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Abstract

Background: Despite ongoing reductions in the cost of sequencing technologies, whole genome SNP genotype
imputation is often used as an alternative for obtaining abundant SNP genotypes for genome wide association
studies. Several existing genotype imputation methods can be efficient for this purpose, while achieving various levels
of imputation accuracy. Recent empirical results have shown that the two-step imputation may improve accuracy by
imputing the low density genotyped study animals to a medium density array first and then to the target density. We
are interested in building a series of staircase arrays that lead the low density array to the high density array or even
the whole genome, such that genotype imputation along these staircases can achieve the highest accuracy.

Results: For genotype imputation from a lower density to a higher density, we first show how to select untyped
SNPs to construct a medium density array. Subsequently, we determine for each selected SNP those untyped SNPs to
be imputed in the add-one two-step imputation, and lastly how the clusters of imputed genotype are pieced
together as the final imputation result. We design extensive empirical experiments using several hundred sequenced
and genotyped animals to demonstrate that our novel two-step piecemeal imputation always achieves an
improvement compared to the one-step imputation by the state-of-the-art methods Beagle and FImpute. Using the
two-step piecemeal imputation, we present some preliminary success on whole genome SNP genotype imputation
for genotyped animals via a series of staircase arrays.

Conclusions: From a low SNP density to the whole genome, intermediate pseudo-arrays can be computationally
constructed by selecting the most informative SNPs for untyped SNP genotype imputation. Such pseudo-array
staircases are able to impute more accurately than the classic one-step imputation.

Background
Genome-wide association studies (GWAS) are processes
of genetic fine-mapping that find whether common
genetic variants are associated with a trait of inter-
est [1]. These common genetic variants are expected
to be abundant and well distributed across the whole
genome. One of the most commonly used variant types
is the single nucleotide polymorphism (SNP) — a site in
the genome at which different individuals display differ-
ent nucleotides. In this paper we consider biallelic SNPs
in the cattle genome. The 1000 Bull Genomes Project
(www.1000bullgenomes.com) has identified more than 28
million single nucleotide variations in cattle. The number
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of biallelic SNPs with significant minor allele frequency is
expected to be around 26.7 million (we use this number
throughout the paper), and they are almost evenly dis-
tributed across the cattle genome. If we were given the
genotype for all 26,700,000 SNPs for all studied individ-
uals, a GWAS would simply be a pure association study.
In reality, it is still too expensive to sequence the whole
genome of every individual in the study; for most cat-
tle GWAS, instead only a small fraction of the 26,700,000
SNPs are genotyped using commercial arrays. Two series
of general purpose commercial gene chips for SNP geno-
typing in cattle are the Illumina (www.illumina.com)
series and the Affymetrix (www.affymetrix.com) series. In
our cattle genomics projects, besides sequencing 30 or so
individuals per breed, we have genotyped thousands of
animals using the Illumina BovineHD BeadChip (Illumina
777K) that contains more than 777,000 SNPs and the
Axiom Genome-Wide BOS 1 Array (Affymetrix 660K)
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that contains more than 648,000 SNPs spanning the
entire bovine genome. In addition, we have certain low-
density and medium-density genotype datasets obtained
using the Illumina BovineLD BeadChip (Illumina 6K)
and the Illumina BovineSNP50 BeadChip (Illumina 50K),
respectively.
The project goal discussed in this paper is to use the

sequenced animals as references to impute the whole
genomes (that is, the 26,700,000 SNP genotype values) for
the animals genotyped at various lower density levels, a
scenario we designate as the whole genome SNP genotype
imputation. For example, the Illumina 6K chip provides
genotypes for around 6000 SNPs across the 29 autosomes,
and the animals genotyped with the Illumina 6K chip will
have the remaining 26,694,000 SNPs imputed up from the
6000 SNP genotype, based on the sequence-derived SNP
genotypes of the reference sequenced animals. The subse-
quent GWAS may be done on either the 6000 (i.e. 0.2 %)
genotyped SNPs, or can also be done on the imputed
genotype including the other 26,694,000 (i.e. 100%) SNPs.
Note that a typical GWAS genotype dataset that con-

tains thousands of SNPs and hundreds to thousands
of individuals is apt to contain missing genotype data.
Besides discarding the concerned SNPs from GWAS or
perhaps repeating genotyping experiments, computation-
ally inferring the missing data has long been proposed as
an alternative, at minimal labor and cost [2–5]. In other
words, SNP genotype imputation is not a novel topic, but
has received extensive research attention since the start
of genotyping arrays — see reviews and surveys [6–11].
Nevertheless, in this paper, our imputation target is not
the small percentage of missing genotype for SNPs on the
gene chips, but the untyped SNPs. Such an objective is
becoming increasingly relevant, thanks to ongoing efforts
to make sequenced animals available as references.
All existing genotype imputation methods are based

upon the coalescent theory, which states that a short
(i.e. over a short chromosomal region) haplotype allele
is expected to be shared by many individuals due to
identical-by-descent inheritance. Computationally, these
methods can be classified into regression and cluster-
ing [6, 12–15], hidden Markov models (HMMs) and
expectation maximization (EM) algorithms [7]. Among
others [2, 4, 16–19], the most promising and applica-
ble methods include fastPHASE [5], MaCH [20], and
Impute [21, 22] which are based on Li and Stephens’
“product of approximate conditionals” framework [23],
Beagle [24] which is based on Brownings’ “localized hap-
lotype clustering” model [25], Mendel-Impute [26] using
“low rank based matrix completion”, and FImpute [27]
which is based on “long-range phasing” [28]. All these
methods can potentially be adopted for our purpose
to impute the genotype values for the large number of
untyped SNPs, with varying speed and accuracy.

More specifically in our whole genome SNP genotype
imputation projects, the higher density chip is meant to
be the whole genome sequence data, consisting of all 26.7
million SNPs; the lower density chip can be either of the
Illumina 6K, 50K, 777K, or the Affymetrix 660K. Run-
ning an imputation method one time to directly impute
the whole genome sequences is referred to as the one-
step imputation, which is not the computational problem
we try to address in this paper. Recently, several stud-
ies showed evidence that within bovine genomics, the
two-step imputation is generally more accurate than the
one-step imputation, where the lower density genotyped
animals are first imputed to a medium density SNP set
and then further imputed to the higher density [29–31].
For instance, Larmer et al. showed that for Beagle,
FImpute, and Impute v2 [22], the two-step imputation
from 6 to 50K then to 777K achieves higher accura-
cies than the one-step imputation from 6K directly to
777K [30].
In our preliminary studies, we have conducted the so

called add-one two-step imputation experiments, in which
the median density reference panel contains only one
extra SNP than the low density SNP panel. While rotating
this extra SNP from the pool ofmarkers in the high density
panel, we observed that a portion of them can individually
boost the imputation accuracy in the add-one two-step
experiment compared to the one-step direct imputation.
Inspired by this observation, we are asking the natural
question whether building up a staircase of pseudo arrays
in between the lower density SNP set and the designated
higher density SNP set would give the best imputation
result. In this paper, we attempt to answer this question
by first presenting a novel two-step piecemeal imputa-
tion framework, which essentially builds an intermediate
pseudo array by mining the hidden relations between the
lower and the higher density arrays. We remark that our
pseudo array is not an actually manufactured gene chip,
but an artificial one that is computationally derived from a
learning procedure, which evaluates and selects some SNP
markers based upon their add-one two-step imputation
performance. Moreover, the pseudo-arrays are model-
dependent, that is, different base imputation programs
built upon different models could result in different selec-
tion of markers for our two-step piecemeal imputation.
We show that by wrapping either Beagle or FImpute in our
two-step piecemeal imputation framework, we are able
to achieve higher genotype imputation accuracies. (That
is, our method will be based on the one-step imputation,
and is hunting for improvement upon the corresponding
one-step imputation from the data.) Though we believe
most effective imputation methods mentioned earlier can
be adopted, the main reason we only go with Beagle
and FImpute is their fast speed (i.e. efficiency). Based
on the two-step piecemeal imputation, we demonstrate
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how staircase arrays can be built for whole genome SNP
genotype imputation.
We briefly describe our two-step piecemeal imputation

framework here (see Fig. 3 for a flow chart); more details
are provided in the Methods section. By a study sample,
we mean an animal that is genotyped at the lower den-
sity. The SNPs on this lower density chip form a set T .
A reference panel consists of individuals genotyped at the
higher density. All SNPs of T are assumed to be assayed
in the higher density chip; the other SNPs on the higher
density chip but not in T form the set U — they are
the untyped SNPs in the study samples. For each marker
mi ∈ U , an add-one two-step imputation from T to
T ∪ {mi} to T ∪U is conducted to evaluate its potential in
imputing the other untyped markers. Next, markers that
have similar potentials are clustered together, and corre-
spondingly for each marker cluster, we determine which
other markers can be imputed well, forming into a target
marker cluster. We select one marker from every marker
cluster, together with T , to form the pseudo intermediate
array. The SNPs in a target marker cluster, called a tract,
are imputed via the add-one two-step imputation where
the selected marker is from the associated marker clus-
ter. Piecing these tracts together gives the final imputation
result.

Results
We first evaluate our two-step piecemeal imputation
method empirically, and make comparisons against the
usual one-step imputation; we also compare our multi-
step piecemeal imputation method against the usual
two-/three-step imputations. In this empirical evaluation,
we use Beagle (version 3.3.2) and FImpute (version 2.2) as
the two base imputation programs respectively, which are
fast and memory efficient enough to run them thousands
of times on multiple large to huge datasets.

Datasets
Sequenced animals
The Canadian Cattle Genome Project (www.genome
canada.ca) has contributed more than 350 animals to
the 1000 Bull Genomes Project. From these projects we
derived two datasets: a Holstein sequence collection con-
taining 114 animals, and a Simmental sequence collection
containing 82 animals. They were used for the piece-
meal imputation method training through a cross val-
idation process (i.e. partitioned into a subset of study
samples and another subset of reference samples). They
also served as reference samples in all the independent
testing experiments.

Genotyped animals
From the Canadian Cattle Genome Project, we obtained
Affymetrix 660 K genotypes for 390 Simmental animals.

There are 23 of these 390 Simmental animals included
in the set of sequenced animals. The genotyped animals
that are not included in the set of sequenced animals
are used as study samples in the independent testing
experiments from a lower (than 660 K) density to impute
their genotypes at the density 660 K. The 23 genotyped
and sequenced animals are used as study samples in the
independent testings from a lower density to impute their
whole genome.

SNP sets
We used single chromosomes of small size (BTA 27) or
medium size (BTA 14) in the development of the piece-
meal imputation framework. BTA 27 was used for the
Holstein data set and BTA 14 for the Simmental data set.
The only challenge to deal with all 29 chromosomes is the
need of a huge amount of disk storage, see Discussion.
The numbers of SNPs included in the Illumina 6K,

50K, 777 K and the Affymetrix 660 K are summarized
in Table 1, where the second column contains their for-
mal chip names that one can look up on the Illumina and
Affymetrix websites.
On BTA 27, the 114 sequenced Holstein animals have

genotype values for 529,674 SNPs. The Illumina 777K
chip contains 10,219 of them, among which 664 are
included in the 50 K chip, and 119 of these 664 SNPs
are included in the 6 K chip, as summarized in Table 2.
On BTA 14, the 82 sequenced Simmental animals have
genotype values for 933,833 SNPs. Table 2 shows that the
Affymetrix 660K chip contains 14,367 of these 933,833,
among which 1618 are included in the 50K chip, and a
further 219 of these 1,618 SNPs are included in the 6K
chip.

Imputation results
5-fold cross validation
We use 5-fold cross validation to empirically examine our
piecemeal imputation method, also to construct (a.k.a.
train) the staircase pseudo arrays to impute the geno-
typed animals to their whole genome. The cross validation
results also suggest the possible levels of improvement
compared with the one-step imputation.
Table 3 contains the cross validation results on the

Simmental datasets of 82 animals, where the lower density
is either 6 or 50 K and the higher density refers to

Table 1 Description of the different SNP chips and the SNP
subsets

SNP Chip Chip Name #SNPs

Illumina 6 K Illumina BovineLD BeadChip 6,909

Illumina 50 K Illumina BovineSNP50 BeadChip 54,001

Illumina 777 K 777 K BovineHD BeadChip 786,799

Affymetrix 660 K Axiom Genome-Wide BOS 1 Array 648,875

http://www.genomecanada.ca
http://www.genomecanada.ca


Wang et al. BMC Bioinformatics  (2015) 16:340 Page 4 of 11

Table 2 Description of the different SNP chips and the filtered
SNP subsets used in the study

Chr #Animals #SNPs HD 50 K 6 K

BTA 27 114 529,674 10,219 664 120

BTA 14 82 933,833 14,367 1,618 219

either 50 or 660 K (second column). The third and the
fourth columns hold the one-step and piecemeal impu-
tation accuracies (aac1 and aacπ , respectively), and the
improvement of piecemeal over one-step is shown in the
fifth column. For the null hypothesis that the usual one-
step accuracies and the two-step piecemeal imputation
accuracies have equal mean accuracies, we conducted
statistical significance testing. Using Beagle as the base
program, the p-values for the three 5-fold cross validation
experiments are 0.0215, 0.0005 and 0.0004, respectively,
indicating that the improvements by the two-step piece-
meal imputation are statistically significant; using FIm-
pute, the corresponding p-values are 0.64, 0.49 and 0.61,
suggesting statistically insignificant improvements. From
6 to 50K, 5 to 100 marker clusters, in increments of 5,
were examined and the best piecemeal imputation results
are included in the table, while in Fig. 1 all of these accu-
racies are plotted (blue dots). From 6 or 50K to 660K,
100 to 1,000 marker clusters, in increments of 100, were
examined.
Analogous results on the Holstein datasets of 114

animals are shown in Table 4. Both tables show a 1.5–3.0 %
net accuracy improvement against Beagle, in all three
cases (with statistical significance testing p-values
0.00369, 0.00003 and 0.00019, respectively) and a 0.5–
1.0 % net accuracy improvement against FImpute (with
p-values 0.54, 0.38 and 0.31, respectively).

Independent testing
Independent testing is to examine the quality of the
selected markers and the defined pieces learned from the

training step. The study samples used in the testing are
not involved in the training step. The piecemeal imputa-
tion accuracies are again compared to the corresponding
one-step imputation accuracies, respectively.
Columns 8–10 of Table 3 contain these independent

testing results on the 367 genotyped Simmental animals
where the lower density is either 6 or 50K and the higher
density refers to either 50 or 660K (second column). The
8th and 9th columns hold the one-step and piecemeal
imputation accuracies (aac1 and aacπ ), respectively. The
improvement of the piecemeal over the one-step is shown
in the tenth column. Note that for each imputation setting,
the selectedmarkers and the defined pieces are taken from
the respective cross validation experiment. One exception
is that there are 8markers in the Affymetrix 660K chip for
which the two alleles (i.e. nucleotides) do not agree with
the alternating alleles identified through genome sequenc-
ing; these 8 markers were excluded and one target marker
cluster was discarded in the testing.
Analogous independent results on the 8 genotyped

Holstein animals are shown in Table 4. Both tables show
an accuracy improvement in all settings, though the
improvement is about 40% lower than the 5-fold cross
validation.

Multi-step imputation: independent testing
With the selected markers and their associated target
marker clusters from the training step, we experimented
with the usual two-step imputation from 6K to 50K to
660K on the 367 genotyped Simmental animals, and the
four-step piecemeal imputation from 6 to 660K. The
four-step piecemeal imputation is a result of replacing
each usual one-step imputation by a potentially promis-
ing two-step piecemeal imputation. The usual two-step
imputation accuracy is denoted as acc2; the four-step
piecemeal imputation accuracy is still denoted as accπ .
Similar experiments were done on the 8 Holstein animals
on BTA 27 genotyped using the 777K chip.

Table 3 Accuracy comparisons between the two-step piecemeal and the classic one-step imputation on the Simmental datasets

5-Fold cross validation Independent testing

BaseProgram Imputation acc1 accπ + #Clusters #TClusters acc1 accπ +
6 K→50 K 69.35% 70.81% 1.46% 100 100 60.68% 61.39% 0.71%

Beagle 6 K→660 K 72.37% 74.92% 2.55% 800 800 66.00% 67.76% 1.76%

50 K→660 K 86.61% 88.89% 2.28% 1000 1000 72.83% 74.11% 1.29%

6 K→50 K 75.95% 76.70% 0.75% 55 55 61.87% 62.16% 0.29%

FImpute 6 K→660 K 79.11% 80.11% 1.00% 1000 1000 68.43% 68.95% 0.52%

50 K→660 K 90.31% 90.74% 0.43% 1000 1999 77.11% 77.33% 0.22%

Results are on the Simmental datasets for markers on chromosome 14. Columns 3–7 contain the 5-fold cross validation results on the 82 animals, with the selected markers
and their associated target marker clusters. Independent testing results on the 367 animals are in columns 8–10, using the selected markers and their associated target
marker clusters from the cross validation. 1In the independent testing from 50 K to 660 K, 8 markers of the Affymetrix 660 K chip were filtered out due to their genotype
disagreeing with the alternating alleles specified by sequencing, and consequently only 999 target marker clusters were used. The columns labelled with + show the
improvements, in bold, of the piecemeal imputation over the one-step imputation



Wang et al. BMC Bioinformatics  (2015) 16:340 Page 5 of 11

Fig. 1 The Beagle/FImpute-based two-step piecemeal imputation accuracies against the number of SNP clusters

For the 23 genotyped and sequenced Simmental ani-
mals, we experimented with the usual two-step impu-
tation from 50 to 660K to Sequence and the four-step
piecemeal imputation from 50K to Sequence, and the
usual three-step imputation from 6K to 50K to 660K
to Sequence and the five-step piecemeal imputation
from 6K to Sequence. Here “Sequence” refers to all the
529,674 SNPs on BTA 14. The usual three-step imputation
accuracy is denoted as acc3; the five-step piecemeal impu-
tation accuracy is denoted as accπ . Note that since we do
not have a 660K to Sequence training step to select mark-
ers (because first the usual one-step imputation is very
good leaving little room for further improvement and sec-
ond the training phase requires storage beyond our capac-
ity), the last step in the five-step piecemeal imputation is a
direct one-step imputation.
All these usual two/three-step imputation accuracies

and the corresponding four/five-step piecemeal imputa-
tion accuracies are summarized in Table 5, where there is

accuracy improvement in all settings. We note that these
23 animals were used in the training step, and thus the
results reported here could be slightly biased.

Discussion
Rationale behind the two-step piecemeal imputation
Several recent studies in cattle have shown that two-
step imputation can be more accurate than the classic
one-step imputation [29–31]. Also in our preliminary
study, we observed that some markers in the add-one
two-step imputation experiments are able to boost the
overall accuracy. These results have led us to put efforts
into finding a set of markers that would perform the
best in the subsequent two-step imputation. However,
such an optimal set of markers is not assayed in any
existing chips, nor easy to obtain in reasonable compu-
tational time. Besides the selection scheme in our piece-
meal imputation framework, we also tried several other
approaches including sequential forward selection, which

Table 4 Accuracy comparisons between the two-step piecemeal and the classic one-step imputation on the Holstein datasets

5-Fold cross validation Independent testing

BaseProgram Imputation acc1 accπ + #Clusters #TClusters acc1 accπ +
6 K→50 K 86.98% 89.81% 2.87% 95 189 74.97% 76.90% 1.94%

Beagle 6 K→777 K 82.35% 85.27% 2.92% 1,000 1963 71.29% 73.25% 1.96%

50 K→777 K 93.09% 95.16% 2.07% 1,000 1956 82.27% 84.25% 1.97%

6 K→50 K 91.11% 91.64% 0.53% 95 288 81.15% 81.40% 0.25%

FImpute 6 K→777 K 89.22% 90.14% 0.92% 1,000 2942 82.80% 82.81% 0.02%

50 K→777 K 95.25% 95.61% 0.36% 800 2765 87.72% 87.83% 0.11%

Results are on the Holstein datasets for markers on chromosome 27. Columns 3–7 contain the 5-fold cross validation results on 114 animals, with the selected markers and
their associated target marker clusters. Independent testing results on the 8 animals are in columns 8–10, using the selected markers and their associated target marker
clusters from the cross validation. In the independent testing, for 1Beagle 6, 37, and 44 target marker clusters are empty; for 2FImpute 7, 58, and 35 target marker clusters are
empty. The columns labelled with + show the improvements, in bold, of the piecemeal imputation over the one-step imputation
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Table 5 Accuracy comparisons between the multi-step piecemeal and the usual two/three-step imputation

BaseProgram Imputation acc1 acc2 acc3 accπ +
Beagle 8 Holstein BTA 27 71.29% 74.25% 74.43% 0.18%

FImpute 6 K→50 K→777 K 82.80% 82.74% 82.92% 0.18%

Beagle 367 Simmental BTA 14 66.00% 65.51% 66.59% 1.08%

FImpute 6 K→50 K→660 K 68.43% 68.54% 68.56% 0.02%

Beagle 23 Simmental BTA 14 84.91% 89.88% 90.17% 0.29%

FImpute 50 K→660 K→Sequence 87.95% 90.47% 90.50% 0.03%

Beagle 23 Simmental BTA 14 81.19% 83.94% 86.26% 2.32%

FImpute 6 K→50 K→660K→Sequence 82.23% 84.58% 84.67% 0.09%

Results are on the Holstein datasets for markers on chromosome 27 and for the Simmental datasets for markers on chromosome 14, respectively. 8 Holstein and 367
Simmental genotyped animals are used in the two-step independent testing (6 K→50 K→HD), with results in columns 4, 6 and 7. The piecemeal imputation uses the
selected markers and their associated target marker clusters from the training step. Additional 23 Simmental sequenced and genotyped animals are used in the
two/three-step imputation to Sequence (50 K→660 K→Sequence, 6 K→50 K→660 K→Sequence). All one-step imputation accuracies are included in column 3. The last
column labelled with + show the improvements, in bold, of the piecemeal imputation over the two- or three-step imputation

did not result in any significant improvement. We thus
proposed an alternative to partition the higher density
SNP set into multiple pieces, which are learned through
the add-one two-step imputation experiments. Each piece
is then imputed by the corresponding add-one two-step
imputation experiment. This procedure laid the foun-
dation for our two-step piecemeal imputation strategy.
Nevertheless, our partition scheme is not necessarily opti-
mal, as we adopted the k-means only because it out-
performed other clustering methods slightly. In addition,
we also experimented with the linkage-disequilibrium
(LD) blocks produced by Haploview [32] for finding
closely linked markers, but again the increase in accu-
racy was insignificant and the results are often infe-
rior to those of the our marker selection scheme
(detailed results not shown).

Marker clusters and their effects
From our 5-fold cross validation results, it seems as
though the number of marker clusters does not affect
the final piecemeal imputation accuracy much. For exam-
ple, for genotype imputation from 6 to 50K on the
Simmental dataset, the piecemeal imputation accuracies
of all the 20 different clustering results are plotted in
Fig. 1, where the dashed blue/red lines are the Bea-
gle/FImpute one-step imputation accuracies, and the solid
dots represent the two-step piecemeal imputation accu-
racies. Despite FImpute performing better than Beagle,
the connected dots for both FImpute and Beagle do not
vary much with different numbers of clusters. A sim-
ple guideline would be to have an average cluster size
of 10–100.
We also look into the content of a marker cluster. For

example, when k = 15, the first five of the 15 marker
clusters are plotted in Fig. 2, where the x-axis repre-
sents the physical locus. It is interesting to see that the
markers of a cluster are not necessarily close to each other,

though they have very similar imputation potentials.
The LD between pairs of these markers, by Haploview,
are insignificant.

Imputation result sensitivity to the selected markers
The imputed genotype for the study samples at a selected
marker mi is used in the second step, of the two-step
piecemeal imputation, to impute the other untyped mark-
ers ofU−{mi}. Comparing the add-one two-step imputa-
tion result to the usual one-step imputation, we have seen
subtle changes at many untyped markers of U for differ-
ent selected markers. Indeed, some of them exhibit a gain
in accuracy whereas some have a loss in accuracy and yet
others are unaffected. This has led us to use the overall
gain in accuracy to measure the imputation potential of a
selected marker.
By setting up a feature vector for a candidate marker

to keep a record of the accuracy gains and losses at each
untyped marker, we observed from our preliminary two-
step imputation experiments (results not shown) that the
candidate markers fall into three categories when used for
creation of the pseudo-array: 1) those that yield an accu-
racy gain over the usual one-step imputation; 2) those
that yield a net zero gain; 3) those that yield an accuracy
loss from the usual one-step imputation. Through cluster-
ing these feature vectors, the impact of selecting different
markers from a cluster is expected to be reduced to the
minimum, as evidenced by our preliminary experiments
(we did not re-examine this issue in all the experiments
reported here).

Target marker clusters
For all the markers of a marker cluster, those other
untyped markers that can be similarly well imputed in
the add-one two-step imputation are the target markers
associated with the marker cluster. We have looked into
the content of such a target marker cluster. Similar to a
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Fig. 2 Untyped SNP genotype piecemeal imputation. Both the SNP set T of a lower density 6 K chip and the SNP set T ∪ U of a higher density 50 K
chip are shown, using their physical loci on BTA 14. The second to the seventh lines plot the SNPs in the first five clusters, by the k-means algorithm
(k = 15) on the marker feature vectors generated by the add-one two-step imputation using Beagle. The starred markers are the selected markers,
one per cluster, and the associated target marker clusters are shown in the last five lines in the figure

marker cluster, it is interesting to see that the markers of
a target cluster are not necessarily physically close to each
other, nor are the LD between pairs of these markers by
Haploview significant.
It is also interesting to observe that some target marker

clusters are overlapping. Note that target clusters are
formed after the marker clusters are determined, that is,
in terms of the feature vectors, the marker clusters are
formed using the whole vectors, but the target marker
clusters are formed by using only the vector entries
corresponding to the makers in a marker cluster. There-
fore, such a phenomenon of an untyped marker being
imputed with high accuracies by several selected markers
can be explained.

Other clustering methods
Themain reason formarker clustering is to avoid selecting
redundantmarkers to form the intermediate pseudo array,
here redundant means the similar potential in imputing
the genotype for other SNPs. We had experimented with
Haploview to construct the LD blocks for this purpose,
which did not result in any conclusive accuracy increase
(detailed results not shown). Other popular feature selec-
tion methods in machine learning, such as SFS and SBS,
were also tested. Based on the feature vectors, we tried
clustering methods other than k-means, with results not
better than k-means. Thus we go with k-means in the final
piecemeal imputation framework.
As discussed in the last paragraph, forming the marker

clusters and the associated target marker clusters is more

like a bi-clustering task, and it would be worthwhile to try
some good bi-clustering algorithms. Coming back to the
LD-based marker selection, though multiple experiments
with different thresholds in Haploview did not give good
results, we realize that such an approach avoids the
add-one two-step imputation experiments in the training
phase, and it can be substantially faster. This suggests the
need for better LD block estimation/prediction by SNP
genotype values.

Cattle genomic distance
In our current empirical experiments, we used the
population-based option in our base programs. The
underlying assumption for such an option is that
individuals are unrelated. On the other hand, related
animals can certainly bias towards the correct geno-
type. Therefore, if one would be able to define a
degree of relatedness between two individuals based
on their SNP genotype, then using only closely related
sequenced animals to a study animal as references
may potentially lead to more accurate genotype
imputation.
Animals from different breeds are deemed more dis-

tantly related than the same breed animals. We therefore
separated the datasets by breeds. In fact, earlier research
suggests cattle whole genome SNP genotype imputation
should be done breed by breed [30], which is also con-
firmed by our preliminary testing that inter-breed impu-
tation has slightly lower performance (detailed results
not shown).
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Computational time
The running time of the two-step piecemeal imputation
depends on the number of study animals, the number of
reference animals, and the higher SNP density. Our exper-
iments were mostly done using the high-performance
computing facilities, and we were able to run them
in parallel. The same as any other machine learning
tasks, the most time-consuming stage in the two-step
piece imputation is the training phase, when the add-
one two-step experiments are conducted to select the
good potential markers. The independent testing, and
the real imputation tasks, can be finished much quicker.
It is important to point out that in all our experiments
reported here, running time was never an issue as it
was in hours per run, but the major challenge is the
need for a huge disk storage (more than 84 TB) when
we were performing whole-genome SNP genotype impu-
tation; and again this was happening in the training
phase. We used more than 3TB for storing all the inter-
mediate data, such as the feature vectors, for the two
datasets used in this paper. The imputed SNP genotype
values are expected to be useful in the downstream data
analysis, such as GWAS, and thus the increased com-
putation burden in the piecemeal imputation framework
becomes worthy.

Methods
A flow chart of the two-step imputation process is
depicted in Fig. 3, with the training process through the
5-fold cross validation in the left and the independent
testing in the right. For ease of presentation, we use the
Illumina 6 K gene chip to represent the lower density
chip and the Illumina 50K gene chip to represent the
higher density one. The study samples are genotyped on
the 6 K SNP set T , and the reference samples are geno-
typed on the 50 K SNP set T ∪ U . The goal is to impute
the genotype values on U for the study samples. The
top two lines in Fig. 2 plot T ∪ U and T , respectively,
using their physical loci on the first half of chromosome
14 (BTA 14).

One-step imputation
We first present the training process. Let Beagle be our
base imputation algorithm. Denote the set of study sam-
ples as S and the set of reference samples as R. The
genotype dataset is thus denoted as (S ∪ R,T ∪ U). First,
Beagle is used to impute the genotype of the study sam-
ples on the untyped SNPs of U , by simply running on the
dataset (S ∪ R,T ∪ U). The achieved accuracy in this
one-step imputation is denoted as acc1. In our simula-
tion experiments, the genotype of the study samples on
the SNPs of U are masked; the imputed genotype is then
compared against the true genotype for calculating the
imputation accuracy.

Marker feature vector
Our goal of training is to select a relatively small number
of SNPs from U , denoted as M, and append them to set
T to create an intermediate pseudo array, such that the
subsequent two-step imputation fromT toT∪M and then
to T ∪U yields a higher imputation accuracy. In this step,
we will evaluate the potential for each SNP of U in the
add-one two-step imputation.
Let mi ∈ U be a candidate marker (i = 1, 2, . . . , |U|),

and tentatively set the intermediate pseudo array to con-
tain T and mi only, that is T ∪ {mi}. Applying the base
imputation algorithm (Beagle in our case), we do the
add-one two-step imputation from T to T ∪ {mi} and
then from T ∪ {mi} to T ∪ U . At the end of the two-
step process, we calculate the imputation accuracy for
each marker mj of U across all study samples, denoted
as aij. Let aii denote the one-step imputation accuracy
from T to T ∪ {mi}. The vector vi = 〈ai1, ai2, . . . , ai|U|〉,
is the feature vector for markermi.

Marker clustering and target marker cluster
Intuitively, two markers of similar feature vectors have
about the same performance in the two-step imputation,
in terms of imputing the other untyped markers; and thus
it is sufficient to include only one of them. Therefore,
we apply the k-means clustering algorithm to cluster the
markers of U represented by their feature vectors, where
k is the pre-set number of clusters which can be empir-
ically determined, for example, by the Davies-Bouldin
index [33]. In our experiments, for genotype imputation
from the Illumina 6 to 50K using Beagle, we examined 5
to 100 clusters with an increment of 5 in the cross valida-
tion. Let C1,C2, . . . ,Ck denote the k clusters of SNPs of U
by k-means.
For each cluster Ci, if marker mj ∈ U is consistently

imputed well with average imputation accuracy higher
than or equal to the one-step imputation accuracy acc1,
then mj is a target marker for the cluster Ci. The set of
all target markers for cluster Ci form the target marker
cluster TCi for the cluster Ci.
If the target marker cluster TCi is empty, then nomarker

of Ci would be selected to form the pseudo array; oth-
erwise, define the contribution of a marker mj of Ci as
the add-one two-step imputation accuracy from T ∪ {mj}
to T ∪ U , with the imputation accuracy calculated over
only markers of TCi. The top contribution marker of Ci,
denoted as mi∗ , is selected into M, and it is for imput-
ing the genotype of SNPs of TCi only. We call this target
marker cluster TCi one piece of the imputation.

Experimental setup in the two-step piecemeal imputation
We have two sets of sequenced animals (Holstein and
Simmental) to be used as references. There are also much
larger numbers of animals that are genotyped by various
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Fig. 3 A flow chart of the two-step piecemeal imputation framework, including both the training phase through a 5-fold cross validation and the
independent testing. In the chart, T is the set of markers in the lower density chip and T ∪ U is the set of markers in the higher density chip;mi is a
marker of U; S is the set of study samples genotyped on T and R is the set of references genotyped on T ∪ U. The goal is to impute the genotype for
markers of U for the study samples

Illumina and Affymetrix gene chips, which are the study
samples. The project goal is to impute the study animals to
their whole sequences. When running the base programs
in our experiments, we followed the default settings of
the population-based genotype imputation for both Bea-
gle and FImpute. For Beagle, we set the -Xmx parameter
to 4GB formemorymanagement without the lowmemory
option for better performance.

Training through cross validation
Recall that we have four levels of SNP density, 6 K, 50K,
HD and Sequence, where HD can be either the Illumina
777K or the Affymetrix 660K. For each genotype imputa-
tion experiment from a lower density to a higher density,
we want to select some untyped SNPs to form the pseudo
array and partition the other untyped markers into pieces
accordingly. We do this training via a 5-fold cross vali-
dation. The quality of these selected markers and their
associated pieces is examined via independent testing.
We use an example genotype imputation experiment

for the Simmental group from 6 K to 50 K to explain
the procedure. First, we derive the 50 K genotype for all
sequenced Simmental animals from their sequence data.
Next, these animals are randomly partitioned into five
folds of approximately equal size, with the consideration
of their country of origins. Four folds of the animals are
used as the references, R, while the last fold is held as

study samples, S , for which the genotype of SNPs outside
of 6 K are masked to mimic the untyped SNPsU . The five-
fold cross validation scheme rotates each one of the five
folds as the study fold.
On the dataset (R ∪ S ,T ∪ U), using Beagle we do

the one-step imputation to obtain the imputation accu-
racy acc1; we also do the add-one two-step imputation
to obtain the feature vector for each untyped marker
of U . The average of the five feature vectors from the
five-fold cross validation defines the final feature vec-
tor for each untyped marker. With these vectors, the
k-means algorithm is run to cluster the untyped markers
into C1,C2, . . . ,Ck (which form a partition of U). Sub-
sequently, we determine the target marker cluster TCi
for each cluster Ci (all these target marker clusters form
another distinct partition of U), and select the markers
M = {m1∗ ,m2∗ , . . . ,mk∗} for piecemeal imputation. For
each study fold S , the study samples are then piecemeal
imputed to fill the genotype for the untyped markers U :
when an untyped marker does not belong to any target
marker cluster, it is imputed in the one-step, otherwise,
it is imputed in multiple pieces through a majority vote.
The imputed genotype values are compared against the
ground truth, which were masked before the imputa-
tion, to calculate the piecemeal imputation accuracy as
the percentage of correctly imputed genotype. The final
piecemeal imputation accuracy from the five-fold cross
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validation is the average over all five folds, and is denoted
as accπ .

Independent testing
In these experiments, the sequenced animals from the
Canadian Cattle Genome Project and the 1000 Bull
Genomes Project are used as references. The study sam-
ples are the animals that are genotyped by various Illu-
mina and Affymetrix gene chips.
We use the example genotype imputation experiment

for the Simmentals from 6 to 50K to explain the proce-
dure. First, we derive the 50K genotype for all sequenced
Simmental animals from their sequence data; we also
derive the 6K genotype for the genotyped Simmental ani-
mals from their genotype data (they are genotyped at den-
sity 50 K or higher). Second, from the above 5-fold cross
validation process, we have identified a set of markers
M = {m1∗ ,m2∗ , . . . ,mk∗} and determined their associated
target marker clusters {TC1,TC2, . . ., TCk}, respectively.
Using these selected markers and their defined pieces, our
piecemeal imputation imputes the genotype for the study
samples for the selectedmarkersM = {m1∗ ,m2∗ , . . . ,mk∗}
first, and later uses the imputed data to further impute
the genotype for the study samples at the other untyped
SNPs. At the end, the imputed genotype for the study
samples at all the untyped SNPs, either imputed in the
first step or imputed in the second step, is compared
against the ground truth to calculate the independent test-
ing piecemeal imputation accuracy accπ as the percentage
of correctly imputed genotype.

Conclusions
In this study, we presented a novel two-step SNP genotype
imputation strategy called piecemeal genotype imputa-
tion, which essentially inserts a pseudo intermediate den-
sity pseudo array in between the lower density chip and
the target higher density chip. Using the two-step piece-
meal imputation, we showed how a stair-case of interme-
diate SNP arrays can be built for the whole genome SNP
genotype imputation. We applied this method to chro-
mosomes 14 and 27 of cattle SNPs identified by whole
genome sequencing, by carrying out multiple experi-
ments using various density levels of bovine SNP chips,
up to the sequence level. The results show preliminary
success of our multi-step piecemeal imputation with an
accuracy improvement compared to the classic one-step
imputation by the state-of-the-art methods Beagle and
FImpute.
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