we use humans for

providing demonstrations and policy correction, while existing works only use trained

agent experiences. In addition, they also differ from our problem settings and layered

architecture for the defined use case.

Policy correction in RL is essential in safety-critical applications aiming to ad-

just strategies for optimal results [83, 84]. Off-policy correction, addressing policy

divergence due to function approximation, bootstrapping, and off-policy errors, are

often managed through importance sampling [85–87]. Techniques such as inverse RL,

behavior cloning, policy shaping, and constrained RL employ expert demonstrations,

feedback, or constraints for policy guidance [42, 88–92]. Bai et al. propose a dy-

namic constraint set method for policy refinement using probability metrics [93]. In

recent work, Zawalski et al. [94] used importance sampling for off-policy correction

in multi-agent RL. In contrast to prior work, our focus shifts toward the impact of

human correcting a trained agent’s policy. We aim to assess the effects of human

interventions on human-AI collaboration performance compared to human-only and

agent teams. Agents can learn desired behaviors by observing human experts, making

demonstrations a valuable tool in policy correction [95]. In this work, we use humans

to correct the policy of a trained agent in our airport security scenarios.
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Chapter 3

Problem Formulation

In this chapter, we describe the airport defense use case and formulate the problem as

an MDP. We also describe the user interface and relevant details about the Human-in-

the-loop interactions. Details related to the system architecture of the environment

are provided in Appendix B.

3.1 Environment Design

In this work, we introduce an airport defense simulator and explore the impact of

human demonstration on this domain by formulating it as a multi-agent RL problem.

The environment used for our problem formulation is shown in Figure 3.1. In this

stochastic environment, a team of ally drones collaborates to achieve the shared objec-

tive of securing the airport’s restricted zone from enemy intrusions. At the sametime,

the enemy drones plan attacks with knowledge about the defender’s strategy. The

ally (blue) drones and humans aim to ensure airport security by working as a team to

counter any threats posed by enemy (red) drone attacks. The ally (blue) drones and

humans aim to ensure airport security by working as a team to counter any threats

posed by enemy (red) drone attacks.

The blue team comprises five blue drones, a ground radar sensor, and a ground

control station (GCS). The blue drones can be autonomous, remotely piloted, or

controlled through occasional human interventions. Each drone is equipped with a
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Figure 3.1: Environment: airport defence scenario

gimbal-mounted electro-optic sensor, allowing it to capture data that can be leveraged

for surveillance or threat-level assessment. In addition, each blue drone has several

neutralization payloads (i.e., devices capable of neutralizing enemy drones when they

are within a specific range). The red team comprises a single drone equipped with

its radar sensor and a potentially hazardous payload. The goal of the blue team is

to detect, localize, intercept, and neutralize the enemy drones before they reach the

restricted zone of the airport. Details of the ally drones team and enemy drone are

given in Appendix A.

The experimental platform is built around a simplified airspace simulator operating

in 2D. Although simplified, several aspects have been modeled following real-world

specifications based on feedback from domain experts, such as the detection capabil-

ities of the drone sensors and the radar, as well as the dynamics of the fixed-wing
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drones. In this environment, the blue and red drones have a partially observable

view of the environment. The detection and localization of the red drone provided by

the radar and EO sensors embed noise and uncertainty. As per the defense expert’s

suggestions, we introduce errors into the system to simulate these real-world factors.

Specifically, the radar detection probability is 95%, and there is a 5% probability of

the radar failing to detect the red drone in 1 second. Moreover, the radar fails to

detect the enemy drone if it is outside the radar range. The detection frequency is set

to 1 Hz, and the maximum speed of the drones is 10 meters per second. The range

of the neutralization payloads embedded on the blue drones is set to 10 meters. All

these dynamics make the scenario complex and require the blue team to anticipate

the trajectory of the red drone to neutralize it.

3.2 MDP Formulation

We model our airport security scenario problem as a Markov decision process as

defined below:

1. State space: The state space consists of the relative positions of 1) the red

drone, 2) the blue drones, and 3) the restricted airspace over three time steps.

In our multi-agent setting comprising five drones, each drone has a partial obser-

vation of the environment, where it lacks the capability to perceive the presence

and actions of its peer drones directly. Each blue drone has an observation that

includes 1) the relative distance to the red drone if detected along the x and

y coordinates (in meters) and 2) the relative distance to the center of the re-

stricted zone along the x and y coordinates (in meters). To capture the context

beyond the current drone position, we aggregate drone positions over 3 consec-

utive time steps, resulting in a state with (2 + 2)× 3 = 12 features by stacking

three consecutive time steps together.

2. Action space: The action space consists of a single continuous action, rotation,
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which lies in the range [−1, 1]. We discretize this into two discrete actions:

positive and negative rotation. The agent must choose between a positive or

negative rotation at each time step.

3. Reward function: The blue drones receive a positive reward if they success-

fully neutralize the red drone and a negative reward if the red drone enters the

designated target area.

The team’s reward function is defined as follows:

R(s) =

{︄
+1 if any blue drone neutralizes the red drone

−1 if the red drone enters the restricted zone

Additionally, at every time step, the blue drones receive a shaping reward,

RI(s), proportional to their relative distance from the red drone in consecutive

time steps

RI(s) ∝ (dt−1(b, r)− dt(b, r))

where dt(b, r) and dt−1(b, r) refer to the relative Euclidean distances between

the blue drone and the red drone at time steps t and (t− 1), respectively. We

use potential-based reward shaping as the optimal policy is guaranteed to be

invariant [22–25].

We train the agents in multi-agent centralized training and decentralized execution

(CTDE) settings where each agent has its own observation space as defined in the

MDP formulation. Each agent has a similar reward function based on their cur-

rent location and action. These agents are trained in parallel using Cogment [96].

Cogment is an open-source platform enabling training and operating various multi-

agent RL and human-in-the-loop learning algorithms in a distributed way due to its

microservice architecture.
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3.3 User-interface for Advice

To foster effective human-agent collaboration within a simulated airport environment,

we developed a user interface that comprehensively visualizes the airport and its

nearby areas. This interface, developed using JavaScript and primarily leveraging

the React front-end framework, serves as a nexus where autonomous ally drones

and human operators collaboratively safeguard restricted zones, which are inherently

vulnerable to potential adversarial drone incursions.

Figure 3.2: A trial configuration view of user interface.

Our user interface has two distinct views: a trial configuration form and an interac-

tive trial run time view. Figure 3.2 shows the starting view of the trial configuration

form that empowers users with the flexibility to tailor various parameters. Specif-

ically, users can modify the composition and positioning of the blue team drones,

select their underlying AI algorithm, and decide on the potential involvement of a

human operator. These options allow the user to operate and control the agent, where

the agent is trained with the D3QN algorithm. Additionally, configurations extend

to determining the number of adversarial red drones and charting their trajectory to-

ward the restricted zone, with an added provision to stipulate the simulation’s update
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frequency.

Figure 3.3: An interactive trial run time view user interface for human operators to
control the agents.

Transitioning to the trial run time interface, as depicted in Figure 3.3, presents an

aerial perspective of the environment. This view delineates the drones, their respective

detection range ground radar, and any identified red drones. Enhanced interactivity is

facilitated by enabling users to select individual drones, assign or eliminate waypoints

by interacting directly with the map, and manage the simulation’s progression by

pausing or resuming it. To control the ally drones or modify the drone trajectories,

humans can define the waypoints for each drone separately. To add a waypoint, a

human can select the drone they want to control using a right mouse click and choose

the point where the agent needs to go as a next step using a left mouse click. Users

can add as many waypoints as they want to control the drone. Similarly, humans

can delete waypoints from the left side of the panel using the delete button shown

on the bottom left side. To delete a specific drone’s waypoint, operators need to

select the drone using the mouse first and delete the waypoint shown in the bottom

left panel. Operators can also delete any number of waypoints of the selected drone.

Furthermore, users can seamlessly pan and zoom within the map for a more detailed
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inspection. This interface aims to provide a platform for managing mission-critical

data and facilitating user interaction and control over multiple agents. Users can act

as operators, providing demonstrations to guide agents or intervene to correct the

policy of a trained agent.
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Chapter 4

Experiments

In this chapter, we report the environment configuration, experimental settings, and

performance metrics used in our experiments.

4.1 Environment Configuration

We used two distinct environment configurations for our experiments based on rec-

ommendations from defense experts:

Three Waypoint Scenario (Simple Scenario): In this setup, the starting posi-

tions of the five blue drones are determined within a circular region of a 200-meter

radius near the restricted zone, as shown in Figure 4.1. The red drone starts from

a similar circular region, positioned 1,000 meters to the right of the restricted area.

The starting positions of the drones are selected randomly at the beginning of every

episode. We added three fixed waypoints between the starting positions of the blue

and red drones. The Euclidean distance between two waypoints is 200 meters. These

waypoints guide the red drone towards the restricted space within the time limits.

Continuous Waypoint Scenario (Complex Scenario): For this scenario, the

blue drones’ starting positions mirror those in the three waypoint scenario. However,

the setup introduces only one random waypoint selected from a 200-meter radius circle

between the initial positions of the blue and red drones, as shown in Figure 4.2. All

the starting points for blue drones, red drone, and waypoints are selected randomly
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Figure 4.1: Three waypoint scenario (Simple scenario).

at the beginning of every episode. The random waypoint increases the uncertainty

with respect to the location and makes the problem more complex. This waypoint is

chosen strategically to prevent collisions between the blue and red drones.

Figure 4.2: Continuous waypoint scenario (Complex scenario).

4.2 Performance Metric

We evaluate our results across two dimensions: (1) task success and (2) human effort

while giving advice. We use team performance across the first dimension and cognitive

workload measures based on NASA Task Load Index [97, 98] questionnaires along the

second dimension.

4.2.1 Team Performance

We evaluated the performance of the trained agent using the success rate as the per-

formance metric. The success rate is the percentage of times the blue team wins

over all evaluation trials. This metric was chosen because it provides a clear and
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intuitive measure of the agents’ ability to defeat the red drone and is directly pro-

portional to the average reward. We execute 30 evaluation episodes per 100 training

episodes to compute the success rate. During the evaluation episodes, agents execute

the learned policy without exploration. Our learning curves show the performance

metric reported across the evaluation episodes.

4.2.2 Cognitive Workload

The cognitive workload measures are assessed using the NASA Task Load Index [97,

98]. This index evaluates six types of workload: mental demand, physical demand,

temporal demand, performance, effort, and frustration. Each participant selects a

score ranging from 1 to 21 using a 21-point slider for all six workload types.

4.3 Demonstration Collection Methodology

To collect demonstrations, a human teacher either controls the agent prior to train-

ing or a partially trained agent trained in the same environment with randomized

starting position of the drones. We collected demonstrations in three ways: (1) the

trained agent records the demonstration using agent’s sensors in the agent buffer.

No mapping is required because the associated state-action pairs are captured di-

rectly from the trained agent’s sensors. For our experiments, we use a fully trained

D3QN agent to generate 2, 500 agent demonstrations. These demonstrations are

referred to as agent demonstrations in our experiments. (2) A human teacher

demonstrates the task using our developed user interface, and the demonstration

is collected in a database using a Cogment trial datastore and converted with em-

bodiment mapping later for use. These demonstrations are referred to as human

demonstrations in our experiments. (3) A human teacher controls a trained agent

through the user interface and corrects its policy, thereby providing demonstrations,

also referred to as policy-corrected demonstrations. We engaged 11 individuals

for collecting demonstrations, collectively gathering 500 human demonstrations, with
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each participant completing at least 30 episodes. Similarly, we collected 500 human

demonstrations while correcting the policy of a trained D3QN agent. All the human

demonstration data collection and user study were done under the approval of the

University of Alberta Research Ethics Board (REB number: Pro00107555).

4.4 Experimental Setup

To establish a foundational benchmark and validate the functionality of the simulated

environment, we implemented a heuristic-based decision-making algorithm tailored

for drone operations. Our heuristic agents prioritize minimizing the distance to the

enemy drone and either intercept their trajectory or follow their tracks for strategic

positioning. In the subsequent sections, we use “HA” to denote a heuristic-based

agent. The “HM” refers to the average winning percentage of human demonstrators

who demonstrated through the designed interface. The winning percentage for av-

erage human demonstration is 62%, with a standard deviation of 17% in the simple

scenario, and 64%, with a standard deviation of 7% for the continuous complex sce-

nario. We only considered demonstrations where either the agent or human won the

game to account for good quality demonstrations.

Algorithm abbreviation Human Demo Agent Demo

D3QN-0-0 0 0

D3QN-0-2500 0 2,500

D3QN-500-2000 500 2,000

D3QNHM -500-0 500 0

D3QNPC-500-0 500 0

D3QN-0-500 0 500

Table 4.1: Algorithm abbreviation with the number of human and agent demonstra-
tions for each algorithm. Here, the subscripts HM represent human demonstrations,
and PC represents policy-corrected demonstrations.

This study incorporated an autonomous agent programmed to learn and defend the
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airport from enemy attacks using DRL. Leveraging the capabilities of Q-value-centric

DRL, we aim to achieve rapid policy convergence [54, 85, 99], thereby enhancing the

feasibility of its application in more expansive systems. Our baseline was the D3QN

algorithm, training from scratch without additional guidance, denoted as D3QN-0-0.

We adopt deep Q-learning from demonstration [13] with human experience replay

buffer and agent experience reply buffer to leverage demonstrations inside D3QN

from either agent, human or from a mix of human and agent demonstrations1. We

use D3QN-0-2500 and D3QN-0-500 to represent D3QN agents trained with additional

agent demonstrations of 2,500 and 500, respectively. D3QN-500-2000 denotes D3QN

agents trained with a mix of 500 human demonstrations and 2,000 agent demon-

strations. Table 4.1 displays the proportions of human demonstrations and agent

demonstrations used by each algorithm. In addition, we use D3QNHM -500-0 and

D3QNPC-500-0 to represent D3QN agents trained with human and policy correc-

tion demonstrations, respectively. For experiments with D3QN-0-2500, D3QN-0-500,

D3QN-500-2000, D3QNHM -500-0, and D3QNPC-500-0, we sampled 30% demonstra-

tion samples from expert experience replay memory and 70% from agent replay mem-

ory consisting of past agent experiences.

After testing our models with various proportions of demonstration data, we de-

termined that the learning algorithm’s performance was not significantly affected by

the agent experience and demonstrations ratio, detailed as in Section 5.4.1. Hence,

we set these proportions to 70% agent experience and 30% experience from expert

experience replay memory for the experiments. To update the network, the training

algorithm sampled mini-batches from the demonstration data and applied the double

Q-learning loss and the n-step double Q-learning loss described in Section 2.3.2. For

a fair comparison, we did not use any pre-training for the reported experiments. The

Q-function of D3QN is updated by equation 2.3; D3QN-0-2500, D3QN-0-500, D3QN-

1Agent demonstrations refer to demonstrations generated by a D3QN agent that was trained to
an average success rate of 85% +/- 10% in our airport security scenario.
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500-2000, D3QNHM -500-0, and D3QNPC-500-0 are updated using equation 2.5. The

expert margin in equation 2.3.2 was set to M = 0.8 in alignment with prior work [13].

All the reported experimental results are averaged over five runs with different seed

values, and standard deviations are reported. The results in Figure 5.1 and Figure

5.2 report the mean and standard deviation over five runs, with the y-axis indicating

the winning percentage and the x-axis denoting the number of training episodes.

To determine significant differences between various baselines and our method, we

employed the Mann-Whitney U test (also known as the Wilcoxon rank-sum test) [100].

This non-parametric statistical test was chosen for its robustness against deviations

from normality assumptions, unlike other tests such as the t-test and ranked t-test.

We observed that the normality assumption was violated in certain results, making

the Mann-Whitney U test the preferred choice over the other tests. The use of the

Mann-Whitney U test was twofold: firstly, it was used to assess the final performance

of evaluation episodes, and secondly, to analyze the area under the learning curve

(AUC), reflecting learning progress during training episodes. To calculate AUC, we

use the mean reward on 30 evaluation episodes per 100 training episodes by executing

the current policy without exploration. We computed the average AUC from five

independent runs and use the composite trapezoidal rule included in numpy and scipy

libraries for implementation. Hyper-parameter tuning was done using grid search to

identify the best parameters for the algorithms, which were then consistently applied

across all experiments in both scenarios, as detailed in Appendix C.
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Chapter 5

Results

In this chapter, we discuss the experiments and report the computational results of

our proposed method. Experiments were conducted in two scenarios (described in

Section 4.1) to study the impact of different kinds of teaming. In addition, we present

an overview of our user study design and report the results.

We aim to investigate the following research questions:

RQ1: How well does a trained RL agent perform in this environment?

RQ2: Does agent and/or human demonstration help the RL agent learn more

efficiently?

RQ3: Does human policy correction help agents learn more efficiently, and how

does this compare to learning with demonstration advice?

RQ4: How do humans experience this process?

5.1 Computational Results

We start by discussing the outcomes of the simple scenario, followed by an analysis

of the results of the complex scenario. To evaluate the effectiveness of the agent and

human demonstrations in the simple scenario, we compare D3QN-0-2500, D3QN-0-

500, and D3QN-500-2000 with HA, HM, and D3QN-0-0 as baselines.
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To answer RQ1, we trained D3QN-0-0 on the simple scenario and reported its

success rate in Figure 5.1 based on 30 evaluation episodes per 100 training episodes.

The D3QN-0-0 agents reach a success rate of approximately 90% in 3, 500 episodes.

The trained agent outperforms the baseline HA and HM, which have a success rate

of 60% and 63%, respectively. D3QN-0-0 agents outperform both HA and HM.

Figure 5.1: The success rate comparison for D3QN-0-0, D3QN-0-2500, D3QN-500-
2000, HA, and HM performance in a simple scenario. Here, the number in the suffix
represents the number of demonstrations from humans and the number of demonstra-
tions from an agent. HA and HM represents heuristic based agent and the average
winning percentage of human demonstrators, respectively.

To answer RQ2, we see that D3QN-0-2500 reaches a success rate of more than 90%

in 1, 600 episodes, outperforming D3QN-0-0 on average final performance as shown in

Figure 5.1; the average AUC computed over five independent runs, as shown in Table

5.1 also supports the above claim. In examining the levels of winning percentage

between D3QN-0-0 and D3QN-0-2500, the Mann-Whitney U test results in Table 5.2
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show a significant difference between them. At the end of learning, both algorithms

converge to the same final performance (around 90%). This supports our claim that

agent demonstrations make the RL agent more sample efficient in our environment,

consistent with existing results in the literature [13, 41].

Algorithm abbreviation Mean final performance(± SD) Mean AUC(± SD)

D3QN-0-0(s) 74.18(± 9.80) 0.72(± 0.08)

D3QN-0-2500 90.97(± 7.58) 0.88(± 0.02)

D3QN-500-2000 96.0(± 2.95) 0.87(± 0.04)

D3QN-0-0(c) 74.18(± 9.80) 0.69(± 0.03)

D3QNHM -500-0 83.77(± 2.17) 0.74(± 0.05)

D3QN-0-500 86.22(± 9.01) 0.75(± 0.02)

D3QNPC-500-0 95.33(± 3.54) 0.85(± 0.02)

Table 5.1: Comparison of different algorithm mean final performance of 5 runs and
mean area under the learning curve (AUC). Here, (s) and (c) represent the simple and
complex scenarios respectively. The subscripts HM represent human demonstrations,
and PC represents policy-corrected demonstrations.

We also trained the learning agent with a mix of agent and actual human demon-

strations, denoted D3QN-500-2000, as shown in Figure 5.1. We sampled an equal

proportion of human and trained agent demonstrations in every mini-batch used for

training. We used a mix of both types of demonstrations due to the lack of human

demonstrations collected in our user study. The Mann-Whitney U test shows no sig-

nificant learning improvement when compared to D3QN-0-2500 in a simple scenario;

however, the performance is still statistically significant than the baseline D3QN-0-0,

shown in Table 5.2.

Similarly, for our complex scenario, we trained D3QN-0-0 and plotted its success

rate in Figure 5.2. The agent reaches a success rate of 80% in 3, 500 episodes, which

is 10% less than the D3QN-0-0 performance in a simple scenario. The trained D3QN-

0-0 agent outperforms the baseline HA and HM, with a success rate of 53% and 64%,
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Algorithm P-value U-statistic Effect size Significance

D3QN-0-2500 vs. D3QN-0-0 Performance 0.036 2.0 0.84 Yes

AUC 0.011 0.0 1.0 Yes

D3QN-500-2000 vs. D3QN-0-0 Performance 0.011 0.0 1.0 Yes

AUC 0.023 1.5 0.88 Yes

D3QN-500-2000 vs. D3QN-0-2500 Performance 0.400 8.0 0.36 No

AUC 0.916 11.5 0.08 No

D3QN-0-500 vs. D3QN-0-0 Performance 0.035 2.0 0.84 Yes

AUC 0.036 2.0 0.84 Yes

D3QNHM -500-0 vs. D3QN-0-0 Performance 0.673 10.0 0.19 No

AUC 0.036 2.0 0.84 Yes

D3QNHM -500-0 vs. D3QN-0-500 Performance 0.140 20.0 0.60 No

AUC 0.828 11.0 0.12 No

D3QNPC-500-0 vs. D3QN-0-0 Performance 0.011 0.0 1.0 Yes

AUC 0.011 0.0 1.0 Yes

D3QNPC-500-0 vs. D3QN-0-500 Performance 0.036 2.0 0.84 Yes

AUC 0.011 0.0 1.0 Yes

D3QNPC-500-0 vs. D3QNHM -500-0 Performance 0.011 0.0 1.0 Yes

AUC 0.011 0.0 1.0 Yes

Table 5.2: Comparison of different algorithm significance using the Mann-Whitney
U test. Here, subscripts PC and HM represent policy corrected demonstration and
human demonstrations, respectively.

respectively. With the complex scenario, the performance of HM remains the same

or improves marginally, whereas the performance of HA and D3QN-0-0 drops signif-

icantly. This performance changes suggests that humans improve their performance

playing more times and outperform HA in more complex environments that require

greater generalization capabilities. In conclusion, despite the inherent randomness

and complexity of the scenario that affects performance, our trained D3QN-0-0 agent

shows superior performance compared to both HA and HM, supporting our earlier

finding regarding RQ1.

Figure 5.2 presents the learning curves for D3QN-0-0, D3QN-0-500, D3QNHM -

500-0, and D3QNPC-500-0 in our complex scenario, allowing a comparison of their
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Figure 5.2: The success rate comparison for D3QN-0-0, D3QN-0-500, D3QNHM -500-
0, and D3QNPC-500-0, HA, and HM performance in a complex scenario. Here, the
number in the suffix represents the number of demonstrations from humans and the
number of demonstrations from an agent.

performances. In particular, D3QN-0-500 shows a higher success rate compared to

D3QN-0-0, as evidenced by the results of a Mann-Whitney U test (U=2.0, p=0.035,

effect size=0.84), which confirms significant performance differences between these

two models. From the Table 5.2, we see that D3QNHM -500-0 shows no statistically

significant difference on final performance, but shows statistically significant difference

in AUC (U=2.0, p=0.036, effect size=0.84). However, the performance gap between

the D3QNHM -500-0 approach and D3QN-0-500 is not statistically significant in our

complex scenario. These findings are consistent with our conclusions from the simple

scenario and answer our RQ2.

To address RQ3, we use policy-corrected demonstrations to train our agent, de-

noted as D3QNPC-500-0. We find a significant performance increase in D3QNPC-500-
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0 compared to all our baseline methods and learning from agent and human demon-

strations. D3QNPC-500-0 achieves a success rate of more than 80% in 1, 000 episodes,

while D3QN-0-0 takes 5, 000 or more episodes. The results of the Mann-Whitney U

test show significant differences in performance between D3QNPC-500-0 and D3QN-

0-0 and also between D3QNPC-500-0 and D3QN-0-500 (see Table 5.2). Similarly, the

Mann-Whitney U test between D3QNHM -500-0 and D3QNPC-500-0 (p=0.011, U=0.0,

effect size=1.0) indicates significant differences between them. These performance

supports our claim that human demonstrations make the RL agent more sample ef-

ficient in our complex environment, as seen from the success of D3QNPC-500-0 and

D3QNHM -500-0, which is consistent with previous results from the simple scenario.

In addition, the policy correction approach shows a 10% performance improvement

over D3QN-0-0 and demonstrates the effectiveness of human-AI collaboration in our

proposed scenarios, which answers RQ3 affirmatively.

5.2 User Study Design

To investigate whether human demonstrators can make RL agents more sample effi-

cient, we have designed a human user study where users can provide advice in two

ways: (1) by providing full demonstrations, referred to as human demonstrations,

and (2) by providing partial demonstrations and intervening when necessary, referred

to as policy-corrected demonstrations. Furthermore, to study the trade-off between

human costs such as metal demand, physical demand, etc., and agent performance,

this study contained survey questionnaires based on the NASA-TLX load index [97,

98] and a set of demographic questions. We hosted our developed system on Amazon

AWS to conduct our user study and advertised the study on mailing lists of gradu-

ate and undergraduate computing science students at the University of Alberta and

industry partner organizations. The participants undertook a control task that in-

volved controlling agents to neutralize the enemy in our simulated environment with

randomly set environment configurations. Our user study was conducted using a
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structured approach with the following sequential steps:

1. Read the task details and digitally sign a consent form.

2. Watch videos on how to use the web client and the user interface. In addition,

watch videos of trained agents, controlling agent steps (setting up new waypoints

or deleting the existing ones), providing a full demonstration, or providing a

policy-corrected demonstration to teach the agents. This step is meant to teach

the task to the participants.

3. Round one: provide demonstrations for 30–40 episodes, controlling all the ally

drones.

4. Complete the NASA-TLX questionnaires based on their experience during the

round one task.

5. Round two: provide policy corrections for trained agents for 30–40 episodes.

6. Complete the NASA-TLX questionnaires based on their experience during the

round two task.

7. Complete the demographics questionnaire.

In the initial phase of our study, we collected human demonstrations from Round 1,

focusing on our simple scenario. Later, we expanded the study to include a com-

plete user study comprising Rounds 1 and 2 in our complex scenario. We used the

same set of participants for both rounds, while these rounds were conducted sepa-

rately. Participants spent approximately 30–40 minutes on each round to complete

the experiments. To evaluate team-wise costs, such as mental, physical, and tempo-

ral demand, effort, etc., associated with human involvement, we calculate cognitive

workload based on NASA-TLX questionnaires. In addition, demographic information

collected included gender, age, current job/position, level of defense experience, level

of drone experience, level of simulated drone control, and level of gaming experience.
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5.3 Measurement of Cognitive Load

To measure cognitive load, we conducted a user study described in Section 5.2 and

used the NASA TLX survey questionnaires detailed in Appendix E. We abbreviate

standard deviation as SD and interquartile range as IQR to describe the demographic

information. In our user study, 30 people consented to participate, and 11 both

provided demonstration and completed the survey. The average age was 26.02 (SD of

6.42), ranging from 18 to 50. Analysis of the responses to the questionnaire indicated

that 90% of the participants reported being familiar with AI and games. In contrast,

80% of the participants reported no prior familiarity with drone control or defense

strategies.

Figure 5.3: Results of the NASA TLX questionnaire. Here, PC represent policy-
corrected demonstrations and HM represents human demonstrations.

As presented in Figure 5.3, participants reported much lower mental demand, tem-

poral demand, and effort during policy correction, denoted as “PC”, compared to

human demonstrations, denoted as “HM”. Similarly, participants achieved much

higher performance when they corrected the policies than when they fully controlled

the agents (i.e., provided demonstrations). To evaluate the statistical significance of

these observations, a Mann-Whitney U test was performed, comparing the cognitive

load between PC and HM. As detailed in Table 5.3, the results show significant dif-
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ferences between PC and HM across all dimensions of the NASA Task Load Index

(NASA-TLX), except for physical demand. These findings suggest that human oper-

ators experience more mental demands and frustration when fully controlling drones,

especially in our complex simulator. In contrast, PC, a human-AI collaboration ap-

proach, requires less effort and yields superior performance outcomes. This addresses

our fourth research question, RQ4, regarding the human experience in this process.

Measure P-Value U-Statistic Correlation Significance

Mental Demand 0.0006 113.0 0.8677 Yes

Physical Demand 0.5711 69.5 0.1487 No

Temporal Demand 0.0430 91.5 0.5123 Yes

Performance 0.0098 100.0 0.6528 Yes

Effort 0.0026 106.5 0.7603 Yes

Frustration 0.0014 109.5 0.8099 Yes

Table 5.3: Mann-Whitney U Test for NASA-TLX between PC and HM, here corre-
lation represents Rank-Biserial Correlation.

5.4 Ablation and Analysis

We also conducted several ablation studies to examine the effect of proportions, quan-

tity, and diversity of demonstration data.

5.4.1 Effect of Demonstration Proportions

We evaluated the training models by selecting varying proportions of demonstrations

from experience reply memory and the agent’s own training experience from the envi-

ronment in our simple scenario. Specifically, we employ the D3QN-0-2500 algorithm,

using 2,500 agent demonstrations in expert experience reply memory. We sampled

mini-batches in ratios of 30:70, 50:50, and 70:30 percent from the expert experience

reply memory and agent replay memory consisting of past agent experiences, respec-

tively.

35



Figure 5.4: The success rate comparison for D3QN trained with 2,500 agent demon-
strations (D3QN-0-2500) with various proportions in simple scenario. Here, the suffix
represents the proportion of demonstrations from expert experience reply memory and
agent’s own experience, respectively.

From our experiment, we concluded that trained agent demonstration and agent

training experience from the environment proportions did not significantly impact

the learning performance of D3QN-0-2500, as seen in Figure 5.4. In addition, we

conducted the Mann-Whitney U test on final performance, which yields a U-Statistic

of 12.0 with a p-value of 0.99 and effect size of 0.04, indicating that there is no

significant difference between D3QN-30-70 and D3QN-50-50 performance. Similarly,

D3QN-50-50 and D3QN-70-30 show no significant difference with a U-Statistic of 10.0,

a p-value of 0.653, and an effect size of 0.19. We also run the Mann-Whitney U test

between D3QN-30-70 and D3QN-50-50 AUC which shows no significant difference

with a p-value of 0.67, effect size of 0.19 and U-Statistic of 15.0; similarly, D3QN-50-

50 and D3QN-70-30 shows no statistical significant difference in AUC (U statistic:
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9.0, P-value: 0.52 and effect size: 0.28)

5.4.2 Effect of Demonstration Quantity

We also evaluated our approach in the simple scenario, as shown in Figure 4.1, by

increasing the number of demonstrations in the expert experience reply buffer. In all

experiments, we use 30% demonstration proportion from the expert experience reply

memory and 70% from the agent experience reply memory. We observed a significant

improvement in agent’s performance with the increased number of demonstrations,

as shown in Figure 5.5.

Figure 5.5: The success rate comparison for D3QN with agent demonstrations with
various sizes of demonstration data in our simple scenario. Here, the suffix 2,500,
5,000, and 10,000 represents the total amount of agent demonstration in the expert
experience reply memory.

The green curve represents the D3QN with demonstration, where data in the buffer

was 2,500. The purple and red curves represent the D3QN guided by the demonstra-
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tion, where data in the expert experience reply buffer was 5,000 and 10,000, respec-

tively. A Mann-Whitney U test was done on the final performance which yields a U

statistic of 2.0 with a p-value of 0.035 and an effect size of 0.84 suggesting signifi-

cant differences between the 5,000 demonstration data used instead of the 2,500 data

in the demonstration buffer. The Mann-Whitney U-Statistic of 2.5 and a p-value of

0.041 with an effect size of 0.8 suggest significant differences between 10,000 and 5,000

demonstration data in the buffer. Similarly, a Mann-Whitney U test was done on the

area under the learning curve for D3QN-2500 and D3QN-5000 demonstrating shows

significant difference(U statistic: 0.0, P-value: 0.011, effect size: 1.0). Likewise, the

Mann-Whitney U test shows a significant difference between D3QN-5000 and D3QN-

10000 on the area under the learning curve. From the above experiment, we conclude

that increasing the number of demonstrations leads to better performance.

5.4.3 Analysis of Diversity in Demonstration

From the ablation studies in Sub-sections 5.4.1 and 5.4.2, we conclude that the quan-

tity of demonstrations impacts the performance outcomes than the proportion of

demonstrations. This leads us to hypothesize that the diversity in demonstrations is

the primary driver of enhanced performance.

We investigate the effect of demonstration diversity on the performance of trained

agents, guided by agent demonstrations, human demonstrations, and policy-corrected

demonstrations. There is often an abundance of trained agent demonstrations in a

simulated real-world complex task, while human demonstrations are scarce due to the

high human time and cost. We used 500 winning episodes of human demonstrations

from 11 persons. Similarly, we use 500 winning episodes of agents and policy-corrected

demonstrations.

We employ a qualitative approach to assess the diversity of demonstrations by

plotting the trajectories of all three demonstration types and examining the spatial

coverage within these visualizations. This method allows us to infer the range of
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(a) Agent demonstrations (b) Human demonstrations

(c) Human policy correction

Figure 5.6: Density heat map of winning five hundred episodes from trained agents,
human users, and human policy corrections. Here, the x-axis and the y-axis represent
the drones’ scaled relative position.

strategies and behaviors exhibited across different demonstrations. In our analysis,

we generate density heat maps for each demonstration type, which visually represent

the frequency of occurrences at various points in the task space. Specifically, Figure

5.6(a), (b), and (c) correspond to the heat maps for the trained agents, actual human

users, and human policy correction demonstrations, respectively. Although our sim-

ulated environment is a square space of size 6000× 6000 meter2, we plotted them in

reduced space for better visualizations and understanding. The heat maps distinctly

reveal that policy-corrected demonstrations show a broader coverage area than those
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Figure 5.7: The area coverage comparison for human demonstrations (HM), agent
demonstrations (PH) and policy-corrected demonstrations (PC) in complex scenario.

from humans and trained agents. This suggests a greater coverage in the demon-

strations collected using policy correction, contributing to the enhanced performance

observed earlier in experimental results for this advice-providing technique.

To better visualize the visitation area (by agents, humans, and human policy cor-

rection), we plotted the x and y coordinates of winning demonstrations in a projected

space and marked them with different color codes, as shown in Figure 5.7. The plot

clearly shows that the trajectories of humans and trained agent demonstrations over-

lap less. A diverse range of human actions, from individual to individual, underscores

the complexity and variability inherent in human gameplay. In contrast, policy cor-
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(a) Area covered by human demonstrations,
agent demonstrations and policy-corrected
demonstrations.

(b) Entropy-based diversity measure for hu-
man demonstrations, agent demonstrations
and policy-corrected demonstrations.

Figure 5.8: Quantitative measure of diversity in human demonstrations, agent demon-
strations and policy-corrected demonstrations. Here, higher entropy values represent
more diversity.

rection effectively uses the strengths of both humans and agents, resulting in more

state-area coverage encompassing all critical zones identified by both. Subsequently,

we conducted a quantitative analysis of the area covered by each type of demonstra-

tion, the results of which are presented in Figure 5.8 (a). From Figure 5.8 (a), we can

observe that policy-corrected demonstrations visited 4,116 unique points higher than

agent demonstrations and 2,761 points higher than human demonstrations. We also

employed an entropy-based approach to quantify the diversity of demonstrations, as

suggested by Neumann et al. [101]. As shown in Figure 5.8 (b), the entropy values

for policy-corrected demonstrations were over 20% higher than those for human and

trained agent demonstrations. This empirical evidence confirms our previous observa-

tions, indicating that human policy correction introduces significantly diverse states,

improving the learning process with various experiences.
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Chapter 6

Conclusions and Future Work

In this work, we demonstrated that human-AI collaboration can be better than hu-

mans or agents alone in a complex multi-agent task. By developing a novel simulator

and user interface, we have established a platform where humans and AI agents can

collaborate and incorporate advice effectively with real-world dynamics. Our exper-

imental results show that a trained RL agent performs better than a heuristic agent

and humans in complex airspace-simulated environments. Our empirical findings un-

derscore the value of incorporating human and policy-corrected demonstrations into

the training of AI agents, revealing a marked improvement in the agents’ learning

efficiency and operational performance. In addition, we demonstrated that policy-

corrected demonstrations, a human-AI collaboration approach, require less mental

demand, temporal demand, and effort, yielding superior performance compared to

humans alone. While significant, this study’s findings are limited by its focus on a

single enemy with full and free communication, not fully reflecting the complexity of

real-world scenarios. In addition, only a small number of human participants were

involved in the study, which may not represent the diverse strategies employed by

various individuals in real-life situations. Future research directions include address-

ing these gaps by exploring more complex scenarios and diverse human expertise to

enhance human-AI collaboration in real-world settings.

Boarder Ethics Statement: In transitioning our research from theory to prac-
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tice, particularly in areas where AI is integral to critical defense operations, it’s es-

sential to acknowledge the potential risks and ethical concerns that come with this

integration. To mitigate such potential risks and ethical considerations, our simu-

lator environment is deliberately designed to ensure drones are not armed with life-

threatening weaponry, focusing on defensive tasks to reduce the likelihood of misuse

by malicious or non-malicious actors. Moreover, as much as we tried emulating real-

life defense scenarios, the actual environment dynamics are still noticeably different

from real defense applications. In addition, it would be much harder to get physical

drones working and communicating together than actually getting the drones to learn

via RL in a simulation. Our approach, while innovative, does bring with it certain

risks, including decreased human attention, issues with data privacy, and ethical chal-

lenges in decision-making. Central to these risks is the potential for over-reliance on

AI systems, which could lead to poor decision-making. This overreliance on AI can

create a false sense of security, leading to diminished alertness and oversight by human

operators, which could exacerbate the risks. To solve these concerns, we encourage re-

search in the direction of developing explainable decision-making frameworks for such

safety-critical applications to understand the impact of biased or erroneous human

inputs on the model’s decision-making capability.

Contribution: Saiful conducted a comprehensive literature review, formulated

the research questions, and defined both the model and computational framework.

He took the lead in data analysis, collected agent and human demonstration data, and

was responsible for the implementation and execution of experiments. Saiful planned

and conducted a user study, completed the data analysis from the user study, and

interpreted the findings. In addition, he assisted with simulated platform design and

tested both the prototype and final simulator.
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Appendix A: Environment Design:
Team Description

In this chapter, we discuss the team details of our UVA-based airport security sys-

tems shown in Figure 3.1. In the subsequent discussion, we present a mathematical

representation of the aforementioned scenario. Let pRA ∈ R2 and rRA ∈ [0, 1) be

the center and radius of a circle representing the restricted area, respectively. Two

teams are present in this scenario: the ally team (blue team) and the enemy team

(red team).

A.1 Ally Team (Blue Team)

The blue team comprises five aerial drones, a ground radar (GR) sensor, and a ground

control station (GCS). Each ally drone also has several neutralization payloads (i.e.,

devices capable of neutralizing enemy drones when they are within a certain range).

The goal of the blue team is to protect the restricted zone of the airport from the red

team by detecting, localizing, and neutralizing the enemy drones.

Ally Ground Control Station (GCS): There is one GCS located at position

pGCt ∈ R2 at time step t ∈ N. In addition, let rGC ∈ (0, 1) denote the circle’s radius

representing the GCS operating range.

Ally Ground Radar (GR): Consider nGR ∈ N ground radars whose jobs are

to gather information about the ally and enemy drones. Denote by pi,GR
t ∈ R2 the
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position and by ϕi,GR
t ∈ [−π, π] the heading angle (orientation) of the i-th GR at time

t ∈ N, i ∈ NnGR. Let ui,GR
t ∈ [−1, 1] denote the action of the i-th GR, where ui,GR

t

is the ratio of angular speed with respect to its maximum value. In particular, ui,GR
t

controls the rotation of the i-th GR as follows:

ϕi,GR
t+1 = ϕi,GR

t + vmax
GR × ui,GR

t (A.1)

where vmax
GR ∈ [0, 1) is the maximum angular speed. Denote by ρGR ∈ [0, 2π] the field

of view of the GR and by rGR ∈ [0, 1) the radius of a circle representing its sensing

range.

Ally Drone (Blue Drone): The ally system has nAD ∈ N drones. The state of

the i-th ally drone includes:

1. Position: pit ∈ R2.

2. Heading angle: ϕi
t ∈ [−π, π].

3. Relative orientation of the electro-optic (EO) sensor: ϕi,EO
t ∈ [−ϕmax

EO , ϕmax
EO ].

4. Functionality status: f i
t ∈ {0, 1}, where 0 indicates non-functional.

5. Control by GCS: git ∈ {0, 1}, where 0 indicates no control by GCS.

6. Position of controlling GCS: pi,GC
t ∈ R2.

7. Radar status: radar-enabledi
t ∈ {0, 1}, where 0 means off.

8. EMP usage: emp-usedi
t ∈ {0, 1}, indicating if EMP has been used.

In particular, there is an EMP-auto-destruction probability prEMPD ∈ [0, 1] ac-

cording to which the drone may destroy itself upon using EMP, i.e.,

f i
t+1 =

⎧⎪⎨⎪⎩
0 if f i

t = 0;

1 if f i
t = 1 and emp-usedit = 0;

B if f i
t = 1 and emp-usedit = 1;

(A.2)
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where B ∈ {0, 1} is a Bernoulli random variable with success probability of 1 −

prEMPD.

Denote by ρEO ∈ [0, 2π] the field of view of the EO sensor and by rEO ∈ [0, 1] the

radius of a circle representing its sensing range. In addition, let ρAD ∈ [0, 2π] be the

field of view of the radar and rAD ∈ [0, 1) be the radius of a circle representing its

sensing range. The action set of drone i at time t is described below:

1. Control signal for the movement angle ui,MA
t ∈ [−π, π],

2. Seed-ratio of the drone, i.e., ui,SR
t ∈ [0, 1] such that

pit+1 = pit + vmax
SR × ui,SR

t × cos(sin(ui,MA
t )), (A.3)

where vmax
SR ∈ (0, 1) is the maximum speed of drone,

3. Angular speed-ratio uheading
i,t ∈ [−1, 1] such that

ϕi
t+1 = ϕi

t + vmax
AS × ui,heading

t , (A.4)

where vmax
AS ∈ (0, 1) is the maximum angular speed,

4. Angular speed-ratio of EO sensor ui,EO
t ∈ [−1, 1] s.t.

ϕi,EO
t+1 =

⎧⎪⎨⎪⎩
−ϕmax

EO if ϕi,EO
t ≤ −ϕmax

EO ;

+ϕmax
EO if ϕi,EO

t ≥ ϕmax
EO ;

ϕi,EO
t + vmax

ASEO × ui,EO
t otherwise;

(A.5)

where vmax
ASEO ∈ (0, 1) is the maximum angular speed of EO sensor,

5. Turn off/on the drone’s radar ui,ER
t ∈ {0, 1}, where 0 refers to turning the radar

off, i.e.,

radar-enabledi
t+1 = ui,ER

t . (A.6)

6. Turn off/on the EMP ui,EMP
t ∈ {0, 1}, where 0 refers to turning the EMP off,

i.e.,

emp-usedi
t+1 = ui,EMP

t + emp-usedi
t(1− ui,EMP

t ). (A.7)
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7. Turn off/on jamming, i.e., ui,EJ
t ∈ {0, 1}, where 0 refers to turning the jamming

off.

8. Turn off/on GPS spoofing, i.e., ui,GPSS
t ∈ {0, 1}, where 0 refers to turning the

spoofing off.

9. Turn off/on hacking, i.e., ui,EH
t ∈ {0, 1}, where 0 refers to turning the hacking

off.

A.2 Enemy Team (Red Team)

The red team comprises a single drone equipped with its own radar sensor and a

potentially hazardous payload. The enemy team consists of nEGCS ∈ N GCSs and

nED ∈ N drones.

Enemy Ground Control Station (GCS): The position of the i-th enemy

GCS at time t is pEGCS
i (t) ∈ R2. The radius of its operating range is denoted by

rEGCS ∈ [0, 1).

Enemy Drone (Red Drone): The state of the i-th enemy drone at time t

includes:

1. Position: pi,ED
t ∈ R2.

2. Payload: li,ED
t ∈ {0, 1, 2, 3}, where values represent ”safe”, ”unknown”, ”mod-

erate”, and ”dangerous”, respectively.

3. Control by GCS: gi,ED
t ∈ {0, 1}.

4. Position of controlling GCS: pi,EGCS
t ∈ R2 where 0 means the drone is not

controlled by the GCS
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5. Functionality status: f i,ED
t ∈ {0, 1} where 0 means it is not functional; In

particular,

f i,ED
t+1 =

⎧⎪⎨⎪⎩
0 ∃j ∈ NnAD s.t. f j

t × uj
t = 1 and ∥pi,ED

t − pj∥2 ≤ rN ,

0 ∥pi,ED
t − pi,EGCS

t ∥2 > rEGCS and gti,ED
t = 1,

fti,ED
t otherwise.

(A.8)

where rN ∈ [0, 1) is the radius of a circle representing the neutralization range of

ally drones and ut
j ∈ {0, 1} is defined as whether or not the ally drone j ∈ NnAD

is enabled to neutralize enemy drone i, i.e.,

uj
t := uj,EMP

t ∨ uj,GPSS
t ∨ (gti,ED

t ∧ uj,EJ
t ) ∨ (gti,ED

t ∧ uj,EH
t ). (A.9)
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Appendix B: Experimental
Platform and Architecture for
HitL Interactions

The experimental platform is a distributed application built using the Cogment plat-

form. We use Cogment as it simplifies the conduction of large-scale experiments in

multi-agent systems and HitL. Cogment dispatches observations of the environment

from the simulation to the agents, as well as instructions from higher-level agents

such as humans or decision-makers. It then dispatches agents’ actions to the en-

vironment, which updates the simulation and agent’s instructions. Furthermore, a

priority-ordered list comprising multiple agents can be allocated simultaneously to a

single drone entity. When an agent with higher priority issues a command for veloc-

ity or rotation change, it overrides those from lower-priority agents. This mechanism

facilitates dynamic takeover by the human operator, optimizing communication chan-

nels, data storage, and processing pipelines in the process.

In order for the human operator to control the ally drones and online policy correc-

tion, we have developed a user interface as a part of the experimental platform shown

in Figure B.1. The experimental platform is built around a simplified airspace sim-

ulator operating in 2D, simulating two types of entities: drones from both blue and

red teams and the ground radar on the blue side. While simplified, several aspects

have been modeled following real-world specifications provided by defense experts,

such as the detection capabilities of the drone sensors and the radar, as well as the

dynamics of the fixed-wing drones. The communication between the different agents
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Figure B.1: User interface for human operators to control the agents

is limited due to their partial observation of the environment but is perfect and in-

stant. The experimental platform models the scenarios as a multi-agent system with

a three-layer architecture. The primary agent type controls the drones through ve-

locity and rotation changes. The bottom layer is named the drone agent layer, and

it receives partial observation of the environment ”through the lens” of its sensors.

In this layer, the blue drones can be either fully autonomous, fully human-operated,

or hybrid (i.e., control is shared by the human-agent team). This is implemented by

two Cogment actor implementations (drone and human actors), shown in Figure-B.2.

For each ally drone agent in the simulation, Cogment instantiates two actors using

those implementations; it can then dynamically assign the control of the drone entity

to one of them.

The system supports two types of high-level decision-makers: the Control and

Command agents. The Control Agent simplifies drone-level tasks by assigning targets,

a capability that can be leveraged by either a human or an agent. Meanwhile, an

additional layer is incorporated to allow the Command Agent to designate areas of

interest to the Control Agents, facilitating more nuanced and strategic operations.
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Figure B.2: Airspace simulation and hierarchical multi-agent modeling

Human operators were introduced to facilitate the control of individual drones and

to gather demonstrations of various drone behaviors. These operators can select

specific drones and set waypoints for them by predicting the anticipated trajectories

of enemy drones. In Figure B.1, the waypoints are denoted by grey circles on the map.

Once a specific waypoint has been defined, Cogment dynamically gives control of the

associated ally drone to the operated agent, causing it to move towards the defined

waypoint via the shortest path under the standard physical dynamics constraints.

Similarly, the human operator can delete existing waypoints through the interface

to rectify any errors in predicting the enemy drone trajectory. Conversely, when

no waypoints are defined, the control is given back to the autonomous agent. The

interface also allows the human to operate at three simulation speeds 1x, 2x, 5x,

according to their preferences.

Figure B.2 represents the architecture of the developed experimental platform. The

Cogment platform [96] handles the orchestration of the execution and communication

between the different components:

1. The drone agents can each use one of multiple implementations; they are en-

capsulated in dedicated micro services as Cogment actors.

2. The simulation, encapsulated in a dedicated micro service as a Cogment envi-
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ronment (that uses MDP formalism).

3. The human operator, interacting through the UI, encapsulated as a client Cog-

ment actor.

The experimental platform, along with a user interface is developed for this project

enabled the team to easily implement a heterogeneous, hierarchical multi-agent sys-

tem. This allowed the integration of multiple types of agents, each with their own

specialized capabilities and roles, within a single system while the hierarchical prop-

erties enabled task decomposition. Furthermore, a priority ordered list of multiple

agents can be assigned to a single drone entity at once. One key feature of the plat-

form is the dynamic agent or human “takeover” capability, which supports human-AI

teaming during operations and provides advice during training. This allows for the

seamless integration of human operators and AI agents within the system, allowing

the operator to take over when needed. This allowed us to evaluate the human-AI

team. A detailed description of the user interface can be found in Section 3.3.
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Appendix C: Hyperparameters

We perform hyper-parameter tuning using grid search to find best parameters for the

algorithms and use the same settings for all the models in scenarios. We considered

learning rate values of[0.4, 0.04, 0.004, 0.0004, 0.00004], epsilon decay values of [0.99,

0.995, 0.9995, 0.99995, 0.999995], and discount factor values of [0.9, 0.99, 0.999]. The

supervised loss coefficient weight (λ2 in equation 2.5) varied between 105 to 1, and we

set λ3 to 0. The same network structure was used across D3QN-0-2500, D3QN-0-500,

D3QN-500-2000, D3QNHM -500-0 and D3QNPC-500-0, consisting of two hidden layers

with 64 fully connected neurons. A final fully connected layer was added to represent

each action’s Q-values. The non-linearity function used in all layers was rectified

linear units (ReLU). During training, we use the Adam optimizer and applied an

epsilon-greedy policy, gradually reducing epsilon from 1 to 0.05. The batch size was

64, and the replay memory size was 100, 000.
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Parameter Value

Training Episodes 10,000

Replay Memory size 100,000

Batch size 64

Learning rate 0.0004

Discount factor 0.99

Target network update frequency 10

Initial ϵ 1.0

Final ϵ 0.05

ϵ decay per episode 0.999995

Table C.1: Model hyper-parameters.
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Appendix D: Demonstration
Visualization

We visualized five trajectories of all blue and red drones from trained agent demon-

strations and two actual human demonstrations from different users who played more

than 30 games, as shown in Figure D.1. In this figure, the blue star denotes one of the

ally drones that neutralized the enemy drone and is the frame of reference (located

at (0, 0)). The red and green lines represent the relative position of the enemy drone

and the restricted airspace (with respect to the blue drone’s position). Figure D.1(a)

shows five trajectories of ally drones generated from the trained D3QN agent. We

note that across all the figures, the red drone starts moving towards the restricted

zone while being chased by the blue drones until it is neutralized. The low density

of red lines around the blue star indicates that the blue drones quickly neutralize the

red drone without following it for a long time. From Figure D.1(b) and D.1(c), which

depicts trials by two different human participants, we notice that there is more move-

ment (high-density) around the blue star, suggesting that the human tries setting

waypoints in different areas (using the whole team of five blue drones) of the map

to neutralize the red drone. These trajectories are sub-optimal (longer trajectory

length) as compared to the trajectories from trained agent demonstrations. However,

these might be helpful to neutralize the red drones in challenging environment con-

figurations where the trained RL agents fail to catch the enemy drone (trained agents

have a failure rate of around 10% in this task).
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(a) Trained agent demonstration (b) A human user (User 1)

(c) A human user (User 2)

Figure D.1: Visual representation of five episodes from trained agent and two different
real human users
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Appendix E: NASA-TLX Load
Index Questionnaires:

Participants will complete a 6-question NASA-TLX workload assessment, with each

question featuring a 21-point slider ranging from “very low” to “very high” . These

questions are modified to facilitate comparison with the previous round of the task:

1. Mental Demand: How mentally demanding was the task compared to the pre-

vious round?

2. Physical Demand: How physically demanding was the task compared to the

previous round?

3. Temporal Demand: How hurried or rushed was the pace of the task compared

to the previous round?

4. Performance: How successful were you in accomplishing what you were asked

to do compared to the previous round?

5. Effort: How hard did you have to work to accomplish your level of performance

compared to the previous round?

Demographic Questionnaires:

• Gender? [Multiple Choice: Woman, Man, Transgender, Prefer to describe my-

self, Prefer not to respond]

• Your current position/post
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• What is your age? [slider 18-65]

• Are you experienced in defence strategies/drone control, development? [Yes/No]

• Years of experience in defence strategies/drone control, development? [slider or

box]

• Did you experience drone controls in real life or simulated tasks in the past ?

[yes/no]

• Do you have experience with video games? [Yes/No] If yes, years of experience

with video games.
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