
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Location-based Services Testing with A Scalable Test Framework

By

Jiang Yu (c)

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09323-4
Our file Notre reference
ISBN: 0-494-09323-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Jiang Yu

Title of Thesis: Location-based Services Testing with A Scalable Test Framework

Degree: Master of Science

Year this Degree Granted: 2005

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the copyright

in the thesis, and except as herein before provided, neither the thesis nor any substantial

portion thereof may be printed or otherwise reproduced in any material form whatsoever

without the author’s prior written permission.

Jiang Yu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

With the rapid growth of mobile commerce in recent years, Location-based services (LBS)

have generated a lot of interests and attracted many new researchers and market players

developing and offering numerous applications in recent years. Therefore, effective

testing strategies need to be considered for LBS. However, various technologies and the

complex architecture involved in LBS cause numerous challenges on the LBS testing

from many perspectives, including functionality, usability, performance, scalability,

interoperability and security. In this thesis, we investigate the principles of all types of

LBS and define the primary challenges on the LBS testing, and present a new test

framework for testing Location-based services. The key idea of this test framework is to

introduce a scalable test framework that enables a rapid prototyping test environment and

the easy integration of third party components. We implement our test framework with

the TTCN-3 testing language and the SWANS wireless simulator, and evaluate the test

framework with an empirical investigation to demonstrate the feasibility and

effectiveness of our test framework on the LBS testing from six testing strategies,

including functional testing, usability testing and server side testing, performance testing,

security testing and interoperability testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

For his indispensable guidance during my research at the University of Alberta, the

efforts of Dr. James Miller are gratefully acknowledged. Additionally, I would like to

thank Dr. Rimon Barr for his comments and advice during our many insightful

conversations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Chapter 1 Introduction... 1

1.1 Introduction and Definition..1

1.1.1 Mobile Commerce Applications and Limitations...1

1.1.2 Software Automation Testing Process.. 4

1.1.3 Definition...6

1.2 Statement of the Research Problem and Motivation... 8

1.2.1 Related Work and Existing Problems..8

1.2.2 Motivation..11

1.3 Scope of the Thesis and Overview of Contributions........................ 12

1.4 Organization of the Thesis... 16

Chapter 2 Location-based Service..17

2.1 Introduction... 17

2.2 Location-based Service.. 17

2.2.1 Location-based Application (LBA).. 19

2.2.2 Location Measurement Technology.. 24

2.2.3 LBS Operation Scenario.. 29

2.3 Challenge of Location-based Service Testing.. 32

2.3.1 Functionality... 32

2.3.2 Usability...34

2.3.3 Performance.. 35

2.3.4 Security and Privacy.. 36

2.3.5 Scalability.. 38

2.3.6 Interoperability.. 38

Chapter 3 Test Framework Requirement and Prototype 40

3.1 Introduction...40

3.2 Scope of System Under Test... 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Test Framework Requirements...44

3.3.1 Open Distributed Architecture...45

3.3.2 Simulated Infrastructure... 46

3.3.2.1 Wired and Wireless Network Simulation..46

3.3.2.2 No Modification of Application Code...48

3.3.2.3 Location Contexts Acquisition.. 48

3.3.2.4 Service Selection Mechanism...49

3.3.3 Test Automation.. 50

3.3.3.1 Application-independent... 50

3.3.3.2 Extensibility and Maintainability... 51

3.3.3.3 Hierarchical Structure... 52

3.3.3.5 Platform-independent.. 53

3.3.3.6 Manual T est... 53

3.3.3.7 Test Results Verification... 53

3.3.3.8 Test Results Reporting.. 53

3.4. Test Framework Prototype... 54

Chapter 4 Test Framework Design, Implementation and

Evaluation..57

4.1 Introduction... 57

4.2 Test Framework Architecture... 57

4.2.1 Overview..57

4.2.2 Overall Test Framework Architecture.. 58

4.2.3 Location-based Application... 60

4.2.4 Server... 61

4.2.5 Test System Console...62

4.2.6 System Adapter...63

4.2.7 Test Plan Generator...64

4.2.8 System Centre... 65

4.2.9 Test Analyzer.. 66

4.2.10 Context Simulator...67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.11 Wireless Simulator.. 67

4.3 Test Framework Implementation.. 68

4.4 Testing and Test Control Notation (TTCN-3)... 70

4.4.1 Introduction of TTCN-3..70

4.4.2 Applying Test Framework with TTCN-3... 73

4.5 Wireless Simulator... 78

4.5.1 Current Wireless Simulators.. 79

4.5.2 SWANS Wireless Simulator.. 81

4.5.3 Applying Test Framework with SWANS... 83

4.5.3.1 Mobility Model..84

4.5.3.2 Propagation Models.. 86

4.5.3.3 Integration of SWANS and TTCN-3... 88

4.6 Test Framework Evaluation.. 89

4.6.1 Functional Testing - Location Changes.. 91

4.6.2 Usability Testing - Auto/Manual Tracking Services... 92

4.6.3 Network Performance Testing - Poor Wireless Network Performance...........93

4.6.4 Server Site Testing - Multiple Instances... 94

4.6.5 Interoperability Testing - Multiple Software Components................................96

4.6.6 Security Testing - Personal Integrity and Secured Contents............................ 97

4.7 Comparison between our test framework and other testing methodologies... 99

Chapter 5 Experimental Studies...101

5.1 Overview of Mobile Service Tracking...101

5.2 Test Environment... 102

5.3 System Analysis...103

5.4 Test Scenario...103

5.5 Test Generation...107

5.5.1 Test Definition...108

5.5.2 Test Configuration.. I l l

5.5.3 Test M odule...113

5.5.3.1 LBSTestcaseExtemal Test Module...114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.3.2 LBSTestcaseManual Test Module..115

5.5.3.3 LBSLoadTest Test Module... 116

5.5.3.4 Control Test Module..118

5.5.4 Test Case and Test Data..119

5.6 Test Execution and Result Analysis..123

5.7 Interoperability and Security Testing Investigation...128

5.7.1 CORBA Interoperability Testing... 129

5.7.2 OpenLS Interoperability Testing...132

5.7.2.1 Overview of OpenLS...132

5.7.2.2 OpenLS Architecture and Typical Scenario..133

5.7.2.3 OpenLS Interoperability Testing Strategy...136

5.7.3 Security Testing.. 138

5.7.3.1 SAML Overview..139

5.7.3.2 SAML Use C ase..141

5.7.3.3 Apply SAML to Location-based Services...142

5.7.3.4 Security Testing SAML Protocol in LBS.. 143

5.8 Test Evaluation..145

Chapter 6 Conclusion and Future Work................................... 148

6.1 Contributions...148

6.2 Future Work.. 149

Bibliography..150

Appendix A: J2ME Profile and A PIs.. 158

Appendix B: Current OS in the Mobile Devices..................... 160

Appendix C: TTCN-3 Tabular Presentation Format Example

 161

Appendix D: TTCN-3 Graphical Presentation Format

Example.. 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: The Parameter Definition and Interface...........163

Appendix F: The Snapshots of Test Execution.........................168

Appendix G: The Test Result of TC008-TC012.......... 170

Appendix H: Test Cases of Use Case 1 - Activation of the MST

.. .172

Appendix I: Test Cases of Use Case 2 - Deactivation of the

M ST...174

Appendix J: Test Cases of Use Case 3 - Where am I?............177

Appendix K: SAML Authentication Assertion Request /

Response Messages... 181

Appendix L: Web Browser Single Sign-On Profile................. 182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1-1: Limitation Category of M-Commerce Applications 3

Table 2-1: Basic Data - Selected Positioning Technologies 28

Table 4-1: Summary of Test Issues for Location-based Services 90

Table 4-2: Comparison of LBS Testing Methodologies 100

Table 5-1: Typical Test Issues of The Experimental Study 104

Table 5-2: Test Case List (1) 120

Table 5-3: Test Case List (2) 120

Table 5-4: Test Case List (3) 121

Table 5-5: The Test Case List for Test Scenario TS04 122

Table 5-6: Initial Parameters for the Base Station 123

Table 5-7: The Test Data for Test Scenario TS04 123

Table 5-8: The Test Result of Test Case TC001 124

Table 5-9: The Test Result of Test Case TC002 124

Table 5-10: The Test Result of Test Case TC003 125

Table 5-11: The Test Result of Test Case TC004 125

Table 5-12: The Test Result of Test Case TC007 126

Table 5-13: The Evaluation Result of The Experimental Study 146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1-1: Mobile Commerce Life Cycle 2

Figure 1-2: Software Test Automation Process 5

Figure 1-3: Ricardo Morla’s Test Environment 11

Figure 2-1: Core Components of the Location Based Service 18

Figure 2-2: WAP Programming Model 21

Figure 2-3: Java Technology Map 22

Figure 2-4: LBS Operation Scenario 31

Figure 3-1: High-level Architecture of a Java Wireless Enterprise Application 42

Figure 3-2: Prototype of The Test Framework 55

Figure 4-1: Architecture View of The Test Framework 59

Figure 4-2: TTCN-3 Standard Presentations 71

Figure 4-3: General Structure of A TTCN-3 Test System 73

Figure 4-4: The Test Framework Architecture with TTCN-3 Test System 75

Figure 4-5: Data Types, Procedure Signatures and Test Data 76

Figure 4-6: Function Definitions 78

Figure 4-7: The Stack of SWANS Wireless Simulator 81

Figure 4-8: JiST System Architecture 82

Figure 4-9: SWANS Wireless Simulator Structure 83

Figure 4-10: LBS Service Selection Scenario 84

Figure 4-11: The Location-Based Service on SWANS 85

Figure 4-12: The Path Loss/Distance Trend of Hata Model 88

Figure 4-13: Integration of TTCN-3 and SWANS 89

Figure 4-14: Interfaces of The Network Layer in SWANS 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-1: The Architecture of Mobile Service Tracking System 101

Figure 5-2: The Module Load File of TTCN-3 108

Figure 5-3: The Data Type and Template Definitions 111

Figure 5-4: The Port and Component Type Declaration 112

Figure 5-5: The External Function Declaration 113

Figure 5-6: The LBSTestcaseExternal Test Module 114

Figure 5-7: The LBSTestcaseManual Test Module 116

Figure 5-8: The LBSLoadTest Test Module 117

Figure 5-9: The Execution Control Test Module 118

Figure 5-10: The Average Response Time with Different Virtual Users 127

Figure 5-11: Vertical and Horizontal Interfaces in CORBA 130

Figure 5-12: TTCN-3 Test Component Configuration for CORBA 131

Figure 5-13: OpenLS Typical Service Request/Response 133

Figure 5-14: General Usage Pattern for OpenLS 134

Figure 5-15: XML Request/Response Message in OpenLS 135

Figure 5-16: TTCN-3 Test Component Configuration for OpenLS 136

Figure 5-17: OpenLS Request/Response Test Data 137

Figure 5-18: SAML Components 140

Figure 5-19: Single Sing-On Use Case 142

Figure 5-20: Test Component Configuration for SSO 144

Figure 5-21: Authentication Request/Response Test Data 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

1.1 Introduction and Definition

As one part of M-Commerce applications, Location-based services (LBS) have generated

a lot of interest and attracted many new researchers and market players developing and

offering numerous applications and research in recent years. According to the UMTS

Forum, Location-based services daily traffic will grow from 1.3 Tbytes in 2012 to 160

Tbytes in 2020, caused by the combination of both subscriber’s growth and frequency of

use growth [UMTS 05]. In the US, the Federal Communication Commission (FCC) has

mandated that, by the end of 2005, all operators will be able to locate the position of any

emergency call placed by a mobile phone with an accuracy of 125 meters. However,

delivering new services requires developing means and testing tools to assist the creation

and support the quality of the service. Consequently, testing of Location-based services

becomes one of important strategies for the success of location-based services.

In this chapter, we briefly address the problem of mobile commerce applications, and

describe the software automation testing process and terms that are used in this thesis.

Also, we present current research work on location-based services testing and the

motivation for our research. Finally, we describe the scope and contributions of our

research, and give the organization for the remainder of this thesis.

1.1.1 Mobile Commerce Applications and Limitations

Mobile commerce (M-Commerce) is an emerging discipline with various entities

involved, i.e. mobile applications, mobile devices, service provider, content provider, and

wireless networks, as shown in figure 1-1. The emerging mobile service includes object

identification, health monitoring, location discovery, M-payment, digital content, mobile

entertainment, corporate services, M-government, and M-education [UMTS 05].

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ContentsContent
Providers

Wireless
Network
Provider

i landhdd
Vendors Request

AFP

Figure 1-1: Mobile Commerce Life Cycle [Varshney+01]

While M-Commerce applications have grown explosively, the specific characteristics of

M-Commerce application bring big challenges to improve software quality. Testing M-

Commerce applications differs from the testing of traditional desktop client/server

applications in many aspects. Table 1-1 shows the limitation category of M-Commerce

applications. Generally, the limitations of M-Commerce applications can be concluded

from the following aspects: mobile device limitations and wireless network limitations.

The main difference between M-Commerce applications and desktop C/S applications is

that, the client application is running on the micro web browser at mobile devices, i.e.

PDA, Smartphone, BlackBerry, that have many restrictions that a desktop client

application does not process. Besides, M-Commerce applications run on a wireless

network with many uncertainties within that environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mobile Device Limitations Description

Small screen size The screen size may be not big enough to properly

display all content converted from the standard HTML

web page.

Low CPU Speed It may take more execution time of client application due

to low CPU speed.

Limited RAM memory The limited RAM memory prevent the mobile device

running complex applications.

Short battery life dependencies It may cause data loss because of loss of power during

the execution of the client application.

Limited secondary storage Less data storage capability than desktop applications

Different OS platforms** The client application is platform dependent and may fail

when run on different OS platform, i.e. Windows CE,

Symbian, and Palm OS.

Different micro browsers** The client application may not be suitable for each type

of micro browsers, i.e. IE2002, Blazer, and Wapaka,

which might cause incompatibility problems.

Wireless Network Limitations Description

Poor network bandwidth Poor network bandwidth limits the capacity of data

transferred over the wireless network.

Different network infrastructure The mobile client application may fail when running

across wireless networks provided by different network

provider.

Message size limitation The input data may be lost if it is larger than the

maximum size allowed to be transmitted over the

wireless network.

** See Appendix B for current available browsers for each OS on the mobile device.

Table 1-1: Limitation Category of M-Commerce Applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Software Automation Testing Process

Software testing is the process of exercising or evaluating a system or system component

by manual or automated means to confirm that it satisfies requirements or to identify

differences between expected and actual results. According to [Tassey+03], it is reported

that bugs in the final products cost the United States economy $59.5 billion per year. It

has been known that, in a typical programming project, approximately 50% of the elapsed

time and over 50% of the total cost are expended in testing the program or system being

developed [Myers 79]. The increasing focus has been put on how to design effective test

cases and improve the test efficiency, and various methodologies and approaches for

testing have become mature and been adopted by testing professionals.

Software test automation has been widely used in the software industry. Software test

automation refers to the activities and efforts that intend to automate engineering tasks

and operations in a software test process using well-defined strategies and systematic

solutions [Li+04]. The main objective of software automation test is to reduce manual

testing activities and redundant test operations using a systematic solution to achieve a

better testing coverage and improve the software quality.

Building a suitable test framework is one of the key factors for the success of software

test automation. To achieve this, a cost-effective test process should be established to

support engineers to carry on various test automation activities with the provided test

framework and develop required test automation solutions. Figure 1-2 shows a typical

software automation test process. According to [Li+04], the following steps are necessary

in a typical test automation process:

• Test automation planning

• Test automation design

• Test framework development

• Test framework deployment

• Review and evaluation

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plan software lest
automation

> * ._________
D esign test automation
strategies and solutions

Select and evaluate available
software testing tools

Develop and implement
test automation solutions

Introduce anti deploy test
automat ion so kit tons

Review and evaluate
software test automation

Figure l-2:Software Test Automation Process [Li+04]

Test Automation Planning

Test automation planning is the first step of software test automation. The main activity

of test automation planning is to build up a comprehensive plan that covers the

specification of test automation objective, scope, strategies, requirements, schedule and

budget.

Test Automation Design

At this step, the detailed test automation solutions needs to be developed to achieve the

major test automation objectives and meet the given requirements in the test automation

plan. The test environment must be provided to support the execution of applications

under test. Therefore, suitable testing tools, i.e. commercial and open-source tools,

simulators and emulators, need to be selected to support the test automation process. Also,

detailed design for the required test automation solutions needs to be conducted in this

stage.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test Framework Development

The primary objective of this step is to develop a qualified framework and facilities to

satisfy the requirements of test automation solutions. As many test automation projects

fail due to poor quality and documentation, we must ensure that the developed framework

is reliable and reusable with good documentation.

Test Framework Deployment

At this step, the developed test framework and facilities must be introduced and deployed

into a project or onto a product line. Basic user training and user support activities are

necessary in this step.

Review & Evaluation

After a new test framework is deployed, a review process should be conducted to identify

its issues and limitations, and evaluation criteria need to be set up to fully evaluate the

provided test framework features. The review’s results will then return valuable feedback

to the test automation group for further improvements and enhancements.

1.1.3 Definition

Most of the following definitions are taken from [Li+04], except those terms that are

otherwise referenced.

Component

A component is any software aggregate that has visibility in a development environment,

for example, a method, a class, an object, a function, a module, an executable component,

a task, a utility subsystem, or an application subsystem. This includes executable software

entities supplied with an application programmer interface (API) [Binder 00].

Functional Testing

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Functional testing is generally required for all products. The purpose of functional testing

is to reveal defects related to the functionality of products or components, and

conformance to any documented functional requirement specification [Kaner+99].

Stress Testing

Stress testing is the testing conducted to evaluate a system or component at or beyond the

limits of its specified requirements with the goal of causing the system to fail [IEEE 90].

Performance Testing

Performance testing measures the response times of a system to complete a task and the

efficiency of the algorithms under various conditions. Therefore, performance testing also

takes into consideration possible hardware platforms, operating systems, and other

applications used by the customers.

Usability Testing

Usability testing ensures that the presentation, data flow, and general ergonomics of the

application meet the requirements of the intended users. This testing phase is critical to

attract and keep customers. Usually, manual testing methods are inevitable for this

purpose.

Security Testing

Testing which confirms that the program can restrict access to authorized personnel and

that the authorized personnel can access the functions available to their security level.

Interoperability Testing

Interoperability Testing determines that a product implementation of an Implementation

Specification interoperates with other product implementations of the same

Implementation Specification, different but related Implementation Specification(s), or

within a particular computing environment [OGC 05].

Grey box testing

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Grey box testing is a combination of black box and white box testing to reveal omissions

and surprises. Information from requirements, design, and source code are used to

develop test cases.

Emulator

A device, computer program, or system that accepts the same inputs and produces the

same outputs as a given system [Alliance 05].

Simulator

The programs developed to simulate the functions and behaviours of external software

and hardware entities, components, or subsystems.

1.2 Statement of the Research Problem and Motivation

1.2.1 Related Work and Existing Problems

Based on the fact that the mobile device usually has a less powerful processor with

limited memory, a small screen and a restricted keyboard, it is very hard to build and

debug the software on the mobile device itself. Moreover, the mobile device has to be

carried to different locations in order to test location change scenarios, which is laborious

and inefficient.

Currently a lot of research work has been proposed on testing context-aware applications

or location-based services. One popular way to test the software application in the mobile

device is to use a software-based emulator for the mobile device. Most mobile device

providers offer their own device emulators, such as BlackBerry JDK, Motorola iDEN

SDK, Palm PDA emulator as well as Java Wireless Toolkits provided by Sun. These

emulators and toolkits are usually designed to run on the workstation and simulate the

application-level execution environments of the mobile device, such as transmission,

radio and battery. As a result, wireless applications can run on the simulated mobile

device and work in a simulated wireless network. These emulators are very convenient

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and widely used in the development of software for mobile devices. However, as

mentioned above, they are focusing on application-level simulation and therefore are not

suitable for system-level testing, such as interoperability and scalability testing, for the

whole location-based service (LBS).

Ichiro Satoh [Satoh 03] describes a system for testing mobile computer software. The

system offers a mobile agent-based emulator which performs application transparent

emulation of the mobile device for the application and allows the application to travel

across the network and connect to the local server to simulate its movement and

execution within the network. This testing framework distinguished itself by introducing

logical mobility as a methodology for building and testing applications requiring the

physical mobility. Specifically, each local server has its own access point host, which

provides a runtime system for executing and migrating mobile agent based emulators. In

other words, the physical movement of a mobile computing device from one network and

attachment to another is simulated by the logical mobility of a mobile agent-based

emulator with the target applications from an access-point computer in the source

network to another access-point computer in the destination network. Therefore, the

mobile application can keep executing its process after it is located at another host, based

on the code and state (Networked running state, Isolated running state and Suspended

state) of the application carried by the emulator. This testing framework supports a

runtime system for the execution of the test application. It, however, does not support any

network disconnection operations or addressing schemes for the mobile device. Moreover,

it can only be deployed and executed within the domain of the current sub-network and

doesn’t have network simulations for wireless protocols, such as GPRS and wireless

LAN.

Another approach, UBIWISE, is a simulator used for ubiquitous computing systems

design. This simulator concentrates on computation and communication devices situated

within their physical environment [Barton+03]. It simulates the physical environment,

including environment interaction and multi-user experience, surrounding devices and

users with a 3-D rendering engine. It also simulates prototypes of new devices, device

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interaction, services and protocols. The core of the simulation is creating the virtual

counterparts of devices and the picture frames present in the physical environment. The

UbiWise simulator has excellent support for interaction, providing the user with graphical

feedback and 3D virtual representation of the simulated environment on the simulated

devices and environment. Also, the user can utilize the UbiWise simulator for the rapid

prototyping of ubiquitous computing applications. However, compared with other

location based testing frameworks, UbiWise supports connecting simulated devices to

applications but doesn’t support network emulation for application packets. Thus, the

developer cannot compare their implementation’s behaviour over different networks and

protocols.

A hybrid test and simulation environment, provided by Ricardo Morla and Nigel Davies

from the Lancaster University, describes a new approach to the test and evaluation of

location-based applications without the extensive resource investment necessary for a full

application implementation and deployment, focusing on component interaction,

networking, location changes, and multiple component instances [Morla+04], It

introduces network simulators to provide different network protocols, such as TCP/IP,

wireless LAN and GPRS, and integrates a third-party context simulator [Dey 00] into the

test environment in order to simulate context change events. As shown in figure 1-3, the

test environment consists of several components, including the system manager,

application daemons, and simulators. These components cooperate in a distributed system

environment to test the selected location-based application, interacting with each other

using a web service interface. The system manager conducts the experiment, setting up

the simulators, starting the applications under test via the daemons, logging data

throughout the experiment, and supplying feedback to the user. By using different

network and context simulators, this testing environment can achieve a less resource-

demanding evaluation and easily change the prototype to support other applications. It,

however, does not support scalability testing for Location-based services (LBS) when

multi-mobile devices try to concurrently interact with a server.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Manager

Context

Control, logging,
Context distributicApplication

daemons

Context Simulator

] Web services
j Interfacer j

Application W eM wvfcw*
being tested imerface

Emulation,
Interface"

Web services

ns Network
Simulator

Figure 1-3: Ricardo Morla’s Test Environment [Morla+04]

1.2.2 Motivation

Most of current research is mainly focused on the network infrastructure and system

security for the mobile applications. Location-based services (LBS) distinguish

themselves from other software applications by the changes in location, which must be

considered in the testing strategy. One direct way to test location change is to carry the

handheld by the tester and get the local position by interacting with the local network,

which is almost impossible to do because of excessive demands upon manpower.

Alternatively, many researchers and handheld manufacturers tend to provide either

mobile device/application emulators or network and context simulators to simulate the

physical environment and test location-based applications. Although these methodologies

can reach certain levels of testing the application, they are either limited to specific

handhelds, or too sophisticated to adapt to the requirements of the LBS industry, where

its market is evolving very fast.

Location-based service (LBS) is a mobility service that discovers the derived location of

a mobile user to provide services that have a geographic context. With a number of core

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components in the LBS systems, it is essential to ensure each component’s correct

functionality in any LBS transaction. Therefore, from the testing perspective, it is

necessary to test, not only location-based applications, but also other components in LBS,

such as sever side applications and the location management platform (See chapter 2 for

details about LBS and its components).

From the above section, we can discover that current research has focused on either

building a simulator for the location-based application at the application-level, or

simulating the current physical environment at the network-level and system-level. None

of them can evaluate the location-based service from both client side and server side. In

addition, each testing framework presented above built the test environment with its

unique methodology, which is application-dependent and platform-dependent. As a result,

it increases the difficulty of applying the test framework to various location-based

services running on different platforms.

Motivated by the above considerations, we intend to propose one test framework which

can be used to evaluate location-based services with a systematic method, and test

components contained in both the client side and the server side, including network

performance, web sever performance, application server components, and functions of

location-based applications (LBA). Also, this test framework should have a standard

interface to integrate third-party test components and expand the test framework to apply

the test framework to future location-based services.

1.3 Scope of the Thesis and Overview of Contributions

This thesis presents a new scalable test framework for testing location-based services

(LBS). Specifically, the key contribution of this thesis is the design and prototype of a

new approach on the LBS testing. This approach intends to provide a test framework

which can perform most of test strategies that are essential for the success of the LBS

system (See section 4.6 for the details of test strategies on LBS with our test framework).

Instead of the application-level emulation, which is the main approach of [Satoh 03], this

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test framework focuses on the system-level testing for the LBS system, which primarily

focuses on the verification of interactions among the location-based application (LBA),

server-side applications, and other third party components, such as the content provider

and the location management platform (See chapter 2 for more details about third party

components). For instance, can LBA receive correct service content from the server?

How does the sensitive data transmitted within the wired and wireless network

communication? How does the server response to multiple concurrent user requests?

How well is the LBS system on integrating the components developed by different

vendors. Such issues must be covered in the system-level testing for the LBS system.

In the system-level testing, we need to consider the typical challenges brought by the

specific characteristics of the LBS system, including the functionality, the usability, the

performance of wireless network and server side applications, the interoperability and the

security (See chapter 2 for more details about challenges of testing LBS). The system-

level testing, however, does not cover the testing specific functions, i.e. graphical user

interface, local storage mechanism, for the individual components in the LBS system,

such as the location-based application (LBA) running on the mobile device, which can be

done by most of mobile device emulators. Compared with our test framework, either the

emulator in [Satoh 03], UBIWISE, or the test environment in [Morla+04] can only

provide limited test strategies, i.e. functional testing, for the location-based application

(LBA), and cannot perform system-level testing for the location-based service (LBS),

such as verifying the security mechanism and interoperability of the system, etc.

Rather than defining a test system architecture around specific application to be tested,

this thesis emphasizes on building a standardized test framework based on a cost-base

solution to provide the scalability and extensibility for the system-level testing of LBS

that contains different components, and within different vendors. Therefore, we need to

define one scalable test framework for the system-level testing of LBS. The scalable test

framework should be extensible both on test components, i.e. the test plan generator and

the context simulator, that implement specific test functions, and on the test system

console that manipulates the test process and dynamic connections to various components,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e. mobile subscribers, services provider, within the location-bases service, a typical

distributed system.

To achieve this scalable test framework, the test framework should be designed with an

open distributed architecture and it can dynamically connect to the components in the

LBS system and manipulate the test process operations with the corresponding

components in LBS via the well-defined interface. Instead of the web service interface,

which is employed in [Morla+04], we define three types of standard interface (system

interface, external interface and internal interface, see section 3.4 from the details of

interfaces) via which the test framework can communication with the system under test

(SUT), the third party components, which is used to provide test environment, and the

internal test components, which is used to provide specific test functions. These

interfaces can be implemented in Java or C language depending on the implementation of

related system under test. The definition of standard interface distinguishes our test

framework with the test framework in [Morla+04] and allows the hierarchical structure

and more test functions being implemented in our test framework. In addition, it enables

the ease of integration of third party components, i.e. context simulator to provide context

information, in our test framework and makes it possible to apply the cost-based solution

during the implementation of our test framework.

Another essential step of building a scalable test framework is to modularize test

components that implement different test functions, i.e. creating the test plan, analyzing

test results, for the test system. As our test framework is designed with an open

distributed architecture, these test components can be connected to the test system

console via standard communication protocols and interfaces. With these standard

interfaces and test components, it is possible to reuse test components and test functions

in different test scenarios and projects. Thus, modularizing test components helps to

reduce initial test development costs and increase the reuse and scalability of our test

framework, and leads to the cost-based solution when building our test framework.

Moreover, our test framework separates the test definition from the test implementation,

so that testers can concentrate on writing test cases and test functions in scripts language,

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and do not need to consider how to implement test cases in certain programming

language. By doing this, the test framework can significantly improve the efficiency of

LBS testing.

Compared with our scalable test framework, other test approaches, i.e. UBIWISE, [Satoh

03], and [Morla+04], both provide their unique test frameworks or simulation

environment on context-aware application testing, which can provide the application-

level testing to some extent. However, from the testing viewpoint, none of their testing

approaches is scalable and defined in a standard process. They cannot provide a clear test

definition and test descriptions that are essential in the test process. In other words, testers

have to struggling on understanding their unique approaches and creating test cases and

functions for each project, and have to rework on creating test cases and functions

whenever there is any change in the system under test (SUT). Consequently, it is

inefficient to apply their approaches on the testing of location-based services, which is

fast changing both on technologies and on methodologies.

Building a simulated wireless environment in our test framework is another contribution

in this thesis. Instead of NS2 wireless network simulator [Fall+05], which is used by

[Morla+04], we employ SWANS [Barr 05] to provide simulated wireless network to our

test framework. SWANS is an open source wireless network simulator built on the Java

Virtual Machine (JVM), and it supports running standard Java network applications over

simulated networks. However, as it is mainly used to simulate the ad-hoc wireless

network, SWANS does not contain the signal propagation model suitable for simulating

the signal propagation mechanism within the location-based service. Therefore, we

develop our signal propagation model using Hata Model [Hata 80] and embed it into the

SWANS wireless network simulator. Therefore, it can propagate the signal and enables

our test framework to test corresponding scenarios for the LBS system, such as multiple

services selection mechanism.

In addition, we implement our test framework with the TTCN-3 test specification and

implementation language, which enable testers to rapid prototype their test environment

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Grabowski+03]. In addition, we develop corresponding standard interfaces to connect

the TTCN3 test system with components in SUT and third party components, such as

Context Simulator and the SWANS wireless simulator.

Finally we demonstrate the feasibility of our test framework with experimental studies, in

which 45 test cases are developed to perform LBS testing from various testing strategies,

including functional testing, usability testing, network performance testing, server side

testing and security testing. Interoperability testing strategy is also investigated at the end

of experimental studies.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2: Describes background information about the location-based service, and

challenges on testing the location-based service.

Chapter 3: Specifies the test scope of the system under test and test framework

requirements, and presents the prototype of the test framework.

Chapter 4: Presents the architecture of our test framework, implements the test

framework with the TTCN-3 test system and the SWANS wireless simulator, and

evaluates the test framework with typical testing criteria.

Chapter 5: Applies our test framework to some experimental settings, and evaluates our

techniques.

Chapter 6: Gives conclusion and suggestions for future work.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Location-based Service

2.1 Introduction

Location-based services (LBS) can be defined as mobility services that exploit the

derived locations of a user (specified by user, network or handset) to provide services that

have a geographic context [Mitchell+03]. LBS differentiates itself from other software

applications with the following unique elements:

• Convenience since they are available through mobile devices (i.e. Smartphones

and PDAs) which are expected to provide users with the information about their

immediate situation.

• Personalized by their very nature in encouraging users to better define their

mobile activity, such as check the traffic situation on the route and notify drivers

of the nearest gas station.

• Real Time in their transaction to link dynamic information related to the user’s

location.

• Relevant through filtering only that information proximal to a user’s location and

simplifying an already complex user experience.

In this chapter, we will describe the core components of the location-based service, and

location positioning technology, and present the challenges of testing location-based

service at the end of the chapter.

2.2 Location-based Service

As one type of mobile commerce applications, Location based service (LBS) involves

many stakeholders and complicated business relationships, such as consumers, service

providers (to brand and run the service), network operators (provider of mobile network

connectivity), mobile phone vendors (provider of mobile terminals), GPS technology

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vendors, network positioning vendors, map providers and developers (vendors and

produces of client-server application). LBS applications include emergency and safety-

related services, entertainments, navigation, directory and city guides, traffic updates, and

location-specific advertising and promotion, etc.

Figure 2-1 shows an overall architecture of a typical Location-based service (LBS),

which is conceptually a Client/Server distributed system, consisting of following three

tiers:

• Mobile Client tier

o Location-based applications (LBA)

• Middleware tier

o Location measure technology

o Location management platform

• Service Server tier

o Application/Geo-Spatial platform

o Application/Services.

Mobile
Devices
(LBA)

») «'('<

<<o

>») («<

Location
Measurement
Technologies

Cell ID

Enhanced
Celt ID

GPS

AGPS

TOA

EOTD

Location
Management

Platform

LMP

Wired Network

Application/
Geo-Spatial

Platform

AP/GSP

S.
z

o
•n

Application/
Services

Traffic
Guide

Weather

News

Maps

Tracking

Gas
Station

Figure 2-1: Core Components of the Location Based Service [Mitchell+03]

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Location-based Application (LBA)

The location-based application (LBA) on the mobile client tier is the application running

on the mobile station (device), responsible for sending the user’s service request and

receiving the response (location-based service) from the service provider (or Web Sever).

Although a wide range of mobile stations are available in the market, the operating

systems, the core component of mobile stations, are dominated by just three major brands,

Palm OS, Pocket PC, and Symbian OS [Lee+03].

Currently there have three prevalent technologies for developing applications on mobile

handset:

• SMS (Short Message Service)

• Browser-based programming (WAP and NTT DoCoMo i-Mode)

• Java 2 Platform, Micro Edition (J2ME)

Short Message Service (SMS) is a globally accepted wireless service that enables the

transmission of alphanumeric messages between mobile subscribers and external

systems. Using SMS to deliver location-based services is one of approaches to build

location-base services. In this approach, the subscriber sends the service request in the

form of a SMS message to the SMS center, which will delivers the message to the

application platform. The application platform consists of an SME (Short Message

Entity) emulator and an application server for the application. The SME emulator is used

to parse the incoming message and send it to the application server. The application

server will generate location information and send it to the location provider. Then, the

Application server will request the service content by passing the current location to the

content provider along with the request text. The context provider processes the request

in the context with the provided location and sends the result to the application server.

The SME emulator in the application platform formats the result in the form of a DMD

message and sends it to the mobile device [Krishnamurthy 02],

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SMS allows users to send and receive text messages to and from cell phones, containing

up to 160 characters in each SMS message. The application uses SIM toolkit technology

and is ideal for one-to-one or one-to-few information pushing. However, SMS is not ideal

for implementing a location-based application, since it can only support simple

applications. The application can only be equipped with very limited logic, mainly text

processing, and does not cater to complex m-commerce solutions, such as map and

tracking services. In addition, the current SMS messaging technology does not guarantee

that the packet will arrive at a certain time [GSM Association 05].

Wireless Application Protocol (WAP) is the open standard for information services on

wireless terminals like mobile phones. WAP is designed for micro browsers, a small

piece of software that makes minimal demands on hardware, memory and CPU. WAP

uses the Wireless Markup Language (WML) to create pages to be displayed in a micro

browser. WAP enables easy access and delivery of information and services to mobile

devices. Inherited from Internet standards (HTML, XML and TCP/IP), WAP is intended

to address the need to access the Internet from handheld devices such as mobile phones

and PDAs by optimizing these Internet standards and complying them with the unique

constraints of wireless environment (i.e. low bandwidth, high latency and unstable

connection). It defines a set of standard components (a WML language specification, a

WMLScript specification, and a Wireless Telephony Application Interface (WTAI

specification) that enable communication between mobile terminals and network servers.

Figure 2-2 shows the WAP programming model, which is very similar to the WWW

programming model [WAPForum 05]. The mobile device set with the WAP browser

communicates with the web server via a WAP Gateway, which includes HTML to WML

filters, the HTTPs interface to a web server as well as interface to the mobile device via

the wireless network (i.e. GSM, CDMA). Requests from the mobile device are sent as a

URL through the operator’s network to the WAP Gateway. Responses are sent from the

web server to the WAP Gateway in HTML, which are then translated in WML and sent

to the mobile terminals.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G atew ayMobile Client Server

Encoded Request

Encoders
and

Decoders
H U P

Encoded Response Response

Figure 2-2: WAP Programming Model

Since founded in 1997 by Ericsson, Motorola, Nokia, and Unwired Planet, WAP has

received wide support in the wireless industry [W3C Schools 05]. However, as WAP

logic executes on the server-side (with the exception of some simple scripting that can

run in the device), WAP is not quite suitable for graphics intensive applications such as

games, interactive charting, etc. WAP also has known security issues in the WAP

gateway, where protocol conversion occurs.

NTT DoCoMo i-Mode. i-Mode was first introduced by NTT DoCoMo in Japan. This

technology competes with WAP [Eurotechnology.com 05]. It offers a similar mechanism

to allow users to access the Internet from their wireless devices over a packet-switched

network. However, i-Mode uses cHTML, a subset of HTML, as a page description

language to develop content in the cell phone browsers, while WAP uses WML. i-Mode

is a complete wireless internet service at present covering almost all of Japan with 42

million i-Mode subscribers in Japan and about 4 million users outside Japan (as of

Summer 2004).

For the time being, the development platform of location-based applications is dominated

by the Sun’s Java 2 Platform, Micro Edition (J2ME) platform. J2ME is designed to

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

run on consumer devices and electronic appliances, including wireless devices such as

cell phones and Palm PDAs [Raju 00]. J2ME offers a way to exploit the processing

power on the mobile device better by running the code on the device itself. Therefore, it

provides a better network implementation, a better graphical user interface, and local

database management. Figure 2-3 shows an overall map of Java Technology.

Optional
Package

Java 2
E nterprise

E d ition
(.12 EE)

C ore A P Is

Optional
Package

Java 2
Standard

E dition
(J2SE)

C ore A PIs

Found
at ion

RMI CDC MIDP

Java 2 M icro Edition C ore A PIs

Java
Card

Java Programming L anguauge

Figure 2-3: Java Technology Map

J2ME is divided into configurations, profiles, and optional packages [Sun Microsystems

05]. Configurations are specifications that detail a virtual machine and a base set of APIs

that can be used with a certain class of device. The virtual machine is either a full Java

Virtual Machine (JVM) or some subset of the full JVM, such as Kilo Virtual Machine

(KVM), which is designed to be small, with a static memory footprint of 40-80 kilobytes.

The set of APIs is customarily a subset of the J2SE APIs. Current J2ME standard

configuration is the Connected Limited Device Configuration (CLDC).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A profile builds on a configuration but adds more specific APIs to make a complete

environment for building applications. While a configuration describes a JVM and a basic

set of APIs, it does not by itself specify enough detail to enable you to build complete

applications. Profiles usually include APIs for application life cycle, user interface, and

persistent storage. The Mobile Information Device Profile 2.0 (MIDP 2.0) is the latest

version of the J2ME profile specification, including new features such as an enhanced

user interface, multimedia and game functionality, greater connectivity, over-the-air

(OTA) provisioning, and end-to-end security.

An optional package provides functionality that may not be associated with a specific

configuration or profile. One example of an optional package is the Location API (JSR

179), which provides a standardized APIs that enable developers to write wireless

location-based applications and services for resource-limited devices like mobile phones,

and can be implemented with any common location method. The compact and generic

J2ME location APIs provide mobile applications with information about the mobile

device's present physical location and orientation, and support the creation and use of

databases of known landmarks, stored in the device (See Appendix A for all J2ME

configurations, Profiles and APIs).

The J2ME CLDC and KVM have been embedded into many different platforms and

devices, including Motorola phones and two-way pagers, Research in Motion (RIM)

wireless handsets, and Palm PDAs. Compared with WAP and i-Mode technologies,

J2ME has the following benefits:

• Local computing power. J2ME is able to access the device's resources (i.e.

device’s processor and memory) more by running application locally while

Browser-based applications is often good at building contents in the web pages

with minimal configuration.

• Multithreading: J2ME allows an application to use multithreading, thus provides

a mean for application developers to create a more complex logic.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Connectivity with distributed system-. J2ME allows the application to talk to back

end systems in XML, a language that is suitable for cross-platform and distributed

system application.

• Lower network usage and server load: The MIDP client's interface is resident

within the mobile device, so it won’t consume the network and server resources

when it is run offline. However, in a WAP-based solution, the server is

responsible for generating display pages, which results in a roundtrip load every

time the interface changes.

• Offline operation: J2ME provides a mechanism that allows the application to be

run on or off the network, while a browser-based application can achieve this in a

very limited way with local browser page caching.

• Security: J2ME provides an enhanced security model and end-to-end connection

from the client device to web servers and does not need gateways as in WAP.

• User personalization: With the ability of manipulation of mobile devices, J2ME

can take better advantage of local operation system than Browser-based

applications does on developing complicated user interfaces.

However, J2ME and WAP are complementary technologies. Both the WAP technology

and i-Mode technology are comparable to HTML and Web browsers on desktop

computers, while J2ME is comparable to desktop Java applications.

2.2.2 Location Measurement Technology

Today there is a variety of so called ‘positioning’ technologies that are involved with the

calculation of position in a space or grid, based on some mathematical model. Generally,

a mobile device is allowed to be aware of its location with different degrees of precision

and accuracy, based on the different capabilities from the device, such as power

consumption, cost, autonomy, speed, networking, processing and overall system

complexity. Currently, there have four main categories of technologies for positioning the

location of the mobile device and user:

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• User-defined

• Network-defined

• Network-oriented

• Handset-defined

The User-defined technology is widely used in the early location-based services. In this

kind of service, the system requires users to define their own position, such as the address,

phone number, street, city or postcode, etc. and services required will be delivered to the

WAP browser of the mobile device. Therefore it doesn’t need position information of the

handset being locatable by the wireless network operator. In Tokyo, for instance, J-

Phone's J-Navi service lets users enter a phone number, address or landmark, and then

searches the area within a 500-metre radius. This makes it possible to find the subway

station nearest to a particular shop, or a particular kind of restaurant within walking

distance of a particular office building. The service user can also download a full-colour

map of the area, which points out the route to the user’s destination.

The Network-defined method is based on the thousands of base stations in the mobile

phone networks. The method is to use Cell ID information plus some other radio signal

measurements. These include plain cell ID, cell ID combined with base station TA

(Timing Advance) information or cell ID with RTT (Round Trip Time). These are

techniques based on measurements of signal delays, round trip delays or signal jitter

combined with Cell ID information. As Cell ID has already been used in the GSM radio

network, it can be deployed very cheaply on modern handsets.

However, the positioning accuracy using Cell ID technology depends on the cell size or

the number of base stations in a given area. In urban areas, it can provide higher accuracy

services as urban areas generally have a higher density of base stations. In short, accuracy

can range from 10m (where micro cells are installed, such as in an airport) up to 2km. In

a typical urban area, the achievable accuracy is often sufficient for proximity services,

such as finding the nearest restaurant or gas station.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Network-oriented method uses some form of triangulation techniques, such as the

ones found in TDOA (Time Difference of Arrival), Mobile Assisted TOA (Time of

Arrival), AOA (Angle of Arrival), which use information from the base stations. These

approaches are popular for deployment with 2G and 2.5G operators since most of the

times involve an evolutionary upgrade to their network.

The Time Difference of Arrival (TDOA) technique is based on estimating the difference in

the arrival times of the signal from the source at multiple receivers. This is usually

accomplished by taking a snapshot of the signal at a synchronized time period at multiple

receivers. The cross-correlation of the two versions of the signal at pairs of base stations

is done and the peak of the cross-correlation output gives the time difference for the

signal arrival at those two base stations. A particular value of the time difference estimate

defines a hyperbola between the two receivers on which the mobile may exist, assuming

that the source and the receivers are coplanar. If this procedure is done again with another

receiver in combination with any of the previously used receivers, another hyperbola is

defined and the intersection of the two hyperbolas results in the position location estimate

of the source. This method is also sometimes called a hyperbolic position location

method. One such system called “Cursor”, which is based on the GSM technology, is

already available [Clarke 97].

The Time of Arrival (TOA) Technique involves listening to the handset access burst

across three or more mobile base stations. The base station can indirectly determine the

time that the signal takes from the source to the receiver on the forward or the reverse

link by measuring the time in which the mobile responds to an inquiry or an instruction

transmitted to the mobile from the base station. After the measurement of different time

of arrival data at each base station, the resultant information is then compared with the

time reading from a GPS absolute time clock, and the coordinate of the mobile device can

be calculated based on the above compared results. This method can increase positioning

accuracy by up to 50%. It, however, requires the modification of the handset, which

makes it costly to implement.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Angle of Arrival (AOA) method utilizes multi-array antennas and tries to estimate

the direction of arrival of the signal of interest, and then it calculates the angles at which a

signal arrives at two base stations. Once the angles are obtained, a simple triangulation

calculation is performed to determine the coordinate solution. Similar with the TOA

method, this method can also increase positioning accuracy, but needs the modification of

handset.

The most straightforward Handset-defined positioning method is to use the Global

Positioning System (GPS) technique, which has been widely used in the vehicle

navigation system and dedicated handset devices for years. With at least three satellites

and the GPS receiver involved, GPS is able to position the mobile device to as accurate as

a resolution of lm. However, the accuracy of GPS positioning would be affected greatly

by the surrounding environment because GPS signals are very weak in the building,

bridges, tunnels, etc. Consequently, it will reduce the suitability of GPS positioning in

urban area. In addition, the severe weather conditions may have side impacts to the

accuracy of GPS positioning. To overcome these impacts and increase the accuracy of

GPS positioning, some enhanced GPS solutions have been developed to combine GPS

signal information with cellular handset position information.

The Network-assisted GPS (A-GPS) [Djuknic+01] is one of such enhanced GPS

solutions, which involves installing fixed GPS receivers every 200km to 400km to fetch

data to complement the readings by the mobile handset. With assistance from these fixed

receivers, the mobile handset can make timing measurements without having to decode

the GPS information, greatly improving the calculation time. Measurement results will be

sent to a location information management framework, where the position of the handset

is calculated from measurement results using differential positioning. A-GPS can

potentially provide high positioning accuracy. However, it requires the modification of

the network as well as the handset, making it costly to implement.

Another solution of Handset-defined methods is Estimated Observed Time Difference

(EOTD), which relies only on software in the mobile handset to listen to bursts from

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiple base stations. The time difference in the arrival of these bursts is used to

triangulate where the mobile handset is located. This technique needs to know the exact

location of the base stations as well as the sending of data from each base station to be

synchronized. Although potentially not as accurate as AGPS, EOTD does not rely on a

clear view of the sky. With the same characteristics to A-GPS, E-OTD requires the

modification of both the network and handset, which makes it expensive to implement.

We can see from table 2-1 that AGPS is currently most accurate positioning technologies,

but it could not be used for the indoor positioning. Cell ID, on the other hand, is the

cheapest positioning method although its positioning accuracy is not as ideal as others.

Techno

log}'

Typical

accuracy

Device

requirem ent

Network Indoor positioning ^

Cell ID

Depends of the

size of cell

3000m - 100m

None All If cell phone coverage

AGPS/

GPS
3 0 m - 5m

Integrated

GPS receiver
All

May not always work as it

requires free line-of-sight

GPS satellites

TOA 300m - 50m Yes All If cell phone coverage

AOA 200m - 100m None All If cell phone coverage

TDOA 200m - 100m None All If cell phone coverage

EOTD 200m - 50m
EOTD

software
GSM If cell phone coverage

Note: “A 1” means it can adapt to GSM, CDMA as well as TDMA networks

Table 2-1: Basic Data - Selected Positioning Technologies

Outside the remit of 2G, 2.5G and 3G cellular networks, exist other families of

positioning technologies that are often referred to as ‘local positioning’, which usually

make use of short range networks such as 802.11, Bluetooth, RFID, Ultrasound, UWB

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or IrDA. Furthermore, recently there have been attempts to use position technologies

based on TV radio signals.

2.2.3 LBS Operation Scenario

Despite of diverse positioning methods employed, the raw data of the mobile device’s

location information will be firstly retrieved by the Location Management Platform

(LMP), which is normally operated by the wireless network operator, such as Sprint,

Nextel, etc. Then, location information may be used by a service provider to personalize

the service, or to improve the user interface by reducing the need to interact with a small

device while on the move [Basso 02]. Here the third party service component, such as a

GIS system in the Geo-Spatial Platform (GSP), may be employed according to the

required service by the user. Finally, the service provider deploys the user’s location

information as well as required service to the mobile device from the Application

Platform (AP).

Generally, we can define two main categories from various location-based services (LBS):

User-requested and Triggered.

In a User-requested scenario, the mobile user is responsible for sending request to

retrieve the position and then use it on subsequent requests for location-dependent

information. This type of service usually involves either personal location (i.e. navigation

system of finding where you are) or services location (i.e. direction service of finding

where is the nearest petrol station). For instance, figure 2-4 illustrates a case of simple

user-requested LBS application with the following operation procedures:

1. The user accesses the service with a login account from the WAP browser and

sends requests (i.e. find the nearest petrol station) via the WAP Gateway to the

Application Platform (AP). When the mobile client application is developed in

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the J2ME MIDP structure, the mobile device could talk to the AP without the

WAP Gateway.

2. A service provider sends a user coordinate query to the Location Management

Platform (LMP), and LMP will then verify the authorization of the service

provider to ensue only authorized services have rights to access user’s coordinate

information.

3. After successful verification of the service provider, LMP queries the wireless

network elements for user’s raw position data. This may involve different

location measurement technologies, such as Cell ID, AGPS, EOTD, etc.

4. LMP will calculate the raw position data and send the coordinate result (X, Y) to

the relevant Application Platform (AP) of the service provider.

5. According to the user request, the Application Platform (AP) may send requests

to employ a Geo-Spatial Platform (GSP), which will convert the coordinates (X,

Y) into detailed location information (i.e. street address or point on a map).

6. The Geo-Spatial Platform (GSP) provides Application Platform (AP) with list of

address results ranked closest by travel time.

7. Application Platform (AP) deploys the service results (address list) to the mobile

user via WAP Gateway.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3, LMP quartos
network elements for,
raw position data

/*«--------------

Location
Management

R ia l form
(LMP)

2. AP queries LMP for
X,Y location*4---------------------

4, LMP calculates
X,Y and sends to
AP

6. G S P prov ides 1st of
address results to AP
ranked closest by travel!
time

7 , AP sends
address results via
WNG to handset

i *ation
n (AP)

5, AP makes two requests
to G SP:
- R eceive Geo Code X,Y
lo street aodrass
- Proximity R eq u est radial
search around stree t
address

W ireless N etw ork
G atew ay (W NIC i) fifcmbrm (C&R1

J _J
Mapping dataRestaurant

address data

Figure 2-4: LBS Operation Scenario [Mitchell+03]

Triggered LBS by contrast relies on a condition set up in advance that, once fulfilled,

retrieves the position of a given device automatically. The Triggered LBS has similar

scenarios with the User-request LBS except that the user position is automatically tracked

by the Application Platform (AP) without user interference. One example is with regard

to emergency services, where the call to the emergency centre triggers an automatic

location request from the mobile network. Another example can be found in Xora’s GPS

Time Tracking system [Xora 05] where mobile workers are tracked by the GPS-enable

phones they carry during the day. Location information is captured from a GPS satellite.

By having employees’ location and job shift information, the system can track hours

worked and enforce overtime policies and radically improve timesheet accuracy. A

geographic boundary, known as Geofence, is also introduced to monitor job sites, routes,

and safety zones by triggering alerts when the worker being tracked crosses the Geofence

perimeter. Employers and managers can view the locations and activities of their field

force - all through a web browser. They can also download detailed time and job reports

into a spreadsheet.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Challenge of Location-based Service Testing

Clearly, Location-based services bring enormous business opportunities for the each

player in LBS, together with various technologies involved, such as wireless network,

positioning technologies (i.e. GPS, EOTD), WAP, J2ME, Database, and GIS etc.

Regardless of various positioning methods employed, the raw data returned is usually a

co-ordinate, perhaps with an error parameter, for example '(52 03.50N, 001 16.89E) ± 5

m'. While this is by far the most accurate representation, to most users the raw data is of

little use and only becomes valuable when interpreted in different ways. In other words,

identifying the X, Y coordinates for the location of a mobile user is only the first step.

The interaction of a number of core systems is required to create further real value to the

customer. Therefore, rather than the accuracy of different positioning technologies,

application concepts and market requirements are the biggest issue to test for the LBS

testing. To improve the degree of LBS to meet the market expectations, the following

primary issues need to be considered from the testing viewpoint:

• Functionality

• Usability

• Performance

• Scalability

• Security and Privacy

• Interoperability

2.3.1 Functionality

Like any other software, the location-based service (LBS) must be tested to ensure

correct functionality under all working conditions. Testing is even more critical in the

LBS applications as they face more sophisticated working conditions than most software

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications, and various software components and technologies are involved in their

system, making them more complicated than many other software applications.

A primary difference between traditional e-commerce scenarios and their mobile

counterparts is the role of the infrastructure. In m-commerce applications, the mobile

device may suffer from fundamental restrictions, such as limited form-factor, less

powerful processor with limited computational resources, small screens, less memory and

high-latency connectivity, etc. Due to these limitations, the application frameworks are

fundamentally different. For instance, the location-based application (LBA) in the client

tier can be developed with different technologies, including SMS, WAP, NTT DoCoMo

i-Mode and J2ME, as mentioned earlier. The LBS applications developed with such

technologies have their own architecture framework, which causes different

considerations in building the test strategies.

Taking the WAP-based LBS application as an example, its client tier application is

basically a WAP micro browser running in the mobile device. The WAP micro browser

allows to display page content written in WML, and access a web server via WAP

Gateway, which can translate the HTML sent from the web server to the WML, and send

request from the mobile client to web server in HTML. Therefore, how to validate the

WML and WAP protocol becomes one of most important issues in the WAP-based LBS

testing strategy.

The J2ME-based LBS application, on the other hand, employs a J2ME MIDlet [Sun

Microsystems 05] application in the client device, which enables it to hook up Java

Servlets [Sun Microsystems 05] on the web server. So the MIDlet application connects to

the web server via HTTP directly without any intermediate machine like a WAP gateway.

Apart from the primary consideration for testing traditional Client/Server Java

applications (i.e. HTTP socket connection), it is necessary to take the MIDlet application

testing over the air, a “real” wireless environment.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aside from the LBA, applications on other entities of the LBS architecture, such as the

Location Management Platform (LMP), Application Platform (AP) and Geo-Spatial

Platform (GSP), if required by LBS, should be tested to validate their functionalities.

Some of these software applications may be commercial off-the-shelf (COTS) products

from third party companies (i.e. Geo-Spatial Platform, Location Management Platform).

Therefore, how to test the functions of COTS software components will be one of biggest

challenges for LBS testing.

2.3.2 Usability

Usability and performance are the foremost reasons for the lack of success of LBS in its

current format. The client location-based application usually residents on the mobile

device typically with a small screen and keyboard. Location-based applications have to

limit the user interface to the extent that is adapted to most of the mobile devices. This

will definitely affect the readability and usability of most applications.

Even if they have enough functionality, most location-based services are too slow and too

cumbersome to use. This is caused by both poor UI design and poor browser performance

in most mobile devices. So it is not enough just to make a successful service demand and

a willingness to pay for the service. The service must also be delivered in a way that

meets the end users’ expectations.

As an example, consider a People Tracking service where people can find the location of

their friends and families. Obviously, most people don’t like to allow their friends to

track their locations all the time. Therefore all People Tracking services should include

the option to turn off the being-positioned function. Default is that positioning is not

allowed, which means that the being-positioned function is disabled unless the user

switches it on. Theoretically this scenario is pretty simple. In practice, however, it

requires 4-5 clicks of buttons and more than one-minute response time to turn this

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functionality on or off, which is enough to make most users reluctant to use it, and hence

loose interest and leave it in the disabled model.

Therefore, ease of use, personalization and focus on the needs of the consumer are crucial

elements in the success of location aware applications. We need to test the GUI

navigation of the entire system and focus on the external interface and the relationships

among the user interfaces. How to organize the consumer’s operation in a transaction? Is

the navigation of the user interface appropriate for each particular function? How flexible

is the application? Is it easy to upgrade the software and hardware? Unfortunately, many

applications are abandoned by the consumers because of poor usability and flexibility.

2.3.3 Performance

Performance is one of the critical elements for the success of location-based services.

Performance issues of location-based services can be affected by a variety of sources,

including wireless network, positioning system, client location-based application, web

server as well as databases.

Low bandwidth rate is the typical performance problem for the wireless network.

Currently most of location-based services are offered through GSM, CDMA or a GPRS

wireless network, or the third generation (3G) networks, such as WCDMA, CDMA2000

and TD-SCDMA. However, the growing demand on bandwidth is still one of biggest

challenges in wireless applications as the service provider extends more attractive

features in order to maximize the number of its consumers. How does the location-based

service respond to unexpected slow transaction speeds because of slow infrastructure?

Such questions should be considered in the performance testing strategy.

Reliability is one of the issues that should be considered for the performance of the

positioning system, such as GPS, Cell ID. Although GPS systems can accurately locate

the object, its accuracy is still suffered by some factors, like the weather conditions and

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

surrounding environment. The positioning accuracy of the GPS system in clear weather is

much better than that in cloudy weather, and the GPS system can position the object more

accurate in rural areas than in skyscrapers. For the positioning system with Cell ID

technology, it also contains reliability concerns. For instance, the mobile device could be

temporarily disconnected from the wireless network when it passes through a tunnel.

How does client application response when it cannot be positioned by the positioning

system? Do applications save the transaction data into the device’s cache when its

connection to the network is temporarily unavailable? Furthermore, for LBS services that

provide high reliable services, it should provide consistent, high-performance system

output and take advantage of fault management and recovery mechanisms to protect

applications from client, server system, or network failures.

Client application bottlenecks also drive the decrease of location based service

performance. The performance of location-based applications running on mobile devices

is very important for the entire system since the customer may not have enough patience

to wait for any extended execution time. One of the reasons for the client application

bottlenecks is the limitation of hardware and software in the mobile device (i.e. Low

powerful CPU, Less memory). This is especially critical for J2ME-based LBS

applications as they provide customized User Interface and other computational programs

on the mobile devices and demand more resources from mobile devices. WAP client

application may also be one of the potential bottlenecks for WAP-based LBS as the WAP

browser is the only client application (User Interface) on the mobile client and all other

applications are resident in the web server, which may cause the high demand of network

resources and long waiting time for the mobile client. Such situations should be

considered in the design and testing of the location-based service.

2.3.4 Security and Privacy

Security and Privacy concerns are critical issues for the success of a LBS service. Users

are very sensitive about their personal location information. To win the customer’s trust,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is important to prevent the third party’s knowing the physical location of users other

than the service provider. Also, for most location based services (i.e. People Tracking

Service), it is always necessary to switch on/off the positioning function by the mobile

user to decide whether he/she should be positioned by others.

In addition, some security contributions can be found from the architecture design of LBS

to prevent user’s location from threads of unauthorized parties. For instance, the position

information would be firstly retrieved by the Location Management Platform (LMP),

which is normally operated by the wireless network operator. To protect the user’s

privacy from other parties, LMP can add security mechanisms to ensure that only

authorized service providers are allowed to access the mobile user’s position information.

Data transmitted over the wireless network (i.e. password, account number) could be

another security risk, as it can be captured using digital RF scanning equipment [Srivatsa

02]. Unfortunately, most wireless protocols do not have built-in encryption mechanisms.

Additional security measures, such as secure connections and cryptography, are definitely

needed, especially for those services transmitting sensitive data.

Furthermore, the security risk can come from other entities in the LBS architecture, such

as mobile devices, the Internet, and databases. The SIM cards found in mobile devices

can be cloned and used in a different device, which may cause identity verification

security problems for the application based on user authentication to the device (from the

SIM) [Srivatsa 02]. Insecure Internet connections in the middle tier (i.e. Location

Management Platform, Application Platform, Geo-spatial Platform) can also create

serious security problems to the LBS service, such as Denial o f Service, in which the

intermediate entity can suppress messages meant for the other parties, and More Points o f

Attack, in which more complex message paths typically bring in more points o f failure

and more points of attack [Surech+01], These security problems should be presented in

the security testing scenarios.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.5 Scalability

Location-based service (LBS) is implemented in a distributed application environment

with mass-market scalability ability. With the increasing subscribers of the LBS service,

the growing demands of network resources (i.e. bandwidth) and server machine resources

(i.e. router, database server, websites) drive high performance requirements for the web

server. It is important to gauge the performance and load capability of sever applications

and evaluate hard performance issues about how much traffic a given site will be able to

handle and make intelligent choices of hardware, software and often times even design

approach of the application to make sure the application will be able to handle an

onslaught of customers on the LBS applications.

To accommodate the growth of service subscribers, Load/Stress testing should be

undertaken to evaluate the scalability and performance of LBS and ensure that the web

applications sustain a high volume of simultaneous users and/or transactions, while

maintaining adequate response times. Because it is comprehensive, load testing is the

only way to accurately test the end-to-end performance of a web server application prior

to going live.

2.3.6 Interoperability

Software interoperability describes the ability of locally managed and heterogeneous

systems to exchange data and instructions in real time to provide services. Interoperable

systems are generally distributed (i.e., at different places on the network), and

interoperability also applies to different types of systems or similar systems from

different vendors communicating while running on the same computer [McKee 05].

Like other M-commerce applications, many players and shareholders, such as mobile

network operators, mobile manufacturers, content providers, service providers,

middleware providers, are involved in the business of Location-based services (LBS).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Depending on the characteristics of the business model, each entity can be active in many

of these roles, or in none of them. With these various entities, there should be mature

standards defined for location-based services to achieve a high degree of integration

capability for data services and consumers, and easy access to external systems.

What is needed for location-based services to become successful is a simple, consistent,

managed, end-to-end solution, which requires a high degree of vertical integration to

external data and systems, making sure that technology, business models and market

requirements are well aligned. In other words, the service should employ an architecture

that maintains interoperability and flexibility required for dynamic system elements.

Taking the Open Geospatial Consortium (OGC) as an example with high interoperability,

OGC is a non-profit, international, voluntary consensus standards organization that is

leading the development of standards for geospatial and location based services [OGC

05], OpenGIS specifications support interoperable solutions to make spatial data

accessible from multiple technologies and software vendors and making spatial data and

spatial functionality available to other IT systems such as customer response management,

logistics, location-based services for wireless devices, etc. The benefit is that users can

thus access, combine, and disseminate geospatial information from distributed and varied

information sources. Integration streamlines workflow and reduces costs of information

production, maintenance and dissemination [McKee 05].

Thus, interoperability testing plays a key role to ensure the service maintaining high

interoperability and flexibility with software components from different parties.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 Test Framework Requirement and Prototype

3.1 Introduction

From the previous chapter, it is evident that the complex architecture of location-based

services causes numerous challenges for location-based service testing since so many

entities and technologies are involved in the system. When considering the task of testing

location-based service, it is necessary to provide a prototype of the test system, and a

definition of the system under test.

As a result, specific test scope and test requirements need to be set up in order to build an

effective test framework to test and evaluate the location-based service. In this chapter,

we will describe the scope of system under test (Location-based Service) and test

framework requirements that are necessary to deal with problems of testing LBS. The test

framework will be prototyped at the end of this chapter.

3.2 Scope of System Under Test

In Chapter 2, we describe three methodologies on developing the location-based service

application: SMS-based, WAP-based, and J2ME-based LBS. The SMS-based LBS sends

the location service information in the form of test messages, imposing the following

limitations:

• SMS messages contains 160-character in maximum, which will definitely limit

the service function and cause inconveniency to the service subscriber.

• SMS message can only deliver test messages, not suitable for many graphics

intensive applications like tourism service and traffic guide service that require

map and graphic information to make them useful.

• SMS message does not guarantee that the packet will arrive at a certain time

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on these limitations, SMS technology is not suitable for building graphics location-

based service, and it could mostly be involved in LBS as a supplementary way to

communicate between the mobile device and service provider. Thus, SMS-based LBS is

not considered in our test framework.

WAP-based LBS has similar architecture with J2ME-based LBS on the web server and

the application server, and WAP browsers use HTTP, the same network protocol that

MIDP requires [Mahmoud 00]. However, WAP technology differs from J2ME

application architecture by adding the WAP Gateway in the system, which acts as a

bridge between the mobile client and the webs server, and offers the function of WAP

services like encoding of WML pages, end-user authentication system, and WML script

compiling. Since the wireless protocol employs WML for application contents instead of

the Hypertext Markup Language coding (HTML), the WAP Gateway contains HTML to

WML filters to translate the WML from the micro browser on the mobile device into

HTML read by the web server, as mentioned earlier in Chapter 2.

Therefore, testing the client side application of WAP-based LBS is mainly to validate the

correctness of WML sending to / received from the WAP Gateway. There exists some

testing tools for the validation of WML and WAP testing, such as Testing Service for

WAP [The Open Group 05], and Validate WML [W3C Schools 05]. Testing Service for

WAP is a comprehensive certification and interoperability testing program that covers

device testing, content verification, and a set of authoring guidelines to assist developers

in providing interoperable WAP applications and services. Validate WML is a tools

provided by W3 Schools to validate WML with a WML parser. Thus, WAP client side

WML validation is not considered in our test framework at the current step. However,

WAP server side testing is similar with J2ME-based server side testing and could be

tested in our test framework.

J2ME is the latest technology introduced in the design of location-based service (LBS).

Figure 3-1 shows the high level logical architecture of a Java wireless enterprise

application implemented with a J2ME device and a J2EE application seiver. From this

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

figure, we can see that the J2ME client application consists of a User Interface, a MIDlet

application, RMS (Record Management System) and Network communication entity. The

MIDlet Client application provides a user interface on the mobile device and

communicates with the Java Servlet usually via HTTP, and over a secure channel

(HTTPS) when necessary. The servlet interprets requests from the MIDlet and then

dispatches client requests to EJB components [Adatia 01]. When the requests are fulfilled,

the servlet generates a response for the MIDlet application.

J2ME Client

MIDlet
Applicati
on

User
Interface

RMS
(Local
Storage)

Networki
ng

HTTP/
HTTPS

<

J2EE Application Server

Web
Container

Servlet

EJB
Container

EJB■
kW

EJB ►

EJB 1

JDBC

COKBA

JMS

Figure 3-1: High-level Architecture of a Java Wireless Enterprise Application

Currently, the primary method to develop and test J2ME MIDlet applications is to utilize

the handheld emulator provided by the handheld vendor, such as Sun's J2ME Wireless

Toolkit, Motorola’s iDEN SDK, etc. Once the application has been tested on an emulator,

it can be moved on a real device, and be tested in a live network.

These handheld emulators support KVM runtime environment for the J2ME MIDlet

application, and provides the tester with great advantages and convenience on testing

functionality and usability for the J2ME MIDlet application. However, as stated earlier,

they focus only on application-level simulation and are not suitable for system-level

testing (i.e. scalability testing), which is one of challenging issues on LBS testing.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To solve this problem, our test framework focuses on the system-level testing of location-

based service and, in turn, limits the test of J2ME client application only on its

networking function component, which interacts with the Application Server under the

J2SE runtime environment. By applying this strategy in our test framework, we can

minimize the impact caused by the changes in the applications we are testing, and

changes in the tools we use to test them.

Another important reason that makes us switch the platform is based on the consideration

of “future” location-based service. It is well known that J2ME is designed specifically for

mobile devices. However, existing Java implementations for such information appliances,

using Sun's J2ME platform, is inconvenient for developers because of the restricted set of

capabilities they offer in order to cater to the hardware limitations of many of these

smaller devices. As the exploration of networked information devices, there was a natural

evolution for developers to directly access the J2SE platform at the advanced end of such

devices.

Some mobile operation systems have been developed to support J2SE directly on the

mobile devices. For instance, SavaJe OS [SavaJe.com 05] is an open standard, Java™

platform for mobile phones, which brings J2SE functionality and security to the mobile

space. Therefore, the developer can take full advantage of advanced Java technologies

such as the Java Foundation Classes/Swing (J.F.C./Swing) components, the Abstract

Window Toolkit (AWT), Java 2D extension, CORBA, Java Database Connectivity

(JDBC) API, Jini network technology, Java Remote Method Invocation (RMI), and the

full Java 2 Security Model.

Based on the above considerations, our goal is to create a test framework that can be

adaptable and extended to accommodate future implementation and future version of the

location-based service. As a result, we define the scope of system under test (location-

based service) with following requirements:

• The System Under Test we target in our test framework builds with a generic

architecture and includes necessary components, including the client application,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

running on the mobile device, and the server application. For brevity, we treat the

application server and the web server as one entity and only use the term Server in

the rest of thesis.

• The mobile device fully supports J2SE platform.

• The client application on the mobile device is developed under J2SE runtime

environment, connecting the Java Servlet in the web server via HTTP/HTTPS

protocols.

• The server application consists of necessary components for a generic LBS

architecture, such as servlets and a database. Other components, like EJB, JMS,

are not considered at the current stage due to our desire to construct an

application-independent test framework that we try to build (See section 4.2.4 for

more details).

3.3 Test Framework Requirements

As mentioned above, the application we test (Location-based service) has a complex

architecture. Even after we minimize the scope of system under test, there are still many

potential changes in the architecture because of different user requirements and

technologies. As a result, when developing our test framework, we must minimize the

impact caused by changes in the applications we are testing, and changes in the tools we

use to test them.

Therefore, the following requirements need to be defined for the test framework to create

an execution environment for the location-based service testing:

• Open distributed architecture

• Simulated application environment

• Test automation

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 Open Distributed Architecture

The test framework should be constructed in an open, distributed architecture that can be

adapt to the evolution of location-based service (LBS) and allows third-party components

to be easily integrated into the test framework with a standard communication protocol.

As we see from the Chapter 2, LBS involves various elements in the system, including

mobile client applications, positioning technologies, services, location contexts, GIS

contents, etc. These elements could all be independently developed and managed. As a

result, the architecture of LBS may have a considerable potential for evolution in terms of

the sources of information used, the types of information supported, or the underlying

infrastructure.

Therefore, the test framework should be designed as an open distributed architecture,

which can be better adapted to the evolution of LBS. Even though there is still a lack of

established standards for most of entities in LBS, this limitation is merely intermediary;

and in the long term, like other web-based applications, location-based service will adopt

open standards for automatic information exchange. At that time, it will be more obvious

of the advantages of an open approach in the test framework.

Another benefit of employing open distributed architecture for the test framework can be

seen from easy integration of third-party components. In order to test functionality of the

location-based service, test components need be developed to perform certain function of

entities in LBS. Some of these components, such as a context simulator to provide the

location information, and a wireless simulator to offer wireless network environment,

have already be produced by researchers or industry companies. In order to reuse these

external modules, the test framework should be designed in an open structure to make it

flexible enough to integrate new third-party components into the system. By doing this,

less code needs to be designed and implemented by the developers and the test

framework has the potential to save both time and money in the test framework

development process.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To achieve the goal of being an open distributed architecture, a standard interface to

testing should be used by all external components and internal components that are

necessary to the test framework. This leads to more consistent and uniform structure for

the test framework. In addition, the test framework should employ a test management

component to monitor the interactions between all the components and control the

workflow in the test framework. The internal test components in the test framework, such

as performance gauge to analyze the performance of the test framework, should be

designed as independent modules with a standard interface, via which they can connect to

test management component in the test framework.

3.3.2 Simulated Infrastructure

We must ensure that the test framework accommodates the conformance policy defined

in the specification of location-based service testing. The application execution

environment is one of most important issues in a software specification. Therefore, the

test framework needs to support the system under test with a simulated application

environment so that the system under test can be executed in this simulated application

environment as if it is executed in the real environment. To achieve this, the following

issues should be considered when building a simulated application environment:

• Wired and wireless network simulation

• No modification of application code

• Location contexts acquisition

• Service selection mechanism

3.3.2.1 Wired and Wireless Network Simulation

In Chapter 2, we mentioned that the success of LBS relies on success for application

concepts and business logic, rather than the accuracy of different positioning technologies.

The interactions of numerous components in the location-based service (LBS) are the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

biggest issue to be tested for a LBS. This includes the interaction of components within a

wired network and wireless network environment. As a result, we should consider these

two situations when building the test environment for LBS testing.

Specifically, the test framework should have the interface to connect the wireless

simulator, which is responsible for providing a simulated wireless communication test

environment whenever the application under test needs to access the wireless network.

Moreover, this wireless simulator should be developed as a potable component, being

managed independently so that it can be hooked up to the test framework according to the

test requirements. In other words, the test framework provides options to either: test

under a wireless network environment when the wireless simulator is hooked up; or test

(functional and performance testing, etc.) for the components of LBS that run under a

wired network, such as Servlet, Database, EJB components in the web server, after the

wireless simulator is disconnected from the test framework.

The wireless simulator is required to support the transition of wireless data (i.e.

TCP/UDP sockets) in a transparent manner with a predefined interface (API), and support

various network communication protocols, such as TCP/IP, 802.11b, wireless LAN,

GPRS, etc., for the location-based service. Moreover, for LBS applications in production,

performance is affected by many external network infrastructure factors that are

independent of application behaviour, such as unexpected communication traffic load in

the wireless network, As a result, the test framework should be able to simulate these

typical network infrastructure factors via the wireless simulator, i.e. mobility model,

packet loss, delay and drop with predefined probability in the process of testing LBS

applications.

One benefit of using a wireless simulator is that, the problem with testing in a live

wireless network is affected by many factors and it is almost impossible to record the test

results and repeated them later. So, testing the performance in an emulated wireless

network becomes a critical method used both in the development of wireless applications,

and in academic research.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2.2 No Modification of Application Code

In order to provide a simulated test environment that is similar to the real environment,

the application code of system we test, or at least the main components of the system

under test, should be kept unmodified when interacting with the test framework. To

achieve this, the test framework should offer the standard interface and communication

protocol via which the test data or requests can be sent from the test system to the system

under test, and required responses can also be received from the SUT back to the test

system.

3.3.2.3 Location Contexts Acquisition

No matter what kind of positioning technology is used, location contexts will normally be

retrieved by the location provider from the wireless network or GPS satellites according

to the request of authorized service provider, and then delivered to the mobile device via

the wireless network. This context information is presented in various formats. For

example, the GPS location context mainly consists of data of latitude, longitude,

timestamp etc. In addition, the overlaps of location contexts, which imply that a mobile

device can effectively be located in two location contexts at the same time, may exist in

the scenario of the location-based service. However, for brevity, this situation is not

considered in our test framework and we assume one mobile device can only apply with

one location context at any time.

Therefore, it is necessary for the test framework to have the mechanism dealing with

location contexts acquisition. This can be fulfilled either by the integration of third-party

context simulators, i.e. Context Toolkit [Dey+00], or simply by accessing the Database

that stores the context information. As a result, the test framework should support the

system under test by providing an interface (i.e. JDBC API) to connect the context

simulator, so that the location-based application can retrieve the location context from the

context simulator as if it interacts with the service provider in the real environment.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2.4 Service Selection Mechanism

Service selection is one of main functions in the specification of a location-based service

(LBS). It allows mobile applications to dynamically select services that are specifically

associated with their particular location. In other words, mobile applications should be

able to discover and select local services that are available in their physical location.

Supporting service selection mechanisms makes it possible for the test framework to test

service selection functions for the location-based service.

To support this mechanism, a particular service selection model should be established to

discover and distinguish available services. An important issue when modeling the

association between services and physical location is which geographical criteria to use

when determining the “nearby” services that a client should select. Rui Jose [Jose+03]

described two models of location-based service selection: distance-based and scope-based

models. A distance-based model means that the mobile client can select servers providing

services located within some distance from its own position, while a scope-based model

means that each service is associated with a service scope that explicitly represents the

usage context of that service as a region in physical space. While the distance-based

model emphasizes the location of the server offering the service, the scope-based model

focuses on the geographical area defined for the service usage.

In our test framework, we deal with the service selection mechanism by supporting both

models during the service selection process as they usually happen simultaneously in a

location-based service. Specifically, the mobile client application will discover the

available service when it is physically in the scope of server of providing the service. The

scope of the server is determined by the characteristics of base stations [StUber 01], which

are responsible for transmitting the service content to the mobile client, such as frequency,

maximum allowable path loss, antenna height of the transmitter, and by the surrounding

physical environment of mobile devices, such as urban area, open rural area, etc.

Alternatively, if the mobile client falls in the space where multiple networks exist, it will

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discover and select service according to the distance between the mobile client and

servers of providing services. In Chapter 4.4.3, we will describe this service selection

model in detail and implement it in Java.

3.3.3 Test Automation

Test automation becomes an increasingly important and critical testing strategy as it can

improve the reliability and quality of software products, reduce or eliminate the drudgery

and repetition associated with manual testing, decrease the time required to test and make

tests more consistent and repeatable. This is even more important for wireless

applications like location-based services that are hard to reproduce the possible problems

with manual tests.

Therefore, we need to consider one automation test framework for LBS testing and it

should reusable and manageable. To achieve this, the following characteristics are

essential to be considered when developing automation test framework:

• Application-independent

• Extensibility and Maintainability

• Hierarchical structure

• Ease of Use

• Platform-independent

• Manual Test

• Test Results Verification

• Test Results Reporting

3.3.3.1 Application-independent

As we have seen in Chapter 2, the location-based service consists of various independent

components and technologies. Thus, our test framework should be focused on common

components that make up the application under test, such as a client/server networking

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

module, and a database module. Only then can we make the system under test

application-independent and reusable through the whole automation testing process,

taking away all application-specific contexts from the framework.

Another method to make the test framework application-independent is to separate test

scripts from hard coded components of the system under test. In an automated test

process, test scripts are written to drive the application under test, i.e. execute keyboard

stroke, mouse actions and background processing, and verify application responses and

behavior just as a human would. Generally, most of test scripts create function calls to the

system under test by using application-specific, hard coded values, which will greatly

reduce the degree of application independency. To deal with this problem, like many

other commercial tools, we use variables, rather than hard coded values, to provide

application specific data to our test framework. By doing this, the test framework can

greatly improve effectiveness of being application-independent.

Take the data driven testing as an example, data driven testing is an automation test

framework where the automated tests read the test data from an external source, such as a

file/table, rather than having the values hard coded into the scripts. The test data should

be written in parameters (Variables) to make them data driven. These parameters define

the way in which the test functions, allowing the user to test a variety of scenarios with

the same automated test scripts by just changing the data. As a result, data driven testing

is application-independent and very efficient mechanism for automating testing.

3.3.3.2 Extensibility and Maintainability

Because the system under test (Location-based service) will expand over time and

additional functionality may be added in the system under test, the test framework should

support extensibility in the design of a scalable infrastructure, making is possible to add

new test material. Generally the test framework should be a highly modular and

maintainable framework and each module should be independent and communicate with

the test management with a standard interface.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With this modular black-box approach, the functionality available within each module

can be readily expanded without affecting any other part of the system. This makes code

maintenance much simpler and the complexity of any one module will likely be quite

minimal. In addition, the test framework can imporve the maintainability by defining a

consistent interface used by all testers. This leads to more consistent and uniform results

which aid in more uniform conformance testing.

3.3.3.3 Hierarchical Structure

To improve test efficiency and reusability, the test framework should be constructed in a

hierarchical structured manner, while the test module definition and the test management

are separate from the implementation of the test cases. Ideally, the test module should be

framework-independent with complete specification, and can be parsed and compiled as a

separate entity. The test module definition specifies the high-level definitions of the

modules in the test framework, while the test management is used to manipulate the

interaction between all test modules and the system under test. Test cases and test

functions are defined in the test module definition, and are called in the test management

part. All the test module definition and management should be written in script language,

such as Perl, Tel, Python, Ruby, etc., to ensure the ease of use by the testers.

Test implementation, however, residents on the low-level of the test framework

architecture. It consists of an execution runtime interface and a control interface that

realizes the test system. Here, a standardized adaptation of the test system for

communication, management, component handling, external data and logging, are

defined and implemented usually in same language as the system under test. The test

implementation should also provide an interface to connect the system under test and this

interface allows itself to be distributed into different components of the system under test

to satisfy the condition of scalability testing for the location-based service.

3.3.3.4 Ease of Use

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test framework should be easy to use as usability is a critical requirement for the test

framework. Good test frameworks should provide sufficient documentation on how to

add new test cases, how to execute tests, how to monitor and analyze the test results.

3.3.3.5 Platform-independent

The test framework should be designed to be platform-independent by using open

standards. Ideally, the test framework should be platform-independent in terms of test

execution and test reports. Platform-dependent test frameworks have several drawbacks

with respect to time and resources, and it requires additional working in creating these

platform-specific frameworks as well as ascertaining their quality.

3.3.3.6 Manual Test

While our goal is to maximize the automation testing for all the scenarios in the system

under test, there are still very likely that some of scenarios cannot be testautomated to

some extend. In this situation, we need to consider manual testing for the system under

test. Therefore, the test framework should not only facilitate test automation, but also

support manual testing.

3.3.3.7 Test Results Verification

Results verification is a common testing activity used to determine if a test passes or fails

by verifying the actual test result against the expected result. As a critical part of the test

framework, it should be considered in the construction of test framework.

3.3.3.8 Test Results Reporting

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test framework should have a results reporting mechanism. Ideally, it should be able

to generate the reports regarding all the requirements for the test framework, such as

applicability to any platform and implementation, ease of use, test results, and failures.

In addition, the test reports should be exported in a self-contained format suitable to be

published on the web, such as XML format. The reports should also provide test logs and

sufficient information about failures for future investigation.

3.4. Test Framework Prototype

In order to satisfy the requirements we described above, we designed our prototype for

the test framework. This prototype is mainly focused on the system-level testing for the

location-based service that is constructed under a J2SE runtime environment. It is

constructed in an open, distributed architecture with a standard interface connecting test

components in the test system. It also provides the location-based service with a

simulated execution environment by employing a context simulator and a wireless

simulator, and can undertake major tests for the location-based service, such as functional

testing, performance testing and server seide testing.

In paticular, the test framework is prototyped with serveral components: Context

Simulator, Wireless Simulator, Test Modules, Test System Console, UI, Standard

Interface and System Under Test, as shown in figure 3-2.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test System

Test Module

Test System Console

Client Server

System Under Test

Framework Prototype

Figure 3-2: Prototype of The Test Framework

To build an open distributed architecture, the framework should define standard

interfaces used to connect each test component in the test system. With well-defined

formats, these interfaces can be classified into the following categories:

• System Interface, also called the System Adapter, which is the communication

interface between the test system and system under test (SUT). To fulfill this

fucntion, the system interface should be deployed dynamically to the test device

where the components of SUT (the client application and the server application)

resident.

• External Interface which is used to connect external third-party components, i.e.

Context Simulator, Wireless Simulator, and extract the information about

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution environment, such as context information and data packets that need to

be transffered within the simulated wireless network.

• Internal Interface which links internal test components, i.e. test management,

test modules, and deliver messages between the test modules and the test

management.

The main component in the test system, test system console, conducts the monitor and

management of the interactions and behaviours among the test components in the test

system. The test modules, also called test components in the test system, mainly specifies

the definitons and activities that are necessary for the test process and behaviours, i.e. test

cases, test functions. They also coordinate with the test system console during the test

process. Finally, the test system exchanges the event and information with the system

under test via the system interface defined by the tester.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Chapter 4 Test Framework Design, Implementation and

Evaluation

4.1 Introduction

As mentioned in the last chapter, several requirements must be satisfied in order to

present an effective test framework for testing a given location-based service (LBS). To

achieve this, we need to design a suitable open distributed test framework that is able to

provide simulated infrastructure for the execution of the location-based service (LBS),

and run the test cases in an automated manner.

In this chapter, we will introduce our approach of building the test framework for testing

the location-based service, and apply our test framework with specified test

methodologies (the TTCN-3 testing language and the SWANS wireless simulator). At the

end of the chapter, we will evaluate the test framework with different criteria.

4.2 Test Framework Architecture

4.2.1 Overview

The test framework we present is motivated by Ricardo Morla’s test environment

[Morla+04], where the location-based application can be tested under a simulated

wireless environment. However, as we mentioned earlier, Morla’s test environment is

application-dependent, which is not easy to be extended and maintained.

To solve this problem and fulfill the test framework requirements we previously

identified, we present a test framework designed with an open distributed structure. The

test framework is able to integrate test components via the well-defined standard

interfaces (See section 3.4 for the category of standard interfaces). The test components

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include third-party components, such as context and wireless simulators, and other

associated test components, i.e. test analyzer and test system console, which are

necessary to apply different test strategies in an efficient and automatic way. All of the

test components are designed as independent modules, connecting the test system with

pre-defined interface. The system under test (LBS) hooks up the test framework via the

test adapter, which is implemented with certain programming language, i.e. Java, C++,

and can be dynamically distributed into various test devices according to the structure of

system under test. By doing this, the test framework is capable of being extended and

maintained easily whenever additional functionality is added in the system under test

(SUT) {Requirement 3.3.3.2). Finally, certain structured test scripts should be employed

in the test framework to support automation test {Requirement 3.3.3.1), and it is used by

the tester to define the test cases and the entire test process from the given user interface.

4.2.2 Overall Test Framework Architecture

As shown in figure 4-1, our test framework is designed with a hieratical structure to

satisfy the requirement 3.3.3.3 identified in chapter 3. In particular, it is functionally

divided into three layers: Function layer, Control layer and Target system layer.

The function layer includes several functional test components supporting the test

framework, including the Test Plan Generator (TPG), the System Centre (SC), the

Context Simulator (CS), the Test Analyzer (TA), the Wireless Simulator (WS), and the

User Interface (UI). These components mainly provide test infrastructure and simulated

execution environment to the automation test framework.

For instance, the Context Simulator is introduced to provide the context event to the LBA

via the Test System Console. The Wireless Simulator provides the simulated wireless

communication environment for the test system. The Test Analyzer is responsible for

generating the test result report, in which we can analyze the test result and measure the

performance of LBA and Server. The Test Plan Generator is used to analyze the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information units probed in the target system and create the test cases and test functions

automatically.

The control layer consists of the Test System Console (TSC), and the System Adapter

(SA). While the Test System Console is mainly used to monitor and manage the test

process and test behaviour generated from/required by the functional test components in

the function layer, the System Adapter operates as an intermediate tier to connect the test

system and the system under test, encoding/decoding the test data to and from the target

system under test.

The target system layer, also called the System Under Test (SUT) in our framework,

consists of sever side applications and location-based applications (LBA). The client

application and server application connect the test system via the System Adapter, and

are executed under the given simulated wireless network environment as if they are

running in the real environment.

Functional Laver

Test System Console

Control Laver

ServerLBA rtLBA 2LBA 1

System Under Test ISUT1

Figure 4-1: Architecture View of The Test Framework

59

less
Plan

Generator

System
C entre

Test
Analyzer

C ontext
Sim ulator

wiretess
Sim ulator

Use
Interfa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With the standard communication protocol, each component within three layers

communicates with other components by sending and receiving events and information.

In the following sections, we will describe the functionality and the specification of each

component in detail from the conceptual point of view.

4.2.3 Location-based Application

Most of the existing Location-based applications (LBA) are normally developed using the

J2ME MIDlet structure and run on the Sun’s J2ME platform. However, as mentioned in

the Scope o f System Under Test (Section 3.2), J2ME is designed specifically for small

devices with limited hardware and software resources and in turn has many restrictions in

the functions it offers, which results in much inconvenience to the developers. Besides,

the future trend of location-based services shows the possibility of supporting J2SE

platform in the mobile device, i.e. SavaJ20S [SavaJe.com 05]. Therefore, we assume that

the location-based application we test in our framework is running on the J2SE platform

instead of J2ME platform.

To make our test framework application-independent (Requirement 3.3.3.1), our test

framework needs to focus on the common components in the location-based service. As a

result, the network communication component in the location-based application is

considered as the core component that will be tested in our test framework since it is the

common component in each location-based application, and is essential for the system-

level testing of LBS. Other components in the location-based application, i.e. GUI, are

not considered in our test scope at the current stage since they could be application-

dependent, developed with different technologies (See Appendix B for various

technologies used in the mobile device). Alternatively, the user interface of a LBA can be

evaluated in the handheld emulator provided by the handheld manufacturer.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The LBA connects the Test System Console (TSC) via the System Adapter (SA), one of

the standard interfaces defined in the test system, and interacts with the Server under a

simulated wireless network environment, provided by the component Wireless Simulator

(WS).

4.2.4 Server

As we mentioned in section 2.2, there are conceptually three tiers in the typical

architecture of the location-based service: the mobile client tier, the middleware tier and

the service server tier. While the mobile client tier only contains location-based

applications (LBA), there are many entities involved in the middleware tier and the

service server tier, such as the location measurement technology and the location

management platform in the middleware tier, and application/Geo-Spatial platform and

service applications in the service server tier. In this thesis, however, we do not aim at

testing exhaustively interactions within all of entities in the above three tiers. Instead, we

only consider “typical” scenarios in LBS, which have direct interaction with the mobile

client application (LBA) from the system viewpoint. Therefore, the interactions between

entities in the middleware tier and entities in the service server tier are out of scope in this

thesis and would not be considered in our test framework.

As a result, we define the Server in our test framework as a combination of the web

server and the application server. Generally, depending on the specific system

requirement, there may have various software components involved in the web server and

application server, such as Servlet, JSP, JMS, EJB, and Database, etc. Again, we need to

focus on the common components in the server in order to build an application-

independent test framework {Requirement 3.3.3.1). Thus, Servlet and Database

components are selected as the core components tested in our test framework, as the

Servlet application is commonly used in the communication between the web client and

the web server, and Database is one essential part to store the data.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifically, the Server retrieves information (i.e. context events, request of service) from

the Context Simulator (CS) via the Test System Console (TSC), and then provides the

required service back to the client over a simulated wireless network provided by the

Wireless Simulator (WS), or saves the client’s context information in a database, which

can be accessed by other external applications, such as an ERP system. Similar to the

LBA, the Server interacts with other test components in the test framework via the

System Adapter (SA).

4.2.5 Test System Console

The test system console (TSC) is the core component in the test framework. The main

function of the test system console is to supervise the test activities in the test process and

manage the interactions among all the test components and entities within the test

framework.

In particular, TSC coordinates the test activities (or behaviours) and exchanges the events

and information via the standard interfaces that interact with other test components and

the system under test. As we mentioned in section 3.4, these standard interfaces can be an

external interface, an internal interface or a system interface. From a functional point of

view, these interfaces can be the pre-defined ports that are either message-based port for

an asynchronous message exchange, or procedure-based communication to call

procedures in remote entities, or mixed port for a message-based and a procedure-based

port with the same name. For instance, the service request sent from the LBA is usually

message-based information, and can be retrieved by TSC via the message-based port. The

context request from the Server, however, can be one type of procedure-based

communication, and will eventually invoke the Context Simulator via a procedure-based

port and TSC.

The test behaviour that TSC manipulates mainly include:

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The Initialization of the test framework according to structure rules of SUT stored

in the System Center.

• Execution of test cases and test functions generated by the Test Plan Generator.

Also, the test result is verified here in TSC with actual test result, and thus the test

framework can satisfy the test requirement of Test Results Verification

(Requirement 3.3.3.7).

• Creation, distribution and removal of test components and system adapters

dynamically according to specific test requirements. By doing this, TSC enables

the test framework to be extended dynamically whenever there is any change of

functionalities in the system under test. Thus, the test framework can fulfill the

requirement of Extensibility and Maintainability {Requirement 3.3.3.2).

4.2.6 System Adapter

One of the criteria to evaluate the performance of the test framework is the ability of the

test framework to monitor the status and the behaviour of the system under test (SUT).

Since SUT has a dynamic architecture in terms of the number of its client applications,

the test framework should contain such mechanisms to monitor and control this dynamic

structure. Therefore, the System Adapter (SA) is introduced in our test framework to

monitor and interact with SUT.

As one of the standard interfaces defined in the test framework, SA acts as the

intermediate tier to connect the test system console with the system under test. SA can be

dynamically created and distributed into the components of the SUT. Alternatively, it can

be removed from the test framework after its connected component is disconnected from

SUT. As we mentioned earlier, the employment of SA makes our test framework fulfill

the requirement of Extensibility and Maintainability {Requirement 3.3.3.2).

The primary function of SA is to extract events and information from the system under

test and deploy the message to SUT during the execution of SUT. It helps us to determine

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and control exactly what is happening within SUT at any time during its operation. To

achieve this, the application under test should provide certain external interface that uses

same communication protocol with SA. Therefore, some modification of the application

under test may be conducted to accommodate that interface.

Another function of SA is to encode/decode the message and test data transmitted

between the test system and the system under test. As the test framework introduces the

test script language to develop the test cases and associated test functions, which may be

in a different language from the language of SUT. Therefore, SA must be able to translate

the message into relevant formats that can be understood and read by both the test system

and SUT.

4.2.7 Test Plan Generator

Similar to the current commercial automation testing tools, our test framework introduces

a test script language to describe the test process and define the test cases. With a

hierarchical architecture, the test framework employs the Test Plan Generator (TPG)

component to separate the definition of test cases and other test functions from the

implementation of the test process (Requirement 3.3.3.3). As a result, the tester does not

have to know how the test process is realized with the implementation language, and only

concentrates on the design of efficient and reusable test cases.

Specifically, TPG produces the test plan which will then be executed by the test system

console (TSC). The test plan includes two parts: the test definition, (i.e. test data types,

test cases, test functions), and the test process control (Defining how the test runs

sequentially). In addition, the test plan can be generated automatically by TPG or

manually by the tester.

In the automatic method, TPG will retrieve the rules of the system under test (SUT) from

the System Centre (SC) and generate relevant test definitions according to these rules.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These rules are pre-defined in the SC regarding to the specific characteristics (state and

number of components) and the behaviour (relationships between these components) of

SUT. As we mentioned earlier, our test framework only focus on the system under test

with the generic architecture. Distributed systems with complicated architectures are not

considered at the current stage in our framework. Therefore, it is feasible to describe the

behaviour and characteristics of SUT in certain language understandable by TPG.

However, even though SUT has generic architectures, it may bring some inconvenience

to the tester who prefers to write test cases directly. To solve this problem, our test

framework also allows the manual generation of the test plan by the tester. By doing this,

the tester can create the test cases and test process written in the test script language. As a

result, the usability of the test framework is greatly improved to satisfy the requirement of

Ease of Use (.Requirement 3.3.3.4).

4.2.8 System Centre

One of the criteria to evaluate the performance of the automation testing process is the

ability of recording the states and behaviours of the system under test (SUT). To achieve

this, we design the System Centre (SC) in our test framework to store the information

about SUT. However, all the description regarding to SUT is specifically defined in

certain presentation formats by the tester, instead of being recorded automatically. One

reason of using this mechanism is that, the test framework is focusing on the system-level

testing and common components in SUT, such as networking communication

components and database. These components are not suitable for using the record/replay

technique that is widely used in the GUI testing by most commercial automation tools.

In particular, the main function of SC is to describe the specific characteristics (state and

number of components) of SUT, which will be used by the test system console (TSC)

during the initialization of the test process. For instance, TSC can configure the necessary

test components that are associated with the particular structure of SUT at the

initialization stage of the test process. In addition, the dynamic relationships among the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components of SUT are defined in SC, which will be retrieved by the test plan generator

(TPG) in the creation of the test plan. Therefore, the addition of SC enables the automatic

testing process and increases the usability of the test framework to reach the requirement

of Ease of Use {Requirement 3.3.3.4).

Another function of SC is to store the test information collected by TSC during the

execution of the test process, i.e. test verification results, response time, etc. The test

information is stored in a certain format, i.e. XML format, and can be extracted by the

test analyzer (TA) to create testing reports, make historical analysis and evaluate the

SUT’s performance. This function is also one of critical criteria to evaluate the

performance of the test framework.

4.2.9 Test Analyzer

The Test Analyzer (TA) is a software component that can be developed as an internal

component within the test framework. Alternatively, it can be done by integrating third-

party components via the external standard interface. The main function of TA is to

generate the test reports and analyze the historical data stored in the system centre (SC).

The analysis generates a series of graphs and reports to help summarize and present the

end-to-end test results. In this way, the test framework can reach the requirement of Test

result Reporting {Requirement 3.3.3.8)

In addition, TA allows the tester to view and monitor the performance of components in

the SUT, i.e. the clients, the network and the server, at any time during the test. This can

be done directly by interacting with the test system console (TSC). Real-time monitoring

allows for early detection of performance bottlenecks during test execution. As a result,

the test framework helps identifying the pitfall existing in SUT and makes a precise

evaluation for the SUT’s performance. It can then accelerate the test process and achieve

a more stable application.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.10 Context Simulator

In order to satisfy the Requirement 3.3.2.3 - Location context acquisition, the test

framework employs the Context Simulator (CS) component. CS is a third-party software

component and can be integrated into the test framework via the external standard

interface. From the functional point of view, CS acts as the location management

platform (LMP) in the typical location-based service (LBS) (See section 2.2.3 for the

function of LMP), and the primary function of CS is to distribute context events to the

Server whenever the Server sends any location request during the execution of the test.

Therefore, the introduction of CS helps the test framework creating a simulated execution

environment for the system under test (SUT).

The test framework provides two ways to build this context simulator. The first method is

to integrate a third-party context tool, i.e. Context Toolkit [Dey+00], to produce the

context events. The Context Toolkit is an open source context tools used in the academic

area. It consists of context widgets and a distributed infrastructure that hosts the widgets.

Context widgets are software components that provide applications with access to context

information while hiding the details of context sensing. The Context Toolkit supports the

transmission with the test system by using HTTP and XML, which enable

communication across a wide variety of platform and devices.

Another way of building the CS can be done by integrating a database that stores the

context information. Specifically, the context data is firstly pre-defined and stored in the

database. What the test framework does is developing an external interface (i.e. JDBC

API) to access the database any time during the test. By doing this, LBS can retrieve the

location data from the database via the test system.

4.2.11 Wireless Simulator

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Wireless Simulator (WS) is another third-party component that can be integrated in

the test framework via the external standard interface. It enables the test system to

simulate a wireless network of multiple nodes, in which the multiple mobile client

applications and Server applications (nodes) communicate with each other under certain

network protocols, such as GRPS, 802.11b etc (Requirement 3.3.2.1). In addition, the

test framework enables the service selection function under a wireless environment with

the association of the WS to reach the requirement of Service selection mechanism

(Requirement 3.3.2.4).

In order to provide a wired network and a wireless network simulation, WS should be

designed as a portable component and can be loaded in/unloaded from the test framework

any time according to the specific test requirements. In this way, the execution of test

cases can be undertaken in a wired or wireless network environment. Thus, the location-

based service can be tested firstly in the wired network to ensure the functionality in the

client tier, middle tier and server tier applications. After that, the whole system under test

(SUT) can move on to the wireless communication network and verify its functionalities

under relevant wireless communication protocols.

4.3 Test Framework Implementation

One of the important criteria to evaluate the performance of a test framework is the

ability of simulating the behaviour of the system under test (SUT). The typical scenario

of LBS is that, the context information can be retrieved from LMP (Location

Management Platform, also see Section 2.2.3 for details) either after the mobile user

sends a location request from the mobile device {User Requested LBS), or after LBS is

triggered when the mobile user is out of pre-defined geographic boundary {Triggered

LBS). No matter what kind of LBS is executed, the context information and required

service will be sent from the server to the client application (LBA).

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To simulate the typical LBS behaviour, the tester will act as the mobile user by firstly

sending the service request from the client application (LBA) to the server. After the

server detects the service request, it will retrieve the user’s current position from the

Context Simulator (CS) via the test system console (TSC) and then submit the user’s

context information and any required service to the LBA, such as the nearest restaurant or

gas station.

In particular, the primary role of a tester in the initialization phase of the test process is

the encoding of the behaviour and the rules that apply to the system under test (SUT).

The required behaviour is injected into the system using a scripting language and stored

inside the system center (SC). With the initial rules and behaviour encoded, the test plan

generator (TPG) will retrieve the information from SC and extract a set of test cases

along with other relevant information, such as the number of test adapters and specific

test components required to execute the associated test cases.

After the client application (LBA) sends the location request, it will be forwarded to the

Server application via the simulated wireless network. Then, the context simulator (CS) is

invoked to produce the context event (test data) and send it to the Server via the test

system console (TSC). Alternatively, test data can be manually input from the user

interface (UI). This function increases the flexibility of the test framework as the tester

can type in any test data from UI and process the manual test for some specific test cases

and enable the test framework to fulfill the requirement - Manual test (Requirement

3. 3. 3. 6) .

All generated test cases are executed by the test system console (TSC) after associated

system adapters are deployed into related client applications (LBAs) as well as the Server

application. The test framework can also accept the manual creation o f test cases, which

allows for very specific test case generation, for example, writing test cases in a test-first

manner. Upon execution, the test framework will automatically bring together all relevant

components including the Context Simulator, Wireless Simulator and Test Analyzer. The

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test result will be shown on the user interface, logged and stored in the System Centre in

the certain format for further test analysis and report by the Test Analyzer.

4.4 Testing and Test Control Notation (TTCN-3)

As mentioned earlier, our test framework should be constructed with standard interfaces

to all test components connecting to the test framework. The Testing and Test Control

Notation (TTCN-3) [Grabowski+03] is one testing implementation language to satisfy all

of test framework requirements we defined in chapter 3. In this section, we will introduce

the concept of the Testing and Test Control Notation (TTCN-3) [Grabowski+03], which

is a new test specification and test implementation language. Later, we will apply it to our

test framework.

4.4.1 Introduction of TTCN-3

TTCN-3, is conventionally driven by key players with the telecommunication industries,

and is a new test specification and test implementation language that supports all kinds of

black box testing of distributed systems. TTCN-3 is applicable to the specification of all

types of reactive system tests over a variety of communication interfaces. Typical areas

of application for TTCN-3 are protocols, services, APIs, software modules, etc. TTCN-3

is not restricted to conformance testing or protocol testing. It can be used in many areas,

such as interoperability / inter-working testing, robustness testing, performance testing,

regression testing, system testing, integration testing, load/stress testing, etc.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASN.1 T ypes
& Values

IDL

XML

C,.C++,
<1 A Y A

TT C N -3
Cure

Language
T abular
Format

G raphical
Form at

Presentation
Form at

User

Figure 4-2: TTCN-3 Standard Presentations

As shown in figure 4-2, TTCN-3 is built from a textual core language that provides

interfaces to different data description languages, including ASN.l, IDL, XML, C++,

Java, etc., and TTCN-3 can be represented with different presentation formats, such as

tabular format and graphical format, etc. In other words, different TTCN-3 presentation

formats provide various alternative ways of specifying test scenarios visually or in a

context-specific manner. All presentation formats will be eventually converted into the

core notation while still preserving their meaning, which allows the same compiler and

runtime execution environment to be used regardless of which presentation format the

different tests are specified in. Some examples are shown in Appendix C and Appendix D

for the tabular presentation format and graphical presentation format, respectively.

TTCN-3 allows an easy and efficient description of complex distributed test behaviour in

terms of sequences, alternatives, loops and parallel stimuli and responses. Stimuli and

responses are exchanged at the interfaces of the system under test, which are defined as a

collection of ports being either message-based for asynchronous communication or

signature-based for synchronous communication. The test system can use any number of

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test components to perform test procedures in parallel. Likewise for the interfaces of the

system under test, the interfaces of the test components are described as ports

[Schieferdecker+03]. The well-defined interfaces of TTCN-3 enable a set of operations

independent of the target, processing platform, implementation language, etc.

Communication between TTCN-3 components is either message or procedure based.

As shown in figure 4-3, the TTCN-3 test system can be distributed among several test

devices, and the entire test system is synchronized by the Test Management (TM) and the

Component Handling (CH) components [ETSI 04]. The CH entity is responsible for

distributing parallel test components. This distribution might be across one or many

physical systems. The CH entity allows the test management to create and control

distributed test systems in a manner which is transparent and independent from the test

execution.

The TTCN-3 Executable (TE) entity is responsible for the interpretation or execution of

the TTCN-3 abstract test suite. The External Codec (ECD) entity is responsible for

encoding and decoding data associated with message based or procedure based

communication within the TE. The SUT Adapter (SA) is responsible for adapting

message and procedure based communication of the TTCN-3 test system with the SUT to

the particular execution platform of the test system. The Platform Adapter (PA)

implements TTCN-3 external functions.

A TTCN-3 test system contains two interfaces: the TTCN-3 Runtime Interface (TRI) and

the TTCN-3 Control Interface (TCI). While the TRI defines the interactions between the

TE, SA and PA entities within a TTCN-3 test system implementation, the TCI defines the

interaction between the TE, CH, TM and Coding/Decoding (CD). It provides means for

the TE to manage test execution, distribute the execution of test components among

different test devices and encode and decode the test data.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jest j>£Stem User

Figure 4-3: General Structure of A TTCN-3 Test System [ETSI 04]

In short, the benefits of using TTCN-3 on testing applications include:

• Re-use of existing conformance test environment, including communication ports,

templates, implemented message, sequences

• Platform-independent specification of tests

• Well-define system interfaces, modularity, extensibility

• Allows repeated use of the same test scenario with different protocols

• Readable specification language, easy-to-scale and built-in load balancing

4.4.2 Applying Test Framework with TTCN-3

When applying TTCN-3 to our test framework, as shown in figure 4-4, the architecture is

separated into three layers, including the TTCN layer, Adapter layer and the Connector

layer.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the TTCN layer, the functional components, such as the Test Plan Generator (TPG),

the Wireless Simulator (WS), the System Centre (SC), the Context Simulator (CS), and

the Test Analyzer (TA) can be realized by several independent test components,

connected to the TTCN-3 test system via standard communication ports, i.e. Platform

Adapter defined in the TTCN-3 structure in figure 4-3. The Test System Console should

be defined as the main test component (MTC), responsible for the creation of test

components, the starting of the execution of a test component, the verification of the

distribution, as well as component termination indication. The definition and

implementation of all of the components are written in the TTCN-3 testing script

language.

In the Adapter layer, the test adapter and other components, including Wireless Simulator,

Context Simulator and Test Analyzer, are implemented with Java language and zipped in

one JAR archive. The components WS, TA and CS work as external functions in the

TTCN-3 architecture, connecting the TTCN-3 testing system via External Function

Container, provided by the Platform Adapter in the TTCN-3 structure in figure 4-3.

Finally, the TTCN-3 testing system connects with SUT via the System Adapter (SA) in

the Connector Layer, which is implemented in Java. Here, SA matches the SUT Adapter

defined in the TTCN-3 structure in figure 4-3. It will be distributed into the server

application and client applications (LBAs) and encode/decode the messages from or to

the system under test (SUT).

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TTCN Laver (Script)
• Ports
• PTC
• MTC

Adapter Laver (Java)
• Test Adapter
• Wireless Simulator
• Context Simulator
• Test Analyzer

Connector Laver (Java)
• SUT
• Test Adapter

LG A2

Figure 4-4: The Test Framework Architecture with TTCN-3 Test System

Depending on the specific testing demands, the test components can be integrated into the

TTCN-3 testing system dynamically by using the external function, which is defined

within the TTCN-3 test specification, and be implemented and executed in the test

adapter. A TTCN-3 test specification consists of four main parts:

• Type definition for test data structure

• Templates definitions for concrete test data

• Function and test case definitions for test behaviour

• Control definitions for the execution of test cases

75

/ WS SC TA UI CS TPG TSC 7
L j L ___ / I ___I — L ___1 // / / / / 7

/ SA SA SA SA /

1 (11 \
A m 1 / I f 1 TA c l

/ L / L /
/ SA SjV && SV /A /

/ s i s;% SA S\._j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test data is the information exchanged among the test components and between test

components and SUT. We use two types of communication: one is message-based

communication between the test system and LBA, and for the coordination among the

test components; and the other is procedure-based communication between the Context

Simulator and the test system. Message-based communication and procedure-based

communication are realized by data type and procedure signatures, respectively. There

are some data types required by SUT in the figure 4-5.

tVIRS record operation LB A_Type { //D a ta Type fo r a message
LB A_ops ope ra tion ,
GPS_data position

}
tJCPS record GPS_Type { //D a ta Type fo r a message

tlasJ latitude,
longitude,

ftaa t altitude,
speed

}
tenxnddM operation LB A_Type validPositon_Template := { //m essage template

O BJU Sto :=getPosition,
•RjQStoa := po s iti on_Tem p late

}
teCOBkfe GPS_Type position_Template := { //m essage template

latitude := L
Ijemifud-P :=
a lt i t u d e := ?,

>
signature getContext (ou t GPS_type position_Template) //s igna tu re definition

return b&pl&aa exception (cause);
signaturereqLocation (outGPS_type position_Template) //s igna tu rede fin ition

return hokQl^n exoeption (cause);

Figure 4-5: Data Types, Procedure Signatures and Test Data

Apart from the test data, we also need to define the test system with the address, port and

component types in the test specification. Among these types, the address is used to

define the physical IP address of server and computers in the distributed system. In

addition, communication ports should be defined to enable communication between test

components and between the components and the test system interface. As a result, the

ports of test components, i.e. TPG and SA, can be connected to the ports of the test

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system console (TSC) by means of the map operation provided by the TTCN-3 core

languages.

Dynamic test behaviour is expressed as test cases as well as functions. Functions are used

in TTCN-3 to express test behaviour, to organize test execution or to structure

computation in a module, such as to calculate a single value, to initialize a set of variables

or to check some condition. Functions may return a value. In our case, functions can be

used to calculate response time of one test case in the Test Analyzer (TA). Likewise, we

can create one internal function (Frequency Controller) to control the frequency in which

the Context Simulator provides the location information. By doing this, we can simulate

one scenario of the location-based service - dynamic movement of the mobile client when,

for example, the mobile user is driving the car on the freeway.

A function may be defined within a module or be declared as being defined externally (i.e.

external). For an external function only the function interface has to be provided in the

TTCN-3 module. As shown in figure 4-6, Test Plan Generator (TCG), System Centre (SC)

and Context Simulator (CS) would be realized by the external function in Java programs,

and they will be invoked by the TTCN-3 module via the predefined interface. All of these

components could be dynamically integrated into the test system according to the

required components’ information provided by the test case generator. The TCG would

interpret the rules stored in System Centre and convert them into the corresponding test

cases and number of test adapters required by SUT with the XML format. In the

meantime, we need to develop one XML parser Java program to transfer the XML data

into the data format readable by TTCN-3. Alternatively, the test case can be manually

defined by the system administrator using the TTthree compiler tool. Finally, a test case

would be called and executed in the control part, which may contain local definitions and

describes the execution order.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fu n c tio n Fre q ue ncyContno 11 er(inoutinteger frequency) { ... }
/ / FrequencyController function with one parameter
/ / returns an integer value of frequency

&Kjt£Ell3Jlfunction ContextInvoke(in integer frequency) return conteHt;
/ / External function to invoke the Context Simulator
/ / j&tMGh.returns an context event

function TestCaselnvokeQ return testcase;
/ / External function to invoke the Test Case Generator
/ / wJwh.returns an test case, including number of test adapters and components

function SystemlnvokeQ return rules;
/ /E x te rn a l function to invoke the System Centre
/ / J&iwtx returns rules of the System Under Test (SUT)

Figure 4-6: Function Definitions

4.5 Wireless Simulator

As mentioned earlier, we integrate a wireless simulator into our test framework. The

purpose of using the wireless simulator is to provide the system under test with a

simulated wireless communication network.

From the developer perspective, running the location-based application on the handheld

emulator is one of popular approaches to communicate with the server under a simulated

wireless network. Most of the current handheld emulators provided by mobile device

manufactures contain the function of simulating a wireless network environment and can

simulate different wireless network coverage conditions for transmitting data from the

handheld, i.e. good coverage, delays and random success of transmission. However, most

of them are not open source software and can’t be easily combined as a third party

component into the automated testing tools. Therefore, in the phase of integration testing

and system testing, the tester must undertake manual process for each test case, which is

very time-consuming.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Open source wireless simulators, however, provide an alternative method to build the

simulated wireless network environment. Meanwhile, they provide related APIs to

connect to third party software and thus work well with the automated testing tools.

In this section, we will introduce some of current open source wireless simulators and

describe the Hata computation model [Hata 80], which will be applied as the mobility

model in our wireless simulator.

4.5.1 Current Wireless Simulators

There are two approaches for wireless communication between two hosts [Altman+04].

The first is the centralized cellular network in which each mobile is connected to one or

more fixed base stations, so that a communication between two mobile stations requires

the involvement of one or more base stations. Currently most of the location-based

services use the centralized cellular network. However, sophisticated simulation tools of

the physical radio channel and the simulation of power control mechanisms are needed in

order to model cellular networks, which makes it unfeasible to be used as the approach of

simulating the wireless network in our test framework.

A second decentralized approach consists of a mobile ad hoc network (MANET) between

users that wish to communicate between each other. Due to the more limited range of a

mobile terminal (with respect to a fixed base station), this approach requires mobile

nodes not only to be the sources or destination of packets but also to forward packets

between other mobiles. In other words, wireless mobile ad hoc networks differ from

centralized cellular networks because of their highly dynamic topologies and special

routing protocols that have to be adapted to their dynamic topologies. Users can define

arbitrary network topologies and create their own simulation scenarios.

There exist many discrete event simulators to simulate ad-hoc networks for commercial

and research purposes, such as NS2 [Fall+05], GloMoSim [UCLAPCL 05], SWANS

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Barr 05] and OPNET [OPNET 05]. Due to their popularity and widespread utility,

discrete event simulators have been the subject of much research into their efficient

design and execution (surveyed in [Fujimoto 90], [Fujimoto 95], [Misra 86], [Nicol+94]).

Next we are going to introduce some open source discrete event simulators used in the

academic research area.

NS2 [Fall+05] is a discrete event simulator developed as part of the GINT project at the

University of California at Berkeley. NS2 is extensively used by the networking research

community. It provides substantial support for simulation of TCP, routing, and multicast

protocols over wired and wireless (local and satellite) networks, etc. NS2 simulator is

based on two languages: an object oriented simulator, written in C++, and an OTcl (an

object oriented extension of Tel) interpreter, used to execute user’s command scripts.

NS2 can simulate the main existing routing as well as transport layers that network

applications use. In addition, it can take into account the MAC and link layers, the

mobility, and some basic features of the physical layer.

GloMoSim [UCLAPCL 05], developed at University of California at Los Angeles, is a

scalable simulation environment for wireless and wired network systems. The simulator

is being designed using the parallel discrete-event simulation capability provided by

Parsec, which is a programming language similar with C. GloMoSim is being built using

a layered approach similar to the OSI seven layer network architecture. Simple APIs are

defined between different simulation layers, including the channel, radio, MAC, network,

transport, and higher layers. This allows the rapid integration of models developed at

different layers by different people. GloMoSim source and binary code can be

downloaded only by academic institutions for research purposed.

SWANS [Barr 05] is a scalable wireless network simulator built atop the JiST [Barr 04]

platform. SWANS is organized as independent software components that can be

composed to form complete wireless network or sensor network configurations. Its

capabilities are similar to NS2 and GloMoSim, but is able to simulate much larger

networks. SWANS leverages the JiST design to achieve high simulation throughput, save

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory, and run standard Java network applications over simulated networks. In

addition, SWANS implements a data structure, called hierarchical binning, for efficient

computation of signal propagation.

As described earlier, the location based application tested in our test framework is the

Java-based software developed on J2SE platform. SWANS is a wireless network

simulator written purely in Java and it provides special API as a harness to run regular,

unmodified Java network applications, such as web servers and peer-to-peer applications,

over the simulated wireless network. This approach lowers the learning curve and is

convenient to be used for modeling users own wireless communication. Based on the

above consideration, we will use SWANS as the wireless simulator in our test framework.

4.5.2 SWANS Wireless Simulator

SWANS [Barr 05] is a Scalable Wireless Ad hoc Network Simulator built atop the JiST

[Barr 04] platform, a general-purpose discrete event simulation engine, as shown in

figure 4-7. Java networking applications are running over SWANS and all of the above

components are running within the Java virtual machine (JVM).

u
A p p

JS S W A N S
Vi

J i S T
*55

J a v a

Figure 4-7: The Stack of SWANS Wireless Simulator [Barr 05]

The architecture of JiST, as shown in figure 4-8, is constructed with four distinct

components: a compiler, a bytecode rewriter, a simulation kernel and a virtual machine.

The process of JiST is that, the JiST simulation programs, written in plain, unmodified

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Java, are firstly compiled to bytecode using a regular Java language compiler. After the

modification of those compiled classes by the bytecode-level rewriter, they are then run

over a simulation kernel within a standard, unmodified Java virtual machine (JVM).

m.

Java Source
Code

Bytecode Class

Compiler
(Javac)

ModifiedJava

Sim ulation
Kernel

Virtual
Machine

Figure 4-8: JiST System Architecture [Barr 04]

The SWANS software consists of several independent components, as shown in figure 4-

9. Each component is designed as an individual JiST entity and provides different

functions for building the wireless network, such as networking, routing and media

access protocols, radio transmission, reception and noise models, signal propagation and

fading models, and node mobility models. Thus, SWANS allows the user to set up

specific wireless network characters via the relevant interface and class provided by

SWANS, such as the Mobility entity in the Field component and the Radiointerface

entity in the Radio component.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"""Spplleattcm..
ComtBitRate

Node

Transport
imp

" ™ T " 1
fretwork pTN Routing

m ZRP

, Q ,
NIAC

BO 2 J i b
C 1

Radio r~\ fvioKhiv
Nais&AddL RamlWavPh

Me.W
r i

a

Frees pace Path km ~Raki «h Fadim-ID- Field

. is.
\J t

T 7
. z »
Is . I

C 7
If z >
!& ; VO '

" 'P ie lH

FreespaceRaleieh2D
IT's

I
Z l
a *a l f

I

Z Z
a

v ; \ ; v ;
O O O

Field-lelcT
b'reemaceRaletKhZD

T
 FreesimceRalemhlD
C f T T T T t y

Z 1 Z 1!a| z * Z l!a:

Figure 4-9: SWANS Wireless Simulator Structure [Barr 05]

SWANS offers the unique feature of running regular, unmodified Java network

applications over the simulated network, which is being achieved via the AppJava [Ban-

05] application entity in the Application layer. As a harness for Java applications, the

AppJava entity inserts an additional rewriting phase into the JiST kernel, which

substitutes SWANS socket implementations for any Java counterparts that occur within

the application. Therefore, Java network applications can open regular communication

sockets, which will actually transmit packets from the appropriate simulated node,

through the simulated network.

4.5.3 Applying Test Framework with SWANS

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3.1 Mobility Model

There are some situations that need to be considered when applying the test framework

with the SWANS wireless simulator. The first consideration is the mobility model among

mobile nodes. SWANS defines several mobility models in the Mobility entity of the Field

layer, including Static, Random Waypoint, Random Walk, and Teleport models. Each

model has specific mobility behaviour. For instance, the static model means no mobility

among the nodes in the pre-defined area. The Random Waypoint model allows the node

to pick a random “waypoint” and walk towards it with some random velocity, then pause

and repeat. Thus, the network topologies among the mobile nodes are very dynamic and

each mobile node needs to send/receive as well as forward packets between other mobile

nodes.

However, all of the above mobility models are too sophisticated to simulate the mobility

of mobile devices (clients) and web servers in the location-based service. Normally, the

communication between the client and web server is very straightforward, as shown in

figure 4-10. Instead of forwarding the packets, each mobile client would directly

send/receive packets to/from the nearest web server that is available to it. Each mobile

client does not share information with each other.

v V

1 S e r v e r # I * \ S e r v e r # ! ’

Figure 4-10: LBS Service Selection Scenario

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SWANS allows users to define specific mobility models in the Mobility entity. To

simulate the scenario of location-based servers, the mobile client application (location-

based application) and the web server application are treated as two independent Java

network applications running on the Application entity in two separated nodes,

connecting the wireless network via the AppJava harness. Thus, the mobile client and

web server can communicate with each other via TCP/UDP socket over the simulated

wireless network.

There exists another scenario that more entities are involved in the location-based service.

For instance, the mobile client may receive two different services provided by two web

servers at same time. In this situation, two servers and one mobile client can be added to

three different mobile nodes in the simulated wireless network, as shown in figure 4-11.

The mobile client allows the access of the server’s service when it is in the range of the

server.

' Applicaiion"
CmstHuRuh’ ----
rf—k1 imNpoii

(j>r
 ̂ J

RetivwR

N o d e

S erver #1

JP4

m2 A lb

Rb3io"
Noise Add.

S :

Appteation.
ComrBifRate -----

T 1 J!
t m

Server #2

Application
CcmstBitRaie
T T " l y *

Transport
UDP

"’7 ...f...

Node

Mobile
Client

>r\ Jfoutmg
1 »
1 ! R etw orfc *r\ Routing

• i
s i Hetwork R o u tin g

KJt ZRP i: IP4 ZRP ■ i
! i IP4---------- --------- s_n ZRP

M A C '
802 A lt)

T
MAC

802AAh
)

tr% Mobility IS Radio Mobility • i
5 iR a S o M o b i l i t y

RamPVmPt, Nmse.-Ukl RmdlVavPt, NolseAdd. RamllVarPi. t

'iel'd
Freeximn’Patbloss-RuimiihFadhm'212-Fiekl

' X j u 1 —eld

>r\
'C

f i e l d
h'ree$paceRaU’ish2D

[y i
■ 8. jK<* J

zr, *o I> £X- i

IT
r \

Field
F recw w vR tilem lA D

2 .

..y ...VIT
1 a.
s.,™. *

T J

field
FreexmuvRakmhiO

l a.

Figure 4-11: The Location-Based Service on SWANS

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3.2 Propagation Models

Another issue that must be considered is the effective radio range of the wireless base

station, which is used to broadcast the radio. Because of the separation between the

mobile device (receiver) and the wireless base station (transmitter), attenuation of the

signal strength occurs. In addition, the signal propagates by means of diffraction,

scattering, reflection, transmission, refraction, etc [Neskovic+00]. Thus, a propagation

model has to be defined to represent the radio characteristics of a given environment to

predict the base station’s effective radio range.

Generally, the prediction models can be either empirical (also called statistical) or

theoretical (also called deterministic), or a combination of these two. While the empirical

models are based on measurements, the theoretical models deal with the fundamental

principles of radio wave propagation phenomena [Neskovic+00]. The following are some

outdoor propagation models used in the academic research area:

• Okumura Model [Okumura+68]

It is one of the most widely used models for signal prediction in urban areas. It is

an empirical model in the frequency range of 150 MHz to 1920 MHz & distances

from 1 to 100 Km. It can be extrapolated up to 3 GHz.

• Hata Model [Hata 80]

It is an empirical formulation of the path loss data model to match the Okumura

model, and is valid from 150 MHz to 1500 MHz for urban area.

• PCS Extension to Hata Model [Rappaport 95]

This is an extension of the Hata model up to 2 GHz for Personal Communication

Systems which have cells of the order of 1 Km to 20 Km radius.

Although the Okumura model is accurate for predicting path loss o f cellular and land

mobiles, it is not good in rural area and shows slow response to rapid changes in terrain.

Likewise, the PCS extension to Hata model is mainly used for urban areas and is not

suitable for rural areas. Therefore, the propagation model utilized in our wireless

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulator is the Hata model, which presents our test framework with a wide simulated

environment, such as large cities, suburban areas and rural areas as well.

The standard formulas for the path loss in three areas are given by:

1. Path Loss in Urban areas

Path Loss = 69.55 + 26.16*log(f) - 13.82*log(hte) -a(hre) +(44.9-6.55*log(hte))*log(d)

Where:

f = Frequency (in MHz) from 150 MHz to 1500 MHz

hte = Effective Transmitter Height, from 30 to 200 meters

hre = Effective Receiver Height, from lm to 10 meters,

d = Transmitter - Receiver separation (in Km)

a(hre)~ Correction factor for effective mobile antenna height, which is a function of

the size of the coverage area.

=(1.1 Hog f - 0.7)hre -(1.56*log f - 0.8) dB For medium sized city

=8.29(logl.54hre)2- 1.1 dB f <= 300 MHz For large city

=3.2(logl 1.75hre)2 - 4.97 dB £>= 300 MHz For large city

2. Path Loss in Suburban Areas

Path Loss (Suburban) = Path Loss (Urban) -2*[log(f/28)]2 - 5.4

3. Path Loss for Open Environment

Path Loss (Open Rural) = Path Loss (Urban) - 4.78(log f f +18.33*(log f) - 40.94

As shown in figure 4-12, the Path Loss data is increased gradually with the increment of

Distance. Thus, we can calculate the radio range of one base station given the following

parameters.

• Maximum Allowable Path Loss of the Base Station (dB)

• F requency (150... 1500MHz)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Effective Transmitter Height (30m.. .200m)

• Effective Receiver Height (1 m ... 10m)

• City Size (Medium sized City / Large City)

• Surrounding Environment (Urban area / Suburban area / Open Rural area)

150
150MHz
700MHz
1500MHz140

130

S . 120
COCOa

«J : '..

110

100

Distance(km)

Figure 4-12: The Path Loss/Distance Trend of Hata Model

4.5.3.3 Integration of SWANS and TTCN-3

Since SWANS is open source software written in Java language, it is very easy to

integrate it into the TTCN-3 test system. Specifically, SWANS will be connected to the

TTCN-3 test system via the External Function Interface, which contains all the

implementations of the external function calls, such as an external database and test case

generator. All the test results generated under the SWANS wireless simulator will be sent

back the TTCN-3 test system.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the integration of SWANS and TTCN-3, it is possible to implement all the test

scenarios of the location-based service (LBS) under two situations, as shown in figure 4-

13:

• Situation 1: Testing each LBS components in the wired network using TTCN-3

• Situation 2: Testing each LBS components in the wireless network using TTCN-3

and SWANS

Com®®
Sim ulator

I T
< >

Test Modules i

TTCN-3 Testing System

System
Adspiet

Client

System
M sipter

Server

Testing System without SWANS

Context
Simula tar

lest Moduli** I

I t.sz_
TTCN-3 Testing System

SWANS

I f

Client Server

Testing System with SWANS

Figure 4-13: Integration of TTCN-3 and SWANS

4.6 Test Framework Evaluation

In this section, we will evaluate our test framework of implementing Location-based

services testing via TTCN-3 and SWANS. As we mentioned in the above section,

Location-based services (LBS) must be tested to ensure functionality, usability and

scalability under all working conditions. With the integration of TTCN-3 and the

SWANS wireless simulator, our test framework can provide the evaluation of Location-

based services in the following areas:

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test Strategy Test Issue

Functional testing

Can the LB A receive the correct service information from

the Server in terms of new context events?

What’s the breaking point for the LB A when it is affected

by quickly changing contexts?

Usability testing
Does the LBA perform the execution of service manually

or automatically when the new context occurs?

Network performance

testing

How is the system affected over weak wireless network

signal or even temporary disconnection?

Server-side testing

How does the server handle a high volume of requests by

increasing numbers of subscribers?

What’s the response time from the server?

Interoperability testing
Can all application components in LBS interact correctly

with each other?

Security testing

Can users switch off the ability of being tracked when

they don’t want to be exposed to others?

Does LBS have the security mechanism in terms of

sensitive contents?

Table 4-1: Summary of Test Issues for Location-based Services

The above questions and issues cover most of what LBS developers are concerned with.

Next, we will evaluate our test framework from the following set of criteria:

• Functional Testing - Location Changes

• Usability Testing - Auto/Manual Tracking Services

• Network Performance Testing - Poor Wireless Network Performance

• Server Site Testing - Multiple Instances

• Interoperability Testing - Multiple Software Components

• Security Testing - Personal Integrity and Secured Contents

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.1 Functional Testing - Location Changes

TTCN-3 distinguishes itself on supporting all kinds of black box testing for distributed

systems. In our case, we want to test how the location-based application behaves over

changing context events. In other words, how is the application affected by mobility? The

direct way for the developer is to actually carry a device to run software and to attach it to

sub-networks in the current location, which is extremely laborious and inefficient. Instead,

our test framework can generate simulated context events, which are sent to the server

after the location-based application (LBA) requires the location service. Then, the server

forwards the context information and other service information to the location-based

application within the simulated wireless network as if the location-based application

were physically moved to interact with the real environment. What we need to achieve

this is to monitor the data sent back to LBA to see if the location-based application

responses correctly to the context events.

Specifically, the test system would call the Test Plan Generator (TPG) to deploy test

cases and related configuration information (i.e. initialization parameters) to the main test

component in order to invoke components in the system under test (SUT) and other

functional components (i.e. Context Simulator, SWANS). The test cases generated by the

TPG can be predefined manually by the user, or created automatically by interpreting the

rules of SUT behaviour stored in the System Centre. Once LBA sends any location

service request, the Context Simulator will be invoked to deploy the context event to the

sever, and then the server will forward the received context information and

corresponding service back to LBA through the simulated wireless network provided by

the SWANS wireless simulator. Finally, the test system would monitor and compare the

context information received by the server as well as LBA via probes (System Adapters)

injected in the targeted system. If the actual result is same as the expected result, the test

case is passed, otherwise it is failed.

Alternatively, the test system could invoke the Frequency Controller component to

control the frequency of context events sent by the Context Simulator. This function can

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be used to simulate the situation like a user holding a GPS-enabled mobile phone while

driving his car on the freeway. How is LBA affected by the quickly changing events?

With the Frequency Controller, we can implement stress testing on the location-based

application and find out its breakpoint. The response time can be recorded by the Test

Analyzer during the execution of test cases, which helps to measure the update time of

the LBA on the handheld.

4.6.2 Usability Testing - Auto/Manual Tracking Services

There are currently several methods of categorizing the Context-Aware Application. The

first was by Schilit et al. [Schilit+94], who produced a taxonomy of context-aware

applications containing four categorizations (proximate selection applications, automatic

contextual reconfiguration, contextual command applications, context-triggered actions)

based on 2 orthogonal dimensions: whether the task is to get information or to execute a

command; and whether the task is executed manually or automatically. Another

taxonomy of context aware applications was produced by Dey and Abowd [Dey+99], in

which they defined three categorizations: 1) presentation of information and services to a

user; 2) automatic execution of a service; and 3) tagging of context to information for

later retrieval. No matter what taxonomy is used to define the context-aware application,

it is necessary to distinguish whether the application gets the information manually or

automatically, and whether the application performs the automatic execution of a service.

In other words, applications that retrieve information for the user automatically based on

available context are classified as automatic contextual reconfiguration, and vice versa.

As one type of context-aware applications, Location-based services could also be

categorized from the above two aspects. For instance, Mike is getting ready to leave for

work in the morning. He uses his mobile terminal for a quick check of the local weather

forecast (presentation of information to user manually). While driving his car to the office,

he may search available information about the gas station service in order to find out the

cheapest gas station around him (presentation of information to user manually). Also, his

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

personal navigation system on the mobile terminal verbally prompts him that there has

been an accident on his normal route to work (automatic execution of a service). Upon

the arrival at work, his mobile web browser automatically shows him the news headlines

from the site he has linked to this location (automatic execution of a service). These

situations should be investigated in the LBS usability testing.

To test these scenarios, at least one LBA and two servers should be run within the

SWANS wireless simulator. Each server provides an independent service within the

certain range of area (predefined by the tester). After the start of test cases, the Context

Simulator would send specific location data to the mobile client, so that the mobile client

(LBA) would be simulated to roam in the area where servers are available or unavailable

to the LBA. The main test component (MTC) would then observe the activity of the LBA

and check it can detect and execute the available service.

4.6.3 Network Performance Testing - Poor Wireless Network Performance

Poor network performance is one of the key issues that need to be tested in a Location-

based service. It may cause context errors as well as temporary network disconnections.

In the first situation, potential errors might exist in the context information interacting

with the location-based application because of the complicated surrounding environment,

GPS satellite signal conditions and packet data availability. Thus, we can simulate this

situation by embedding specified mutants, i.e. incorrect format and lack of parameters,

into the context event generated by the Context Simulator. After the erroneous context

information is pushed into LBS, the test system monitors the behaviour of the LBA and

the server in terms of those mutants in the target system. In this way, we can check if the

LBS service contains the mechanisms of detecting and handling the errors in the context

information.

Our test framework supports wireless network simulation and emulation by integrating

the SWANS wireless simulator into the framework. The weak wireless network

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance would highly impact the probability of successfully transmitting packets. As

shown in figure 4-14, SWANS provides a PacketLoss interface in the Network layer,

which allows the server only receive a percentage of packet data successfully according

to the predefined packet loss probability. For instance, if PacketLoss.Zero() is used, all

packets sent from the mobile client will be successfully transmitted to the server. If

Packet.Uniform(0.4) is used, it means that 40% of packet data sent from the mobile client

will be lost during the transition of packets in the simulated wireless network. If

Packet.Uniform(l.O) is set up, all of packets will be blocked in the wireless network. This

can simulate the scenario that the handheld is Out of Coverage of wireless network.

jist.sw aits.net. *

interlace class
N etln ietface Net Ip

description
1 Pv4 i mp lemeti t at ion

PacketLoss Zero zero network layer packet loss

Uniform independent, random drop with fixed probability

Figure 4-14: Interfaces of The Network Layer in SWANS

In addition, the delays and random success of transmission are supported in our test

framework. By inputting different transmission rates from the GUI, users can measure

the transmission performance of LBS during the various wireless network coverage

conditions.

4.6.4 Server Site Testing - Multiple Instances

Server site testing is one of biggest challenges in the testing of location-based services

(LBS) since many components are involved in the server operation. Generally, there have

two main issues that need to be considered during the server site testing: Time-out and

Resource issues.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The server’s time-out problem is usually caused by incorrect server application design

and the database problem. For instance, if the application is not architected and

implemented well, time-out conditions may lead to the loss of connection (i.e. the user

must login again). In addition, if the database receives an excessive number of requests

for data, it may cause long delays when responding to these requests. It is also possible

that the database has been completely offline and cannot provide any feedback to the

server.

The resource problem is quite common in distributed systems, including LBS services.

All software applications require server’s resources during their execution, such as RAM,

disk space, CPU, bandwidth, open connections, etc. Does the server contain the

mechanism to handle the lack-of-resource conditions?

Such issues need to be tested in the server site testing. Generally, load and stress testing

are the effective techniques to measure the server performance. The purpose of

load/stress testing is to discover under what conditions the application's performance

becomes unacceptable by changing the application inputs to place a heavier load on the

application and measuring how performance changes with various inputs. In our test

framework, the server application’s performance can be evaluated through load/stress

testing by increasing number of clients (mobile nodes) and loading high volumes of

requests.

The direct way to undertake stress testing on the server is to manually vary the inputs, i.e.

number of clients, frequency of requests, mix of requests, and measure the variety of

performance. This is feasible for some small client/server applications. However, with the

increasing service request from multiple subscribers, it is almost impossible to run

manual tests consistently and it can be difficult to accurately reproduce the set of tests for

regression testing. Also, it is difficult to implement scalability testing for the server

application.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another solution is to use an automated tool. With the integration of TTCN-3, our test

framework enables the performance, load and scalability testing for component-based

distributed test systems via the dynamic creation and termination of test components

including dynamic connections between test components and to the system under test (the

SUT). The load conditions for mobile clients (LBAs) can be realized by an ensemble of

parallel test components (PTCs), which can be distributed to the remote nodes of a

network constituting a distributed test system and managed by the main test component.

Finally, some assumptions need to be made for the server side testing. As we focus on the

load testing of the server, any other factors that may influence the response time of the

server must be eliminated from the test environment in order to get a real performance

evaluation on the server. Thus, the SWANS wireless simulator is not included in the

serve load testing as it may increase the server response time by the wireless

communicate characteristics, i.e. the time delay and the packet loss. Hence, the load

testing on the server is presented only within the TTCN-3 test framework.

4.6.5 Interoperability Testing - Multiple Software Components

Interoperability testing is the activity of providing end-to-end functionality between more

than two communicating systems as required by those base systems’ standards.

Interoperability testing should be performed at the end points and at functional interfaces.

It is one of the important issues for testing Location-based services (LBS) because

various software components, i.e. Map database, LBA, Web Container applications, and

Databases, may be involved in the whole system. These components could be run on

different platforms and physical hardware. Therefore, it is necessary to undertake

interoperability testing to evaluate the LBS’s capability of adapting itself on different

application components that are developed by various vendors and run on different

operation systems and hardware platforms.

The following are the key factors that characterize interoperability testing [ETSI 05]:

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The system under test (SUT) and the qualified system (QS) define the boundaries

for testing;

• The SUT and QS come from different suppliers, or at least different production

lines;

• Interoperability tests are performed at interfaces that offer only normal user

control and observation;

• Interoperability tests are based on functionality as experienced by a user. In this

context, a user may be human or a software application;

• The tests are performed and observed at functional interfaces such as Man-

Machine Interfaces (MMIs), protocol service interfaces and Application

Programming Interfaces (APIs).

TTCN-3 is good at testing the distributed system for generic LBS systems. With the

TTCN-3 test system, our test framework is able to connect and communicate with all

types of components in the SUT that can apply to the interfaces given by the TTCN-3 test

system. Currently the TTCN-3 test system can be implemented in C++ and Java, which

means, theoretically, the TTCN-3 can apply tests to any vendor’s LBS components, i.e.

MS SQL 2000, MySQL database, Location-based Application, that support the

connection via the interface written in above two languages (C++ and Java). Therefore, it

is feasible to use our test framework to make the interoperability testing for the location-

based service (LBS).

4.6.6 Security Testing - Personal Integrity and Secured Contents

As mentioned in chapter 2, the security aspect is a critical factor to realize the

opportunities presented by the location-based service (LBS) and it brings one of the

biggest challenges for the security testing of LBS as the security and privacy issues may

be considered from different aspects in LBS, such as the location-based application

(LBA), the wireless network protocol, the various server software components, etc.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some of the key security issues with the location-based service security include:

• Privacy - The user’s privacy should be protected from the access by unauthorized

parties. This is particularly significant for LBS as there is a potential that the user

can be illegally tracked. Suitable business models and requirements can help the

protection of the user’s privacy. For instance, the service provider can remove the

user’s personal information (User name and ID) and only submit the user’s

position data (Latitude and Longitude), to the location content provider when it

wants to retrieve the service content related to the user’s current location, i.e.

address and name of nearest restaurant.

• Personal Integrity - Positioning someone always interferes with the personal

integrity of the user being tracked, which means a people tracking service needs

to be based on the voluntary participation of the individual being positioned. As a

result, LBS should always enable users to switch off the ability of being tracked

when they do not want other people reading their positions.

• Confidentiality - confidential and sensitive data, i.e. password and PIN, should

be accessed and transmitted in a secured way. According to [Yuan 05], network

and data security can be guaranteed by securing either connections or contents.

Securing connections can be done by establishing point-to-point secure

connections with security protocol, i.e. SSL/TLS (Secure Socket Layer/Transport

Layer Security). Among e-commerce applications, SSL-based secure HTTP

(HTTPS) has become the standard protocol for transferring sensitive data.

Securing contents can be fulfilled by building a suitable end-to-end security

model with flexible encryption schemes to meet different requirements. Most of

data are transferred in XML data format in e-commerce applications. J2ME can

also support the communication with back-end servers using XML data format.

Thus, XML security protocols can be used to improve the security of contents,

such as the Web Services secure XML protocol family (WS-Security), Security

Assertion Markup Language (SAML), XML digital signatures, etc. [Yuan 05].

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Testing general privacy concerns and personal integrity issues can be well done in our

test framework by verifying the relevant functionalities in LBS during the functional

testing phase, such as checking the functionality of LBS to see if it contains the

mechanism to allow users to switch off the being-positioned function from the mobile

devices.

Testing the confidentiality issue can be divided into two aspects: connections and

contents, as we mentioned above. As J2SE provides excellent and transparent support for

HTTPS in its Generic Connection Framework, and J2ME also supports HTTPS in the

MIDP2.0 specification, secured connection is already included in any location-based

service which is built on J2SE or J2ME platform. Thus, secured connection testing is not

considered our test framework.

Testing secured contents is eventually the testing of XML security protocols. With the

integration of TTCN-3, it is feasible to testing XML based messages and protocols in our

test framework. There was already some research on the automated testing of

XML/SOAP based web service with TTCN-3 [Stepien+03], Basically, the unique

characteristic of XML testing with TTCN-3 is generation of the test data, which is created

by mapping the XML DTD and Schemas to TTCN-3. Other steps, such as the test

configuration (test components and test ports), and the test execution are similar to

traditional testing procedures defined in Section 4.4.2.

4.7 Comparison between our test framework and other testing methodologies

The table 4-2 shows the comparison between our test framework (TTCN-3 & SWANS)

and other test methodologies from the different testing issues. We can find out that our

test framework outperforms the other testing methodologies on covering most of

necessary testing strategies, including functional testing, usability testing, network

performance testing, server-side testing, interoperability testing and security testing.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ " \ f e s t strategies

Test Framewofk-^

Functional Testing Usability Testing
- Ease of use
- Navigation

Network Performance
- Low bandwidth rate
- Network disconnection

Handheld

Emulator
Yes, only for LBA Yes Yes

Flying Emulator

Framework by

[Satoh 03]

Yes, only for LBA No No

UBIWISE by

[Barton+03]
Sort of, only for LBA Yes No

Simulation

Environment by

[Morla+04]

Yes, only for LBA No Yes

Our Test

Framework

Yes, for LBA & server

side applications

Yes, focusing on

system level
Yes

^ ''< fe s t strategies

Test Fram ew ork^

Server side Testing
- Scalability
- Database

Interoperability
Testing

Security Testing
- Personal Integrity
- XML secured contents

Handheld

Emulator
No No No

Flying Emulator

Framework by

[Satoh 03]

No No No

UBIWISE by

[Barton+03]
No No No

Simulation

Environment by

[Morla+04]

No No No

Our Test

Framework
Yes Yes Yes

Table 4-2: Comparison of LBS Testing Met lodologies

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Experimental Studies

In this chapter, we present experimental studies in which we apply our test framework

with TTCN-3 and SWANS wireless simulator to the typical location based service and

illustrate the feasibility of our test framework.

5.1 Overview of Mobile Service Tracking

A Mobile Service Tracking (MST) system is one typical Location-based service (LBS) to

track the user’s location and provide users with local available services from a GPS-

enabled mobile phone. Users simply carry their GPS-enabled mobile phones throughout

their regular activities and their locations are automatically tracked and recorded on

demand. When users want to access local services, they enter that information directly

into the phone and activate the GPS tracking function using a simple, one-click interface.

Then, the timestamp and location are captured automatically and all available mobile

services can be accessed from the interface of a user’s GPS-enabled mobile phone.

3. Web browse r

Figure 5-1: The Architecture of Mobile Service Tracking System

As shown in figure 5-1, the Mobile Service Tracking (MST) system is one generic

location-based service (LBS) with four entities in its architecture - GPS satellites, GPS-

101

NT-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enable phones, Servers and web browsers. The primary scenarios of the system are that,

the mobile users turn on GPS-enable phones with them and check the local weather

forecast when they get ready to leave for work in the morning. The system would then

automatically report the traffic load information to the users on their normal routes to

work. Upon the way to work, the system provides the fuel price in the petrol stations

around you according to user’s commands. In the above scenarios, location information is

captured from a GPS satellite. The location and other information data, i.e. speed and

timestamp, will be wirelessly transmitted to the MST’s server from the Location

Management Platform (not shown in figure 5-1), which is normally operated by the

wireless network provider, e.g. Telus, Nextel, Verizon, etc. Once the server receives the

context information, they can send it to the Content Provider (not shown in figure 5-1) in

order to retrieve location content information from there. Finally, the MST’s server will

forward user’s location information associated with required services to the mobile user.

In addition, it may store the user’s location information into the database on demand.

The mobile client application is developed using a J2ME MIDlet structure and is

responsible for receiving current location context from GPS-satellites and tracking any

available service around the mobile device. The server is built with one JBoss application

server and contains one database to store service content information and one Servlet

application to retrieve the requests from and send the responses to the client application.

5.2 Test Environment

When testing this location-based service (LBS), one of the key issues is to build the test

environment required by the system. Here we introduce the SWANS wireless simulator

as a simulation tool to simulate the real wireless communication environment on the

desktop machine. Therefore, the client and server applications can implement the

TCP/UDP communication upon the SWANS wireless platform. The TTCN-3 tool for

testing LBS is the TTCN-3 to Java compiler TTthree [Testing Technologies 04]. TTthree

is a test development and execution environment based on TTCN-3, the international

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standardised testing language, which includes the full range of features needed for test

specification, execution and analysis. All the test scripts and test configurations are

implemented through the test manager uTTman [Testing Technologies 04]. The test

adapters are written in Java and loaded by the test manager. In addition, the Context

Simulator is represented by the MySQL open source database [MySQL 05], providing the

test data (location information) to the test system. The whole test system is run on

Windows 2000 as well as the Linux operation system.

5.3 System Analysis

There are two types of interactions among entities in the system under test (SUT). One is

the interaction between LBA and the server via the simulated wireless network. The other

is the interaction between the server and customer web browser through the Internet, in

which customers can access web services provided by the server regarding the customer’

account information. Testing the functionalities between the web server and the customer

web browser can be treated as the testing of web services, or in other words, the testing of

e-commerce applications, which is not within the scope of our thesis. Therefore, we do

not consider this situation in this experiment and limit our scope of the system under test

(SUT) to the sub-system between the server and the location-based application.

5.4 Test Scenario

In this case study, we are going to apply various testing strategies, i.e. functional testing,

network performance testing, server site testing, usability testing and interoperability

testing for the MST system. Table 5-1 shows the typical issues of our test strategies:

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Testing Strategies Testing Issues

Functional Testing
- Correct data transmission under fast changing context situation

- Incorrect data handle mechanism

Network

Performance

Testing

- Successful data transmission rate under poor wireless network

performance

Usability Testing - Automatic tracking available service

Server Side Testing - The server response time under normal load

Security Testing - Privacy concern and Personal Integrity

Interoperability

Testing
- Compatibility with various databases by difference vendors

Table 5-1: Typical Test Issues of The Experimental Study

The test scenario can be generated from the above system analysis and test issues that

will apply tests to the system under test. In order to cover the above test issues, we will

consider the following test scenarios:

• Incorrect context data. It is quiet normal that an error may exist in the context

information received by the mobile device because of its complicated surrounding

environment. By means of injecting specific faults in the context data sent from

the Context Simulator, such as an incorrect format and missing element of the

current context, it is very efficient to detect whether location-based applications

contain such error handling mechanisms.

Test Scenario TSOI

Description Incorrect context data

Pre-conditions
Invalid context data is input into the context simulator

No packet loss in the wireless communication network

Action Inject the invalid context data into the system under test

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Post-conditions Error context information page is displayed.

• Fast changing context information. This scenario can be used to test the situation

in which the position of the mobile client is changing quickly, i.e. driving the car

in the freeway. It can be simulated in our test framework by using the Frequency

Controller internal function, which enables users to control the frequency of

context events sent to the system under test (SUT). Therefore we can implement

stress testing on the server.

Test Scenario TS02

Description Fast changing context information

Pre-conditions

1. Different context data is input into the Context simulator

2.Input the frequency value

3. No packet loss in the wireless communication network

Action
Start the context simulator and test system, and check the

response from the client application.

Post-conditions
The client should receive exact same context information

sending from context simulator

• No corresponding network traffic. The network performance of the wireless

network may vary in terms of the number of service subscribers and surrounding

environment. For instance, if the mobile client is in the tunnel where no wireless

signal exists, then all transmitting packets might be lost in the communication. It

is necessary to set up different network circulated traffic to find out the influence

to entities in the location-based service (LBS). We conduct this experiment by

setting up different packet loss rates in the SWANS wireless simulator. If the

traffic does not conform to these situations, it means potential errors may exist

within the SUT.

Test Scenario TS03

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Description No corresponding network traffic

Pre-conditions

1. Different context data is input into the Context simulator

2. Input the load times of test cases

3. Input the packet loss rate

Action
Start the context simulator and test system, and check the

number of packets received by the client.

Post-conditions
The client should receive corresponding number of packets

from the mobile client.

• Services auto detection. This scenario can be happened when the mobile device is

moving in the wireless network coverage. The LBA can automatically detect all

available services around it. In our test framework, we can change the radio range

of the server (or the base station) by setting up its relevant characteristics, such as

frequency, receiver’s height, maximum allowable path loss rate and the

surrounding environment (large city or medium city, urban area or rural area) of

the mobile client. Thus, the mobile device can be simulated either in coverage or

out of coverage from the server (base station) according to the distance between

the server and the mobile client.

Test Scenario TS04

Description Services auto detection

Pre-conditions

1. Input the characteristics for servers, e.g. frequency,

effective height and maximum allowable path loss.

2. Pre-defmed context data to put the mobile client in or out of

the range of servers

Action
Start the context simulator and test system, and check the

connection between the mobile client and servers.

Post-conditions

The radio range of servers (base stations) should be varied

according to varied pre-conditions. The mobile client can

move in and out of the server’s range, and detect the service

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when it is in the range of the server.

• Concurrent user requests. This scenario is used to simulate the situation in which

multiple users request the service simultaneously. The dynamic creation of

parallel test components in the TTCN-3 enables our test framework to create a

number of virtual mobile users, which can then send service requests at the same

time and make load testing to the server. Therefore, we can evaluate the server’s

performance by checking the response time caused by the requests from a

different number of virtual clients.

Test Scenario TS05

Description Concurrent user requests

Pre-conditions
1. Input the number of virtual mobile users

2. Disable the SWANS wireless simulator

Action

Start the context simulator and the test system, send service

requests from virtual mobile clients and monitor the response

time from the server.

Post-conditions

The virtual user receives the requested context information,

and the server’s performance (response time) varies according

to the increasing number of virtual users.

5.5 Test Generation

The interactions of the test process consist of the test generation, the test execution and

evaluation. The test generation starts from the user interface of the test system and

includes the generation of test definition, test configuration, test modules, test cases as

well as test data.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1 Test Definition

As mentioned before, we use the TTCN-3 to Java complier TTthree [Testing

Technologies 04] as the automated TTCN-3 testing tool in our test environment. TTthree

contains an XML to TTCN-3 conversion tool (uTTman) and can generate a test definition

through one module load file (MLF). This module loader file is a XML file, responsible

for performing test parameterization and configuring test cases as well as test adapters.

l<?xml v e rs io n = " l. 0" encoding="UTF-B"?>

2 < !DOCTYPE moduleloader PUBLIC "-//TESTING TECH//DTD MLF//1.5" "m lf.d td">

3 <modu1e1o ade r >

*1 Cmodule F ile =,,LBSModule. ja r ” Name="LBSModule" Pack:age="">

5

6 cteatadapter F ile= "T A .ja r" Name="MyTestAdapter_TCP">

7 <descriptian>Teatadapter fo r MyMaduleAsync</description>

8 </testadapter>

9

10 cteatcase Name="control" 5e lection="true"

11 Verdict="none" Status="stopped" Madule="">

12 <deseriptian>The contro l part of module MyHoduleAsync</description>

13 </testcase>

14

15 <testcase Name="LBSTe3tcaseExternal" Selection="true"

16 Verdict="none" Status="3topped" Module="LBSModule">

17 d e s c r ip t io n />

18 </testcase>

19

20 Ctestcase Name="LBSTe3tcaseManual" Selection=,,true"

21 Verdict="none" Status="3topped" Module="LBSModule">

22 <deseription />

23 </testcase>

24

25 <testcase Name="LBS_LoadTe3t" Selection="true"

2 6 Verdict="none" Status="atopped" Module="LBSModule">

27 <descrip tion />

28 </testcase>

29

30 <parameter Name="wirele3s">

31

32 </parameter>

33 </module>

34 </moduleloader>__

Figure 5-2: The Module Load File of TTCN-3

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In figure 5-2, we define the module load file in our case study, in which the <testadapter>

tag references a test adapter, which should be used for test execution. It also defines the

name (MyTestAdapter_TCP) of a Java file, which is stored in the JAR file (TA.jar) and

contains the implementation of TTCN-3 test cases.

In addition, four test cases (Control, LBSTestcaseExternal, LBSTestcaseManual and

LBSLoadTest) are defined in the module (line 10- line 28). In the attributes of test cases,

the Selection attribute sets the selection state of the respective test case or test group.

Possible values are true and false. Only selected test cases can be executed. The Verdict

attribute stores the current test verdict. Possible verdict values are: none, fail, pass,

in cone and error. When a test case is instantiated, its local verdict object is created and

set to the value none. The fail/pass means the failure/pass of the test case and inconc

means an inconclusive verdict. The error verdict is a result of an executed test case

operation and indicates that a test case (i.e. run-time) error has occurred. The Verdict

attribute is set by the test management as a result of the test execution. The Status

attribute stores the current test execution status and should only be modified by the test

management. Possible values are stopped, running and error. The Control test case is

used to control the implementation of LBSTestcaseExternal, LBSTestcaseManual and

LBSLoadTest test cases, which will be discussed in the later chapter.

There are eight parameters defined with the <parameter> tag (line 30-line 32). They are

initiated at the beginning of the test and include latitude, longitude, LoadTimes,

packetLossRate, serverlP ADDR, ExtemalDB, wireless, LoadTesting and MAX Vuser

(See Appendix E for the definition and interface of all parameters).

The latitude and longitude parameters are the coordinator of the mobile phone. For

brevity, we treat the latitude and longitude as the integer type, and ignore other related

GPS information, e.g. timestamp and speed, in our test system. These parameters should

be input by the tester for the manual testing. Alternatively, the coordinator data can be

provided from an external database (MySQL in our case), or a Context Toolkit.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The LoadTimes parameter defines the execution times for the test case. The tester can

enter the load times from the user interface, which defines the number of execution times

for the test case and is used to undertake load testing on specific components, i.e. the

server application.

The packetLossRate parameter is used to set up the packet loss rate for the test data

transferred in the simulated wireless network. Therefore, it is very straightforward for the

tester to adjust this rate to create different wireless network traffic situations and create

test conditions for corresponding tests.

The serverlPADDR parameter is used to define the IP address for the system under test

(SUT). Eventually, the administrator can take functional testing to the remote SUT by

deploying the test adapter separately. In our case, we set up the server and client both at

same computer and use the local host address 127.0.0.1.

The ExternalDB parameter is a Boolean value, used to define the source of the test data.

If it is true, the test data (latitude and longitude) will be provided automatically from an

external database. Otherwise, the users have to manually input the test data from the user

interface.

The wireless parameter is used to control the execution of wireless simulator. In our test

system, it is possible to run the test case in the wired or wireless mode. Therefore, the

SUT can be tested under wired network and wireless network according the system

requirement.

The LoadTesting parameter is a Boolean value, being set up when we want to make load

testing on the server and evaluate its performance. The MAX_Vuser parameter is used to

set up the number of virtual mobile users that will be created during the load testing on

the server. The virtual clients will run concurrently and send service requests to the server

simultaneously.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Test Configuration

After the test definition in the module load file (MLF), test configuration need to be

developed in the abstract test suit (ATS). In TTCN-3, the ATS can be represented in

various formats, including the tabular presentation format for TTCN-3 (TFT), the

graphical presentation format for TTCN-3 (GFT) (See Appendix C/D for the example of

TFT and GFT) and TTCN-3 core language. In our test system, we use the TTCN-3 core

language presentation format in the abstract test suit. The test configuration consists of

data type, procedure signature, test data, port & component definition and external

function definition.

41 type record locationType {

42 chars tring sLat,

43 chars tring comma,

44 chars tring sLong

45 }

46

47 template locationType SendHsgExternal

48 (charstring Lat, charstring Long) := {

49 sLat := Lat,

50 comma :=

51 sLong := Lang

52)

53

54 template locationType SendMsgManual := {

55: sLat := in t2 s tr (la t itu d e) ,

56 comma :=

57 sLong := in t2 s t r (longitude)

58)

59

60 template chars tring ReceiveMsgManual

61 := in t2 s t r (la titu d e) s £ in t2 s t r (long itude);

62

63 //S lgn a tion d e fin it io n

64 signature requestServlet(accountType account,

65: boolean request) re tu rn boolean exception(reasonType);

66

67 //S ignature template

68 template requestServlet requestService := {

69 account := A001,

70 request := true

71 >

Figure 5-3: The Data Type and Template Definitions

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For testing the mobile service tracking system (MST), the information exchanged among

the test components and between the test components and the SUT has to be defined. As

shown in figure 5-3, the message-based communication and the procedure-based

communication are both used among the test components in our test case. While the

locationType is defined for the message-based communication, the requestServlet is

employed for the procedure-based communication. In addition, the test data in our test

system is represented in several templates, in which SendMsgExternal template is the test

data defined for the LBSTestcaseExternal test case, which is used to perform tests with an

automatic data source (via external database). The SendMsgManual and

ReceiveMsgManual templates are test data definitions for the LBSTestcaseManual test

case, used to implement the test case with manual input test data. The requestService

template is defined for the LBSLoadTest test case, in which the Servlet application in the

server is invoked by the procedure calls from the virtual users.

15 i t Message Port declaration

16 type port LBSPortType message {

17 inout a l l

18 }

19 / / Procedure Port declaration

20 type port requestType procedure (

21 out requestServlet

22)

23

24 i t Main Test Component declaration

25 type component LBSTestComponent {

26 tim er myTimer := 60.0 ;

27 port LBSPortType LBSPort

28)

29

30 /7 P a ra lle l Test Component declaration

31 type component PTCType {

32 tim er loadTimer := 60.0 ;

33 port LBSPortType mtc ptcPort;

34)

35

36 N Test System component declaration

37 type component SystemComponent {

38 port LBSPortType SystemPortAsync

39 }

Figure 5-4: The Port and Component Type Declaration

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in figure 5-4, the LBSPortType port type is a message-based port, used for

communication by means of message exchange. The requestType port type is a

Procedure-based port, used in the function calls on the server. The SystemComponent

component type is used to perform the communication between the test component and

SUT, and the LBSTestComponent component type is the main test component, defined

for the communication among test components. The PTCType is the parallel test

component dynamically created by the main test component and it is used to connect

remote test components (Servlet applications) in the test of distributed system.

73 external function getLat() re turn charstring ;

74 external func tion getLongl) re turn charstring;

75 external function ConnectDB() re turn boolean;

76 external function U ire lessS im ulator(in charstring HyLat,

77 in chars tring HyLong, in f lo a t HypacketLossRate) re turn boolean;

Figure 5-5: The External Function Declaration

Our test system defines four external functions, as shown in figure 5-5. Among these

functions, ConnectDBQ is responsible for building the connection between the external

database and the test system, implemented by JDBC interface. After the successful

connection with the external database, the getLatQ and getLong() functions enable the

test system to invoke the external database and provide the test system with predefined

test data. The WirelessSimulator function is invoked by the test system to run the test

case within the SWANS wireless simulator and return the test result to the TTCN-3 test

system.

5.5.3 Test Module

After test definition and configuration, test cases need to be developed to cover designed

test scenarios. In our test system, we developed three generic test modules:

LBSTestcaseExtemal, LBSTestcaseManual and LBSLoadTest. Combined with other

input parameters (LoadTimes, ExtemalDB and packetLossRate, etc.), these generic test

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modules can generate various test cases to cover all test scenarios (TS01-TS05) and test

strategies defined in section 5.4.

5.5.3.1 LBSTestcaseExternal Test Module

The first generic test module LBSTestcaseExternal enables us to test the mobile service

tracking system (MST) with test data provided by an external database, as shown in

figure 5-6.

79 testcase LBSTestcaseExternal() runs on

80 LBSTestComponent system SystemComponent {

81

82 map(mtc:LBSPort, system:SystemPortAsync); / / Hap operation

83 lo g ("S ta rt te s t case fo r \"LBS Testing \" example");

84 var chars tring s t r l :=getLat(); / / External function to get la titu d e

85 var chars tring str2 :=getLang(); / / External function to get longitude

86 var chars tring s tr := s t r l £ £ s tr2 ;

87

88 i f (wireless) { / /ru n testcase w ith in the w ireless simulator

89 var boolean wsim = W ire lessS im ula tor(strl, s tr2 , packetLossRate);

90 i f (wsim !=true) { / / th e testcase fa i ls i f re tu rn value is not true

91 s e tv e rd ic t (fa i l) ;

92 stop;

93 }

94 se tve rd ic t(pass);

95 stop;

96 >
97 i f (!w ireless) { / /ru n testcase without the w ireless simulator

9S LBSPort.send(SendHsgExternal(strl,str2)); / / Send operation

99 myTimer.s ta r t ;

LOO a lt {

L01 / / Expected rep ly

L02 [] LBSPort.receive(charstring: s tr)

LOS / / Expected heavier, ve rd ic t is set to pass

L04 {se tverd ic t(pass);}

L05 / / Any other rep ly

L06 [] LBSPort. receive

LQ7 { s e tv e rd ic t (fa i l) ;)

LOB / / Timeout

L09 [] myTimer. timeout

L10 { s e tv e rd ic t (fa i l) ;}

L ll)
L12 }

L13 unmap(mtc:LBSPort, system:SystemPortAsync) ; / / Unmap operation

L14 }

Figure 5-6: The LBSTestcaseExternal Test Module

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The test module starts with a map operation (line 82) to set up the test system and connect

the master test component (MTC) with the system under test (SUT). Line 84 and line 85

define two variables which store location data provided from the external database by

invoking external functions (getLat() and getLong()).

Afterwards, the test module will be run within the SWANS wireless simulator if the

wireless parameter is set to true. All current test data and relative conditions, i.e. packet

loss rate, will be transferred to the WirelessSimulator() external function, in which test

data will be sent to the SUT and the received result will be verified. If the result is true,

the WirelessSimulator() will return true and the test case is then passed, otherwise it is

failed.

In addition, if the wireless parameter is set to false, the test module will be run without

the SWANS wireless simulator. Similarly, all the test data (location information) will be

sent to the SUT and the received data will be compared with the expected result. If they

are same, the test case will be passed, vice versa.

Finally, the unmap operation is executed to break the connection between the MTC and

the SUT.

5.5.3.2 LBSTestcaseManual Test Module

Similar to the test module LBSTestcaseExternal, the test case LBSTestcaseManual in

figure 5-7 is responsible for testing the mobile service tracking system (MST) with

manual input test data. After the tester inputs the location data from the GUI, it will be

stored in sLat and sLong variables, and then deployed to the wireless simulator via

WirelessSimulator(). The test data will be received and verified by the system under test

(SUT) within SWANS and the corresponding test result will be sent back to the TTCN-3

test system.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Alternatively, the user can perform specific functional testing to the LBA and server

application without the selection of a wireless simulator. In this situation, the whole SUT

is running under a wired network. The test data, stored in SendMsgManual variable (see

figure 5-3 for the data definition), will be sent directly to the client application and the

received data will then be compared with expected result to get the test result (pass/fail).

L16 testcase LBSTestcaseManual() runs on

LIT LBSTestComponent system SystemComponent {

L i e

L19 map(mtc:LBSPort, system:SystemPortAsync) ; / / Map operation

1 2 0 lo g ("S ta rt te s t case fo r \"LBS TestingV' example");

L21

L22 i f (wireless) { / /ru n testcase w ith in the w ireless simulator

123 var boolean wsim = U ire lessS im u la to r(s trl, s tr2 , packetLossRate);

L24 i f (wsim !=true) { / / th e testcase fa i ls i f re tu rn value is not true

L25 s e tv e rd ic t (fa i l) ;

L2 6 stop;

L27 }

L2B setverdict(pass) ;

L29 stop;

130 }

131 i f ((w ireless) { / /ru n testcase without the w ireless simulator

132 LBSPort.send(SendMsgManual) ; / / Send operation

133 myTimer.s ta r t ;

134 a lt (

135 / / Expected rep ly

13 6 [] LBSPort. receive(ReceiveMsgManual)

137 / / Expected beavior, ve rd ic t is set to pass

138 {se tverd ic t(pass); }

139 / / Any other rep ly

140 [] LBSPort. receive

141 {s e tv e rd ic t (fa i l) ; }

142 / / Timeout

143 [] myTimer. timeout

144 {s e tv e rd ic t (fa i l) ; }

145 }
146 >

147 unmap(mtc:LBSPort, system:SystemPortAsync); / / tlnmap operation

148 }

Figure 5-7: The LBSTestcaseManual Test Module

5.5.3.3 LBSLoadTest Test Module

The LBSLoadTest test module is developed specifically for server load testing. As

mentioned in section 4.6.4, the SWANS wireless simulator is not included in the server

side testing and thus is not used in this test module.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in figure 5-8, the test module defines the array LoadPTC\\ (line 156), which is

used to load the parallel test components (PTCs) dynamically created by the main test

component (line 162- line 165). These PTCs can act as virtual mobile users by starting the

function VirtualUserQ, associated with the test data {requestService signature template,

see figrure 5-3 for the template definition). The number of virtual users is determined by

the Max Load variable, which can be input by the tester from the user interface. The

VirtualUser is responsible for the interaction with the server by sending service requests,

receiving the requested service (location information) and recording the corresponding

response time. After all virtual users send requests to the server, the response time and

user account ID is logged in the system and printed via the function printResonseTimeQ

(line 170).

L50 testcase LBSLoadTest(integer Hax_Load) runs on

L51 LBSTestCamponent system SystemComponent {

L52

L53 map(mtc:LBSPort, system:SystemPortAsync); / / Hap operation

L54 lo g ("S ta rt te s t ease fo r \"LBS Load Testing\" example");

L55

LS6 var PTCType LoadPTC[Hax_Load] ;

L57 var in teger tim ediff[H ax Load];

L50 var in teger accountID[Hax Load];

L59

L60 myTimer.s t a r t ();

L 61 fo r (var in teger i : = l ; i<=Hax Load; i := i+ l) {

L 62 LoadPTC[i]:=PTCType.create;

L63 connect(se lf:LBSPort, LoadPTC[i - 1] :mtc p tcP o rt);

L64 //c re a te a v ir tu a l user and get time taken

L 65 LoadPTC[i].start(V irtualUser(requestService));

L66 }

L67

LS8 fo r (var in teger i : = l ; i<=Hax_Load; i := i+ l) {

L69 //lo g g in g of response time inform ation

L70 printResponseTime(accountID[i] , t im e d i f f [i]);

L71 1

L72 serverd ic t(pass);

L73 stop;

L74 }

L75 a l l component.done

L76 }

Figure 5-8: The LBSLoadTest Test Module

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.3.4 Control Test Module

The execution of above three generic test modules is controlled with the control test

module as shown in figure 5-9.

L7B contro l {

L79 var verd ic ttype ServiceResult[LoadTimes];

LBO var in teger passNum :=0;

L81 var in teger failNum :=0;

G
O i f (ExternalDB) {

L83 //Connection w ith external database

LB4 log("Conecting Location D atabase...");

LB5 var boolean cnet :=ConnectDB();

LB 6 i f (cnet) {

LB7 lo g ("Location database connection established");

L8B } else {

LB9 log("Cannot connect to database server");

L90 log("Stop testcase e x e c u tio n !!!");

L91 stop; //s to p te s t execution w ith external

L92)

L93 >

L94 i f (LoadTesting) {

L95 log("Load te s tin g fo r the LBS s e rve r...)

L96 var verd ic ttype lQadtestVerdict;

L97 load tes tV erd ic t:= execute(LBSLoadTest(Max Vuser));

L98 stop; / / stop load te s tin g execution

L99 }

>00

!01 fo r (var in teger i : = l ; i<=LoadTimes; i := i+ l) {

’□2 i f (ExternalDB) {

!03 lo g ("S ta rt testcase execution w ith external te s t data in pu t");

>04 ServiceResult[i] := execute(LBSTestcaseExternal()) ;

!05) else {

!06 lo g ("S ta rt testcase execution w ith manual te s t data in p u t");

!D7' ServiceResult[i] := execute(LBSTestcaseManual()) ;

:oa }

’09 i f (ServiceResult[i] == pass) {

’ 10 passNum := passNum+1;

’ 11 } else {

i 12 failNum := failNum+1;

>13 >
’ 14 >

! 15 log("The number of passed te s t cases is " & int2str(passNum));

’ 16 lo g (”The number of fa ile d te s t cases is " & in t2 s tr(fa ilN u m));

’ 17 lo g ("----------------------------End of te s t case fo r

C
D

tH
-O

k \ "LBS Load TestingN" example----------------------------") ;

’ 19 >

Figure 5-9: The Execution Control Test Module

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The control module starts from the connection with the external database. The test cases

will be stopped if any error occurs when connecting to the external database. Afterwards,

the LBSLoadTesting test module will be invoked if the tester selects the load test scenario

from the user interface. Also, the LBSTestcaseExternal or LBSTestcaseManual generic

test modules will be selected according the value of the ExternalDB parameter, and

executed in number of times defined by external constant LoadTimes. The test result of

every test case will be recorded and logged in a XML file. Finally, the test system will

report the number of test cases that are passed and failed.

5.5.4 Test Case and Test Data

As shown in table 5-2, table 5-3 and table 5-4, we generate the following test cases

(TC001 - TC007) according to the above three generic test modules and test scenarios we

defined in section 5.4.

Test Case TC001 TC002 TC003

Test Scenario TSOI TSOI TS02

LBST estcaseExternal Invalid Yes Yes

LBST estcaseManual Yes Invalid Invalid

Load Times 1 1 10

Packet Loss Rate 0.0 0.0 0.0

External Database Invalid Yes Yes

SWANS WS Yes Yes Yes

Test Data

(latitude, longitude)
(Null, 200)

(100,200) from

Database

Correct patch data

from Database

Expected Result
Error coordinator

data
(100,200)

All of correct test

data received

Comment
Incorrect context

data with manual

Correct context data

with auto test data

Fast changing

context information

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test data input input

Table 5-2: Test Case List (1)

Test Case TC004 TC005 TC006

Test Scenario TS03 TS03 TS03

LBST estcaseExternal Yes Yes Yes

LBST estcaseManual Invalid Invalid Invalid

Load Times 10 10 10

Packet Loss Rate 0.7 1.0 0.0

External Database Yes Yes Yes

SWANS WS Yes Yes Yes

Test Data

(Latitude, Longitude)

Correct data from

Database

Correct data from

Database

Correct data from

Database

Expected Result
30% of test data

received
All of test data lost

Some correct test

data received

Comment

Weak network

performance, 70%

packets lost

Mobile client is out

of coverage of

wireless network

Random success of

packets transition

after setting random

success rate.

Table 5-3: Test Case List (2)

TC007 is a test case for the server side load testing. It is used to evaluate the server

performance under various numbers of concurrent virtual users. The response time

represents the time that one complete transaction takes under certain conditions. It can be

affected by different factors, including the size of the database, number of concurrent

users and the characteristics of running environment (hardware, network and software

configuration). For brevity, we only consider the size of database and the number of

concurrent users in this test case, as shown in table 5-4.

Test Case ID TC007

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test Scenario ID TS05

LBSLoadTest Yes

SWANS WS Invalid

External Database Yes, 1000 records (location context)

Test Data

(MAX_Vuser)
1,3, 5, 7, 9, 10

Expected Result Corresponding response time in seconds

Comment It should vary according to different number of virtual users

Table 5-4: Test Case List (3)

These test cases are created for specific functions, covering most of test scenarios defined

earlier, including Incorrect context information (TSOI), Fast changing context

information (TS02), No corresponding network performance (TS03) and Concurrent user

requests (TS05). Apart from these basic test cases, we can also reuse the test modules

defined earlier and combine these test cases to create more comprehensive test cases for

the mobile service tracking (MST) system. After the combination of above test cases, we

generate 33 test cases (CA01-CA33), shown in Appendix H, I, J, to cover 16 test

scenarios (SA01-SA16) defined for the following use cases in the MST system:

1. Activation of the MST

2. Deactivation of the MST

3. Directory service - Where am I?

The test scenario Service auto detection (TS04) cannot be covered with above test cases

because of test environment it requires. In order to simulate this scenario, we need to

build two server applications and one client application running on the SWANS wireless

simulator. Each server connects with one Base Station and provides the mobile client

with one independent service, e.g. weather service and news service. Therefore,

according to the distance between the server and the mobile client, the corresponding

service may be available or unavailable to the mobile client when he or she is moving

between two servers. Specifically, there are five test cases generated to cover the test

scenario TS04, as show in the table 5-5.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test

Case

Test

Scenario
Pre-conditions Expected result

TC008 TS04
D1 <= Rangel && D2 >

Range2

Mobile client is in the range of

server #1

TC009 TS04
D1 <= Rangel && D2 <=

Range2 && D1<=D2

Mobile client is in the range of

server #1

TC010 TS04
D1 <= Rangel && D2 <=

Range2 && D1>D2

Mobile client is in the range of

server #2

TC011 TS04
D1 > Rangel && D2 <=

Range2

Mobile client is in the range of

server #2

TC012 TS04
D1 > Rangel && D2 >

Range2

Mobile client is out of the

range of two servers

D1/D2 - the distance between the mobile client and the server (base station) #\ / #2

Rangel/ Range2 - the radio range for the server (base station) #1 / #2

Table 5-5: The Test Case List for Test Scenario TS04

As mentioned in section 4.5.3.2, we introduced the Hata computation model [Hata 80] in

the SWANS wireless simulator. Thus, the server (base station)’s wireless communication

range (maximum distance between the transmitter and receiver) is determined by the

following parameters:

• Frequency of the Base Station (150 ... 1500 MHz)

• Maximum allowable path loss (dB)

• Antenna height of the transmitter (base station) (30...200 m)

• Antenna height of the receiver (mobile phone) (1... 10 m)

• City size (Medium sized city / Large city)

• Surrounding environment (Urban area, Suburban area or Open rural area)

Each parameter can be set up from the interface in the SWANS wireless simulator. In our

case study, we use the following initial parameters for two base stations.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Base

Station

City

Size

Surrounding

Environment

Frequency

(MHz)

Maximum

allowable

path loss

(dB)

Transmitter

Height (m)

Receiver

Height

(m)

Range

(KM)

BS1 Medium Suburban 150 135 200 2 121

BS2 Medium Suburban 150 135 200 2 121

Table 5-6: Initial Parameters for the Base Station

As shown in table 5-6, the range of base station is 121 KM for both the BS1 and the BS2.

According to the radio ranges of two base stations, we design a set of following test data

stored in the external database, as shown in table 5-7. By means of loading the test data

(mobile client’s coordinators) sequentially from the database, it is possible for the test

system to simulate the movement of mobile client in/out of the range of server #1 and

server #2.

Server#1 Server#2 Mobile Client

Coordinator C01 C02 C03 C04 C05 C06 C07 C08 C09

Latitude 300 500 160 180 200 250 300 350 380

Longitude 100 100 50 50 50 50 50 50 50

Mobile Client

Coordinator CIO C ll C12 C13 C14 C15 C16 C17 C18

Latitude 400 410 430 480 550 600 620 640 660

Longitude 50 50 50 50 50 50 50 50 50

Table 5-7: The Test Data for Test Scenario TS04

5.6 Test Execution and Result Analysis

Through the execution of all the test cases (TC001-TC0012), we can get the test results as

shown in following table:

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TC001 TC001 TC001

Test Data (Null, 200) (100,200) (100,200)

Expected Result Error data... (100,200) (100,200)

Actual Result Error data... Error data... (100,200)

Test Result Pass Fail Pass

Notes Manual input the test data from the user interface

Table 5-8: The Test Result of Test Case TC001

The table 5-8 shows the test results of TC001, in which two of them are passed and one is

failed. The first test result means the system under test (SUT) contains the error handling

mechanism to handle the error data. When this function is disabled, we can get the second

test result (fail). With the manual input, our test framework enables the tester to take

negative tests by typing in specific mutants.

Test Data
Expected

Result
Actual Result Test Result

TC002 (100,200) (100,200) (100,200) Pass

(Null,200) Error data... Error data... Pass

Notes Test data is automatically loaded from the database

Table 5-9: The Test Result of Test Case TC002

The table 5-9 shows the test results of TC002, in which the test data is loaded from the

database automatically. By doing this, the tester can effectively implement the tests with

predefined test data.

Test Data
Expected

Result
Actual Result Test Result

TC003 (100,30) (100,30) (100,30) Pass

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(150,30) (150,30) (150,30) Pass

(200,30) (200,30) (200,30) Pass

(240,30) (240,30) (240,30) Pass

Repeat... Repeat... Repeat... Repeat...

Comments

4 sets of test c

case is execut

context infom

ata are retrieved from the database and the test

ed for 10 times to simulate TS02 (fast changing

nation)

Table 5-10: The Test Result of Test Case TC003

The table 5-10 shows the test results of TC003, in which 4 sets of test data are loaded in

the test for 10 times in order to simulate the scenario of fast changing context information.

As shown from the table, the client received exact same data from the server. None of test

cases are failed and the whole test case TC003 is passed.

Test Data
Expected

Result
Actual Result Test Result

TC004 (240,30) (240,30) Error data... Fail

(240,30) (240,30) Error data... Fail

(240,30) (240,30) Error data... Fail

(240,30) (240,30) (240,30) Pass

(240,30) (240,30) Error data... Fail

(240,30) (240,30) Error data... Fail

(240,30) (240,30) (240,30) Pass

(240,30) (240,30) Error data... Fail

(240,30) (240,30) (240,30) Pass

(240,30) (240,30) Error data... Fail

Notes
After the packetLossRate is set to 0.7, 70% of packets are lost

in the transaction.

Table 5-11: The Test Result of Test Case TC004

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The table 5-11 shows the test results of TC004, in which the system loads the same test

data from the database for 10 times. 7 of 10 packets are lost due to the poor wireless

communication. The system shows “Error data...” when the client does not receive any

data from the server and the transaction time is out. The corresponding test result

becomes fail.

We do not list the test results of TC005 and TC006 in this thesis, as they are similar with

the results of TC004, except that the packet loss rate is randomly generated at the

beginning of the test execution in TC006, and the packet loss rate is set to 1.0 in TC005.

As a result, all of data is lost during the execution of TC005. Appendix F shows the

snapshots of test execution for TC004 and TC005. Therefore, the test results of above test

cases (TC004-TC006) indicate that our test framework is capable of validating the

correctness of the system under test under varied wireless network performance.

Vuser 1 3 5 7 9 10

Response 1.352 3.11 5.728 10.546 14.196 15.82

Time 1.34 3.156 5.448 10.624 15.036 16.201

(sec) 1.572 2.843 5.168 12.576 14.301 15.954

Average 1.421 3.306 5.548 11.249 14.511 15.992

Table 5-12: The Test Result of Test Case rrcoo7

The table 5-12 shows the test result of TC007, in which the test system generates a

different number of virtual users and records the amount of time it takes for each

transaction to be completed. The whole transaction starts from the service request from

the virtual user and ends when the virtual user receives the response context information

from the server. Figure 5-10 shows the relationship between the number of virtual users

and their corresponding response time.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Response Time - Load Testing

Q i

Vusers

Figure 5-10: The Average Response Time with Different Virtual Users

With the load testing, our test framework can measure end-user response time, checking

how long it takes for the users to perform a business process and receive a response from

the server. For example, suppose that the system requires that the end users receive

response to all requests within 10 seconds. From the above figure, we can see that the

response time is increasing with the growth of virtual users that the system generates.

When there are 7 concurrent virtual users’ requests, the server response time exceeds

dramatically from 5.5 seconds to 11 seconds, which means the server performance

degrades significantly in terms of the response time when there have over 5 concurrent

virtual users. In other words, we can check the system’s capacity to determine how much

excess capacity can handle without performance degradation. In addition, we can check

system’s reliability to determine the level of system stability under heavy or continuous

work loads, i.e. over a period of weeks or months, identify bottlenecks of the system, and

define system’s optimal hardware configuration, i.e. CPU, memory usage, cache,

adaptors, by performing load testing in our test framework. However, we do not

investigate these situations in this experimental study.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix G shows the test results of test cases (TC008 - TC012), which are generated

from the SWANS wireless simulator interface. We can find out, that the mobile client

roams from the sever #1 to the server #2 and connects with its closest server according to

the distance between each server and the mobile client. For instance, when the mobile

client is in the position of (350,50), it is in the range of the server #1 and detects the

service from the server #1 (TC008). When it moves to the position of (410,50), it

switches the connection to the server #2, as the mobile client is closer to the server #2

than to the server #1 (TC010). Therefore, the test scenario of service auto detection

(TS05) can be simulated by implementing above test cases (TC008-TC012).

5.7 Interoperability and Security Testing Investigation

As mentioned in section 2.3.6, interoperability is one of the critical characteristics for

location-based services (LBS) because of the heterogeneous issues involved in its

environment, including different network technologies, different operation systems and

programming languages, different service content vendors and location providers, etc.

The location services market demands technology that subscribes to the principal of

simplicity and interoperability so that these services and technologies will be widely

adopted throughout the mobile commerce realm. To achieve interoperability and the

portability of components within the LBS environment, the conformance between the

implementation of components and the specification must be analyzed to ensure that the

component’s behaviour is in accordance with the specification.

From a testing viewpoint, the system under test (LBS) must be designed and developed

under a specification in order to take the interoperation testing viable under our test

framework. Therefore, the above case of the Mobile Service Tracking (MST) system that

we use in the validation of the functional testing, the performance testing as well as the

server-side testing is not suitable for being a system under test in interoperability testing

because it lacks of the interoperable components.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although there are a number of location-based services in use throughout the world today,

most of them lack interoperability requirements. However, some organizations have

undertaken efforts to define, develop and promote the specifications in order to deliver

interoperability among the location-based services. For instance, the Location

Interoperability Forum (LIF, lately OMA), founded in October 2000, is devoted to build

interoperability specifications and create interoperability test concepts for location-based

services [LIF 05]. The Open Location Services (OpenLS) is another program that is

provided by the Open Geospatial Consortium (OGC) organization. The OpenLS [OGC

05] is devoted to the development of interface specifications that facilitate the use of

location and other forms of spatial information in the wireless Internet environment. The

purpose of the OpenLS is to produce open specifications for interoperable location

application services that will integrate spatial data and processing resources into

telecommunications and Internet services infrastructure.

Because of the lack of relevant systems under test for the LBS interoperability testing, we

will demonstrate the feasibility of our test framework on the LBS interoperability testing

by firstly introducing one CORBA interoperability testing framework that is implemented

in TTCN-3, and then we will investigate how the OpenLS interoperability testing can be

theoretically conducted by using the CORBA interoperability testing methodology.

5.7.1 CORBA Interoperability Testing

The Common Object Request Broker Architecture (CORBA) provides a set of

specifications for the development of distributed object-oriented applications in

heterogeneous environments. Using the Internet Inter-ORB Protocol (HOP), a CORBA-

based program from any vendor, on almost any computer, operating system,

programming language, and network, can interoperate with another CORBA-based

program from the same or another vendor, on almost any other computer, operating

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system, programming language, and network [OMG 05]. Similar to the location-based

service, interoperability testing is an essential testing issue for CORBA-based programs.

Currently there are much research focusing on the interoperability testing of the CORBA-

based programs [OMG 05]. Among them, Mang Li [Li+01] presented a test framework

that focuses on the CORBA interoperability testing. The description languages used in

this test framework are CORBA IDL, ODMG ODL and TTCN-3.

According to [Li+01], there are two different interfaces defined in the CORBA

middleware platform: the horizontal interface and the vertical interface, as shown in

figure 5-11. The horizontal interface is defined in the description languages, i.e. Interface

Definition Languages (IDL), and it enables portability of the application by separating

the application from the middleware. The vertical interface resides between two instances

of a CORBA implementation and is defined through the General Inter-ORB Protocol

(GIOP) or the Internet Inter-ORB Protocol (HOP). The specification of the vertical

interface enables the interoperability of CORBA-based applications.

ORB2

Horizontal

Figure 5-11: Vertical and Horizontal Interfaces in CORBA [Li+01]

Therefore, interoperability testing in CORBA-based systems is mainly the validation of

the vertical GIOP/IIOP interface. For the GIOP tests, the test framework creates a test

configuration with three test components in TTCN-3, as shown in figure 5-12. These test

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components are a test component for the vertical interface (TestClient), a test component

for the horizontal interface (TestServer), and a master test component (MTC) for the

overall control of the other two test components over the coordination points or ports

(CPs). The TestClient and TestServer components are defined as parallel test components

(PTC) in TTCN-3. The interface of the ORB under test (OUT) is defined by a separate

component type definition for OUT containing the vertical (VG) and horizontal (HG)

interfaces. With these well-defined interfaces, any ORB provided by different vendors

can be connected to the test framework and performs interoperability testing within the

test framework.

MTC

CR UP

HG
VG ORB Under

Figure 5-12: TTCN-3 Test Component Configuration for CORBA [Li+01]

The test case specification and test functions of the test framework are defined in TTCN-

3 to describe and manage the exchange of test events within the test components. The test

data transferred in the test framework is constructed in the IDL description language and

consists of the test server IDL and the message header IDL. The message header IDL

consists of the GIOP interface that is defined in the CORBA specification. The

conformance between the test data and the CORBA specification is another key factor to

perform interoperability testing for CORBA-based applications. By doing this, the test

framework can exchange the test data and messages with any CORBA-based application

provided by different vendors.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In short, the key issue to CORBA interoperability is the conformance of the CORBA

specifications. The test framework presented in [Li+01] gives us one example of using

TTCN-3 and the IDL description language to perform interoperability testing for

CORBA-based applications. The IDL description language describes all the test data

structures according to CORBA specifications while TTCN-3 is used to specify the

behaviour of the test cases and test functions.

5.7.2 OpenLS Interoperability Testing

5.7.2.1 Overview of OpenLS

The Open Location Services Initiative (OpenLS) [OGC 05] is a non-profit organization

that is devoted to building open specifications for location service interfaces and related

protocols. The goal of OpenLS is to specify standard interfaces and protocols which

developers can use to integrate geospatial data and geoprocessing resources into location

services and telecommunications infrastructure and to demonstrate these capabilities for a

wide variety of applications for consumers, businesses and governments. As an Open

Geospatial Consortium (OGC)’s open architecture for location services, OpenLS can

support the following “Core Services” via well-defined interfaces and protocols:

• Gateway Services that integrate OpenLS location application services with

position determination equipment in the Mobile Positioning Center (MPC)

/Gateway Mobile Location Center (GMLC), which is the place in the network that

manages the location of devices.

• Directory services for searching yellow pages, green pages, travel guides, etc.

• Route determination services for navigation.

• Geocode (address to X,Y) and reverse geocode (X,Y to address) services.

• Map/feature display services.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.2.2 OpenLS Architecture and Typical Scenario

Figure 5-13 illustrates an example of sequence for a service request over an OpenLS

environment. Generally, it has the same principle and similar sequences with the

operation scenario of a LBS application (see Figure 2-4) that we described in section

2.2.3. However, the key characteristic of this scenario is that it employs the GeoMobility

Server (GMS, the platform of OpenLS) as the core component of the OpenLS

environment. The GMS is responsible for providing the OpenLS core services and the

location content, and guiding the transactions among all the components in the OpenLS

environment. In addition, all the communications (requests and responses) between the

GMS and other components are defined according to the OpenLS interface and protocol

specifications. By doing this, any components from different vendors can be easily

integrated into the OpenLS architecture, increasing the interoperability capability.

Figure 5-13: OpenLS Typical Service Request/Response [Mabrouk 04]

Therefore, the key to the interoperability of the OpenLS architecture is the conformance

to the interface and the protocol that are defined in the OpenLS specification. The

M o b i l e
Terminal

w/ OpenLS
Clients

/ May be the same physical server
Service Platform I

(Portal) I
• 2) Portal Requests I

' . .i=r service from I
► m * OoeaLS AppfcMSoh I

1) "•irncnhaf ceft**cte te*
clones to Request servtee

Wireless
NetworkS) P e a i returns

Hmo-mm msopmts
handshake between
Mobil# Terminal &
GeoMobility Server

5) OcwnlS A m
Provisioning
Authentication
B ing
Context Mgmt

JpenLS App
IpenLS Core
Services

Cn 0 s e a t s -3C S'Cc?*
Seivice Requests powtui. uf
M;.»i e T ?rm .r» from GMLCGMLC!

MPC
■11 returns cos lion

Response tvougn
Satevsay Service

3,cl-paity
Content &

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OpenLS Specification [Mabrouk 04] specifies all the necessary requirements for the

interfaces and protocols of the XML location services (XLS), including encoding

requirements, request requirements, response requirements, HTTP transaction protocol

requirements and abstract data type requirements, etc.

[Mabrouk 04] also illustrates the general usage pattern for a XML based

Request/Response in OpenLS, as shown in figure 5-14. A Client Application is any

application that interacts with Core Services in the server, whether it resides on an end-

user device or on a server. A Request / Response is a XML string that is passed from a

Client Application to a Core Service (Request), or from a Core Service to a Client

Application (Response).

Servlet

OpenLS
Core Services

Wireless to
IP Gateway

HTTP/POST

Web ServerClient Application

Figure 5-14: General Usage Pattern for OpenLS [Mabrouk 04]

The typical scenario of this general usage pattern is that, a Client Application firstly

processes a user’s request for service, which will in turn leads to a request for the use of a

Core Service, e.g., a Directory Service. The request from the Client Application to the

Core Service will be encoded in an XML message and sent to a Servlet on the web server

using the HTTP/Post method. The Servlet in turn parses the XML Request, and generates

the relevant function call to the Core Service. The Core Service processes the Request

and sends back the Response to the Servlet, which will in turn encode the Response as an

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XML Response and forward it to the Client Application. Finally, the Client Application

will decode the XML Response and apply the proper presentation functions according to

the XML Response tags.

Figure 5-15 shows the example of XML request/response messages exchanged between

the GeoMobility Server (GMS) and Location Server that resides in the GMLC or MPC

through which OpenLS services obtain position data for Mobile Terminals. In this

example, the Gateway Service in the GMLC/MPC is employed to obtain the position of

the subscriber’s mobile terminal from the network. A Location Service Client in the GMS

sends the request to determine a position to the Gateway. The Gateway calculates the

position of the subscriber’s mobile terminal and forwards to the Location Service Client,

which may store it for as long as needed.

Request sent from the Location Service Client to the Gateway Service
<SLIR requestVersion="1.1" respQnseVersion="1.4" id="1>

<lnp utGate way Pa ram et ers>
< l- Input the identification o f the m obile su b scrib er -->
<lnputM5ID5>

clnputMslnformation msldType="msisdn" mslDValue="120667410Q0"/>
</lnputMSIDS>

</lnput GatewayPa ram eters>
</SLIR>

Response sent from the Gateway Service to the Location Service Client
<SLIA Versio n="1.4" Iangu age= "a nglish" id="1 ">

<GatewayParameters>
<MSIDS>

<Mslnformation msldType-'msisdn'1 mslDValue="12066741000">
<Position>

<gml:Point>
<gml:pos>47.611197 -122.347565</gml:pos>

</gml:Point>
</Position>

</MSInformation>
«/M 5IDS>

</GatewayParameters>

Figure 5-15: XML Request/Response Message in OpenLS

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.2.3 OpenLS Interoperability Testing Strategy

As mentioned earlier, the key to the interoperability of the OpenLS architecture is the

conformance to the interface and the protocol that are defined within the OpenLS

specification. From the above scenario of the general usage pattern, we can see that the

OpenLS defines the HTTP protocol as its interface between GMS and the Client

Application, and the XML message is the only format defined in the OpenLS between

GMS and the Client Application. Therefore, the interoperability testing of OpenLS can be

simplified to the validation of transactions between an arbitrary Client Application and

GMS under the HTTP transaction protocol and other requirements defined in the OpenLS

specification.

Because of the similar architecture between the CORBA-based application and the

OpenLS application, it is very straightforward to adapt and apply the test methodology

used in the CORBA interoperability testing [Li+01] to the OpenLS interoperability

testing. As we implement our test framework with TTCN-3, it is in turn feasible to test

the OpenLS interoperability under our test framework. Specifically, the HTTP transport

protocol can be treated as the vertical interface (GIOP) as in the CORBA-based

application. The horizontal interface is not included in the OpenLS. As shown in figure 5-

16, the System Under Test (SUT) can be either the Client Application, or the GMS. The

Main Test Component (MTC) is responsible for the creation of the test components and

the overall control of test components over the CP ports. The TestClient and TestServer

are two parallel test components defined by MTC. The TestClient connects to SUT via

the HTTP protocol when the SUT is GMS, acting as the Client Application. The

TestServer connects to SUT via HTTP protocol when SUT is the Client Application,

acting as GMS.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MTC

CP, CP

HTTP

(SUT)

Figure 5-16: TTCN-3 Test Component Configuration for OpenLS

The test data sending to the system under test must represent the XML request/response

messages. Instead of the IDL data structure defined in the CORBA interoperability

testing, our test framework enables to define the XML data in the TTCN-3 data type

format. As mentioned in section 4.6.6, TTCN-3 can test XML based messages and

protocols, such as XML/SOAP based web service [Stepien+03]. Taking the XML

messages in the figure 5-15 as an example, we can generate the following relevant test

data in the TTCN-3 data type format by using the XML to TTCN-3 mapping approach

defined in [Stepien+03]:

template posRequest getPosition :=
{

msldType := msisdn,
mslD Value := 12066741000

};

template posResponse get_response
(char string the ms Id, char string the ms ID Value) :=
(

pos “ 47.611197 -122.347565
)

Figure 5-17: OpenLS Request/Response Test Data

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the definition of the test data, the XML message can be encoded and decoded by

the TTCN-3 compiler. The rest of test steps are similar to the traditional TTCN-3 test

process we described earlier. Other requirements that are specified in OpenLS, i.e.

encoding requirements, request requirements, response requirements, etc., can be defined

within the IDL description language and then loaded by the TTCN-3 module, same as the

test definition method used in the CORBA interoperability testing.

Therefore, by utilizing the research from CORBA interoperability testing by [Li+01] and

the relationship between the CORBA and OpenLS structures, we can theoretically

demonstrate the feasibility of our test framework on performing the interoperability

testing for both the Client Application and GMS provided by different vendors. However,

the implementation of the test cases is not considered in this thesis because of the lack of

relevant Client Applications and GMS at the current stage.

5.7.3 Security Testing

As we mentioned in section 4.6.6, many factors are related to the security issues in the

location-based service, i.e. personal integrity and confidential data transmission. The

personal integrity can be demonstrated by the test cases (CA02-CA04, CA09-CA14,

CA19-CA20, see Appendix H, I, J for details of these cases) in the functional testing on

the specific use cases, such as, activation (CA02-CA04) and deactivation (CA09-CA14)

of the MST system and the authorization of subscriber’s location request (CA19-CA20).

The confidential data transmission should also be considered in the interaction regarding

to the sensitive contents, i.e. user’s position and password. As mentioned earlier, the

XML security protocols, i.e. Security Assertion Markup Language (SAML), XML digital

signatures, can be one of methodologies to secure the confidential content during the

transaction. Next we will take SAML as an example and investigate the principle of

SAML and the feasibility of testing the SAML protocol under our test framework.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.3.1 SAML Overview

Security Assertion Markup Language (SAML) is an emerging OASIS standard [Rouault

05], which defines an XML-based security specification for exchanging authentication

and authorization information between online businesses. With SAML, users can carry

entitlements across multiple sites, and different trust domains. From these entitlements,

the Web Service will know whether to trust a user or not, and will also know the

permissions to which a user is entitled.

As shown in figure 5-18, SAML is defined with the following four components [OASIS

05]:

• Assertions: An assertion is a package of information that supplies one or more

statements made by a SAML authority. SAML assertions are encoded in an XML

schema. SAML defines three different kinds of assertion statement that can be

carried within an assertion:

1. Authentication statements - The specified subject was authenticated by a

particular means at a particular time. The authentication statement is

typically generated by a SAML authority called an identity provider,

which is in charge of authenticating users and keeping track of other

information about them.

2. Attribute statement - It contains specific details about the user, i.e. Gold

member status. This specified subject is associated with the supplied

attributes.

3. Authorization decision statement - A request to allow the specified subject

to access the specified resource has been granted or denied. In other

words, is this subject allowed to access the specified resource in the

specified manner, given this evidence?

• Protocols: SAML defines a number of request/response protocols, including

authentication, attribute and authorization decision request/response protocols,

etc. The protocol is encoded in an XML schema as a set of request-response pairs.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix K lists one example of SAML Authentication request/response

messages.

• Bindings: This describes exactly how SAML request-response protocols map into

standard messaging or communication protocols. For example, the SAML SOAP

Binding defines how SAML protocol messages can be communicated within

SOAP messages.

• Profiles: The core of the SAML specification defines how the SAML requests

and responses are transported. Profiles define how the SAML assertions,

protocols and bindings are combined to support specific use cases. Several

profiles are defined in SAML, such as Web Browser SSO (Single Sign-On)

Profile, which defines how a Web Browser support SSO when using

Authentication Request protocol messages, and Enhanced Client and Proxy (ECP)

Profile, which is designed to support mobile devices front-ended by a WAP

gateway.

PROFILES
(Wow SAML protocols,. bindings and/or assertions

combine to support a d&Iined use case)

BINDINGS
(bow SAML Protocols map onto standard
messaging or communication protocols)

PROTOCOLS
(Request/Response pairs for obtaining

Assertions and Federation Management)

ASSERTIONS
(Authentication, Attribute, and

Authorization informatbn)

Figure 5-18: SAML Components

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.3.2 SAML Use Case

The SAML standard components [OASIS 05] define a framework for exchanging

security information between online business partners. SAML defines a common XML

framework for creating, requesting, and exchanging security assertions between entities.

These entities include the subject (or the user), the identity provider (IDP) and the service

provider (SP). The identity provider (IDP) is a system that asserts information about a

subject. For instance, it can assert that the user has been authenticated and has given

associated attributes, i.e. username of “Jack Chen”. The service provider (SP) is a system

that relies on information supplied to it by the identity provider. SAML defines a number

of mechanisms that enable the SP to trust the assertions provided to it from the IDP.

Figure 5-19 illustrates one typical SAML use case - Single Sign-On (SSO) Use Case. In

this use case, a service subscriber login the source web site (Service.com) and searches

for available services. For some reason, the selected service, i.e. weather service, is not

available on the source web site. Thus, the identity provider (Service.com) asserts to the

service provider (Weather.com) that the user is known to it and provides the user's name

and session attributes (e.g. “ Gold member”). As Weather.com trusts Service.com, it

knows that the user is valid and creates a session for the user based on the user's name

and/or the user attributes. This use case illustrates the fact that the user is not required to

re-authenticate when directed over to the Weather.com site. Appendix L also lists another

SSO use case - Web browser SSO Profile, in which the SAML assertion is transported to

the Service Provider using the F1TTP POST binding.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Destination W eb 5
(W eather.com)

I'ser

Service Provider

Figure 5-19: Single Sing-On Use Case [OASIS 05]

5.7.3.3 Apply SAML to Location-based Services

As mentioned earlier, the SAML protocol can be applied in the location-based service

(LBS) to secure the confidential content, such as user’s position and password

information. There was some research about the location-based security with the SAML

protocol, such as [Srivatsa 02], which embeds the location information into the SAML

authentication request/response messages.

By using the authorization assertion request of SAML message protocol, we can build a

security mechanism for the transaction between the location management platform (LMP)

and the service provider (SP). Specifically, the service provider can send a SAML

authorization assertion request to LMP for the subscriber’s position information. After

LMP check the authorization of the service provider, it can send SAML response back to

the Service Provider.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the authentication assertion request of the SAML message protocol, we can apply the

SSO use case in the location based service and use it to secure the service subscriber’s

password and other private information transmitted between the subscriber and the

service provider. Specifically, the service provider in LBS can be treated as the identity

provider, which has a service category and can provide the service subscriber with all

types of location based services, no matter whether they are available in the local server

or not. If the selected service is available in the local server, the user will access the

service via the traditional way we described earlier. If, however, the selected service is

not available in the local server, the local server (the identity provider) will assert to

another service provider that can offer user’s needed service that the user is a legal

service subscriber and provides the user’s information to the second service provider. By

doing this, the user’s information is secured by the authentication assertion mechanism

and the user can be transparently redirected to the new direction to access the available

resources, resulting in the improvement of system usability.

5.7.3.4 Security Testing SAML Protocol in LBS

Since the SAML assertions and request/response protocols are encoded in the XML

schema, and the messages exchanged between the entities within the system are an XML-

based messages that has same structure with the XML request/response in the OpenLS, it

is very straightforward to apply the testing methodology we employed on the OpenLS

interoperability testing to the testing of the SAML message protocol. In other words, we

can map the SAML assertion and protocol XML schema to the TTCN-3 data structure by

using the XML to TTCN-3 mapping approach defined in [Stepien+03].

Taking the SSO use case as an example, we can use it in LBS to secure a user’s private

information and redirect the user request to a new service. To test this scenario, we need

to generate the test component configuration as shown in figure 5-20. In this test

component configuration, the system under test is the location-based application (LBA),

which represents the user entity in the SSO use case. The Main Test Component (MTC)

is responsible for the creation of the parallel test components (PTC) and coordinates the

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test behaviour among these components via the CP ports. The identity provider (IDP) and

service provider (SP) are represented by the parallel test components PTC1 and PTC2,

respectively. The communication between the parallel test components and the system

under test is defined using the HTTP protocol, and the test data exchanged with these

entities is defined with the SAML message protocol. The test process is initiated from the

service request by the SUT. After the identity provider (PTC1) receives the SUT’s

request, it sends an authentication response message back to the SUT, which will then be

forwarded to the service provider (PTC2) for verification with the expected data. SAML

request XML messages are encoded from and SAML response XML messages are

decoded into TTCN-3 data - used in the test specification by the TTCN-3 compiler.

CP, CP

P T C '

H T T

 ----- — ..._ _ _ ------ -------------------- ------- — — - J G

Figure 5-20: Test Component Configuration for SSO

Similar to the OpenLS interoperability testing, we can map the SAML message protocol

to corresponding TTCN-3 data structures by using the XML to TTCN-3 mapping

approach defined in [Stepien+03]. Figure 5-21 shows the test data definition that is

generated from the authentication request/response XML messages listed in Appendix K.

From this data definition, we can see that the user information, i.e. username and status,

is combined in the authentication response message, which will be sent eventually to the

service provider for the service request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

template authnRequest getAuthentication :=
{

SecurityDomain := Service, com,
Name :=joeuser

};

template authnRe sponse getResponse
(chars tring the SecurityDomain, char siring theName) :=
{

statusValue := samlp:Success,
Authe ntic atio nMe tho d := p as s word,
Authenticationlnstant := 2005-07-20T10:02:D0Z,
Suhject := get Authe ntic atio n

}

Figure 5-21: Authentication Request/Response Test Data

The rest of the test process for the SAML protocol testing, such as the test case and test

function definition, is similar to the traditional TTCN-3 test process described earlier in

the experimental study. Here we only investigate the feasibility of our test framework on

the security testing of the SAML protocol; and hence, do not provide an implementation

of the test cases and test functions for this situation. From what we described in this

section, we can find out that it is possible to use our test framework to validate the LBS

confidential data transmission through the testing of SAML message protocols.

5.8 Test Evaluation

Test

Case

Test

Scenario

Functional

Testing

Usability

Testing

Network

Performan

ce Testing

Server Site

Testing

Security

Testing

TC001 TSOI OK

TC002 TSOI OK

TC003 TS02 OK

TC004 TS03 OK

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TC005 TS03 OK

TC006 TS03 OK

TC007 TS05 OK

TC008 TS04 OK

TC009 TS04 OK

TC010 TS04 OK

TC011 TS04 OK

TC012 TS04 OK

CA01-33 OK

CA02-04 OK OK

CA09-14 OK OK

CA19-20 OK OK

Table 5-13: The Evaluation Result of The Experimental Study

The Mobile Service Tracking experimental study has mainly exercised the testing of a

generic infrastructure of location-based services. As shown on the table 5-13, all of test

cases were designed and implemented to cover the test scenarios, which reflect most of

evaluation strategies for the location-based servers (LBS), including functional testing,

usability testing, network performance testing, server site testing and security testing.

Interoperability is not covered by above test cases. However, we demonstrate the

feasibility of our test framework on LBS interoperability testing by introducing the

CORBA-based application and the OpenLS interoperability testing. Security testing on

the confidential data transmission is also not cover by above test cases. But we

investigate the principle of SAML message protocol and demonstrate that it is possible to

make the SAML message protocol testing with our test framework. The overall results of

the experimental study demonstrate the effective use of our test framework as an

approach to test location-based services automatically with typical scenarios. It supports

the fast prototype of test system for users and can be explored in other applications, such

as distributed systems, component-based systems, and object oriented systems.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the Java dependency of our test framework is potentially one limitation if the

exploitation of the test framework is applied on a target system written in other languages.

The system complexity could also be one of limitations when all components are

embedded into the test framework. Finally the test results have also raised the following

issues:

• Definition o f Location Context. Theoretically, the context specified in the

location-based service can be any changing environment, i.e. location, user input

and display. Dey and Abowd [Dey+99] defined context as any information that

can be used to characterize the situation of an entity. An entity is a person, place,

or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves. Our typical approach

has been focused only on general GPS location context, and does not consider

other type of context events yet.

• Domain application knowledge. In order to embed the system under test into the

test framework, we need to distribute the test adapter into the component under

test. It means the tester must know the specific API provided by the SUT. In

addition, the component under test needs to be modified on its API to increase its

testability, being adapted to the standard interface provided by the test framework.

Therefore, we consider our test framework is built on the gray-box testing

methodology.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Conclusion and Future Work

Through this thesis, we investigated the needs of testing the location-based service (LBS)

and challenges of testing the LBS system. We also presented our test framework for

testing LBS systems based on the TTCN-3 test system, supplemented by the context

simulator, the SWANS wireless simulator in the test framework. Finally, we

demonstrated the capability of the test framework with an experimental study on the

testing of the LBS from four testing perspectives: functional testing, usability testing,

performance testing, server site testing. Our test framework is aimed at providing users

with rapid prototyping and an effective test environment by utilizing re-useable

components and well-defined system interfaces.

6.1 Contributions

The contributions of this thesis can be summarized as follows:

• Investigate the principles of all types of location-based service, including SMS-

based, WAP-based and J2ME based location-based service.

• Define and illustrate the critical challenges on the testing of the location-based

service.

• Provide essential test requirements for building an effective test framework on the

LBS testing.

• Present a new effective test framework for testing the location-based service. This

framework provides simulated execution environment for the location-based

service by integrating the SWANS wireless simulator and the context simulator.

• Provide a scalable test framework that allows rapid prototyping with the reusable

test components and well-defined interfaces.

• Demonstrate a systematic approach for the location-based service testing from

various perspectives, including functional testing, usability testing, network

performance testing, server side testing, interoperability testing, and security

testing.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Future Work

The testing framework described in this thesis can make the process of testing LBS

system significantly easier and more thorough, especially with regarding to the

performance testing and the functional testing. However, it does not make the testing

process simple, straightforward, or flawless, especially on the implementation of the

TTCN-3 test system. No matter how good the testing tool, someone still has to "drive" it.

For us, our future work includes building more TTCN-3 test modules and test adapters,

which may be slightly different according to different types LBS system. Once all these

components are done, they can be reused to test further LBS systems and help us save

time and effort.

TTCN-3, however, also has some major problems. For instance, it supports only static

test interfaces and the representation of heterogeneous test data by means of unions,

which makes the description of message content clumsy [Deussen+03]. We need to

investigate the influence of these problems to our test framework. Moreover,

interoperability testing and security testing need to be demonstrated deeply in our test

framework later.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Bibliography

[Adatia 01] Adatia, R., et al., Professional EJB, UK: Wrox Press, 2001

[Alliance 05] Alliance Software Engineering, Software Testing Glossary, Retrieved June

2005 from http://www.sitetestcenter.eom/software_testing_glossary.htm#S

[Altman+04] Eitan Altman and Tania Jiminez, NS Simulator for beginner, Lecture notes,

2003-2004, Chapter 9 Mobile Networks, Page 111. Retrieved September 2005 from

http://www. isi. edu/nsnam/ns/ns-contributed. html

[Barr 04] Rimon Barr, JiST User Guide, Retrieved December 2004 from

http://jist. ece. Cornell, edu/

[Barr 05] Rimon Barr, SWANS User Guide, Retrieved April 2005 from

http://jist. ece. Cornell, edu/

[Barton+03] John J. Barton, V. Vijayaraghavan, UBIWISE, A Simulator for Ubiquitous

Computing Systems Design, HP Laboratories Palo Alto HPL-2003-93, April 29th, 2003

[Basso 02] Basso, M. and Kreizman, G., Mobile location services for governments,

Gartner, September 2002.

[Binder 00] Robert V. Binder, Testing Object-Oriented Systems, Addison-Wesley

Publishing Inc., 2000

[Clarke 97] Peter Clarke, Cell phone positioned for new services, Electronic Engineering

Times, vol. 30, no. 25, pp. 6, Jan. 20, 1997.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sitetestcenter.eom/software_testing_glossary.htm%23S
http://www
http://jist
http://jist

[Deussen+03] Deussen, P.H., Din, G., Schieferdecker, I., A TTCN-3 based online test

and validation platform for Internet services, Autonomous Decentralized Systems, 2003.

ISADS 2003. The Sixth International Symposium on 9-11 April 2003 Pages: 177 - 184

[Dey+99] A. K. Dey, Gregory D. Abowd, Towards a Better Understanding of Context

and Context-Awareness, Lecture Notes In Computer Science, Proceedings o f the 1st

international symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany,

Pages: 304 - 307, 1999

[Dey 00] A.K. Dey, Providing Architectural Support for Building Context-Aware

Applications, Doctoral thesis, College o f Computing, Georgia Inst. O f Technology, 2000.

[Dey+00] Anind K. Dey and Gregory D. Abowd, The Context Toolkit: Aiding the

Development of Context-Aware Applications, In the Workshop on Software Engineering

for Wearable and Pervasive Computing, Limerick, Ireland, June 6, 2000.

[Djuknic+01] G. M. Djuknic, R. Richton, Geolocation and assisted GPS, Computer, vol.

34, pp. 123-125, Feb 2001

[ETSI 04] European Telecommunication Standard Institute, TTCN-3 Control Interface,

Version: 1.1.1, TTCN-3 Specification, Retrieved September 2004 from

http://www. etsi. org/ptcc/ptccttcn3. htm#

[ETSI 05] European Telecommunication Standard Institute, Interoperability Testing

Specification, Retrieved June 2005from

http://portal. etsi. org/mbs/Testing/interop/interop. asp#TSS

[Eurotechnology.com 05] Eurotechnology.com, The unofficial independent i-mode FAQ,

Retrieved March 2005from http://www.eurotechnology.com/imode/faq.html

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://portal
http://www.eurotechnology.com/imode/faq.html

[Fall+05] Kevin Fall, Kannan Varadhan, The NS Manual, Retrieved April 2005 from

http://www. isi. edu/nsnam/ns/doc/index. html

[Fujimoto 90] R. M. Fujimoto, Parallel discrete event simulation, CACM, 33(10): 30-53,

Oct. 1990.

[Fujimoto 95] R. M. Fujimoto, Parallel and distributed simulation, In Winter Simulation

Conf, pages 118-125, Dec. 1995.

[Grabowski+03] Jens Grabowski, et al., An Introduction into the Testing and Test

Control Notation (TTCN-3), to appear in Computer Networks, 2003

[GSM Association 05] GSM Association, Short Message Service, GSM World. Retrieved

March 2005from http://www.gsmworld.com/technology/sms/index.shtml

[Hata 80] M. Hata, Empirical Formula for Propagation Loss in Land Mobile Radio

Services, IEEE Trans. Vehic. Tech., vol. 29, no. 3, 1980.

[IEEE 90] IEEE Std 610.12-1990, Standard Glossary of Software Engineering

Terminology, Retrieved from http://standards.ieee.org/.

[Jose+03] Rui Jose, Adriano Moreira, Helena Rodrigues and Nigel Davies, The

AROUND Architecture for Dynamic Location-Based Services, Mobile Networks and

Applications 8,377-387, 2003

[Kaner+99] Cem Kaner, Jack Falk, Hung Q. Nguyen, Testing Computer Software, 2nd

Edition, Wiley, 1999

[Krishnamurthy 02] Nandini Krishnamurthy, Using SMS to deliver location-based

services, Personal Wireless Communications, 2002 IEEE International Conference on

15-17 Dec. 2002 Page(s): 1 7 7 - 181.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://www.gsmworld.com/technology/sms/index.shtml
http://standards.ieee.org/

[Lee+03] Chung-wei Lee, Wen-Chen Hu, Jyh-haw Yeh, A System Model for Mobile

Commerce, Distributed Computing Systems Workshops, 2003. Proceedings. 23rd

International Conference on 19-22 May 2003 Page(s):634 - 639

[Li+01] Mang Li, Amo Puder, Ina Schieferdecker, A Test Framework for CORBA

Interoperability, Enterprise Distributed Object Computing Conference, 2001. EDOC '01.

Proceedings. Fifth IEEE International 4-7 Sept. 2001 Page(s): 152 -161

[Li+04] Kanglin Li, Menqi Wu, Effective Software Test Automation: Developing an

Automated Software Testing Tool, Sybex 2004

[LIF 05] Location Interoperability Forum, Location Services Interoperability Test

Specification in GSM, Retrieved September 2005 from the Open Mobile Alliance (OMA)

webpage, http://www. openmobilealliance. org/tech/affiliates/lif/lifindex. html

[Mahmoud 00] Mahmoud, Q., MIDP network programming using HTTP and the

Connection framework, Java Wireless Developer, Retrieved November 2001 from

http://wireless.java. sun. com/midp/articles/network/

[Mabrouk 04] Marwa Mabrouk, Open GIS Location Service (OpenLS): Core Services,

OpenGIS Implementation Specification, January 2004, Retrieved June 2005 from

http://www. opengeospatial. org/functional/?page=ols

[McKee 05] Lance McKee, The Importance of Going “Open”, OGC White Paper,

Retrieved June 2005from http://www.opengeospatial.org/

[Misra 86] J. Misra, Distributed discrete event simulation, ACM Computing Surveys,

18(1): 39-65, Mar. 1986.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://wireless.java
http://www
http://www.opengeospatial.org/

[Mitchell+03] Kirk Mitchell, Mark Whitmore, Mobile Commerce: Technology, Theory

and Applications, Idea Group Publishing, 2003, Chapter 3

[Morla+04] Ricardo Morla and Nigel Davies, Evaluating a location-based application: a

hybrid test and simulation environment, Pervasive Computing, IEEE, Volume: 3, Issue:

3, July-Sept.2004 Pages: 48- 56.

[Myers 79] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Preface,

1979.

[MySQL 05] MySQL Reference Manual, Retrieved June 2005 from

http://dev. mysql. com/doc/

[Neskovic+00] A. Neskovic, N. Neskovic, and G. Paunovic, Modem Approaches in

Modeling of Mobile Radio Systems Propagation Environment, IEEE Commun. Surveys,

vol. 3rd Quarter, Sept. 2000, pp. 2-12.

[Nicol+94] D. M. Nicol and R. M. Fujimoto, Parallel simulation today, Annals o f

Operations Research, pages 249-285, Dec. 1994.

[OASIS 05] OASIS Security Service, SAML V2.0 OASIS Standard specification,

Retrieved August 2005 from http://www.oasis-open.org/home/index.php

[Okumura+68] Y. Okumura et al., Field Strength and its Variability in VHF and UHF

Land-Mobile Services, Review Elec. Commun. Labs., vol. 16, Sept. Oct., 1968, pp. 82537.

[OGC 05] Open Geospatial Consortium Inc., Overview of OGC's Interoperability

Program, Retrieved June 2005from http://www.opengeospatial.org/

[OGC 05] Open Geospatial Consortium Inc., Resource-Compliance Testing, Retrieved

June 2005from http://www.opengeospatial.org/

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://dev
http://www.oasis-open.org/home/index.php
http://www.opengeospatial.org/
http://www.opengeospatial.org/

[OMG 05] Objective Management Group, Common Object Request Broker Architecture

(CORBA), Retrieved June 2005 from http://www.omg.org/gettingstarted/corbafaq.htm

[OPNET 05] OPNET Technologies, Inc, OPNET Modeler Brochure, Retrieved April

2005from http://www.opnet.com/products/modeler/home.html

[Raju 00] Raju, S., Java programming for wireless devices using J2ME-CLDC/ MIDP

APIs, Sun Microsystems, 2002.

[Rappaport 95] T. S. Rappaport, Wireless Communications: Principles & Practice,

Prentice Hall, 1995, Chapter 3

[Rouault 05] Jason Rouault, Introduction to SAML, Retrieved Auguest 2005 from

http://www. simc-inc. org/archive0002/February02/devwedl 015_rouault.pdf

[Satoh 03] Ichiro Satoh, A testing framework for mobile computing software, Software

Engineering, IEEE Transactions on, Volume: 29, Issue: 12, Dec. 2003, Pages: 1112 -

1121

[SavaJe.com 05] SavaJe.com SavaJe OS, Retrieved March 2005 from

http://www. savaje. com/

[Schieferdecker+03] Ina Schieferdecker, et al., Realizing Distributed TTCN-3 Test

Systems with TCI, IF IP TC 6 / WG 6.1 15th International Conference on Testing o f

Communicating Systems - TestCom 2003, May 2003

[Schieferdecker 04] Schieferdecker, I., TTCN-3 Tutorial, Test & Testing Methodologies

with Advanced Languages Seminar, 26th o f March 2004, Oulu, FI.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.omg.org/gettingstarted/corbafaq.htm
http://www.opnet.com/products/modeler/home.html
http://www
http://www

[Schilit+94] Schilit, B., Theimer, M., Disseminating Active Map Information to Mobile

Hosts, IEEE Network, 8(5) (1994) 22-32

[Srivatsa 02] Harsha Srivatsa, Location-based security for wireless apps, Retrieved May

2005from http://www-106. ibm. com/developerworks/wireless/library/wi-loc/

[Sttlber 01] Gordon L. Sttlber, Principles of Mobile Communication 2nd Edition,

Published by Kluwer Academic Publisher, Page 23, 2001

[Stepien+03] Stepien, B., Schieferdecker, I., Automated Testing of XML/SOAP based

Web Services, Leipzig Conference, 2003.

[Sun Microsystems 05] Sun Microsystems, Introduction to wireless Java. Wireless Java

Technology, Retrieved March 2005from http://wireless.java.sun.com/getstart/

[Surech+01] Surech C., Parviz K., Sean S., Leandros T., Security Issues in M-Commerce:

A Usage-Based Taxonomy, E-Commerce Agents, LNAI 2033, pp. 264-282, 2001.

Springes-Verlag Berlin Heidelberg 2001

[Tassey+03] Gregory Tassey, et ah, The Economic Impacts of Inadequate Infrastructure

for Software Testing, Collingdale, PA: DIANE Publishing Co, 2003.

[Testing Technologies 04] Testing Technologies, Inc., Ttthree Specification, Retrieved

September 2004from http://www.testingtech.de/products/ttthree.php

[The Open Group 05] The Open Group, Testing Service for WAP, Retrieved March 2005

from http://www. opengroup. org/testingservices/wapts. html

[UCLAPCL 05] UCLA Parallel Computing Laboratory, GloMoSim Manual,Retrieved

April 2005from http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-106
http://wireless.java.sun.com/getstart/
http://www.testingtech.de/products/ttthree.php
http://www
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html

[UMTS 05] UMTS Forum, MAGIC MOBILE FUTURE 2010-2020, UMTS Forum

REPORT NO 37, Retrieved June 2005 from http://www.umts-

forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_Reports_37_index

[Varshney+01] Upkar Varshney, Ron Vetter, A Framework for the Emerging Mobile

Commerce Applications, Proceedings o f the 34th Hawaii International Conference on

System Sciences 2001

[WAPForum 05] WAPForum, WAP 2.0 Technical White Paper, Retrieved January 2005

from http://www.wapforum.org

[W3C Schools 05] W3C Schools, WAP Tutorial, Retrieved March 2005 from

http://www. w3schools, com/wap/wap intro, asp

[W3C Schools 05] W3C Schools, Validate WML, Retrieved March 2005 from

http://www. w3schools, com/wap/wml validate, asp

[Xora 05] Xora, Inc., Xora GPS Time Track System. Retrieved May 2005 from

http://www.xora. com/timetrack/index. html

[Yuan 05] Michael Yuan, Ju Long, Securing wireless J2ME, Retrieved June 2005 from

IBMdeveloperWorks, http://www-l28. ibm.com/developerworks/library/wi-secj2me.html

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.umts-
http://www.wapforum.org
http://www
http://www
http://www.xora
http://www-l28

Appendix A: J2ME Profile and APIs

Configurations

JSR30 CLDC 1.0 Connected, Limited Device Configuration

JSR 139 CLDC 1.1 Connected, Limited Device Configuration 1.1

JSR36 CDC Connected Device Configuration

JSR 218 CDC 1.1 Connected Device Configuration 1.1

Profiles

JSR 37 MIDP 1.0 Mobile Information Device Profile

JSR 118 MIDP 2.0 Mobile Information Device Profile 2.0

JSR 75 PDAP PDA Profile

JSR 46 FP Foundation Profile

JSR 219 FP 1.1 Foundation Profile 1.1

JSR 129 PBP Personal Basis Profile

JSR 217 PBP 1.1 Personal Basis Profile 1.1

JSR 62 PP Personal Profile

JSR 215 PP 1.1 Personal Profile 1.1

JSR 195 IMP Information Module Profile

JSR 228 IMP-NG Information Module Profile - Next Generation

Optional Packages

JSR 75 PIM PDA Optional Packages for the J2ME Platform

JSR 82 BTAPI Java APIs for Bluetooth

JSR 120 WMA Wireless Messaging API

JSR 205 WMA 2.0 Wireless Messaging API 2.0

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JSR 135 MMAPI Mobile Media API

JSR 164 JAIN SIMPLE Presence

JSR 165 JAIN SIMPLE Instant Messaging

JSR 172 J2ME Web Services

JSR 177 SATSA Security and Trust Services API for J2ME

JSR 179 Location API for J2ME

JSR 180 SIP SIP API for J2ME

JSR 184 3D Mobile 3D Graphics API for J2ME

JSR 186 JAIN Presence

JSR 187 JAIN Instant Messaging

JSR 190 Event Tracking API for J2ME

JSR 209 Advanced Graphics and User Interface Optional Package for J2ME Platform

JSR 211 CHAPI Content Handling API

JSR 213 Micro WSCI Framework for J2ME

JSR 214 Micro BPSS for J2ME Devices

JSR 226 Scalable 2D Vector Graphics API

JSR 229 Payment API

JSR 230 Data Sync API

JSR 232 Mobile Operational Management

JSR 234 Advanced Multimedia Supplements

JSR 238 M obile Internationalization API

JSR 239 Java Bindings for OpenGL ES

JSR 246 Device Management API

JSR 253 Mobile Telephony API (MTA)

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: Current OS in the Mobile Devices

! M -S rS J3

>v

■ " t - U
' * } ><., i _

s i s§
c o

tJV, 'y

V
'Or

JBl iL
§ £ £

- ' * v * ' ; ^
; “

C/̂ VJ ' J |

■
" >̂v ; %

J i

k

s

M M M B £ £
jf J; £ jQ £ £

~s
s» »

ss H si: J? sr zr I a
 ...
® « © • 5 0

T

,1
z l 2 _ l z 2

• * 8 & M

•: « : « o

>

“
_x

If, % si ZT

* i§
,j2

a
£

2?

:S

1 _

f_
J?
JB

jC jjp j£* Jp Jp I J& J0

M S B
S tf >f

1Z

Sf

1 = 1
g g s
; s a
a f S

<3
I

jg§ Stt S t
H <3 -It
a a o

tSa

1£
I

<» «»
3 - ^
ao*£

v*

j If
o o

I S5 5
at-so

v®r

«s 1 1I l f
* 3 £

s «..
o 3

f S
■hi s

& •*- - a ‘
g 3g §2 2 .

j £ ^ «? J gsg a*. a 3f <
o €
I f

m a

s s»-.SKf SS M JX

a s

■ 3K
St

s«x>as.

Sc>
gg t... s

-a O -

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wk
Data

 w
sno

tav
ait

eij
te

Appendix C: TTCN-3 Tabular Presentation Format Example

N pnf • I \i*kia (>
Group
Purpose
System Interface DNSf 1 lent
WTCTVpf DNSC’I'. -n
Com m ents

Local Dot Namo Type Initial Value Comments

Behaviour

serverPort Sertd(aJ5NSQuesticri (12345, ‘www.research.nokia.com''));
ait {

0 serverPort. receive(a_DNSAnswer(12345, ”172.21.56.98”)) {
setverdict (pass);

>
D serverPort,receive {

setverdict (fait);
>

}
Detalterf Comments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Appendix D: TTCN-3 Graphical Presentation Format Example

t 6 S t v s t * J 1 e$r
runs n r DM?C , ' -?r:t

. v e N o k i a l {)

rrtte serverPort
D N SC Iien t DNSPort

a 0 IIS Q M ts tlo n ft2 W /,wwv,rfs#iireh»nofcla.€Ofri,1

i J

ass >
172 21.56.98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Appendix E: The Parameter Definition and Interface

The latitude parameter definition and interface

wj latitude longitude! integer

Please input the kmgtitude of the mobile client's positionloadTimes
jjn paetetlossRate m i|f) serverIP_ADDR
g External*

wireless
Jta| LoadTesting

] MAX_Vuser

< p a r« m e te r Neane“ '’X o a g itu d e ” H oduleO fT ypeD eci*" ">
<descriptio» />
<type>intege*r</type>
< v a lu e > l l l l< /v a lu e >
< d e f a u l t > l l 1 K / d e f a u I t >

</parameter>

The longitude parameter definition and interface

| «s | h | !o ►

§gy ExternalDB
§ wireless
| § LoadTesting
§§ MAX_Vuser

< p areu ae te r N a m e * " la ti tu d e " HoduleO£TypeDecl**"">
< d e a c r ip t io n / »
< ty p e > in te g e r< / ty p e >
< v » lu e> 2 2 2 2 < /v a lu a>
< d e £ a u lt> 2 2 2 2 < /d e fa u lt>

< /p a r a n » te r>

latitude | latitude; integer

Please input the latitude of the mobile dent's position
 | longitude
J loadTimes

2222

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: The Parameter Definition and Interface (2)

The LoadTimes parameter definition and interface

« a ! B ' ; O ►

|ff| latitude
f£] loogtoxte

LoadTimes: integer

Pleas# input the load times for the test case

|U LoadTestingH «AX_¥user

•(parameter Name-"LoadTimes" lo d u le O fT y p e D e c l* w">
• (d e s c r ip t io n / >
<cype>i»teger</t.fpe>
< v a lu e > 1 0 < /v a lu e >
< d e f a u l t> 1 0 < /d e f a u l t>

< /p a ra m e te r>

The packetLossRate parameter definition and interface

Sg serverF_ADOR I
g ExternalDB
|S] wireless
M] LoadTesting
|g MAXJfuser

• (p a r a m e t e r N a m e ^ ^ p a c k e t L o s s R a t e " M o d u l e 0 f T f p e D e c l = " " >

< d e s c r i p t io n />
< t y p e > f i o a t < / t y p e >
• c v a l u o Q . 5 < / v a l u e >
< d e £ « u lt> 0 . 5 < /d e £ a u lt>

« / p a r a j # e t e r >

49 (9 j O' , ►
|a j latitude
gj] longitude
U LoadTimes

packetLossRate; float

Please Input the packet loss rate (O-i.O) during communication

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: The Parameter Definition and Interface (3)

The serverIP_ADDR parameter definition and interface

<3 ' Q i O ►

|$] latitude
g | longitude
|f] LoadTimes
§f] pactettossRate

jfj ExternalDB
g] wireless
g] LoadTesting
M] MAX_Vuser

<param eter Name” '
< d e s c r ip t io n >

a d d ress c
< ty p e > c h a r s tr
< v a lu e > 1 2 7 .0 .
< d e £ a u lt> 1 2 7 .

</pararaeter»

serverIP_ADOR dwstrtng

Please input the IP address of the SUT

1
Q

O
M*

H
i

88
...

...
...

. 127,0.0.1 <*•

erverIP_ADBR"’>
l e a s e in p u t th e IP

th e BWT</d e s c r i p t i o n *
« g < /ty p e >
. K /v a lu e >
. 0 , ! < / d e f a u l t >

The ExternalDB parameter definition and interface

a ; 0

H latitude
H longitude
[Ml LoadTimes
if] packetLossRate
H serverIP_AODR

B wreless
|f] LoadTesting
Ag MAX.Vuser

<parsm eter Name*
< d e s c r ip t i o n

from e x t
< ty p e > b o o le a
< va lu e> tru e<
< d e £ a u lt> tr u
< p r e s e n ta t i o

< b oo leaa
< /p r e s e n t a t l

< /parameters-

ExternalDB i boolean

Does the test data come from external Database?

✓

"Externa1BB">
>Does th e t e s t d a ta come
e r n a l D a ta b a s e ? < /d e a c r ip t io n >
n < /ty p e>
^value»
B < /d efa u lt>
n>

/>
on>

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: The Parameter Definition and Interface (4)

The wireless parameter definition and interface

<a ■ Q . O | ►
&} latitude
j g longitude
If] loadTimesLoadTimes

wireless: boolean

Run testcases under the SWANS Wireless Simulator
J | pactetLossRate

JtOOft
D8

s

g] LoadTesting
H MAXJfuser

<pararaeter N a m e* "w ire leas ">
«deseription>Ru» t e s t c a s e s under the SKINS

Wireless Simulator</description
< ty p e > b o o le a n < /ty p e >
< v m lu e > fa la e < /v a lu e >
<default»false«/default>
< p re a e n ta t io n >

<booleaua/>
< /pre s e n t a tion»

< /p a ra m e te r>

The LoadTesting parameter definition and interface

g MAX_Vuser

< p a ra m e te r Nam e**"LoadTesting">
< d e s c r ip t io n > R u n load testing for

the LBS s e r v e r < /d e a c r ip t l a n >
< t y p e > j 3 o o l e a n < / t y p e >
< v a lu e > fa ls e < /v a lu e >
< d e f a u l t> f a l s e < / d e f a u l t >
<presentation>

< b o o l e a n / >
< /p r e a e n ta t io n >

</parameters-

: «3 \ 0 ' ! O

M| latitude LoadTesting: boolean

Run load testing for the LBS server

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E: The Parameter Definition and Interface (5)

The MAX_Vuser parameter definition and interface

; <3 | S3 • [> ; ' ►
| g latfcude '
g | longitude
HI loadTimes
H pactetlossRate
M serverIPjyX5R
M External®
If] wireless
S] LoadTesting
M] M AX>user

<paraaneter NajMe*MHAX_Vuser">
<descripticm>Maximum v ir tu a l users</description>
< type> in teger< /typ e>
< v a lu e > 1 0 < /v a lu e >
< d e £ a u l t> K /d e £ a u l t>

< /p ara m eteo

MAX.Vuser; integer

Maximum virtual users

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Appendix F: The Snapshots of Test Execution

The Test Result of Test Case TC004

Fit fd t £m<&kten |%>

'“"HI

Vmdtt » ait a i ►

1 est Result:!

Fail

t« * #*#»«• JUUSttX

T*v1 iMAptet

. « . , 4&laUAa a¥o /*» CnntC

KnKfi;.:j*'f> w | i f * (Wrt *aw|swnert80 % jO «#«tA sviv:, t»05i(ij>*!Wi!
Xv’t&itctxtiit
mmiMQ
<".«r|»̂ no*»0’> 13 ■tfoftwc#*** ItOt (
=*f.* mAnt»

dsts, •

■lOO.iO*

Actual: “error data...'

Expected: “240,30”
1«0»S.8«0
«*tf|»i'«f=t8313SIW rtWMKl £XI>$CTSD KMMQO * - *

i60£0 ̂mo u » i« :*• isi iTtv«a^,rr^i)
t&us,otmo .«*■MM'd Jfso*:*i o* «w«rtti* :o^»s« * « » wftsy*torP4iW«y«c

ttOT.OfOJ' «(v*mntit£3 %*f* 'Cat
IMSO**!** ccw iM te'ite, t»» • <y « (» 5«u loti c * « * t« J
1*>»U 111 <t ' Cfb'par^Myi F*•** 'frrt**I «l f V**i00305 is ?
teotoroj*
J&0405051 ■.'tircfterr'AM i

thB torittl m t t f rntsi* ism tO M

3 Test eases passes

7 Test cases fail

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F: The Snapshots of Test Execution (2)

The Test Result of Test Case TC005

M11 m an •• LBSModyie:

Efe |® Configurations Boecutton Help

JlBSModule
I -tg control
» M] LBSTesUaseExtamal f
■ jg] IBSTestcaseManual t
- | |] IBStoadTest

Uperdfct peiact ”
fail V

Test Result

Test Adapter ; statistics

Test Adapter

My T estAd » pte f^TCP.java

Java Arohiv®

C:\mypaVtteft3\medtil «VTA,jar

<3 . 0) E> >

Test Case control
-cunaw : *-;— ------ -— ----------- --------- ---------------— — _ _ _ _ _ _
along: “ *30“

10;C®38.400: starting timer coniponentS3.ntyTimer with duration SO sec
10:06:36.410: enqueueing message from port ‘compQnent84.SYStemPortAsync' to component
'componeflt83
10:08:38.410:
compor»rt83JJBSPort received NOT EXPECTED n

"error data...
«<«« expected «««<«
“240,30*

10: OS: 38,410:
component83 IBSPort received EXPECTED message *

Expected Data

10:06:38.410
10:06:36.410
10:06:37.412
10:06:37.562
10:06:37.562
10:06:37.662
10:0637.862
10:06:37.562

componert83.setVerdiot(fell)
unmapping LBSPort of component component83 with SystemPortAsync
testcase terminated wth verdict: •fair
rem al termination of component 'componertSS' with verdict 'faff
components* The number of passed test cases is 0
components* The number of fatted test cases is 10
component64:---------—End of test CUSS for 1*33 QX̂tTipifi*
eonfrol ter mlni&sdl

The control part of module IBSModute

10 Test cast
failed

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix G: The Test Result of TC008-TC012

D a t a b a s e c o n n e c t i o n e s t a b l i s h e d

The F r e q u e n c y o f B a s e S t a t i o n l i s : 1 5 0 . 0 MHz
The E f f e c t i v e H e i g h t o f B a s e S t a t i o n l i s : 2 0 0 . 0 M
The R e c e i v e r H e i g h t o f B a s e S t a t i o n l i s : 2 . 0 M
The Maximum A l l o w a b l e P a t h Loss o f B a s e S t a t i o n l i s : 1 3 5 . 0 dB
The Range o f B as e S t a t i o n #1 i s : 121 KM

The F r e q u e n c y o f B a s e S t a t i o n 2 i s : 1 5 0 . 0 MHz
The E f f e c t i v e H e i g h t o f B a s e S t a t i o n 2 i s : 2 0 0 . 0 M
The R e c e i v e r H e i g h t o f B a s e S t a t i o n 2 i s : 2 . 0 M
The Maximum A l l o w a b l e P a t h L o s s o f B a s e S t a t i o n 2 i s : 1 3 5 . 0 dB
The Range o f B ase S t a t i o n #2 i s : 121 KM

S t a r t i n g t h e SWANS W i r e l e s s S i m u l a t o r . . .

S e r v e r l s t a r t i n g a t t = 0 on p o s i t i o n (3 0 0 ,1 0 0)
S e r v e r 2 s t a r t i n g a t t = l on p o s i t i o n (5 0 0 ,1 0 0)
M o b i l e C l i e n t s t a r t i n g a t t = 2 on p o s i t i o n (1 6 0 ,5 0)

M o b i l e C l i e n t s e n t a t t = 2 ; P o s i t i o n : 1 6 0 , 5 0 |
d i s t a n c e l : 149KM; d i s t a n c e 2 : 344KM _ J TC012

The M o b i l e C l i e n t i s o u t o f r a n g e t o two s e r v e r s I________

M o b i l e C l i e n t s e n t a t t= 1 0 0 0 0 0 2 ; P o s i t i o n : 1 8 0 , 5 0
d i s t a n c e l : 130KM; d i s t a n c e 2 : 324KM I TC012

The M o b i l e C l i e n t i s o u t o f r a n g e t o two s e r v e r s

M o b i l e C l i e n t s e n t a t t = 2 0 0 0 0 0 2 ; P o s i t i o n : 2 0 0 , 5 0
d i s t a n c e l : 112KM; d i s t a n c e 2 : 304KM I TC008

S e r v e r l r e c e i v e d N o . l p a c k e t a t t = 2 0 0 5 0 0 2 : 200,

50 r

, 50< ~::T_

M o b i l e C l i e n t s e n t a t t = 3 0 0 0 0 0 2 ; P o s i t i o n : 2 5 0 , 5 0 I
d i s t a n c e l : 71KM; d i s t a n c e 2 : 255KM TC008

S e r v e r l r e c e i v e d No. 2 p a c k e t a t t= 3 0 0 5 0 0 2 : 25 0 , 50"< ^ n -------------

M o b i l e C l i e n t s e n t a t t = 4 0 0 0 0 0 2 ; P o s i t i o n : 3 0 0 , 5 0 I
d i s t a n c e l : 50KM; d i s t a n c e 2 : 206KM -J TC008

S e r v e r l r e c e i v e d No . 3 p a c k e t a t t= 4 0 0 5 0 0 2 : 300, 5 0 " ^ ^ -------------

M o b i l e C l i e n t s e n t a t t = 5 0 0 0 0 0 2 ; P o s i t i o n : 3 5 0 , 5 0
d i s t a n c e l : 71KM; d i s t a n c e 2 : 158KM J TC008

S e r v e r l r e c e i v e d N o . 4 p a c k e t a t t = 5 0 0 5 0 0 2 : 3 5 0 , 5 0. - 4
M o b i l e C l i e n t s e n t a t t = 6 0 0 0 0 0 2 ; P o s i t i o n : 3 8 0 , 5 0

d i s t a n c e l : 94KM; d i s t a n c e 2 : 130KM J TC008
S e r v e r l r e c e i v e d N o . 5 p a c k e t a t t = 6 0 0 5 0 0 2 : 3 8 0 , 5 0A
M o b i l e C l i e n t s e n t a t t = 7 0 0 0 0 0 2 ; P o s i t i o n : 4 0 0 , 5 0

d i s t a n c e l : 112KM; d i s t a n c e 2 : 112KM _ J TC009
S e r v e r l r e c e i v e d N o . 6 p a c k e t a t t= 7 0 0 5 0 0 2 : 4 0 0 , 5 0A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M o b i l e C l i e n t s e n t a t t = 8 0 0 0 0 0 2 ; P o s i t i o n : 4 1 0 , j u i
d i s t a n c e l : 121KM; d i s t a n c e 2 : 103KM

S e r v e r 2 r e c e i v e d N o . l p a c k e t a t t= 8 0 0 5 0 0 2 : 4 1 0 , 5 0

M o b i l e C l i e n t s e n t a t t= 9 0 0 0 0 0 2 ; P o s i t i o n : 430, ju i av-'ai i
d i s t a n c e l : 139KM; d i s t a n c e 2 : 86KM

S e r v e r 2 r e c e i v e d N o . 2 p a c k e t a t t = 9 0 0 5 0 0 2 : 4 3 0 , 5 0

M o b i l e C l i e n t s e n t a t t = 1 0 0 0 0 0 0 2 ; P o s i t i o n : 4 8 0 , uu i mr 'n i i
d i s t a n c e l : 187KM; d i s t a n c e 2 : 54KM

S e r v e r 2 r e c e i v e d N o . 3 p a c k e t a t t= 1 0 0 0 5 0 0 2 : 4 8 0 , 5 0

M o b i l e C l i e n t s e n t a t t = 1 1 0 0 0 0 0 2 ; P o s i t i o n : 5 5 0 , ou i T r'Q i j
d i s t a n c e l : 255KM; d i s t a n c e 2 : 71KM

S e r v e r 2 r e c e i v e d N o . 4 p a c k e t a t t = 1 1 0 0 5 0 0 2 : 5 5 0 , 5 0

M o b i l e C l i e n t s e n t a t t = 1 2 0 0 0 0 0 2 ; P o s i t i o n : 600
d i s t a n c e l : 304KM; d i s t a n c e 2 : 112KM

S e r v e r 2 r e c e i v e d No .5 p a c k e t a t t= 1 2 0 0 5 0 0 2 : 6 0 0 , 5 0

M o b i l e C l i e n t s e n t a t t = 1 3 0 0 0 0 0 2 ; P o s i t i o n : 620, ou i r['(^Q22
d i s t a n c e l : 324KM; d i s t a n c e 2 : 130KM

The M o b i l e C l i e n t i s o u t o f r a n g e t o two s e r v e r s

, 50 r
M
0 , 5 0 1-

, 50 r

n, 50 L

,50 r
0 , 5 0 L

, 5 0 [

0 , 5 0 L

, 5 0 J~

0, 50 L

, 5 0 ^ J ‘

S

, 5 0 ^ J "M o b i l e C l i e n t s e n t a t t = 1 4 0 0 0 0 0 2 ; P o s i t i o n : 6 4 0 , ou | ^ (2012
d i s t a n c e l : 344KM; d i s t a n c e 2 : 149KM

The M o b i l e C l i e n t i s o u t o f r a n g e t o two s e r v e r s

M o b i l e C l i e n t s e n t a t t = 1 5 0 0 0 0 0 2 ; P o s i t i o n : 6 6 0 , 5 0 J TC012
d i s t a n c e l : 363KM; d i s t a n c e 2 : 168KM —

The M o b i l e C l i e n t i s o u t o f r a n g e t o two s e r v e r s

t e r m i n a t e p a c k e t s e n t a t t= 1 5 0 0 0 0 0 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix H: Test Cases of Use Case 1 - Activation of the MST

1. Basic Flow and Optional Flows

Step Basic Flow 1 (BF1) - User activates the Mobile Service Tracking system

1 User wants to activate the Mobile Service Tracking (MST) system.

- Input Password

2 Server validates user's information to see if it is the authorized user.

3 Server activates the user's MST system.

4 Server sends one response message back to the user.

- "MTS is activated"

5 The available services are displayed in the screen.

Optional Flow 1 (OF1) - Incorrect password at step I

- Server sends validation information "Incorrect Password" to the user.

- User has three chances to input the password. If there is still chance to input the

password, the flow will go back to Step 1 of the Basic Flow 1.

- If the third type of password is wrong, Server sends “MST will be locked” and the

case is finished.

Optional Flow 2 (OF2) - Weak wireless signal when the user sends the request at

step 1

- The user’s request will be discarded after time out. The case is finished.

Optional Flow 3 (OF3) - Weak wireless signal when the user receive the response at

step 5

- Server will repeat step 4 after time out for 3 times.

2. Test Scenarios

Test Scenario Flow

SA01 - Successfully activate the MST BF1

SA02 - Incorrect password (user still has input chance) BF1 OF1

SA03 - Incorrect password (no input chance) BF1 OF1

SA04 - Weak wireless signal when user sends request BF1 OF2

SA05 - Weak wireless signal when user receives response BF1 OF3

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Test Cases

Test

Case

Test

Scenario

Password Packet Loss

Rate

Expected Result

CA01 SA01 4829 0 MST is activated, and available

services are displayed in the

mobile device screen.

CA02 SA02 4800 0 “Incorrect Password”, go back to

step 1

CA03 SA02 4801 0 “Incorrect Password”, go back to

step 1

CA04 SA03 4802 0 “MST will be locked”. The test

case is finished

CA05 SA04 4829 1.0 Time out. The test case is finished

CA06 SA05 4829 1.0 Time out and go back to step 4

CA07 SA05 4829 1.0 Time out and go back to step 4

CA08 SA05 4829 1.0 Time out and the test case is

finished

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Appendix I: Test Cases of Use Case 2 - Deactivation of the MST

1. Basic Flow and Optional Flows

Step Basic Flow 1 (BF1) - User disables the Mobile Service Tracking system

1 User disables the MST when he would not like to be tracked by other people.

- Select "Disable MST" from the menu on the screen

2 Server sends the message to confirm the user’s request - “Do you want to disable

MST?”

3 User selects “Yes” from the menu to confirm his decision.

4 Server stops the MST and the user’s position is then concealed against other

people.

5 Server sends one response message "MST is disabled" back to the user.

6 The "MST is disabled" is displayed in the screen.

Optional Flow 1 (OF1) - User changes his decision at step 3

- User selects “No” at step 3

- Server receives “No” message from the user and still leaves MST working. The case

is finished

Optional Flow 2 (OF2) - Weak wireless signal when the user sends the request at

step 1

- The user’s request will be discarded after time out. The case is finished.

Optional Flow 3 (OF3) - Weak wireless signal when the user sends the request at

step 3

- The flow will repeat step 3 after time out, waiting for the user’s confirmation

Optional Flow 4 (OF4) - Weak wireless signal when the user receives the response

at step 2

- The flow will repeat step 2 after time out for 3 times. After 3 times, the Server will

discard the user request.

Optional Flow 5 (OF5) - Weak wireless signal when the user receives the response at

step 6

- The flow will repeat step 5 after time out until the user gets the message.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Test Scenarios

Test Scenario Flow

SA06 - Successfully disable the MST BF1

SA07 - User changes his decision during the confirmation of

deactivation of the MST

BF1 OF1

SA08 - Weak wireless signal when user sends request at step 1 BF1 OF2

SA09 - Weak wireless signal when user sends request at step 3 BF1 OF3

SA10 - Weak wireless signal when user receives response at step 2 BF1 OF4

SA11 - Weak wireless signal when user receives response at step 6 BF1 OF5

3. Test Cases

Test

Case

Test

Scenario

User

Request

Request

Confirmation

Packet

Loss

Rate

Expected Result

CA09 SA06 Disable

MST

Yes 0 MST is disabled

CA10 SA07 Disable

MST

No 0 The MST keeps activated

and the test case is

finished

CA11 SA08 Disable

MST

N/A 1.0 Time out. The test case is

finished

CA12 SA09 Disable

MST

Yes 1.0 Time out and go back to

step 3

CA13 SA10 Disable

MST

N/A 1.0 Time out and go back to

step 2. Still have two more

chances of sending

confirmation

CAM SA 10 Disable

MST

N/A 1.0 Time out and go back to

step 2. Have one last

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chance of sending

confirmation

CA15 SA 10 Disable

MST

N/A 1.0 Time out and the test case

is finished

CA16 SA 10 Disable

MST

N/A 0 The wireless signal

changes to strong status at

the3rd sending request. The

user receives confirmation

message “Do you want to

disable MST?”. Go back

to step 3

CA17 SA 11 Disable

MST

Yes 1.0 Time out and go back to

step 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Appendix J: Test Cases of Use Case 3 - Where am I?

1. Basic Flow and Optional Flows

Step Basic Flow 1 (BF1) - User wants to know his/her current location.

1 User accesses “Directory Service”

- Select "Where am I" from the menu

2 Server sends a location request to the location management platform (LMP).

- The context simulator (CS) is used as LMP to provide user's location coordinate

(X,Y).

- Send "User ID", "Service Provider ID" to the CS for the location request

3 The CS validates the authorization of the user's location request from the service

provider.

4 The CS sends the user's location coordinate (X,Y) and timestamp to the Server.

- The timestamp is the time at which the object is positioned

5 Server validate the correctness of user’s location information from the CS.

6 Server forwards the location coordinate (X,Y) to the content provider.

- In reality, the location coordinate (X,Y) must be translated into the real address,

i.e. 10021 Jasper Ave., by third party content providers.

7 The content provider maps the location coordinate to the real address and sends it

back to the Server

8 Server forwards the location information and timestamp to the user.

9 User receives the location information and timestamp on the screen.

Optional Flow 1 (OF1) - Unauthorized location request at step 3

- The Server cannot pass the authorization of the user’s location request by the CS

because of incorrect “User ID” or “Service Provider ID”.

- The Sever receives one message from LMP - “Unauthorized user xxx’s location

request by Service Provide xxx”

- Go back to step 2.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Optional Flow 2 (OF2) - Invalid location information at step 5

- LMP sends incorrect location coordinate, i.e. latitude/timestamp is missed, to the

Server.

- The Server sends response message to the CS - “Invalid location coordinate” or

“Invalid timestamp”. Go back to step 4.

Optional Flow 3 (OF3) - Weak wireless signal when the user sends the request at

step 1

- The use request will be repeated for 3 times after time out and the request will be

discarded after 3 times repeat. The case is finished

Optional Flow 4 (OF4) - Weak wireless signal when the user receives the response

from the Server at step 9

- The flow will go back step 8, and the Server will repeat sending response information

until the user gets the message.

2. Test Scenarios

Test Scenario Flow

SA12 - Successfully locate the user and deliver the location

information to the user

BF1

SA13 - Unauthorized location request at step 3 BF1 OF1

SAM - Invalid location information at step 5 BF1 OF2

SA15 - Weak wireless signal when user sends directory service request BF1 OF3

SA16 - Weak wireless signal when user receives location response BF1 OF4

3. Test Cases

Test Test User User Serv Loca Timesta Pack Expected Result
Case Scenar Servic ID ice tion mp et

io e Prov Coor hh:mm:s Loss

Reque ider dinat s;MM/ Rate

St ID e DD/YY

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CA18 SA12 Where

am I

1201 168 (100,

200)

13:00:00

;07/03/2

005

0 User receives one

location information

“11015 Jasper Ave.,

Edmonton, at

13:00:00, July 3,

2005

CA19 SA13 Where

am I

1200 168 N/A N/A 0 Unauthorized user

1200’s location

request by service

provider 168.

Go back to step 2

CA20 SA13 Where

am I

1201 167 N/A N/A 0 Unauthorized user

1201 ’s location

request by service

provider 167.

Go back to step 2

CA21 SA14 Where

am I

1201 168 (null

,200)

13:00:00

;07/03/2

005

0 Invalid location

information.

Go back to step 4

CA22 SA14 Where

am I

1201 168 (200,

null)

13:00:00

;07/03/2

005

0 Invalid location

information.

Go back to step 4

CA23 SA14 Where

am I

1201 168 (null

,null

)

13:00:00

;07/03/2

005

0 Invalid location

information.

Go back to step 4

CA24 SA14 Where

am I

1201 168 (100,

200)

00:00;

07/03/20

05

0 Invalid timestamp.

Go back to step 4

CA25 SA14 Where

am I

1201 168 (100,

200)

13:00:00

;/03/200

5

0 Invalid timestamp.

Go back to step 4

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CA26 SA14 Where

am I

1201 168 (100,

200)

13:00:00

;07/03

0 Invalid timestamp.

Go back to step 4

CA27 SA14 Where

am I

1201 168 (100,

200)

25:00:00

;07/03/2

005

0 Invalid timestamp.

Go back to step 4

CA28 SA14 Where

am I

1201 168 (100,

200)

13:00:00

;15/03/2

005

0 Invalid timestamp.

Go back to step 4

CA29 SA14 Where

am I

1201 168 (100,

200)

null 0 Invalid timestamp.

Go back to step 4

CA30 SA15 Where

am I

N/A N/A N/A N/A 1 Time out. Still have

2 chances of sending

requests.

CA31 SA15 Where

am I

N/A N/A N/A N/A 1 Time out. Have one

last chance of

sending requests.

CA32 SA15 Where

am I

N/A N/A N/A N/A 1 Time out. The

request is discarded

after 3 times tries.

The test case is

finished

CA32 SA15 Where

am I

N/A N/A N/A N/A 0 The wireless signal

changes to strong

status at the3rd

sending request.

Goes back to step 2

CA33 SA16 Where

am I

1201 168 (100,

200)

13:00:00

;07/03/2

005

1 Time out. Server will

repeat step 8 to send

location information

to the user.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix K: SAML Authentication Assertion Request /

Response Messages

SAML Authentication Assertion Request Message

< s ami :AuthnRe quest RequestID—’128.14.234.20.12345678” MajorVersion="l"
MinorVersion="0" xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol">

< s ami: Authe nticationQuery >
<saml:Subject>

< s ami :Nam elde ntifi e r
S e curityD o main—’ S ervi ce.com”
Name=" joe user” />

</saml:Subject>
</s ami: Authe ntic atio nQ uery>

</s ami: AuthnRe que s t>

A SAML assertion is being requested pertaining to the supplied subject “joeuser”.

SAML Authentication Assertion Response Message

<sami:AuthnRespouse xmlns:samlp="urn:oasis:names:tc:SAML: 1.0protocol">
<saml:Status>

<Status Code Value =”samlp:Success'7>
</s ami: Status >
<saml: Assertion AssertionID=”128.9.167.32.12345678” MajorVersion—'l"

MinorVersion="0" Issuer="Serviee.com” Issuelnstant”2005-07-20T10:02:00Z”>
<saml:Conditions

NotRefore="2005-07-20Tl 0:02:00Z"
NotOnOrAfter=" 20 05-07 - 20T10:07:00Z "/>

</s ami: C o nditio ns >
< s ami: Authe nti c ati o nState me nt

Authe ntic atio nMe tho d=”p as swo rd”
Authe ntic atio nln stant=”2 00 5- 07 -20T10:02:00Z” >
<saml:Subject>

S e curityD o main=” S er vi c e. c o m”
Name=joeuser” />

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</saml:AuthnResponse>

The SAML response provides details as to the version of SAML being used and what

request it is responding to. Within the response is the SAML assertion and

authentication statement.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix L: Web Browser Single Sign-On Profile

Service Provider
(W eather.com)

Identity Provider
(Serviee.com)

Assertion
Consumer

Service

W

X %

Web Browser

The process is as follows:

1. The user will have been challenged to supply their credentials to the site Service.com.

2. The user successfully provides their credentials and has a security context with the

Identity Provider.

3. The user selects a menu option (or function) on the displayed screen that means the

user wants to access a service or application on another site Weather.com.

4. The SP sends a HTML form back to the browser. The HTML form contains a SAML

response along with a SAML assertion. Typically the HTML form will contain an input

or submit action that will result in a HTTP POST.

5. The browser, either due to a user action or via an “ auto-submit” , issues a HTTP

POST containing the SAML response to be sent to the Service provider's Assertion

Consumer service.

6. The SP's Assertion Consumer service validates the assertion on the SAML Response.

If assertion is correct, it sends a HTTP redirect to the browser causing it to access the

required service.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

