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Abstract
The purpose of this thesis 1is to evaluate five
\ . N F . . ! N .
recursive parameter estimation techniques used in

conjunction with the self-tuning controller. The

identification algorithms under study are the recursive

‘least sqguares estimator, the recursive square . root
estimator, the recursive upper diagonal factorization
estimator, the recursive learning estimator and the

recursive maximum iikelihooa estimator.,

The identification methods were.first tested for the
control of a‘thira order linear sysfem with' no time delay.
The - contrql ‘perfotmance'Was quahtitatively evaluated using
thtee criteria: the sum~of predicted errors, the control -
"effort and. the ~final parameter estimate values. Setpoint
Efaéking tests were performed using a squaré wave change in
éetpoint,‘_a sawtooth function change in setpoint and a stgg\\\
change in setpdint. The effects of  certain estimatioh
,aigorithm parameteré "such és:the initial covariance matrix
§élué}ithe forge;ting factor and the ihitial parameter.
Cgétimate 3 vélues on the vreéursive upper diagonal
factofization estimator were also stddied during the 1linear
simulafionsl The results. of Q and R Qgighting of the
_self-FUniné controiler and disturbance rejection abilities
wefe also.qonsidered in the examination. |

A nonlinear model of a binafy distillatin column was
uéed to determine. if the identification techniques could

compensate for nonlinearities. .



| Experiments using a binary distillation column to
sééarate a -methanol and water feed.intolé 95 mass percent
»methanol’topvpréduct and a§5 mass percent methandl bottom =
product were also performed. Both the simulaﬁions using the
nonliﬁear mofel of the coiumn and - the pilot plant binafy
distillétion column expefiments' evaluated the estimation
techniques on the resulting control .performahée for step
changes in' the feed rate and square wave. changesy in
sefpoint. |
| The ‘recursive ‘uppef- diagonal factorization e§timator
provéd to be the‘mOSt efficient‘and accurate estimatbr for

all tests.
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1. Introduction

The.three reQuifemehté for chemical process control afe
éood long ‘term steady state regulation, good setpoint
tracking and disturbance rejection~abilities. The focus of
this study is té examine the effect of parameter estimation
on thése requirements.

The ability of the estimation algorithm, used 'to
ﬁdentify the parameters of a prespecified control 1law, 1is
evaluated with respect to the control performance usiné.a
self-tpning contro;ler, the control effort 4réquirea, and,
for the simulation of the control of ‘a linear system, the
estimated parameter valhes.

The five parameter estimation techniques being studied
are the recursive least squares, recursive  square root,
recursive upper diagonal factorization, recursive leafning
and recursive maximum likelihood estimators.

The material 'p:esented in this thesis has been
organized in the following‘ manner; The theory of the
Sinéle-iﬁput "single-output self-tuning controller. is
presénted in Chapter 2 and the theory of the on-line
identification methdds outlined in Chapter 3. Evaluation of
‘the parameter identification techniques is conducted by
simulations and experimental testing. In Chapter 4 the
results of use of all fiQe estimation methods. for
self-tuning control of a linear system are examined. The
effects of Q and R weighting, disturbance rejection, initial
covar{ance matrix values, forgetting factors and initial

v
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parameter estimate values were glso. investigated. The
results from simulation of the control performance of a
distillatioh\¢olumn described by a nonlinear modei are
presented in Chapter; 5. These results test the ability of
the ‘1identification téchnique to compensate for the
nonlinearities present Eﬂ the model. The results from the
experiments performed on the pilot plant bidqyy distillation
column are in Chapter 6. Chapter 7 summarizés the

"conclusions drawn from the results and Chapter 8 suggests

topics for further investigation.



2. Development of the Self-Tuning Controller

2.1 Introducfion .
Astrom and Wittenmark [1] developed a self-tuning
/Iggulator in 1973 for the contrbl.of systems with constant,
th unkno&n parameters. The algofithm was obtained by
combining a*recursive least squares estimator with a minimum
variance Aregulétor computed from‘ the  estimated model.
Al£hough the regulator attempts to minimize the system
fluctuations when the system is randomly disturhed it does
not try to ensure that sétpoints are followed optimally nor
does it penalize. excessive control action. The 1lack of
control costing by the regulator prohibits moaification of
its .asymptotic behévior unless the sémple' interval is
chaﬁggd and the algorithm is restarted. Furthermore, stable
"control of a ‘nonminimum phase léyétem requires that the
self-tnning :egulatorAto be replaced by an on-line solution
of the Riccati equation which 1is more éémplex and time
¢onsuming. All of the above problems can be overcome in a
number of cases by introducing a costing function. Thisv
costing ' function incorporates system input,' output, and
setpoint. vériations and deriving a control law which
includes a least-squares predictor of a function related to
the costing function with the control input chosen to make
the prediction =zero. The dévélopment of this approach was

pioreered by Clarke and Gawthrop [2,3] leading to the more

general self-tuning' controller. This  implicit algorithm-



provides setpoint tracking as well as regulatory control and
can be considered as minimizing a combination of control and
output variances.

The self-tuning theory has been successfully applied in
bractice. These applications cover a range of industries. A
few of them are: Borisson and 'Syding [4] wused the
self-tuning regulator on an ore-cusher and found that the
regulator was able to adapt to the CharacteriStics of . the
~ore and crusher. This resulted in a 10% incease in
pfgduction over that achieved with proporfional?integral
-control. “

Dumont and Belanger [5] used the self-tuning fegulator
for controlling a titanium oxide kiln which reduc?d the
sﬁitchover time involved during a grade change from 10-12

hours to 2 hours.

OtherA applicatidns include cement blending [6],
distillation columns [7] and papér making [8].
5.2 Explicit and Implicit Self-Tuning Controllers
The explicit self-tuning céntroller,vas illustrated in
‘Figure 2.1, has three . main elemenﬁs: a standard feedback
law, a recursive parameter estimétipn, and a controi design
_ algofithm. Thé_ feedback iaw is in the form of a difference
equation which_ptéduéeS' the new control action and the
control—design ralgorithm provides a new set of coefficients
. 5

for the feedback law from the parameter estimates. The

algorithm can be simplified by omitting the controller
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design stage and have the estimator directly estimate the |
‘coefficients of the required cbntrol law. This constitutei]~y;>
an impiiciﬁﬁor direct self-tuhér,‘as seen {in Figure 2.2. The
implicit method is baséd‘on predictive control theory thch
depends on the knowledge of a 5ystem time delay and the
effectiveness of:this control depends on the accuracy. of the
prediction. | ' |

In general, én algorithm 1is seIf-tUning if, as the
numbéf ~of sample times approaches 1infinity, the control
signal.generated becomes that which would be produced by the
éorrespondiné ' feedback law designed on the basis of knowﬁ
pricess dynamics. | |
2.3 Derivation of the Self-Tuning Controller

In the derivétion of the self-tuning controller, Clarke
(9] made the following assumptions about thé process and its
env;?zhment: the proceés is édequately locallfilineérizable;
the" signals - are perﬁistently exciting such that the
estimator can proéuée a reasonable model; and the péfameters
of -ﬁhe .self~tuner (model order and .time deiay) ha;e‘beén
correctly chosen;‘ |
2.3.1 Selection of Model Otder’

For the generaiized minimum variance self-tuner the
model order, n, ‘in praéfice is oftén arbitrary and depends
"on the frequepcy range of interest and the controller sample

time, The number of parameters to be estimated increases
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with n. Therefore if the order is chosen too high it may

lead to poor control performance while too low a value of n
o, :

—

fesults in a suboptimal coTtroller.

N

\

2.3.2 Selection of Time Delay
| The model time delay, d, expressed as a multiple of
sampling intervals dependé'oh“the‘sampling interval 1length
and 'the actual_process'delay. If the model;deiaf“is greater
;han'half the'dominant‘process time constan£, : the sémpling'
ipteryal length is chosen so thét 'd is equal to 2 or 3
saﬁble intervais since the number of pérameters to ‘estimate
incfeéses with the value of d. This will avoid the

‘uncontrollable modes mentioned above.

.2.3.3 .Self;Tuning Controller for' Systems with Known
Péramefers | ‘

Clarke ana- Géwthropv [2] developed the self-tuning
controller by first'deéiing with the desién;fof systemé with
known parameters ‘and then exténding.it to those with unknown
paramefers. . |

Consider theréingle inputv- s{ngle output fystem

A(z;‘)yL = 2% B(z"")u, + C(z~'")E, + z‘lL(z“)v? (2.1)
where \A, B, C and L,are.known polynomials in the backshift
bperétor, z-', such that ao=1, bo#0 and c°=1; C. is assumed
tbf have its> roots within the z-domain"unit circle to
mdintain prediction stability and ¢, ' is a zero-mean

uncorrelated random s@quence. The addition of v, allows

|
}
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4

A

measurable loop disturbances to be included in a feedforward

manner. The system ordér. is ﬁ, tiﬁe delay ;isl d sample

intervals and the feedforward delay is 1 Sampl; intervals.
The design'of the the control 1law 1is based on the

minimization of one of the costing functions
. : 1 :

Jy = E{[PYu.s - Rw, 1% + ['Q'u,]?} (2.2)
J, = E{[Pyy.s - kaJZ + [ Q'(Uk,"Uk-1)]2} | (2.3)
where P, Q and R are polynomial functions“ in z°' enabling

discrete weightings: to be placed on ‘Béth measured and
calculated variables‘.if desired, at the‘ expgnSe of an
increase 1in controller ordef. The weightiné polynomials P
and ﬁ do not affect the controller structure except to

L ! . . . )
increase the order. The cost function, J,, compromises

_ between a reduction in control  variations and increased

deviations of the system output;hIf w,, the setpoint, has a

.non-zero mean, the J, cost function will not ensure .that the

~output mean is'équal to the mean of w, and this leads to a

possibility of the introduction of an offset in the plant
output unless Q' is zero. Since the J; cost function weights

the deviations in controller output, offset present' using

‘thefﬂj, cost function is eliminated* by guaranteeing the

equality of y;" and w,. However, the system  dynamic
performance can be degraded due to the additional

integrating effect this has on the control loop.
Tt self-tuning controller is a generalization of the
» . . ¥ :
theory wunderlying the minimum variance ¢regulator ~which
. \ ’.. .

.y predicts the system' 6utput d sampling intervals ahead in
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time, Y'«.4,x, as a function of control input at time k. The
minimum variance regulator 1is obtained by setting P=1,
R=Q'=0 in the costing function..

’ Consider the controller design for systems with known
parameters which miniﬁizes Jy. The self-tuning regulator is
then extended to 1include an ‘offset eiiminating' control
magnitude weighting which 1is the basis of the following
derivation.

Define the optimal least-squares predictor of y,.q
using data up to and including time k as

Y'ked/k = Yked ~ €x.d (2.4)
where e,., is the output prediction error which is assumed.
éo be uncorrelated with u,., and y,.;, i20.

From equation (2.1) the system output d steps aheéd in

-

time is given by’

B o ;L/ | , ‘

‘ %
Yuea = Uy * 28§, + z97 by, o (2.5)
A A A R -

The term z°(C/A)E, can be expanded into the sum of future
disturbances, e..s, and those disturbances up to and
Kie . .

including time k, e,, using the following identity

o F'
zd__.=<zd ,'E' + - (2.6)
A ’ A .
thus
C F' :
2=t = 2 B, + ~F . 2 ey.q t+ e, (2.7)
A A :
where

E' =1+ elz"" + , , . +e}j_,z-0¢-"1) (2.8)
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F' = f6 + flz-' + . o o+ £, 4z (i) . (2.9)

such that n1=max(ngd+ n, ,7d+ np+ n.+1).

Combining equations (2.5) and (2.7) yields

B F' L
Yiksed = €ksa t —u, + ~f + z? -y, (2.10)
A A A
)

then by comparing equations (2.4) and (2.10) it can be shown

that
B F' L
Yikeasw = “U + —f, + z¢°L- v, ' o (2.11)
. A A | A
From equation (2.7) it.can be seen that -
z B £ = @i - (2.12)
~therefore - |
e = B' £, - o (2.13)
and rewriting eguation (2.4) for e at time k
ex = Y - Y k/k-4 : / (2.14)

modifies equation: (2.13) into

Fy = —s = —meo-oi fIEZZIC A (2.15)

Substituting eguation (2.15) into. eqguation (2.11) gives
B F' [Ye = ¥'w/k-a] L
Y kedse = U + == mmmosem——— e + z4 -y, (2.16)
A A E’ A '
- which can also be written as
F‘ B Fl
Y iksaskt2 9= ==Y v a/k = Uy + ===y, + z¢ Ly, {2.17)
E'A A E'A A
By grouping the y*k;d,k terms on the left hand side of

equation (2.17), the identity of equation (2.6) written as
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C F
T Y ked/x = ¥Yikeasn t Z-d—”'Y'k~d/k (2.18)
E'A  E'A

can be used to replace these terms to give
C B F' .
oY ked T TU F 7Yk F Zd_Qka _ (2.19)
E'A A A A '
thus
F' E'B E'L
Y kseda = —=Yr * —=-u, + zd‘l——-vk (2.20)
C C c
However, = if weighted output is required by equation (2.2)

applying P weighting to equation (2.20) where P=P,/P, yields

F' G' E'L
PY*kes = E'Eyog + === y, + —-u, + 2°L-—-y, (2.21)
- P4C C C
where G'=E'B and
- - F G’ E'L
(PYxvasn)® = ==Y« t —-u Zd'l"‘vk (2.22)
P4C C C

Now returning to the costing function to be minimized,
substitution of equation (2.4) into eguation (2.2f gives
Jy = E{[P( y'u.ia/v + €h.a) - Rw)® + [Q'u, 1%} (2.23)
For Pe,.q uncorrelatg@\ with uy,.,, ¥Y«-: and w,.,;, i20,
letting o?=E{[P €k ]2} allows equation (2.23) to be
expressed as |
34 = B{(PY'ea/k - RW)T 4 (QUuy)? + 07) (2.24)
which is minimized at each sample instant [9] by choosing u,
' such tB?t
EN | |
;;: = 2[Py*«.a/x = RW(1G'(0) + 2q8Q'u, = 0 : - (2.25)

 Using the fact that G'(0)=b, the control law is given by
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Q0
PY'k.d/k-+ —=~=ux = Rw, = 0 (2.26)
: bo
If a new costing polynomial Q(é") is defined such that
0=g6Q'/bo, and ¢* is a predicted scalar output function such
that )
¢ keu/k = PY'k.ask * QUi - Rw, (2.27)
The control 1law 1is given by setting ¢*..s,«=0. Since the
measured scalar output function. is defined by
Pred = PYr.qa * Qu, - Rw; | (2.28)
recéllihg that Yy.a=Y'v.a/x+€x.qs from equation’ (2.4) where
€r.a 158 ﬁncorrelated with-Y‘k.d/k it follows that
Bres = 0 nvasn * eln | C(2.29)
.such that e}.q4=ZY:8 Pi€xva-; is uncorrelated with ¢*, the
least-squares optimal pfedictor of ¢.
Defining a ,costing functioh J' to be E{¢?,.4} which
gives _
3= (B heasi)? * o o (2.30)
and minimizing J' or J, will generate the same control law. |
The control law 1is obtained by substituting y*y.qs,«
into equation (2.27) so that
L¢’k¢;/k = Zj>o Pi [Fi-jyu *+ Gi_ju,.; +
+ 2¢°LE}_|L,. v, 1/C + Quy - Rw, (2.31)

By defining

F=2Zp;, Fi_| o (2.32)
G ==t p; z"!Gy., + CQ ' (2.33)
H = -CR | | (2.34)
D = z“ﬁEL-,Ld-, : . ' (é.35)i
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it follows that ¢* can be recursively expressed as
F .
Cé*ksasx = ~~¥Yx * Guy * Hw, + Dv, (2.36)
' Py :
Since the <control strategy requires that ¢°' be set to
zero at.each stage of the calculation of the control policy,

equation (2.36), the control law, gives the control action

by
Uy = me=mme————mae e - (2.37)

The control algorithm 1is similar to the basic minimum
variance control law in that it minimizes E{¢,?} by setting
the predicted future value of ¢ equal to éero at each step
which méans it minimizes the infinite stage variance of the

~generalized output 4.

2.3.4 Stability of the Closed Loop .System

To determine the stability of the controlled sys£em the
closed loop system response must be derived. Since $* is set
to zero at each stage, under ‘optimal control conditions

by = G s x-a * €y = €, = B, ‘ (2.38)
Substituting equation (2.28) into equation - (2.38) and
solving for y, gives
[Ef + z °Rwy - z”°Quy]

Y = "o mmmm o s s se—o————ee— | - (2.39)

then solve the system equation fér z-%u, to obtain
A C L

z7 %, = -y, - -§y - z7t-v, (2.40)
- B B B .
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Substitute eguation (2.40) into eqguation (2.39) to obtain
the closeq loop system response or transfer function
[EB + CQl¢. + z °*BRw, + z-!QLv, -
Yk = mmm e e e (2.41)
[ PB + QA ]

Therefore - the stability of the optimally controlled
system is dependent upon the roots of the characteristic
equation

PB + QA =0 \ ' | (2.42)
If P=1 and Q=0 the minimum variance regulator is obtained
and the _roots depend- entirely wupon B and hence fof
nqnminiﬁum phase systems  the closed loop résponse is
unstable. For Q#0 where Q0=q{Q'/bo, if the systemb is open
loop stable the system will be closediloop stable for large
Q. Similarly, if the system 1is 'opeﬁ loop unstable, the
system will be stablized if thé control weighting'Q‘is’small
enocugh. |

Thus the control law for systems with known parameters
is determined by'seﬁting the optimal prediction, ¢*..s,., Of
a function 4u.4, closely related to the chosen costing

function, to zero at each stage. 5

.

2.3.5 Self-Tuning Controller for Systems with Unknown
Parameters
For the system with unknown parameters the system

equation from the known parameter case and the ‘costing

function , equation (2.2), are combined to form an

equivalent systbm given by

e e \
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Cé*v.as,x = Fyy + Gu, + Hw, + Dv, | (2.43)

Pred = O kedg/k t €.y 1‘ (2.44)
with the control strategy setting ¢* to zero at each stage
of the coﬁtrol policy calculation.

If C=1, equation (2.44) can be written in the form

Srea = XEO + €.y (2.45)
where X¢ is a column vector containing known functions of
time

Xt = [¥Yu Yir-oteee Uk Ugoqoee Wy Wioqreos 1] (2.46)
and © is the vector of unknown parametérs.

Since the components of X are uncorrelated with ek{d”
then  the best (minimum vériance and ‘unbiased) linear
estimate ©® of © is that given using a least-squares
~algorithm in its recufsive form,

The control law assumes the estimated parameters are
the true ones and chooses u, such that" r
E’k,,,k = ?yk +_6 u, + ﬁhk»+ ka'= thk =0 (2.47)
Now 1if C 1is a polynomial of order n then’equatién (2.45)
becomes |

Prea = X8O + ey, 4 + (1-C)o*vr g/ | (2.48)
'In this situation ¢* is correlated with X since ¢* 1is a
function. of X so ‘a least squares estimator alone would
produce estimates that are biased. But the estimator is used
with a control law which sets ¢° toiéero; therefore if 646
then the control law of equation (2.47) tends to the optimal

control law, ¢*=0, and the objectionable terms in equation

(2.48) disappear.- Thus 8=0 is a fixed point of the algorithm



but not necessarily é stable fixed point [10].

The above.argument, however, may not apply in practice
as it depends on equation (2.47) being sat%sfied by the
controi action wu,. 'If thére are strict control limits the
desired u, may not be used and equation (2.47) no longer
holds. Although the recursive least squares estimator should
fail to give unbiased parameter estimates, it is found that
provided u, is not always clipped the algoritﬁm is sﬁiil
effective [10]. A method which has béén shown to convérge
for all 'useful C 1is the reécursive maximum likelihood
estimafor.

Ljung [11] .as shown for a self-tuning regulator that
if ‘the system input and outpﬁt are bounded, which is
crequired :for stable closed loop control, Fhe stability of
the fixed point of the algorithm is related to the étability
of a set of asSociated'ordinary differential equations.

The éonditions for obtaining systems which produce
unstable  fixed points and where parameter estimates
oscillate about the point are closely related to the
parameter sensitivity criteria for a minimum variancél
control law. This ihdic?ted. that & small error 1in the
parameter vector 1is propagated into poor control in these
stable cases resulting in further bias in future parameter
estimates. This excess sensitivity may be réduced by an
appropriate choice of Q so convergence is possible in a

wider range of circumstances.,
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2.4 Convefgence of the Self-Tuning Controller

The parameter estimates in equation (2.47) are not
' unique as the controi performance would not be affected by
multiplying the equation by an arbitrary constant. This
coyld 1lead to numerical problems if the estimates become
excessively large or small._ThiS can be overcome by fixing
one parameter. If w, is non-zero the leading coefficient,
ho, 1s independent of the system parameters and hence is
known a priori. Thus it is the most convenient to set to a
fixed value as it does not exhibit convergence problems.

If w,=0, then H(z ') is not included in the control law.
and g, can never be zero provided that d, the time delay, is
properly chosen. However convergence problems may arise, If
go is much smaller than its actual value, the estimates may
diverge and if gg is taken too large coﬁvergence tends to be
slow. The rate of convergence depends on the ratio of go/gg.

If C#1 the convergence}of the algorithm ié hindered by"
the inclusion of early data of ¢, which contains components
due to non-zero ¢*,.s,« Since the control law, eguation
(2.47) , isA awéy from the optimum [2]. The standard
-recursive - least sguares estimator, however, ‘is derived
ignoring these non-zero ¢* ‘terms so the norms. of the
covariance and gain vectors may approach zero more rapidly
than ¢* and the estimates, @k , may only be changing slowly
while still far from the true valﬁes. This is ovefcome by
the addition of the forgetting factor introduced in the

recursive least squares estimator.
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2.5 Q-Weighting

If the control signal oscillates between the upper and
\ . : .

lower limits . it may broduce stability problems. As well,

operation in an industrial situation would not allow such '

changes to occur as it would be abusive énb thus reduce the
life of the equipment. Introduction of a Q-weighting
polynomial can improve control performance and closed loop
stability by penalizing the control action. |

Cloéed loop dynamics can be modified by the choice of
the Q polynomial. The Closed Ioop poles can be manipulated
by <choosing a scalarAQ. However, this usuélly results in a
stéady state offset as the\measured output function given by
equation (2.28) becomes |

Yo = Weog +* AUy (P=R=1) _ (2.49)
This offset can be eliminated by choosing an appropriate Q
polynomial. A pure integrator.cén be introduced by setting
Q=A(1-z" ') but” this ﬁax“render the system unstable and cause

the deterioration of the transient response. A better choice

would be to set the inverse of the Q polynomial to a form of
a discrete PID compensator |
ao + A,z +a,z" .
Q' (z27') = mmmmmemme e _ . (2.50)

1 -z
The robustness of PID control assures this method of good
seif tuning properties and avoids the steady state offset
[12]. However the coefficients must be tuned before starting

the control action.
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2.6 P;Weighting

In the self-tuning regulator theory the <control law
tries to make the process equal to the d-step-ahead
reference value in a'single step, that is, deadbeat control.
This may cause large excursions in the process variabiés if
a chénge in setpoint occurs. This is particularly true of
the initial period after‘the change.

This can be improved by designing a\ reference ﬁodel
which genérates the optimal trajectory for the setpéint
change [12]. If Q weighting is not considered the output of
the system follows the output of the reférence model
R(z"")/P(z" ") whose input' is wy.4, the delayed setpoint
given by

1
Yi = ====-- [Rvy_o + exl | (2.51)
P(z~1')

From equation (2.51) it can Be seen that the unmeasureable
system noise e, is a..o filtered by the 1inverse of the P
polynomial. If this noise is differehtiatéd it may lead tp
an erratic response and degradation of the parameter
estimation. | .

The order of the F polynomial should be 1less than or
eqpal to the orderbof the plant with unity gain and an open

loop response that is faster than that of the process[13].



21

2.7 R-Weighting

' The use of P—weightiﬁé is depeﬁdent on the closed loop
stability requirements. The R polymonial is another way of
modifying setpoint changes to improve transient régponse but
it does not alter the closed loop stability of the system.
It can also be used in conjunction with the P pélynomial._

The parameter degradation observed with the P-weighting
modifying both the sétpoint and stochastic noise terms can
be avoided by setting P=1, Thus the R-weighting dictates the

way in which a setpoint is made.
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.3. Ihent1f1cat1on Methods
|
3.7 Introduction !

For control engineering the purpose of identification
is- to design a contrgl strategy and analyze the properties
of a system. As the performance of the self-tuning
controller depends oh thé effectiveness of the parameter
estlmator it 1s necessary to wobtain -ran on-line estimator
which qulckly and accurately determines the parametér
estimates of the systém model The identification of the
process parameters 1is done by using meésured\data from the
system to estimate the best values of the unknown parameters
of‘the chosen model From the adaptive control point of view
-1t is also necessary to\sdentlfy the process recurs1vely in
order to track time- varyyng parameters.‘

The estlmator algorlthm chosen for identification must
be computationally eff1c1ent and easy R implement b; a
| computing device for it to be usefui for the self-tuning
controller. The estimétor‘ algbrithmv must also be able to
retain numerical stability and significance over~ very long
periods of constant setpoint operatioﬁ prior to disturbances
affecting the system. ' o *

Identification -methods have-been extensively surveyed
by Astrom -énd Eykhoff - [14]‘ Books dealing "~ with
ideﬁtification methods have also been publlshed by Graupe

[15], Eykhoff [16] and Hsia [17]./

22 
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Regression analysis has been . used to develop
idenbification methods which are applicable to both linear
and ;Bhlinear processes.

There are many ways of obtaining redu;sivé‘ estimator
algorithms, ‘In the fol;oﬁing sections, . fiQe recursive
identification algorithms;will be derived for use in the
self—tﬁning contrclle;. All the estimators are essentially"
variations of extensions of the least_squares method which

is presented first.

3.2 Recursive Least Squares Estimator
3.2.1 Least Squares Theory _

The least squares (LS) method was developed 1in- 1795
when Karl Gauss formulated its basic‘conéept and.used it for
astronomical computations. The meth?d is based on the idea
that. the most appropfiate values for the unknown but desirea
parémeters are the "most -probable” values. 'These "most
probable"” values were défined as the values for yhicﬁ the-

. : & ‘/
"sum of the squares. of the differences between actual

observed and c0mputed values, multiplied by numbers that
. measure the degree of precision, is a minimum.

| Parameter estimation of dqntrolled systems to determiné
a mathematical model is a vital paft of adaptive control
schemes. Given measured data from a plant the ."best" guesses
for the parameters proviae the Qeans for' initial control

system analysis and des}gn as well as the ability t6 predict

-
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thg future behavior of the system, Least sduanes theory is a
major tool in parameter estimation from experimental data as

the estimates obtained can have optimal properties, that is

"the estimates are consistent, unbiased and efficient.

.Given the system where y is related linearly to‘a set
of n variables X,, .

Y = X0, + x,60; + .. ot X, 0, (3.1)
where 6 = {9,52 . . ,'On}‘ is a set of constéﬁt, unknown
pérametefs. If a sequence of observations of the outputs and
inﬁuts is made at reqular intervals of time) . these
measurements can bei represerited in  matrix form at thé

sampling interval, k

Y, = %6 S o (3.2)
where : | . \
¥ = [ yiyz - « « il o - | _ (343)
S TR T
. : L (3.4)

x1(k=1) x3(k=1) « . . . xu(k=1)
X1(kA) .Xz(k) « o o+ e x,.(k)

L : -

To estimate n coefficients-of the vector 6 the-number

’of equations, k, is greater than the number of coefficients

being estimated, ' k 2n. If k = n then equatién'(B.Z) can be

’ solved’uniquely to obtain the estimate of O, C)

a 1

7, S  (3.5)

,;,, 9‘=X
; | v

prsv1ded that X ', the inverse of the square matrix ZX,,

Ty
Rt

‘.
e
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exi§ts.

If k > n and data 1is corrupted by  process .or -
measuremenﬁ noise or modelling error, or both it is-
genefally imposgible to-determine © to exactly satisfy all ki
equations so © iSJdétermined on the basis of a least squared
error. _ | ‘-

Define an error vector
|

E(k,8) = [e(1) e(2) . . . e(k)] * (3.6)
so that ‘., )
Y, = X6 + E(k,08) 3 L (3.7)

The parameter estimates are specified to minimize the

sum of the square of the error

1(6e) = £¥., e*(i,0) - J (3.8)
1(8) = E*(k,0) E(k, 8) 5 | (3.9)
1(8) = (Yo - £«©)*(Yy - X,(O) ) o (3.10)
?(e)‘= ?k‘yk Xtety, - Y,' X.,6 + ©'X' X, 0 | (3.11)'

By differentiating T with respect to 6, setting it to zero

and solving for @, that is

gl| . = [dl gl . .. gL ‘ | (3.12)
de|e=6  |d6,d6, ae, L T
) ‘V ‘t N B
a1 = -2Y{X, + 20'%; ¥ 3 | (3.13)
de|e=9 o

it follows that ”
B = [EiZ ] 'BIV. (3.14)

is the least squares estimator of 6. In the nonrecursive

<

<A . :
case, for ®;to exist [XiX,] ' must be a nonsingular k x k

matrix and the rows of X, must'have<f§nk K whicH implies the

d N PREN o
g ' ®
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R

iﬁpuf is persistently exciting.

Since the sfatistical properties of the LS estimator
are based on the prcperties ~of the noise corrupting the
system, the system equation is now given by |

Y. = X160 + €, | ' , © (3.15)
It is assumed that e; is a whité noise with zefo mean. value
SO -

E{e,} =0 : (3.16)
‘vW%é;; E{} is the statistical expectation. It is also assumed
that e, 1s wuncorrelated with Y and 'X. By substituting
equation (3.7) into equation (3.14)

6 =6 + [Xi&] 'Zic. | (3.17)
.Using theAassumptions that e, 1is a white noise and is
uncorrelated with Y and X and taking the expeétation of both
sides of equation (3.17), that is

E{6} = E{6} + E{ [Xi{Z. ] 'E} Eles} = © . (3.18)
sb if follows that since E{6} = 8, the estimator is
unbiased. |

The éovariance matrix corresponding to the estimated
error 1is def?ned as

S = E{(B - 0) (B* - 0')} (3.19)
Substituting equation (3.17) into equation (3.19) gives

‘Se = E{(8 + [X'X] 'Xte-B8)(6" + [g‘g]‘fgg'—e‘)} (3.20)

107]
¢
il

E{([X*X] "Z'e) ([Z'8] " 'Re ")} (3.21)

[X'%]-'%* Efee'} R[X'X]"' - (3.22)

Se

so if the covariance matrix of the error vector e is defined

~to be
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S = Eleect) .. (3.23)
then h |
Se = [X'X17'X'SX[X'X]"' (3.24)
Now 1if thé noise is identically distributed and independent
with zero mean and variance o¢? ﬁhen
| S = E{ee'} = 07] | : : )  (3.25)
and the covariance of the estimated error is ‘
Ss - o*[x' X]° L e : (3.26)
which implies that the corresponding least squares
estimation of B is a‘vminimum variance estimator. The
diagonal elements of S are equal to Ehe estimates of the
variances of the parameter estimates.
| All statistical propertieé of:the LS estimator depend

on the assumption that e is uncorrelated but this generally

is not valid which can be easily demonstrated by considering

a noisy system.

Following the presentation given by Hsia [17], consider
the noisy model to be
A(z"")ye = B(z27') u, + e, > ' (3.27)

where y and u are the measured outputs and inputs to the

~pfoces%ﬁgnd e is the residual or equation error. The

noise-disturbed measurements are. then

Z, = Y + ey | . (3.28)
where e, accounts for random disturbances-to the system and
measurement noise. Assﬁming that e, is a stationary random
process with zero mean and autocorrelation function S,(r),

uncorrelated with u or y, it follows that the residualjtevm,
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€x, for the autocorrelated random process is

er = Alz e, |  (3.29)
IE should be noted that €, 1is now designated as the
bcorrelated residual although previously it was the
uncorrelated residual.

On the basis of the representation given by equation

(3.28) X can be partitioned into two parts

X + X o (3.30)

)-{!:,u. “ Y4, - e,0

where

Xep = | —e(n) coeee me(1)

. , .

: : .0 (3.31)
-e(n+k-1) . . . -e(k)

Now © is biased if E{(X'X) 'X'e}# 0 or E{X'e¢}#0 and since

E{Xi.e} = 0 it must be proyen that E{Z'¢ 0}#0. The elemepts

i

e} are ‘ : \
Efe(i)e(j)} = S (1) ;T =1,2,...,n | (3.3?)

in By,

and_from equation (3.29)

e(k) = e(k) + EZ7., a,e(k-1i) (3.33)
Eherefore | ‘ |
8,7 SalT) + ET.y ay §lr-i) (3.34)

But it was assumed earlier that e(k) is autocorrelated and
%ér )#0 for all r hence not all See= Q and E{X'e¢} #0 and 8 is
biased. The only exception to this result is for the case
that Sge satisfies the condition
Seel T) + ZT.y @) Selr-i) =0 ;r=1,2,...,n (3.;5)
"The existénce‘of bias has now been demonstrated so

obviousiy a modification of the basic least squares method

. \
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is- required to obtain better parametér estimates. In 1967
Clarke ﬁlB] developed this [modification, the method of
generalized least squareé (GLS), to remove this bias by
introducing a whitening filger to convert the correlated
residual into a white residual.

Tf the process is governed by equation (3.27) and the
correlations of the residuals are known, then q(k) can be

represented by

e(k) = T(z"') e(k) / (3.36)
where {e(k)} is a sequence of uncorrelated random variables
and T(z"') is a discrete transfer function. Then the process

model can be written as

Az ")F(k) = B(z™ ') W(k) + e(k) (3.37)
-where

Y(k) = T (2" ")y (k) o  (3.38)

B(k) = T~ '(z"")u(k) | , (3.39)

Hence if u and y are considered inputs and outputs,
respectively, and since e(k) 1is ‘an  uncorrelated random
sequence the problem results in an unbiased least squares -

estimation.

3.2.2 Recursive Least Squares

v

The LS estimator is a batch calculation which implies ‘

that all the data between times n and k must be obtained

‘before the estimates are calculated. In real-time systems,
however, new experimental data 1is continuously being

supplied. Thus the need for a recursive solution arises to

7/

o
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avoid the rJ!étitious calculations of the estimates, with
successively supplemented data resuiting fgom these new
measureﬁents. The advantages%ofcthe recursive leést squares
estimator as cited by Hasting-James and Sage [19] are -
i. the reduction in storage of the large quantities of data
and the calculations performed.
1i. the estimates can be updated without a matrix inveﬁSion
~whichffurther reduces computation time.
iii. |
the effect of each new observation 1is immediately
reflected- on the estimated parameter.
iv. the recursive algorithm 1is well suited for adaptive
control of a nonstationary system.
The following derivation of the recursive least squares
follows the development given by Strejc [16]. Given the
updgted.output veétor y, and the cdrresponding observation

matrix X, where .

Yeaoy = Yy y Bke1 = b. 4% . (3.40).
Yot Xia v L

where |

The = [yr ¥z« « o ¢ Y Yueur 1 ' (3.41)
and the last row oﬁ .1 is |

2.1 = [ulk+1-n) y(k+1-n)...u(k) y(k) u(k+1)]  (3.42)
The least squares estimate of the parameters at time k+1
from equation (3.14) is

@k¢j = (§:‘1§k01)71§;+1Yk+1 . (3.43)
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gk*1_= (REZk *+ B Xlar) T (Rhyw + doiYuon) (3.44)

To avoid the matrix inversion in updating the following
matrix inversion lemma is utilized.

Lemma: Let A, C‘ and A-BCD be nonsingular square
matrices, then u

(A - BCD)"' = A"' - A~'B (C"' + DA-'B)- 'DA-" (3.45)
Proof: Multiplyvboth sides of equation (3.45) by (A - BCD)

(A-BCD) (A-BCD) - '=(A-BCD) {A- '-A-'B(C-'+DA- 'B) " 'DA" ')

1 =1- BCDA"' + BCDA"'
I =1 | (3.46)
Therefore
6:63. 95 SN SPRDRAETS 65 FORAEIC $3- S RAD FES |
L1+ X (BRZ) " TR DR (BERe) T (3.47)
Defining | »
Kgy.1 = (ZeZe) "B o[ + X0, (Z2X) "Byl 10! © (3.48)
it follows from equation (3.44) that
Bt =8 + Kgp.t (Yot - XE.18,) ' (3.49)
where (yy.; ~‘§§.1§g) is the equation errdg at time (k+1°

‘From equation (3.49) it is ~obvious that the wupdated
estimate is eqﬁal to the previous estimate @k, corrected by
a .term proportional to the equation error, the difference
beéween th; actual and predicted output based on the
estimate\of the parameters @;; and the set of measurements
Xt.1. The predicted' output is'equal to the actuai output
only if the-exact system model has \the correct parameters
and no noise is present, so the correction term in equation

(3.49) is zero.
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The elements of the Kg,., matrix, usuaily called the

gain of the estimation, are weighting coefficients. To
calculéte the gain matrix in a recursive manner let /
. Sk = alX'% X)) . - (3.50)
where a is a'positive constant called " a forgetting factor
“and S, is called the covariance matrix of the estimates.
Then

KGus1 = SkKeosla + Ki.1SuXy, 1" - (3.51)
Substituting equation (3.50) and equation (3.51) into

i

equation (3.47) yields

Skv1 = Sk = SuXioqla + X518 X 1] "X, S,
Sk+1 = Sx - Kgu.1X5.1S¢
Sker = S [l - Kgr. Xkl (3.52)

so the recursive least squares algorithm can be summarized

by the following three equations

ng+1.= SiXk.1la + X§, 1S X,y 17! | : : (3.51)
Sket = Sell = Kgue 1Xi.q] | (3.52)
6k+1 = @kl+ Kgee1lyesy - X;¢16k] - (3.49)

The forgetting{factor a may be selécted in the interval
0 < a £ 1, For a = 1 all sampled data.pairs are weightéd
equally (ordinary least squares) but for ¢ < 1 a heavier
weighting 1is placed on the recently_acquired data with the
weighting decreasing as a approaches zero. Thus it is
necessary to compromise betweeQ¢§§st'adaptive capability and

\

loss of accuracy due to data sequence truncation.” e
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3.2.3 On-Line Recursive Least Sqﬁares Estimator

The deQelopment of a recursive least squares (RLS)
algorithm' enables parameter 1identification to. be done
on-line.- In real-time systems, however, the estimated
parameters may converge to the appropriate values very
slowly. The magnitude of the correction of the estimates as
shown in equation (3.49)-dependé on the value of the entries
in the 'gain matrix. The norm of the covariance S,.; and
hencémkgk., will tend towards very small valueé faster than
the parameters converge to- their true values. To prevent
this situation, which may be a problem, a weighting factor
is introduced in order to piace more emphasis on thelfeqeﬁt
information so this data dominates the error fuﬁction. This
is done '~ by writing the minimization function as an
exponentially weightedgerror functién .

I = Z%.y p*"'ex? 0 < p S 1 ~ (3.53)
~where p is an exponential forgetting factor which enables
past data. to be weighted out to improve the convergence
rate. However, this .faster convergence due to data ' sequence
trﬁncation leads to an increése in the variance-of the
parameter estimates. | |
The f&rgetting factor is also  beneficial to
. time—vafyingb systems as }t enhances the adaptive
capabilities of . the estimationl.method by enabling it to
tréck the slowly time-varying parameters. Therefore the

covariance matrix update equation is now .
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1
Seoa = Sk—[£ - ng.1X;,1] (3.54)
p ,
-3

where S, = a(X¢X,) '. S, is inflated by the factor o at

every literation to prevent it from becoming decreasingly

small. ' ‘ //

The distinction between the two forgeti factors 1is

made as the function of each is diffgpéﬁt

factor a which weights-thevsampled datéKi

KA

in the recursive least squares approach Ht’ -~ be chgsen
R : . ~ Ny b

to be equai to unity or o? as ;n“th;'k51m$hfffrggf approach.
The forgetting factor p affects the covarianc; matrfx“and is
equal tolpnity during constant setpoint operation 5ut,is set
to less than unity when any _ setpoint g?énges occur for
paraméter tracking purposes. : v

~ Thus the on-line recursive least éguares,,estimator is
repreééntéd by equations (3.49), (3.51) and (3.54).

In spite of the {applicability of this method to
pagémeter estimatioq, the cavariance update of the recursive
lezgzusquares estimator, Equation  (3.54), is numerically
unstable. The main reason for this instability is that the
covariance matrix S,.,, is computed as a difference of two
”J;ositive semi-definite matrices. Dpue to nuﬁerical round-off

errors there is the possibility of even obtaining a negative

‘definite .covariance matrix. Another cause of this instability is

)
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that as the éstimation time increases, when the forgetting
factor 1is less than unity, problems afe encounﬁéred.‘lf the
system 1is not sufficiently excited or disturbed the weighted
RLS estimator will gradually lose dynamic information which
léads to a progressive loss of confidence in the estimates
as the values become biased. This is dué‘to the covariance
‘matrix continuing to grow by the“montinual division by the
forgetting factor [38]. The parameter covariance matrix and
the correspondiqg gain values beébme numerically large
causing l'arge erratic parameter ana process béh§vior when
the syst : eventually disturbed ’ahd severe numefical
problems eventually arise. The worst case ie§ults when the
covarianee matrix loses its positive definiteness when the
diagonal elements become negative, due to the rounding error
caused by the finite word lehgth of the éomppting device,
and conseéuently its numericél significance. \

If the-gstimate update eqﬁation is rewritten as

6k.1 = 8. (I - X Ky 1] * Kk 1¥ur - (3.55)
this difference equation'is Unstable if |det(1—Xk;,Kg;¢1)l>1
as the‘pa;émeters will continugjto'grow. This may occur when
some ¢ombonents.of the.observagion vector X, are lineariy
Jeperdent wﬁich,is tgé case when the sélf-funing controlie;
. ccivergés to a constant. control law. |

There are two alternatives f?: preventing, the numerical
instab?lity of the covariance mat;ii. An adaptiQe forgé;ting
factor can be wused - that as less dynamic information is

obtained ,and satisfac-ory estimates - are achieved54”the
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forgetting féctor is set to unity to,preserve the numerical
significance of tﬁe estimator. Alternatively the covariance
matrix can be forced to maihtain positive definiteness by
factorization. The square.’ root ‘or upp;; triangular
factorization methods which are discussed in Sections 3.3

and 3.4 , respectively, provide algorithms which maintain

covariance positive definiteness.

3.3 Recursive Square Root Estimator

The recursive square root estimator was first developed
by Potter [26] to avpid‘the loss of positive definiteness of
the covariance matrix which can éccUr using recursive least
squares. The square root algoriﬁhm fequires "the
factprizétion of the covariance | matrix. Since this
factorization 1is not unique, several square root estimators
were developed; a survey of these - techniques is given by
Kaminski et 'al [21]. 1In 1974, Peterka [22] developed a
:ecursive'square root estimator for multiva;iate regreésion
‘which is closely rela®ed to the square: rooﬁ filters
summarized by Kaminski and co-workers. But is in a more
compact form. It is Peterka's estimator which -will be

-

a

'developed for thisAstudy.
‘The fundamental difference between the_;eéursiVe square

root estimator and recursive least squares is the method of
- ) . . . .

. | . . Lt "
propagating the covariance matrix. The reéiirsive equation

for the inverse of § is obtained by generalizing equation

Y : .

(3.50) .
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§k‘= a (XiX,)7! . (3.50)
to yield y
Sklv = pSi' * K. Xi., . (3.56) h
where ZX.., 1s the vector containing the most recent
observations and p 1is an ‘exponential forgetting factor.
Applying the ;matrix inversion ‘lemma, given . by equation
(3.45),, to eqguation (3.56) gives
1 X+ 1k S
§k‘.¢] = § - ; - TTsTTTT T T - (3.57')
P Kk+1 :
where, .
T KE.y o= @+ K. SeEi.d (3.58)
MuYtiplying both sides by X.. 6 ey e
" [ BN
' Sk Kk.r T a
'§k~1Xk~1 = =-=(1 - ""”ff'_xkfj
. p K:¢1‘ A v
, §.{X“1a j "’.“"'. " c ) '
§.k¢1Xk+1 = TTEETTmT . “;.4 . (3.59)
pl(ﬁ,, e - g B
| and solving for Sii; S N ] : , .
Sca - , .. ‘
§;11 - - _-————\ . K ) (3-60)
K§«1P ' : ’ .
This covariance matrix update equation can be used to. derive
~the same estimate update uequatién as the recursive least “ﬂ
. .‘ - ¥
squares estimator [22], that is -
A A §kx5‘l : ‘ " - K .
Oc.1 = 6, + “"T"EY«~1 - X$.408 1] ' (3.61),
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\\ Comparison of this equation with .the previous recursive

least squares estimate update eQuation;

shows that by setting

a + Xkolgkxc+1

that equation (3.61) and equatibn (3.49) are

equation (3.49)

(3.51)

-,
PR

identical.

In order to updété the positive definite covariance

matrix, it is factored into the product

§l= [ §xt ‘ : ‘ l.-_ﬂ' .

(3.62

WHere $* 1is a sguare matrix, always p051t1ve deflnlte, ‘anc

M

the square root of S This féctorlzatlon is.

R ‘W

the Cholesky decomp051t10n [?3].

equivalent to

g

U51ng 'Eﬁe. factorlza:ion of equation (3.62) the

L

v a

rewrltten as

'S; 1 - @1.1W§¢1

ac
<

SYmme

Sk

- —

;'F;l where J V gnd A is any orthogonal matrix,

5 . ST

covarlance matrix recur51on equationy equat1on (3 '57) can be.

(3.64)

trically:toﬁfbrm

therefore

< T 3.66)
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Thus, the recursive update equation for Si{.,, can be
determlned if the. orthooonal matrix A 1s found such that the

imaginary vector"jwk.ud/xk¢, is zeroed that is
I £

T e
& .‘;," R - A e
1, = A=l @, 0] o S e (3.67)
Koo R P V :
x f\:rl ¢ . = T I3 g'fr“ I . N

where R 1s a. real upper trlanguiar matklx and 0 is a vector
whose elements ‘are all equal to zerOu,‘

From equatzons (3. 65) and (3. 670 it can be seen thapgf

. ' o . §k Q : ' : ,“"‘) v T L

' - "":)"“-;- §;~‘ g r:' — - /; ‘ : ) ( 3.68 )
N 7 - ’

““Where S¢.; 1is an fupper “triangular matrix since it is a

proouct of two upper triangular matrices. .

| lThe1 transfofmations of Ve.sr1/kiiy toLQ, v -h satisfies
equaﬁion (3.67) can‘be echieve&’Without explicit ée;culati%p
of the”orthogonal'matfii'A and using only real numbers.

For equatlon (>.67) to be true, ‘it is obvious that jthe
orthogonal matrix . A cannot'~be‘ real. The matrlx A is éfﬁl
,d1me051onv(n+1)'x (n+1) 'where n .isnfehe dlmen51on of”‘the
vector X,.; and wk.;;—'The' o:;hogonal mé;rix A ‘can be
e#presseo es a Tproduof* of ?the ’generalizzo felementery
smatrices of rotation [22] “ |
.1_\=1_\‘."’/_\’"""'>...A"~>;..A<'> - ' @#3.69)

where
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wre . ey |1 (3.70)
1 .
.. 1
_jTi. . .wij —__n+_1 -
| | ‘
1 n+1

The only difference between an ordinary elementary matrix of
rotation and the generalized matrix is that the off-diagonal

elements of equation (3.70) ~re imaginary.
) ly‘ \

The condition of orthogonality of A Fequires that '

wi - 11 = 1 | - T (3.71)
To develog'theiequatiohs to’determine w; and r;'consider the
first product of the left-hand side of equatlon (3.6i). The
matrix.mult1p11cat10n results ~ - only the last ‘two columns

' of the factors being changed, therefore it is sufficient to

‘consider the |transformation as

. T . » o :
L, 3¥ie|AC") = {0 [wn 57 - :
= T . 0 :"an Wp (3.72)
Kk¢lJ . J\p(n) ’ ¥ .
] - : K

where

¢(")‘$_w % S* iRy, .i _ | T (3.73)

Kn /a + w(n)tw(n) = yYa + w' o " . | (3.74’

The two parameters of the cransformatlon, w, and fn,'

-are bounded /by the orthogonallty xcqndzt;on._of eqﬁation.

/
e
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(3.71) but must also be chosen to zero the column ¥ ") /k,,

obtained by meeting the requirement

Wyt ™!
T + —m———-- = 0 (3.75)
Kn
These two conditions are met when équations (3. 71) and
R
(é 75) are.,60lved simultaneously for 7, and w, giving
" Ew
S e e K, S .
'.o.\;‘-;‘-4' ——————————— e (3.76)
I D E Ka-1
_‘pn(ﬂ)w _wn(")
R = ——m--- (3.77)
s Kn Kn-1 .
where
oo = VRTINS < TR (3.78)
The notation for k can be generalized as
Ki = ;/Z"Tf:k'_'f\i:" (3.79)
so the recursive equation for k; is
= VR (3.80)
where : |
kKo = Va (3.81)
The transformation of equation (3.72) using the
parameters w, and r, from equations (3.76) > and (3.77) ,
respectively, gives’ the result
0o Wo  3Ta| [Ria YT
0 o -an Whp 2n  TTTTTET :
. j‘l/(n) = . ’ Kﬁ] (3082‘)
0 «. . / Qn-gp==—==7-=
1 2n n 0 ,

-eh
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where
R T 2R 2 for k <n (3.83)
- | Q(n)T _wkwn »
Qe = —===== = =—==—= for k<n (3.84)
Kn Kn-1
Wn +\l’n(n)7 Kn -1 ' .

Qoo = —"=-====-=== = —=-— (3.85)
The elementary matrix A‘"- ") is used to zero the last

compongnt of the vector jw“?,""/xn-; and simultaneously the
neit' column of the uppér triangular matrix @ is obtained.
The entire @ matrix can be generalized in this ‘manner
operating only with the norms of equation (3.805.

The general i th step of,this_procedufe,is'given by

Vi < A
Q, = --—---=  for i<k : (3.86)
o KiK - ' . :
Q
. K- : .
Q;i = T ! (3.87)
K .

equations (3.8%) and (3.87)‘enab1e direct calculation of the

matrix product of eguation-{3.68)

o Sk o : . o . A
V,) N . P P
- T SR
Kj- ¢k.1§iﬂ;¢1 't#ifg‘,
Sk.1 = ——=—|8Sk - ittt Do (3.88)
VP Kj-317%" ? ' i
By defining the vector Kg as LB s
§§¢y+1 ) ' '
1L4ng¢1 = TEmemTmsT
P Kj_12
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= e (3.89)

which. 1s just. the recursive least sguares estimator gain,
the final recursion formula for the sguare root of the
covariance matrix is given by
K- . _
“Sk-1 = —;—_[_S,: - \I/k-1ng-1] : (3.90)
VoK |
-Thus, the entire recursive square root estimator can be

summarized as follows

Yi.or = S*{Xu.s (3.64)

ko = Va " | R (3.81)

SV«

R@y.y = =====-
. Ko
o Ki-v . ’ {
_S:-1 = ~-=-[g¢ - ¢k.1ng¢1] ’ (3.90).
Vx| ' | -
. [N

”n ~ A
Or.s = B, * Kgu. [Yeoy - X0.060] . (3.49)

The main advantages. of this estimator are that it
always ensures a positive covariahce matrix. It also
essentially doubles the precision of the calculations

»involved thus reducing the effect of the rounding error of

’

various calculations 1n the recursive least sguares equations

1T

(e.g. in the computation of the covariance matrix update) .
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One dlsadvant?ge of this estimator Fis that nu ieric
degeneracy is hardé¥ to detect as the covarlance' matrix is
never negative. ﬁThereforc off-line tests using single and
double precision arlthmetlc are used to determine accuracy

degradation [24]. However the most‘serious disadvantage of

' this estimator is the computation time required for

calculating the square root. This may become a pfoblem'if
there are a 1large number of system parameters to be
estimated, particularly if the sampling interval is short,

as pos?ﬁblynfhe estimation would not be completed before the
next observation was taken. AN A B T A
F 3 . . ) x N ‘ -

3.4 Recursiﬁe Upper-Diagonal Factorization Estimator

| “”To. further improvec cgmputaticnal efficiency of the
covariance updafe algorithm,.while méintaininé the numerical
stability of the ‘square-root cétimator; Bierman “(1376)

.introduced the upper-diagonal " (u-D)- factorization method.

.This method guarantees the non-negativity of the computed/

covariance ‘matrix withoutz»involving square roots, _thns
;feduc1ng the computation time and the . storage

requ1rements[25]

In U~-D factorization the covariancé matrik follows.from

the Cholesky factorlzatlon of a p051t1ve deflnlte matrlx and
is constructed as

s=upu | R (3.91)
where U is-‘a square unit upper.tfiangular maﬁrix and D is a

square diagcnal.matrix.'These triangular matrices reduce .the

s
R
o
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P
g
'J\'J‘
S

number of arithmetic operations.

The formulation of the U—D.tactorization'method begins
by considering the classic Kalman. update algorithm which.
combines an a“priori estimQﬁe and error cevariance © and s,
respectively, with a scalar observation'z,ito construct an
updated estimate and erfor covariance © and S where.

z=X' 8+ v - (3.92)
The updated factors act as apriori estimates for the.next
measurement thue the estimation method is not self-starting.

The Kalman hpdate formula are

Skxk#1 ) . ’
KGy.1 = =——===- : ) (3.93)
o , .
[+ = X;.1 Sk Xk»1 + r : : ’ v ., (3.94)
gkn =/ék + Kgu. (z - X{., 6]:) ' . . (3.95)
Sk.1 = S, Kgy.1 Xik.: Su (3.96)

where_Kg is thei gain, and r is. the measurement error
variance, r = E(»*) and E(v) = 0. ..

The eovariance U-D factors update e}goritﬁm4development
as given by Bierman [23] begine by féétgring S in Equation
(3.96) using Equation (3.91) to yield

A A A A .
S$=UDU"'=UlD- « "(DU'X)(DY" X)*]U* (3.97)
If the vectors f and v are defined by

f=0U'Zx | (3.98)

v =DFE (v, = d, £,) | (3.99)

— Q

“and for g ~and D the U-D factors of D - vv'/a, it follows’

that
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UDU' =D - ---- S (3.100)

so substituting equation (3.98) and equation (3.99) into
equation (3.100) gives

DU' =D - a '(DU'X) (DU'X)" | (3.1071)

1ql

Now from equation (3.97) since
A A A - = - . ‘ .
UDU' = (ud) D (ud)" (3.102)

" 2nd since both U and U are unit upper triangular, that is

>

Icl

U=UUand D =D | (3.103)
it follows that the updated covariance matrix - U-D factors

can be determined in terms of the simpler factorization of
- A - - :
UDU=D- -—-—- = (3.104)

Application  of the Agee-Turner positive definite
R Sy S ) : '
factorization update theo?@m (see Appendix A) to equation

(3.104) giGEs the following representation for U and ﬁ'

A v : . "~
d) = dj + Cy VJVz _ l (3.105)
) c, 4, . — '
Cj-1 = ~=z3 TS (3.106)
Ay : .
_ Cv;v,
6, = <20 ierz,ge1 (3.107)
4. a ; =

Equations (3.105) through (3.107) are backwards recursive
for j=n to j+1,.yhere n is-the number of parameters . to be
identified and c;'= -a™ ',

Hoﬁever.since all the d's are’theoreticallylpositive if
follows from equation (3:106> that all the c,'s have the

same‘iﬁgn and as c,. is negative the c;'s “wilk all be
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\

negative. This indicates that the updaﬁed diagonals will be
coﬁgyﬁgd as differences which can lead to loss of accuracy
duevtb cancellatiqn and may even result in calculation of
negative d elements. To ensure that this will not happen a
differeht représentation for g, is needed.
Rearranging equations (3.105) and (3.106) gives _
d, =d, (1 +c,d,f1) (3.108),
cjly = cj' + a;f] o ' (3.109)
but since | )
L cit = e, = ~(r + IT., df1) (3.110)
it follows that 1 |
ejt = may = <(r + Ll viE) ) (3.111)

Substiyution' of equation (3.111) into eQuatioﬁ (3.108)

yields
A dj (a, - djfj) o .
d, = —mmmmmmmmmeodl | (3.112)
P!

then wusing .equation (3.111) with equation ;fﬂﬁ109) and-
fearranging q&ves |

| ay = a;.q + 4;f}) | . . (3.113)
yvhich when substituted into the _numerator of equation

4(3.i12) results in the updated diagonal elements
A . d,(a{., +djf1 -d]f}) ‘ ",5

J ES TSR ST AT m e S M S W e s e e S e
@
A dja; -, : .
dj = —==--- » (3.114)

Since the diagonal elements havg/'been calculated thé

algorithm now -focuses on the updated elements-of U which

Y



must now be calculated. Recalling from equation (3.103) that
U = UG and using the results of equation (3.111) in equation

(3.107) gives

U|j = T === v . (3:115)

Then, setting

Vv "f‘ ]
A, = —=x-- = —-—-- , - (3.118)
a; d; - B

allows U to be written as

U=1+1[0xv00 dyvezd |0 A vn-1] S (3.117)

i

where .

. - (V(‘I))‘ = (V; o o . Vy o . o e Oag . | (3.118)
Since U and U are triangular matrices of the form of
..equation (3.117), matrixnprbducts,aSe easily and efficiently

evaluated. A direct computation oﬁ%Uﬁ'gives

6 =U+[0 l;Uv“"k;Uy"’ e« o AZUvim ] t (39119)
" such that ' Lo
N ‘

U

[tl‘l e e e ﬁn] and U =‘.[U1A- » ..Un]
_ : , A
where G. and u; are the 1 th columns of the U and U

matrices, respectively.

©

Now that the updated U-D factors have been obtained the

\

updated géin must be computed. 'Factoring_ S of equation

.

(3.93) into 1its U-D factors and substituting‘the f and v
vectors for U%X and D f, respectively, éiveé ‘
‘UBU*'X . Uv

R = —mmmm 2 mmc : S ©(3.120)
o« a, - -

l ; . A s Lot . - - ;\."”
- The labelling of the columns of U and U  aldng - with the

! £t
W ¥
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special structure of v and the inherent recursion  of K; =
I :
uv'i’ ldads to th% construction of the expression for the

numerator of equation (3.120) to be stated as

K., = Uvli*") = K, + viu. ' (3.121)
J J T Y

so the updated estimator gain for n parameters is

K;\fl . :
Kg = ---- (3./122)
an .
The wupdating algorithm of the U-D factorization

estimator can now be summarized as follows, for j=1

f = U'X ' B (3.98)
é v.=Df - ; v, =df, A ’ (3.99)
a, = I.‘-'"V1 f‘| - (3.111)
A d] r ) . :
dy = --—-- (3.114)
a4 ¢ N .

and then for j =2, ... ,n, recﬁrSiyely cycle through the

following four equations

a; = a,-v,' + ij) ) ’ (3.113)
A dja;. - . ?
d; = ----- o : (3.114)
aJ .%\1;:@‘, l. f
u; = Uy + XJKJ Ve i k] = "fj/aj-1 (‘3.119)
Kjol =K] +’VJUJF'V‘ ’ "’*4 . (3.121)
and finally |
Kn¢1 ) ’ . . .o )
Kg = —o2l. . S (3.122)
an, . N o

. s0 the estimated pérameters can now be calculated by

y

~equation (3.95). , - ' 3
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This U-D algorithm is 1ideally suited to computer

A

implementation because of its recursive structure. The U
computation employed 1in this aigorithm is advantageous
‘because the need for storing the'ﬁ ’matfix is circumvented
and the number of calculations is reduced by a factor of n
as the computgtion of ﬁ and ﬁ requiredAa_total' of n(n-1)/2
‘addit;pds and multiplicationé‘while‘diréét computation of uu -
requires n{(n-1)(n-2)/2 such opergtions. [23]. ‘
From "equation (3.114Y'.;{tf can be seeﬁ the the

computation of D avoids differenéing and also negative

values .so long as the. measurement error variance. is

positive. These features ;¥esult in- a numerically stable
. . .qu ¢ ) Lo \ ,

algorithm. Furthermore, t can also be obserVed that the

elements of D can become very small without affecting the

2

stability of the algorithm.

. : [ '

3.5 Recursive Learning Estimator |
Nagumo ‘and Noda [26] proposed a method for linear

system identification which is based on the error-correcting .

training procedure in learning machines and referred to it

as learning identification. The method does not provide a

leac -ares estimatg of the phrameters and is slower in
cc . The main advantage of the ’téchnique is the
sin,.. cmulation of the identification algorithm.

The systems are canidered‘ to be described by a-
representation ‘dﬁd the measurements are assumed to be

-noise-free. Given the system

\
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Y =91Xj_|+92}(‘|§v%:'}". . -A+9mXJ-m=ZT=1 9|Xj_i (3.123)

where 6, are the system \parameters and x;.; are the

' corresponding observations. Let 6,t1  (i=1,2,...,m;
Vd

W

j=m+1,m+2,...)x be the set'of estimates of 6, at iteration
step j by a recursive procedure, calculated‘by an eqﬁation
that will be derived, then the dutput predicted by the
identifier Y, expressed as ﬂ‘ |
y; = ZT,;@,‘J)XJ_. , '(3.124)
approaches y; at iteration step‘ﬁf | |

. A : U R
Define ©, ©; 'and X; to be m dimensional ‘vectors

contéining‘ v .
t @=106,6;...0n]" | o (3.125)
B, ;‘[;9,<J> 621 . .. 6,00 ' -~ (3.126) -
X, = (%, ., x,?¢~, . X imlt L (3a12])

. The vector X; is a modified observation vector' obtained by

collecting m terms of the origiqal observations

2, X3, .. o _— - (3.128)
hence | ’ - l o | - ‘ |
Y, = (8,%)) ‘ .’[ﬂié., T ,.{ (3.129)
yi = (8,,%)) : - L y (3.130)

|

, _ 8 |
The estimates, y3, are updated by adding the

o

-identification error between the: output and estimator -.

predicted dutput proportional to the magnitude of the

corresponding element of . the .observation vector _Xj,

N

¥ier = yj o+ smmomSmIo—os- - (3.131)

t i {
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LT 1ntboduct g& .of an error correctlng coeff1c1ent to" equatlon

Ce 52
where’ ' , . o -
||x,||z=,=>:=,(x,-i) o (3.132)
The procedure is error correctlng in the sense that
A . - i
(®.77 X;) = (?4'+ Ae"xj) L
- . N , 2
= (8,,%;) + (88;,x;)
}g‘ =yi +My; Sy oy o (3.133)

. The up&atlng procedurF can ”oe’ enhanced [26] by the

(3 13 ) to 1veu‘ v T ' . e
Woegglves e )
. ) ay(y,_ - Y])XJ . . ’ .
Yien =¥ F mmmo oI | R O 134) ,
o wllxl |
where 0 < ay < 2. & L . '

.
I3

Th% convergence'af thekmethodf‘fev shown \based*:ondva“
lgeométricéd>l1nterpretat10n kofv ghe"updatlng preeg&pre, by
_:Nagumo and Noda [26] Convergence of é,‘to 8, 15 agtalnedg
]|6 - 6,||+ 0 when j +=. The followlng is t! e proof of

. v

’\the necessary and suff1c1eAt condition based ° on the

development glveh by Nagumo and Noda [26] and Grg ‘pe [15]

. Expre551ng equat;on (3,134) in the form

d1(e 9,,X )XJ
Yier = Yt Toomoomo e ST N
: EERSER R : .
’ « Ves
- ) '.v. a1(9 /\j)x}xj ) L . \/
Yis1 = y] +morommo oo ~ : + . (3.135)
o ‘ - ||XJH2 , . 7 '
andilletting‘%x,».= 6.“4 6} allows'equation;(3.135)'goroe
. ' . 7 R S M
written as _ : .
Xjor 5K o (Gzmen) T w7 (3,136)

:

‘where .

PEY
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SENE

CE

.

therefore convergence, that, isjgﬁ = 8goccurs wﬁen<,¢|ij|;p f,
) ' 4 ’ r ' ' o ‘ Ny o 7 - o
L A ’ - 2 . g ‘ “ T .
q,cohéérgence;‘Criteria is\,prOVén"ﬁréﬁ,"equatf@ﬁf . e
“ e 0N . . -

“ . oNouet
. R

= T
Ay } 5—‘\ : . ) 4 - .\a. ‘
Gl = (“K,VJXerJFXj‘) = (X, ,sz)(j)., : .(3&‘&13’9._)_- "

C o ay (27 ai) X K] T
= [ - Foommommomemexyxi )L T (‘.'3.'1),’40%
I jc ’ ‘] |XJ H_‘z ~ - -1'... ' .

F PRy
Ty

L '.\;-.'} . - o e - i&v‘\";‘.ﬁ‘;f_:'. e LI g , S # L V
‘Multiplying sthe right-hand-Side of *equation’ (3.140)By . .
e /1 e g ) o
R G TO F L R & PRI S B
/‘{,i‘ B v . ' i : S . | —

where =~ . : . C

ixy.

ES

~, A 1

SRS 1x1] S S . -

&, = ai(2 - ay)|======%g-—---|, - (3.142) Lo
- LR B b T N I S

-

and ST B ‘ - N
X 1 e 1T TG0~ ) - “(3.143)
. k_‘m" {.\ ¢ - . - %

_Since « 0<a,<2 ' .then 0<&,<1 and the necessary ~and ) “. e

<

4suf£icientAcohaition fbrllli|lf“0 és?j»w is gi- 'bylggy‘ C

Z?.m,,« @J = ® ¢ . ‘ . ‘(.JC‘, - o (3.144?>

<
15
iad o

If the input sequence is random then the'dbservation:uVecthF_

— ;-




v

and lettlng P —GE{y,] y, ete e y,ﬁ,} the ser1es Z,y,(w)'
| - . i

<y

coénverges for Elmostfall ,w* for whlch Z,P;(w)" conv Lf'
‘ LF fa
var1ables Qm.,,

Sald

A9 4

Tberefore _1f “in-a sqggenCL of ra i 2

1.‘, there occurs an 1nf1n1ty of @,'s‘such that nh>5 ‘where &

/ N L
s - a, p051t1Ve constaqts, since In; = #= then LZ$; = = which
Lo » N . /. . » i . ' s N
-~ would satisfy equation. (3.148). ) . ‘i

.The- recursive learning method has been -shown,

J‘ ’ N » N ' * » - ; : . ’ B v - / . .
‘theorectically and experimentally , .to converge for a - wide

2,

" class of input signals. The estimator algorithm is given by

. u':) ) .

 RQuay = mommmommmmoee s S (3.149)
B s xk*‘lwx:oi + p, ) . . .

'6k¢1 = /e\k“.‘*' Kglgo1[y‘k;1 - X;+1§k] N . (3.150)

whetre py, with a value between 0. and 1 not in  the original

“algorithm is added to ensure division by zero never occurs.

i ™ r‘—'./

P -

e

l/ 1 ¢ ‘ 5%/‘
X, is random and therefore the sequence
. \) : (s ] ~ o , o
é(m+l),¢(m+2), d(m+3),. . . ) R 7 (3.145)
iSvrahdom Qhére ¢; is dependent on $n. i, Pm.2,. . ., P
By def1n1ng ‘ ' ' S -3 L
. , ; B o
2 mp = E{q’j'q)m4qu>m¢2r- LA I(bj-1}" "' R .v o 4 ,(31\‘1146)
~and assuming that Ve e o
Liamen ﬂL = +,? ﬂ . ﬁ“; . A _J;JJ, Y
: H a : . .{;,_h-;,r v \\3{- .' i
ﬁbe corpllary suggested by Doob [27]wfrom the Borel- Cantelli
S / )
: ya / . )
lemma shods that equatlon (3 147) ?; necessary and
’ . Lo P
%Pff1c1ent°for the - conv rgence of T .
le}||l 0 (] »w)o A uﬂj f{ ST ; 'dﬂ*u (3;148)&ﬁf
SRR — N
=The corollary states that given.ﬁ‘,, y;,' X as a, *“
. : .' ’\m‘}' # s ¥ q . @ \ . .
sequence of unlformly bounded nonnegatlve random varzables ' ’

s .

-

e
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" 3.6 Recursive Maximum Likelihood Estimator.

[y

T
RN 4

w Vi
N

AN . . B .

Kg. is the gaih of the estima* r, and « is the sg
convergence factor (0<a<2). , \

The recursive learning estimator calculates
. Q4 . . -

‘parameter estimates without the parameters covariances -used

r

by the error—coréectfhg coefficient, a, thus the computation
time .is considerably less - than fthefxotherm methods.

+ ’ ~
" .

Unfortunately with the lack of the covariance. matrix there

is no meashre of the accuracy of the parameter estlmates andw~

L : 0 .
the algorlthm is suboptlmaL in th least‘squares sense‘ '

o '

»\ﬁ'
c se to the act

‘L

vaiues. L v v

g

1 -
> b
) [P

.
& B L

%

Eod

3.6.1 Maximum Likelihood ESti?ator

B

b0

in 1912 [16] alghcugh thefhasic ideaslwerevkhown-tb Gauss in

1809 [16]. The method 1nvoryes-the constructlon of a real

-functlon of the—unknown parameters and process data and the

- parameter estlmaxe is obtalned by determ1n1ng Ehe parameter

A

_values wh1ch maxlmlze the function: Thrs real functlon is

¥

.called the llkel;hood function and is“'essentially' the

probability - density function 'of the observation. To
G » Y A

determine this function it is necessary to have presumptive

knowledge in order to write the conditional probability

/

density function of the observed output. For sequential

-

-
#

N . "
) : w -~
. .- . '
Ty ' . RN -

N . . 2 . N b . . R .
in the previous methods. The covariance matrix is replaced °

obtaln bhe @ptg?!%s parameters the 1n1t1al guesses must be {5,
S .

_ ‘ - :
The maximum likelihood.method was developed by Fisher’

.IEE

i
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: N o e s . P
-observations the conditional distribution of the output at

v

time k41 based on - data obtalned .up to time' k must be

determlned This' 1s a predlctlon problem so the llkelthOd

)

functlon can be expressed as a product of .thef condltlonal
“ ‘
dens1t1es of the prediciton er:q;s. S

v

The derivation of the maximum likelihood estimator as

.given by Franklln and Powell [28] begins by 1ntroddb1ng a

\
probablllty den51ty functlon for the random variable

. . 4' . v Il;v
to any one 52 the ‘normal or . au551an
: r» ‘,J’?IWJ . ' A - .. 4 R
dlstrlbutlon is enerall used . SR . .
d YM = R ”'ﬁﬁ@ w7
- 3

"For-a set of n. random varlables, X, w1th a ]01nt normal

)

dlS@flbUtlon _the mean vector .u, and the non- 51ngular
_ o : ¢ ‘

covariance. matrlx S, can be defined as

E{X} = u - | | : , ) (3.151)

- St
E{(X-u) (X -u)'}=s , (3.152)

Then therpfbbabilityhdensﬁﬁi function.can be yritten‘as
R 1 R EL LN
f (§). = ———---mmmomo exp| -(&-u)* S'“(E u) | (3.153)
- [(24)" detS]”2 2 .

. [y v

-aemﬁ&tal~hean5717y and va}lqugs 202, ~~then 'S?q’L and

L f(8) = f-*—-’——-ekp -;~E ("E;‘I.L;):z o (3.154)

-~

'
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: ~11ke11hood functlon The max1mum—11ke11hood estimate ‘@

W . .n",.r ) . ,
. . Y ‘ 57 -

' W R

K y

T TN S .
The maximum—likelihghg~9stimate is <calculated on the

basis - of an assumed structure for the probab;llty density

function of the avallable observatlons. The den51ty function

[

consideredsto be a -measure of the "likelihood" for a

particular ‘value since the probability that a- partlcular x.,

’;"

is in the range <X, Ss is g1ven by

v

ERE an -
o . , 2 7
. R . Y N . B

B v ~

~can . be wr1tten as a function of ©, the parameters, and is

He

o Pr .{L‘Sx,Ss} - j £, L& Ie)dEI ‘ "R B o (3{3155)
. ‘ o o . e L e
where . ‘ AR & B %
. S e —1 (El_q)f-z.f ' e‘w
E; (£]€) = (2m0i) "YZexp|--L - <--==--] w * (3.156)

“when £ is a functlon of the parameters, 6' 2, then £ 1s<7 e <

&

HL’

]

'>1s the estimate of the parameters wh1ch ‘maximizes fx (X]G)

the probability den51ty funct1on of the actual data.7

Suppose the data consists of' a set of observatjons

~having a density given by equatlon (3.154) but an ‘unknown

mean / the max imum- lxkellhood‘ﬁestlmate of the mean u'\is

' calculated by settlng the der1vat1ve of £ (XIG) w1th res ect

H

g%o 6 to zero. S1nce the logar1thm of f is a §1mpler fun;tlon

.

”

than f 1t is convenlent to compute _ v' A y
d (log £) 1 af . &’Jm”“i;“'7 S j-'i,‘ﬂ.xﬁ

| s T C - (3.157)

se f a6 R _ _

Since the value of f cannot be zero in the neiéhborhood of
. > ?fﬁ . .

zZero,

"its maximum therefore df/de = 0 for the_‘defivative; to be

‘Q‘_' .

M

o
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 Define

distributed then ' : R L e
: . A : A 2
afe : g o ey el
n ’ '-&({,\;Ln (x;-E-))’ " * . . -
s 1(x|8) = - log(Zna ) *iel  memmee- : L (3.159)
) K . 2 - 2 [ o 2 . ’_, R ) :
: i{& and 5 ’ a8 - ‘ »
o8l -t 7 SR PR R L
S ——7 » 2(x];e) = ~-{Z7 x,-nb}. EPT .(3.160)
260 20%1t 1“*' g B ER
Setting the.dé;iv‘ erQ to get*the maxlmum-llkellhood
. » : ) " -_ ~ o 3 o .} . } v_ y (i
‘estimatev“gives DX : ,;’ , o
w2, . R . . Rl . VL e L e
L A LR ‘ : R . ',*': I D S
L x; - nB, =0 : S Y e T 0 (318 T)
i=1 w ’ - : - S e . .
O = I x, ’ ' SRR : (3 162)
o n i =1 ‘ ) ) . fe 5 Qe

RIS »

Therefore for an ﬁnﬁnown"mean' of normal dlStrlbUtIOn

P - ~\.
T

the maximum- llkellhood estimate 1s the sample mean wglch is

also a least squares estimate, unbiased and consistent (that

is, the estimates converge to the "true" parameters as the

s

_ number of samples goes to infinity) [28].

N

The p;incipl%s of maximem liKelihood estimation can be '

applied further to dynamic system identification?pcensider,a
model with simple white“noise disturbances

Y= lek-1+ ---+fnYk-p+g1u.-1+...+gnuw-n+vk‘ ' (3.163)

o 1(x]8) 2 - log f (xfO) . Uy 0 (3.158)
Sy & . : o | '

as. the 1likelihood ‘functionf for; u and if, f is normally

<

Assume the distrlbutlon Cof v=lv, ... v 1* is normal-with

zero mean and var1ance o? I, N(O Y I), thUS

: g 5 R
E{vyv;} =07 (k#]) B o o (3.164)

e
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W m
. %ﬁ'&i | - _
in \order to - estimate f;, g, and ¢! by a maximum
llkellhoodﬁ$§thod, from a eequence of observed Yo, 1t is
to

necessary know the probablllty den51ty function of the

. observed y, for known values of the parameters Assumlng £.,

g.,"y and u are known, v, can be computed from the observed
vy, u and assumed true f, and g;, and the dlStrlbUtIDn of?VY
is 1mmed1ately determﬁﬁed by the dlstrlbutlon of v.‘

For the true parameters, e°,

L Y(N)

where

Y (N)

N
s

["Y" e e w Y ]"'

1] " R
'G°\_= [f1 ceofn g1 «os gn]‘ .
To ‘obtaﬁh the probablllty den51ty functlon f(Y|8 ) for the
maximum likelihood method, #V(N) must be computed from Y(N)

usxng the probablllty deh51ty function of V(N). Therefore in

oy
i

'orderutd_comppte V(N) from Y(N) the inverse of the model of

the process 'is required The noise sequence, from equatlon;

vt

(3.165) is

P

V(N) = Y(N) - x6°" | - | k>\£3g168lzt§}

Now , sing% the densfty function of vV 1s”

. tha/ | , . ) | . ., . - ;M
' . : , "_ ’ . . N ’ - N .

) . ‘/" )
v -~ =1 (¥-X6°%)'(¥Y-X6°)|
£(Y]|@°)=(2m02) ™/ 2exp|-- --—==—=-=—=m——-= ' (3 169)

P

where m=N-n+1 (the number of samples in Y). The likelihood

.function is by deflnltlon f(YIO) which is glven by equat1on

(3.169) w1th 8° replaced by the general vector ®,.and tajrngt

,; v | .‘

X6° + V(N) ' o - (3.165) -

‘N(O o’I) 1t foliows

- Al e




)Y, ¢

V)

60

the logarithm of f gives -

\ J-1 (Y-X08)'(Y-X0)
1(Y|®)=log(2m0?) ™" 2+logfexp|~= - ~—-==-=—=--—- }
: : 2 y o? ' ~m~6$

\

or “

. “-em m 1 (Y-X0) ' (Y-X8)

&l 1(Y|8) = -- log2m- - logo? — = —~————-———-—-- (3.170)

2 -2 o?
The es?imates @ML_'and’sgLare the values of © and &‘ whicﬁ‘
‘ﬁihimiigai(Yle). These estimates are found by se%&ing the
partial ggrEQ;tive Jof 1 with respect to 6 and d* to .zero

g oo -2
which gives: -

RS o -

H Y.FTQ o . _
[ 'thvxéML - g*y &i .7= O . ' ' (3 . 171 )
TML ' ’
. x &
-m . (Y-X@MJ‘(Y4X€gJ,_w ’ : ' |
ZUA:L 281:!. - N » .

Since equation (3.171) is the identical "normal".equation of
"7 the least squares method, equation (3.13)ﬁ then for ;thié’
case énu = O ;nd thgs O s also asymptotically unbiased

and consistent. The estimate of 02 can be determifted by

& | : ‘ .oy
decoupling'G? and gML and solving equation (3.172) to give
. . . - . N 5 I
. . 1 ' . ) -
A 47Y—§6)‘(Y;x6) o - L - S
A R
° m : . . ) n - - » ’ -- ’ °
1 N A : D - (”'7
6;L=- ----- L e’(k|Ou.) ' o (3.173)”

N-n+1 *=n
To obtain the @NLestiméfe the general model is modified so
that past ~values of the noise are weighted by the h;

parameters
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. “;« ",.:‘é"*;:"‘.v - ‘n f‘;r\“ ®
IkadZ?ilfIYk—i*z?ﬁﬁg*%ul—ifzfmlbiYk—i+Vk (3.]74)‘~

where ~ the distribution of VvV is still -N(0,0%1). The

".5_squares estimate is now biased if h;, are non-zero.

16 simplify the 'derivation, assume h, is, the only
¥7ero coefficient and write equation (3.174) with the
noise terms on. one side apd define z, as

Zy = vy + hyvyoy

&

(3.175)

o2k T Y T t?;if!YR;i; ZT=1G iUk~
Define a reduced parameter vector ®=[f,...f, gy...g,]"% which

- does not include the h, parameters, thus

Z(N) = Y(N) - X8° | | . . (3.176)
A 1 y
0 . S .

" where PR
33177)

But z, is the sum of two random variables, v, and v,..,, each

v

2(N) = [z, ... zglt &

<

V"‘
Raory
]
.

having a normal distribution , therefore Z is .also ﬁormally

distributed. The mean and covariance of Zz, 1is calculated by

E{ze}= B{vithyvi.4} = 0 (for all k) - (3.178)
oo o - _ '
E{zkzj} = E{(ve+h, v o) ( V1+h1vj-1)}' e
. | ot (14h,2) | (ked) S ‘
| C=p* h, (k=j+1) _ (3.:479)
" L . v
»=07 hy v - (k=3=1) —
=0{elsewhere) L 'ﬁﬂ L e
. v - ’SE;,?
Thus the covariance of Z(N) is A
s =E{z(N)Z'(N) .} ‘ . v (3.180)
S = 1+h,* h, 0o . 0 . ' -
'h1 1+h12 h* . . . N .
0  hy . . . o* 7 (3.181)
v . .. h,
- O . . 3 h1 1+h‘|2

i

AL

. K
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(¥4

1(y|8) is depé%dent .on the f. s and"g

. quadratic

Therefore an

qu that

density function of 2(N) is
-1

g(z(N)|@°) = [(2n)mdetS]"/2exp --z2t's-'z| - (3
o 2 o

Substituting (Y-X8) for Z and 8 for ©° from equation (3.

ihto‘equatidn”§3.182) givesf"

<

N N

. 1 ‘ -1 _ | . .
£(¥|8)= ~=~=~---=--————-exp|--(¥-XB) 'S" ' (Y-XO) (3.183)
‘ [(27)™detS]'/? 12 ' - :
and taking the logarithm Of-f*yields ,
T m R (R
1(Y|8) = ~log2mr + -log(detS) + -(Y-x8) ' (Y-%8): (3.184)
.2 o2 2 ' T ‘ '
c. cE

By inspedting equatlon ,(3 184) it can be seen 'that

s from © afid is

through S  and dets “which ,is definitely ,notw_gqédratic.

explicit formula for the*maxigun-Likélihood

estlmgte 1s not possible so a numerical® algorlthm must be_ *-

4 »

‘found ta chtahn eny . ’ “-}“ ~ . B )\

g
ERN J

To obtain an algorithm‘;o-be used for tthe. numerlcal

‘seérch for 6ML , equatlon (3. 175) is f1rst rewrltteh to form ‘

. v

the 1nverseusystap

o

' =.Xg - szafiYk-lJ"Z?-1gsUk-; - Z?-ihlvk-}
where vk.hasuda' normaj distri?utién with =zero mean and
unknown scala; variadce S.- . The. vector V(N), défined
’previouslf, has a normal digtribution with zero mean and

a3

62

the;mean and covariance are known the probability

.182)

176)

thus

in these parameters but it depends on the B/(: ?

S

4
N

-

(3.185)



‘covariance v

S = S,Im = E{V V'} | | (3.186)
'where Im ié an m x m identity matrix and m=N-n+1 (the ﬁhmber
of elementé’in V). The density function in terms of the true

parameters, B°;, can be written as
Y

“
N}

A -1y VE o
"f(VleiﬁE 2#)”8 exp --Z - . ‘ (3.187)
3 .3 - 2 kKung o,
; .

b

The llkel@%ood functlon is found by substituting ‘arbitrary
. . ‘

parametens ® in f(V|6) and u51ng e, as the' output of '.Qgi '

equatlon (3 185) when 6#6° to give ' ' ' & oo
' - - R R N
e o.m m 1y | X
' © ,1(E|@) = - log2m + - logSy,+y-x-L se’, = - (3.188)
L T2 T 2 , zs Tt s S

! ’ . ) A - ¢ :
As before, gvis calculated by setting‘al/asv=0 which gives

o . SO ’ \

27 . , - . -'."(~,3j§.189“‘)u

.QTﬁé problem again, is'to find estimates for f,, g} andth} itf
ji_s_' necessary- tql construct a numerical 'algorithm@ for;
minimiéing 1(E|®).,There are many such algorthlms But ,theﬁv

’algorlthm 'based’ gn a method by Newton is presenred herf. The

P ba51e'con€ept of the algorlthm 1s-'glven the k th egr;maref

~ s I

*  of 9 fand a: (k+1) st esflmaie wh&ch makes
8 . o
. »1(Erék.,) < 1(E|ek | | i (3 190 0
S ‘ . v

[T

. "<lTh;s ]is done' by expanding l about O, and ch0051ng ek.1‘so R
NG ’
* vthe quadratlc terms of 1 are m1n1mlzed,,Let

R . v
s . .
. )

Bu.1= 8, + 88 . (3.191)

e

then - . : - B : ’
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I(E|8,) = 1(E[®, + 68) : R

D R . o .
h + ¢'60 + -66Q60 + . . . : ©(3.192)
5 - . .

g : .
= 1(E|X,) ’ . ©(3.193)

e

2l

BN AP e (3.190)

- 28,[6=8, o B - : ) '; -

S T R - L S

Qi el T e | LT (3.198)
v ogd0f0b; T S,

; 5 " . . « oo
»- TS H . v FE— - .

Select 86 so fhat “ﬁcuadratlc apptoximacig‘l”%f '1?415 .
) ) . I.l'(_;"‘@'n . : . b‘. .
mgnimized that 18 81/8(69) 0. D1fferent1at10n of equatlon

a4

<

13}192), Ignorlng the hlgher Qer terms 1n’56 and setting

-the_derivatlve‘eggal to zero

&, O B

€
oY
—

E— =~¢"+wsefQ,u;'of,“7' .fgkeﬁi9§) ;

fé(’ o, .
A . Q '
© . ‘/A o .
(3.197) -~
N . ! D
A N “N . :_"' '. .
N R T PO P T O
‘ B RGN N b T A U
A =B S el T T (3.198)
o |eder e L 5 B
i \': ) o : o ‘ . N . L
‘ is Thows, necessary t° express the partlal der1vat1ves 1n -
v . gx? a;,./

+ ] .
terms of tﬂe observed 51gnals y~and u. Slnce 1t was ,shown,

from equatlon ¢3.189) that Svls a constant equatlan (3 188) ~L;f

fa

a4

C; ) can be recalled to calculate the. part1a1 der1vat1ves 1n:gphé i -

~

1
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following manner | S P ' o ‘ﬁx v
al(B|ei m oom . 1y
- il-- - log2m + - logS,+ ~x-Z ef|
a&?‘,. {‘E ae '2 ‘i-J \‘ i 2 v . ZSU' _n‘ . o
31(E|®8) 1T N oe, — a \
—----=-= =z~ L ey~== ‘ . ' - (3.199)
© 26 S, k=r J 3@ ' . .
and.thepefbre o ; &
a l(ElG) Jy%N de, 3 g
________ =_-f23_vz a, -- Ejﬁg_‘ )
gae 085, 26 it
S E % - ,
a=1(E|e) a0 |oeltee 1, a%e w0
Lo mmmeese- = z- Z -=| ==+ L ----g, (3.200)
0 29636 Sy “*"lael a8 s, *="a679 : @
”. . v ‘ () : S I
Since the algorlthm ‘is only "expected to produce ran _'f§~\\
'1mprovement in and 51nce the f1rst dér1vat1ve terms wlll 1"?

‘»\

- domlnaté -near |the. m1n1mum, the™ algorlthm can be 51mp11f1ed
vby 1nclud1ng only the first< term of equatlon (3. 760) Now o

‘the part1a1 derivatives from,eézat1ons (3. 199)“ (3.200) %’m. 5
3 R

’f:depend only ﬂon the derlvat1ve of e\w1th respect ;oae‘ %huﬂ , ?% @:
L-onl?»ae/ae tte sen51t1v1t1es of e w1th respect to éfﬁp%t?béi?if{} é:.
g ‘dlo*mpvute.d e “9 ’_" ‘7_ L  ' J/~— V “’ E Q,_, "

‘ | Subst1tut1ng er for vk in equatlon (3 185) glves o ”i: ’egl
. Bek/af.'=--y:_{‘7 z,.g h, (bek_,/af ) f/; i',[ (3. 201‘“7‘§“t~ 3
'{ae;/a93e=--ukz:,- o1 h (ae,_J/ag,». ”l';Ayé ‘(35202)‘: ;;Q‘

aek/éhL % -e?;}i' 2y h (aeu—r/ahl) ¢ kjﬂ“é,';.“3;20§). ?£

y Fofue.giten talueyof iy equation (3.20%) is ?e Cen;taht' L

coeff1c1ent d1fference equatlen in the var1able aek/af, élth ,ehe'v/?
' ' | \"»-- e " 't; 4' &‘t

. . :
c - TR , R MECN
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i

y«-i as. a forcing function. Taking thg z¥transform of
equation (3.201) and defining .
er, = de/df, (3.204)

-allows“equation (3.201) to be represented by |
EF](Z)= —Z—-iY(Z) - ZT?1hj.Z-jEp;(.Z) S (3.205)
or ‘
z:' : | : .
Bp (2) = ==smmmmmmmmmmmmee v(z) *(3,206):
T 1+ Z%. h; z° 1 L

Therefore the derivative of e with respect to a, is z- '
times the partial derivative of e with respect to a;, and so
forth.
‘ ' - 3 . . Q - L N

The sensitivities of e with respect to g, and h; can be
developed in the same fashion. '

Now the maximum likelihood algorithm can be constructed

. ! v ) ’ 3
to compute the wupdated parameters ©. First, " select the

initial parameter estimates and then for n observations and

N tétal‘parameters, the followihgjequatibns apply

ey = ?k;Z?F1flyi_er?xAQIUQ,L*Z?-;hin-J‘ | (3.207)

dev/dF, = ~yy.i- L]..h,(Bey.;/3E,) | (3.201)

de, /3G, = -ux. ;- L. h;(de.. /3g,) . 13.202)
. dey/dh, = -e,.; - L}.; hj(de.../3h,) (3.203)

S e, . o

S,- = L e, --- S (3.208)

26 K=o 20 | : | :
| - ¢
L 371 v |de|t|0e, o
S,-=== =& |-—=| |-==| ' | (3.209).

3038 k*" | 36 20
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N 1 N ' .
Sy = —7°~- Z ei . o . - (37189)
N-n+1 koo A
1 A 0l ) . * ' .
¢ = =Sy -- : (3.210)
S, 20 . .
Tfo 0%*1 ‘
Qi = XSy == - (3.211)
S BQBG .
~ , ,
‘ei*f = 6k -Qi'e ‘ : : (3.188)

These equations are calculated for successive groups of

n observations uAtil the éignificance of the reduction,
. calculated by _

[Surer = Syud /Syu - | (3.212)
reaches a userlspecifiéd limit. \

Althohgh . thisg mefhod give% unbiased, consistent
estimates it is an ofﬁ;line, batch method and thérefore does
not utilizé the new information_provideglgﬁmediatély. It
also requires a matrix inversion\ éalcﬁisfion which 1is
time-consuming. Therefor: an on-line maximum likelihood

method would be useful in“dyngﬁic systemtidentjfication.‘ )

o= - A
TN e .

3.6.2 Recursive Maximum Likelihood Estimator
A recursive dlgorithm for maximum likelihood estimation. -~
.of parameters in a linear dynamic system was proposed by

'Soderstrom [29] for on-line identification.
\ _ N S
.\ The algorithm is derived:.by a recursive minimization of-
a time-varying loss function V.(8) where

b . -

\

|
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=3

e?(k|8) . (3.213)

= 1

N -

v, () =

and m is the number of semples, e ‘s &he“resagual at .time k
"and 6 is the estimate of the parametc: vector whose elemdnts
are the model parameters.

The ‘variance of the residuals is estimated by
2 ~ - - -

0 = - min V,(8) : o (3.1214)
m

' A i " . ) . . . - A . : N
Let ©, be the vector which minimizes V,(8). The estimate

N ’ T . - . ! o
Om.1 is calculated from a Taylor expansion of V,.,(©6) around

»

A i} . . . . . ’
®,. The expansion including second order terms is assumed

accurate enough for the calculatlon of en,,

¢

nol(e) = Vnwl(e ) + V n#l(e )[6 - en] +

1/2 [9 - 9 ] v n’1(9 )[6 - %n] | (3.215)

" Using the method of 1terat10n [30] for V' (6 )= 0 to produce

the recur51ve eQuatlon for en., glves

6noﬁ = en - n¢1<en)-;V;¢1(en)g. o ) | ' (3.216)

i
which ié; the same form as the first iteration of a
Newton-ﬁaphson algorithm applied ﬁo the equation V!., (8)=0.
Substituting gn.1,ofbequation (3,206)AfQ;*@‘in~equation‘
\*¥\(3 205)-allows the estimated minimum yalue.ef V",,(g) to he
exﬁ?essed as | -
Vo, (8) = Vn,1(6 )-1/2Vn.1(6)— ‘ _
viL ()L, 80 e ..(3.‘21'7‘)"
In order. to form a’ recursive . estimator,_f the

relationship  between 'Vn+1(6) and V,(8) must be used. Since

-

/

by definition.
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V.., (8) = v, (B) + 1/2e7(n+1]8) | (3.218)
taking the first-;nd seéond derivéfives | e
Vi (®) = v,(®) + e(n+1]8) e’ (n+1]8) (3.219)
Vi, (8) = vi(B) + e'(n+1[8) e’ (n+1]8) |

+ e(n+1]8)e"(n+1]8) : . (3.220)
gives recursive equaFions‘for the terms of equation (3.207).

To sihplify these recursive equat}ohs the following three

assumptions ére made o _

i. vi(8,) =0 o S : "  (3.221)
since Gn is assumed to minimize Vn(gn).

"ii. e(n¥1|6n)e*<n¥1|6p) =0 S 0 (3.222)
as "it is vassumea‘*fpr off-line maximum likelihood
estimation the term 2:.{{e(k|g)e"(n+1|6)} of egquation
(3.?00) has ;ittle'influence 6nAthe minimization and can

be set to be zero. 3

iii. |

vi(8,) = vi(8,.,) o (3.223)
,whichvhplds approkimateiy if 6n istélqsé>to‘gn;,,'
| Using},the apprdximations of équations (3.221) ‘ggqi,

(3.223), the-recuréive‘equatiohs become .

~ ~ 1 . - ~ )
‘Vn¢l(enf1)=Vh(en)+2—'f e’(N+1|9¢)

1 .

& = -v:l!i(gn JAAAN I(Gn)'v:\'o‘l(/én)-‘ (3.224)
2 ‘ . , | o

Vi, (8,.1) = e(n+1]8,)e" (n+1/8,) - (3.225)

Vi1 (8,.1) =

vi(B,.,) + e'(n+1]8,)te(n+1[8,)  (3.226)
'Introdué}gg“thé following n¢tation

Rga = v2(B,.0-" T (3.221)
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§o = e'(nlgn-1)' ' . (3.228)
en = e(n|6n_,) ’ ‘ (3.229)
Yn*l4; 1+ §8.1Kgnbn.n . o _ (3.230)

Qhefe Kg, is called the gain, §, is called‘the gradient and
e, the error, allows the mihimization eguation, eguation
(3.216), to be written as
8n.1 = B, - Kgnerbn.i€nas  (3.231)
Applying the,matrixk-invergion lemma used previously (cf
Section 3.2.2, equation (3.45)) to equation (3.226) givés
: Kg, Sn¢1$nw1 Kgn o -

- Kgn.3 = Kgy - —==———r-——-——--- o (3.232)
~'Finally.equation (3.224) can be written as
| & ~ 1 1.

V.., (8,7= v, (8,) + - <=<= ez, (3.233)
. Z'Ynol -

&
As in the off-line maximum likelihood derivation all that
‘remains is the dé&élopment of recursive equations for e, and
§n.. These recursive equations will.be the same,equations
that épplyAfor the off-line method-wffh one ekcebtion, The
‘model equat1on will now be _ o | _ \
Flz" ")y = Glz- D+ H(*z“)e(kle) o (3.238)
vwhere F(z Yy is- -on tﬁe 6pp051te side of the model equatlon
‘so the - grad1ent of fi Wlll be of the opp051te 51gn 'to' that
 in equatién (3 201).
~ The recursive maximum likélihood algbrithm can hdw be
summarized. Fér'winitial values bf e(0)=0 and e'(0,8)=0 the

algorithm is

.Skoi/fi= z?-1hj§k)¢1 Y o : - (3.235)



\
\
\

Sk¢1/3i= T=1hj§k/ga “Uyg
Ske1/hi= LY. hj8e/n 1 —ex
Cyker = 1+ S "Rge 8w

’ Kgn$n+1Sn¢1‘Kgn

Kgn-+1 = Kgn -, TTTTT T ET T
‘ MER

~ ’~

i1 = O = K. 18ue17uen

where ng,

ng , and n,

& .
respectively. The gain, Kg, may be chosen

71

(3.326)
(3.327)
(3.230)

(3.232)

(5.231)

are the number of f, g and h parameters,

/

as simply a

positive scalar constant or selected as the recursive least

‘squares géin. This gain is obtained by formally considéring

S
6k =,Qk-1 - Kgvexl«

o

(3.238)

as the parameter updating eduation in the standard récursive

least squares algorithm,.



4.iLinea:'Simulation Results

4.1 Introduction
v The 6bjectiVe_of\this chapter is to evaluate different

parameter estimation techniques when wused to estimate

- controller parameters for the self-tuning controller. It is

desirable to have an  estimator that produces parameters

-

which give good control with minimum control action.

\

The five estimation methods were tested to determine

" which technique estimated the parameters most accurately and

efficiently. The - estimator peffqrmance was evaluated by

observing the control performance of the self-tuning

ﬂcontrbller with respect to its ability to - track setpoints,

reject load’ disturbances,- and to observe the effects of
dhanging certain estimator variables such as the initial
covariance mattig,x forgetting factors, initial parameter
ggﬁimates‘and choice of initiaf- go value. Cost function
weighting was also wused in order to Obtaih]better control
with smoother qohtrol'aéfion. |

The estimation algorithms were quantitatively evaluated

‘using three criteria: the sum of the prediction errors, the

control effort and. the ‘accuracy .of 'the\final parameter

estimates. The sum of the prediction errors . was calculated

by; adding the absolute value of thé difference between

i

- -actual output and ;he;setpoiht at each sample instant. The

control effort ~is the sum of the absolute valués of the

dﬁfference between the actual control action and the Asteady

72
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state input which is calculated By multiplyiﬁg the steaay
state gain by the cﬁrrent setpoint value.

The results Hwili be presented with certain trends
discussed and characteristics ihdi;ated for the Vspecific
_ééses but  the overall assessment :of‘tﬁe results will ‘be
given at the end of each section. ' |

- The eétimation élgorithms vere first tested fof the

control of a third-order, linear system without any time

delay as used by Morris et al [31] in previous studies. The

4 «

system in discrete form is eéxpressed as o e
Ye=1.69y 4. 1-1.08yk-2+.33yk-3+.34u, ., ‘ |
S 07Uz —a22Up stk =T,y +.378, 5 (4.1)
In order to obtain a‘unique solution for the controller
paéameters it 1is assumed that he=-1.0 thus it 1is " not
included \4in the parameteré to be  identified so. the
identification algorithm must estimate eight parameters ' for
‘this third order model. - The correct values for these
parameters are fo=0.9, f1=;0.71, f,=0.33, go=0.34, g,=-0.07,
- gz=-0.22, hy=0.79 and h,=-0.37. ”
The control action amplitude was limited to i25vto keep-
the input within reasonable vélﬁes or limited to 100% of the
pfeVibus input value to keep the variations of the input
moderate. This iSvto-simulate actﬁal cohditiohs;where thére

would be certain physical restrictions on the manipulated

variable.



74

4;2‘Setpoint %racking

Three setpoint -waves were used to evaluatesthe tracking
ability of the self-tuning controller with each of the
estimation methods, a' square wave} a sawtooth wave and a

step change in setpoint The square wave was used to observe

‘the response to a succession of abrupt changes, the sawtoothw“

-

wave to determlne the ablllty to adapt to rapldly changlng
setpointuvalues, and the single step change in setpoint to
determine the controller's abilityr to track for a

_nonexciting setpoint.

Table 4.1 summarizes the linear simulation results for

the fi&e,estimation methods used for the minimum variance
controller, P=R=1, Q=0. In all simulations' the initial

covariance matrix, S(0), forgetting factor, - p, initial

.'parameter‘ estimates, 6(0) and varlance of the noise added

LK} .

qz,_uere unchanged. The effects of changlng'these.parameters ‘

"will,'be’ dealt pwithv later. ' The initial covariance matrix,

value is 3000;;'the forgetting factor is 0.995, "the variance

of the noise is,0;04,ffhe 1n1t1al parameter estimates except

»

" for go . are set to 0.0, Yo is g1ven a non zero value of 0.3,

“The initial: guess . for 'gp was chosen close to the actual‘

value to ensure parameter‘convergence within a reasonablel

‘amount of tlme.- '

The square wave has a perlod of 50 sample 1nstants, the
setpo;nt 1s 5~0 for,the flrst 25 sample_;nstants and 1s“0}0
for the followlng 25" instants and‘ then the 'pattern is

repea}ed,,. he sawtooth functlon has a perlod of 100 sample

S
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Table 4.1 Summary of Setpoint Tracking Results for Different

Identification Methods and Setpoint Changes

e o e o = - - A 8% = - A e G . S P T W S . e - M S R s e e e - G e WE P S Be B G N Tm e M e R P e WD W G e G e W e e e e

ESTIMATION

CONTROL
CFFORT

SUM"OF PREDICTED

e = . T " - - e = - D T T s = T AR P A M S e - P G Y T e e e P G P o = A e e R = 8 T gy e s = e e e

SETPOINT

METHOD TYPE
RLS SQW
RLS SAW
RLS STS
RSR SQW
RSR  SAW
RSR STS
RUD SQW
RUD SAN
RUD STS
RL SQW
RL SAW
RL STS
RML SQW
RML SAW
RML

580.

ERRORS

Y
96.21 Figure 4.1 .
48,38 - Figure 4.2 s
59.49 Figure 4.3
95.19 Figure 4.8
45,38 Figure 4.9 .
58.82 - Figure 4.10
95.19 Figure 4.14
48.38 Figure 4.15
58.82 _Figure 4.16°
166.06 Figure 4.20 |
43,94 Figure 4.21
63.87 Figure 4.22
184.86 Figure 4.27
144.44 = Figure 4.28
392.67 Figure 4.29

Recursive Least Squares | ”SQN - Squaré Wave Setpcint
Recursive Square Root
Recursive Upper Diagonal

Factorijzation

Recursive Learning
Recursive Maximum Likelihood

\

\

SAW - Sawtooth Function Setpoint
STS - Step Change in Setpoint
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instants. At the start Gf the petiod the setpoint is 0.0 and
the setpoint is incteased by'0.1_at each instant until a
setpoint of 5.0 |is attained and 'then the setpoint’ is',d
decreased by 0.1 wuntil a.setpoint.efdo.ihis reached. For
‘both the square wave and sawtooth function simulations ‘the
‘setpoint is. specified by repeating the periods over the
duration‘of the simulation. The step change in SetpOint is a
change from 0.0 ~to. 5.0 which~.is fixed for the entire’
'simulatien. In each of the plots the setpoint ‘will be
indicated by the symbol ¥S and NO is the random noise added
to the‘system; ' | ‘ o

| ”The input to ‘the system or control aCtien”is7the
‘manipulated variable and is given an initial -value of' 0.0.
The'“butput~ is the controlled varlable and will be requ1red }~

to follow a de51red setp01nt.r

.»4.2.1 Recursive.ﬁeast ngares.Estimato:'
Ftdm.Figﬁres 4,j;34,2*and 4.3 it'canahe/seen .that for
'-hinimun vatiance' controib',the recursive'nleast asqua}es,
; eStimatot tracks well for all three setp01nt types after 10
‘sampling» 1nstants."The greatest contre%/effort and sum of
.'predlctlon errors is obtalned with the square wave - setp01nt‘
’ change whlch is expected as the setp01nt changes are larger_
1than for the other two cases.." ' | | |
F1gures.4,4 4 5 and 4, 6 1llustrate the behavior . of the-
‘estimates 'fer'\th three setp01nt waves. The ‘F” and Gi

_ estimatesi'make. the blggest 1n1t1al changes for the square‘w
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B Figure 4.1 Setpoint Tracking for a Square Wave Change .in:

. Setpoint using the Recursive Least Squares Estimator
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Figure 4.2 Setpoint Tracking for a Sawtooth Function Change

in Setpoint using the -Recursive Least Squares Estimator
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wave change inhsetpolnt and step change in setpoint whlch is
caused by the large initial jump in the setpoint from 0.0 to
5.0 For all cases the F and G estimates are\\constant' and
converged to a nearby value by the 100th‘sample instant..The
\G parameter adaption.pattern for the sawtooth .change in
setpo1nt is 1n1t1ally erratic but the estlmates settle out
b;\the 80th sample instant. The H parameters remain close to
‘Aiero,i ‘or the sawtooth change the’estimates.inCrease

drastict. .y at the 10th sample 1nstant then change s1gn and

\ o
A

increase ‘to an even larger magnltude before changlng s1gn
l again and converglng toward the true parameter values. The H
parameter est1mates for. the square and sawtooth waves are
m1rror 1mages of each other but for the step changev in_
setp01nt the estlmates are d1verg1ng from the1r true values
as both estimates are opp051te 1n s1gn to the true values.
The ’Hl,est1mates begln to grow further from the true values.
by the 500th sample 1nstant and have not converged -evenf\hy
the 3000th sample instant. |
As it can be seen, after'ZOb sauple_ lnstants'vnone of
‘the parametere estimatesi have reached thgfbtrue values
"however, by the 1000th instant"theleStimates are within on
average of ‘absolute errors of +4, 1% of the1r trUe values for
‘the sawtooth wave. For the square wave setp01nt change the
estlmates vareg only w1th1n an average of absolute errors of
+22% ofv'the true values \wlth the fO; -f,, h, and hy
parameters at least +25% from the true values. The fz, go(.

.gy and g; eSt;mates are‘w1th1n,i10% of the true values.: For



. 84

the' constant setpoint the parameter estimates centinue to
increase significantly and eventually wili diverge or blow:
up as seen in Figure 4.7 and . control detetiorates' by the
2970th sample  instant. The estimation - becomes:
ill-conditioned because the'fotgettiné-faetor inflates - the
covariance matrix which 1in turn causes the parameters to
grow. A simulation with the same conditions. as ,above was .
done except that the forgetting~factdr was 1.0. After 3006
sample instants there was no parametet blow up the the
parametet estimates were increasing.

The accutaey of the_estimates using the recursive least
squares vestimator is  impaired by the’ order of the C
polynomlal in- the system 'equatien. When the: coefficients'
‘other Athan Co of the C polynomlal in equatlon 2.1 are not
zero the recursive least squares estimator will give blased
estimates since e,, given by

I P PO T B € 9 )
is 'corfelated‘ with yu. This bias is'substantial when the
51gnal to- n01se ratio is low (<10/1) but is not a factor for
high 51gnal—to—n01se ratios. [10] The 51gnal‘to -noise ratlo
in the siﬁulations;'calculated as the ratlo of the absolute'
magn1tude of the 1nput signal to the absolute magnltude of
the noise (equal to - 1. ), ranges from 5 to 20. Therefore the
bias w1ll 'affect some of the. estlmates obta1ned u51ng the

‘recur51ve least squares est1mator.
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4.2.2 Recursive Square Root'Estiﬁator

‘The control performance displafed in Fiéurés.4.8,.4.9
and 4.10 demonstrate that the parameter estimates obtained
using the recufsive square root estimator also provide good
setpoint’ tracking for the three'differént types of setpoint
~char;ges. The performance 1is almost identical to that
achieveé using the recursive least sqguares estimator, Qifh
the trend ‘oﬁ the sum of the prediction errors and control
effort nearly the same but sligﬁtly .lower vaiues for the
recursive sguare root tests indicatingbslight improvémeht_in
the control performance.

" The patameter }estimates for the square waQe setpoiht
change, plotted in.Figﬁrev4;11, particulérly ,the .Flrand G-
estimates éré initially the same as thé.vaiues from the
‘recursive least'squares fesE but by the 200th~sample instant
the recursi&é'square roof‘pa:ameters oLerall are within *6%
of thg true values compared with the‘f22%vfor'the recufsive
-least squarés estimatés.: ¢ompériéon of bFigure 4.4 with
“Figure 4.11 rQVeélS“that'_ﬁheth}' aﬁd h, estimates afe‘
qdh?erging toward the true values more quickly than reStltedA
using’the'récursive iéast squaresvidentificatiop;vtechnique.v
The initial h ‘estimate behavior is only the same‘as for
récgrsive least squares idehtificatioﬁ until thé'zoth sampléf
inspanf. | | | k

o For tﬁe sawtéoth function change'inbsetpbint all  three

sets of\_parémeter estimates behave exactly"as for the

‘recursive least squares simulation can be seen from the
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results in ‘Fiéure 4.12. For the step change inpsetpoihtﬁ
simulation, the F and G_parameter estimates as can be seen
.trom Figure 4.13 are the same as for recursive least squares
case but the h1 and h, parameter' estlmates are different‘A
The estimates are not dlverglng as fast as the recursive
'ieast squares case and the h. estlmate is beg1nn1ng.to ‘tend
towards its correct 51gn. The H parameter esrlmates are also
more symmetrlcal to each cther using recurs1?e .square root
L1dent1f1cat10n‘,than Awheh uslng the recur51ye least,squares
technique. |

s
,
8]

By“'the.1000th sample ihstantfthe recursive square root
'parameter.estimates‘are within 5f10% of;the_truelvalues for
the saﬁtoothfbfunctioh change 'ana the"atep 4chahge in
:setpoint, while only the G'paraﬁeter'estimatesl Qere'.within
5% 'pf the correcta valaeaﬂ for the ASquare wave_Setpoint
change.'The lafger errors for the square wave change occur
for ,the H. parameter estlmates whlch cause‘the F parametert

estlmates to have large errors.,(cf Sectlon 4. 6) No reason

for the unsatlsfactory parameter estlmates wa7 determlned }

-

4.2.3 Recutsxve‘Upper D1agonal Factor:zatxon Estxmator

| Thel 51mu1atlon results show1ng the control performancep“
: usxng the recursxve upper d1agonal factor1zat1on estlmator,‘
for ‘the_ three setpo1nt changes are g1ven in Flgures 4.14,

4.15 and 4 16. The responses are almost 1dent1cal -to those}

'obtalned using the ‘recurs1ve square,'root 1dent1f1cat10n
- method with the difference in .the sum -of th ,,predxctlon

-
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errors and control effort values insignificant with respect
lto the magnitude of the values themselves. |

Furthermore, - comparison of the parameter adaption
“behavior dlsplayed in Figures 4.17, 4.18 and 4.19 withv that
in Figures 4.11, 4.12 and 4.13 shows that the behavior is
observed . using the same ‘as the ’recursive- sqnare root
‘identification technique. After 200 sample instants the two:
estlmatlon algorithms y1eld parameter estimates that are
w1th1n 10-°  of each other and. by the 1000th sample instant
the estimates from the sawtooth function. and square wave
setp01nt changes tests are within 10“‘) hut the estimates
for the step change in setpoint have errors 'of. :0.3% more
than the parameter estimates»yielded by the recursive square
oot simulations which are‘:S%‘from‘thejtrue values. .

The recursive sqﬁare root and recursive upper diagonal
factorization estimators give similar results"because the
recursions - derived. for U and D are equ1va1ent to the matrix
square root, S"z-UD"z. The algorlthms are(almost identigal
.except that the recursivelsquare root estimator requires n
scalar'square root and n extra divisions,‘ where n 'is the
’number of parameters to be 1dent1f1ed for- each observation
to be processed [23] The differences between thev estimates\'
is the result of the method in which the noise is processed

by the estimator.
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4.2.4 Recursive Learnlng Es;}mator

The system response .when _the recursive learning
estimator. is wused is shown in Figures 4.20, 4.21 and 4.22.
The sawtooth wave function and the step change in setpoint
results show good tracking ablllry and the cqntrol effort
value is considerably lower than the recursive square root
and recursive upper diagonal factorization results, but only
the sawtooth wave function had a smaller .sum. of predicted
errors.’However, for the square wave change in setpoint, thel
control performance is characterized by very poor tracking
ability 'whieh is reflected in the larger sum of predictidn
. errors and control effort values than were obtained 4using
the previous estimators. The setpoint tracking performance
for the sguare wave setpoint doesinot improve even after 800
sanple instants ~as can be seen from the results in Figure
4.23.

fhe-performance of thelestimation algorirhm‘in_terms of
the behavior of the parameter estimates for all three
setpeinr changes can be seéen in Figures 4.24, 4.25 and 4.26.
For the»squareiwave setpoint change the F and H parameters
are conStantﬂbut the. estimate values are only within +§0% of
the true values whlle the G parameters show erratlc —changes
with no signs of becomlng constant or converging. The F and
H estimates for the‘sawtooth functlon change in“setp01nt
have. smaller values ‘than the‘parameter es;imates obtained
for the square wave setp01nt change wh11e the G estimates

are larger than for the square .wavg 'setpoinf. ‘The G

=
~

v
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parameter behavior is less erratic and the H paraméters.
‘display fewer changes and the estimates are only within *70%
of the trﬁe values: The,estimates for the step change in
setpoiht simulafion are relatively ‘constant with no
indication of convefgenqe to the .true yalues. As>cén be
observed, after 200 samplé instants the estimates are not
reliable. Simulations up to the 1000th sample instant reveal
that the estimates still do not donverég‘tq the true value.
In an attempt to improve the estiﬁatés obtéined by the
recursive leafninéiéstimator the recursive least sguares
estimator was used for the first 25 sample instants. It was
anticipatea that the recursive least squares algorifhm would
idehtify parameter estimates close to their true values in
4315 time so the recursive learning estihétor could then
' adépt» the parametérs to the trﬁe valﬁés.-ThiS éhénge‘had
‘little effect on the estimates although some parameters were
’cloéerhto the true value. .
4.2.5 Recursive Maximum Likelihood Estimator
The recursive maximuﬁ likelihood estimator does not use
'a,éovafiaﬁce matrix instead it has a gain which ﬁis chosen
before identificaﬁibn beginé;‘. |
_The parameter estimates resulting from use of~'the
recursive max imum likelihood eétimator .were _extremeiy'
sensitive to the inifial gain values used, The parameter
estimates determined for initial gains of 1.0 to 150 were

only within #50% of the true values after 200 sample
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instants. However,' as the initial gain values were increased
from 150 to 400 the estimates bégan to increase to values
that were four and five times$ larger than‘ the true values
~and remained large even after 1000 sample instants. If the

initial gain is in the range of 401 and - 999 the parameter

estimates converge to values similar to those for the gains

between 1.0 and 150. The most interesting obse;vation occurs
for gain' véiﬁes of 999, 1000 énd 1001. As stated above, a
gain of 999_yields acceptable parametert estimates, and a
gain ‘of 1001 alsobgive estimates (excluding g,) within +50%
of the trué values. However an initial gain of 1000 caused
all parameter estimates except .the H estimates to blow up.
The reason fof this‘ocgurrence was ndt'dete;miﬁed.

This sensitivity to ‘initial 'gain values was not

observed with the other estimators when the initial

covariance matrix'.was altered. The best results were
obtained for an initial gain value of 1.0 so this value was
used for all evaluations of the recursive maximum likelihood
estimator. Since the model . was 'a third order, nine
parameters should ~ be estimated bgt in practice, one

parameter is fixed, that is ho=" -1.0 .leaving only eight

parameters to be. estimated. Although the recursive maximum -

likelihood algorithm is structured so that ng = ng = n,-by
setting n,= 2 the correct model can be recovered {29].

The results from tracking simulatidns_ for the three

different'_setpoiht changées using the recursi?e maximum

likelihoqd.estimator.are‘presented,in Figures 4.27, 4.28 and

-
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- 4.29. For all three setpoint changés the .output ne&er
reaches the desired maximum setpointvyalue even after 200
sample instants. The odtput signal for the sawtooth change
finally started to track after 400 sample instants. The poor
control performance is accompanied by a fairly small change
in the parameter estimates as can be seen from Figures 4.30}
'4.31 and 4.32. |

Analysis of!the adaption that takes place reveals that
the initial jumps in the F es£imates evident in the resulﬁé
using the other identification. schemes for a square wave
change in setpoint\no lbnger e#ist._ The G estimates show
- very slow adaption and the initial changes are not severe.
In contrast, both. the h; and h, estimates are of the
‘incorrect sign and are still inéreasing by the 500th sampie
instant with the trend.to valueé even further awa} from
their true value. .

At the 500th sample instant, the only parameter
éstimate that is .¢lose to the true value is the _go
coefficient. All the'remaining pérémetet estimates except g-
have Qroyn‘ larger than the valués iat the 200th sample
instant. The fo,, f,, h;.and h, are moving away from the true
values while' ‘thg' lfemainingv parameter estimates are
approaching thé true values. |

For the sawtooth fuhction‘sgfpéint»changé the F and G

parameter estimates are similaf"tob those found for the

g

square wave setpoint change but there are more noticeable

initial oscillations in the G estimates. The h; parameter
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estimate increases to a"greater‘value initially than for the
square wé&e‘setpoint change but does not  attain ité true
value. The h, -estimate apbears to be adapting to its true
:value but by the 500th sample instant it is still nofT near
that valug.  Aftef 500 sample instants the fo, g§ and g,
estimates are.apbroaching ~the true values but have. not
éonvergéd and continue to increase. . '

For the step change in setpoint the pafameter estimates
are not noticeably increasing after 40'sample instants but
the parameter estimates after 500‘sample instants show ‘fhat
there 1is‘ no convergence..The_H_estimates are both positivé'
and appear to remain thgt ’way{'-Althbugh not shbwn,-_the
estimate values at the 500th sample inétant are only wiﬁh‘.
:70% of - the true valués'ﬁhile{the g: parameter estimate is
in error by a factor of Zt(b.073 vs ~0.07) and g is 39%
below its trie value. Thelgo vaiue-has'growh larger than its
actual value but is still within 8% of'its true>valueQ The
fa’parametég.eétimate is only 1% (—0;7133 vs‘—0;71) ih error
while the f, qqa f: are over 20% from,fhe true values;‘

| As ideﬁﬁification . using the recufsiVe ‘maximum
likelihood .estimator continues fhe.vgain may'becdme.smali
;hich,causgs the Vstimaﬁes of the Hv'paramete:s to be far
from. thé true‘valqes.'xherefore a‘resfaribof the vector may
'prbve déefﬁl. A convergence test suggested by 'SOderstrom

[29].was used to try to improve:the estimateé. |
The modification was implemented in the following way.

The algorithm was applied in a straight forward manner fbr.

Q
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ni st;ps, where n1 is an arbitrary number of‘stepsf then a
| convergence test was performed. vacqnve;gencérwas‘ attained
the aigorithm would continﬁe. If no convergence had occurred
a.réstart would be made byvholding the parameter estimate
'vectd; constant and reinitializing all other variablé to
their starting values. The parameter estimate vector is
constrained to be constant for the next n2 steps, where n2
is also arbitrary. After another n1 steps the convergence
)test "is made sagain ané continues until convergence is
attained. |
The convergence test uses a loss function

1

W(Gk;ek_,”_nz) = == EG: (4.3)
02 - o . )
where
27T _ -
0 = y- vg(8,) - : ' (4.4)
k .,“,;. . ' . . -

1f the value of W is within 5% of 1.0, c avergence may be’

considered to have occurred and no more restarts are made.

Since the recursive maximum 1likelihood simulations

exhibited such poor control performaﬁce‘ for all . three

changes, the same simulations were repeated for hH}=3. to

determine if the reduced number of eétimatesvwas'the cadsé, %

<

It was found that the control was worSé, proven by . the .

increase in control effort and sum of predicted error values
for all three cases. The h, estimate, which is equal to 0.0,
never .approached zero so .another explanation -for . the

unsatisfactory control must be found.
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According to Ljung et al [32], parameter
-identifiéiility -tay be- lost if the feedback is too simple
and if.there are no add1t10na1 1nput signals. The input
signal . may not .excite the system properiy especially when
the system noise is very smail as was the case for all
simulations. Simulations: were performed with systen‘noise
variances of 0.1 and 1.0. There was no significant
improvement“ in the parameter estimates nor was there any
improvement in the control performance compared too the
‘resufts - for the noise-free simulations. Although the
recursive maximum ‘likelihood 'identification technique 1is”
‘known to pronide reliable vparameter estimates for
uncontrolled.systems, it has not been shown to'perform well
with controlled systems. |
4.3 The Effect of Q and R Weighting

The control effort of the previous simulations was
rednced‘by.using Q and R weighting while continuing to track
.the setpoint.‘ Although - scalar Q weighting wouldinave-
produced offset in the output this was avo1ded by choosing
the R-weighting to compensate for this offset. It was found
by trial and error that?the best ch01ce for R was 1.0 ‘p1u5'
the‘value of the Q wefghting. -,

Tne values chosen for " Q and‘ R were 0.2 and 1.2
respectlvely. These values gave the best control performance

for the least control effort. nit should be noted that

although this weighting gave good results for the following
- ! o
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simufgtions it should rot be used as a general rule for all
systems.

The setpoint tracking results using these R and Q
weighting values_ean be found in Figures 4;33, 4,34 and.4.35
for..the square wave, sa#Eooth function and step changes in
setpoints, respectively. These results were obtained using
the recursive least squares‘estimatdr.‘Figures 4.36, 4.37
and-4.38 show the results bbtained uSing the recursive
squarefroot'esfimatoﬁu.The differences in control effort and
sem of predicted errors between the recursﬁve square root
and recursive upper diagonal factorization estimators were
negligible so the performance of both estimators can be
discussed together. o

The follbwing observations hold true for, the three

-algorithms as all three estimators gave Similar results.

. When compéred to the minimum " variance control the
control effort <and sum of predicted errors were reduced an

average of 25% for the square wave and the sawtooth function

f‘setpoint \changes while the sum of predicted errors was

B

“

i‘&-‘ <
ks

LA

.reduced 53.5% for the constant setpoint case. The initial

”6vershoot‘ exhibited in the square wave and constant

setpointe is reduced by 28% when the weighting is -used and

most impoftantly, the initial tracking error for the
savtooth setpoint change ate reduced significéntly.

The parameter estimates yielded by the three recursive

7z, .

least éqderes simulations can be found in Figures 4.39, 4.40

ang.4.41. For the square wave setpoint the F and G estimates

b
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o
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have converged but the H estimates appear to be changing
slightly toQard the true values. All parameterJestimates
_'have converged for the sawtooth function case although the
estimates ‘wereﬁ'more erratic for the first 100 sample

instants than for the square wave. setpoint change. The ‘G and

H estimates oscillate substantially at the start of the test

before converglng The H estlmates are’ m?}7 bes ,of each

L

other which is - not ev1dent for th§¢9q } -thange in

setpoint.! The parameter. estlmate belf " ‘the step

change in setpoint is al@ost 1dent1cali :g;that for the
'square wave c¢hange in setpoint;vbut the estimates ; are both
negatiye which is worse than the estimates for the square
wave change. B ' ;
‘ The. initial changes in the parameter estimate for the
square wave and constant changes in setpoints are reducedkby’
33% for the F estimates whiie tﬁe negative chanoes'observed
at the 10th sample instant for thedg1, gz and h, estimates
are reduced by 50% when compared with the minimum varlance
zggtrol 51mu1at10n results. For the sawtooth setpoint change
the Q and R weighting reduced the fluctuations in the H
estimates by. 50% which resulted in better parameter'
estimates. dThe parameter estimates using the recursive
square root and _recorsive upper diagonal factorization
algorithms - were virtually identical. The estimates shown in
Figures 4.42, 4.43 and 4.44 obtained using the recursrve
square root algorithm display’the same general trends as the

recursive least - squares simulation - results exqggta' the
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e e
estimated values are slightly different.

~The R and Q weighting were also used with the recursive

learning 'estimator giving rise to the control performance

shown inAFigures 4, 45 4.46 and 4.47. As it can be”seen,\the
setpoint tracklng is’ verj poor for the square wave setp01nt
change especially at the beg1nn1ng of the change although 1t

has improved before the next change in setpoint occurs. The

‘)i _controlfaction is ‘erratic‘ with 1large . fluctuations. The

‘tracking for the sawtooth~ffunction setpoint change is

acceptable, however, on the 1ncrea51ng portion of the change

fthe output tends to‘ be below the setp01nt. The setpcint

follow1ng performance for a step change 1ntsetp01nt is good.
h the output remains sligntly below the desired setpo1nt

; The control act1on for boLh the sawtooth functlon change and

| step change in setp01nt ‘shows more fluctuatlon but, the
‘ . ‘ _ 4 -

'changesuare‘not as large as observed for minimum variance

¢ . S

AN

_control

The addltlon of R-and Q welghtlng reduced the control

g s

;effort by an ave;age of 50% and reduced the gum of predicted

i ’ ; U

from; that obtalned from the

minimum varlahce cm trol tests. The control effort reduction

2 ‘,}

uslng the recur51ve”féarn1ng estlmator was more: 51gn1ficant

.-7 ,V

than for recur51ve least squares, recursive square root and

-’

,‘Jjecursive upper_ d1agonal factorlzatlon. The square' wave

"utput had a’ reduct1on of 18 5% in the overshoot observed at

D

}the start’of fthe' change in setp01nt- thus reduc1ng the

.”;%;:1nltlal \butput error and consequently the,sum of predlcted
i - -\"l:ﬁ" .‘? . ) ’ A v" ) e s

,,;- R - - Lo ¢
S O TN T TR 2.
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errors.,Thé setpoint tracking is also imbroged, however, it
is still not acceptable. The setpoint tracking performance
deteriorated 'slightly 'with weighting for the santooth‘
function change in setpoint as the sum of predicted errors
increased 23%. The step change in setpoint .also showed a 21%
\reduction in the initial output overshoot with Q. and R
: udf}? g
weighting.
" The parameter estimates obtained for the .three-
difterent setpoint changes \using the recursive learning
identtrﬁcation'technique are given in Figures 4.48, 4.49 and
, +4.50. The F and G estimates for the square wave change
setpoint have not converged and the G estimates behave guite
erratically. The estimates for?h,;fnd h, are both negative

- when only h, should be negative. v '
InYthe case of the sawtooth’function'change_intsetpoint
:less erratic parameter estimates resulted than for the
square vave change but the G estlmates are still erratic and
the H estlmates .are near(zero and are not approachlng the
true values. The F estlmates althoughi show1ng convergence,

;hﬂle not converged to the-true values.

"+ The parameter estlmates:ﬁgr the step change in setpornt
are relatlvely constant although the GLegfzmates Stlll have

sl1ght osc1llat10ns w1th the h, agd hz est1§ates of zero as

e
s

for the sawtooth functlon setp01nt change.' L

[ v
S ove T .
Compared to minimum variance 'control the parameter

eseimates for the- square wave change in setp01nt behave
similarly but for the sawtooth functlon changes and the step

—~
@)
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setpoint changes some differences are evident. For the
sawtooth|setpoint the F estimates have larger final values
with ihe R and Q weighting as well the G estimates Qscillate
more especially at the 100th sqmplé instant where the
setpoint ‘kas started to increase. For the step change in
setpoint the only noticeable differenée. is that the
parameter estimates are more constant with ¢ and R
weighting.

The cost function weighting was used with thé, recursive
ma#imum likelihood estimator to determipe if the control
performance could be 1improved from the minimum variance
control simulation. The control performance for the squére
wave change in setpoint, as can be seen in Figure 4.51 shows
that the tracking is poor as the output does not stay at the
maximum setpoint valu&%and-cannot'maiﬁtain a zero setpoint.

fhp control performance with the weighting is a slight
impfovement over the minimum variance cdntrol after the
first 25 samp}e instants causing a 1.4% decrease in the sum
of prediqﬁ?ﬁ;‘érrofs. - The output is closer at the maximum '
value-of the setpoint but not at the zero value of the
setpoint. There Ais also a reduction'of 100% in the initial
output overshoot for thé weighted case than achieved under
minimum variance control.

The coitrol'ﬁerformance for a sawtooth function chaﬁge
in setpoint shown in Figur%- 4.52, shows poor setpoint
trackiﬁg for, .the entire simulation. The cost function

%ggghting did ' not significantly ‘chahge the output
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performance reducing the sum of predicted errors for this
setpoint by only 15% except that the control action 1is now
reauced 28% compared to the minimum variance control action.

The results for the step change in sétppint as seen in
Figure 4.53 show the output ﬁhable to attainnthe setpoint
after the initial output oyetshodt.‘ The addition of/
weighting for this step change 1in setpoint resulted in
poorer control pérformance as the output is now 50% further

from the setpoint than for the minimum variance case. The

only benefit of the weighting was the reduction of 46% in

4

A

the initial output ovérshobt.

For the ééuare wave setpoint change the control effdrt
was reduéed.68% with the Q and R weighting while the control
effort Qas réduced by 15% for the saw;qoth function chahge'
in’éetpoimtibut for the step change in setpoiht, an increase
of abéﬁt'40% in both control effort and sum of bredicted
»éfrors whicﬁ& is ~expected dﬁe to the deteribration’ in
'setpoiht tracking peformance. |

The paramete;‘ esti&aﬁes for the square wave change in
setpoint using Q éﬁd vaéigﬂting shown in Figure 4,54” are
constant and 'appeé;ed: to. haQe- converged. The F and H
parametét,estimates inéréaﬁedﬂvegy_slowly while the g, and
gz show largé_‘initiél changés.  Thevg° estimate doés not
change noticeably gnd;ﬁheih1 anathzv éstimates, remain near
- zero with ingdrrecf, signs. Compared }to minimum variance
contol the weighting only Causéd a changé ih‘the H estimaéé

behavior from the 5th to the 30th sample instant, With Q aﬂa,

i)
B
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R weighting the. h, and h; parameter estimates grow larger

durlng that 1nterval and‘never become equal as',is_ observed
B . ‘

gﬁ F1gure ]4u30 ‘for the- m1n1mum varlance,‘control.guThe
o L

e, S 149 .

estlmate values - ylelded after 200 sample instants. for both.'

~-'; . - 9 -

‘nimum ‘variance control and Q and R welghtlng‘s1mulations

.re wlthinlilo%'bf each other.
THe parameter e%timates "for ‘the R and... Q weighted
: LN Y ' Do ,

e . RS . . . . . . .
wﬁw“sawtc~~h funct1on-change in setpo;nt are, glven in Figure

»

g 55 R can be seen that the F estlmates 1ncrease“gradually

i

but never approach the true values The f, ‘and fz estlmates

~rema1n close- ag' zero and fz converges to a value wlth the

.\‘

incorrlect sigr, The G esgamates _have converged but theq

ifitial behaviog is .erratip:f'The H- eStlmates have also

- . . B

’

converged but h, is Stlll cldse” to_,zerofﬁigﬁgs paramete{

AR

L%
»

@

eétlmate behav1or .u51ng welghtlng is 51m113r .fofgthat“\g

o & . .
observed for the m1n1mum “Variance control_égase. wThe
. » h

".-Jonk_'lljf_‘\‘:j

dlfferences. be1ng that the kz~estimate has changed sign fo

the 51mulatu n w1th Q-and R weighting, “hore are darger -

changes in® the G- estlmates resultlng in larger estlmates

after 200 ample 1nstants. The F ‘and H estlmates dlsplay

- 51m11ar ‘a aptlon behav1or for both mlnlmum var1ance control

- ana Q) and R

“e ‘ - N h o .
LLoa p /o

ght1ng o ' . _ . '
‘ S ' : . . -
The stepo-change in\ setpoint resulted'”“ constant.
’7 parameter estlmates. By comparlng Flgures 4 56 and 54 it
; o

N

-except that ‘the - parameter estimate changes_for the step'.

can be seen that the F parameter estlmates f0110w a sxmllar

¢

adaptlon pattern as the ssquare-'.avea change “in- setp01nt

’
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'change ins setpoint are not as -oticeable. However,

' , - . ST I
and f, estimate values after ° sample 1instantssareg™

v

40% lower for the step cr xge The Gr'estim tes have )
L
ee/’ the _

g, _and gz estimates ave over f70% from the true values and

<

Y

;onverged but only go is w1th1n +4% of the true va

‘g, has the . 1ncorrect sign. The : hy and .h; estimates have

A

“converged but hz has the 1ncorrect 51gn whlle h, is 72%:from

the true value ' ' o )

B

-

Thg resuTtlng parameter estlmates for a step chang
o

*_from the Q and R? welghtlng testware 51m11ar to thpse y1eldbd

5L51m11ar w1th ot

“,

‘;of the recur51ve max imum: &1ke11hood estimator did not yleld

by mlnymum v 'm%nce 'control The" adaptlon patterns were

—- s

y an . average‘bf +18% dlfference be;ween the5u

o

parameter estlmatesiobtalned after fOO sample 1nstants. Use

xg

o

'i
&

sultable estlmates ' wzth - without ,we1ght1ng ﬁto-

2

; Satlsfactorlly track the agtp01nt

By comparlng ‘the results from the simulations for all

estlmators u§1ng Q and R welghglng w1th the minimum varlance
« \ .' Y .."

control 51mulat10ns the followlng conc1u51ons were' made. The

B

use of changes in R and Q welghtlng does reduée the control
effort for all est1mators, however,«the\conttol performancei

is not- 1mproved for the step change in setpo;nt using .the "

recursive max1mum:l1ke11hood estimator and setpoint tratkiné

for the other setpoint changes is not satisfactory. Based'on
Y i ?
the'¢reduction of the sum of pred1cted errors "and control

effort it can be stated that the: recursive least squares,

recursive square -root and recursive upper diagonal

[ E , ) . - . .

//' ¢ . : i e el
. . -

7 } : ) L
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gl

factorization -and recursive learning estimators all-exhibit

better control performance than just.using minimum variance

control' for less control :action for the three different’

» . ~

b . R .
typeS'of chandes. However, the sum of predlcted errors u51ng

@

the recursive learnlng estlmator is Stlll 15% larger for theg

square wave setpoint change anﬁk 47% larger for the step

change in ~setpoint. than the recursive least squares,
' righ, ’ ) o N :

recur51ve square “foot . and recursive upper diagonal

xwﬁfactorlzatlon est1mators.

The Q and R wg{gh;lng ‘reduced the 1n1t1ay5,output

&) ,‘\

overshoot ‘for e.agﬁﬁgfe wave and step change41h’setp01nt

cases and reduced - the®: 1n1ttal bracklng erroﬂgﬂ&or the
ol : ey

f'sawtooth. function"setp01nt change. ?he parameter estimites <

[

o

“-obtalned by all five estlmators are more tonstant for the F

and H_estlmateS'but caused the G_est1mates to oscillate fori"

the recursive —square root, recursive upper dlagonal :
factorization and recursive learnlng estimator more than 1n
U“w '}"'

the m1n1mum var1ancé control case.

. - "~
4.4 Disturbance jRejection Testing .

’ . c . o _
If a»system load -disturbance 1s, | not measurable the

' Pfjfhﬁ dlsturbancL w1ll be propagated through thel

- \.', . -
T .. ‘y., »A\» S

random dlsturbanCe Ek

except that the future mean value of vy can not be assumed

to be zero Therefore 1f the controller parameters are flxed

at the correct values an offset due to the load d1sturbance

~

will occur unless P, Q, and R are chosen to remove the




\1

hd
>

e Lo

" offset. If the _parameters ‘@re“allOWed to adapt to  the

changing system dynamics°'the load disturbance effects are’

ellmlnat%d when the controller parameter estrﬂ%tes change to
\‘ . i
satisfy the llnear regression relat1onsh1p

¢k.;’{‘=> X0, + (1-Clodisasc * €xoa + __zd'g_vu . (4.5)
. C _ o

At steady statey with 6i.4;. set to Zero the»estimates, Gﬁfﬁ

Lo

will be ‘biased since the estimator. exc1tatlon group, é$b4dr+'ﬁ

EL/C*z“ vy) ise correlated w1§? the dﬁ%ervat1on vector‘ X, .

w ;; & % L()

Parameter estlmatlon is: therefore hlndered as, variat1ons 1n

vk, __1(1 L',Or w1ll be 'reflected

RN ! CoB

> 'controlleﬁ

ey . 154

SR

<lg

parameters, F G and H There is also a ' sibillty ﬁtb?§~f

f
&t

that g1ve rlse to~unsatlsfactory control performance or even

instability.

In order~tor‘study the. effect of. ‘unmeasurable load

disturbances, ‘an unknown load disturbance, magnitude vk35;0

w
filtered through ‘

; L(z7') = .1z7' + 0. osog -2 4.0,0082z°° (4.6)

. , &
these controller parameters will have system elgenv ;és“

was added to- the process' w;th \the setp01nt Jma1nta1nedw

g}ﬂtbnstant."Thé dlsturbance was- added at the 1500th(sample

. » : el
1nstant so that the ‘1dent1f1catlon algorlthm should have

1dent1f1ed sultable panameter;eStimates before theﬁégad is
added. T e e o

This series of simulations used conditions identical to
those used for the minimum'varjance.éontrdiﬁtests except the

value of the‘forgetting‘factor“was changed. Tests were tﬁ&st
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respectively, for load dlsturbance rejection ‘using the

S . 155

done u51ng a forgettlng factor of 0. 995 hoWeVer thiskeaused

theuestlmates to blow up w1th the ;recur51ve‘ 1east squares

» h

o estlmatogg even* before rfhé dlsturbance was added It also

e

‘resulted in the H estlmates from the recur51ve square root

.and - recyrsive upper dlagonal factorlzatlon estimators;to

R SN

begin to rapidly 1ncreasawto values above 10 by the 3000th

sample instant %s Well as; caus1ng the F and G estlmates to

Bl

begln to 1ncrease but not ﬁati%as, fast. a* rate -as thew .

estlmates 4 v " | '

"\—'4:2._- oo ¥ -

v
v

’

'6Q§Square root andarecur51ve “upper

-

Although t

/

diagonal estlmatbrs guaraﬁ%ee numerlcal

S

uthe vcontlnued; data  truncation Caused by ’the forgettlng

factor notuequal to 1.0 while little new'Aynamlc 1nformat10n

is made avallable to the estlmatlon algorlthm. o

3

- Consequently, a. forgettlng factor of 1. 0 ‘Was -used &P

Lo }‘-,

ooméensate for the non- exc1t1ng constant setp01nt so that
there was no estimate blow up for& any - of -the..eSt1mat10n

\

LV °
. The control performance. and parameter  estimates,
\ .

algorithms. ’ _ _ S ' e

[

T
4
-, \%

recur51ve leastzsquares est1mator can be seen jin Flgure 4; 57f

and 4.58, respectlvely The output returns to the setp01nt

~ ) ) ‘

'approximately 60 sample 1nstants after the dlsturbance is.

added - although the dev1atlons about the setp01nt are larger

than before the d1sturbance was added and continue to grow.

Although not. shown éPY the ZOOOEh Sample 1nstant the control__;

) : . p

\

 . ) 'a

. stablllty the parameter estlmates are Stlll 1nflated due «to‘n‘w

i,
ISR
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v = N o
“action is alternat1 q.ﬁ%tween the upper and lower limits a@ﬁ@
a

ey

the OUtput is 05c1li tlng around the setpomnt. The F and G

ameter ,estlmates dlsplay a slight- change at the 1500th

""le 1nstant but converge to new values by the 1600th

1nstant The . H estlmates dlsplay ‘larger changes than

the other parameter estimates but return to . values within

RS ’ .
10% of the values prior to the dlsturbance.

The‘recur51ve square/root and recur51ve upper diagonal
“sestimators producei‘dimost identical.,results when a‘load,
.disturbance is introduced'to the,system' The resuits"for the

recur51ve ’square root estimator glven in Figure 4.59 and
4 60 aﬁo 1llustr;,ate the control performance aﬂzﬁ parame& :

,4,!.9 n" 5

uppét*

estimate behav1oru# dlsplayed when the
dlagonal factorlzatlon estlmator is used. The o&iput shows

y

smaller deviations 4from thé setpoint at.the sample instant
_when the dlsturbance is added ‘than was 'the case for the
recur51ve least squares estimator and the output returned to

the the setp01nt in only 15 sample 1nstants. There was _aav
. . “Q
reductlon in controlieffort and¢<in the sum of the predlptlon

-
. . |

errors indicating an vamprovement; in‘ control performance 2
- | ’ / ' . R .
compared té the lFecur51ve least squares 51mulat10n he F

. ) 9- . N B . . .
-and H parameter estimates show smaller changes than was the :
. - v . “ . '\xis’q .

case - for ‘the est1mates y1elded ;by iﬁhe recursive least

squares estimator but the G estimates displayed the same ;. .
$ O ‘ T o
behav1or.

o

The 'recur51ve learnlng estlmator dhd " not obtain

»sat1sfaotory estimates to calculate the control action that
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to the‘ setpoint guickly and agaln the dev1at10ns from the
setp01nt were larﬁer after the load disturbance was added.
The parameter estimates were observed to have slightly
bigger changes in their values at the.time .the ~disturbance
. was added thaa for the step change in setpoint>but again
convergedrby the 1600th sample instaat.

The effect of Q and R\we1ght1ng when dealing w1th a
load disturbance was also studied. Using the values of Q=0.2
and R=1.2 tests were done using the same load disturbance
described in the previous section using the recursive least
-squares’ ané\ the «recursive  upper diagonal factorization
estimators. It was found that an offset was observed for all
setpoint changes and parameter identification methods
'tested. This is because the load disturbance will affect the
k-step-ahead system output wvia the function z*'ELqunlessf
Q=0 or if Q is chosen such that its ‘inverse is made to
exhibit integral actioh at low frequencies. |

In'aédition to the removal of parameter estimate blow
‘up, a forgetting factor of 1.0 reduced the change dlspléyedf
by the estimates at the time the load dlsturbance is added
for all estimators except the recursive éaximum likelihood
~estimator as it does not have a forgetting factor. The
parameter estimates also exhlblted dlfferent behavior for
the two -different forgettlng factors. The £, and £,
estimates increased when the load disturbance'is added-EOr

p=1.0 but decreased for p=0.995. The absolute values of the

H estimates increased for p=0.995 but for p=1.0 the



167

magnitude of h, decreased while h1‘increased.

The only disadvantage to the use of the unity
'forgetting' factor is that - the éutput'takes about 5 to 10
‘sample instants longer to return to the setpoint and .begin

i

tracking again than for p=0.995.

4.5 Parameter Identification Variables

As as result of the setpoint tracking, cost function
e 3

weighting and disturbance rejection tests. two parameter
identification techniques ha&e proven to be supérior. In a11
tests the.recursive séuare root and recursi?e upper diagonal
factorization estimators .provided the lowest sums of

§

predictedéérrors'and control effort éhowing these schemes to
Vbe the most accuraﬁe estimation metbbds when'used with the
self—tuning controller. ' h

Although the recursive square root estimator performed
as well as the recursive upper .diagénal factqfizatioh
bestimator it has the disadvantaée of the_.necessity éf
Eélcﬁlating the SQUére root which increases the amount of.
time | required to fﬁﬁain the estimates. \Therefo;e, if
idenfification is needed for a system with a large numbe: of
parameters to be estimated or the sample interval is very
short avproblem may arise because the next sample of data
will be taken before the pre;ioué sample data-has been
processed. In ;ddition, the long term use of the recursive
square root estimator would consume valuable computér'time

that could be used for other functions.
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‘Therefore tﬁe most accurate and ¢he ’mqst efficient
parameter identification algorithm for the control of linear
systems with no time delay using the sglf-tuning controller
is the recursive upper diagonal factorization estimator.

The recursiveluppE‘ diagonal factorization éstimator
will now be’' examined 1in more detail to evaluate.‘its

Y

identificaLlon. cébabilities whén the various estimator
Qariabies are altered. The effect of the initiai/covariance
value, forgetfing factor and initial pérameter estimate
values will bé s£udied. TH; simulation conditions fdrleach
test are identical to the/setpoint tracking tests except for
the estimator variable being examined. The Egse case used to
compare certain .simulations is the simulation with the
original . conditions Qspecified for the setpoint tracking,
fhat is 5(0)=3000;, p=0.995, ¢2=0.04 and 6(0)=0.0.

The tests of the effect of the choiée of the initial
.covariance mat:ik and initial paraméter ~estimates will,’be
céhducted using the squé}e wave and sawtooth function change

in setpoints and the forgetting factor tests willeemploy the

square wave change in setpoint.

4.5.1 Initial Covariance Values

The magnitude of the entries of the initial covariance
: matrix is an indication of the accuracy of ‘the initial’
‘parameter esﬁimate guesses. The closer the initial estimates
are to the ﬁrue-vaiues'ghe smalier .thev‘ihitial covariance

value, s(0), to be selected. If the true paraméter values
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are not known a <re1ativeiy large S(0) vélue of 1000 to
3000; shbuld be used to ensure the parameter éstimates will
converée to the true values as quickly as poséible.

The covariance mgfrix is initialized by setting the
diagdnél elements to the desifed value and all off—diégonal'
elements are zero. N

If s(0) 1is selected. as the identity matrix, that is
S(O)=£ the cbntrol performance and parameter estimates that
result are shown in Figures 4.65 and 4.66. Since the initial
covariance value is small thus implying the estimate guesses
are close to the true parameters, there are no large
" fluctuations in any‘ of tﬁe parameter estimates. The F
.estihates change very slowly. After 100 sample instants f,
and f, are within 16% of the true value but f, is not. The G
estimates change f;eduéntly at first but by the 25th-sampfé
instant - the parameter estimates are constant = and the
estimates are converging to thg true valuéé. The H estimates
fénd to follow each other until the 55th sahple'instant and
then ~'become equal in magnitude but opposite in sign; The
céntrol performance is very good even for the first 10
samplg instants but deteriorates from'the'QOFh to. the 30th
-sample instant. The control effort and sum of prediction
errors vélues after—200 sample instants are 36% and
14%,respectively, lower thén foq the base case.

Parameter | e§timaté. behavior. -Qhen S(O)=10; is
iilustratéd in Figure 4.67. The F estima;eé groﬁ faster than

for S(0)

1 at the start of the simulation. The f, and f,
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estimates are slgnificantly larger than when starting the
S(0)=; case but the general trends of .the . parameter.
estimates are similar. The G estimates adapt qugckly at
startup and g, and gzlare 10% closer to the true values,by
the 200th sample instant than the parameter estimates when
Starting with S(O);; The H eslmates are approximately equal
until the 10th sample instant and then the_estihates hecome
mirror images of each otherrby the 40th.sample instant. The
H estimates are within 12% of the parameter' estimates that
resulted using s(0)=1 but are not converging to the”true
values. Figure 4. 68 1llustrates how the control performance
has deteriorated for the first 15 sample instants causing ax
26.5% increase in control effort compared to the simulation
results for S(O)=1;.‘However,.overall there was a decrease
of 3.7% in sum of prediction errors as the output tracks theh
setpo1nt qQuite well after the 20th sample instant.

‘For S(O)-1OOI Figure 4.69 shows that the F estlmates
Agrow larger than for S(O)—1OI in the 1n1t1al sample 1nstants
.'Aof the s1mulat10n..The fo and £, estimates have grown larger‘
than the1r true values by the 200th sample 1nstant. The g,
and g; estlmates do not 1ncrease at the 4th and» 'Sth sample
'-instants as much as was the case startlng with S(O)-1OI and
furthermore the flnal values of o and g2 'at',thél 200th
sample 1nstant are also smaller. The H estimates grow about
'three times larger than the true values. The H estlmates are
more symmetrlcal to each other startlng with S(O)—1OOI than

for S(0)-101 and the parameter est1mate values at the 200th

L]
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samplé'instant are about 40% lower than the values pbtaihed
starting with S(0)=L. The jnitial control performance as
seen in Figure 4.70 is ‘significantly ‘worée than for the
tests wusing the smaller initial covariance values and the
large increases in control effort of up to 63% and ' sum ‘of
prediction errors of 18% provide substantiation. The output
does‘not track the setpoint well wuntil the 20th sample

instant. |
Comparison of the adaption pattern of the F and G
eétimates for s(0)=1001 exhipit simi%er trends as observed
for the base-case S(0)=3000L. As can Se seen. from Figure
4.18 the f, and g, égfimates, by the 200th»sample instant,
are 27% and lower while the remaining parameter estimates
are within +5.2% of the estimates obtained for S(0)=100;.
The H es;imates ags‘s“ill mirror images of each other. ‘The
initial large_fluctuatiqns have increased .bo.: 40% and the
final estimates have also increased compar:zd to the values
estiméted starting with S(0)=100;,‘fhe con .ol perforﬁance
as shown in Figure 4.15 which 1is seen to be marginally
bétter because of a 4.5% reduction in control effort and
4.3% decrease in the sum of prediction errof value. However,
control’ performance 1is still not aé desirable as that
observed for S(Q)¥; and s(0)=10]. The parameter estimates
for s(0)=10*L, 10*1 and 19‘;, can be seen in Figures 4.71,
4.72 and 4.73, respectively, and Figure 4.74 contains the
control performance for S(0)=10¢L. In all three cases the

parameter estimates are almost equivalent, differences of
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less than 1% are obse;ved in ghe-p;&ameter estimatésdtha;
resulted from using these three initiall covariance matrices.
‘The control performance for -all thrl@ initial covariance
values simulations was found to be identfqal as the conttol
effort values were equal to within less than 1% and the sum
of prediction errors values were within .46% of each othgr.~
Cdmpéred to the control performanée when S(0)=3000] the
control effort and sum of predicted errors values are within
.1% of each other ‘and the parameter estimates are also
'witﬁin 1% of the estimates vyielded when AS(O)=3000£.
Therefore any increase ' in the initial covariance mafrix,
S(0) beyond S(0)=30001 déeé not improve controi effort,‘ éum
of predic;ion erfors or final -parameter estimate values.
However, the . choice of initfai_ covariance mat;ix does
influence the parameter estimate behavior; As S(0)  is
increased the F estimates show more initial oscillations but
by the 100th éample instant the estimates are no ‘longer

affected by S(0). For S§(0)=l the ¢ estimates displayed

initial os;illations' but for the large vﬂlues.the initial
parameter es;iﬁate changes were less erre The H estimate
behavior is more sensitive to the inti:ial riance choice
than the F ana G estimates. The lower the ) wvalue the
longer the two estimates remained equal tc ~ - ot ar. As
the value of.S(O)\inCreased'so‘did the magnitude of <. H

parameter fluctuations observed between the <th =nd 40th
sample instant. Although the lower the 1initial <. rianc

values gave the lower control effort and sum of prediction
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errors because the initial setpgint tracking was very good,
this was only due to -‘the small setpoint changes  of the
saWtqoth.‘function. When the same S(0) values were used with
a sguare wave sétpoint change the minimum control effort and
sum of prediction errors resulted by Sfartiqg with S(O)=j00£
as shown by the suﬁmary in Table 4.2. Theréfore for larger
abfupt setpoint chaqges the estimates convergéAmore quickly
préviding better co;trol .berformance. Consequently a
compromise between the requireﬁent» for good tracking‘and
faster parameter convergence must be made when choosing an .

initial covariance matrix.

‘4;5.2 Forgetting Factor

Ther effect of changing the forgetting factor, »p, in
‘confrolléf parameter identification was also studied. All
simulations wused the recursive upper diagonal factorization
method with P=R=1 and Q=0 and only the foréetting factor was
laltered. The results from all tests, performed for a square
wave change in setpoint}v showed ‘nd difference in output
until. the first setpoint change so the forgetting»factor
value p does‘nOt affect initial parameter estimates. Thislis
'becéuse the observation vector is not yef compiete sé;data
truncafioﬁ ié not a factor. However, by the 200th sample"
instant the differéﬁces'aré‘evident.

The contfol‘performance and pérameter estimate' resﬁlts
for p=0.7 and p=0.85, are shown in Figures 4.75, 4.76,A4.77

and 4;78,'respectiveiy; Evén after 200 sample instants the

!
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Table 4.2 Effect of the Choice of the Initial Covariance
Matrix using the -Recursive Upper Diagonal Factorization

Estimator on Performance

- e o . . S = G S= G S D s G e Y T R D B G e S Y N S G R v S A e e e TR S e S A A e G A e G -

INITIAL C SETPOINT CONTROL SUM OF PREDICTED
COVARIANCE TYPE EFFORT - ERRORS
VALUE -
1.0 SQW 571.77 99.07 -
SAW 204.59 40.57 Figure 4.65
10.0 SQW 565.78 ~ 85.38
SAW 258.88 43.39 Figure 4.68
' 100.0 SQW . 565.51 94.76 )
SAW 332.11 50.49 Figure 4.70
3000.0 SQW " 565.10 95.19  Figure 4.14
SAW 317.36 48.38 Figure 4.15
1.x10% SQW 638.53 125.77
SAW - 317.19 48.41 Figure 4.74
1.x10° SQW 684,26 98.18 |
- SAW 309.06 48.60 .
1.x106 SQW 704.55 117.38
SAW 275.70 49.69

S ey G T A ST SR G Ge R e S e D e G P S W e AR e T - - S S e AR - P S S G e w D G e En D W S G R W SR G S G . A . -

SQW - Square Wave Setpoint Change
SAW - Sawtooth Function Change in Setpoint
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barameter estima£es hagsvpot converged and are very erratic
for the entire,simulation. For p=0.7 the control performance -
1s not satisfdctory since Qﬂeh the setpoint chahges occur .
réthef large oséillations occur. The éontrol performance for
p=0.85 is considerably better as refléctéd by a reduction of
23% inv the control effort value and 10% in the sum of
prediction errors, but the 1initial performance after a
setpoint change 1is still not acceptable as the setpéint
tracking is boor;

'Simulationsr using smg}{sﬁ value of the fofgetting
factor ‘than 0.7 were not perfg?med éipce values of p less
than 0.7 would result in ”unsétisfactory estimates and
pbséibly parameter blow up ~which would 1lead to uné#able
contrbl performance. J
| It can be seen-from Eiguge 4,79 that vincreasing the
forgetting féctorfto 0.9 reduces the er:atié behavior of the
"parameter‘estimates and the F and G estimates - seem to be
-'apﬁroachiqg Qalues within a éonstant ;ange but do not appeaf
té.bé convérging fo any specific'vaiue. In contrast,” the H
estimqﬁe‘ édaption.pattern is very erratic and the estimates
do not appeaf to - be éonvéfging. The control performance
‘shown in Figure 4.80 is acceptable. but fluctuations around -
the setpoint are evident between the 75th and. 100§h sampie
instants and the output does not_iﬂitially reach S.O_af the
step change at the 150th sémple instant, It wéuldmjépéear

that a _ﬁorgetting'factor even larger than 0.9 is necessary

to obtain good pafameter, estimates and therefore
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satisfactory - control performance eo simulations with larger
values were performed. For a forgetting factor of 0.95 the F
and G estimates have still not converged to a constant value’
as shown by the results displeyed in Figure 4.81 althougb
the behavior is less erratic than for p=0.9. The H parameter
estimates chanée more than the F and G estimates and the
edaption pattern represents a considerable. improvement
compared to that for p=0.90. As can be seen in Figure 4.82,
an increase in p -from 0.9 to 0.95 impreré the control
performance however, the output at the setpoint change at
the 150th sample instant still does not reach the new
setpoint. On the basis of theée.results it is reasonable to
vconsider that an acceptable lower bound for the forgetting
factor is 0.95 as the control performance is. merglnally
acceptable even if the parameter estfhates afe still
adapting. - ; |

The parameter estimates and control performance for
p=0.975 is given in Figures 4;83 and 4.84. The F and G
estimates are ‘now constant and all parameter estimatee
except for ;he h, estimate are within +24% of the true
values. The H estimates are fairly stable and both appear to
be”approaching the true values of h,=0.79 and h,=-0.37
.although h; 1is adapting slower than h,. The control
performance shown in Figure 4. 84 is only slightly better
than achleved us1ng a forgettlng factor of p=0.95. The new

setpoint is reached at the 150th sample instant but

-reductions of 1less than 1.0% in the control effort and sum
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of prediction errors values is not considered significant.
Comparison of the base case results in Figure 4.17 for
p=0.995 shgwé that the F and G estimates are vég; similar to
those in Figure 4.83 but -despite thé fact that the H
estimates have become qonétant, the estimates are sfill only
within 80% of the true valueé. The ¢on£r§l performance shown

for' p=0.995 shown in Figure 4.i4 when compared with that in

Figure 4.84 is very similéf witﬁ the decrease of the control

effort’ for p=0;995 but accompanying this desirable change

there is a 1% increase in tﬁe magnitude of the sum of

/prediction error value.

If no data truncafion is desired  then the foféetting
factor }s set to=1.0. The parameter estimates . and control
pe;formanée that results for p=1.0 is présented in Figures
4.85 énd 4.86. The parameter estimates are constant and have
'Eonverged, and all estimates exceﬁt the go and g, parameters
aré betwéen_ 20% énd 90% from the true values. The control
- performance is acceptable with an increase of less than .4%
in the 'wvalue of the sum of the prediction errors while
‘chtrpl effort value is reduced Aby .9% from that wusing
p=0.995. |

From the simulation results using forgetting factors
from 0.7 to 1.0 it has been'foﬁnd fhat for a fofgétting
factor below 0.95 the pardmeter estimates changé répidly'aqq‘
no convergence is observed even after 200 sample instéﬁé#.‘

The H-parameter estimates are the most sensitive to the

forgettiﬁﬁ factor as the F and G estimates are fairly



198

)

o.—l
w®
h -
@x
= —0 1.5098
— S —F2 2644
wo —1-.9291
W -

(=] i

S

©

]

o

c.—
Ll .
H. —

E —6n -343¢
ta—;?.,- g1 --0260
w© —62-,1936- -

a -
.8 !
- -—
o
o.—l
we .
h -
@
= 0755
'-'o . - 't .
e . #0641
wo ' .- .
- -
o
Q
oy L T T 1 T ™7 T T T 1
0.00 40.00 80.00 120.00 - 180.00 200.00 - 240.00 \

SAMPLE

Figure 4.85 Parameter Estimates for a Forgetting Factor of

1.0 using the Recursive Upper Diagonal Factorization

Ty

Estimator



199

12.00

RESPONSE
4.00

~4.00

. PREDICTED ERROR=95.49
CONTROL EFFORT = 560.69

, 18;00 .

.qo

CONTROL RACTION

6.00 0

. Ll » v
0.00 40.00 80.00

T T T 1 T 1 L
120.00 160.00 200.00 240.00
SAMPLE '

Figure 4.86 Control Response for Forgetting Factor of 1.0

using the Recursive Upper Diagonal Factorization Estimator



200

constant for p=0.975 and 0.995 but the H estimates only
exhibited conétant‘ behavior for p=0.995. Although the
simulation ”results' for a forgetting factor of .0.975
exhibited the smallesgysum of predicted érrors for a square
wave change in setpoint, a - ;awtooth functioﬁ change ih.
setpoint caused the F and G parameter estimates to increase
to values approximately double the true value andqthe sum of
predicted errors became larger than the total obtained for
p=0.995. The F and G parameter estimates were even greater
for a step changé in setpoint~than-for the sawtooth function
change in sétpoint and caused parameter blowup in the H
estimates. So on this basis a forgetting factor of 0.995 is
céﬁsidered to be appropriate for fhe'system under study as
it gives_-the~mo§t satisfactory results for all three types
\.Of setpoint changes.

In generél, the forgettinglfagtor should be chosen on

the basis of the expected variations in system parameters;

If tﬂe' parameters are slowly changing, values near 1.0

r fa

should beéused and r variations a fo}getting factor

of 0.95 would be more\appropriate. - C,

In systemé where eré is low excitation or operation,
such as a constant setpoint, the forgetting factor should be
set to 1.0 and only changed when plant ébnditiéns change.

For a nonlinear system, frequent setpoint changes lead
to rapid changes in the assumed linear model so a forgett5n9>

factor of 0.95 should be used initially and once parameter

tuning is complete a value near 1.0 should be implemented to

Le
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4

allow for the slow parameter changes [101].

4.5.3 Initial Parameter Estimates
" The choice of initial parameter values is imporiént,
since it is these values that determine the trajectory of
the parameter estimates and ﬁhﬁs the final étatiohary pbints
[33]. The values also influence conVérgenCe ﬁimé and in some
cases the closed loop étability of'the system;
| If fhe true value$ of the parameters ame not known. the
initial estimates afe usually set to zer§ except’ for g
~ .
whiqh‘ must be non-zero and positive to avoid dividing bj
iero in the control action calculaﬁion.5 The go should be
chosen for fast c§nvergehce as'diécuéged_in the_self—tﬁning
theory section; (cf. Section 2.4 ) ™
The control beha&éo: for the squaré wave‘and sawtooth
wave setpoint changes for initial parameter‘estimateszﬁg(O),
"set to 1.0 are shown in Figurés 4,87 and 4;88K7,‘
.respectively. The initial control-perfofmanCe for both cases |
is poor as it takes more than 20 Sample.instéhts totstart'
tracking the setpoint. The sum of predicted errors for the
-squarez‘wave change ‘in setpoint is 37% lérgé; than for the )
base case, Howevef,‘the sum of predicted érrors for the
sawtooth function chaﬁgé im setpoint is' 2% 1és§ than the
base case showing a siighf imprdvementA in  control
performance. B o |
'For the sguare wave chéngé.in setpoint the pérametgr

estimates are constant by the 120th sample instant as‘§hgwn
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by the parameter estimates in Figure 4.89. However, by the

¥

1 A ;
the true value. For the sawtooth wave change in setpoint the

pattern of-parametef adaption shown in Figure 4.99 displays
the  large fluctuations in H e;timates at the start of the
adaption but the parémeter estimates become constant‘by the
120th sample instant. The f: and g, estimates are within 4%

of the true values by ' the :200th sample instant but the

remaining parameter estimates have errors of over 20%. The H.

estimates are mirrbr images; of each other and are not
converging to .the’ true values even after 200 .sample
instants. .

The ,control‘ performance that resulted for the square
wave and sawtooth function changes in setpoint is presehted

for initial estimates of -0.5 is presented. in Figures 4.91

e

%
not satisfactory for either. ' setpoint change. The control

- and 4.92. As can ‘be seen, the ipmitial setpoint tracking is

effort value for the square ﬁaveggetpoint.is,'7% lower and
the sum of predicted errors is 5.8% lower, for initial

‘estimates of 1.0 while for the sawtooth change 1in setpoint

the control effort and sum of predicted error values were

amost twice as large.

For the squaré wave change in setpoiﬁt,'it can be seen
from the parameter estimates plotted in Figure'4.93 that the
F estimates are constant after 200 sample instants. In
addition the values afe within 6% of those for ©(0)=1.0

which were far from fhé ‘true values. The G estimates

200th sample instant only the go estimate is within 2% of

i
RV



205

Q

g
LLJ*

p—

@ Fo 1.5322
i

:8- ‘ +2 .2608
ne . —F1-,9363
W -

o .

e

-

1

(=]

O..

w =

—

x co - 3470
—3 &1 -.0165
0 © . G2 -.1885
o .

o

e

[}

e

b= .

7 ' ‘
w - |
’— -

x

o 0352
’_O_ 1u .
R73cH | ®_ 0533
I-U,Q

- -

(=]

e

) 1 3 | i L | ¥ LI L L] T ¥ 1 )

‘ .00 40.00 80.00 120.00 160.00 200.00 240.00

‘ SAMPLE

Figure 4.89 Parameter Estimates for 1Initial Paraﬁé;er
' Estimates ~ of 1.0 using the Recursive Upper Diagonal

Factorization Estimator for a Square Wave"Change in Setpoint'



(=]
& :
Lu*
—_ o '
< | o 1.1693
(o by .
De - 1 -.7416
W -
o
S
-
]
Q
S
- .
—
% 6o -3385
— S- o1 .0042
ae G2 -.1610
a L
(=]
S
)
\
ol -
o.-
u_in
F ——
[« ut
o 1 .6238
- 8- :
o 2 -.7043
z —
(=]
°. ”
c.’ | 1 | 1 T 1 L [ 1 1 ] R
0.00 40.00 80.00 120.00 1680.00 200.00 240.00
SAMPLE

Figure 4.90 Parameter Estimates for Initial Parameter

.Estimates of

1.0 wusin- the Recursive

Upper

. Diagonal

Factorization Estimator for a Sawtooth Function Change in

Setpoint



207

o
°-
Ll
qu"
w —
z
o Ly
a
n 84
W= |
x"m
<
o
]

PREDICTED ERROR= 123.50
CONTROL EFFORT = 583.25

16.00

CONTROL RCTION

(=]
<
o
o
<
= Rl l‘ ) ¥ T ) 1 1
L) .
'0.00 = 40.00 80.00 120.00 180.00  200.00  240.00
: SAMPLE

. \ ‘s . . .
Figure 4.91 Control Response for Initial Parameter Estimates
set to -0.5 using the Recursive Upper Diagonal Factorization

Estimator for a Square Wave Change in Setpoint



208

12.00

RESPONSE

4.00

PREDICTED. ERROR= 84.92 .
CONTROL EFFORT =400.21 -

16.00

~-6.00
-l

1

CONTROL ACTION

1} !

: J ] L
.00 40.00 80.00

o-26.00

1 ) ¥ |} 1 Ll
120.00 160.00 200.00  240.00
SAMPLE

Figure 4.92 Control Response for Initial Parameter Estimates
set to -0.5 using the Recursive Upper Diagonal Factorization

Estimator for a Sawtooth Function Change in Setpoint -

(S



209

=
c.-
u*
= : :
% ‘ £0 1.5278
:8'47{,\: £2 .2585
w .
we —F1 -,9375
LL. -
o
<
' A
1
o
e
m-
= & .3457
:’—)8. — & -.0217
we —G2 -, 1946
d]
=
<
1
o
°'-
u-
—
c -
z .
:8- u! .0447 .
BQ -.0430
- - :
o p
e
N T T T T 1 T T T T T T
0.00 * 40.00 80.00 120.00 160.00 200.00 240.00
SAMPLE

Figure 4.93 Parameter Estimates for Initial Paraméter
Estimates of -0.5 wusing the Recursive Upper Diagonal -

Factorization Estimator for a Square Wave Change in Setpoint



210

displayed a similar adaption pattern to that when starting
with the initial estimates of 1.0 and beéame constant by the
110th sample instant. The g, estimate ~after 200 sahple
instants is within 2% of the true value and it can be seen—
that the h, and h, estimates did not change noticeably after
the 10th sample interval and do not appear to be approaching
the trué'values of 0.79 and —0.37, respectively.

For the sawtooth wave change 1in setpoint the F
estimates, plotted 1in Figure 4.94,_increa5e slowly for the
first 20 sample’instanté but the f, and f, estimates at
200th sample instant are larger than the true values
including those obtained when 6(0)=1.0. Aithough go is 1%
_higher than the true value, g, is 33% and g, is 25% higﬁer‘
than the true value. The H estimates display greater changes
than for the square wave change 1in setpoint and for a
sawtooth changé in setpoint when ©(0)=1.0 but still do not
approach the correct values.

Comparison of the base case résulté, stafting with
8(0)=0.0 and g°=0.3, still in Figures 4.17 and 4.18 with the
results when 6(0)=1.0 it can be seen that the parameter
estimates for the square wave apd~sawtooth function setpoint .
changes are similar after the first‘io sample instants. The
average of errors of the parameter. estiﬁatés affer 200
sample instants for the sawtooth fudction. setpoint chahge
whqf 8(0)=0.0 and go=0.3 were 37.5% which was 13.3% better
fgaﬁ the estimatesAfor 8(0)=-0.5 a?d only 1% higher than

when . 6(0)=1.0. The parameter estimates obtained by the
\ ® . ' .
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square wave .change in. setpoint differed on average 44.4%
from the true values which slightly better than those for
éhé other two 1initial parameter estimaté“QéIﬁés. The best
control performance for the‘léaSt control efforf 1s obtained
for ‘the square wave change in setpoint for 656.0 and go=0.3
but tHe sawtoothlchange in setpoint showed aw11.2% increase
in fhe sum of predicted errors compared to the ©=1.0 case.
For the two nonzero initial parameter estimate tests,
9o was initially set to 0.3 to determine if the poor initia;
go estimate was the cause of ﬁhe control performance
deterioration. The résults for ©(0)=1.0 and go,=0.3 and for"
6(0)=1.0 and go=0.3 when a sawtooth change in setpoint- was
used showed a decrease in control effort and sum of
predicted errors yhgn compared to the base case where
©(0)=0.0 and go=0.3. However, the results for the square
wave change in se;point~showe§ marked increases of 25 to 45%
in control effort and sum of ﬁfedicted error values from the
base céSe due to increased initial ouﬁpht errors. Although
the sum of predicted errors for the sawtooth function
setpoint‘when ©(0)=0.0 and go was larger than for 6=1.0 the
overall performance of these initial parameter estimates
indicate that if only limited information about the true
values of the parameter estimates 1is known the initial
estimates should be set to-0.0 and the go estimate should be
set close to the true value to ensure fast convergence. The
0.0 value is ideal as it does not cause the initial

calculated estimates to be of the incorrect sign and
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_therefore begin the \estimate trajectory in the opposite
’ )

direction of the true value.‘

4.6 Convergence Problems of the Estimators

The simulation tests performed for all )five parameter
estimation methods for linear system studied show that the
reCursiQe upper diagonal factorization method ié',the most
accurate and efficient algorithm. .However, not all parameter
identification techniques éonvergéd to parameters that yield
good coantrol performance. The unsatisfactory:pefformance I's
largely due. to the 1incorrect parameter estimateg which
resulted for various reasons. The convergence problems of
the estimators is now discussed. | .

The incorrect H estimétes' obtained by the paraméteb
estimation algorithms observed primarily for the first 1000,
sample instégfs directly influences the F estimates, thus
causing them to be incorrect as well. This can be
appreciated from equatéon 22.6) of Section 2.3.3, which

shows that the F' and E' polynomials are determined By

c P .
zd_ = sz! + —— ’ 3 (2-6)
A A :
Since H = -C, incorrect H estimates will give incorrect F

estimates. Clarke [10], has shown that if‘C=1 the recursive
least squares estimator does ‘néG yield biased estfmates
Valthough the inifial tuning may be unsatisfactory and the
dynamics of C~' and the convergence rate are related. This

can be applied to the recursive square root, recursive upper
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t

diagonal factorization and recursive leatning estimators as
well since these algorithms are also based on the assumption
that there is no correlation between the noise and the inpug
and output. However, by the 3000th sample instant the
recursive square root. and recursive upper diagoqal
factdrization estimators yield parameter estimates that are
an average .of +10.6% from the true Qalues for the sqgére
wave change‘in setpoint.

Another cause of the inaccuracy of the estimates can be
attributed to.theAcomputer used for the estimatiqn algorithm
calculation. Bierman and Thornton [34] showed' that the
accuracy of the ;Bya:iance algorithms deteriorates rapidly
as the computer 'word length décfeases. Therefore the
estimates obtained by the recursive least squares ésﬁimator
coula bé improved by dsing dopble precision arithmetic
however, this would not Se necessary for the recursive
square root and recursive  upper diagqnal factorization
methods. In fact it was found that the stability of the
factorization algorithms was shown by. their lack of
sensitivity tg\the choize of a priori vaf}gpce and . process
noise levels. 1In dll simulations in tﬂés,study, single

precision arithmetic was used to keép the 6Bmputatibn time
~and storage at a minimum. As expected the factorization
technigues provided parameter estimafes that could adapt to
the true parameter values even with "sihgle pfecision
arithmetic while the remaining methods did not ~perform

sétisfactorily;
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The‘ lack of a covariance ﬁatrix in the recursive
learning éstimator does not enable the measure of pafameter
‘confidence to be determinéd and thus parameter estgmates are
incorrect and the adaptive properties of the estimator are
unsatisfactory. |
4.7 Conclusions ’

Based on he extensive evaluation of the five parameter
identification techniques the following conclusions can ' be
made. From thé setpoint tracking simulatidns, the recursive
upper diagonal factorization estimator was shown to be the
most accurate and efficient algorithm. The recursive square
root\gstimatér was equally as aécurate as RUD however it was
not as efficient as it required the calculation of square
rdot whicﬁ 'is more time conghming‘ than arithmetic
operations.

From the Q and R weighting tests it‘was observed that
there - was“a reduction in the control effort for all the
estimators. The contrél peformancé for all but the recursive
maximum likeli >3 estimator was improved when compared to
the minimum variance control however, the RL estimétor'
lperformance was not comparable to that of RLS, RSR and RUD.

When the'systémxwas subjeéted to an unmeasurable load
disturbance the RLS, RSR and RUD estimator were able to
estimate parameters that compensated for the disturbance.
The use"of recursive learning estimation resulted in the

system becoming unstable while the recursive maximum
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- .ikelihood estim::ioﬁ resulted in offset.

The recur:. e maxiTom likelihood estimator has proven
that it ‘is unable to :stimate parameters to provide
satisfactory control\ §é:fofmance in closed loop feedback
control. |

Identification capabi.ities of the }ecutsive upper
diagona} factoriéation estimator were examined when various
estimator variables were altered.’ .The initial covariance
matrix'value/should be chosen to comﬁromiseb between . good
setpoint tracking and fast'/parameter con&ergeﬁce. The-
forgetting factof should be chosen based on the variation of
barameters with time; The fasterléhe parameters vary the
closer the forgetting factbr should be to 0.95 and the
slower varying 'barameters would only need a forgetting
factor close to 1.0._The.initiﬁl'estimét* valueS»,shduldl'be
selected as close to the true valﬁesAas possible put'if.only
limited infbrmation is available setting  §1l' estimates
excépt go(0) to 0.0 codvergence of the paraméters will occur
within an acceptable amount of time. The choicé of go is
very important as it determines _thé speed at which‘ﬁhe
parameters converge. A value as cléée' as possible to the

true value is the best initial estimate.



5; Nonlinear Simulation Results

A nonlinear simulation of a binary disﬁillation column
was used to further test the parameter’ identification
techniques. The distillation column simﬁlatipn program based
on the nonlinear material andv energy balance "differential
equations that was developed by Kan‘t35], based on previous
work of Simonsmeier [36] aﬁa Bilec [37] and modified‘ by
Nazer [38] Lo study self-tuning control was used to further
evaluate the parameter identification methods. This
simulation - allows an assesment of the techniques for their
‘performance in the estimation of parameters that can
'compensate for Ehe' nonlinearities and'interactien between
the loops in“order to acbieve satisfactbry control
. performance. In ‘the ”'simulatien program; 'the control

aigorithm is based on an assumed column model given by

XD* | G117 G112z Gy3 | RE#*

= STx* : (5.1)

XB* Gz1 G2z G2 FE*

where XD* and XB% represent the deviation of the _top . and
bottom productJ composition from the steady state operating
conditions, respectively; RE*, ST* .and FE# repreeen: fhe
deviation of the reflux, sfeam and feed flow rates from
steady state operating conditions. The transfer functions,

-

G.J'are of the following form
KP(' nexp(-rd G ) : :
Gi () = ~LLIEER T S , (5.2)

where Kp is the gain) of the process and rPis the time
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constant of the procees and 7; is the time delay of the
process.. | | |

| The parameter identification algorithms tested were the
recursive least squares (RLS),'recursive square root (RSR),

recursive upper diagonal factorization (RUD) and recursive

learning (RL) estimators. The recursive maximum likelihood

estimator was not tested because the unsatisfactory results

from the simulation study of the linear systems indicated

that thls method did not warrant further study.

i Every honlinear simdletion wes identical changing only
the parameter identification .technique. Each estimation
method was tested for a feed flow rate disturbance of +20%
from the steady stater value. The minimum variance
self-tuning controller was ! introduced five sample 1ntervals
after the start of the simulation. The dlsturbance was
lmplemented 10 'sample intervals after the simulation began.

The sampling rate for both loops was 3 minutes.

The starting values for .the feed, reflux and steam

- rates vere 18.2 g/s, 18.0 g/s and 14,7 g/s respectively. The

top composition was set at a concentration of 96 mass

éercent methanol (MeOH) and the bottom compositioh 4.996%
MéOH. |

The results of ‘this series of 51mulat10ns are
illustxated with plots of the feed, reflux and steam flow

rates and the parameter estimates for both top and bottom

' loops. In each of the plots the flow rates will be 1nd1cated

¥ ST for the steam, RE for the reflux and FE for feed with
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the top composition‘shown ;ssXD aﬁd the bottom cqmpositipn
as XB. |

The number of parameters for the two léops was
different; the top loop hadatwo‘F parameter estimates and
three G, Dx and G* parameter egtimates whereas the bottom
loop had three F parameter estimates and four G, D* and G
parameter lestimates. The érders of the control}ef
»polYnomials ~were selected to 6btain the best contFol'
performance.

Just as for the study of the control of linear systems,
the F and G;parameter estimates are associated with the:
outputs and ihputs; respectively. The G* parameter estimates
correspond to thé loop interactions and the D* estimates to
the measurable disturbances or feed flow rate. All parameter
estimates were initially set tg§”2erp with only the GO
estimate set to 0.5 to avoid division by zero in the control
law. | |

The steam flow - rate was the measurement ﬁsed for the
loop interaction of the top loop while the reflux flow raﬁe
.as  ‘used by the botfom loop to determine the }obp

interaction.

. 3 »
The flow rates and ccopo -icas are ~ »tted only until
the compositions return to ineir str- - te wvalue or
desired values in the case of a setpoin . .ange. However,

the parameter estimates are plotted for the ‘ertire

simulatiofi which was 600 minutes.
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v .
The true parameter va s were not determined so the

performance evaluation of the estimation methods is based on
the control pérformance. " The return of the top and bottom
compositions to the setpoints with thé minimum time away
from the desired setpoint is'takon as the criterion for good

control performance.

5.1 Evaluation of the Recursive Least Squares Estimator
;&gf " The results using the recursive least squares estimator
for a 20% 1increase in feed.flow rate are given in Figures
5.1; 5.2 and 5.3. The bottom composi;ion required 80 minutes
for return to the sétpoint while the topv composition
required only 60 minutes. The greater deviations are
observed for the bottom composition bécause the bottom loop
is more sensitive to any feed distﬁroances, Both the reflox
and steam flow rates did not'fluctuate once steady state was
reached and the composition setpoiﬁﬁs were attained.
| The parameter estimateé' for» the bottom 1loop have.
converged.by 200 minutes while the top loop converged after
180 minutes, There was more;fiuitial oscillation for the
bottom loop parameter estimates, as shown by the resolts in
Figure 5.3, than for the top loop as can be seen from Figure
© 5.2; This is no doubt due to the larger number of parameters
that must be estimated, which requires more time for
parameter convergence. | ‘
| Whon the feed flow r;te is abruptly decreased by 20%

from the steady state value, it can be observed from the

. \
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results shown  in ?igure 5.4, that the top composition
returged to the setpoint after 110 minutes while the bottom
composition took 130 minutes. The increase in the amount of
time to return to the-sétpoint indicates that a reduction in
feed flow rate .causes "a ‘greater upset in the cdmposition
control'than an increase in feed. The deviations from the
setpoint of both compositions were also considerably larger
which accounts for the increased duration in time the
compositions deviate from the setpoint. The reflux and steam
flow rates showed larger fluctuations than for the 20% step
increase in feed flow rate as a result of the large
deviatiyns in the. setpoints. |

- The top and bottom loop parameter éstimates presented

in Figures 5.5 and‘5.6; respectively, show - greater .initial
‘changéé thaq f;f a 20% increase in”feed flow rate. However,
the estimatés‘hgve_converged in the same amount of time as
'fo;'the positi&é:step increase in feed rate. The bottom loop
- parameter estimates again sﬁow larger initial changes than
. the top loop estimates. | | |

| Therefore the control performance observed using the
recursive least squares estimator .is accéptabie for an
in;;ease and deérease in feed flow rate as the maximum
deviations from the desired compositions were 1% for the top
loop and 2.5% for ﬁhe bottom loop. The output also returned

to the setpoint after only 80 minutes.
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5.2 Evaluation of the Recursive Square Root ﬁstihator

The performance of the‘recursive square root estimator
‘was also studied for 20% changes in feed flow rate. The flow
rates and tdp‘aﬁd boftom composition behavio; for a ZO%Cstep

. Céh< be

increase in feed rate is given in Figure-5

. & e

seen, the bottom compoésition returned'fﬁgg

80 mlnutes but the top comp051t10n~requ

of elapsed time. The dlfference in the perfe ﬂance of the

b

afger

.mlnutes

N

RSR estimator compared to that using RLS. was” the ssmoother
return to the desired setpoint exhibited for the RSR
estimator as‘seen in Figure 5.7, This behavior is caused by
the ‘smaller .changesz in reflux and stggm flow rates also
shown in Figure 5.7.

The' parameter éstimaﬁes for ﬁhe top loep, presented in
Figure 5.8, show the same initial adaptidh.pattern for the
first 20 minutes, for the F, G and G* parameter estimates as
fogﬁéhe 20% increase in »feed flow rate wusing the RLS
estimator. . However, when the parameter estimates have
converged the FO and F1 estimates have groﬁn_in the opposite
ﬂdirections to the values obtained with tﬁe RLS estimater.
The G1 and G2 parameter estimates also illustrate this same
behavior. When the RSR estimator is used. the D parameter
estimates no longer all have the same values and the
adaptlon patterns are different, with the final D* estimate
values larger than the values‘ obtained usjng ,§§§?~RLS
estlmator. The G* parameter estimates also coﬁverge faster

using the RSR estimator than the RLS method.

R
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The bottom loop parameter estlmates found 1n F1gure
exhibit a dlfferent adaptlon pattern than resulted u51ng RLS
estimation. Compar1son of the final estlmate values with thes
values obtalned u51ng the RLS est1mator glven in ngure‘5.3‘\
showsithat the{F1 and F2 as well-as the G2 and G3 parameter
estimate values have changed with the F2 and G2 now having .
the larger values.‘The D*~parameter;estimates are no .longerp
' eQual as seen for the top loop parameter "estimates and the
G3* and Géx* estlmates are not equal ‘as 1s the case when the

RLS est1mator is used

ey

A step decrease of 20% in feed)flgw rate caused the top
comp051tlon -to deviate from the setp01nt for 80 minutes and
the bottom composition for 120 m1nutes as can be"observed
from Figure 5.10. These t1mes represent a‘reduction“in<the
time requ1red for the comp051t10n to return to the. Setpoint
.compared to the performance u51ngﬂRLS ;dentlflcatlon The
top composition showed smaller dev1atlons from the ‘setpoint:
than ' with the RLS estlmatlon and both ‘top and bottom
composition response curves had”onesless osciliation' usingb'
the RSR estimator. As .seenﬁin'Figure’S.JO,Ethe steam and
;refIUx flow rates. reached steady state values  in 100
~minutes. 'Comparison of . the flow rates ‘using the RSR.
estlmator w1th those us1ng the RLS, reveals that only vfor
'the flrst 50 m1nutes are the flow changes s1m11ar. It is toih
be noted that the: steam flow rate did not reach as high a
value dur1ng the elapsed times using the RSR estlmatlon as

’

was the case for RLS estlmat}on. The‘flow rates reached _new




232

§ R

A £0 .
w
F-c
%.‘?_ 7:;? o
- O . -
—
U) -
W | - . .
<
.u%? ? .
Yy
L : 62
A EEo_ 63
=
—o G
BT ¢
R wg ¥
Cad .
v
L , - . -~ :
ot %Uz—w
’ o
- — Z
. (0_ -
We
-l
(=30
O N a
P "
R B e ,,1 ’
-",' p— e MatT ?
A " q: e - A
) ) x = T R
s y -3 ST e s
oy R SR '3? ’
. . S | .‘1 ..' {/ T
\ o J’ Sy
w5 CTEATT s,
O o4——1= T B PEE— Y 13 ) 1 g
b. 180.00  820.00 ‘- 480.00 640.00 .800 -

TIME*Lsem?Lﬁ)-

5. 9 Slmulated Bottom dompos1t10n Parameter Esblmates

of the Blnary Dlstlllatlon Column for a 20% Step Incrbase 1n»

:

Feed Flow Rabe u51ng Recur51ve Square Root Estlmatloni




233

s

Flg‘re 5 10 Slmulated Response to %he'

¢fColumnu.Sdbjected- to
,u51ng Recur51ve Square Root Estlmatzon

&

g v
= - :
)
O
= - XD
o - ,
o ‘3. - f /)) R .
- 3-1 \ t/:?h\" ) - o ) it
=1 e e s e
0. o
E; e B2,
o A
SRS P = o :
CD- = , o4 ‘ov,
§:' T
E L * : XA - ‘
e
Q-
@ e - .
B : T —
3 Vet : .00 200.00
<00 40.00  80.00 120.00  160.00 _,
o] ;
R - ] !
we -
pos ST
o (o
Se.
_lo N
u-—-‘
i RE
0 4y
UJ~ FE
i
&
z¢
__]Q
V‘L -
[n)
2 : - T T T T T T T
. — T .
.00  .16.00 '32.00 48490 64.00°  80.00: - 96.00 112.00
‘ TIME&AMPGD K

Blnary Dlstillatlon
t>

a 20% Step Decrease “in Feed Flow Rate



- 234
L

steady state values in only 100 mlnutes 25 minutes soo:er
than was the case u51ng RLS estlmatlon. |

The top loop parameteL'estlmates found in F. 5i11‘
show a substantial reduction in initial estimate value
changes for the G, D# and G* estimates as well es different
adaption patterns compared toAthose in’Fiéure 5.5;~All top..
loop parameter estimates have converged by 200 minutes and
furthermore the D* values are all equal to eacﬁ other.

The parameter estimates for the bottom loop seen in
ﬁigure 5.12 show that u—-‘ike fhe t%p loop lparameter
estimates the inilial changes for the %%R estimates  are
-larger for all but the Dx estimates'ehan those using the RLS

3

estimator. The-pérameter estimates using both estimators,

\

; ) \ . .
however, do converge after 200 minutes.
. Use of the RSR estimator  .ther than the RLS estimator

'.aoes not speed up the parameter,conéergenqe but results in

improved control performance.

5.3 Evaluation of the Recursive Upper Diag?nal Factorization“
Estimator |
The resu‘ts obtalned in studylng the performance of the
recur51venuppen dlagonal factorlzatlon estlmator for control
og, the column were found to be v1rtually 1dent1cal to those
obtalned u51ng‘the RSR estimator for.qontro} of the llneer“

systems. Since ‘this behavior was-“bbse:ved for both the

©

1ncrease and decrease in, feed

A gbow rate, no results are-
- . ( . ) N : . . .
,shown. /

!
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5.4 Evaluation of the Recursive Learning Estimator

The final 1identification technique .tested was the

recurgivé .learning estimator. As can be seen from the
results in Figure 5.13 neither the top or bottom‘compoéition
returned to the desired setpoint after the feed flow rate
was increased by 20%. The top compositioh was calculated to

'

be at the limit of 10Q% MeOH and the bottom composition to

70% MeOH with the steam and reflux flow rates reaching ‘the

upper limits and remaining at those values.
The top loop parameter estimates are presented in

Figure 5.14. It can be seen that therelié virtually no

changg ip the parameters from the %nitial value and all Fh
parameter estimates are equal toveaaﬁ other as_are'all Dw?‘
estimates. Only the G1 and G2 estimates remained équal to
each other, the GO estimate was a different value as the’

: %! o {
‘initial value was not zero which was the case for the G1 and

G2 estimates.

The parameter estimates for the bottom loop, ékcept the

Figure 5.15. All parameter estimates show an increase in
value and converge in 100 minutes.
A 20% step reduction in feed flow rate using the

recursive learning estimator resulted in the same final top

and bottom compositions as for the 20% feed flow rate.

increase’ and . the same ~final reflux and steam flowtfétes
resulted although the overall trends were different as can

be seen from the results in Figure 5.16.

D* estimates, do not remain equal to each other as seen in.
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Feed Flow Rate using Recursive Learning Estimation
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The parameter estimates for both the top and bottom
loop found in Figures 5.17 and 5.]8,4respectively{ show . the
same adaption patterns as for the 20% increase in feed flow
rate. The only noticeable difference was the smaller initial
changes exhibited by the bottom loop estimates before

converging.

‘5.5 Summary LN
In summary, the reaults‘for column control show that
the RSR  and RUD estimators are the most  accurate
idehtification tecBniques. waevet, tné RUD method would be
'cnosen over the RSR estimator as no square root calculatlon
. 'is necessary whlch makes the algorlthm more eff1c1ent These‘

1

results are in agreement wlth those from 51mulat10n ofithe
ﬁcontrol of linear systems. Further 51mulatlons u51ng the. RUD
estimator were performed for feed d1sturbances of only +10%'
in magnitude. As expected the dev1at10ns from' the desired
setpoints were Smaller and therefore the control performance
was better than .for the 1larger ' disturbances as the
'7cempositions returned ' to ‘the des%red values -in a shorter
elapsed time. ‘

For the .10% 1increase in teed flow rate thehinitdal
adaption pattern for all but the G* top loop 1pafameter}
estimates were 'the same as those for the‘ZO% increase in
feed flow rate as well as the flnal values. The G#* estlmatef
have different 1n1t1al adaptlon patterns and the G2 and G3“

estimates converge to practlcally equalpValues. - The bottom
iy . .

2,
e

1 . S
7‘:::
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loop parameter estimates showed different 'convergence
patterns for all except the GO parameter estimate.
A 10% decrease in feed flow rate reduced the larger

error observed in the bottom comp051t10n from the 20% feed

. decrease simulatgon with both the top and bottom loop

parameter estimates exhibiting different‘adaptioﬁ patterns
- .

than for the 20% feed decrease. “The.ﬂparameter estimate -

values - are also smaller for the smaller feed flow change so
it can be reasoned that the nonlinearities of the controlled

system caused some of the parameter estimates to cohverge to

different values for the various disturbance magnitudes.

5.6 Setpoxnt Tracklng ‘using RLS and RUD Est1matorsv'

Qa

Setp01nt tracklng was also tested with RUD and RLS

est ‘on. The RSR methbd was not tried because results

woulu be expected to be 1dent1cal to 'those 'using the RUD
TN L _ :

-y

estimation.

\\ TA square wave change in setpoint similar tO'that‘ used

"in ‘the study of the linear systems was employed.. The tOp'if;

composition had. setp01nt llmlts of 96% and 98% - MeOH whlle;v

the abottom comp051t10n llmlts were 4,996% and 6% MeOH ™ The

period'ofvtﬁe wave was 100-mihute55with each setpoimt 1§alue

desired for 50 minutes. .

The top loop parameterv EStimates 3using ;ther RLS
estlmator exhlblted parameter blow up by the 200th minute as
shown in Fi - -a 5 19, yet as can be ‘seen fron:A Figure 5 20
there is 1. parameter blow—up for the bottom loop parameter

&

"- - w
a

w



Flgure 5 . 19 Slmulated Top Comp051t10n Parameter Estlmates,of
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B1nary Dlstlllatlon Column for a Square Wave Change 1n

Setp01nt u51ng Recur51ve Least Squares Est1mat1on
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estlmates w1th only large fluctuat1ons occurrlng at the time

b,

" the top ioopHestlmates blow-up. The reflux and steam flowf

rates,~fluctuated as shown in Flgure 5. 21 w1th the resultlng

A comp051tlons not "following the desired set901nt - in. any

v 0 v R : .A-.,"-r‘l

manner. N C R »_m¢¢ o
Y )r ‘../ ‘ r : * a! *“A : FE

hd Slmulatlon u51ng the RUD estlmator for _a' square spve

b

'change in: setp01nt were also performed It cap be obﬁgrvebrx‘

-

"'.“".x ‘

B

fqgm the, results in Flgure 5. 22 that Lnltfally he/,oontroi

) ;

performanae wis unsatlsfactory however aftem’ZOO m7nutes the\

< top compos;tlon“ follows the ;setp01nt w1th1nf accep%ﬂble
. 3 . . 9 .

.

Cw :

\lihits(jbf “40.f% *Meog w1th the better control pérformance

observed for a Getpoint of 96% MeOH The bottom comp051tlon

, : s %
-exhlhrted the  same trends as the top c

minutes. . however thq, dev1at10ns _frog the gsetp01nt were

greater PO B ’

@ o . X
" - & Y .
2

2stimat
©

dlsplayed in Figu'

rameter estlmates have

The top loop paramgfe

5.23h show that - the F,- G and G*
S o -

.converged ,after: 400" minutes 'however,dthe Dx , estlmatesj

contlnue to make 1ncremental changes every 50 mlnutes.

*alarge i1n1t1a1 changes 1n the flrst 100 minutes: as sé%n in-

»

Flgure 5. Q4 .The F ahd G estlmates have converged after 400

poy

om§351t10n af;er 200

W’hj The parameter estimates .for the bottom' loop exhib@t.

—ha’}

£y

a X

minutes, however the D* estlmates contlnue to adapt for theﬁ

RS

entlre 51mulat10n. The G* estimates’ converged after 110

minutes of elapsed time. ‘ _ L.

dThese servo system 51mulat10ns further conflrm that use
of  the recursive .upper. dlagonal factorization estlmator
o e A '

e

& el
Q|
B
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Figure 5.21 Sifiulated Response of the -Binary Distillation

“%.0

Column to a Square Wave Change in Setpoint for'éogh Loops
- using Recursive Upper Diagonal Factorization Estimation
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Figure 5.23 Simulated Bottom Cbmposition Param

‘of the Binary Distillation Column for
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6. Experimental Results .

Evaluation of the parameter identification technigues
also involved experimental test1ng u51ng the pllOt pléﬁ%
"distillation column. Self- tuning control was applled to

., control both composition loops using the four estimation
¥4 : .

hethods tested with the 'simulations performed with the

column model, the recursive least squares, recur51ve square

root, redurs1ve upper dlagonal factorlzatlon and recursive .

learning estlmators w0 - - %*

o Separatldh of a methanol: and water feed by the pilot

i

plant d1stlllat10n' column is interfaced to an LSI 11/03.
T based mlcrocomputeﬁ:system _The glass walled column has a
diameter of 22. 86_cm and conta1ns elght trays,,spaced 30. 48

L «

cm apart‘ fitted with four bubble caps per tray. A‘ total
'condenser and .a tnermos1phon reb01ler complete the column.
s.evels in both. the condenser and. reb01ler are ma1nta1ned by.
adjusting the top -and bottom__ product flow rates,
respectively. Reflux afd steam flow rates are manipulatedvto
adjuSt the, top and bottom'comgositions, respectiuelyﬂ to
attaln the de51red setpoints. Cthges in feed flow rate were

-«

the load dlsturpances 1ntroduted ro the column. S e

Tower pressure was reculated using. he% cooling 'water 7? ‘
flow rate. The inlet feed and ref\sx temperatures were alsof”
controlled ' Top, product comp051t10n is measured contlnually
by an'"on ~line capac1tance probe and theybottom product
.compositlon'measure by anfon-line HP5702A gas chromatograph

equipped for liquid sampling. The sampling time for the top *

B

253 -
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comp051tlon was arbltrarlly selected to be 60 seconds while
f‘lw»ottom product ‘wash sampled every 180 seconds. A

c dlagram of the pilot plant distillation column is

giMH as Figure 6.1
The same eﬁperimentalgconditions;’were maintained for

" all four estimation methods with a "test" lasting for a

total of 600 minhtes with the’ feed flowvrate changed every

o . _ :
150 minutes. "The' first step change was a 25% increase from

the steady state value of 18 06 g/s; the: second change in
the- same m§gn1tude step decrease to the steady statg value.

A 25% decrease in steady state feed flow rate is ﬁhﬂ%,tthd

- or
_ step w1th the fourth aﬂd ~final . step change the returﬂggﬁéthe ‘

’

feed to. the steady state value of 18 06 g/s.
Setp01nt of the top composition was 95. d% mass‘percent
MeOH and the ‘bottom comp051t10n setp01nt 5% MeOH.
From the experlence of prev1ous tests [39] the orders
of .the controller polynom1als -were selected to be as

J &

\\follows- For the top comgpsltlon loop theré‘were five G

-

: parameters fivée G* parameters and three F parameters wYthf

¢

the‘ F parameters _.?ssoc1ated - with the outputs, top

- -

comp051t10n, the G parameters w1th the"“lnpugJ reflux flow
rate, and the G parameters with the loop 1ﬁ%eract10n, steam

flow rate.. The bottom compos#tion ,self-tunlng controller

[

i<

N p’\

£y -

"employed three F parameters (bottom comp051t1on)» f1ve G..

" parameters (steam flow rate) and six G parametgrs (reflux
flow rate). Unllke the 51mulatlons performed with the column

model the feed flow rate dlsturbance _was not measured and

<

I
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therefore there were no D% parameters.

: o . 256

For all experiments except the test using the recursive

upper dlagogpl factorization estimator the column was

~operated ﬁnder proportlonal 1ntegral derlvatlve (PID)

cont;

to

rol for(ﬁOO mlnutes "and the estimation algorlthm allowed

1denttﬂ§ parameters ,before the self-tuning control-was
Ak

© turned omg‘and the PID controller turned "off"., ThHis was

:;;t

done

parameter‘estlmates other than zero so that .the column

XA

the

the

prov1de the <self—tun1ng 4controller with initial

.5. .

P

operation“dﬁd not become unstable . : S,

As w1th the results from thé columh model 51mulat10ns
8
results of the experlments are illustrated wlth plots pf

feed, reflux and steam lflow rates and both top hd

bottom comp051t1ons. The parameter estfmates are”?alﬁo

k4

' 'plotted for both loops.

N

P

@ i * fTad

6. 1 Recurs1ve Least Squares Est1mat1on Evaluat1on

,

Jthe
.3 62

“  that

steady state value was .1ntroducedt The;1n1t1al error may’

have

" obta

Results fon the 25% step increase 'in feed flow rate and

-

subseguent:&return to the steady state valte' usang the :

i. )

6 3, & 4 and 6 ‘5. The 1ncrease 1n feed flow rate caused

dev1at10n lﬁ the top comp051t1on up . to ‘+0.4% wh1eh

"J(ﬂl‘ - -

contlnued untll the step decrease in flow rate to - the

W ’

v

recur51ve least Squares estzmator pre presented in Flgures’

followed‘VbY”ftheﬁ'butput cy dlng about the setpoint (fO.Z%)”

! . - ’ ' '1 .
been caused by the incorrect - parameter . estimates’

ined during PID control and‘preliminary identification,

o

aﬂ”; ‘;

v »
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This can be concluaed by hoting that the G* and G parameter
estimates in. Figure 6.3 begin to adapt once the self-tuner
is turned "on". When the feed flow rate decreased the top
composition decreaSed from the setpoiLt to 94%*75% MeOH and
then increased to 95.5% MeOH before returniné to She.
setpoing 70 minutes after the step change.’(This final part
of the response can be seen in Figure 6.6).

The reflux flow rate only showed large fluctuations at
the start of £he experiments as the flow changes at‘vthé
first * ;. feed step changes were gradual.

G ard G* top loop parameter estimates’ showed initial
adaption whenf the self—tuqing controller was implementéd,
Convergence of the G# estimates  occurred in 35 minutes while
the G parameter estimates Eegan'to adapt again when the step
change down to the steady state feed value was introduced.
The F parameter gétimétes shéwed no changes from the initial
values obtafned; using APIﬁ control énd recursive leést
squares identification. There were no significant chanées in
any of the estimate values for the step down to the steady
state feed value. o ‘

The bottom composition showed.a deviation of 9% when
the‘\self—tuning controllertwaé first applied as can be seen
from the results in Figure 5.4. Wheh the feed flow rate was
increased by 25% there was a 4% positive deviation befére
the bottom composition went below the setpoint and only

approached the desired setpoint after 195 minutes of

operation. As can be seen, the bottom composition never
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* .
Eij;;g;;reached the setpoint, exhibiting and offset of about 0.2%.
The decrease in feed rate to the' original steady state
value caﬁsed' a deviation of -3.5% in bottom composition as
can ‘be seen in Figure 6.4, \but the bottom composition
returned to thé désired_sétpoiht in 70 minutes and control
performance was satisfactory. |
Initially the steam flow rate exhibited large
fluctuations bﬁt afﬁer 80 minutes éhgnges were 'gradual
except when the step.chéngeé in feed flow were introduced.
A comparison of the results.in Figure 6.3 with those in
Figure 6.5 revéals that the bottom loop parameter estimates
" had larger initial values than the top loop estimates. The F
and G parametgg esfimates converged after 50 minutes however
fhe G*Aestimaégg éontinued to adapt even after the first
step change in feed rate. The F and G parameter estimaﬁes
showed minor changes only aftef the second step changé while
the Gx eétimatés;continued to adapt.
The remaiﬁing 300 minutes of the éxperiment ihvolvéd a
25% .step decrease in feed flow rate from its steady state
value and then réturn of the rate to the steady state value
after 150 minutes. As can be seen in Figure 6.6 the

reduction in feed flow rate resulted in a slight decrease in

the top composition which was followed by a large overshoot

of 0.9%. The composition returned to the desired setpoint in

40 minutes and as with the top composition behavior for the
25% increase in feed flow rate, cycled around the setpoint

until the next feed disturbance.



~\

264

When the feed flow rate was increased to the steady

state value the top composition deviated from - the setpoint

jby '0.8%. The top composition continued to remain below the

desired setpoint indicating that offset was present.
The " top loop G and. G¥ parameter estimates showed
gradual changes in value for the 25% decrease in feed flow

rate shown in Figure 6.7. Further adaption was observed when

the feed flow rate returned to the steady state value but

koth step éhanges did not cause significant paramete}

estimate value chénges. ‘
Comparing Figure 6.4“with.6.8 it can be seen'thaé the

step change down from the steady state feed flow rate caused

the same -3.5% deviation in bottom composition as the step

change down when the flow was returned to its 'steady state

value. The bottom composition returned to the desired

setpoint in 60 minutes*‘gﬁe step change increasing the feed

flow rate to the steady state value resulted in a deviation

¢ C

of 0.6% however, the composition reached the setpoint after

90 minutes. The last step change produced large changes, of

1 to 1.5 g/s in the steam flow rate, not.observed for any of

the other feed changes.

The bottom loop parameter estimates responded to the

deérease in the steady state feed flow rate value by

adapting to new values as illustrated by ‘the results in
Figﬁre 6.9 with the step change causing only minimal changes

in the parameter estimates. .

-
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Examining the resnlts obtained for the feed disturbances
using the recursive 1least sguares estimation the overall

conclusion is that this estimation method does not give

particularly satisfgctory' control performance. There were

large deviations from the decsired Setpoints for both top and
bottom 1loops and these effects continued for more than 60
minutes. Cycling about the setp&int was also observed. = The
iniiial behavior of the column was not satisfactory even
after 200 minutes of PID control while thé, estihatorA was
identifying nof when the t;ansfer betwgen_ PID and

self-tuning control was executed.

6.2 Recursive Square Root Estimation Evaluation
Testing :pf thé recursive square root method - was
implemented in tﬁevéamé manner ‘as the RLS‘estimator with 200
-minutes of PID coﬁtrél while tﬁe‘ identification was being
performed to avoid unstable operation. | g
~From the fésults in Figure 6.10 it can be seenAthat the
initial step increase in féed\flow rate caused a positive
0.6% deviation followed by a neg&tive 0.4% drop in top
composition below the setpoint. Hewevér,'the coéposj;ion did

return to the desired setpointlin about 80 minutes but the

top composition continued to cycle about . the setpoint

(#0.15%). Return of the feed flow rate to the steady statev

value regultéé{i_in an” initial 0.3% ‘increase in top
composition followea'by a 0.4% decreése and then 'a 0.5%

increase. The top composition returned to the setpoint in 60
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mrnutes and fluctuated about the desired‘setpoint within
acceptable limits. |
The top loop parameter estimate behav1or is shown: 1n\

Figure é:11. As can be seen, no perceptlbfe adaptlon had
occurred for the F parameter .estimates,'the FO estimate»
remained_near'1.0,while the balance of the F estimates were
at 0.0. The G and G* parameter estimates exhibited'changes
at the 1n1t1al step change and became constant by the 100thv
.m1nute. However, when the step change decrease in flow
occurred,_the.G;and G* parameter‘estimates1continue to -adapt
until the next step change was made. '

| Comparing Figure 6.10 with Flgure 6.12 it can be"seen
_‘that the tottom composition exhibited the same initial
-:behaQior pattern as the top composition to the same step
change with a 4% departure frcm the setpoint foliowing the
step increase in feed flow -rate followed by a‘ ~1.5%

\

deviation  from the de51red setpoint The composition
returned to the desired setp01nt 1n 90 mlnutes. Return of
the feed flow' rate to the steady state-value caused iny
mincr »deyiations .in bottom comp051t10n. initially the
'composition decreased to 3% below the desired setpo1nt butv
was w1th1n 0.5% of the setpoint after 60 minutes.

’ eTheA bottbm loop parameter est1mates; presented in
Figure 6.13 exnibited very gradual changes at the time cf
the +25% step'change in flowrrate;'All‘parameter estimates

converged after 90 minutes to values similar to those during

thec initial identification phase with the column operating
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under PID control. When thé feed flow rate was decrease Fo.
the steady stéte value, all of the bottom loop parameter
>estimates showed vefy small or no changes wiﬁh the valugs'éf_
the. previously converged values or new values adapted to
within 30 minutes.

The step change which decreased the feed flow to a
value below the steady state value caused and 0.8% increase
in top composition from the desired setpoint as can be _ seen
from thé results in Figure 6.14. The" composition‘ﬁhen
decreased and reached a wvalue Q;SS% below the desired
setpoint and did not return to the setpoint for 100 minutes. .
The return of the feed flow rate to its sﬁéady state value
brought .abouﬁ' a - 1% decrease in top compoéition. After 100
minutes the composition became reiativelf constant however
the top ,compoéition exhibited some offset as it remained
slightly below the desired setpoint- so  the control
performancé for these two feed disturbances was not .
satisfactory. .

The G and G* top loop parameter estimétes, shown in
Figure 6.15 exhibited.significant change§ when the:féed flow
rate was reduced 25% from the steady state values while the
F parameters did not change. The G#* parameter estimates
convefged 100. minutes after - the step change but the G
parameter estimates were still changing wheh the ﬁext step
change was made. When the feed flow rate was returned to the
steady state valﬁe the G and G; parameter estimates started

adaption again, however, the changes observed for the G

o
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estimates were not as largé as those observed for the
previous step change. Again the G parameter estimétes.did
not converge while the G* estimates converged in only 60
minutes.

The bottom composition was severely affected by the 25%
decrease in feed flow rate as can be seen from the results
in Figure 6.16. The cpncentration_of meﬁhanol was as low as
1.5% and then became as high as 8.0% before returning to the
desired setpoint 110 minutes later. For the return of the
feed rate to the stéady- state value there was a marked
imprerment»in the control performance as even though ﬁhe
bot tom compositionA showed a deviation of £.5% it returned
quickly to the setpoint, within 80 minutes.

The behavior of the estimates of the parametefs for the
bottom loop presented in Figure 6.17, exhibited only minor
adaption for both step changes. The parameter estimates
converged after 110 minutes for the decrease in feed- flow
rate from the steady state value bdt only took 60 minﬁqes to
conQerge when the feed flow was increased to 1its steady
state value. | |

Therefore the control: performance. observed when the
" recursive square root ,estimator is used is not-acceptable
for all changes as cycling about the desired tép'composition
setpoint  and ~offset occurred for the025% step increase in
feed'ra?gk;;;ﬁﬁﬁhe steady state feed rate Aha the subsequent

return to the steady state value, respectively. It is to be

noted, by reference to Figures 6.13 and"6.17, that the



278

1

v

(SNIWIIWTL
ow~ ow

i i

{(SNIWISWNIL ,
021 o.m ot 0

—. 1 1 1 1 1 _OO'Nﬁ

]

6.16 Response

CP

32

ey

Bottom Loop to

“the

of

"Figure

P

rs

and the

Rate

Decrease in Feed Flow

Subseguent

" Feed 'Rate

Rgot

e

1

Sg .

the Recutsive

using

in

Increase

Estimator.



279

. ' - . . p

. [+}]

(SNIWAWIL __ (SNIW)AWIL &
021 08 oy - 0 D21 o8 oy 0 =
1 L 1 1 i 1 002°0- 1 i 'l 1 1 1 1 002" D- %
e mm , D o

=t P —_—_——e———— NI e . 3% =

S20 aw —}s2000-%  ©

-0S1°0 : — ~0S1°0 S

R -52€°0 T o

/  leso | ‘ g
00S°0 . : -00S°0 E

’ . &..b..

021 08 0¥ ) . 021 ' 08 oy 0 &
i 1 1 1 [ 8°0- R ) L L 1 8°0- e

B T —— Qv

. A )

Froag | 10 e

I‘IJ.J_ L . TO-O ll\ m

-8° 0 s

) )

. : o]

. Lovz | o -0°2 o

0z1 08 ot 0 0z1 08 oY 0 5
1 3 \ L 1 ) . ] 1 ! 1 1 A 1 00¥%* 0~ M
—00%°0 . s

2 | | -522°0- 3 @

: , 5220~ Y

080°0- . _— /omo.o- m

|\||M\1 MM-NN\Q - 1||. A.%N\ P/ »U\E

gm.v o A ~ Lage-q M

¢ : .

Increase

Step

in Fed Rate using the Recursive Sguare Root Estimator

PecPVse in Feed Rate and the Subsequent 25%



280

bottom parameter estimates for the entire experiment do not

change substantially which' may be .the‘ reason for the

unsatisfactory control performance.

6.3 Recuré};e Upper Diagonal AFactorizafign Estimation
Evaluation |

Testing of the recursive upper diagonal factorization
estimator did not require the initial adaption period,of 200
minutes with the column operating under PID .qontrol .to
establish’ suitable initial parameter estimates. The
self-tuning controller was iﬁplemented immediately without
adverse effects. As expected this caused the results to be
different thanwghose using the RSR estimator éince the.
initial estimate values were aifferent. \

The top composition reached ‘the' desired setpoint 30
minutes after the self-tuning controller was implemented. As
shoﬁn in Figufe 6.18 the 25% step increase in feed flow rate
"caused the top composition to e#ceed the setpoint by 0.5%
"and then fall to a composition 0.45% below the setpoint
before returning, in about 60 minutes, to the desired
setpoint composition where it fluctuated until the change in
flow rate. As can be seen from the results, this change in
feed flow rate to the steady state wvalue resulted ' in  top
composition deviations of aboﬁt -0.25% and +0,25% béfore.
returning to the desired sétpoint 60 minutes after the step

éhange.
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The F and G parameter estimateglfor the top loop exhibiﬁed
very little adaption as can ‘be seen from . the résults }
presented in Figufe 6.19. ThevG¥ parameter estimates showed—'
more initial chahges than the F‘ and G estimatesf ‘At the
introduction of fhe 25% .step cﬂange in feed rate, the F
parameter estimates made small changes and the G parameter
estimates had slightly larger changes while the Gx estimates
exhibited the largest changes of all the parameter
estimates. The adaption pattern continued when the féed.flqw
rate returned to the steady state.value. | |
| Comparison of the results in Figuré 6.18 with those in
Figure 6.20 for the firsﬁ 150 minutes reveals that .the.
bottom composition exhibits the same’ trends as the top
éomposition, however, the initial deviation from the aesiféd
setpoint for the bottom compositions was greater. There was
a 1% deviation initially and a 3% efrof after the 25% "step
increase in feed rate. Return of the flow rate to the steady
state vaiue caused the bottom composition to fall 3% below
the Qesirgd‘setpoint and/then reﬁu;; to the desired'sétpoint
in about 60 minutes as was the case for the increase in feed
rate. | |

The bottom loop parameter estimates, given in Figure
6.21, showed no significant changes when the self-tuning
‘coﬁtroller was first implemented. When the feed flow rate
was incréésed by 25% from the steady state value the G*
parameter estimates adapted for 60 minutes before converging

while the F and G parameter estimates converged 30 minutes

-



283

(SNIWIWIL

NI (SNIWHTL
L LR . L% o8 oy g
A . : 080" 0-
— 000 ;
~—— , L0e0 0 = =
-390° 0
L001° 0
, 02t os oy 0 .
— Jmo.oﬁuﬂ -50° 0
: Log 0~ -
-59° 0
| Looy , o -00°1
TS AR o e oowﬁyo- T A S 0011 0-
J\:[n||||\n(r\1||w1|:;/¢»|1||;|-mwmo.omw. :nutnyar;wratr»;, — -5220° 0-
- Fossoro L -0580° 0
. TR \xluy/l\\wasxx  _Fsesto
-00g2°0 |

.-00ve'0

| J
Figure 6.19 Top Loop Parameter Estimates for

(1)1

the

- 25%  Step

Feed Rate and the Subsequent 25% Step Decrease

in

Increase

Diagonal

Recursive

»

Upper

using the

Rate

Feed

in

Factorization Estimator



r 284
( Q o
1 \ = O\ -.-N
' n
L - =
—
o b
o
- o - )
® =
i H
1 — - l‘—"
-2 -2
- . -
r i T l - O .l T © T l\ T o,
o~ o’ o 81&: 8 L(:\: 8 8 w. d mw . o
— » oy wn -~ o
(HOELJ lM X2 = 5 9 2 &2 X oo @
26 6 o YN 7=
~ = = 7 ©(5/934
(SAQYLS °
o
' -
N
- =
—
' -
o T
. 9 - Lud
© =
Y o
= =
O
<t
‘[ T T ior' T T LR ‘DAI T T LB ©
oo @ 0S8 8 8 288y gL g
o 1 ! - . . . . .
v . . . . . . J — —
' - O o o (/] : }
- - (8/9;3;1 '
’ (5/9)1S

Figure 6.20 Response of the Bottom Loop tz the 25% - Step

Increase in Feed Flow ‘Rate and the Subsequent 25% Step

Decrease in Feed Rate using the Récursive Upper Diagonal

/' <

Factorization Estimator



285

BNIW3WTL (SNIWZWTL
.o 08 oy 0 02t 08 - oY 0
———— - = 1 H 1 1 : LI o YN
0110 ,Ilz_z&lwﬁjh_ ) L—L—100E1'0
g P
-0+ 0" D=2 - —— ! cophe na
_ R H\H?./pr =0=-5290° 0 8
— 1-0E0* 0 .ﬂ”.owﬂtﬁrf_“ —n— .
: ,. T 1-05%0° 0
koot'o — 1 g2E1-0
— ﬁl o .
oLl 0 , L0022° 0
021 08 0¥ 0 YA 08 0¥ 0 o
1 i ! 1 1 I\ 000" 1~ 1 i 1 1 1 1 DOO.~I
= lmdﬂ-OH T lln” mluﬂ-o'”—uu
. U REARRES
3 . LogL 0 ~-0SL 0
329" | - 529" 1
. L00g" 2 - . 008" 2
021 08 -~ 0% 0 . 021 08 ¢ 0% 0
L 1 1 1 1 1 00+%- Q- 1 1 L ) ) 1 00v-0-
822°0- S Scero- S
e e WP SR
—_ - 080" 0- . - 080" 0-
—e— EYAREY —_— et YARN!
L 00E" 0 ﬁoom.o_ .

‘ Figure 6.21 Bottom Loop Parameter Estimates for the 25% Step

Feed Rate and the Subsequent 25% Stép Decrease

in

Increase

Recursive

'Diagonal

Uﬁper

Rate using the

Feed

in

Factorization Estimator



; . 286

after the stepA change. " From, the 150th minute of the
experiment uﬁtil the next step change at Kﬁhé 210th' minute
the F and .G 'paramet;r estimates converged while the G*
estimatgs showed minimal éhanges. After the step change
wﬁich returned the feed to the steady state value, the F, G
aﬁd G parametér estimates only changed slightlyrk/ghd
. . ' >
converged in 60 minutes. ////_ |
The step change which decreased the feed flow\_?§fe~/by
25% from the steady ‘state value causea the‘top composition

to increase 0.8% above the desired setpoint as seen in

Figure 6.22. This 1increase was followed by a composition

0.2% below the setpoint with composition returning to the

desired setpéint. after 80 minutes. Return of the feed flow
to the steadi state value caused a major_decreasé of 1% in
thev‘tbp éombositibn but the composition returned to the
desired sétpoint c "7 40 minutes éfter the feed disturbance.

The parz ~ter .::imates for the top loop exhibited
zchahges, és illu: ~ted in Figure 6.23, when the feed flow
‘rate was decreased from the steady\state value. None of the
parameter estimgtes converged until the feed rate was
returned to the steady state value'even‘though ﬁhe adaption
that occurred at the step change was not significant. As thé

results show, the increase in the feed. flow rate caused

larger changes in the G and G#* parameter estimates than in

the F estimates however all parameter estimates had

converged after 40 minutes.
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Comparison of the bottom composition response in Figure 6.24¢
with that in Figure 6.20, for the 25% decrease in feed rate
displayed thé same trend as thé response when the feed flow
was returned to the steady state value from fhe 25%
increase. Again the bottom cémposition deviated from the
desired setpoint however the maximum error was larger with
the ‘compoSition falling to 1.5% -mass percent methanol
instead of ‘only 3% methanol. When the feed réte increased to
the steady state.value the initial deviation was 5% above
the desired bottom composition but, the compositioé returned
to the setpoint in only 40 minutes. ‘

The’ bottom Aloop ‘parameter estimates, presented in
Figure 6.25, showed that the parameter values  changed for
both step changes in feed rate. The F and G parameter
estimates for tﬁe decrease in rate converged before the next
step change yet, the G# estimates were still adapting. The
" same F and G parameter estihatg.beQavior occurred wﬁeh the
feed rate was returned to the steady state value while the
G* estimates had begun to converge unlike the-'response to
the previous step change.

From the evaluation of the results using the RUD
'estimator. it can be concluded that the control Egrformance
'is better than that observed for the RLS and RSR estimators.
There was no 'offset or cycling about the desired setpoint
after the step changes in feed flow rate and the length of
time that the top and bottom composition deviated from the

setpoigx was less than for the other two estimators. The
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ability of the self-tuning cont;dller with RUD

identification to maintain satisfactory control performance

without the first 200 minutes of PID control and

identification to obtain good initial parameter estimates is

also an improvement over the two identification technigues.

6.4 Recursive Learni>§ Estimation Evaluation

The final\paraméter‘estimation method - tested was the
recursive léarning method. As with the RLS and RSR
estimatprs PID control with recursive learning estimation
was 1implemented for 200. mihutés before the self-tuning
controller was used. The control performahce, as shown 1in
Figure 6.26 and 6.27, lbefore the step chénge in feed is
satisfactofy. However, when the. flow rate was increased the
column became unstable and the top and bottom compositions
oscillatedmunbounded. As can be observed, _the F and G
parameter estimates for the top loop showed no adaption and
the remaining parameter estimates for both loop exhibited
erratic, oscillating adaption, patterns.

The resulﬁs would imply that the .recursive -learning

estimator does not identify parameters which the s%;f-tuning

controller can use as a minimum wvariance controller to

provide satisfactory control ﬁerformance. fn, fact, ‘the
estimation method may nét be capable of adapting fasﬁ ehough
to compensate for. the nonlinearities of the distillation
column. Furthermore as' shown in Figure 4.21 and 4.26, géod

initial parameter estimates and stable 'operation are
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required to wuse the recursive learning estimator with the
self-tuning controller. P, Q and R : weighting may also' be
réquired for the self-tuning controller with RL estimation

\

to be‘used for distillation column control.

As was‘ the case for both the linear and distillation
column model simulations the performénce of the recursive
upper diagonal factorization esfimatdr has provided the best
" control performance. Since these test were performed only
for a minimum variance self-tuning controller, the addition
6f any géighting’ should enhance thé\ performance of the

recursive upper diagonal factorization identification

technique.



7. Conclusions

Utilization of the recursive least squares, recursive
square root, recursive upper diagbnal factorization/
recursive lqérning and ‘recursive max imum likelihood
estimators for use with the“self-tuning controllef has neen
studied. Simulations nave been performed using a linear
model to 1investigate the performance of the' different
nlgorithms for efficiency and accuracy énd to analyze the
effects of the various estimétorkparameters such'és initial
cova:iénce matrix.values, forgetting factors and initial
estimate values on the parameter\.estimates. Similar

simulations using a nonlinear»'model of the jdistillation
column were undéfgaken and a fuftherlevaluatignsconductéd'by
performing experiments with the pilot scale distillation
column.  On fhé basis. of the simulation results and the

experimental data the following conclusions can be statea:
1. The recursive upperﬂ diagonalo factorizétion (RUD)
\2stimato: proved. to be the most accurate'and efficient
\identificatidn techniqpe not only for the 1linear and
nonlineat simulat}ons but also dufing> experinental
testing. The simulation results showed that the usef‘of
the recursive square root (RSR) estimator instead of the'
RUD method gave rise to an identical control performance
but since the algogithm required the calcnlation of
square roots, it was more time consuming than simple

arithmetic operailons assoc1ated with - the RUD. The

lexperlmental performance favored the RUD identification

296



performed. No "specific cause for th@s behavior was

297

4

as the RSR estimator required that columh to be operated
under PIDrcdntrol before the self-tuning controller was
implemented in order to providé the self-tuning
controller with initial pérémeter estimate other than
zero so . that the column ‘operation did hot become

unstable. The RUD estimator, on the other hand, was able

to identify parameter estimates that provided good

control performance without the column operating under

‘PID control and is therefore the most desirable

estimation algorithm as it required the least effort to

implement. ™~

. X . r | ' 3 .
Simulations performed using the recursive least squares

(RLS) estimator for control of linear and nonlinear

systems, with little excitation, showed that the

parameter estimates would wusually exhibit ' estimate

blowup due to the inherent numerical deterioration of

~
AN

the estimator covariance matrix.

- Control performance tests with the recursive learning

(RL) method of estimation was characterized by poor
setpoint tracking ability. Furthermore the lack of a

covariance matrix resulted in slow parapetér estimate

adaption which caused the unsatisfactory pgrformance.

‘The recursive maximum likelihood (RML) ;stimatOr was

-~

unable ~ to identify parameter estimates that wduld
provide satisfactory control performance even  for the

simulation studies so no further testing could be

L
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determined. ;
The addition of Q aﬁd R weighting reduced the control.
efféft in the linear Simulations. for all estimation
algorithmé and improved thé éontrol performancé only for
the recursive 1least squareg; recursive square root,
recursive upper diaéonal“ factorization and -récursive‘

learning estimators. Simulation results obtained using

the recursive'learning‘eStimator with Q and R weighting

~in  the linear ' system were inferior to the other three

identification methods. )
Use of the recursive least . squares, recursive square

root and recursive upper diagonal factorization’

‘estimator$ provided acceptable control performance in

the linear system simulaticons for the disturbance
rejection tests. but the recursive learning and the
recursive ‘maximum likelihood estimators could not
compenéate for the disturbance.' The simulation of a

linear system and the introduction of a load disturbance

with the recursive learning estimator caused the output

‘to éo unstabl§; while the recursive maximum likelihood

estimator results showed offset.’
The initial covariance matrix values of the RLS, RSR and
RUD estimators should be chose to compromise between the

requirement for good setpoint tracking _and fast

' parameter estimate convergence.

The forgetting factor, used for all of the estimat*ion

routines except for the recursive maximum likelihood
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estimator ‘should be chosen on the basis of. expécted

variations in the systém parameters..For slowly changing

parameters the forgetting factor should? be near 1.0

while® it would be more appfopriaté to use 0.95 for
rapidly varying parameters.

Iﬁ conclusion, the" r?cursive ‘'upper diagonal

factofization estimator 1is ﬁhe preferred cboiqe for a stable

and efficient parameter estimate identification technique.



8. Further Work
In an effort to more qompletely understand the effecﬁs
of thE parameter estimation techniques on the ﬁself—tuning
conf%oller 'performance, further investigations might deél
with the following: ‘

71; Compare the performance of .the différent parameter
estimation techﬁiqueé when onfline tuning of the P, Q
and R weighting is used ‘to obtain optimal weighting.

2. Examine by the use of simple Systems the reason that the
recursive maximum likelihood estimator is _unablé to
brovide satisfactory closed loop identification.

3. Study the performance of different estimation techniques
when measured load disturbances are used for feedforward
controlion the distillation column..

ecursive , upper diagonal

Finally, the wuse of the

factorization estimator with th ‘Self-tuning controller on a

A )
practical ‘application such as a full-scale distillation

tower in indust}y has great potential and further study

would prove most beneficial. - /

Kt
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10. Appendix A

The following is the Agee Turner poSitive definite
factorization theorem. Let

P=UDU,=UDU' +c¢caat | (A.1)
where ¢ is a scalar, a is an n-vector, U 1is unit upper
triangular, D = diag(d,,...,d,) ahd n = dim P.

If P is PD (positive definite) then the factors U and D
can be calculated by: |

For j = n,n-1,...,2 evaluate equation (A.2)

through equation (A.5) recursively

dj = dj + CJa} ; ) | (A.Z)
dy := ady ~ ajUk'J k = '1,...,j-1 (A.3)
Cjaj ax
U = Uyy + —————~ k= 1,...,3-1 (A.4)
dej .
TR - (A.5)
d; '
and then
d, = d, + cya?l . (A.6)
PROOF :

Consider the associated quadratic form x!'Px

™

R

»
[

= Z7 d,v} + c(atx)? ‘ - (A.7)
where\v = U'x |
x'Px = Z1-' d,v, + (d,+cai)xi +
.2x521"(d"an + casa;)x; +
An[Z," U nx;1% + c[Z,"" a;x;]? : . (A.S)

Let

W‘ ='[.U1", « o o ,Un—1n ]
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at=[ ay, « . « , @an-1 1 | : '(A.9)

xV = [ X4y, « « v, Xa-1 ]

[oN)
H
il
.
E
+
(@]
o))
EY

Then equatién:(A.B) can be writtén“as

x'Px = Z4"'d vi + d,[%x.+(d,w+caa)x/d, 1% + d,[w'x]? +W

c[a‘xl2 - [(d,w-casa')'x]?*/d, . (A.10)

By setting

Yo = X, * == (d,w + caja)‘'x ’ | (A.11)

_ g, ,
and'combiqe the quadratic expreésion from dn.[wtx]? + clatx]?
’we get
¢ cd, : )
x'Px = d,y2 + Z7-'d;v} + —---[(a-anw)'x]’ (A.12)

n .
Note that the bracketed term in equation (A.12) 1is of the
same form as equation (A.7) except only (n-1) variables are

involved. Thus-the_inductive reduction that follows

. R ) cdn
x*'Px = dpy? + dn-y¥n-1 + Z7°2d;v} + -—- [(a'-a,,w)"x]2
= d,y?: *+ dn-tY:-1+dn-2Y:-z.+
) cdn _ ‘
£i72d,vi + --- [(a"-a,w)'x]? | (A.13)

n
where each successive a, w and x is one element shorter and
after n-1(steps
cdn : | ’ A
x'Px = Z3d;y} + d,y} + ---[(ay-ay)'x,]? , (A.14)
but a; - a; = 0 therefore
x'Px = £3d,y} + d,yi o (A.15)
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Now since y = U'x where U is unit upper triangular

U,*=[ 1000 . ..0] (dimU, = n) -

therefore
Y1‘= X
and
x'Px = L3 d;y} + d,x}
= L% d,y3}- - ' ‘ (A.16)

From the definition of y=U'x and D

x'Px = x' UDU' x (A.17)



11. Appendix B
C (
C '~ THIS PROGRAM AND ITS SUBROUTINES WILL IMPLEMENT
. SELF~-TUNING |
C CONTROL ON THE GIVEN PROCESS. ESTIMATION OF PARAMETERS
WILL |
C BE DONE BY 1 OF 5 METHODS SELECTED BY THE USER.
SELF-TUNING |
C ALGORITHM USED FROM CLARKE AND GAWTHROP 1979. SUBROUTINE
C TO CONVERT A CONTINUOUS TRANSFER FUNCTION INTO DISCRETE
FORM - -
C WAS TAKEN FROM THE UNIVERSITY' OF NEWCASTLE GPON TYNE \
PACKAGE.
. .
C HEATHER J. W. REINHOLT_SEPTEMBER.T, 1983
DIMENSION P(2,465),G(2,30),C(5),T(3),0(30),%(30),V(30)
DIMENSION A(2,30),x(10,30),pH1(3¢),AA(20),B(20),RH0(2,3)
DIMENSION PN(3),PD(3),QN(3),RN(35,PDINV(10);RSTPT(3000)
DIMENSION 0D(3),RD(3) |
~ INTEGER STOP,ORDER,SET,PTEST,WAVE,FLAG1,STOP1
DATA P/930%0Q.0/,G/60%0.0/,C/5%0.0/,RHO/6%0.995/
DATA ' '
A/60%0.0/,%/300%0.0/,PHI /30%0.0/,¥/30%0.0/,0D/1.0,2%0.0/
DATA AA/20 # 0.0/, B/20 # 0.0/,U/30%0.0/,V/30%0.0/
DATA PN/3%1.0/,PD/3%1.0/,QN/3%0.0/,RN/3%1.0/,PDINV/3%1.0/
DAfA | -

n

NPN/1;1NPD/1/,NQD/1/,NQN/1/,NRN/1/,RSTPT/1000*0.0,2000*5.0/

3
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-DATA QD/3%1.0/, RD/3%1.0/, NRD/1/
C

C GET THE Z TRANSFORM OF

THE SYSTEM
\\

C ]

WRITE(6,70)

REAb(5,71) IANS 1

WRITE(6,74)

READ(5,71) IANS2

" IF (IANS2 .EQ. 2) GOTO 77

CALL WEIGHT(PN,PD,PDINV,QON,RN,NPN,NPD,NON,NRN, NF,

1 NRD,NQD,QD,RD)

77 IF (IANS1 .EQ.:2) GOTO 78

WRITE(6,72) h

READ(2,73) AA(Z),AA(3))AA(4),AA(S),B(1),B(2),B(3),B(4),B(5)
AA(1) = 1.0 ’ | |

IF (IANS1 .EQ. 1)\GOTO 76

78 WRITE(6,1)

READ(7,2) ITYPE,TS,GAIN,T(1),T(2),T(3)

CALL ZTRAN(ITYPE,TS,GAIN,T,AA,B,NA,NB)

76 WRITE(G,Bé) AA(1),2A(2),AA(3),AA(4),aA(5),B(1),B(2),B(3), .
1 B(4),B(5) |
WRiTE(s,s)

READ(8,7) (C(1),I=1,5) \
WRITE(6,5)

¢

C OBTAIN SYSTEM INFORMATION



C NF NUMBER OF F PARAMETERS
C NG NUMBER OF G PARAMETERS
C NH NUMBER OF H PARAMETERS
C NL NUMBER OF L PARAMETERS
C METHOD IDENTIFICATION METHOD

C STOP NUMBER OF SAMPLES 'I‘O' BE TAKEN

@]

C STPT VALUE OF SETPOINT

C VAR VARIANCE OF THE NOISE TO BE ADDED

C SLT MAGNITUDE OF THE NUMBERS GENERATED FOR NOISE
PINIT INITIAL COVARIANCE MATRIX VALUE

C ITD TIME DELAY OF THE SYSTEM

C ORDER ORDER OF THE SYSTEM

C EMEAN MEAN OF THE NOISE

C GO INTIAL .GO VALUE

C PTEST ITERATION TO PRINT COVARIANCE MATRIX

C

WRITE(6, 3)

READ(9, 4)NF , NG, NH,NL , METHOD, STOP , STPT, VAR, SLT,
1 PINIT,ITD,ORDER

1 ,EMEAN,GO,PTEST,RHOI ,DIST
N = NF + NG + NH + NL

A{(1,NF+1) = GO

DO 60 I=1,3
RHO(1,I) = RHOI
RHO(2,I) = RHO1

60 CONTINUE

WRITE(6,9)
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READ(5,16) SET

. .

C -

C INITIALIZE SET POINT TRACKING
C

IF(SET .NE. 3) GOTO 17

c

C SAWTOOTH FUNCTION SET PO;NT
C

C STPT - - -

c/\N/\N/\*

C o/ \/ \/\

'C 0 100

C

K =1 , | .
RSTPT(1) = 0.10

DO 11 I=1,10

IF(I .GT. 1) K = K + 1

" IF(I .GT. 1) RSTPT(K)=RSTPT(K-1) + 1.0/10.

DO 12 J

2, 50
K=K+ 1

RSTPT(K) = RSTPT(K-1) + 1.0/10.
12 CONTINUE

DO 13 J = 1, 50

K=K + 1

RSTPT(K) Z\FSTPT(K-1) - 1.0/10.

13 CONTINUE

311



11 CONTINUE -

.

17 IF(SET .NE. 2) GOTO 18 .
C . «
C TRIANGLE SETPOINT
o

WAVE = STOP / 200

STOP1 = 200
K = 2 :
/
= 0

FLAG1
DO 55 I=1,WAVE
RSTPT(K-1) = 0.00

IF(I .NE. 1) STOP1 =.201

IF (I .EQ. 1) K =1

IF(I .EQ. 1) RSTbT(i) 0.025
DO 21 J=2,STOP1

IF (FLAG} .NE. 1) K = K } 1
FLAG! = 0 |
RSTPT(K) = RSTPT(K-1) + 0.025
21 CONTINUE o

'K = K + 1

FLAG1 = 1

55 CONTINUE

DO 28 1=200,STOP, 200
CRSTPT(I) < 5.0

28 CONTINUE

18 IF(SET .NE. 1) GOTO 63



- C
C SQUARE WAVE FUNCTION SETPOINT

c .
C STPT —==mm =mmm= ==

cl i1l ’
C 0—;——+ e ——— 4 pmm——— b m— e

C 0 50 100 ’

K=1

INT = STOP / 50.

DO 40 I=1,INT

DO 41 J=1,25

RSTPT(K) = STPT

C K=K+

41 CONTINUE |

DO 42 J=1,25 | - :
RSTPT(K) = 0.0
K=K+ 1

42 CONTINUE

40 CONTINUE
.C; ’ s _
C CONSTANT SETPOINT

63 IF(SET .NE. 4) GOTO 19
DO 61 K=1,STOP -

RSTPT(K) = STPT

61 CONTINUE

j'CVINITIALIZE_THE‘COVARIAﬁCE'MATRIX

-

313



COVARIANCE MATRIX FOR RLS AND RSR -

(@]

C| 100000 |

cC| 230000 |
cP=]456000 [
c-|-7891000 |

C 1112 13 1415 0]

C |16 19 18 19 20 21 |

C —- --

c

193 = 0

IF (METHOD EQ :3) GoTO 10..
C IF ‘RSR TAKE SQUARE ROOT. OF THE' COVARIANCE MATRIX
' IF (METHOD.NE.2) GOTO 22

PINIT ='SQRT(PINIT)

~RHO(1,1) = SQRT(ﬁHo(1,1))
|

RHO( :,2) = SQRT(RHO(1,2))
RHO(1,3) = SQRT(RHO(1,3))

.22 DO 15 I=1,N
J=J+1
'P(1,J) = PINIT
15 CONTINUE
GO TO 20

C COVARIANCE MATRIX FOR UD FACTORIZATION

#@“‘
%}

't 2



(- T

c |
¢ ,

C| 123456 |

C| 07891011 |
CP=]00 1213 14 15 |
clooo 161718 |
C| 0000 19 20 |

C|l 0000021 |

€ - -m

C‘ .

10 INC = 1

NK=N

DO 14 L = 1, N

P(1,INC) = PINIT
INC = NK +1
NK = INC +

N-L~- 1
14 CONTINUE |
20 DO 100 KK = 1,STOP
¢ _

C OBTAIN PROCESS OUTPUT

C

CALL DATA(AA,B,NF,NG,NH %- % .

1 KK,RHO,DIST)
C
C START CONTROL

c .

5

315

’NEW, ITD,ORDER, C, VAR, SLT,

CALL STC(N,NF,NG,NH,NL,P,X,A,V,U,¥,ITD,PN,PD,QN, RN, PDINV,
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1 NRN,NQD,NQON,NPD,NPN, KK, YNEW, VAR, METHOD , RSTPT, UD, PHI , RHO,
2 PERER,QD) |

C A .

IF( METHOD.NE.5)WRITE(4,25) KK, (A(1,I1),I=1,N)

WRITE(3,30) KK,¥YNEW,U(1),RSTPT(KK),V(1)

IF((KK.EQ.PTEST).AND.(METHOD.EQ.3))‘ | . WRITE(6,8)
(p(1,J3),J=1,36) >
IF((KK.EQ.PTEST) .AND. (METHOD.LE.2)) '\\\\ "WRITE(6,66)

‘jP(J,J),J=1;36)
100 conTINUE
C . .
C IF(METHQD,EQ.3)WRITE(6,8) (p(1,3),3=1,36)
WRITE(6,26) (A(1,1),I=1,N) ’
e

1 FORMAT('ENTER TRANSFER FUNCTION TYPE',/,
1.0t + 1),/ .

2 "TYPE 2 - 1./S * (S + 1)',/,

1 'TYPE 1

1./(ST1 + 1)(ST2 + 1*',/;

3.'"TYPE 3 -
4 "TYPE ¢ - 1./(TS + 1)(TS + 1)',/, i}
5 "TYPE 5 - 1./(T1%S%S + T2xS + 1)',/,

6 'ENTER SAMPLE TIME, GAIN, TIME CONSTANTS',/,
7 'ENTER AS TYéE,Ts,GAIN,T(1),T§2),T(3)')

2 FORMAT(I2,5F7.2) g

3 'FORMAT('ENTER  NUMBER OF F PARAMETERS TO BE
'ESTIMATED',/, 6%,

| ' NUMBER OF G PARAMETERS TO BE’ ESTIMATED',/,6X,

2 ' NUMBER OF H PARAMETERS TO BE ESTIMATED';/,SX,



& .

4

5

' NUMBER OF L PARAMETERS TO BE ESTIMATED',,,sX,

' ESTIMATION METHOD',/,6X,

' NUMBER OF OBSERVATIONS (MULTIPLE -  °)', 3%,

' SET POINT',/,6%,

' VARIANCE OF THE DISTURBANCE',/, 6%,

' MAGNITUDE OF THE NUMBERS GEN FOR NOISE',/,3X,

' INITIAL VALUE FOR COVARIANCE MATRIX DIAGONAL',/,6X,
' TIME DELAY OF THE SYSTEM',/,6X,

' ORDER OF THE SYSTEM',/,6X,

' MEAN OF THE NOISE',/,6X,

' INITIAL VALUE OF GO')

FORMAT (615, 4F15.5,212,2F5.2,15,2F10.5)

FORMAT(' ESTIMATIONv METHCDS:',/,' "1 = RECURSIVE LEAST

SQUARES', /,

1.

2

4
6
1

8

RECURSIVE SQUARE ROOT.METHOD',/,

L} 2=
! 3 = U-D FACTORIZATION',/,"4 = RECURSIVE LEARNING',/,
g =

RECURSIVE MAXIMUM -LIKELIHOOD')
FORMAT ('ENTER THE TRUE NOISE PARAMETERS, C PARAMETERS',/,

c(1), c(2), c(3), c(4), c(5)") .

7 FORMAT(5F10.5)

FORMAT (8F8.2,/,8%,7F8.2,/,16X,6F8.2,/,
"24%,5F8.2,/,32%,4F8.2,/,
403,3?8.2,/,48X,2F8.2(/,56X,F8.2)

FORMAT(' ENTER TYPE OF SETPOINT',/,

" 1. SQUARE WAVE',/,

' 2. RAMP ',/,

'3, SAwaOTH (iooo ITER), CQNSTANT (2000 ITER)V,/,

-



318

4 ' 4, CONSTANT ')
66 FORMAT(F8.2,/,2F8.2,/,3F8.2,/,4F8.2,/,5F8.2,/,6F8.2,/,
1 7F8.2,/,8F8.2) - |
16 FORMAT(i1)
35 FORMAT(IS, 15F10.4)
26 FORMAT(15F8.4)
30 FoRMAT(15,8F1d.5)
70 FORMAT(' DO YOU WISH TO ENTER A AND B POLYNOMIALS?',/,
1 ' YES = 1 NO = 2'")
71 FORMAT(I1)
72 FORMAT(' ENTER A2 - A5 AND B! - B5 Al = 1.0")
73 FORMAT(9F10.4) - |
" 74 FORMAT(' DO YOU WANT P, Q, OR R WEIGHTING?',/,
1 ' IF NO,‘P “R=1.00 = 0',/,
2 ' YES = 1 NO = 2')
S
88 FORMAT(1X, 10F6.3)
STOP
END
c S -
SUBROUTINE
DATA(AA,B,NF,NG,NH,NL,Y,U,V, YNEW, ITD,ORDER, C, VAR, SLT ' >
1 ,KK,RHO,DIST) - | |
DIMENSION
AA(20),B(20),Y(30),0(30),v(30),c(5),DIS(5),RHO(2,3)

DATA DIS/5%5.0/
C
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INTEGER ORDFR

V(1)

RNOISE (VAR,SLT,EMEAN)

YNEW = 0.0

,DO 10 I= T, ORDER

YNEW = YNEW - Y(I+1)*AA(I+1) + U(I+ITD-1)xB(I) + V(I)*C(I)
10 CONT.NUE |

C IF((KK.GT.700).AND. (KK.LT.1200))
C 1 DISTUR=.14#DIS(1)+.0905+DIS(2)+.0082*DIS(3)

C IF((KK.GT.?OO).AND.(KK;LT;1200))YNEWéYNEW+bISTUR
e IF((RK.LT.?OO).OR.(KK.GT.1200)) GOTO 88
C DIS(3)=DIS(2)

C DIS(2)=DIS(1)

C DISTUR=DIS(1)

88 RETURN

END

C

C }

‘éUNCTION RNdISE(vAR,SLT,EMEAN)

DIMENSION IR(12,2)
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c || [ ]

C | NOISE FUNCTION |

c | | ;
[ 4

C +m——momm—m +

¢

'DATA IR/24%0/

DATA IR(11,1),IR(11,2)/2%1/

RNOISE = 0.0

ZIF(VAR;EQ;O.O) GOTO 40

SUM = 0.0 : \

DO 45 I=1,12 |
CALL RAND(RESULT,IR)

SUM = SUM + RESULT ' ~

45 CONTINUE - _ \

RNOISE = (SUM -6.0) * SQRT(VAR)/1.62 + EMEAN
- RETURN

40 CONTINUE

CALL RAND(RESULT,IR)

RNOISE = (RESULT-0.5) # 2.0 * SLT + EMEAN
RETURN B |
END

C

C

SUBROUTINE RAND(RESULT,IR)

DIMENSION IR(12,2)
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c ||

C | RANDOM NUMBER GENERATOR |

c | | \ .

C +==-—————=- +

c

INEW = IR(12,1)+IR(6,1)+IR(4,1)+IR(1,1)+1

ISUM 1

IF((INEW/2)*2.EQ.INEW) ISUM = 0

J = 12

INEW = 0

DO 10 I=1,11

IR(J,1) = IR(J-1,1)

INEW = INEW + 1R(J,1)*2**(J—f)

J =12 -1

10 CONTINUE

IR(1,1) = ISUM

INEW = INEW + ISUM

"RESULT = FLOAT(INEW)/4096.

RETURN

END

o

C

SUBROUTINE STC(N,NF,NG,NH,NL,P,X,A,V,U,Y,ITD,PN,
1 PD,QN,RN,PDINV, |
.1.NﬁN,NQD,NQN,NPD,NPN,KK,YNEW,VAR,METHOD,
2 RSTPT,UD,PHI,RHO,

2 PERER, QD)



DIMENSION X(10,30),A(2,30),RHO(2,3),PHI(30),V(30),U0(30)

DIMENSION

P(2,465),Y(30),PHIOUT(3),XX(2,30),6(2,30),UD(15,15)

N

C +-+

C

DIMENSION PN(3),PD(3),QN(3),RN(3),PDINV(10),RSTPT(3000)

DIMENSION PREV(3),0QD(3)

DATA PHIOUT/3%0.0/,COEFF/0.0/,ACLOSS/0.0/, PREV/3%0.0/

DATA XX/60%0.0/

C

C CCALCULATE THE PRESENT AUXILIARY OQUTPUT PHIY(T) =" PY(T)

C !
. Y(1) = YNEW
PHIOUT(1) = 0.0 j
DO 10 I=1,NPN |
PHIOUT(1) = PHIOUT(1) + PN(1)#Y(I)

10 CONTINUE

C

DO 15 I=2,NPD

PHIOUT(1). = PHIOUT(1) - PD(i)*PﬁIQUT(I)
15 CONTINUE =

PHIOUT(1) = PHIOUT(1)/PD(1)
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C

C BUILD THE OBSERVATION MATRIX r

C PROCESS OUTPUTS (NF = ORDER OF A POLYNOMIAL + ORDER OF PD
POLYNOMIAL

C

DO 20 I=1,ﬁF

X(1,1) = ¥(I) % PDINV(I) ' “

20 CONTfNUE_ //A\
o

C PROC%%S INPUTS

C

IF (NG.LT.2) GOTO 26
DO 25 I=2,NG
X(1,NF+I) = U(I-1) (
25 CONTINUE

'26 CONTINUE

. A

C AUXILIARY OUTPUTS

o

IF (NH.EQ.0) GOTO 31

. DO 30 I=1,NH

X(1,NF+NG+I) = PHI(I+1)

30 CONTINUE

31 CONTINUE

c”

DO 32 I=1,NL

X(1,NF+NG+NH+I) =.1.,0



. C
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32 CONTINUE
IS = 1

DO 35 I=1,N

XX(Is,I) = X(ITD+1,I)

35 CONTINUE - | - /
. L

C

'C CALL THE IDENTIFICATION, ROUTINE TO GET T

IF (METHOD.EQ. 1) CALL IDENT1(YNEW,N, IS PE* }
IF(METHob.EQ.z) CALL IDENT2(YNEW;N, IS PERER xx'h%p G, RHO)
IF (METHOD.EQ.3) CALL IDENT3(YNEW N,1S,PERER,XX,A,P, d RHO,
1 KK,VAR)- |
IF (METHOD.EQ.4) CALL ID;NT4(YNE§,N,Is,pERQE,xx,A}p;G,RHo)
IF (METHOD.EQ.5) - | CALL |
IDENT5(YNEW,N,NF,NG,NH,KK,XX,A,P,G,RHO,iS)
91 CONTINUE | '
38 IF (METHOD .NE. 5 ) GQTO 51
DO; 54 J=1, NF
I |
A(Is;J) = (-1.0) =* A(1S,J)
54 CONTINUE
C WRITE(6,88) (A(1,1),I=1,N)-
WRITE(4,81)KK, (A(1,J),3=1,8) " -
81 FORMAT(I5,15F8.4) o |
88 FoéMAT(1x,8F15.5)
C

C CALCULATE NEW PREDICTION FOR PHI(T+K/T) = A(T) * X(T)

‘
SN



- C

. C

51 NF1 = NF + 1
PHIY = 0.0

P

DO 40 I = 1,N
IF(I.EQ.NF1) GOTO 40

PHIY = PHIY + X(1,I1)*A(1,1)
40 CONTINUE |

- C CALCULATE CONTROL ACTION

."‘ c

RW = 0

DO 45 ;RN

'RW = RW + RN(I) #* RSTPT(KK)

45 CONTINUE
c

PREV(1). = RW - PHIY

. |

C ADD EFFECT OF Q COSTING

C

c coNT%(pREv(1)*QD(1)+PREV(2)*QD(2)+PREV@3)*QD(3)
c1- U(1)*(A(1,NF1)*QD(2)+QN(2)) - U(2)*(A(1,NF1)*
C 2 QD(3)+QN(2))) / (A(1,NF1)*QD(1) + QN(1))

CCNT = PREV(1) / (A(1,NF1)+QN(1))

no 8 11=1,2
1 =4 - 11
PREV(I)=PREV(I-1)

8 CONTINUE |
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APHI = PHIOUT(1) - RW + CONT
DO 52 II=1,29

I =31 -11

‘0(I) = U(1I-1)

'52 CONTINUE

C .

PHI(1) = (PHIY + CONT # A(R,NF1))'
Actoss = ACLOSS + ABS(YNEW-PHI(1))
RLIM = 50.

UTOP = U(1) + RLIM

UBOT = U(1) - RLIM u‘

IF (CONT .GT. UTOP) CONT = UTOP

IF (CONT .LT. UBOT) CONT = UBOT
IF (CONT .GT. 25.0) CONT = 25,

IF (CONT .LT. -25.) CONT = -25.

X(1,NF1) = CONT

COEFF = COEFF + ABS(RSTPT(KK)*1.2 < CONT)
U(1) = CONT | |
o |

AWRITE<1,77) COEFF , ACLOSS #YNEW, PHI ( 1)

77 FORMAT(1X,4F15.2)

DO 55~1=1,2'

1T = 4-1 .

PHIQUT(II) = PHIOUT(II-1) =~ . .

\

55 CONTINUE
. | | ’ el
DO:60 I=1, ITD -

0 ~ : %

i
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PO 65 J=1, N .

X(ITD+2-1,J) = X(ITD+1-1,J)

65,C6NT1NUék

60 CONTINUE

c. -

c UPDATE THE VECTORS
- |

DO 50 II =-1,29

I = 31 - II

V(1) = &(I-1)

pHI(Ii = PHI(I-1)

¥(1) = ¥(1-1)
50 CONTINUE

/'IF (METHOD .NE. 5) GOTO 41

DO 42 J=1, NF

v A(;S,J3 - (-1.0) * A(1S,d)

42 CONTINUE )
41 RETURN

END

" -

c

SUBROUTINE- ZTRAN(ITYPE,TS,GAIN,T,AA,B,NA,NB) -

DIMENSION T(3), AA{20)., B(20)

C | 2 TRANSFORMATION OF TRANSFER FUNCTION |.

N
"3
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T

NA

I
—

NB = 1  '» | L o
AA(1) = 1.0

. -B{(1) = 0.0 |
IF(ITYPE LE.0.OR. ITYPE GT. 5) GOTO 40

- goTOo (5, 10, 15; 20, 25), ITYPE ‘ , BN
N »l '._. B

~ )
~ Lol

c
C FIRST ORDER - 1. / (T#S ~ 10

5 NB

1

1, L. » S g
NA= 2.

’3(1)' ‘GAIN % (1 —Egp( TS/T(1)))

AA(2) = ¥ EXP( -TS/T(1))
~ GOTO 40
) . ij g '

GAIN*(TS T(1)*(1 Exp( Ts/T(1))))

Cot

GAIN*( EXP( TS/T(1))*TS+T(1)*(1 -Exp( Ts/T(1))))

(1\0 4 EXP(- TS/T(1)))




B(2)

AA(3) = -EXP(-TS/T(1))

’

GOTO 40
C SECOND ORDER - 1.¢)K(S*T1‘+ 1) (S*T2 + 1)
poi s ! ﬁ.,\

' . .
’ }J . * 0,, . . O /;}

. N N
e
\ /:,j‘\f e o . RS . +
g2

15 NB = 20~ =" L
W T A .

AAA = EXB(-TS/T(1)) -

. BB = EXP(-TS/T(2})

B(1) T

& =

"Aﬁﬁ;éAINifzﬁB/m(é)}AAA/T(1))/(1:/TE2)-1./T(1))—(AAA+BB¥+1.)

AA(2) = -(BB + AAA)

AA(3) %= AAA * BB

VY

Vo

GOTO 40 -
c o L | =
1). (ST + 1)

.

C SECOND ORDER - 1. ./ (ST +

AAA = EXPK‘-TS/T(T))

°

B(1) GAIN ivk'(1.+TS/f(1)Z;* AAA +1,0)

3(2)

GAIN * (AAA*AAA-(1.-TS/T(1))+AAA)

-2. % AAA S

AA(é)

AA(3)

AAA * AAA ..
~ “GOTO: 40 e

fei

A e
'QI?‘(. e

e : "-, . '_: - ag . S NN

.....
s

.
AN

GAIN#*(AAA*BB- (BB/T(2)-AAA/T(1))/(1./T(2)=1./T(1)))

329



FAA(1) =1.0 -\

40 RETURN

330

C SECOND ORDER - 1. / (T1 * S*S + T2 * S + 1)

C

25 AMA = T(2)/(2.%T(1)) -

BB = 1./T(1)-(T(2)*T(2))/(T(1)*2.)%*2

IF (BB .LT. 0.0) GOTO 30 -

BB = SQRT(BB) | _— -
(1) =EXP(-AAA*TS)*(COS(BB*TS);AAA/BB*SIN(BB*TS))+f:0‘

B(2)=Exp(#2.*AAA*TSS-EXP(—AAA*Ts)*(cos(BB*Ts)—AAA/BB*

1 SIN(BB*TS))

AA(2)

—\2‘.*EXP‘("‘AAA*TS) +KCOS(BB*TS) Ju;

AA(3) = EXP(-2.%AAA*TS) -

B(1)

éAIN*p(1)/(T(1}*(BB*BB+AAA*AAA))

B(2)

GAIN*B(z)/(T(i)*(BB*BB+AAA*AAA))',

NB = 2

NA = 3

GOTO 40 .
30 WRITE(6,3)
3 FORMAT(';NEGATIVE BB VALUE, UNABLE TO TAKE SQUARE ROOT“)

v

END

SUBROUTINE IDENTT(YNEW N,IS, PERER XX A,P,G, RHO)

DIMENSION XX (2, 30) A(2 30),p(2,465), G(2,30), RHO(Z 3)

C | RECURSIVE LEAST SQUARES |



=y
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" PERER = YNEW
XPX = 0.0

&

‘ ,p“ﬁ‘%§=,bé§ER - XX(IS,1) * A(IS,I)

G(Ié,I) = 0.0
o

DO 10 J=1, N .
1J=J % (J - 1)-) 2 +. 1
IF (J .LT. I) IJ =1 * (I - 1) / 2 +J | .
G(IS,1) =<G(is,1)‘+ XX(15,3) * P(IS,1J)
10 CONTINUE
C .

' XPX - XPX + XX(1S,1) * G(IS,I)

15 CONTINUE |
C

XPX - XPX + RHO(IS, 1)
1J = 0
C

DO 20 I=1, N 3
DO 20 q¥1,1
IJ = 1J + 1 | |
P(I1S,1J) = (P(1S,1J) - G(Is,Ij*G(ig,J)/xpx) / RHQ(Is,zf

’ ©

20 CONTY{NUE

£y

b
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C | - ' .

DO 25 I=1, N

1

G(1S,I) / XPX

G(IS,I)

A(IS,1)

A(IS,I) + G(IS,I) = PERER
25 CONTINUE

C

RETURN

END

C.

c

SUEROUTiﬁE IDENTé(YNEW,N,IS,PERER,XX,A;P,G,RHO)

DIMENSION XX(2,30),A(2,30),P(2,465),G(2,30),RHO(2,3)

C ‘ <
C 4-—m—m—mmm + _ ' _ N \
. . ) :
/7
c ||
Q

cl| .
C +=—=—==——- +
‘.'\')C E\'-:" . ,v
g%?RER = YNEW . L.
&f 7 el
eC‘ - /‘." ‘ - -
- : LS. S
DO 10 I=1, N - - R o
A' ’ ’ ‘,.: - £ '_‘?’_y [
PERER = PERER - xx(Is,I)_#-AJIsfg) ] . N
10 CONTINUE S N
o _ - o LT

GAMMA = RHO(IS, 1)
‘GAMMA2 = RHO(IS,1) * RHO(IS, 1)

oA
B .

¢’ ) : j’,:.‘
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I0 =0
JI = Q
C

DO 30 J=1, N

'PX = 0.0

J1 = J - 1 v

) |

DO 15 I=1, & .

JI = JI + 1 | .

PX = PX + P(IS,Ji) * XX(IS,T) )
"5 CONTINUE ° \

o

ALPHA = GAMMA / RHO(IS,2) o

BETA = PX / GAMMA2 ‘

GAMMA2 = GAMMA2 + PX * PX - %

GAMMA = SQRT(GAMMA2)

- ALPHA = ALPHA / GAMMA

G(1S8,I) = P(1S,J1) * PX
P(I1S,J1) = ALPHA # P(IS,JI)
IF (J1 .EQ.‘O) GO TO 25 '

c | |

DO 20 I1=1, J1

IJ = 1J + 1

PQP = P(ISqu)' _
P(1S,1J) = ALPHA }z(pr - BETA*G(IS,I))
G(IS,I) = G(IS,I) + PQP * PX

20 CONTINUE



A -
r,}}‘ s

" RETURN

334

C
25 CONTINUE
1J =1J + 1~

30 CONTINUE

. C

DO 35 I=1, N

G(1S,I)

G(IS,1) / GAMMA2

1

A(IS,I)

A(IS,I) + G(I1S,I) * PERER
35 CONTINUE

C‘

ENDo<s. ' : ) b
C .
C

SUBROUTINE IDENT3(YNEW,N,]S,PERER,XX,A,P,G,RHO,UD, KK, VAR)

" DIMENSION

a(2,30),Xx(2,30),P(2,465),6(2,30) ,RHO(2,3),UD(15, 15)

- ‘ /

DIMENSION V(30)

PERER = YNEW
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INITIALIZATION,

cc
DO 15 L=2,N R

J=N-L +2

PERER = PERER - A(IS,J) * XX(1S,J)
JM1 = J - 1
1J = J

DO 10 K = 1, aM1

XxX(1s,J) = XX(IS,J) + P(IS,IJ) * XX(IS,K)
1IJ =13 + N - K |

10 CONTINUE

v(J) Q_P(IS,IJ)>% XX(1S,d)

15 CONTINUE

PERER = PERER - A(IS,1) * XXx(1S,1)

v(1) = P(1S,1) * XX(IS,1)

ALPHA = RHO(IS,1)/RHO(IS,2) + V(1) * X¥(IS,1)

GAMMA 1. / ALPHA h

P(1S,1) p(Is,1)*GAMMA*RHo(Is,1)/(RH0(is,2)*RHo(Is,2))

G(1Ss,1) v(1)

IJ = N + 1
DO 20 J = 2, N
BETA = ALPHA

ALPHA = ALPHA + V(J) #* XX(IS,J)
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PQ = -XX(IS,J) * GAMMA

GAMMA = 1. / ALPHA

P(1S,1J) = P(IS,IJ)*BETA*GAMMA/RHO(IS,2)
IJ=IJ + N-=J + 1

G(Is,J) = v(J)

JM1 = J-1

JI = J

DO 20 I=1,JM1

BETA=P(IS,JI)
P(IS,JI)=BETA+G(IS,I)*PQ
JI=JI+N~I

'G(I1S,1) = G(IS,1) + Vv(J) % BETA
20 CONTINUE | |

DO 40 J=1,N

G(1Ss,J)'= G(IS,J) /ALPHA

" A(1S,J)

A(1S,J) + G(IS,J) * PERER }
40 CONTINUE
RETURN
END

X

C \
SUBROUTINE IDENT4(YNEﬁ,N,Is,pERER,xx;A,p,G,RHo)
DIMENSION | | )
Xx(2,30),A42,30),P(2,465),6(2,30) ,RHO(2,3),IFP(2,3)
DATA IFP/6%0/ '

C %

C +--+

et R B .
F | .
TRl ’ . )



c |
|

C | RECURSIVE LEARNING METHOD |

~

¢ il

DO 10 I=1,N

Y
¢

PERER

PERER - XX(IS,I) * A(Is,i3
XXX = XXX + Xk(ls,l) * XX(IS,I)

10 chTINUE

C \

' XPX = XXX + RHO(IS,1)

o

DO 15 I=1, N b _

G(IS,I) = XXkIS,I) / XPX

15 CONTINUE \ - h I
c N |

IF1-= IFP(IS,1)

IF (IF1 .GT. Q)QG(Ié,IF1) = 0.0
IF1 = IFP(IS,2)
IF (IF1 .GT. 0) G(IS,IF1) = 0.0 #

C N
DO 20 I=1, N

A(1S,1) = A(IS,I) + G(IS,I) ‘4 PERERSEE#\
20 CONTINUE B '

337
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c
RETURN
END \
C ‘
C
SUBROUTINE WEIGHT(PN,PD,PDINV,ON,RN,NPN,NPD,NON,NRN,NF
1 NRD,NQD,QD,Rb) '
'DIMENSION PN(3),PD(),QN(3),RN(3),PDINV(10),0D(3),RD(3)
c | B
C +—-—————f——-i—+ :\\
cil N ‘
C | P, Q, AND R WEIGHTING ENTRY SUBROUTINE | )
C | | : @
C 4+—-———= >--—-——-.+ '
C . |
 WRITE(6,10) | | o ;
'READ(13,11) NéN,NPD;NQN,NQD,NRN,NRD . ¥
WRITE(6,12) . : ) R

READ(13,13) (PN(1),1=1,3),(PD(J),J%1,3)

WRITE (6, 14) |
READ(13;13)(QN(I),I=1,3);(QD(J),J=1,§)

WRITE(6,15) "

READ(13,13) (RN(I),1=1,3),(RD(1),1=1,3)

CALL INVERS(P?,PDINV}NPD,NF) |

" 10 FORMAT(' ENTER NO OF TERMS IN PN, PD, QN, Qﬁ,jRN: RD')

11 FORMAT(6I2)
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12 FORMAT(' ENTER PN1 - PN3 AND PD1 - PD3')

13 FORMAT(6F8.4)-

14 FORMAT(' ENTER ON1 - ON3 AND QD1 - QD3')

15 FORMAT(' ENTER RN1 -RN3 AND RD1 - ‘RD3')

c . | . ;r) _ .
RETURN |

END

C | : | .
C :

SUBROUTINE INVERS(PD,PDINV,NPD,NF)

DIMENSION PD(5),PDINV(10),WKN(10),WKD(10)

l l °

DO 3 I=1,10 . -
WKN(I) = 0.0
WKD(I) = 0.0
3 CONTINUE P
c | o )

S WRN(1) =.1.0
C

DO 10 I=1,NPD

s:""j“’ ~

WKD(I) = PD(I)
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10 CONTINUE
c.

DO 30 J=1,NF

PDINV(J) = WKN(1) / WKD(1)

bo 20 1=1,9 . _
WKN(I) = WKN(I+1) - WRD(I+1) * pDINv(J)
20 CONTINUE | | ‘

WKN(10) = 0.0

30 CONTINUE o  ””,- ) v
RETURN | o
. END

C S ' wﬁ

SUBROUTINEVTDENTS(YNEﬂP ﬁNF NG, NH, KK, XX,A,P,G,RHO, 1S)

C
, &) ¢
C +-————+
c | |
C l RECURSIVE MAXIMUM LIKELIHOOD METHOD I
cl | |
C +-w--w +
C ..

DIMENSION GRAD(10), GR(10) v(10),c(10) GAIN(1O 10),GR¢G(10)”
“TON TEMP(10). ,GGR(10) ,E(3000),A0(30) .
10%¢0.0/, N1/35/, N2/10/, IFLAG/O/
.&R ORDER
' NDIM = N

. 2 R
C P



IF (KK.GT.1) GOTO %5 i

WRITE(6,61) -
"READ(5,51) PP
c‘  !
.DO ﬂ0‘1?1,3060'

10 E(1) = 0.0

98 DO 15 1=1, N

GR(I) = 0.0 «

V(1) = 0.0 e
GRAD(I) = 0.0 ﬂ
GRTG(I) = 0.0
GGR(I) = 0.0 . - .
TEMP(I) = 0.0
Do-15”J=H, N

' 0.0

GAIN(I,J7

GAIN(I,I) = PP

15 CONTINUE
o
99 ICOUNT = ICOUNT +1°

xmmT= 0

341

v

C IF(KK EQ.N1) CALL CHECK (N1, A ,AO,N,GAIN,KK, IFLAG ICOUNT, NZ) 7

_IF((IFLAG EQ.1) .AND.. (ICOUNT EQ.0)) oo 98 -

NS = NG + NF +:1

C : .

DO 20 I = §s,'NDIM i
K =1-NF - NG

C(K) = A(1s,1)
. o



20 chTINUE O
. e . ) , o e
- , |
D025 1=z, NDIM J
_ GR(I) = GRAD{I-1)
|25 CONTINUE &
i 8
':7-
& b
'Do 36 151, NF
- -K’SﬁNTﬁi?‘ KOUNT + 1
'-smq=$m-a1)*emmMmmm
’VMmmT)= -9 *XXUSI)
. 30, CONTINUE | e
%Y ) y
-C‘

“GR(KT) = SUM + XX(IS,1),-

DO 35 1=1, NG

KOUNT, = KOUNTt%,J“

"5m4=mm-a1)*GmDMmmm )

. I'TEMP é NE + 1. -

IF(ITEMP .LT.. 1) GOTO 35 | -
. V(KOUNT) = XX(IS,ITEMP)
35 CONTINUE

C" L . . . .
GR(KT) = sbM - ZX(IS,NF+1) 0

o

- o

.
4
Ty b
L
. -
ko
v
1.
A
£
A,
v "
) v
v .
~ 4
. %
»
“
o
. N
3
' \
4
o]
l“-"
- -
- e
L
a~

342

R -

AN
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KT = KT + NG .., ,
R - .
v M = 0.0 | Ce
S l ’ - ° ‘,'. ;o 4 - .4
JC . : : U ) b ‘q»

DO 40T =1 MHg

KOUNT .= KOUNT + 1

‘ v F
SUM = SUM - C(I) * GRAD(KOUNT) h@ . 3
ITEMP = KK~I . . 1 L R . _.J,ayl‘

IF (ITEMP .LT.: 1) GOTO.40 .. -

w7 o Lo

V(KOUNT) = E(ITEMP) - ~ =+ - . oo

. 'b. - . ‘:. . o ' .
OOTINE, T e T e
I N ‘a,'j ', .

oy U S R ;
QUM - E(KK-3)g . .- . o , A

-y

' ; \ - R T R :
DO'«45 J=_"t, NDIM =~ ™" ‘

o A o -
* : i - X e " I Rvi
N} : E I B N~
: .

) : Ry .’»’ . . oo - o
* SUM ="A(IS,J) ¥ V(J) + suM . I B

. 'J:"A . ) %‘ . '
45 CONTINUE ., . &

E(KK) = YNEW - SUM R SRR ey .

24

DO 5. 1 = 1,NDIM

GRTG(I) = 0.. ”‘ .\:
GGR(IY'%”O.QV - e
DO 50 J=1;NDIM s . E wlff ) +

GRTG(I) = GR(J) * GAIN(I,J) + GRTG(I) =~

GGR(I) - GAIN(J,I) * GR(J) + GGR(I) |
50 CONTINUE . | . e .
T

C_," . N . L. "’;,'bl-A
Lo ) . . o

i

" N Rt . < -
ey . e . . LI AN or )
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[N N v
U Coe e
L -
‘ : D
B 3 -
i [N :
A LT
P

suM = 0.0 | - Co

DO 55 I,= 1, NDIM .,
SUM =

55 CONTINUE

GR(I) * GRTG(I) + SUM

Cf | >':“.»~ B - ‘; | i"fV; ,'iw;
“DENOM = 1:0 + SUM. - S R - !
" Do 60 I=1{NDIM P e
DO 60 J=1, NDiM S _ ’ﬁ"“d."‘v "; R ‘
'*GAxn(?,JJ = GAIN(I J) (GGR(I)*GRTG(J)/DQNOM) = yf”"gf i
'60 CONTISﬁE e Bt o R A

F, L. - » ' “ .}..:

,)é‘c ) '4 . .4 - ) W ' o “ g—
DO 65 1 =1,NDIM = *° A g
: e , ey ;
‘TSM?(I) = 0.0 B Y ff; ‘ i n
DD 65 J=1, NDIM ' ' ‘~ T
Coe B ?

TEMP (1)

GAIN(I J) *o GR(J) * E(KK)P+ TEMP(I)
] b oy e
65 CONTINUE - T

4

&

C '. e .: i ffﬁ).\.,-‘,

DO 75.J=1,NDIM  * .« .~ R

GRAD(J) = GR(J) = 2
75 CONTINUE ' v ; "

c IF. (KK. EQ. 299) WRITE(6 77)((GAIN(1 J),d= 1 N) 1-1 ,N) %

77 FORMAT(9(1X 9%? .5, /9) e

-7 -

IF((IFLAG&EQ 1) .AND. (ICOUNT LT. N2)) GOTO 83 ';upf“

+ DO 70 J=1,NDIM - -

A(1S,J) = A(IS,J) - TEMP(J)
70 CONTINUE . | o - - -

83 IF(KK.NE.5) GOTO- 80

—



S
S T
_;;ﬁd”8$v1=1,N i
AO(1) = A(1,1) - 0

81 CONTINUE"

C WRITE(S 88) GRAD(1)WGRAD(2)

88 FORMAT(1X 3F10.5)
.C 4 ‘. ' .

,_t : . R

¥

RAD(3)

61 FORMAT(' INPUT THE INITIAL VALUE OF THE GAIN .

5} FORMAT(F10 5)

Hv
80 RETURN |
T ) v ' E ) .
 END o )
9 ' - ) ‘;L ] . . N N .
- C e et
- &, N N
" q vl

(

EJDIMENSION ‘A(2,30), AO(30) GAIN(10 10) DTF(30)

*

"

¢"| "CONVERGENCE" TEST;S@BROU?INE B

C

CC et
cC ey ‘
REAL LOSS |

" VTEST = 1.0005
TEMP = 0.0
YN

DO 10 I=1,N

~ DIF(I) = A(1,1) - AO(I)

‘.

-

| «?
& SUBROUTINE CHECK(N1 A A0, N GAIN KK IFLAG ICOUNT NZ)

G

231
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10 CONTINUE
.C“ . '
'D0»2?'1¥1,N
DO 20 3=1,N . | | .
TEMP = TEMP + DIF(I) % GAIN(I,J) * DIF(J) |

20 CONTINUE 7 4 ' o

. "
i . . ot
o [ . )
B . . ¥

LOSS = TEMP */ KK.tiﬁlO

C

e

NN

IFLAG =1 .

IF(VTEST .GT. ABS(LOSS)) IFLAG = 0

WRITE(6,40) KK,BQSS,&E
| L Rl oy
« DO 30 I=1,N - T
A0(1) = A(1,1)

| "A;oﬁcoNTiNUE o
- ¢”‘ . 5 R .
ICOUNT = 0 o e '.:.al
N1 ='N1,+ N2 + 10 I R ' D
40 FORMAT(1x,r5,F1q.5,ﬁ$ﬁBF1o.5) o [

RETURN

~
R}

END . : o . TR

. et
]

. . .
, IO .
. e L e A ;. ’ .

w‘ E P ‘;"’ N Shi- B . Lo .

Te N . o e N el . - - - ‘ .
. o PRI N U P N I . . '

i L A { P ST L TR T g ey T
. . . . . e d S R < "

. ) Coe o . . . . - - - .
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12. Appendix C

The simulation of fonlinear model of the binarff“‘

' distillation'coiumn was rﬁh with the follow1ﬂg parameters.

Any parameter values not -listed use the default values given
in thg Qrogram. |

S

T-SA = 1.000 , T a

M2

S

T-SA = J‘OOO‘W Ce 7 ogs o &
v N R ' ‘, - N :

™

vNG1w- 3'NF = 2ND% 3

3 (SN ! B

Cww-omeees o 4R
| | - &5' o @Qd .‘»-.‘3*’
© Gl = 0.5000'_ . - | . ~ v o ¥ R

TYPE OF IDENT = (i= RLS 2=RSR 3= RUD 4= RL)

©0.995 (FORGETTING FACTOR)

&
(o]
{
",

0.995

o)
e of
?
N
]

el
—
4
3
1]

1000.0 o B L e

' NG1 = 4 NF =3 ND = 4 x ‘ %
/\ '. | - NH = ‘ =4 J i
‘QL G o Nep=t ' IR ; ¢
T . Gl= 0.5000 ‘_‘ *,;.; . ' > yd
“ : - R : * . G . o
TYPE OF IDENT = (1 RLS 2 RSR 3=RUD. 4—RL) . _
- - o T L
RHO-1 = 0.995 (FOBGETTIN%<¥ACTOR) SR Qg;“‘

RHO-2

0.995 -

. L‘A

P-INT = 1000.0 | L
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“TYPE OF CONTROLLER = 4  ST.
T ""3{,‘3\‘ . - - . i - N ) . .
S = TR U
=U'= 5.000° +U = 30.000 %U = 100.0.'%

¢ 000 -

W

QD(Z)

ON(Z) = 0.000 : I IS

ne

PN(Z) £ 1.000 e Sk

n

PD(Z) = 1.000

S
S o L

7 ORN(Z) = 1.000 e B

RD(Z) = 1.000 . R I A

' TYPE OF CONT] T L 0

) . @
B T

.-U = 500050000 %U = 100.0 '\w,:;ff;; g‘fln. }‘

- 5

~f

PD(Z) = 1.000 R

B B e ¥

e~
I
T N
N
—
.
)
o
o
X



