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ABSTRACT

In this thesis, we study -+ ul nroblems concering torsion free space groups which
is closely related to the cl i-em1ou of flat manifolds.

In Chapter 1, we introduce the  blems we are mainly interested in and the best
results we knew zbout them up t ov

In Chapier 2, we quote some basic results withou proofs. They can be easi’,
spotted in standard reference books. We also prove o icmma (Lemma 2.5 which s
important to later chapters.

In Chapter 3, we investigate §(G) which is defiued to be the minimal dimension
of primitive G-manifolds. We calculate §(G) for G heing Cyz x C,, , M3(p) and M(p);
we also give a lower bound and an upper bound for é{(7¥) for G abelian and finally
give an upper bound for 6(G) for G solvable.

In Chapter 4, n(G) is studied for G nilpotent groups. n(G) is defined to be the
least positive integer such that for any torsion free space group I' with point proup
G, there is a normal subgroup N contained in the translations, such that I'/N ix
still torsion free and has dimension < n((). The case when G is a p-group is solved
by Cliff and Weiss. For G is nilpotent, n(G) is given in Theorem 4.2.1 by using
Cliff-Weiss’s method.

In Chapter 5, we try to discuss some ZG-modules througn th-ir p-adic corrspon
dence. The main result is a test given in Theorem 5.1.1 and T heoren 5.1.2 that atlew-
us to decide vhich direct summand of ind&Z, will kave: nontrivial second cohomology.
Then we use it to find n(G) for some non nilpotent groups, e.g. alternating group of

5 letters As and some metabelian groups.
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CHAPTER 1 INTRODUCTION

In this thesis, we are going to siudy several problems concerning torsion free
space groups which are of interest to differential geometers, since they arise as fun-
damental groups of compact flat Riemannian manifolds, and classify these manifolds
up to affine equivalence.

In this Chapter, we introduce the problems we are mainly interested in and the
best results we know about them up to now.

In Chapter 2, we quote some basic results without proofs. They can be casily
spotted in standard reference books. We also prove a lemma (Lemma 2.10) which is
important to later chapters.

In Chapter 3, we investigate 6(G) which is defined to be the minimal dimension
of primitive G-manifolds. We calculate §(G) for G being Cp: xCp, Mjs(p) and
M(p); we also give a lower bound and an upper bound for é6(G) for G abelian
and finally give an upper bound for §(G) for G solvable. We do these by first
constructing a primitive lattice for each of above groups to gain an upper bound, and
then by discussing Q@ L for any primitive lattice L to get a lower bound.

In Chapter 4, n(G) is studied for G nilpotent groups. The case when G is
a p-group is solved by Cliff and Weiss in [7]. For G is nilpotent, n(G) is given in
Theorem 4.2.1 by extending Cliff-Weiss’s method. For each torsion free space group
with point group G, we define a map, with abelian kernel, to a space group whose
translation subgroup, consider as a ZG-module, is a quotient of the permutation

lattice given by the sum of inductions from non-conjugate subgroups of prime orders



multiplied with the complement of Sylow subgroup of that prime in (/. Then in the
second half, we prove that this is the minimal one. Finally we examine an example
to show how the method works.

In Chapter 5, we try to discuss some ZG-modules through their p-adic corre-
spondences. The main result is a test given in Theorem 5.1.1 and Theorem 6.1.2
which allows us to decide which direct summand of ind3Z, will have nontrivial
second cohomology. Then we use it to find n(G) for some non nilpotent groups,

e.g. alternating group of 5 letters As; and some metabelian groups.

§1.1

Let R"™ be the usual n-dimensional Euclidean space,
E.={f|f:R*"—>R"and [ preserves distance}.

Then every such f is a composition of a rotation and a translation. So we can

identify E, with the set

{(m,s) | m € O,,s € R"},
where O, is the n-dimensional orthogonal group, and (mn,s)ox = mx + s for
z € R*. E, is a group under the composition :

(m,s)(n,t) = (mn,mt + s).
We call E, the group of rigid motions (or isometries) of R". E, has a nice
group structure. Let

A, = {(/,t) | I the identity of O,,t € R"},
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then A, is a torsion free abelian subgroup of E, and E./A, isisomorphic to
O,. Elements of A, are cailed translations. E, has the topology of O, x R".
We say that I' is a Crystallographic space group (or space group for short) if T' is
a discrete subgroup of E, such that the quotient space F"/ ~ is compact , where
~ is the equivalence relation defined by z ~ y if and only if thereisa g € I' such
that gz = y. This is equivalent to saying that there exists a closed bounded set
B of R", such that every z € R" satisfies z = gy for some ye B, ge€T.
A=TnNA, will be called the translation subgroup of T'; ['/A will be called the
point group.

For these groups, we have the following:

Bieberbach’s First Theorem (see [6], p. 17). Let T' be a space group as

defined above. Then
(i) The point group is finite, and
(ii) the translation subgroup is a lattice (finitely generated free abelian grcup)

which spans R". This is equivalent to that I' contains n linearly independent

transiations.

Bieberbach’s Third Theorem (see [6], p. 40). For each n, there are only

finitely many isomorphism classes of n-dimensional space groups.

For example, when n =2, we have 17; n =3, we have 219; n =4, we
have 4783 such classes respectively (see [3]).
Among space groups, we are particularly interested in those that are torsion

free. These groups sometimes are also called Bieberbach groups(see [6]). If T is a



torsior. free space group, then R"/~-, the quotient space is a compact connected
flat n-dimensional Riemannian manifold, or flat manifold for short. Conversely, an
n-dimensional flat manifold has the Euclidean n-space R" as its universal covering
space and an n-dimensional space group with fixed point free action on R"™ as
fundamental group (see [6], [30]). It is this torsion free space group that is our main
object of discussion. By Bieberbach’s Third Theorem, there are only finite many of
them for each fixed dimension n. The several lower dimensional cases are: = 2,
there are 2; n =3, thereare 10; n =4, therearec 74.

Let I' be a torsion free space group, A be its translation subgroup, then

G = I'/A, the point group of T is finite. So we can find finitely many coset

representatives {t,} of A in T, such that
F = UgEGtgA'
For any t,,ty wehave tjt, =1t,.a(g,9'), with a(g,9') € A. Then we get a map

a:GxG— A.

If we pick different coset representatives {ug}, wu, = tyay, for some a, € A, then

we get another map

b:GxG -~ A.

We will call a,b equivalent. All equivalence classes form an abelian group under
(a + b)(g,9') = a(g,g') + b(g,¢'). This is the usual second cohomology group of G
with coefficients in A. It is denoted by H?*(G,A) . By the above discussion, for
each torsion free space group with translation subgroup A and point group G, we

get an a € H?*(G,A) . Since T is torsion free, for any C < G, I'c = UgertyA

4



is also torsion free, this gives us an ac € H(C,A) . Denote it by resGa. resGe

is not zero. For otherwise, oty = Ly would give a homomorphism from C to Ie,
contradicting that I'c is torsion free. Hence resZa is not zero for any C < G.
We will call such a special for G. We will say that o € H%(G, A) is special for
geG if resz"g o is special and a is special for a subset H C G if it is special

for each g € H. We will also say that a lattice M is special for H C G if there

is a € H*G,M) suchthat a is special for H. Now with these notations we

can record the following well known result:

Theorem (Zassenhaus [31], [6]). If T' is the fundamental group of a flat mani-
fold X of dimension n, then I' is a torsion free space group. That is it contains
M, a finite index, normal, free maximal abelian subgroup of rank n. The finite
holonomy group G of X is the point group of T. It also follows that M isa
faithful integral representation of G, or a ZG-lattice which means finitely generated
and free as Z-module. Furthermore, there is a special a € H%(G,M). Conversely
given suchan G, M and a special o € H*(G, M) there exists a corresponding
flat manifold X with fundamental group having M as its translation subgroup

and G its point group.

It is this fundamental result that makes it possible of changing the discussion
of the classification of flat manifolds to the discussion of algebraic objects (integral
representation and cohomology). This is because the classification of X is deter-
mined by the classification of .I' which in turn is determined by M, G, and a.
But unfortunately, given a finite group G, it is not always possible to get all the

information about the integral representations of G nor to calculate H?*(G, M).



So people are mainly interested in the following several problems.

§1.2 m(G)

m(G) is defined as the least dimension of flat manifold with holonomy group
isomorphic to G. Algebraically, this means, m(G) is the minimal dimension of an
integral representation M of G satisfying:

1. M is a faithful integral representation of G,
2. M carries a special class, i.e. there exists an o« € H*(G,M) whose
restriction to each cyclic subgroup of G is non zero.

Peter Symonds discussed this problem in [25]. His main results are as follows:

Theorem. 1. Let G be a finite abelian group. Factorize G as a direct
product of cyclic groups of prime power order; let {r;} be the orders of the factors.
Let ag = number of r; which are 2; bg = numberof r; which are odd; ¢((7)
be the minimal dimension of a faithful rational representation of G and [, be the

number of r; divisible by p?. Then
m(G) < ¢(G) + max(l,, min(ag,bg),1).

2. If G is solvable then m(G) <|G| with equality if and only if ¢ is of

prime order.

§1.3 6(G)



If ¢ is a finite group, we say that G is primitive if G is the holonomy group
of a flat manifold X with b;(X), the first Betti number of X, zero. We call X

itself a primitive G-manifold in this case. Let

6(G) = the minimai dimension of a primitive G-manifold. Algebraically , this

6(G) is the minimal dimension of an integral representation M of G satis-
fying:

1. M is a faithful representation;

2. M carries a special class;

3. MG =0, where M® = {m € M,hm =m,Vh € G}.

Hiller, Sah et al [11], [12] discussed &6(G). They proved that &(G) is well
defined, or there is at least one torsion free space group of Betti number zero, with
point group G, if and only if G has the property that no cyclic Sylow subgroup
has a normal complement. They also decided &(G) for elementary abelian p-groups,
(Z/pZ)* and some other special p-groups; Plesken [19] has some different ways of
dealing with this problem. He used it to get &( PSLy(p)). Their main results are

as follows:
Theorem. 1. If p is a prime, k> 1 then
§(2;) = (p-Dk+p-1)
§(D.) = 6(SDga)=2"2+2, fora>2.
2. Let p>5 be a prime number, then

§(PSLy(p)) =p+ Y wnr(p+1)(p—1)+
r<2,rlp+1

7



p—1
2

+‘Pn( )(P + 1)1

where ¢gr(n) = ¢(n)/2 for n > 2, @.r(n) denotes the degree of the maximal

real subfield of the r®-cyclotomic field, r* is the biggest r-power dividing n.

§1.4 n(G)

n(G) is defined to be the least positive integer such that for any torsion free
space group I' with point group G, there exists a normal subgroup N contained
in the translations, such that T'/N is still torsion free and has dimension < n(().
The geometric meaning of n(G) is that any compact flat manifold with holonomy
group G is a flat toral extension of a flat manifold of dimension < n(G7). This in-
variant was first defined and investigated by Vasquez [29]. He proved that n(G) =1,
if G has prime order. He did that by using Reiner’s classification [21] of indecom-
posable ZG-lattice for G of prime order. n(G) was then closely investigated by
Cliff and Weiss in [7]. For any torsion free space group with point group @, they
defined a map, with abelia 1 kernel, to a space group whose translation subgroup, con-
sider as 2 ZG-module, is a permutation lattice given by the sum of inductions from

non-conjugate subgroup of prime orders. With this map they were able to prove:
Theorem. Let G be a finite group, X a set of representatives of the conju-
gacy classes of subgroups of G of prime order. Then

n(G) <Y 1G:C|

CeX

and the equality holds if and only if G is a p-group.

8



"There are also some other approaches of discussing torsion free space groups. For
example, focus on specific point groups (See [2] [15] {17] [18].), special modules (See
[13].) or specific dimension (See [3] [28].). A survey about some of above problems

can be found in Plesken [20] . The detailed description of space groups can also be

found in [6] and [30].



CHAPTER 2 SOME BASIC RESULTS

In this chapter we will collect some basic results that will often be used in the
later chapters. All G in this chapter are finite groups. All M (if it is not specified)
are ZG-lattices.

Let H beasubgroupof G, M bea ZH-module. Define the induced module
of M from H to G tobe ZG®gz, M and denote it by indfjM.

Suppose that G = U,er,uH is the left coset decomposition. Then every
element of ZG has the form 3 ;a9 = 3 agu(9)h(g) € X e, vZH, where
u(g) € Ty, h(g) € H. So ZG =} .1, wZH since the other direction of inclusion
is obvious. Suppose EueTH ua, = 0 or Upay, = Zu#m ua, with a, € Zll.
Write @y, = Y., bah, we get ugay, = Y, bauoh. By moving every term except one

to the other side, we can get ¢z g0 = Y_,.,. ¢;9- This contradicts to the definition

g#90

of ZG. Hence the sum is direct. Then

indGM = ZGQzu M = (D er, vZH)Qzy M = Dyer, v @ M.

Therefore each element of ind,G,M can be written in the form Y a,u @ m,. In
the case M = Z, the trivial ZH-module, we will write an element of indfjZ in
the form ) . n,uH with n, integers.

Induced modules are closely related to permutation lattices. A ZG-lattice M
is called a permutation lattice if G acts on a Z-basis B = {by,by,---,b,} of M
by permuting them. If furthermore G acts on B transitively, we will call M a
transitive permutation lattice. In this case, pick any b, € B; let H = {g € G|

gbi, = b;,}. Then ZHb;) = Z the trivial ZH-module. Suppose G = Uyer,ull the

10



coset decomposition, then ub;, = biy) € B and by = by,) if and only if u=w.
Then by the transitivity we can get

M = @ ZHb: = indfZHb;, = indjZ.

i=1
The following first result we quote here is a very useful result for our later
chapters.
Theorem 2.1 (Nakayama Relations or Frobenius Reciprocity [14], p. 87). Let

M be a ZG-module, N be a ZH-module. Then we have

“,‘

Homg(M,ind§;N) = Homg,(resf M, N),

where = :res§indfjN — N is defined by #(3,r, nutH) = n1.

Theorem 2.2 (Shapiro’s Lemma [10], p.92). Let H be a subgroup of G, and

let M be a H-module. Then
H"(G,indgM) ~ H"(H,M) ,

forall n>0.

From this theorem, it is easy to get that if g € G, then indZ)Z is special for
g, since IV(G,indz)Z) ~ H¥(g),Z) = Z/|g|Z. The following lemma

says that indZ)Z is, in some sense, universal.

Lemma 2.3 (Cliff and Weiss [7]). Let « € H*(G,M) be special for g € G.
Then there exists a ZG-homomorphism h : M — ind?g)Z such that h*(a) €

112(G,indi"g)Z) is also special for g.

11



Theorem 2.4 (5-Term Sequence [16], p. 3565). Let I{ be a normal subgroup
of G and M aG-module. If H'(H,M) =0 for 0<i<j then we have the

following exact sequence:

0— H(G/HMY) O WG M) S W, M

— H*YG/H,MH) - H*Y(G,M) .

Theorem 2.5 (Mackey’s Decomposition Theorem [9], p.85). Let H, K be

subgroups of G and let¢ M be a K-module. Then

resfind§ M 69 ind} . ~yreskonnM ® gi,
9i€K\G/H
where K\G/H denotes an arbitrary transversal of double K, H cosets.
Corollary 2.6 (see [25]). Let H be a normal subgroup of G, S a Zll-
lattice and T = ind$S. Then the element of H?*(G,T') can be special only for

elements g € G for which (g ) NH#1.

Theorem 2.7 (Green Correspondence [14], p. 112). Let R be a principal
ideal domain such that Krull-Schmidt holds for modules in Mp(H) forall Il <,
where Mp(H) are the set of all RH-lattices . Let V be a fixed subgroup of (,

H a fixed subgroup of G containing Ng(V), the normalizer of V' in (. Set
X={W<SG|W<VnV,ge G\H};
M={W<LG|W<LV‘nNH g€ G\H}.

Then there is a one to one correspondence between indecomposable modules in

Mg(G) with V as vertex and indecomposable modules in Mp(H) with V as

vertex, which is characterized as follows:

12



(i) Let M € Mp(G) beindecomposable with V' as vertex. Then resf,M has

a unique indecomposable direct summand f(M) with V as vertex. Furthermore,
resy M 22 f(M) @(@ N;);

where the vertices of N; all liein M.

(ii) Let N € Mp(H) be indecomposable with V as vertex. Then ind§N

has a unique indecomposable direct summand g¢(N) with V as vertex and
ind§N = g(N) (P M)

where M; has vertex in X

Theorem 2.8 (sce [4], p. 71). (i) There is a natural isomorphism H°(G, M)
ME.

(11) For any exact sequence
0—M —oM-—oM —90
of G-modules and any integer n there is a natural map
§: HY(G,M") — H"Y(G,M'),
such that the sequence
0 - HG,M") - H°(G,M) — H%G,M")
4 HYG,M') —» HYG,M) — ---
is exact.

13



(i) If N is an injective ZG-module then  H"(G,N) = 0 for n > 0.
In particular, Q 1is an injective ZG-module with trivial GG-action for any | so

H*(G,Q) =0 for n>0.

Corollary 2.9. Let C be asubgroup of G. Then we have 113, indéZ)

fl

H!(G,ind5Q/Z) . where Z and Q/Z are ZC-modules with trivial actions.

Proof. From the exact sequence of ZC-module with trivial actions
0-Z-Q—Q/Z -0,
we have ZG-module exact sequence:
0 — indSZ — indQ — ind¥Q/Z — 0.
Then by 2.8 we have long exact sequence:
0 — H%G,ind§Z) — H%G,ind$Q) — !1(G,indEQ/Z)

— HY(G,ind82) — H'(G,ind$Q) — HY((,indGQ/Z)
— H*G,indSZ) — H*G,indSQ) —
But by 2.2 and 2.8 HY(G,ind$Q) = HY(C,Q) =0, for i > 1. So we have the
required isomorphism. O

Now we will use above theorems to get a result which will be used in later

chapters.

Lemma 2.10. Let K; < K; be subgroups of (G, G = UuK, and K, =
UvK; be the coset decompositions. Let V' be the transfer (see [23], p. 61) from K,

to K;. Then V : K, — K,;/|Ki,Ki] is a group homomorphism. Let 7 : K; —

14



K,/|Ky,K,] be the natural map, and 7~!(V(K2)) be the preimage of V(K,).
Define ¢ :ind% Z — ind%,Z by o(3,, auwuvky) =3, (35, @uw)uKz. Then

(i). U*(G,keryp) & Hom(K\/7\(V(K2)),Q/Z);
(i), (kerg)€ = 0.

Proof. From the exact sequence
0 — keryp — ind,célZ — ind,G{ZZ — 0

and H'(G,ind§,Z) = H'(K;,Z) = Hom(K;,Z) =0 since Z is torsion free,

we have

0— H*G,kerg) — H*(G,ind§,Z) & HY(G,ind,Z) .
By 2.9 and 2.2,
H%(G,ind§ Z) = HY(G,ind} Q/Z) = H'(K,,Q/Z) = Hom(K:,Q/Z);

H*(G,ind%,2) = H'(G,ind§,Q/Z) = H'(K,Q/Z) =Hom(K,,Q/Z).

So we have

0 -» H¥(G,kerg) > HX(G,ind§.Z) % HY(G,ind$,2)

1= 1=
H'(G,ind%,Q/2) & H'(G,indf,Q/2)
|= 1=

Hom(K,,Q/Z) % Hom(K,,Q/Z)

For any f € Hom(K1,,Q/Z), f |k, k=0 since Q/Z is abelian. Define
f(g) = D uu f(Coun)tgve,u K1 where gu = ugcgu, €gu¥ = vguCguy With c¢gu €

Ky, c¢yuv € K1. By

192UV = G1Ug,Vgp,uCqr,u = (Ugs ) g3 (Vgziu)gyug, Coy ‘gy gy ,u Ca2,u,0
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it is easy to see that

f(gl) + 9 f(g2) = Z S(cgy u0)tg Vg w1+ 1 Z S(€g2u,0 )1t Vg0 K

u,v

= Z J(cgyu gy Vg, u Iy +

u,v

Z f(cgzvu.v)(u!h )91 (vgz.u)yl gy Kl )

u,v

‘ f(gxgz) = Z S(Ca1.u5003,0 Ca2,00) (Ugz ) gy (Vga,u) g1 ugy At

uv

= Z f(cgn gy .V”,u)(u.‘h )91 (Vg2 ) Wigy K,

u,v

+ f(cyz,u.v)(uyz )91 ("’.tn.u)g,,u,,2 K.

u,v

So f(gxgz) = f(gl) + a0 f(gz), or f is a one cocycle. Hence
[fl € H'(G,ind$ Q/Z)

and it is mapped to f under the isomorphism of Shapiro’s Lemma.

" (H)9) = e(F(9) = Y flepus)uokz = > S]] comn)ua ko
This implies that f € kery if and only if f([], cguv) =0 for any g € (¢ and
u. Forany k€ K,, let g =uku™. Then gu=uk, so k=r¢,,. 'Theaboveis
equivalent to that f |[r-1(v(k,)=0 since f |k, x,)= 0. Hence (i).
Let z € (kerp)®, if z=3, awuvK, then ay, arcall equal. But o(x) =
Y .00, au)uKa = an(Ka: K1) Y, uKa =0, 5o ay, =ay; =0 forall u,v. Hence

z=0, ie. (i). O
Corollary 2.11 (CW [7]). The same notations as in Lemma 2.10. We have
¢": H*G,ind§ Z) — H¥G,ind%,Z)
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is 0 if and only if the transfer from K; to K, is trivial.

Proof. V(K,) =0 if and only if that
H3(G, ker ) = Hom(K,/[K1, K1),Q/Z) = Hom(K:1,Q/Z) = H*(G,ind} Z) ,

if and only if ¢* maps everything to zero due to the exactness on the previous page.

0

Corollary 2.12 (Symonds [25]). Let M be an irreducible ZG-lattice for which
the action of G factors through a group of a prime order p. Let K =kerM and
let (G\K)? be the subgroup of G generated by p-th power of elements of G not
in K. Then

H%G,M) = Hom(K/(G\K)?[K,K),Q/Z).
In particular, if G is abelian and L is an irreducible ZG-lattice which is induced
from an irreducible ZH-lattice L' for some subgroup H of G, and the action of

Il on L' factors through a group of prime order p with ker L' = K. Then

HYG,L) & Hom(K/(H\K),Q/Z)

Hom(K/K NnpG,Q/Z) L not trivial
Hom(G,Q/Z) L trivial

o

Proof. Let K, =K, K;=G in the lemma. Then

R

H*(G, M) H%*(G,kerp) = Hom(K/="1(V(G)),Q/Z)

Hence we need only prove that #~}(V(G)) = (G\K)?[K,K] in this case. G/K
is cyclic of order p. For any ¢ ¢ K, we have G = UPZ}¢'K. So V(g) =
Il;co0[K, K] = ¢°[K,K]. Thatis (G\K)’[K,K] C «~}(V(G)). On the other

17



hand, for any h = 7"1(V(go)) € 7=Y(V((7)), write h =]];cpk forsome g¢ K

and ke [K,K]. By gog' =g'(¢ 'g0g') and A is normal, we can get that

ko = 909 '909'9 %900 - g7 " Vg

pote
"

= (0097 )(g097") - (909~ ")g"k

= (gog™')’¢"k € (G\KY’[K,K] O
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CHAPTER 3 SOME DISCUSSION ABOUT §(G)

Iirst. the following lemma will reduce some cases to the discussion of p-groups.

Lemma 3.0.1. Let G = I'[p G,, the direct product of Sylow p-subgroup G,
of G. Then 6(G) <3 6(Gy)
This is the direct consequence of the following theorem which we need one

more concept to state. Forany g € G, H <G, let g: H — gHg™ be the

conjugation map. If F is a resolution for G, then g induces a cochain map

c(g) : Homy (F, M) — Homgyy-1(F, M) given by
J—=[z—gf(g72)l.

This in turn, gives us an isomorphism ¢(g)*: H*(gHg™',M) — H"(H,M) (see
(4], p. 80). If z€ H"(H,M) then we set

gz = (c(9)") () € H(gHg™ ', M) .

. . . . . -l
= is said G-invariant if resf! z=res??9 gz forall g€G.
HngHg HngHg

Theorem (see [4], p. 84). Let G be a finite group and H a Sylow p-subgroup.
For any G-module M and any n >0, res§ maps H™(G,M) () the Sylow
p-subgroup of H"(G,M) , isomorphically onto the set of G-invariant elements of

H*(H,M) . If HaG then

H"(G,M) ., = H(H,M) ¢,

(» ~
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Proot of Lemma 3.0.1. Let M, be a primitive Gp-lattice. Since (' is nilpotent,
we can define M, as a G-module for which the action of G factors through G,

G — Gp. Then G/G, acts trivially on M,. Hence
H (G, M,) () = H(Gp M;) 7% = WGy, My) .

The last equation is the result that G/G, acts trivially on both G, and M,. So
we can find @ € H*G,M,) suchthat « isspecial for G,. Then M =P M,
is a primitive lattice for G. Hence the result. O

Suppose M is a primitive lattice for G, that is, (i) M is a faithful ZG-
lattice; (ii) M carries a special class; (iii) M =0. Decompose Q@gz M in to

a sum of irreducible modules, so

QRzM =QRz D; M,

where each M; is a ZG-lattice with Q @y M; irreducible. Morcover no M, =27

because of (iii). There is a monomorphism j:@; M; = M and exact sequence
0-PM LM A0

A is finite since rank(@); Mi) = rank(M). Since M is a primitive Z(-lattice,

there is a torsion free group ' satisfying:
0-M-T->G—1.
Define F =T/j(@,;M;) then we have

0—»@M,-—»I‘——»F—»l.

20



From the fact that I' is torsion free we can get an o € H*(F,@,; M:) , such that

a is special for F. F satisfies:
0+A-F5HG-1.

G acts faithfully on €@ M;. Hence we have the following lemma which is similar
to proposition 4.9 of [25].
Lemma 3.0.2. §(G) is equal to the least possible rank of faithful ZG-lattice
M = @; M; with M; irreducible ZG-lattices which has no G fixed points except
0, and such that for some finite abelian extension F 5 G of G, HYF,M)
has a special element. In particular, if G is a p-group, M; above can be taken
to be standard irreducible, which means irreducible ZG-lattice induced up from a

representation of a subgroup H which factors through the standard representation

of a cyclic group on Z[(], (" =1.

By the algebraic description of §(G), in order to get an upper bound for §(G),

we need only construct a ZG-lattice M which satisfies all three conditions in the

description. In this chapter, we are going to

1. give an upper bound for §(G) when G is abelian p-group hence an upper

bound for §(G) for G abelian by lemma 3.0.1;

2. give a lower bound for §(G) when G is abelian p-group; in the cases when

G is elementary abelian or C, x Cp2, we will give §(G);
3. finish the discussion about p3-groups which was started in [12} and finally,

4. give an upper bound for 6§(G) for some solvable groups.
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§3.1 An upper bound for §(G) , G an abelian p-group

Set G=Cpy XCprp X+ XCphe = (a1 ) X (@) X+-ox (@), r2>2
where a; has order p%, k; <k, <:.--< k. G has the following clements of

prime order:

S={1l af"’k‘-’, l;=0,1,...,p—1, atleast one [; is nonzero } .

We will construct some ZG-lattices {M;,t € I}, each of them will be special
for a subset S; of S, and S = U,e;S;. By taking care of the faithfulness at the
same time, we can get a primitive lattice.

(i). For each 7, 1 < i< r, define a,41 tobe a;; k4 tobe k. Let

Gi = Hk¢i+1 (ar ), G:= (ai.n)”k“”—1 } X% G;. Define:

@i indg' Z— indg{ Y/

by
prit1-1 pri+1-11
n _ v !
i Z nuaiy Gi) = Z ( Z nu)aiy, Gy,
u=0 v=0  y=y (mod p*i+1~T)

where G =J,a¢,Gi;, G=U,a!,G;- Then

keri = {)_ nua},Gi | Y n,=0,0=0,1,...,pF " —1}.

uz=v

We could use lemma 2.10 here to get HZ?(G,kery;) . But in order to reveal some
more information, we will use following more detailed analysis instead.

First we have the following commutative diagram:
H%(G,indS$Z) ta, HY(G,ind$Q/2)
resg | | resg
H(C,resSind$Z) 2% HY(C,resGind$Q/Z) .
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We need only verify that resGéz' = é5'res§ since both & are isomorphisms by

2.9. Let 7 be the homomorphism in the following exact sequence.
0 — ind$Z — indQ = ind$Q/Z — 0;
0 — resind$Z — resSind%Q - resGind3Q/Z — 0.

Then resgé5'(f)(cr,c2) = 771 (f(er,¢2)) — 771 f(er) — 77 (er f(c2)) for any
J€ HI(G,inde/Z) . On the other hand

85 (res@)(f)(er, €2) = 7 (f(er, €2)) = 771 f(er) = 77 (eaf(e2))

is obvious. So we can change the discussion from H? to H'.

By Shapiro’s Lemma, we have
H*(G,indg Z) = H'(G,indg, Q/Z) = Hom(G:,Q/Z).

Nowif ki =1, wepick v € Hom(G;,Q/Z), suchthat ~(a;) =1/p, <(a;j)=0 for
j#1,i+1, let a bethe preimageof v in H2(G,indg‘. Z), then o (c) #0

for any ¢ in the following set:

Si={at" H aﬁku—’tuItiz132a""p_I’tu=0’1""’p—1}’

u#i, i1

since if ¢=a¥[[a?™ ", 4(c)=t/p#0 in Q/Z.
Now we prove that ¢!(a) |g,= 0 in H?*G, indgg Z) . We prove the result

about H'. In the isomorphism

HI(G’ indg.- Q/Z) = HOI‘H(G,‘, Q/Z)7

23



pick [v] to be the preimage of v in HY(G,ind§ Q/Z) . Suppose that
v'(hi) = Y, neat1Gi, for h; € G;. From the definition of 7, we know that

py=0. Hence p[y]=0, or [py']=0. Then
Y (k) = antaf“G; = hija - a
¢

for some « € indgi Q/Z. But h; acts trivially on indgi Q/Z, so hia—a=0.
Hence pn, =0, or n; € (1/p)Z for all &.

Next, for any u = af; € (a1 ), wuhi = hiw, so '(uh;) = ¥'(hiu), or
() + wy'(he) = 7(he) + hir' () = 7'() + ¥/(w). Hence (k) = (k) for any
u€ (@41 ). But uy'(h)=aly; 3 mal,Gi =), nalfiGi, so uy'(ki) = +'(hi)
giving ny = nyy,, for any s, ie. n, are all equal. Then

ey (k) = (Y ni)ay,G' = 0.
v I=v
Hence the result.

Since {aiy1 ) NGi=1. forany a}, € (@it ),

indg Z = @ indl(a:'“)res?‘Z

G
res
(“:'-H)

by Mackey’s formula, which is projective as Z{a}, ,)-module. Hence [v']| { ) = 0

v
a|+l

) s G
for any v. This means 7'(af,,) = a¥;;a@ —a for some a€ re-‘Z’ Y )md(,. Z.
a|+l !

Now for any kh € G, write h = a¥ ki, with @}, € (@i ), hi€ G

Then 7'(a}’+1h,-) = 7,(a:')+1) + a:"+1’7'(hi)- So
wiv'(aia k) = wiY'(afy) + a;’_*_]cp,-'y'(h,') = pi(a}},a — )
= al,pila) —pi(a) = (e, hi)pi(a) — pila).
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Hence ¢! ([7']) =0 in I{i+](G,indg=Z) .

By this result and the exact sequence
12(G, kerg;) — H*(G,indg, Z) — H*G,indS Z)

we can find B; € H*(G,kery;) , suchthat f; is special for any element of S;. It
is obvious that a;y; acts faithfully on ker;.

Finally, (kerp,)? =0. If z =Y, nua¥,Gi € (kery;)®, then 3 ,_, n, =0
forany v=0,1,...,pk+1~1—1, and z% =z for any t. Hence 3 n.al}{G;=
Y n.a¥,,G; for any t, so n, areall equal. Then ) n, =0 gives pn, =0, or
ny, =0 forall u.

Let

= ékercp,-.

i=1

By above discussion, L; is a faithful ZG-lattice, and it is special for all the elements

of the form:

1

{at.i H aﬁku—ltu ' ki — 1’ 1.e. O(Gi) =p,ti # O’tu = 0, 1,...,[)'— 1}-

u#i,i41
(ii) For each 7 with &k > 1, let
Ki= (a"7 ) x (@) x J[ ¢ , G= | didifi K,
uFi i+l titisr
K= (a"" ) xJ[ (au), G= Ua*-K
uFi

Define:
P;: indf, Z — indﬁ: Z,

¥i( Z Nitigr @ :::IIK) = Z(Z nti,ti+1)a:‘K;°

tistigy t tig1
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Then
kery; = { Z nt",.“af'a:':f K; | Z"‘--'-ﬂ =0, Vi,}.

titiga tit1

Follow the same discussion as in (i), if we pick é; € Hom(K;,Q/Z) such tha
6;(afk‘—1) = 1/p, bi(af,,) = éi(au) =0, u#4,i+1 we can prove in the same way
that kert); is special for all elements of the form:
{7 ] a2 ™ ti=1,2..,p=Ltu=0,1,...,p— 1},
uti,i+1
and it is easy to see that (kery;)¢ = 0.

Let

Ly = Pker s,

ki>1
then L; @ L, is a faithful ZG-lattice and special for all elements of the form:

ki—=1,, .
{ I\, &f i | at least one u; =0, and u; arenotall0 } .

Hence the only kind of elements of S left is
{ Ty & 7% [ ti=1,2,...,p— 1}

We next divide the discussion into three cases.

(1). There exists ¢ < r, such that &k >1, ki > 1.

In this case, []i_, a?ki-lt‘ € K;, the a picked in ..} is also special for such
kind of elements. Hence L, @ L; is a primitive lattice in this case.

(2). by=ko=...=kyey =1, k. >1.

We need one more lattice in this case. Let K = (a?) x [[Z} (@),

K' = G. Define % : ind§Z —ind%Z =2 by ¢( 30, niaiK) = Y07, n

26



Then following the discussion before, we can get o« € H?*(G,kery) , such that o

is special for all elements of the form:
{7 T2 e | ti=1,2,...,p—1; i=1,2,...,7}.

Hence L; @ L. @ kery is a primitive lattice in this case.

(3). ki=1, i=1,2,...,r, or G iselementary abelian group. In this case,
welet K;j= (amd) ) x [[s (@), i=12...,p—1, §&: ind,G(J.Z —Z
defined by 6;(3°, nua{K;) = Y, nu. Then by the same argument as above, we can
get L, @QB;’;,I keré; is a primitive lattice of G in this case. Hence we have the
following theorem:

Theorem 3.1.1. Let G = Cpty X Cpiy X =+ X Cpir, k1 < kg < --- < k.,
r > 2. Then

(). 6G)<(p+r—-1)(p-1), if k=1,

(). 8(Cy x Cyp) < (2p+1)(p — 1)

(iii). 8(G)<r(p—1)+2p*Yp-1), if ks>1, kea=1;

(iv). §G)< X, PN p-1)+ D ki1 p'(p—1), others.

Proof. (i), (iii), (iv) are direct consequences of above argument. In the case of
(i1), a; acts faithfully on keri,. So we can drop keryp, without losing faithful-
ness. More precisely,
ker; is special for {ai!,t; =1,2,---,p—1}, a, acts faithfully on it.
keriy, is special for {aP?,t, =1,2,---,p—1}, . a; acts faithfully on it.
kere isspecial for {a'ad®,t; =1,2,---,p— 13t =1,2,-+-,p~1}.
Hence kerp, @ keryp, @ kertp is a primitive lattice ,i.e. 6(Cpx Cp2) < (2p+
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)(p—-1). O
Corollary 3.1.2. 6(G) <|G| for any abelian primitive group G.

Proof. First suppose G is abelian p-group as in Theorem 3.1.1.

). f k,=1, |Gl=p"3 6G)L(p+r-1)(p-1), r=>2 For r=2
pP>p*—1; for r>2, by a*>a+z,a>2,2>2, wehave p">p"}(p-1) 2>
(p+r—1)(p—1). Hence the result.

i) If k> 1Lk-1=1, |Gl=p 1 §G)<r(p—1)+2p*-(p~1). By
a® > z+2(a—1),z>2,a>2, wecanget p itk = ptr-1pt > pFr-1(r42(p—1)) >
r(p—1)+2p*-(p - 1).

iii). In other cases, |G|=p=i%, &§(G)< Y0, A (p=1) 42, 5 P (p- 1)
5G)/ 1GI< 2r/p < 1. |

Finally, if G =[], Gy, then

§G) <Y 8G,) <Y 1GI< ]G 1=IGl. O

§3.2 A lower bound for §(G), G an abelian p-group

Let G be the same as in §3.1, L be a primitive ZG-lattice, LQ = Qg L.
Then we have
(i) Ly isa faithful QG-module;
oy o7 {e) G g
(i1) LQ #0 forany g€ G and LQ = 0;
(iii) LQ = Dy meQ(Ca), where (s is the d-th primitive root of unity and

ng are some nonnegative integers.
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Thesc all follow from §1.3. LQ is a faithful QG-module since L is a faithful
integral representation. (iii) is a direct consequence of the fact that G is abelian
since every irreducible QG-module of G then is of the form Q({;) for some
d||G|. For (ii), LCC;Q =0 since L° =0, so we need only prove that ch s) #0
for any g € G. Suppose on the contrary, LQ< w ) =0 for some go € G. Then
L{so) =0 Let a€ H*(G,M) be special for G, res?go)aaé 0 in particular.

But
ae B (go) resf \L) =L (o) /n(L) =0,

where h(L) is the image of the map h:L — L defined by h(l) =3 ;g5l. This
is a contradiction. Hence (ii).

Now we try to find minimal Lq satisfying (i), (ii), (iii).

First, we claim that, if T is a faithful QG-module of minimal dimension , then

by suitable rearrangement of generators of (G, we can suppose that
r
T =P Q¢w)
i=1

with a; acting faithfully on j-th component and trivially on all other components.
That is a;-l= cj;{z,
6o = 0 ifi#j
Y71 1  otherwise.

Since T is faithful, we can pick Q(({s) C T irreducible, such that a, actson it

faithfully. It must be Q((,.) , and we can suppose that

a,-lr=Cpk,1r ,a,--l,-=(;2rlr , 0 <r ,t; € Z.
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Now let

r—-1

G'=(a) xJ] (@sai*) = (a) x (a;) x---x (a}),

k=1
where a =a,, a=a;a¥, suchthat s;+¢; =0 (mod pr)i=1,2,...,r—1. It
is easy to see that there are solutions for s;, and a! are still a set of generators of
G. Hence G' =G. From s;+t; =0 (mod p*), wecanget s; =0 (mod p*—*),

since t;p¥ =0 (mod p*), %, =0 (mod p*~*>. Hence o(a®a;) = o(a;), and

r

a, -l = Celry aj- =10 <r, forany I, € Q((pxr) -
Now T/ Q({) is the minimal faithful representation for

G/ {ar) = (a) x--x (a).

~ r—1

By induction on r we can suppose that T/ Q((x.) = @7 Q) with
the required (a!_, ) x---x (a}) action. Hence T = @, Q((,r,) and
(al_; ) x---x (a} ) actsonitas required. The only thing left is to adjust a,
such that it acts trivially on  Q((,) . This can be done by rewriting
r—1

G= (a]J@) x]J ()

i=1 i=1

such that t;+u; =0 (mod p*).
Denote Lo = @i, Q({x) , then Lo C Lg by above claim. for any ¢ =
M, a¥, t # 0 (mod p¥), we have Lo< 9] - 0. So we need some more
modules to assure (ii). Suppose Q((ps), s> 1 issuch a module contained in IJQ,

a; -1 = (il for any | € Q((p+). Define Q((,) a QG-module by ¢; -1 = (!,

(d; = u; (mod p)) for any ! € Q((p). Then whenever g € (¢ has nonzero fixed
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points in Q((pe), g has nonzero fixed points in Q((). Hence we need only pick

the latter.

For g = I, af, t #0 (modp%), we can have [[, (p* — 1) such
clements. For a given Q(({,), suppose a;-l = (il for | € Q(¢p), then g
has nonzero fixed points in Q((,) if and only if Y I, tiui = 0 (mod p). So
we need only discuss that for giving (u1,uz,...,%,), how many (t1,t2y...,t,) we
can find such that the above equation are satisfied, where u; € (0,1,...,p — 1);
; €(1,2,...,p5 = 1).

If there is only one nonzero wu;, say u, #0, thenall ¢;: # 1p can be arbi-
trary, the equation is actually u;ti, =0 (mod p). this has (P~ = 1) [Tiio (pFi ~
1) solutions. If there are more than one nonzero wu;, say u; # 0,u;, #0, let all
other 1; arbitrary, we will always end in a equation of the form: wu; i, + ui,ti, = b
(mod p).

If wiyti, —b=0 (modp), wehave p*1=1—1 of t, pr2=1 or pk2—1-—1

of t;, as solutions.

ki, ~1

If uity, —b#0 (modp), wehave p*171 of ¢, phiz — pFe=1 or pFiz —
pF2=1 41 of t;, as solutions.

So in any case, the number of solutions of above equation is not greater than
phu=1(phe — p*a=1 4+ 1). Hence we need at least to add (# of g)/(# of solutions)

more Q((p)s. But

# of g > [Lie (p* = 1)
# of solutions = pha~l(pha — pF2—1 4+ 1) I1;., (P =1)
(p*s — 1)(p* —1)
p"u"l (pk‘2 — pk.2 -1 + 1)
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> { p—‘Z k,’l=k,'2=l

p—1  otherwise.
Hence we have the following theorem.
Theorem 3.2.1. Let G = Cp, x Cppr X0 X Cpary by Shy < ovs Shyyr >0
Then

v izt (M) + (p—1)? if ke = 1
() 2 { i e ) +p(p—-1)  ifk > 1.

Corollary 3.2.2.

(3) 8(Cy) = (p+k—1)(p - 1); see [12]
(i) 5(Cy x Cp) = (2p + 1)(p— 1)
(22) let G =[], Gy be an abelian group with

G, = [Ii Corpas kpr, > 1forall p, p>2, for all p, then
3, Zielpt) < 6(G) <28, T wlpte).
§3.3 p*-groups

The following are the whole list of groups of order p*, p prime. C,xC,x(},

CpxCpz, Cp, Ms(p), and M(p) for p>3; Dg and Qg for p =2, Where

Myp) = (zy]a” =y’ =1L,y =3");
M) = (zyzic®=y=2"=1[zyl=zzz2=[p2=1);
Dy = (z,y|z*=yi=1,y ey =27} )3

Qs = (=zyldf=ylylzy=2z"").
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nmong them, C,s is not primitive. 6(Cp x Cp X Cp) and §(Cp % Cp2) have
been given by corollary 3.2.2. §(Ds) = 4,6(Qs) = 7 can be found in [12]. So we

need only discuss Ms(p) and M(p).

Theorem 3.3.1. §(Ms(p)) = §(M(p)) = 2p(p — 1).

(i) 6(Ms(p)) < 2p(p—1).

Ms(p) has p+ 2 non-trivial irreducible Q-representations. The represen-
tations Q®z 35,0 < i < p of degree p—1 which factor through a cyclic
group of order p and are determined by the condition: Q®z So is trivial on
z and Q®gz Si is trivial on z'y, for all i, 1 < i < p. The representation
Tg =ind?;p'y> Rq, with Rg irreducible of degree p—1 on ( zP,y ) =CpxCyp

and ker(RQ) = (y), isfaithful. Furthermore thereisan a € H*(Ms(p), T)

such that « | () #0, or a isspecial for y (see [12]). But, since

zyz”~ = ya?, rlyz " = y2 ¥, .., Py Pt = yzlP- P,

a is also special for yz?,i=1,2,...,p—1. In Ma(p), all the elements of order
p are ( zP,y ) —{1}, Hence we need only find a lattice T; such that thereis an

oy € HYMs(p),Ty) which is special for zP. In order to construct such a lattice,

we use Corollary 2.11.
Let G=Ms(p), C= (z"), H= (zf) x (y). Then the transfer

from H to C is trivial, by Corollary 2.11 and the exact sequence

HY(G,kerp) — H%(G,ind$2) & HX(G,ind§Z),
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we can get a; € H?*(G,kery), suchthat a; is special for xP, since

R

H(G,indf,,\ ) = H'( (") ,Z) =2/pZ

contains B, which is special for zP. Hence our T can be kerg, or T'@kere
is a primitive lattice. So 8§(Ms(p)) < 2p(p — 1).

(ii) 8(Ms(p)) = 2p(p—1).

Suppose L isa primitive lattice for Ms(p). Then LQ =Q@Q@g L isafaithful
QMs;(p)-module and LQ< v) # 0 for any g € M;(p). Hence it must contain
TQ = ind!(‘:i’('z )) Rq, RQ is an irreducible representation of ( zP,y ) = C, x C,.
Now =z acts faithfully on Tq, and dim TQ = p(p —1). Hence res'(‘:“)(" T =
Q(¢2) with z-1=(pl for 1€ Q(() . That implies TQ( =) = 0. Similarly
we can get the TQ( ='v ) =0, forall i such that (i,p)=1 since z'y also has

order p? and it acts on TQ faithfully. Now pick any Q@7 Si, 0<:<p, then

we have

Ms(p) — QQgzSi
! /
(g)

where g has order p. So Q®z S: = Q((), or Q7S = D, Q,Qx = Q

with the trivial action of Mjz(p) on it by factoring through ( ¢ ) . It can not be
the second case because Q@7 S; isirreducible. So Q@7 Si = Q((;), and hence
z-l=Chly-l=(*1, with kii+k; =0 (mod p). Since for the fixed k), k; of
above, k;j+k;Z0 (modp), forany j#i (modp), (QQzS:) (=v) =0
for j #: (mod p). Hence we need Qg So to assure that LQ( =) # 0, we
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nced Q@7 Si to assure that LQ( =v ) #0, i=1,2,...,p—1. So
1g2TQ® QB 5%DARZ 5B B Q®z S,

or dimLQ > 2p(p —1).

(iii) 6(M(p)) < 2p(p—1).

We have p+ 2 non-trivial standard irreducible ZG-lattices. S;, 0<:<p
of rank p—1 which factor through a cyclic group of order p and are determined
by So istrivial for z; S; is trivial for z'y and T = ind?:f: )) R, where R is
irreducible Z{y, z)-lattice of rank p—1 with kerR= (y ) . Representatives of
the conjugacy classes of cyclic subgroups are 1,z,z,z'y, 1<:<p.

We have a primitive lattice T @!-, S; for M(p). From Corollary 2.12 we can

casily get

Hz(M(P)’ So) = Hom( ( z,2 ) »Q/Z) = C, x Gy,
Hz(M(p),S,') = Hom( ( ziy‘)z ) ,Q/Z) = CP X Cpa
HY(M(p),T) ®Hom( (y),Q/Z)=GCy,

so we can find ap € H?*(M(p),So) such that o is special for z and 2z,
a; € H*M(p),S;) such that it is special for z'y, 1 <i<p-—1, and a €
H*(M(p),T) such that it is special for y. So 8(M(p)) < 2p(p —1).

(iv) 6(M(p)) 2 2p(p - 1).
Suppose L is a primitive lattice of M{p), then

QRzL=QR7z P, M; M; +#Z, since LM©®) = g,
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where M; are some standard irreducible ZM (p)-lattices. By Lemma 3.0.2, € M;

is a faithful ZM (p)-lattice and thereis a F' satisfying:
0—+A—=F 5 M@p)—1

with A finite abelian and @ M; special for F.  M(p) acts faithfully on D M,,

so weneed T to get faithfulness. We claim that

MpP)p ~ i aF
T= md( )R ind _1((y2))R.

Since F/r'( {y,z) )= M(p)/ { y,z ), we can pick cuset representatives of
(y,2) in M(p) as {z'} and 77'((y,2)) in F as {r7!(=')}, such that
~1(z*)7~(z7) = 7~} (z*+). Then

é: Z 7z ) — Z z'r;
is a ZF-module isomorphism since for any f € F, [=r71"'(z')r7'(h)
) = W ) (W )
= ¢ f"<z'+')<r-‘(h))*“‘x"r.-)
= ¢ )R T)
= Z R = zth Z o'r;=f Z T'r;
= fe(D_ v Na"r).

Next we will prove that 7 is not special for r~Yz), 7" (z%y),1 = 1,2,---,p— 1.

By the isomorphism
H(F,T) = HY(F,QQT/T) = H\(F, md'_l(( »HQ Q® R/R) ,
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we can use H' to do it. By Shapiro’s Lemma we have

RS,

W(F,ind", , \Q®FR/R) & H(((y2) ), QQR/R) .

-1 ({v.2)
Suppose F = U;r~1(z')7"1( ( y,2 ) ) as above. For any g € F, let gr~(zf) =
71 (& @)Cy with Coa€ 77 ((y,2)). I [fle H(r'((v,2) L, QQR/R) ,

the preimage of [f], [f]€ H(F, indf_l((y'z))Q®R/R) is defined by
p-1
fl9) =D F(Coi) = (& @))yr (9,2 ) ),
1=0

Now if g = 771(z), by 77(z)r~}(z') = 77}(2**!) we get C,-1(5); = 1. Hence
f(r=Y(z)) = 0 or [f] is not special for 7-1(z). Therefore T is not special for
7=Y(z). Similarly, we can provethat T is not special for 7-!(z'y), i =1,2,--,p—
1.

Since if 1 # j, SJ-< i) ) =0, we have

H3( ( 7 (2'y) ) ,res? S;) =0.

=1(z'y))
That is S; is not special for 77'(z'y), ¢ # j. We need S; to get special for
'r—l(m); S1 to get special for r'l(my), ooy Sp1 toget special for 7.—1($p—1y)_

Hence
p-1

rank(M) > rank(T) + Z rank(S;) = 2p(p — 1).

=0

§3.4. Some solvable groups

Lemma 3.4.1. Let G be a finite group fitting into

1—A—G-">B—1,
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where both A and B are primitive groups. Then G is a primitive group and
§(G) < [G: Al6(A) + 8(B).

Proof. Let M be a primitive ZB-lattice, N a primitive ZA-lattice. We claim
that T = ind§SN@ M is a primitive ZG-lattice, where G acts on M through
G — B.

(i). T is a faithful ZG-lattice since ind§N is.

(). TS=0. M® =0 since MZ=0. (ind§N)¢ = N4 =0 (sec p.86 of
[14]). So MS = (ind§N)® @ M€ =0.

(ii). T carries a special class. From 5-term sequence we have
0~ HY(B,M) — HYG,M) — H'(A,M)° > HYB,M) — H¥G,M).

A actson M trivially, so H'(A,M) = Hom(A,M) =0 since M is lorsion
free. Hence we have

0 — HYB,M) = HG,M).
Let 8 =7*(a) € H*(G,M), where a isspecial for B. forany C= (c¢) <
G of prime order, suppose 7(C) # 1, then 7(C) = C; res§gM = resf M.
So H*C,resSM) = HZ(T(C’),resf(C)M) . Hence B |c# 0 by the following
commutative diagram.

0— Hz(BaM) - H2(G1M)
l resf(c | resé
HZ(T(C),resT(C)M) — H?(C,resSM)

That is M is special for all elements ¢ of prime order of G such that 7(c) # 0.
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If 7(c)=0, then c€ A. It is obvious that there exists an o € H*(G, ind§N) =
H?(A,N) such that a | (e) # 0 for all such c¢. Hence T is a primitive

ZG-lattice, this yields the claimed upper bound in the lemma. O

Theorem 3.4.2. Let G be a primitive solvable group. Suppose that
1=GpndGpyd---d4G1 4G

with G;/Giy1 primitive abelian. Then 6(G) <2|G|.

Proof. By Corollary 3.1.2, §(H) <|H| for H primitive abelian. From Lemma

3.4.1,
8G) < §G/G)+|G/G1| 6(Gh)
< 8(G/Gi)+|G[G1] (8(G1/G2)+ |G1[Gr| 6(Gr)) < -
< 8(G/G)+|G[G1] 6(G1/G2) + -+ + |G[Gr-1| 6(Gr-1)
< |G/ |G| 41/ |Ge| +-+- + 1] |Gz | +1)
< [Gl(1+1/241/22+--)=2]G].

where the last inequality is the result of the fact that if H; < Hz, then

|H,|<1/2 |Hy|. O
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CHAPTER 4 n(G) FOR NILPOTENT GROUPS

In {20] (d), Plesken raised the following open problem:

(p3). Determine n(G) for finite groups G which are not prime power order.

In this chapter, we will answer (p3) for nilpotent groups. We do this by first
giving an upper bound in §4.1 and then proving that is the required one in §4.2. in
§4.3, the final section of this chapter we will look at an example in details to see how

our method works.

§4.1

It is proved in Theorem 1 of [7] that for any ZG-lattice M, if a € H*(G, M)
is special for G, then there exists a ZG-homomorphism h : M — @ycy indS$Z
such that h*(a) € H*G,€DindEZ) is also special for G. Now if we can find
a new lattice N and a ZG-homomorphism &', such that A’ : @, »indSZ —
N satisfies (h/)*(h"(e)) is again special for G, then we can substitute N for
Decex indSZ and get n(G) < rank(N). The following proposition is the result of

this thinking.

Proposition 4.1.1. Let G be a finite group, H, K be subgroups of G
satisfying: (i) K <« KH, (i) (|H|,|K]) = 1. Define ¢ :indjZ — ind$,,Z
by <,o(Z:u,u awuvH) =Y (3, auw)uKH, where G =U,uKH = Uyuvll arc the
coset decompositions. Then for any « € H*(G,ind§Z) such that « | (=) #0

for some z € H, we have ¢*(a) ] () # 0.

40



Procf: By
H%*(G,ind§Z) = HY(G,ind§Q/Z) ,

we can suppose a € HY(G,ind§Q/Z), o () # 0. From Shapiro’s Lemma

we have
HY(G,ind$Q/Z) <, HY(G,ind$,Q/Z)
| res§ L resgy
H!(H,res$ind$Q/Z) H!(K H,resG 4ind$ ,Q/Z)
lm 173
H'(H,Q/2) HY(KH, Q/2)

= 1=

Hom(H, Q/Z) 2, Hom(K H,Q/7Z)

where wl(zw awuvH) = apnn, w2}, buuKH) = b;. Then we need only prove

the result at the level of Hom. Pick f € Hom(H,Q/Z) such that f | (=) #

0, say f(z) = t. Since jres§ is an isomorphism, it is not difficult to find

(wires§)~!(f) € H'(G,ind{Q/Z) . Suppose

guv = ugg(u)v = ugvy)g(u, v),
with g(u,v) € H. Define

f(9) = flg(u,v))ugvgm H.

Then [f] € HYG,ind$Q/Z) and =ires§[f] = f.
Now

0" (F)9) = vf(9) = ¢ Y Fla(u,v))ugvgH

=Y > flglu,v))uKH.

41



So
mapf(g) = f(g(1,v)), g € KH.

Hence

P(f)(z) =D fl=(1,0))-
Since K< KH and (|H|,|K|) =1, wecanpick K to be the set of the coset
representatives of H in KH. By zv = (zvz™')z, we have z(l,v) =z. Then

o(F)(@) =| K| f(z) =| K| to #0, because (|Kl|,o(z))=1. O

Corollary 4.1.2. If G is a finite nilpotent group, |G|=py*p2®---p7", &y C
X containing all subgroups of order p;, then
r
n(@) <), D, 1Gu:Cl,
i=1 CeXp,

where |Gp,|=p{‘ is the Sylow p;-subgroup.

Proof. For C € X,;, pick H=C, and K =G in proposition 4.1.1, where
Gy is the complement of Gp; in G. Then rank(ind$,Z) =| Gy, : C |, hence
the result. O

From now on in this chapter, we will always suppose that the group G =

[T, G is nilpotent, |Gy |=p{*. Let’s index p in the way such that

)

| Xm |SI sz |S Sl Xpr |1

and o; < aiyq if | X |=| Xpiyy |, where | A | means the cardinality of the
set Xp. Suppose A&, = {Ci,Cizy--+,Ci;}, then t <ty < -+ < Ay For cach

Cij, let A,‘j = GPQC;,-. Write G = Uuu(ij)Agj, and let A,‘j = Zu u(ij)A;j €
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( ind(A"u Z)¢. Define T to be the submodule of the permutation module P, ; indg..jZ

generated by
(A +A;| i=1,2-,r =1 j=1,2,--+,;}.

Define

T @indguz — (@indg“Z)/T
J iJ

to be the natural map. Then (P indg..’.Z) /T is finitely generated since € indg..jZ
is; and it is a free abelian group since for any z € (@indg..,.Z)/T, k an integer,
kz = 0 if and only if kz € T, the latter is equivalent to z € T and so z = 0.

Hence (P indg'.jZ) /T 1is still a ZG-lattice for which we have

Proposition 4.1.3. Suppose o = )7, .oy, o5 € HZ(G,indg'.jZ) is the
image of the nonzero element of H*(G, indg..jZ) under the map defined in Prop.
4.1.1. Then o;; hasorder p;, aijlc;#0 and « isspecial for G . Let = be
defined as above, then 7*(a) € H*(G,( indg‘.jZ)/T) is still special for G .

Proof. Let D; = {i, ¢ € {1,2,---,7}, t; 2 j}, 7 =1,2,--+,t,1, T; be
the submodule of the permutation module €P, ; indg‘_jz generated by {A;;+ A4},
i€Dj, j=1,2--,t,—. Then T =@;3}Tj, andlet D; = {r},T; =0,j =
tr1+1,---,t,, we have

(P indg, 2)/T = P (EP ind§ Z)/T;.
i,j j teD;
So we need only prove that if a; € H*(G,@, indg‘jZ) is special for C;;, i€ Dj,

7 (e;) € H*(G,(6p; indg'_j Z)/T;) is also special for C;;, i€ Dj.
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From the exact sequence
0— Pind Z - Pind, Q- Pind§, Q/Z —0,
i€Dj t€D, i€D,
we have the exact sequence
0 — (Pindg, 2)/T; - (@ ind, Q)/T] —» (P indS, Q/2)/T] — 0,
i€D; i€D; ieD,

where T; and T are sumodules of ), inngQ and @, indqu/ Z generated
by {q(Ai;;+A.;),i € Dj,q€ Q) and {G(Ay+A;),i € D;,§ € QJZ} respectively.
Hence

H*(G, (@;ind%,,2)/T;) = HYG,();,ind3, Q/Z)/T}) .

By the commutative diagram

H(G,@;indf,2) >  HYG,(@;indE,2)/T)
= 1=
H'(G,@;ind§,Q/Z) >  H'(G,(D:ind},Q/2)/1)

we can change the discussion to the first cohomologies.

Pick [8]€ H'(G,@;ind$, Q/Z) , write [B]=Tp [Bi] with [B]e€
H'(G,ind§_Q/Z) being the image of the nonzero element of H'(G,ind¢, Q/2)
under the map in 4.1.1. Then [B]|c,# 0 and [B;] has order p;. Then =*([3])
has order either 1 or p;. Hence #*([8]) |c,,=0 if k #¢. Therefore 7*([8]) |c,,#
0 if and only if #*([8i]) |c;;# 0. Now we prove that 7*([3])|c,,# 0

Let Cij = (c), suppose fi(c) = 3, aujyu(if)Ay. I =*([A]) |, = 0,
then wBi(c) = Y, auijyu(is)Ai; = ca@ — @, for some @ € (@iindZUQ/Z)/T;’.

44



Write
Q= Z Z bu(,‘j)'u(ij)Aij,

then

3 augul(ii)A =cy | > buiyu(l)i = DD buiyu(t)Ais + T
u { u ! u

where T, € T!. Compare the coefficients of u(tj)A;;, we get
3 auiiyuli) Ay = €Y busyu(if) Ay — Y bugsyu(ii)Aij + Ta(i),

with Ta(i) = a1Aj. So Bi(c) = cao — ao + Tu(i), o € indg, Q/Z. By choosing
another representative of [B;], we can suppose that B;(c) = Tu(i). Then #fBi(c) =
T.(3). 7([B]) lc,= 0 implies To(i) = ca’—a for some @ € (EP; indG‘JQ/Z)/TJf’.
So Ty(3)=ca —a' + Ty.

Now write o = Y ;3. cuuy)u(l7)A;;. Then ¢ acts on {u(lj)Ai}i, | € D;
with lengths of orbits either |Ci;| or 1. If there is one orbit having length one,
then ¢ acts trivially on that term. That term will not appear in co’ — o/. Since
ca' — o' = Ty(2)— T having equal coefficients for all {u;;A;;} with [ fixed, every
term with the same [ will not appear. Now for any [ such that 1# ¢, if all the
lengths of orbits are |Ci;|=pi, then p;|[G:Ay], a contradiction. Hence at least
one of them must have length one. Then ¢ acts trivially on all terms by the above
argument. That is ca’ — o' € indg'.jQ/Z. But then T, = T,(i) — (ca’ — &') €
indg..JQ/Z. This gives Tp € (indg'_jQ/Z) NTy =0, or Ta(i) =co' —a'. Itis
obvious that we can pick o' € ind(A;_.jQ/ Z. Then [Bi]|c,;=0, contradiction. Hence
=((8]) lc,#0. O

This implies

45



Theorem 4.1.4.

f: > |Gy, : C| — rank(T)

n(G) <
1=1 C€Xp,
r t r—1
= ZZle.:C.']‘I—Zt,'.
i=1 j=1 i=1

§4.2

We will prove in this section that Theorem 4.1.4 gives the exact n(G). We do
this by proving that the lattice we got is the minimum one in the sense that if M

is another lattice and
v : (Pindg 2)/T - M
4.3

is a ZG-homomorphism with nonzero kernel, then %*(8) is not special fora f €
H(G, (D, indgi)Z)/T) which is special. The main idea is to reduce to something

that contradicts the following result which is the main result, theorem 2 of [7].

Theorem. Let G be a finite p-group, X a set of representatives of the
conjugacy classes of subgroups of G of prime order. S = @, xindgz, p o=
Y cex Pc € Deex H?(G,indSZ) is special for G. Then (S,/) is minimal, in
the sense that if e:S — S is any ZG-homomorphism with non-zero kernel, then

e*(B) 1is not special.

Theorem 4.2.1. Let G be as in Theorem 4.1.4. | G |=]];p;* then

r ty

n(G)=Zz|G,,:c,.j|—iz,-.

i=1 j=1
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Proof of Theorem 4.2.1. We will first prove the cases that o; > 1,1 =1,2,---,r.
let A€ H2(G',€Bindg"2) be special for G and B be its image in
H3 (G, (D indg')Z)/T) under the composition of the map in Proposition 4.1.1 and

the map in Proposition 4.1.3, which is still special for G. Let
e: (@indgi’.Z)/T - M
]

be a ZG-homomorphism with non zero kernel and €*(8) special. By Theorem 1 of
[7], we have a ZG-homomorphism & : M — @indg'.jz. Combining with Proposition
4.1.1 and 4.1.3, we can get a ZG-homomorphism
d: M 2 @Pind§ Z 2 Pindf 2 = (PindF 2)/T,
i’j
so that d*(e*(B)) isspecial. Let f = de be the composition. We have f*(8) spe-

cial and ker f # 0. We will show through a series of lemmas that this is impossible.

Lemma 4.2.2. f above can be lifted to f , where
f: @indguz — @indgﬁz
ij ij

is a ZG-homomorphism such that the following diagram commutes.

@.’,j in‘}g.,z — (@i,j indgi Z)[T = @j(@; indg.-,z)/Tj

J

L 1f Lf
D;,; i“dgi,z — (B.; indgi )T = D;(D; indg.-,z)/Tj

J

Proof. From the following diagram,
Pind§, z = (Pindg, 2)/T > M = P ind§ Z

£ Pindg,,z = (PindS,2)/T,

6J
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we can see that f can be taken to be her, since then fr = (mehp)r =
n(ehpr) =med=7f. O
Write
F=3 wanfonwnion

Lmed

(5.3),(k,1)
with

Mgy : @Pindg, 2 — ind§, Z
iJ
the projections,
K(ig) 1 10d3, 2 — @ ind§, Z
ij
the embeddings and f(i.j)(k.l) € HomZG(indgk‘Z,indguZ). For subgroups C and
D of G, let [CzD]:indSZ — ind$Z be given by

[CzD)(tC) =) _tuzD € ind3Z, t € To
uel

where CzD is the disjoint union U,eyuzD. If there is no confusion, we will also
use [CzD)] to mean an element of EndZG(@HGyindf,Z), by having it annihilate
ind$Z for He Y, H # C. Weknow that HomZG(indgklZ,inngZ) has a basis
{[AuzAi;]} =z runs over the double coset representatives } (see [14], p.177). But

when k #i, AgzA;; =G forany z. Henceit has basis [Ax1A;] in this case.

Now let
A=) reafenmnren =D saifeacoien;
k=t il
o= Y weafeaworen =) auislBul Ayl
ki ks

Then f=fi+f.
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Lemma 4.2.3. Let G be a p-group, (c¢) = C < G having order p.
Suppose that G # C, then Vgic(g) =1 forany g € G of order p, where Vg o

is the transfer map from G to C.

Proof. Since G is a p-group, Ng(C) = C¢(C) and it strictly contains C.
From Vg/c(g) = Ves(c)eVares(c)(g), it suffices to show that Ves(eye(g) =1 for
any g € Cg(C) oforder p. If g=¢, Cg(C)=UuevuC the coset decomposition,
then cu = uc for any u € U. Hence Vggycy/clc) = 6eO€ = 1. If g # ¢,
then Cg(C) > K = (g) x C. By Lemma in section 4 of [7], Vk/c =1. So
Vesicye = VeeVoo(oyx =1. O

Lemma 4.2.4. If f € H*G, D:; de ;Z) is special for G, ¢ isasin
4.1.1, ¢*(B) € H¥( G,@i'jindgl.jZ) is the image of B, which is still special, then
f1(¢*(B)) is special for G.

Proof. Let Y auuyu(kl)An € indguz.

[AH].A,J] Zau(kl)u kl Ak( - (z au(kl)) 2 u(z])A,J, i.

u(kl) u(ij)

Suppose ¢ = (’olindg 7z where ¢ is asin 4.1.]) Then we have
ki

[AkllAl_y]

indg, Z 2 ind§, Z ind, Z.

This implies

H(G,indg,2) B H(G,ind§, Z) T

2/ 3 AG
H*(G,indg, Z) .
We will prove that if By € H3*G, indgMZ) is special for Cy;, then

[Aul A" 0x(Br) le=0
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for any C of prime order.
We will again prove things in H' and we will denote the maps by the same

notations. We have

[Axi144]*
—

H!(G,indS Q/Z) 2 HY(G,indS, Q/2Z) H'(G,ind§_Q/Z) .

Let vy € H'(G, indg“Q/Z) be special for Cy. Since i has order dividing
[Cril, [AulAy]*eh(wt) le=0 for any C = Cu, u # k. So it remains only to

prove for the case when C = Ci,. By Shapiro’s Lemma
H'(G,ind§, Q/Z) = Hom(Ci,Q/Z)

Let C= (c), G =Usvubu, OAu =UwvvCu, and guv = ugvygg(u,v)
with g(u,v) € Cu. Then f(¢) =i/ |Cul, (i|Cul) =1 for any non zero
f € Hom(Cyi,Q/2). The preimage of f, [f] e H'(G’,indg“Q/Z) is given by

f(g) = Z f(g(u, v))uyvu(g)ckl-
So if g has order |Cil,

[Auldglen(Hle) = [Bu1As] Y (O flg(u,v))uAu
= (O fg(u,v)) Y u(if)Ai
uv u(ij)

= f(Ts/cu)9) Z u(éf)Ai;

(i)

= f(TogewonTorcocan(9)) D wlij)dy = 0.

u(ij)

The last equation is the result of Lemma. 4.2.3. Hence whenever k # i, we have

[Au1A;1*0™(Bk) |c= 0 for any C of prime order.

50



Hence f+(9°(B)) le= fi(¢*(B)) lc +F3(¢"(B)) le= fi(¥"(B)) le, since f; isa
linear combination of [Agl14;]" with & # ¢. Therefore f2(¢*(B)) is special as

required. O

Since G is nilpotent, we can pick the set of coset representatives of A;; in

G the same as the coset representatives of C;; in Gp,. We will identify them and

denote by U;;. Define
5 : @)ind§, 2 — @ indg" Z, by 6:(uAy;) = uCy.

J j

Then we have
. . & . 1Gp;

@ mdg..jZ = @mdg‘jcpzz = @ indc;; Z

j i j
with Gy acting trivially on Q)indg:; Z. For any te U,

[Ci;xzCit)(tCs5) = z tuzCix
ueU
where C;;zCi; is the disjoint union UueyuzCik. On the other hand, A,-j=C,~jG;‘_’
Aip = C,'kG;,i, So we have the double coset decomposition G = U Azl =

UIC,-J-G;,.‘.zC,-kG';,'. with z runs over the double coset representatives of C;; and

Ci in Gp,. Thus

5,'[A,'j$A,'k]5;](thj) = 5;[A;ij;k](tAij) = 6;(2 tv$Aik) = Ztu:to,'k

veV uelU

Hence we get an isomorphism

* . . 4Gp;
67 : End(@mdgiJZ) — End(@mdc{;‘Z)
3

j

[AgzAs] = [CCl,
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where 6:(f) = 6:f67'. Let f, = S0, foo with

B =) reafeneniin (see4.22).
il

Write 8=, ,[Bu] with [Bu]€ Hz(G,indg“Z) . Then for any &k #1i, we have
G x G 2% indg 7 2% ind§, Z z " fnien g
] !

since \;; projects only (Z,7)-th component. Hence

B @)= fue () =Y fe" Q18-
1 {

i,k

Since f;.. (¢*(3,[B:4]) has order p;, it can only be special for subgroups of order
pi. Then since fI(p°(8)) is special for G, we get f;..(cp‘(ﬂ)) is special for all
Cij’j =1,2,--+,t

Let uy : ind5, Z — @, indgijz be embeddings and v : Q}jindguz —
indgikZ be projections. Define

foi : @PindS Z — Pindg, Z
J

3
by fu = Sisuifayamva. Then fp € End(@;indf Z). If = € @;ind3, Z,
then f,(z) and fy(z) are the same except that they are in ®D., inngZ and
@jindg‘jz respectively. So f_;,‘i(tp‘(z,ﬂg,g)) is special for Cij,7 = 1,2,--+,{;
Then (6{)‘(f;‘(cp*(zj Bi;))) is special for all Cyj,j =1,2,---,t;. So

resG —; Z Bii)))

is special for Gy, if we think €, indcz ‘Z as Gp,-module. Let [ be the kernel of

the map

. 1Gp, . . G,
¢: EndZGpi(@mch'Z) ~— End( H*(Gy,, @, ind " Z) )
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defined by ¢(f) = f*. By Cliff-Weiss’s Lemma 3 ([7]),
(6)(Jos) = Za,-[C.-,-lC,—,-] (mod I),

where (aj,p;) = 1. This is because the following elements are all in I.
(i) [CijzCu) where j#k or j=k, z¢&Ng,(Ci);
(ii) [CijzCi) — [Ci;1Ci5) where z € Ng, (Cij);
(iil) pi[Ci;1C5).
Lemma 4.2.5. If ¢ € (), indg:;‘Z)GP-'\p.-(@j indgfj‘Z)GP-‘, then

5 (F)() £0  (mod pi( ) indg72)%).

J

Proof. Let I; be the linear span of the elements in (i) ,(ii) and (iii). Then
again modulo I;, every element of EndeP'_(@j indg"; iZ) is congruent to an el-
ement of the form Y.a;[C;;1C;;] where (aj,p;) = 1. Hence the index of I; in
Endg, (@;indgr'Z) is pf’. But the indexof I in Endgg (&) indg"Z) is
pi' from the proof of Theorem 2 in [7]. Therefore I = I;. Then, we need only
prove that g(t) € pi(ED; indgf; Z)6» for any g € I since [C;;1C;;] is identity on
indg.’; Z and zero on others. It is enough if we can prove that elements in (i) to (iii)
satisfy this property.

Elements in (iii) are obvious. For elements in (i), write ¢ = }_.b;t; with

t; = ¥, uCi; € (indg” Z). Then

([Ci;zCis) - [C.-J-lc.-,-])(z bit;) = b;([Ci;zCij] — [Ci;1C45])t;

2
= bJ(Z ua:C,-j - ZUC,'J') =0.
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For elements in (i)

[Cij‘”c-'j] Z bjtj = bj[CijSCC.'j]tj = bj Z Z uvxC.-j
J

u veV

= ijZuvxC,-j = ijUC.’jZl =l V| bjzuc'ij,

where | V |=| C;; : Ci;j N 271C;jz |= pi. Hence the result. Similarly we can prove

that [CijzCal 30; bit; € pi(@; indgriZ)0%.

Corollary 4.2.6. f,(t)#0 (mod pi(D; indgi,.Z)G) if
t € (Pindg, 2)°\p:(EP ind§, 2)°.
J J
Proof. Since §; is an isomorphism, we have

8(2) € (€D indg? 2)%% \pi( @ indg" Z).
J

J

Hence

8 (72)(6:1)) & p( D) indg 2)°.

That is 6:(f,(t)) & pi(€D;indgh Z)%:. Hence f,(t) & pi(@;ind§, 2)°. O

Now we are in the position to complete the proof of Theorem 4.2.1. Recall that

a

[ satisfies:
(). AT)CT;
(ii). f*(B) isspecial if B e H*G, D; ; indg..JZ) is special;
(iii). There exists an z € (€D, ; indg‘jZ) \ T, suchthat f(z)eT.
(i) is due to that f is a lifting. (ii) follows from the fact that [*x*(8) is

special. (iii) is the result of the assumption that ker f # 0.
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We divide the discussion into two cases according to the property of z in (iii).

(1) ze€ (@,deA‘JZ)G

Suppose z = Z.‘,,' a.-,-A‘-,-, since A,-j = -—A,.j (mod T'), we have z =z, +1
with z, € (D, indgn.Z)G and to€T. z,#0 since z g T. Thensince f(T)C
T, we get f(z,) € T. Thus we can suppose z € (D; ind§ .Z)G. Then f(z) =
fi(z)+ fa(2) = fp(z) + fo(z) € T. Suppose z=73; biAr;, = & p.(€D;ind3 Z)C.
(Otherwise if p? is the maximal power of p, dividing z, we can consider (1/p?)z

instead.)

fZ(z) = Z K’(l,])f(l,])(r,l)/\(r,l)(z b Ar.s
1#r

= Z Qrli5 [ArllAij] (z baArs)

i#r

= Z b, Z araiij'—lAu

s i#Er

pf"—l Z b, Z a,,,-jA,j (mod T).

s i#r
Since f, (z)+f2(z) €T, f, (z)—pe1 PIN 2D arsijAr; € T. But every element

of T is a linear combination of Ay; + A,;, hence

fpr z) Pgr—lzb Zarm rj

s i#r
So f,.(z)=0 (mod p,(@jindger)G) since o, > 1. Then
For(z) =0 (mod p.(Pind] Z)°).
J

This contradicts Corollary 4.2.6.
(2) =z ¢ (@Uindc,.Z)G. Then there exists a g € G such that gz # z, or
gz—z #0. Butsince f(z)eTC (D ; . ind§, Z)S, flgz—2) = gf(z)- f(z) =
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On the other hand, [AnlA;] willmap tA,, tozeroif (u,v)# (k) and Ay to
Y uev tuli; = Aij. So Im( f)c D ; indg‘jZ)G since f, isa linear combination
of [AplAy;] with ¢ # k. Then fa(gz — ) = 0. Hence filge —z) =0, or
ker f; # 0. But fi = . Jpi» so there must be an i € {1,2,---,r}, such that
ker f,,‘. # 0. Then kerf, # 0 and so keré(fy) # 0. This contradicts Cliff-
Weiss’s Theorem 2 of [7] again since ( (67)(fp:))*(X;[8u)) is special for Gp,. This
completes the proof of the case when all o; > 1.
Now we will prove the general case. Suppose G = [[i., pi* with oy = az =

ce=ag=1, @m1>1,--,a.>1 Let Gy =[l.,Gp, G2=1II.,41» then by

Theorem 4.1.4,
rog r-1 o r—1
n(G) <Y Y 1Gy:C| =) ti= ) Y G, :Cl =) ti=n(Ga).
i=1 j=1 i=1 i=a+1 j=1 i=at1

On the other hand, G = Gy x G2. Let T'; be an arbitrary torsion free space group
with point group G, and translation subgroup A;. For any torsion free space group
I, with point group G; and translation subgroup A;, we can form torsion free
space group I'; xI'; with point group G, x G2 and translation subgroup A; P A..
By definition there is a normal subgroup N of I'yxT contained in A; @ A, such
that (T xIT2)/N is still torsion free, and has dimension < n(G). Then NNT; is
a normal subgroup of T'; and T/NNT, 2 TZN/N < (I'' xI2)/N. So it is torsion
free and has dimension < n(G), or n(Gz) < n(G). Therefore

n(G) = n(Gs) = iZm,_ 0|—Zt_iz|a,,, C|-—Zt

i=s+1 j=1 i=S+1 i=1 j=1

That proves Theorem 4.2.1 finally. O
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$4.3. An example

We will look at an easiest nontrivial example in this section to see how the
argument in §4.2 works. Let G=CyxCo= (z) x (y); Cu= (2?),
Ca= (3°); An= z? ) Coy, Qo= y® ) C4. Denote

1nd Z@md Z; S = 1ndAuZ@indgnZ;

t=An+zAn+An+yAu+y*Ay; and S”"=5'/ (t), where (t) isthe
submodule of S’ generated by t. It is obvious that S” is still a ZG-lattice. We
will prove that S” is the lattice we need for n(G), or n(G) =
First let B € H?*(G,S) be special, § — §' —» §" is defined in the
natural way. We want to prove that (7y)*(8) € H*(G,S") is again special. By
Proposition 4.1.1, we need only prove that if 8’ € H*(G,S') is special, 7(8') is

also special. We, as usual, will prove things in H'. Pick
(1€ H(G,indg, Q/Z@indg, Q/Z) ,

write [8'] = [B1,] + [By] with [8,] € HY(G,ind§ Q/Z), i=1,2 and

[ﬂ;l] | (22) #0, [Pl () # 0. Suppose 311(3’2) = n1Aqn + nezbyy, ny,n2 €
Q/Z, if =([Bn)) | (22) = 0, then there exists an « € S”, sothat w(8;,(z?)) =
r?a —a =0 since z? acts trivially on S”. Hence w(niA11 + n2zApy) =0, so
n, =n, =0, contradiction. Similarly 7*([8,,]) is special for ( y* ) . Combining
with Proposition 4.1.1, we get n(G) < 4. To prove that 4 is the exact number,
we follow our usual approach, that is to prove that if f € Endg,S" and kerf #0

then f*(wp)*(B)) is not special any more . We prove this in three steps.
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(i) rank (Endg.S") = 4.

By the familiar isomorphism

Q®z Homz(M, L) = HomQG(Q XM, QQ L),

we have rank (Endg,S") = dim (EndQGQ X S").

QR s zind§, QP indf, Q=P A PaP ),

where Q, has the same base set as Q, but with nontrivial G action. So

QR 5"(= QR /A =P AU DAL

Hence dim (EndQGQ® SM=14+14+2=4.

(ii) For subgroups C, D of G, let [CzD] have the same mecaning as in
§4.2, L = [AulAu]+ [AulAnl; L= [AnlAn] + [AayAa); b= [AnzAn] +
[Aallal); ls = 2AAn1An]+3[An1Azn]. Then I € Endg,S',i =1,2,3,4. Define
I[;: 5" - 8" by Ii(z) = li(z). Then we have

Lemma 4.3.1. [;, i=1,---,4, form a basis of Endg.,S".

Proof. First we need to prove that I; is well defined, or L( (t) )C ().
This is just a routine check. For example, l4(t) = 2[A21A11](2) + 3[A11AX](1) =
2[A211A14](A2 + yAn + y2An) + 3[A111An](An + A1) = 6.

Pick a Z-basis of S” {An,zA1,Aun,yAn,}, let [ =3 ail;, then | maps
this basis to (a1A1 + @28y + a3zl — 2a4(B1y + A1), @z + azhyy +
azA1; — 2a4(A11 + A1), @l + a2yAar + aslyy +3a4(Ayy + zAyy),  anh,
ay(Ay + zAn + Ay + yAn) + asylAa + 3a4(A1; + zA1y)). Hence (=0

a; = 0, = 1,---,4 and so {l;i} generates a subgroup of Endg. 5" «
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index. For any f € Endg,S", we:onfind g € (2 =1,---,4) such that
kf = g for some k € Z%, or f = (1/k)g. Write (1/k)g = 3 ;a:ili = (a1 +
a2)[A;1An] + as[AnzAn] + 3a4[Anlla] + 2a4[A211A10] + (a1 + a3)[An1Az] +
az[AnyAal. If (1/k)g € Endg,S’, then one of a; + az,a3,2a4,3a4,01 +a3,a2 is
nol an integer. But in any case, this implies that one of a; is not an integer. We
will prove that then ¥, a.l; € Endz,S". This can be done by looking at the image
of (Ai1,zA11,A21,yA2) under Z‘-ad}. Hence (1/k)g € Endg,S’, or I; isa
basis of Endgz;S". O
(iii) Now suppose f : S” — S" satisfies f*((wp)*B) special and ker f # 0,

where f € H2(G,ind(Gz2)Z®ind?;3)Z) is special for G . Let f:8 — §' be
the lifting of f, then from

S I 8 (t)

Lf L

s I S'f(t)
we get  [*(7"(¢"(B))) = 7 f*(¢(B)).- So f*(¢*(B)) is also special.

Now we will figure out what the kernel of f should look like. Write f =
an[An1An] + @y [AueAy] + ea{AnlAu] + az[AnlAa] + asz{AslAs] +
o[ Ay Da] + agy[Do1y?As1) = fi + fo with fo = an[AnlAg]+a12[A214y;] and
fi = f = fa. First we will prove that kerf; = 0. Suppose not, let « € ker fi,
a # 0. Consider
[Axn1Ay) : ind§, Z — ind§, Z;

a2y + ayAa + 03y2A21 — (a1 + a2 + a3)(An + zAp).

We will prove that [Az1A1]*p5(#21) [c=0 for any C of prime order. But it has

order dividing 3, so we need only verify for C = (¥®). We will do it in H'.
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From
indg, Q/Z £ ind§, Q/z “215" ind¢_Q/z,
we get

[A2 lAn]

HY(G,indS, Q/Z) 5 HY(G,indS, Q/2Z) HY(G,ind¢, Q/Z) .

By Shapiro’s Lemma, H'(G, mdc21 Q/Z) = Hom(Cy,Q/Z). For any
h € Hom(C2,Q/Z), h(y®) =i/3 for some i€ {1,2}). Then the preimage of h,
[A] € HXG, denQ/Z) is given by

= Z h(y®)z"y*Coy =1/ Z z"y"Cy.
u,v

u,v

Hence by the index of Cp; in Ay is 4, we getl
h(y®) 22 46 /BZy"A Batgul 4; ZxJA“ = 0.

Similarly [A111A2]*¢51(B11) l[c= 0 for any C of prime order. Hence (B lo=
f1(B) |lc since f3(B) lc= an[AnlAn]*(B) lc +ar2[AalAn]*(Ba) lc= 0. These

imply that f(¢*(8)) is special since f*(¢*(B)) is. But

f@B) = (an[AulAu]+ ay[AnzAn]) (¢ (Bu))

+(a22[AnlAy] + a;g[Azxy:’-\zx] + a;'g[Azl?le'zx])‘(W(ﬂzl))-

So
(an[AnlAn]+ a’u[Au-TAn])'(‘P'(ﬂn))
is special for Cy;
(022[A211A21] =+ a;2[A213/A21] + agz[AmyzAzx])'(‘P'(ﬂzl ))
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is special for Cy. But ker fi # 0 implies that one of
an[An1An] + ay[AnzAn), az[An1A] + agy[ A2y D21] + ag[Any? An]

has non zero kernel. Say for example, a1[A1114y] +a'u[AumAu] having non zero
kernel. Then we get 2 map from indguz = indgzz)z to itself with non zero kernel
and mapping a special element to a special element. This contradicts Theorem 2 of
[7]). Hence ker fi =0 as required.

Nowif a€kerf, a#0, then fi(a)=—f(a)#0 since ker f; = 0. Since
Im(f;) is contained in (indg“Z@indgnZ)G, fo(ga—c) = gfo(a)— fa(a) = 0. If
ad (indXHZ@indi,Z)G, or ga—a #0, flga—a) = fi(ga—a)+ fo(ga—a) =
filga — a) # 0. That is fla)#0 or a ¢ ker f. Therefore kerf is generated
by clements of (ind% Z @ ind§, Z)®, or elements of the form {ni(An +zln)+
n9(Az + yAg + y?Az)}. Suppose there is a w € kerf with w = n;(An +
TAyy) + ny(Ag + yAa + y?An) # kit for any k € Z, or ny # ny. Then by
fr(w) = nf(w) =0, wehave 7(w) € ker f. But f(m(w))= f(r(ni(An+zlu)+
n3(Aa1 + YA + ¥2An)) = f((u = n2)(A1n + A1), So f(x(w)) =0 implies that
An+zAy; € ker f. Similarly Az +yAg +y?Ay isin ker f. But then (Imf)¢ =
0. This is impossible since G 1is not primitive. Hence kerf is generated by t or
issimply 0 . By ker f # 0, thereexists a & {kt} ,suchthat f(a)€ {kt}. Then
a—ga €kerf forany g€ G. So |G|a =kt +2 g9 € (indg“Z @indgnZ)G.
Hence a = mj(An +zA11) + ma(An +vin +y2Ag) with m; # mo . But then
again we can get (Imf)¢ = 0. So the only possibility is that ker f = 0. But this
contradicts that there exists o ¢ {kt} such that f(a) € {kt}, since f(kot — kycx)

would be zero for some ko, k; € Z.
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A REMARK ABOUT CHAPTER 4

Dr. A. Weiss suggested an easier way to prove the main result of this Chapter ,

namely Theorem 4.2.1 after reading my thesis. The main idea are sketched below.

Lemma A.(see [R], P. 55 & 70) Let V be a QG-module. lor a finite number
of primes {p1,P2,---,pr}, let there be given a full Z, G-lattice X(p;) in V. Then
there is a full ZG-lattice N in V such that N, = X(p;) for all i.

Lemma B. Let G be as in Theorem 4.2.1. Let M be a ZG-lattice, then

P} s spec ior G if and only if M, = Z, ®z M is special for G, for

1=1,2,---,7
Proof.
HAG,M) =P HYG,Z, @ M) (sce [CR], P. 529).
By |
0—G,, = G- G, —0,
we have

T Hl(GpnMp.') - HZ(G;,,MP.) - Hz(Gvﬂlp.) - HZ(GP-')‘MP-) -

But Hz(G;..,M,,,) =0,s0 HYG,M,) isa pi-group. Hence it is the Sylow
pi-subgroup of H?*(G, M) . Then it is well known that

res

0 — HZ(G, lw‘u‘) - Hz(Gpl’ MP-)

and

Hz(Gpan) < HY(G,M,,) — 0
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are both exact( see [W}, P. 92 ). But corgm resgpiz = (G:Gp)z and (G:Gy) is

invertible in M,,. Hence it is a isomorphism. So we have
HY(G,M) =P HG, M) .

Now it is easy to see that the Lemma is true. O

Proof of Theorem 4.2.1. Let G, Gy, X, and A, be thesame a. ja §4.1.
Define

. . 1Gp;
Ly, = infg,, @ ind ;" Z
CeXy,

with Gy acting trivially on it. Let Ly, = Ly /L; Iy = rankg(LE) and =

max(l,,). Let
My, = Z, ™ @ (Z; @7, L) B D4 Zi Q2. L
Then
Q, ®z, My = QB (D} Q. Q L},)-

The characters of Q,, ®Zm M, are the same for all i and afforded by a QG-
module. Hence by Lemma A, There exists a ZG-lattice M such that Z, @ M =
M, for all i. Then we claim that M is the lattice we needed in Theorem 4.2.1.

(i). M isspecial for G . M, is obviously special for G, because of the

direct summand

Zo Q) Ly, = @ indgZ,,.

Cex,,

Herce M is special for G by Leruma U,
(ii). M is minimum. Pick [o] = 3 .[a;] with [a5] € H¥G,Zp, &: L)

such that [a;] is special for Gp,. fher [a] is special for G. Suppose now that
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T is a ZG-lattice and M <+ T is any ZG-homomorphism such that ¢*([a]) is
still special. Then we will prove that kere = 0. Hence M is minimum. Since

Z, ® L, isa direct summand of M, we have

Zoi Q) Lo & M, 5 2,,QT,

where ¢; is the embedding. By Cliff and Weiss’s result, kery;(1 ® ¢) = 0. For
otherwise, Im(1 ® €)(p;) cannot be special for Gp;, which contradicts to the fact
that e*([a]) is still special. Therefore xr contains all xzy, 2=1,2,---,r and
[ copies of identity. But all x L, are different from each other as G, acts trivially

on L;,i. Hence e isinto. O
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CHAPTER 5 SOME LOCAL ANALYSIS

§5.1

Let G be afinite group, C be a suhgroup of G of prime order p. We have

seen that ZG-lattice ind$Z is often used in the above discussion. Since
H%*(G,ind$Z) = H*(C,Z) = Z/pZ,

there exists an a € H*G,indS$Z) such that « # 0 when it is restricted to
C. This is what we need in constructing torsion free space groups. For this kind
of construction, Professor Plesken introduced a new way of dealing with it in [19].
To understand his idea, we need some notations. A G-eztension (R,€) consists of
a group R and an epimorphism € : R — G. The G-extension (R,e€) is called
crystallographic respectively p-adic, if kere is free of finite rank over Z respectively
over the ring Z, of p-adic integexs. When G also acts faithfully on kere, R is
the crystallographic respectively a p-adic space group. Plesken’s main result can be

formulated as follows:

Theorem. Let (R(p),e(p)) be p-adic G-extensions for each prime p dividing
|Gi. Then a crystallographic G-extension (R,€) of minimal dimension exists such

thai «fie p-adic completion (R,,¢,) of (R,e) maps onto (R(p),e(p)), where
R, =lim R/p" ker ¢ for n — oo.

If (R(p),e(p)) is s orsion free (no elements of p-power order) for each p, then R

is torsion {ree.
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This result makes it possible to change the construction of a torsion free crys-
tallographic space group to the construction of some p-adic space groups. For the
latter it is natural to ask that how ind3Z, will decompose and if ind3Z, = @ M;,

which M; will carry the nontrivial second cohomology that we need. Since
H*(G,ind§Z,) =D HY(G, M) =Z,/pZ,,

there must be only one M;, such that H*G,M;,) = Z/pZ and all others are
zero. So we can substitute M;, for inngp in constructing p-adic space groups.
Dr. W. Plesken suggested that at most circumstances, it might be the Scott module
that carries the non-trivial cohomology. The Scott module in ind3Z, is the unique
summand of ind3Z, containing the trivial submodule (see [14] or [5]). We will prove
the following theorem 5.1.2 in §5.2; theorem 5.1.1 follows easily from theorem 5.1.2.

Then give some applications of them in §5.3.

Theorem 5.1.1. Let M, be the summand which satisfies H*(G, M,) # 0
Then M, is the Scott-module in ind$Z, if and only if Cg(C) = Ng(C), the

29

normalizer of C in G is equal to the centralizer of C in G.

Theorem 5.1.2. Let C , G, and M; be as in Theorem 5.1.1. Let N =
Ng(C), and let M, be the F,N/C-module of F,-dimension 1, whose N/C-action
comes from the action of N on C. Let Mj be the Z,N/C-module which is the
projective cover of M, and let Mo’ be the inflation of M| to a Z,N-module.

Then M; is isomorphic to the Green correspondent of Mol.

§5.2. Proof of Theorem 5.1.2
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(1). Suppose C 4 G; |Cl=p; C= {c); H=Cg(C) the centralizer

of C in (. Then it is easy to see that

Lemma 5.2.1. 1. H D G,, the Sylow p-subgroup of G; 2. HG.

Proof. For the proof of 1, pickingany z € Gp, o(z) = p', suppose zlcx = ¢,
(G,p) =1, then c=z " cz? = . So j# =1 (modp). But j* =; (mod p)
forany t > 0. Hence j =1 (modp), or z7'¢cz =c¢. Thatis z € H. For the

proof of 2, picking h€ H, g€G, then h™'ch=c and
(97 hg) 'c(97 hg) = gk geg kg = g hTIchg = g ' dg =,

hence g~'hge H. O
Now define F,G-module M, = F, with the G-action

g-1 =k, if and only if ¢ = ¢, such that k,j, =1 (mod ).

Extending it linearly, we get a G-action. TlLis is because that ¢%% = (¢/2)9 =
&2In . or jo0 = Jpdes (mod p); but gogr -1 = kg 1,  kggdee = 1. So
kpsndoda =1, (Kopg — Kgrkgy)igedoy =0, or kgyg, = kg, kg, (mod p).

Since H acts triviallyon C, H acts trivially on M,, we get a
F,(G/H)-module M, with the action g-1=g¢-1. But (|G/H|,p) =1, hence
every irreducible Fo(G/H)-module is a direct summand of F,(G/H) & ind;F,.
Then M, | ind§F,. This is still true if we think both sides as G-module in the
natural way (inflation). Write ind$F, = ind$ind¥F,. Let N be the Scott-module
of indJF,. Since N contains a submodule that is isomorphicto F, as H-module,

ind§F, can be identified with a submodule of ind§N. Under this identification,
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there is a component of ind§N, say M}, such that M, is a submodule of M},
H 0 0

Let M, be the lifting of M to Z,G-module. Then M, |ind$%, and we have

Proposition 5.2.2.

al

H}(G,M,) #0.

Proof of Proposition 5.2.2.

Lemma 5.2.3. If ind$Z, = @, M;, then indep = D(Q, ®Z,, M;) and
ind3Q,/7, = ®,(Q, @z, M)/M:

Proof: By the exact sequence of Z,G-module
0 — ind$Z, — indgQ, — ind§Q,/Z, — 0,
we get
ind$Q,/Z, % ind§Q,/ind$Z, = BQ, @z, M)/ @ M:.
Define

¢: DQ,Qz M — D(Q, Rz, Mi)/M;

by ¢((a1,az,---,a;)) = (d1,---,d), Itisobviousthatitisontoand kerp = M;.
a

Now by

0 M - Q,&z M — (Q,Qz, Mi)/M: — 0,
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we can get

H¥(G,M;) = H'(G,M;) with M; = (Q,(X) M;)/M..

By 5-term sequence, we have
0 HY(G/C,(M)°) — HG,M:) — H'C, M) °

- H¥G/C,M;) — HYG,M;) .

Since

H/(G/C,ind§Q,/Z,) = H*\(G/C,ind§Z,)

~ HYYG/C,Z,(G/C)) =0fori>0,

we get

H'(G, M;) = HY(C,M:) © = Hom(C, M;)°,
where if f:C — M; is a homomorphism of abelian groups, then g-f:C — M;

is the homomorphism
g9 f(z) = gf(g7 z9).

Now we prove that

Hom(C, (Q, (X) My)/My) # 0.

By the definition of Mj, there exists o € Mp C M(;, such that g¢-to = kg, if and
only if t9 =1t/ with k,;j, =1 (mod p). Pick % € Mé, o — to under the map

M, — My/pM, = M,. Then

g- fo = kgfo (mod pMo)
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Let o= (1/p)®t € (Q, ® M,)/M,, then
g+ = (ky/p) ® {0 = ky((1/p) ® {o) = kyer.
Define
f:C = (Q, ) M)/ M,
by f(¢) =a. Thenforany g€ G
9-f=9-flg7"cq) = 9f(c¥) = jog - a = jokya = .
Hence
f € Hom(C, (Q, X) My)/ M,)C,
or
Hom(C, (Q, (X) Mo/ Mo)° # 0.
Hence the result. O
Proposition 5.2.4. M, is the projective cover of My as F,(G/C)-module.
This is the direct result of the following lemma.
Lemma 5.2.5.(see [8], p. 395 & 401) Let G be a finite group, N = rad(F,();
r(N) ={a € F,G: Na=0}; let e be a primitive idempotent of F,G. Then:

1. r(N)e is the unique minimal submodule of F,Ge;

2. F,Ge/Ne = r(N)e.

Proof of proposition 5.2.4. Since indZF, = F,(G/C), and M, | F,(G/C),

there exists a primitive idempotent e of F,(G/C) such that M, = F,(G/C)e.
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M, is a simple F,(G/C)-module. It must be embedded as the unique simple module
of (Fp(G/C))e. Thenby (Fp(G/C))e isthe projective cover of (Fp(G/C))e/Ne =
My, we can get the result, where N = rad(F,(G/C)). O

(2). If C <G, Ng(C) is the normalizer of C in G, write ind}¢©z, =
@, M; with H*(Ng(C),Mo) #0. Let ind§ )Mo= g(Mo)@; Ni with g(Mo)

the Green correspondence of M,. Then
H*(G,9(Mo)) #0.

Proof: H?*(G, ind,Gva(C)Mo) > H*Ng(C),M,) # 0. All N; have vertices
in
X={w<G|lw<C'nC,ge G\ Ng(C)} = {1}
Hence H2%(G,N;) =0. This gives H*G,g(Mp)) #0. O
Corollary 5.2.6. The Scott-module of ind$Z, contains nontrivial cohomology
if and only if Cg(C) = Ng(C).

Proof: Combine (1) and (2). D

§5.3. Applications of Theorem 5.1.1 and 5.1.2

We will use Theorem 5.1.1 to discuss n(G) and 6(G) for G = As, the
alternating group on 5 letters. Let x;, x2, X3, X4 and xs be all irreducible
characters over C with dim(x;) = 1, dim(xz) = dim(x3) =3, dim(x4) = 4
and dim(xs) =5 (see [24]).

(5.3.1). n(G) L 16.
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By [7], for any ZG-lattice M such that there exists o € H*G,M) which

is special for G. We have a map
po:M— GB ind$Z,
Cex
such that ¢*(a) is still special. Now suppose that ind3Z, = @ M; with M,
carries the nontrivial cohomology. Assume that there is a ZG-lattice M;. which
is a homomorphic image of ind$Z, such that M; c = 2,87 Mi.. We have the
following commutative diagram:
H*G,ind$Z) —  HYG,M;)) —  H¥C,M,)

! !
H2(G, inngp) — Hz(G’ ‘Mi,c) - 1{2(0’ M",C)

The leftmost vertical arrow is an isomorphism, since by Shapiro’s Lemma the left hand
cohomology groups are both is morphic to C. We want to show that the image of
the non zero element of H%(G,ind%Z) in the top right group H*(C, M;.) is not,
0; this is true, since the image of the non zero element of H?*(G,ind3Z,) in the
bottom right group H2(C, M; o) does not vanish. Then we can extend the above

map as follows:

M5 Pindéz % P M.,
CeX Cex
It is easy to see that (p)*(a) Iis still special. Then we have

n(G) < Z rasz(M;C).

CeXx

Now let G = As.
i. p=5, Cs= ((12345)); N(Cs)= ((12345),(25)(34) ) .
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It is casy to see that indg *Fs = Fs@F; with (25)(34) acts nontrivially
on Fj. By Theorem 5.1.1 F§ contains nontrivial cohomology for N(C;). Now
consider

ind§c,)Fs = 9(Fs) D M:
with g(F§) the Green correspondence of Fj. Since all M; are projective F;5G-
modules and Sylow 5-group of G has order 5, we have § | dimp (Mi). So
dim(g(F;)) =1 (with one M; having dimension 5 ), or =6 (without M; ). If
dim(g(F;)) =1 then g¢(Fy) = Fs with trivial G-action. This contradicts to
(indﬁ(Cb)Fg)G =0. Hence
dim(g(F}) = 6.
Now we will find the character x of the lifting of g(F§). The lifting of ind,Gv(Ca)F's
is indg(c',)zg. Let ¢ denote the character of N(Cs)-module Zf, then we have
x(z) = indfc,)d(z) = (n/hs) Z $(w),
we€C:NN(Cs)

where n =[G : N(Cs)] = 6;h, =|C,|. Then it is easy to verify that x = x2 + xa-
Hence it can also afforded by a ZG-lattice.

u. p=3.

Cy= ((123) ) ; N(Cs) = ( (123),(12)(45) )} . Again

indy(*F; = Fs (P F,
with Fj carries the nontrivial cohomology. Let

indg(cs)Fé = g(F3) @ M;

1
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with g(F3;) the Green correspondence of F; and M; projective G-module.
We need the following lemma to change the discussion to algebraically closed

field case.

Lemma 5.3.1( Noether [8] ). Let F, be the algebraic closurc of F,. Let V
and W be Fp-modules. Then F,QV 2 F, QW if and onlyif V & W.

We have (everything coines from Serre [24]) 4 irreducible F3G-modules Wy, Vs,
Vi, Vi withdim V, =1, dim V, = dimV3 = 3, dim Vi = 4. We also have the

Cartan matrix:

— 0 O N
OO = O
O - OO
NS =

and hence P(V;) (the projective cover of Vi ) = 2Vi @ V4, dim P(V}) = 6;

P(V;)=Vs; P(V)=Vs and P(Va)=Vi@2Vs, dim P(Vy)=9. Write
ind§ o) Fs = g(F3) @ M;.

Again by (ind§c,)F5)® =0, we have that M; # P(V;),P(V4). In order to decide

whether M; = P(V;), P(V3) or not , we need the following Lemma of Robinson’s

[22].

Lemma 5.3.2. Let F be an algebraically closed field. Let /1 be a subgroup
of G andlet V and W beirreducible FG-modules and F//-modules respectively.
Let P(M) be the projective coverof M. Then the multiplicity of (V) as a direct
summand of ind§W is equal to the multiplicity of P(W) as a direct summand of

res§ V.
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Now let G = Ag;F = F3; N(C3) & S3. Then we have two irreducible F35,-
modules, say Wi(= F3) and Wy(= ¥'3). Both bive dimension 1. P(W)) =
SW, 4 W P(Wy) = W, + Wi, Sodim P(W) =4; dim P(W i =2.

By resfieyVe = P(Wa) + W and Lemmna 5.3.2, we get P(V2) | indg(ca)f"a.
Similarly we: have P(V3) | '?ndf,(cs)f"a. Now it is easy to calculate that X, By =

v(Vi). Heonce g(F'3) = F's @ Vy. Then we have
'3 /R) ind§ ) F4 % indfy, ' = F2 (D Vi P Fa Q (V2 D V).

So by Neetdior’s Lemma we get
indfcyFs = Vi P2 g )

with g, = Vi

w. p=2.

Cr = ((12)(34) ), N(Cp) = {1,(12)(34),(13)(24),(14)(23)}, ind3 IF,
is indecomposable. The Scott-modale of indg2F2 will carry the cohomology.

There are 4 irreducible Fy As-modules V4, Vs, Va, V3 with dim W, =1,
dim 1, =2, dim V3 = 2 and dim V; = 4. The projective covers of them are
respectively  P(Vi) = 4W; + 2V, + 2V, P(V2) =2, + 2V, 4- V3, P(Va) =21, +
Va4 2V and P(Vy) = V; with dim P(V;) =12, dim P(V,) =8, dim P(V3) =38
and din: P(1}) = 4.

F,(’y has only one irreducible me uule ¥,, P(F;) = F;C,. By the same
argument as above we can get that P(V,) | indng‘g, P(V3) | indngz and P(V,)?|

indgzi?g. Hence dim ¢g(F2) =30 -8 -8 -8 =6 by Lemnma 5.3.1.
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Let g(i"s), g(f?‘;,) and g(ﬁ‘g) be the lifting »~f the correspondent ones. Then

it is not difficult to calculate that

Xg(i;\;) = X2 + X35
Xg(i;-;) = X4
Xg(]?‘,) = X1+ Xs-

Each of them is afforded by a QG-module. Hence by a ZG-module. let’s denote them
by Vi, Vs and V, respectively, where the subindex indicate the corespondent
primme. That gives

n(As) < 16.

If we use a different way to dcal witk: (' as follows:
s qAsy ¢ - 1A,
indgt Z — indg, Z,

where Cs is a subgroup such that Ng(C5) = C5C,. It is not difficult to prove
that if &€ H*(As,ind3Z) is special for Cz, then ¢*(@) is still special for Co.

Hence we can get the same result

(5.3.2.) n(G) > 16.

We prove this in the way that if M is a ZAs-lattice and

o H@ U@V i
is a ZAs-module homomorphism with nonzero kernel, then @*(f) is not special for
some 3& H*}G,@,V.\ -pecial.
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By the discussion above , we have a ZAs-homomorphism

d: M - @ind%z % PV

such that d*(¢*(B)) isspecial. Let f be the composition of ¢ and d, then we
have f: @V - @V: satisfying (i) f*(B) special and (ii) ker f # 0. We will
show that this is impossible.

Let’s pick a € H%G,@indéﬁ'Z) special and f§ =¢*(a) . Write a=a;+
as+as, B=pP2+Ps+Ps with o; and B; special for C;. Since X ®v:@V: =

(O +xs) +xa+(x2+X3), Xs@v@vs) = 2 Xi With at least one y; missing
since ker f # 0. It is easy to see that f*(5;) is not special for C; if ¢ # j from

the commutative diagrara

H*(As,ind®Z) — HYA V) — 14 f(V))

A | Hs As
res re T€S,,
l C, b SCJ l C;

Hz(Cj,resgjindéfZ‘s — H2(C,-,reséjV,~) — Hz(Cj,resg;f(V,-))

since H*(C;, resgjindéfZ} = 0. Hence we ¢ t miss x24 X3, X4 Of X1+ Xs-
If we missed x5, f(V2) would be a trivial As-module. But then H?(A4s, f(V2))
= 0 since As is perfect. It cannot be sj.ecial for C;. So the only possibility is

that y; is missing. We will use that V; 2ind5:g,Z. From
0 — kerop — indfg,Z — Z -+ 0,
we have (by taking the dual)

0—Z % ind%, Z - (kerp)” — 0,
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where (kery)* is the dual of kere. Hence f(V2) & (kerp)®. Since

H%*(As,2) =0, H*C;,Z) =C,, we have

0 - H2(As,indf, Z) 5 H2(As, (ker p)*)
l ! resé; { resg?
C; @) H%(C,, resé: indé:’:c2 Z) Ei H?(Cs, resé: (ker)*)

Hence to prove resé: f*(B2) = 0, amounts to prove that f 'resé:ﬂg = {0, or resé.; B
€ im($)*. We again change the discussion to H'.
0 —  E'45ind%Q/Z) 5L H'(45,Q@®(kerp)/(kerp)")

l i resé: 1 resg:
(‘ﬁ)‘ Hl C A_r, . dAs j. Iil C Ab k - -]’ N .
C; = ( 2 I€8¢g,1Ndg, ¢, Q/Z) - ( 2, €50, Q ®( er ‘P) /( wr ‘P) )

Now pick a € H'(C;,Q/Z) = Hom{C,,Q/Z), «a #0. Then a(c)=1/2,

Cg—'—- (Cz).

(@) (e)(e2) = pa(e) = 9(1/2) = 1/2) uCsCa.

Now let’s examine the image of resé:.

As

res
H'(As,ind%., Q/Z) —~ HY(C,, resg;irxd3302q /Z)
HY(CsC,, Q/Z) HY(C2, @ indg 0, 00y P Cmicncay U L)
l: l__

Hom(CsC,, Q/Z) — Hom(Cz,Q/Z)Q;Hom(Cg,Q/Z)

The last equality on the right hand side is the result that
gTe: CsC
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if C,N(CsC)t =1, or Hom(C3,Q/Z) if C2N(Cs5C,) = Ca. But CoN(CsCy)t #
1 if and only if Cin CsC; # 1, this in turn if and only if t € Ny, (C2) =
{1,(12)(34),(13)(24), (14)(23)} if C> = ((12)(34) ) . They belong to two dif-
ferent double coset of C; and CsC; in As. Hence the result.

For nonzcro o' € Hom(CsCy, Q/Z), o/(cic)) =d/(d)=0 if j=0 and 1/2
if j=1. Let thc preimage of o/ in H'(4s,ind5c,Q/Z) be [a/], then

a'(g)= Y, &(Vou)uCsCs,
u€T¢gc,

where Tg,c, is a set of coset representatives of CsC; in As and gu = w,Vj,u
with V,, € CsCy. Then

res45c;’(cz = o' (Vg 1), C5Co.
Cz )

5‘€TC502
So we need only prove that o/(V,,,) = 1/2 for all u. We will prove this in two

ways.
. Let Cs = ((12345)), C.= ((25)(34)) = (c). Then C; <
N, (Cs) = CsC.

CsCy = {1,(12345). (14253), (13524), (15432), (25)(34), (21)(35), (54)(31), (24)(15)}.

We can pick
TCsCz = {ls (123)a (124)a (125)a (152)1 (154)}

Then

(25)(34)1 1(25)(34), Va = (25)(34);

(25)(34)(123) = (154)(25)(34), Via2s) = (25)(34);
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(25)(34)(124) = (124)(13524)5)C9(25j(34),

Vegrae) = (13524) 30D (25)(34);

(26)(34)(125) =  (125)(26)(35), Vium) = (20)(34);
(25)(34)(152) =  (125)(25)(34), Vs = (25)(24);
(25)(34)(154) = (123)(25)(34), Viuse) = (25)(34).

Veu € Cs for all u € Tg,c,, so o (V) =1/2 forall u as required.

2. It is easy to got that o'(V.,1) = 1/2. On the other hand, let ¢ €
N4, (C2)\C; and suppose ¢ € Tg,c,- Then cad = c'ez, so (Vo) = d(2) =
1/2. Hence a'(c;) is neither in Co @0 = Hom(C,, Q/Z)@ 0 since 1/2¢'CiC,y
is not in it nor 0@ C; = 0@ Hom(C,,Q/Z) since 1/2CsC; is not in it. So
it must be the generator of C, @ C2 = Hom(C>,Q/Z) @ Hom(C3,Q/Z) which is
1/2%", uCsCa. Hence the result.

(5.3.3). 6(As).

We already had lattices which are special for (abc) and (abede) in (5.3.2).

Hence we just need one for (ab)(cd). By
0 — kerp — indjic\Z 5 Z — 0

and H?*(As,Z) =0, we can get that kerp is the one we need. Hence 6(A;) <
546+ 4 = 15 which is th: exact number of §(As). (See [12] [19].)

(5.3.4). n(G) for some metcyclic groups.

Let G be a semi-direct product of C, and C, with C,, C, cyclicgroups

of prime order p and ¢ respectively. From Propositicn 4.1.1, we have
¢ :indg Z — indfZ = Z,
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such that if o€ HZ(G,indqu) is special for C, then ¢*(a) is still special for
C,. On the other hand, indgpr ~ F,C, ¥ F,@F,({;). By the Theorem 5.1.1,
Z,[¢,] will carry the second cohomology since Ng(Cp) # Ca(Cp). 1t is easy to see
that Xz g can be also afforded by a ZG-module. Hence n(G) < q. Follow the

same discussion as in (5.3.2) we can get that n(G) = q.
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