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ABSTRACT

This research is oriented towards the examination and assessment of the dynamics of
seismic imaging on massively parallel computers. By nature, most seismic problems
carry an inherent parallelism in a subdivision by source, receiver, frequency or
wavenumber. Applications are shown for 3-D prestack migration and finite-difference
modeling.

Recent advances in computing based on a subdivision of the computational sequence
into parallel components lead one o investigate the feasibility of seismic applications on a
massively parailel computer. One must redefine the mathematical formalisms and modify
the serial algorithms in favor of new ones in order to obtain the full benefit of parailel
computers. The objective of this research is not orly to demonstrate dramatic reductions in
seismic data processing time with parallel computers but also to implement new methods
of imaging that were completely impractical previously.

An analysis is made of seismic methods that are not feasible for testing on
conventional mainframe computers. Emphasis is given to 3-D prestack migration
techniques because of their challenging mathematical formulation in parallel processing, as
well as the dynamic improvement they exhibit in imaging the subsurface with seismic
reflection data. 3-D forward modeling methods have been developed and examined. Also,
an Edge Detection method applied to seismic data in order to delineate the character of the
images is presented.

The solution of seismic problems in exact 3-D, leading to higher degrees of accuracy in
imaging, is discussed along with their future potential. Present results show that seismic
exploration data processing appears to reflect the economic superiority of parallel computer

architectures.
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CHAPTER 1

INTRODUCTION

1.1 Seismic Data Processing

The seismic reflection method was invented in 1917 (Fessenden) and developed for
geophysical prospecting in the 1930s (DeGolyer, 1935; McDermott, 1932; Weatherby,
1940) as a single channel analog recording and processing technique. Essentially it is an
echo technique, similar to radar, making use of artificially induced elastic waves. The
seismic waves are reflected from subsurface impedance changes, usually due to rapid
changes in compressional wave velocity due to variations in geologic stratigraphy. In the
early years a single analog signal, or trace, was recorded and, after the application of rather
crude analog filtering operations, analyzed visually by a geophysicist for information
content relating to the presence or absence of hydrocarbon traps. Later, methods were
developed for utilizing the information content of multiple traces through special
processing techniques to improve the signal - to - noise ratio of the recorded signals.

In the late 1950s and early 1960s, digital recording and computer processing of seismic
traces was begun. Extremely large volumes of data were collected in the field with very
little spatial or temporal filtering so that optional signal enhancement techniques could be
applied in the data processing centers. A significant advantage of a large amount of
redundant information is that the power of the seismic source (explosion or mechanical
vibration) could be made small with little impact on the physical environment.

The emphasis on large volumes of data distinguishes seismic processing from other
petroleum supercomputer applications. Seismic processing possesses the potential for

system imbalance (I/O vs. CPU) in low computational complexity processing techniques.



Advanced processing techniques represent a requirement for 10* times the number of
computations represented by the largest presently practical algorithms, but these advanced
techniques require even greater volumes of data as the sample rates and number of
recorded channels increase.

A typical data acquisition scenario today is the recording of 6 s of dataata sample rate
of 2 s for 48 channels per shot (source excitation) with 15 shots per km. This represents
2.16 million samples per km, or equivalently 8.64 megabytes per km for 32 - bit samples.
Increasingly common, however, is the recording of 0.5 ms data on 1000 channels or more
with 100 or more shots per km. With increased dynamic range and three - component
geophones, a 6 s recording will produce 1.2 x 109 samples or 4.8 Gigabytes per km.

The end product of most seismic processing sequences is a seismic section, which is a
graphical display of the subsurface geological structures and their physical properiics.
Seismic sections often present the ‘wave form due to ground cisplacement, velocity
sensitivity or pressure 2s a function of time and spatial location. Increasingly, though,
seismic sections are displayed in color to represent a larger dynamic range of amplitudes or
some computed properties of the crust. These could be the compressional or shear wave
velocities, the Poisson's ratio, or changes in reflection coefficients with angle of incidence
which indicate variations of porosity or type of fluid present.

Although somewhat oversimplified, it will be adequate to classify seismic processing
into two major categories: conventional and advarced.

Conventional seismic processing has evolved over the years from the earliest single
channel methods and to a great extent, is a trial-and-error method to enhance the cosmetic
appearance of the cross section. Mathematically, the processing techniques are similar to
other signal processing applications used in sonar signal processing. These are stackirg,
spatial and temporal filtering (convolution) to reduce noise, and deconvolution to increase

the resolution. The convolution operation (represented in the time-domain by the



accumulation of inner or dot products) is by far the most common operation.

In the last 20 years, frequency domain techniques employing the Fast Fcuarier
Transform have become increasingly popular. The stacked section is the usual end
product of conventional seismic processing. Itis the result of stacking or adding together
multiple traces which, after an operation known as normal moveout iias been performed,
represent the estimated responses at the same point in space. Normal moveout is the
Pythagorean operation based on an assumption (more or less invalid depe..ding on the
geology; of flat horizontal reflecting surfaces and an estimated velocity profile of the
subsurface. in general, conventional processing assumes simple geometrical ray paths and
linesr convolutional operators.

Advanced processing techniques are distinguished primarily by their use of the wave
quation, which introduces an element of mathematical rigor and computational complexity
not found in conventional techniques. The most common advanced processing technique
is migration, which can be thought of as an imaging technique similar to that used in
optics.

Migration is performed in various combinations of time, frequency, space and
wavenumber domains. Migration can be perfonned either before or after the stacking
operation, but prestack migration is so computationally intensive that its use has only very
recently become feasible with the present genicration of supercomputers. Two-dimensional
migration is much faster than three-dimc asional, but is less accurate due to its assumption
of a two-dimensional <, urid. Asa computational compromisc, a pseudo three-dimensional
migration technique known as two-step oOr tandem three-dimensional migration is often
used.

While migration is an inverse procedure, 2 forward procedure known as forward
modeling is used to produce a synthetic seismic section. Most production forward

modeling programs are based on ray tracing, although finite difference and finite element
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methods based on a scalar or vector form of the elastic wave equation exist and these
overcome some of the limitations of ray tracing.

Most migration and forward modeling procedures currently in use are based on a
simplified form of the wave equation known as the scalar or acoustic wave equation. What
is desired is the usc of the full elastic wave equation in which the spatial distribution of
compressional and shear wave velocities can be derived. The use of the elastic wave
equation is growing but is limited by inadequate computational power and the expense of
acquiring three component field data.

Generally speaking, seismic data are amenable to parallel processing. This is
particularly true for conventional processing where individual traces are processed as
independent channels. Parallel computation in the course of advanced seismic processing
involves numerical analytic issues such as matrix factorization, the numerical solutions of
ordinary differential equations, Fourier and Hilbert transforms, and the computation of
eigenvalues and eigenvectors of matrices via singular value decomposition. It is the scope
of this work to investigate these issues of parallelism for those advanced processing

techniques, defined here within the context of seismic imaging.

1.2 Imaging of Seismic Sections - Definition and Methods

Accurate methods for migraticn, modeling and image processing of seismic records,
that anatomically examine the intrinsic information needed for geophysical interpretation
and exploration purposes are developed in this thesis. The term imaging of seismic
sections is used within the context of this thesis to indicate those methods and techniques
which reveal information contained in seismic observations. This study concentrates on
the solution of those geophysical problems, such as prestack seismic migration in both two
and three dimensions, which make use of massively parallel computers.

In order to be able to attain the most reliable interpretation of the available seismic data



a geophysicist should apply a minimum number of assumptions. In order to achieve this
goal a step must be taken beyond the conventional seismic analysis. In this thesis I v/ill
show that in order to properly image seismic data we need to solve the exact 3-D problem
with a limited number of assumptions and that it is necessary in practice to utilize the
power of available supercomputers to achieve this goal.

As described in the previous section, advanced seismic methods based on
mathematical rigor and computational complexity include seismic migration and forward
modeling. The choice of these two methods along with image processing will comprise
the set of applications developed here to analyze seismograms with the aid of parallel
computers. The methods used include: prestack migration in two dimensions using the
principle of double downward continuation in both frequency-space and ti.ne-space
domains; a new development of the one-pass 3-D poststack and prestack migration; image
processing of seismic sections based on 2-D transforms such as singular value
decomposition and edge detection. 3.D acoustic forward modeling is used to simulate data
to be used by the 3-D migration method. Finally, direct 3-D solutions of the migration

problem are presented in the poststack mode.

1.3 Seismic Analysis an4 Parallel Computing

A new phenomenon witnessed during the end of the 80's was the realization of the
dynamic potential of parallel computing. Serial computations based on single CPU
systems are approaching physical barriers based on the speed of electrons and systems
based on photons have not been realized in a practical format as yet. In any case they will
still be limited by the speed of light. The new parallel computers offer the user the ability
to execute the program more quickly and run larger applications. Parallelism is also a

natural phenomenon. Our brain is a good example of parallelism in nature. It can deal



with several informational parameters in order to achieve a single task; (e.g.) vision and
hearing input can be used to make conclusions about an action to be taken. Simiturly our
everyday living world is parallel in that several workers can complete a job faster than a
single worker could. The operation of multi-stage tasks sequentially could be attributed to
either computer limitations or human physical boundaries. In this thesis it is demonstrated
that this type of technology allows one to image seismic reflection data in ways that have
not been possible previously.

The field of supercomputing has during the last decade seen the development of a
group of computers known as vector Computers which also have some parallel potential.
Vector computers allow operations to be carried out simultaneously at high speeds, in a
sequential order. Recently, the so called parallel computers have been introduced which
can at the same time execute independent parts of a program. In vector computers the
programmer must look at ways of programming long sets of floating point operations. In
a similar way parallel computers require the user to break up the program into discrete
independent parts, each with a significant amount of work.

The primary use of such supercomputers is known to occur in seismic exploration and
in the oil industry in general. These computers allow seismologists to improve their
computational speed as well as the resolution of results. At a resent symposium on

Computers in Geophysics the following conclusion was drawn,

" nevertheless, because nearly all geophysical problems
display an inherent parallelism and because it's the only way
on the horizon to achieve improvements of several orders of
magnitude in computer performance, geophysical programs
will eventually come to be written in true parallel form under
parallel operating systems.”

( Leading Edge, March, 1990).



This type of emphasis in parallel computing in seismology runs in conjunction with our
recent investigations in this field.

This research will focus primarily on the newcr class of parallel computers, especially
the :ype of MIMD (Multiple Instruction Multiple Data) architectures, which contain
moderate (32) to massive (> 200) numbers of processors, as potential seismic processing
and imaging systems. A variety of such computer topologies have surfaced. Current
research among a range of applications has shown that promising levels of speed can be

achieved by this type of computational environment.

Limited by the availability of only one class of MIMD, the new massively parallel
computer Myrias SPS-2 and SPS-3 (Scalable Parallel Supercomputer), this work is
oriented towards the examination and assessment of the dynamics of seismic analysis on
this type of computer topology. The logistics of the solutions and algorithm development
can be easily extended to other parallel computers with minimal effort. Applications are
shown to those advanced seismic methods mentioned above. The degree of parallelism
possible in the above algorithms and also for those of finite-difference solutions will be
discussed. Present - day results have shown that seismic exploration data processing,
because of the multiplicity of sources and receivers and the decomposition by Fourier
transform into a large number of monochromatic plane waves, is well suited scientifically

and economically to reflect the economic superiority of parallel architectures.



1.4 Outline of the Thesis

Chapter 1 contains an overview of the background and direction of this research work.

In Chapter 2 the taxonomy of the present - day parallel computers is examined along
with their characteristic potentials and a generalized analysis of wave equation solutions is

presented for parallel systems.

An elegant method for 2-D prestack depth migration in parallel will be presented in
Chapter 3 in the frequency-space and time-space domains, followed by synthetic and real

examples.

Chapter 4 will cover the subject of one-pass 3-D depth migration, based on the
principle of the Alternating Direction Implicit (ADI) and a new under-relaxation 2pproach
for the solution of the 3-D vector differential equation. Applications to synthetic data and

real data recorded over an Enhanced Oil Recovery Area (EOR) will be shown.

Chapter 5 covers the forward modeling solution of the acoustic wave equation in 3-D

as implemented in a parallel computer and programmed to simulate seismic responses.

Chapter 6 is a description of the Edge Detection method developed for application to

Seismic Sections.

In Chapter 7 the solution of the exact 3-D seismic depth migration problem will be

shown and implementations in parallel along with applications will be discussed.

Chapter 8 is a trief overview summarizing the original sections presented in this thesis.

In addition some prophecies are made.



CHAPTER 2

PARALLEL COMPUTERS AND THE WAVE EQUATION

2.1 PARALLEL COMPUTER TAXONOMY AND ARCHITECTURE

2.1.1 Introduction

The diversity of parallel computer architectures can bewilder the scientist in today's
rapidly expanding supercomputing world. The discussion in this thesis will not be directed
towards an analysis of those architectures but primarily to the advantages and limitations of
parallel processing viewed from the eyes of a geophysical user. Recent advances in parallel
processing technology are based on hardware systems such as systolic, hypercube and
interconnection. An examination of these terminologies will be given below, along with a

technical review of parallel computer hardware.

2.1.2 Terminology and Parallel Taxonomy

It has become increasingly difficult to arrange parallel computers into a categorical
pattern because of the many variations that are available commercially. It is useful to keep
the logical taxonomy of Flynn (1966) in mind and possibly augment or modify it
accordingly. Flynn's taxonomy is based on the intercorrelation of instructions and data

which yields four basic categories:

SISD (single instruction - single data)

-serial computers.
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MISD (multiple instruction - single data)

-impractical design to use.

SIMD (single instruction - multiple data)
-multiple processors simultaneously executing the same

instruction on different data.

MIMD (multipie instruction - multiple data)
-multiple processors autonomously executing diverse

instructions on diverse data.

In order for someone today to generalize the definition of these architectures, a
modified Flynn scheme must be used. Duncan (1990) proposed one that includes
appropriate computers that Flynn did not foresee and excluded architectures with low-level
parallelism. His basic taxnnomy was separated into synchronous and asynchronous
systems with an additional category of MIMD paradigms. Table 2.1 shows this
taxonomical layout and Table 2.2 diagrammatically shows the difference between

synchronous and asynchronous architectures.

2.1.3 Synchronous Architectures

Pipelined vector processors.

This type of computer supports massive matrix and vector operations. Some vector
processors are characterized by multiple pipelined functional units (Hwang, 1984), which
can operate concurrently. This type of system provides parallel vector processing by

sequentially streaming vector elements into a functional unit pipeline.
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TABLE 2.1 Parallel computer taxonomy

SYNCHRONOUS
Vector SIMD Systolic
ASYNCHEONOUS
MIMD
Distributed memory Shared Memory
MIMD Paradigm
MIMD/SIMD Dataflow Reduction

Wavefront Myrias SPS

TABLE 2.2 Asynchronous / synchronous architectures

SYNCHRONOUS ASYNCHRONOUS
SIMD MIMD

P P
M II

. Data . Data
Instruction Flow lnstruction Flow
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SIMD (Single Instruction - Multiple Data)

This type of environment employs a central control network for processor-to-processor
or processor-to-memory communication. The network allows instruction results
calculated at one processor to be communicated to another processor for use. This kind of
structured architecture is used for large scale scientific calculations, such as image
processing, nuclear energy modeling, seismic modeling and others. The main drawback of

such systems is the complicated programming environment.

Systolic.
This configuration is used to solve special purpose problems, such as signal
processing. It includes pipelined multiprccessors in which data is pushed in rhythmic

fashion throtigh the network of processors before returning to memory.

2.1.4 Asynchronous architectures (MIMD)

Here multiple processors can execute independent instruction streams, using local data.
MIMD computers run mostly in an asynchronous manner, requiring each processor to
work independently. This type of architecture supports a higher level of parallelism
(subprogram and task levels). The cost effectiveness of such systems encourages MIMD
experimentations. The two basic categories of those environments are distributed and

shared memory.

Distributed memory systems
Processing nodes are connected with a processor to a processor intercommunication
network. Nodes slave data by passing messages through the interconnection network. This

fairly new platform has been constructed to provide a scalable multiprocessor architecture
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that will satisfy the needs of large scale scientific calculations characterized by loczl data

references. Several topologies exist of this form but will not be mentioned here as they are

of different scope to this research.

Shared memory architectures

Interprocessor coordination is accomplished in this design by providing a global,
shared memory that each processor can access. Shared memory computers might not
have the problem of message passing that distributed memory architectures have, but they

have difficulty to retain a synchronized data access manner.

2.1.5 MIMD Paradigms

An extension of MIMD computers by several architectures makes possible the
introduction of this taxonomy. Each one of these is predicated or. MIMD principles of

asynchroftous operation and concurrent manipulations of multiple instructions with data

streams.

MIMD/SIMD architectures

A number of designs during the 80's allowed for selected portions of MIMD
architecture to be controlled in SIMD fashion. This type of flexibility allows for further
future research with the intention to support parallel image processing and expert system

applicatiohs (Stolfo and Miranker, 1986).

Dataflow architectures
The power of the dataflow paradigm lies in its potential to enable instruction for

execution as soon as all their operands become available. In case of data dependencies
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dataflow will exploit concurrency at sk, routine and instruction levels.

Reduction architectures

Reduction architectures execute programs that consist of nested expressions, which are
aimed to produce a result; thus the entire program (reduction) is ultimately reduced to its
result. In this case an instruction is enabled for execution when the results are required as
operands for another instruction already enabled for execution. Practical challenge to this

architecture is to include synchronized demands.

Wavefront arrays

The processors of this configuration employ systolic data pipelining - data is pulsed in
rhythmic fashion from memory t0 processors - with an asynchronous dataflow execution
paradigm. This architecture is characterized by modular processors and regular, local
interconnection networks, such that greater scalability can be attained. This configuration

permits simpler programming.

The Mpyrias SPS Parallel Computer

Myrias SPS is a massively parallel computer. It has been designed 10 expand to n
processors, with the largest system assembled to date involving 1044 processors.
Although it has some features similar to the Ncube, the processors are not custom-
designed, but rather off the shelf. This design feature likely compromises performance but
allowed the company to incorporate new chips quickly as they become commercially
available. It also allowed the computer to ride the steep performance gain curve associated
with the chips. A very important feature with the Myrias computer is that the operating
system handles all data motion, program synchronization, distribution and merging. There

are only a couple of extensions to standard FORTRAN 77 or C, the principal extension
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being a parallel DO loop (PARDO) ( Myrias, PAMS, 1990). This affords an enormous
advantage to the programmer and allows for porting software to this computer easily.
Figure 2.1 shows the architecture of the SPS. Although it was only commercially available
for approximately a year, there is already an large range of applications running on this

parallel computer (Stone et al. 1990; Kapotas, et al. 1990, 1991).
2.1.6 Advantages and Limitations of Parallel Processing

In this section, a very brief introduction to some of the basic issues involved in parallel
processing will be presented. The following discussion is aimed at the reader who is
unfamiliar with the subject of parallel computing. Figure 2.2 shows a simple schematic
representation of a computer program drawn as a large square block to the left of the
figure. The program is composed of subroutines denoted by rabbits and a turtle. For the
sake of argument most of these subroutines might be small and could be independently
executed in parallel. The "turtle" subroutine might be large and can only be calculated
slowly in series. If the program is to be executed in a serial computer the sequence
followed is shown in the upper right part of the scheme. Some of the smaller subroutines
could be executed first followed by the larger one followed by the rest of the smaller ones.
If a parallel computer is used as shown in the middle portion of the figure, the small
independent subroutines could be executed simultaneously, followed by a bottle neck

serial executable subroutine, completing the run with a final parallel execution sequence.
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One usually does not stop at this point of coarse parallelism level but takes the
program to a further stage. In such a case one has to go back to the original mathematical
equation of the problem and discover higher degree of parallelism by making an al gebraic
formulation. The lower right part of Figure 2.2 shows a possible way of resolving
parallelism. This reduces the long serial routine in a way so that it could be executed in
parallel along with each of the other parallel subroutines. It is clear that the ability to run

parts of this program in parallel will result in a saving in total execution time.

2.1.7 Serial part of the parallel program

To simplify the logistics of parallel programming let us examine behavior of serial and
parallel parts of a program from the view point of parallel programmability. Returning to
Figure 2.2, it can be seen that if the program is executed on a serial computer, the larger
subroutine has an important effect on execution time. When the program is run on a
parallel computer the larger subroutine has a significant effect on the overall computational
time. This will be examined in the following paragraphs. Itis assumed that the reader is
familiar with the FORTRAN language, which is commonly used in scientific applications.

In Table 2.3 we consider a program skeleton consisting of a DO loop (part of a
program that uses changing index i for calculation). The DO 10 loop, whose index i
ranges from 1 to n and which ends with a 10 CONTINUE statement, involves
calculating the vector a. Each member of a associated with each index i takes, for the
shake of argument, one second of CPU (central processor unit) time. Suppose that a
parallel computer was available that enabled each calculation associated with each index i
to be executed simultaneously on different processors; hence the word parallel in brackets
before the DO statement. Following the DO loop is a portion of the program that must be

executed sequentially. For purposes of illustration, suppose that as n becomes larger the
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time taken to calculate this portion is proportional to n/10 seconds of CPU time.

To execute this program on a serial computer would take n + n/10 seconds of time
(one second of time for each index i which ranges from 1 to n giving n seconds for the
loop plus /10 seconds for the remainder of the time), whereas a parallel computer
would need 1 + n/10 seconds (one second for the loop because the calculation for each
index i is executed simultaneously, plus n/10 seconds for the remainder). The speedup
or relative computational advantage, which is defined as the serial time divided by the
parallel time, is equal to ( n + n/10)/(1+n/10). As n becomes larger and approaches
infinity, this function approaches 11.

Now consider, as in Table 2.4, a second exanple with a similar program execution.
The DO loop is identical to that shown in Table 2.3 and described above. For each index i
which ranges from 1 to n, a member of a vector a is calculated; this calculation takes one
second of comnputer time for each i. The only difference in this example is that the serial
portion foilowing the DO loop takes log,n (as for FFT's)seconds of CPU time rather than
n/10, as above. To execute this program, the serial time is now n + logyn seconds,
whereas a parallel computer would take 1 + log,n seconds. Speedup is (n + logsn) /(1
+ log,n) which approaches n as n approaches infinity. For large n, this is a dramatic
improvement in speedup over the above case, in which the speedup was at most 11.

As an illustration in these examples, if n=1000, using 1000 processors in which the
time to execute the serial portion of the program varied as n/10, the speedup in Table 2.3
is 10.9. In the second example ( Table 2.4 ) in which the time to execute the serial program
varied as log,n, the speedup is 250. This dramatic difference is strictly due to the time

spent executing the serial portion of the program.
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TABLE 2.3 Speed up for the n problem

(Parallel) DO 10 i=1,n
a(i) = something that takes one second of cpu (i) time
10 continue

Something that takes n/10 seconds of cpu seconds

Serial time = n + n/10 seconds
Parallel time = 1 + n/10 seconds [ for n processors]

Speedup = Serial time / Parallel time = (n +n/10)/(1+n/10) ~ 11 as n
goes to infinity

TABLE 2.4 Speed up for the log,n problem

(Parallel) DO 10 i=1,n
a(i) = something that takes one cpu (i) second
10 continue

Something that takes logn cpu seconds

Serial time = n + logyn seconds
Parallel time = 1 + log,n seconds

Speedup = Serial time / Parallel time = (n +log;n)/(1+logyn) ~=n as n
goes to infinity
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2.1.8 Parallel part of the parailel program

Figure 2.3 again shows the original program composed of a number of small
subroutines and one large one. Suppose a parallel computer that allowed all three of the
small subroutines to be executed in parallel was available. As an alternative, consider a
parallel computer that allowed only two of these subroutines to be executed synchronously.
On the second computer, two of the subroutines would be executed in parallel, then the
third would be executed, followed by the remainder of the program. The second computer
would take a longer time to finish executing the program because it lacks sufficient
processors to compute all the possible parallel tasks together. This leads to an issue called
scalability which is important to the massively parallel variety of computers.

Scalability relates a computer's performance to its size. A system is termed scalable if
an increase in system size (e.g. number of processors) produces an analogous increase in
its computational power (speed) (Fox, 1989). Peak rate is an often misused term that gives
a theoretical performance rate for a particular machine. This rate is unachievable on all but
the most particular of problems but gives a measure of a computer's power. A parallel
system with a small number of processors, say one to eight, is said to have low scalability.
Medium to high scalability may describe a computer with the number of processors
ranging from 25 to hundreds. If an application program with potential for parallel
processing contains many more parallel tasks than it has available processors, then a

computer's ability to increase i functional size and to execute those tasks defines its

scalability.
2.1.9 Programmability of parallel computers.

The advent of vector computers, such as any Cray or the CDC 205, allows the
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programmer to achieve speedups when the program is changed to process many
multiplication and addition operations sequentially. Similarly, with today's newer variety
of parallel computers the ability of the programmer to keep a large number of available
processors working is critical to achieving high performance (Eisner, 1989). If the
computer's compiler can achieve this automatically it is easier for the programmer to obtain
fast execution times. Otherwise the computer is said to have low programmability.
Programmability may be defined as the ability to easily achieve good program
performance and the term is applicable to any computer being manufactured. It is known
that, on some of the currently available parallel machines, high performance can be
achieved only through extensive reformulation of the algorithm or through extensive use of
a machine language whereas, in others of this class parallelism can be easily achieved using

a high level language with few programming changes.
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Figure 2.3. Parallel decomposition of the code.
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2.2 THE LOGISTICS OF WAVE-EQUATION SOLUTIONS IN PARALLEL

2.2.1 General principles

The purpose of the section is to introduce some of the methods used to design efficient
parallel algorithms constructed to solve an important class of equations. The solution of
the wave equation as used by seismologists will be discussed and its transformation for
programming on the Myrias SPS will be shown. The principal assumptions are similar to
those used in the introduction to describe the effect of concurrency in the achievement of
several tasks. A useful analogy is the example of bricklayers trying to build a wall as seen
in Figure 2.4.

The simplest way to view the wave equation is to look at the one dimensional case
which describes the motion of a string in one dimension. We will show an initial concept
for such system solutions and then extend the application to the solution of the two
dimensional acoustic (or full acoustic) wave equation in two domains, time and frequency.
Both domain solutions are important in seismology because they closely describe elastic
wave phenomena during processes of modeling, imaging or inversion.

This section will be devoted to the application of parallelism in the solution of these

systems of equations in either one or two dimensions.

2.2.2 Decomposition and the one-dimensional wave equation

In order to obtain a better understanding of the decomposition of wave equation
solutions in terms of concurrency I will compare this to the problem of constructing a wail
by a team of masons. As we proceed, the relation of this problem to wave equation

solutions will become evident. Some principles of domain decompositions have been
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discussed by Fox et al. (1989), for a specific type of parallel computers. Here an extension
is shown of the methods to account for the architecture of the SPS parallel computer.
Figure 2.4 shows several possibilities in building a wall from the point of view of
decomposition. Topologies of overlapping geometries, pipelining, gapped and triangular
shapes are shown. The domain is composed of many members and most decomposition
assigns large numbers of members to each node. In the case of building the wall, the
domain is the wall itself and the members are the individual bricks. In the case of the wave
equation, the domain is the physica_l extent of the string and the displacement Yix,t)isa
function of distance, x, and time, ?, representing the unknown solution (Figure 2.5)

driven by the equation:

Let us now look at the analogy of decomposition of the building of the wall to that of
the wave equation describing the motion of the string. The upper part of Figure 2.4 (a)
shows an overlapping approach to wall building. The concurrency lies in the
decomposition of the work into equal regions with some overlapping in between, so that
each mason completes that particular regicn assigned to him passing only common bricks
at the overlapping stage. This derivation is based on vertical segmentation. This particular
scheme could be used for the solution of the wave equation of the string by decomposition
as shown in Figure 2.5. In this case each processor has been attributed a limited number of
points for clarity. If one should need to improve efficiency then one must allocate a larger
number cf points to each processor. The connection topology shown in the figure requires
that each processor communicate with its nearcst r.zighbor in the one dimensional chain.

This is a subset of the connections available in a hypercube type parallel computer.
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Figure 2.4(b) shows a schematic representation of pipelining tasks. In this case the
masons work together to build the wall decomposed into horizontal sections. An extension
of this method will be discussed later on in part (d) of the figure. Solving the wave
equation in this domain will require partial completions of each time step and task
communication from processor-to processor. This type of solution might be easier to
apply on a SIMD type of parallel computer but its efficiency will be very low.

Case (c) of irregular geometry usually requires some advance parallel techniques in
order to retain load balancing. Without apprépriate computer architecture this might be
difficult to achieve. Allocation of tasks has to be carefully chosen and the amount of work
per task equally weighted. The dynamic load balancing available in the SPS series of
parallel computers is a necessary factor for efficiently solving these type of problems.

As an alternative to a time domain solution one has the triangular pyramidal method
as shown in Figure 4(d). By realizing that each point's value at time ¢ is only related to its
neighbor's value at time -1 we could in fact have a partial parallelization over time. This
scheme requires a large number of nodal points on a specific grid in order to operate
efficiently. This approach will be described in some detail during the analysis of the 2-D
wave equation solutions and the reverse time finite-difference migration application.

This section has compared time domain solutions of the wave equation to those of wall
building. However, in seismic applications a transformation and solution of the wave
equation in the Fourier domain is widely used. This type of transformation allows for a
different type of approach in order to investigate parallelism on an application. The
logistics for parallel computations in the frequency domain will be described in the

framework of the 2-D case.
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Figure 2.4. Parallel concurrency in terms of wall building: (a) overlapping topology, (b)

pipeline, (c) irregular and (d) triangular (pyramia).



28

DECOMPOSITION OF VIBRATING STRING PROBLEM
ON A CONCURRENT PROCESSOR
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Figure 2.5. The vibrating string with a typical decomposition onto a concurrent Computer.

Each node contains 3 grid points at which ¥ is defined.
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2.2.3 Two-dimensional wave equation

The 2-D acoustic wave equation describes sound waves in a liquid or a gas and is
widely used in seismic applications. Another set of equations in vector form describe
elastic waves in solids and will not be discussed here. In reflection seismology the elastic
or acoustic waves generated by small near-surface sources are reflected from subsurface
discontinuities in density and elastic moduli and are recorded or: a large aumber of discrete
surface receivers, usually arranged linearly. The subsurface discontinuities are imaged by
extrapolating the wavefield of the echoes to the reflecting interfaces. This process is called
migration. The wavefield extrapolation used in seismic migration is an approximation in

which one assumes that it is possible to use a two dimensional full acoustic wave equation

of the form:
2
91 ip(x,z,z) o1 —a—P(x,z,t) =—1-§—P(x,z,t) 2.1)
ox p ox dz p oz K a2

where P(x,z,t) is the pressure of the observed wavefield. Because density only varies by a
few percent one also often assumes that it is not a function of x and z. The seismic
velocity, v(x,z) or the modulus of incompressibility, K, can vary by at least one order of

magnitude. Then equation (2.1) can be reduced to the following scalar wave equation:

82 a2 82
—_P(xizvt)+_-P(x’zvt)= ——P(X,Z,t 2.2
ox? 022 v23(x,2) or? ) 22)

where v3(x,z) = K/p.
It would be more precise to use this type of equation for seismic migration purposes,

but only a limited number of applied industrial migration algorithms use this form. One of
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these, reverse - time migration will be described later in this thesis. Most migration
techniques use what is called a paraxial (or parabolic) approximation to this equation. We
will first investigate this type of equation and describe the parallel solution implementation
in terms of wavefield extrapolation and then I will discuss time domain solutions of the
scalar wave equation using finite-difference approximations. The derivation of the

parabolic wave equation is shown in Appendix A.

Parallelism.
Rewriting P(k,z,w) in equation (A8) in terms of matrix form for only four spatially

Fourier transformed field values one has:

AR T KA

The main parallel part of this application relies on the fact that each temporal frequency
component Pu,'l can be calculated simultaneously for all depths. Therefore, the algorithm
can be constructed to allocate tasks to each processor and solve all depth extrapolations at
each frequency term. The optior of applying parallelism along the spatial frequency is also
possible. This formulation has not been tested on the SPS MIMD computer but it can be
done easily. An alternative formulation allows one to approximate for lateral (spatial)
velocity variations. This formulation is used in the migration applications examined in this

thesis and will be shown in separate chapters.
2.2.4 Finite differences in wave propagation. Time domain solutions.

Let us now look back at the hyperbolic scalar wave equation:
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9 o 3
— P(x,z,t) + — P(x,z,t) = — P(x,2,?) 2.4)
ox?2 2.1 0z2 v2(x,z) 92

Finite difference approximations to this differential equation give rise to difference
equations. In finite difference solutions, both spatial and time variables are discretized by
superimposing a rectangular grid on the model.

Kelly et al. (1976) pointed out two basic formulations for the solution of this type of
equation: The homogeneous approach, which solves the wave equation imposing
boundary conditions explicitly on the interfaces between layers, and the heterogeneous
approach, which solves directly the equation for the whole model. While these concepts
relate to the wave equation solutions in the forward domain, we are interested in this case
for the inverse domain solutions. The approach is basically similar.

Finite difference schemes are classified into two categories: explicit and implicit. In
explicit schemes the response is evaluated at an advanced time exclusively from the
response already determined by the previous times. In implicit modes the response is
evaluated simultaneously at all spatial locations at an advanced time from known values at
previous times.

Various difference schemes exist in the literature applied to hyperbolic systems of
equations (Clifton, 1967; Santosa and Pao; 1986, Mitchell, 1969). One must choose an
appropriate scheme based on the equation used and the computational power available.
Sun and McMechan (1986) applied the explicit second-order difference code for their
application to reverse time migration. Similarly Fricke (1988) used the same approach to
solve the problem on a SIMD (T hinking Machines) parallel computer.

Our interest in this section is directed towards finite-difference solutions of the wave
equation in parallel. Discussions of the implementation of these solutions to reverse - time

migration will be shown in Chapter 3.
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It seems that explicit schemes are more popular in the solution of seismic wave
propagation because of their straightforward formulation. Care should be taken in the
choice of spatial interval to reduce memory requirements as well as avoiding aliasing.
Also the choice of acoustic velocities should be such that the stability condition is satisfied.
First we will give an explicit scheme (second order) for the solution of the equation above,

followed by implementation methods for a parallel processor.
2.2.5 Explicit solution of the acoustic wave equation

Equation (2.4) requires some difference approximations for the second partial
derivatives in order that it may be implemented in a computer. The most obvious approach

is to use derivative definitions . A first derivative might be approximated as:

9P _Pui- P
ot At

(2.5)

The second derivative formula in terms of time can be obtained by taking the first

derivative twice. This gives:

P Pui-2P+ Py

- (2.6)
ot? Ar?
Similarly for the spatial components x:
2 x+1 _ >4 x-1
oP _P 2P* + P @)

ox? Ax?

and z:
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a*p _ p+i.2pz+ P! 2.8)
a2 Az? .

Substituting (2.6), (2.7) and (2.8) into (2.4) we obtain:

1 Pryy - 2P + Py _P*1-2P% + px1 N p2+l . 2p? 4 Pl 2.9)
v2 Ar? Ax? Az?

Choosing Ax=Az and separating variables of the advanced time step we have:

2442
Px,z - 2P‘x.z _ Ptx-'lz + veAt [Px+l.z + Ptx-l.z_*_ Pf'z +1 +P:'z -1 _4P:C.2] (2.10)
sz

t+1 t

Equation (2.10) gives the wavefield at time t+1 from values of the field at times ¢ and -

1 at all grid points x, z.

In order for this scheme to be stable, the following condition must hold true (Alford et

al,1974):

2A42
VAt 1 @2.11)

If this condition is satisfied the equation above in its homogeneous form can be used to
extrapolate the wavefield in the reverse time order (Chapter 3).

For the sake of illustration we only derived the second - order difference scheme
approximation to the scalar wave equation. In a similar manner one can obtain a fourth
order differencing scheme for the same equation. Equation (2.10) has been programmed
on a parallel MIMD computer (Myrias SPS) using two different approaches. One uses a

coarse parallelism and the other has partial parallelism over time.
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2.2.6 Explicit finite - difference solutions in parallel

The calculation of finite differences can be computationally expensive when the spatial
resolution is high and/or the velocities of the model are quite large. The efficiency of the
method depends greatly on the techniqae of calculating the wavefield amplitudes at each
time step.

The advent of parallel computing opens new avenues in the applications of finite
differences. In this section a new concept of parallel operations will be described
corresponding to the two-dimensional solution of equation (2.10). Here a description of
algorithm formulation in terms of coarse parallelism over space is shown for the second
order difference scheme for illustration purposes. The fourth order scheme can been
analysed similarly.

Equation (2.10) can be written in a matrix form in order that parallelism in the method
will become apparent. Let us consider four time advanced values of P(x,z,t) for a fixed

horizontal location x; then the pressure would be P(z,1), for iliustrative purposes.

This yields:
'P17t+1 'Pl't 'Pth-l
. 22¢ ¢ 0 O
Pl = -q 2'2q -q 0 P2 - P2 (2.12)
p3 | 0 -q9 229 -q ||p3 p3 )
0O 0 -q 22
P, pt] [P

Examining the second order matrix formulation of the acoustic wave equation solution we
can see an important parallel aspect for each time step. All spatial grid points at time £;
are calculated independently and require only information from time ¢; and ¢, ; using a set

of simultaneous equations.
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2.2.6.1 Coarse parallelism

Based on the observations above one can introduce parallel task allocation into each
grid point location. The ultimate goal would be to have as many processors as grid points.
But the amount of calculation at each grid point is not that floating point intensive to benefit
from the capabilities of a MIMD computer. If one is using processors capable of doing a
large number of floating point operations then one must assign tasks with an equivalent
number of operations (at all x positions) at each time step.

This first assumption for coarse parallelism was used to program the equation above in
parallel. Parallelism runs over one of the spatial coordinates ( z in our case ), allowing the
other spatial domain to be calculated serially inside each task for higher efficiency, thus
obtaining the time advanced 2-D grid points all simultaneously. This application is of great
benefit to the solution of problems of this type. The faéter a task is completed the smaller
the time becomes between temporal steps. One, of course, has to deal with overhead
problems in this cases ( closing and opening of parallel tasks) but if the size of the problem
is large the overhead can be reduced. Figure 2.6. shows how this type of parallelism is

used for reverse time migration.
2.2.6.2 Advanced parallelism / partial time parallelism

Usually in a finite difference solution of a physical problem in the time domain one
seeks geometrical relationships between grid points that might reduce the computational
times. In order to understand the geometry present in a matrix formulation of the problem
for equation (2.12), one examines the behavior of the difference operator over time.

Figure 2.7 ¢’ displays a two dimensional grid showing the propagation of a difference

star along x and t. At each advanced time step information from three previous space
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Figure 2.6 Coarse parallelism Scheme.
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points is necessary. As time progresses this starlike operator moves along yielding
estimates for the required grid point. If one wants to subdivide the x direction into
separate domains (Figure 2.4(d), section 2.2.2, Figure 2.7(b)), as in the case of wall
building, the propagating star has to be constrained at a specific sub-domain and eventually
it will converge to a point. Basically this proccss creates a wriangle like propagation
geometry for the updated solution. Similar triangles :.ave been constructed for the other
sub-domains. Once the convergence point has been reached, because no other information
from neighbors is available, a reverse order star operator (triangle builder) fills in the
troughs towards the convergence level. Then the processes contirues to the final time step.

This type of symmetrical dynamics for the difference operator allows us to consider the
existence of partial parallelism over time. In fact, one can design an algorithm that assigns
sub-domain tasks (length N) that will converge after (N/2 -1) time steps, and then reverse
the order of task allocation to calculate the gap values.

The idea for this computational process came up initially during discussions with
Myrias personnel (J. Foster, personal communication). In this research an initial
implementation of this type of approach has been carried out and tested on a reverse time
migration code.

The algorithm basically works in 2-D space where the geometrical representation of the
triangle is a pyramid. The process, in fact, builds pyramids to an analogous time level by
allocating parallel tasks numbered over squared block divisions. Reverse building then
takes place to fill in information. Care must be taken on the implementation of the source
function that drives the difference field, or the input data in the case of migration. Figure
2.8. shows a diagrammatic representation of the method in 3-D, as the build-up of the

pyramid accumulates.
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DOMAIN OF DEPENDENCE

Figure 2.8. Schematic representation of the 2-D pyramidal space (domain of dependence).
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2.2.6.3 Code description

When examining the migration problem which is being solved for, it was noted that a
limiting factor over parallelism in time can be bypassed by the approach outlined in section
2.2.6.2. Basically, the amount of work done at each time step was too small to support
large parallelism on the Myrias SPS-2.

It was realized that each point's value at time T was. only related to it's previously
calculated values, which could in fact suggest a partial parallelization over time. This is
carried out by dividing the grid into blocks and then doing as much work as possible on an
individual block within a task. For example, consider an 8 by 8 block at time T=0. After
one task has been completed the values for Py, (2) will be those based on the following

time map:

00000000
01111110
01222210
01233210

P15®=01233210
01222210
01111110
00000000

This can be viewed as a three dimensional diagram with time running up in a pyramid
toward the observer. After this task has been completed the block has values at time steps
of 0,1,2,3. In general, if the block is of size 2N by 2N then values can be calculated by a
maximum of 2(08-1 - 1 time steps. In effect, much more can be computed within a task
with use of large squares. It was discovered that in order to bring all values to the same

time step requires four passes ( or "pardos”). Therefore 2(N-1) . 1 time steps are calculated
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in only four pardos rither than the 2(N-1) - 1 "pardo's” it would take normally. This
reduced the overhead quite substantially. For example with the moderately sized blocks
having side lengths of 32, 15 time steps are completed with 4 pardo's.

An example with four passes will be presented. The algorithm requires that one sets
up a grid, an updating function and the number of time steps to run. Then the time SiCps
are carried in groups of 281 - 1 until finished. For each of these group of time steps, four
pardo's are executed. The first pardo assumes all values to be at the same time step

( for instance T=0). The system calculates upward time pyramids as follows ina 16x 16

grid incorporating 4 pyramids:
0000000000000000
0111111001111110
0122222001222220
0123321001233210
0123321001233210
0122221001222210
0111111001111110
0000000000000000
0000000000000000
0111111001111110
0122222001222220
0123321001233210
0123321001233210
0122221001222210
0111111001111110
0000000000000000

The second stage is to fill the holes amongst the vertical boxes. The grid is shifted so
that the downward holes are in the center of the box. That is, one box has end points at
(5,1),(5,8),(12,1),(12,8). The low areas are then filled in, creating a grid which now has

columns all at the same time step.
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000000000000000
et ot et vt ot vt
222222222222222
333333333333333
333333333333333
222222222222222
— ot et ettt vt et e e e
000000000000000
000000000000000
J P e e lan Jhan B on Bl e B B o o
222222222222222
333333333333333
3331J33333333333
222222222222222

111111111111111

OO0 OOOOOOO0O

The third stage is to fill the holes between the horizontal boxes. Again, this is done by an

appropriate shift and filling in the low areas between boxes on the same horizontal plane.

0123321001233210
—_— NN (NN
2223322222233222
CACACICNCN N NN CN NN NN o
AN MM N Moo Mmoo
227“3322222233222
R A N 2 X2 X3 R habaks K IR Rl
O NN N—~OO—~ANNNAN —O
0123321001233210
—_— NN ] = NN NN O
2223322222233222
3333333333333333
3333333333333333
2223322222233222
—_ A O N ] = )N N
O~ NNMNMA—OO—~AMNNN —O

Finally the last stage brings all values up to the same time step. This is done by filling

in the holes after the appropriate shifting of the boxes. So one obtains:
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3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
0N 0N N 0NN CN N CN NN NN N e
CACh CNCN O oN NN NN N Moo oo
AN N CN CNCN EN TN N N oN NN Mo
N CN 0N ¢N 0N N N N N N o1 0N 0N Th N N
NN NN MNMMMN Moo

This final stage can be implemented immediately before stage one thus reducing the

m mber of pardos to three. I have programmed and tested this :nethod on the Myrias

SPS-2 for the problem of reverse - time migration. Discussions on the results of the

method are chown in Chapter 3.
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CHAPTER 3

2.D PRESTACK DEPTH MIGRATION IN PARALLEL

3.1 w-X PRESTACK DEPTH MIGRATION

3.1.1 Introduction

In the first part of this chapter an examination and analysis is made of prestack
migration of seismic data in the frequency-space domain using the 659 two-way scalar
wave equation which has been derived and solved on a parallel computer. A near
maximum degree of parallelism, efficiency and speed was achieved for the number of
processors available with the new methodology used.

The seismic reflection method in the form of shot gathers provides experimental data
on the elastic waves propagating through the crust and reflecting back to surface receivers.
In the case of geologically complex areas, diffracted energy from outside the vertical 2-D
plane ( of a typical 2-D seismic survey) can create interference. In order to seek better
imaging of discontinuities and resolution not available with current poststack algorithms,
we must apply an efficient prestack depth migration.

Migration is the technique used to transform the reflected elastic energy from
subsurface features, mispositioned by dip and interference, to their true position in the
imaged section. Prestack migration attempts to position the seismic echoes with their true
reflection amplitude at the reflecting interface and in L.e correct position with respect to the
spatial coordinates. In order to apply this method effectively, extensive computer resources

are required in terms of both power and memory storage.



45

The range of migration methods, making use of the scalar wave equation, can be
separated into the following categories: summation or integral methods such as the
Kirchhoff approach (French, 1975; Schneider, 1978); difference equations or differential
methods (Claerbout 1970, 1976); and transform methods i.e f-k migration (Stolt, 1978;
Gazdag, 1978). Berkhout (1981) gives an alternative approach using spatial convolution in
the space-frequency domain. More recent work involves the implementation of the full
wave or vector equation for migration schemes (Wapenaar et al, 1987).

In the presence of rapid lateral velocity variations the most reliable approach is to
perform migration before stack. In this imaging technique both the shots and geophones
are downward continued with images being formed at the reflector positions. A constant
velocity Kirchhoff operator for this approach was applied to real data with only partial
success (Sattleger and Stiller, 1974; Jain and Wren, 1980). By downward continuing
common shot gathers and common geophone gathers one depth-step at a time, differential
operators can be used, and vertical and lateral velocity variations can be handled (Schultz
and Sherwood, 1980; Thorson, 1980). Based on the principle of reciprocity (Aki &
Richards, 1980) which states that one obtains the same elastic wave form when source and
receivers are interchanged, Claerbout (1985) defined this approach as survey sinking. A
double square root expansion of the wave equation can be derived for this type of
migration. The only drawback is the fact that in order to sustain reciprocity a symmetric
arrangement of shots and receivers must exist, along with equally spaced shot and receiver

intervals.
3.1.2 The method

The term prestack migration in 2-dimensions refers here to the depth migration

procedure applied to shot and receiver gathers. A common shot gather is the seismic
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recording of reflected energy from a source at a unique location to closely spaced receivers.
A reverse configuration can be made of the data to form a common receiver gather.
Migration of this form is a computationally expensive alternative to common depth point
stacking (CDP) but it gives correct imaging, better dip preservation and amplitude
information. The need for an accurate migration that will avoid the CDP processing
artifacts is recognized by many authors leading to suggestions of methods of prestack
migration and common source migration (Schultz and Sherwood, 1980; Reshef and
Kosloff, 1986; Claerbout, 1976, 1985; Tsingas, 1990).

In seismic sounding the measurements of a physical experiment consist of common
source gathers. The data of a shot-receiver gather is fully described by the wave equation
for seismic waves. Obviously, this is a more complex and voluminous set of data to
operate on, making the method non-feasible for serial computers. This thesis examines the
use of parallel computers for prestack migration. The fact that the algorithm operates in: the
frequency-space domain allows all independent frequencies to be imaged in parallel.

The principle of extrapolation and imaging was suggested first by Schultz and
Sherwood (1980), who solved the problem by the finite difference method in the time-
space domain. Other authors (Berkhout, 1982; Stolt and Benson, 1986) have used a 450
approximation to obtain a more efficient algorithm and show the applicability of the
method. The method applied here uses the 65% approximation to the scalar wave equation
in the w - x domain.

The pressure field recorded at the surface of the earth consists of shot gathers with
nonzero source-receiver offsets. Therefore this type of data can not be downward
continued using the "exploding reflector” concept (Lowenthal et al. 1976), which works for
coincident source-receiver locations. Instead we must extrapolate the sources and receivers
separately. The extrapolation is based upon the finite difference approximation of the one

way acoustic wave equation carried out in two steps by a 650 paraxial approximation to the
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scalar wave equation.

Conceptually, shots and geophones are separately downward continued into the earth,
and the migrated depth section is imaged of a zero travel time and zero offset for each z-
level. In general, all of the recorded data must be worked with at once. First, common
shot gathers are downward continued by Az. Then the data are reorganized into common
geophone gathers and they are downward continued by Az. In the space-frequency
domain, this procedure can be carried out for all frequencies w at the same time in parallel,

and then a summation over w will yield the imaged section. The process is then continued

until z,,,, is reached.
3 -ation Description

s.ang the displacement velocity is proportional to pressure and that conversion
from cumpressional to shear waves is negligible, the observed source-receiver seismic

wavefield at z=0 (earth's surface) can be approximated by the following scalar wa:

equation:
3 3 1 9
5;'2- P(Xg,xs,Z,t) + 5;2— P(xg,xs,z,t) = ma—tz P(xg,xs,z,t) (3.1)

Here, x, x; are the spatial geophone, source coordinates in 2-D (x 3 x,, X,), 2 is the
depth coordinate and v(x,z) is the velocity of the model medium.

The Fourier transformed field is given by:
P(kg,ks,z, o) = J J P(xg,xs,z, t)e(ik,g-l-ik,s- iax)dxdt (32)

Apply the operator (3.2) to the scalar wave equation to get:
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a°p
+
022

2 2
(7)) ‘ 2 a 2
~ k4] + ~\k: )| P=0 (3.3)
Lz@ 'gﬂ Lz(s) | )}}

Realizing that the spatial wavenumber operator commute and are separable, the solution to

this equation is the solution to the one-way scalar wave equation:

2 2
w__of [\ [Pok),, [ [P0k
3z v\ o’ o’

Let us define as:

2 2
kz(z)=i_a_). /\/:_K_(E)_ki +/\/1_
v (02

where kg, k and k, are the horizontal and vertical wavenumbers, and @ is the angular

\ P (3.4)

|

2 k2
Y__(s_)__i. (3.5)

2
@

frequency. The choice of the minus sign in the square-root for migration is due to decrease
of travel time as either geophones and shots are moved downwards.
In order to relate the above equation to shot-geophone coordinates we must start by

letting the geophones descend a distance dz, into the earth, then the equation becomes:

2 k2
o _o [ VO , (3.6)
dzg v a)z

where kg is the horizontal wavenumber related to geophone spacing. Similarly for the

downward continuation of the shots we have:
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3.7

If we simultaneously downward continue shots and geophones by an identical amount
dz=dz,=dz; then equation (3.9) - which is the double square root equation for the
downward continuation of shots and geophones - in terms of depth extrapolation can be
solved by either separation or splitting because the square root operators commute ( V(s)
commutes with kg), so it is completely equivalent to downward continue shots and
receiver separately or at the same time. Based on this conclusion equations (3.6) and (3.7)
can be solved at the same depth step after they are reformulated to incorporate lateral

velocity variations as described below.
3.1.4 Spatial dependance in velocity.

Let us examine the behavior of this formulation of the scalar wave equation if lateral
velocity variation v=v(x,z) is present. Then one may solve for P=P(xg,Xs,2) using the
full acoustic wave equation. Examine the solution space in terms of equation (3.4) where
the term involving the horizontal wavenumber can be replaced for example by ( ikxz) =
?10x2. where (x 3 Xg,Xs)-

Bringing these equations into the spatial domain is not simply a matter of replacing a
second x derivative with kxz . The problem is the efficient and accurate evaluation of the
square root of a differential operator. The square root is approximated by continued

fractions expansion (Hildebrand, 1974 p. 501) according to:

f2
T 1+R,

Ry =1 (3.8)
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with f = v(x,2z) (kg +ks)/ow,and Ry =1, wheren indicates the order of expansion.
Then collecting up to second order (n=2) truncation of the continued fraction expansion ,
(Claerbout, 1985), equation (3.4) becomes ( for the purpose of this analysis I will show

only the solution for one equation as they both have the same terms) :

P | 2w k: ksz
—=-1 - + 2
3 v(x,2) o VD) k: o v kS )

V(x,Z) - 2 V(X,Z) 2

P (39

This is now a parabolic equation representing upgoing waves from sources and
receivers. Claerbout (1985) showed that employing a retarded coordinate transformation
one removes the effect of vertical translation thereby making the wave appear to be
stationary. The time retarded coordinates are a system which is fixed in space relative to
the ordinary Cartesian coordinate system. The retarded coordinate system is related
through the local velocity, v(z) at each source location to the Cartesian system by the

following set of equations:

z

r=rx,z)=t - ZJ dz/v(z)
0

x'=x"(xz21)=x (3.10)

Z’=2"(x,21) =2z

The pressure wavefield can be written in terms of a stationary wave Q(Xg,Xs,2,®) in the
frequency domain as:

20| 22
P(xg,x5,2,0) = Q(Xg, X5,2, @) € v (3.11a)
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or
2iw ‘—‘—1—2—
Q(xg,xs,z,w)=P(xg,xs,z,w) e A v(2) (3.11b)

Differentiating (3.1 lha) with respect to z gives:

dz

; ziol =<
a—————————P(xg;s’z’ 9 . (-5—- ;l(%) Qxg,Xs5,2,0) € Io V@ (3.12)
4 z

Substitute (3.11a) and (3.12) into (3.9) so that we obtain the r'me shifted downgoing

wavefield:
k2 k?
aQ(Xg,xS,sz) =+ g 5 + ) ) Q(Xg,xs,Z, a))
oz o vk, o vx,2) kg
v(x,2) 2w v(x,2) 20 (3.16)
. 1 1 ‘
-2i (D(m‘ ;(-;5' ) Q(Xg,Xs,za CO)

The first term on the right hand side represents the diffraction term. The second term on
the right is called the thin lens term. In the derivation above we assume that v(x,z) is a
locally constant medium velocity and v(z) depends on depth below the source, only.

Upon splitting the diffraction tcrm becomes:

kz
0(xg X5, 2, @) _ g - O(x g, %52, ) (3.172)
oz o vix2) k
) _ g
v(x,2) 2

and
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2
k
aQ(Xg,X.st, w) =+] S ng'xs’z,w) (3.17b)

0z W v(x,2) k_v2

) 2w

Equations (3.17a) and (3.17b) may be rearranged by substituting for:

kg = P10g2, k2 = P 1352 ind pixz)=0v(x,2)

Then the diffraction portions of the solution are given by the following approximation:

) . 3 2
M) et B0 gy 9 Orgxsz, =0 (3.18)
o oz «i£x,z) 0g2 oz dg>
and
. . 3 2
iHED) Q0pxen® 1B oy 9 Opxsz @) =0(3.18D)
o 0z o pf(x,2) 9s? 9z os?

where for the 65 - degree approximation of the square root the coefficients are

(Yilmaz,1987):

0=0.478242060 and P=0.376369527.

These equations will be evaluated step by step starting at the surface and moving to any
depth using a finite difference approximation. The thin lens term may be solved
analytically and is incorporated as a correction within each depth step prior to the evaluation

¢ equation (3.18) and is given by:
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00(x g, X5,2,0) _ . 1 1 )
az =1 a)(V(x,Z) V(Z) )Q(xgsx.hz’w) (3' 9)

Equations (3.18) is also called the 659 approximation to the scziz: wave equation, since
this form of ..~ wjuare root approximation to the dispersion relausa yields reliable results
when the angles of incidence of the rays normal to the wavefront are less than about 659 or
700. As mentioned previously, it is also called a paraxial equation and has all the properties
of parabolic differential equations. Itis the main equation for w-x migration.

Converting equations (3.18a and 3.18b) to a finite difference form (Apperuvix B zrd
writing this in matrix form for each harmoric yields an independent set of tridiag.mal
solutions for each harmonic component, Wy,

Expressing the wave equation in this form allows one to see the flexibility that exists in
order to propagate the wavefield in tenﬁs of each frequency in parallel, solving for all
necessary depth steps, and summing at the end. Equation (3.18) can alsc. be included in
the same task (processor) because it simply shifts Q at each frequency simultaneously.
Some parallel architectures might offer the potential of autornatic merging ( summing of an
array) which would reduce the c.. nputational time in these cases.

The code can be extended to include density variations and higher order accuracies of
the square root approximation. Also an extension of the code to include the effects of
transversely isotropic media has been analyzed (Phadke et al. 1991). The application of
this w-x algorithm for migration is described below.

We have seen that decomposition of the wave equation in terms of monochromatic
plane wave propagation at different angles allows one to extrapolate in depth each temporal
frequency harmonic component which is part of the wave solution or task. No intertask
communication (overlapping) is necessary during the extrapolation as each harmonic

propagates as an independent mode. This method shows a great degree of parallelism.
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The efficiency of its implementation on a MIMD computer will be seen below.
The final step in the method is to apply the imaging condition by summing the

Qixg.xs:2) field over all frequencies:

Qg 5,2 1=0) = 57 2 Qg X2, ) (3.20)
@

The necessary steps for shot gather migration and the logistics of its parallel

implementation are described below.
3.1.5 Parallel algorithm implementation

The restructuring of this migration code in parallel was carried out as fellows. Based
on the linear superposition of monochromatic harmonics in wave nropagation one may
compute each frequency component of Q(xg,Xs,2,w;) separately during steps (3.11) and

(3.12). Keeping these in mind the algorithm was designed as follows:

1. Temporally transform the wavefield Q by calculation the Fourier transform of all shot
records in parallel.
2. For exch frequency step in parallel
2.1 for all depth steps
A. for all shot records (in parallel if more processors are available)
a. Estimate the time retarded field Q using (3.11a).
b. For each depth step solve (3.18a) and (3.18b).
c. reorder the data in receiver gathers
B. for all receiver gathers (in parallel if more processors are available)

d. repea: steps (a) and (b) until all depth points are resolved.
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3. Automatic summing takes place over all depth steps in parallel for all the frequency

components to get the final migrated section.

( Equation (3.19) is applied only if there is lateral heterogeneity present)
A description of the pseudocode is shown in Figure 3.1, and a graphical representation

of the process in Figure 3.2.

3.1.6 Performance monitoring on the Myrias SPS-2

The 2-D prestack w -x algorithm was tested extensively on the SPS-2 using from 64
PE's (processing elements) to 1025 PE's. In the initial tests a small data set of 96KDb was
examined. The run-time was less than 50 seconds on 64 PE's, achieving four times the
performance of an Amdhal 5870.

A larger data set was tested using 30 Mb of data running 60 shot records over 600
depth steps per shot. Using 64 frequency components on 64 PE's the algorithm applied in
frequency tasks takes about 7.5 hours. The same run using 128 PE's achieved more then
90% efficiency, and about 3.5 hours elapsed time. The problem was also tested on 1025
PE's, using 256 frequency component tasks per shot record. The total elapsed time to
migrate 60 shot records over 600 depth steps, was 3303 seconds (~ 50 min). A similar
problem running on an IBM 3090 (without vector facility) took approximately 60 hours
(D. Ganley, Canterra, personal communication).

The time performance of the method is shown in Table 3.1, with observed times using

a range of PE's shown in Figure 3.3.
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TABLE 3.1 Performance monitoring w-x migration

PE's Shots Frequencies Time(sec.)
64 1 256 787

64 60 64 12600
256 10 128 1030

296 20 256 3628
1025 60 256 330,

From the results above, the migration code has s'own a dynamic degree of scalability
over the number of PE's. Since each shet record and each frequency component can be
estimated independently, the automatic Joa:i balancing of the SPS-2 resulted in an
efficiency of more than 90% over the e..ecution time. A speed-up graph over the number
of PE's is shown in Figure 3.4, which depic.s the linear inurease in speed over the basic 64
processors both in theory and observation. There is more than enough work to saturate a
very large parallel computer.

Based on the perforr::nce of the algorithm on the SPS-2, tested on a relatively small
seismic data set, excluding delays of porting sei=mic data onto the system (reading tapes
and converting IBM to IEEE formats;, the time span to get migrated results was
satisfactory. Being able to achieve a day-to-day tern-around time for prestack migration,
the SPS-2 has shown a potential for more accurate seismic applications. Another point to
consider is that the programmability of the SPS-2 made it easy to capture the parailelism

inherent in seismic processing.



S-G o-x MIGRATION PSEUDOCODE
(MAIN PART OF PARALLELISM)
(PARALLEL) DO over Frequency steps

DO over Depth steps

(PARALLEL) DO over number of shots
A. Calculate the time retarded field

z

2% o] 42
Q(x,z,0) = P(x,z,0) e J;; v(z)

B. Downward continue the wave field using the
diffraction {erm

) i H(X,z) aQ(X,Z,_(D_)_ - IB 33 Q(X,Z,O)) + -58—2-2— Q(x,z,(o) =0
X

@ oz op(x,z) 0x2 oz

C. and the thin lens term

0Q(x,z,0) _ i o 11 HyQx,z,0)

oz v(x,z) v()

END DO over shots
(PARALLEL) DO over number of receivers
REPEAT (A -B-C)
END DO over receivers

END DO LOOP over depth

END PARDO over frequencies

Figure 3.1. Pseudocode of the Omega-x migration as iinplemented in parallel.

57



58
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Figure 3.2. Graphical representation of the Omega-x migration.
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3.1.7 Analysis and Applications

3.1.7.1 Difference operator response

In order to examine the accuracy of the difference operator based on the degree of
approximation (i.e. 65°) we need to test the depth migration response due to a time impulse
as shown in Figure 3.5a. For a constant velocity medium the difference operator response
should form a semicircle in the x-z space with a radius of z=v*t, where v is the velocity of
the medium and t is the travel time. In terms of 909 degree accuracy approximation the
response should be a perfect semicircle (Figure 3.5a).

The time impulse in this test is at 0.3sec. with a homogeneous velocity of 1000 my/s
for a model section with lateral spacing of 40 m. The responses of 159, 450 and 659
approximations are shown in Figure 3.5b,c,d. It can be seen that the 659 solution
approximates the semicircle with higher accuracy than the other two. This level of
approximation was used during this analysis and was considered accurate for the degree of

dip present in our data.

3.1.7.2 Synthetic examples

The w-x migration algorithm was tested extensively with various sets of synthetic data.
Originally a synthetic example of seismic responses generated over a subsurface step fault
(Figure 3.6) model was tested. Part of the input shot data is shown in Figure 3.7,
generated using a ray-tracing algorithm (Phadke et al. 1990) with receiver spacing of 50m.
with 25 receivers per shot and a sampling interval of 2 ms. The result of the prestack
migration is shown in Figure 3.8. Figure 3.9 shows the migrated stack of these shot
records. It can be seen that the method images the response correctly revealing the character
of the model. The resolution of the result is greater at the near offset, simply because the

method is more accurate at those offsets.
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Figure 3.5 (a) Desired impulse response for migration, (b) 15° approximation, (c) 450

approximation and (d) is the 65°
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Figure 3.6 Step Fault Model used to test the prestack migration method.
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Figure 3.8 Prestack depth migraied shot record for step fault model.
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Figure 3.9 Final prestack depth migrated stack of the fault model. The character of the

fault is clear justifying the accuracy of the method.



A second case was examined using synthetic data. The model is a complex one
involving many faults and changes in velocity (Figure 3.10). The input data, generated by
an Aimes commercial algorithm using raytracing aud provided by Chevron Resources
Ltd., was comprized of 60 shot records over the modeled region with 120 records each at a
spacing of 24m. at a sampling interval of 1ms. The sct was prestack depth migrated vith a
depth resolution of 4 meters. Figure 3.11 shows the synthetic shots records over this
model and Figure 3.12 their migrated counterparts. The final migrated stack is shown in
Figure 3.14. and the Common Depth Stack (CDP) in Figure 3.13. The color plots
represent the seismic wa amplitude variations in the section. It can be seen that the
method images correctly the chzvactes of the faults as vell as the graben on the right side of
the figure. The CDP section only reveals the diffi ctions due to faviting and does not image

the wrue reflector pociricns.
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Figure 3.10 Geological model used to generate synthetic seismic records.
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Figure 3.13 Common Depth Point stack for the model in Figure 3.10.
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3.1.7.3 Real data cxample

In order to test the validity of the algorithm . seismic reflection data set from an east-
wost line south of Princess well in Alberta was chosen for real data. Figure 3.15 shows the
location map of the line. The data was acquired by Pan-Canadian Petroleum Ltd. in March
1985, and a small portion of this line (approximately £800m. in length) was made available
for prestack depth migration. The seismic instrumentation consisted of a 120-channel
DFS-V recording system and air-gun sources. An inline split-spread shooting pattern with
a shotpoint interval of 34 m and a receiver group interval of 17 m was used. Each receiver
group comprised 9 geophone units in an inline pattern.

A CMP stack of these data with a maximum of 30-fold coverage is shown after
conventional processing in Figure 3.16. A very strong reflector ( the top of the erosional
surface of Missisipian deposits) at a two-way reflection time of 0.83s. can be seen on this
sectin~. The reflectors between 1.0 and 1.4 s. are from Cambrian formations. The
Pri-- e crystalline basement is probably at 1.4 s. and is relatively continuous
throughout the section except for the interruption by diffraction arcs. The diffraction
energy is remarkable on this section and has not been completely removed by CMP
stacking. If the diffractions were not present, i. would be difficult to infer any
discontinuities in the reflecting horizons. In order to locate discontinuities due to small
faults or sudden ¢hanges in lithology in the area, prestack depth migration was applied to
these data.

Before the application of prestack migration a global trace balancing was applied to the
data using the following method: a time window for 0.8 to 1.0 s. was selected from one
shot record and the mean of the amplitudes squared was computed for all 120 traces in the
gather, resulting in a global factor. The reason for the selection of this time window is that

within this interval the reflections are consistent and continuous. Then, for each ;‘Jacc in
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each shot gather, the sum of amplitudes squared within the same window (0.8 to 1.0s.)
was computed, resulting in a trace factor. The ratio between the global factor and the trace
factor was applied to each trace of all shots in the line. Consequently, all the source records
have been normalized to a uniform amplitude. Also, in order to satisfy the principle of
reciprocity of the migration method, every second trace on the record was chosen to result
in 60 traces per shot so that an equidistant shot and receiver spacing of 34 m. can be
sustained.

A shot record and a prestack migrated one are shown in Figure 3.17. % [inal
prestack migrated stack is shown in Figure 3.18. An important feature which can be seen
on the left side of the Figure and at a depth between 2 to 2.4 km. can be attributed to an
explanation given by Kanasewich (1968) and also verified by the CFP (common fault
point) method used by Kanasewich and Phadke (1988).

This data set is from a northern edge of major east-west rift of Precambrian origin
(Kanasewich, 1968). It is also 6.4 km south of a well drilled through 1874 m of
Phanerozoic sediments into a basement high with the basal core being a mafic
metamorphic rock (Burwash, 1987). The anomaly has a positive gravity expression and is
presumed to be volcanic extrusive tarough middle Cambrian sediments as part of the
rifting process. The anomalous diffraction patterns on the CDP seismic section (Figure
3.16) interrupting Middle Cambrian Arctomys, Pika, and Stephen formations are
interpreted as representing igneous intrusives (a in Figure 3.18) with some possible
reactivation (b) and faulting (d) during subsequent Paleozoic time, as has been also
interpreted by (Kanasewich and Phadke, 1988). Other faulting patterns may be due to
erosional features or carbonate buildups. In conclusion, the prestack depth migration
method was able to delineate these features and further justify the original interpretation of

the geological phenomena in the region.
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3.2. REVERSE TIME FINITE-DIFFERENCE PRESTACK MIGRATION

3.2.1 Introduction

A presrack migration algorithm for acoustic waves in two-dimensional variable
velocity media has been developed, implemented and tested on a parallel computer. The
algorithm operates in the time-space domain and is based on reverse-time finite-difference
extrapolation of acoustic waves. The reverse time migration process is well known in the
literature (Sun and McMechan, 1986; Baysal et al, 1983;, McMechan, 1983). Most of the
authors apply ray-tracing or forward source extrapolation to achieve an imaging condition.
The metho introduced here applies reverse time boundary information on the difference
grid and uses the same principle of double-downward continuation as in the case of ths w-x
domain. In this analysis the problem is solved in both space parallelism and partial time

parallelism.
3.2.2 Application description

Solutions to the wave equation by finite-difference methods have been used widely in
the literature ( Boore, 1970; Alford and Kelly, 1974). These methods are good for
structurally complex subsurface geometries. Geometries of particular interest to petroleum
exploration are those containing sharp corners which generate diffractions. The purpose of
this work is to implement finite difference schemes in a parailel computer and test with
typical geophysical problems.

The governing equation describing the pressure field P(xg.xs,2,¢) in a homogeneous

region due to a source distribution located at the surface is:
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2 19
V ’E'a—t—z‘ P(Xg,x_q,z,t)=0 (3.21)

in the homogeneous form, where C(x,z) is the velocity of acoustic propagation in the
medium, and V2 is the Laplacian operator.

If we split equation (3.21) into shot and receiver gather domains then it can be
approximated by an explicit second-order difference scheme (Mitchell, 1969) also

described earlier in Chapter 2:

P(n,n,l+1) =2(1-2¢%)P(m,n,D)
+ q2 [P(m+1,n,0) + P(m-1,n,0)+ P(m,n+1,]) +P(m,n-1,D)] (3.22)
- P(m,n,1-1) + O (h? + Ar?)

where Ax = Az = h is the grid size in the x (xg or xs) and 2 directions, respectively; Ar
is the time step; m,n,l are integers such that x=mAx, z=ndz, t=IAt,

q=CAt/h and O(h?) indicate the scheme approximates the corresponding partial
differential equation to order h? . Another expression can be used to obtain a more

accurate fourth order representation which looks as foilows (Alford and Kelly, 1974):

P (m,n,l+1) =(2-53%)P(m,n,l)
2
+ 915{ 16[P(m+1,m,0) + P(m-1,n,D)+ P(m,n+1,) +Pim,n-1,D)]

—{[P(m+2,n,0) + P(m-2,n,0)+ P(m,n+2,1) +P(m,n-2,D]}
— P(m,n,l-1) + O (h* +At%)

(3.2%

Further to the above formulations one should be aware of the limitat.ons of stability of

these schemes, Equation (3.6) is known to be stable (Mitchell, 1969) if:

q< (3.24)

L
V2
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Similarly for the fourth order scheme stability is bounded by:

g<4/f 3 (3.29

In the following section an examination of the principle of double downward reverse time
migration based on the wave extrapolation using the above difference equations will be

discussed.
3.2.3 Extrapolation and imaging of acoustic waves

The prestack reverse time migration method developed here consists of two parts;
reverse extrapolation of the recorded waves from the recorder position back into the
medium, and downward extrapolation of the wave from the source into the medium.
When the two waves meet, imaging has been achieved. This section will give some details
of these applications and then relate them to the design of the algorithm.

Reverse time extrapolation is a boundary value problem in which the acoustic finite
difference meshes (x,z) are driven respectively with the time reverse of the field observed
at each recorder. At a specific time step ¢; during extrapolation of a set of data, the energy
in the seismograms at times > #; has already been transferred to the finite difference x-z
meshes and is propagating back toward the point at which the disturbance was generated.

At time 7; ‘he pressure values along the time slice are inserted as a boundary at the
corresponding recorder positions in the difference grid. Then, once one finite-difference
step is taken, new boundary values are inserted from the data at ;.7 , and so forth. In this
manner the wave moves with its assigned velocity and coalesces to a single point (in the
case of a diffractor).

The determination and application of the imaging condition at each point in time
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requires double continuation of sources and receivers downwards at the same time-step.
Since imaged energy is coincident with the direct wavefront from the primary source this
method will satisfy the imaging condition everywhere.

A brief description of the application is given here. As time propagates backwards
through the grid, we reorder the data in receiver gathers and downw" ontinue the
sources. Using this concept amplitudes are correlated (constructive interference) on the
difference grid along the image.

The proper design of a parallel algorithm to operate in this space was shown in Chapter
2. The analysis has been broken up into two cases. Case one described the initial
formulation based on a coarse parallelism scheme working in serial over time. The second
case involved the advanced parallelism design of the code to operate in partial parallel time
steps

The basic limitations of the algorithm are due to the fact that Ax should be equal to Az
whi :h restricts the applicability of the method unless an appropriate seismic survey exists.
We limit our analysis here to synthetic seismic records that obey this rule, but one can

improve the difference scheme on the code to account for more general cases.

3.2.4 Performance monitoring on SPS

The reverse time migration codes were both tested on sets of seismic data in order to
check their validity, speed and efficiency. The coarse parallelism code was run in both pre-
and post- stack domains using second and fourth order difference schemes. The advance
parallel algorithm is applied in a poststack domain using second order differences.

The time performance of the coarse parallelism method is shown below. It was tested
on prestack data consisting of 48 traces, 150 depth steps and 500 time samples, and also on
poststack data consisting of 312 traces, 300 depth steps and 1500 time samples using

various number of processors.
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TABLE 3.2 Performance monitoring coarse F-D migration

Problem size Processing Elements

1 2 8 16 25 50 100

150x 48 430 360 289 221 160 107 (times in seconds)
300 x 500 1400 890

(45% efficiency)
200x39x25 3609 1326 (60% efficiency)

The major overheads involved in this problem are due to the inherently sequential
requirements of stepping over time. Time performance of the advanced method applied to
a poststack record of 256 traces. 256 depth steps and 1500 time steps is shown in the

following table:

TABLE 3.3 Performance monitoring advanced F-D migration

Problem size Processing Elements
32 64 128

256 x 256 732 462 395 (Time sec.)
~75% efficiency

As can be seen the advanced method outperforms that of coarse parallelism by several

factors. Further improvement of the algorithm might yield an even greater efficiency.
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3.2.5 Reverse - time migration impulse response

In order to examine the accuracy of the difference operator we need to test the depth
migration response following the same steps as for the @-x case, due to a time impulse as
shown in Figure 3.5a. As expected, the operator approximates the semicircle closely
because no square-root approximations were made to the differential equation apart from
those corresponding to the derivatives. Therefore, the method should be reliable for up to
90° dips.

The time impulse in this test is at 0.3sec. with a homogenous velocity of 1000m/s for
a model section with lateral spacing of 40m. The response of the fourth order difference
approximation is shown in Figure 3.19. It can be seen by comparing with Figure 3.5a that

the solutions approximate th¢ semicircle response remarkably well.

3.2.6 Applications.

The reverse time migration algorithm was tested on the synthetic data over the step
fault model Figure 3.6 which was also used for the w-x code. As indicated above, the
method can only be applied to limited data sets due to stability conditions and spacing
constraints. The prestack reverse time migrated shot records are shown in Figure 3.20. It
is clear that the method images the reflectors properly at greater offsets than the w-x case
(Figure 3.8 ) because of the higher degree (90) of accuracy. The final prestack migrated
stack Figure 3.21 reveals the fault model properly, but due to spacing limitations in the
code there is greater amount of noise present than the w-x case.

No cther data set was tested with this method. An improvement in the difference
scheme could be investigated so that real seismic applications can be tested. The code was
primarily developed in this work to investigate the degree of parallelism in finite-difference
codes as been developed for seismic applications. In Chapter 5 the same techniques of

parallelism are used to solve the three-dimensional acoustic wave equation.
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Figure 3.19. Impulse responses of fourth order reverse time migration.
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Figure 3.21 Prestack reverse time migrated stack of the step fault model.
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CHAPTER 4

ONE PASS 3-D DEPTH MIGRATION WITH UNDER-RELAXATION

4.1 3-D POST STACK DEPTH MIGRATION

4.1.1 Introduction

The future of seismic processing in 3-D will require algorithm design for
supercomputers. The general principles of such methods will be suitable for most types of
parallel computers that can meet the challenge of dealing with the large 3-D data volume.

Subsurface geological features in hydrocarbon exploration are three dimensional in
nature. For example salt diapirs, reefs, overthrust and folded belts, major unconformities
and deltaic sands fall in this category. The 2-D seismic section is only a cross section of
the 3-D seismic wavefield which contains signals from all possible directions. Therefore,
this side energy can only be handled with 3-D processing or 3-D migration. The complex
overburden problem has this three-dimensional character; hence, it is more accurate than 2-
D. In recent years we have seen an increase in the use of 3-D migration methods in the
poststack domain by means of two-pass and one-pass or splitting methods.

Two-pass migration, a method that replaces the true 3-D case with an approximation
that solves a series of 2-D migrations in orthogonal directions (Brown, 1983; Dickinson,
1988. Yilmaz, 1987), has been used almost exclusively but is now virtually extinct.
Possibly the reason for this is that splitting methods can be accommodated in the memory
environment. This avoids incorrect migration of events that arise from the method even if
a correct velocity model is used.

In some operational environments where the complete 3-D volume can be
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accommodated the so called one pass or alternating direction impiicit (ADD 3-D
approach to migration can be used.

The one-pass ADI method has been analyzed by several researchers and applied to the
solution of the 3-D seismic problem (Yilmaz, 1987; Gibson et al. 1983; Jacubowicz and
Levin, 1983). The method follows the classical solution of the system of equations, where
for each depth step (or extrapolation step) the field is downward continued alternatively
along the x and then y directions. This particular application, although a good
approximation to the true solution, tends to introduce larger errors in the azimuthal
direction of the wavefield.

Various authors have attempted to improve this solution by the introduction of extra
calculations or other operators in the solution of the system of equations. Ristow (1980)
and Cary (1990) used a symmetric approach to eliminate the anisotropic behaviour of the
solution by migrating not only along x and y alternately but also along 45010 x and y. Hale
(1990) has demonstrated another approach using McClellan transformations which are
circular symmetric filters to eliminate the non-symmetric effect of ADL Black and Leong
(1987) used a partitioning approach to the downward extrapolator which avoids the
splitting of the operator. Brown (1983) discussed the limitations of the operator separation
approach under different velocity variations. Schneider (1978) showed an integral
formulation of the 3-D migration problem solved by summation assuming no lateral
velocity variations in the model. Stoffa et al. (1990) has shown a new dip splitting
approach in the frequency domain. In terms of parallel one pass 3-D migration, Hague and
Goloway (1989) have given an impiementation of the w-x-y method of a 2 vector
processor for the IBM 3090 environment.

In this chapter I will examine th+ parallel implementation of the w-x-y migration on the
SPS platform and also show a new approach that uses under-relaxation to solve the direct

one-pass 3-D migration without splitting or separation. The extension of the method to
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pre-stack domain will be also shown in the second part of this Chapter.

4.1.2 The method

One-pass 3-D migration of seismic jata in the spatial-frequency domain, which
includes lateral velocity variations typically requires more I/O operations and more
computations than frequency-wavenumber algorithms. Many frequency-wavenumber
algorithms are two-pass, involving 2-D migration in the x-direction followed by another 2-
D in the y -direction.

In this Chapter, I will examine 3-D migration using an implicit method in the spatial-
frequency domain with the algorithm that is based on the one-way 15 degree wave
equation (which in practice is good for dips up to 30-35 degrees). The 45 degree solution
also can be formulated as will be shown in Chapter 7 where I have solved the direct 3-D 45
degree paraxial wave equation.

Computer implementation of the above method uses the splitting approach or an ADI
Crank-Nicolson scheme. Each downward continuation or extrapolation step proceeds
along x and then y coordinates solving an under-relaxed tridiagonal system of equations.
For each extrapolation the ADI method requires the solution of 2N complex tridiagonal
systems of dimension N, where N is the number of input/output x and y coordinates. The
algorithm is recursive where the result of the previous extrapolation step is required as an
input to the current extrapolation step. Any laterally slowly varying velocity function can
be used for the extrapolation.

To understand 3-D migration consider a point scatterer that is buried in a constant
velocity medium. The zero offset traveltime curve in two dimensions is a hyperbola. We
can imagine that the response in three dimensions is a hyperboloid. Migration in two

dimensions, as shown in Chapter 3, amounts to summing amplitudes along the diffraction
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hyperbola, then placing the result at the apex of it. This idea can be extended in three
dimensions. Migration in this case amounts to summing amplitudes over the surface of
the hyperboloid.

The formulation of the differential solution of the scalar wave equation as shown in the
previous chapter in two-dimensions will be extended here to three space dimensions. The
15 degree approximation to the differential equation is used here but the 45 degree case can
be implemented easily. The application of the method in the poststack domain with
synthetic and real examples will be shown initially, with an extension to pre-stack 3-D

examined at the end of this Chapter.

4.1.3 Application description

The observed seismic wavefield at z=0 can be approximated by the foilowing 3-D

SCuidr wave equation:

2 aZ aZ 1 a2
— P(x,y,z,0) +—— P(x,y,2,t) +—— P(x,y,2,) = ————— P(x,y, 2,0 (4.1)
ox?2 dy?2 022 v2(x,y,2) or?

Here, x, y and z are the spatial and depth coordinates and v(x,y,z) is the velocity of the
model medium.

The Fourier transformed field is given by:

Plkx, ky,z,0) = J I J P(x,y,z,0)elks 2+ ikyy-idy dy dy (4.2)

Applying the operator from equation (4.2) to the scalar wave equation one gets get:
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2P
— 4+

@ ] {____w’ kz}‘p 0
-~ - = (4.3)
022 [vz(x,y,z) (kx) ' v2(x,y,2) ( y)’

If multiple reflections are not prominent the solution to this equation may be obtained from

the one-way scalar wave equation:

)
oF_ ;2 P (4.4)
0z v 0)2
with v=v(x,y,2)
Let us define:
|
k;(2)=12 v 4.5)

where k,, k, and k;, are the two horizontal and vertical wavenumbers, and  is the angular
frequency. The choice of the minus sign in the square-root for migration is due to
decreasing of traveltime as the field is moved downwards. Based on this conclusion
equation (4.5) can be solved at the same depth step along x and y. Also a reformulation to
incorporate lateral velocity variations is needed and requires that one moves from the

wavenumber domain to spatial domain.
4.1.4 Lateral velocity variation

If lateral velocity variation is present v=v(x,y,z) we need to bring equation (4.5) into
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the spatial domain. To do this we need to evaluate efficiently and accurately the square root
of a differential operator. The square root was approximated by a continued fractions
expansior: in Chapter 3 but here I am going to use a second order Taylor series expansion,

leading to a 159 approximation:

/a) sz sz
k;(2)=-|—- —-—% (4.6)
V 20 20
and upon substitution
2 2
vk, vk
9P @ Y= Yip @7
dz vi%y:2) 2 20

This is now a parabolic equation representing upgoing waves from reflectors to
receivers. Claerbout (1985) showed that employing a retarded coordinate transformation
removes the effect of vertical translation (see Chapter 3). This retarded coordinate system
is related through the local velocity, v(z) at each source location to the Cartesian system by

the following set of equations in 3-D:

4

r=t(xy,zt)=t -J az/v(z)
(]

X' =x"{xyzt)=x
Y=y (xyzt)=y (4.8)

Z=z'(xyzt)=z2

We can now write the pressure wavefield in terms of a stationary wave Q(x,y,z,w) in the

frequency domain as:
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|
P(x v 2y w) = Q(x9y:zaw) (4 Jo V(Z) (4.93.)

or

+ i0 £z
Ox,y,2,0) = P(x,y,z,0) e [, v(2) (4.9b)

Differentiating (4.9a) with respect to z gives:

. ' dz
. ol —
QPxy2® _ (D 10y e e ' [v(z) (4.10)
0z oz V(@

Substituting equations (4.9a) and (4.10) into equation (4.6) we get the time shifted

downgoing wavefield:

2 2
9Q(x,y,2,@) _ vk, ¢ka . 1 _ 1
> = l(Zw 120) ox,y,z,0) lw(v(x,y,z) e ) 0(x,y,2,0) (4.11)

The first term on the right hand side represents the 3-D diffraction term. The second
term on the right is the thin lens term. In the derivation above we assume that v(x,,2) is
a locally constant medium velocity and v(z) depends on depth below the source, only.

Upon splitting the diffraction term becomes:

200 vk? vk}
cQ(t,,V.z,aJ)=i x4+ | oe,y.z,0) (4.12)
0z 20 2w

Equation 4.12 may be rearranged by substituting for:
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k2 = P1ae, k2 = P 19y2 and u(xy.z)=iv(x,y.2)
Then the diffraction portion of the solution is given by the following approximation:

2 2
aQ(x,y’Za w) + a - Q(x’y’z,w) + % Q(x,y’z' w): 0 (4.13)

-2i W(x,y,z)
z ox

This equation will be evaluated step by step, starting at the surface and moving
alternatively to any depth, using a finite difference approximation. The thin lens term may

be solved analytically and is given by:

00(x,y,2,®) _ . 1 1 .
—a—z—— : w(v(x’y7z) _V(Z) )Q(x,y’h,w) (414)

Equation (4.14) is also called the 15% approximation to the scalar wave equation, since
this form of the square root approximation to the dispersion relation yield reliable results
when the angles of incidence of the rays normal to the wavefront are less than about 159 as
mentioned previously. It is also called a paraxial equation and has all the properties of
parabolic differential equations. It is the direct 3-D equation for w-x-y migration.

Converting equation (4.13) to a finite difference form (Appendix C) and writing it in
matrix form for each harmonic yields an independent set of pentadiagonal solutions for

each harmonic component, w, (n=1,2..) of the form:

< z+1 < z+1 z+1 — z+¢1 +— z+1

"y = z = z = = = 7
'Aqx+l.y - Aqx.y+1+ qu.y 'Aqx-l.y 'Aqx.y-l=' qu+l.y 'qu,y+1 + quzc.y'cqi-l.y'cqx.y-l
(4.15)
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In the same way as with the 2-D solution we can propagate the wavefield in terms of
each frequency in parallel, solving for all necessary depth steps, and summing at the end.
The stability of the method can also be analyzed as in Appendix D, and shown to be stable
unconditionally. The migrated result is obtained by applying the imaging condition

summing the Q(x.y,z) field over frequencies:

O(x,y,2,1=0) = Nl— > 0®.y.2,0) (4.16)
@

The application of this w-x-y algorithm for migration is described below.

A major problem with the solution of equation (4.15) in pentadiagonal form (direct
solution) arises from the fact that the computational time is of the order of N3 where N is
the x or y dimension. This type of solution will be shown in Chapter 7 along with the extra
computing effort needed to solve it. My aim here is to transform equation (4.15) into a
form that requires 2N? operations per depth step. In order to achieve this goal I must
solve the equation using the ADI approach by mapping the solution into a tridiagonal form
through under-relaxation. In the next section I will describe the steps taken to

metamorphose the equation (4.15) into such a form.
4.1.5 Matrix Solution Procedure

The 3-D solution of the wave equation creates a large system of linear, algebraic finite-
difference equations, and many solution techniques are available. Matrix inversion and
other direct techniques (Chapter 7) are usually unacceptable because of the large number of
equations involved as well as the matrix size; therefore, iterative methods are normally

employed or some formulations might utilize a Gauss-Seidel algorithm. This is a point-
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by-point method in which the equanons are solved one at a time, passing from node point
to node point throughout the wave field. New values of the variables are used as soon as
they become available, and the complete wave field can be solved for each dependent
variable before going to the next dependent variable.

This idea, as implemented in an efficient Tridiagonal Matrix Algorithm (TDMA),

follows the form of equation 4.17

bigi=aiqi.1 + ciqiv1 + di 4.17)

Equation (4.17) requires the values of the constant coefficients ai, bi, ci, and d; for i
ranging from 2 to n-1, in addition to the boundary values of ¢; and g,,.
Two new coefficients, ¢; and f;, are determined through the following recurrence

relationships:

Ci

. = 4.

é bi-aie; (4.18)
di+afi

e — 4.19

fi b de (4.19)

with the starting values of e;=0 and f;=q;. The solution procedure calls for successively

rewriting equation (4.17) as

qi =egin +fi (4.20)

The ei and f; terms are found beginning with i+2 and proceeding to i+n-/, where N is
the number of points in the line being solved. This step is an LU decomposition and

forward substitution. New values of g; are found by backward elimination, starting with
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i+n-1 and working backwards to i+2. This algorithm is a special form of Gaussian
elimination without pivoting, and the procedure is only stable when the matrix possesses
diagonal dominance. Additional details concerning this procedure can be found in several
sources (e.g. Golub and Van Loan, 1989).

The TDMA can be implemented to solve equation (4.15) by considering the equations
for all the control volumes along a grid line with last or best estimates for the values of Q
along the neighboring grid lines, and hence constructing a tridiagonal equation set. In this
manner, the first transverse can proceed along all grid lines in the x direction. Then, using
this solution as best estimate, the next step is to proceed along the y grid line within the
same depth step.

Equation (4.15) is written by setting first
RHS=-Cqy,y ,-Cayyr * Dq,, ,-Cq, 1y Csyt (4.21)

as the source term in the equation, along the initial x-direction sweep as:

By ~Raiit, A, Al +Aa + RS @)

X,y

For the y-direction sweep is written as:

- — — _
B = Aqlt, +AaT HAgiL, +Agl H RHS] (423)
The terms in parenthesis in each of these equations are considered known so that the
TDMA can be applied. Each sweep though the matrix updates the values of Qi. The
relationship between equation (4.15) and equation (4.17) can now be clarified. In each of
two tridiagonal systems, two (the terms in parentheses in equations 4.22 and 4.23) of the

four directional difference coefficients are incorporated into the source term, di (RHS).
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The B term is renamed to be bi, leaving the backward and forward coefficients in the
sweep direction to be aj and ci. Equation (4.15) is thus transformed to equation (4.17).
The latter equation may be transformed into typical tridiagonal format through simple

algebra. Equation (4.24) represents this change, and equation (4.25) describes the resulting

matrix.
-a,qi-1 +biqi - cigin1= d; (4.24)
Mg=d, where M=fab,c) (4.25)

Two significant improvements were implemented in the 3-D migration matrix solution
technique. First, the TDMA algorithm was solved via ADI in parallel over the line sweeps
throughout the entire plane. A second major change in the TDMA was suggested by Van
Doormaal (1990). This involved the implementation of an acceleration technique. The

technique can be simply described as an under-relaxation of Q update for the off-diagonal

terms. First, Qf f+ 1, a better estimate of Qx,y+1,is defined as follows:

+1
xy+1 = Qx y+1 1 0( z.y+1 sz,y+1) (4.26)

This expiession is then approximated through the following simplification:

x,y+1 = Qx Jy+1 + 9( o sz,y) (4.27)

It can be noted that 0 is an under-relaxation parameter that must be specified between zero
and one. If O is set to zero, this procedure reverts to the normal TDMA procedure

described by equations (4.17) to (4.25). If 6 equals one, Q will never be updated and the
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variables will remain constant though each iteration.

These changes alter the equation previously described. Equation 4.22 becomes:

(B-08g2" =Aqs) , +Aai H Alasper - 67, | +Ad%,., + RHS| (4.28)

It should be noted that the y-7 term is not under-relaxed because it has been updated from

the previous iteration.

The equations in the TDMA solution algorithm require reformulation. A new parameter is

first calculated:
gi= A (4.29)

equations 4.18 and 4.19 are altered as follows:

Ci
e = —— 4.30)
' b giraigin ¢
di- 8iqxy + 4 fi-1
; = : 431
fi bi - aei1 “31)

The TDMA derivation provided throughout this chapter applies only to the x -
directionai sweeps. Similar equations were derived and implemented for the y -
directional sweep. It should be noted that the TDMA is an iterative solution technique to
solve the finite-difference equations, the coefficients of which are only tentative and require

updating to account for the changes in the values of the variables.

4.1.6 Under-relaxation

Simulations of the finite-difference equations in the form of equation (4.15) generally
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diverge unless the iterative corrections are under-relaxed. The conventional practice in such
case is to under-relax the dependent variables to avoid numerical instabilities. However,
based on some tests, under-relaxation in this code is best accomplished when placed in the
source terms. If a is the under-relaxation factor, than the two source terms in equation

(4.15) become:

|
i
R %)

(4.32)

and

(l-a)Q;yB-

a

RHS = RHS + (4.33)

where Q% is the known value of Q computed during the previous iteration.

These modifications are performed before the solution of the finite-difference equations
by TDMA. It may also be required to under-relax the pressure wave properties if they
experience rapid changes as in the case of sharp velocity contrast. If Q%! is the value of the
property used in the previous extrapolation, n-1, and Q* is the value computed in the

present extrapolation, the values used in the next extrapolation step , Q are computed by :

0=aQ?+(1-ao*! (4.34)

The values of the under-relaxed factors should be between zero and one and for
computational efficiency should be the largest value allowing a stable solution. The
optimum values of these under-relaxation factors are problem dependent. Should

divergence occur, it was found empirically that smaller values may be required.
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4.1.7 Parallel implementation

The restructuring of this migration code in parallel was carried out similarly to the 2-D
case. Based on the linear superposition of monochromatic harmonics in wave propagation,
one may compute each frequency component of Q(x,y,z,w;) separately during steps

described by equation (4.14) and (4.15). Keeping these facts in mind, the algorithm was

designed as follows:

1. Temporally transform the wavefield Q by calculating the Fourier transform of all
seismic records in parallel.
2. For each frequency step in parallel
2.1 for all depth steps
A. for all x directional sweeps (in parallel if more processors are available)
a. Estimate the time retarded field Q using (4.9).
b. For each depth step solve (4.15)

B. for all y-directional sweeps (in parallel if more processors are available)

c. repeat steps (a) and (b) until all depth points are resolved.
3. Automatic summing takes place over all depth steps in parallel for all the frequency
components to get the final migrated section.

A descripticn of the pseudocode is shown in Figure 4.1. The parallel steps over x and
y directions can be invoked only if the number of processors exceeds the number of
frequencies to be solved.

In terms of performance evaluation the code was running effectively (more than 90%
user time) for all the examples tested in this work. A typical seismic survey consisting of
100 x 100 grid surface points extrapolated in depth to 1000m (500 steps ) required a total
time of 780s to be executed on the SPS-2 and 90s on the SPS-3. Analytical performances

will be discussed during the examination of the applications of the algorithm.



®-X-Y ONE PASS 3-D MIGRATION
WITH UNDER-RELAXATION

(MAIN PART OF PARALLELISM)
(PARALLEL) DO over Frequency steps

DO over Depth steps

(PARALLEL) DO over number of lines(y)

A. Calculate the time retarded field

iol dz_
Q(x,y,z,®) = P(x,y,z,m) e o V@

B. Downward continue the wave field using the
diffraction term along x-direction using U.R.

2 2
Dip(x,y,z) SAXLL0) , O ~Q(x,y,2z.0) + 9 ~Q(x,y,2,0)=0

oz ox 5y_
END DO over lines (y)
(PARALLEL) DO over x - direction
REPEAT (B)
END DO over x

C. thin lens term
Q2,0 _ vl -1 )Qx.z,0)

oz v(x,z) v(z)

END DO LOOP over depth
END PARDO over frequencies

Figure 4.1 Pseudocode of the 3-D under-relaxed migration

101
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4.1.8 3-D migration response

In order to evaiuate the accuracy of the under-relaxed 3-D migration code the impulse
response due to a point diffractor at a specific depth was calculated using the same model -
only in 3-D here - as applied in the 2-D case (Chapter 3). The ideal 3-D impulse response
is a hollow hemisphere. Although the traveltimes are not quite correct, the 15-degree
response appears to have circular symmetry with respect to the center point.

Figure 4.2a shows the desired response in a 2-D slice of the cube. The under-relaxed
response is shown in Figure 4.2b and the exact 3-D response calculated using the 15-
degree version of the algorithm in Chapter 7 is shown in Figure 4.2c. We can see the level
of approximation of the method to the correct response and also realize that it approximates
the exact 3-D response reasonably well. Therefore, we can assume that the under-relaxed
method gives a satisfactory solution to the 3-D problem at the 15-degree accuracy level.
Figure 4.3a shows a depth slice (plane) of the under-relaxed 3-D as compared to the exact
3-D (figure 4.3b).

Again, the degree of approximation and the principle of under-relaxed solution seems
to be a good alternative to the computation of the exact 3-D solution. The values for under-

relaxation used for this example were 6=0.55 and a=0.65.
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Figure 4.2 (a) Desired impulse response for migration, (b) 15% 3D under-relaxed, (c) 15°
3D exact response.
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Figure 4.3 (a) Depth slice of the 3D under-relaxed migration response, (b) the 15 degree

direct 3D equivalent.
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4.1.9 APPLICATINNS OF THE 3-D POST-STACK MIGRATION

4.1.9.1 Simulated 3-D tank model seismograms

I have obtained a simulated 3-I) tank model seismic data set from the University of
Calgary through the courtesy of Professor Don Lawton. The tank model is a physical
modeling lab system that can generate seismic data with almost any recording geometry
over physical models of interest. The data generated here are from a zero-offset 3-D
survey over a modified French Madel. The data set comprised of 12,600 traces (105
lines in one direction x 120 in the other) over a 25 m x 25 m grid (scaled to field units).
The reefs and fault blocks were made from plexiglas (vp=2740 m/s) over an aluminum
‘platform’ (vp=6200 m/s). Figure 4.4 shows a sketch of the plan view and cross sections
show the geometry of the model.

The data were recorded with fixed gain with a sampling interval of 1ms, and no 'AGC
(automatic gain control) has been applied to the display. A section showing a 2-D slice of
this data is shown in Figure 4.5 where the reflections from the reef and the faults on the
sides are evident. As can be seen, the data contain a significant amount of scattered energy
from discontinuities of the model as well as side reflections. Therefore, it is a good data set
to evaluate the accuracy of the 3-D migration code.

Figure 4.6 shows the migrated part of line 35 (figure 4.5). The method images the reef
reflection as well as the fault reflection. Also the reflector at the bottom of the platform has
been imaged properly. Some discrepancies are present with the imaging of the slopes of
the reef and the fault which have a dipping angle greater that 40 degrees. A planar view of
the migrated set is shown in Figure 4.7. It is evident that both reefs and faults have been
imaged and migrated properly. It can be seen that a 2-D depth slice of the data gives a
better physical understanding of the accuracy and efficiency of the 3-D migration

algorithm.
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Figure 4.5 2D seismic section of line 35 from the tank model experiment.
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Figure 4.6 3D migrated plot of line 35. The positions of the reflectors form the top of the
reef and fault (817m), the first ;nterface at (945m) and the base of the model (1100m)
have been imaged correctly. The sides of the reef and fault having a slope of 450 were

not properly imaged
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Figure 4.7 3D migrated depth slice of the tank model (830m). The reef and fault

characteristics of the model are evident.



4.1.9.2. Imaging a 3-D zero-offset modeled data set.

The use of forward modeled zero offset stack data can be useful when evaluating the
behaviour of a migration algorithm as well as give an intuitive picture of zero offset
sections. The term zero offset section defines a seismic section generated under the
assumption that data are obtained by coincident sources and receivers. The energy travel
path from source to reflector is identical to that from reflector to receiver. This means that
all sources are activated simultaneously, but each receiver records signals originating from
the same source-receiver point. It should be clear that this approach does not simulate any
wavefields resulting from experimental measurements.

The zero offset seismic section can also be modeled conceptually by a series of
explosions detonated simultaneously at the reflected beds. According to the exploding
reflector model (ERM), sources exist at every point on the surface of the reflectors. All
these sources explode simultaneously at time t=0 with strengths proportional to their
reflection coefficients and the wavefield travels upwards with a velocity equal to one half of
the actual subsurface velocity. It is assumed that the wavefield recorded at the surface under
these assumptions closely resembles a zero-offset section i.e. a stacked section.

For modeling start with a field P(x,y,2=Z’,@)=0, where z=Z' refers to a depth below
all the reflectors. The .vavefield is then extrapolated upwards in steps of Az using equations
for 3-D migration defined in Chapter 7. For this extrapolation the sign of Az is negative
since the wavefield moves in the negative z direction. At all those depths where sources
exist an appropriate contribution to the wavefield is added for each frequency. The
extrapolation is carried out till z=0 and then the resulting wavefield is inverse Fourier

transformed with respect to @ to obtain a zero-offset section.
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The method for migration and modeling described above is then tested for a specific 3-
D model. Figure 4.8 illustrates a 30 x 30 x 80 model where there are two dipping layers,
and a syncline between lines 10 to 20, and only two layers form line 1 to 9 and 21 to 30 as
shown in Figure 4.8b. The velocities in each layer are also shown. For both modeling and
migration we used a 20m trace interval and 4m depth step. A synthetic zero-offset section
with 30x30 traces and 2 msec sampling interval was generated and part of it is shown in
Figure 4.9. This forms the input for migration algorithm. Figures 4.10 and 4.11 illustrate
the migration of the data by assuming all the layers have velocities equal to the vertical
wave velocities. The top layer is properly imaged across all lines. The image of the graben
is correctly imaged but appears to be present in lines before 9 and after 21. The reflector
below is imaged correctly. For comparison the exact 3-D migrated data set is also shown
here the graben appears to be properly imaged. It seems that the under-relaxed 3-D
migration generated small error in imaging in the lateral direction as expected. Iﬁ terms of
real data situations such minor discrepancies may not be evident thus justifying the use of

this type of migration.
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Figure 4.8 Diagrammatic representation of the physical model used for zero-offset modeling.
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4.2 PRESTACK 3-D DEPTH MIGRATION VIA UNDER-RELAXATION

4.2.1 Introduction

As I have shown in Chapter 3, 2-D migration of seismic data before stack has its own
merits. But taking into account the complexity of the geological environments investigated for
hydrocarbon exploration 3-D prestack depth migration is desirable if one is willing to consider
seriously the computational costs involved. As the real world is 3-D, most of the data should
be migrated in 3-D as shown in the previous section. For these reasons as well as the
availability of parallel computers I decided to extend the 3-D algorithm to the prestack domain.

Since 3-D prestack migration amounts, to an order of magnitude increase in the amount of
information that must be processed as compared with the 2-D case, it is extremely important
that the algorithm used for the migration be as efficient as possible. In particular, if the in-core
memory of the data processing computer is of limited size, the major costs of a 3-D migration
will typically result from the input and output of information to and from the permanent
storage area. As this is not the case with most massively parallel computers the efficiency of
the algorithm is expected to be good due to high locality (data reuse) of the operation.

3-D prestack depth migration research is very limited in the scientific literature. Kirchoff
summation methods for 3-D prestack migration exist (Stolt and Benson, 1986) but they do not
involve wave equation principles. Frequency-wavenumber methods are usually not feasible
because they are limited to non-lateral velocity variations.

Recently some work has been done in this area (Froidevaux, 1990; Julien, 1990) where a
3-D prestack shot record migration is achieved in two steps: first, modeling of the propagation
of the downward wave from the source, and second, back-propagation of the upgoing
wavefield recorded at the receivers into the earth to a particular depth.

Berkhout (1982) and Claerbout (1985) give brief descriptions of the need and methodology
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of 3-D prestack migration, without any mathematical formulation which can be effectively
applied using today's supercomputers.

In this section I have developed a formulation for 3-D prestack migrations based on the
same idea as for the 2-D case (Chapter 3). A double downward continuation for both source
and receiver gather can be utilized effectively to accurately solve the problem. Tais method is
considered more accurate than those described above because it is only constrained by a good
velocity input model. The symmetric behaviour of source and receiver gather needed can be

easily achieved by interpolation along the x or y directions.

4.2.2 Method description

Prestack migration in three dimensions refers here to the depth migration procedure
applied to shot and receiver gathers. Before going into the mathematical implications of the
problem ( as seen in section 4.1), I would like to mention several important steps that need
to be considered when dealing with a prestack 3-D seismic data space.

First, the potential of developing accurate 3-D velocity models is most of the time a
difficult process, and because 3-D static corrections are important they must be done before
depth migration. Moreover, the enormous amount of data requires great computational
power. Keeping these considerations in mind, I have taken the steps of transforming the
algorithm developed in the previous section for 3-D post stack migration to the prestack
domain.

To remind ourselves, the idea of prestack depth migration conceptually involves shots
and geophones that are separately downward continued into the earth, and the migrated
depth section is picked off at zero travel time and zero offset for each z-level. In general, all
of the recorded data must be worked with at once. First, common shot gathers are

downward continued (using ADI and under-relaxation along x and y) by Az/2. Then the
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data are reorganized into common receiver gathers, and they are downward continued (x
and y) by another Az/2. In the space-frequency domain, this procedure can be done as I
showed in Chapter 3 for all frequencies w at the same time in parallel, and then a
summation over w will yield the imaged section. Due to the excess amount of data in 3-D,
the option of running the code with a finer parallelism over shot and receiver gather is
considered.

In section 4.1.2 the observed wave field at the earti surface in 3-D is approximated by
equation (4.1). The source-receiver seismic wavefield at z=0 (earth's surface) can be
approximated by a similar scalar wave equation in 3-D:

2 2 2 2

2_ P(sxy,zst) +a_ P(sxy: Z,I) + i P(Sxy, z, t) = _l'_—é— P(Sxy:zat) (4-35)
dy2 022

ox2 v4Sxy,2) ot

Here, sxy and z are the spatial source and depth coordinates and v(sy,2) is the velocity of
the model medium.

Equation 4.35 can be solved using the same approach as for equation 4.1 except that
upon separation (Chapter 3) of shot and receiver spaces we end up with two diffraction

terms to solve for:

2 2
aQ(Sxy, Z, w) + a - Q(Sxy,z, w) + 59__2 Q(sxy,z’ w): 0 (4.36a)

Sy

-2i p(x,y,z)
az an

where sy and sy are the shot gather x and y direction derivatives, and

aQ(gxy, Z, w) az az
+ O(8xy, 2,0) + —— ,2,@)=0 4.36b
32 agx2 Xy agy2 Q(Exy ( )

-2i (x,y,2)

where g, are receiver coordinates and gx and gy are the receiver gather x and y



direction derivatives.
Equations (4.36a) and (4.36b) are solved with the 15 degree under-relaxation method
described in section 4.1. The restructuring of this migration code in parallel was carried out

similarly with the 3-D post stack case. So the algorithm design is as follows:

1. Temporally transform the wavefield Q by calculating the Fourier transform of all
seismic records in parallel.
2. For each frequency step in parallel
For all depth steps
A. Do over all the shot gathers (parallel)
a.do sx directional sweeps (in parallel if more processors are available)
1. Estimate the time retarded field Q using (4.10).
2. For each depth step solve (4.36a)
b do sy-directional sweeps (in parallel if more processors are available)
1. repeat step (a2).
B. for all the receiver gathers (parallel)
afor all gx directional sweeps (in parallel if more processors are available)
1. For each depth step solve (4.36b)
b for all gy-directional sweeps (in parallel if more processors are available)
1. repeat step (al)
3. Automatic summing takes place over all depth steps in parallel for all the frequency

components to get the final migrated section.

A description of the pseudocode is shown in Figure 4.12. The code ran utilizing 90%
of system time for computation for all the examples tested in this work. A typical seismic
survey consisting of 121 shots on a 20 x 20 grid surface points extrapolated in depth to
400m (100 steps ) required a total time of 18,000 s. to be executed on the SPS-2 and

1900s. on the SPS-3.
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©-X-Y PRESTACK ONE PASS 3-D MIGRATION
WITH UNDER-RELAXATION

(MAIN PART OF PARALLELISM)
(PARALLEL) DO over Frequency steps
NO over Depth steps

A. (PARALLEL) DO over number of Shots
(PARALLEL) DO over number of Sx
1. Calculate the time retarded field

io dz
Q(x,y,z,0) = P(x,y,z,0) e o ¥(2)

2. Downward continue the wave field along x using U.R.

2 2
21 u(x,y,2) aQ(xéyz’z’(”) + 812 Q(x,y,z,m) + %5 Q(x,y,z,0)= 0

END DO over Sx
(PARALLEL) DO over Sy
REPEAT (1)
END DO over Sy

B. REPEAT A over the receiver gathers.
C. Calculate the thin lens term

0Q(sx,yz,0) _ . 1 1
— —"m(v(sx,y,z) v(z))Q(sx,y,z,m)

END DO LOOP over depth

END PARDO over frequencies

Figure 4.12. Pseudocode of the prestack 3-D under-relaxed migration
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4.2.3. Synthetic Data Application

In order to test the 3-D prestack algorithm a simulated seismic 3-D data set had to be
developed. Real field data that fall into the category of equi-spaced grids were not available
for this research. I will utilize a synthetic data set generated using a 3-D acoustic wave
forward modeling algorithm developed by the author and described in the first part of
Chapter 5.

The physical model used for the generation of the seismograms is shown in Figure
4.13. The planar view shows a step fault model extending across the y grid direction and
the survey direction running such that 11 x 11 traces will be generated using this geometry.
In this manner the central part of the model will be illuminated by the shot records. The
source locations are shown on the diagram each one having 20x20 (400) receivers. The
model data were generated using a Ax=Ay=20m, and Az =10m spacing and time sampling
of 1.5 ms.

Figure 4.14 shows a shot record generated by the forward modeling program. At the
top a 2-D cross section view of the cube slices is shown with a planar view at 600ms
shown in the bottom part. Clearly, the reflection from the edge of the fault is shown with
the diffraction characteristics evident.

All these shot records (121 in total) were 3-D prestack depth migrated. The
corresponding migrated shot from Figure 4.14 is shown in Figure 4.15. The top is the
cross sectional view and bottom the planar view at 450m. From the planar view we can
see that the method images correctly the reflector at that depth around the source position.
As we move away from the source the accuracy of imaging deteriorates.

Finally, Figure 4.16 shows the 3-D prestack migrated stack of all the shot records.
Two planar depth slices are shown: one at a depth of 450m and the other at 500m; at the

top and bottom reflector positions in the fault. The method seems to image correctly the
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edge of the fault as well as the position of the reflectors.

4.3 Conclusion

The first part of this chapter I have shown a new way of solving the 3-D migration
problem using an alternating direction implicit method with under-relaxation. The
method is based on the formulation of exact 3-D problem which avoids the drawbacks of
operator splitting and achieves a reasonably accurate solution. Tests on synthetic and real
(Chapter 7) examples will verify the fact that this approach of solving the 3-D methods has
merits and is worth investigating further with a higher degree of approximation.

In the second part of this chapter, the analysis of 3-D prestack migration was shown
based on the double downward continuation method of prestack imaging and solved
through under relaxation. A synthetic example that justified the accuracy of the me.hod
was shown. Further improvements in the solution could improve the dynamic imaging

capabilities of this procedure.
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Figure 4.14 Shot record generated via 3-D forward modeling using the model in Figure

4.13. Top cross sectional view, bottom planar view at 600ms.
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Figure 4.16 Prestack migrated stack section of the 3D step fault model. Depth slices
shown are at depths of 450m and 500m., located at the top of the reflectors

present in the model.
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CHAPTER §

3.D ACOUSTIC SEISMIC MODELING IN PARALLEL

5.1 Introduction

In order to fully investigate the seismic response associated with complex geological
structures, several years ago, the geophysical community launched a series of efforts to
develop 2-D finite-difference seismic models. It was a big step forward as compared to
conventional modeling methods of ray tracing. Recently, with the introduction of more
powerful supercomputers, it is feasible to investigate the modeling problem in three
dimensions.

The advantages of 3-D forward seismic modeling are many. Some of the advantages
include more dependable interpretation, better understanding of amplitude variations, more
accurate velocity analysis and determination of data acquisition parameters. But there are
also some drawbacks. Even on supercomputers, such models require an enormous
amount of CPU time and a huge memory for data manipulation.

A plethora of research work related to the solution of the 2-D acoustic wave problem
can be found in the literature but it is not my intention to review this in this thesis. There
exist several methods for 3-D acoustic forward modeling and the basic mathematical
problem formulations are well known. However, most of these cases utilized vector
supercomputers, for example, Reshef et al. (1988) directly solved the acoustic wave
equation using spatial derivatives in the Fourier domain on a CRAY X-MP. Jonson
(1984) followed a time domain approach developed for the Cyber205. Mufti (1989)
presented the formulation of the problem for the Cray 2 platform. Some work has been

done in SIMD parallel computers (CM2) in 3-D (Mora, 1988) and 2-D (Myczkowski et
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. al., 1991) with impressive results, due to the fine-grained parallelism present in the

algorithm. No actual implementation of the solution of the 3-D problem has been

attempted for MIMD environments.

In this Chapter, I am going to present the formulation of the 3-D acoustic wave
propagation problem and describe its implementation on an MIMD parallel computer.
Although, this type of hardware requires coarse-grained parallelism present in a program,
the large problem size and the computation of more than one shot records at the time
contain enough work to saturate all processors, leading to efficiency and overall speedup.
Based on this observation the MIMD environment could be a good production tool for

several seismic records whereas the SIMD can only generate quickly one such record at a

time.
5.2 The 3-D acoustic wave equation and its F-D solution

The treatment of the 3-D seismic modeling problem wiil be based on the solution of
the acoustic wave equation using explicit finite-differences. Usually this is a good
approximation for both marine and land models as long as we do not record three-
component data and continue to use this equation at important Steps during data processing.

Consider a 3-D space in which the z-axis, positive downward, denotes depth below the
surface of the earth which coincides with the plane (x,y,0). In this coordinate frame, the

acoustic wave equation can be expressed as:
Pix + Py + Py = fé‘ Py + f(8) &x-x5)&y-ys) &z-25) (5.1)

where

c(x,y,z)=velocity of the medium
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P(x,y,2)=pressure

f(t)=a time-dependent source located at (Xs,ys,Zs)

The subscripts in equation (5.1) indicate derivatives of the wavefield with respect to x,y,z
and . For the purpose of setting up a finite-difference model, it would be convenient to

introduce a set of indices i,j,k and n such that

x=iAx
y=j4y
z=kAz
t1=nat ij,kn=0,12.. (5.2)

In equation (5.2), Ax, Ay and Az denote uniform grid spacings'along x, y and z axes
respectively and Ar means the time sampling interval. By using these indices, we can

write:

P(x.y,z,0) =P},
f®O=fn n=0,1,2... (5.3)

P{f ik denotes the discrete value of the wavefield at the grid point (i,j,k) at time n. A
similar notation can be used to indicate discrete values of related quantities such as Pxy.
Using central differences (Smith, 1965) the first term on the LHS of equation (5.1) can

be approximated as:

p* .. 2P +P" . .
e itk f(axf] (5.4)
(axf
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The remaining wavefield derivatives can be treated in a similar manner. For the source

term we can write

{ fn at (is,js-ks) n=1,2... (5-5)

f(t) = elsewhere

Substituting expressions such as (5.4) and (5.5) into (5.1) we get,

1

Pl = Gij, k(P: L.k 2P, + P?+l.j.k)

+b‘J k(PlJ 1.k 2P’:/ k + P;:j+l.k) (5 6)
+ e,\,,k(P‘.J',‘_l 2Pin.j.k + P‘-':]-',Hl

+2P, i’:j.k - Pi’:‘_k '(CAt)zf n&i-is)8jjs)Ak-ks)

where

. LA \

ik = | Cigjk—
Ax
At 2

bijk=|cijk— (5.7)
Ay

, oA 2

k= | Cij—

4 IJ Az

It is usually feasible to set Ax=Ay=Az=h

In that case (5.6) reduces to

n+1 n
Piik= 8wk(P; 1j.k +P+ljk+PlJlk “"P:,ﬂk"”Pi.,‘.kl"'P,,kn 6P¢1k)
n-1

(5.8)
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where
2
At
gijk = |Cijo— (5.9)
i ( tJ Ah)

Equation 5.8 is a second order approximation of the wave equation in space and time.

Higher order approximations can be derived by retaining more terms in the Taylor series

expansion (5.4) to the accuracy of O [(Ax)A] The result can be expressed in the form

2 2
(Pxa)ijx = [1 ) %} Ci_)z P+ Ol(ax)] (5.10)

where 1 is the identity matrix and

2,0 _pn n n
&Py jue = Pisvju 2P jatPi

i+1,.k G.11)

so the left hand side of the equation (5.1) can be expressed as:

1
(‘ :2.j.k + 16P, ﬁl,j.k'30P ?J.k +16P i’fn.j.k - i+2.j.lc)
12{axf (5.12)

+ of{ax)]

(Pxx);‘.j'k =

Similar expressions can be derived for the other spatial derivaiives.
Fourth order expressions for the spatial derivatives will be used, but only a second
order expansion for the time derivatives. By doing so the resulting difference relation for

the 3-D wave equation can be expressed as:
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1
Plk=T3 { aiJ.k[PEZ.j e+ Pl 16PFL ik * P"’IHJ-") +3OPFJ"‘]

ij.k
n
+bi.i-4‘°{:j-2 et P?.j+2 k'lG(P?J et P'n,j+l k) +30P; ; ]

(5.13)
n
+C‘J"’-{Pi.j.k 2+ Plike IG(PxJ,k 1 k+1) +30P;;, k]}
-1
+2P; 4 -Plik
Finally, by setting Ax=Ay=Az=h the relation reduces to:
] —
Pﬁ;.;:: 8ij.k [ P"lZJk+Fl+2.JkP:12k+P;:j+2k+ P?Jk-Z
+P’:]k+2 16(Pn11k+ i+14.k P'" k+PlJ+lk (5-14)
+ P+ P Jk+1)+90 ]+2 Pl"dk
where
At 2
_ Ci.j.k-h—
gijk= - 5 (5.15)

Relation (5.14) is only slightly more involved than relation (5.8) and yet it permits the
use of much coarser grid intervals. Its simplicity makes it very powerful candidate for
designing efficient 3-D models. I have used equation (5.14) for the purpose of modeling
3.D acoustic waves in heterogeneous media but the option to use relation (5.8) exists in the

algorithm.

5.3. Dispersion and numerical stability

The maximum value of grid spacing which can be used in a model without causing

excessive dispersion of energy is governed by the relation (Mufti, 1989):
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mad ax, Ay, Az) = TCLC2 ) (5.16)
. Wfmax
where
m = number of velocity types in the model
frax = maximum frequency in the source wavelet

w = number of samples per wavelength corresponding to £,

In equation (5.14) we may set Ax=Ay=Az=h. In that case, this relation yields the
largest value of A, say Ay, for a given model. However, if we choose different values
of Ax, Ay, and Az, each of these equations may be less but none of them may exceed
hna Therefore, the use of equal grid spacings along all the three axes of coordinates
minimizes the population of grid points and it represents the most efficicnt choice.

In equation (5.14), used for the formulation of the 3-D algorithm in this Chapter,
dispersion problems arise only if w<3. Typical grid dimensions for & 3-D model based on
equation (5.14) with w=3 are usually 250x250x250. This results in 15.625 million grid
points. These numbers explain why the development of seismic models had 10 be restricted
to two dimensions in the past. The use of algorithms such as that presented in equation
(5.13) coupled with the availability of parallel supercomputers with memories beyond 256
Mbytes have opened the avenue for 3-D seismic modeling.

The problem of numerical stability can be considered as follows: The largest value of
the time sampling interval which can be used in a given model without making the system

numerically unstable modified from 2-D (Mitchell, 1969; Alford, 1974) to 3-D here is

given by,

(At)ma-x max (CI,C2,' M) Cm)
max (Ax, Ay, Az)

<u (5.17a)
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or
(5.17b)

At <

( )max “l Cma_x

The quantity 4 depends on the algorithm used for computing the wavefield; it can be
determined by following the von Neumann method ¢ Smith, 1965). In the case of equation
(5.14), p = Vrgz which is somewhat less than in the case of equation (5.8) which yields

W= V—lf Thus, the advantage of using larger values of grid spacing is somewhat offset by

the more restricted choice of p. In practical terms, it is not a severe constrzint.
5.4 Absorbing boundary conditions

Relation (5.14) indicates that for computing P,";}c, we must know the quantity P{' ¥2.jk
This implies that for computing the wavef.eld along the grid plane i=/, we must know the
field for time n along the plane i=I+2 which lies outside the model. A similar situation
arises along grid lines such as i=1I and j=J which are adjacent to the boundaries of the
model and it gets worse clong the grid lines which are lcated at the intersection of such
planes. This problem can be easily avoided by using asymmetric operators for evaluating
the wavefield at such grid locations.

Another problem which is much more troublesome is the unwanted reflections from
the subsurface boundaries of the model. These boundaries correspond to five different
planes, i=0, i=I+1, k=0, k=K+1 and j=J+1. Thus, it is a much bigger problem than the
corresponding problem which arises in 2-D models. Several approximate algorithms are
available for getting rid of such reflections (Clayton and Engquist, 1977; Raynolds, 1978;
Korn and Stoekel, 1982) all of which lead to more or less similar results. Raynold's
algorithm seems to be the simplest to be converted to 3-D space. Generally, the method

includes tie elimination of the wavefield for the new time step (n+1) by using the
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fr. -ving relations along the boundaries.

@f_%ﬁ’_’_ =0

g" ;" }j=0,...,J+1;k=0,..,K+1 (5.18)
P 1% o i

ox € ot

8_11_%_6_11_0 j=0

aay ;’ i=0, ... 1+1; k=0,..,K+1 (5.19)
P 1P _o jare1

dy € or

9P 19P 4 pek+1 } i=0,... I+1; j=0,..,J+1 (5.20)
oz ¢ ot

Derivation of difference relations for equations (5.18) to (5.20) involves first-order
differencing.

As an example for equation (5.18) we get:

ca
Ax

n+l

n n
Poje = Fojrt (P I.j.k'Pg.j.k)

cA j=0,...,J+1; k=0,..,K+1 (5.21)
1 r
P;z:l.j.k = P1n+1.j,k - ;(P;+1J.k - P;:j,k)

Similar relations can be derived for equations {5.19) and (5.20). Raynold's method has
shown effectiveness in reducing reflections from the boundaries in the test examples used
during this research. But there is still some residual energy which escapes into the model.
The approach of Israeli and Orszag (1981) can be applied that uses damping of the
reflected signals but was not implemented in this algorithm.

Reflections from the surface were dealt with, with stress free boundary conditions that

can be easily defined and applied.
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5.5 . Solution and computer implementation

5.5.1 Method of solution

The solution procedure of equation (5.13) and the generation of a 3-D synthetic
seismograms that I have adopted in the algorithm is as follows: Consider 4 simple 3-D
model consisting of different material velocities. It extends along the x-axis from i={ to
i=I+1, along the y-axis from j=0 to j=J+1, and the z-axis from k=0 to k=K+1. The
subsurface boundaries of this model are defined by the planes i=0 and k=K+1 and keep
the size of the model finite. The value of the wavefield or its derivative is usually specified

along the boundaries of the model. Then with the help of the initial conditions:

0
PY.. =0

hk (5.22)

(P l)[ Jk= 0

the field is evaluated successively for n=1,2,... at a set of grid points {( iJ.k)}.

The way that I initiated the evaluation of the wavefield was by setting:
1 _ fi @ (sisks)

Fiju= { 0 elsewhere (5.23)

where f| is the first sample of a point source function (appropriate for 3-D modeling and
described below) that is input at the source location (is,js,ks). Looking at equation (5.13)
we see that for n=1 all the values of the field in the left hand side are known; thus the
value of the wavefield for time n=2 can be calculated for the various grid points. This

process will be repeated until the maximum desired time step N has been completed. The
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shot record information is stored in an array of data collected at {P," Ji0 (n=1,.....N )} for a

fixed value of i or j.
5.5.2. The source function

As shown in equation (5.1), the function that generates the initial values of the modeled
wavefield f(t) was called the source. Designing appropriate source functions for finite-
difference modeling plays a very important role to the solution of the wave equation. There
are generally two type of sources applied to these problems, point sources and line sources.
Line sources are mainly used in 2-D modeling where the accuracy of a point source
deteriorates. In 3-D modeling it is actually better to use a point source because the
disturbance generated by it is naturally confined to propagate in 3-D space.

Source functions can be estimated by a number of mathematical representations (Aki
and Richards, 1980). The majority of them have a time variation of a Gaussian function or
its derivative. For this work I have chosen to use the second derivative of a Gaussian
function whose length depends upon the dominant frequency used and the sampling rate

required. That is:
G() = Ceo N (5.24)

with o=nf, where f is the dominant frequency of the source, t, is a time delay, and C can

be determined after the application of the second derivative which gives:
G'@) = 2071 -2 (¢ -nPleolen) (5.25)

Figure 5.1 shows the type of Gaussian function used for source in the 3-D algorithm for

fo=30Hz and At=1ms and source length of 103 ms.
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5.5.3 Farallel implementation and performance

Methods described in Chapter 2 for the solution of finite difference problems in parallel
using the SPS computer hardware will be applied to the solution of the 3-D acoustic wave
equation. Finite differences can be computationally expensive when the spatial resolution
is high and/or the velocities of the model are quite large. The efficiency of the method
depends greatly on the technique of calculating the wavefield amplitudes at each time step.

The advent of parallel computing opens new avenues in the applications of finite
differences. In this section a description of algorithm formulation in terms of coarse
parallelism over space is shown for the second order difference scheme for illustration
purposes. The fourth order scheme can been analysed similarly. I did not attempt to apply
partial time parallelism in this algorithm because the efficiency achieved by the coarse
method was satisfactory.

In general the wavefield at an advanced time step is given by terms of second order

differences looking in a one dimensional perspective:

—Pl-“'l -Pl'*t —Pl't-l
) 2-2g -g 0 O ) )
P = -8 2'2g -8 0 P _ P (5 26)
0 -g 22g - '
pP3 8 g -8 pP3 p3
0o 0 -g 22
| P4 ] P4 P4

Examining the second order matrix formulation of the acoustic wave equation solution we
can see an important parallel aspect for each time step. All spatial grid points at time t;
are calculated independently and require only information from time t; and t; ; using a set
of simultaneous equations.

Based on the observations above one can introduce parallel task allocation into each
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grid point location. The ultimate goal would be to have as many processors as grid points,
but the amount of calculation at each grid point is not floating point intensive enough to
benefit from the capabilities of a MIMD computer. If one is using processors capable of
doing a large number of floating point operations then one must assign tasks with an
equivalent number of operations (atall x and y positions) at each time step.

This type of coarse parallelism was used to program the equation (5.13) in parallel.
Parallelism runs over one of the spatial coordinates ( z in our case ), allowing the other
spatial domains (x and y) to be calculated serially inside each task for higher efficiency,
thus obtaining the time advanced 3-D grid points all simultaneously. This application is of
great benefit to the solution of problems of this type. The faster a task is completed the
smaller the time becomes between temporal steps.

Because of the need for information from more than one shot record for a typical
survey, an outer level of parallelism will benefit the computations on an MIMD computer.
I have included an extra parallel task over shots which has increased the floating point
operations per node thus achieving higher performance. The table below describes the
behaviour of the 3-D acoustic forward modeling algorithm on the Myrias SPS-2 and SPS-

3 architectures.

TABLE 5.1 Performance monitoring 3-D acoustic modeling

SYSTEM Shots Size Time(sec.)
SPARC330 1 80x80x80 7920
SPS-2 64 1 80x80x80 990
SPS-2 64 15 80x80x80 8237
SPS-3 32 1 80x80x80 320
SPS-3 32 15 80x80x80 2630

NOTE: All examples run over a total of 400 time steps.
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5.6 Applications

The most obvious application of finite-difference modeling is to compute a shot record
for a given geologic structure. However, for interpretation purposes, the more useful
information is the stacked seismic section for such a structure, which can be obtained by
computing a large number of shot records, each for a different shot location, followed by
conventional data processing. For 2-D models, the seismic section can be computed at
affordable costs. In the investigation of 3-D problems one needs to examine a number of
seismic sections corresponding to different orientations of the 3-D structure. The
following example shows the results of a 3-D model obtained by using the SPS hardware
and the 3-D prestack migration algorithm described in Chapter 4.

Figure 5.2 shows the first interface below the surface of the model used for modeling.
This is as step fault in 3-D and its two reflector levels are located at 450m and 500m below
the surface. The receiver points were located at the surface grid k=0 and the source location
was at x=41, y=41 and z=2. The following parameters were used for modeling. Grid
spacing Ax=Ay=Az=10m, grid dimensions 80x80x80, medium velocity above the fault
2400m/s and below at 3400m/s. Dominant frequency of the source signal 30Hz, time
sampling of 1.5 ms with a total of 400 time steps. The shot data were stored at every 4
receiver positions thus generating a total of 20x20 (400) receivers per shot.

Figure 5.3 shows the complete shot record as calculated by the algorithm. The
dominant features of this record are the direct wave arrival from the source to 1 -eivers and
two dominant reflections from the model. A more detailed view (Figure 5.4) of a record at
the y=41 (a line running across the middle of the model) shows two reflections originating
at t=450ms and t=600ms. There is also a diffracting wave present due to the edge
reflections from the fault. Another cross sectional view in Figure 5.5 for x=20,41 and 60

shows the reflecting signal from one of the model boundaries but also side reflection
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interference from the side of the fault. Clearly, a complete three-dimensional diffraction
pattern from the fault edge is present in the data (Figure 5.6) indicating the higher accuracy
of the method as compared with 2-D modeling algorithms. Figure 5.7 shows three time
slices of the wavefield. Each of these slices represents a snapshot of the wavefield
reaching the horizontal plane z=41 (X-Y) and two vertical planes at x=41 (Y-Z) and y=41
(X-Z) at a time of 200ms. These time slices show the character of the wave as it
propagates through the model. The reflection and transmission at the boundaries of the

fault model are evident indicating that the algorithm simulates the seismic wave

phenomena in 3-D appropriately.
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Figure 5.3 A synthetic 3-D shot record generated over the step fault model.
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Figure 5.6 A horizontal view at t=500ms from the shot in Figure 5.4. The reflection

character of the fault has been modeled properly.
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5.7 Some concluding remarks

Three-dimensional seismic modeling has been an impossible dream for geophysicists.
The introduction of supercomputers and, recently, parallel ones has brought this dream
closer to realization. Tiis work was an attempt to investigate wave equation analysis of the
seismic response ¢ an i rbitrary-shaped 3-D structure via . rallel computing. The results
indicate that much valuaole information is lost if we treat the subsurface as a layered
medium or a 2 D structure. The information from a 3-D seismogram is of utmost value to
the seismic interpreter enabling him to examine the spatial configuration of the wavefield as

it reaches the surface at different times.
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CHAPTER 6
APPLICATION OF EDGE DETECTION TO SEISMIC IMAGES

6.1 Introduction

Edge-detection techniques have been widely applied in the field of image processing.
Their application is &lmost unknown in seismic exploration, with no conventional
applications to 2-D seistnic data. However, moving from 2-D to 3-D seismic studies,
planar images of time or depth .lices of the wavefield may be characterized with edge
detection methods to clarify the information of the subsurface sections. Edge detection
could be the tool that reveals those characteristics that are not visible by other means.

In the words of Torrc and Poggio (1986) "Edge detection is the process that attempts 10
characterize the intensity changes in the image in terms of the physical processes that have
originated them". In their paper they describe the basic methods used for edge detection,
which are primarily derivatives of different types, and possibly different scales, used to
define those intensity changes by locating zero-crossi, gs or maxima of a gradient.
However, because of the non regularity of differentiation a regularizing filter operation is
necessary. According to Torre and Poggio (1986) edge detection consists uf two steps,
namely a filtering step followed by a differentiation step. Canny (1986) describes a
computational approach to edge detection constrained by the appropriate detector design
based on the principle that edges are marked as maxima in gradient magnitude of a
Gaussian function.

Huertas and Medioni (1986) used a method that detected edges on grey level images by
finding zero-crossings in the convolution of the image with Laplacian-of-Gaussian (LoG)
masks. This work shows the remarkable potential of the LoG method to locate edges with

a precision depending on the signal-to-noise ratio. The implementation looks attractive
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enough to be used for edge detection in seismic images.

Ancther strategy for edge detection is shown by Lacroix (1989) where she used an
intermediate step in the method that generalizes the nonmaxima detected by the algorithm.
Clark (1989) shows the limitations of the zero-crossing algorithms and proposed a method
that would "authenticate" the correct ones. Nevertheless, there is a wide range of literature
that involves pattern analysis of images in terms of edge detection which goes beyond the
scope of this work.

I decided to use the Huertas and Medioni approach and develop an algorithm based on
the application to the image by the Laplacian of Gaussian. The method was then applied o
seismic images and produces some very interesting results. Those results are shown 1n
Chapter 7. Here I will only give a description of the method and d.scuss the aiyorithm

development.
6.2. Zero-Crossing of Laplacian-Gaussian Filtered Images.

A second-derivative edge-detection operator has been developed = uses a 3x3 pixel
operator. That is, we first locate zero-crossings with pixel precision marking the edge of
the pixel that has the smallest absolute value. Then, for the eight neighbors around this
edge point, using a small window for each point, we fita parametric polynomial function.
We can then create a grid several times finer in the row and column directions, in which
pixel values are the values of the analytic function sampled at this point. On this grid zero-
crossings can be extracted with pixel precision.

We start by defining the Laplacian of the Gaussian (LoG) convolution mask as

suggested by Marr (1980):

2 2 2 2
V2G(x,y) = 14{2-'((" +2y ))).ex (x—f-,f—) (6.1)
c 20

2rno |\
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where g is the space constant of the Gaussian, we then define as w = 2¥2G the width of the
central acitatory region of the operator. Usually the size of this operator is 3w, or 8.50;
99.7 percent of the area under a 1-D Gaussian lies between plus and minus 3 standard
deviations from the mean, giving an area very close to zero of the vZG. Figure 6.1 shows
an illustration of these parameters.

Intensity changes in the image are detected in an image I(x,y) by finding the zero-
crossings in VzG(x,y) * I(x,y), where * denotes convolution. Whenever an intensity
change occurs, there is a peak in the first directional derivative of the intensity and a zero-
crossing in the second directional derivative. Figure 6.2 shows a schematic representation
of the intensity profile of an ideal step edge taken in the direction d3x for which the slope
measured at the corresponding zero-crossing is maximum. Detection of intensity changes
is then reduced to finding the zero-crossings in the second derivative by a polynomial
function fitting.

Zero-crossings give a good localization of edges, assuming that in the neighborhood of
a zero-crossing the filtered image can be well modeled by a polynomial. Subpixel values
are then obtained by sampling this continuous function on a regular grid whose size
depends on the desired resolution. Here, the interpolating function is a polynornial in the
image row and column coordinates.

We assume that in a 3x3 neighborhood, the polynomial takes the form (Huertas, 1986):
f(r,c) = ko + kyr +kaoc + kar? + kgrc + ksc? + kgric + kqc2r + kgric? (6.2)

wlhere t~ computation of the coefficients is done using a Chebyshev discrete orthogonal

polyromial set Pp.
Let I, be the image co wvolved with the LoG filter. For each zero-crossing at location

(r,c) in I 4. the fitting problem is to detcimine the coefficients kg,.....kg such that
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Figure 6.1 Parameters related to the LoG (Laplacian of Gaussian) operator.
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8
Iog(rie) = Y, knPa(r,0) (6.3)

n=0

If W represents a small window containing a zero-crossing, then with r.c.i,j, in W,

these coefficients are given by:

S Y Pa(r-oeocr.c)
kn=—— - (6.4)

I (W)
j

3

The masks for the computation of the coefficients vary. Here, I used a 3x3 window with

the masks given by Huertas and Medioni (1986 pg. 656).

6.3 Algorithra implementation

To compute the zero crossings with subpixel accuracy in a seismic image I carried out

the following steps during algorithm design.

1. Convolve the image I of size R x C with LoG filter of size M2, and obtain a filtered
image of I; ,; of size Rx C.

2. Compute a zero-crossings image Iines of size R x C by locating the zero-crossings in
I; G, using the points where the response goes through a zero in a 3x3 window.

3.For each zero-crossing detected and marked as an edge in Izxings and for its eight
neighbors, compute the real valued function f1 oG defined by () over a real plane.

4. Compute a new zero-crossing image Fxings of size nR x nC by locating the zero-
crossings in a digital grid determined by the desired subpixel resolution n, over this

plane. This part was left optional in the algorithm.
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These are the basic steps of the algorithm developed and tested on a 3-D seismic data set

described in Chapter 7.
6.4 Conclusion

I have developed an algorithm based on principles of edge detection used in studies of
pattern analysis and image processing. This was an initial investigation of the behaviour of
such methods in relation to seismic image analysis. To my knowledge there has been no
previous application of edge detection methods in seismology. The method seems to
improve seismic image vision by delineating characteristics based on sudden amplitude

variation in the sections. Direct applications of the method are shown in the next Chapter.
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CHAPTER 7

THE 3-D DEPTH MIGRATION

7.1 DIRECT 3-D POSTSTACK DEPTH MIGRATION

7.1.1 Introduction - The seismologist's dream

Seismologists dream of the day when it will be possible to obtain automatically the
Earth's physical properties directly from the recordings of seismic waves via exact 3-D
processing. The importance of 3-D imaging has been discussed in previous sections but
practical considerations regarding approximations to the solution of the 3-D problem
introduce unwanted errors in the migrated results.

At the 1985 S.E.G. (Society of Exploration Geophysics) Convention in Washington,
D.C., A.J. Berkhout from Delft University, indicated that " zven with the new generation
of fast computers 3-D pre-stack migration is still unthinkable”. It was generally accepted at
the time that one must make compromises in order to achieve this goal. Since 1985 we
have witnessed larger steps towards performance improvement in computing. New
computers have paved the way for Freaking up the computation into parallel components.

In general, 3-D pre-stack migration has been used under some dynamic assumptions
as I have explained in Chapter 4. Those alternative methods of true 3-D are feasible within
the limits of the present-day field recording parameters but as survey resolution increases
more accurate processing schemes are needed. However, the exact solution of the 3-D
migration problem is not mentioned by anyone in the literature to date and will require
several Gigaflops of computer power to be feasible for exploration purposes.

Utilizing existing parallel computer technology and constraining the problem size to fit
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the physical memory of the computing system, 1 decided to solve the exact 3-D migration
problem at an initial phase thus examining its limitations and potentials.

This Chapter is devoted to the solution of the 45-degree 3-D migration equation using
the direct solution for an enneadiagonal (9-diagonal) system of linear equations. The
algorithm has been tested for stability and accuracy and applied to synthetic and real
seismic data examples. The results have shown that if the appropriate computer power is
available the method may be used for 3-D seismic imaging in areas of complex geological

environments and when high-resolution results are needed.

7.1.2 The method

We start with the same scalar wave equation in 3-D as shown in Chapter 4:

2 2 2 2

d 0 0 d
_—P(x9yyzat)+ ——P(x,)’,zyf)+—P(x,)’,2,t)=——'I—_—P(x’}”z,t) (71)
ax2 ay2 azz Vz(x,)’sz) atz

The Fourier transformed field given by:

P(k,,ky,z, ) =I I I P(x,y,z,t)e(iktx+ ikyy - i)y dy dt (7.2)
leads to:
3%p 2 2
7P +{[__w__ 2+ [_‘“_ —kyz}}P=O (.3
z° v(x,y,2) vi(x,y,2)

It can easily be shown that the solution to this equation is also the solution to the one-way

scalar wave equation:
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vi(x,y,z k2 v2(x.y.2) k2 ]
ok _ 2 /\/1—————-—( D K, LD By jP (7.4)
oz v 2 2
w )

The vertical wavenumber is then given by:

va(x,y,2) k2 Vi) k2
k@) =t2 /\/1———1——i+ o LTy (7.5)
v 2 2
w w

As a next step we need to account for lateral velocity variations and examine the

solution space in terms of this equation where the horizontal wavenumbers can be
substituted by (-iky2) = 32/dx2 and (-iky2) = 32/9y?.

In order to bring equation (7.5) into the spatial domain an cfficient and accurate
evaluation of the square root of a differential operator is needec  have approximated the

square root using a suggested expression by Francis Muir (Claytor: 1980; Claerbout 1985)

that is:
2\172 2\1/2
v(x,y,z ¥k v(x,y,z¥k
kz=‘%0“ 1__(_41 + 1__(_1_)_21_ -1 (7.6)
W 0]

“Which leads to the 45 degree approximation of the 3-D wave equation. Substituting the

continued fraction expansion of equation (7.6) into equation (7.4) we get:

k2 k2
|2 2 - Y P17
oz v(2) 2 2
2w v(x,y,2)k, 20 v(x,y,z)ky

vy, 2 v(x,y,z) 2w

invoking the retarded coordinate system principle (Chapter 3) the wavefield P becomes:



160

. ' dz
. 1l w —
a P(x,)’,z, w) - (_2_ = _I_E)_) gx’y,z, a)) e Io V(Z) (7-8)
0z 3z V@
putting equation (7.8) into equation (7.7) we end up with a differential equation of the
form,
k? ky
aQ(x’y’Z’ w) = l - Q(xsy9zs w) + i : ) Q(x’y’z’ w)
0z 200 V(x,2) kg 20 _v(x":) ky
v(x,2) 2w v(x,z) 2w
) 1 1
- w(v(x’y’z,) '@ ) Ox,y,2, @)
7.9)

The first two terms on the right hand side represent the diffraction term. The third term
or the right is called the thin lens term. In the derivation above we assume that v(x,,z) is
a locally constant medium velocity and v(z) depends on depth below the source, only.

Equation (7.9) may be rearranged by substituting for:

_kxz = 32/9)‘2,_1(),2 = ¢92/¢9y2, and y(x,y,z)=aV(x.y,2),

The diffraction portion of the solution is given by the following approximation:

. 3 3
- 20 px,y,z2 00k, 9.2, @) _ ! [ Ci + o
)

- o@x,y,2, @)
oz 2 x,y,2) |ox29z dy?oz

2

* 3 ¢
0{ . +—;,—i\ Q(X,Z,w)+ 5 ! 2 5 Q(xsyvz’w):‘o
oxl oy 24°(x,y,2) 0x “dy

(7.10)



161

This equation will be evaluated step by step , starting at the 2-D surface and moving to any
depth, using a finite difference approximation. The fifth order derivative term has been
dropped to avoid the extra computational effort needed to solve (7. 10). This approximation

will be described in detail in the next section.
7.1.3 Implicit finite - difference solution of the diffraction term

Because of poor stability, explicit difference methods are rarely used to solve initial
boundary value problems in two or more space dimensions. Implicit methods with their
superior stability properties are almost always used. Unfortunately, an implicit method in
two space dimensions requires a set of equations to be solved at the advanced depth level
simultaneously. First, I will show the development of an implicit schemne that solves
(7.10) and second, in Section 7.1.4 describe the direct solution of the derived system of

equations.

Rewrite equation (7.10) as

i

-2 ulx,y,z) 5,0(x,y,z, @)- — [5,“6, + 0,0, ]Q(x,y,z,w)

2 i fx,y,2)
+[5xx + 5yy] Q(x,Z, w) + —__1~_55xx6ny(xay’zv 0)= 0
20(x,y,2)
(7.11)
Substitute (see Appendix C) :
1 8 1 &
Oxx = —— (————) and Gy = —— -) (7.12)

Ax? 14 48 4y% 14 y8
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where Ax, Ay is the grid spacing and ¥ = 1/12 (Mitchell and Griffiths, 1980), where the 52

and 8¢ operators that involve the cross terms of x,v are defined respectively as:

1 1-21
{ 1-41 J 242
| 1-21
An implicit Crank-Nicolson (Mitcheli and Griffiths, 1980) finite difference algorithm
scheme is employed to solve the difference equation. This algorithm is unconditionally
stable (Mitchell and Griffiths, 1980; Appendix E) and involves more than one point at th..
advanced depth level according to :

n+1

n 1
Amy =5 (Ang * Tt (7.13)

The finit= difference approximation of the differential equation {7.11) emp} -~ .ng equations

(7.12) and (7.13) reads:

. 1
2Ui , m+l m i 52 qr’:;. ) q:,:l
- nl ° qn,l - 2 ( 5 ) ( )
Az 24x°0 1 +9y8 Az
. 2 1 ;i
i & am -y 1 8 el m)
- 9 ( 2 ) ( )+—2- 2 (1'1.1 + qn'”
24y°p 1+ 96 Az Ax2(1 +16°)
2 a 4
1 ) 1 1 o -l ‘
M S\t ¥ dr)+ 2 2\ lami’ + q',:,)=0
Ay*(1 +16°) aplax2ay? (1 + yo ||

(7.14)

Assuming that Ax=Ay and multiply through by Ax2(1 + '}'52 )2 to get:
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2 lez m m ] 2 qn -qn
HIAET (1 wi8)q™! - oy - ——87 (1 +57) —=0)

Az A 2 U Az (715)
+ &1 +*82)(q‘1"‘1+l + q’,:,)+ L s (q"l+1 + q::,)=0

nl

2402
Define thecoe’ »° ~'s as,

, S A2
a= -l po ZHEAC g ca ]

5 (7.16)
L 2 Az 4" Ax?

and separate the termns for m+1 and m in (7.15) and merge the common d terms to get:

-Bq:‘jl+( -2By-A +1) 624::'.7’4» ( ~VB A+ 4 C)54q,'::,“" =
m 2 m 2 X 4 m (717)
-Bq, +( -2By-A -1) o q,__",+( -YB  aA-¥- C)6 Gy

apply the operators 62 and 3% and write in expanded form as left hand siue (LHS) and right

hand side (RHS)

LHS =
1 1 m+1 1 n4-1 1 2
-Bq:‘j +(-2By-A +1)(qﬁ",+ q::” -4q’:j + q::;_1+q"mj+1)+( -YB-A+y+ C)
( m+1 m+1 m+l s m+l m+1 m+1 m+1 m+

m-t
An10-1 7V Dncrie1 24, 117241 +4q,, 24, 117295 111 D net 11 DR 1 001
(7.18)

and after merging of common terms:

LIS =gt (-B+ 8B +4A -4 -4YB - ap + Ak
[+ gl + dir i+ are Jl2B-a+1 +27B+ 204 - 27 2¢)

' ’l,l+l

m+1 m+1 m+l m+1 ( 2 . )
+ (qn-l.l-l + Gy tsl Thner ey dnet )Y B =B v 0+ c

Similarly the RHS is given by:
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RHS = ¢ | B+ 8B +4A +4 -47'B - 4 - by 4c)
.1 +27B +2A + 27+ 2C)

c)

+ (‘1::"-1.1 + Gt q:zn.l-x*qnm,m)('z)B -A
(7.19;

2
m
+ (‘lr.l.l-l + Gy a1 +q:xn+l,l-1+qml.l+l)('y B-A-7

Replacing the coefficients of q as follows:

2yB-A+ 1 ¢ 2)/23 +27A -2y 2(;',
)

'

(7.20)

and for the r:ght hand side

E=(-2yB-A-1 +27B +27A + 27+ 2¢)

D=

(B 878 +4A + 4 478 - 47A - 47-4C)
F=(-78-ya-7-C)

Using the =* ve defined coefficients we can rewrite equation (7.15) as a linear system

of equations of the form:

= m+l —[ m+l m+1 m+1 m+l
Bq,, +A (qn-l.l +Gne1 gt dniatdaie
m+1 m+1 m+l \ _ 1y
*qp1 01 1 041) T (7.21)

= m+l

+ C(qn-l.l-l * dn041
= ml =[ m} m m m
Dgq,,+ E(qn-l.i + quat 190140

- m m m m
+ F(qn-l.l-l +4n00n +qn+1.1-l+qn+l,l+1)

In the above equation the m+1 terms are unknown and the m terms present known

values. The system of equation to be solved is of the enneadiagonal form and can be
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solved directly using complex sparse matr." solver technigues. These sets of equations
can be solved using the principle of under-relaxation discussed in Chapter 4 to obtain a tast
solution: bu* r nas been left for future research wnd ;~-; beyond the scope of -his res=arch.
To scive an enneadiagonal systera of equations directly is normally prohibitively
expensive, but with the aid of a parallel computer and using fairly small data sets, solutions
can be obtained in a reasonable time frame. The computational time needed to solve this
system will be discussed later in this Chapter for each application involved. Meanwhile, 1
shall briefly discuss the direct method used to solve this system using a math hbrary

routine (CSPSLV).

7.1.4 Complex sparse-matrix solution and parallei "mplementation

There are numerous methods in the literature that can be used for the solution of
complex sparse matrices. These could include complex matrix inversion which becomes
unrealizable for large system of equations, conjugate gradient or conjugate direction
methods that seem attractive (I will be considering their application as an extension of the
present work) and Gaussian elimination based solvers that can be used for moderate size
matrices. The goal of this work was not to try to determine the most efficient of the
methods but rather obtain a solution of the enneadiagonal sparse matrix with a library
routine and leave the investigation for a faster solver open to future research.

I have decided to use a public library routine called CSPSLV to solve equation (7.21)
which uses sparse Gaussian elimination with column inierchanges to solve a complex
linear system Ax=B. The elimination phase performs row operatons on A and B to obtain
a unit upper trianguiar matrix U and a vector Y. The solution phase solves Ux=Y

The method requires minimai storage because the sparse matrix A js stored using three

arrays, two pointers and a data array. The data array contains the nonzeros of A stored
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row-by-row, not necessarily in order of increasing column number. The pointer arrays
contain information about the column and row number of the nonzero elements.

The algorithm is solved serially and no parallel version of it is available or has been
developed by the author. Discussions on sparse matrix solvers for real positive definite
matrices for the SPS-2 have been given by Joe (1990) and Stone et al. (1990). In any case,
the solution of the system of equations for different frequencies allows us to solve serially
many of these (limited by the number of processors) at the same time, thus gaining speed
in the long run. Because the algorithm spends most of its time in the solver I believe that
an improved parallel or serial solver for the direct solution will be beneficial to the feasible
solution of the exact 3-D migration problem.

Performance evaluation of the method as compared with the solution via under-
relaxation has shown a delay time of ¢ srder of magnitude. In other words, using the
same hardware platform it takes 1) imes longer to solve the exact 3-D problem.

The methoxi has been solved in parallel over frequencies with the option of parallelism
over the horizontul directions. Figure 7.1 shows a 1ayout of the exact 3-D pseudo-c- S
The code ran very efficiently at 95% user time in both SPS-2 and SPS-3 hardware. Some

estimate of run-times are shown in the following table.

TABLE 7.1 Performance monitoring exact 3-D w-x-y migration

# PE's Problem Size SPS-2 SPS-3
32 30x30 6768 sec. 960 sec.
s2 40x40 17,462 sec. 2800 sec.
32 45x45 26,525 sec. 3780 sec.

NOTE: The depth extrapolation for the above examples was 100 steps with an 8 m.

sampling interval.
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®-X-Y TRUE 3-D MIGRATION

(MAIN PART OF PARALLELISM)
(PARALLEL) DG over Frequency steps
DO over Depth steps

(PARALLEL) DO over Y
DO over X

A. Calculate the time retarded field

; dz
iol|] G2
Q(x,y,z,0) = P(x,y,z,0) e J;) v(z)

B. Solve :*:= diffraction term (9-di§gonal)
3 3 2 ?
-2 ux,y,z) 0Q(x,y,2,0) _ i [-—a -t - J JQ(x,y,z,m) {Q— + J } Q(x,z,0)

oz 2 W(x,y,z) |ox*oz Jy2oz ox2 dy?

a4
+ 3 1 2——2Q(x,y,z,co)=0
2“’ (x,y,z) ox By

C. thin lens term

M— H 1 _ 1
az = m(v(x,y,z) V(Z) )Q(X,y,z,m)
END DO over X
END DO over Y

END DO LOOP over depth

Imaging condition: M(x,y,z)= Y, Q(x.y,z,0)
()]

END PARDO over frequsncies

Figure 7.1 Exact 3-D 45 degree pseudocode.
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7.1.5 The 3-D 45 degree response.

In order to evaluate the 3-D 45-degree solution of the wave equation I needed to
analyze its response in steps similar to that followed in the previous chapters. The ideal 3-
D response as we have seen in Chapter 4 is a hollow hemisphere. The 15 degree solution
appeared to have some circular symmetry but the traveltimes were not as accurate. In this
sectv:n, | used the same model as in Chapter 4, a point diffra:tor at 300 ms.

The impulse response of the exact 45 degree 3-D solution will be compared with the
one obtained using the one-pass method and splitting of the migration operator. This one-
pass code has been developed by the author but not mentioned in any other parts of the

'sis. Figure 7.2 shows a cross-sectional view of (a) the desired response, (b) the exact 3-
v response and (¢’ the one-|ass 3-N response for y=20. Evidently, this approximation
produces more accurate ravel times than the 15 degree case. However, one should
examine the planar view of the response to check for error in the azimuthal direction where
the onepass method breaks down.

Figure 7.3 displays a 2-D slice of both the (a) exact and (b) the onepass methods. As
expecicd, the one pass case shows anisotropic error in the diagenal directions. This is due
to operator splitting and will probably introduce errors during migration. The exact 3-D
case shows perfect circular behaviour in all directions with anisotropic effects.

The direct 3-D 45 degree solution of the wave equation has shown a very accurate
response and justifiably will generate better migration results as compared with methods
which use operator splitting or separation to reach an approximate solution. Although it is
computer-intensive and time-consuming, the solution developed here generates more

accurate migrated results in relation to the operator-splitting methods.
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Figure 7.3 Depth slices at 200m for the response of (a) 45° 3D direct, (b) 45° 3D onepass.
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7.1.6 3-D zero-offset ™ iodeling and Migration

The concept of exploding reflectors (ERM) can be used for both 3-D zero-offset
modeling and migration. The approach described in Chapter 4, Section 4.1.9.2, is used
here to generate 3-D synthetic zero-offset responses in order to test the exact 45 degree
solution versus the under-relaxed one. I have modified the migration algorithm developed
in Chapter 4 to use the ERM principle in order to obtain true 3-D zero offset seismic
sections over any physical model configuration. In principle the idea is based upon the
upward (downward for migration) continuation of the wavefield, generatea at the
"exploding"” reflectors, to the surface.

The model shown in Figure 4.8 was used to generate a 30 x 30 x 300 seismic volume
that includes reflections from two dipping events for lines 1 to 9 and 21 to 30 and a
syncline along with the same dipping reflectors between lines 10 and 20. Figure 7.4 shows
three different cross-sections of thix _a»e for lines - - J,11,14,15 and 16. As can be seen
the response does not resembie the pi-+ “~*ca: characteristics of the mudel. 3-D migraticn is
needed to image these events properly.

Figure 7.5 displays the 3-D migrated result for lines 8,9,10,14,15 and 16 respectively.
It is clear that the method images the physical model correctly not only vertically but
laterally as well. The extent of the syncline from line 10 to 20 has been preserved
indicating the spatial accuracy of the method, conyraty to the ~nepass case (Figure 4.10)
where the syncline image extends beyond lines 10 and 20.

A 2-D planar view of the edges of the syncline is shown in Figure 7.6. The direct 3-D
migration (a) has imaged the edges correctly, the onepass 3-D migration (c) indicates quite
a spatial discrepancy in the image, a better approximation of it is shown in (b) obtained via

the onepass under-relaxz1 case.
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Figure 7.6 2D planar view of the edges of the syncline. Direct 3-D migration (a)

onepass 3-D migration under-relaxed a=0.4, 8=0.65 (b) a=0.4, 8=0.45 (c).



7.2 3-D MiGRATION OF A SEISMIC DATA SET OVER A STEAM
INJECTION REGION

7.2.1 Introduction

During 1985 and 1986, 3-D reflection data were acquired by Esso Resources Canada
Limited over a heavy oil recovery zone near Cold Lake Alberta before and after steam
injection and bitumen production. The purpose of the experiment was to investigate the
feasibility of mappiuy steam affected reservoir zones using 3-D seismic methods. Esso
provided this data to University of Alberta for analysis and interpretation

The experiment ¢on- sted of a 68 by 72 gridded stack lines (12.5m spacing) over a
region of several ir}zct cn/production wells. Initial recording was carried out before any
steam injection activity and the second one during first cycle production (of cyclic steam
stimulation) for most of the 22 wells. Four wells on the north row were undergoing
second cycle steam injcz_g:tion. The data had been prestack processed by Esso and given to
University of Alberta in poststack form. Previous anczlysis and interpretation by the
company did not lead to clear evidence for sonic anomalies related to steam injection in the
data. Here, I exaraine the data using methods developed during this research work.

The 3-D post stack migration with the under-relaxation and the exact 3-D migration
methods were used to analyze the data in an attempt to delineate the presence of sonic
anomalies related to steam: injection in the zone of interest as well as understand the
limitations of the approximate methods with respect to direct ones. These new migration
methods have shown better resolution than other methods and have given an indication of
some variation in the depth slices before and after steam injection. In order to improve the
imaged sections and obtain a better definition of the anomalies, an image enhancement

method along with an edge detection approach has been applied.
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7.2.2 3-D processing and analysis

The location of the seismic grid and the wells are shown in Figure 7.7 on a plan view.
There are a total of 22 steam injection/production wells covering an area of about 0.15 km2
with the total survey spanning about 0.8 km2. The final stacked section consisted of about
4896 traces in all. It was generated via 3-D stacking of 370 shots layout in a 10 x 37 grid
with x direction spacing of 100m. and y direction spacing of 25m. The wavefield was
recorded at variable receiver numbers laid out in a grid ranging from 92 to 332 with x
direction spacing of 25m and y direction spacing of 100m.

The data were recorded for 2 s with a sampling interval of 1 ms. Figure 7.8 illustrates
three of these stack sections for ixilines (y direction) 44, 45 and 46. Plots on the left side of
the Figure are from before steam and on the right are after steam. The region of interest is
around 50:ms corresponding to steam injection horizons. I chose to display these lines
because they are clcse to the north row of 4 wells which were undergoing second cycle
steam injection during the after steam seismic survey. Hence, there was a better chance of
locating sonic anomalies for these lines.

Looking at the plots in Figure 7.8 one can see no major differences before and after the
steam injection in the region of interset (~500ms). In particular, it is clear the the reflector
above the injection zone (400ms) has not changed after steaming, whereas the reflector
below the steam zone (600ms, Devonian formation) shows some discrepancies when
compared before and after steam injection.

To study the above changes, I decided to migrate the data using both algorithms
developed in this thesis. A cross-section of the velocity model used for this migration is
shown in Flgure 7.9. Figure 7.10 shows the result of the exact 3-D migration method for
the inlines 44,45 and 46 displayed before steam (a) and after steam (b). The Ccross-sections

indicate some evidence of variation around the mean injection depth of wells (485m to
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COLD LAKE 3D EXPERIMENT

Inlines

Y1

X1 et

Crosslines

3D SURVEY AREA ‘®. WELL LOCATION

Figure 7.7 Plan view of the 3-D seismic survey in Cold Lake.
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Figure 7.8 Cross section of Common Midpoint stacks for lines 44,45 and 46 before (a)

and after (b) steam injection.
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Figure 7.9 Cross section of the velocity-depth model used for 3-D migration.
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495m). Additional evidence comes from the variations in the Devonian reflector at 600m.

In order to get a betier view of the migrated image, as well as to investigate the
presence of steam induced sonic anomalies, a 2-D depth slice extending laterally over the
region of interest of the migrated data was used. To avoid the influence of unwanted
changes in the phase characteristics of the seismic trace four depth slices were summed at
depths 480m to 492m, averaged and globally balanced for the before and after steam
sections. Thus, a true amplitude representation of the two sections under comparison was
obtained. The color displayed graphs represent wave amplitude variations in the horizontal
direction.

The x-y depth slices of both sets of data (before-after) were visually scanned using a
3-D orthogonal slicing graphics package on a computer workstation to justify the
similarities and differences above and below the steam region. Figure 7.11 shows a set of
such planar views at depths of 300m and 600m, from the exact 3-D migration results. The
before and after steam images at 300m show the same characteristics as expected. The
600m images are not well correlated possibly because of the influence of steaming on the
seismic velocities thus creating a delay in arrival times of the wavefront at the receivers.

Assuming that steam influences the seismic response either directly or because of areal
velocity changes due to stress field variations around each well, we turn our attention to the
injection level depth planar images. Also, the images obtained by the direct 3-D solution
and by the one-pass 3-D with under-relaxation will be compared in order to show which
solution is more preferable.

Figure 7.12 shows the location of the wells in the same scale as the 2-D images shown
in the latter figures for comparison purposes. The wells to the extreme right of the Figure
have gone through a part of second cycle steam injection. Figure 7.13 depicts a 2-D image
of the migrated wavefield at depths of 476 to 488 m for before Figure 7.13a and after
Figure 7.13b steam injection, using the direct 3-D algorithm. Similarly, Figure 7.14 shows
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the same image migrated using the under-relaxed method. First of all we can see that in
both cases there is a difference in the amplitude character of the data after steam, especially
at the extreme right hand side of the slice where steam was injected for a second cycle. In
comparing the migration methods, both solutions seem to point out the fact of steam
presence, but there exist some minor differences showing a higher frequency-information
content in the exact 3-D case. These can be attributed to the degree of accuracy of the
methods, but only if further image processing takes place can this assumption be verified.

In order to examine the effect of steaming, using these image slices I applied an image
reconstruction technique and an edge detection process to these migration results. Possibly
these methods can reveal more important information at the image viewing level than other
conventional approaches such as filtering or averaging. Also, the methods could help
distinguish the difference between the two migration algorithms.

The image reconstruction technique used is based on the singular value decomposition
(SVD) of a 2-D image matrix and subsequent reconstruction using a desired set of
eigenvalues. The method developed by the author under a different research project
(Kapotas et al, 1988; Agouridis and Kapotas, 1991), has shown excellent results when
applied to 2-D seismic data in any domain. This method will only be used to enhance the
dominant characteristics of the depth images. The edge-detection application is based on
the implementation in which edges are marked as maxima in gradient magnitude of a
Gaussian-smoothed image. The method was described in detail in Chapter 6.

Figures 7.15 and 7.16 show the SVD reconstructed images for the exact and one-pass
under-relaxation migrations. An improvement in the overall appearance of the images is
evident. The difference between the presteam and poststeam results has become more
emphatic, supporting the assumption that the seismic anomalies - related directly or
indirectly to steam injection/production - could be imaged by 3-D migration; but their true

lateral extent can not be predicted accurately. This is simply a problem of the field
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recording parameters used: 25m spacing in the x direction and 100m spacing in the y.
Possibly the edge detection approach can partially resolve this problem.

The edge detection results are shown in Figures 7.17 and 7.18. This method should
help us determine the lateral extent of the anomaly. Looking at the results carefully one can
clearly see the major difference between the before and after steam images. The largest
degree of dissimilarity is at the extreme right side of the image indicating the greatest
change in velocity structure due to localized steam injection sites. It can be assumed that 3-
D migration along with some image-processing tools can localize anomalous zones present
in a seismic volume resulting in better delineation of the steam-affected reservoir. It should
be pointed out that, throughout this analysis, no direct evidence was accumulated to support
the assumption that the observed seismic anomalies present on the data can be attributed to
steam injection/production activity in the area.

Finally, in Figure 7.19 a direct comparison of the same depth slice obtained by the
exact 3-D and onepass 3-D with under-relaxation is shown. Although some minor
differences are present, it can be safely concluded that the onepass 3-D with under-
relaxation can be a good and effective approximation of the exact 3-D solution until the

next generation of supercomputers can solve the direct 3-D in a reasonable amount of time.
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Figure 7.11 Planar view of depth slices at 300m and 600m migrated via the exact 3-13

solution.(a) before steam injection (b) after injection.
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Figure 7.12 Steam injection well locations drawn to scale with the 2-D images from the

seismic data for comparison. Inlines and crosslines run from 20 to 65 based

on the diagram in Figure 7.7.
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Figure 7.13 2-D depth slices at depths 476 to 488m migrated via the exact 3-D

solution.(a) before steam injection (b) after injection.
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Figure 7.14 2-D depth slices at depths 476 to 488m migrated via the onepass 3-D

with under-relaxation solution.(a) before steam injection (b) after injection.
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Figure 7.15 2-D depth slices of Figure 6.13 after the SVD enhancement (a)before steam

injection (b) after injection.
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Figure 7.16 2-D depth slices of Figure 7.14 after the SVD enhancement (a)before steam
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Figure 7.17 2-D depth slices of Figure 7.15 after Edge detection (a)before steam

injection (b) after injection.
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Figure 7.18 2-D depth slices of Figure 7.16 after Edge detection (a)before steam

injecdon (b) after injection.
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Figure 7.19 Comparison of a depth slice (500m) between (a) exact 3-D migration and (b)

onepass 3-D with under-relaxation in order to evaluate the accuracy of the

later.
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7.3 Conclusion

In this Chapter I have solved the exact 3-D seismic migration problem with the aid of a
parallel supercomputer. It has been shown that the method images exactly the subsurface
model but it is still very time-consuming on presently available computers. The application
of the method to synthetic and real examples leads to the conclusion that it is probably the
only alternative in the future for analyzing complex geological regions for the location of
hydrocarbon reservoirs.

The extension of the method to the prestack domain based on principles described in
Chapter 4 will complete the seismologist's dream: Direct 3-D prestack migration. This
part of the research goes beyond the scope of this thesis, but the challenge of the problem

will definitely drive me to continue this part of the research under a different project.
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CHAPTER 8

EPILOGUE AND PROPHESIES

Recent advances in computing based on a subdivision of the computational sequence
into parallel components led me to investigate in this thesis the feasibility of seismic
applications on a massively parallel computer. The objective of this research was not only
to show dramatic speedups leading to cost reductions in seismic data processing but to
allow the implementation of new methods of imaging that were impossible in practice in
the past. This thesis described those seismic methods which have been developed and
applied into a parallel computer environment in order to investigate their accuracy, speed
and efficiency. Emphasis was given to prestack migration techniques because of their
challenging mathematical formulation in parallel as well as the dynamic improvement they
exhibit in imaging the subsurface with seismic reflection data.

The seismic migration problem in terms of the solution of the wave equation in the
prestack and poststack domains, in two-dimensional and three dimensional spaces has
been derived by means of wavefield extrapolation in the frequency-space domain. In
addition to this derivation, the formulation of the three-dimensional acoustic wave forward
modeling has been achieved.

Advanced seismic techniques used during this thesis formulation required the
computational power delivered by the new generation of parallel computers. Parallel
computation is the course of seismic processing leading a more dynamic environment for
the development of more accurate methods in the field of seismology. Amongst the wide
diversity of parallel computer architectures I used the Myrias SPS line to compile this
investigation.

The advent of vector computers allowes the programmer to achieve speedups when the
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program is changed to process many multiplication and addition operations sequentially.
Similarly, with today's newer breed of parallel computers the ability of the programmer to
keep a large number of available processors working is critical to achieving high
performance. This research has shown that on some of the currently available parallel
machines, high performance can be achieved either through extensive reformulation of the
algorithm for a specific class of problems, or with minimal programming changes for
other classes.

Prestack depth migration in two- dimensions, in the frequency space domain using the
65-degree approximation of the paraxial wave equation and the principle of double
downward continuation was developed and implemented on a parallel computer. Usually
such methods are avoided in a typical exploration environment and replaced by others less
accurate that run in a much faster time frame. This could lead sometimes to erroneous
decisions for the location of hydrocarbons.

The need for more accurate seismic methods implemented in a parallel platform, thus
reducing the computational time considerably, led to the development of a prestack depth
migration method. Synthetic and real data examples have shown the superiority of the
method over similar ones, because the only source of error in this formulation lies in the
degree of accuracy of the input velocity model. The parallel formulation of the algorithm
has shown performance levels approaching the peak performance level of the hardware
used. A similar algorithm for the reverse-time migration problem in the time-space
domain did not achieve this level of performance on this platform because of the different
formulation of the solution.

It was mentioned earlier that one motivation for using parallel supercomputers in
seismic exploration is the ability to process in 3-D instead of 2-D. The existing 3-D work
in modeling and migration was constrained by the treatment of velocity as a function of

depth only. It was the basis of this research to extend the 3-D problem to include lateral
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velocity variations to improve resolution in the results.

An original formulation of the three-dimensional migration problem using under-
relaxation for the solution of a pseudo-tridiagonal system of equations reduced the
computational time needed to solve the system directly by a factor of ten. Applications of
the method proved the superiority of three dimensional processing over two-dimensional
one. Three-dimensional migration analysis was applied to a field data set over a steam
injection region in Cold Lake heavy oil recovery area. Results show the change in
reflection characteristics due to steam presence when compared with before steam injection
data. Improvements of the under-relaxation method in the future along with extensions
to the solution for the 45 degree approximation will benefit the seismic exploration world.

An innovative extension of the three dimensional migration to the prestack domain
proved that parallel computing power, not only in terms of floating point operation but also
in system memory capabilities, can be used efficiently to accomplish this massive
operation. Synthetic examples, generated using 3-D acoustic modeling, justified the
accuracy of the algorithm and showed the superiority of three dimensional prestack seismic
imaging.

The 3-D acoustic modeling mentioned above, was developed in this thesis using
principles of finite-difference solutions for differential equations. A stable scheme with a
dynamic set of boundary conditions was formulated and implemented in parallel. The
need of 3-D modeling, not only to test the 3-D migration, comes from the necessity of
high resolution simulations using smaller grid spacings and larger models to understand
the complexity of observed seismic records. It is obvious that the memory limitations of
some vector computers confined algorithms to small models, but now the parallel
analogue that provides hundreds of megabytes of system memory can help us overcome
this problem.

The basic mathematical formulation and solution of the direct three dimensional
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migration in the 45 degree approximation unfolded horizons that lead to higher degrees of
resolution and accuracy in the processing of seismic data. Applications of the method have
shown the degree of superiority over other pseudo three dimensional solutions, but the
tradeoff in computer time still makes this method difficult to use. Improvements in the
solution of complex sparse matrices as well as increase in the performance of parallel
computers could justify the use of direct solutions to the three dimensional migration
problem. Extension of the method to the prestack case can be easily carried out using
principles described in this research work.

Modifications of the two dimensional and three dimensional algorithms to
accommodate anisotropy can easily be accomplished and used to improve the imaging of
seismic events. Phadke et al (1991) have shown the implementation of anisotropy in the 2-
D poststack migration algorithm in parallel thus paving the way for similar extensions to
3-D.

In this dissertation a complete theoretical and numerical exposition of the three
dimensional prestack and poststack seismic migration and acoustic wave propagation has
been presented. Synthetic and real examples were used as part of the analysis emphasizing
the need of three dimensional seismic processing. The methods have shown to be practical
with the availability of parallel supercomputers. There is still much to be learned in
applying high-performance parallel processors in exploration geophysics. Future phases of
this investigation could utilize this next generation of supercomputers and extend the direct
(exact) three dimensional migration to prestack space, including anisotropy and possibly
elastic wave behaviour. The usefulness of these architectures in seismic work will continue

to play an important role in quest for more sources of energy.
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APPENDIX A
PARAXIAL (PARABOLIC) WAVE EQUATION.

Assume that the reflected compressional waves at receivers not too far from the source

can be represented by the following scalar wave equation:

2 2 2

_3_2 P(x,z,t) + _8_2_ P(x,z,t) = _B_E P(x,z,t)
ox 0z vi(x,2) ot (A1)

This will be true for a solid earth if the converted compressional to shear wave energy is
negligible and this occurs physically when the waves are propagating close to vertical
incidence (angle of incidence < 200). This equation will also be true for pure horizontally
polarized (SH) waves or for waves recorded in water in a marine survey.

Another approximation used very frequently in exploration geophysics is to assume
that the source and receiver are in identical locations on the surface and the waves are true
echoes similar to that used with electromagnetic waves or radar. To make this
approximation more €xact one corrects for the extra travel time for spatially separated
source and receivers and derives a new data set located midway between source and
receiver, called the Common midpoint (CMP) or Common depth point (CDP) trace. This
trace can be regarded as due to an upcoming wave propagating from the reflecting surface
to the CMP receiver at half the actual wave velocity. This formulation is called the
“"exploding reflector model", first introduced by Claerbout (1976), because it appears as if
the recorded echoes P(x,0,t), or reflections are due to an explosion at the reflecting beds at
time t=0. The problem is then one of extrapolating the wavefield to depth z, and solving

for the field at P(x,z,0).
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In terms of computational aspects and also parallel task distribution it is advantageous
to decompose the wavefield into monochromatic plane waves with different angles of
propagation from the vertical. This is also an approximation but a good one in most
instances because the radius of curvature of the wavefront is very large ( usually > 1000m)
compared to the spatial separation of sources and receivers ( < 50m). Therefore, we work
in the Fourier transform domain. A Fourier transform is taken over time or space ( or
sometimes both) in various extrapolation procedures.

In principle such a decomposition will require appropriate modifications to the scalar
wave equation in order to accommodate the behavior of the Fourier transformed wavefield.
This observed field can always be temporally transformed into the frequency domain. In
cases where there are small lateral velocity variations, one can also transform over the
horizontal axis x. Let us look at this case first and then analyze the situation where lateral
velocity variations exist.

The Fourier transformed field is given by:

P(ky,z,®) =J I P(x,zt) elx-i0qxdt (A2)
and inversely,
P(x,z,t) =I j P(ky, 2, @)tk x+i00dk, dw (A3)

One must assume that the velocity (usually a root mean square average) is independent of
the z spatial coordinate. Apply the operator in equation (2.5) to the scalar wave equation

to get:
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2 2
Q—p-+[°’ —ki}l’:O (Ad)
0z2 vZ(x)

The solution to this equation is of the form:

2 0
P(ky,z,0) = P(ky,0,m) exp{-i[%-kf} 2) (AS)

which is also a solution of the one-way scalar wave equation:

2 2
? o, [ Y®&, (A6)
oz V o’

Let us define:
v2(x) K
k@) =22 1- a (A7)
v 2
)
then equation (A5) becomes,
Zz
P(ky,z,®) = P(ky,0,) ex -iJ ki(z)dz (AS8)
0

This formulation can be used to extrapolate the field from z=0 to z by a phase shift term.
Because of the monochromatic wave independency of this equation, its solution on an
MIMD parallel computer is dynamic and efficient during extrapolation to the desired depth

level z.
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APPENDIX B

F-D FORMULATION OF THE 65° 2.D PARAXIAL WAVE EQUATION

In order to compute the monochromatic wavefield at Q(x,z), we discretize the
differential equation (3.18a) -(3.18b can be solved the same way), and approximate Q(x,z)
by a mesh function q,™ where m=i Ax , with i=1,.....,Nx and n=k Az, with k=1,....,Nz.
Ax and Az are the finite difference mesh grid spacings for the horizontal and vertical axes
respectively. Nx indicates the number of traces in the gather and Nz the number of depth
steps.

Replacing the differentials of equation (3.18) by their respective finite differences and

changing the sign of the z differentials to evaluate upgoing waves one has:

ip
2a n

805 Q- 218, Q+ 8 Q=0

(B1)
where 82 =0/0z , Oyy = 92 / 9x2.and p(x,z)=w/v(x,z).

A higher order (fourth) of accuracy for the approximation of the second order differential

is the Douglas formula and is given by (Mitchell and Griffiths, 1980; Claerbout, 1985) :

(B2)
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where Ax is the grid spacing and Y= 1/12 (Mitchell and Griffiths (1980) or 1/6 Claerbout

(1985), and 82 is the operator ( 1, -2, 1).
An implicit Crank-Nicolson (Mitchell and Griffiths, 1980; Claerbout 1976,1985) finite

difference algorithm scheme is employed to solve the resultant difference equation. This
algorithm is unconditionally stable (Mitchell and Griffiths, 1980) and involves more than

one point at the advanced depth level according to :

1
An =—2—(q,'?+1+ Qn)
(B3)
The finite difference approximation of the differential equation (B1) employing equations

(B2) and (B3) reads:

. 2
- 1 ( FS) 2) A1 - aft +_L § qm,, +
20A X2 1 + 49 Az Ax2(1 +'\5)

1 52 PBi  m
+ 4 m._ -agqmy =0
2 AL +752) On Az Qe -9

(B4)

Multiply throughout by Ax2 (1+ 782 ) we have:

(A - o) + S + 0B - &@ﬁ‘—(lﬂsmﬂﬂ ) =0
®5)

i &
2001 Az

Simplifying by setting the laterally varying coefficients as A and B one has:

A= —1—
200 LAz
B= iipAx2

oAz
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and apply the operator 82 = (1, -2, 1) we have:

1 -1 1 -1
CAQTT+2 Ag -Aqmn + Adn T -2 Aqy +Ady
1l mi1l m ml1 1 meil m 1 ma

1
+ iqm-l - Qn+l "':')_'qn+1+ iqn =qq +§qn

1 1
- Bqpy +Bay-BY Qe +2B Y ane- BY nel

1 -1
+Byqy -2BYqp+Byq, =0 (B6)
Separate the terms with index n+1 to the left hand side and the terms with index n to the

right hand side and after some algebraic simplifications we have:

(-A+L-BY QR+ @A-1-B+2BYa
1 m-1

+(-A+3-BYan =

(-A —; By) g™+ (2 A +1-B+2BYqp+
1 -

+(-A5-BYqy

(B7)

Replacing the coefficients of the g's and note that the first is equal to the third we get for the
left hand side:

A =(A+y-BY

B=RA-1-B+2BY)

and for the right hand side:
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- 1
C=(A-5-BY

D=QA+1-B+2BY)

or in compact form:

— m+l m+l

= — ml_= = m, = _m-l
Admr + Bam+Adna = Cdn - + Dag+Can
(B8)
Taking the n+1 values to be the unknown, while all the n present values are known, we end

up with a system of simultaneous equations given as follows:

A0 . .0 [qw ] [ d ]
ABA 0 Qrzwl d%
0ABA. O _
.0
0 ABA |l qul dm-!
L0 O Abrd g™y, L dpf
(B9)
where
dr=Tay™!+ Day+Cay
(B10)

The bl and br are adjustable and are evaluated according to the boundary conditions. The
above system is a tridiagonal system that is, except for three diagonals all the elements of
the matrix in ( A ) are zero. Claerbout (1985), gives an elegant method for the solution of

such systems. This method will be described in the following section.
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Solving the Tridiagonal system of simultaneous equations.
Here we follow Claerbout (1985), to solve the system (B9). Let the simultaneous

equations be written as a difference equation:

agjs + bgj+cdja =4;

(B1D)
with j = 1,....,m, where m is the number of traces in the gather.
Introduce two new variables ¢ and fJ along with an equation

q; =e@Qj+{;

(B12)

which with shifted index can be written:
Q.1 =619+ £

(B13)

Insert (B13) to (B11):
a1 +b;q;+ei(ej +a; i) = d;
(B14)
Now rearrange (B14) to resemble (B12) :
-a.; d.-cf.
= AP
% = Bper I by
(B15)

Compare (B15) with (B12) , we can see that recursion for € and fj can be obtained as :
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-a]

J bj-f'CJCj_]

e

with e =-aj/ b
and
d" Cj fj-l

[ =) ) )
bj+cjcj-l

with f] =dj /b
For the right hand boundary we have from (B9) that:
An-1 Gm-1+ brgm =dm
(B16)
and from (B13) replacing j by m we get:
Qm-1 - €m-1 Gm = fm-1
' (B17)

Solving the system of the two equations for gm we have:

Qm = dm - Am1 fm-1
br+ Am-1 €m-1

where br is evaluated using the 15 degree absorbing boundary condition, Clayton and
Engquist, (1980).

Having ¢; and fJ we can compute the rest of gj 's from equation (B13) going backwards.
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APPENDIX C
F-D FORMULATION OF THE 15° 3-D PARAXIAL WAVE EQUATION

The monochromatic wavefield at Q(x,y,z) is calculated by discretizing the differential
equation (4.15), and approximating Q(x,y,z) by a mesh function qml where
n=i Ax , I=iAy, with i=1,......,Nx and m=k Az, with k=1,....,Nz.
where Ax, Ay and Az are the finite difference mesh grid spacings for the horizontal and
vertical axes respectively. Nx indicates the number of traces in the gather and Nz the
number of depth steps.
Replacing the differentials of equation (4.15) by their respective finite differences and

changing the sign of the z differentials to evaluate upgoing waves one has:
- 2iud, Q+ 8x Q+ dyy Q=0
(Ch)

where 82 =0/0z , dyy = 92 / ox2» 8yy =92/ ay2, and p(x,z)=0/v(x,z).

A higher order (fourth) of accuracy for the approximation of the second order differential

is the Douglas formula and is given by (Mitchell and Griffiths, 1980; Claerbout, 1985) :

(C2)
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where Ax is the grid spacing and Y= 1/12 (Mitchell and Griffiths (1980) or 1/6 Claerbout

i

An implicit Crank -Nicolson (Mitchell and Griffiths, 1980; Claerbout 1976,1985) finite

(1985), and 82 is the operator:

difference algorithm scheme is employed to solve the resultant difference equation. This

algorithm is unconditionally stable (Mitchell and Griffiths, 1980) and involves more than

one point at the advanced depth level according to :

qfy =3 (aRt! + i)
€3

The finite difference approximation of the differential equation (C1) employing equations

(C2) and (C3) reads:

ML 2 2
2 (- +%___5___2_q21j1 +%——§__?qrr¥.l
Az Ax2(1 +¥%") Ax2(1 +¥%°)
2 2
+%——L—Z—Q¥Hl "‘%'——i‘qu‘.l"O
Ay2(1 +5°) Ay2(1 +%°)
(C4)

Assuming that Ax=Ay and multiply throughout by Ax2 (1+ 782 ) we have:

21 i Ax2
Az

2
(1 + 8% (@i - i) + 24 + ) =0
()

Simplifying by setting the laterally varying coefficients as A and B one has:

A=(1.0,0.)
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2ui Ax2
Az

B=

and apply the operator 82 we have:

_B qf! + (A-9B) QY + By - 4 QR+ itk + alth] =
-Bdp + ('A'YB)[q?x‘-l.l +qn -4 Qi+ dnier + qr:.l-l] (C6)

Separate the terms with index m+1 to the left hand side and the terms with index n to the

right hand side and after some algebraic simplifications upon replacing with:

A =(A-1B)

B =(-4A-B +41B)
and for the right hand side:

C =(-A-18)

D =(4A-B +4B)

or in compact form:

Aqm, - Aqmil + Bqnil-AqRyl -Aqith=- Cqlyy,; -Caly + D -Cqm; -Caly.
(C8)

Taking the m+1 values to be the unknown, while all the n present values are known, we

end up with a system of simultaneous equations in pentadiagonal form which can be

solved using under-relaxation as described in Chapter 4.
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APPENDIX D

D1. Stability analysis for the 65 degrees paraxial approximation.

The problem of stability of a finite difference calculation used to solve equation (3.18)

consists of finding a condition under which the difference:

qF -af = (@) (D1)
between the theoretical and numerical solutions of the difference equation bounded as n
tends to infinity, (Mitchell and Griffiths, 1980).

The von Neumann procedure consists of considering an harmonic decomposition of the

error Z,™M at grid points at a given depth level leading to error function

E(x) = D, Ajei bi %
j (D2)

where in general the frequencies | bj | and j are arbitrary.
It is necessary to consider only the single term elbX where b is a any real number. For
convenience, suppose that the depth being considered is z=0. To investigate the error
propagation as z increases, it is necessary to find a solution of the finite difference equation
(B1) which reduces to elbX where z= 0. Let such a solution be:
¢aZ ¢ibX where a = a(b) is complex in general. The original error component will not grow
with increasing depth if | 2k | < 1 for all a.

Boundary conditions are neglected in the von Neumann method (Mitchell and
Griffiths, 1980), which applies in theory only to pure initial value problems. It does

however provide necessary conditions for stability of constant coefficient problems
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regardless of the type of boundary conditions. Substitute
er'ln =edank eibmh
where k = Az and h = Ax, into the difference equation (B6) with A=-A and B = -B

indicating downgoing waves and divide by e 2nk eibmh We have:

Ae&k eibh_erak +Aeak e-lbh
A eibhy2 A - A eibhyleakeibh._ gak +%eake-ibh +
2

+%eibh_1+%e-ibh +Beik - B+Byeskeibh-2 Byeak + Byetke-ibh.

-B’Yeibh+2B‘Y+BYC'ibh=0 (D3)

Multiplying by e2k throughout and recognizing that exponential terms can be expressed as

cosines we have:

Ae2ak (2 cos(bh ) - 2) - Ae2k (2 cos(b h )- 2) +%e2 ak(2 cos(b h )- 2) -%eak(2 cos(b h )- 2)
+ Be22k -Beak +B ye22k(2 cos(b h )- 2) -Bye2k(2cos(bh)-2) =0
(D4)

Recognizing that (1- cos(t) ) =2 sin2(t /2) and simplifying by denoting § = e2 k and
multiplying by -1 throughout we have:

4 AE sin? (b h /2) - 4 AEsin? (bh /2) + 28 sin? (b h /2) +
+2Esin?(bh/2)-B E2+BE+ 4 By? sin2 (bh /2) - 4 B sin2 (bh /2) =0

(D5)

Factoring out £2 and & we get a second order polynomial equation in § as:

§2(4 A sin2 (bh /2)+ 2sin2 (bh /2) - B +4 B ysin%(bh/2))
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LEC4A sin? (bh/2)+2sin? (bh/2)+B-4B ysin’ (b h/2) ) =0 (D6)

Setting S = sin2 (b h/ 2) and recognizing that the coefficients of ?,2 and & are the same

except the -2 S and +2 S terms we geta simplified equation:
E2(C+28) -E(C-28) =0 D7)

Solving for & we get the two solutions E1=0and &y =(C-25)/(C+2 S)
Since C is a pure imaginary number the amplification factor - & then takes the form of a
complex number divided by its complex conjugate. Expressing the complex number in
polar form it becomes clear that such a number has a magnitude of unity. Hence, 1§ 1< 1

and this satisfies the unconditional stability criterion.



220

D2 Absorbing Boundary conditions

We have used the so called 15 degree paraxial absorbing boundary conditions in the
solution of equation (3.18) based on Clayton and Enquist (1980). The effectiveness of
these conditions can be shown by coinparing their effective reflection coefficients at the

boundaries. The 2-D scalar wave equation is given by:

Pux +Prp = ;%Pu (D8)
Taking the 15 degree paraxial approximation we have:

P, +iP, =0 (D9)

Consider an incident plane wave travelling at the -z, +x direction according to

P, = elikex -iksz-iot) (D10)
which initiates a reflection from the right boundary of the form

P, = rel-ik:x - ik;z -iot) (D11)
where r is the effective reflection coefficient. Locally near the boundary the wave tield

(P; + Pp) will satisfy the boundary condition given above thus obtaining:

iky - irky -2 - r2 =0 (D12)
or
k,-Q
r= —YV (D13)
ke + 8

Recognizing that kx = k sin (8) where k = w/v and 6 is the angle between the travelling
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wave and the vertical side boundary we get:

= sin(@) - 1 (D14)
sin(0) + 1

So when the wave hits the boundary with 0=0 degrees then r=-1. These boundary
conditions are match with the exact paraxial wave equation (Clayton and Enquist, 1980).
Similarly, when the wave hits the boundary with greater angles then we can see that the

effective reflection coefficient decreases.
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APPENDIX E
El. Stability analysis for the 45 degrees 3-D paraxial approximation.

The problem of stability of a finite difference calculation used to solve equation (6.15)

consists of finding a condition under which the difference:

q® - amy = (7)) (E1)

between the theoretical and numerical solutions of the difference equation bounded as n
tends to infinity, (Mitchell and Griffiths, 1980) in a similar manner as we did for the 2-D
case.

The von Neumann procedure consists of consideﬁng a harmonic decomposition of the

error Zy, 1™ at grid points at a given depth level leading to error function

E(x)= Y, Aeibix
j (E2)

where in general the frequencies | bj | and j are arbitrary.

It is necessary to consider only the single term eibX where b is a any real number. For
convenience, suppose that the depth being considered is z=0. To investigate the error
propagation as z increases, it is necessary to find a solution of the finite difference equation
(6.17) which reduces to elbX eiby where z= 0. Let such a solution be:

2Z ¢ibX ¢1bY where a = a(b) is complex in general. The original error component will not

grow with increasing depth if | edk | <1 forall a.
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Substitute
Z:lnl = eﬂmk eibnh elblh
where k = Az and h = Ax= Ay, into the difference equation (6.17) with A=-A and B=-B

and C = -C indicating downgoing waves and divide by e 2™ k gibnhegiblh We have:

eak{ (B - 8YB-4A- 4 +47B + 4 + 4y- 4C)+ (2e-ibh + 2¢ibh) }_
(29B + A+ 1 -2¢B - 20A- 2v+ 2C)+ (e-2ibh + 2 + e2ibh) (1B + A - - c)
(B - 818 - 4A +4 +47B + 41A - 47+ 4C)+ (2¢-ibh + 2¢ibh)
(2yB+A-1 -2/B-2yA+2y- 2C) + {e-2ibh + 2 +¢2ibh) (2B + 1A - v+ C)
(E3)

Multiplying by e2 ¥ throughout and simplifying by denoting § =e2k we have:

£2 B + 1BEY-1+ cos(bh)] + 4AET-1+ cos(bh)] + 4£7[-1+ cos(bh] +6¥BET1- cos(bh)]
+ 6y 1- cos{bh)] + 6% 1- cos(bh)] + 6CE -1+ cos(bh)] =
E B + 8yBE[-1+ cos(bh)] + 4AE[-1+ cos(bh)] + 4&1- cos(bh)] +6¥BE[1- cos(bh)]
+ 6YAE[1- cos(bh)] + 6y[-1+ cos(bh]] - 6CE[1- cos(bh}]

(E4)
Recognizing that (1- cos(t)) =2 sin2(t /2) we have:
&2 B - 16\B§2[sin2(%‘-)] - 8A§2[sin2(l22h)] - 8&2[sin2(b7h)] +1272B§2{sin bi}l)]
+ 12yA§2[sin2(bzh)] + 12ﬁ2{sin2(%h—)] ; 12C§2[sin2(b2£)]
EB+ 16}B§[sin2(béh)] + 8A§[sin2{%ll)] - 8§[sin2{ml)] -1272B§[sin7{%}l)]
- 12%§[sinz(—b2£)] + 121§[sin2(bzﬁ)] + 12c1;2[sin2(b2£)] =0
(ES)

Factoring out £2 and & we get a second order polynomial equation in € as:
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52 ’{ B - 16)B[sm2(bh)] 8A[s1n2(2—)] [sz(bzh)] \
\+12723[sm2(12h)] + 12;A[sm2(bh] + 12{sm2(bh)] 1zc{sin2(%h)]‘
-B + 16)B[sm2(L)] + 8A[sm2(b-h)] - 8[sm2(b§}l)] \ 0

d -12}2B[sm2(bh)] 12}4[sm2{bh)] + 12fsin?{BA |+ 12c{sm2(b_”

(E6)

Setting S = sin2 (b h/ 2) and recognizing that the coefficients of &2 and & are the same

except the -8 S and + 12y S terms we get a simplified equation with S' = 12yS - 8S:

e2(C+S) -E(C-8) =0 (E7)

Solving for & we get the two solutions

€1 =0and
g =1C-S) (E8)
(C+S)

Since C is a pure imaginary number the amplification factor - E then takes the form of a
complex number divided by its complex conjugate. Expressing the complex number in
polar form it becomes clear that such a number has a magnitude of unity. Hence, | § 1< 1

and this satisfies the unconditional stability criterion.



225
E2 Absorbing Boundary conditions

I used the 15 degree paraxial absorbing boundary conditions in the solution of equation

(6.15) based on Clayton and Enquist (1980). The method is similar to that shown in

Appendix D. The 3-D scalar wave equation is given by:
Pxx + Pyy + Pzz = '\,lz'Pn (Eg)

Taking the 15 degree paraxial approximation we have:
Py +PyHlP =0 (E10)

Consider an incident plane wave travelling at the -z, +x and +y direction according to
P, = eliksx +iksx - ikyz -it) (E11)
which initiates a reflection from the right boundary of the form
P, = ref-ikux -iksx - ka2 -iot) (E12)
where 1 is the effective reflection coefficient. Locally near the boundary the wave field

(P; + Pp) will satisfy the boundary condition given above thus obtaining:

ik ik - irky - irky i@ - i@ =0 (E13)
or
o ket ky - 2

= " (E14)
kxt ky +3/

recognizing that kx = k sinf and ky=kcosﬁ where k = w/v and 8 is the angle between the

travelling wave and the vertical side boundary we get:
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r sin@ +cos 6 -1 (E15)

sin® + cos 6 +1

When the wave hits the boundary with 6=0 and 90 degrees then r=0. Similarly, when
the wave hits the boundary with greater angles between 0 and 90 degrees then we can see

that the effective reflection coefficient increases to a maximum of r=0.16.



