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Algéfiﬁhms for resolving the point-in-polygon pt@beF
are surveyed. The scope of the survey includes only t*

lgorithms, and consequently those applications

L
L

¢ Lo 3 S
polygonal vertices are represented using vector rath:

raster notation.

Two classes of algorithms are described. Th

w

metheds sequentially pgocess theé n vertices of the e

and require O(n) operations to resolve the point-

he pre-conditioned method

problem.

)
V1]

operate

hierarchical preprocessed representation of the poly . . .
gpe‘qf complexity O(log i), 0(log2n), or O(n). However, the
pre-conditioned alg@ritﬁm have associated with them:
additiopal preprocessing and storage cokts i

&
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( CHAPTER 1 .
? INTRODUCTION .
1.1 Background
The concept of a geographic ‘iﬁfarmatigﬁ system is

essentially that of storage and retrieval of information

about specific locations or. reglans, usually on the earth's

R

surface. In such a syst descriptive data (such as
housing 1ﬁfarmati@n, rainfall, etc.) is structured according

to these deographic locations or ngiéﬂE; Because éf_this

]
structure, rapid retrievals of descriptive information -about
a geographic location .or region are made possible. "’ ‘
The boundary of a geographic region 1in geographic

information systems is frequently represented discretely by

a finite sequence of points. By dJrawing imaginary cords

between successive points, the resyltant polygon serves as.

(e.g. maps) by means of computerized digitizers; and in
practice, the number of points required ,for an accurate
approximation is large.

In. storing descrip¥lve data associated with some
geographic point, it often becémes'ﬁecessafy to idEﬁtifj a
region (polygon) which ccntains that paipt. The cost of
resolving the identification problem, more typically called

the point-in-polygon problem, dominates the cost of data



entry in most éeagfaéhic ;nfermatién systems. . It is this
problem that ds adafessed iégghis thesis. , , .

The p@int—inépélygén pggblem arises 1in a variety af 
other . applications iﬁéiﬁéiﬁé/su:h important ones as image
prac[ssiﬁg and pattern rééagnitiani Whereas the sizesaf‘the
p@lygéns {i;e,, the number . of sides or vertices) may be

small in some of these applications, in this thesis the’

Eccﬁs shall be on large polygons (e.g. 1066,51@25).

1.2 Statement ,of the Problem

There are a large number of :Qmputer~fépresentat;aﬁs

for regions and pélygcns¥[S,lS,l?,lS,El,Zﬁ,?é;ES?23;36,38]!

Grids (raster), curves, points and polygonal lines are some

of the forms used. For the purpose of this thesis, we

choose to define a 'polygon as follows and in so doing we

restrict the scope of this thesis to those applications

where this definition is valid.

DEF'N: Let P=(Vj,V3,...,Vh+]1) be a sequence of points in
2- dimensional’ Euclidean space E3, where Vp4]1=V]. Denote

the coordinates of V; by V;=(xj,yj) and let (Vj, Vj41) be
the 1line segment joining the point Vi and Vj4) for
im=1,2,....,n, Then P describes a polygon if (Vi,» Vi+1)

doe

not intersect (Vk, Vk+]) whenever i #* k.
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DEF'N: The polygon P=(V),......,Vp+}) 1is convex if for any
two points contained in P, the line segment joining these

two points is contained in P,

s

DEF'N: A test point Z is a set of coordinates (x,y) in the

cartesian coordinate system.

DEF'N: The point-in-polygon problem is defined as follows:

Given the closed polygon P, determine whether or not the

test point Z is contained in P.

(
For 'solving this problem, there are four possible
relations between the given point and the region. The point
can lie outside, inside, on the boundary, or coincide with a

boundary point of the region as illustrated in Figure I.1.”

oz
(i)




As 1llustrated ir Figure I.1l, we say
Case 1i. 2 CP (Z is not contained in region P)
Case ii. 2 C P (2z is contained in rfgion P)

]
1
Ly

\ M‘
-
o

Case iii. 2 contained in region P)

o

Case 1iv. Z C (2 is contained in region P)
The cases that 2 is a boundary point are distinguished
above because some algorithms described within give such

cases special consideration.

1.3 Outline of Thesis

The purpose of this thesis is to survey methods for the
solution of the point-in-polygon problem, However, .no
attempt is made to include in the »discussion all works
concerned with this problem, Instead, this thesis describes
only those meth%ﬂs which are considered to be significantly
different in their approach or performance. Since such
considerations are necessarily biased, we apologize to those
authors whose Qark we may not have referenced.

In the description of all methods herein the intention
is always to present Q@ly those notions essential to
understanding the ESSEﬁCEVfothE material. _Far details and
for the handling of exceptional cases, the reader may need

to refer to the original source.
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Chapter II reviews direct methods where no initial
processing of the sides of the polygon is réquired.
Extensions to some of the algorithms are f‘discussed.
Typically, these methods require O(n) operations to resolve
the p@intginspél§ggn problem. 7 |

Chapter 1III deals with methods that require pre-
processing of the polygon in Qtdef to spééd up the search
time. Typically these methods require O(n), 0(log2n), or
O(leg n) operations to resolve the ©point-in-polygon
problem,but in exchange they require the construction and
the storage of a more complex data structudffp

Csapter IV reviews methods which quickly eliminate the
areas which do not contain zhé given point. Examffls are

presented and implementation factors are considered.

~  Chapter Y summarizes the previous chapters.

']

onclusions are drawn and recommendations for further

esearch proposed.

Ly



2.1 Introduction

This chapter describes those algorithms, for resolving
the pointéiﬁspglyéen problem, which can be applied directly
to the polygon represented as a &equence of the oriented
vertices Vi,....,Vp (see Chapter I). These methods are to-
be distinguished from those of Chapter III which require the
polygon' first to be transformed into different represen-
tations before the methods are applied.

The methods described in this' chapter are therefore

applicable to those applications where a bolygon  is

subjected to frequeﬁt changes. No preprocessing of the
polygon representation is required before the

point-in-polygon algorithms of this chapter are used.

Two of the methods are restricted to convex polygons.
Polygonal regions which are non-convex, however, can be
split into the union of convex polygons. Refer to Nordbeck
and Rystedt[23] where é non-convex polygon is made convex by
adding to it an appropriate number of triangles. In those
cases where many new triangles must be added, the two

methods affected may become very slow.



2.2 The Directed Line Method

This method, described by Aldred[l] and by Ncrébeck:ét
al[23], may be applied to the point-~in-polygon problem only
if the polygon is convex.

Proceeding sequentially around - the polygon in a
counter~ clockwise direction, at the i'th step, the method
det?rmines whether or not the given point 2=(x,y) liés'té
the Ieft or to the right of the line directed through the
vertices Vji=(xj,yj) and Vj41=(xj+]1,Yi+1)- of the polygon P,

(see Figure I11.1).

Vi1 (e ¥y

FIGURE IY.1: ‘Pirected Line Method



Let
Filx,y)=(xj+1 = Xj)y = (x=%Xj)yj+1 + (x-xj417yj-
Then | :
< 0, if Z lies to the fight of Lj,
Fij(x,y) = O:AEE Z lies on Lj,
- > 0, if 2 lies to the left of Lj.

It is clear that for the polygon P=V),Vy,......,Vp+] (with
Vn+1=V1) . »
Z CP, if Fij(x,y) > 0, for all i=1,2,.....,n ,
Z C o(P), if Fi(x,y)= 0, for some k,
and Fr_1(x,y) > 0, Fgx+1(x,y) > 0
2 ¢ P, if Fr(x,y)< 0, for some k.
In the worst case when 2 C P, the ;ast of the method is

C = n(3Cp + 5C, + C¢)

(where Cp is the cost of a multiplicatjon, Ca is the cost of

an addition or subtraction, and 'C. is the cost of a
comparison). ' -

If 2 ¢ P, however, the cost of the method fmay be
significantly less, since the method ;ﬁEfmiﬂates with the

first occurrence of Fk(x,y) < O.

2.3 The Area of the Polygon Method

The area of the polygon method described by Aldred([l],
like the directed line method, is restricted to polygons

‘that are convex.



Proceeding sequentially around the polygon in a
counter- clockwise direction, at the i'th step, the method

determines the area Aj; of the triangle determined by the

given point 2=(x,y)’ and the two vertices Vji=(xj,yj) and

Vi+1=(xj+1,Yi+1) of the polygon P (see Figure II.Z).

FIGURE I1I.2: Polygonal Area Method

The area Aj is expressed using the determinant notation as

‘ X Xi Xj+1 X
‘2Aj= : e :
: Y Yi Yied ¥ | o oo s e
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The determinant is to be interpreted as Eéérwise
multiplication of eld@ments in the two rows and then

subsequent additions as follows:

( 2Aj§ [(XYyi+Xiyi+1+Xj+1y) = (yxi+yiXj+1+yi+1%)]

= XY i-yit ) +Xi (Yitloy) +xis1 (y=-yj)]

It is easy to show that the area A of the polygon P

[ =3
satisfies

n

'2A = ) 2Aj

i=]1

The summation above may be simplified as follows (but note
4
that this simplification is not germane to the point-in-

polygon problem):

xl! xz -:;-;;in Xﬁ+1
2A =

Y1 Y2 +««++:¥n Yn+1|

/

M

H‘-

nMs
&

(Xiyi+]l - yixje1)

Let
n .
25 = 3. | 2ai |. :

Since Aj> O, ifl,zg.;...;n, if Z € P or Z € d(P), and since
all of the Ai's are not of the same sign if 2 ¢ P, it follows

that

By
m
o
‘ e
ot
o]
>
ot
L]
L=

for some i,



The cost 53 Aldred's methad is
C = n(3Cp + 7C4 + Cg)
(where Cp is the cost of multiplication, '‘C; is the cost of
addition or subtraction, and C. is cost of comparison).
As an extension to the above method, it is clear that

ZCPIE Al} D, lgl‘vzgi-i--gn

]
j=]
L
O
s}
w
B‘
m
-

Z C.9(P) if Aj

1 ]
2 ¢Pif Aj < 0, for some i.
Hence, the cost of the method is reduced to. K
. C = n(3Cp + 5C5 + C¢)
in the worst case.’ N

2.4 The Sum of Angles Method ' =

This method, due to Nordbeck and Rystedts([23) proceeds
sequentially around the polygon, determining at the i'th step
the angle 6; subtended by lines from the points Vj = (Xj,Yi)

and Vi4] = (xj+1, yi+l) to the point Z=(x,y). (See Figure

11.3).
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P 144

FIGURE II.3: Sum of Angles Method

The angle 6; is given by

8i = tan~l(yjs1-y)/(xi41-%) tan“l(yi-y)/(xj-x),

where -1800 ¢ 8; < 1800,

Let 6 = 5; 6.
i=

Then
Z €P if 6=3600,

€ 3(P)~if 6; =1800 for any i,

[ 2]

Z ¢ P if 0=0.

Special attention must be given to any vertex

Vi=(xj,yj) where xj-x is "small®™ in order to avoid division

by zero and-to account for large round-off errors. Having



determined that Z ¢ O(P), however, the . effect of round-off
errors is not otherwise critical to the algorithm; that is,

2 € P 1If 6 is "close” to 3600, and 2 ¢ P if @ is "close" to

00,

A considerable improvement to the methods has been

‘suggested by Hall[l4). Rather than accumulating the partial

k k
sum , 9i, the sine and cosine of 2. 8 are accumulated
i=1 i=]

instead. Then, at the vertex Vk+1:s

-

L3 L3
Sin(@ky1 + > 6i) = Sin( Y 8)Cos(By4])

i=1 i=1 7
' K
+ Cos( ), 8i)Sin(8y4])
- i=]1 .

k k. ’
Cos(8yx4+)1 + ). 8j) = Cos( Zi 0i)Cos(08k+])
i=1 i=
: k
® - Sin( 3" 8;)Sin(8x4]) "
i=]

The improvement in this approach arises from the
observation that Sin(8y4]) and Cos(8x4+1) may  be computed

using vector dot and cross products.
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The vector dot product satisfies «
(Vk=2).(Vk41-2) = ,VK§Z,gle*1-Z ';CGS Ox+1- -
The vector cross product satisfies |
(Vk=2)x(Vie41-2) = |Vg=2]|.|Vke1-2 [+Sin 8)4].
Only at the final step does a t:igénametffé routine need to

be invoked in order to compute

@ = tan~1(Sin 8/Cos @) , where 0=

%E
\HM
e o
g

i

The computation of sin( S i), éas( S 8i),given Sin(_ﬁgei),
. i=1 i . i=1

k
Cés(jiZEi) requires 13 multiplications, 10 additions, 2
i=1

divisions and 1 square root evaluation. Ignoring the cost of
the final tan-1l computation, the cost of Hall's method is
given by

C =n(l3Cp + 10C4 + 2Cq + Cg).
(where Cnp is the cost of multiplication, éa is the cost of
additién)ar subtraction, Cq is the cost of division, and Cg

is the cost of a square root evaluation).

2.5 Line Crossing Method

The method has 'been described from a variety of
perspectives by a number of different authors (1,2,3,4,5,6,9,
10,13,14,15,22,32). It can be applied directly to polygonal
regions which are convex, non-convex, and even to those which

are not simply connected.
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;

Basically, the method consists first of passing a line
J : . .
through the point Z2=(x,y) and parallel to tha x-axis.
line through 2z will do, a horizontal or

(Although any
The number of

vertical line is computationally best.)
intersection points of this line with the polygon boundaries

is then tabulated (see Figure II.4),

‘ (PIGURE II.4: Line-Crossing Method



Computatiopally, at the i'th

step, i=1,2,.....,n, the
sign of (yj+f-y) is determined and compared with sign

(yi =f

y). If the the polygon boundary has

ilgns ate different,
likely crossed the given line, and x-coordinate of 2 is then
compared with the x-coordinates of Vi, Vi;l in order to

determine the position of 2z relative to the segment Vi,
Vi+l. If 2 is contained betwéeh the extreme x-coordinates
of Vi, Vj4+1, then the vertices Vi and Vj4) are linea
interpolated to

L4

ly

determine if 2 lies on or left of the
polygonal segment (VieVie1). Special attention must be
. ' °
‘given to the case that the sign of. (yj+1-y) is 0.

The algorithm in greater detail is given below. The
algorithm returns the value CONTAIN. If CONTAIN = 1,
is contained .in the polygon; if CONTAIN

0, then z lies on
the boundary of the polygon; and finally,

tpen Z lies outside the polygon.
1. {Comment: 1Initialization) - ) li

Set CONTMIN = -1

Compute S; = sign of (y)-y)
= X
Set i = 1 -
N



2.

3'
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(Comment: Process next point. Sy and 82 record the
vertical positions of Z relative to the vertices Vj.)
and V; respectively.) '
Set S5) = So
Set i = i+]
Compute S; = Sign of (yj-y)
1f S} # Sy or Sp = 0
then
(Comment: Vertical cross-over gound)
go to step 4
‘else
".‘iomment: Process next point) .
go to step 9.
If x < min (Xj-1, Xj) \\\\
then
(Comment: Z lies left of segment (Vj_31,Vi)
set CONTAIN = —-CONTAIN
go to step 9
else go to step 5

If x > max (xj-1, Xji)

" then

L

(Comment: Z lies right of segment (Vj-1,Vj)
go to step 9

else go to step 6
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6. (Comment: Z lies in rectangle containing segment
(Vi-1,Vji), and therefore interpolate)

F = sign of [y.(xj = Xxj-1) = yj.(x-x{-1) + Yi-=1:(x=-x4i)]

(52 = -1) then set F = -F

L]
(a1

=0

~J
*

[ ]
oy
m

then
{Comment: 2 lies on segment (Vi-1, Vi)
return (CONTAIN = 0)
else go to step 8.
8. If F> 0
then
(Comment: 2Z lies left of segment (Vj_.), Vi) -
set CONTAIN = -CONTAIN E
9.  If i < n+1 |
then go to step 2

'i else return (CONTAIN).

Since interpolation is required infrequently (at most
twice, if P 1is convex), the cost of the. method is
approximately

. C = n(Ca + 3Cc)

s

the cost of a comparison).



2.6 Summary

In this chapter, & fgave discussed four methods of

determining whether or a point lies in a polygon. These

methods are summarized in terms of their worst case

computation cost and ini terms of restrictions in Table I.

wethod - | Point Processing Cost | Restrictions
Direc£éeri;e N niécm;écaééés R éénvé% Fé&&é@hé
Area of Polygon n(3Cp+5C5a+C¢) Convex Polygons
Sum of Angles n(13Cp+10C5+2C3+Cg) None
Line Cryossing “(€a+3cc) None

TABLE 1: Summary of Direct Methods

It is clear from the table that the Line Crossing method,
in the worst case, when the point is‘within the polygon, is
the best of all the 'Direct Méthads‘ discussed. In addition,
it is not restricted to chin polygons as are the first two
methods and it is Significaﬁﬁly faster than the third method.

When a point is outside the p@lygah, however, each of the
‘first three methods may terminate early, whereas the line
crossing methods continues to process all points of the
polygon. Thus, if the majority of points tested hapﬁg? to lie
outside the polygon, it may appear that any of the fi:ét three

methods may be superior, on the average, to the line crossing



method, However, as we shall see in Chapter »IV, initial
inexpensive tests can be applied to resolve the point-in-
polygon problen ¥ Mmost points which 1lie outside a
polygon. The shgetiarity of the 1line crossing method,

therefore will prevail in all cases.



CHAPTER III

] st
»
{ et

_Introduction

All the methods described in the previous chapter

Ly
m

'fequire O(n) operations to solve the point-in-polygon

problem. Asymptotically, better methods are available, and
these methods are the subject of this chapter.

There is, however, a price to pay for this speed. All
the methods require that the polygon be represented by a

certain, often complex structure. The storage requirements

for this structure are often exorbitant (D(nz)) and costs of
achieving this structure (preprocessing) can be high

(0(n2log n)). Therefore, these methods can be practical

only in a static environment, that is, in an environment

where the polygonal boundaries seldom change.

There is one additional drawback with these
asymptotically fast methods. Because of the complex

structure by which a polygon is represented, access and
other overhead costs reduce the practicability of fast
methods to problems where n is "large". The threshold for

n, as n increases, wherein fast methods become superior to

classical methods (e.g., the line-crossing method) 1is an
important implementation consideration. This matter,

however, is beyond the scope of the current investigation,
and is not addressed in the following pages.

21
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Five methods, namely, Swath, Chain, Triangle,
Rectaﬁgle. and Strip, are described in the following
sections.

Each of the sections includes a description of the
required preprocessing of a polygon, followed by a
description of the point-in-polygon algorithm,. Costs and

storage requirements are also given.

3.2 SWATH Method

This me thod is due to Salemon[29,30] and to

Shamos[31]. The preprocessing step proceeds as follows:

Preprocessing

* , .
Swaths are formed by constructing horizontal lines

w

through each vertex of the polygonl, The swaths are then
ordered by decreasing y-coordinates.

To illustrate the formation of swaths, consider the
eight-sided polygon given in Figure III.l. Thiskpclygeﬁ is
described by six swaths. SWATH(1l) contains edges (5) and
(6) within the y-interval (3.7, 2.2), SWATH(2) contains
edges (3), (4) and (6) within the y—}nte:val [2.2, 1.9), and

finally SWATH(6) contains edges (1) and (8) within the

y-interval [%2,6,i5]2- Having obtained the - swath
coordinates, the swaths are ordered. This ordering is

possible since the swaths are mutually exclusive.

e

1 A swath is defined as the region between two such
horizontal lines.
2 SWATH(i) denotes the i-th swath.
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swath(1)

— T =Y swath(2)
rswath(:i)
#’x..axis

lswath la)

) swath(s)

p swath(g)

FIGURE III.l: A Polygon and its swaths definition.
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Finally, the polygon segments within each swath are ordered
from left to right and indexed.

The complete >5Hath method is summarized by the
fcllawing two algorithms, |

Preprocessing Algorithm

1. Sort the vertices ?i = (xXi,¥i), i=l,......n
according to the decreésing values of y-coordinates
Yi- Denote the ordered list by Y(1i), i=l,......,m,
from which all equal entries have been deleted so
that m < n.

2. Denote each consecutive Y pair of endpoints
[Y(i),Y(i+l)], for is;;zfg._g_,mil, (with Y(i)
>Y(i+1)) by SWATH(i).

3. Within SWATH(i);‘establish a left-to-x¥ght index of
all line segments which intersect i(jjj; store the
index in SWATH(i,j+l1), j=1,2,...

{comment: SWATH(i,1) is the number of segments in

the SWATH(i)).

Point-in-polygon Algorithm

The algorithm accepts the matrix SWATH(i,j) and a test
point 2=(x,y) as input; and returns as output the value
‘true' if 2z is contained in the polygon, and ‘'false'

otherwise.

3 SWATH(i,j+1) denotes the jth 1ine segment within the ith
swath.



l. Compare y against Y(i), i=l,....,m to determine the
SWATH(i) containing vy. If no swath contains vy,
then return the value 'false'; otherwise go to step
2. ’

2. Scan line segments 1in SWATH(i) according to the
order dictated by SWATH(i,j) 3=2,3,.... Let

SWATH(i,Index) r

Iy

ference the first line segment

which lies on the right of 2. If no such index

exists, then return the value 'false'; otherwise go

O 8

mr

ep 3.

3. If Index =1 modulo 2, then rdturn 'true',

Else return 'false'.

Analysis

Assuming n is the number of sides of the original
polygon, there are at most n-1 swaths. Thus (n log n)
operations4 are sufficient to sort the y-coordinates in the
decreasing order for defining the swaths. Within each swath
there are at most n segments (Ziif the polygon is convex).
"It therefore takes at most (n log n) operations for the
left-to-right ordering of segments within each swath. Since
there can be O(n) Swaths, the total cost of preprocessing is

0(n2log n) operations

4 l1og n denotes the logarithm of n to the base 2



[Storage]

From the above algorithm, there are at most n-1 swaths

[2g
o

be stored away. In each swath, there are at most n
.segments. Subsequently, the total

c
by the (n by n) swath matrix is O(n2) units.

[

[Search]

Finding the

[n 7]
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in O(log n) steps (using binary search techniques on n
elements). In the selected swath, there are two
passibilities,

If the polygon is convex, four additional comparisons
are sufficient to determine the position of the point Qith
respect to the quadrangle formed by two line segments and
the swath. 'ihe total search in this case is (log n + 4)
operations* and the cost is therefore O(log ﬁ)_

If the polygon is not convex, 2z is compared against
each line segment in the swatl until a segment on the right
of Z is found. This is essentially the line-cfass@ method
(described in se:éian 2.5) applied to the polygonal portions
in the swaths. Since these pmiggcnal portions can have as
many as n-1 sides in the worst case, the cost of this step
in Salomon's method and Shamﬁs" method can attain a

complexity of O(n) operations (however, see refinements

below). But, 1in practice, the number of line segments



ln a swath will be much smaller than n-1 (e.g. two if the
polygon is convex), and the cost of the Salcﬁan[zsfiﬂj and
Shamos([31] algorithms will be dominated by, the- cost of

searching for the a&priate swath containing Z.

gwiomon and Shamos algorithms is

Summarizing the cost of
O(n) operations in the worst case, but O(log n) operations

for most polygons,

Comments - Refinement

An obvious refinement of Salaméﬁ and Shamos algorithm
is available. Having éetermined the swath containing 2z in
O(log n) operations using binary search techniques, the same
techniques can be applied to the ordered line segments
within the swath to determine that first segment 1lying on
the right side of 2Z. Since both steps are now of complexity
O(log n), the refined algorithm is of the same complexity.
With this refinement, the algorithm becomes essentia;ly that
of Dopkin and Lipton's|[8]. .

Note, however, that Dobkin and Lipton present their
method in a more general setting. The problem considered by
them is that of identifying that polygon (if any) which
contains a given point from the set of all polygons formed
b? the intersections of n lines in a plane. But any

prescribed polygon is determined by a set of ordered lines
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and the intersections of each line with its predecessor and-

successor only. Thus, the point-in-polygon problem is a

special case of the problem considered by Dobkin and Lipton.

3.3 CHAIN Method

This method, discussed in terms of planar graphs, is due

[,

to Lee and Preparata(l8] -who utilize certain geometric
pProperties of a chain for solving the point-in-polygon
problem. The concepts underlying this method lend themselves
to many different applications. For example, their method can
be used to determine if a given point is contained in a convex
region in 3-dimensional space (see [18,20,27]).

Before describing this mééhad, some Vpreliminafy
definitions are required.

L

DEF'N: Given a polygon P with vertices Vj, i=1,2,4....,n, a

gha;ﬁ,}wiﬁh respect to P) is defined to be an ordered subset

(vil,viz,-.._!ii,vik) of vertices of P. Implicit in this

definition is the existence of an edge (Vi,,vi,+1) joining the
] J

1]

vertices Vi and vy .
3 j+1

EF'N: A chain is monotone with respect to the y-axis (or an

U\

(=

arbitrary 1line ) if the orthogonal projections of the

)

\m\

vertices of the chain onto the y-axis (i.e. the y coordinat

are ordered.



L.
An example of a monotone chain 1is illustrated in Figure
I1I.2.
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DEF'N: The set C=(C
the polygon P is complete if it satisfies the following

conditions:

chain Cj;

2. Each chain C},i=1,2,...,k is monotone with respect to
the y-axis; )

3. The chains can be ordered such that C}<C3<...<Ck, where
Cj<C4 means Cj lies on the left of Cj.

This definition ensures that the edges of C; do not cross

those of C4, i#j, and that a total ordering of the chains is
- = -

maintained.
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Lee and Prepafgta‘s method begins by cﬁnétructiﬁg for a
polygon a complete set of monotone chains (the preprocessing
step). This construction then permits the fast resolution
of the point-in-polygon problem.

Only convex polygons lend themselves naturally to the
construction of a complete set of monotone chains. For

other pPolygons, it 1is convenient first to transform the

polygon into a suitable regular form.

DEF'N: Let (Vi*,...vp*) be a sorting of the vertices
(Vi,..,Vp) of a polygon P so that Y(V1*)<y(Va*)<. . .Sy (Vp*).
A vertex Vj* is said to be regular if there are integers
1<j<k such that edges (Vi*,v4*) and (V4*, Vx*) are in P, 1f
all of the vertices with the exception of V* and Vp* are

reqular then P is said to be a reqular graph. ’

For example, the vertex N of the illustrateé polygon in
Figure IIl.3a is not feéularf whereas G is,

The transformation of a polygon int@ia regular éraph
consists of drawing a minimum number of additianél edges
bethen vertices of P so that for each original edge df P
fhere exists a monotone chain in the graph passing through

V1i* and vp* and containing this edge. An example of a

[

polygon and its associated regular graph are given ing

Figures III.3a and III.3b. = .
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PIGURE III.3a: Non-Convex Polygon

A vertex marked

‘al

indicates non=regular vertex.
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FIGURE III.3b The Associated Minimal Regular Graph - -



The regularization scheme is described as follows:
1. Sort  the vertices in non-decreasing order of

y-coordinates as Vi*, Vy*, A

(Comment: Vi* is the vertex being processed)
2. Set j = 2 he

A

-3. Set 1i 3

It

k = 3 +
4. (Comment: Descending Pass)
4.1 If there is an edge (Vi*, Vi*)
then go to step 5 -

else set i =1 -1 e

then go to sﬁep 4.1

go to step 4.3
4.3 (Comment: Draw a line segment)
If (Vi*; Vj*) does not intersect any other segment
then
(Comment: such a segment must exist for some i)
draw segment (Vi*, Vj*{
go to step 5
else

set i-= i =1

go to step 4.3
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(Comment: Ascending Pass)

5.1 If there is edge (V4*, Vk*)

then go to 6
else set k = k + 1
If k< n
then go to step 5.1
else
set k = j + 1
go to step 5.3
(éamment: Draw a line segment)
If (V4*, Vkx*) does not intersect with any other
segment
then
(Comment: such a segment exists for some i)
draw segment (V;*, Vj*)
go to step 6
else
set k =k + 1

go to step 5.3

Set j = 3 +1

[ L]

then go to step 3

else (Comment: all vertices are regqular) "

f

3

< n

Stop.
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Once the minimal regular graph for a polygon has been
constructed, all unique monotone chains (C1,C24+4...,Ck)
passing through V}* and Vp* are ordered so that Cj lies on
or on the left of Cy if 1 < j. These chains form a complete
set of monotone chains. The monotone chains for the
exemplified polygon are given in Figure :II-BE.

The complete set of monotone chains C <can be
represented hierarchically in a binary search tree. The

algorithm for the binary tree is described as follows:

(C;ECE,!iijicm)! a.i'*:‘

Given a complete set of chains C
binary tree of m chains is constructed by selecting the kth
element of the set (where k = |m/2¢1 ) as the root of the
tree. The kfh element partitions the set C into a left
subtree (C;, C2,...,.Ck-1) with elements less than Ck, and a
right subtree (Ck+1,...,Cm)‘with elements greater than Ck..'
Each subtree is further partitioned by its middle element
into smaller subtrees. This process is repeated until each

subtree is null. For the example at hand, the search tree

is given in Figure 1I1I.4.
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In the tree, the chains

associated with the

left

subtree of any node (father chain) all contain smaller

indices and therefore lie on
A similar observation can be made

The leaves of the tree denote

exclusion from (=), the polygon.

Ca

Ay
0
J
N
un
I

a

containment

the left of the father chain.

about any right subtree,

in (+), or

gt
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[Search procedure])

™

The search algorithm begins by checking if th Y

coordinate of a given test point 2Z=(x,y) lies within the
extreme y-coordinate range (y1*, yp*) of the given plane.
The processing of the point Z is terminated if 2z is found to
be outside the defined region. Otherwise testing commences
with the root node of the search tree and proceeds downward

toward a leaf of the tree, whereby the point-in-polygon
-

\

problem becomes resolved. .

Testing of a node at each step consists of determining
if the point lies on the left or on the right of the chain
associated with the node. It is interesting to Oobserve that
on termination of the search algorithm, a unique pair of
consecutive chains Cj and Cj4] containing the test point are
determined. Note that 1if the point 2z is strictly on the
left or right of the complete set of chains, then only one
chain is identified.

Discrimination of a point 2 against a monotone chain
(i.e. determining if Z lies on the left or on the right of
the chain) fequires first the identification of the edges of
the chain nearest to 2. Since the chain is monotone with
respect to y-axis, binary search techniques can be applied
to the ordered y-coordinates of the vertices of the chain.

Once the nearest edge to Z is identified, discrimination of

Z against the edge is straight-forward. Illustration of
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this discrimination of Z against a monotone chain is given
in Figure III.2.

Analysis

[Preprocessing] The initial processing of the polygon
requires the sorting of the y-coordinates of the vertices,
which té;e;'O(n log n) operations. Scanning'the edges of
the polygon in choosing monotone c¢hains takes 0O(n)
additional operations. Lastly, the construction of the
'complete set of monotone chains requires O(n log n) more

operations. Hence, the preprocessing cost is at most Oo(n

log n) (see Lee and Preparata[l8) for additional details).

(9
.

[Storaée] Since at most n chains are required to form a
complete set and since eachychain can have at most n edges,
the total storage requirenients are bounded by o(n2). Lee
and Preparata, héwever, describe a method for the storage of

selected edges only, which reduces storage costs to O(n).

[Search] Suppose a complete set of chains C is given by
C=(C1,C2,..+:Ck)- Using the binary search tree for the

complete set of chains, at most log k chains need be
processed to determine a unique pair of consecutive chains
Cj and Cj4+) (with i < k) which contain the givén point 2.
Let the projections of the vertices. of a chain onto .the

y-axis form the sequence y(Vl),y(Vz),;..,y(Vm). We can
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apply binary search techniques on the ordered set of
vertices in order to locate that edge of the chain Cj that
borders 2. This takes O(log m) time. A fixed number of
arithmetic operations and a.single comparison are sufficient
to determine on which side of the edge the point lies.
Thus, the entire search process requires O(log k . log m)
operations. However, from the earlier discussion it is
clear that there are at most n-1 chains in C. In addition,
each chain in the complete set C has at most n vertices.
Therefore, at most O(logZ2n) operations are required by the

search technique to solve the point-in-polygon problem.

Note: For convex polygons, the complete set of monotone

chains consists merely of two chains. The cost of searching

in this case reduces to O(log n) operations.

3.4 Triangle Method

An efficient O(n log n) algorithm fér partitioning a
polygon P into a triangular subdivision is described by‘
Garey et alfl2]. Their algorithm first constructs for the
polygon an associated reqular gfaph, and then an associated
ordered sequence of monotone chains (see section 3.3). Once
this structure is available, the triangulation of the point
set which determines any two consecutive chains proceeds as

follows:



The triangulation algorithm is given as follows:

" INPUT:

Let the vertices of the polygon formed by

consecutive chains have k vertices:

1 ]

Sort the vertices into non-decreasing order

y-coordinates and denote them by Vi*, Vo*,...,V*

Place the two vertices V)}* and V2* into a stack

set j = 2

two

(Comment: Denote the current contents of the stack by

Wi, Wo,.e..,W;)
set j = j + 1

set V* = V4*

If V* is adjacent to W}, but not to Wj

then

(Comment: V* lies on the chain opposite from the

chain associated with the stack)
draw diagonals (V*,W2) (V*,W3),cc.c..,(V*, W)
change the stack to wj, v*

go to step 3



5. If V* is adjacent to Wi but not to W)

then

42

(Comment: V* lies on the same chain as the stack)

Repeat until i

1 or internal angle at Wi Iis

end of repeat,
Add V* to the top of the stackj
go to step 3
6. If V* is adjacent to W) and Wi
then add diagonals (VEW2) peeeas  (VE,Wi])
stop.
The applicatién of the triangulation algﬁrithm on

chains is illustrated in Figure III.5.

at

two .

[
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pton and Tarjan[19] use this triangular structure to
describe efficient algorithms for solving a variety of

classical planar problems, including the point-in-polygon

problem. A simplér and more practical adaptation of their

[

dint-in-polygon algorithm is given by Kirkpatrick([16] and it

)
]

is this work that is outlined in this section.
Kirkpatrick's algorithm requires that the polygon P be
enclposed within some triangle T. The polygon P as well as

the region exterior to P and interior T is refined to a

triangular subdivision using again the methods of Garey et
al[lz2]. An example of a polygon and its triangular sub=
division are 'given 1in Figures 1III.6a to III.6c. The

triangles composing the subdivision of T are labelled

0 = {r;(0), i=1,2,....,np}.

(]

iven an arbitrary point 2, the problem now is to
determine which triangle Tiio), if any, in the triangular

subdivision of T contains z. 1If z € Ty ©)ana if 7{0) is

interior to P, then Z is contained in P; otherwise it is not,

The problem of identifying that triangle Ti(g)g if any,
which contains Z is simplified by obtaining a new triangular
subdivision T (1) = {Ti(o) , i=1, qui,-ii;nl}, of T where
n) < ng. This new subdivision 7(1) is obtained from T (0) as

follows: Let V be an internal vertex of T(O)g Then V 1is

with some number of triangles of T(D), the union of

incident

which 1s called the neighbourhood of V. The strategy is to

select a maximum number of

W

uch mutually disjoint (except



FIGURE III.6a:pA Polygon Enclosed in a Triangular Region

FIGURE III.6éb: Regularization of Polygon Relative to a
) Triangle
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possibly at boundaries) neighbouthoods in T (0) . Such
neighbourhoods are illustrated in Figure III.é6d. For each

neighbourhood, the associated vertex and its incident edges

are dropped and the neighbourhood is re-triangularized. This

rd

{’I‘;&l),; 1, 2, ;a,nlf‘,

new triangulation of T is called T (1)
where n) must be less than np since each neighbourhood now

contains fewer triangles in its partition (see Figure

(]

II.6e).
This procedure is continued to produce 7(2) from T(l),
and so on until only the circumscribing triangle T remains.

See Figures III.6f to III.6i.

FIGURE III.6e Triangular Subdivision TV



FIGURE III.EE;

“Triangular Subdivision 1)

FIGURE III.6g:

Triangular Subdivision et

\h‘
~J






49

The set of triangular subdivisions may be placed in a
hierarchical tree structure as follows:

FIGURE III.7:

HIERARCHICAL TREE STRUCTURE

In the tree, Ték) is a son of Tj(k+1) whenever their inter-

section is not null. That is, a son Ték)af T%k*l)néed not

always be totally contained in Téﬁ*l)



It 1s essential to show that the height of the above
tree stfuctu;; ensures Vlcgafithmic search complexity.
Kirkpatrick shows that there exists positive constants c]
and cz with cj,c2 > 1, such that ng4] < nx/c)] and the number
of sons at each node is bounded by cj. Thusg‘the height m
of the tree is bounded above by log ng/log c). .Therefore,
at most, c¢3. log ng/log c) triangles need be gxaﬁiﬂeé in
order to determine that triangle'Ti(D) whichgca§¥§§%s the
point Z. Since ng < c3n, where c3 is constant and n is the
number of vertices in the polygon P, it follows that
Kirkpatfick's search algorithm requires O(log n) operations.
[Preprocessing]

The preprocessing costs of Kirkpatrick's algorithm are
as follows: Conversion of an n-vertex polygon into a
regular graph requires O(n 1log n) operation. The

triangulation process and the hierarchical tree construction

at the k'th step requires O(nkx) operations. Thus, the cost

of the entire triangulation and tree construction is

= 1=C

Therefore, the total number of operations required by the

preprocessing phase is O(n log n).

\.-U‘



[Storage]
The space required of the triangle method consists of

storing n/¢li triangles at each level of the tree

-

structure. Since the height of the tree is bounded by log

ng/log c) O(log n), requirements are bounded by

1 n : .
i ng/c1t = 0(n).
i%®o

3.5 Rectangle Method

The description of this method requires some

preliminary definitions,

DEF'N: A section of a polygon is defined to be a set of

consecutive segments of the polygon.

DEF'N: A section which is monotonic with respect to both

the x and y coordinates is called a simple section.

0]
m
y]
"
[ e
o]

DEF'N: A maximal simple section is called a basic

By partitioning a polygon into the union of basic
sections (this requires determining those vertices which are
local extremes in either the x or y coordinates), the

processing costs of the line-crossing method (see section
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2.5) can be significantly reduced. Let the line passing
through a given test point and parallel to the x-axis be
called the test line. For the line-crossing method, it is
required to determine the .number of intersecticn points of
the test line with the boundary (with the basic sections) of
the polygon and lying left (or right) of the test point,
Testing to determine if the test line intersects a basic

section (we shall «call this intersection test) requires

simply the comparison of the y-coordinates of the section,

occur, additional processing (we shall «call this the

orientation test) of the segments which compose the section

is required to detcrmine if the intersection point lies left
or right of the test point. This enhancement to the
line-crossing method is the essence of the work done by
Loomis([21]), and in many applications can result in
significant improvements.

The orientation test is simplified by first comparing
the x—coordinate‘of thé point with the extreme x-coordinates
of the basic section. This, together with the intersection
test, is equivalent to determining if the test point lies in
the smallest rectangle encompassing the basic section. Only
if the test point lies in this rectangle (called the’ section
rectaﬁgle) does it -become necessary to process the segments

which compose the section. A geometric fllustration of basic
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section rectangles R? , i=1,2,.....,m for a polygon is given
in Figure 1I1I1.8a. As can be seen, the union of all the basic
section rgctangles of a polygon serves as an annulus
approkimation to the boundary of the pdlygon- ,
The basic section rectangles c¢an be combined pairwise

consecutively to yield a cruder annulus approximation as

follows: Let

k= [}ongJ+1

o ' ,
and let &i) , (i=m+1,...,2K) be a null rectangle. Define
1 o) (o) .
ﬁi) = Réi_l U R2i (i=1,2,..!.25’;)
(o) (o)

as the smallest rectangle which encloses R2j-1 and Rp; ..
Thus, éi) is the smallest rectangle which encloses the basic
sections contained 1in Rg?.a and ggg. These enclosing
rectangles &1) for the given polygon are 1illustrated in
Figure 11I1.8b.

The line-crossing method can be enhanced by applying it
to this new structure as follows. The section rectangles
&i} i=1l,....,2K-1 are scanned consecutively for intersections
with the test line. If intersection with(Ri) does not gccur;
the algoérithm proceeds directly to the next section rectangle

(1)

Ri+l- Only in the case that intersection of the test line

1) , ,
with gii does occur 1is processing of the’basi: section

(o) (o)
rectangles R2j-] and R2j required. This essentially can
reduce the number of rectangles to be processed by

approximately a factor of 2.



FIGURE III.8a: Basic Section Rectangles - Level 1 ... .. .

-
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FIGURE 1I11.8b: Section Rectangles - Level 2

What is deécribed so far is the essence of Burton's|[5]
rectangle method. one additional construct is given, The
pairwise #merging of rectangles 1is again applied to the
rectangles Ri to produce the sequence of rectangles
&i? i=1,...,2%-2 and so on, until finally a section rectangle
R(E) is determined which tightly encloses the polygon. (See

Figures III.8c, III.8d and III.8e).
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FIGURE III.8c: Section Rectangles = Level 3

FIGURE III.8d: Section Rectangles - Level 4
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FIGURE III.8e: Final Enclosing Rectangle - Level 5

ik

Pictorially, the hierarchical structure of section

rectangles for a polygon 1is illustrated in Figure III.9

below.
5 W)
21 2
\
FIGURE III.9 Hierarcl.ical Structure of Section Rectangle-
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- . Using this hierarchical tree of the section recta angles
Burton applies the line-crossing method as follo ows :
L , , (x)
Beginning at the root of the hierarchy with 'R} , it is
(x) '

determined if the test point Z is contained in R} . If it is
not, then the algorithm terminates; otherwise, the section
rectangles R) and R ~ are processed, and so on down the

hierarchy. To describe the processing of section rectangles,
¥
suppose in general that it is determined at some stage of the

; , , . 1) L
algorithm that z C &i) 1>

0. It then becomes necessary to
] -1 J-1) _ (3
process each of the sons Réggl)and égl )Gf 1) .

Consider only the section rectangle ggl
-1 .
cessing é] )15 identical. If the test line lies above or
1 , . ,
below Ré% 12 it cannot intersect any of the polygonal segments

describing it. Therefore, in this case no further processing

el 7 7 7 o
of Régsll or of its descendants, is required. If the test line
ces RITH) then either 2 ¢ ATV o i .
intersects R2j_), then either z C R2ij-1 or it is not. If

-1) f" o
zZ C R(iéll it is 'necessary to continue down the hierarchy by
=2 -2 7
processing 1its sons Réiig) and Rég_gl In the remaining case
-1) N
when the test line intersects Rgggl)ahd Z 1s not contained in

Réiél' (see Figure 1III.l0a below), then the parity of the



‘Z
; °Z, é )
i-1
j-1) . R2i-1
LY % 15 L
.RY

- !

FIGU&E III.10a: Containment of Point Z in More

than one Section Rectangle

of the number of intersections of the test line with the
' , L j-1) .

polygonal seqgient describing R)j-] 1is determined as follows.
Let e; and e2° be the endpoints of the polygonal segment
, (3-1) ,
. describing Rzz-l. Then the test line intersects the polygonal
segment an odd number of times if 2 lies between e; and ej
(see Z3 1in Figure III.l0a), and an even number of times other-
wise (see 2] and Z3 in Figure III.l0a). Once the parity is

' (3-1)

determined no further processing of R3j-] or its descendants

is required.

(3)

o J : , , o :
Summarizing, for Z C Rj, processing of the subtree for Rj

)

(3-1)
R2i-1 R2i

FIGURE III.1O0b: Subtree of Hierarchy Tree Structure

[}
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-
terminates at the next lower level if Z is not contained in

G-1)  G-1) ; o (5e1)
2i-1 ©r R3ji . If 2 is contained in either R2j-1 or

L]

Ry processing continues down the respective subtree, It is
_ D , , ) (J-1
importadt to note that z may be contained in both Régiljand

R2i (see 24 in Figure 1I1.1ba)

The algorithm terminates early at level k-j, jék whenever

is fcund!the Z is not contained in any rectangle
R if i=1,2,...,2 at that level. ' The parity of the number of
times the test line intersects the polygonal boundaries from
the left thén determines the solution of the point-in-polygon
problem. Otherwise, 2z is contained in one or more basic
sections rectangles gi) and additional processing of these
rectangles is required.

The pr@:essing of a simple section rectangles is qgreatly
simplified because thespéiygcnal segment number which defineg
it is monotone with respect té vy. Binary Search techniques
can therefore be used to discriminate quickly the ‘point 2z
against the polygon segment. However, Burton suggests an even
faster algorithm. The basic section is split into two simple
sections, each with an equal number of ve:tice% (within one).
Each simﬁle section 1is then tightly enclosed by a simple
section rectangle. Therefore, as in the previous hierarchical

structure for compound sections, the basic section rectangle



™
st

he

(]

tightly encloses the two simple sectidn rectangles.
splitting strategy is next applied to simple sections, and so
on until simple sections consisting Df one polygonal edge
(calied primitive sections) only remains. These form the
leaves of the total hierarchical tree of compound, basic,
simple and primitive section rectangles. The point=in-
polygon algorithm previously described can be applied
directly to this total hierarchical tree. Only if the test
point 2 is contained in a primjtive section, does it become

necessary to discriminate Z against a polygonal segment.

Analysis.
[Search]
.Let I =Tlog n. Then total hierarchical tree contains at most
2 L leaves, corresponding to the primitive section
rectangles, The total numben of rectangles in the tree

(nodes in the tree) 1is therefore bounded by 2t+1 < 4n.
Because processing a rectangle requires a fixed number of
operations, ' in the worst case when the test point is
qontained in all the>rectangles, the complexity of Burton's
algorithm 1is O(n). Indeed, Figqure III.1ll provides an

illustration’of a polygon where Burton's method may require

O(n) operétions to solve the point-in- polygon prcblemi
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FIGURE III.ll A Worst Case Polygon (The. Claw)
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In practice, for "well-behaved" polygons, Burton's method

performs significantly better. The algorithm terminates at

that level of the hierarchical tree where none of the

associated section rectanglés contain the test point Z (see
Figure III.8c). Furthermore, if 2 is contained in at most
one section rectangle at each level, the complexity of the
algorithm reduces to O(log n). Indeed, because of the binary

tree construct, it may be natural to erroneocus assume this to

be the case in general (see, for example, Fowler[10]).

[Preprocessing]
The total number of operations required to find all the
turning points is 0O(n). Furthermore, each of 0O(n) section

rectangles can be computed in fixed time,. Hence, the total

cost of preprocessing is of complexity O(n).

[Storage] ’
Since each of the O(n) section réctangles can be stored in a

fixed number of words, the storage costs are of complexity

O(n).
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3.6 The Strip Method 1

¥,

The fundamental process(common to these methods is the
construction of a new polygon P* which approximates the
original polygon P in the following sense. Given a
tolerance or resolution e, the distance (usually Euclidean)
of any point on the boundary of P to the boundary of PpP* is
bounded by e. The polygonal approximation P* is to be
selegied SO -that it 1is simpler for processing purposes
(fewer number of vertices), and in addition captures the
character of the original polygon P, The matter of
character capéure is nog discussed in depth here, because it
has ljttle bearing on the performance of point-in-polygon
algqr{thms, except perhaps indirectly throubh its effect on

the polygonal approximation P*.

One algorithm for constructing a polygonal
approximation P* to a polygon P = (V1,V2,.....,Vhe1l is

given below.

Algorithm:
l. Record V] as a vertex of p*
Set starter s = ] ,

2. Set destinator f = s+l

N
..

3. Draw a line segment L jJoining Vg and V¢ 'H7

Determine the maximum distance d of the points

VS,Vs+l,coooo,vf from L.
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(comment: extend line segment)
set £ = f+]
go to step 3
else

(comment: line segment is complete)
record Vg.] as a vertex of P*
go to step 5

5. Ifd> e

then

set s f-1

2

go to ste

o

élse terminate,

The effect of the algorithm is illustrated by applying
it to the polygon P shown in Figure III.l2a. The palfgan
represents the boundary of a EiVE? basin in the pr@iggee of
Alberta obtained bg means of vector digitization. It was
produced from a map at a scale of 1:50,000 and at a
resolution of approximately 50 meters. The polygon contains
1873 vertices, and is quite typical of those polygons which
appear in many geographic database systems.

The polygonal approximation P* obtained by the algorithm
at a tolerance e of 250 meters is shown in Figure III.12b.
The polygon P* contains a total of 21 vertices, which is

approximately one percent of the afiginal polygon P.



FIGURE III.l2a: A Given Polygon P



FIGURE III.1l2b: Polygonal Approximation of P



No claims are being made that the given algorithm is

m

optimal in any sense. Indeed, the algorithm described by
Douglas and Peucker(9] is’ likely to better capture the
cartographic character of polygonal boundaries. An
algorithm described by Ballard|(3] is somewhat more
efficient. And finally, the algorithm given by Kurozumi and
Davis[17] yields computationally a more effective
approximation in tﬁe_ sense that the polygon P* may have
fewer vertices and yéﬁIEEEt the tolerance requirement. The
given algorithm has the advantage of being simple and yet
méineaining some similafity with all the other algorithms.
The polygonal approximation- p* may be used to obtain ;n
annulus approximation to P\as follows. Move each of the
line segments of P* outward by the distance e to obtain a
new polygonal approximation P**, This polygon P** nust
enclose the polygon P. Similarly, move each of the line
segments of P* inward by the distance e to obtain a polygon
P*** which lies entirely inside P. Tﬁe boundaries of p**
and P*** describe an annulus which enclose the boundary of
P. For the polygon P given in Figure III.12a, the annulus
approximation is illustrated in Figure III.l2c. I'n the
figure, the annulus is partitioned into guadrangles (stripé),

by joining pairwise the vertices of P** and p***,



FIGURE IIIl.l2c: Annulus Approximation of Polygon P with

d 'Tolergpce of 250 Hefers
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A cursory inspection of Figure III.12c suggests that some of
the caricature of P is not captured by P* andgd consequentl:
by P** and P***, An enhancement in caricature capture is
obtained by reducing the tolerance e, and thereby improving

the accuracy of the polygonal approximation p*. That is,
there is a‘tfadeiaff between obtaining an approximation Pﬂggﬁg
with improved accuracy, and increasing the number of

vertices required to represent it, For the example under

consideration, an improved annulus apgfaximati@n of P with a

tolerance of 50“meters (and containing 57 vertices) is given
1€ g q



FIGURE III.l2d: Annulus Approximation of Polygon P

with Tolerance of 50 Meters



The question of tolerance selection is a nan-t%ivial
consideration. If the. application does not
choice, one possible sttategy might be éti.t:s remg\ixf? from P
those vertices which do not ccntribgte significantl§'t@ its
definition, for example, those vertices which are A;Etég
colinear, or those which can be Attributed to "noise". Thiéf
can be achieved by obtaining 5ggeessiv§ approximation P* to .
P with ever decreasing tolerances until one .is found where a

further decrease would result in a dramatic increase in the

number of vertices representing it,

For a polygon P obtained by digitization, this strategy
will often lead to an approximating polygon P* which is very
similar to P but which contains only a small portion of the
number of vertkces in P. For the example under
consideration, in Figure III.l24d see  the annulus
approximation of P with 50 meters and which contains cniy 57
vertices. For a summary of experimental results Eafémaﬁy

different tolerances which support the validity of the

strategy, refer to Table II.
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[ ]

he point-in-polygon algorithm is given as follows:
l. Apply line-crossing method to P***

If Z C p***

[%}
-

Then terminate since % CP
else go to step 3
3. Apply line-crossing method to P**
4. If z ¢ P** |
then terminate since 2 ¢ P
else go to step S
5. (Comment: 2 is contained in annulus)
Apply iine-créssing method to quadrangles to
determine one (call it Q) whicq contains 2
6. épply line-crossing method to the line segments of P

contained in Q to determine whether or not Z C P.

Let m be the number of vertices in P* and let ! be the
maximum number of line segments of P in any quadrangle. Then
steps 1, 3 and 5 each requires O(m) operations, whereas step
6 requires O(l). Thus, in the worst case when the point 2
lies in the anﬁul;s, the algorithm requires O(m) + O(1)
operations, where ml > n. For well-behaved polygons,
hoyever, Z likely lies outside the annulus and steps 5 and 6
of the algorithm are nop, executed. The cost is therefore

O(m) aperaticné for the majority of points tested.



_J

/

Note that the algorithm may be improved by combining
steps 1 through 5. This modification however detracts from
its readability, and doeg not effect the asymptotic cost
estimates given above.

The problem of selecting an appropriate tolerance is
solved by Ballard[3] by means of a data structure, a strip
tree which provides a polygonal approximation to P for any
required resolution e, A recursive algorithm for
constructing this strip tree is given below.

Algorithm: Strip—tree (vg,vVi....Vj)

(Comment: Let [Vvg,V],....Vj] denote a polygonal

segment)
1. Draw a line L through'VQ and Vj.
2. Find the smallest rectangle with sides parallel to L

which just cover Vg, Vireeoa, Vi

(Comment: This rectangle is called the strip for the

segment [vo,vl,....;vi])_

3. Compute the width e of the strip as the euclidean
distance between the two sides of the rectangle which

are parallel to L.

4. If i < 2
then return
else go to step 5.

5. Find a vertex Vx which lies on one of the two sides of

[

the rectangle that are parallel to
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6. (Comment: Construct strips segments

(Vo,Vi,.... VK] and [vy, Vk4lreees,Vil)

subtree (VOrV1ye.o.,Vi)
subtree (Vk,Vk41,...,V{)
return,

A strip tree %ar a polygon with vertices Vi,V2,....Vp
can be built by invoking the algorithm for the two segments
(Vi,v2,....,Vkx) and (Vk;Vk+1,i...Vﬁ,Vl) where Vy is selected
to be approximately "opposite" of V1 on P.. The root strip
of the strip tree for the polygon is defined P9 the smallest

rectangle enclosing the strips for (V1,V2,...,Vk) and

data structure for a strip tree of a typical polygonal

segment in Figure III.1l3a.

(.57 Sfi\

(0,4.5)¢

FIGURE III.13a: A Set of Strips
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The polygon P can be displayed at any resolution e* by
the following recursive algorithm described by Ballard.

Algorithm: Display segment (T,e*)

(Comment: The segment with root node T is displayed
with féﬁalutian at most e%*)

If e(T) < e*

then display strip (T)

return

else display segment (left son (T), e*)

display segment (right son (T), e*)

return.

The point-in-polygon algorithm using the structure is
described by Ballard as follows:
Algorithm: Intersection (Z,T)
\
(Comment: Computed is the parity of the number of
times a ray from Z intersects the polygonal Segﬁéﬁts
within the strip T) .
1. If ray intersects both sides of the strip T that are
- parallel to the line L (see strip tree algafithm) then
,e;urn {true),.
2, If ray does not intersect either side of the strip T
,thatiare parallel to L then return (false).
3. Dthérwise (Comment: exclusive or)
return [Intersection (Z, left son (T))

or Intersection (2, right son (T))]



Analysis
[Preprocessing]

Let T(i) denote the cost of constructing the strip tree
for a polygonal segment with i+l vertices [Vg,V],...Vj]
using ‘Ballard's algorithm. The cost of computing the strip
which tightly encloses the polygonal segment, plus the cost
of identifying the vertex Vi (0 < k < i) which lies on one of
the longitudinal sides of the strip, is bounded by ci, where
c 1is a constant independant of -i. The strip tree
{Vo,V1,...,Vji] then becomes available as soon as the strip
tree for [vo,v1, ...,Vx]l and [Vk,Vk41s..-,Vil have been
determined. Thus the total cost of computing the strip tree
for [(Vg,V3,...,Vi]l is T(i) = T(k)+T(i-k) + ci. |

Make the severe simplifying assumptions that i is a

21i say), and that k happens to be a mid-

power of 2 (i
vertex (that is, k = 21‘1), then

r2b) = 2r(2%-1) + o2t

= 2tr(20) + c12t.
Since T(20) = 0, it follows that T(i) = cilog i so that, for
i = n, the algorithm is of complexity O(n log n). This cost
is claimed by Ballard to be vaiia in all cases.

However, given a polygonal segment for which k = i=1,
for this and all subsequent sub-segments (as for the segment

in Figure 11I1.14),
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¥ V1
¥4
Vi _ =
, s—
—
/
11.
) Vo
Vi-2 -
VA

FIGURE IIl.14:

Strip Tree Construction
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«T(i) = T(i-1) + T(1l) + ci
= T(i-1) + ci
= T(1) + ci(i-1)
Thus, for i = n, in the wbrst case, T(n) = D(nz).

The reader should be made aware at this ti;e, however,
that Ballard describes an O(n) algorithm for constructing a
strip tree, but for which the strips enclose the polygonal
segments extremely crudely. The practicability of the
algorithm, therefore is severely restricted.

'[Storage] ’

Since there are 0O(n) strips, the total sﬁafage
requirements are O(n).

[Search]

Ballard asserts that for well-behaﬁed polygons, the
complexity of ‘the point-in-polygon 1is 0(leg n). This
assumes the strip tree is reasonably balanced and that one
of the recursive calls which procifses either the left or
right sub- strips in step 3 of the algorithm exits quickly
from the recursion. For the majority of polygons enclosed
in geographic information systems, this assumption is indeed
likely to be valid. Ho#evet; the algorithm does regquire the
processing of p/2 strips for the pafholagical example (the
claw) given in Figure III.1l1l, and therefare‘in‘the worst

case, the algorithm is of complexity O(n).

e
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3.7 Conclusion

The following table summarizes the complexities of the
[
five methods described in this chapter.

RESULTS
METHOD - I - .

Preprocessing Storage Searching
Swath O(n logZ2n) 0(n2) O(log n) -
Chain O(n log n) o(n) 0(log2n)
Triangle O(n log n) O(n) O(log n)
Rectangle O(ni 0O(n) 0(n)
Strip O(n<) * O(n) O(n)

TABLE II: Summary of Pre-Conditioned Methods

For n sufficiently large, the triangle method is
asymptotically superior to the other methods. However, it
must be stressed that these complexities are asymptotic bounds
only (e.g. The Swath and Triangle methods both require C log n
cpératiané for searching, but C for the Triangle method is
much laryer).

For practical purposes, many othér considerations will
effect the selection of a method. Some of these include (1)
the suitability of the data structure for other purposes (such
as intersection of polygons), (2) the insensibility of the
method toward naise‘in the polygonal data, (3) the ability of
the method to fépid{!gQEPturé the "character" of the polygon,
and (4) average costs. Further discussion of these matters:

o
appeax6é in the concluding chapter.

i

¥7a cruder algor®™hm of O(n) exists.
L




4.1

Introduction

Techniques which answer the query of whether a given
point lies in a polygon have been discussed in the last two
chapters. In practice, a region may consist of a variety of
subregions, for instance blocks of a town, and it is
required to identify that subregion which contains a test
point. Two methods, rectangle enclosure and circular
enclosure which address this pféﬁiem are discussed in this
chapter. Such methods may be considered as an extension to
the point-in-polygon algorithm. . Although Ehé discussion
here is not treated in great depth, it provides an
opportunity to remark on a subject that does not belong
properly in the previous chapters (see Aldred[l), Nordbeck

and Rystedt([23)).

4.2 Rectangular Enclosure

i‘Let

Xmln = Hin(gl,leiiiiigyiipxq)

]
e 4
]
»
»®

—
»x
"o

L]
»
=

xmax g 5 5 o 5 & & g AT

len = Hin(yliyijiililiiiiyn)
L I - .
,-g !max = HEX(Yl;Y;;-;;;:;-;;YBJ
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Then the rectangle with.vertices (Xmin'Ymin) » (Xmin+¥max) .
(XmaxrYmax) and (Xmax+Ymin) is the rectangle of smallest
area with sides parallel to the coordinates axis which
encloses the polygon. The cost of computing this rectangle
is, of course, O(n). Rectangles of smaller area which still
enclose the polygon can be found (see Freeman and
Shapira[ll]) but these would require “rotations.  Such
rotated rectangles however, are more costly to .determine,
require more storage, and adversely agﬁeét the performance
of any subsequent process1ng.

To determine whether or not a tesg point Z = (x,y) is
contained in a given polygon, the associatéd rectangle is
first examined for containment. If |

X < Xmins ©Or x > Xnax. of Y < Ymins O ¥ > Ymax
then it is not, and 2z cannot be contained in the polygon.
Otherwise, the algorithms of the previous two chapters are

applied to resolve the point-in-polygon problem.

4.3 Circular Enclosure

A circle which encloses the polygon is determined as
follows. First, the distances among all possible pairs of
vertices of the polygon are computed, and the largest such
distance, d, is determinpd.‘ A line segment is Jdrawn between
the two vertices Vi and V3 which achieve this maximum

distance. The midpoint (Xc,yc) of this line segment serves

L4
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as the centre of circle with radius r=4/2. For "well-

']

behaved® polygons, this circle tightly circumscribes the:.
polygon, If it does not, the vertex Vi outside £he cif:ie
and furthest away from the circumference is determined. The
distance of Vy from the centre (xc,Ye) can then be used as
radius of a new circle with centre (xc,yc)- This circle
encompasses the polygon, but not necessarily tightly. The
complexity of this algorithm is 0(n2), |
Alternatively, a tighter circle is obtained by passing
a circumference through Vi, V4 and Vkx. These three vertices
can then be used as the first step in an iterative algorithm

described briefly by Nordbeck and Rystedt[23] to find the

E

circle of smallest area which encloses the polygon.

To determine whether or not a test point Z = (x,y) is
contained 1in given polygon, the associated circle with

centre (xc, Ye) and radius r 1is first examined for

containment. If (x-xg)z + (ysyc)2 > rZ2 then it is not, and

Z must lie outside the polygon. Otherwise, the algorithms

of the previous two chapters need be applied in order to
resolve the point-in-polygon problem.

Circular enclosures have advant;ges over rectangular
anesfin that ”

1. they require less storage, and ‘

2. they normally produce tighter enclosures for those

j polygons which are relevant to most applicatiors.
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On the other hand, rectangular enclosures
1. are easier to determine (O(n) versus 0O(n2)),
and
2. are usually more effective for subsequent

computations (for example, the test for containment

requires at most four comparisons versus three

1 ]
s additions, two multiplications and one comparison
required by a circular enclosure).
4.4 Multiple Polygon Processing

A common characteristic of most geographic information
systems is a capability to partition a given region’ of

_interest into a number of smaller sub-regions. For. the

storage of descriptive data associated with some geographic
af,

point Z, it often becomes necessary to identify what

sub-region (polygon) which contains zZ. It is in this

context that the enclosures of the two previous sections
e

play a fundamental role.

All algorithms which identify that sub-region that

contains Z require the processing of numerous sub-regions.

described in chapter II ‘and III in order to determine

it may be tremendously beneficial first to determine if 2 is

V']

contained in the encompassing rectangle or circle. If it i



not,- then Z cannot ,be contained in the polygon and:the much

more costly pPoint-in-polygon algo Elthm need not be
t

[

involved. Pr rocessing then skips to the next sub-region.

It is assumed i the above paragraph .that the
- sub-regions are 1;5ted sequentially and are proeessed
acca:éing to this list until one is found which contains the

the 1likelihood. of finding the

wn
m

point Z, T increa:

[ o]
"y
T
ry
*_J\
e
st
o

sub-region which contains the list, a
ngtialgrdering of the sub-regions can first be defined.
For examp%g, the sub-regions can be ordered according to the
distances of the centres of their encompassipg rectangles

(or, cifclesf from a-péint Zo external to the tatai reglon
fo interest, H*The sub—feglans closest to the point Z,, in
the sense implied by the ordering above, would then be
processed first. Faé géne%al discussion of related
implementation matters the reader is referred to Aldred [1].

q;
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ty of vector-based data

In this thesis, a vari

£

[t
m

structures for representing a -polygon have been” discsssed
and various algorithms for 5élving* the péint—in—gglygcn-
problem with respect to each of these structures have been
presented gnd analysed. Analysis thr@ugﬁ@ué has been
confined primarily to asymptotic, worst-case analysis. The
algorithms have, been classified inta: three cgategories,
naméL&; direct methods, pfeﬁcgnditggned methods and ﬁultiplé

.. -
region processing methods.

Direct methods for solving the point-in-polygon problem

tly on the

L]

are defined to be those which operate dire

polygon represented as an ordered sequence of n vertices.

L

The ¢ost of each of the direc¢t methods described is O(n).

transformed 1into suitable data structures before search

algorithms are applied. These structures permit the

development of asymptotically faster algorithms [as fast as

O(log n)l for solving the point-in-poalygon problem.

However, because of%Nthe additional preprocessing costs

[typically O(n log n)] in constructing these structures and

because of the additional storage costs in representing

them, the benefits of fast search algorithms from a

88
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practical sense can be realize

O

only in a static

. 5 . ‘ o
environment. In a dynamic environment where the boundaries

()]

o the polygon are subject to frequent changes, but

depending on the frequency of these changes relative to the

iréqéencgicf searches, the use of direct methods can turn

out to be superior.

of the Q"2§t methods, it is  found that the

line-crossing method for solving the point-in-polygon

. ﬂs .-

problem 1is superior in all respects. 'It is simpler, more

efficient, and applicable to arbitrar? polygons.
,!

v

Of the pre-conditioned methods, the triangle method
] ’ »
with preprocessing costssof 0O(n log n), storage cos

=

ts o
b = g 3 = : = : s - B 4

'dﬁn) and search costs of O(log n) is asymptotically superior
to the methods described. . Indeed, Kirkpatrick shows that

the method is asymptotically optimal.

From a practical point of view, however, asymptotic

worst-case analysis of costs is inadequate for the following

]
1. It is justified only for n sufficiently large. Thus,

it is possible that the chain method whose search costs
are O(log?n) may be faster than&fhe triangle method
whose search costs are O(log n) for all n of practical

interest (say, n < 106),
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2. It may have no felatiénshipfta expected costs, éince it
must be valued for all cases ’inclﬁding gathglaéical
ones. Thus, although the costs ?f thé rectangle and
Strip-metﬁéds are O(n) for a certain polygon, it is

quite possible (we suspect it 1is likely) that the

&

average costs of these methods for random polygons and

* for polygons a} "practical” import is O(log n).
To answer the quesgians impliﬁssjn“the above two points
requires the following undertaking: '
1. ‘The caréful "unbiased implementation of each of the
algorithms. ” .
2._ The éele:tigns of appropriate test data
("interesting”classes and subicféssés éf pélygans)i
3-; Th% selection of effécﬁive comparative evaluation
criteria.

These matters ‘we leave as our primary suggestion for future

research.

In selecting a method for a specific application,
factors other than the comparative performance of the point-

in-polygon algorithms can influence the final choice. The

data structure underlying each of the methods may be

particularly suitable or adaptable for solving other

problems relevant to that application. Thus, the swath and
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chain methods are easily adaptable to.the problem of sbatial

convex inclusion and to the problem of locating a 'poimt "in a

planar subdivision induced by m straight lines. The chain

and triangle methods are both suitable * for solving: the

nearest neighbour {post-office) problem, which is uséf,l in

a variety of applications including surveillance and

tracking. In.addition, the triangle method is appropriate

in applications invelving triangula§ finite element models

(eg. some terrain models). * The' rectangle and strip methods,
are conducive to solving problems of spacial analysis,,"®

. -
including the union and intersection of polygons,

‘Furthermore, because these last two methods yield,

approximations to tﬁf boundaries of a polygon, they can be
: R .

used to capture the caricature of polygons at various
resolutions. This  is useful in numerous applications

including gféphic display systems.
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