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Abstract. We consider the model of invasion prevention in a system of lakes that are connected
via traffic of recreational boats. It is shown that, in presence of an Allee effect, the general optimal
control problem can be reduced to a significantly simpler stationary optimization problem of optimal
invasion stopping. We consider possible values of model parameters for zebra mussels. The general
N -lake control problem has to be solved numerically, and we show a number of typical features of
solutions: distribution of control efforts in space and optimal stopping configurations related with the
clusters in lake connection structure.

1 Introduction

The problem of controlling invasive species is very important for many regions in the world [30].
Ecological and economic impact of these species has been analyzed in a number of publications, see
[24, 14] and references therein. Slowing down or stopping the invaders dispersal may reduce the
corresponding impact. In this paper we consider a related model problem of controlling aquatic
invaders.

For a number of invaders in the North America lakes, the major way of spreading is transportation
with boating and fishing equipment [11]. This immediately suggests a way to slow down or stop the
spreading by washing the equipment [22]. We assume that percentage of invader organisms killed
during treatment depends on the amount of money given for treatment of a single boat. To compare
treatment expenses with the losses due to invasion we can perform cost-benefit analysis. This brings
us into the framework of bioeconomics and economic problems of cost-benefits analysis and optimal
control [5, 21].

To set up a bioeconomics problem we need three basic components. First, we need a model for
the invader population within each lake. To keep model tractable, we assume that each lake has a
certain carrying capacity and, once the invader has been introduced in sufficient quantity, it grows
and eventually reaches maximum. Then the lake becomes invaded and is a source of the invader for
secondary invasions.
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Second, we need information about boat transfer between the lakes, which causes the invader flow
between the lakes. This can be described by the connectivity matrix, showing the intensity of the boat
exchange between the lakes. Often the connection matrix can be approximated by so-called gravity
models [27], which have been successfully applied to the problem of lake invasions by a number of
authors [3, 1, 17].

Third, we need a model of boat treatment at the checkpoints. In this paper we use one proposed
in [26]; with exponential dependence of the treatment efficiency on the finances allocated.

Note that complexity of the optimal control problem grows dramatically with the number of lakes.
Even with 3-5 lakes, its complete analysis becomes practically impossible. However, for ecosystem
valuation and determining the invasion costs infinite-horizon problems are often used [2, 21]. An
optimal solution for such problems should converge to a steady state [12]. If convergence to the steady
state is fast compared to the typical “discounting time” ρ−1

D (inverse of discounting rate), then the
steady state can contribute mostly to the overall cost/benefit analysis. This allows us to replace the
analysis of a general control problem by analysis of the steady states. It is reasonable to assume
that, under no control, all the lakes eventually are invaded, and there may be only two steady states,
uninvaded and fully invaded. The control may allow to stop the invader somewhere in the middle.
Then the problem of optimal controls becomes one of optimal invasion stopping.

Here we must note that the control cannot be perfect. Even if it were possible to make the number
of invaders spread by boats equal to zero, there may be other mechanisms of spread. For example,
zebra mussels can spread along with waterfowls with a very small probability [10]. Therefore the
problem of invasion stopping may be solvable only if there is a critical population size, or equivalently,
a critical invader flow, below which the invader population cannot establish. This means that there
must be Allee effect for the invader [6, 28, 29], and we shall consider the class of models satisfying this
condition.

The importance of Allee effect for spatio-temporal dynamics of biological invasions has been shown
in [16, 13, 8]. It appears that in presence of the effect the invasion front can move slower, stop, or
even reverse its direction. In the latter case the invader eventually goes extinct. Population dynamics
at the invasion front becomes a competition between local extinction and incoming migration from
the neighboring locations. For the invader to be able to spread, this migration flow must exceed a
certain minimum value. In the present paper we consider qualitatively similar situation with two
major differences: a) the invader migration flow is due to a human mediated transportation and 2)
there is a possibility to control this flow and make it smaller than the minimum value required for the
invader to spread.

The structure of the paper is the following. In Sections 2 to 5 we describe the model, and formulate
two major problems: determining optimal allocation of resources for the given set of invaded lakes,
and determining optimal set of invaded lakes where the invasion is to be stopped. These two problems
are considered in Sections 6 and 7. The appendix contains technical details, including derivation
of several formulas used in the main text, description of numerical techniques of solving the related
optimization problems, and estimates of the model parameters for zebra mussels from available data
in the literature.
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Figure 1: a) Typical form of F (p) for Allee dynamics; b) Rescaled function and argument, f(u) = F (Ku)/Fmax,

u = p/K.

2 The model

2.1 Individual lake dynamics and the Allee effect

For the invader population size p in a lake we use the classical differential equation population model
[28]

dp

dt
= F (p) +Win −Wout, (1)

where Win and Wout are the incoming and the outcoming flows respectively, and F has the form shown
in Fig. 1a. F (p) is negative below the Allee threshold pA and positive above it until the population
reaches its carrying capacity K. The exact functional form is not important for our analysis. However,
we shall assume that the following is satisfied:

• F (p) is differentiable for p ≥ 0;

• F (p) has three zeroes F (0) = F (pA) = F (K) = 0, 0 < pA < K, a minimum Fmin = F (pM ),
0 < pM < pA, and a maximum Fmax = F (pT ), pA < pT < K,

• F (p) is monotonic on all three intervals 0 ≤ p < pM , pM < p < pT , p > pT .

We denote Fmin = F (pM ) < 0 and Fmax = F (pT ) > 0. A typical example of such a function is
cubic polynomial

F (p) = Rp (p− pA)

(
1− p

K

)
(2)

with pT and pM given by the critical points

pT =
K + pA +

√
(K + pA)

2 − 3KpA

3
, pM =

K + pA −
√
(K + pA)

2 − 3KpA

3
=

KpA
3pT

.

If pA ≪ K, which is typically the case then

pT ≈ 2K

3
, pM ≈ 1

2
pA, Fmax ≈ 4

27
RK2.

For a system of N lakes each lake may have different carrying capacity Ki.
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2.2 Invader flow between lakes and gravity models

We consider a system of N lakes with trailer boat traffic between them. We assume each boat that
has been immersed into an invaded lake, and then has been transported to another lake, on average
can carry a certain number of invader organisms η. The actual number of invaders picked up at the
first lake is assumed to be proportional to relative invader density, that is to the proportion of the
carrying capacity

ui =
pi
Ki

.

For each pair of lakes we assume known the mean number of boats per unit time transported from
lake j to lake i, Tij . Then the flow of propagules from lake j to lake i is ηTijuj . It is convenient to
set Tii = 0, then the incoming flow for the lake i is

Win,i = η
N∑
j=1

Tijuj , (3)

and the outcoming flow is

Wout,i = η
N∑
j=1

Tjiui. (4)

In practice the coefficients Tij are difficult to measure, because for N lakes there are N (N − 1) /2
connections. However, it appears that in many economical and geographical problems the set of
connections between the nodes of a transportation network can be reasonably approximated by the
so-called gravity models [27], where it is assumed that

Tij = miMjϕ (dij) , i ̸= j, Tii = 0,

where mi characterize ”attractiveness” of a network node, Mi its repulsiveness, and dij is the distance
between nodes i and j. Then it is necessary to determine only 2N parameters mi, Mi, and usually a
few parameters related with ϕ (d). In most practical cases ϕ (d) is chosen to be either exponential

Tij = miMj exp (−βdij) , (5)

or power law,
Tij = miMj (dij/d0)

−γ . (6)

The specific choice of ϕ (d) depends on the data — how fast the flow decays with the distance.
Examples of extracting the gravity model coefficients from invasions data can be found in [3, 1, 17].

For the sake of simplicity, in numerical experiments below we assume that mi = Mi, and hence
the transportation matrix is symmetric, Tij = Tji.

2.3 Control of invader flows

To reduce the amount of the invader it is possible to wash boats at infected lakes after use, at uninfected
lakes before use, or both. The result of washing can be described by a factor between 0 and 1 that
shows how the number of propagules diminish after washing. Let the cost of washing one boat at the
lake i before boat use be si, and after boat use be xi. If cost equals zero, then there is no corresponding
boat processing. It is clear, that it is not reasonable e.g. to wash boats before usage at already invaded
lake, at least in case of a single invader. Nonetheless, to simplify notation it is convenient to consider
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both types of treatment at each lake. Below we shall see, that the optimal values of these redundant
costs is zero, since they do not influence the invader flows.

The cost of washing may depend on its duration, or on the amount of the disinfectant used and
so forth. We assume that the proportional reduction of carried invader organisms is related to the
expenses as exp (−κxi) or exp (−κsi) respectively [26]. The exponential dependence has been chosen
because the result of two successive independent washings with costs xia and xib is equivalents to a
single treatment with the cost xia + xib. The amount of the propagules transported by one boat from
lake j to lake i after the washing diminishes from η to η exp (−κxj − κsi), and the incoming flow for
the lake i becomes Win,i = η

∑
j e

−κsiTije
−κxjuj .

We assume that at the washing checkpoints it may be hard to distinguish boats travelling from
invaded to uninvaded lakes from all other boats, and therefore it is necessary to process all boats
departing from or arriving to a certain lake. However, the overall traffic from invaded to uninvaded
lakes we assume known. This allows us to estimate the necessary intensity of boats treatment.

Let us denote the number of boats arriving per unit time at lake i by Ai, and the number of boats
leaving lake i per unit time by Di,

Ai =
N∑
j=1

Tij , Di =
N∑
j=1

Tji.

Therefore the total control cost per unit time at lake i is Dixi +Aisi.

2.4 The optimal control problem

Bioeconomic analysis uses either maximization of total present benefits or minimization of present
costs. In our case we assume that uninvaded lakes are the sources of benefits, and the invader reduces
the amount of these benefits, or produces negative benefits, or losses. We denote the losses per unit
time at fully invaded lake i by gi. For partially invaded lake (pi < Ki) we assume that the losses are
gipi/Ki. The control costs are introduced in the previous section, hence total cost per time for the
whole lake system is

E (t) =
N∑
i=1

(
pi (t)

Ki
gi +Aisi (t) +Dixi (t)

)
. (7)

Finally we come to an optimal control problem: find functions xi (t), si (t), which minimize the
total discounted cost

J =

∫ ∞

0
e−ρDtE (t) dt, (8)

where ρD is the discount rate, and pi (t) = Kiui (t) satisfy

dpi
dt

= F (pi) + η

e−κxi

N∑
j=1

Tije
−κxj

pj
Kj

−Di
pi
Ki


3 Nondimensionalized model

It is more convenient to study a nondimensional model. Typically it contains only a few dimension-
less parameters, that are combinations of the original dimensional ones. Some of the dimensionless
parameters may appear to be very small or very large, which also simplifies the studies.
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Let us introduce two parameters, the maximum possible invader flow within the whole lake system
Wmax and the total boat traffic within the lake system Ttot,

Ttot =
N∑

i,j=1

Tij , Wmax = ηTtot, (9)

We expect that the flow will be small compared to the maximum possible growth rate Fmax. Based
on scalings we introduce a small parameter

ϵ =
Wmax

Fmax
.

Another small parameter arises from considering time scales. The ecological part of our bioeconomic
model, which we now consider, has its characteristic time scale related to carrying capacity and the
maximum growth rate: tK = K/Fmax. However, our problem has two other time scales. One is
tY = 1year, which is typical time scale for lifetime of many invaders and also a natural time unit in
economical and financial applications. The other is tD = ρ−1

D , the inverse of the discount rate, which
shows, how far into the future our planning of control and optimization extends. As we shall see
below, a typical case is tK ≪ tY ≪ tD, and hence there is a small dimensionless parameter given by

δ =
tK
tY

=
K

tY Fmax
.

We need to use the same time scale both in ecological and bioeconomic part of our model, and we
choose it to be tY .

Population dynamics. We nondimensionalize (1) taking for the new variable the population in
proportion to carrying capacity u = p/K, rescaling F and introducing f (u) = F (Ku) /Fmax, and
introducing dimensionless time t′ = t/tY relative to the scale tY . This yields

δ
du

dt′
= f (u) + ϵ (win − wout) , (10)

where win = Win/Wmax, and wout = Wout/Wmax. The new nonlinear function f (u) has maximum
fmax = 1 at u = uT = pT /K, a minimum fmin at u = uM = pM/K, and zeroes at u = 0, uA, and 1,
where uA = pA/K, Fig. 1b. As described above, we assume uA ≪ 1, which allows us to simplify some
expressions. For example, in case of cubic function F (p) (2) we obtain

f (u) =
27

4
u (u− uA) (1− u) , uM ≈ 1

2
uA, uT ≈ 2

3
, fmin ≈ −27

16
u2A.

Since K may be different for each lake, small parameters ϵ and δ also may vary with the lake.
However, in the subsequent analysis it is important that they are small, while specific value is not
important. To simplify considerations, we shall assume these parameters equal for each lake. However,
all formulas can easily be generalized for the case of lake-dependent parameters.

Invader flow. Defining the dimensionless flow rates

τij =
Tijη

Wmax
=

Tij

Ttot
,
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we observe from (9) that
∑

ij τij = 1 and hence 0 ≤ τij < 1. Thus τij is interpreted as the proportion
of the total possible flow between lakes that goes from lake i to lake j. Now the expressions for
normalized flows are

win =
N∑
j=1

τijuj , wout =
N∑
j=1

τjiui. (11)

Control and costs. The natural scale for the control expenses per boat x, s is the control efficiency
κ, therefore it is convenient to introduce dimensionless costs

x′ = κx, s′ = κs.

The flows of arriving and departing boats we normalize by the total boat traffic Ttot, then

ai =
N∑
j=1

τij , di =
N∑
j=1

τji, Ai = Ttotai, Di = Ttotdi.

Then

E =
N∑
i=1

(
uigi +

Ttot

κ
ais

′
i +

Ttot

κ
dixi

)
= E0

N∑
i=1

(
uig

′
i + ais

′
i + dix

′
i

)
, (12)

where E0 = κ−1Ttot is the loss rate scale factor and g′i = κgiT
−1
tot are the dimensionless losses at lake i.

Finally, in the integral (8) we need to make a change to dimensionless time t′ = t/tY , which introduces
financial scale for total costs J0 and dimensionless discounting factor ρ,

J0 = TtottY κ
−1, ρ = ρDtY .

If we introduce E′ = E/E0 and J ′ = J/J0, this does not change the conditions for the minimum of
total discounted costs.

The dimensionless problem. Eventually we come to the following dimensionless optimal control
problem: find x′i (t

′) and s′i (t
′) that minimize

J ′ =

∫ ∞

0
e−ρt′E′ (t′) dt′, E′ (t′) = N∑

i=1

(
uig

′
i + ais

′
i + dix

′
i

)
, (13)

where ui (t) satisfy

δ
dui
dt′

= f (ui) + ϵ

∑
j

e−s′iτije
−x′

juj − uidi

 ≡ Φi
(
u,x′, s′

)
. (14)

Below we omit primes for brevity.

4 Critical flow

We start analysis of the model (10) by observing that, provided ϵ (win − wout) is sufficiently small and
the initial lake population is also small, then the invader population in the lake will remain small (see
also [13]).

Proposition 1. 1) If the net invader flow ϵw, w = win − wout, is smaller than the maximum rate
of population decline |fmin|, and the population level is initially small, u (0) < uM , then the invader
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population u (t) remains below uM for all t > 0. 2) If the net invader flow is large enough, ϵw > |fmin|,
the lake will eventually be invaded regardless of the size of initial invader population.

Proof. 1) The proof relies on the fact that u (t) is a solution of an ordinary differential equation
with bounded right hand side, and hence has to be a continuous function. Let us assume that for
some t2 u (t2) > uM . Since u (0) < uM , due to continuity there has to be a moment when u (t) takes
the value uM and is increasing. That is there must be such t1 that u (t1) = uM and du/dt (t1) ≥ 0.
On the other hand

δ
du

dt
(t1) = f (uM ) + ϵw = − |fmin|+ ϵw < 0.

Hence such t1 cannot exist, and this contradiction proves that u (t) < uM for all t > 0.
2) Now let us consider the second part of the proposition. According to the condition ϵw > |fmin|,

there exists positive constant c = min0≤u≤1 (f (u) + ϵw) > 0. Then

δ
du

dt
= f (u) + ϵw ≥ c > 0, u (0) ≥ 0.

Using the properties of definite integral, and assuming that we consider t such that u (t) ≤ 1,

δ (u (t)− u (0)) = δ

∫ t

0

du

dα
dα ≥

∫ t

0
cdα = ct, 1 ≥ u (t) ≥ u (0) +

ct

δ
. (15)

Therefore, at some moment t3 ≤ δ/c there must be u (t3) = 1, and hence the lake will be fully invaded.
Note that when u > 1 f (u) may take values less than fmin, and we cannot extend our analysis for u
greater than 1. ♢

Proposition 1 shows that the value |fmin| plays critical role in the invasion process under Allee
effect. For this reason let us introduce normalized critical flow or critical invader traffic

τ0 =
|fmin|
ϵ

. (16)

Then w = win − wout > τ0 guarantees invasion.
If we substitute explicit expressions for the invader flow into the condition ϵ (win,i − wout,i) <

|fmin| = ϵτ0, which guarantees the absence of invasion for the lake i, we obtain∑
j

e−siτije
−xjuj − ui

∑
j

τji < τ0, ui < uA. (17)

Note that in case
∑

j e
−siτije

−xjuj − uA
∑

j τji > τ0, when inequality sign in (17) is reversed, the lake
i will eventually be invaded.

To obtain the critical flow in terms of arriving boats per year, we have to multiply τ0 by Ttot,

T0 = τ0Ttot, (18)

In [1] this has been called ”colonization threshold”. It is natural to assume that this value has to be
the same for all lakes.

Estimates of the model parameters for one of harmful aquatic invader are shown in Table 1; see
the Appendix for details.
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Table 1. Estimates of the model parameters for zebra mussels, see Appendix for details

parameter description estimate for zebra mussels

K carrying capacity 109

Fmax maximum growth rate 1012year−1

tK = K/Fmax characteristic time of growth 3× 10−4year
δ = tK/tY time factor 3× 10−4

uA Allee threshold 10−7

Ttot total boat traffic 105

T0 invasion threshold 850 boats/year
τ0 critical flow < 10−2

ϵ flow factor 10−8

κ control efficiency 1boat/$
ρD discount rate ∼ 0.05year−1

g scale for industrial losses 105$/lake/year

5 Bioeconomic analysis and steady states

5.1 Dynamic optimal control task

The standard way to solve the above minimization problem is to use Pontryagin maximum principle
[25]. It is convenient to use vector notation. Let us denote by u, x, s vectors of the lake state and
controls respectively. In this notation (14) can be written as

du

dt
= δ−1Φ(u,x, s) .

Now we introduce the vector of adjoint variables or shadow prices µ =(µ1, . . . , µN ), and the Hamilto-
nian

H = −E (t) + δ−1 (µ · Φ) .
According to the maximum principle, µ should satisfy

dµ

dt
= ρµ−∇uH = ρµ+ g − δ−1∇u (µ · Φ) .

The optimal controls xi, si are ones that maximize H at each moment of time.
General solution of this optimal control problem is complicated. However, it is known that for

infinite horizon problems the solution must end at a steady state [12], which often is a fixed point [4];
that is for t → ∞ du/dt → 0, dµ/dt → 0, and hence u → u∗, x → x∗, s → s∗. The controls xi and si
also tend to some constant values.

The dynamics then consists of a transient period tTr, during which the state and controls converge
to the stationary values, and asymptotic period, during which u ≈ u∗, x ≈ x∗, s ≈ s∗. Therefore

J = JTr + J∞ =

∫ tTr

0
e−ρtE (t) dt+

∫ ∞

tTr

e−ρtE (t) dt ≈ JTr + E∗ρ
−1e−ρtTr .

Below we shall assume that control can prevent invasions from the invaded lakes (u close to 1)
to uninvaded ones (u < uM ). Then there should be no long transients in the system, related to long
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establishment period for flows close to critical one τ0. Uninvaded lakes can be considered as already
being in the asymptotic states. For the invaded lakes the dynamics practically does not depend on
control and external flows, it is determined by f (u), which is of the order 1. Therefore the transient
time tTr ∼ δ, and hence

J ≈ O (δ) + E∗ρ
−1e−ρtTr ≈ E∗ρ

−1

provided δ ≪ ρ−1. As we have stated in the previous section, it is reasonable to assume that δ is a
small parameter, so this assumption holds. Then minimization of J can be approximately replaced
by minimization of E∗ with respect to the choice of u∗, x∗, s∗. That is, we replace dynamic optimal
control problem by a static one.

Figure 2: When the incoming flow is small, the equation f(u) + ϵw has three roots, uZ < uM , uM < uU < uA,

and uI > 1. uZ and uI are stable and correspond to uninvaded and invaded steady state. uU is unstable. When the

incoming flow increases, uZ and uU merge at uM and disappear. Only uI remains, and invasion becomes inevitable.

5.2 Simplification: static optimal control task

Instead of solving the dynamic optimal control problem, we can solve a static control problem, that is
to assume that ui, xi, and si do not depend on time, and to find their values that minimize E under
condition that dui/dt = 0. This allows us to replace the search for minimum of functional J under
differential constraints by searching minimum of a function under usual algebraic constraints. The
latter problem is much simpler than the time-dependent one.

In the absence of external flows the equation δdu/dt = f (u) = 0 has three roots. The same
situation remains when the external flow w = ϵ (win − wout) > 0 is small, see Fig. 2. There are
also three roots, uZ , uU , uI , 0 < uZ < uM , uM < uU < uA, uI > 1. The root uU is unstable,
and we shall not consider it. The roots uZ and uI correspond to uninvaded and invaded state of the
lake respectively. When the incoming flow exceeds critical value |fmin| = ϵτ0, the roots uZ and uU
disappear, and only the invaded steady state remains.

The form for f (u) means that uZ ≈ 0 and uI ≈ 1. Specifically, |f ′ (1)| being of order 1 means
that uI = 1 + O (ϵ), and we know that uZ < uA, which is small. We also can neglect the outcoming
flow and set wout = 0. For invaded lakes with u = uI both win and wout are not important because
they can only introduce perturbations to uI of the order ϵ. For uninvaded lakes, when u = uZ ≪ 1,
the outcoming flow wout ∼ uZ is negligible compared to the incoming flow from the invaded lakes.
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Substituting the expression (11) for win into the condition of Proposition 1 for invader flow
ϵ (win − wout) < |fmin| = ϵτ0 and neglecting wout we obtain the condition on the incoming boat
traffic for an uninvaded lake i:

N∑
j=1

e−siτije
−xjuj ≤ τ0. (19)

After these simplifications we come to the following problem.
Static optimal control problem. Find the optimal lake system configuration {ui} and the value

of controls at each lake {xi, si} that minimize E (13) under the following constraints:
1) For each lake either ui = 1, or ui = 0 and (19) holds. Both cases can be combined in a single

formula

(1− ui)
N∑
j=1

e−siτije
−xjuj ≤ τ0, i = 1, . . . , N ; (20)

2) For the originally invaded lakes ui = 1;
3) xi ≥ 0, si ≥ 0, i = 1, . . . , N .
It is convenient to split it into two subproblems:
Problem 1 (Optimal control allocation in space for a given configuration of lakes). Let us set

up a certain configuration of invaded and uninvaded lakes U = {u1, . . . , uN}, where each ui = 0 or 1,
according to conditions 1 and 2. For this configuration U find xi, si minimizing the control costs

EC (U) = min
x,s

N∑
i=1

(aisi + dixi) (21)

under constraints 1 and 3.
Problem 2 (Optimal stopping configuration). Among all configurations U satisfying the con-

straint 2 find one which minimizes

Emin = min
U

(
EC (U) +

N∑
i=1

uigi

)
. (22)

The configuration U giving minimum to (22) and the respective xi, si are the solution to the full
problem. The proof is straightforward: if we assume the opposite, we obtain a contradiction.

The relation (20) immediately allows us to obtain the following statement.
Proposition 2. At the invaded lakes optimal si = 0, at the uninvaded lakes optimal xi = 0. (As

we have mentioned above, this proposition is intuitively obvious: it is useless to prevent invader flow
into already invaded lakes, as well as to process boats after use in an uninvaded lake.)

Proof. Since for the uninvaded lakes ui = 0, the corresponding xi do not appear in the conditions
(20). Therefore, for these x values we have minimum in (21) only under non-negativity constraint,
which is xi = 0. Similarly, for the invaded lakes uk = 1, there are no conditions (20), hence for the
corresponding sk also minimum is reached at sk = 0. ♢

6 Optimal control allocation for fixed configuration of invaded lakes
(Problem 1)

The numerical technique for solving optimization problem with inequality constraints is described in
Appendix. The algorithm is quite fast, and the problem can be solved for very big lake systems. Below
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there is example for a system of 1600 lakes. The actual pattern of spatial control allocation depends
on many factors, such as the lake system structure, configuration of the invaded part, dependency of
the connections τij on distance. To demonstrate the major features of the solution we present results
for several model situations.

We consider a number of identical lakes located at the nodes of one- or two-dimensional lattice.
This demonstrates the features more clearly, without random distortions. We assume that invaded and
uninvaded lakes are separated by a certain boundary, that is they do not alternate. The connection
strength has been chosen according to the gravity models (6) and (5). The parameters of the gravity
models have been chosen mi = m = 0.3, T0 = 10−3, β = 0.5, d0 = 1, γ = 2.

0 10 20 30
0.0

1.0

2.0

3.0

a)
0 10 20 30

0.0
0.5
1.0
1.5
2.0
2.5

b)

Figure 3: Examples of optimal control allocation in space for the system of linearly ordered lakes and connections

Tij for a) exponential gravity model (5), b) power-law gravity model (5). See section 6 for parameters and details.

In the first example N = 40 lakes were located at the same distance h = 1 from each other along
the line. This gives τ0 = 9.2 × 10−5 for power gravity model and τ0 = 9.6 × 10−5 for exponential
gravity model respectively. Examples of optimal distribution of control in space for one-dimensional
lake systems are shown in Fig. 3. The left half of the lakes with the coordinates ri < 20 (to the left
of the dashed line) are invaded, so for r < 20 x ≥ 0, s = 0, and for r ≥ 20 x = 0, s ≥ 0. Thick and
thin lines show xi and si for each lake respectively. Panels show the result for exponential (a) and
power-law (b) gravity model. One can see that the intensity of control monotonically decreases with
the distance from the invasion boundary. The size of this control region depends on the rate of decay
of traffic with the distance. For the same maximum intensity m2 exponential model gives significantly
smaller size of the region.

Examples for controlling two-dimensional grids of lakes of the size 20× 20 and 40× 40 are shown
in Fig. 4 and Fig. 5 respectively. The lakes are located in the points of regular grid with step 1.
Invaded lakes are shown as dark circles, uninvaded — as light circles, and relative intensity of control
at each lake is shown by the area of the overlaying square.

Fig. 4 shows the same feature as one-dimensional distribution — the most intense control is
at the invasion front, and it decreases with the distance from the front. However, two-dimensional
distribution brings one new component, the shape of the invaded region. When the interface boundary
between invaded and uninvaded regions is not straight (panels a, d) then the control concentrates in
convex part with the smaller area, while in the concave one the control is comparatively small. When
the configurations of invaded and uninvaded lakes are symmetric (panel b), the control is close to
symmetric as well. However, small deviation from symmetry (panel c), because the lakes at the
diagonal are invaded, makes control visibly dominating within the smaller area.

Fig. 5 shows an example of a very large lake system of 1600 lakes, for which the optimal spatial
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a) c)

b) d)

Figure 4: Examples of optimal control allocation in space for identical lakes forming 20 × 20 lattice. Parameters

are the same as in Fig. 3. The connections are formed according to exponential gravity model (5). The invaded

lakes are shown as dark circles, the uninvaded lakes as light circles, the area of squares is proportional to intensity of

control at the given lake. See section 6 for details.

a) b)

Figure 5: Examples of optimal control allocation in space for identical lakes forming 40 × 40 lattice. Parameters

and notation are the same as in Fig. 4. The proportion of invaded lakes is the same as in Fig. 4a, however the

size of the invaded region is greater, and curvature of the interface boundary is smaller. The connections are formed

according to (a) exponential gravity model, same as as in Fig 4a, and (b) power-law gravity model. See section 6 for

details.
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control allocation can be obtained. Here the proportion of the invaded lakes is the same as in Fig.
4a, but size of the invaded region is greater, and the curvature of the interface boundary is smaller.
This example also shows, how the optimal control distribution is influenced by spatial dependency of
the boat travel intensity on the distance. For exponential dependency, when only local contacts are
intense, the control is localized in the vicinity of the boundary. In case of power-law dependency it is
necessary to control the bigger area, especially in the invaded region.

7 Optimal stopping configuration (Problem 2): lake clusters.

7.1 Configurations along most probable invasion path

To find the optimal configuration for invasion stopping we need to vary both the number of invaded
lakes and the location of invaded lakes within the lake system. This makes analysis of all possible
invasion configurations U a complicated task, because the number of configurations grows with N as
2N , and for each configuration it is necessary to solve an optimization problem. If we assume that
106 is the maximum number of configurations that can be analyzed in practice, then direct searching
through all possible configurations is limited by cases of N < 20.

However, different configurations arise with different probabilities in course of invasion develop-
ment. Studies of invasion histories show that the invader usually spreads along directions of the most
active traffic from the invaded lakes [3, 1, 17], that is along connections with the biggest τij . Usually
the number of such most probable invasion paths is much smaller than the total number of possi-
ble configurations. Therefore, it seems reasonable to study only configurations along these paths: it
simplifies the task considerably and at the same time must cover all important configurations.

The idea to look at the sequences of configurations instead of analyzing each configuration sep-
arately has one almost obvious consequence. Suppose that the connection matrix τij describes a
clustered system of lakes. Namely, there are groups of lakes such that connections inside each group
are significantly stronger than those between the lakes from different groups. In this case a typical
invasion path is as follows: first invasion spreads within one group, then it jumps to another group and
spreads within it, and so on. Since connections between the lakes in a group are strong, we can expect
that stopping the invasion within the group should require more resources than preventing invasion
spread between weakly connected clusters. Below we present two simple models that illustrate this
idea, and show a simple criterion, when it may be optimal to abandon partially invaded group and
switch to protecting other groups.

7.2 Two simple examples

7.2.1 Unstructured lake system (Model U)

We consider a uniform system of N lakes (Fig. 6a). Each lake is identical and connected to each
other with the same strength; that is τii = 0, τij = T , di = di = a = (N − 1)T , with the losses per
lake gi = g. We assume that T > τ0, and under no control all the lakes become invaded. Solution of
this problem is presented in Appendix, and the total cost of stopping the invasion when M lakes are
invaded is

E (M) = min {M,N −M} a ln
(
MT

τ0

)
+Mg.
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a) b)

Figure 6: Configurations of identical lakes used in examples on optimal spatial stopping configuration. Circles show

lakes, lines — nonzero connections between them. a) N lakes connected to each other with the same connectivity

T . b) N = N1 +N2 lakes forming two clusters; all nonzero connections are equal T .

a)

g < g*

b)

c)

Figure 7: Total cost of invasion stopping after M lakes being invaded for configurations in Fig. 6a (panels a, b)

and b (panel c). a)Invasion losses per lake are greater than the critical value g∗, optimal is to stop at the current

M value for any M . b) same lakes configuration, but g < g∗. There is a critial value M∗ above which optimal is no

control at all; c) There are two clusters of lakes and small invasion losses, invasion of each clusters produces pattern

similar to panel (b). There are two critical values, M1∗ and M2∗, corresponding to the beginning of invasion of each

cluster.
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Optimal M corresponds to the minimum of E (M) for M ≥ M0, where M0 is the number of originally
invaded lakes. There is a critical losses value

g∗ = a ln

(
(N − 1)T

τ0

)
.

One can observe a qualitative difference in the behavior of E (M) for g < g∗ and g ≥ g∗: in the former
case there is an internal maximum of E (M) for some 0 < M < N , while in the latter case maximum
of E (M) is reached at M = N , see Fig. 7. Therefore we obtain solution for the optimal invasion
stopping problem.

a) If the invasion losses are big, g ≥ g∗, try to stop the invasion at the current M = M0 for any
M0.

b) If the invasion losses are small, g < g∗, there exists a critical invasion level M∗, such that
E (M∗) = E (N), see Fig. 7. If M0 < M∗, stop the invasion at M = M0, otherwise the optimal policy
is no control at all.

7.2.2 Clustered lake system (Model C)

We consider another system of identical lakes (Fig. 6b). All connections have the same strength T ,
but they form two clusters, containing N1 and N2 lakes respectively, and only one connection between
the clusters. Let us denote the clusters by C1 and C2, the lake in C1 that is connected to C2 by L1,
and the lake in C2 that is connected to C1 by L2. Within each cluster all lakes are interconnected
like in the previous example, that is all lakes in C1 except L1 have N1 connections, L1 has N1 + 1
connection, all lakes in C2 besides L2 have N2 connections, L2 has N2+1 connections. In other words,
there is a single “bridge” connection between the clusters. If one of the clusters is invaded, the only
way for the invader to invade the second cluster is through this bridge.

Let us consider the following invasion scenario:
1) one lake in the cluster C1 is invaded;
2) the invasion spreads inside C1, and the last invaded lake is L1;
3) the invasion jumps to the lake L2 in the second cluster C2;
4) the invasion spreads within C2.
At each stage we estimate the control costs and total cost of invasion stopping.
The calculations of the stopping costs again can be found in the Appendix. The important dif-

ference with the previous case is that pure control costs (without accounting for the losses g) have a
minimum at M = N1, when the invasion jumps from one cluster to the other, and only one connection
has to be controlled. If g is small enough, then E (M) has a minimum too.

The existence of this minimum implies that there are two critical invasion levels, M1∗ and M2∗,
see Fig. 7c. Then the optimal control rules are: if M0 < M1∗, then stop the invasion at M0, otherwise
retreat from the first cluster and protect the second one from the invader. If the second cluster is
invaded, then stop if M < M2∗, otherwise do nothing.

If there are a number clusters, then there may be several critical values, depending on gi and on
actual structure of connections.

7.3 Model random configurations of lakes

For the next step we used a more complicated model. We generated two lake systems, containing
N = 50 lakes of two sizes: many small lakes and a few big ones with 4 times bigger size. The
connections between lakes were proportional to the product of their sizes, and the losses at each lake
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were proportional to its size. The lakes are located randomly, either as a single cluster, or four spatially
separated clusters. One of the lakes has been chosen for the invader source. The subsequent invader
spread has been random, but the probability to invade next lake was proportional to the total invader
flow into the lake. Figure 8 shows the schemes of lakes allocation, one example invasion path, and
cost of invasion stopping at each stage for 10 different paths.
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Figure 8: Model configuration of 50 different lakes randomly located without (a,c) and with (b,d) spatial clustering.

Panels a and b show cots of invasion stopping after M lakes have been invaded along 10 probable invasion paths for

configurations. Panels c and d show the relative lake size and location, the first invaded lake (empty circle), and one

of the probable invasion paths.

The effect of spatial clustering is quite obvious, there is similarity between Fig. 8b and Fig. 7c.
Therefore, like in the simple model, it is more efficient to stop invader between the clusters.

Splitting of a lake system into clusters may also help to make the problem of optimal invasion
stopping tractable. First, one can consider the clusters as bigger units, and solve the stopping problem
for them. After the cluster configuration has been selected, the accurate solution can be obtained.
This may be a way to find a practical solution reasonably close to the optimum and in a reasonable
time.

8 Conclusion

The main results of the paper are the following.
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• We have derived the model for invasion spread and control in a lake system, and formulated the
optimal control problem (Sect. 2 and 3). We present estimates of the model parameters for a
harmful aquatic invader, zebra mussel (Appendix).

• Basing on the properties of infinite horizon optimal control problems and the existence of the
critical flow in presence of Allee effect (Sect. 4), we have derived the constraint optimization
problem for optimal invasion stopping (Sect. 5). The latter splits into problem of optimal spatial
resource allocation for given configuraton of invaded lakes (problem 1) and problem of optimal
invasion stopping or choice of optimal stopping configuration (problem 2).

• For problem 1 we developed an efficient numerical algorithm and applied it to a number of model
lake configurations. The most intensive control is required at the boundary between invaded and
uninvaded lakes. Spatial control allocation strongly depends on decay of boat transportation
intensity with the distance between the lakes (Sect. 6).

• The complexity of problem 2 exponentially grows with the number of lakes, and for big lake
systems it cannot be solved exactly. However, if the lakes form clusters, then the boundaries
between clusters can be optimal places for stopping the invasion. As model examples show,
if several lakes within a cluster are invaded, it may be better to abandon the cluster and to
concentrate on prevention of invasion of other clusters. (Sect. 7).

The last point is in a good agreement with the 100-th meridian initiative [18] related with pre-
venting spread of Zebra mussels to the basins of major western rivers in US. The eastern and some
central rivers and lakes are already highly invaded. Due to Rocky Mountains, the connections between
Eastern and Western water systems are weak, and prevention of zebra mussels invasion spread into
the west appears to be the optimal strategy.
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9 Appendix

9.1 Characteristic parameter values: zebra mussels as an example

The model described involves a number of parameters. Their exact values may depend on specific
situations. However we consider some typical values for a typical aquatic invader that spreads with
the boat traffic and has Allee effect, the zebra mussel (ZM) [15] (Table 1).

Zebra mussels are small mussels with characteristic stripes on the shell [20]. Mean adult size is
about 2cm. They live on hard substrate in relatively warm water mainly at the depths not exceeding
10m. In many aquatic systems of Europe and North America they settle in huge numbers, causing
negative or even damaging consequences to industry and aquatic ecosystems. They clog water intakes
and water processing facilities. When foraging they intensively filter water diminishing the amount
of plankton and increasing the transparency of water. Both these effects cause strong perturbations
for the ecosystems. Each female can produce up to 50000 offsprings, so quite soon after population
establishment the mussels cover practically all suitable surfaces. They can colonize shells of other
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mussels causing their death of starvation, boats and ships immersed in the water for a long time,
macrophytes and so on. And there are no predators, which are able to control their populations in
efficient way. We attempt to determine parameters of our model for ZM using available data in the
literature.

Carrying capacity K. It depends on the proportion of hard substrate at the lake bottom at the
depths of several meters. Densities of ZM colonies at optimal conditions in the literature vary from
∼ 104 to ∼ 106 per square meter [20]. Characteristic size of a lake which is of interest for boating
and fishing is ∼ 103m, and its area ∼ 106m2. Assuming that only 10% of the bottom is suitable, we
obtain K ∼ 109.

Maximum growth rate Fmax. The actual function form of F (p) for zebra mussels is unknown,
so we try to estimate this value indirectly with the help of available physiological data and typical
models of population growth. We approximate

Fmax = F (pT ) ≈ max
p

(
F (p)

p

)
pT ,

which is estimated from data by

max

(
∆p/p

∆t

)
K

2
,

where ∆p/p
∆t is the maximum per capita growth rate estimated from the literature, and pT ≈ K/2 is a

good approximation of the population size with maximum growth rate for most common population
models. However, even if one takes pT = 0.01K, the main conclusions remain the same.

Zebra mussels on average maturate during one year, adults spawn up to 4 time a year [20]. Average
lifetime is 2-3 years. Therefore it is natural to analyze population increase during one mussel lifetime,
and take ∆t = 3years.

∆p/p in this case gives maximum possible number of offspring produced by one adult. It is
known that on average one female produces ∼ 5 × 104 eggs. The gametes are released into water,
where fertilization occurs. There are no estimates of fertilization efficiency in nature. Since 100%
intersection of the gamete clouds is practically impossible, we assume that about 50% of eggs are
fertilized. Mortality during larval stage is small, while during settlement it varies strongly, because
survival depends on suitability of the bottom where settling occurs. We assumed 10% of bottom
is suitable, which gives ∼90% mortality during settling. Then one spawning results in about 2500
offsprings. In 3 years we may expect 8 spawning events, so we may take ∆p/p ∼ 2 × 104. During
the same period all preexisting mussels must die, which gives mortality correction for (∆p/p)µ = −1,
which is negligible compared to the number of new mussels.

Combining these values we obtain

Fmax ∼ 2× 104

3
× 1

2
×K ∼ 1012 year−1

Characteristic time tK and parameter δ.

tK = K/Fmax ∼ 3× 10−4 year

which gives
δ = K/ (tY Fmax) ∼ 3× 10−4, tY = 1year.

Colonization threshold T0 has been estimated in [1] as

T0 = 850 boats/year.
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Allee threshold uA. The Allee effect arises because the mussels reproduce sexually, males and
females release gametes into the water where fertilization goes on. Since mussels cannot move, to
reproduce successfully they must be located close enough to each other [23]. Therefore, the critical
population size depends not only on the number of individuals, but on their location as well. There
may be situations, when two mussels located closely start a new population, and when several hundred
evenly distributed over the lake go extinct. However, such extreme cases have a little probability, and
we need a ”typical” estimate. It seems natural to base upon the flow of mussels transported by boats.
It is known, that the main way of spread is transportation of macrophytes with several attached
mussels [11]. It has been estimated that about 1% of trailers carry weeds with mussels. Other source
give estimate of average 2.2 mussels per macrophyte, however in a different situation [9]. Taking a
critical flow T0 ∼ 103boats/year, we obtain that each year about 20 mussels must arrive. Assuming
that arriving adults can survive for two years, we come to a typical size of population, which may
start to grow: pA ≈ 40–50 individuals, or more roughly pA ∼ 102.

Flow factor ϵ. Using simultaneously expressions for τ0 (16) and (18) we can write

τ0 =
T0

Ttot
=

|fmin|
ϵ

=
1

ϵ

|Fmin|
Fmax

or

ϵ =
|Fmin|
Fmax

Ttot

T0
.

The estimates for Fmax ≈ 1012year−1 and T0 ≈ 103 boat/year have already been given above. The
rough estimate for Fmin can be made from pA and life duration for zebra mussels. If we take a small
population of the size near pM < pA ∼ 102, it will die out during 1–3 years, which gives upper
estimate for |Fmin| ∼ 102. The hardest problem is to estimate the total boat traffic. According to
[3, 1, 17], in Wisconsin there are 58000 registered boaters, however only about 10% of boaters do
long travels, including transfers of the boat from lake to lake. Each boater can make several travels
per year, and lake system can cover several states, so eventually it seems reasonable to estimate
Ttot ∼ 105boats/year, and in case of Wisconsin lake system one obtains

ϵ ∼ 102

1012
105

103
= 10−8 ≪ 1.

The estimate remains small even if we increase Ttot and |Fmin| 10 times each. ϵ seems to be very small,
however, the estimate for |fmin|, which is responsible for the possibility of invasion, appears to be even
smaller,

|fmin| =
|Fmin|
Fmax

∼ 102

1012
= 10−10.

Critical traffic τ0. Using estimates for colonization threshold T0 and total boat traffic Ttot we
obtain dimensionless colonization threshold

τ0 = T0/Ttot ≈ 10−2.

However, numerical experiments show, that for a lake system with the number of lakes N > 10
typically all or almost all τij < 10−2, and invasion spread becomes impossible. Typical τ0 values
resulting in a spatially distributed control structure is of the order 10−4 or even less. We can conclude
that either our estimate of Ttot may need correction, or the estimate of T0 corresponds to flows that
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significantly exceed τ0 because for smaller flows establishment time becomes too big. This question
may need further research.

Bioeconomic parameters include discount rate ρD, losses per year for each lake gi, and the
control efficiency κ. There are no exact data on the latter two parameters, so we tried to make
estimates from available data.

Typical value of ρD ∼ 0.05year−1. Since tY = 1year, the dimensionless discount rate is also
ρ ≈ 0.05, and our assumption for static problem δ ≪ ρ−1 holds.

The losses due to the invasion have four major components.
a) Industrial losses. In case of zebra mussels they are related with costs of cleaning water treatment

facilities. Some data are available from [19]. For example, the mean treatment costs per year for
Hydroelectric facilities are $83000, fossil fuel generating facilities $145000, drinking water treatment
facilities $214,000, nuclear power plants $822,000. If we assume that each big lake has a drinking
water treatment facility, this gives a corresponding g component about 2× 105 $/year.

b) Private losses. Many houses near lakes have individual water intakes, which are subject to zebra
mussels impact. However, there are no estimates for the related expenses.

c) Ecological losses. Zebra mussels are filtering water very intensively for feeding. This results in
major changes in planktonic content, and hence influences food chains and population structure of
the lakes. Increasing water transparency causes changes in macrophytes population. Corresponding
gains and losses have not been estimated yet.

d) Recreational losses. They are related with ecological changes (important for fishing), quality of
the bottom and beaches covered with zebra mussel shells, and water clarity. No estimates are available
at present, though corresponding techniques for c) and d) are being developed by environmental
economists.

So, at present it is possible to make estimates only for big lakes with water treatment facilities,
and this gives the order of magnitude for g.

To make a rough estimates for the control part, we can use the fact that zebra mussels in all stages
almost instantly die after washing with 60oC (140oF) water. Therefore a treatment facility may be
just like a car wash, and the costs may be comparable, say, $3/wash. If we assume that the average
efficiency of such a wash is about 90-95%, this gives κ ∼ 1 boat/$, and exp (−3κ) ≈ 0.05.

Now, taking the example of Wisconsin lake system with Ttot ∼ 105, and g ∼ 105$, we can evaluate
the scale of dimensionless losses and financial factors E0 and J0,

g′ =
gκ

Ttot
∼ 1, E0 =

Ttot

κ
∼ 105

$

year
, J0 = E0tY ∼ 105 $.

9.2 Optimization with inequality constraints: penalty function and numerical
technique

For a general optimization problem [7], find minF (u) under n restrictions

Φi(u) ≤ 0,

the solution u∗ satisfies

∇F (u∗) +
n∑

i=1

µi∇Φi (u∗) = 0,

where for each i either Φi (u∗) = 0 (point at the boundary of the domain of admissible u values) or
µi = 0 (internal point according to i-th criterion). So to find a solution it may be necessary to try up
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to 2n different cases. For this reason for n > 2 often a method of penalty function is used. Let

P (x) =

{
Ax, x ≥ 0,
0, x < 0,

where A is big enough. Then the original problem is replaced by the problem of unconstrained
minimization of

F (u) +
n∑

i=1

P (Φi(u)) = min . (23)

If |∇F | ≪ |∇P | = A, the solution of (23) is close to that of original problem.
This penalty function P (x) is nondifferentiable at x = 0, which may create problems in practical

applications. We used a sequence of functions G (x/ω), which converge to P as ω → 0 with A = ω−1.
This allows to obtain very accurate solutions for ω small. We used the penalty function

G(z) = z +
√
z2 + 1, G′(z) = 1 +

z√
z2 + 1

,

The incoming invader flow to the lake

wi = exp (−si)
N∑
j=1

τij exp (−xj)uj , i = 1, . . . , N.

We minimize

E =
M∑
1

dixi +
N∑

M+1

aisi +
N∑

M+1

G

(
wi − τ0

ω

)
The simplest way is to use gradient descending, then we need only the derivatives

∂E

∂xm
= dm − 1

ω

N∑
i=K+1

G′
(
wi − τ0

ω

)
exp (−si) τim exp (−xm) , m = 1, . . . ,M,

∂E

∂sm
= am − 1

ω
G′
(
wm − τ0

ω

)
exp (−sm)

K∑
j=1

τmj exp (−xj) , m = M + 1, . . . , N.

Minimizing is done iteratively with gradient descending: set x0, x = {x1, . . . , xM , sM+1, . . . , sN} then

xn+1 = max {0,xn − γ∇E (xn)} .

The choice of γ is important for efficiency, but this problem is standard, and we shall not discuss it
here.

Most important was the fact that the convergence rate strongly depends on ω. For this reason
we used a decreasing sequence of ω, first solve minimization problem for ω big, then reduce ω, use
the previous solution as initial guess, and find the new minimum, and so on. This allowed us to
combine fast convergence and reaching very small ω values about 10−9, so the final solution after 30
ω-iterations has accuracy ∼10−6 or better.
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9.3 Analysis of the Model U (unstructured lake system)

From symmetry it follows that controls at all invaded lakes xi = x, and at all uninvaded lakes si = s,
then the functional to be minimized is

E = Max+ (N −M) as+Mg,

where g are losses per lake due to the invasion. The flow restriction under control is

e−sMTe−x = τ0, s+ x ≡ z = ln

(
MT

τ0

)
> 0.

For fixed M x and s can be easily found. Since the functional is linear in x and s, for M < N −M
x = z, s = 0, while for M > N −M x = 0, s = z. Combining both cases, we obtain

E (M) = min {M,N −M} a ln
(
MT

τ0

)
+Mg.

For M < N/2 E (M) is an increasing function. For M > N/2

dE

dM
=

N −M

M
a+ g − a ln

(
MT

τ0

)
,

which is a decreasing function of M , so the minimum of E′ (M) is achieved for M = N . Therefore,
E (M) can be decreasing for M close to N if g is small. The critical value g∗ of g can be obtained
from the condition that E (N − 1) = E (N), that is

a ln

(
(N − 1)T

τ0

)
+ (N − 1) g∗ = Ng∗, g∗ = a ln

(
(N − 1)T

τ0

)
.

9.4 Analysis of the Model C (clustered lake system)

At each stage of the described scenario we estimate the control costs and total cost of invasion stopping.
1. The cluster C2 does not participate in the estimates, for all lakes in C1\L1 di = ai = a =

(N1 − 1)T , dL1 = aL1 = N1T . The functional to be minimized is

E = Max+ (N1 − 1−M) as+ aL1sL1 +Mg, (24)

and the flow constraints

e−sMTe−x = τ0, e−sL1MTe−x = τ0, s+ x ≡ z = ln

(
MT

τ0

)
> 0.

Hence sL1 = s, and like in the previous example, we have

x =

{
z, Ma < (N1 −M) a+ T
0, Ma > (N1 −M) a+ T

, s = z − x,

E (M) =

{
Maz +Mg, Ma < (N1 −M) a+ T

(N1 −M) az + Tz +Mg, Ma > (N1 −M) a+ T
.
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2. After L1 has been invaded, only the bridge connection is dangerous, that is we have to control
the incoming traffic on L2 (s), or outcoming traffic on L1 (x), or both. Since dL2 = aL2 = N2T ,

E = dL1x+ aL2s+N1g, (25)

e−sTe−x = τ0, s+ x ≡ z = ln

(
T

τ0

)
> 0.

x =

{
z, N1 < N2

0, N1 > N2
, s = z − x,

E (N1) = min {N1, N2}Tz +N1g.

3-4. After L2 has been invaded, the invasion spreads within C2. To simplify consideration, we
again assume that controls at all invaded lakes are equal to x, at all uninvaded lakes are equal to s,
though there is no more complete symmetry between all invaded lakes, and the resulting solution is
only close to true optimum. (Accurate analysis is possible, however it is very bulky and its results are
very close to the expression presented below.) Then a = d = (N2 − 1)T , N = N1 +N2,

E = (M −N1) ax+ Tx+ (N −M) as+Mg, (26)

and the flow constraints

e−s (M −N1)Te
−x = τ0, s+ x ≡ z = ln

(
(M −N1)T

τ0

)
> 0.

x =

{
z, (M −N1) a+ T < (N −M) a
0, (M −N1) a+ T > (N −M) a

, s = z − x,

E (M) =

{
(M −N1) az + Tz +Mg, (M −N1) a+ T < (N −M) a

(N −M) az +Mg, (M −N1) a+ T > (N −M) a
.

Analyzing the overall E (M) dependency one can see, that pure control costs (without g) have a
minimum at M = N1, when the invasion jumps from one cluster to the other. If g is small enough,
then E (M) has a minimum too.
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