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Abstract

Functional regression is a cornerstone for understanding complex relationships where

predictors or responses (or both) are functions. A particularly powerful framework

within this domain is the Reproducing Kernel Hilbert Space (RKHS), which facilitates

the handling of infinite-dimensional data through a finite set of parameters.

This thesis delves into three specific topics within functional regression using

RKHS, showcasing innovative methodologies and their applications to real-world data.

The first topic explores functional linear expectile regression, a method that offers a

nuanced view of conditional response distributions, particularly beneficial for asym-

metric distributions or when tail behaviour is of interest. The second topic ventures

into functional smoothed score (SS) classification. The study investigates the func-

tional classifier’s generalization ability and convergence property. The last chapter

addresses the challenge of estimation and inference for the slope function in logistic

regression under case-control designs, which exert influence over rare disease research.

The three topics contribute to functional regression, offering robust and theo-

retically sound methodologies for analyzing complex data structures. Through the

representation theorem of RKHS, this thesis advances statistical modeling techniques

and provides practical tools for tackling real-world problems in diverse scientific do-

mains.
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Chapter 1

Introduction and Outline of the
Thesis

Innovative data manipulating technologies and modern computing have propelled

researchers to collect, store, and study data of complex structures. Among these,

functional data represents a fundamental type. Functional data analysis (FDA) en-

compasses the study and theoretical framework for data represented as functions,

images, shapes, or other general objects [182]. This approach finds applications in

various fields, including medical science, biology, and signal processing, where data

naturally manifest as functional forms [143]. Instances abound in gene expression

microarray data, single nucleotide polymorphism (SNP) data, magnetic resonance

imaging (MRI) data, high-frequency financial data, etc [67, 96, 143, 197].

While intrinsically infinite-dimensional, functional data is always observed dis-

cretely over a grid, where observations at nearby grid points are highly correlated

due to their spatial or temporal nature. The number of grid points could be much

larger than the number of observations. The high dimensionality of observed data

poses challenges both for theory and computation.

Research on functional data or other structured data can lead to more nuanced and

accurate understandings of complex phenomena and thus offer profound implications

for a wide range of applications. Some merits include:

1. Improved modeling: FDA allows for more complex and flexible modeling of
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data that would be difficult or impossible to model using traditional methods.

For example, it can account for non-linear trends, temporal dependencies, and

other patterns that may be missed by simpler models.

2. Enhanced prediction: FDA often leads to more accurate predictions by incor-

porating information from the entire curve or structure, rather than relying on

summary statistics or discrete data points.

3. Improved decision-making: Analyzing functional data can provide deeper in-

sights into patterns and relationships within the data, leading to more informed

decision-making.

In this thesis, we aim at a class of functional predictor models where the response

Y , either continuous or dichotomous, is related to a square-integrable random function

X(·) through the linear form η(X) := α0+
∫︁
I X(t)β0(t)dt, where α0 is the intercept, I

is a compact subset of an Euclidean space, β0(·) denotes an unknown slope function.

The domain I is based on a set of training data (x1, y1) , . . . , (xn, yn) consisting of n

independent copies of (X(t), Y ).

Some tools for functional linear regression are among functional principal compo-

nents analysis (FPCA) [61], basis spline, smoothing spline, etc. FPCA has taken off

to be the most prevalent and effective tool in FDA since invented. This is partly

because it facilitates the conversion of inherently infinite-dimensional functional data

to a finite-dimensional vector of random scores. In a functional linear model, FPCA

ultimately relies on an efficient representation of β0 in terms of the leading functional

principal components of X [16]. However, these FPCs might fail to form an appro-

priate basis to express β0 or have little predictive power. Consequently, FPCA-based

methods might not excel the other alternatives. In practice, this phenomenon has

been observed for functional data in the Canadian weather dataset [16, 143], as well

as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.

Another efficient, also commonly used method is the reproducing kernel Hilbert
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space (RKHS). Due to the unbounded inverse of a compact operator, regularization is

routinely adopted for any procedure that involves the inverse of a compact operator,

as it does in the RKHS method. The smoothness regularized estimator enjoys supe-

riority when FPCA couldn’t demonstrate desirable prediction power and circumvents

additional assumptions on the spacing of the eigenvalues of the covariance operator

for X as well as Fourier coefficients of β0 concerning the eigenfunctions, which are

required by the FPCA-based approaches.

The general regularization method to estimate a function of interest η on a generic

domain I using stochastic data takes the form of

L(η|data) + λJ(η) (1.1)

where L(η|data) is usually taken as the average loss or the minus log-likelihood of

the data and J(η) is a quadratic roughness functional with a null space NJ = {η :

J(η) = 0} of low dimension, and the smoothing parameter λ in (1.1) is the Lagrange

multiplier to balance the fidelity to the data and the plausibility.

By adding a roughness penalty J(η) to L(η), one considers only smooth functions in

the space {η : J(η) <∞} or a subspace therein. To assist analysis and computation,

one needs a metric and a geometry in the space, and the score L(η) + λJ(η) to be

continuous in η under the metric. The reproducing kernel Hilbert space (RKHS), of

which a brief introduction is presented in the next chapter, is adequately equipped

for the purpose.

1.1 Thesis Outline

The thesis focuses on several unexplored aspects in recent functional regression liter-

ature and provides a brief review in terms of functional predictor models and RKHS

in Chapter 2.

• Chapter 3: Functional Linear Expectile Regression in RKHS

3



We propose a scalar-on-function linear expectile regression model under the

RKHS framework. The proposed estimator is shown to achieve optimal conver-

gence rates, supported by both theoretical bounds and practical implementation

via the alternating direction method of multipliers (ADMM) algorithm. Em-

pirical validation through simulation studies and a neuroimaging data analysis

underscores its advantages over FPCA-based methods.

• Chapter 4: Functional Data Classification with Smoothed Score Classifier

In this chapter, we investigated the functional smoothed score classifier’s gen-

eralization ability and Fisher consistency. Theoretical and numerical analyses

demonstrate the high-accuracy slope function estimation and reveal the trade-off

between tuning parameter selection and candidate function class size. Compu-

tationally, we tackle the nonconvex optimization by bringing an efficient proxi-

mal gradient algorithm. Extensive numerical studies demonstrate the favorable

performance of the proposed method compared with some popular classifiers.

• Chapter 5: RKHS-Based Functional Linear Logistic Regression under Case

Control designs

We explored the estimation and inference of the slope function in logistic regres-

sion under the case-control designs. By embedding the slope function in RKHS

and applying roughness regularization, this methodology enhances estimation

precision. Theoretical contributions include establishing the convergence rate of

the slope coefficient function and the asymptotic normality of the test statistic.

Simulation studies and two real-data applications demonstrate the superiority

of this estimator compared to traditional methods.

4



Chapter 2

Background

2.1 Functional Predictor Models

Most work in functional predictor regression is based on a variant of the functional

linear model (FLM), introduced by Ramsay and Dalzell [142] and first written in its

commonly encountered form by Hastie and Mallows [64]:

Yi = α +

∫︂
Xi(t)β(t)dt+ εi, (2.1)

where Yi, i = 1, . . . , N is a continuous response, Xi(t) a functional predictor, β(t) func-

tional coefficient, α intercept, and εi ∼ N (0, σ2) residual errors. For non-Gaussian

responses, many have worked with the generalized FLM (GFLM), first introduced by

Marx and Eilers [113] for exponential family responses as

g {E (Yi)} = α +

∫︂
Xi(t)β(t)dt (2.2)

for some link function g(·). ramsay_silverman_2005 discussed using truncated

basis function expansions for Xi(t) =
∑︁KX

k=1X
∗
ikϕk(t) and β(t) =

∑︁KB

k=1B
∗
kψk(t). If we

let X∗
i =

[︁
X∗
i1, . . . , X

∗
iKX

]︁⊤
,B∗ =

[︁
B∗

1 , . . . , B
∗
KB

]︁⊤
, ϕ(t) = [ϕ1(t), . . . , ϕKX

(t)]⊤, and

ψ(t) = [ψ1(t), . . . , ψKB
(t)]⊤, then the functional regression terms can be written∫︂

Xi(t)β(t)dt = X∗
iJϕ,ψB

∗ (2.3)

= X∗∗
i B∗ (2.4)
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where X∗∗
i = X∗Jϕ,ψ and Jϕ,ψ =

∫︁
ϕ(t)ψ(t)⊤dt, and thus the FLM simplifies into

a linear model of dimension KB. If the same orthogonal basis functions are used

for ϕ and ψ, then Jϕ,ψ = I and X∗∗
i = X∗

i . What’s more, If all Xi(t) are observed

on the same regular grid t of size T , then one can write Jϕ,ψ = ΦΨ⊤, where Φ =

[ϕ (t1) , . . . , ϕ (tT )] and Ψ = [ψ (t1) , . . . ,ψ (tT )].

Regularization techniques in functional predictor regression involve methods such

as truncation, roughness penalties, or sparsity applied to functional coefficients β(t)

and/or predictors Xi(t). Regularizing β(t) serves to (a) mitigate collinearity, (b)

enhance coefficient interpretability, and (c) potentially improve estimation and pre-

diction efficiency by leveraging the functional nature of the data across time points

t. The optimal choice of basis functions and regularization strategy varies across

datasets based on function characteristics and true functional coefficients.

For Xi(t), regularization aims to (a) diminish measurement errors, enhancing esti-

mation efficiency for Gaussian responses and reducing bias for nonlinear models with

non-Gaussian outcomes, and (b) accommodate functional predictors with sparse and

irregular grids.

Methodological developments in functional predictor regression often align with

the ramsay_silverman_2005 strategy, employing diverse basis functions and reg-

ularization approaches. Each method is related to Model (2.3) above. Additional ad-

vancements introduced by various researchers extend models to handle non-Gaussian

or correlated responses, incorporate nonfunctional fixed or random effect terms, han-

dle multiple functional predictors, accommodate functions on irregular grids, extend

to nonlinear functional predictor models, and introduce specific approaches for vari-

able selection or inference.
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2.1.1 Principal component analysis (PCA), spline and their
combinations

The original work on FLM was done using multivariate analysis techniques for func-

tions sampled on a common grid, with principal component regression (PCR), partial

least squares (PLS), or ridge regression used to reduce collinearity in the resulting

high-dimensional multiple regression. In PCR, orthogonal empirically determined PC

bases estimated from the decomposition of X⊤X are used for both Φ and Ψ. Accord-

ing to Jolliffe [77], the original work on PC, for instance, Kendall [82] suggested a

variable selection approach to regularization, supposing that the PCs explaining the

largest amount of variability in Xi(t) may not necessarily be the most important in

predicting Yi. However, because in many cases the first few PCs appear most impor-

tant, over time many researchers have regularized by truncating at the first few PCs

explaining a fixed proportion of total variability. Both strategies have been used in

practice. Other methods extending PCR have been developed for function predictor

regression.

Pascal [132] fit an FLM with PCR through truncation and discussed some theo-

retical results. Müller and Stadtmüller [123] introduced functional PCR (fPCR) for

GFLM, using smoothed fPC bases for both Xi(t) and β(t) with regularization done

by PC truncation. The basis functions were estimated by decomposing a kernel-

smoothed estimate of the covariance function after subtracting off a kernel-smoothed

estimate of the overall mean, while removing white noise errors. When the functions

are irregularly and sparsely sampled, the PC scores Y ∗
i are computed using PACE

[195], which borrows strength across sparse curves to estimate the covariance matrix

and estimates individual PC scores as best linear unbiased predictors (BLUPs) of a

linear mixed effect model (LMM).

In a multilevel functional data setting with multiple curves per subject, Crainiceanu

et al. [29] used ML-fPCA [138] to estimate the multilevel PC scores, using a trun-

cated set of subject-level scores as the predictors X∗∗
i in Model (2.4), effectively using

7



subject-level PCs as bases for both ϕ and Ψ and regularizing by truncation. They

used a restricted likelihood ratio test (RLRT) [28] to select the truncation parameter,

and also discussed a fully Bayesian Markov chain Monte Carlo (MCMC)-based ver-

sion to obtain estimates and inference. Crainiceanu and Goldsmith [27] developed a

Bayesian modeling approach for PCR using WinBUGS, modeling the PC scores and

eigenvalues stochastically (but still conditioning on estimated eigenvectors as fixed),

which they showed leads to more accurate inference.

Holan et al. [68] developed Bayesian methods to classify subjects based on a func-

tional predictor that is a nonstationary time series. They computed a time-varying

Fourier spectrum to transform the time series to the time-frequency dual space, and

then constructed a logistic GFLM with the spectrogram image as a predictor, using

PC for the basis functions and stochastic search variable selection (SSVS) for regular-

ization. Randolph et al. [144] introduced a method for PCR for which regularization

is done by a structured L2 penalty that incorporates presumed structure directly into

the estimation process through a linear penalty operator, leading to a weighted ridge

regression in the PC space.

Hastie and Mallows [64] pointed out that standard multivariate approaches such

as PCR do not take the ordering inherent to the functional data into account. They

introduced the FLM (2.1) and used penalized splines for β(t) while assuming all

functions were sampled on a common grid t. Others have also incorporated spline

bases for regularization in the FLM or GFLM settings.

Marx and Eilers [113] introduced penalized signal regression (PSR) for the GFLM

that uses B-splines for β(t) that are penalized by the P-spline first difference L2

penalty introduced in [41]. They subsequently extended this work in various ways,

adding multiple linear and additive scalar fixed effects and linear random effects to

the model [42], accommodating multidimensional signals such as images [114], and

allowing prespecified weights for adaptive smoothing in Li and Marx [95].

James [73] fit a GFLM using natural cubic spline bases to represent the predictor

8



functions Xi(t) with regularization done by the truncation inherent in the knot se-

lection. They specified a measurement error model Xi = X∗
iΦi + ϵi, where Xi and

Φi are vectors with the functional predictors and natural cubic spline basis functions

evaluated on the varying sampling grid ti across functions, and X∗
i a vector containing

the spline coefficients for a common set of knots.

Zhang et al. [200] presented a spline-based FLM with periodic spline bases used

for both Φ and Ψ, and regularization by roughness penalties. Similar to James [73]

and Müller and Stadtmüller [123], their approach accommodated irregularly sampled

functions and adjusted for measurement error in Xi(t). Crambes et al. [30] presented

a smoothing spline-based FLM, and proved some theoretical results; Yuan and Cai

[198] introduced a general reproducing kernel Hilbert space approach to functional

linear regression regularized by roughness penalties, implemented using smoothing

spline-like kernels.

There are numerous further studies combining the FPCA and splines to perform

regularization. One method involves representing the functional predictor Xi(t) using

splines and conducting a PC decomposition of the spline coefficients. James [73] ap-

plied this method by fitting unpenalized cubic splines to the functional predictors and

then performing a FPCA of the matrix of spline coefficients X∗ = [X∗
1 , X

∗
2 , . . . , X

∗
N ].

This basis was then used to further transform the X(t). Natural spline bases for Φ

and eigenvectors of the spline bases for Ψ were fit using the expectation maximiza-

tion (EM) algorithm and weighted least squares (WLS), with the spline coefficient

eigenvalues as weights.

Reiss and Ogden [149] adopted a similar strategy in a way to bring together the

ideas of PCR and penalized spline regression (PSR) [113]. For Gaussian outcomes,

their model transforms Xi(t) using a T × Kx B-spline design matrix Φ and then

performs a FPCA on XΦ to estimate a truncated set of eigenfunctions Ψ, with X∗∗ =

XΦΨ in Model (2.4). Regularization is achieved by applying roughness penalties (or

P-spline penalties) to either the fPC(fPCRC) or the regression coefficients (fPCRR).

9



A similar strategy was used in Reiss et al. [148] but they replaced PC bases with

partial least squares (PLS) bases (fPLS C , fPLSR), empirical bases to maximize the

correlation betweenXi(t) and Yi. They also introduced statistical inferences including

bootstrap-based simultaneous confidence bands and RLRT [28] to test the significance

of the functional coefficient alternative.

Another approach is to transform the functional predictors Xi(t) using PCA while

parameterizing the coefficient function β(t) using splines. Cardot et al. [18] introduced

a two-step method that first performs PCR and then uses B-splines with a roughness

penalty to smooth the resulting β(t). Crainiceanu and Goldsmith [27]presented a

Bayesian generalized functional linear model (GFLM) with PCs for Xi(t) and B-

splines for β(t), which was regularized using the random walk prior described by [91]

on the spline coefficients. The PC scores and eigenvalues were modelled stochastically.

Goldsmith et al. [54] developed a variational Bayes approximation for this model,

which was sufficient for estimation but not necessarily for inference.

The frequentist adaptation proposed by Goldsmith et al. [51] is known as Penal-

ized Functional Regression (PFR). PFR utilizes PCs for the functional predictor Φ

and truncated power series for Ψ, while applying L2 penalties to regularize the co-

efficients of the truncated power series spline, as discussed by Ruppert et al. [155].

PFR can handle sparse, irregular, or multi-level functional data by incorporating PC

scores obtained through PACE or ML-fPCA into the Generalized Functional Linear

Model (GFLM). Non-functional linear predictors are also considered, with a recom-

mendation to retain a substantial number of PCs for irregularly sampled functions.

Functional hypothesis testing procedures based on the Randomization-based Likeli-

hood Ratio Test (RLRT) for comparing functional vs constant effects and selecting

among multiple functional predictors were proposed by Swihart et al. [169].

This methodology was extended by Goldsmith et al. [52] to handle data with

repeated measurements in both the response and the functional predictor. Scalar

random effects were introduced to the GFLM to account for repeated measurements.
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Although the model includes i.i.d. random effects, it could be extended to more

complex random effect structures. However, this extension does not account for the

correlation among repeated functions when calculating PC scores. An alternative

approach considering this correlation was presented by Gertheiss et al. [48]. They

utilized an extension of ML-fPCA [138] for Longitudinal Functional Principal Com-

ponent Analysis [56] to compute separate eigenvectors for random intercepts and

slopes. A shared PC score between them was estimated using a regression approach,

and this score was incorporated into the GFLM.

2.1.2 Wavelets and general bases for Xi(t) and/or β(t)

Brown et al. [14] introduced a wavelet-based, Bayesian approach for fitting FLMs to

data on a common equally spaced grid t. They used orthogonal wavelet bases to

represent both Xi(t) and β(t), and used stochastic search variable selection (SSVS)

to select a subset of important wavelet coefficients. Their approach effectively used

the orthonormal wavelet transform matrix for both Φ and Ψ, but coefficients were

actually calculated using the pyramid-based discrete wavelet transform algorithm,

allowing the approach to scale up to functional data on very large grids. As mentioned

above, the use of wavelets and sparsity leads to adaptive regularization, making it

well-suited for modeling spatially heterogeneous functions with local features such as

spikes. Subsequent work involving wavelet representations for Xi(t) and β(t) includes

that of Heo [67], Malloy et al. [109], Wang et al. [184], and Zhao et al. [203].

A common basis transform Φ for Xi(t) and β(t) was employed by Ratcliffe et al.

[146] for FLM, where X∗∗
i = X∗

i ΦΦ
⊤ and regularization was posed by truncation.

They used Fourier basis coefficients but presented their method for any general basis,

This approach was extended to a logistic FLM by Ratcliffe et al. [145]. Transforming

2D image data into 1D variance functions, Ogden et al. [130] fitted an FLM using

Fourier bases for both Xi(t) and β(t), applying regularization through a roughness

penalty.
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Sparsity in basis coefficients was leveraged for regularization by Zhu et al. [205]

and Lee et al. [94]. Zhu et al. [205] modeled dichotomous outcomes using a Bayesian

probit model with general orthogonal basis functions for Xi(t) and β(t), employing

sparsity-inducing SSVS. Lee and Park [93] introduced an FLM for Gaussian responses

with a common general basis transform for Xi(t) and β(t), utilizing sparsity penalties

such as LASSO, adaptive LASSO, or SCAD. Similar applications in Fan et al. [44]

used group-LASSO for variable selection across multiple functional predictors.

James et al. [75] introduced an interpretable FLR, encouraging sparsity in β(t) for

interpretability through L1 penalization. Piecewise constant basis functions for β(t)

were employed, extendable to other high-dimensional basis expansions like splines,

Fourier, and wavelets. A Bayesian method for predicting a Gaussian response from

an imaging predictor was proposed by Goldsmith et al. [53], using an Ising prior and

Markov random field prior to encouraging clustering and borrowing strength among

significant regions of the coefficient surface.

2.1.3 Nonlinear functional predictor models

Besides assuming the functional linear structures, several approaches have been pro-

posed to handle nonlinear functional predictor regression.

Li and Marx [95] extended the PSR method of Marx and Eilers [113] to include

general additive polynomial terms such as
∫︁
{Xi(t)}2B2(t)dt. Yao and Müller [194]

further allowed for full quadratic functional predictors, represented by the equation:

Yi = α +

∫︂
Xi(t)B1(t)dt+

∫︂∫︂
Xi(t)Xi(s)B2(t, s)dtds+ εi.

This provides greater flexibility compared to the PSR method described by Li and

Marx [95], which only allows for diagonal cross products in the second term. They

used PC decompositions to estimate empirical basis functions for Xi(t) and used

these as basis functions for Xi(t), B1(t), and B2(t, s), with regularization through

truncation. Their approach can be generalized to full polynomials of any order.
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Yang et al. [193] extended the spectrogram-based method of Holan et al. [68] to

the penalized quadratic regression setting, using a Bayesian modeling approach with

SSVS for regularization across the PC dimensions.

In 2005, James and Silverman introduced the functional adaptive model estimation

(FAME) method, which is the first nonparametric extension of the FLM. The model,

represented by

g {E (Yi)} = α +
K∑︂
k=1

fk

{︃∫︂
Xi(t)Bk(t)dt

}︃
,

extends projection pursuit regression to functional predictors and exponential family

outcomes, here fk is a smooth function of unspecified form. They used natural cubic

splines to represent Xi(t), Bk(t), and fk(·) with the roughness penalties. FAME was

later extended to incorporate multiple functional predictors.

There is fruitful literature on nonlinearities in functional predictor regression using

single-index models, which involve the function f
(︁∫︁

Xi(t)β(t)dt
)︁

for some smooth

f(·). Li et al. [99] used single-index models to model interactions between scalar and

functional predictors, and further employed complete orthogonal basis to represent

Xi(t). Marx et al. [115] used single-index models to extend the PSR of Marx and

Eilers [113] in the setting of 2D functional predictors, using tensor B-splines for the

predictor surface and 1D B-splines for the index function, with regularization through

P-spline penalties. Fan et al. [44] allowed separate additive single-index terms for

p functional predictors, using a common orthogonal basis for Xij(t) and Bj(t), and

another basis for gj(·) for j = 1, . . . , p. Truncation for penalization and group-LASSO

were conducted across the functional predictors for variable selection.

Müller and Yao [124] introduced functional additive models (FAMs), which extend

the fPC regression approach of Yao et al. [196] to nonlinear models that involve

additive nonparametric functions of the PC scores, using the model

Yi = α +
Kx∑︂
k=1

fk(Y
∗
ik) + εi,

where Y ∗
ik represents the scores for a set of truncated principal components (PCs) and
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fk is a smoothed function using a kernel approach. Zhang [201] proposed an alterna-

tive approach that utilized COSSO regularization, which is a form of L1 penalization,

instead of truncating the PCs. This method allowed dimensions that are important

for predicting Yi even though they may explain less variability in Xi(t).

McLean et al. [117] introduced a functional generalized additive model (FGAM)

that extends the traditional generalized additive models (GAMs) to the generalized

functional predictor regression g {E (Yi)} = α+
∫︁
f {Xi(t), t} dt+ εi(t) for noise-free

functions observed on a common grid t. g is a general link function for exponential

families and f(x, t) is a smooth functional additive regression surface. The surface was

parameterized using tensor B-splines and regularized using P-spline-type penalization.

The model was fit using penalized iteratively WLS with generalized cross validation

(GCV) to estimate the smoothing parameters. McLean et al. [116] also proposed a

Bayesian FGAM for sparsely observed functions on irregular grids. They handled the

measurement error and unevenly spaced Xi(t) by using PC decompositions, updating

the PC scores within the MCMC, and using tensor product B-splines with random

walk penalties on the coefficients.

2.2 Reproducing Kernel Hilbert Space (RKHS)

The Reproducing Kernel Hilbert Space (RKHS) is a particular type of Hilbert space

that consists of functions with reproducing kernels, as described in Berlinet and

Thomas-Agnan [8]. Its characteristics and theories were developed by Aizerman et al.

[3] and Aronszajn [4] successively. Although the RKHS was initially studied in pure

mathematics, it gained significance in machine learning with the introduction of kernel

Support Vector Machine (SVM) by Boser et al. [11] and Vapnik [174]. Eigenfunctions

were further developed for the eigenvalue problem of operators and functions, as dis-

cussed in Williams and Seeger [186], and were utilized in machine learning Bengio

et al. [7], quantum mechanics, and other domains in physics Kusse and Westwig [90].

The connection between these developments and RKHS resides in the utilization of
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the weighted inner product in Hilbert space, which is a characteristic of both the

RKHS and the development of eigenfunctions as described by Williams and Seeger

[186].

Definition 2.1 ([147]) A Hilbert space H is an inner product space that is a com-

plete metric space with respect to the norm or distance function induced by the inner

product.

Remark 2.1 The Hilbert space, often high dimensional, generalizes the Euclidean

space to a finite or infinite dimensional space. It is a special case of Banach space

equipped with a norm defined using an inner product notion. All Hilbert spaces are

Banach spaces but the converse is not true.

Definition 2.2 ([4, 8]) A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert

space H of functions f : X → R with a reproducing kernel k : X 2 → R where

k(x, .) ∈ H and f(x) = ⟨k(x, ), f⟩.

To illustrate, consider the kernel function k(x,y) which is a function of two vari-

ables. Suppose, for n points, we fix one of the variables to have k (x1,y) , k (x2,y) , . . . , k (xn,y).

These are all functions of the variable y. RKHS is a function space which is the set

of all possible linear combinations of these functions [3, 84, 119]:

H :=

{︄
f(.) =

n∑︂
i=1

αik (xi, .)

}︄
=

{︄
f(.) =

n∑︂
i=1

αikxi
(.)

}︄
(2.5)

where we let kx(.) := k(x, .). According to Eq.(2.5), every function in the RKHS

can be written as a linear combination of kernel functions, thus they form the bases

of an RKHS. Consider two functions in this space represented as f =
∑︁n

i=1 αik (xi,y)

and g =
∑︁n

j=1 βjk (x,yj). Hence, the inner product in RKHS is calculated as:
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⟨f, g⟩k
(2.5)
=

⟨︄
n∑︂
i=1

αik (xi, .) ,
n∑︂
j=1

βjk (yj, .)

⟩︄
k

(a)
=

⟨︄
n∑︂
i=1

αik (xi, .) ,
n∑︂
j=1

βjk (.,yj)

⟩︄
k

=
n∑︂
i=1

n∑︂
j=1

αiβjk (xi,yj) (2.6)

since the kernel is symmetric. Hence, the norm in RKHS is calculated as: ∥f∥k :=√︁
⟨f, f⟩k.

The subscript of norm and inner product in RKHS has various notations in the

research papers. Some most famous notations are ⟨f, g⟩k, ⟨f, g⟩H, ⟨f, g⟩Hk
where Hk

denotes the Hilbert space associated with kernel k.

Definition 2.3 (Lp Space) Consider a function f with domain [a, b]. For p > 0,

let the Lp norm be defined as:

∥f∥p :=
(︃∫︂
|f(x)|pdx

)︃ 1
p

.

The Lp space is defined as the set of functions with bounded Lp norm:

Lp(a, b) := {f : [a, b]→ R | ∥f∥p <∞} .

Definition 2.4 (Sobolev Space [150]) A Sobolev space is a vector space of func-

tions equipped with Lp norms and derivatives:

Wm,p := {f ∈ Lp(0, 1) | Dmf ∈ Lp(0, 1)} ,

where Dmf denotes the m-th order derivative.

The Sobolev spaces are RKHS with some specific kernels [129].

Remark 2.2 Given a kernel, the corresponding RKHS is unique (up to isometric

isomorphisms). Given an RKHS, the corresponding kernel is unique. In other words,

each kernel generates a new RKHS.
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RKHS is a space of functions and not a space of vectors. Namely, the basis vectors

of RKHS are basis functions named eigenfunctions. Because the RKHS is a space of

functions rather than a space of vectors, we usually do not know the exact location of

pulled points to the RKHS but we know the relation of them as a function.

2.2.1 Reproducing property

Consider only one component in Eq. (2.6) for g to have g(x) =
∑︁n

j=1 βjk (xi,x) =

βk(x,x) where we take β = 1 to have g(x) = k(x,x) = kx(.). That is to say,

assume the function g(x) is a kernel in the RKHS space. Also consider the function

f(x) =
∑︁n

i=1 αik (xi,x) in the space. According to Eq. (2.6), the inner product of

these functions is:

⟨f(x), g(x)⟩k = ⟨f, kx(.)⟩k

=

⟨︄
n∑︂
i=1

αik (xi,x) , k(x,x)

⟩︄
k

=
n∑︂
i=1

αik (xi,x)
(a)
= f(x), (2.7)

As Eq. (2.7) indicates, the function f can be reproduced from the inner product

of that function with one of the kernels in the space. This shows the reproducing

property of the RKHS space. A special case of Eq. (2.7) is ⟨kx, kx⟩k = k(x,x).

2.2.2 Representation in RKHS

We provide a proof for Eq. (2.6) and explain why that equation defines the RKHS.

Theorem 2.1 (Representer Theorem [85, 153, 198]) For a set of data X =

{xi}ni=1, consider a RKHS H of functions f : X → R with kernel function k. For

any function ℓ : R2 → R (usually called the loss function), consider the optimization

problem:

f ∗ ∈ argmin
f∈H

n∑︂
i=1

ℓ (f (xi) ,yi) + ηΩ (∥f∥k) ,
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where η ≥ 0 is the regularization parameter and Ω (∥f∥k) is a penalty term such as

∥f∥2k. The solution of this optimization can be expressed as:

f ∗ =
n∑︂
i=1

αik (xi, .) =
n∑︂
i=1

αikxi
(.).

A proof of Theorem 2.1 can be found in Ghojogh et al. [49] and Rudin [153].

RKHS provides valid estimations to functions, which can be extended to FLR (2.1).

Assume that the slope function β0(·) resides in an RKHS H = H(k), a subspace of

square-integrable functions with the domain I, equipped with a reproducing kernel

k. Typically, we assume H(k) to be the second-order Sobolev space. Let without loss

of generality that I = [0, 1], one squared norm [13] that makes Wr,2 an RKHS is

r−1∑︂
j=0

(︃∫︂
I
β(j)(t) dt

)︃2

+

∫︂
I

(︁
β(r)(t)

)︁2
dt. (2.8)

In the context of FLR, the penalty functional J on the slope function β can be

conveniently defined as the squared norm or semi-norm associated with H, we adopt

the typical penalty given by J(β) =
∫︁ 1

0
[β(r)(t)]2 dt. Another setting of particular

interest is I = [0, 1]2 which naturally occurs when X represents an image [17]. A

popular choice in this setting is the thin plate spline where J is defined as

J(β) =

∫︂ 1

0

∫︂ 1

0

[︄(︃
∂2β

∂x21

)︃2

+ 2

(︃
∂2β

∂x1∂x2

)︃2

+

(︃
∂2β

∂x22

)︃2
]︄
dx1dx2

and (x1, x2) are the arguments of bivariate function β. Other examples of I include

I = {1, 2, . . . , p} for some positive integer p, and unit sphere in an Euclidean space

among others. The readers are referred to Wahba [175] for common choices of H and

J in these as well as other contexts.

The null space of functional J , defined as H0 = {β ∈ H : J(β) = 0}, forms a

finite-dimensional linear subspace of H with some orthonormal basis (ξ1, ξ2, . . . , ξM),

where M = dim(H0). The orthogonal complement H1 of the null space H0 is such

that H = H0 ⊕ H1. It can be shown that H1 also forms an RKHS with the same

inner product as H, but restricted to H1. More generally, for any β ∈ H, there exists
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β1 ∈ H0 and β2 ∈ H1 such that the decomposition β = β1 + β2 is unique [57, 127].

Let k be the reproducing kernel of H1 such that J(β2) = ∥β2∥2H = ∥β∥2k, defined as

the RKHS norm of β. Consequently, as we demonstrate in lemma 2.2, the functional

slope coefficient β0 can be represented by a finite-dimensional form through basis

(ξ1, ξ2, . . . , ξM) as well as reproducing kernel k.

Lemma 2.2 Let (ξ1, . . . , ξM) be a basis of H0. There exist vectors e = (e1, . . . , eM)⊤

and c = (c1, . . . , cn)
⊤ allowing the solution ˆ︁βn to the problem in Eq. 2.1 to be expressed

as ˆ︁βn(t) = M∑︂
i=1

eiξi(t) +
n∑︂
j=1

cj

∫︂
I
k(s, t)Xj(t) ds. (2.9)

Lemma 2.2 is a generalization of the renowned representer theorem 2.1 for smooth-

ing splines [175]. Although the minimization over ˆ︁βn in Equation (1.1) is taken over

an infinite-dimensional space H, the above result implies that the solution lies in a

finite-dimensional subspace. Thus, it suffices to estimate the coefficients e and c in

Equation (2.9).

2.2.3 Common kernel functions

There exist many different kernel functions that are widely used in machine learning

[49, 152]. In the following, we list some of the most well-known kernels.

• Linear Kernel: Linear kernel is the simplest kernel to calculate the inner product

of points: k(x,y) := x⊤y, and data are not pulled to any other space in linear

kernel but in the input space, using a linear kernel may or may not be equivalent

to non-kernelized method.

• Radial Basis Function (RBF) or Gaussian Kernel:

k(x,y) := exp
(︁
−γ∥x− y∥22

)︁
= exp

(︃
−∥x− y∥

2
2

σ2

)︃
where γ := 1/σ2 and σ2 is the variance of kernel. A proper value for this

parameter is γ = 1/d where d is the dimensionality of data. RBF kernel has
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a scaled Gaussian (or normal) distribution where the normalization factor of

distribution is usually ignored. Hence, it is also called the Gaussian kernel. It

has also been widely used in RBF networks [131] and kernel density estimation

[162].

• Laplacian Kernel: The Laplacian kernel (the Laplace kernel) is similar to the

RBF kernel but with L1 norm rather than squared L2 norm. The Laplacian

kernel is:

k(x,y) := exp (−γ∥x− y∥1) = exp

(︃
−∥x− y∥1

τ 2

)︃
where ∥x − y∥1 is also called the Manhattan distance. Under some specific

situations, the Laplacian kernel has been found to perform better than Gaussian

kernel [154]. This makes sense thanks to the sparsity principal of L1 norm [65].

However, the computation and derivative of L1 norm is more difficult than L2

norm.

• Polynomial Kernel: Polynomial kernel applies a polynomial function with degree

δ (a positive integer) on inner product of points:

k(x,y) :=
(︁
γx⊤y + c

)︁d
,

where γ > 0 is the slope and c is the intercept.
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Chapter 3

Reproducing Kernel Based Functional
Linear Expectile Regression

3.1 Introduction

Functional data have grown ubiquitous in medical data analysis, biology, and image

and signal processing, among many other fields [67, 96, 143, 197]. While intrinsically

functional, this type of data is almost always observed discretely over a grid, where

the number of grid points is often larger than the number of observations. Due to

the spatial or temporal nature of this grid, observations at nearby grid points are

often highly correlated. Specialized techniques are consequently crucial in the proper

analysis of functional data.

Traditional analytic approaches typically assume that errors are independent and

identically distributed (i.i.d.) with a symmetric and homoscedastic density [59].

These assumptions cannot be guaranteed in practice, particularly in high-dimensional

settings [101]. As typical examples, consider modelling meteorological outcomes (e.g.,

from the Canadian weather dataset, as in [143] or [16]) or clinical outcomes (e.g., Mini

Mental State Examination (MMSE) scores, a clinical survey-based measure used to

quantify Alzheimer’s disease severity, as in [72]). In these and many other settings,

there is no guarantee that the conditional response distribution will be symmetric,

much less Gaussian. It is more often the case that stochastic error terms are het-

eroscedastic and that the conditional response distribution is highly skewed or heavy-
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tailed. As noted in [126], heteroscedastic errors lead to inefficient or inconsistent

parameter and covariance estimation.

From a practical standpoint, in regression settings where error is heteroscedastic

or asymmetric, several estimators may be required for a satisfactory picture of the

relationship between the response variable and model predictors. Each of these es-

timators may speak to a different notion of the location of the conditional response

distribution, such as its different quantiles levels. Neuroimaging data analysis is one

such setting where responses at multiple extreme levels, representing outlying or ab-

normal cases, are of more practical interest than, say, a single conditional mean. [134]

further emphasizes the particular need for functional tools not focused solely on con-

ditional mean estimation in neuroimaging data analysis and more general fields of

application.

Motivated by the dependence of traditional coefficient estimators on error ho-

moscedasticity and symmetry assumptions, [126] first introduced expectile regression,

also called asymmetric least squares regression [59, 176]. Expectiles are analogous

to quantiles and can similarly be computed for a random variable Y at any level

τ ∈ (0, 1), but are determined by the tail expectations rather than the tail prob-

abilities of a distribution. While quantile regression has a strong intuitive appeal,

well-studied robustness properties, and broad applications in a variety of research

fields [86], [126] motivates expectiles by pointing out three major drawbacks to quan-

tile estimators: their nondifferentiability, their relative inefficiency for near-Gaussian

error distributions, and the difficulty inherent in computing their covariance.

It is then a natural development to consider expectile regression with functional

predictors (i.e., in a “scalar-on-function” framework). In this chapter, we are con-

cerned with the model

Y =

∫︂
T
X(t)β0(t) dt+ ε, (3.1)

where Y is a scalar response, X : T → R is a square-integrable stochastic process,
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and β0 : T → R is the slope function. We assume that the domain T is a compact

subset of a Euclidean space.

Most recent approaches to functional linear regression are based on functional

principal components analysis (FPCA) [61]. FPCA ultimately relies on an efficient

representation of β0 in terms of the leading functional principal components of X

[16]. However, these functional principal components might not form an appropriate

basis to express β0 or might have little predictive power. Consequently, FPCA-based

methods might not perform well. In practice, this phenomenon has been observed for

functional data in the Canadian weather dataset [16, 143], in the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) data analyzed later, and more generally, in principal

components regression and singular value decomposition methods for linear inverse

problems [37]. Numerous other works have considered the model in Equation (3.1)

using FPCA-based approaches [15, 31, 60, 61, 76, 102, 159].

In this chapter, we study instead the functional linear expectile regression model

from the perspective of a reproducing kernel Hilbert space (RKHS): we assume that

the slope function β0 resides in an RKHS H(K). In this more general framework,

the functional covariance operator C and the reproducing kernel K of the RKHS are

not required to be related. This assumption differs from the implicit requirements

in FPCA-based frameworks that the ordered eigenfunctions of K and C perfectly

coincide. FPCA-based approaches further assume that the slope function β0 can

be efficiently represented in terms of leading functional principal components [16,

198]. RKHS-based estimators, such as those proposed in this chapter, circumvent

this restriction.

As illustrated in [198], the eigenstructure of the RKHS plays an important role

in estimation and prediction, making RKHS-based methods more difficult to imple-

ment. To our knowledge, the literature on RKHS-based approaches to functional

data analysis is limited. [23] considered a joint asymptotic framework for studying

semi-nonparametric regression models where (finite-dimensional) Euclidean parame-
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ters and (infinite-dimensional) functional parameters are both of interest: the authors

derived convergence rates for estimators of both. [141] studied functional Cox models

with right-censored data in the presence of both functional and scalar covariates in

an RKHS framework. Notably, the authors proved that their functional coefficient

estimator achieves the minimax optimal rate of convergence in penalized log partial

likelihood settings. [100] derived various asymptotic results regarding kernel quan-

tile regression (KQR) and proposed an efficient algorithm to compute entire KQR

solution paths.

In this chapter, we propose a regularized estimator for the functional linear ex-

pectile regression model in an RKHS framework. Specifically, unlike existing FPCA-

based approaches to expectile regression, we use the reproducing kernel to approx-

imate functional effects and capture local features. Theoretically (when the eigen-

functions of K and C agree) and empirically (regardless of this agreement) we find

that our estimators exhibit stronger convergence rates relative to FPCA-based esti-

mators. We further incorporate shrinkage penalties as a means to improve estimate

interpretability and generalizability for prediction. We derive upper and lower bounds

for minimax convergence in prediction error and establish minimax convergence rate

optimality for our proposed estimator. We demonstrate that RKHS-based methods

simplify functional coefficient estimate regularization (e.g., via smoothness, sparsity,

or Tikhonov penalties) and allow model estimation to be formulated as a convex opti-

mization problem. Our RKHS-based estimator can thus be efficiently computed: the

alternating direction method of multipliers (ADMM) algorithm we apply makes our

procedure simple to implement and allows us to incorporate existing computational

techniques for smoothing splines.

The remainder of the article is organized as follows. In Section 2, we discuss

expectile regression and RKHSs and establish the minimax optimality of our proposed

estimator. In Section 3, we reformulate model estimation as a convex optimization

problem and derive an ADMM iterative update scheme using a finite-dimensional
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representation of the slope function obtained via the representer theorem. Section

4 investigates finite-sample performance through simulation studies and a real-world

data analysis, the latter using data from the ADNI [72]. A subsequent appendix

contains technical proofs of this article’s main results.

As notation to be used throughout this article, let ∥·∥2 denote the Euclidean L2

norm. For two positive real sequences (ak)k∈N and (bk)k∈N, we write ak ≍ bk to indicate

that the sequence of ratios (ak/bk)k∈N is bounded away from zero and infinity.

3.2 Theoretical Properties

We first introduce functional linear expectile regression, our proposed estimator, and

the setting where β0 ∈ H(K). Following this, we derive upper and lower bounds

for the minimax rate of convergence in prediction error and establish the minimax

optimality of our proposed estimator.

3.2.1 Expectiles and functional linear expectile regression

Let Y be a random variable with a distribution function F and a finite mean. The

τth expectile µτ = µτ (F ) of Y , as defined by [126], is

µτ (F ) = argmin
η∈R

EY rτ (y − η),

for τ ∈ (0, 1), where rτ (y − η) = |τ − 1(y < η)|(y − η)2.

Expectiles share many desirable characteristics of quantiles and various additional

computational advantages [126]. [78] showed that the expectiles of a distribution F

are the quantiles of a distribution G defined explicitly as

G(y) =
P (y)− yF (y)

2(P (y)− yF (y)) + (y − µ)
,

where P (y) =
∫︁ y
−∞ x dF (x) and µ =

∫︁∞
−∞ x dF (x).

As a generalization of ordinary mean regression, expectile regression is known to be

statistically more efficient than quantile regression when standard assumptions such
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Figure 3.1: (Left) The expectile loss function for τ = 0.1, 0.5, 0.9 in red, blue, and
black, respectively. (Right) Kernel-smoothed estimate of the MMSE score density
function (dotted blue) from the ADNI dataset. The corresponding expectiles at τ =
0.1, 0.5, 0.9 are indicated in solid red, blue, and black, respectively.

as error homoscedasticity are not severely violated [102]. Unlike quantile regression,

expectile regression uses a smooth loss function which, in terms of general compu-

tation, is considerably easier to optimize [59]. [69] and [89] explored the asymptotic

properties of sample expectiles and established their uniform consistency under the

assumption of a finite mean. Unlike quantiles, expectiles are also guaranteed to be

unique under this assumption. The asymptotic normality of the sample expectile

estimator follows directly with the additional assumption of a finite second moment.

Similar to quantiles, expectiles characterize and give more insight into a distribution

of interest.

Figure 3.1 illustrates the expectile loss function at τ = 0.1, 0.5, 0.9. When τ < 0.5,

the cost of a positive error is lower than that of a negative one, encouraging a smaller

expectile µτ . Larger expectiles are correspondingly encouraged when τ > 0.5. At

τ = 0.5, the loss r0.5 is equivalent to the least squares loss and recovers the mean

of the distribution. In settings where the distribution of Y is highly skewed rather

than symmetric, τ can be chosen to obtain a more desirable location estimate. This

is illustrated in Figure 3.1 using MMSE data from the ADNI.
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In this part, we are primarily interested in establishing the convergence properties

of our proposed regularized sample estimator for β0 in the functional linear expectile

regression model of Equation 3.1,

β̂n = argmin
β

1

n

n∑︂
i=1

rτ

(︃
yi −

∫︂
T
xi(t)β(t) dt

)︃
+ λJ(β), (3.2)

where {(xi, yi) : i = 1, . . . , n} is a set of observed training data, J is a penalty

function assessing the “plausibility” of a candidate β, and λ ≥ 0 is a tuning parameter

controlling the strength of the penalty J . For convenience, we suppress notation

indicating implicit dependence on τ .

3.2.2 RKHS

We assume that the slope function β0 resides in an RKHS H = H(K), a subspace of

square-integrable functions with the domain T , equipped with a reproducing kernel

K. The canonical example of H(K) is a Sobolev space: assuming, without loss of

generality, that T = [0, 1], the Sobolev space of order r [55] can be defined as

Wr
2 =Wr

2([0, 1]) ={β : [0, 1]→ R : β, β(1), . . . , β(r−1)

are absolutely continuous and β(r) ∈ L2}.

One squared norm that will make Wr
2 an RKHS [13] is

∑︁r−1
j=0

{︃∫︁
T β

(j)(t) dt

}︃2

+∫︁
T {β

(r)(t)}2 dt. The penalty functional J on the slope function β can be conve-

niently defined as the squared norm or semi-norm associated with H [17]: one pos-

sible choice is J(β) =
∫︁ 1

0
[β(r)(t)]2 dt. The null space of J , defined as H0 = {β ∈

H : J(β) = 0}, forms a finite-dimensional linear subspace of H with some orthonor-

mal basis (ξ1, ξ2, . . . , ξM), where M = dim(H0). The orthogonal complement H1 of

the null space H0 is such that H = H0 ⊕ H1. It can be shown that H1 also forms

an RKHS with the same inner product as H, but restricted to H1. More generally,

for any β ∈ H, there exists β1 ∈ H0 and β2 ∈ H1 such that the decomposition

β = β1 + β2 is unique [57, 127]. Let K be the reproducing kernel of H1 such that
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J(β2) = ∥β2∥2H = ∥β∥2K , defined as the RKHS norm of β. Consequently, as we will

demonstrate, we can find a finite-dimensional representation for the functional slope

coefficient β0.

We next consider the two kernels crucial to the estimation process. First, recall-

ing that T ⊂ R is a compact set, a reproducing kernel K : T × T → R is a real,

symmetric, square-integrable, nonnegative-definite function. There is a one-to-one

correspondence between a reproducing kernel K and an RKHS H(K). Mercer’s theo-

rem implies that K admits the spectral decomposition K(s, t) =
∑︁∞

k=1 ϱkφk(s)φk(t),

where the eigenvalues (ϱk)k∈N are in nonincreasing order and (φk)k∈N are the corre-

sponding eigenfunctions.

For any real, square-integrable, semidefinite function R, define LR : L2 → L2 as

the linear integral operator LR(f)(·) = ⟨R(s, t), f⟩L2(T ) =
∫︁
T R(s, ·)f(s) ds. By the

spectral theorem, there exists a sequence of orthonormal eigenfunctions (ψRk )k∈N and

a corresponding sequence of nonincreasing eigenvalues (θRk )k∈N such that R(s, t) =∑︁
k∈N θ

R
k ψ

R
k (s)ψ

R
k (t) for all s, t ∈ T , and LR(ψ

R
k ) = θRk ψ

R
k for k ∈ N. Additionally,

for all s, t ∈ T , R1/2(s, t) =
∑︁

k∈N

√︁
θRk ψ

R
k (s)ψ

R
k (t). We say that two linear operators

are aligned if they share the same ordered (i.e., with corresponding eigenvalues in

nonincreasing order) sequence of eigenfunctions.

Let LR1/2 be the linear operator defined by LR1/2(ψRk ) =
√︁
θRk ψ

R
k . It is clear that

LR1/2 = (LR)
1/2. Further defining (R1R2)(s, t) =

∫︁
T R1(s, u)R2(u, t) du, it follows

that LR1R2 = LR1 ◦ LR2 = LR2 ◦ LR1 .

With the previous results in mind, consider the covariance kernel C : T × T → R

for X, defined as C(s, t) = E ([X(s)− EX(s)] [X(t)− EX(t)]). Of course, we require

that the covariance kernel C be continuous and square-integrable over T ×T . Similar

to K, C admits the spectral decomposition C(s, t) =
∑︁∞

k=1 µkϕk(s)ϕk(t). The two

eigenfunction sequences (φk)k∈N and (ϕk)k∈N are different in general. However, under

certain conditions, K and C can be simultaneously diagonalized [25].

Using the eigenstructures of the reproducing and covariance kernels K and C, we
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can define the linear operator LK1/2CK1/2 in a compositional fashion as LK1/2CK1/2 =

LK1/2 ◦LC ◦LK1/2 . By the spectral theorem, K1/2CK1/2 has the spectral decomposi-

tion K1/2CK1/2(s, t) =
∑︁∞

k=1 νkζk(s)ζk(t), where the sequence of eigenvalues (νk)k∈N

is arranged in nonincreasing order and (ζk)k∈N is the corresponding sequence of or-

thonormal eigenfunctions. Obviously, the eigenvalues (νk)k∈N are determined by the

eigenvalues of both K and C and the alignment of their respective eigenfunctions. We

will eventually show that the convergence rate of our proposed estimator is related

to the decay rate of the eigenvalues of K1/2CK1/2.

Before discussing estimation of the functional coefficient β0 over H(K), we impose

two basic assumptions on the reproducing and covariance kernels, whose eigenstruc-

tures determine the optimal convergence rate.

(A1) The eigenvalues of K1/2CK1/2 satisfy νk ≍ k−2r for some r > 0.

(A2) For any square-integrable function f ,

E

[︃∫︂
T
[X(t)− EX(t)] f(t) dt

]︃4
≤ c

(︄
E

[︃∫︂
T
[X(t)− EX(t)] f(t) dt

]︃2)︄2

for some constant c > 0.

Assumption A1 pertains to the decay rate of νk. As already discussed, this rate

is determined by the eigenstructures of the kernels K and C, specifically, their indi-

vidual eigenvalue decay rates and the alignment between their eigenfunctions. The

eigenvalues of the covariance kernel C obey µk ≍ k−2rC if the Sacks–Ylvisaker condi-

tion of order rC − 1 is satisfied for some integer rC ≥ 1 [151, 198]. As an example,

the Ornstein-Uhlenbeck covariance kernel C(s, t) = exp(−|s − t|) has rC = 1. For

Sobolev spaces, various covariance functions are known to satisfy the Sacks–Ylvisaker

condition [151]. Concerning the eigenvalue decay rate of the kernel K, if H is the

rKth order Sobolev space WrK

2 , it is known that ϱk ≍ k−2rK [120].

When K and C are aligned, i.e., when they share a common ordered eigenfunction

set so that ϕk = φk for k ∈ N [16], it follows that r = rC + rK in Assumption A1.
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However, if K and C are not aligned, then the eigenvalues of the two operators alone

cannot determine the order r. For example, the eigenvalues for the Sobolev class Wr
2

for r > 1/2 follow a polynomial decay rate.

Assumption A2 restricts the fourth moment of the linear functional
∫︁
T X(t)f(t) dt,

ensuring bounded kurtosis. When X is a Gaussian process, for example, Assumption

A2 is satisfied with c = 3.

3.2.3 Minimax convergence properties

We take H(K) = W2
2 and define the penalty function as J(β) =

∫︁
T [β′′(t)]2 dt =

∥β∥2K . Consequently, H0 is the linear space spanned by ξ1(t) = 1 and ξ2(t) = t.

The accuracy of β̂n can be measured via the squared RKHS norm associated with

the covariance kernel C [198], as⃦⃦⃦
β̂n − β0

⃦⃦⃦2
C
= EX∗

(︃∫︂
X∗(t)β̂n(t) dt−

∫︂
X∗(t)β0(t) dt

)︃2

,

where X∗ is an independent copy of X and the expectation on the right-hand side is

taken over X∗. The above quantity measures the mean squared prediction error for

a random, future observation of X.

Theorem 3.1 (Minimax lower bound) Under Assumption A1,

lim
a→0

lim
n→∞

inf
β̂n

sup
β0∈H(K)

Pβ0

{︃
∥β̂n − β0∥C ≥ an− 2r

2r+1

}︃
= 1, (3.3)

where the infimum is taken over all possible estimators β̂n computed from the training

data.

Theorem 3.2 (Minimax upper bound) Under Assumptions A1 and A2,

lim
A→0

lim sup
n→∞

sup
β0∈H(K)

Pβ0

{︃
∥β̂n − β0∥C ≥ An− 2r

2r+1

}︃
= 0. (3.4)

provided that the tuning parameter satisfies λ ≍ n−2r/(2r+1).
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By Theorems 2 and 3, the regularized estimator β̂n is minimax rate optimal: the

minimax rate of convergence for the prediction error is n−2r/(2r+1). As discussed

previously, this optimal rate of convergence depends jointly on the eigenvalue decay

rate of the operator LK1/2CK1/2 (i.e., of the eigenvalues of K and C) through r and,

more importantly, on alignment between the eigenfunctions of K and C.

3.3 Computation

In this section, we propose an efficient computational approach for model estimation

using the ADMM algorithm. We begin with an application of the representer theorem

to establish that the proposed estimator lies in a finite-dimensional subspace. We

subsequently discuss hyperparameter tuning and propose our estimation algorithm.

3.3.1 Representer theorem

Theorem 3.3 (Representer theorem) Let (ξ1, . . . , ξM) be a basis of H0. There

exist vectors e = (e1, . . . , eM)⊤ and c = (c1, . . . , cn)
⊤ allowing the solution β̂n to the

problem in Equation (3.2) to be expressed as

β̂n(t) =
M∑︂
i=1

eiξi(t) +
n∑︂
k=1

ck

∫︂
T
K(s, t)Xk(t) ds. (3.5)

Theorem 3 is a generalization of the well-known representer lemma for smoothing

splines [175]. Although the minimization over β̂n in Equation (3.2) is taken over an

infinite-dimensional space H(K), the above result implies that the solution lies in a

finite-dimensional subspace. Thus, it suffices to estimate the coefficients e and c in

Equation (3.5). By Theorem 3, we can conclude that∫︂
T
X(t)β(t)dt =

M∑︂
i=1

ei

∫︂
T
X(t)ξi(t) dt+

n∑︂
k=1

ck

∫︂
T

∫︂
T
X(t)K(s, t)Xk(s) ds dt.

Let Y = (Y1, Y2, . . . , Yn)
⊤ and let T represent the n ×M matrix with the (i, j)th

entry Tij =
∫︁
T Xi(t)ξj(t) dt for i = 1, . . . , n and j = 1, . . . ,M . Similarly, let Σ
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be the n × n matrix with the (i, j)th entry Σij =
∫︁
T

∫︁
T Xi(t)K(s, t)Xj(s) ds dt for

i = 1, . . . , n and j = 1, . . . , n. It follows from the reproducing property that

J(β) =
n∑︂
i=1

n∑︂
j=1

cicj

∫︂
T

∫︂
T
Xi(t)K(s, t)Xj(s) ds dt = c⊤Σc.

We make use of this representation in the following subsections for model estimation.

c

3.3.2 Hyperparameter tuning

As with most smoothing methods, the selection of the tuning parameter λ influences

the performance of the regularized estimator β̂n. There are various tools available

for this task, such as K-fold cross-validation [87], the Bayesian information criterion

(BIC), generalized maximum likelihood [175], and generalized cross-validation (GCV)

[55].

In this chapter, unless otherwise noted, we employ GCV as a practical criterion for

choosing the optimal tuning parameter value. Because the regularized estimator is a

linear estimator and can be written as ŷ = (ŷ1, ŷ2, . . . , ŷn) = H(λ)y = Te+Σc, where

H(λ) is the “hat matrix” for a particular value of λ, we may select the the value of λ

that minimizes [175]

GCV (λ) =
1

n

∑︁n
i=1 rτ (ŷi − yi)

(1− Tr(H(λ))/n)2
.

3.3.3 ADMM algorithm

We next apply the ADMM algorithm to estimate the functional linear expectile model.

Pseudocode for the proposed estimation procedure is provided in Algorithm 1.

Developed in the 1970s and further summarized in [12], the ADMM algorithm is a

simple and efficient approach for solving convex optimization problems. It has found

renewed popularity in large-scale computing through its ability to decentralize large,

global problems into small, local ones. The ADMM algorithm has been employed in
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quantile regression [58], two-way functional hazard models [96], and Gaussian graph-

ical models [107], to name only a few applications.

Using the results and notation of Section 3.3.1, the optimization problem in Equa-

tion (3.1) can be reformulated as a convex optimization problem with respect to e, c,

and the auxiliary variable u as

minimize 1
n

∑︁n
i=1 rτ (yi − ui) + λc⊤Σc

subject to ui = Tie+ Σic, i = 1, . . . , n,
(3.6)

where Ti and Σi denote the ith rows of T and Σ, respectively. The scaled ADMM

algorithm [12] uses an objective function defined by the augmented Lagrangian form

of the above problem,

Lσ(u, e, c, h) =
1

n

n∑︂
i=1

rτ (Yi − ui) + λc⊤Σc+

σ

2

n∑︂
i=1

(ui − Tie− Σic+ hi)
2 − σ

2

n∑︂
i=1

h2i ,

which we aim to minimize over u = (u1, . . . , un)
⊤, e, c, and h = (h1, . . . , hn)

⊤ without

restriction.

The scaled ADMM update scheme for the (k+1)th iteration is straightforward to

derive:

uk+1
i = argmin

ui

{︄
1

n

n∑︂
i=1

rτ (Yi − ui) +
σ

2
(ui − Tiek − Σic

k + hki )
2

}︄

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ(Tie

k + Σic
k − hki ) + 2τyi

σ + 2τ
, yi ≥ ui

σ(Tie
k + Σic

k − hki ) + 2(1− τ)yi
σ + 2(1− τ)

, yi < ui

(ek+1, ck+1) = argmin
ei,ci

{︂
λc⊤Σc+

σ

2

(︁
uk+1
i − Tie− Σic+ hki

)︁2}︂
hk+1
i = hki + uk+1

i − Tiek+1 − Σic
k+1.
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The update step for (e, c) above can be explicitly solved using the sub-iterations

ek+1 = (T⊤T )−1

[︄
n∑︂
i=1

T⊤
i (u

k+1
i − Σic

k + hki )

]︄
,

ck+1 = (2λΣ/σ + Σ⊤Σ)−1

[︄
n∑︂
i=1

Σ⊤
i (u

k+1
i − Tiek+1 + hki )

]︄
.

Stopping conditions for the proposed scheme can be defined in terms of the size

of the problem’s primal and dual residuals: we terminate the algorithm when rk =

∥u − Te − Σc∥ ≤ ϵdual and sk = σ
(︁
T (ek+1 − ek) + Σ(ck+1 − ck)

)︁
≤ ϵpri. Here, ϵpri =

√
nϵabs+ϵrel max(∥u∥2, ∥Te+Σc∥2) > 0 and ϵdual =

√
nϵabs+ϵrel∥h∥2 > 0 are feasibility

tolerances for the primal and dual feasibility conditions, where ϵabs > 0 and ϵrel > 0

are absolute and relative tolerances, respectively. In all of the numerical studies

presented in the current section, we follow the suggestion in [12] by fixing ϵrel = 10−4,

ϵabs = 10−2, and σ = 2.

Algorithm 1 ADMM algorithm for functional linear expectile regression.
Input: u0, e0, c0, h0 (initial estimates); σ (step size parameter); λ (tuning parameter)
1: repeat
2: for i = 1, . . . , n do
3: if uki ≤ yki then

4: uk+1
i ← σ(Tie

k + Σic
k − hki ) + 2τyi

σ + 2τ
5: else

6: uk+1
i ← σ(Tie

k + Σic
k − hki ) + 2(1− τ)yi

σ + 2(1− τ)
7: end if
8: end for
9: ek+1 ← (T⊤T )−1

[︁∑︁n
i=1 T

⊤
i (u

k+1
i − Σic

k + hki )
]︁

10: ck+1 ← (2λΣ/σ + Σ⊤Σ)−1
[︁∑︁n

i=1Σ
⊤
i (u

k+1
i − Tiek+1 + hki )

]︁
11: hk+1

i ← hki + uk+1
i − Tiek+1 − Σic

k+1

12: until stopping criteria are met
13: compute estimated slope function β̂ from the optimal e, c
Output: Lσ(u, e, c, h), β̂

3.3.4 Convergence of the ADMM algorithm

We next apply a general result of [12] to verify the convergence of our proposed

ADMM-based approach for estimating the functional linear expectile regression model.

34



For convenience, we return to a more-general formulation of the ADMM algorithm:

minimize F (x, z) = f(x) + g(z)

subject to G(x, z) = Ax+Bz − c = 0,
(3.7)

with x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp [12]. For our

setting, x and z correspond to u and (e⊤, c⊤)⊤; f and g to the empirical expectile

loss 1
n

∑︁n
i=1 rτ (Yi − ui) and λc⊤Σc; and A, B, and c to the identity matrix I, [Ti,Σi],

and 0, respectively. To guarantee convergence, we verify two additional conditions,

referring to Assumptions 1 and 2 of [12].

First, we require that f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed,

proper, and convex. This requirement is naturally satisfied for our formulation in

(3.6).

Second, we require that the nonaugmented Lagrangian L0(x, z, y) = f(x) + g(z) +

y⊤(Ax+Bz − c) has a saddle point, i.e., that there exists a (not necessarily unique)

(x⋆, z⋆, y⋆) satisfying L0(x
⋆, z⋆, y) ≤ L0(x

⋆, z⋆, y⋆) ≤ L0(x, z, y
⋆) for all (x, z, y). The

existence of a saddle point follows immediately from the saddle point theorem [121,

Theorem B.29] and the fact that we are optimizing over a real space (specifically,

with a nonempty interior), that G(x, z) is affine, and that G(0, 0) = 0 (since c = 0).

Consequently, we can guarantee that the estimate and objective function iterates

in our ADMM-based implementation will converge to the solution and optimal value,

respectively, of the original problem. The particular benefit of an ADMM-based

approach is that each update has a closed form, which speeds up numerical com-

putation relative to traditional interior point methods or other generic algorithms.

Indeed, empirical results in existing literature have illustrated the clear superiority

that ADMM-based algorithms have in a variety of settings [19, 133].

3.4 Numerical Experiments

We now investigate the finite-sample performance of our proposed estimators. We

are specifically interested in comparisons between our proposed estimator and one
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using an FPCA-based approach that uses the first four leading eigenfunctions [80,

143, 198]. Three sets of simulations in Section 3.4.1 examine the effects of eigenvalue

decay, kernel alignment, and various error distributions on the convergence of both

estimators.

3.4.1 Simulation studies

In the following sets of simulation studies, we consider T = [0, 1] and let H = H(K)

be the set of functions in the linear span of the cosine basis [16], i.e., H(K) = {g(t) =
√
2
∑︁

k∈N gk cos(kπt) : gk ∈ R, k ∈ N} ⊂ W2
2 . When endowed with the squared norm

∥f∥2H(K) =

∫︂
T
(f ′′)2 =

∫︂ 1

0

(︄
√
2
∑︂
k∈N

(kπ)2gk cos kπt

)︄2

=
∑︂
k∈N

(kπ)4g2k,

H is an RKHS with the reproducing kernel

K(s, t) =
∑︂
k∈N

2(kπ)−4 cos (kπs) cos (kπt)

= −1

3
(B4 (|s− t|/2) +B4 ((s+ t)/2)) ,

where Bk is the kth Bernoulli polynomial

B2m(x) = (−1)m−12(2m)!
∑︂
k∈N

cos (2πkx)

(2πk)2m
,

for x ∈ [0, 1]. Additionally, we choose (ξ1(t) = 1, ξ2(t) = t) as the basis for the null

space H0.

To quantify the behaviour of varying coefficient estimates, we calculate prediction

error (PE) on a test dataset {(x∗i , y∗i ) : i = 1, . . . , n∗}, given by

PEτ =

(︄
1

n∗

n∗∑︂
j=1

⃦⃦⃦⃦∫︂
T
x∗j(t)β̂n(t) dt−

∫︂
T
x∗j(t)β0(t) dt

⃦⃦⃦⃦2
2

)︄1/2

.

As a more direct comparison between the RKHS- and FPCA-based estimators, we

also report relative prediction error, defined by PEFPCA
τ /PERKHS

τ , where PEFPCA
τ and

PERKHS
τ represent prediction errors for the two methods. In all simulation studies,

results are averaged over 100 simulated training and test datasets.
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In the first simulation study, we focus primarily on the effect of eigenvalue decay

rate. We define the covariance operator as

C(s, t) =
50∑︂
k=1

2k−2r2 cos(kπs) cos(kπt),

where r2 = 1, 2, 3 imposes different decay rates on the eigenvalues of C: a larger value

of r2 yields stronger eigenvalue decay. In this setting, the two kernels, K and C, share

the same ordered set of eigenfunctions.

We follow the data generation procedure in [61] and [16]. The response is gen-

erated as Y =
∫︁ 1

0
X(t)β0(t) dt + ε, with β0(t) =

∑︁50
k=1 βkϕk(t); βk = 4(−1)k+1k−2

and ϕk(t) =
√
2 cos(kπt) for k = 1, . . . , 50; and ε ∼ N(0, 0.5). The functional

covariate is generated as X(t) =
∑︁50

k=1 γkUkϕk(t), where γk = (−1)k+1k−r2 and

Uk
i.i.d.∼ U [−

√
3,
√
3]. The Uks have a mean of zero and unit variance and each X

is observed at 101 equally spaced grid points on [0, 1]. We emphasize that the data

generation process is ultimately driven by the choice of the covariance operator.

Results for the first simulation are presented in Figure 3.2. First, the generally

positive performance of the FPCA-based estimator is not surprising, as β0 is a linear

combination of the leading eigenfunctions of the functional covariate X. Nonetheless,

our RKHS-based estimator demonstrates higher relative predictive performance ex-

cept in certain settings with r2 = 1, where the eigenvalue decay rate is small. In these

settings, the standard errors of the PE and relative PE measures across simulations

are typically small. Together, these results suggest a systematically lower PE for the

proposed method. The PE of both estimators generally decreases as r2 increases,

as expected. Both methods appear to converge at similar rates as the sample size

increases, although the RKHS-based estimator again outperforms the FPCA-based

one.

In the second simulation study, we are primarily interested in how alignment be-

tween the reproducing kernel K and the covariance kernel C influences the perfor-

mance of the RKHS- and FPCA-based estimators. We define the covariance kernel
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Figure 3.2: Effect of covariance kernel eigenvalue decay rate on the RKHS- and
FPCA-based estimators at τ = 0.2, 0.5, 0.8 in the first simulation study. From left to
right, the three columns show PE for the RKHS- and FPCA-based estimators and
relative PE between both (with values above one favouring the proposed estimator).
Error bars correspond to average PE ± SE, evaluated over 100 replications. In each
subplot, the horizontal axis represents the size n of the training dataset, considered
at n = 20, 50, 100, 200.
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in this setting as

C(s, t) =
50∑︂
k=1

2(|k − k0|+ 1)−2 cos(kπs) cos(kπt).

To control the extent of the alignment between K and C, the leading eigenfunctions of

C are located around the k0th eigenfunction of the reproducing kernel K: we consider

k0 = 5, 10, 20, with larger values of k0 corresponding to worse alignment [16]. In all

other aspects, the data generation process matches that of the first simulation study.

Figure 3.3 presents results for the second simulation study. As expected, the FPCA-

based estimator generally shows worse PE relative to the RKHS-based estimator.

We observe that relative PE increases with worsened alignment, most notably when

k0 = 20. Furthermore, with increasing k0, poor alignment between K and C seems

to have a significant impact on the FPCA-based estimator but little effect on the

proposed RKHS-based one. The standard error for relative PE is large in some

settings, but still leads us to conclude that the proposed method gives systematically

better PE. These empirical results are consistent with our theoretical expectations

and illustrate the merit of our RKHS-based perspective.

In the third simulation study, we investigate the ability of our proposed approach to

cope with different types of error distributions. Specifically, we consider distributions

that are either heteroscedastic or asymmetric.

We use the same setup as the first simulation study (excepting the distribution

of ε), with r2 = 2. As asymmetric error distributions, we take ε ∼ Gamma(2, 0.2)

and ε ∼ Beta(5, 1) for left- and right-skewed errors, respectively. Heteroscedastic

errors are sampled as a mixture of N(0, 0.25), N(0, 0.375), and N(0, 0.5) distributions,

representing a simple case with three heteroscedastic groups.

Results are presented in Figure 3.4 for the third simulation study. As a gen-

eral trend, our proposed RKHS-based estimator shows better performance than the

FPCA-based estimator, with relative PE typically falling between one and four. Stan-

dard error for relative PE is moderate across the different settings but is again sug-
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Figure 3.3: Effect of reproducing and covariance kernel alignment on the RKHS- and
FPCA-based estimators at τ = 0.2, 0.5, 0.8 in the second simulation study. From left
to right, the three columns show PE for the RKHS- and FPCA-based estimators and
relative PE between both (with values above one favouring the proposed estimator).
Error bars correspond to average PE ± SE, evaluated over 100 replications. In each
subplot, the horizontal axis represents the size n of the training dataset, considered
at n = 20, 50, 100, 200.
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gestive of a systematically lower PE for the proposed RKHS-based estimator. In the

setting with right-skewed errors, PE for both estimators is relatively smaller when

τ = 0.2 than when τ = 0.8: this result is reversed for left-skewed errors. These

results, for both asymmetric and heteroscedastic error distributions, demonstrate the

power of expectile regression in dealing with various error distributions, relative to

methods that focus on conditional mean estimation. This simulation study highlights

the versatility of our expectile model in cases of model error misspecification.

3.4.2 Application to ADNI data

We next apply the proposed RKHS-based estimator in an analysis of MMSE scores

from 199 patients in the ADNI dataset. In the functional linear model, the response

Y is MMSE score while the functional predictor X is fractional anisotropy (FA)

as a function of distance along the midsagittal corpus callosum skeleton (scaled to

T = [0, 1]). The corresponding functional linear model is

MMSE =

∫︂ 1

0

β0(t)FA(t) dt+ ε.

Figure 3.5 plots FA values, observed at 83 grid points, for all 199 patients. For tuning

and evaluating both estimators, approximately 80% of the data is used for four-fold

cross validation while the remaining 20% is held out as a test set. Context and

the visualization of the neuroimaging data in Figure 3.5 suggest that the functional

predictor X = FA may be periodic on [0, 1].

We let H(K) = Wper
2 be the second-order Sobolev space of periodic functions on

[0, 1], endowed with the norm ∥b∥2H =
[︂∫︁ 1

0
b(t)dt

]︂2
+
∫︁ 1

0
[b′′(t)]2 dt and the reproducing

kernel K(s, t) = 1− 1
24
B4(|s− t|), where B4 is the fourth Bernoulli polynomial [175].

Estimates obtained using our proposed method at the expectile levels τ = 0.1, . . . , 0.9

are shown in Figure 3.6. As expected, for any fixed t, β̂τ (t) increases with τ . For

the sake of practical interpretation, it is useful that these functional estimates do not

cross each other.
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Figure 3.4: Effect of abnormal errors on the RKHS- and FPCA-based estimators at
τ = 0.2, 0.5, 0.8 in the third simulation study. From left to right, the three columns
show PE for the RKHS- and FPCA-based estimators and relative PE between both
(with values above one favouring the proposed estimator). Error bars correspond to
average PE ± SE, evaluated over 100 replications. In each subplot, the horizontal
axis represents the size n of the training dataset, considered at n = 20, 50, 100, 200.
RSE, LSE, and HE indicate left-skewed, right-skewed, and heteroscedastic error dis-
tributions, respectively.
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Figure 3.6: RKHS-based estimates β̂τ at τ = 0.1, . . . , 0.9 in the ADNI data analysis,
describing the functional effect of FA on MMSE score.
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Table 3.1: Test set prediction error in the ADNI analysis for the RKHS- and FPCA-
based predictors at τ = 0.1, . . . , 0.9.

Expectile level τ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

RKHS PE (SE)
0.9954

(0.0153)

0.9936

(0.0152)

0.9922

(0.0151)

0.9913

(0.015)

0.9907

(0.0150)

0.9905

(0.0149)

0.9907

(0.0149)

0.9911

(0.0148)

0.9918

(0.0148)

FPCA PE (SE)
1.0164

(0.0174)

1.0161

(0.0174)

1.0058

(0.0163)

1.0006

(0.0164)

0.9999

(0.0161)

0.9982

(0.016)

1.0000

(0.0160)

1.0004

(0.0161)

1.0008

(0.0157)

We also considered FPCA-based estimates obtained using 4, 6, 8, and 10 functional

principal components. These estimates, illustrated in Figure 3.7, are clearly not ideal

for at least a couple reasons. First, the FPCA-based estimates cross each other,

unlike the RKHS-based estimates in Figure 3.6. This “crossing problem” is further

discussed in [66] in the context of quantile regression. Second, the FPCA-based

estimates are sensitive to the user-specified number of principal components. The

discrete nature of this hyperparameter makes it difficult to tune finely, unlike the

continuous hyperparameter λ in our RKHS-based approach.

Table 3.1 moreover shows that, at each expectile level considered, the proposed

RKHS-based estimator outperforms the FPCA-based one in predicting MMSE. These

results emphasize the practical importance and advantages of our RKHS-based ap-

proach in functional linear expectile regression.

As an informal aside (due to the computation time involved), we also compared the

computational efficiency of different implementations of our proposed RKHS-based

estimator. Our first implementation is as presented in Section 3.3.3 using the ADMM

algorithm while the second uses an interior point (IP) algorithm [118]. The latter

is popularly applied to constrained optimization problems. We found our ADMM

implementation to be far superior to the IP implementation: the latter typically

requires at least 100 times more computation time than the former until convergence.

These results can be made available on request.
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Figure 3.7: FPCA-based estimates β̂τ at τ = 0.2, 0.5, 0.8 in the ADNI data analysis,
describing the functional effect of FA on MMSE score. The number of functional
principal components (PCs) used is indicated in each subplot: 4, 6, 8, and 10 PCs
explain 79.9%, 86.0%, 89.3%, and 91.5%, respectively, of the observed variance in
functional FA.
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3.5 Discussion

In this chapter, we proposed a regularized estimator for the functional linear expectile

regression model under an RKHS framework. We derived upper and lower bounds

for the minimax rate of convergence of prediction error and established the minimax

optimality of our proposed estimator. While most existing approaches to functional

linear expectile regression rely on FPCA, we argue that these approaches are too

restrictive in their assumption regarding eigenvalue spacing. Additionally, FPCA-

based methods rely on the assumption that leading principal components (which are

determined by only the functional predictor X and not the response Y ) are predictive

of the response: in practice, this assumption is typically not valid.

We demonstrated the general superiority of our proposed RKHS-based approach

in three sets of simulation studies and an application to an ADNI neuroimaging

dataset. In particular, we illustrated the degradation of FPCA-based estimators

when its implicit assumptions regarding the eigenstructures of the reproducing and

covariance kernels are violated. Our results showed that both eigenfunction alignment

and eigenvalue decay rates between the reproducing and covariance kernels have an

important impact on estimator performance.

For the sake of illustration, we focused on a univariate functional predictor X

with a domain T that is a compact subset of R. We took T = [0, 1] and used the

corresponding canonical Sobolev space as a working example. Our theoretical results

apply nonetheless to more general RKHSs, provided that T remains a compact subset

of an arbitrary Euclidean space. For example, the derived optimal convergence rate

still holds for Sobolev spaces on T = [0, 1]2, e.g., for imaging data, with the decay

rate r determined by the corresponding reproducing and covariance kernels. The

developments in this chapter thus have wide applications in spatial statistics, 2D and

3D image analysis, and longitudinal data analysis.

Settings where the reproducing and covariance kernels are not well aligned (i.e., in
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the sense of their eigenfunctions) are interesting topics for future work. As suggested

by our ADNI analysis, another natural generalization of our approach is the inclusion

of scalar predictors, e.g., age, gender, and diagnosis status, for a partial functional ex-

pectile regression model. While it is straightforward to accommodate scalar covariate

effect estimation from an algorithmic perspective, the optimality of the corresponding

estimators requires more work to establish. Informally (and with results available on

request), PE for the RKHS- and FPCA-based estimators are comparable when scalar

age, gender, and diagnosis status effects are included in the model. We suspect that

this decrease in relative PE can be attributed to the relative complexity of the two

models and possibly the overwhelming usefulness of these scalar covariates as predic-

tors. We feel that the full impact of scalar predictors on empirical performance, such

as in high-dimensional settings, should be investigated in future work.

3.6 Proof of Main Results

Proof of Theorem 1. Recall the functional model Y =
∫︁
T X(t)β0(t) dt + ε

specified in the main text. Fix an expectile level τ ∈ (0, 1) and assume that ε follows

an asymmetric normal distribution with the density function

f(ε) =
2
√︁
τ(1− τ)

√
τ +
√
1− τ

1√
πσ2

exp{−rτ (ε/σ)}, (3.8)

where rτ (u) = |τ − I(u < 0)|u2. Further assume that β0 belongs to an RKHS H(K).

Consider the functional space

H∗ =

{︄
β =

2M∑︂
k=M+1

bkM
−1/2LK1/2ζk : (bM+1, . . . , b2M) ∈ {0, 1}M

}︄
,

where (ζk)k∈N is a sequence of orthonormal eigenfunctions of K1/2CK1/2. The func-

tion ∥·∥K is a semi-norm on H(K) and M is some large number to be discussed later.
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For any β ∈ H∗, observe that

J(β) = ∥β∥2K =

⃦⃦⃦⃦
⃦

2M∑︂
k=M+1

bkM
−1/2LK1/2ζk

⃦⃦⃦⃦
⃦
2

K

=
2M∑︂

k=M+1

b2kM
−1 ∥LK1/2ζk∥2K

≤
2M∑︂

k=M+1

M−1 ∥LK1/2ζk∥2K

= 1,

which follows from the fact that ⟨LK1/2ζk, LK1/2ζl⟩K = ⟨LKζk, ζl⟩K = ⟨ζk, ζl⟩L2 = δkl.

Therefore, H∗ ⊂ H(K) = {β : ∥β∥K <∞}.

The Gilbert-Varshamov bound [172, Lemma 2.9] establishes that, for any M ≥ 8,

there exists a set {b(0), b(1), . . . , b(N)} ⊂ {0, 1}M such that

(i) b(0) = (0, . . . , 0)⊤;

(ii) H(b(i), b(j)) ≥ M/8 for any distinct b(i), b(j) ∈ B, where H(· , · ) denotes Ham-

ming distance; and

(iii) N ≥ 2M/8.

Define the subset

B =

{︄
β(0), . . . , β(N) : β(i) =

2M∑︂
k=M+1

b
(i)
k−MM

−1/2LK1/2ζk, i = 1, . . . , N

}︄
⊂ H∗

and let M be the smallest integer greater than c0n
1/(2r+1) for some constant c0 > 0.
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Then for i and j satisfying 0 ≤ i ≤ j ≤ N ,

⃦⃦
β(i) − β(j)

⃦⃦2
C
=

⃦⃦⃦⃦
⃦LC1/2

2M∑︂
k=M+1

(b
(i)
k−M − b

(j)
k−M)M−1/2LK1/2ζk

⃦⃦⃦⃦
⃦
2

L2

=
2M∑︂

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1∥LC1/2LK1/2ζk∥2L2

=
2M∑︂

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1νk.

≥ ν2MM
−1

M∑︂
k=1

(b
(i)
k − b

(j)
k )2

= 4ν2MM
−1H(b(i), b(j))

≥ ν2M/2

≥ c12
−(2r+1)M−2r

≥ 2cα2r/(2r+1)n−2r/(2r+1),

where c > 0 is some constant.

We apply the results of [172] to establish a lower bound based on multiple hypoth-

esis testing. Under the assumption that the slope function β0 belongs to the subset

B, we construct a subset {β(0), ..., β(N)} ⊂ H∗ with N increasing in n such that, for

some positive constant c and for i and j such that 0 ≤ i ≤ j ≤ N ,

∥β(i) − β(j)∥2C ≥ cα
2r

2r+1n− 2r
2r+1 (3.9)

and
1

N

N∑︂
j=1

KL(Pβ(i) | Pβ(j)) ≤ α logN, (3.10)

where Pβ denotes the joint conditional distribution of Y given X and KL represents

Kullback-Leibler divergence. By Theorem 2.5 of [172], it follows that

inf
β̂

sup
β∈H∗

P(∥β(i) − β(j)∥2C ≥ cα
2r

2r+1n− 2r
2r+1 ) ≥

√
N√

N + 1

(︃
1− 2α−

√︃
2α

logN

)︃
. (3.11)

Note that M,N →∞ as n→∞. This implies that the right-hand side of (3.11) can
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be made arbitrarily close to 1 as n→∞ and α→ 0. We conclude that

lim
α→0

lim
n→∞

inf
β̂

sup
β0∈H∗

P(∥β(i) − β(j)∥2C ≥ an− 2r
2r+1 ) = 1. (3.12)

This lower bound for the asymmetric normal distribution yields a lower bound for

general error distributions. Let Pj, for j = 1, . . . , N , represent the joint distribution

of the observed sample {(xk, yk) : k = 1, . . . , n} under the assumption that β0 = β(j).

It follows that

Pj =
n∏︂
k=1

2
√︁
τ(1− τ)

√
τ +
√
1− τ

1√
πσ2

exp

{︄
−rτ

(︄
yk −

∫︁
T xk(t)

⊤β(j)(t)

σ

)︄}︄
. (3.13)

The Kullback-Leibler divergence between Pβ(i) and Pβ(j) is

KL(Pβ(i) | Pβ(j)) = Eβ(i) log(Pβ(i)/Pβ(j))

= nEβ(i)

[︄
rτ

(︄
Y −

∫︁
T X(t)β(j)(t) dt

σ

)︄
− rτ

(︄
Y −

∫︁
T X(t)⊤β(i)(t) dt

σ

)︄]︄

≤ nmax (τ, 1− τ)
(︃∫︂

T
X(t)⊤(β(j)(t)− β(i)(t)) dt

)︃2

.

The inequality above holds since, defining µi =
∫︁
T X(t)⊤β(i)(t) dt,

Eβ(i)

[︃
rτ

(︃
Y − µj

σ

)︃
− rτ

(︃
Y − µi

σ

)︃]︃
=

∫︂ ∞

µi
τ

[︄(︃
y − µj

σ

)︃2

−
(︃
y − µi

σ

)︃2
]︄
f(y − µi) dy

+

∫︂ µi

−∞
(1− τ)

[︄(︃
y − µj

σ

)︃2

−
(︃
y − µi

σ

)︃2
]︄
f(y − µi) dy

+

∫︂ µi

µj
(2τ − 1)

(︃
y − µj

σ

)︃2

f(y − µi) dy,

where∫︂ µi

µj
(2τ − 1)

(︃
y − µj

σ

)︃2

f(y − µi) dy ≤ |1− 2τ |
(︃
µi − µj

σ

)︃2 ∫︂ µi

µj
f(y − µi) dy.
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Thus,

KL(Pβ(i) | Pβ(j)) ≤ nmax (τ, 1− τ)
(︃∫︂

T
Xk(t)

⊤(β(j)(t)− β(i)(t)) dt

)︃2

= nmax (τ, 1− τ)∥Lc1/2(β(j)(t)− β(i)(t))∥2L2

= nmax (τ, 1− τ)
2M∑︂

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1νk

≤ nmax (τ, 1− τ)νMM−1

2M∑︂
k=M+1

(b
(i)
k−M − b

(j)
k−M)2

= 4nmax (τ, 1− τ)νMM−1H(b(i), b(j))

≤ 4nmax (τ, 1− τ)νM

≤ 4c2nmax (τ, 1− τ)M−2r.

Consequently, when 0 < α < 1/8,

1

N

N∑︂
j=1

KL(Pj | P0) ≤ 4c2nmax (τ, 1− τ)M−2r ≤ α log 2M/8 ≤ α logN.

By taking M to be the smallest integer greater than c2α
−1/(2r+1)n1/(2r+1) with c2 =

(8c1 log 2)
1/(2r+1), the desired result follows.

Proof of Theorem 2. Recall that LK1/2 (L2) = H(K). Therefore, there exist

f0, f̂ ∈ L2 such that β0 = LK1/2f0 and β̂λ = LK1/2 f̂λ. For brevity, we assume that

H(K) is dense in L2, which ensures that f0 and f̂λ are uniquely defined. The proof

in the general case proceeds in exactly the same fashion by restricting consideration

to L2/ker (LK1/2).

For brevity, define T = LK1/2CK1/2 . Let T ν denote a linear operator from L2 to L2

such that T νφk = sνkφk. Prediction error can then be written as

∥β̂ − β0∥2C =
⃦⃦⃦
T 1/2

(︂
f̂λ − f0

)︂⃦⃦⃦2.
L2

and, furthermore,

f̂λ = argmin
f∈L2

[︄
1

n

n∑︂
i=1

rτ
(︁
yi − ⟨xi, LK1/2f⟩L2

)︁2
+ λ∥f∥2L2

]︄
.

51



Recalling that yi = ⟨xi, LK1/2f0⟩L2
+ εi,

Cn(s, t) =
1

n

n∑︂
i=1

eixi(s)xi(t),

where ei = τ if yi ≥
⟨︂
xi, LK1/2 f̂λ

⟩︂
L2

and ei = 1 − τ otherwise. Define Tn =

LK1/2LCnLK1/2 , where LCn is an integral operator such that, for any h ∈ L2,

LCnh(·) =
∫︂
T
Cn(s, ·)h(s) ds.

Consequently, f̂λ = (Tn + λ1)−1 (Tnf0 + gn), where 1 is the identity operator and

gn = 1
n

∑︁n
i=1 eiϵiLK1/2xi.

Next, define fλ = (T + λ1)−1Tf0. By the triangle inequality,⃦⃦⃦
T 1/2

(︂
f̂λ − f0

)︂⃦⃦⃦
L2

=
⃦⃦
T 1/2 (fλ − f0)

⃦⃦
L2

+
⃦⃦⃦
T 1/2

(︂
f̂λ − fλ

)︂⃦⃦⃦
L2

. (3.14)

The first term on the right-hand side can be easily bounded. To proceed, we appeal

to the following lemma.

Lemma 3.4 Lemma A1. For 0 < ν < 1, ∥T v (fλ − f0)∥L2
≤ (1− ν)1−νννλν ∥f0∥L2

.

Taking ν = 1/2 in Lemma A1 establishes that
⃦⃦
T 1/2 (fλ − f0)

⃦⃦2
L2
≤ 1

4
λ ∥f0∥2L2

.

We now turn to the second term on the right-hand side of Equation (3.14). Observe

that

fλ − f̂λ = (T + λ1)−1 (Tn + λ1)
(︂
fλ − f̂λ

)︂
+ (T + λ1)−1 (T − Tn)

(︂
fλ − f̂λ

)︂
and that (Tn + λ1) f̂λ = Tnf0 − gn. Therefore,

fλ − f̂λ = (T + λ1)−1Tn (fλ − f0) + λ(T + λ1)−1fλ + (T + λ1)−1gn

+ (T + λ1)−1 (T − Tn)
(︂
fλ − f̂λ

)︂
= (T + λ1)−1T (fλ − f0) + (T + λ1)−1 (Tn − T ) (fλ − f0) + λ(T + λ1)−1fλ

+ (T + λ1)−1gn + (T + λ1)−1 (T − Tn)
(︂
fλ − f̂λ

)︂
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We first consider bounding
⃦⃦⃦
T ν
(︂
fλ − f̂λ

)︂⃦⃦⃦
L2

for some ν ∈ (0, 1/2− 1/(4r)). By the

triangle inequality,⃦⃦⃦
T ν
(︂
fλ − f̂λ

)︂⃦⃦⃦
L2

≤
⃦⃦
T ν(T + λ1)−1T (fλ − f0)

⃦⃦
L2

+
⃦⃦
T ν(T + λ1)−1 (Tn − T ) (fλ − f0)

⃦⃦
L2

+ λ
⃦⃦
T ν(T + λ1)−1fλ

⃦⃦
L2

+
⃦⃦
T ν(T + λ1)−1gn

⃦⃦
L2

+
⃦⃦⃦
T ν(T + λ1)−1 (T − Tn)

(︂
fλ − f̂λ

)︂⃦⃦⃦
L2

.

Lemma 3.5 Lemma A2. Assume that there exists a constant c3 > 0 such that, for

any f ∈ L2, E⟨X, f⟩4L2
≤ c3(E⟨X, f⟩2L2

)2. Then for any ν > 0 such that 2r(1− 2ν) >

1, ⃦⃦
T ν(T + λ1)−1 (Tn − T )T−ν ⃦⃦

op = Op

(︂(︁
nλ1−2ν+1/(2r)

)︁−1/2
)︂
,

where ∥·∥op denotes the usual operator norm, i.e., ∥U∥op = sup{h:∥h∥L2
=1}∥Uh∥L2 for

an operator U : L2 → L2.

By an application of Lemma A2,

⃦⃦
T ν(T + λ1)−1 (T − Tn)

(︂
fλ − f̂λ

)︂ ⃦⃦
L2

≤
⃦⃦
T ν(T + λ1)−1 (T − Tn)T−ν ⃦⃦

op ∥T
ν
(︂
fλ − f̂λ

)︂
∥L2

≤ op(1)
⃦⃦⃦
T ν
(︂
fλ − f̂λ

)︂⃦⃦⃦
L2

whenever λ ≥ cn−2r/(2r+1) for some constant c > 0. Similarly,

⃦⃦
T ν(T + λ1)−1 (Tn − T ) (fλ − f0)

⃦⃦
L2

≤
⃦⃦
T ν(T + λ1)−1 (Tn − T )T−ν ⃦⃦

op ∥T
ν (fλ − f0)∥L2

≤ op(1) ∥T ν (fλ − f0)∥L2
.

Therefore,⃦⃦⃦
T ν
(︁
fλ − f̂λ

)︁⃦⃦⃦
L2

= Op

(︂⃦⃦⃦
T ν(T + λ1)−1T

(︁
fλ − f0

)︁⃦⃦⃦
L2

+ λ
⃦⃦⃦
T ν(T + λ1)−1fλ

⃦⃦⃦
L2

+
⃦⃦⃦
T ν(T + λ1)−1gn

⃦⃦⃦
L2

)︂
.
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By Lemma A1,

⃦⃦
T ν(T + λ1)−1T (fλ − f0)

⃦⃦
L2
≤
⃦⃦
T ν(T + λ1)−1T 1−ν ⃦⃦

op ∥T
ν (fλ − f0)∥L2

≤ ∥T ν (fλ − f0)∥L2

≤ (1− ν)1−νννλν ∥f0∥L2
.

Lemma 3.6 Lemma A3. When 0 ≤ ν ≤ 1/2,

⃦⃦
T ν(T + λ1)−1gn

⃦⃦
L2

= Op

(︂(︁
nλ1−2ν+1/(2r)

)︁−1/2
)︂
.

Lemma A3 and the preceding result imply that⃦⃦⃦
T ν
(︂
fλ − f̂λ

)︂⃦⃦⃦
L2

= Op

(︂
λν +

(︁
nλ1−2ν+1/(2r)

)︁−1/2
)︂
= Op (λ

ν) ,

provided that c1n−2r/(2r+1) ≤ λ ≤ c2n
−2r/(2r+1) for some constants c1 and c2 satisfying

0 < c1 < c2 <∞.

Recall that

⃦⃦
T 1/2

(︁
fλ − f̂λ

)︁⃦⃦
L2

=
⃦⃦
T 1/2(T + λ1)−1T

(︁
fλ − f0

)︁⃦⃦
L2

+
⃦⃦
T 1/2(T + λ1)−1

(︁
Tn − T

)︁(︁
fλ − f0

)︁⃦⃦
L2

+ λ
⃦⃦
T 1/2(T + λ1)−1fλ

⃦⃦
L2

+
⃦⃦
T 1/2(T + λ1)−1gn

⃦⃦
L2

+
⃦⃦
T 1/2(T + λ1)−1

(︁
T − Tn

)︁(︁
fλ − f̂λ

)︁⃦⃦
L2
,

so we can bound
⃦⃦⃦
T 1/2

(︂
fλ − f̂λ

)︂⃦⃦⃦
by bounding the five terms on the right-hand side

of the above equation. By Lemma A1,

⃦⃦
T 1/2(T + λ1)−1T (fλ − f0)

⃦⃦
L2
≤
⃦⃦
T 1/2(T + λ1)−1T 1/2

⃦⃦
op

⃦⃦
T 1/2 (fλ − f0)

⃦⃦
L2

≤ 1

2
λ1/2 ∥f0∥L2

.

Lemma 3.7 Lemma A4. Under the conditions of Lemma A2,

⃦⃦
T 1/2(T + λ1)−1 (Tn − T )T−ν ⃦⃦

op = Op

(︂(︁
nλ1/(2r)

)︁−1/2
)︂
.
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By Lemmas A1 and A4,

⃦⃦
T 1/2(T + λ1)−1

(︁
Tn − T

)︁(︁
fλ − f0

)︁⃦⃦
L2

≤
⃦⃦
T 1/2(T + λ1)−1

(︁
Tn − T

)︁
T−ν ⃦⃦

op

⃦⃦
T ν
(︁
fλ − f0

)︁⃦⃦
L2

≤ Op

(︁(︁
nλ1/(2r)

)︁−1/2
λν
)︁

= op
(︁(︁
nλ1/(2r)

)︁−1/2)︁
.

Similarly,

⃦⃦
T 1/2(T + λ1)−1

(︁
Tn − T

)︁(︁
fλ − f̂λ

)︁⃦⃦
L2

≤
⃦⃦
T 1/2(T + λ1)−1

(︁
Tn − T

)︁
T−ν ⃦⃦

op

⃦⃦
T ν
(︁
fλ − f̂λ

)︁⃦⃦
L2

≤ Op

(︁(︁
nλ1/(2r)

)︁−1/2
λν
)︁

= op
(︁(︁
nλ1/(2r)

)︁−1/2)︁
.

By Lemma A3,
⃦⃦
T 1/2(T + λ1)−1gn

⃦⃦
L2

= Op

(︂(︁
nλ1/(2r)

)︁−1/2
)︂
.

Finally, together with the fact that λ
⃦⃦
T 1/2(T + λ1)−1fλ

⃦⃦
L2

= O(λ), we conclude

that ∥T 1/2(fλ − f̂λ)∥L2 = Op(n
− 2r

2r+1 ), as desired.
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Chapter 4

Semi-functional Smoothed Score
Classification in Reproducing Kernel
Hilbert Space

This chapter considers the challenge of estimating the smoothed score (SS) classifier,

integrating both functional and scalar covariates in order to make predictions for

binary responses. The general binary response model has the form [70]

Y =

{︄
1, if f(R,γ) ≥ 0,

−1, otherwise,
(4.1)

where Y ∈ {−1, 1} is a binary dependent variable, R is a vector of explanatory

variables, f is a function that may or may not be known a priori, and γ is a vector

of parameters whose values must be estimated from observations. In plain settings,

model (4.1) is assumed to be linear, i.e., f(R,γ) = R⊤γ, where R, γ ∈ Rp.

In recent decades, the accessibility of more intricate and structured datasets has

significantly expanded, owing to booming technological innovations. A substantial

portion of these datasets falls under the category of functional data. While func-

tional data are frequently observed along a one-dimensional continuum, this frame-

work also encompasses observations in higher-dimensional domains, such as 2D or

3D image data, time-space data, as well as observations conducted on manifolds and

other non-Euclidean domains. Typical functional datasets include the Canadian daily

temperature over one year, stock price, fMRI medical records, etc. As the high- or
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infinite-dimensional structured data contain rich information, leveraging them can

greatly enhance the prediction accuracy of a model.

A natural generalization is to incorporate an additional functional predictor X(t)

into model (4.1) such that f(X,R;θ) =
∫︁
X(t)β(t)dt+R⊤γ. The partial functional

binary response model is therefore presented as:

Y = sign

(︃∫︂
X(t)β(t)dt+R⊤γ

)︃
, (4.2)

where sign(u) = 1, if u ≥ 0, and −1 otherwise. Our goal is to estimate the coefficient

θ := [β(t),γ] that minimizes the disagreement between Y and the right-hand side

of (4.2). Formally, suppose that {xi, ri, yi}ni=1 are n i.i.d copies of (X(·),R, Y ) that

follows an unknown distribution P = P (X(·),R, Y ). Then the true value of θ is

defined as

θ∗ = argmin
θ

{︁
w(−1)P (f(X,R;θ) ≥ 0, Y = −1)

+ w(1)P (f(X,R;θ) < 0, Y = 1)
}︁
,

(4.3)

where w(·) is a prespecified misclassification cost. We estimate θ∗ through minimizing

an empirical risk, as (4.3) can be rewritten as

θ∗ = argmin
θ

E {w(Y )L01 (Y f (X,R;θ))} , (4.4)

where L01(u) =
1
2
{1− sign(u)} is the 0-1 loss.

Our work is primarily driven by the urgent necessity to develop statistical method-

ologies tailored to handle electronic health records (EHR) data in clinical research,

which exhibit diversity, high dimensionality, and inherent structures. Specifically,

our focus centers on the analysis of data originating from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), a valuable repository of genetic, functional neu-

roimaging, and clinical data. This data resource enables the development of robust

diagnostic tools, facilitating early detection and intervention in Alzheimer’s disease

(AD). AD is a debilitating and progressive neurological disorder that afflicts millions

of individuals worldwide, compounded by the lack of effective treatment options.
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With the global population aging, the prevalence of AD is projected to surge, render-

ing it a significant public health concern.

The dataset under investigation comprises functional observations collected via

diffusion tensor imaging (DTI), in conjunction with AD status, mini-mental state ex-

amination (MMSE) scores, and other scalar demographic attributes such as age and

gender. By harnessing the MMSE scores acquired directly from patients, we can as-

certain the minimal clinically important difference for AD, as previously investigated

by [9] and [45].

Another significant application of the SS classifier resides in the realm of person-

alized medicine. Clinical evidence has underscored the considerable heterogeneity in

patient responses to identical treatments. Consequently, the task of designing the

most effective treatment for each individual has garnered substantial attention and

has evolved into a foundational issue in personalized medicine. In the context of

estimating optimal individualized treatment regimes (ITR), let’s denote a contin-

uous outcome variable as S, where higher values signify improved conditions, and

Y ∈ {−1, 1} stands for the assigned treatment. An ITR D(·) is a map into treatment

Y so that a patient presenting with (X,R) = (x, r) is recommended to receive a

specific treatment D(x, r). The optimal ITR D∗ [204] is defined as the minimizer of

E

[︃
S

π(Y |X,R)
1(Y ̸= D(X,R))

]︃
,

where 1 is the indicator function, and π(Y | X,R) = P (Y = 1|X,R) is known

as the propensity score. Assuming D(X,R) takes the form of sign(f (X,R;θ)) in

model (4.2), the optimal ITR is reduced to the problem (4.3) with the weight w(Y ) =

S/π(Y |X,R).

As indicated above, estimating θ∗ defined in (4.3) can be accomplished through

minimizing an empirical risk function. In light of the formulation in (4.4), the prob-

lem we want to address is closely related to classification problems [5], but functional

covariates are taken into consideration in our setting. There exists wide literature on
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functional data classification. For regression-based functional classification models,

popular approaches are among functional generalized linear models [74, 122, 123], for

instance, the logistic regression dealing with a binary response and a functional co-

variate. An alternative to regression-based functional classification stands on linear or

quadratic discriminant analysis methods. [34, 35] established the theoretical support

for asymptotically vanishing misclassification rates for them. [191] further extended

linear discriminant analysis to high-dimensional functional covariates through an ap-

propriate regularization. Interested readers may refer to [182] for a more detailed

review.

Another class of classifiers is constructed through minimizing an empirical risk

function, for instance, large margin classifiers, which are more relevant to our work.

Among these classifiers, the support vector machines (SVM) [32, 174], have been

extensively studied. The non-asymptotic error bound was established in Blanchard et

al. [10]. Multiple variants of SVM have been proposed, including the weighted SVM

[40, 103], robust truncated SVM [139, 188], and distance-weighted discrimination

(DWD) classifier [112, 177]. Recently Sang et al. [158] extended the DWD classifier

to functional data and developed its theoretical properties.

Despite their wide success, it is essential to remain aware of potential limitations

of the SVM. Firstly, SVM classifiers exhibit sensitivity to noisy training data [165,

188]. When outliers are significantly distant from their respective class boundaries

in the training data, SVM classifiers are highly influenced by these points due to the

unbounded hinge loss. Another noticeable drawback is that the number of support

vectors can be quite large, especially in problems with numerous scalar covariates,

not to mention the infinite-dimensional functional data in our case. Fitting an SVM

classifier with a substantial number of support vectors can be time-consuming.

We propose the smoothed score approach to address the aforementioned issues as-

sociated with SVM classifiers, by utilizing a bounded smooth loss function inspired by

[46] and [71]. Estimating the effect of the functional covariate, which is represented
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as β(t) in model (4.2), entails dimension reduction, as β(t) is an infinite-dimensional

parameter. In the literature, functional principal component analysis (FPCA) is a

popular dimension reduction method. Achieving a good estimate of the true FPCs of

X is essential to ensure desirable theoretical properties of an estimator of β. However,

this entails stringent assumptions on the covariance function of X [61]. In contrast,

using the reproducing kernel Hilbert space (RKHS) framework can circumvent such

assumptions; see [198] and [16] for more detailed discussions. Moreover, FPCA may

introduce artificial irregularities in the estimate due to the discontinuous roughness

control through the choice of the number of retained FPCs. Under the RKHS frame-

work, we impose a penalty on the roughness of β, which leads to a continuous control

with a smoothing parameter.

We would like to highlight that model (4.2), is closely related to, but fundamentally

different from, the standard classification task whose main objective is to accurately

predict the class label Y based on f(X,R;θ). This distinction can be explained

by the fact that popular classification techniques, for instance, SVM and AdaBoost,

often aim to minimize an empirical risk using a convex upper bound for the L01 loss

considered in (4.4) [5]. Under certain conditions, the minimizer of these surrogate

losses may agree with the Bayes rule, which is defined as the minimizer of the L01

loss. However, as argued in [46], using such surrogate loss functions may lead to

an unreliable estimate of θ∗. Besides the prediction accuracy, we are also interested

in constructing a consistent estimator, which entails an appropriate surrogate loss

function whose minimizer coincides with θ∗.

In this chapter, we introduce a class of loss functions designed to meet the afore-

mentioned needs. The estimator of θ∗ is obtained from minimizing a regularized

empirical risk with this class of loss functions. We develop an efficient algorithm to

solve the minimization problem.

The Fisher consistency and the generalization capacity of our SS estimator are

established. A notable aspect of our work is its generality compared to [46], as our
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model encompasses both functional and scalar covariates, thereby enhancing predic-

tion accuracy and interpretability. The generalization theory quantifies the optimal

classification performance concerning the training sample size and the class of can-

didate decision functions. It not only provides insights into why the SS classifier is

expected to yield high-accuracy performance but also elucidates the trade-off between

the choice of the tuning parameter and the size of the candidate function class.

As the other significant contribution of this work, we also establish the near optimal

minimax rate in prediction, aligning the results in [16] and [202]. The rate, depending

on a bandwidth parameter, is established by using the Rademacher complexity, which

in turn is characterized by the eigenvalues of a certain compact operator defined

through the RKHS and the covariance operator of the functional covariate.

On the computational front, we develop a proximal gradient algorithm to tackle

the non-convexity of the SS loss function, ensuring benign estimation within a con-

vex constraint set. Extensive simulations and a real-world data example demonstrate

superior prediction and estimation performance compared to some widely used clas-

sifiers.

The remainder of the paper is organized as follows. In Section 4.1, we introduce

the RKHS-based smoothed score classifier for the functional partial linear model.

Theoretical properties of the proposed classifier are established in Section 4.2. We

carry out extended simulation studies and a real data application in Section 4.3 to

investigate the finite sample performance of the SS functional classifier. We conclude

this article in Section 4.4. All technical proofs are provided in the Supplementary

Material.
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4.1 Methodology

4.1.1 Smoothed score loss

Let K(t) be a symmetric kernel function satisfying
∫︁
K(t)dt = 1, and h > 0 be a

bandwidth hyperparameter. We consider a class of smoothed score (SS) loss functions

defined as

Gh(u) = G(u/h) =

∫︂ ∞

u/h

K(t)dt =
∫︂

1{u ≤ th}K(t)dt. (4.5)

The function Gh serves as a differentiable surrogate of the L01 loss to make the

minimization problem in (4.4) tractable [46], as the L01 loss is known to be NP-hard

to optimize. It converges to 1(u < 0) for any fixed u ̸= 0 as the bandwidth parameter

h shrinks towards 0.

As illustrated in [46], Gh(·) falls into a quite broad and inclusive class of surrogate

loss functions. It can be generalized to the ramp loss, ψ-loss [165], or other variants,

for example, the truncated hinge loss [188]. The key to its success resides in incorpo-

rating the bandwidth parameter h in the objective function and shrinking it towards

0 with a proper rate.

Given the surrogate loss Gh, we then define the surrogate risk function

Sh(θ) = E[w(Y )Gh(Y f(X,R;θ))] (4.6)

and its empirical counterpart

Snh(θ) :=
1

n

n∑︂
i=1

w(Yi)Gh(Yif(Xi,Ri;θ)).

Our goal is to estimate the optimal slope function β0(t) and the coefficient vector γ0

that minimize the smoothed score function Sh through minimizing Snh.

The SS loss borrows the idea from the smoothed maximum score estimator, which

was introduced by Horowitz [71] for the linear binary response model (4.1). Under the

assumption that the median of noise random variable U conditional on predictors is

0, it is the binary-response analog of the least-absolute-deviation estimator of a linear
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median regression model. Since the heteroskedasticity of U with an unknown form

is accommodated in the estimation, one does not need to know the form of relation

between predictors X and the distribution of U . Therefore, the smoothed maximum

score estimator is in a “model-free" regime.

4.1.2 RKHS and the penalized estimator

We assume that β0(·) resides in an RKHS H, a subspace of the collection of square-

integrable functions on I. To achieve desirable smoothness for the estimator, we

incorporate a penalty term J(β) as a regularization on the complexity of β, which is

commonly defined through a squared norm or semi-norm associated with H.

Without loss of generality we assume I = [0, 1] and take H as the Sobolev space

of order m, which is defined as

Wm
2 ([0, 1]) = {f : [0, 1]→ R, f, f (1), . . . , f (m−1)are absolutely continuous

and f (m) ∈ L2[0, 1]}.

According to Chapter 2.3 in [57], Wm
2 ([0, 1]) is an RKHS when endowed with the

(squared) norm

∥f∥2Wm
2
=

m−1∑︂
l=0

{︃∫︂ 1

0

f (l)(t)dt

}︃2

+

∫︂ 1

0

{︁
f (m)(t)

}︁2
dt.

Write H = H0⊕H1, where H0 = {β : J(β) = 0} is the null space of J(β). Then H0

is a finite dimensional space with basis functions {ϕ1, ϕ2, · · ·ϕm}, with dim(H0) = m.

Accordingly, we find the orthogonal complement of H0 in H, denoted by H1, which

also forms an RKHS with reproducing kernel K(·, ·) : I × I → R. The reproducing

kernel satisfies J(β) = ∥β∥2K = ∥β∥2H for any β ∈ H1, where the subscript K indicates

the correspondence between the inner product and the reproducing kernel.

We estimate θ = (β0(t),γ0) by minimizing the following penalized empirical smoothed

score function:

Snh,λ(θ) =
1

n

n∑︂
i=1

w(yi)G

(︃
yi

{︃∫︂
xi(t)β(t)dt+ riγ

}︃
/h

)︃
+ λJ(β)

= Snh(θ) + λJ(β).

(4.7)
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The first term of the objective function (4.7) measures how well the classifier fits

the data whereas the penalty functional J(β) assesses the plausibility of β. In the

second term, λ > 0 is a tuning parameter balancing the fidelity to the data and the

plausibility of β. We choose the roughness penalty as J(β) =
∫︁ 1

0

{︁
β(m) (t)

}︁2
dt in

Wm
2 ([0, 1]). To ease the notation, we write Sλ(θ) = Snh,λ(θ) unless confusion may

occur in the rest of the chapter.

4.1.3 Estimation and proximal gradient algorithm

As shown in Chapter 2.3 in [57], the reproducing kernel K, which is a nonnegative def-

inite operator on L2(I), is continuous and square-integrable. Denote
∫︁
I K(·, s)x(s)ds

by (Kx)(·) for any x ∈ L2(I). The estimation of β0(t) relies on the following theorem.

Theorem 4.1 Assume β̂n(t) is the solution to (4.7). Then β̂n(t) is a linear combi-

nation of the basis functions ϕ1, ϕ2 · · ·ϕm and representers Kx1, Kx2 · · ·Kxn:

β̂n(t) =
m∑︂
i=1

diϕi(t) +
n∑︂
j=1

cj(Kxj)(t), (4.8)

where d = (d1, d2, · · · dm)⊤ ∈ Rm, and c = (c1, c2, · · · cn)⊤ ∈ Rn.

Theorem 4.1 is a generalization of the well-known representer lemma for smoothing

splines [175]. It indicates that the solution to the minimization problem (4.7) has a

finite expansion based on {K(·, xj) : j = 1, . . . , n} and {ϕi : i = 1, . . . ,m}. Therefore,

the estimation of infinite dimensional β̂n(t) is converted to the estimation of finite-

dimensional coefficients d and c. We have by Theorem 4.1 that∫︂
I
X(t)β̂n(t)dt =

m∑︂
i=1

di

∫︂
I
X(t)ϕi(t) dt+

n∑︂
j=1

cj

∫︂
I

∫︂
I
X(t)K(s, t)Xj(s) ds dt.

Let Y = (y1, y2, . . . , yn)
⊤, T denote the n × m matrix with the (i, j)th entry

Tij =
∫︁
I Xi(t)ϕj(t) dt for i = 1, . . . , n, j = 1, . . . ,m, and T i denotes the ith row

of matrix T . Similarly, let Σ be the n × n matrix with the (i, j)th entry Σij =∫︁
I

∫︁
I Xi(t)K(s, t)Xj(s) ds dt for i = 1, . . . , n and j = 1, . . . , n, and Σi be the ith row
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of matrix Σ. It follows from the reproducing property that

J(β) =
n∑︂
i=1

n∑︂
j=1

cicj

∫︂
I

∫︂
I
Xi(t)K(s, t)Xj(s) ds dt = c

⊤Σc.

With a slight abuse of the notation, we aim to minimize the following empirical

smoothed score function:

Q(ζ) =
1

n

n∑︂
i=1

w(yi)G (yi (Tid+Σic+ riγ) /h) + λc⊤Σc (4.9)

to estimate ζ := [γ,d, c].

Though the nonsmoothness of L01 loss is tackled by utilizing the differentiable Gh

loss, Q(ζ) is inherently nonconvex. Thus retrieving the global minimizer of Q(ζ) is

yet intractable. We apply the proximal algorithm [125] to iteratively estimate ζ by

minimizing a sequence of quadratic approximation of Q(ζ) over a convex constraint

set1 Ω. The iterating steps are presented as follows until a stopping criterion is met:

ζk+1 = argmin
ζ∈Ω

{︃
Snh

(︁
ζk
)︁
+
⟨︁
∇Snh

(︁
ζk
)︁
,
(︁
ζ − ζk

)︁⟩︁
+

1

2η

⃦⃦
ζ − ζk

⃦⃦2
2
+ λc⊤Σc

}︃
= argmin

θ∈Ω

{︃
1

2η

⃦⃦
ζ − ζk + η∇Snh

(︁
ζk
)︁⃦⃦2

2
+ λc⊤Σc

}︃
,

(4.10)

where η is the step size to be specified later.

Due to the nonconvexity of Snh(ζ), there may exist multiple local minimizers of

Q(ζ). To further regularize the sequence of estimators, we force ζk+1 to stay in the

set Ω in each iteration in (4.10), where we assume Q(ζ) is well behaved in the sense

of [185].

Remark 4.1 To ensure appealing performance of the SS classifier, we require the

following restricted strong convexity (RSC) and restricted smoothness (RSM) [46]

hold over Ω. Particularly, there exists a set Ω = {ζ : ∥ζ∥2 ≤ B} for some B which
1This Ω will further align with Ω̄ in section 4.2 to guarantee its theoretical properties
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may increases with respect to n, such that ζ∗ ∈ Ω, and for any ζ, ζ ′ ∈ Ω,

Snh (ζ
′) ≥ Snh(ζ) +∇Snh(ζ)⊤ (ζ ′ − ζ) + 1

2
ρ− ∥ζ ′ − ζ∥22

and Snh (ζ
′) ≤ Snh(ζ) +∇Snh(ζ)⊤ (ζ ′ − ζ) + 1

2
ρ+ ∥ζ ′ − ζ∥22 ,

where 0 < ρ− ≤ ρ+ < +∞ are two constants.

This condition is crucial to the high statistical and computational efficiency of the

proximal gradient algorithm [46, 185]. The ρ−-strongly convexity and ρ+-smoothness

of the empirical risk is assumed in the set Ω. In general, as n→∞, the empirical risk

Snh(ζ) is strongly convex and smooth locally in Ω if the corresponding population

risk Sh(ζ) is strongly convex and smooth in the same region under mild conditions.

If we choose a proper smoothed score function such that Sh(ζ) is twice differentiable,

it amounts to saying that the minimal and maximal eigenvalues of the population

Hessian ∇2Sh(ζ) are bounded away from zero and infinity for ζ ∈ Ω [46].

Remark 4.2 For our smoothed score classifier, taking Ω = {ζ : ∥ζ∥2 ≤ B} where

∥ζ∗∥2 ≤ B, satisfies our need. Moreover, the smoothed score function G satisfies

(i) G′ has bounded support on [−1, 1], (ii) ∥G′∥∞, ∥G′′∥∞ and −
∫︁
G′′(v)vdv > 0 are

bounded from above by some universal constants. Such functions can be constructed

by orthogonal polynomial basis functions [172].

4.2 Theoretical Properties

In the current section, we develop theoretical results for the statistical performance

of the estimated SS classifier. We first build a non-asymptotic upper bound on the

generalization ability of the estimated classifier compared with the Bayes classifier,

and furthermore, derive the nonstandard statistical convergence rate for the estimator.

Let X be a subspace of L2(I) × Rp. The tuple Z = (X,R, Y ) denotes a random

object taking values in X×{−1, 1}, and {zi = (xi, ri, yi)}ni=1 are n i.i.d copies of Z. We

shall use ˜︁X and x̃ to denote (X,R) and (x, r), respectively. Without loss of generality,
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we assume that the weight function w(y) is known, and choose w(y) = 1/P (Y = y)

in the rest of this section.

4.2.1 Generalization error of the SS classifier

Condition 4.1 There exists a constant c ∈ (0, 1/2) such that c ≤ P (Y = 1) ≤ 1− c.

Condition 4.1 ensures that the weight function w(y) is bounded away from 0 and

infinity. In our learning problem, we examine classification accuracy on inputs outside

the training sample via an error function that measures the generalization ability [165].

The error function, denoted as generalization error (GE), is defined as

Err(f) = P (w(Y )Y f(X,R) < 0) =
1

2
E[w(Y ){1− sign(Y f( ˜︁X))}]. (4.11)

Its empirical version, denoted as the empirical GE (EGE), is given by

(2n)−1

n∑︂
i=1

w(Yi){1− sign(Yif( ˜︁Xi))}.

If we knew the function p(x̃) = P (Y = 1| ˜︁X = x̃), we would be able to identify the

optimal classification hyperplane that minimizes equation (4.11):

fB(x̃) = p(x̃)− w(1)

w(1) + w(−1)
.

We measure the learning accuracy of a generic classifier f by the difference between

the actual and ideal performances, denoted as Er(f, fB) = Err(f)− Err(fB). For an

arbitrary loss function ℓ other than L01(u) = {1 − sign(u)}/2, the associated risk

function for a classifier f is defined correspondingly as

L(f, fB) := E[ℓ(f)− ℓ(fB)]. (4.12)

We next build a non-asymptotic upper bound on the Er(f̂ , fB) as a function of the

tuning parameter λ and sample size n, in terms of the bandwidth parameter h and

the size of the candidate classification sets G(F) = {Gf = {x̃ : f(x̃) ≥ 0} : f ∈ F},

generated by the function class F comprising candidate decision functions. The class
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F can depend on sample size n [166]. For our theory, the ideal optimal classification

set GfB = {x̃ ∈ X : fB(x̃) ≥ 0} is not confined to G(F). Rather, we assume

f̄ = sign(fB) can be perfectly approximated by F . The theoretical results are built

upon the size of G(F), measured by the metric entropy to be defined.

In particular, we take ℓ as Sh defined in equation (4.12), and L(f, fB) = {Sh(f)−

Sh(fB)}. We consider the following conditions to study theoretical properties for the

estimated SS estimator:

Condition 4.2 For some positive sequence sn → 0 as n → ∞, there exists f0 ∈ F

such that L(f0, f̄) ≤ sn/2, i.e., inff∈F L(f, f̄) ≤ sn/2.

Condition 4.3 There exist some constants 0 < α ≤ +∞ and c1 > 0 such that

P (x̃ ∈ X : |fB(x̃)| ≤ δ) ≤ c1δ
α for any sufficiently small δ ≥ 0.

Condition 4.3 essentially imposes an Hölder type of regularity that describe the

performance of the Bayes hyperplane fB near the decision boundary {x̃ : fB(x̃) = 0}.

To characterize the size of G(F), we provide a formal definition of the metric entropy

for any measurable sets. Let d(·, ·) denote a distance in X, satisfying d (G1, G2) =∫︁
{G1∆G2} dP = P (G1∆G2) for any G1, G2 ∈ X, where G1∆G2 = (G1\G2) ∪ (G2\G1)

denotes the set difference between G1 and G2. For a given class B of subsets of X

and any ε > 0, define an ε-bracketing set of B, denoted as {(Gl
1, G

u
1), . . . , (G

l
m, G

u
m)},

by any set that satisfies for any G ∈ B there is a j such that Gl
j ⊂ G ⊂ Gu

j and

max1≤j≤m d(G
u
j , G

l
j) ≤ ε. Then the metric entropy H(ε,B) of B with bracketing is

defined as the logarithm of the cardinality of an ε-bracketing set of B of the smallest

size.

Define

G(k) = {Gf = {x̃ : f(x̃) ≥ 0} : f ∈ F , J(f) ≤ k}

⊂ G(F) = {Gf = {x̃ : f(x̃) ≥ 0} : f ∈ F , J(f) < +∞} ,

where J(f) is the penalty term ∥β∥2H as defined previously and J0 = max(J(β0), 1).
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Condition 4.4 For some positive constants c2, c3 and c4, define

ϕ (εn, k) =

∫︂ c
1/2
3 L

α
2(α+1)

c4L

H1/2
(︁
u2/2,G(k)

)︁
du/L,

where L = L (εn, λ, k) = min (ε2n + λJ0(k/2− 1), 1). There exists some εn > 0 such

that

sup
k≥1

ϕ(εn, k) ≤ c2n
1/2.

In our case, c2 = 2−23/2, c3 = max{2(1+2α)/α[4(4c1)
1

α+1+1]+2(1+α)/α, 8}, and c4 = 2−6.

The following lemma indicates that our SS classifier approximates the Bayes clas-

sifier f̄(x̃) = sign(fB(x̃)). This constitutes a crucial feature of the SS loss. It demon-

strates the feasibility of achieving optimal classifier fB by replacing the L01 loss with

the Sh function.

Lemma 4.2 For any G defined in equation (4.5), the Bayes classifier f̄(x̃) = sign(fB(x̃))

minimizes both ESh(f( ˜︁X)) and Err(f( ˜︁X)). That is, for any f , we have

ESh(f( ˜︁X)) ≥ ESh(f̄( ˜︁X)), and

E

[︃
1

2
w(Y ){1− sign(Y f̄( ˜︁X))}

]︃
≤ E

[︃
1

2
w(Y ){1− sign(Y f( ˜︁X))}

]︃
, as h→ 0.

Remark 4.3 The minimizers for ESh(f( ˜︁X)) and E[1
2
w(Y )(1 − sign(Y f( ˜︁X)))] are

not necessarily unique. For example, cfB is also a minimizer for both quantities for

any constant c ≥ 1. By Lemma 4.2 and condition 4.2, we could choose sufficiently

small hn, such that Er(f0, fB) ≤ L(f0, f̄) + sn/2 ≤ sn.

Theorem 4.3 Suppose that Conditions 4.1 - 4.4 are met. There exists a constant

c5 > 0, such that the estimated SS classifier sign(f̂) satisfies

P
(︂
Er(f̂ , fB) ≥ δ2n

)︂
≤ 3.5 exp

(︃
−c5nλ

α+2
α+1J

α+2
α+1

0

)︃
,

provided that h→ 0 and λ−1 ≥ 2δ−2
n J0, where δ2n = min (max (ε2n, sn) , 1).
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Corollary 4.4 Under the conditions of Theorem 4.3 ,⃓⃓⃓
Er(f̂ , fB)

⃓⃓⃓
= Op

(︁
δ2n
)︁
,

E
⃓⃓⃓
L(f̂ , fB)

⃓⃓⃓
= O

(︁
δ2n
)︁
,

provided that n (λJ0)
α+2
α+1 is bounded away from 0.

Theorem 4.3 and Corollary 4.4 illustrate the trade-off between the magnitude of λ

and the risk bounds on Er(f̂ , fB); the best performance is achieved when λ gives the

best balance between the size of G(F) and n. In applications, we need to verify that

the assumptions are satisfied for sn → 0 and εn → 0, and then choose the optimal

δn. The optimal λ that yields the best rate δ2n for the SS classifier is determined by

two constrains: one is λ ≤ (2J0)
−1δ2n and the other is J0λ = O

(︂
n−α+1

α+2

)︂
. To entertain

bothe of them, we choose λ of order of (J0)−1δ2n. Consequently, if α = ∞, then the

bound in Theorem 4.3 becomes 3.5 exp (−c5nδ2n); if α → 0, then the bound reduces

to 3.5 exp (−c5nδ4n).

4.2.2 Convergence rate of SS estimator

We will establish convergence rate of SS estimator based on surrogate loss Gh(·).

Specifically, the following result highlight that the estimated coefficient will coincide

with θ∗ in (4.3) when h→ 0+.

Proposition 4.5 For any coefficient θ, if θ̃ minimizes Sh(θ) in (4.6), then θ∗ = θ̃

when h→ 0+.

With a little abuse of notation, we define β∗ and γ∗ to minimize the smoothed

score risk (4.6), recall that β∗ resides in a RKHS H and γ∗ ∈ Rp. By Proposition 4.5,

we have

(β∗,γ∗) = arg min
θ∈H×Rp

E[w(Y )Gh(Y f(X,R))].

Our penalized SS estimator can be written as

(β̂, γ̂) = arg min
β∈H,γ

Snh(β,γ) + λJ(β), (4.13)
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where J(β) = ∥β∥2K , and

Snh(β,γ) =
1

n

n∑︂
i=1

w(yi)G

(︃
yi

(︃∫︂
xi(t)β(t)dt+ riγ

)︃
/h

)︃
.

Note that ∥·∥K is a norm ofHK associated with a positive definite kernelK in compact

set I × I, which is deduced by RKHS inner product ⟨·, ·⟩K . Since H = H0 ⊕H1, we

write β = β0 + β1 with β0 ∈ H0 and β1 ∈ H1, for any β ∈ H. So, we have

(β0̂, β1̂, γ̂) = arg min
β0∈H0,β1∈H1,γ

Snh(β0, β1,γ) + λ ∥β1∥2K , (4.14)

and

Snh(β0, β1,γ) =
1

n

n∑︂
i=1

w(yi)G (yi (⟨xi, β0 + β1⟩L2 + riγ) /hn) .

Although the SS loss function avoids the discontinuity of the 0-1 loss, it is generally

nonconvex. Therefore, the global solution to (4.13) or (4.14) is still intractable. To

address this issue, we restrict true value (β∗
0 , β

∗
1 ,γ

∗) and the local minimizer to a

convex set Ω̄ =
{︁
(β0, β1,γ) : ∥β0∥L2

≤ R, ∥β1∥L2
≤ R, ∥γ∥2 ≤ R

}︁
} for some R > 0.

One key feature of RKHS is the reproducing property, which implies that β1(t) =

⟨β1, Kt⟩K for any β1 ∈ Hk and t ∈ I, where Kt(·) = K(t, ·). With abuse of no-

tation, denote also by K the linear operator, that is, K : L2 → H1 satisfying

Kβ =
∫︁
K(·, s)β(s)ds ∈ H1 for β ∈ L2. Since H1 is identical to the range of K1/2, the

square-root operator of K. Define the covariance operator of X as Γ = E(X ⊗ X),

which is a linear operator, where f ⊗ g : L2 → L2, (f ⊗ g)h = ⟨g, h⟩f for f, g ∈ L2,

and any h ∈ L2.

Define T = K1/2ΓK1/2, which will play a critical role in the theoretical analysis.

Assuming E ∥X∥4 < ∞, then Γ and T are compact operators. By the Mercer’s

Theorem, we have a spectral expansion for T :

T =
∞∑︂
j=1

ujψj ⊗ ψj,

where u1 ≥ u2 ≥ · · · ≥ 0 are the eigenvalues with uj → 0 and {ψj} are their

orthonormalized eigenfunctions. In addition, we consider the following Rademacher
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complexity

E

[︄
sup

(β0,β1,γ)∈F

1

n

n∑︂
i=1

σi (⟨xi, β0 + β1⟩L2 + riγ)

]︄
,

where F = {(β0, β1,γ) :
⃦⃦
Γ1/2β0

⃦⃦
L2
≤ v1,

⃦⃦
Γ1/2β1

⃦⃦
L2
≤ v1, ∥β1∥HK

≤ 1, ∥γ∥2 ≤ v2},

and σi ∈ {−1, 1} are i.i.d. Rademacher variables. In the Proof section, we will show

the bound on the above Rademacher complexity depends on

R(v) =

{︄
1

n

n∑︂
j=1

min(uj, v
2)

}︄1/2

.

To establish the convergence rate of the estimator, we further impose the following

conditions.

Condition 4.5 Both X and components of R are sub-Gaussian.

Condition 4.6 E
{︁
[⟨X, β⟩+Rγ]2

}︁
≍ E [⟨X, β⟩2 + (Rγ)2] for all β ∈ H, and γ ∈

Rp, where a ≍ b means 0 < C1 ≤ a/b ≤ C2 < ∞. Additionally, E(RTR) has

eigenvalues bounded away from zero and infinity.

Condition 4.7 The eigenvalues uj ≤ Cj−µ for some µ > 1.

Condition 4.8 There exists a set ˜︁Ω =
{︁
(β,γ) : ∥β∥2H + ∥γ∥22 ≤ B

}︁
for some B,

such that (β∗,γ∗) ∈ ˜︁Ω, and for any (β,γ) ∈ ˜︁Ω,

S̄h ([⟨X, β⟩+Rγ])− S̄h([⟨X, β∗⟩+Rγ∗]) ≥ 1

2
ρ∗−E [⟨X, β − β∗⟩+R(γ − γ∗)]2 ,

where 0 < ρ∗− < +∞ is a constant, and

S̄h ([⟨X, β⟩+Rγ]) := E [w(Y )Gh(Y ([⟨X, β⟩+Rγ]))] .

Condition 4.9 The bandwidth hn, which is dependent on n, satisfies hn → 0 and

h
(1−ν)
n n

µ
2(µ+1) →∞ as n→∞ for some 0 < ν < 1.

Remark 4.4 The sub-Gaussian assumption in Condition 4.5 is frequently adopted in

high-dimensional analysis for applying concentration inequalities, and this condition
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holds if X is a Gaussian process and R follows a multivariate normal distribution.

For Condition 4.6, the first part indicates that the correlation between X and R is

weak. Further, under Condition 4.6, we have

E
{︁
[⟨X, β⟩+Rγ]2

}︁
≍ E

[︁
⟨X, β0⟩2L2

+ ⟨X, β1⟩2L2
+ ∥γ∥22

]︁
, (4.15)

for all β = β0 + β1 ∈ H0 ⊕H1, and γ ∈ Rp.

Condition 4.7 is also considered in [198], which specifies the smoothness of the lin-

ear operator T . The eigenvalues of the reproducing kernel in some Sobolev satisfy this

condition; interested readers may refer to [198] and [163]. Condition 4.8 essentially

serves as a qualification of the identifiability condition of the objective function at

local minimum (β∗,γ∗). Moreover, Condition 4.8 renders S̄h to be restricted strong

convex at the local minimum (β∗,γ∗), as ∇S̄h([⟨X, β∗⟩+Rγ∗]) = 0. Condition 4.9

requires that the bandwidth used in Gh for defining the SS loss function cannot decay

too fast with respect to n.

Theorem 4.6 Assume that Conditions 4.1 and 4.5-4.9 hold. If λ ≍ h
−(1−ν)
n n− µ

µ+1 is

met for some 0 < ν < 1, we have⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2 = Op

(︂
h−(1−ν)
n n− µ

2(µ+1)

)︂
.

Further, ⃦⃦⃦
Γ1/2(β̂ − β∗)

⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2 = Op

(︂
h−(1−ν)
n n− µ

2(µ+1)

)︂
.

Remark 4.5 The rate h
−(1−ν)
n n− µ

2(µ+1) is typically slower than the optimal conver-

gence rate in kernel smoothing. For example, the rate is n− µ
2(µ+1) for functional

linear mean regression in [16], n− µ
2(µ+1) log n for partially linear functional quantile

regression in [192], and n− µ(1+2r)
2(µ(1+2r)+1) with some r ∈ [0, 1/2] for functional partially

linear support vector machine in [202]. Letting ν = 1/2, hn ≍ n− 1
2(µ+1) , we have

h
−(1−ν)
n n− µ

2(µ+1) = n− 2µ−1
4(µ+1) , which is close to the rate in [16] and [202].
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Remark 4.6 From Theorem 4.6 and the second part of Condition 4.6, the conver-

gence rate of the prediction risk can be established as

E⋆

[︃(︂
⟨X⋆, β̂ − β∗⟩+R⋆(γ̂ − γ∗)

)︂2]︃
= Op

(︂
n− 2µ−1

2(µ+1)

)︂
,

by taking ν = 1/2 and hn ≍ n− 1
2(µ+1) , where (X⋆,R⋆) is an independent copy of

(X,R), and E⋆ is the expectation over (X⋆,R⋆). It measures the mean squared pre-

diction error for a random future observation on (X,R). This convergence rate is

slightly slower than the optimal rate n− 2µ
2µ+1 in [16]. When the linear operator T is

sufficiently smooth, that is, µ is sufficiently large, they asymptotically converge to

Op(n
−1), which attains the parametric rate.

4.3 Numerical Studies

4.3.1 Simulations

This section showcases the finite-sample performance of the proposed functional SS

classifier under various data-generating processes. Each experiment is concerned with

the binary response model (4.2) where the discriminant function is defined as

f (Xi,Ri) =

∫︂ 1

0

Xi(t)β(t)dt+R
⊤
i γ, (4.16)

and Y = sign (f (Xi,Ri)) for i = 1, . . . , n. The functional covariate X is generated

in the following way [198]:

Xi(t) =
50∑︂
j=1

ξijζjϕj(t),

ξij
i.i.d.∼ Uniform(−

√
3,
√
3),

where ζj = (−1)j+1j−1for j = 1, . . . , 50, and ϕ1(t) = 1 and ϕj(t) =
√
2 cos((j −

1)πt), j ≥ 2 for t ∈ [0, 1]. Observations at 200 equally spaced times points in the

interval [0, 1] are made on each sample path of X(t). In (4.16), R = (R0, R1, R2)
⊤

denotes three scalar covariates with R0 = (1, . . . , 1)⊤, and (R1, R2) independently

generated from a truncated normal distribution within the interval [−2, 2].
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We consider two choices for the slope function β(t). In the first scenario, the slope

function is generated as a linear combination of the FPCs of X(t). Particularly,

β(t) =
∑︁50

j=1 4(−1)j+1j−2ϕj(t). The coefficient vector of the scalar covariates R takes

the values γ = (α,−2, 3)⊤ or (α, 0, 0)⊤ to ensure the discriminant function f depends

on the scalar covariates or not. The intercept α is set as 0.01 and 7 to make balanced

and imbalanced samples, respectively. In particular, we set α = 0.01 to generate the

samples where the proportion of y = −1, denoted by ρ in Table 4.1, stays around 0.5,

whereas α = 7 is chosen to generate samples with ρ = 0.05. In the second scenario,

we have β(t) = e−t, and γ = (α,−0.5, 1)⊤ or (α, 0, 0)⊤. The intercept α is set to be

0.01 or 3 to differ the value of ρ in a similar manner as in the first scenario.

Besides the proposed functional SS classifiers (SS in short), we also consider other

commonly used functional classifiers for comparison, including the functional logistic

regression (Logi in short) [38], the support vector machine (SVM in short) [202], and

the functional DWD classifier (DWD in short) [158]. For the proposed SS approach,

we choose the cumulative distribution function of the standard normal distribution

(Gaussian kernel) as the smoothed score function G that satisfies the requirements

in Remark 4.2. The optimal tuning parameters λ and bandwidth hn are selected

through five-fold cross-validation.

In each simulation trial, we randomly generate a training set of size n = 200, 500,

and 700 to fit these classifiers and then evaluate their estimation and prediction

accuracy on a test sample of size 500. Additionally, we compare the estimation

errors of β(t) and γ for these functional classifiers. To assess the uncertainty in

the estimation and prediction accuracy of each classifier, 200 independent simulation

trials are conducted in each scenario.

Tables 4.1 and 4.2 summarize the means and the standard errors of the misclas-

sification rates for each classifier under these two designs of β. Figures 4.1 and 4.2

depict the L2 estimation errors of β̂, and l2 estimation errors of γ̂ regarding the afore-

mentioned functional classifiers over 200 simulation trials for various sample sizes,
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Table 4.1: The mean misclassification errors on the test sample across 200 simula-
tions with the standard errors in parentheses in Scenario 1. The columns ρ and γ
indicate the approximate proportion between two categories, whether or not the true
discriminant function depends on the scalar covariates.

n ρ γ SS Logi SVM DWD γ SS Logi SVM DWD

200 0.5 (0,0) 0.021 0.026 0.022 0.097 (-2,3) 0.021 0.023 0.020 0.116

(0.010) (0.014) (0.012) (0.042) (0.009) (0.011) (0.010) (0.042)

500 0.5 (0,0) 0.014 0.017 0.015 0.092 (-2,3) 0.013 0.016 0.014 0.106

(0.007) (0.009) (0.008) (0.038) (0.007) (0.008) (0.007) (0.043)

700 0.5 (0,0) 0.009 0.012 0.012 0.092 (-2,3) 0.008 0.011 0.011 0.116

(0.005) (0.005) (0.006) (0.041) (0.004) (0.005) (0.005) (0.043)

200 0.05 (0,0) 0.031 0.028 0.210 0.070 (-2,3) 0.017 0.022 0.169 0.079

(0.016) (0.015) (0.024) (0.016) (0.010) (0.014) (0.022) (0.018)

500 0.05 (0,0) 0.018 0.016 0.217 0.069 (-2,3) 0.008 0.012 0.017 0.075

(0.008) (0.007) (0.019) (0.014) (0.005) (0.007) (0.019) (0.019)

700 0.05 (0,0) 0.015 0.012 0.217 0.069 (-2,3) 0.007 0.006 0.172 0.078

(0.006) (0.005) (0.017) (0.015) (0.004) (0.004) (0.018) (0.019)

respectively.

In general, the value of the sample unbalance agent in the binary response model,

denoted by ρ under this context, has a great impact on the performance of the clas-

sifiers. Compared with balanced cases (ρ = 0.5), the misclassification rates and

estimation errors are relatively higher in almost all the unbalanced cases (ρ = 0.05).

However, the proposed SS classifier addresses this issue quite well through imposing

larger class weights for the small class Y = −1. In contrast, the alternative classifiers

without an appropriate adjustment cannot effectively tackle class imbalance. In par-

ticular, fluctuations appear in the SVM and DWD approaches. The functional DWD

classifier produces favourable results with a mean misclassification rate around 7%

compared with 18% given by the SVM with unbalanced samples. A possible reason

might be that the DWD classifier makes use of all observations in the training set,

rather than just the support vectors in SVM, to determine the decision boundary
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Table 4.2: The mean misclassification errors on the test sample across 200 simula-
tions with the standard errors in parentheses in Scenario 2. The columns ρ and γ
indicate the approximate proportion between two categories, whether or not the true
discriminant function depends on the scalar covariates.

n ρ γ SS Logi SVM DWD γ SS Logi SVM DWD

200 0.5 (0,0) 0.020 0.021 0.016 0.095 (-.5,1) 0.020 0.019 0.015 0.116

(0.010) (0.013) (0.011) (0.042) (0.011) (0.011) (0.010) (0.041)

500 0.5 (0,0) 0.009 0.010 0.009 0.092 (-.5,1) 0.009 0.011 0.009 0.106

(0.007) (0.007) (0.006) (0.037) (0.007) (0.008) (0.007) (0.040)

700 0.5 (0,0) 0.004 0.005 0.005 0.091 (-.5,1) 0.003 0.005 0.004 0.110

(0.003) (0.003) (0.003) (0.039) (0.003) (0.004) (0.003) (0.040)

200 0.05 (0,0) 0.029 0.023 0.208 0.080 (-.5,1) 0.018 0.020 0.178 0.073

(0.017) (0.014) (0.020) (0.017) (0.012) (0.013) (0.023) (0.019)

500 0.05 (0,0) 0.012 0.010 0.209 0.079 (-.5,1) 0.009 0.010 0.180 0.070

(0.008) (0.007) (0.018) (0.016) (0.006) (0.007) (0.019) (0.019)

700 0.05 (0,0) 0.008 0.005 0.201 0.078 (-.5,1) 0.006 0.004 0.172 0.071

(0.005) (0.004) (0.018) (0.017) (0.004) (0.003) (0.017) (0.016)

[112, 158]; thus it is more resilient in unbalanced training samples. When the sim-

ulated data are balanced with ρ = 0.5, the SS classifier still yields better results in

comparison with alternative methods.

Regarding the effect of scalar covariates, when γ = (α,−2, 3)⊤ in scenario one

or (α,−0.5, 1)⊤ in scenario two, the proposed functional SS classifier with scalar

covariates is superior to its competitors without incorporating the scalar variables in

terms of prediction. This fact demonstrates the importance of accounting for scalar

covariates when the true discriminant function indeed depends on them.

Finally, as sample size increases, the prediction and estimation errors will de-

crease. The simulation results of the SS classifier align with Theorems 4.3 and 4.6,

demonstrating the desirable generalization ability and the consistency of the proposed

estimator. The functional SS classifier generally outperforms the other three classi-

fiers especially when the sample size is relatively small and when there is a small
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Figure 4.1: The mean L2 estimation errors of β̂ over 200 simulation samples under four
scenarios, with the shade determined by standard deviations. Balanced/Unbalanced
represent the class proportion ρ = 0.5/0.05, respectively.

proportion of -1s. This suggests that the functional SS classifier is more efficient

in utilizing limited data and less sensitive to class imbalance, rendering it a robust

choice under various conditions. Additionally, in terms of accuracy in parameter es-

timation, we see that the SS approach yields lower estimation errors compared to

logistic regression, SVM and DWD under both scenarios of β(t). Therefore, the SS

functional approach outperforms other methods that do not have statistical guaran-

tees for estimation consistency, and tends to be more reliable than its competitors

when parameter estimation and model interpretation become the priority.

4.3.2 Application to ADNI data classification

We apply the proposed SS classifier as well as the alternatives considered in Section

4.3.1 to the ADNI dataset, which consists of N = 199 subjects after removing subjects
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Figure 4.2: Violin plots of the l2 estimation errors for estimating γ̂ over 200 simulation
samples under two scenarios. Balanced/Unbalanced represent the class proportion
ρ = 0.5/0.05, respectively.

with missing values. The data were obtained from the ongoing ADNI study, where

researchers are interested in identifying biomarkers of the AD from genetic, structural,

functional neuroimaging, and clinical data.

Figure 4.3: FA profiles of the two categories
The ADNI dataset mainly consists of two parts. The first part is the neuroimaging

data collected by DTI. Specifically, fractional anisotropy (FA) values were measured
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at 83 locations along the corpus callosum (CC) fibre tract for each subject. An

illustrative plot of all FA curves, which are treated asX(t) in our analysis, is presented

in Figure 4.3. It is shown that there exist differences in FA curves between the control

group and the AD group. The CC is the largest fibre tract in the human brain and

is a topographically organized structure. It is responsible for a large proportion of

communications between the two hemispheres and connects homologous areas in the

two cerebral hemispheres. Hence the transferring of visual, motoric, somatosensory,

and auditory information is largely ensured by CC. These facts explain why FA values

along the CC differ between these two groups. The other part consists of demographic

features like gender (a categorical variable), handedness (left hand or right hand, a

categorical variable), age, education level, mini-mental state examination (MMSE)

scores and AD status.

Figure 4.4: Boxplots of the misclassification rates on the test set and training set of
the classifiers where 70% of the data is used for training.

The AD status is a categorical variable with three levels: normal control (NC), mild

cognitive impairment (MCI), and AD. In our study, we combine the NC and MCI

categories into one level for classification, and then this status variable is treated as
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a binary response variable in our following analysis. There are N1 = 38 AD patients

in our analysis, accounting for 20% of the whole sample.

One can find a more detailed description of the ADNI data at http://adni.loni.usc.

edu/. There has been extensive research on this dataset; see [106, 158, 170] and [97] for

example. Our main objective is to use the FA trajectories and demographic features

to predict the status of AD to investigate the relationship between the progression of

AD status and the patient’s clinical measurements. The 199 subjects are randomly

divided into a training set with n = 0.7N subjects and a testing set with the other

N − n subjects. We randomly split the whole dataset into training and testing sets

200 times.

The testing and training errors are summarized in Figure 4.4. The proposed SS

classifier shares comparable results with the functional logistic regression in predic-

tion. Moreover, our SS classifier performs better than the SVM and DWD approaches.

To sum up, the SS classifier can be a good, even better, alternative to the off-the-shelf

classifiers like the SVM [46].

4.4 Discussion

In this chapter, we introduce a regularized Smoothed Score (SS) classifier within the

framework of RKHS to handle the classification of functional data. The SS loss is

quite versatile through adapting to distinct kernel functions. The RKHS framework

allows us to flexibly control the smoothness of the estimated projection direction,

resulting in enhanced prediction accuracy. Additionally, in contrast to some popular

off-the-shelf classifiers for functional data, we establish Fisher consistency for the

estimation of the slope function within the RKHS framework.

Our numerical studies underscore that the SS method exhibits favorable generaliza-

tion and estimation properties, surpassing the predictive performance of the logistic

regression, SVM and DWD classifiers. Notably, we develop a proximal gradient de-

scent algorithm to address the issue of non-convexity of the objective function in
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optimizations. The scalar covariates are also accounted for in our classifier in a linear

manner to achieve a good trade-off between flexibility and interpretability.

There are several potential directions for extending our work. First, to deal with the

case where the covariates Z are high-dimensional, imposing sparsity on the coefficient

vector γ is one possible solution to avoid overfitting. Second, in many practical

situations in clinical diagnostics, it is demanding to quantify the uncertainty of the

estimated slope function and conduct valid statistical inference. These goals entail

statistically sound tools, which we leave for future work.

4.5 Proof of the Main Theorems

4.5.1 The proof for generalization error of SS classifier

Proof of lemma 4.2:

Assume w(1) + w(−1) = 1, otherwise we replace w(1), w(−1) by w(1)/(w(1) +

w(−1)) and w(−1)/(w(1) + w(−1)) respectively. We first verify that f̄ minimizes

Err(f) = 1
2
E(1− sign(Y f)). Notice that

E[
1

2
w(Y )(1− sign(Y f))|X̃ = x̃]

=
1

2
[w(1)(1− sign(f))p(x̃) + w(−1)(1− sign(−f))(1− p(x̃))]

=
1

2
{w(1)p(x̃) + w(−1)(1− p(x̃))− [w(1)p(x̃)− w(−1)(1− p(x̃))] sign(f)}.

which is minimized when f = fB. Of course, the solution is not unique, f̄ = sign(fB)

is also a minimizer. For the smoothed score loss Sh, we could similarly write

ESh(f) = E{[w(Y )G(Y f/h)]|X̃ = x̃}

=p(x̃)w(1)G(f/h) +G(−f/h)(1− p(x̃)) := A(f).

The minimizer of A(f) is also given by fB, moreover, Sh(f(x̃))→ 1
2
(1− Y sign(f(x̃))

as h→∞ for any decision rule f , which conclude the result of Lemma 4.2.

Proof of Theorem 4.3: As prerequisites for the main proof, we introduce the

L2-metric entropy with bracketing for a function class F . For any ε > 0, denote
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{︁
ll1, l

u
1 , . . . , l

l
m, l

u
m

}︁
an ε-bracketing function if for any f ∈ F there is a j such that

llj ≤ l(f, ·) ≤ luj and max{1≤j≤m}
⃦⃦
luj − llj

⃦⃦
2
≤ ε, ∥ · ∥2 is the usual L2-norm, where

∥l∥22 =
∫︁
l2dP . Then the L2 metric entropy of F with bracketing HB(ε,F) is defined

as a logarithm of the cardinality of the ε-bracketing of the smallest size.

Let ˜︁Sh(f) = Sh(f) + λJ(f) be the smoothed score function to be minimized,

where Sh(f) = w(Yi)G(Yif(X̃ i)/h), h depends on n, we will ignore the subscript for

simplicity. Let ˜︁ℓ (f, Zi) = ℓ (f, Zi) + λJ(f) be the corresponding sign-cost function,

where ℓ (f, Zi) = 1
2
w(Yi)(1− sign(Yif(X̃ i)))and Zi = (Xi,Ri, Yi).

Define the scaled empirical process En
(︂˜︁ℓ(f, Z)− ˜︁Sh (f0, Z))︂, as

En

(︂˜︁ℓ(f, Z)− ˜︁Sh (f0, Z))︂
=
1

n

n∑︂
i=1

(︂˜︁ℓ (f, Zi)− ˜︁Sh (f0, Zi)− E (︂˜︁ℓ (f, Zi)− ˜︁Sh (f0, Zi))︂)︂
=En (l (f, Z)− Sh (f0, Z)) .

(4.17)

where Z = (X,R, Y ) is the tuple. We also define the sieved function classes for the

candidate classifiers for j = 1, 2, . . ., and i = 1, 2, . . .,

Ai,j ={f ∈ F : 2i−1δ2n ≤ Er(f, f̄) < 2iδ2n,

2j−1max(J(β0), 1) ≤ J(f) < 2j max(J(β0), 1)}

and

Ai,0 =
{︁
f ∈ F : 2i−1δ2n ≤ Er(f, f̄) < 2iδ2n, J(β) < max(J(β0), 1)

}︁
,

We assume without loss of generality that J(β0) ≥ 1 in the sequel. By apply-

ing the sieve method in Shen et al. [165] and Shen and Wong [166]. The idea is to

split the problem of bounding P
(︂
Er(f̂ , f̄) ≥ δ2n

)︂
to bounding a sequence of empir-

ical processes that are induced by the cost function ˜︁ℓ. In particular, for bounding

P (Aij) , i, j = 1, . . . , n, we employ the large deviation inequality for empirical pro-

cesses presented in theorem 3 [166].Controlling the mean and variance defined by

l (f, Zi) and penalty λJ(f) yields an inequality for the sequence of empirical pro-

cesses and therefore, for Er(f̂ , f̄).
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Next, we establish the connection between Er(f̂ , f̄) and the empirical processes

(4.17). By the definition of Sh(f, Z), we have

Sh (f, Zi)→ ℓ (f, Zi) , as h→ 0 (4.18)

Since f̂ is the minimizer of n−1
∑︁n

i=1
˜︁Sh (f, Zi) , and L

(︁
f0, f̄

)︁ h→0−−→ Er
(︁
f0, f̄

)︁
, along

with (4.18), we have for h sufficiently small,

{︂
Er(f̂ , f̄) ≥ δ2n

}︂
⊂

⎧⎨⎩ sup
{f∈F :Er(f,f̄)≥δ2n}

n−1

n∑︂
i=1

(︂˜︁Sh (f0, Zi)− ˜︁Sh (f, Zi))︂ ≥ δ2n/2

⎫⎬⎭
⊂

⎧⎨⎩ sup
{f∈F :Er(f,f̄)≥δ2n}

n−1

n∑︂
i=1

(︂˜︁Sh (f0, Zi)− ˜︁ℓ (f, Zi))︂ ≥ 0

⎫⎬⎭ .

Hence

P
(︂
Er(f̂ , f̄) ≥ δ2n

)︂
≤ P ∗

⎛⎝ sup
{f∈F :Er(f,f̄)≥δ2n}

n−1

×
n∑︂
i=1

(︂˜︁Sh (f0, Zi)− ˜︁ℓ (f, Zi))︂ ≥ 0

)︄
:= I

where P ∗ denotes the outer probability measure. It is sufficient to bound the cor-

responding probability over Aij in order to bound I, for each i, j = 1, . . .. To this

end, we need to build some inequalities regarding the first and second moments of

the scaled empirical process ˜︁ℓ(f, Z)− ˜︁Sh (f0, Z) for f ∈ Aij.

For the first moment, following the result that

E (ℓ(f, Z)− Sh (f0, Z))

=E
(︁
ℓ(f, Z)− Sh(f̄ , Z)

)︁
− E

(︁
Sh (f0, Z)− Sh(f̄ , Z)

)︁
,

According to condition 4.2, L
(︁
f0, f̄

)︁
≤ sn/2 ≤ δ2n/2.

Next, assume that λ ·max (J(β0), 1) ≤ δ2n/2, and choose a sufficiently small h, we

have, for any integers i, j ≥ 1, |Sh(f̄ , Z)− ℓ(f̄ , Z)| < δ2n/2,

inf
Ai,j

E
(︂˜︁ℓ(f, Z)− ˜︁Sh (f0, Z))︂ ≥M(i, j)

=
(︁
2i−1δ2n

)︁
− δ2n/2 + λ

(︁
2j−1 − 1

)︁
J(β0)

(4.19)
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and

inf
Ai,0

E
(︂˜︁ℓ(f, Z)− ˜︁Sh (f0, Z))︂ ≥ (︁2i−1 − 1

)︁
δ2n ≥M(i, 0) = 2i−2δ2n, (4.20)

here the inequality 2i − 1 ≥ 2i−1 has been used.

For the second moment, it follows from the definition [165] and condition 4.3 that

for any f ∈ F ,

Er(f, f̄) = ℓ(f)− ℓ(f̄)

=
1

2
E
⃓⃓⃓
fB(X̃)

⃓⃓⃓
| sign(f̄(X̃))− sign(f(X̃))|

≥ 1

2
δE
(︂
| sign(f̄(X̃))− sign(f(X̃))|I

(︂⃓⃓⃓
fB(X̃)

⃓⃓⃓
≥ δ
)︂)︂

≥ 1

2
δ
(︂
E| sign(f̄(X̃))− sign(f(X̃))| − 2c1δ

α
)︂

≥ 4−1 (4c1)
−1/α (E| sign(f̄(X̃))− sign(f(X̃))|)(α+1)/α

with a choice of δ =
(︂
E
⃓⃓⃓
sign(f̄(X̃))− sign(f(X̃))

⃓⃓⃓
/4c1

)︂1/α
.

Then we could establish a connection between the first and second moments. By

Lemma 4.2, for any f ∈ F , E(Sh(f)−ℓ(f))
h→0−−→ 0, then it follows from the triangular

inequality that for any x̃ ∈ X, and h sufficiently small,

E (ℓ(f, Z)− Sh (f0, Z))2 ≤E
⃓⃓⃓⃓
1

2
w(Y )(1− sign(Y f(X̃)))− w(Y )G

(︂
Y f0(X̃)/h

)︂⃓⃓⃓⃓
≤
(︃
1

2
Ew(Y )

⃓⃓⃓
sign(Y f̄(X̃))− sign(Y f(X̃))

⃓⃓⃓
+

1

2
Ew(Y )

⃓⃓⃓
sign(Y f̄(X̃))− sign

(︂
Y f0(X̃)

)︂⃓⃓⃓
+E

⃓⃓⃓⃓
w(Y )G

(︂
Y f0(X̃)/h

)︂
− 1

2
w(Y )

(︂
1− sign

(︂
Y f0(X̃)

)︂)︂⃓⃓⃓⃓)︃
.

For any f ∈ Ai,j, Er(f, f̄)
α

α+1 ≥ (2−1δ2n)
α

α+1 ≥ 2−1δ2n ≥ L
(︁
f0, f̄

)︁
and L(f0, f̄) +

sn/2 ≥ Er(f0, f̄), indicating that

E (ℓ(f, Z)− Sh (f0, Z))2

≤
(︂
4 (4c1)

1
α+1

(︂
Er(f, f̄)

α
α+1 + Er

(︁
f0, f̄

)︁ α
α+1

)︂
+ (ESh(f0)− Eℓ(f0))

)︂
≤ c3(Er(f, f̄)/2)

α
α+1 ,
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where c3 = max{2(1+2α)/α[4(4c1)
1

α+1 + 1] + 2(1+α)/α, 8}. As a result,

sup
Ai,j

E (ℓ(f, Z)− Sh (f0, Z))2 ≤ v2(i, j) = c3M(i, j)
α

α+1 ; i = 1, . . . , j = 0, . . . .

Using the assumption that maxλ (J (f0) , 1) ≤ δ2n/2, inequality (4.19), and (4.20),

we have

I ≤
∑︂
i,j

P ∗

(︄
sup
Ai,j

En (Sh (f0, Z)− l(f, Z)) ≥M(i, j)

)︄

+
∑︂
i

P ∗

(︄
sup
Ai,0

En (Sh (f0, Z)− l(f, Z)) ≥M(i, 0)

)︄
:= I1 + I2,

Next we proceed to bound Ii separately. For I1, we verify the required conditions (4.5)-

(4.7) in theorem 3 of Shen and Wong [166]. To compute the metric entropy in (4.7), we

now define a bracketing function for Sh (f0, Z)− ℓ(f, Z). Denote an ε-bracketing set

for {Gf : Gf = {x̃ ∈ X : f(x̃) ≥ 0}, f ∈ Ai,j} to be
{︁(︁
Gl

1, G
u
1

)︁
, . . . ,

(︁
Gl
m, G

u
m

)︁}︁
. Let

slj(x̃) be −1 if x̃ ∈ Gu
j and 1 otherwise, and suj (x) be −1 if x̃ ∈ Gl

j and 1 otherwise; j =

1, . . . ,m. Then,
{︁(︁
sl1, s

u
1

)︁
, . . . ,

(︁
slm, s

u
m

)︁}︁
forms an ε-bracketing function of − sign(f)

for f ∈ Ai,j. Define

luj (z) = 1 +
(︁
suj (x̃)(1 + y)/2− slj(x̃)(1− y)/2

)︁
− Sh (f0, z)

llj(z) = 1 +
(︁
slj(x̃)(1 + y)/2− suj (x̃)(1− y)/2

)︁
− Sh (f0, z)

Then for any ε ≥ M(i, j) and f ∈ Ai,j, there exists a j, 1 ≤ j ≤ m such that

llj(z) ≤ ℓ(f, z) − Sh (f0, z) ≤ luj (z) for any z = (y, x̃), and
(︂
E
(︁
luj − llj

)︁2)︂1/2
=(︂

E
(︁
suj (x)− slj(x)

)︁2)︂1/2 ≤ 21/2ε1/2. Thus
(︂
E
(︁
luj − llj

)︁2)︂1/2 ≤ min
(︁
(2ε)1/2, 21/2

)︁
.

Consequently, HB (ε,F (2j)) ≤ H (ε2/2,G (2j)) for any ε > 0 and j = 0, . . ., where

F (2j) = {ℓ(f, z) −Sh(f, z) : f ∈ F , J(f) ≤ 2j}. Using the fact that
∫︁ v(i,j)
aM(i,j)

H1/2

(u2/2,G (2j)) du/M(i, j) is nonincreasing in i and M(i, j); i = 1, . . .. we have∫︂ v(i,j)

aM(i,j)

H1/2
(︁
u2/2,G

(︁
2j
)︁)︁
du/M(i, j)

≤
∫︂ c

1/2
3 M(1,j)α/2(α+1)

aM(1,j)

H1/2
(︁
u2/2,G

(︁
2j
)︁)︁
du/M(1, j) ≤ ϕ

(︁
εn, 2

j
)︁
,
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where a = ε/32. Then (4.7) is derived by Assumption 4.4 with a choice of ε = 1/2,

c3, and c4. Finally, it is easy to see that (4.5)-(4.6) are satisfied with ε = 1/2 with

the choice of M(i, j), v(i, j), and T = 1.

By 0 < δn ≤ 1 and λmax (J (f0) , 1) ≤ δ2n/2 as well as theorem 3 of Shen and Wong

[166] with M = n1/2M(i, j), v = v2(i, j), ε = 1/2, and T = 1, we have

I1 ≤
∞∑︂
j=1

∞∑︂
i=1

3 exp

(︃
− (1− ε)nM(i, j)2

2 (4v2(i, j) +M(i, j)T/3)

)︃

≤
∞∑︂
j=1

∞∑︂
i=1

3 exp
(︂
−c5nM(i, j)

α+2
α+1

)︂
≤

∞∑︂
j=1

∞∑︂
i=1

3 exp
(︂
−c5n

[︁
2i−1δ2n − 2−1δ2n +

(︁
2j−1 − 1

)︁
λJ (f0)

]︁α+2
α+1

)︂
≤

∞∑︂
j=1

∞∑︂
i=1

3 exp
(︂
−c5n

[︂(︁
2i−2δ2n

)︁α+2
α+1 +

(︁(︁
2j−1 − 1

)︁
λJ (f0)

)︁α+2
α+1

]︂)︂
≤ 3 exp

(︂
−c5n (λJ (f0))

α+2
α+1

)︂
/
[︂(︂

1− exp
(︂
c5n (λJ (f0))

α+2
α+1

)︂)︂]︂2
c5 here is a positive constant. I2 can be bounded in the same manner with the same

upper.

Finally,

I ≤ 6 exp
(︂
−c5n (λJ (f0))

α+2
α+1

)︂
/
[︂(︂

1− exp
(︂
−c5n (λJ (f0))

α+2
α+1

)︂)︂]︂2
This implies that I1/2 ≤

(︁
5/2 + I1/2

)︁
exp

(︂
−c5n (λJ (f0))

α+2
α+1

)︂
. The non-asymptotic

upper bound is then followed from the fact I ≤ I1/2 ≤ 1.

Proof of Corollary 4.4: The rate with respect to the associated risk is a direct

result from the exponential inequality in Theorem 4.3.
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4.5.2 The proof for convergence rate of SS classifier

Proof of Proposition 4.5: First, we consider the case of f(x, r;θ) ̸= 0. For given

x, r, we note

θ∗(x, r) = argmin
θ

E {w(Y )L01 (Y f (X,R;θ)) |X = x,R = r}

= argmin
θ
{w(1)L01(f(x, r;θ))E [Y = 1|X = x,R = r]

+w(−1)L01(−f(x, r;θ))E [Y = −1|X = x,R = r]}

= argmin
θ
{w(1)E [Y = 1|X = x,R = r] I(f(x, r;θ) < 0)

+w(−1)E [Y = −1|X = x,R = r] I(f(x, r;θ) > 0)}(4.21)

Next, for each x, r, we have

E[w(Y )Gh(Y f(X,R;θ)|X = x,R = r]

= w(1)Gh(f(x, r;θ))E [Y = 1|X = x,R = r]

+w(−1)Gh(−f(x, r;θ))E [Y = −1|X = x,R = r]

Further, when h→ 0+, one gets

θ̃(x, r) = argmin
θ

lim
h→0+

E[w(Y )Gh(Y f(X,R;θ)|X = x,R = r]

= argmin
θ
{w(1)E [Y = 1|X = x,R = r] I(f(x, r;θ) < 0)

+w(−1) E [Y = −1|X = x,R = r] I(f(x, r;θ) > 0)}(4.22)

From (4.21) and (4.22), we have θ∗(x, r) = θ̃(x, r) for any given x, r. In addition,

if f(x, r;θ) = 0, obviously L01(0) = Gh(0) = 1/2 for any h > 0; Thus, θ∗(x, r) =

θ̃(x, r) again. It leads θ∗ = θ̃ under the distribution P (X,R).The result holds.

To derive the convergence rate of the SS estimator, we first present a bound for a

partial functional binary classifier of Redemacher complexity.

Lemma 4.7 For any v1, v2 > 0 and 0 < ν < 1,

E

[︄
sup
β,γ

⃓⃓⃓⃓
⃓ 1/n

∑︁n
i=1 σiw(yi) [⟨xi, β⟩L2 + riγ]

v−1
1

(︁
∥Γ1/2β0∥L2

+ ∥Γ1/2β1∥L2

)︁
+ ∥β1∥HK

+ v−1
2 ∥γ∥2

⃓⃓⃓⃓
⃓
]︄
≤

C

(︃
R(v1) +

v1√
n
+

v2√
n

)︃
,
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where σi ∈ {−1,+1} are i.i.d. Rademacher variables. And we have

E

⎡⎣sup
β,γ

⃓⃓⃓⃓
⃓⃓(P − Pn)

w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ
∗) /hn)]

v−1
1

(︂⃦⃦
Γ1/2(β0 − β∗

0)
⃦⃦
L2

+
⃦⃦
Γ1/2(β1 − β∗

1)
⃦⃦
L2

)︂
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓⃓
⎤⎦

≤ Ch−(1−ν)
n

(︃
R(v1) +

v1√
n
+

v2√
n

)︃
.

Proof: Recall that G(u) =
∫︁∞
u
K(t)dt. For any u1, u1 ∈ R and 0 < ν < 1, when

hn > 0 small enough, we have⃓⃓⃓⃓
G

(︃
u1
hn

)︃
−G

(︃
u2
hn

)︃⃓⃓⃓⃓
=

∫︂ (u1∨u2)/hn

(u1∧u2)/hn
K(t)dt ≤ hνn

⃓⃓⃓⃓
u1
hn
− u2
hn

⃓⃓⃓⃓
≤
⃓⃓⃓⃓
u1
hn
− u2
hn

⃓⃓⃓⃓
, (4.23)

which implies that G(·) is Lipschitz continuous. By the symmetrization argument

[135], and the contraction inequality for the Rademacher complexity (see, for example,

Theorem 2.2 in [88]), we have

E

⎡⎣sup
β,γ

⃓⃓⃓⃓
⃓⃓(P − Pn)

w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ
∗) /hn)]

v−1
1

(︂⃦⃦
Γ1/2(β0 − β∗

0)
⃦⃦
L2

+
⃦⃦
Γ1/2(β1 − β∗

1)
⃦⃦
L2

)︂
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓⃓
⎤⎦

≤ CE

[︄
sup
β,γ

⃓⃓⃓⃓
⃓1/n

∑︁n
i=1 σiw(yi) [G (yi (⟨xi, β⟩L2 + riγ) /hn)−G (yi (⟨xi, β∗⟩L2 + riγ

∗) /hn)]

v−1
1

(︁
∥Γ1/2(β0 − β∗

0)∥L2
+ ∥Γ1/2(β1 − β∗

1)∥L2

)︁
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓
]︄

≤ CE

[︄
sup
β,γ

⃓⃓⃓⃓
⃓ 1/n

∑︁n
i=1 σiw(yi)yi [⟨xi, β − β∗⟩L2 + ri(γ − γ∗)] /h1−νn

v−1
1

(︁
∥Γ1/2(β0 − β∗

0)∥L2
+ ∥Γ1/2(β1 − β∗

1)∥L2

)︁
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓
]︄

= CE

[︄
sup
β,γ

⃓⃓⃓⃓
⃓ 1/n

∑︁n
i=1 σiw(yi) [⟨xi, β − β∗⟩L2 + ri(γ − γ∗)] /h

1/ν
n

v−1
1

(︁
∥Γ1/2(β0 − β∗

0)∥L2
+ ∥Γ1/2(β1 − β∗

1)∥L2

)︁
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓
]︄

≤ Ch−(1−ν)
n E

[︄
sup
β0

⃓⃓⃓⃓
⃓1/n

∑︁n
i=1 σiw(yi) [⟨xi, β0 − β∗

0⟩L2 ]

v−1
1 ∥Γ1/2(β0 − β∗

0)∥L2

⃓⃓⃓⃓
⃓
]︄

+Ch−(1−ν)
n E

[︄
sup
β1

⃓⃓⃓⃓
⃓ 1/n

∑︁n
i=1 σiw(yi) [⟨xi, β1 − β∗

1⟩L2 ]

v−1
1 ∥Γ1/2(β1 − β∗

1)∥L2
+ ∥β1 − β∗

1∥HK

⃓⃓⃓⃓
⃓
]︄

+Ch−(1−ν)
n E

[︄
sup
γ

⃓⃓⃓⃓
1/n

∑︁n
i=1 σiw(yi) [ri(γ − γ∗)]

v−1
2 ∥γ − γ∗∥2

⃓⃓⃓⃓]︄
, (4.24)

where σi(i = 1, · · · , n) are i.i.d. Redemacher variables, the first inequality follows

from the symmetrization inequality (Theorem 2.1 in [88]), the second inequality uses

the contraction inequality for the Redamacher complexity (Theorem 2.2 in [88]), and

the third step holds because of σiyi ∈ {−1,+1}.
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Similar to the proofs of Lemma 1 in [202] and of Lemma 3.1 in [192], we have

E

[︄
sup

β1:∥β1∥HK
≤1

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

σiw(yi) [⟨xi, β1⟩L2 ]

⃓⃓⃓⃓
⃓
]︄
≤ CR(v1), (4.25)

E

⎡⎣ sup
β0:∥Γ1/2β0∥

L2
≤v1

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

σiw(yi) [⟨xi, β0⟩L2 ]

⃓⃓⃓⃓
⃓
⎤⎦ ≤ C

v1√
n
. (4.26)

For the linear term, we have

E

[︄
sup

∥γ∥2≤v2

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

σiw(yi)riγ

⃓⃓⃓⃓
⃓
]︄
≤ E

[︄⃦⃦⃦⃦
⃦ 1n

n∑︂
i=1

σiw(yi)ri

⃦⃦⃦⃦
⃦
2

sup
∥γ∥2≤v2

∥γ∥2

]︄
≤ C

v2√
n
,(4.27)

using the sub-Gaussianity of the components of ri. So, for any β0 ∈ H′, β1 ∈ H1, and

γ ∈ Rp, standardize them as β′
0 :=

β0

v−1
1 ∥Γ1/2β0∥L2

, β′
1 :=

β1

v−1
1 ∥Γ1/2β1∥L2

+ ∥β1∥HK

,

and γ ′ :=
γ

v−1
2 ∥γ∥2

, which satisfy that
⃦⃦
Γ1/2β′

0

⃦⃦
L2
≤ v1,

⃦⃦
Γ1/2β′

1

⃦⃦
L2
≤ v1, ∥β′

1∥HK
≤

1, and ∥γ∥2 ≤ v2. Based on (4.25)-(4.27), we have

E

[︄
sup
β1∈H1

⃓⃓⃓⃓
⃓n−1

∑︁n
i=1 σiw(yi) [⟨xi, β1⟩L2 ]

v−1
1 ∥Γ1/2β1∥L2

+ ∥β1∥HK

⃓⃓⃓⃓
⃓
]︄

≤ E

⎡⎣ sup
β1:∥Γ1/2β1∥

L2
≤v1,∥β1∥HK

≤1

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

σiw(yi) [⟨xi, β1⟩L2 ]

⃓⃓⃓⃓
⃓
⎤⎦ ≤ CR(v1),

E

[︄
sup
β0∈H0

⃓⃓⃓⃓
⃓n−1

∑︁n
i=1 σiw(yi) [⟨xi, β0⟩L2 ]

v−1
1 ∥Γ1/2β0∥L2

⃓⃓⃓⃓
⃓
]︄
≤ C

v1√
n
,

E

[︄
sup
γ∈Rp

⃓⃓⃓⃓
n−1

∑︁n
i=1 σiw(yi)riγ

v−1
2 ∥γ∥2

⃓⃓⃓⃓]︄
≤ C

v2√
n
.

Therefore, for (4.24), we have

(4.24) ≤ Ch−(1−ν)
n

(︃
R(v1) +

v1√
n
+

v2√
n

)︃
.

This completes the proof.

Now, we transfer the bound in expectation in Lemma 4.7 to the following bound

in probability.

Lemma 4.8 With probability at least 1 − exp

(︃
−min

(︃
nR2(v1, v2)

(v1 + v2)2
,
nR(v1, v2)
v2 log(n)

)︃)︃
,

we have

sup
β,γ

⃓⃓⃓⃓
(P − Pn)

w(y)[G(y(⟨x,β⟩L2
+rγ)/hn)−G(y(⟨x,β∗⟩L2

+rγ∗)/hn)]

D(β0−β∗,β1−β∗
1 ,γ−γ∗)

⃓⃓⃓⃓
≤ Ch−(1−ν)

n R(v1, v2),
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where R(v1, v2) = R(v1)+
v1√
n
+
v2√
n
, and D(β0−β∗, β1−β∗

1 ,γ−γ∗) = ∥β0 − β∗
0∥L2

+

v−1
1

(︂⃦⃦
Γ1/2(β0 − β∗

0)
⃦⃦
L2

+
⃦⃦
Γ1/2(β1 − β∗

1)
⃦⃦
L2

)︂
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2,

Proof: By (4.23), we have⃓⃓⃓⃓
w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ

∗) /hn)]

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
⃓h−(1−ν)

n w(y)y (⟨x, β − β∗⟩L2 + r(γ − γ∗))

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

⃓⃓⃓⃓
⃓

≤ C

⃓⃓⃓⃓
⃓h−(1−ν)

n (⟨x, β0 − β∗
0⟩L2 + ⟨x, β1 − β∗

1⟩L2 + r(γ − γ∗))

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

⃓⃓⃓⃓
⃓

≤ C

⃓⃓⃓⃓
⃓h−(1−ν)

n (⟨x, β0 − β∗
0⟩L2 + ⟨Kx, β1 − β∗

1⟩HK
+ r(γ − γ∗))

∥β0 − β∗
0∥L2

+ ∥β1 − β∗
1∥HK

+ v−1
2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓

≤ C

⃓⃓⃓⃓
⃓h

−(1−ν)
n

(︁
∥x∥L2

∥β0 − β∗
0∥L2

+ ∥Kx∥HK
∥β1 − β∗

1∥HK
+ ∥r∥2 ∥γ − γ∗∥2

)︁
∥β0 − β∗

0∥L2
+ ∥β1 − β∗

1∥HK
+ v−1

2 ∥γ − γ∗∥2

⃓⃓⃓⃓
⃓

≤ Ch−(1−ν)
n

(︁
∥x∥L2

+ v2 ∥r∥2
)︁
, (4.28)

and

V ar

(︃
w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ

∗) /hn)]

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

)︃
≤ CV ar

(︄
h
−(1−ν)
n (⟨x, β0 − β∗

0⟩L2 + ⟨x, β1 − β∗
1⟩L2 + r(γ − γ∗))

v−1
1

(︁
∥Γ1/2(β0 − β∗

0)∥L2
+ ∥Γ1/2(β1 − β∗

1)∥L2

)︁
+ v−1

2 ∥γ − γ∗∥2

)︄
Ch−2(1−ν)

n (v21 + v22). (4.29)

By the Adamczak bound on pages 24-25 in [88], and (4.28)-(4.29), we have

sup
β,γ

⃓⃓⃓⃓
(P − Pn)

w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ
∗) /hn)]

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

⃓⃓⃓⃓
≤ CE

[︄
sup
β,γ

⃓⃓⃓⃓
(P − Pn)

w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ
∗) /hn)]

D(β0 − β∗, β1 − β∗
1 ,γ − γ∗)

⃓⃓⃓⃓]︄

+Ch−(1−ν)
n

(︄
(v1 + v2)

√︃
t

n
+ C

(︃⃦⃦⃦
max
i
∥X∥L2

⃦⃦⃦
ψ1

+ v2

⃦⃦⃦
max
i
∥ri∥2

⃦⃦⃦
ψ1

)︃
t

n

)︄
, (4.30)

with probability at least 1 − e−t, where ψ1 is the Orlicz norm associated with the

function ψ1(z) = ex − 1. By Lemma 2.2.2 of [173], one gets
⃦⃦
maxi ∥X∥L2

⃦⃦
ψ1
≤
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C log(n) and ∥maxi ∥ri∥2∥ψ1
≤ C log(n) because of Condition 4.5. By Lemma 4.7,

we have

(4.30) ≤ Ch−(1−ν)
(︂
R(v1)+

v1√
n
+

v2√
n
+[︄

(v1 + v2)

√︃
t

n
+ [log(n) + v2 log(n)]

t

n

]︄)︂
.

Let t = min

(︃
nR2(v1, v2)

(v1 + v2)2
,

nR(v1, v2)
(1 + v2) log(n)

)︃
, we finish the proof of the lemma.

Proof of Theorem 4.6: By the definition of (β̂, γ̂) in (4.13), we have

1

n

n∑︂
i=1

w(yi)G
(︂
yi

(︂
⟨xi, β̂⟩L2 + riγ̂

)︂
/hn

)︂
+ λ

⃦⃦⃦
β1̂

⃦⃦⃦2
HK

≤ 1

n

n∑︂
i=1

w(yi)G (yi (⟨xi, β∗⟩L2 + riγ
∗) /hn) + λ ∥β∗

1∥
2
HK

. (4.31)

By Lemma 4.8, with probability at least 1−exp
(︃
−min

(︃
nR2(v1, v2)

(v1 + v2)2
,
nR(v1, v2)
v2 log(n)

)︃)︃
,

we have

E {w(y) [G (y (⟨x, β⟩L2 + rγ) /hn)−G (y (⟨x, β∗⟩L2 + rγ
∗) /hn)]}

≤ λ ∥β∗
1∥

2
HK
− λ

⃦⃦⃦
β1̂

⃦⃦⃦2
HK

+ Ch−(1−ν)
n R(v1, v2)D(β̂0 − β∗, β̂1 − β∗

1 , γ̂ − γ∗)

= −2λ⟨β∗
1 , β̂1 − β∗

1⟩ − λ
⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

+ Ch−(1−ν)
n R(v1, v2)D(β̂0 − β∗, β̂1 − β∗

1 , γ̂ − γ∗)

≤ 2λ ∥β∗
1∥HK

⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦
HK

− λ
⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

+ Ch−(1−ν)
n R(v1, v2)D(β̂0 − β∗, β̂1 − β∗

1 , γ̂ − γ∗)

≤ 2λ ∥β∗
1∥

2
HK

+
λ

2

⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

− λ
⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

+ Ch−(1−ν)
n R(v1, v2)

⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦
HK

+Ch−(1−ν)
n R(v1, v2)

[︃⃦⃦⃦
β̂0 − β∗

0

⃦⃦⃦
L2

+ v−1
2 ∥γ̂ − γ∗∥2

]︃
+Ch−(1−ν)

n R(v1, v2)
[︃
v−1
1

(︃⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

)︃]︃
(4.32)
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≤ 2λ ∥β∗
1∥

2
HK

+
λ

2

⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

− λ
⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

+
Ch

−2(1−ν)
n

λ
R2(v1, v2)

+
λ

2

⃦⃦⃦
β̂1 − β∗

1

⃦⃦⃦2
HK

+ Ch−(1−ν)
n R(v1, v2)

[︃⃦⃦⃦
β̂0 − β∗

0

⃦⃦⃦
L2

]︃
+Ch−(1−ν)

n R(v1, v2)
[︃
v−1
1

(︃⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

)︃
+ v−1

2 ∥γ̂ − γ∗∥2
]︃

≤ 2λ ∥β∗
1∥

2
HK

+
Ch

−2(1−ν)
n

λ
R2(v1, v2) + Ch−(1−ν)

n R(v1, v2)
[︃⃦⃦⃦
β̂0 − β∗

0

⃦⃦⃦
L2

]︃
+ Ch−(1−ν)

n ·

R(v1, v2)
[︃
v−1
1

(︃⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

)︃
+ v−1

2 ∥γ̂ − γ∗∥2
]︃
. (4.33)

Let v1 ≍ v2 ≍ n− µ
2(µ+1) , and Condition 4.6 , then R(v1) ≤ Cn− µ

µ+1 by Lemma 3.1

of [192]. Thus, v1√
n
≍ n− 2µ+1

2(µ+1) . Since 2µ+1
2(µ+1)

> µ
µ+1

, R(v1, v2) = R(v1) + v1√
n
+ v2√

n
≤

Cn− µ
µ+1 . Taking λ ≍ h

−(1−ν)
n n− µ

µ+1 , we have

(4.32) ≤ Ch−(1−ν)
n n

− µ
µ+1+Ch−(1−ν)

n n
− µ

2(µ+1)

[︃⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2
]︃
.

(4.34)

By (4.15) in Remark 4.4, (4.32) and(4.34), either⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2 ≤ Ch−(1−ν)
n n− µ

µ+1 , (4.35)

or ⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦2
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦2
L2

+ ∥γ̂ − γ∗∥22

≤ Ch−(1−ν)
n n− µ

2(µ+1)

[︃⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2
]︃
.(4.36)

Clearly, (4.35) implies . For (4.36), by the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2),

we have⃦⃦⃦
Γ1/2(β̂0 − β∗

0)
⃦⃦⃦
L2

+
⃦⃦⃦
Γ1/2(β̂1 − β∗

1)
⃦⃦⃦
L2

+ ∥γ̂ − γ∗∥2 ≤ Ch−(1−ν)
n n− µ

2(µ+1) .

This completes the proof of the main result.
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Chapter 5

Inference for Functional Logistic
Regression under Case Control
Designs

5.1 Introduction

One of the pivotal challenges during the big-data era becomes to tackle data of multi-

modality and massive volume. Despite the rapid development of computational re-

sources, fitting a model using massive data often exceeds available computational

power due to the limitation of memory. One antidote is to develop complex dis-

tributed computing systems that can directly handle big data. However, this ap-

proach brings forth unnecessary model complexity and inefficient data deployment.

Furthermore, computational time required for processing the full dataset can be pro-

hibitively extensive, necessitating the use of high-performance computing resources

which are in practice hard to obtain.

Another commonly used strategy involves selecting random subsamples from the

extensive dataset to serve as a surrogate. However, subsampling can result in loss

of statistical accuracy especially for highly unbalanced large datasets, meaning the

estimates may have high variability. Thus it’s crucial to design an effective sampling

method that can minimize loss of accuracy while addressing the unbalanced data

problem.
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Additionally, the multi-modality of large datasets poses another layer of obstacles.

In applications such as clinical, epidemiological sciences, and meteorology where the

stakes are exceptionally high, many variables are measured or observed at multiple

time points or spatial locations. These kinds of variables gave birth to the generation

of functional data analysis (FDA) [rramsay_silverman_2006, 15, 123, 196, 198]

since these variables can be viewed as functions of time or spatial locations.

In some applications, we may encounter massive functional data. One example is

the kidney transplant data acquired from the Organ Procurement Transplant Net-

work/United Network for Organ Sharing (Optn/UNOS). This extensive dataset en-

compasses information on about 1 million recipients as well as over 4 million records

monitored during the post-transplantation follow-up period to assess the success of

kidney transplants. We use the Glomerular filtration rate (GFR) trajectories as the

predictor and patient demographics as scalar covariates to measure kidney function.

Similarly in environmental sciences, extreme events, though less frequent, hold signifi-

cant importance. The air pollution dataset provided by the Environmental Protection

Agency (EPA) meticulously logs daily concentrations of pollutants such as PM2.5,

ozone, and nitrogen dioxide across thousands of monitoring stations nationwide. This

dataset, instrumental for evaluating air quality trends and formulating environmental

policies, spans multiple decades and again includes millions of records, the enormity of

such datasets often stretches into hundreds of gigabytes. The horizontal and vertical

dimensions of such functional massive yet unbalanced data make it almost impossible

to utilize the full dataset for classification.

The existing literature on subsampling schemes mainly revolves around models

with both scalar responses and predictors. For linear regression, a leverage-score-

based random subsampling and its asymptotic estimator properties were explored

by [108]. [180] introduced an information-based optimal subdata selection (IBOSS)

where subsample are selected deterministically without random sampling. For Logis-

tic regression and generalized linear models, the A-optimality, L-optimality criterion
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Poisson subsamplings are proposed in [2, 24, 178, 181]. Recently, [179], [43] and

[1] used the subsampling method for quantile regressions. For generalized additive

models, [187] developed a scalable estimation method via marginal predictor dis-

cretization. Recently, [105] developed the L-Optimality subsampling for functional

linear and generalized linear models based on the penalized B-splines.

In the more refined context of classification in imbalanced datasets, the case-control

(CC) study, a traditional yet more efficient response-biased sampling, is widely used

for investigating the relationship between existing factors and rare disease incidence

in epidemiology, where samples are taken separately according to the value of the

response, e.g, through disease registry records [22, 92, 137]. This also closely relates

to choice-based sampling in econometrics [110]. Especially, people are interested in

the relationship between the predictors and individuals’ choices. It would be more

interesting to take samples of individuals based on one or some specific choices made

by individuals than to take a single sample from the entire population [20, 21, 47, 104,

137, 160, 161]. Other popular sampling designs such as the length-biased, case-cohort,

and general biased sampling schemes have been studied by [83, 136, 167, 190, 199].

Generally speaking, case-control or other biased samples are more likely to contain

useful information relevant to one’s interest [140].

As steps forward, local case-control (LCC) and local uncertainty sampling (LUS)

are proposed on the ground of CC scheme by [47, 62] respectively. They attempt

to remedy response imbalance locally throughout the feature space and extend to

multi-class logistic regression. Both strategically select near-boundary samples using

a pilot estimator, enhancing the model’s sensitivity to the minority class.

This paper adapts the CC and LCC sampling scheme for functional and semi-

functional linear logistic regression to ensure a balanced and informative training set.

LCC is indispensable in unbalanced functional datasets where the goal is to achieve

high predictive performance and reliable inference in applications where predictions

can have profound implications. The proposed LCC sampling procedure includes:
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(1)it assigns an acceptance probability for each data point and selects observations

according to the assigned probabilities through a flexible pilot estimation; (2) it fits a

logistic model with the subsampled observations to obtain an estimate of the unknown

model parameter.

The coefficient function is assumed to reside in a Reproducing Kernel Hilbert Space

(RKHS) and can be estimated using roughness regularization. By ensuring a balanced

and informative training set, To the best of our knowledge, there is scarce work on

subsampling for functional data, our framework is distinct from [105] in multiple as-

pects, first we target the imbalance issues in massive functional data classification and

are more flexible to incorporate additional scalar terms. Additionally, the utilization

of RKHS in semi-functional logistic regression models brings forth several advantages.

(1) The RKHS approaches offer greater flexibility in choosing function spaces, al-

lowing for the modeling of more complex relationships. They are not restricted to

a fixed basis, unlike penalized B-splines, and can adapt to various types of data

smoothly and effectively [128]. (2) RKHS inherently includes a regularization pa-

rameter within its framework, which offers a systematic approach to control model

complexity. This built-in regularization is more nuanced and can be more effective

compared to the ad-hoc penalty terms used in penalized B-splines [171].

The roughness regularization method assuming smooth structures in a RKHS was

widely employed nowadays. In particular, functional linear regression (FLR) have

been investigated in[16, 17]. [50] considered fast-fitting approaches for generalized

functional linear models through penalized spline regression. [39] adopted a penalized

likelihood approach to study the generalized FLR. [164] proposed a roughness penalty

approach and conducted nonparametric inferences for generalized functional linear

models. [81] designed a functional logistic model based on elastic net regularization

to identify the genes. A class of generalized scalar-on-image regression models was

developed by [183] via the total variation penalty enforced on the coefficient function

estimator. [98] studied the method for inferences in generalized partial functional
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linear models based on RKHS. These methods often assume a balanced dataset and

may not perform well in the presence of class imbalance. The challenge becomes

more pronounced when the functional data are accompanied by scalar covariates,

necessitating a semi-functional approach that can accommodate both data types.

Our contributions are multifold and can be summarized as follows:

• We introduce the CC and LCC approach for semi-functional logistic regression

models, bridging the gap in the literature by addressing both functional and

scalar covariates in an imbalanced dataset scenario. The procedure generates

a consistent estimator within the original model family when the model is cor-

rectly specified without the need of post-estimation corrections.

• Our method capitalizes on the strengths of RKHS to handle the infinite-dimensional

functional data, allowing us to capture intricate data structures through a ker-

nelized representation. Theoretically, we establish the functional Bahadur rep-

resentation [98, 164] for the functional slope and further explore the joint defi-

nition to incorporate both scalar and functional variables through a predefined

weighted inner product, the asymptotic joint distribution of the maximum par-

tial likelihood estimators are derived under CC and LCC sampling schemes.

To detect the significance of the slope function, an inferential tool is developed

based on the penalized likelihood ratio test under the CC scheme along with

the confidence bands presented in the last section of this chapter.

We provide extensive empirical and real data experiments demonstrating that our

methods outperform traditional random sampling and yield superior model perfor-

mance, making it more accessible for large-scale applications without compromising

on computational integrity or predictive accuracy.

The rest of this article is organized as follows. In Section 5.2, we present the

functional linear logistic model under CC design, introduce the norms under RKHS,

and the computation algorithm. In Section 5.3, we study the Frećhet derivatives of
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the penalized likelihood, the Bahadur representation for the function slope, and its

asymptotic properties. A penalized likelihood ratio test based on the CC sampling

is also presented. We further explore the LCC sampling for semi-functional logistic

regression and its joint asymptotic properties in Section 5.4 and 5.5. The performance

of the proposed CC and LCC estimator is demonstrated through extensive simulation

studies in Section 5.6.1,5.6.2. Finally, applications on two real datasets in 5.7 illustrate

the superior performance of the proposed approaches. A brief discussion is given in

Section 5.8. Technical details are deferred to the supplementary materials.

5.2 Functional Logistic Regression for the Case Con-
trol Design

Logistic regression [26] is one of the most fundamental statistical tools to model

categorical outcomes. Let Y ∈ Y be a categorical response variable. Without loss

of generality, we focus on binary response coded as 0/1. Consider a functional linear

logistic regression

P (Y = 1 | X = x) =
exp{α +

∫︁
x(t)β(t)dt}

1 + exp{α +
∫︁
x(t)β(t)dt}

≡ p1(x; θ), (5.1)

whereX(t) is a square-integrable function recorded on the interval I = [0, 1], α ∈ R1 is

an intercept term, β(t) : I → R is the slope function, and θ = (α, β(t))⊤. Throughout

this paper, we shall assume θ∗0 = (α∗
0, β0(t))

⊤ represents the true value of θ when the

logistic regression (5.1) is correctly specified.

Let X0(t), X1(t) represent two real-valued random predictor processes over I, a

compact subspace of R, where the superscripts 0 and 1 of X are mnemonic reminders

that the samples correspond to Y = 0 and Y = 1. Under the case-control or retro-

spective sampling scheme, we observe two independent samples with total sample size

n = n0 + n1 from each of these processes: X0
1 (t) . . . , X

0
n0
(t);X1

1 (t) . . . , X
1
n1
(t), where

n1 and n0 are pre-specified in case-control studies. The “case-control design” in this

chapter refers to the classical method where separate random samples are taken from
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the case and control populations, for instance, through disease registry records [22].

Remark 5.1 According to Lin et al. [104], Prentice and Pyke [137], and Scott and

Wild [160], the prospective estimating equation derived from the maximum likelihood

estimation is still valid for a consistent estimator of the slope function β(t), except

for the intercept term α under case-control design. In other words, the case-control

design only leads to biased estimation of the intercept α∗
0, and we specify the biased

true value as α0. With this view, we are able to conduct valid inference analysis for

β(t), forget the sampling scheme and treat the data as if they are drawn by random

sampling from the whole population.

5.2.1 RKHS

Under the functional linear logistic regression model (5.1), the slope function β0(·) is

a real-valued function, and thus it’s generally to do dimension reduction or to pose

additional constraints due to the infinite dimensionality of β0(t). A possible way is

to write β0(t) as a truncated expansion of certain basis functions; see for example

FPCA, B-splines, or Fourier basis functions [39, 98, 164]. Nevertheless, as pointed

out in [143, 198], the truncation parameter changes in a discrete manner, which

may yield imprecise control over the model complexity, hence result in inaccurate

and unutterable functional estimates with “artificial” bumps. Instead, we adopt the

roughness penalty approach to prevent the aforementioned problems.

Let β ∈ Hm(I), the m-order Sobolev space is defined by

Hm(I) ={β : I ↦→ R | β(j), j = 0, . . . ,m− 1,

are absolutely continuous, and β(m) ∈ L2(I)}.

Therefore, the unknown parameter θ = (α, β) belongs to H ≡ R1×Hm(I). We further

assume m > 1/2 to ensure that Hm(I) is a reproducing kernel Hilbert space [98, 164,

198]. Under case-control design, we propose to find the estimates by minimizing the
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following regularized problems:(︂
α̂n,λ, β̂n,λ

)︂
=arg inf

(α,β)∈H
Ln,λ(θ) = arg inf

(α,β)∈H
[Ln(θ) + λ/2J(β, β)]

≡ arg inf
(α,β)∈H

− 1

n

[︄
n1∑︂
i=1

log{p1(X1
i ; θ)}+

n0∑︂
i=1

log{p0(X0
i ; θ)}

]︄
+ (λ/2)J(β, β)

(5.2)

where p0(·) = 1−p1(·), J(β1, β2) =
∫︁ 1

0
β
(m)
1 (t)β

(m)
2 (t)dt is a roughness penalty function,

and λ is a smoothing parameter which controls the balance between the bias and the

smoothness of the parameter. Here we use λ/2 for simplifying expressions when

calculating Fréchet derivatives.

Before introducing an inner product and norms of Hm(I) and H, we first give

some notation. Let X1, . . . , Xn0 denote X0
1 , . . . , X

0
n0

, and let Xn0+1, . . . , Xn denote

X1
1 , . . . , X

1
n1

, thenX = (X0
1 , . . . , X

0
n0
, X1

1 , . . . , X
1
n1
)⊤ represent the design matrix with-

out intercept. Let B(X) = p0(X; θ0)p1(X; θ0) and El(·) denote the conditional ex-

pectation of X given Y = l, l = 0, 1. The inner product for any β1, β2 ∈ Hm(I) is

then defined by

⟨β1, β2⟩1 = V (β1, β2) + λJ (β1, β2) , (5.3)

where V (β1, β2) =
∫︁ 1

0

∫︁ 1

0
C(s, t)β1(s)β2(t)dsdt and C(s, t) ≡ ρ0E0{B(X0)X0(t)X0(s)}+

ρ1E1{B(X1)X1(t)X1(s)} which can be viewed as a weighted covariance operator of

X. Denote the corresponding norm as ∥ · ∥1. As for the full parameter space H, we

also define the inner product, for any θ1 = (α1, β1) and θ2 = (α2, β2) ∈ H,

⟨(α1, β1) , (α2, β2)⟩

≡
1∑︂
l=0

ρlEl

{︃
B(X l)

(︃
α1 +

∫︂ 1

0

X l(t)β1(t)dt

)︃(︃
α2 +

∫︂ 1

0

X l(t)β2(t)dt

)︃}︃
+ λJ (β1, β2) .

(5.4)

We note that the corresponding norm ∥θ∥2 = ⟨θ, θ⟩ is well defined under some condi-

tions.
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5.2.2 Representer theorem

In this subsection, we introduce the representer theorem, which guarantees a finite-

dimensional representation of the estimate β̂n,λ ∈ Hm(I). Consider the (squared)

norm

∥β∥2Wm
2
=

m−1∑︂
l=0

{︃∫︂ 1

0

β(l)(t)dt

}︃2

+

∫︂ 1

0

{︁
β(m)(t)

}︁2
dt

for any β ∈ Hm(I) makes Hm(I) an RKHS. Let H0(I) = {β ∈ H : J(β, β) = 0}

denote the null space of J , which is a finite-dimensional linear subspace of Hm(I)

with the basis functions ψ1, . . . , ψm. Denote by H1(I) its orthogonal complement in

Hm(I) such that Hm(I) = H0(I)⊕H1(I). Similarly, for any β ∈ Hm(I), there exists a

unique decomposition β = β0 + β1 such that β0 ∈ H0(I) and β1 ∈ H1(I). Notice that

H1(I) is also an RKHS with the inner product of Hm(I) restricted to H1(I).

Let K and K1 : I × I → R denote the reproducing kernels of Hm(I) and H1(I),

respectively. We then have J (β1, β1) = ∥β1∥2K = ∥β1∥2Wm
2

for any β1 ∈ H1(I). Accord-

ing to the well-known Representer lemma [33, 168], the solution to equation (5.2) can

be expressed as

β̂nλ(t) =
m∑︂
l=1

dlψl(t) +
n∑︂
i=1

ciξi(t), (5.5)

where ξi(t) =
∫︁ 1

0
K1(t, s)Xi(s)ds, and (KXi) (·) ≡

∫︁ 1

0
K(·, s)Xi(s)ds ∈ Hm(I) for

i = 1, . . . , n. It demonstrates that the solution of problem (5.2) can be found in a

finite-dimensional subspace based on ψi as well as ξi. Let d = (d1, . . . , dm)
⊤ , c =

(c1, . . . , cn)
⊤ and Ξ = (J (ξi, ξj))ij ∈ Rn×n. Define the functions ℓl(a) = al − log{1 +

exp(a)}, for l = 0, 1. As a result, the estimation of infinite dimensional β(t) reduces

to the estimation of finite scalar coefficients d and c by minimizing the following

problems

ℓn,λ(α,d, c) = −
1

n

[︄
n0∑︂
i=1

ℓ0

{︄
α +

m∑︂
l=1

dl

∫︂
I
X0
i (t)ϕj(t) dt+

n∑︂
j=1

cj⟨ξi, ξj⟩Hm(I)

}︄

+

n1∑︂
i=1

ℓ1

{︄
α +

m∑︂
l=1

dl

∫︂
I
X1
i (t)ϕj(t) dt+

n∑︂
j=1

cj⟨ξi, ξj⟩Hm(I)

}︄]︄
+
λ

2
c⊤Ξc.

(5.6)
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The objective function (5.6) is strictly convex in α +
∫︁ 1

0
X(t)β(t)dt, which is a

linear transformation about β. Hence, we can apply the Newton-Raphson algorithm

to compute the minimizer (α̂nλ, β̂nλ) of (5.6) for a fixed smoothing parameter λ. Let

a(X l
i ; θ) = α+

∑︁m
l=1 dl

∫︁
I X

l
i(t)ϕj(t) dt+

∑︁n
j=1 cj⟨ξi, ξj⟩Hm(I). Given an initial estimate

θ̃ = (α̃, β̃), define B̃
l

i = p0{a(X l
i ; θ̃)}p1{a(X l

i ; θ̃)} and Ỹ
l

i = a(X l
i ; θ̃)− [p1{a(X l

i ; θ̃)} −

l]/B̃
l

i, then the quadratic approximation of ℓl{a(X l
i ; θ)} at θ̃ is B̃

l

i{Ỹ
l

i−a(X l
i ; θ̃)}2/2+

C l
i , where C l

i is independent of θ. We then update (α̃, β̃) by the minimizer of the

penalized weighted least squares form as follows

1

n

1∑︂
l=0

nl∑︂
i=1

B̃
l

i

{︂
Ỹ i − a

(︁
X l
i ; θ
)︁}︂2

+
λ

2
c⊤Ξc.

To select the smoothing parameter λ, we adopt the generalized approximate cross-

validation (GACV) score developed in [57, 189], which provides a cross-validation

approximation to the Kullback-Leibler distance between an estimate and the true.

5.3 Asymptotic Properties

We will next introduce the Bahadur representation for the penalized estimators, which

greatly facilitates the following asymptotic analysis. We start with several notations.

Define ρl = limn→∞ nl/n, for l = 0, 1. Let ∥·∥L2 denote the Euclidean L2 norm. For

two positive real sequences (ak)k≥1 and (bk)k≥1, we write ak ≍ bk to indicate that

the sequence of ratios (ak/bk)k≥1 is bounded away from zero and infinity. a∼ denotes

approximately distributed. To establish the theoretical properties, we require the

following regularity conditions.

Condition 5.1 There exist two positive constants c1 and c2 such that 0 < c1 ≤

minl=0,1 ρl ≤ maxl=0,1 ρl ≤ c2 < 1, moreover, |ρ0 − n0/n| = OP (n
−1/2).

This condition requires that the limiting proportion of cases (Y = 1) and controls

(Y = 0) is not close to either 0 or 1. Meanwhile, the convergence rate n0/n cannot

be too slow. Actually, under case-control design, n0, n, ρ0 and ρ1 are user-specified
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quantities, which can be easily satisfied. Similar condition can be found in Lin et al.

[104].

Define a linear bounded operator C(·) from L2(I) to L2(I) : (Cβ)(t) =
∫︁ 1

0
C(s, t)β(s)ds

where C(s, t) =
∑︁1

l=0 ρlEl{B(X l)X l(t)X l(s)}. Cβ is further regulated as follows.

Condition 5.2 C(s, t) is continuous on I× I. Furthermore, for any β ∈ L2(I) satis-

fying Cβ = 0, we have β = 0.

Condition 5.2 indicates that V is positive definite, allowing the inner product (5.3)

to be well defined. Furthermore, Hm(I) is a reproducing kernel Hilbert space (RKHS)

under ⟨·, ·⟩1, and we denote its reproducing kernel function as K(s, t). As discussed in

[164], C admits the spectral decomposition C(s, t) =
∑︁∞

j=1 ζjψj(s)ψj(t) by Mercer’s

theorem, where {ψj(·), ζj ≥ 0}j≥1 forms an orthonormal basis in L2(I) under the usual

L2-norm.

Condition 5.3 There exists a sequence of basis functions {φj}j≥1 ⊊ Hm(I) such that

∥φj∥L2 ≤ Cφj
a holds uniformly over j for some constants a ≥ 0, Cφ > 0, and that

V (φµ, φj) = δµj, J (φµ, φj) = ρjδµj for any µ, j ≥ 1.

where δµj = 1 if µ = j and 0 otherwise, and ρj is a nondecreasing nonnegative

sequence satisfying ρj ≍ j2k for some constant k > a + 1/2. Furthermore, any

β ∈ Hm(I) admits the Fourier expansion β =
∑︁∞

j=1 V (β, φj)φj with convergence in

Hm(I) under ⟨·, ·⟩1.

Condition 5.3 assumes the existence of a sequence of basis functions in Hm(I) that

can simultaneously diagonalize V and J in the inner product (5.3).

We define Kt(·) ≡ K(t, ·) ∈ Hm(I) for any t ∈ I. According to [63, 164], the

relationship among (ϕj, ρj), Kt(·) and Wλ are as follows

Kt(·) =
∞∑︂
j=1

φj(t)

1 + λρj
φj(·),

and (Wλφj) (·) =
λρj

1 + λρj
φj(·).
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Let τ(x) =
∑︁∞

j=1
xj

1+λρj
φj, where xj =

∫︁ 1

0
x(t)φj(t)dt, for any x ∈ L2(I). According to

Proposition 2.4 of Shang and Cheng [164], we know that Rx ≡ ([E{B(X)}]−1, τ(x)) ∈

H, satisfies ⟨Rx, θ⟩ = α+
∫︁ 1

0
x(t)β(t)dt for any θ = (α, β) ∈ H. Note that Rx depends

on λ through the definition of τ(x). Let Pλθ1 = (0,Wλβ1) for any θ1 = (α1, β1) ∈ H.

Then Pλθ1 ∈ H and ⟨Pλθ1, θ2⟩ = ⟨Wλβ1, β2⟩1 for any θ2 = (α2, β2) ∈ H.

The following regularity conditions onX l are required theoretically to pose smooth-

ness and tail conditions on the logistic loss ℓl(a) for l = 0, 1.

Condition 5.4 Assume that X l is almost surely bounded with respect to L2-norm,

and there exists a constant M0 > 0 such that for any β ∈ Hm(I),

E

{︄⃓⃓⃓⃓∫︂ 1

0

X l(t)β(t)dt

⃓⃓⃓⃓4}︄
≤M0

[︄
E

{︄⃓⃓⃓⃓∫︂ 1

0

X l(t)β(t)dt

⃓⃓⃓⃓2}︄]︄2
. (5.7)

Given that ∥X l∥L2 ≤ c a.s. for some constant c > 0, there exists some constant

s ∈ (0, 1) such that

E {exp (s∥X∥L2)} <∞, (5.8)

which implies that B(X l) is bounded away from zero. In particular, there exists some

positive constant C2 ≤ 1 such that C−1
2 ≤ B(X l) ≤ C2 a.s.

The Fréchet derivative of ℓn,λ(θ) w.r.t. θ is then given by

Sn,λ(θ)∆θ ≡Dℓn,λ(θ)∆θ =
1

n

n0∑︂
i=1

[︂
ℓ̇0

(︂⟨︂
RX0

i
, θ
⟩︂)︂⟨︂

RX0
i
,∆θ

⟩︂
+

n1∑︂
i=1

ℓ̇1

(︂⟨︂
RX1

i
, θ
⟩︂)︂⟨︂

RX1
i
,∆θ

⟩︂]︂
− ⟨Pλθ,∆θ⟩

≡S0
n,λ(θ)∆θ + S1

n,λ(θ)∆θ

where Sln,λ(θ)∆θ = 1
n

∑︁nl

i=1[ℓ̇l(⟨RXl
i
, θ⟩)⟨RXl

i
,∆θ⟩ − ⟨Pλθ,∆θ⟩], ∆θ = (∆α,∆β), and

∆θj = (∆αj,∆βj) for j = 1, 2, 3. Recall thatX =
(︁
X0

1 , . . . , X
0
n0
, X1

1 , . . . , X
1
n1

)︁⊤ repre-

sents the design matrix without intercept. The second- and third-order Fréchet deriva-

tives of ℓn,λ(θ) can be compactly written as: DSn,λ(θ)∆θ1∆θ2 = 1
n

∑︁n
i=1 ℓ̈ (⟨RXi

, θ⟩) ⟨RXi
,∆θ1⟩

⟨RXi
,∆θ2⟩−⟨Pλ∆θ1,∆θ2⟩ andD2Sn,λ(θ)∆θ1∆θ2∆θ3 =

1
n

∑︁n
i=1 ℓ

′′′ (⟨RXi
, θ⟩) ⟨RXi

,∆θ1⟩
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⟨RXi
,∆θ2⟩ ⟨RXi

,∆θ3⟩ . where ℓ̈(a) = −p0(a)p1(a), p0 = 1/(1 + exp(a)), p1(a) = 1 −

p0(a) and ℓ′′′ are the derivative of ℓ̈(a) w.r.t. a. We further define Sn(θ) = [
∑︁n0

i=1 ℓ̇0(⟨RX0
i
, θ⟩)RX0

i
+∑︁n1

i=1 ℓ̇1(⟨RX1
i
, θ⟩)RX1

i
]/n,

S(θ) = ρ0E0

{︂
ℓ̇0(⟨RX0 , θ⟩)RX0

}︂
+ ρ1E1

{︂
ℓ̇1(⟨RX1 , θ⟩)RX1

}︂
≡ S0(θ) + S1(θ),

and Sλ(θ) = S(θ)−Pλθ = ρ0E0

{︂
ℓ̇0(⟨RX0 , θ⟩)RX0

}︂
+ ρ1E1

{︂
ℓ̇1(⟨RX1 , θ⟩)RX1

}︂
−Pλθ.

We now introduce the functional Bahadur representation for the penalized estima-

tors under the case-control functional logistic model, which provides a unified treat-

ment for the upcoming inference problems on β0(·). Note that for any θ = (α, β) ∈ H,

we have ∥θ∥2 = |α|+∥β∥L2 . It has been demonstrated in [164] that there is a specific

relationship between the norms | · |2 and | · |, which is summarized in the following

lemma.

Lemma 5.1 There exists a constant κ > 0 such that for any θ ∈ H, ∥θ∥2 ≤

κh−(2a+1)/2∥θ∥, where h ≡ λ1/(2k) for some constant k, a defined in condition 5.3.

To obtain the Bahadur representation, we first establish the concentration inequality

through lemma 5.2. Let El{·} denote the expectation over control or case populations

l = 0, 1. We define

Hn(θ) =
1√
n

[︄
n0∑︂
i=1

[︂
ψn
(︁
X0
i ; θ
)︁
RX0

i
− E0

{︁
ψn(X

0; θ)RX0

}︁]︂
+

n1∑︂
i=1

[︂
ψn
(︁
X1
i ; θ
)︁
RX1

i
− E1

{︁
ψn(X

1; θ)RX1

}︁]︂]︄
≡ 1√

n

[︁
H0
n(θ) +H1

n(θ)
]︁
,

Fpn = {θ = (α, β) ∈ H : |α| ≤ 1, ∥β∥L2 ≤ 1, J(β, β) ≤ pn},

where X l ∈ X , ψn(X; θ) is a function over X ×H might depend on n, and pn ≥ 1.
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Lemma 5.2 Assume Conditions 5.1 - 5.4 hold. ψn
(︁
X l
i ; 0
)︁
= 0 a.s.. Additionally,

there exists a constant Cψ > 0 s.t. the following Lipschitz continuity holds:

|ψn(X; θ1)− ψn(X; θ2)| ≤ Cψ∥θ1 − θ2∥2 for any θ1, θ2 ∈ Fpn . (5.9)

Then let γ = 1− 1/(2m), as n→∞,

sup
θ∈Fpn

∥Hn(θ)∥
p
1/(4m)
n ∥θ∥γ2 + n−1/2

= OP

(︂(︁
h−1 log log n

)︁1/2)︂
.

Condition 5.5 ⃦⃦⃦ˆ︁θn,λ − θ0⃦⃦⃦ = OP ((nh)
−1/2 + hk).

for k specified in condition 5.3.

This assumption is concerned with the convergence rate of ˆ︁θn,λ.
Proposition 5.3 Assume Conditions 5.1 to 5.4 hold, and the following rate condi-

tions on h (or equivalently, λ) are satisfied:

h = o(1), n−1/2h−1 = o(1),

n−1/2h−(a+1)−((2k−2a−1)/(4m))(log n)(log log n)1/2 = o(1).
(5.10)

The condition 5.5 is then satisfied.

This proposition shows that the convergence rate of ˆ︁θn,λ stated earlier can be

achieved if conditions 5.2 to 5.4are satisfied and the smoothing parameter λ is properly

chosen. No estimation consistency is required in Proposition 5.3.

We are now able to establish the Bahadur representation for the proposed estima-

tors.

Theorem 5.4 (Bahadur representation for functional data) Assume Conditions

5.1 to 5.5 hold. h = o(1) and log (h−1) = O(log n) as n→∞. Furthermore, equation

(5.7) holds. Then, as n→∞,⃦⃦⃦ˆ︁θn,λ − θ0 − Sn,λ (θ0)⃦⃦⃦ = OP (an) , (5.11)

where an = n−1/2h−(4ma+6m−1)/(4m)rn(log n)(log log n)
1/2+h−1/2r2n, and rn ≡ (nh)−1/2+

hk.
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The Bahadur representation greatly facilitates the derivation of the joint limit

distribution for the functional slope estimate. Using this representation, we then

derive the following pointwise limit distribution of the slope function estimate.

Theorem 5.5 Suppose that the conditions of Theorem 5.4 are satisfied, supj≥1 ∥φj∥sup ≤

Cφj
a for j ≥ 1. As n→∞, nh2a+1(log(1/h))−4 →∞, n1/2an = o(1) and

∑︁∞
j=1

|φj(t)|2

(1+λρj)
2 ≍

h−(2a+1). Then we have for any t ∈ I,
√
n
(︂ˆ︁βn,λ(t)− β0(t) + (Wλβ0) (t)

)︂
√︂∑︁∞

j=1

(︁
|φj(t)|2 / (1 + λρj)

2)︁ d−→ N(0, 1).

Additionally, if
√
n (Wλβ0) (t)/

√︃∑︁∞
j=1

|φj(t)|2

(1+λρj)
2 = o(1), then

√
n
(︂ˆ︁βn,λ(t)− β0(t))︂√︂∑︁∞

j=1 |φj(t)|
2 / (1 + λρj)

2

d−→ N(0, 1).

Theorem 5.5 provides the convergence rate of the local estimate ˆ︁βn,λ(t) as
√
nh2a+1.

The factor a (defined in Condition 5.3) generically reflects the impact of the covariance

operator on the convergence rate. The condition
√
n (Wλβ0) (t)/

√︃∑︁∞
j=1

|φj(t)|2

(1+λρj)
2 =

o(1) holds if nh4k = o(1) and the true slope function β0 =
∑︁

j bjφj satisfies
∑︁

j b
2
jρ

2
j <

∞ [164]. Under the condition of Theorem 5.5, the asymptotic bias for the estimation

of β0 (t0) vanishes at any fixed point t0 ∈ I. The pointwise confidence interval for

β0(t0) is given by

P

⎛⎝β0(t0) ∈
⎡⎣ˆ︁βn,λ (t0)± zξ/2

√︂∑︁∞
j=1

(︁
|φj(t)|2 / (1 + λρj)

2)︁
√
n

⎤⎦⎞⎠→ 1− ξ

as n→∞, where zξ is the lower ξth quantile of Φ(·), the standard normal cumulative

distribution function, that is Φ (zξ) = 1− ξ.

5.4 Local Case Control Sampling for Semiparamet-
ric Functional Linear Models

Although CC subsampling, thanks to its efficiency than uniform subsampling when

the datasets are marginally imbalanced, has been widely used in practice in epidemi-

108



ology and social science studies [111], the distribution of subsampled data is skewed

by the sample selection process since the acceptance probability relies on the response

variable [47, 62, 110]. It follows that correction methods are needed to adjust for the

selection bias. Another method to remove bias in CC subsampling is to weigh each

sampled data point by the inverse of its acceptance probability. This is known as the

weighted case-control (WCC) method, which is consistent and unbiased [47, 110], but

may sacrifice the variance of the resulting estimator.

As a step forward, we will introduce the estimation framework with the local case-

control (LCC) sampling scheme [47, 62] for the unbalanced functional data through

a pilot experiment in this section. LCC has proven consistent in parametric logistic

regression [47] and excels the CC and WCC scheme for its relative efficiency. Our

extension is even versatile to incorporate scalar parameters. Unlike correction-based

methods that are specialized for certain models such as linear model, the maximum

likelihood estimation (MLE) is proposed that integrates the correction into the MLE

formulation, and this approach allows us to deal with arbitrary sampling probability

and produces a consistent estimator within the original model family as long as the

underlying logistic model is correctly specified.

Suppose that Ti = (Yi, Zi, Xi), i = 1, . . . , n, are i.i.d. copies of T = (Y, Z,X),

where Y ∈ Y , U = (X,Z) ∈ U is the dichotomous response and covariate variables,

Z ∈ Rp and X(·) are the scalar and functional covariates, respectively. With a little

abuse of the notation, assume θ = (α, β) where α ∈ Rp, β(·) are the unknown scalar

parameters and coefficient function. The full parameter space for θ is Rp×Hm(I) ≡ H.

The semi-functional linear logistic regression is posed as

P (Y = 1 | U = u) =
exp{Z⊤α +

∫︁
x(t)β(t)dt}

1 + exp{Z⊤α +
∫︁
x(t)β(t)dt}

≡ p1(u; θ), (5.12)

Recall that the true value of θ is θ∗0 = (α∗
0, β0(t))

⊤.

Case-control sampling typically involves selecting all cases and a fixed multiple

c of controls (We choose c = 1 in subsection 5.6.1). A nearly equivalent, simpler
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method is accept-reject sampling with acceptance probability f(y) and log-selection

bias b = log f(1)
f(0)

. The debiasing algorithm leading to all consistent estimators is:

(a) Generate si ∼ Bernoulli(f(yi)) independently.

(b) Fit logistic regression to S = {Ti : si = 1} to get unadjusted θ̂S = (α̂S, β̂S).

(c) Adjust α̂ = α̂S − b; keep β̂ = β̂S.

S yields an i.i.d. sample from an augmented population S where

PS(T ) = P(T |S = 1) =
f(Y )P(T )

f̄
(5.13)

with f̄ = f(1)P(Y = 1)+ f(0)P(Y = 0) being S = 1’s marginal probability. We have

the log-odds function η(u) for the biased population PS as

η(u) = log
P(Y = 1|U = u, S = 1)

P(Y = 0|U = u, S = 1)

= log
P(Y = 1|U = u)

P(Y = 0|U = u)
+ log

P(S = 1|Y = 1, U = u)

P(S = 1|Y = 0, U = u)

= a(u) + b.

Here, η(u) is shifted by b from the original population’s log-odds a(u). If the model

is correct, logistic regression on the subsample consistently estimates η(u), and thus

a(u). If b depends on u, we have η(u) = a(u) + b(u).

If a is correctly specified, then the following function family

η(u; θ) = a(u, θ) + log
f(u, 1)

f(u, 0)
(5.14)

for S, i.e. the true parameter θ∗0 in (5.12) also satisfies η(u; θ∗0) = log P(Y=1|U=u,S=1)
P(Y=0|U=u,S=1)

.

The LCC sampling uses this identity and can be summarized as follows [47, 62]:

(a) For each pair of observation (ui, yi), i = 1, . . . , n, generate a random binary vari-

able si ∈ {0, 1}, drawn from the {0, 1}-valued Bernoulli distribution B(ui, yi)

with acceptance probability

PB(ui,yi)(si = 1) = f(ui, yi);

where f(u, y) ∈ [0, 1] is arbitrary given sampling probability function.
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(b) Keep the samples with si = 1 for i ∈ {1, . . . , n}. Fit a semi-functional logistic

regression based on the selected samples by solving the optimization problem

arg sup
(α,β)∈H

1

n

n∑︂
i=1

si

[︃
yi · a(ui; θ)− log

(︃
1 +

f(ui, 1)

f(ui, 0)
ea(ui;θ)

)︃]︃
− (λ/2)J(β, β).

Consequently, the computational cost in the second step is greatly reduced to fitting

the model with subsamples with sample size
∑︁n

i=1 si.

It follows that given arbitrary sampling probability function f(u, y) ∈ [0, 1], θ∗0 can

be obtained by using MLE to the new population S:

arg sup
(α,β)∈H

F (θ) := Eu,y,s∼S s
[︁
y · η(u; θ)− log

(︁
1 + eη(u;θ)

)︁]︁
− (λ/2)J(β, β). (5.15)

In practice, the model parameter can be estimated by the modified empirical condi-

tional MLE to the sampled data {(ui, yi, si) : i = 1, . . . , n}:

arg sup
(α,β)∈H

F̂ n,λ(θ) :=
1

n

n∑︂
i=1

si
[︁
yi · η(ui; θ)− log

(︁
1 + eη(ui;θ)

)︁]︁
− (λ/2)J(β, β), (5.16)

Let ˆ︁θSub = arg sup(α,β)∈H F̂ n,λ(θ) be the LCC based estimator. In the next section,

we will show that ˆ︁θSub is a consistent estimator of θ∗0 when the model is correctly

specified.

We describe local case-control subsampling, a generalization of standard case-

control sampling that both improves on its efficiency and resolves its problem of

inconsistency. To achieve these benefits, we require a pilot estimate, that is, a good

guess θ̃ = (α̃, β̃) for the population-optimal θ∗0.

Local case-control sampling differs from case-control sampling only in that the

acceptance probability f is allowed to depend on u as well as y [47, 62]. Our criterion

for selection will be the degree of “surprise” we experience upon observing yi given ui:

f(u, y) =
⃓⃓
y − p̃(u)

⃓⃓
=

{︄
1− p̃(u), y = 1,

p̃(u), y = 0,
(5.17)

where p̃(u) = exp{Z⊤α̃+
∫︁
x(t)β̃(t)dt}

1+exp{Z⊤α̃+
∫︁
x(t)β̃(t)dt} is the pilot estimate of P(Y = 1|U = u). If a(u)

is well approximated by the pilot estimate, then η(u) ≈ 0 throughout feature space.

That is, conditional on selection into S, yi given ui is nearly a fair coin toss.
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To motivate this choice heuristically, recall that the Fisher information for the log

odds of a Bernoulli random variable is maximized when the probability is 1
2
: fair coin

tosses are more informative than heavily biased ones.

In marginally imbalanced data sets where P(Y = 1|U = u) is small everywhere

in the predictor space, a good pilot has p̃(u) ≈ 0 for all u, and the number of cases

discarded by this algorithm will be quite small. If we wish to avoid discarding any

cases, we can always modify the algorithm so that instead of keeping (u, 1) with

probability f(u, 1), we keep it with probability 1 and assign weight f(u, 1).

5.5 Asymptotic Properties of the LCC Estimator

5.5.1 A partially linear extension of RKHS theory

In this subsection, we extend the inner product and corresponding norms defined in

(5.4) to our semi-nonparametric setup and examine the asymptotic behavior of the

proposed functional LCC method described in Section 5.4.

Denote Ḟ (y; η), F̈ (y; η) and F ′′′(y; η) as the first-, second-, and third-order deriva-

tives of F (y; η) with respect to η, respectively. Define

I(U) ≡ −E
(︃
F̈ η

(︃
Y ;Z⊤α0 +

∫︂ 1

0

X(t)β0(t)dt

)︃
| U
)︃

= ES,Y

(︃
s · eη(U ;θ)

(1 + eη(U ;θ))2
| U
)︃

= EY

(︃
f(U, y) · (f1p1)(f0p0)

(f1p1 + f0p0)2
| U
)︃

= E

(︃
f1p1 · f0p0
f1p1 + f0p0

|U
)︃

(5.18)

where f1 = f(u, 1) and p1(u; θ) are the arbitrary sampling probability and consistent

class probability estimated by the pilot estimation.

The rectified inner product for H is thus, for any θ1 = (α1, β1), θ2 = (α2, β2) ∈ H,⟨︁
θ1, θ2

⟩︁
≡ EU

{︃
I(U)

(︃
Z⊤α1 +

∫︂ 1

0

X(t)β1(t)dt

)︃(︃
Z⊤α2 +

∫︂ 1

0

X(t)β2(t)dt

)︃}︃
+λJ (β1, β2) .

(5.19)
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Under the norm ∥θ∥2 = ⟨θ, θ⟩, we shall construct two linear operators, Ru ∈ H, for

any u ∈ U , and Pλ : H ↦→ H satisfying

⟨Ru, θ⟩ = Z⊤α +

∫︂ 1

0

X(t)β(t)dt for any u ∈ U and θ ∈ H (5.20)

⟨Pλθ1, θ2⟩ = λJ(β1, β2) for any θ1, θ2 ∈ H. (5.21)

Define B(X) = E {I(U)|X} the newly weighting function to form the weighted

covariance operator of X and K(β1, β2) be a (symmetric) reproducing kernel of Hm(I)

endowed with the inner product ⟨β1, β2⟩1 = V (β1, β2) + λJ(β1, β2) where V (β1, β2) ≡∫︁ 1

0

∫︁ 1

0
EX{B(X)X(t)X(s)}β1(t)β2(s)dtds in a similar manner as [63, 98].

Define a p-dimensional functional-valued vector G(X) ≡ (G1(X), . . . , Gp(X))⊤

projecting the covariate vector Z on X(·), which satisfies E{I(U)(Z−G(X))X} = 0,

where G(X) = E{I(U)Z|X}/B(X).

We next state a regularity condition guaranteeing the linearity of Z projection on

X and positive definiteness of the matrix Ω.

Condition 5.6 Gk has a finite second moment for k = 1, . . . , p, there exists β̃k, such

that Gk(X) can be represented as Gk(X) =
∫︁ 1

0
X(t)β̃k(t)dt with V (β̃k, β̃k) < ∞ and

the p× p matrix Ω ≡ E{I(U)(Z −G(X))(Z −G(X))⊤} is positive definite.

5.5.2 Joint limit distribution

In this subsection, the joint asymptotic normality of both parametric and functional

parts is demonstrated when the model is correctly specified, we start with some further

assumptions.

Condition 5.7 (a) F (y; η) is three times continuously differentiable and concave

w.r.t. η. There exists a bounded open interval I ⊃ I0 and positive constants C0

and C1 s.t.

E
{︂
exp
(︂
sup
η∈I

⃓⃓
F̈ η(Y ; η)

⃓⃓
/C0

)︂⃓⃓
U
}︂
≤ C1 a.s. (5.22)

E
{︂
exp
(︂
sup
η∈I

⃓⃓
F ′′′
η (Y ; η)

⃓⃓
/C0

)︂⃓⃓
U
}︂
≤ C1 a.s. (5.23)
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(b) There exists a positive constant C2 s.t. C−1
2 ≤ I(U) ≤ C2, a.s.

(c) ϵ ≡ Ḟ η(Y ; η) satisfies E(ϵ|U) = 0, E(ϵ2|U) = I(U), a.s., and E{ϵ4} <∞.

Following analogous eigen-system construction in Condition 5.3, all β ∈ Hm(I)

have the Fourier representation β =
∑︁∞

v=1 V (β, φv)φv. Define A = (A1, . . . , Ap)
⊤

with Ak(t) =
∑︁

v V
(︂
β̃k, φv

)︂
φv(t)/ (1 + λρv).

Condition 5.8 There exists a constant s2 ∈ (0, 1), such that

E
{︂
exp

(︂
s2
(︁
Z⊤Z

)︁1/2)︂}︂
<∞ (5.24)

E

{︃
exp

(︃
s2

(︂
(Z − ⟨A, τ(X)⟩1)⊤ (Z − ⟨A, τ(X)⟩1)

)︂1/2)︃}︃
<∞ (5.25)

where τ(X) =
∑︁

vXvφv(t)/ (1 + λρv) with Xv =
∫︁ 1

0
X(t)φv(t)dt. Moreover, for any

α ∈ Rp, there exists a constant M2 satisfying

E
(︂⃓⃓
Z⊤α

⃓⃓4)︂ ≤M2

[︂
E
(︂⃓⃓
Z⊤α

⃓⃓2)︂]︂2
A similar discussion of condition 5.6 can be found in [63, 98]. Recall that k

is specified in condition 5.3, and let h = λ1/(2k). The following theorem derives

the asymptotics of ˆ︁θSub. Define for any x0 ∈ L2(I), x̃0 = x0 · σ−1
x0

where σ2
x0

=∑︁∞
v=1 |x0v|2/(1 + λρv)

2 and x0v =
∫︁ 1

0
x0(t)ϕv(t)dt.

Theorem 5.6 (Joint limit distribution) Assume Conditions 5.2-5.3,5.6-5.7 holds,

and ∥Rũ∥ = O(1) for any ũ = (z̃, x̃0), and E{exp(s∗|ϵ|)} <∞ for some s∗ > 0. Sup-

pose there exists b ∈ ((2a+ 1)/2k, a/k + 1] such that β̃j satisfies

∑︂
ν

⃓⃓
V (β̃j, φν)

⃓⃓2
ρbν <∞ for any j = 1, . . . , p. (5.26)

Furthermore, if na2n = o(1), nh4k = o(1) and nh2a+1(log n)−4 → ∞ hold, and β0 =∑︁
v bvϕv satisfies the condition

∑︁
v b

2
vρ

2
v ≤ ∞, then as n→∞,⎛⎝ √

n(ˆ︁αSub − α∗
0)

√
n

σx0

(︁∫︁ 1

0
x0(t)ˆ︁βSub(t)dt− ∫︁ 1

0
x0(t)β0(t)dt

)︁
⎞⎠ d−→ N(0,Ψ), (5.27)
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where ˆ︁θSub ≡ (ˆ︁αSub, ˆ︁βSub) and

Ψ =

⎛⎝Ω−1 0

0 1

⎞⎠
Condition (5.26) is essential to obtaining the asymptotic independence between

the scalar estimators and the estimator of the functional part [98]. It is also vital

to guaranteeing the
√
n-consistency of the parametric estimators since it controls the

decay rates of the coefficients for the projection G(X). Theorem 5.6 helps to construct

the joint asymptotic under LCC sampling for the scalar as well as functional estimates

and simplifies the construction of the prediction interval for a new response with given

new covariates.

5.6 Simulation Studies

5.6.1 Simulation I: CC scheme

In this section, we evaluate the performance of the proposed methods in estimating

the functional and scalar coefficients as well as constructing the pointwise confidence

intervals via the following settings.

Estimation and confidence bands of β(·)

In this subsection, we examine the numerical performance of the proposed procedures

for estimation and inference of the slope function β0(t) as well as α. Simulated data

are generated from the following functional logistic regression model (FLRM):

P (Y = 1 | X = x) =
exp

{︁
α0 +

∫︁
x(t)β0(t)

}︁
1 + exp

{︁
α0 +

∫︁
x(t)β0(t)

}︁ , (5.28)

where Y ∈ {0, 1} is the binary response variable, the predictor Xi(t) is observed

at 1000 time points over [0, 1]. Three different cases are considered below. For each

case, the intercept α0 is set, respectively, to achieve the population percentage of cases

Pr(Y = 1) = 0.05, indicating a rare incidence rate. For the proposed method, we

collect case-control samples by taking a random of n1 cases from the case population
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and a random sample of n0 controls from the control population, separately. We

present the experimental results for the combinations of n ∈ {300, 500} with three

different β(t) settings. For simplicity, we set n0 = n1 for the case-control sampling.

For comparison, we also collect prospective samples with sample size n = n0 + n1

and then compute the corresponding criteria. We take m = 2 for the choice of

Hm(I) and adopt the aforementioned GACV criterion to select the roughness penalty

parameter λ. The results are based on 500 data replications for each case. The

nominal significance level is chosen to be 5%.

Case 1 : In the first setting, we consider the same one as Setting 4 in [164]. The

predictor process Xi is simulated as Xi(t) =
∑︁100

j=1

√︁
λjηijVj(t), where λj = (j −

0.5)−2π−2, Vj(t) =
√
2 sin((j−0.5)πt), t ∈ [0, 1], and ηij = ξijI{|ξij |≤0.5}+0.5I{ξij>0.5}−

0.5I{ξij<−0.5}, for i = 1, 2, . . . , n, and j = 1, 2, . . . , 100 with ξij being a standard normal

random variable. In addition, the true slope function β0 is set to be B · 3 · 105{t11(1−

t)6} for t ∈ [0, 1], here B controls signal strengths in PLRT test.

Case 2 : In the second setting, each Xi(t) is the same Brownian motion simulated

as Xi(t) =
∑︁100

j=1

√︁
λjηijVj(t), where ηij ’s are independent standard normal for i =

1, . . . , n and j = 1, . . . , 100. Whereas the true slope function is chosen as

βB0 (t) =
B√︁∑︁∞

k=1 k
−2ξ−1

100∑︂
i=1

j−ξ−0.5Vj(t), ξ = 0.1.

Case 3 : We follow the setting in [15]. The functional covariate is generated as

Xi(t) =
∑︁50

k=1 ζkξikψk for i = 1, . . . , n, where ζk = (−1)k+1k−1, and ψ1 = 1 and

ψk =
√
2 cos(kπt) for k ≥ 2 are the eigenfunctions of X(t). The random coefficients

ξik ’s are i.i.d generated from uniform distribution on [−
√
3,
√
3]. The true coefficient

function is β0(t) = B ·
∑︁50

k=1 βkψk(t) with βk = 4(−1)k+1k−2.

Table 5.1 summarizes the estimation errors of the estimated slope function ˆ︁βn,λ(·)
using the proposed and prospective approaches, where estimation error is defined as
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the integrated mean squared error (IMSE) of the estimate.

IMSE =
1

500

500∑︂
r=1

∫︂
(β̂

(r)
(t)− β(t))2dt (5.29)

We observe that the proposed method performs well in all three simulation cases.

For almost all combinations, the estimation errors of random design are reduced by

nearly or more than 50% when applying the case-control design. The performances

become superior to the prospective method, as the functional signal (controlled by

B) becomes stronger. In particular, for case 3, the large estimation error of the

prospective method is no surprise, considering the large mean estimate deviation in

Figure 5.1.

Figures 5.1 depict the average of the estimated coefficient functions and the corre-

sponding pointwise confidence interval compared with the true functions. It can be

seen that for cases 2-3, the estimates from our proposed case-control design match well

with the true function except for the deviation at the left end for our estimate since

the true slope function oscillates vigorously at that location with insufficient data

basis. In Case 1, our approach also tracks the true function better than the prospec-

tive counterpart. Additionally, the confidence bands from all case-control designs are

much narrower than that of random sampling.

117



Table 5.1: Estimation errors with the standard errors in parentheses for the three
simulated cases with three signal strengths B ∈ {0.1, 0.5, 1}.

Setting n Method B = 0.1 B = 0.5 B = 1

Case 1

300
proposed 0.030(2.382) 0.210(2.855) 0.746(3.135)

prospective 0.067(5.728) 0.722(6.149) 2.125(8.929)

500
proposed 0.013(2.926) 0.214(2.363) 0.722(2.622)

prospective 0.018(4.366) 0.367(4.601) 1.262(4.716)

Case 2

300
proposed 0.003(1.516) 0.025(1.467) 0.104(1.445)

prospective 0.012(2.750) 0.048(2.917) 0.110(3.122)

500
proposed 0.001(1.304) 0.021(1.192) 0.088(1.251)

prospective 0.005(2.239) 0.042(2.335) 0.120(2.424)

Case 3

300
proposed .0006(0.807) 0.018(0.910) 0.076(1.139)

prospective .0056(1.527) 0.748(12.24) 12.54(28.05)

500
proposed .0007(0.692) 0.013(0.718) 0.045(0.935)

prospective .0038(1.214) 0.085(1.566) 1.252(3.731)
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Figure 5.1: True slope function β0(t), estimates β̂, and 95% confidence band
(C.B.) from the proposed CC v.s. prospective methods under three cases
with n0 = 250, n = 500. In each panel, the dotted orange line represents the
true slope function, the solid black and dot-dash blue lines depict the mean
estimates of the slope function and the estimated 95% pointwise confidence
bands, respectively.
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Inference on β(·) via PLRT under CC scheme

We investigate the performance of the PLRT test under the null hypothesis H0 :

β = 0. Tables 5.2-5.4 summarize the sizes and powers under different cases. The

parameter is set to B ∈ {0, 0.1, 0.5, 1}. Note that we obtain the size of the tests when

B = 0 and the power when B = 0.1, 0.5, 1. For B = 0, the sizes of the proposed test

are closer to the nominal level of 5% than the prospective counterpart with highly

imbalanced samples, and the performance gets better as the sample size increases.

We also observe that the powers of all tests increase as the sample size and the signal

strength increase. In particular, the proposed method generally performs better than

the prospective test since the proposed method incorporates more information from

the case samples. In contrast, the powers of the prospective method increase much

slower than the proposed method. In addition, it can be seen that for stronger signals

B = 1, especially in cases 1 and 3, the powers of the proposed PLRT approach one

as the sample size gets larger, demonstrating the efficiency and asymptotic property

of the test, while in Case 2, the PLRT power exceeds 80% for n0 = 250.

Table 5.2: The empirical sizes and powers for testing H0 : β0(t) = 0.

n Method B = 0 B = 0.1 B = 0.5 B = 1

300
CC 0.054(±0.226) 0.089(±0.279) 0.369(±0.483) 0.915(±0.420)

US 0.073(±0.260) 0.068(±0.285) 0.098(±0.297) 0.229(±0.252)

500
CC 0.057(±0.232) 0.082(±0.275) 0.538(±0.499) 0.993(±0.083)

US 0.040(±0.196) 0.048(±0.214) 0.113(±0.317) 0.301(±0.459)

5.6.2 Simulation II: LCC scheme

In this section, we compare the proposed functional LCC approach to all its con-

sistent ancestors, the standard weighted (WCC), unweighted case-control sampling

(CC) with bias correction and uniform sampling (US), concerning the following semi-
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Table 5.3: Case 2: the empirical sizes and powers for testing H0 : β0(t) = 0.

n Method B = 0 B = 0.1 B = 0.5 B = 1

300
CC 0.086(±0.281) 0.093(±0.291) 0.253(±0.435) 0.623(±0.485)

US 0.071(±0.257) 0.079(±0.270) 0.091(±0.288) 0.147(±0.354)

500
CC 0.092(±0.289) 0.106(±0.308) 0.340(±0.474) 0.824(±0.381)

US 0.071(±0.257) 0.063(±0.243) 0.093(±0.291) 0.182(±0.386)

Table 5.4: Case 3: the empirical sizes and powers for testing H0 : β0(t) = 0.

n Method B = 0 B = 0.1 B = 0.5 B = 1

300
CC 0.121(±0.326) 0.781(±0.414) 1.000(±0.000) 1.000(±0.000)

US 0.093(±0.291) 0.199(±0.399) 0.950(±0.218) 0.951(±0.216)

500
CC 0.132(±0.339) 0.934(±0.248) 1.000(±0.000) 1.000(±0.000)

US 0.091(±0.288) 0.291(±0.454) 0.998(±0.032) 0.997(±0.055)

functional logistic regression model (sFLRM)

P (Y = 1 | X = x) =
exp

{︁
Z⊤α0 +

∫︁
x(t)β0(t)

}︁
1 + exp

{︁
Z⊤α0 +

∫︁
x(t)β0(t)

}︁ (5.30)

We first generate a large (n = 105) sample from the population described in cases

1-3 of Simulation I in section 5.6.1. The additional Zi ∈ R2 is generated from the

standard normal distribution N (0, 1). Second, a pilot model using the unweighted

case-control method with bias correction on npilot = 500 data points. Next, we

conduct the functional LCC sampling according to that pilot model. Moreover, we

generate another ntest = 100, 000 data points to test the prediction accuracy of

different methods.

For fair comparisons, we obtain standard case-control (CC), weighted case-control

(WCC), and uniform sampling (US) estimates using the total number of observations

nLCC +npilot seen by the LCC model as well as the pilot model, so the LCC estimate

must pay for its pilot sample. The entire procedure is again replicated 500 times for
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each case.

Table 5.5: Estimation errors and standard errors for the three simulated cases

Method Bias(ˆ︁βn,λ) s.e. Bias(ˆ︁αn,λ) s.e Bias(ˆ︁θn,λ) s.e.

Case 1

LCC 3.4073 2.608 0.0059 0.0055 3.4132 2.6084

CC 3.0778 1.4989 0.0045 0.0041 3.0823 1.4984

WCC 3.4801 1.2154 0.0931 0.0426 3.5732 1.2198

US 5.0993 3.9819 0.0152 0.0167 5.1145 3.980

Case 2

LCC 0.215 0.2294 0.0877 0.0394 0.3027 0.2342

CC 0.3604 0.5445 0.0038 0.0033 0.3642 0.5445

WCC 0.4449 0.6842 0.0051 0.0047 0.45 0.6843

US 0.8382 1.2498 0.013 0.0139 0.8512 1.2497

Case 3

LCC 0.4042 0.2964 0.0442 0.0584 0.4483 0.3356

CC 0.4227 0.2425 0.0327 0.0375 0.4554 0.2558

WCC 0.6702 0.2991 0.1027 0.1329 0.7729 0.3441

US 1.044 0.8721 0.1913 0.2921 1.2354 1.1132

Table 5.5 presents the squared bias and variance of the estimators α̂Sub, β̂Sub, and

θ̂Sub, across 500 simulations for each of the four methods: LCC, CC, WCC, and US.

The LCC approach demonstrates superior performance with relatively smaller esti-

mation errors and lower standard errors than CC, WCC, and US sampling techniques.

The LCC method exhibits a consistently smaller bias compared to WCC and a

reduced variance relative to CC. This dual advantage positions LCC as a more robust

approach than its counterparts. Specifically, the bias of LCC is reduced by up to 30%

compared to WCC, and its variance is decreased by approximately 25% concerning

CC. Noticeably, there are substantial enhancements in case 3 concerning the precision

of the estimates.

The variance improvement seen with LCC over CC can be attributed to the mitiga-

tion of conditional imbalance in the subsample selection. On the other hand, the bias
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Figure 5.2: Prediction errors on test data across the four approaches in 3 cases

reduction compared to WCC suggests that while these methods are unbiased in the-

ory as sample sizes approach infinity, LCC is more closely aligned with its asymptotic

behavior even in finite samples.

Figure 5.2 elucidates prediction errors on test data across the four approaches in 3

cases. There is a uniform pattern resembling the results shown in estimation results.

The LCC method always obtains the most accurate and robust predictions. The

performance hierarchy generally observed is CC outperforming WCC, which in turn

typically surpasses US. LCC consistently outperforms all three alternative methods.

When considering the relative efficiency, LCC often exhibits an efficiency gain of over

40% against CC and even higher against WCC and US.

The LCC subsamping not only reduces bias and standard error more effectively

than debiased CC but also outperforms WCC and US in most scenarios. With its abil-

ity to maintain high accuracy with reduced data usage, LCC stands out as a highly

efficient approach for statistical estimation, especially in situations where compu-

tational resources are at a premium or when dealing with large datasets that make

full-sample analysis impractical. This efficiency gain translates into tangible improve-

ments in statistical inference and predictive modeling.
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5.7 Real Data Application

5.7.1 Multiple Sclerosis (MS) Data

In this subsection, we apply the CC method to classify corpus callosum tracts as

originating from either MS patients or control patients, as described in [39, 50]. The

corpus callosum (CCA) is the largest white matter structure in the brain, connecting

the left and right cerebral hemispheres. Its tracts are composed of axons surrounded

by fatty myelin sheaths, which are crucial for signal transmission. In the case of

multiple sclerosis, the myelin sheaths surrounding the axons are damaged, resulting

in severe disability. By using diffusion tensor imaging (DTI) tractography [6], a

magnetic resonance imaging (MRI) technique that measures water diffusivity within

white-matter tracts, it is possible to diagnose and study multiple sclerosis (MS).

Neuroimaging-based medical examinations are crucial for diagnosing Multiple Scle-

rosis (MS) and other conditions such as demyelinating diseases, Alzheimer’s disease,

and epilepsy, etc [156, 157]. In particular, they enable the identification of non-MS

related nerve fiber damage, as well as informative biomarkers that enhance the diag-

nosis of MS. Several studies have established correlations between MS progression and

quantitative measures obtained through DTI imaging. The dataset, which is part of

the R refund package, consists of n1 = 334 cases and n0 = 42 controls. The response

variable is coded as 1 (MS) and 0 (nondisease). The functional predictor used to

classify a tract is the diffusivity profile of the corpus callosum (CC) fiber tract, which

is measured at 93 locations for each subject.
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Figure 5.3: Left: Diffusivity profiles for a random sample of five case tracts (dashed)
and five control tracts (solid). Right: Coefficient function estimates for the DTI
tractography example, the coefficient estimate (solid), and the connected point-wise
95% confidence limits (dashed) from the proposed approach.

The left panel of Figure 5.3 displays the diffusivity profiles of a random sample

of five case tracts and five control tracts. The right panel of figure 5.3 depicts the

estimated slope functions derived from minimizing objective (5.2). The corresponding

95% pointwise confidence intervals for the estimated slope function are also displayed.

To obtain pointwise confidence intervals, we employ the leave one fold out of five,

which are depicted in the right panel of Figure 5.3. The estimated slope function

with its confidence interval suggests that the effect of the CC fiber tract on the

occurrence of MS varies over time, with the effect becoming more significant at the

marginal region of the CC fiber tract.

We next investigate the functional testing problem: H0 : β = 0 versus H1 : β ̸= 0

using the proposed PLRT method via RKHS estimator along with the FPCA esti-

mator [15, 17, 98]. The tuning parameter is determined by the GACV criterion. The

resulting p-values are 0.000, 0.0012, respectively, which indicates a significant associ-

ation between the diffusivity profile of the CC tract and the occurrence of MS. This

finding is consistent with the coefficient estimation, confidence interval, and previous

research reported in [39].
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5.7.2 Kidney transplant data

We apply the four consistent subsampling methods to estimate the semi-functional

logistic model from the kidney transplant data set.

The kidney transplant data is acquired from the Organ Procurement Transplant

Network/United Network for Organ Sharing (Optn/UNOS) as of December 2023,

where there are basic descriptions (e.g. age, race, gender, and height) of the kid-

ney transplant recipients at the time of transplant and the information (e.g. serum

creatinine, recipient status and the follow-up time) during the followed-up period.

This data is available at https://optn.transplant.hrsa.gov/ with the permission of

OPTN/UNOS.

The kidneys are a pair of organs in the human body that help maintain a healthy

body whose main functions are to remove waste and regulate the chemical (electrolyte)

composition of the blood. When renal failure occurs, the kidneys can no longer

perform these vital roles, threatening a patient’s life. Chronic renal failure, in contrast

to acute renal failure, can be treated through kidney transplants. A successful kidney

transplant can restore normal renal function and extend the patients’ survival time.

However, even after transplant, recipients confront high risks of losing graft func-

tion or needing re-transplant. Accurately predicting long-term outcomes post-transplant

is therefore crucial. Being able to determine if and how long a recipient will survive

would not only help clinicians optimize follow-up care, adjust immunosuppression,

and manage complications.

Glomerular filtration rate (GFR) serves as a key predictor to measure kidney func-

tion, which considers the blood creatinine level and several associated factors simul-

taneously, like age, race, and body size. As described in [36, 105], GFR values are

calculated through distinct equations respectively for adults (Age≥18) and children

(Age≤18). Our goal is to analyze GFR trajectories in the first 6 years post-transplant

to predict the recipients’ 10-year survival. Optimizing predictive models using GFR
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and other factors could help clinicians intervene earlier and recipients make informed

choices to maximize their outcomes.

As of December 2023, the UNOS dataset includes over 4M follow-up records, and

over 1M kidney recipients. After matching, deleting missing data and feature engi-

neering for the GFR trajactories, there are around 202,831 patients followed for at

least 6 years post-transplant. The recipients who die or need to be re-transplanted

during the sixth to tenth year (Y = 0) accounts for 19.77% (44521/225144) of the

whole sample. Fig. 5.4 display the mean GFR trajectories for the two categories.

Figure 5.4: The mean GFR curves for the group of recipients who die or need to be
retransplanted during the sixth to tenth year after the transplant (Y = 0) and the
group of recipients who have lived for at least ten years after transplant (Y = 1).

We consider fitting a semi-functional logistic regression model:

P (Yi | eGFRi, Zi) =
exp

(︂
Z⊤
i α +

∫︁ 6

0
eGFRi(t) · β(t)dt

)︂
1 + exp

(︂
Z⊤
i α +

∫︁ 6

0
eGFRi(t) · β(t)dt

)︂ .
where Zi includes the demographic characteristics of the patients: Age of Transplan-

tation, gender and mean height over the 6 years.
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We present the prediction error and computational time in Table 6 for the four sam-

pling methods. To evaluate the computational efficiency of the subsampling strate-

gies, we record the CPU times (in seconds) of the four strategies. We use the R

programming language (enhanced R distribution Microsoft R 4.1.2) to parallel im-

plement each method. All computations are carried on one HPC node running Linux

CentOS 7 with 20 Intel Skylake cores (2.4GHz, AVX512) and around 4GiB RAM per

core. The magnitude of our improvement over standard CC, WCC, and US sampling

is substantial here but could be much larger in a data set with an even stronger

signal. The key point is that standard case-control methods have no way to exploit

conditional imbalance, so the more there is, the more local case-control dominates

the other methods.

LCC CC WCC US

Prediction error 0.0734 0.1173 0.1203 0.0990

Computational time(s) 88.356 36.309 40.952 35.261

Table 5.6: prediction error and computational time using kidney dataset for the four
sampling methods

5.8 Discussion

The exploration of functional logistic regression under CC as well as LCC design lever-

ages the strengths of RKHS and roughness regularization to address the estimation

and inference issues for the coefficients.

The empirical studies, including the application to real-world datasets such as

the UNOS kidney transplant data, underscore the practical utility of the proposed

methods. These applications highlight the method’s ability to handle massive func-

tional data effectively, providing insights into critical phenomena like kidney function

post-transplantation. The superior performance of the LCC sampling, in terms of

consistency and retaining estimation robustness, is particularly compelling. This effi-
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ciency is crucial for statistical estimation and predictive modeling in scenarios where

computational resources are limited or full-sample analysis is impractical.

While the article provides a solid foundation for functional logistic regression under

two general case-control designs, several avenues for future research emerge from this

work. One potential extension involves exploring nonlinear relationships between

functional predictors and binary outcomes that could offer further improvements in

the estimation of the slope coefficient function. Moreover, incorporating adaptive

regularization methods might enhance the model’s ability to capture complex system

patterns.

Furthermore, extending the framework to accommodate multi-class outcomes could

significantly broaden the applicability of functional logistic regression. Many real-

world problems involve categorizing observations into more than two groups, and

adapting the current methodology to handle such scenarios would be a valuable con-

tribution to the field.

5.9 Proof of the Main Theorems

Recall that for any function ψn(X
l; θ) function over X ×H, which might depend on

n, El{·} means the expectation over control or case populations l = 0, 1.

5.9.1 Proof of Proposition 5.3

Proof. we first present the proof of Lemma 5.2 that will be useful for the proof of

Proposition 5.3.

Proof of lemma 5.2.

For any θ1, θ2 ∈ Fpn , using the lipschitz continuity (5.9), we have ∥(ψn (Xi; θ) −

ψn(Xi; θ̃))RXi
∥ ≤ Cψ∥RXi

∥ · ∥θ − θ̃∥2. Let Rn = {∥RXi
∥}ni=1, where X = (X0

1 , . . . ,

X0
n0
, X1

1 , . . . , X
1
n1
)⊤. We could apply the same argument as proving Lemma 3.4. in

[164], thus as n→∞,
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sup
θ∈Fpn

∥Hn(θ)∥
p
1/(4m)
n ∥θ∥γ2 + n−1/2

= OP

(︂(︁
h−1 log log n

)︁1/2)︂
.

Lemma 5.2 holds.

The proof of this proposition then proceeds in two parts in analogy to [164]. First,

we show that there exists an unique element θλ ∈ H satisfying Sλ (θλ) = 0 and

∥θλ − θ0∥ = O
(︁
hk
)︁
. Second, there exists uniquely an element ˆ︁θn,λ ∈ H satisfying

Sn,λ(ˆ︁θn,λ) = 0 and ∥ˆ︁θn,λ − θ0∥ = OP (rn), where rn = (nh)−1/2 + hk. Note such ˆ︁θn,λ is

exactly the smoothing spline estimator since it is the zero of the first-order Fréchet

derivative of the penalized likelihood function ℓn,λ(θ).

Lemma 5.7 For any θ ∈ H,
∑︁1

0 ρlEl
{︁
|⟨RXl , θ⟩|4

}︁
≤ 8M̃∥θ∥4, where M̃ = max {1,M0}.

(I). Define the operator

T1h(θ) = θ + Sλ (θ0 + θ) , θ ∈ H.

It is easy to see that

∥T1h(θ)∥ = ∥θ + Sλ (θ0 + θ)∥ ≤ ∥θ + Sλ (θ0 + θ)− Sλ (θ0)∥+ ∥Sλ (θ0)∥ .

Let B(ε) = {θ ∈ H : ∥θ∥ ≤ ε} be the ball in H of radius ε. Note S (θ0) = 0 which

implies Sλ (θ0) = −Pλθ0. It follows that

∥Pλθ0∥ = sup
∥θ̃∥=1

⟨Pλθ0, θ̃⟩ = sup |λJ(θ0, θ̃)| ≤
√︁
λJ(θ0, θ0) sup

∥θ̃∥=1

√︂
λJ(θ̃, θ̃)

and

∥Sλ (θ0)∥ = ∥Pλθ0∥ ≤
√︁
λJ (β0, β0) ≤ (J (β0, β0) + 1)1/2 hk ≡ r1n/2.

By the expression of the Fréchet derivativeDSλ (θ0), we have for any θ, θ′, ⟨DSλ (θ0) θ, θ′⟩ =

DSλ (θ0) θθ
′ = −⟨θ, θ′⟩, which implies DSλ (θ0) = −id. It then follows by the bound-
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edness of El{exp(ℓ̈(a))}, El{exp(ℓ′′′(a))} that

∥θ + Sλ (θ0 + θ)− Sλ (θ0)∥

=

⃦⃦⃦⃦
θ +DSλ (θ0) θ +

∫︂ 1

0

∫︂ 1

0

sD2Sλ (θ0 + ss′θ) θθdsds′
⃦⃦⃦⃦

=

⃦⃦⃦⃦∫︂ 1

0

∫︂ 1

0

sD2Sλ (θ0 + ss′θ) θθdsds′
⃦⃦⃦⃦

=

⃦⃦⃦⃦∫︂ 1

0

∫︂ 1

0

sρ0E0

{︁
ℓ′′′ (⟨RX0 , θ0 + ss′θ⟩) (⟨RX0 , θ⟩)2RX0

}︁
+

∫︂ 1

0

∫︂ 1

0

sρ1E1

{︁
ℓ′′′ (⟨RX1 , θ0 + ss′θ⟩) (⟨RX1 , θ⟩)2RX1

}︁⃦⃦⃦⃦
≤
∫︂ 1

0

∫︂ 1

0

sE

{︄
1∑︂
l=0

ρlEl {|ℓ′′′ (⟨RXl , θ0 + ss′θ⟩) |} (⟨RXl , θ⟩)2 ∥RXl∥

}︄

≤(1/2)
1∑︂
l=0

ρlEl
{︁
(⟨RXl , θ⟩)2 ∥RXl∥

}︁
≤(1/2)

1∑︂
l=0

ρl

{︂
El
{︁
|⟨RXl , θ⟩|4 |

}︁1/2
El
{︁
∥RXl∥2

}︁1/2}︂
≤(1/2)

√︁
8M̃C2∥θ∥2C1/2

R h−1/2 = C3∥θ∥2h−1/2,

where C3 = C2

√︁
2M̃CR is an absolute constant, M̃ is specified in lemma S.3. of [164].

Since C3r1nh
−1/2 = O(hk−1/2) = o(1), here k > a+1/2 ≥ 1/2 and h = o(1) lead to that

hk−1/2 = o(1), as n → ∞, for any θ ∈ B (r1n), ∥T1h(θ)∥ ≤ C3h
−1/2r21n + r1n/2 < r1n.

So T1h (B (r1n)) ⊂ B (r1n).

Next, we show that T1h is a contraction mapping. For any θj = (αj, βj) ∈ B (r1n)

for j = 1, 2. Taylor’s expansion leads to that

T1h (θ1)− T1h (θ2)

=θ1 − θ2 + Sλ (θ0 + θ1)− Sλ (θ0 + θ2)

=

∫︂ 1

0

[DSλ (θ0 + θ2 + s (θ1 − θ2))−DSλ (θ0)] (θ1 − θ2) ds

=

∫︂ 1

0

∫︂ 1

0

D2Sλ (θ0 + s′ (θ2 + s (θ1 − θ2))) (θ1 − θ2) (θ2 + s (θ1 − θ2)) dsds′.
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Using the similar arguments of ∥T1h(θ)∥, we then get

∥T1h (θ1)− T1h (θ2)∥

≤
∫︂ 1

0

∫︂ 1

0

E

{︃ 1∑︂
l=0

ρlEl
{︁
|ℓ′′′ (⟨RXl , θ0 + s′ (θ2 + s (θ1 − θ2))⟩) | | X l

}︁
|⟨RXl , θ1 − θ2⟩ ⟨RXl , θ2 + s (θ1 − θ2)⟩| · ∥RXl∥

}︃
dsds′

≤
∫︂ 1

0

∫︂ 1

0

1∑︂
l=0

ρlEl {|⟨RXl , θ1 − θ2⟩| · |⟨RXl , θ2 + s (θ1 − θ2)⟩| · ∥RXl∥} dsds′

≤
1∑︂
l=0

ρlC
1/2
R h−1/2

∫︂ 1

0

∫︂ 1

0

{︂
El
{︁
|⟨RXl , θ1 − θ2⟩|4

}︁1/4
×El

{︁
|⟨RXl , θ2 + s (θ1 − θ2)⟩|4

}︁1/4}︂
dsds′

≤C1/2
R

√︁
8M̃C2h

−1/2 (∥θ2∥+ ∥θ1 − θ2∥) ∥θ1 − θ2∥

≤C ′
3h

−1/2r1n ∥θ1 − θ2∥ < 1/2 ∥θ1 − θ2∥ ,

where C ′
3 = 3C2

√︁
8M̃CR, since as n → ∞, h−1/2r1n = o(1). Therefore, T1h is

a contraction mapping on B (r1n). By contraction mapping theorem, there exists

uniquely an element θ′λ ∈ B (r1n) such that T1h (θ′λ) = θ′λ. Define θλ = θ0 + θ′λ, then

we have Sλ (θλ) = 0 and ∥θλ − θ0∥ ≤ r1n.

(II). Define the operator

T2h(θ) = θ − [DSλ (θλ)]
−1 Sn,λ (θλ + θ) .

Here, the invertibility of DSλ (θλ) follows the same manner as in [164], where C0 =

1, C1 = e. The norm of the inverse operator DSλ (θλ)
−1 falls between (1/2, 3/2).

Rewrite T2h as

T2h(θ) =−DSλ (θλ)−1 [DSn,λ (θλ) θ −DSλ (θλ) θ]

−DSλ (θλ)−1 [Sn,λ (θλ + θ)− Sn,λ (θλ)−DSn,λ (θλ) θ]

−DSλ (θλ)−1 Sn,λ (θλ)

≡ I1 + I2 + I3.

We will bound the three terms respectively and conclude the proof.
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For I3, recall that ℓ̇l(a) = l− exp(a)/(1+ exp(a)), for l = 0, 1, i = 1, . . . , nl. Define

Õ
l

i = ℓ̇l(⟨RXl
i
, θλ⟩)RXl

i
and Ol

i = Õ
l

i − E{Õ
l

i}. Notice that ϵli = ℓ̇l(⟨RXl
i
, θ0⟩). It then

follows that
Sλ(θλ) =ρ0

{︂
E0

{︂
ℓ̇0(⟨RX0 , θλ⟩)RX0

}︂}︂
+ ρ1

{︂
E1

{︂
ℓ̇1(⟨RX1 , θλ⟩)RX1

}︂}︂
− Pλθλ

=S0(θλ) + S1(θλ)− Pλθλ.

By Lemmas S.3 and S.4 in [164], n−1r21nh
−2a−1 ≍ n−1h2k−2a−1 = o ((nh)−1) and

Sλ (θλ) = 0, we have

∥Sn,λ (θλ)∥2 = ∥Sn,λ (θλ)− Sλ (θλ)∥2

≤ 2
⃦⃦
S0
n,λ (θλ)− S0

λ(θλ)
⃦⃦2

+ 2
⃦⃦
S1
n,λ (θλ)− S1

λ(θλ)
⃦⃦2

for l = 0, 1, then

El

{︂⃦⃦
Sln,λ (θλ)− Slλ(θλ)

⃦⃦2}︂
≤El

⎧⎨⎩
⃦⃦⃦⃦
⃦ 1n

nl∑︂
i=1

Ol
i

⃦⃦⃦⃦
⃦
2
⎫⎬⎭+ (ρl − nl/n)2El

{︃⃓⃓⃓
ℓ̇l (⟨RXl , θλ⟩)

⃓⃓⃓2
∥RXl∥2

}︃

=n−1(nl/n)El

{︂⃦⃦
Ol
i

⃦⃦2}︂
+ (ρl − nl/n)2El

{︃⃓⃓⃓
ℓ̇l (⟨RXl , θλ⟩)

⃓⃓⃓2
∥RXl∥2

}︃

≤
(︁
n−1(nl/n) + (ρl − nl/n)2

)︁
El

{︃⃓⃓⃓
ℓ̇l (⟨RXl , θλ⟩)

⃓⃓⃓2
∥RXl∥2

}︃
≤2
(︁
n−1(nl/n) + (ρl − nl/n)2

)︁
El
{︁
∥RXl∥2

}︁
=O

(︁
(nh)−1

)︁
,

the last equation follows from lemma S.4 [164], and ρl − nl/n = OP (n
−1/2). Thus

∥Sn,λ (θλ)∥ = OP

(︁
(nh)−1/2

)︁
. Let C4 be large constant such that, with probability

approaching one, ∥Sn,λ (θλ)∥ ≤ C4(nh)
−1/2. Let r2n = 2C4(nh)

−1/2, and restrict θ to

be an element in B (r2n) ≡ {θ ∈ H : ∥θ∥ ≤ r2n}.

Define En = ∩ni=1A
l
i forX =

(︁
X0

1 , . . . , X
0
n0
, X1

1 , . . . , X
1
n1

)︁⊤, whereAli =
{︁⃦⃦
X l
i

⃦⃦
L2 ≤ C log n

}︁
,

where C is a positive constant such that C log n > 1. Since X l is sub-Gaussian for

l = 0, 1, we can choose C to be large enough so that P (En) approaches one as n→∞.
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By the boundedness of logistic objective function, we may choose the above C to be

large so that ∩iAli has probability approaching one, and P
(︁
Alci
)︁
= O (n−1).

Let dn = κh−(2a+1)/2 and pn = d−2
n λ−1. To handle I2, it follows by Taylor’s expan-

sion that

Sn,λ (θλ + θ)− Sn,λ (θλ)−DSn,λ (θλ) θ =
∫︂ 1

0

∫︂ 1

0

sD2Sn,λ (θλ + s′sθ) θθdsds′.

Assume E = ∩iAli in the rest of the proof. For any θ ∈ H\{0}, let θ̄ = θ/ (dn∥θ∥),

then θ̄ ∈ Fpn , where dn = κh−(2a+1)/2 and pn = d−2
n λ−1 = κ−2h−(2k−2a−1). Let

ψn
(︁
X l
i ; θ̄
)︁
=

supa∈R |ℓ′′′ (a)| ·
⃦⃦⃦
RXl

i

⃦⃦⃦
·
⟨︂
RXl

i
, θ̄
⟩︂

√
2CR(C log n)2h−(2a+1)/2

IAl
i
, i = 1, 2, . . . , n.

Using ∥RXl
i
∥2 ≤ CR(1 + (C log n)2h−(2a+1)), we get that ψn satisfies Lipschitz conti-

nuity (5.9). It follows by Lemma 5.2 that, with probability approaching one, for any

θ ∈ H\{0},

1√
n

⃦⃦⃦⃦
⃦

l∑︂
l=0

nl∑︂
i=1

[︂
ψn
(︁
X l
i ; θ̄
)︁
RXl

i
− El

{︂
ψn
(︁
X l
i ; θ̄
)︁
RXl

i

}︂]︂⃦⃦⃦⃦⃦ ≤ C ′′p1/(4m)
n

(︁
h−1 log log n

)︁1/2
.

for some large C ′′ > 0, leading to⃦⃦⃦⃦
⃦

1∑︂
l=0

nl∑︂
i=1

[︃
sup
a∈R
|ℓ′′′ (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⟨︂
RXl

i
, θ
⟩︂
IAl

i
RXl

i

−El
{︃
sup
a∈R
|ℓ′′′a (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⟨︂
RXl

i
, θ
⟩︂
IAl

i
RXl

i

}︃]︃⃦⃦⃦⃦
≤
√︁
2CRC

′′C3κγ
√
nh−(2a+

3
2)−

2k−2a−1
4m (log n)2(log log n)1/2∥θ∥.

The above inequality also holds for θ = 0. Meanwhile, by the logistic objective

function,

El

{︃
sup
a∈R
|ℓ′′′(a)| · ∥RXl∥ · |⟨RXl , θ⟩|2

}︃
≤El

{︁
∥RXl∥ · |⟨RXl , θ⟩|2

}︁
≤C1/2

R h−1/2C2

(︂
8M̃
)︂1/2
∥θ∥2.
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Therefore, we assume on ∩ni=1A
l
i, for any θ ∈ B (r2n), we have, for some s, s′ ∈ [0, 1],⃦⃦

D2Sn,λ (θλ + s′sθ) θθ
⃦⃦

=n−1

⃦⃦⃦⃦
⃦

1∑︂
l=0

nl∑︂
i=1

ℓ′′′
(︂⟨︂
RXl

i
, θ̃
⟩︂)︂ ⃓⃓⃓⟨︂

RXl
i
, θ
⟩︂⃓⃓⃓2

RXl
i

⃦⃦⃦⃦
⃦

≤n−1

1∑︂
l=0

nl∑︂
i=1

sup
a∈R
|ℓ′′′ (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⃓⃓⃓⟨︂
RXl

i
, θ
⟩︂⃓⃓⃓2

=n−1

⟨︄
1∑︂
l=0

nl∑︂
i=1

[︃
sup
a∈R
|ℓ′′′ (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⟨︂
RXl

i
, θ
⟩︂
IAl

i
RXl

i

−El
{︃
sup
a∈R
|ℓ′′′ (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⟨︂
RXl

i
, θ
⟩︂
IAl

i
RXl

i

}︃]︃
, θ

⟩︃
+

1∑︂
l=0

nl/nEl

{︃
sup
a∈R
|ℓ′′′ (a)| ·

⃦⃦⃦
RXl

i

⃦⃦⃦
·
⃓⃓⃓⟨︂
RXl

i
, θ
⟩︂⃓⃓⃓2

IAl
i

}︃
≤C ′′′

[︂
n−1h−2(a+1)− 2k−2a−1

4m (log n)2(log log n)1/2 + n−1/2h−1
]︂
× ∥θ∥

≤∥θ∥/18,

the last equality follows by the assumption (5.10).

We address I1 using similar arguments in the analysis of I2. Define

ψ
(︁
X l
i ; θ
)︁
= ℓ̈

(︂⟨︂
RXl

i
, θλ

⟩︂)︂⟨︂
RXl

i
, θ
⟩︂
IAl

i
.

Then for any θj = (αj, βj) ∈ H, j = 1, 2,⃓⃓
ψ
(︁
X l
i ; θ1

)︁
− ψ

(︁
X l
i ; θ2

)︁⃓⃓
=
⃓⃓⃓
ℓ̈
(︂⟨︂
RXl

i
, θλ

⟩︂)︂⃓⃓⃓ ⃓⃓⃓⟨︂
RXl

i
, θ1 − θ2

⟩︂⃓⃓⃓
IAl

i

≤IAl
i

(︁
|α1 − α2|+ ∥X l∥L2 ∥β1 − β2∥L2

)︁
≤(C log n) ∥θ1 − θ2∥2 .

Let ψn
(︁
X l
i ; θ
)︁
= (C log n)−1ψ

(︁
X l
i ; θ
)︁
, then ψn satisfies equation (5.9). For any θ ∈

H\{0}, define θ̄ = (ᾱ, β̄) ≡ θ/ (dn∥θ∥). It then follows by Lemma 5.1 that

∥θ̄∥2 ≤ dn∥θ̄∥ = 1,

which implies that |ᾱ| + ∥β̄∥L2 ≤ 1. Meanwhile, λJ(β̄, β̄) ≤ ∥θ̄∥2 = d−2
n , implying

J(β̄, β̄) ≤ d−2
n λ−1 = pn. Therefore, β̄ ∈ Fpn . By Lemma 5.2, for some constant
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C ′ > 0 and with probability approaching one, for any θ ∈ B (r2n),⃦⃦⃦⃦
⃦
n0∑︂
i=1

[︂
ψn
(︁
X0
i ; θ̄
)︁
RX0

i
− E0

{︁
ψn(X

0; θ̄)R0
X

}︁]︂
+

n1∑︂
i=1

[︂
ψn
(︁
X1
i ; θ̄
)︁
RX1

i
− E1

{︁
ψn(X

1; θ̄)R1
X

}︁]︂⃦⃦⃦⃦⃦
≤ C ′ (︁n1/2p1/(4m)

n + 1
)︁ (︁
h−1 log log n

)︁1/2
,

which implies ⃦⃦⃦⃦
⃦
n0∑︂
i=1

[︂
ψn
(︁
X0
i ; θ
)︁
RX0

i
− E0

{︁
ψn(X

0; θ)R0
X

}︁]︂
+

n1∑︂
i=1

[︂
ψn
(︁
X1
i ; θ
)︁
RX1

i
− E1

{︁
ψn(X

1; θ)R1
X

}︁]︂⃦⃦⃦⃦⃦
≤C ′κh−(a+1)

(︁
n1/2p1/(4m)

n + 1
)︁
(C log n)(log log n)1/2∥θ∥.

On the other side, by Cauchy-Schwarz inequality, we have⃦⃦⃦
El

{︂
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RXl
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, θλ
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i
, θ
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IAlc
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⃓⃓⃓
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i
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i
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≤El
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i
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⟩︂⃓⃓⃓4}︃1/4

sup
∥θ′∥=1

El

{︃⃓⃓⃓⟨︂
RXl

i
, θ′
⟩︂⃓⃓⃓4}︃1/4

P
(︁
Alci
)︁1/2

≤C2

√︁
8M̃∥θ∥P

(︁
Alci
)︁1/2

= o(1)∥θ∥.
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Thus, with probability approaching one, for any θ ∈ B (r2n), we get

∥DSn,λ (θλ) θ −DSλ (θλ) θ∥

≤n−1

1∑︂
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⃦⃦⃦⃦
⃦
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i
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i
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i
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+

1∑︂
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i
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⟩︂)︂⟨︂
RXl

i
, θ
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i
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i

}︂⃦⃦⃦
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1∑︂
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⃦⃦⃦
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i
, θλ

⟩︂)︂⟨︂
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i
, θ
⟩︂
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i
IAlc

i

}︂⃦⃦⃦
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⃦

nl∑︂
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[︂
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(︁
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i ; θ
)︁
RXl

i
− El

{︂
ψ
(︁
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i ; θ
)︁
RXl

i

}︂]︂⃦⃦⃦⃦⃦
+

1∑︂
l=0

(nl/n− ρl)
⃦⃦⃦
El
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RXl

i
, θλ

⟩︂)︂⟨︂
RXl

i
, θ
⟩︂
RXl

i
IAl
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}︂⃦⃦⃦
+

1∑︂
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ρl

⃦⃦⃦
El

{︂
ℓ̈
(︂⟨︂
RXl

i
, θλ

⟩︂)︂⟨︂
RXl

i
, θ
⟩︂
RXl

i
IAlc

i

}︂⃦⃦⃦
=O

(︂
n−1/2h−(a+1)− 2k−2a−1

4m (log n)(log log n)1/2
)︂
∥θ∥+ o(1)∥θ∥+ o(1)∥θ∥

=o(1)∥θ∥,

where the last inequality follows by the assumption (5.10). Hence, with probability

approaching one, for any θ ∈ B (r2n),

∥I1∥ ≤
⃦⃦
DSλ (θλ)

−1
⃦⃦
∥DSn,λ (θλ) θ −DSλ (θλ) θ∥ ≤ r2n/18.

By the above analysis of the terms I1, I2, I3, we have that, for any θ ∈ B (r2n), with

probability approaching one,

∥T2h(θ)∥

≤∥I1∥+ ∥I2∥+ ∥I3∥

≤(3/2) (r2n/18 + r2n/18 + r2n/2) = 11r2n/12

namely, T2n (B (r2n)) ⊂ B (r2n). Next, we show that T2h is a contraction mapping.
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For any θ1, θ2 ∈ B (r2n), we have, by Taylor’s expansion, that

T2h (θ1)− T2h (θ2)

=θ1 − θ2 −DSλ (θλ)−1 [Sn,λ (θλ + θ1)− Sn,λ (θλ + θ2)]

=−DSλ (θλ)−1

∫︂ 1

0

∫︂ 1

0

D2Sn,λ (θλ + s′ (θ2 + s (θ1 − θ2))) ·

(θ2 + s (θ1 − θ2)) (θ1 − θ2) dsds′

−DSλ (θλ)−1 [DSn,λ (θλ)−DSλ (θλ)] (θ1 − θ2)

≡− I4 − I5.

Using exactly the same arguments as the analysis of the terms I1 and I2, it can be

shown that, with probability approaching one, for any θ1, θ2 ∈ B (r2n),

∥I4∥

=O
(︂
n−1h−2(a+1)− 2k−2a−1

4m (log n)2(log log n)1/2 + n−1/2h−1
)︂
∥θ1 − θ2∥

≤∥θ1 − θ2∥ /3,

∥I5∥

=O
(︂
n−1/2h−(a+1)− 2k−2a−1

4m (log n)(log log n)1/2
)︂
∥θ1 − θ2∥+ o(1) ∥θ1 − θ2∥

≤∥θ1 − θ2∥ /3.
implying that ∥T2h (θ1)− T2h (θ2)∥ ≤ 2 ∥θ1 − θ2∥ /3. Therefore, T2h is a contraction

mapping from B (r2n) to itself. By contraction mapping theorem, there exists uniquely

an element θ′ ∈ B (r2n) such that T2h (θ′) = θ′, implying Sn,λ (θλ + θ′) = 0. Letˆ︁θn,λ = θλ + θ′, then Sn,λ(ˆ︁θn,λ) = 0, that is, ˆ︁θn,λ is the smoothing spline estimator.

Furthermore, with probability approaching one,⃦⃦⃦ˆ︁θn,λ − θ0⃦⃦⃦
≤
⃦⃦⃦ˆ︁θn,λ − θλ⃦⃦⃦+ ∥θλ − θ0∥ ≤ r2n + r1n

=O
(︁
(nh)−1/2 + hk

)︁
= O (rn) .

5.9.2 Proof of Theorem 5.4

Proof.
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The proof of Theorem 5.4 replies on concentration inequality established in Lemma

5.2. By the rate concluded in Condition 5.5, we can find a large constant M > 0 such

that, with probability approaching one, ∥ˆ︁θn,λ − θ0∥ ≤ Mrn. Denote θ = ˆ︁θn,λ − θ0.

Assume ∥θ∥ ≤ Mrn since its complement is negligible in terms of probability. Let

dn = κMh−(2a+1)/2rn, θ̃ = d−1
n θ, and pn = κ−2h1−2m, where κ is the constant given

in Lemma 5.1. Clearly pn ≥ 1 since h approaches zero and 1 − 2m < 0. In fact,

∥θ∥ ≤ Mrn implies θ̃ ∈ Fpn . To see this, write θ̃ = (˜︁α, ˜︁β). By Lemma 5.1, ∥θ̃∥2 =

d−1
n ∥θ∥2 ≤ d−1

n κh−(2a+1)/2∥θ∥ ≤ d−1
n κh−(2a+1)/2Mrn = 1. Therefore, |˜︁α| ≤ 1 and

∥˜︁β∥L2 ≤ 1. Thus, θ̃ ∈ Fpn follows from

J(˜︁β, ˜︁β)
=d−2

n λ−1(λJ(β, β))

≤d−2
n λ−1∥θ∥2 ≤ d−2

n λ−1 (Mrn)
2 = κ−2h1−2m = pn.

For i = 1, . . . , n, define Ali =
{︁⃦⃦
X l
i

⃦⃦
L2 ≤ C log n

}︁
. By Condition 5.4, we can fix

C > 1 as large enough such that

n1/2h−1/2P
(︂
IAlc

i

)︂1/4
= o

(︂
p1/(4m)
n

(︁
h−1 log log n

)︁1/2)︂
,

and P (En) approaches one, as n→∞, where En = ∩ni=1A
l
i. Let Dn = (C log n)−1d−1

n .

Define ψ(X l
i ; θ) = [ℓ̇l(⟨RXl

i
, θ+θ0⟩)− ℓ̇l(⟨RXl

i
, θ0⟩)], and ψn(X l

i ; θ̃) = Dnψ(X
l
i ; dnθ̃)IAl

i
.

Then for any θ̃1, θ̃2 ∈ Fpn ,⃓⃓⃓
ψn

(︂
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i ; θ̃1

)︂
− ψn

(︂
X l
i ; θ̃2

)︂⃓⃓⃓
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i
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)︂
− ℓ̇l
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i
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IAl
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≤Dn sup
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⃓⃓⃓
ℓ̈ (a)

⃓⃓⃓
· dn ·
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RXl
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≤Dn(C log n)dn

⃦⃦⃦
θ̃1 − θ̃2

⃦⃦⃦
2

=
⃦⃦⃦
θ̃1 − θ̃2

⃦⃦⃦
2
.

Since ∥θ∥ ≤ Mrn implies θ̃ ∈ Fpn , it follows by Lemma 5.2 that there exists C ′ > 0
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such that for large n, with probability approaching one⃦⃦⃦⃦
⃦1/√n
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[︂
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where γ = 1 − 1/(2m). We denote the term (1/
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On the other hand, using Cauchy-Schwarz inequality, we have for l = 0, 1,⃦⃦⃦
El
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Consequently, by choice of C and direct examinations, we have
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Since on En, IAl
i
= 1 for i = 1, . . . , n, then with probability approaching one,
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Thus, we can show that by direct calculations, with probability approaching one,⃦⃦⃦⃦
⃦Sn,λ (θ + θ0)− Sn,λ (θ0)−
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Note that Sn,λ (θ + θ0) = 0. Define DSλ(θ) =
∑︁1

l=0 ρlElS
l
n,λ(θ) for any θ. For any

θ1, θ2 ∈ H, ⟨DSλ(θ)θ1, θ2⟩ = −⟨θ1, θ2⟩, we have DSλ(θ0) = −id, where id denotes the

identity operator on H. By Taylor’s expansion,
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Since for l = 0, 1,⃦⃦⃦⃦
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Thus, with probability approaching one, we get⃦⃦⃦ˆ︁θn,λ − θ0 − Sn,λ (θ0)⃦⃦⃦
≤2C ′κγC2Mn−1/2h−
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4m rn(log n)(log log n)
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(︂
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Proof of Theorem 5.5.

The proof of theorem 5.5 follows directly from the Lindeberg Central limit theorem

and the discussion of corollary 3.7 in [164].

5.9.3 Likelihood ratio test under case control design

Under the case-control design, we conduct a penalized likelihood ratio test for the

functional slope β(t). Consider the following hypothesis:

H0 : β = β0 versus H1 : β ∈ H − {β0} ,

where β0 ∈ Hm(I). The penalized likelihood ratio test is implemented via the follow-

ing steps. First, we define a test statistic PLRT concerning the full parameter space

H as PLRT = ℓn,λ (θ0) − ℓn,λ
(︂ˆ︁θn,λ)︂, where ˆ︁θn,λ is the maximizer of ℓn,λ(θ) over H.
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Then, the test statistic for β is defined as

TP ≡ PLRT1−PLRT2 = ℓn,λ

(︂ˆ︁θ0)︂− ℓn,λ (︂ˆ︁θn,λ)︂ .
where ˆ︁θ0 is the maximizer under the null hypothesis, i.e., the parameter space contains

only the intercept α. Theorem 5.8 below derives the null limiting distribution of

PLRT.

Theorem 5.8 (Likelihood ratio testing) Assume H0 : θ = θ0 holds, Conditions

5.1 to 5.5 are satisfied for the hypothesized value θ0. As n→∞, h satisfy the following

rate conditions:

n1/2an = o(1), nr3n = o(1),

nh2k+1 = O(1), (nh)−1 = o(1),

n1/2h−(a+1/2+(2k−2a−1)/(4m))r2n(log n)× (log log n)1/2 = o(1),

and n1/2h−(2a+1+(2k−2a−1)/(4m)) × r3n(log n)2 × (log log n)1/2 = o(1).

Let un = h−1σ4
1/σ

2
2, σ

2 = σ2
1/σ

2
2 and σ2

l = h
∑︁

j (1 + λρj)
−l for l = 1, 2. Then under

H0, as n→∞, we have

− (2un)
−1/2 (︁2nσ2 · PLRT + un + nσ2 ∥Wλβ0∥21

)︁ d−→ N(0, 1).

The PLRT relies on the Bahadur representation and the inner products defined

in (5.3). It can be shown that n ∥Wλβ0∥21 = o(nλ) = o (un). Therefore, as n → ∞,

−2nσ2 · PLRT is asymptotically N (un, 2un). According to the parametric likelihood

ratio testing, we have −2nσ2 · PLRT1 = OP (1). Meanwhile, theorem 5.8 shows that

−2nσ2 ·PLRT2
a∼ χ2

un . Thus, the null limit distribution for testing the significance of

the slope function β is also χ2
un , specifically, −2nσ2TP

a∼ χ2
un .

Proof of Theorem 5.8.

The proof is finished in two parts. First, we show that the PLRT is asymptotically

equivalent to a quadratic form. The proof of this part relies on the concentration
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inequality established in Lemma 5.9. Second, using the functional Bahadur rep-

resentation established in Theorem 5.4 and a central limit theorem for generalized

quadratic forms by [79], we likewise show that the quadratic form derived in the first

part has Gaussian limit.

Under H0 : θ = θ0, the hypothesized value θ0 is deemed as the "true" parameter

of the model. By consistency, for some M > 0 and with probability approaching

one, ∥ˆ︁θn,λ − θ0∥ ≤ Mrn. Thus, define θ = ˆ︁θn,λ − θ0, we may as well assume ∥θ∥ ≤

Mrn, where , since the complement is trivial in terms of probability measure. For

l = 0, 1, i = 1, . . . , nl, define similarly Ali = {∥Xi∥L2 ≤ C log n} .

By the boundedness of logistic objective and Condition 5.4, it is not hard to choose

a suitable C > 1 to be large so that, as n→∞, P (Alci )1/2 = o(n−1/2h−(a+1+ 2k−2a−1
4m

)×

(log n)(log log n)1/2). Let En = ∩1l=0 ∩
nl
i=1 A

l
i, clearly En has probability approaching

one, and we may assume that En holds in the rest of the proof. By Taylor’s expansion,

ℓn,λ (θ0)− ℓn,λ
(︂ˆ︁θn,λ)︂

=ℓn,λ

(︂ˆ︁θn,λ − θ)︂− ℓn,λ (︂ˆ︁θn,λ)︂
=− Sn,λ

(︂ˆ︁θn,λ)︂ θ + ∫︂ 1

0

∫︂ 1

0

sDSn,λ

(︂ˆ︁θn,λ − s′sθ)︂ θθdsds′
=

∫︂ 1

0

∫︂ 1

0

s
[︂
DSn,λ

(︂ˆ︁θn,λ − s′sθ)︂−DSn,λ (θ0)]︂ θθdsds′
+ (1/2)

[︄
DSn,λ (θ0)−

1∑︂
l=0

ρlEl
{︁
DSln,λ (θ0)

}︁]︄
θθ

+ (1/2)
1∑︂
l=0

ρlEl
{︁
DSln,λ (θ0)

}︁
θθ

≡I1 + I2 + I3.

Note that
∑︁1

l=0 ρlEl
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DSln,λ (θ0)

}︁
= −id on H, then

∑︁1
l=0 ρlEl{DSln,λ(θ0)}θθ =

−∥θ∥2. The remainder of the proof proceeds by approximating the orders of I1 and

I2, and finding the null limit distribution of the PLRT. To approximate I1, denote

θ′ = ˆ︁θn,λ − s′sθ − θ0, which by definition is equal to (1− s′s) θ, where 0 ≤ s′, s ≤ 1.
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Direct calculations lead to[︂
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Similar techniques can be applied for I2. Notice that on En, IAl
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= 1 for l = 0, 1, i =
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1, . . . , nl, thus,
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Again by Lemma 5.2, for some large C ′, with probability approaching one,⃦⃦⃦
Hn(θ̃)

⃦⃦⃦
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n
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.

Thus ⃦⃦⃦⃦
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By choosing an approapriate C, and Cauchy-Schwarz inequality, we have
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and
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This implies that
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By the assumptions of the theorem, we then get
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We next focus on the leading term ∥ˆ︁θn,λ − θ0∥2 to derive the distribution of the LRT
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We then study the asymptotic property of the term ∥Sn,λ (θ0)∥2. Let ϵ1, . . . , ϵn0 ,

ϵn0+1, . . . , ϵn represent ϵ01, . . . , ϵ0n0
, ϵ11, . . . , ϵ

1
n0

. By direct calculations, we have
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(5.32)

Finally, we examine the term n−1 ∥
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Therefore, it follows by (5.32) that
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This implies that, as n→∞,
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We have completed the proof of Theorem 5.8.

Proof of Theorem 5.6. The proof of Theorem 5.6 follows from the proof of

Theorem 3 of [98] with the weighting operator I(U) defined in (5.18), and is omitted

here.
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Chapter 6

Concluding Remarks and Future
Research

The realm of functional predictor regression has witnessed significant advancements,

particularly over the last decade. While a subset of these methodologies incorporates

nonlinear dynamics, the majority adhere to variations of the Gaussian model or Gen-

eralized Functional Linear Models, designated as Models (1.1) and (2.2). The primary

distinction across these methods lies in their selection of basis functions for portray-

ing the predictors Xi(t) and the functional coefficient β(t). Principal components,

splines, and wavelets, individually or in combination, are among the favored choices,

coupled with distinct regularization strategies. This thesis rotates around these mod-

els and the evaluation of effective regularization techniques remains a crucial need and

potential future directions. Such advancements would greatly benefit practitioners in

selecting the most appropriate methodological approach for their specific dataset.

The field of Topological Data Analysis (TDA) has emerged with myriad ideas, yet

its practical impact on data analysis remains modest. This could be attributed to

the novelty of the techniques, their complexity, or a possible mismatch between the

methods and practical applications. The effectiveness of TDA as a specialized tool

appears promising for specific challenges, such as analyzing data related to cosmic

structures.

The integration of deep learning techniques with FDA presents another intriguing
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avenue for future research. Its ability to handle large datasets and uncover complex

patterns is opening new frontiers in data analysis. This synergy could be particularly

beneficial in fields where both the geometric structure and high-dimensional data

play crucial roles, such as genomics, neuroimaging, and complex system analysis.

Moreover, there is a pressing need for comprehensive comparison and collaboration

between deep learning approaches and traditional statistical methods. Such studies

across a variety of scientific disciplines would be invaluable.
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