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Abstract

In this thesis, we explore the spatial dynamics of viral infection within tissue through 

mathematical modeling, aiming to understand the impact of virus spread on both 

cancerous and healthy tissue. Specifically, we investigate how spatial patterning and 

heterogeneity influence viral infection levels. Our primary focus is on oncolytic viruses 

in cancer tissue, where viruses are employed to directly target and eliminate cancer 

cells while also stimulate the immune system to target virus-infected cells, thereby 

eradicating cancerous tissue.

In Chapter 2, we employ the Fisher-KPP reaction-diffusion model and the homog-

enization method to investigate spatial dependencies within virus load data obtained 

from a checkerboard experiment. Our analysis of the impact of spatial complexity 

among heterogeneous populations on viral load is based on the application of an in-

novative cell-printing method introduced by Hesung Now, Ju An Park, Woo-Jong 

Kim, Sungjune Jung, and Joo-Yeon Yoo. Contrary to a simplistic arithmetic summa-

tion of individual cellular activities, our model analysis, confirmed by experimental 

results, reveals a more intricate relationship in total virus load. Notably, our model 

not only elucidates observed virus load data but also predicts values not captured in 

experiments. Furthermore, we employ numerical techniques to examine the spatial 

distribution of viral load across the periodic domain using our mathematical model. 

This analysis illustrates how spatial heterogeneity influences cell responses to virus in-

fection, emphasizing the importance of considering spatial arrangement rather than 

extrapolating measurements solely from isolated cell populations to heterogeneous 

mixtures of cells.
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In Chapters 3 and Chapter 4, we investigate viral spatial oscillation patterns in

cancer tissue resulting from a Hopf bifurcation, exploring their clinical relevance and

intricate characteristics. Our analysis involves a bifurcation study of a spatially ex-

plicit reaction-diffusion model aimed at uncovering spatio-temporal patterns in virus

infection. We consider two types of virus-tumor interactions: mass-action (Chap-

ter 3) and Michaelis–Menten kinetics (Chapter 4). The desirable pattern for tumor

eradication is the hollow ring pattern, and we identify precise conditions for its oc-

currence. Furthermore, we determine the minimum speed of traveling invasion waves

for both cancer and oncolytic viruses. Our 2-D numerical simulations unveil complex

spatial interactions in virus infection, revealing a novel phenomenon characterized by

periodic peak splitting in mass-action case.

In Chapter 5, we probe into the oncolytic potential of the reovirus, specifically

examining both the wild type T3wt and its mutated variant, SV5. Through in vitro

experiments, SV5 demonstrates superior capabilities in spreading within cancer cell

cultures, resulting in larger plaque sizes in cell monolayer experiments compared to

T3wt. A significant contributing factor to this enhanced performance lies in the

reduced binding affinity of SV5 to cells compared to T3wt. To comprehend the

interplay between the binding process and virus spread for both variants, we employ a

reaction-diffusion model. Our computational results reveal the presence of an optimal

binding rate corresponding to an optimal viral invasion wave speed, influencing the

overall spread of the virus. This identification provides a rationale for the observed

larger plaque size in SV5. Additionally, we investigate the impact of burst size and

binding rate on plaque size, revealing the optimal binding rates corresponding to

each burst size. This underscores the significance of burst size alongside binding rate,

emphasizing that the role of burst size is crucial and cannot be overlooked.

We close with a conclusion (Chapter 6), where we evaluate our results in the

context of current scientific development and hint at ideas for future studies.
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Chapter 1

Introduction

1.1 Background and Motivation

Cancer is a major global health concern and a leading cause of death of about 10

million in 2020 [1]. Cancer is a complex group of diseases characterized by the un-

controlled growth and spread of abnormal cells, leading to the formation of tumors or

the invasion of nearby tissues [2]. Therefore, cancer is considered as a complex and

devastating disease that requires extensive multidisciplinary research. The complex-

ity of cancer process makes it hard to understand the tumor dynamics based on the

experimental data alone.

Many therapies have been developed over the last decades including radiotherapy

[3], chemotherapy [4], surgery [5], immunotherapy [6] and virotherapy [7–10]. Com-

pared to the conventional treatments that cause normal cell death as well as cancer

cell death, new strategies have been developed to overcome this issue. Oncolytic vi-

rotherapy is considered one of the new promising target therapies. Oncolytic viruses

selectively attack cancer cells and replicate rapidly inside them, thereby inducing

tumor cell lysis. Hence, the new virions infect the neighborhood cells and trigger-

ing the anti-cancer immune response. Moreover, virotherapy treatment can be used

in combination with traditional treatments at different treatment stages with other

targeting therapies such as immunotherapy and radiotherapy [11–14].

Simultaneously, viewing mathematics as the language of complex systems, exten-
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sive mathematical and computational modeling has been conducted to illuminate

cancer formation and treatment. These models have been utilized in various cancer

therapies [15–27].

In this thesis, we are interested in analyzing the viral infection pattern in cancerous

and healthy tissue using reaction diffusion models. As cancer is spatially heteroge-

neous (Figure 1.1 (A)), considering the spatial effect will lead to a more realistic model

and provide useful information leading to a better understanding of the tumor-virus

dynamics.

(A) (B)

Figure 1.1: An example of cancer cells and a virus particle. (A): Cancer cells in a
tissue indicated by red color and (B): COVID-19. Source: https://unsplash.com.

1.1.1 Oncolytic Virotherapy

A virus is a small infectious agent that replicates only inside the living cells of an

organism [28–30]. Viruses can infect all types of life forms, from animals and plants

to microorganisms, including bacteria and archaea. They are very small and are

measured in nanometers. A virus consists of genetic material (either DNA or RNA)

enclosed in a protein coat called a capsid. Some viruses also have an outer envelope

composed of lipids.

Viruses cannot carry out metabolic processes or replicate on their own. Instead,

they rely on the host cells of living organisms to replicate and reproduce [31–33].

Once inside a host cell, viruses hijack the cellular machinery to produce more virus

particles. This often leads to damage or death of the host cell. The viral infection
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and replication inside the cells is a multilayered processes. First, virions enter the cell

through endocytosis. Then, after virion uncoating, the virus (either DNA or RNA)

replicates and is reassembled into new virions. Virions are released through a number

of processes, such as exocytosis and cell lysis. The number of new virions released

from one infected cell is called ”burst size”. In the case of lysis the cell membrane

breaks down, releasing virions into the extracellular fluid as shown in Figure 1.2.

Figure 1.2: An example of virus replication cycle: Step 1: Binding, Step 2: Entry
Step, 3: Complex formation and transcription, Step 4: Translation, Step 5: Secretion,
Step 6: Assembly and Step 7: Release. Source: https://en.wikipedia.org/wiki/
Viral life cycle.

Indeed, viruses can have dual roles in our interactions with them. While some

viruses, like SARS-CoV-2, which causes COVID-19 (Figure 1.1 (B)), can lead to severe

illness and have a significant impact on public health [34], others can be harnessed

for therapeutic purpose like virotherapy. Virotherapy is a striking example of how

understanding and manipulating viruses can lead to both harmful and beneficial

outcomes in the realm of human health. Oncolytic virotherapy was inspired by clinical

observations of tumor remissions after natural virus infections [35], prompting further

investigation by clinicians and researchers [36, 37]. This opens the door to employing

a diverse array of viruses as oncolytic agents for various cancer treatments, including

glioma, head and neck, pancreatic, breast cancer, melanoma, cervical, lung carcinoma,

3
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ovarian, and prostate cancers [38, 39].

Clinical trials have employed various oncolytic viruses, including adenovirus [40–

43], herpes simplex virus [44, 45], vaccinia virus [46], measles virus [47], reovirus [48–

53], and vesicular stomatitis virus (VSV) [54]. Preclinical studies, employing in vitro

and in vivo models, have been conducted to assess the safety and efficacy of these

genetically modified viruses [10, 55]. However, only two types have obtained licensing

for anti-cancer treatments. Shanghai Sunway Biotech introduced adenovirus H101 for

treating head and neck cancer in 2005 [56], while the U.S. Food and Drug Administra-

tion and European Medicines Agency approved herpes virus talimogene laherparepvec

(T-VEC) for advanced melanoma treatment in 2015 and 2016, respectively [57].

The main goal in cancer treatment is tumor control or tumor extinction. However,

even with the advances in the pre-clinical and clinical trial results, analyzing and

understanding the dynamics of tumor-virus interactions has proven to be difficult

by experimentation alone. There are many challenges that virotherapy treatment

faces to achieve the best results [58, 59]. For example, what is the balance of antiviral

versus anti-tumor immunity? How can combination schedules and doses be optimized

to achieve maximum anti-tumor efficacy? What is the best protocol design based on

tumor type and oncolytic virus type? How does the spatial distribution of tumor and

virus impact viral propagation and tumor control? Answering these questions is time

consuming, expensive, and sometimes hard to address experimentally. Mathematical

modelling can accelerate the progress of oncolytic virotherapy research by identifying

crucial parameters, generating new hypotheses to be tested experimentally, predicting

therapeutic outcomes in silico, and optimizing combined treatments.

It is noteworthy that the predominant focus in mathematical modeling has been on

the temporal dynamics of tumor-virus or tumor-virus-immune interaction, primarily

due to the availability of temporal data. Several of these models rely on ordinary

differential equations [60–68], while alternative models are constructed based on delay

differential equations [69–73]. Other types of models have been considered, including
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a multi-scale model [74, 75] and a stochastic model [76–78].

Fortunately, recent advancements in intravital imaging and viral plaque analysis

have contributed valuable data on the spatial spread of tumors and viruses [79, 80].

Numerous experimental studies [79–82] emphasize the significance of spatial distribu-

tion in viral proliferation and spread within host cells, leveraging imaging techniques

and viral plaque analysis. Consequently, the impact of spatial distribution, both

in vitro for tumor-virus and in vivo for tumor-immune-virus interactions, cannot be

disregarded. As a result, several spatio-temporal models have been developed to

comprehend the spatial dynamics of oncolytic viruses in cancer treatment [74, 75,

81–92].

1.1.2 Modelling Oncolytic Virotherapy

The interest in applying mathematical modeling to virotherapy treatment began in

2001. Among the earliest mathematical models exploring the control of tumors while

incorporating spatial tumor-virus dynamics is the work of Wu et al. [83]. In their

study, a radially symmetric partial differential equation (PDE) system with a mov-

ing boundary condition was formulated to characterize the spatial distribution of

ONYX-015 adenovirus and tumor cells. The tumor cells were categorized as unin-

fected, infected, and necrotic cells. The findings revealed that, for effective tumor

control, a threshold condition should be met, contingent on the viral injection strat-

egy. Subsequently, Wu et al. [84] expanded their initial model to account for the

influence of the immune response. The results underscored the necessity of immuno-

suppressive drugs to suppress the immune response, enabling the virus to eliminate

the tumor before the immune response becomes active.

In the same year, Wodarz [93] contributed to the field of oncolytic virotherapy with

a publication that differed from Wu et al.’s [83] PDE model. Wodarz [93] introduced

ordinary differential equation (ODE) models, presenting various scenarios to delineate

conditions conducive to optimal virotherapy outcomes. The first scenario involves
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tumor cells being killed by viral cytotoxicity, the second scenario entails infected

tumor cells being eliminated through the response of cytotoxic T lymphocytes (CTL)

against the virus, and the last scenario describes tumor cells being killed after the

release of immunostimulatory signals, triggering a tumor-specific CTL response. The

analysis of these models reveals the critical conditions regarding virus and tumor

cell characteristics required for successful treatment. Notably, key parameters for

achieving tumor extinction include the death rate of infected cells, tumor growth rate,

virus replication rate, and antiviral CTL response. An optimal value for the death

rate of infected cells is identified, and around this value, the maximum reduction

in tumor size can be achieved. When this optimal death rate of infected cells is

associated with slow tumor growth and a fast virus replication rate, the likelihood of

tumor eradication is high.

Following the groundbreaking work of Wu et al. [84], Friedman et al. [82] developed

a partial differential equation (PDE) model that incorporates the presence of an

immunosuppressant drug. In addition to Wu et al.’s considerations, Friedman et

al. [82] introduced innate immune cells in the tumor microenvironment, modeled

virus diffusion as Brownian motion, and accounted for viral clearance by the immune

system. The primary objective of this study was to investigate the impact of different

drug protocols and the increase in viral burst size on tumor growth. The key finding by

Friedman et al. [82] suggests that tripling the current viral burst size, coupled with the

use of an immunosuppressant drug, can reduce the tumor diameter from 4mm to 1mm.

This underscores the significance of the burst size parameter. The immunosuppressant

drug is administered iteratively throughout the treatment to ensure the percentage

of uninfected cells remains under control, thereby reducing the likelihood of cancer

metastasis.

Due to the analytical challenges in solving the model proposed by Friedman et al.

[82], Wang and Tian [94] developed a computational model to simulate tumor growth

within the framework of Friedman et al.’s model. In their work, Wang and Tian
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[94] assumed the tumor’s dimension to be spherically symmetric. The computational

results not only validated experimental data but also emphasized the significant im-

portance of the burst size as a crucial parameter for achieving successful treatment

in the presence of an immunosuppressant drug.

Wodarz and Komarova [95] led the way in introducing a comprehensive frame-

work for depicting the kinetics of oncolytic virotherapy as a basis for experimental

validation and model selection. In their model, virus particles were implicitly mod-

eled under the quasi-steady state assumption. The dynamics were classified into two

categories based on the position of infected cells. In cases where tumor populations

are homogeneous, a specific viral replication rate exists at which the tumor can be

effectively controlled. Conversely, when infected cells are clustered, the therapy out-

come is contingent on the initial numbers of tumor cells and virus particles. The

work of Wodarz and Komarova [95] serves as a foundational framework upon which

more complex models can be constructed. Their pioneering efforts in elucidating the

kinetics of oncolytic virotherapy provide essential insights and principles that can be

expanded and refined in subsequent, more intricate models.

Recognizing the burst size as a pivotal factor in virus replicability and, conse-

quently, virotherapy outcomes, Tian [66] conducted an analysis of the burst size’s

role through an ordinary differential equation (ODE) model. The analytical findings

in Tian [66] revealed two threshold values for the burst size parameter influencing

the treatment outcome. Below the first threshold, the tumor grows to its carrying

capacity, leading to treatment failure. Once the burst size surpasses the first thresh-

old, a locally stable steady-state solution emerges. Upon reaching or surpassing the

second threshold, the system enters the Hopf bifurcation region, where one or three

families of periodic solutions exist. In this region, the tumor burden is reduced to an

undetectable level.

In the quest to enhance the efficacy of oncolytic viruses, numerous mathematical

models have been devised to scrutinize diverse aspects of the viral infection process.
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These models delve into elements such as the viral lytic cycle and the cross-phase

replication of the virus during different stages of the cancer cell cycle.

Wang, Tian, and Wei [71] introduce a novel mathematical model that expands

upon the foundational framework for oncolytic virotherapy. This model incorporates

the viral lytic cycle through the construction of a nonlinear system of delay differential

equations. Two crucial parameters characterize the viral lytic cycle: the time period of

the cycle and the viral burst size. The model unveils a noteworthy revelation regarding

the interplay between the burst size and the critical value of the viral lytic cycle period,

providing compelling evidence for the paramount importance of this parameter in

determining the outcome of virotherapy. An extended model incorporating spatial

effects is presented in [96].

Crivelli et al. [69] are pioneers in exploring the dynamics of viral infection and repli-

cation within cancerous cells across various phases of the cell cycle. They introduce

systems of differential equations with time delays to model these processes. Through

a detailed analysis and simulation of their proposed model, Crivelli et al. [69] elu-

cidate the impact of changes in both the minimum cycling time and the parameters

regulating viral dynamics on the stability of the cancer-free equilibrium.

Another factor investigated by Bhatt et al. [97] is the sensitivity of tumor cells to

viral infection. Bhatt et al. [97], employed an immersed boundary method and a 2-D

Voronoi and 3-D spatial interactions model. Bhatt and his colleagues [97] identified

three primary reasons for treatment failures: a high death rate of infected cells,

which is consistent with Wodarz result in [93], resulting in faster viral clearance;

the emergence of virus-resistant cancer cells; and a viral spread rate that is too

low. Understanding these factors is crucial for developing strategies to overcome

virotherapy challenges and improve overall treatment effectiveness.

In addition to the factors previously discussed, Morselli et al. [91] highlighted

the importance of considering the influence of spatial constraints and the tumor mi-

croenvironment on viral spread. They introduced a stochastic agent-based model to
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investigate how these factors impact viral spread within solid tumors. The study

encompassed two types of viral movements: undirected random movements and

pressure-driven movements, and it explored how this choice influenced the outcome

of virotherapy. The 2-D patterns observed in the agent-based model simulations con-

ducted by Morselli et al. [91] were consistent with patterns previously observed in

studies by Wodarz et al. [81] and Kim et al. [98]. This consistency reinforces the

relevance of spatial patterns in comprehending the dynamics of virotherapy within

solid tumors.

An intriguing model introduced by Paiva et al. [74] delves into the realm of vi-

rotherapy for cancer. Based on a multiscale approach and conducting extensive sim-

ulations, the model unveils undamped oscillatory dynamics within tumor cells and

virus populations, highlighting the necessity for new quantitative experiments in vivo

and in vitro to detect this oscillatory response. Additionally, considering the discrete

and stochastic nature of cells and their responses, the model predicts an optimal

range for viral cytotoxicity. Virotherapy may hinder if the oncolytic virus takes ei-

ther too short or too long to eliminate the tumor cell. This suggests that the pursuit

of viruses capable of rapidly destroying tumor cells may not necessarily translate to

more effective control of tumor growth.

The first mathematical model for radiovirotherapy was developed by Dingli et al.

[27]. Their model demonstrated that a combined treatment approach involving vi-

rotherapy and radiation yields more successful outcomes compared to virotherapy

alone. The study identified an optimal window for radio-iodine administration and

an optimal dose to achieve the best results. Interestingly, the results indicated that

increasing the viral dose does not provide substantial benefits. Moreover, Dingli et

al.’s [27] model revealed a novel observation in virotherapy dynamics that had not

been reported in Wodarz’s paper [99]. Specifically, the model exhibited lower equi-

librium tumor burden associated with oscillations characterized by reduced damping

and higher frequency. A unique dynamic behavior, termed a stable quasi-heteroclinic
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cycle, was identified under specific parameter combinations. This cycle manifested as

oscillations with sharp and limited growth of peaks in both tumor burden and viral

population, followed by subsequent dips. Remarkably, the magnitude of these dips

increased proportionally with the growth of the preceding peaks, and they eventually

reached values smaller than one cell, suggesting the potential eradication of the tu-

mor. While this dynamic behavior could signify a successful treatment strategy, the

organism’s ability to tolerate fluctuations in tumor burden and viral load becomes a

critical factor for the efficacy of this therapeutic approach. The study underscores the

need for further experimentation and analysis to validate and refine these findings,

ensuring their applicability in real-world clinical scenarios.

In an effort to comprehend the underlying principles governing the spread of the

virus within a target tumor cell population, Wodarz et al. [81] devised an agent-based

model grounded in in vitro experiments of adenovirus conducted in a 2D setting of

human embryonic kidney cells. The spatial dynamics were considered in a restricted

domain, assuming that free viruses maintain a quasi-steady state. Experimental find-

ings revealed three distinct spatial patterns: “hollow ring structure ”, “filled ring

structure”, and “dispersed patterns.” The computational model results emphasized

that, for successful treatment, the hollow ring structure proved to be the most favor-

able pattern. This structure was associated with either the extinction of target cells

or a low-level persistence of target cells.

Numerous mathematicians have drawn inspiration from these influential studies on

the dynamics of oncolytic virotherapy, leading to increased attention on the mathe-

matical modeling of virotherapy. Consequently, numerous papers have been dedicated

to exploring and discussing the mathematical modeling of spatial virotherapy.

One of these mathematicians is Rioja. After four years of Wodarz agent-based

model, Rioja et al. [70] developed a continuum version with a radial symmetry

coordinate. In contrast to Wodarz et al.’s assumption of quasi-steady-state for free

viruses, Rioja et al. [70] explicitly expressed virus dynamics and considered that
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free viruses were not in quasi-steady state. Additionally, they assumed that infected

cells remain stationary, and both susceptible tumor cells and free viruses decrease

due to infection. The radial symmetry assumption in Rioja et al.’s model limited

their analysis to radially symmetric patterns. The corresponding kinetic ordinary

differential equation (ODE) system of Rioja et al.’s model was further studied in [66].

In 2021, Pooladvand et al. [88] introduced a spatio-temporal model capturing the

dynamics of cancer-virus interactions, specifically adenovirus, within a solid tumor

in 3-D spherical symmetric coordinates. In their model, Pooladvand et al. [88]

incorporated the ability for susceptible cells, infected cells, and virus particles to

move. Additionally, they accounted for the loss of free viruses due to infection of

susceptible and infected cells.

The focus of Pooladvand and her colleagues [88] was on evaluating the impact of

the infectivity parameter on treatment outcomes when the virus was injected at the

center of the tumor mass. Bifurcation analysis was employed, and the results indicated

that enhancing infectivity did not lead to complete eradication of the tumor. These

findings align with experimental results, highlighting that virotherapy treatment alone

may not be sufficient in many cases.

It was clear that from the previous studies, the negative impact of the adaptive

immune response against the virus, which can lead to ineffective treatment. There-

fore, infection of all tumor cells before the adaptive immune response is initiated is

crucial to obtain an effective virotherapy treatment. From the observation on tumor

patients, it showed that there is a window of 5-7 days before the accumulation of

the adaptive immune response interferes with the viral spread leading the infection

to wane. Okamoto, Priyanga, and Ian [65] used the prey-predator apparent competi-

tion theory and apply it in virotherapy treatment. This theory involves an indirect

negative interaction between two prey species, namely normal cells and tumor cells,

mediated by a common predator, which, in this case, is a virus. In this scenario,

infecting normal cells with the virus leads to an increase in the virus population, sub-
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sequently raising the likelihood of infecting tumor cells. The central inquiry becomes,

”How can we maximize the infection of tumor cells while minimizing the infection

of normal cells to achieve optimal virotherapy treatment?” To address this question,

Okamoto et al. developed an ordinary differential equations model and applied it

to three oncolytic viruses. The discovery suggests that viruses capable of infecting

specific normal cells may offer a potential balance between the conflicting objectives

of eliminating tumors and minimizing impacts on normal cell populations. This be-

comes particularly relevant when the infected tissues have the ability to regenerate.

By tempering, rather than entirely eliminating, the capacity of oncolytic viruses to

infect and lyse normal cells. While this idea may be intelligent, it’s improbable to

gain approval from health agencies due to the virus’s ability to infect healthy tissues.

Given the undeniable significance of the immune response, various experimental

studies have been conducted to explore its role, as documented in several works such

as those by Bridle et al. [100], and Breitbach et al. [101], and Alemany et al. [102].

Based on the sequential treatment concept, Bridle et al. [100] designed an experiment

using two viruses which carried the same tumor associated antigen. An adenovirus

was used as a vaccine to trigger the immune response against the tumor antigen,

while a vesicular stomatitis virus (VSV) was used as an oncolytic virus that boosts

the anti-tumor immune response and kills the tumor. The results showed that the

secondary immune response against tumor antigens dominated the response against

viral antigens. However, this improvement was temporary as the tumor regrew. To

reproduce similar results, Eftimie et al. [103] constructed an ordinary differential

equations system based on two compartments of immune cells. The first compartment

was lymphoid tissue which contains the effector and central memory immune cells.

The second compartment was the peripheral tissue which contains the tumor cells

(uninfected and infected) and the effector cells. A simplified version of the model was

explored by Eftimie et al. [62] using only the lymphoid tissue compartment. Eftimie

et al. focused their analysis on the role of the oncolytic virus (VSV) to study the
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dynamics of a tumor-virus-immune system.

Another groundbreaking study was conducted by Storey et al. [68], where they de-

veloped an ordinary differential equation (ODE) framework model. This model aimed

to explore the influence of innate and adaptive immune responses on virotherapy for

glioblastoma multiforme, employing the Herpes Simplex Virus as the therapeutic

agent.

In Storey at al. [68] model, the innate immune response serves as a first responder,

attacking virus-infected cells and stimulating the adaptive immune system (T-cells).

Storey et al. [68] observed that, under virotherapy alone, the innate immune system’s

virus clearance effect dominates, leading to rapid virus removal, while the impact of

the adaptive immune response remains small. To enhance the adaptive immune

response, a combination of virotherapy and immunotherapy in the form of a PD-

1/PD-L1 inhibitor was considered. The PD-1/PD-L1 pathway, identified as a central

mechanism allowing cancer cells to silence effector T-cells, was inhibited to prolong

the activity of the adaptive immune response, resulting in a more potent effect on

cancer cells. Storey et al. [68] clearly demonstrated the benefits of this combination

therapy. Once again, Storey et al. [68] demonstrated findings analogous to those of

Wu et al. [84].

In a subsequent study by Storey and Jackson [92], the model was extended to a

spatially explicit agent-based model. The findings suggested that for effective treat-

ment, the viral dose should be injected in the location with the highest tumor density

rather than the tumor center. This spatial consideration added valuable insights to

optimize the delivery of virotherapy in the presence of the immune system.

The incorporation of the innate and adaptive immune systems in the spatial cancer-

virus therapy with moving boundary condition was first introduced by Timalsina

et al. [104]. The utilization of a computational model has proven instrumental in

exploring various scenarios, including investigating delays in the adaptive immune

response, repeated viral doses, and the impact of varying model parameters. Key
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parameters influencing the efficacy of virotherapy treatment include the burst size

and adaptive immune killing rate, with increased values yielding significant improve-

ments. Implementing regular intervals for viral dose repetition also contributes to

enhanced treatment outcomes. It is worth noting that a prolonged delay in the adap-

tive immune response can have adverse effects on the long-term effectiveness of the

treatment. However, a limitation of the model arises from the assumption of spheri-

cally symmetric geometry and the homogeneous nature of the tumor cell population,

which may not fully capture the complexity of real-world scenarios.

Despite the remarkable findings from the aforementioned research, it is regrettable

that many of the spatial models discussed above carry a substantial computational

intensity, thereby constraining further exploration of their pattern-forming capabil-

ities. In this thesis I am planning to go deeply into the analysis to determine the

conditions that lead to these patterns in vitro. Furthermore, we consider the role of

the binding process in the oncolytic viral spread in plaque size.

1.1.3 Goal of This Thesis

The primary goal of my thesis is to address inquiries concerning spatial viral infections

and cancer treatment by employing mathematical modeling, with a specific focus on

virotherapy. Considering the well-established spatial heterogeneity of cancer [105],

the incorporation of spatial dynamics is crucial for developing effective treatment

strategies. The interaction between cancer cells and virus particles resembles a prey-

predator relationship, resulting in an oscillation pattern within the Hopf bifurcation

region—a widely documented outcome [66, 88]. In a spatial context, these oscillations

can give rise to various spatio-temporal phenomena, such as hollow-ring patterns,

target patterns, and dispersed patterns. This thesis continues the systematic analysis

of these spatial oscillations and explores their relevance in the clinical context.

In our capacity as mathematicians, we strive to employ mathematical approaches

to address queries posed by biologists through the analysis of experimental data.
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Additionally, we aim to formulate innovative hypotheses to optimize outcomes. For

example, we investigate the impact of spatial and population heterogeneity on viral

load and explore how the binding process in oncolytic viruses during viral spread in

cell cultures can potentially lead to larger plaque sizes—a result that could enhance

the potency of oncolytic viruses.

Given that many spatial models discussed in Section 1.1.2 predominantly involve

computational frameworks, our focus shifts to examining viral infection patterns

within healthy and cancerous tissue using a reaction-diffusion formulation. This

methodology aims to identify the conditions for the most effective viral spread pat-

tern.

In this thesis, I integrate methods from established research areas, including clas-

sical theories in reaction-diffusion systems such as invasion fronts (crucial for spatial

analysis) and the homogenization method. Additionally, I incorporate the tumor

control probability (TCP) technique, widely used in cancer treatment to measure the

expected success of a given treatment when cancer cells are at an undetectable level.

Since much of my work is based on experimental data, methods like the likelihood

function and data fitting are utilized to estimate parameters in our models. In Section

1.2, I will elucidate the fundamental mathematical tools that have been utilized in

my thesis.

1.2 Mathematical Tools

Within this section, I will delineate crucial definitions and methodologies that have

been employed in my thesis. For a more in-depth understanding of these methods, I

recommend referring to the following authoritative sources: [106–110].

1.2.1 Reaction Diffusion Equations

Reaction Diffusion Systems (RDS) refer to the class of partial differential equations

where the right hand side of a time dependent equation can be split into a local (in
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space) “reaction” component and a non-local transport due to “diffusion” component.

The reaction diffusion equation is generally expressed in the following form:

∂u

∂t
= D∇2u+ f(u), (1.1)

where u is the local population density, D is the diffusion coefficient, ∇ is the spatial

gradient, and f(u) describes the net population change from birth and death.

The application of reaction-diffusion models to tackle biological challenges has a

rich historical foundation. In 1937, Fisher [111] pioneered the use of the 1-D reaction-

diffusion equation in genetics problems, as documented in his influential paper titled

”The wave of advance of advantageous genes”. Fisher used the logistic growth of the

form

f(u) = µu

(︃
1− u

K

)︃
, K > 0, (1.2)

where µ is the population growth rate and K is the carrying capacity to present

the reaction kinetics. Simultaneously, Kolmogorov, Petrovsky, and Piskunov [112]

explored the analysis of the reaction-diffusion equation in two dimensions during the

same year, investigating a more generalized monostable reaction term. Skellam [113]

employed reaction-diffusion equations in ecology to depict the spread of muskrats

in central Europe, while Turing [114], Swindale [115], and Murray [116] focused on

modeling pattern formation. Additionally, Kendall [117] applied these models in

the context of epidemics. The issues addressed by reaction-diffusion models include

critical patch size [118, 119], biological invasions [106, 107], predator-prey systems

[120–123] and pattern formation [124].

As I mentioned above, reaction diffusion equations can not only describe the bi-

ological motion but also can produce a variety of patterns that are similar to those

often seen in nature. Alan Turing was the first to develop reaction diffusion model
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(A) (B) (C) (D)

Figure 1.3: Examples of pattern formation and excitable system in biol-
ogy. Source: (A)-(C): https://unsplash.com and (D): https://opentextbc.ca/
introductiontopsychology/chapter/3- 1- the- neuron- is- the- building- block- of- the-
nervous-system

in his pioneer paper, ”The chemical basis of morphogenesis” [114]. Turing suggested

that, under certain conditions, adding the diffusion to the reaction kinetics can lead to

spatial pattern formation as diffusion can drive instability to spatially homogeneous

steady states, which is known as Turing instability. The interaction between short

range activation and long range inhibition (i.e. Dinhibitor >> Dactivator ) can lead

to pattern formation. Therefore, bifurcation theory must be applied to decide which

parameters arise as a bifurcation parameter [110]. Reaction diffusion in excitable sys-

tems can lead to pattern formation as well. An excitable system is a system with

two states: all or nothing response to stimulus; if the stimulus is superthreshold,

the system exhibits large response (excursion) from rest while being quiescent under

subthreshold stimulus. Following the response, there is a refractory period where the

system doesn’t response to any stimulus even a superthreshold one until the system

recovers the excitability [125]. A famous example in biology of reaction diffusion in

excitable systems is the FitzHugh–Nagumo model in electrophysiology, a simplified

model for the propagation of electrical signals of the Hodgkin–Huxley model in nerve

fibres [126, 127]. Figure 1.3 (A)-(C), are examples of pattern formation in nature,

while Figure 1.3 (D) is a nerve system which is a famous example of excitable system

in physiology.

It is notable to highlight that reaction-diffusion equations found important applica-

tions in the field of chemistry. Prominent instances include the Belousov-Zhabotinsky
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reaction-diffusion model, which elucidates ion-catalyzed oxidation reactions, and the

Gray-Scott reaction-diffusion model, which characterizes autocatalytic reactions [128,

129]. The Belousov-Zhabotinsky model specifically exemplifies the reaction-diffusion

dynamics of a chemical oscillator within an excitable system [130].

1.2.2 Travelling Wave Analysis

Solutions of reaction diffusion equations can arise as travelling waves and as self-

organized patterns. In this thesis, I use travelling wave analysis in Chapter 3, 4 and

5. A traveling wave solution refers to a wave that propagates through space over

time while maintaining its overall shape with a constant velocity. The travelling

wave solution is expressed as U(z) with z = x − ct. Here c > 0 denotes the wave

speed, the variable z := x − ct is the wave variable, and the function U(z) is the

wave profile [108]. When c = 0, we have a stationary wave that does not propagate

and is usually observed when inducing a fixed boundary conditions. Travelling waves

have different forms. When U(−∞) ̸= U(+∞), we have the wave front, while when

U(−∞) = U(+∞), we have what is called pulse wave [131]. Another form of travelling

wave is a spatially periodic wave, which is accrued when U(z + p) = U(z) for some

p > 0. A famous example of wave fronts are solutions of the Fisher-KPP equation

[108], while FitzHugh–Nagumo model is an example for pulse waves in nerve systems

[126, 127, 132].

The standard analysis approach to find a travelling wave solution is to find a non-

negative orbit in the phase space connecting two steady states. If this path connects

two different steady states it’s called heteroclinic orbit, while it called homoclinic orbit

if the start and the end of the orbit are the same [132]. We are interested in the case

where the steady states are not equal i.e a heteroclinic orbit.

To find such heteroclinic orbit, the standard technique is to derive a system of

ordinary differential equations (ODE), where
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U ′ = ψ

ψ′ = U ′′ =
−c ψ − f(U)

D

with U(−∞) ̸= U(∞), and ψ(−∞) = ψ(∞) = 0.

Using the linearization around the two steady states and studying the local stability

of them, we find the condition for c such that a non-negative orbit exists, and hence

a travelling wave exists [108].

It is important to mention that the wave speed c is not necessary to be unique

as in case of Fisher-KPP equation. Therefore, the wave speed is chosen to be the

minimum i.e c∗ for which the wave front solution exists. From a biological standpoint,

our attention is directed towards identifying the wave speed value at which virus

particles can effectively invade a cancerous tissue.

It is good to point out that there is a scenario in which a unique wave speed

exists, as exemplified by the well-known case of the strong Allee effect equation [133],

formulated as follows

∂u

∂t
= D

∂2u

∂x2
+ µu (u− a) (1− u) , (1.3)

where 0 < a < 1
2
.

The Allee effect describes the situation where the populations long term survival

depends on the initial population density. If the initial population is below the Allee

threshold, the population will go to extinction, while the population will survive if

the initial population is above this threshold. The unique wave speed of eqn (1.3) for

0 < a < 1
2
is

c =

(︃
1

2
− a

)︃√︁
2µD.

19



Going back to the minimum wave speed, one of the pioneer results I would like to

present here is the minimum wave speed c∗ of the general Fisher equation which is

called Fisher-KPP since it will be used in Chapter 2.

Lemma 1.2.1 [108] For any 1-D equation of the form

∂u

∂t
= D

∂2u

∂x2
+ f(u), (1.4)

for K > 0 and differentiable f. If f(u) satisfies the following conditions:

f(0) = 0, f(K) = 0,

f(u) > 0 for all 0 < u < K,

f ′(0) > 0, f ′(K) < 0,

f ′(0)u > f(u) for all 0 < u <∞,

then the minimal wave speed is

c∗ = 2
√︁
Df ′(0). (1.5)

Unfortunately, it is often difficult to find such a result if the system has more than

one equations. Therefore, an easier technique can be used to determine the minimum

wave speed of the wave front. This method is called the leading edge method. The

leading edge method focuses on the behaviour of the front profile of the invasion near

the extinction steady state, which shows exponential decay of the form εe−λz, where

λ > 0 is denoted as exponential decay rate and ε ̸= 0 is a small constant. Thus, the

solution of u(x, t) can be in the form

u(z) = εe−λz. (1.6)
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Substituting eqn (1.6) in eqn (1.1), we get

cλεe−λ z = Dλ2εe−λ z + f(εe−λz),

which can be written in the form

Dλ2εe−λ z − cλεe−λ z + f(εe−λz) = 0.

Applying Taylor expansion on f about ε = 0, and using f(0) = 0, we get

f(εe−λz) = f(0) + f ′(0)εe−λ z +O(ε2)

= f ′(0)εe−λ z +O(ε2).

Thus, we obtain

Dλ2εe−λ z − cλεe−λ z + f ′(0)εe−λ z = 0.

which is equivalent to

εe−λ z
(︁
Dλ2 − cλ+ f ′(0)

)︁
= 0.

Since e−λ z ̸= 0 and ε ̸= 0, the leading order is

Dλ2 − cλ+ f ′(0) = 0, (1.7)

which is called the characteristic equation. Solving (1.7) for λ, we get

λ1,2 =
c±

√︁
c2 − 4Df ′(0)

2D
. (1.8)

Since λ > 0, we have c2 − 4Df ′(0) ≥ 0, hence

c∗ = 2
√︁
Df ′(0) with corresponding decay rate λ∗ =

c∗

2D
. (1.9)

To illustrate the idea of the leading edge method, let us consider the case when f

is the logistic form in Fisher equation as in eqn (1.2). Thus, we have
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Dλ2εe−λ z − cλεe−λ z + µεe−λ z − µ

K
εe−2λ z = 0

e−λ z

(︃
Dλ2ε− cλε+ µε− µ

K
εe−λ z

)︃
= 0.

(1.10)

At the leading edge z → ∞, we have µ
K
e−λz ≈ 0. Hence to leading order we obtain

the characteristic equation

Dλ2 − cλ+ µ = 0, (1.11)

and

λ1,2 =
c±

√︁
c2 − 4Dµ

2D
. (1.12)

Thus, we get

c∗ = 2
√︁
Dµ with corresponding decay rate λ∗ =

c∗

2D
. (1.13)

Therefore, the solution around the extinction steady state behaves like e−
c∗
2D

z for

z → ∞. To get a good estimation of the minimum wave speed, it is good enough

to measure the decay rate λ of the wave profile for large x, a method called linear

conjuncture [134].

1.2.3 Homogenization Method

I would like to introduce another valuable approach, known as the homogenization

method, which I employ in Chapter 2. In numerous practical scenarios, spatial or

temporal scales exhibit variations due to the inherent heterogeneity of the medium

or the intricacies of a dynamical system. The homogenization method, a robust

technique widely employed in physics and engineering, particularly in areas such as

heat transfer in composite materials [135], proves instrumental in tackling problems

involving multiple scales in partial differential equations. Its application extends to

ecological contexts, addressing spatial heterogeneity issues like seed dispersal [136],
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the spread of feline leukemia virus [137], dispersal in heterogeneous habitats [138],

and the propagation of wildlife diseases across landscapes [139].

At the core of the homogenization method lies a fundamental strategy: the con-

struction of micro-scale (local scale) models. These models serve as the foundation

for deducing macro-scale (global scale) laws and constitutive relations through proper

averaging over the micro-scale [140]. The analytical framework for this upscaling pro-

cess is commonly referred to as homogenization, as illustrated in Figure 1.4. Notably,

in Chapter 2, we use the homogenization theory in the field of microbiology, expanding

the scope of this method beyond its conventional domains.

Figure 1.4: A scheme illustrating the homogenization technique in periodic 2-D. Here
X = (x1, x2) is the macroscopic scale, while Y = (y1, y2) represents the microscale.
The two scales are related by a small parameter ε > 0 such that (y1, y2) = (x1

ε
, x2

ε
)

[141].

1.2.4 Stability and Hopf Bifurcation

In general, analyzing the dynamical system of a reaction-diffusion model involves an

analysis of the kinetic dynamics using dynamical system theory [110]. This approach

finds widespread application in mathematical biology, shedding light on the intricacies

of the system through the lens of ordinary differential equations. Dynamical systems

theory plays a crucial role in unraveling the qualitative changes in the behavior of

such systems over time. Here are some of the key definitions that have been employed

throughout the thesis.
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Definition 1.2.2 Consider a nonlinear autonomous ODE in Rn

x′ = f(x), (1.14)

where f ∈ C(E) → Rn and E is open subset of Rn. A vector x ∈ Rn is an equilibrium

or steady state of (1.14) if f(x) = 0.

Under certain conditions, the solutions of (1.14) do not intersect which is when the

function f is continuous and Lipschitz.

Definition 1.2.3 A function f : E → R and E is open subset of Rn is called Lipschitz

continuous if there is a constant L > 0 such that | f(x) − f(y) |≤ L | x − y | for all

x, y ∈ E.

Theorem 1.2.4 (Picard-Lindelöf.) Assume the function f : E → Rn is Lipschtiz

continuous. Let the initial condition x(0) = x0 ⊂ E. Then there exists an ε > 0, such

that the initial value problem

dx

dt
= f(x), x(0) = x0 (1.15)

has a unique solution x(t) for 0 ≤ t ≤ ε.

Now, after defining the steady states and the conditions for obtaining a unique

solution, it is the time to define when these steady states are stable.

Definition 1.2.5 Let x be the solution of (1.14) with initial condition x0. Then

1. A steady state x is stable if for all ε > 0, there exists δ > 0 such that solutions

with ∥ x0−x ∥< δ satisfy ∥ x−x ∥< ε for all time t > 0. This means the steady

state x is stable if the solutions which starts nearby stays nearby.
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2. A steady state x which is not stable is called unstable. This means there is at

least one solution which diverges from x.

3. x is asymptotically stable if x is stable and there exists a δ > 0 such that all

solutions with ∥ x0 − x ∥< δ, satisfy limt→∞ ∥ x− x ∥= 0. This means a steady

state x is asymptotically stable if x is stable and all solutions near x converges

to x.

Finding the explicit solution for nonlinear ODE system is almost impossible, in-

stead, we can solve the linear system part, which can illustrate the qualitative be-

haviour of the nonlinear system around the steady states. To do so, we need first to

linearize the system about these steady states with f ∈ C1 to get

x′ = J x,

where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

...
...

...

∂fn
∂x1

∂fn
∂x2

∂fn
∂x3

· · · ∂fn
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix J is called Jacobian matrix, substituting the steady state x values on

the Jacobian matrix J, we get the linear system

x′ = Ax, (1.16)

where A = J(x) is a matrix with constant entries.

The nonlinear system (1.14) has similar behaviour to the linearized system (1.16)

in a small neighborhood if the steady states are hyperbolic. Below is the definition of

hyperbolic steady state and Hartman-Grobman theorem that utilizes this hypothesis.
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Definition 1.2.6 The steady state x is called hyperbolic if all eigenvalues of the A

have nonzero real parts.

Theorem 1.2.7 (Hartman-Grobman) Assume that x is a hyperbolic steady state.

Then, in a small neighborhood of x, the phase portrait of the nonlinear system (1.14)

is equivalent to that of the linearized system (1.16).

The stability behavior of a steady state depends upon the existence of real and

imaginary components of the eigenvalues, along with the signs of the real components

and the distinctness of their values. The following is a summary of the relationship

between the eigenvalues and the stability of a steady state.

1. If the eigenvalues are complex i.e λ = a+ bi with b ̸= 0, we have three cases:

• When the real part a is positive, the steady state of (1.14) is unstable and

the system behaves as a spiral away from the steady state.

• When the real part a is negative, the steady state of (1.14) is stable and

the system behaves as a spiral toward the steady state.

• When the real part is zero, then the linearized system (1.16) has a con-

tinuous family of concentric periodic orbits around zero. In this case, the

steady state is non-hyperbolic and according to Hartman- Grobman theo-

rem, we cannot make any statement about the qualitative behavior of the

nonlinear system (1.14) near the steady state.

2. If the eigenvalues are real, we have three cases:

• If all the eigenvalues are positive, the steady state of (1.14) is an unstable

node.

• If all the eigenvalues are negative, the steady state of (1.14) is a stable

node.
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• If some of the eigenvalues are positive and some of them are negative, the

steady of (1.14) is called a saddle node.

At the same time, mathematical models have many parameters where the changes

in their values can change the qualitative behaviour of the solution. If this is the case,

we call it bifurcation.

Consider a scalar ODE depending on a scalar parameter µ of the form

x′ = f(x, µ), x ∈ R, µ ∈ R,

where µ is the parameter, and f : R2 → R is continuously differentiable. Then we say

that x is a bifurcation point and µ is a bifurcation value if

f(x, µ) = 0 and
∂

∂x
f(x, µ) = 0.

There are four common bifurcations which are saddle-node bifurcation, transcrit-

ical bifurcation, pitchfork bifurcation and Hopf bifurcation. To make it simple, a

saddle-node bifurcation can be described as a single branch of steady states that

undergoes a change in stability, from being stable to unstable or reversed. A tran-

scritical bifurcation appears when there is an exchange of stabilities between two

steady states. A Pitchfork bifurcation can be described as a branch of steady states

which changes stability type at the bifurcation point and is intersected there by a

stable (or unstable) branch. Finally, we get a Hopf bifurcation, when there is a local

birth or death of a periodic solution from a steady state as the parameter crosses

a critical value. This happens when a complex conjugate pair of eigenvalues of the

linearized system at a steady state becomes purely imaginary which implies that a

Hopf bifurcation can only occur in systems of dimension two or higher.

We are interested in Hopf bifurcation as it is related to the prey-predator oscillation

in cancer-virus dynamics. Liu [142] found a criterion of Hopf bifurcations without

using eigenvalues. His theorem is presented below:
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Definition 1.2.8 (Hopf Bifurcation ) Consider a system

x′ = fµ(x), x ∈ Rn, µ ∈ R1, n ≥ 2, (1.17)

with a equilibrium (x0, µ0), and f ∈ C∞. Assume that

1. The Jacobian matrix Dxfµ0(x0) has a simple pair of purely imaginary eigen-

values and other eigenvalues have negative real parts. Then there is a smooth

curve of equilibria (x(µ), µ) with x(µ0) = x0. The eigenvalues λ(µ), λ(µ) of

J(µ) = Dxfµ(x(µ)) which are purely imaginary at µ = µ0 vary smoothly with

µ. Moreover, if

2. d(Re(λ(µ0)))
dµ

̸= 0,

then there is a simple Hopf bifurcation. By simple Hopf bifurcation we mean that

there exists a small neighborhood of the bifurcation value such that no further Hopf

bifurcation arises in this neighborhood.

Later in the thesis I will use a characterisation of a Hopf bifurcation by Liu [142].

Following Liu [142], the characteristic polynomial of the Jacobian matrix J(µ) denoted

by

p(λ;µ) = p0(µ) + p1(µ)λ+ p2(µ)λ
2 + · · ·+ pn(µ)λ

n, (1.18)

where every pi(µ) is a smooth function of µ, pn(µ) = 1 and p0(µ) > 0. Let

Ln(µ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
p1(µ) p0(µ) 0 0 · · · 0

p3(µ) p2(µ) p1(µ) p0(µ) · · · 0
...

...
...

... · · · ...

p2n−1(µ) p2n−2(µ) p2n−3 p2n−4 · · · pn(µ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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where pi(µ) = 0 if i < 0 or i > n. Consider

D1(µ) = det(L1(µ)) = p1(µ) > 0,

D2(µ) = det(L2(µ)) = det

⎛⎜⎝p1(µ) p0(µ)

p3(µ) p2(µ)

⎞⎟⎠ > 0,

...

Dn(µ) = det(Ln(µ)) > 0.

Theorem 1.2.9 Assume there is a smooth curve of equilibria (x(µ), µ), with (x(µ0), x0)

for system (1.17). Conditions (1) and (2) for a simple Hopf bifurcation are equivalent

to the following conditions on the coefficients of the characteristic polynomial p(λ;µ):

1. p0(µ0) > 0, D1(µ0) > 0, · · · , Dn−2(µ0) > 0, Dn−1(µ0) = 0,

2. dDn−1(µ0)
dµ

̸= 0.

A simplified version of Liu [142] for characteristic polynomial of order 3 is intro-

duced by Jehadi et al. [143].

1.2.5 Tumor Control Probability

In cancer treatment, the effectiveness of any therapeutic approach relies on either

eradicating the cancer or, at the very least, bringing the tumor under control. This

involves addressing situations where the density of tumor cells approaches zero. In

such instances, we enter a domain where stochastic events become prominent, and

a deterministic description may fall short. The exploration of stochastic models for

cancer eradication initiated with the inception of cancer radiation therapy [144]. Con-

sequently, a novel method has been introduced based on stochastic processes to quan-

tify the anticipated success of a given treatment, known as tumor control probability

(TCP). These TCP models are grounded in various stochastic approaches, including

the Poisson process, general birth–death process, branching process, and others. In

this section, I will provide only the TCP based on a Poisson process, as it is the

29



one that is specifically utilized in my work, particularly in Chapter 3 and 4. Poisson

process is a stochastic process which is continuous in time and with a discrete state

space.

Consider N(t) to be a random variable that represents the number of cells at time

t. Let pk(t) be the probability that the random variable N(t) = k, i.e

pk(t) = Pr{N(t) = k} with
∞∑︂
k=0

pk(t) = 1.

Thus the family {pk(t)} represents the probability distribution of the cell number

N(t) for every value of t and the family of random variables {N(t), t ≥ 0} is stochastic

process [145]. Furthermore, N(t) follows Poisson distribution with mean λ, where λ

is constant if the following conditions are satisfied:

1. The events are independent of each other.

2. The average rate of occurrence through time is constant.

3. Two events cannot occur at the same time.

Thus, we have the probability of N(t) = k to be

pk(t) =
λke−λ

k!
,

where λ > 0 is a parameter.

Now, assume that the initial number of tumor cells N0 is large, that the cell survival

is a rare event, and that the event of tumor cell death is stochastically independent.

Then, the survival fraction is S(t) = N(t)
N0

and hence the tumor control probability

can be evaluated as the following

TCP (t) = p0(t) = e−λ, (1.19)

where λ = N0 S(t) is the expected number of surviving tumour cells.
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1.2.6 Parameter Estimation Methods

Determining model parameters is a crucial stage in optimizing the model to closely

align with the observed data. There are several prevalent methods for parameter

estimation include maximum likelihood, least squares estimation, and Bayesian esti-

mation. In this discussion, emphasis will be placed on maximum likelihood and least

squares estimation, both of which were employed in Chapter 2 and Chapter 5.

Assume the parameter of the model to be estimated is p̂ with a quality measure

q(p̂| data) that is the measure of how well the model with parameter p̂ fits the ob-

served data. Furthermore, assume the data are typical in the sense that these data

represents a common or normal set of observations. Then, we move from the quality

of the parameter value under given data to the probability of the data under given

parameter, which is called the likelihood of the parameter. Thus, we define

q(p̂| data) = p(data| p̂),

and our task is to find the maximum likelihood estimator.

Definition 1.2.10 Let p̂ ∈ Rn be the parameter vector of a given model. The function

L : Rn → R+,

that maps a parameter set π̂ ∈ Rn to the probability to find given data is called the

likelihood. The log-likelihood is the logarithm of the function,

LL : Rn → R, LL(π̂) = ln(L(π̂)).

Definition 1.2.11 A parameter vector π that maximizes L is called a maximum

likelihood estimation of p̂.

After defining the likelihood function, log-likelihood and the maximum likelihood

estimator, we derive the least square method. Considering our data a time series
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measurement with time points t1, ....., tk and corresponding data points x1, ....., xk, we

assume our model predicts these data via a function q(ti; p̂) such that xi ≈ q(ti; p̂),

where p̂ denotes a set of parameters. As we are working with deterministic models,

we are expecting to have a measurement error. In addition, due to the universality

of the normal distribution, we assume that the data is normally distributed with

expectation (mean) λ = q(ti; p̂) and unknown variance σ2. In this case, the data xi

considered as a random variables Xi that are independent and distributed according

to

Xi ∼ N(q(ti; p̂), σ
2). (1.20)

Then we derive the maximum likelihood of normally distributed data as the following

L(p̂) = p(xi = Xi, i = 1, ...., k|p̂ = (λ, σ)) =
k∏︂

i=1

1√
2πσ

e−
(xi − q(ti; p̂))

2

2σ2
.

Thus, the log-likelihood becomes

LL(p̂) = −
k∑︂

i=1

ln(
√
2πσ)− 1

2σ2

k∑︂
i=1

(xi − q(ti; p̂))
2.

For any given σ, maximizing LL is equivalent to minimizing

least square error(p̂) :=
k∑︂

i=1

(xi − q(ti; p̂))
2.

The least square error has been used in Chapter 2 and Chapter 5.

1.3 Thesis Outline

This thesis is structured around three distinct projects. In Chapter 2, we employ the

Fisher-KPP reaction-diffusion model and the homogenization method to explore the

spatial dependencies within virus load data from a checkerboard experiment. Our

investigation into the impact of spatial complexity among heterogeneous populations
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on viral load involves the application of an innovative cell-printing method intro-

duced by Hesung Now, Ju An Park, Woo-Jong Kim, Sungjune Jung, and Joo-Yeon

Yoo. Contrary to a simplistic arithmetic summation of individual cellular activities,

as confirmed by our model analysis, the experimental results reveal that the total

virus load exhibits a more intricate relationship. Remarkably, our model not only

elucidates the observed virus load data but also predicts values not captured in the

experiments. Furthermore, we employ numerical techniques to ascertain the spatial

distribution of viral load across the periodic domain using our mathematical model.

Our analysis serves as a notable illustration of how spatial heterogeneity influences

cell responses to virus infection, underscoring the importance of considering spatial

arrangement rather than extrapolating measurements solely from isolated cell popu-

lations to heterogeneous mixtures of cells.

In Chapter 3 and Chapter 4, we extend our systematic examination of spatial os-

cillation patterns resulting from Hopf bifurcation, exploring their clinical relevance

and intricate characteristics. Our analysis involves a bifurcation study of a spa-

tially explicit reaction-diffusion model aimed at uncovering spatio-temporal patterns

in virus infection. We consider two types of virus-tumor interactions: mass-action

and Michaelis–Menten kinetics. The targeted pattern for tumor eradication is the

hollow ring pattern, and we identify precise conditions for its occurrence. Further-

more, we determine the minimum speed of traveling invasion waves for both cancer

and oncolytic viruses. Our 2-D numerical simulations unveil complex spatial interac-

tions in virus infection, revealing a novel phenomenon characterized by periodic peak

splitting in mass action case.

In Chapter 5, we probe into the oncolytic potential of the reovirus, specifically

examining both the wild type T3wt and its mutated variant, SV5. Through in vitro

experiments, SV5 demonstrates superior capabilities in spreading within cancer cells,

resulting in larger plaque size in cell monolayer experiments as compared to T3wt.

A significant contributing factor to this enhanced performance lies in the reduced
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binding affinity of SV5 to cells when compared to T3wt. To comprehend the interplay

between the binding process and virus spread for both variants, we employ a reaction-

diffusion model. Our computational results reveal the presence of an optimal binding

rate that corresponds to an optimal viral invasion wave speed, influencing the overall

spread of the virus. This identification provides a rationale for the observed larger

plaque size in SV5. Moreover, we explore the influence of burst size and binding

rate on plaque size. Our investigation reveals the existence of an optimal binding

rate corresponding to each burst size. This underscores the significance of burst size

alongside binding rate, emphasizing that the role of burst size is crucial and cannot

be overlooked as mentioned in section 1.1.2.

In Chapter 6, we consolidate the research projects and highlight their key findings.

Additionally, we engage in a discussion about potential directions for future work.
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Chapter 2

Homogenization in Microbiology

The material of this Chapter has been published as

• A.A. Baabdulla, J.A. Park, W.J. Kim, S. Jung, Yoo, J.Y. Yoo and T. Hillen.

Homogenization of a reaction diffusion equation can explain influenza A virus

load data. Journal of Theoretical Biology, 527:110816, 2021.

2.1 Introduction

Viruses are responsible for a diverse range of human illnesses, encompassing the com-

mon cold, influenza, HIV/AIDS, COVID-19, and various others. Consequently, the

prevention of viral infections is a critical aspect of virology. Ongoing research in

virology aims to deepen our understanding of viral biology and develop more effec-

tive strategies for prevention and treatment. Consequently, numerous experiments,

conducted in vitro or in vivo, focus on evaluating viral load, a crucial parameter for

understanding the progression and severity of viral infections, as well as for monitor-

ing treatment efficacy.

Simultaneously, the field continues to explore mathematical modeling of viral load,

an area of active investigation [146–149]. While many models rely on ordinary dif-

ferential equations, some methodologies incorporate spatial modeling techniques [70,

81, 148].

In the realm of cellular populations, there exists inherent heterogeneity. However,
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conventional experimental approaches often overlook this diversity by treating popu-

lations as homogeneous mixtures of cells. Snijder et al. [150] were among the first to

delve into the significance of this heterogeneity and its correlation with virus infection

patterns. Yet, despite these advancements, the impact of spatial complexity within

such populations remains largely unexplored. Consequently, there is a burgeoning in-

terest in investigating whether viral susceptibility varies with the spatial distributions

of heterogeneous sub-populations.

To tackle this inquiry, we developed a new mathematical model rooted in the

Fisher-KPP equation, employing homogenization methods for the first time in micro-

biology. Our model was informed by viral load data obtained from a checkerboard

experiment, where an innovative cell-printing technique introduced by Hesung Now,

Ju An Park, Woo-Jong Kim, Sungjune Jung, and Joo-Yeon Yoo was used [151].

This technique enabled them to precisely manipulate cell arrangements and observe

resulting viral dynamics.

In Park et al.’s study [151], the experimental setup comprised equal proportions

of A549 human alveolar lung epithelial cells and HeLa cervical cancer cells. Notably,

these cell lines exhibit varying levels of infectivity towards influenza A, with A549 cells

demonstrating ”strong” infectivity and HeLa cells displaying ”weak” infectivity [152,

153]. Surprisingly, the total viral load did not simply correspond to an arithmetic

summation of individual cellular activities.

A similar experiment was conducted on mouse embryonic fibroblasts (MEF) ex-

posed to influenza A [154]. Here, we investigate how spatial heterogeneity influences

the response of MEF to influenza A [154]. MEF of the Ube1L−/− type encompass

two distinct sub-populations: one robustly supports significant viral infection (i.e.,

”strong” infectivity), while the other sustains a lesser viral load (i.e., ”weak” infec-

tivity). We offer novel insights into the dynamics of viral load infection in Ube1L−/−

MEF, organized in a checkerboard pattern with varying inner square sizes (see Figure

2.1 (A)). Similar to Park et al.’s findings [151], the total viral load one day post-
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inoculation demonstrates significant dependence on the sizes of these inner squares

(see Figure 2.1 (B)). Employing a reaction-diffusion model, we elucidate this observa-

tion, demonstrating how mathematical homogenization can explain spatial disparities.

Our analysis reveals that, as individual patches increase in size, both the growth

rate and carrying capacity represent arithmetic means across patches. However, as

patches become finer, the average growth rate remains an arithmetic mean, while

the carrying capacity transitions to a harmonic mean. Through fitting our model

to experimental data, we anticipate that deviations in viral load would become im-

perceptible within half a day. Furthermore, we predict viral load variations across

unmeasured inner squares in our experiment and estimate the distance virions can

traverse within a day.

We outline Chapter 2 as the following: In the next section (Section 2.2) we ex-

plain the experimental set up and the data collection. In Section 2.3 we introduce

the mathematical model. We chose a very classical Fisher-KPP reaction-diffusion

equation [106], which is quite sufficient for our purpose. We then perform the spatial

homogenization as it is relevant for our problem. From this analysis the dichotomy

between arithmetic and harmonic means arises. In Section 2.4 we fit our model to our

virus-load data using a log-likelihood method, thereby explaining the observed virus

load dependence on the spatial arrangement. In Section 2.5 we present numerical

solutions of the corresponding model, which show the spatial distribution of the viral

infection across the checkerboard pattern. We close with a discussion in Section 2.6.

2.2 Influenza A Infection Experiments

We investigate mouse embryonic fibroblast (MEF) cells lacking Ube1L (Ube1L−/−),

a ubiquitin-like modifier activating enzyme crucial for ISGylation protein function,

which conjugates Interferon (IFN) stimulated gene 15 (ISG15) to target proteins.

The Ube1L−/− genotype represents null mutations of Ueb1L, resulting in the deacti-

vation of Ueb1L production. Our examination revealed that Ube1L−/− populations
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exhibit bimodal characteristics, displaying two sub-populations with varying degrees

of antiviral activity [154]. We denote these subpopulations as Ube1L−/−(S) and

Ube1L−/−(W ), representing those with ”strong” and ”weak” infectivity, respectively.

Details of viral infection data for each population in isolation are provided in the

supplementary material (Appendix A Tables A.1 and A.2 ).

(A) (B)
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Figure 2.1: (A): Design of cell-printing pattern, (B): Viral load measurement after
24h.

To explore the impact of spatial distribution patterns on the overall virus load of the

population, the Korean group employed inkjet bioprinting to arrange Ube1L−/−(S)

and Ube1L−/−(W ) cells in a regular checkerboard pattern [151]. The size of the

checkerboard squares was kept constant at 30 × 30 mm2, while the size of inner

squares was varied, with side lengths of 1.5 mm, 3 mm, 5 mm, and fully mixed (Figure

2.1 (A)). In Figure 2.1 (A), the cells printed alternatively in the checkerboard with

light gray represent the Ube1L−/−(W ) cells, while those in dark gray represent the

Ube1L−/−(S) cells. Consequently, the geometric separation between Ube1L−/−(S)

and Ube1L−/−(W ) cells increased as the size of the inner squares enlarged. A mixed

scenario with a 50/50 ratio of Ube1L−/−(S) and Ube1L−/−(W ) cells served as the

control group. In each experiment, both checkerboard-patterned and mixed plates

were infected with Influenza A virus and subsequently incubated for 24 hours. To
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ensure uniformity, the inoculation was evenly distributed across the entire domain

to mitigate spatial heterogeneities during the process. Infected cells were harvested,

and the total intracellular viral genome was quantified using real-time quantitative

PCR (Figure 2.1 (B)). The results from Figure 2.1 (B) suggest that the maximum

viral load is achieved with the inner square of 5 mm, followed by the 3 mm square.

Conversely, the lowest viral load is observed on the mixed plate. Additionally, the

inner square of 1.5 mm demonstrates a viral load similar to that of the mixed plate.

All experiments utilized the inkjet printing method as described by [151]. For the

cell cultures in isolation, experiments were repeated twice for each cell type, with

each case involving inoculation of three plates at a density of approximately 6 × 106

cells/mL. Homogeneous cell populations were printed using the same setup as the 1.5

mm checkerboard printing, with each square containing cells of the same type (all

black or all white, respectively). Results for homogeneous populations are presented

in Tables A.1 and A.2, while checkerboard measurements were replicated three times,

with results detailed in Appendix A Table A.3.

The Livak method (Delta Delta CT) was employed to determine the relative quan-

tification (gene expression), calculated as:

RQ = 2−(∆∆CT ), (2.1)

where CT represents the cycle number at which the fluorescence generated by the

PCR of the influenza A gene becomes discernible from the background noise cycle

threshold (CT) of the sample. ∆CT is measured using the formula:

∆CT = CT (target gene)− CT (reference gene). (2.2)

In this study, the target gene is the influenza A hemagglutinin (HA) gene, and the

reference gene is the mouse glyceraldehyde 3-phosphate dehydrogenase (mGAPDH)

gene. Thus, ∆∆CT can be computed as:
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∆∆CT = ∆CT (experimental sample)−∆CT (control sample). (2.3)

The full data set is shown in A.1 and A.2 for the homogeneous populations and in

A.3 for the checkerboard data. The data from A.3 are shown in Figure 2.1 (B).

Examining the virus load data in Figure 2.1 (B), it’s evident that there’s a signif-

icant discrepancy in viral load depending on the inner square size, progressing from

mixed, to 1.5 mm, to 3 mm, and to 5 mm. Interestingly, each experiment maintains

the same ratio and mass of Ube1L−/− (W) and (S) cells. This observation suggests

that the antiviral activity of the cell population as a whole does not merely sum up

the individual cellular activities.

2.3 A Mathematical Model

Reaction-diffusion equations (RDEs) serve as a potent tool whenever the spatial

spread of a population becomes significant. Among these equations, one of the sim-

plest examples is the Fisher-KPP equation

∂

∂t
v(x, t) = D

∂2

∂x2
v(x, t) + µ(x)v(x, t)

(︃
1− v(x, t)

K(x)

)︃
, (2.4)

where v(x, t) is the viral density at time t and location x, D is the diffusion coefficient,

describing the spatial spread of the virions, µ is the population growth rate of the

virus, and K is the population carrying capacity.

The process of viral infection and replication within cells involves multiple layers

[31–33]. Initially, virions enter the cell via endocytosis. Following virion uncoating,

the virus RNA undergoes replication and is subsequently reassembled into new virions.

These virions are then released through various mechanisms, including exocytosis and

cell lysis. In the case of lysis, the breakdown of the cell membrane releases virions into

the extracellular fluid. Biologically, the virion growth rate parameter µ in our model
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integrates an effective growth rate, encompassing the complexities of viral replication

within cells. Meanwhile, the diffusion coefficient describes the spread of free virions.

Given that the model aims to describe spatially varying checkerboard patterns, we

propose that the growth rate µ(x) and the virus carrying capacity K(x) are spatially

dependent.

We assume that the transport of virus from cell to cell remains consistent across

all cell types, thereby assuming that D is not spatially dependent and remains con-

stant. Although the model could accommodate spatially varying D(x) as well (see

[155–157]), for our purposes, a model with constant D suffices to explain our data.

Additionally, we lack biological evidence to justify differential diffusivities, hence we

presume their equality.

We opted for the Fisher-KPP equation for our modeling problem for several rea-

sons. Firstly, the available data on virus load on checkerboard patterns are limited

to total virus load at a few time points (0, 6h, 12h, 24h). No microscopic measure-

ments are conducted, hence details on virus replication inside cells, cell bursting, the

number of released virions, virion transport within the cell tissue, and cell death are

unavailable. While incorporating these details into a more sophisticated modeling

framework would be ideal, it is currently neither feasible nor necessary. We find

that the simple Fisher-KPP approach adequately accounts for the phenomenon at a

macroscopic level.

A second reason for employing Fisher-KPP is its proven utility in numerous appli-

cations, its simplicity, and the well-understood behavior of this model [106]. Certain

characteristics of the model can be immediately useful. For example, the invasion

speed of the Fisher-KPP model (2.4) is

c = 2
√︁
Dµ. (2.5)

The parameters of the Fisher-KPP equation (2.4) D,µ,K will be estimated based

on the data from the experiments which we presented in the previous Section 2.2.
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The experimental arrangement outlined above is a paradigm for a homogenization

problem. It involves varying the microscopic scale (represented by inner squares)

successively finer until, ultimately, a homogeneous mixture is achieved. What sets

this experiment apart is our ability to not only measure the distinct separated and

fully mixed states but also several intermediate values representing different mixture

types. While homogenization is a widely recognized scaling technique in physical

applications [109, 140], its application to ecological issues has only recently emerged

[139, 158–160]. To our knowledge, this method has not previously been employed in

the microbiological context under consideration here.

Given the problem’s symmetry, we choose to present the argument in a one-

dimensional context. Although the scaling method extends to higher dimensions,

focusing on one dimension serves our purpose adequately. To replicate the checker-

board pattern, we partition the real line into uniform intervals, effectively distin-

guishing between populations with weak and strong infectivity (refer to Figure 2.2).

Within this periodic domain, we examine the spatially dependent Fisher-KPP equa-

tion (2.4), wherein the virus’s growth rate µ(x) and the carrying capacity of the virus

load K(x) vary across cell types, i.e.

K(x) =

⎧⎪⎨⎪⎩ KW , x ∈ patch of type weak

KS, x ∈ patch of type strong
(2.6)

µ(x) =

⎧⎪⎨⎪⎩ µW , x ∈ patch of type weak

µS, x ∈ patch of type strong.

We use W to indicate the Ube1L sub-population of weak infectivity and S for strong

infectivity. For the general analysis we simply consider periodic functions K(x), µ(x).

We differentiate between two pertinent spatial scales: the scale of individual patches,

denoted by y and represented by the inner squares, and the global scale of the entire

experiment, denoted by x and represented by the checkerboard printing. Additionally,
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Figure 2.2: Sketch of a periodic patchy environment of two cell types.

we introduce a small parameter ε > 0

y =
x

ε
,

where ε represents the ratio between the local and global scales. In the experiment,

ε =
the size of inner square

the size of the checker board
.

Thus, we can compute the ε for the 5 mm, 3 mm, and 1.5 mm inner squares as

ε = 1/6, 0.1, 0.05, respectively.

We use standard assumptions in homogenization (see e.g. [109]) and assume that

the growth rate µ(y) and the carrying capacity K(y) change only on the small scale

y and they do not vary on the large scale x. The virus load depends on both scales,

v(x, y, t) and the partial derivatives change as

d

dx
v(x, y(x), t) =

∂

∂x
v(x, y, t) +

1

ε

∂

∂y
v(x, y, t)

If we introduce this assumption into (2.4) we get the multiscale reaction-diffusion

equation

∂

∂t
v(x, y, t) =

D

ε2
∂2

∂y2
v(x, y, t) +

2D

ε

∂2

∂x∂y
v(x, y, t) +D

∂2

∂x2
v(x, y, t)

+ µ(y)v(x, y, t)

(︃
1− v(x, y, t)

K(y)

)︃
. (2.7)

We are seeking here a leading order approximation (v0) to compute the viral load

which is valid for small ε. To analyze this equation we use a perturbation expansion
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in the small parameter ε≪ 1:

v(x, y, t) = v0(x, y, t) + εv1(x, y, t) + ε2v2(x, y, t) + · · · , (2.8)

where all functions vj(x, y, t), j = 0, 1, 2, . . . are assumed to be periodic in y of period

1.

We substitute this expansion (2.8) into (2.7) and collect terms of equal order in ε.

The leading order term is of order ε−2:

• ε−2 : We obtain 0 = D ∂2

∂y2
v0(x, y, t), which leads to a general form

v0(x, y, t) = c1(x, t)y + c2(x, t)

Since v0(x, y, t) is periodic in y, the first term c1 = 0 and we find that v0 does

not depend on y. We write v0(x, t) instead of using c2(x, t).

• ε−1 : In this case we find

0 = D
∂2

∂y2
v1(x, y, t) + 2D

∂2

∂x∂y
v0(x, t).

Since v0 does not depend on y, the second term is zero. Hence the first term is

zero as well. Again arguing with periodicity, we find that also v1 is independent

of y and we write v1(x, t).

• ε0 : Here we find

∂

∂t
v0(x, t) =D

∂2

∂y2
v2(x, y, t) + 2D

∂2

∂x∂y
v1(x, t) +D

∂2

∂x2
v0(x, t)

+ µ(y)v0(x, t)

(︃
1− v0(x, t)

K(y)

)︃
. (2.9)

Instead of solving this equation for v2 we simply integrate over one period

y ∈ [0, 1]: Since v0 and v1 do not depend on y, and since v2 is periodic, several

terms simplify. We find the homogenized equation:

∂

∂t
v0(x, t) = D

∂2

∂x2
v0(x, t) +

∫︂ 1

0

µ(y)dy v0(x, t)−
∫︂ 1

0

µ(y)

K(y)
dy v20(x, t). (2.10)
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To understand (2.10) we introduce the arithmetic mean and the harmonic mean as

⟨µ⟩a =
∫︂ 1

0

µ(y)dy, ⟨K⟩h =

(︄∫︂ 1

0

1

K(y)
dy

)︄−1

and we consider three cases:

Case 1: ConsiderK(y) = K constant. Then (2.10) becomes a standard Fisher-KPP

equation

∂

∂t
v0 = D

∂2

∂x2
v0 + ⟨µ⟩av0

(︃
1− v0

K

)︃
, (2.11)

where the homogenized growth rate ⟨µ⟩a = 1
2
(µS + µW ) is the arithmetic mean

of µ(y).

Case 2: Consider µ(y) = µ constant. In this case (2.10) becomes

∂

∂t
v0 = D

∂2

∂x2
v0 + µv0

(︃
1− v0

⟨K⟩h

)︃
, (2.12)

where the carrying capacity arises as harmonic mean of K(y):

⟨K⟩h =
1

1
2

(︂
1

KS
+ 1

KW

)︂ .
Case 3: We can also write the general homogenized equation (2.10) as a Fisher-KPP

equation, however, with less intuitive average terms as

∂

∂t
v0 = D

∂2

∂x2
v0 + ⟨µ⟩av0

⎛⎝1− v0

⟨µ⟩a
(︁
⟨ µ
K
⟩a
)︁−1

⎞⎠ . (2.13)

Here the effective growth rate and effective carrying capacity are

µ̃ = ⟨µ⟩a, K̃ =
⟨µ⟩a
⟨ µ
K
⟩a
. (2.14)

As illustrated in Figure 2.3, the fine printing of the virus hosts in patches of different

sizes leads to different averaging. If the individual patches are large, then they can

be considered as almost independent, and the growth rate and the carrying capacity

will be the arithmetic means ⟨µ⟩a, ⟨K⟩a of the patches. On the other hand, for finer
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Figure 2.3: Sketch of a period patchy environment and the homogenization limit.

and finer patches we have shown that the average growth rate is still the arithmetic

mean ⟨µ⟩a, however, the carrying capacity uses the harmonic mean. For example in

Case 2 above it is ⟨K⟩h and it is known that

1

1
2

(︂
1

KS
+ 1

KW

)︂ = ⟨K⟩h ≤ ⟨K⟩a =
1

2
(KS +KW ), (2.15)

where equality is satisfied when KS = KW . Hence a reduction of the overall carrying

capacity for finer patches is a direct consequence of the averaging procedure.

2.4 Application to the Fibroblast Experiments

Employing the homogenization method on the Fisher-KPP equation (2.4) yields three

distinct cases. It is imperative to select the case that accurately represents the ex-

perimental data concerning the mouse embryonic fibroblasts.

In Case 1, K(y) remains constant, rendering it inadequate for describing the ob-

served data. This is because the averaging of the growth rate remains unchanged

from coarse to fine experiments. However, Cases 2 and 3 can account for the ob-

served phenomenon. Given that Case 2 is encompassed within Case 3 and is ade-

quate for explaining the observed data, our analysis centers on Case 2. Here, the

virus growth rate µ remains (almost) constant between the two cell types, while the

carrying capacities exhibit significant differences:

µ = µS = µW , and ⟨K⟩h =
1

1
2

(︂
1

KS
+ 1

KW

)︂ .
As we determine which case to apply, it’s essential to calibrate our model to the data.

However, the formulas (2.15) only provide information about the mixed case and the
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most separated case. They do not offer insights into intermediate scales, such as the

1.5 mm and 3 mm experiments. To incorporate these data points, we utilize the

Fisher-KPP model (2.4). For a detailed numerical solution, please refer to Section

2.5.

We employ a least-squares approach to estimate the error:

E =
4∑︂

i=1

(Mi value− PDEi value)
2, (2.16)

where i = 1,2,3,4 represent the inner square sizes: mix, 1.5 mm, 3 mm, and 5 mm,

respectively. Here, Mi denotes the measurement value and PDEi represents the

integral of the solution curve of the partial differential equation (PDE).

Based on the above calculations it is straight forward to simply compare the arith-

metic means and harmonic means with the available data. In Table 2.1 we show the

virus load data at t = 24 h that correspond to the data shown in Figure 2.1 (B). The

raw data are in Table A.3.

Inner Square Mix 1.5 mm 3 mm 5mm

Mean 1.2957 1.3305 1.9304 3.3996

Stand. Dev. 0.2002 0.2917 0.8111 0.9968

Stand. Error 0.1156 0.1684 0.4683 0.5755

Error Bar [1.1801, 1.4113] [1.1621, 1.4989] [1.4621, 2.3986] [2.8241, 3.9751]

Table 2.1: Virus load data, standard deviation, standard error and error bars.

Since the largest inner square is the 5 mm plate, we assume, for now, it corresponds

to the separated case, i.e., ⟨K⟩a = 3.3996, while the mixed case corresponds to the

harmonic mean ⟨K⟩h = 1.2957. To find KS and KW , we then simply solve the two

equations for the means (2.15) to obtain:

KW = 0.7252, and KS = 6.0740.

To investigate the agreement with the intermediate cases of 1.5 mm and 3 mm,

we solve the full PDE (2.4). For this, we also require the diffusion constant D and
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the virus growth rate µ. From the data in Tables A.1 and A.2, we determined a

range of values for the growth rate of the virus in weak and strong infectivity cells.

Specifically, µW ∈ [0.1155, 0.3547] and µS ∈ [0.1155, 0.4722]. Consequently, we opt

for the intermediate value ⟨µ⟩a = 0.23 per hour.

We lack direct information from the data to estimate the value of the diffusion

coefficient D. Rioja et al. [70] employed a similar spatial virus model for cancer viral

therapy and utilized a diffusion coefficient of DRioja = 0.0144 mm2 per hour. This

corresponds to an invasion speed of c = 0.115 mm per hour, resulting in a distance

traveled in 24 hours of 2.76 mm. However, this seems too small for our scenario. If

the travel distance is only 2.76 mm in 24 hours, then the 3 mm and 5 mm cases would

not effectively communicate viral load values over a 24-hour period. Therefore, to

account for the observed homogenization effect, we anticipate a significantly larger

diffusion coefficient than 0.0144.

Another way to evaluate the diffusion coefficient D is by applying the Stokes-

Einstein equation for the diffusion coefficient D of a spherical particle of radius r

in a fluid of dynamic viscosity η at absolute temperature T [161], which in our case

becomes

D =
kBT

6πηr
= 0.02 mm2 per hour,

where kB is Boltzmann’s constant, r = 50 nm is a typical virus radius size, and

η = 0.00094 pa. s is the viscosity of DMEM (10 % FBS) medium at T = 25oC [162].

However, the simulation results show that this value is very low and it does not fit

the data. We believe that a reason for this discrepancy is the formation of capillaries

between cells that are touching along cell membranes. [163] showed that depending on

the capillary pore size, the diffusivity could increase by orders of magnitude. Again,

in our case we have no information about the pore sizes between the cells in our

experiments.

Consequently, we treat the diffusion coefficient as an unknown variable and com-
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pute the error (2.16) relative to the measurements.

In Table 2.2, we vary the virus diffusion coefficient D from 0.02 to 0.6 mm2 per hour

and solve the Fisher-KPP equation (2.4) as outlined in Section 2.5. We observe that

as D increases, the fit for the 1.5 mm case improves, the 3 mm case fits consistently

well, and the fit for the 5 mm case deteriorates. Ultimately, this naive procedure fails

to yield a usable fit. We present the data for the case of D = 0.5 as a red curve in

Figure 2.4 (A).

D 0.02 0.05 0.1 0.3 0.5 0.6 Measurements

Mix 1.2365 1.2365 1.2365 1.2365 1.2365 1.2365 1.2957± 0.1156

1.5mm 2.3060 2.0169 1.7582 1.4590 1.3800 1.3590 1.3305± 0.1684

3mm 2.5734 2.4397 2.2762 1.9069 1.7304 1.6737 1.9304± 0.4683

5mm 2.6757 2.6031 2.5175 2.2945 2.1431 2.0830 3.3996± 0.5755

Fitting Data No No No No No No

Table 2.2: Simulated virus load data when D is varied at t=24 hour.
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Figure 2.4: (A): Measurement values of virus load for the various checker board
patterns. Overlaid is the naive fit for D = 0.5 in red and the best fit using a hy-
pothetical 15 mm experiment in blue, (B): Comparison of the estimated carrying
capacities KW , KS with the virus load data of each cell type in isolation. The hori-
zontal lines indicate the levels KW = 0.6713 (blue), and KS = 18.529 (orange). The
data from Tables A.1 and A.2 are presented as (X,black)= weak cells experiment 1,
(X,red)= weak cells experiment 2, (circle,blue)= strong cells experiment 1 and (cir-
cle,green)=strong cells experiment 2.
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2.4.1 Calibration II: Extension to a 15 mm Case

The discrepancy observed for the 5 mm plate may be attributed to the fact that

the 5 mm squares are still relatively mixed, possibly not corresponding to the fully

separated state. To test this hypothesis numerically, we introduce a hypothetical 15

mm case, where the cell types are segregated into one compartment for cells of weak

infectivity and another compartment for cells of strong infectivity.

Although the corresponding virus load has not been measured due to technical

limitations of the bio-printing method, we can still solve the PDE for this case. We

set a maximum error tolerance of Emax = 0.1, which corresponds to the smallest

error bar from the data (see Table 2.1). Varying D within the range [0.02, 0.6]mm2

per hour and K15mm within [5.5, 12], we observe in Figure (2.5 (A)) that the error

decreases with increasing D and K15mm. The first value below the error tolerance of

0.1 is achieved with D = 0.5 (indicated by the red marker in Figure 2.5 (A)). For

larger values of D, the error can still be decreased. However, a full minimization is not

very meaningful since the fitting errors become much smaller than the measurement

errors of the data. With D fixed at 0.5, we find a suitable range of values for K15mm.

A clear minimizer is found at K15mm = 9.6 with an error of E = 0.0974 (see Figure

2.5 (B)). Hence, for the purpose of our modeling, we choose

D = 0.5 and ⟨K⟩a = K15mm = 9.600, (2.17)

which, using (2.15) leads to

KW = 0.6713, and KS = 18.529. (2.18)

These results suggest that strong infectivity cells can support about 25 times more

virus than weak infectivity cells.

In Table 2.3 and Figure 2.4 (A), we compare the measured values to the optimized

PDE results and also record the error and relative error when K15mm = 9.6 at t = 24.

We observe that the model results closely match the measurements, falling well within
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Figure 2.5: (A): Error values at 24h when K15mm and D are varied. The red marker
indicates D = 0.5 andK15mm = 9.6 which we chose as most suitable model parameter,
(B): Optimization of K15mm for fixed D = 0.5.

the error bars. Achieving such a high level of accuracy in fitting biological data is

quite rare, bolstering our confidence that the chosen PDE model effectively explains

the data. We summarize the calibrated model parameters in Table 2.4.

Size of Inner Square Measurement PDE Error2 Relative Error

Mix 1.2957 1.2365 0.0035 4.6 %

1.5mm 1.3305 1.4635 0.0177 10 %

3mm 1.9304 2.1889 0.0669 13.4 %

5mm 3.3996 3.3033 0.0093 2.8 %

Least Square Error 0.0974

Table 2.3: Comparison of the measurements with the optimized PDE model.

We further utilize our optimized PDE model to investigate the virus load after

12 hours as well. For the mix, 1.5 mm, 3 mm, and 5 mm cases, we find simulated

virus load numbers of 0.7372, 0.7643, 0.8183, and 0.8766, respectively. Although

there is a slight increase from mixed to separated, the difference is small and would

not be observable within measurement tolerances. Hence, the homogenization effect

would not be observed after 12 hours, a finding corroborated by the experiments

(experimental values not shown). The typical replication process of the virus inside
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Parameter Description Value Unit

D Diffusion coefficient 0.5 mm2 per hour

⟨µ⟩a Arith. mean growth of rate 0.23 per hour

KW Carrying capacity of weak infectivity cells 0.6713 viral load

KS Carrying capacity of strong infectivity cells 18.529 viral load

KMix = ⟨K⟩h Carrying capacity of mixed plate 1.2957 viral load

K15mm = ⟨K⟩a Carrying capacity of 15 mm printed plate 9.600 viral load

Table 2.4: Summary of calibrated model parameters.

cells takes between 5 and 12 hours [164]. Therefore, at the 12-hour mark, only a few

cells would have released their virus contents, and the homogenization effect will not

yet have taken effect.

Furthermore, we compare these results (2.18) with the experiments of viral load

infections on each cell type in isolation. In Figure 2.4 (B), we plot the virus load data

from Tables A.1 and A.2 as functions of time. Symbols and colors distinguish between

the cell types and experiments: (X, black) denotes weak cells experiment 1, (X, red)

denotes weak cells experiment 2, (circle, blue) denotes strong cells experiment 1, and

(circle, green) denotes strong cells experiment 2. Additionally, we plot the estimated

KW and KS from (2.18) as horizontal lines.

We observe a substantial difference in the virus load data between experiments

1 and 2 for each of the weak and strong cases. Hence, the data do not appear to

be directly comparable. The virus load of the strong responders is certainly one or

two orders of magnitude larger than those of the weak responders, and our estimates

reflect this fact nicely. However, the data do not permit a quantitative comparison.

2.5 Numerical Analysis of the PDE Model

In this section, we present the numerical scheme used to solve the homogenized equa-

tion and for the spatially printed plates.
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2.5.1 Mix Plate

Since µS = µW , we can solve the homogenized equation (2.12) for Case 2 using

a Forward-Time-Central-Space method [165]. As µ and K are constant and the

initial condition is non-negative, the solution should converge to the carrying capacity

KMix = ⟨K⟩h = 1.2957, which has been confirmed numerically, as shown in Figure

2.6 (F).

(A) (B) (C)

(D) (E) (F)

Figure 2.6: Numerical simulation when µS = µW = 0.23 and D = 0.5 with v(x, 0) =
0.1, and vx(0, t) = vx(30, t) = 0 for (A): 15 mm intervals, (B): 5 mm intervals, (C):
3 mm intervals, (D): 1.5 mm intervals, (E): 1 mm intervals, (F): mix plate. Note
that the z-axis changes between these figures.

2.5.2 Spatially Printed Plates

For the spatially printed plates, we consider two patch types, ”strong” which represent

strong infectivity cells and ”weak” which represent weak infectivity cells. Accord-

ingly, the carrying capacity is spatially constant within a patch but different between

patches. While, the diffusion coefficient D and growth rate µ are the same in the two
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patches. We partition the entire interval into sub-intervals (’patches’) (yi−1, yi), i ∈ N.

Thus, we have

∂vi
∂t

= D
∂2vi
∂y2

+ µivi

(︃
1− vi

Ki

)︃
, for y ∈ (yi−1, yi).

Since the diffusion coefficient does not vary between the patches, the flux is continuous

across an interface

∂yv(y
+
i , t) = ∂yv(y

−
i , t).

Here, y+i and y−i denote right and left sided limits at yi. The probability of a virion

at interface yi moving to the right or left is the same and equal to 0.5. Thus

v(y+i , t) = v(y−i , t),

which ensures continuity of the solution at the interfaces.

The simulations in Figure 2.6 confirm our model assumption as only in the 15 mm

case (Figure 2.6 (A)) the carrying capacity of KS = 18.529 of the strong infectivity

cells is reached. In the other simulations (B)-(F), the inner maxima, corresponding

to the strong cell type, are much lower than the carrying capacity of 18. We see

the homogenization effect in action, as the relative differences between local maxima

and local minima are flattened for decreasing inner interval sizes. We also observe

an overshoot at the right boundary, which is due to the chosen Neumann boundary

conditions.

2.6 Conclusion

In this chapter, we employ the method of homogenization to analyze a spatially

structured Fisher-KPP model concerning the virus-load in cell cultures during viral

infections. While the method of homogenization is well-established in physics ([109])

and ecology ([139, 160]), our novel application focuses on microbiological data anal-

ysis. We have identified a biological scenario where the choice of averaging method

is crucial. Both arithmetic and harmonic means offer valid insights into viral load,
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yet they yield distinct results. Remarkably, this marks the first instance where the

averaging method significantly impacts the infectivity assessment of cell populations.

These insights stem from groundbreaking inkjet bioprinting technology pioneered

by Park et al. [151]. Beyond conventional checkerboard-patterns, this technique

enables the generation and analysis of diverse patterns, such as the Eiffel Tower,

facilitating the modeling of heterogeneous tissues like lung tissue.

Utilizing a calibrated PDE model, we have simulated scenarios not feasible experi-

mentally, such as the 1 mm and 15 mm cases, and observed the homogenization effect

after 12 hours. Notably, the viral load within the 1 mm inner square experiences a

significant reduction compared to the 5 mm and 15 mm cases, closely aligning with

mixed case measurements. Furthermore, employing the Fisher wave speed formula

(2.5), we calculated the invasion speed in our experiment. For specific parameters,

D = 0.5 and µ = 0.23 we determined an invasion speed of c = 2
√
Dµ = 0.68 mm per

hour, indicating virions cover a substantial distance within 24 hours, consistent with

the homogenization assumption of considering two spatial scales.

While our observations derive from meticulously controlled experiments with well-

defined geometric setups and cell types, the implications of population mixing versus

segregation on total viral load likely extend to more natural tissue settings, such

as viral therapy for cancer [70, 81]. We identified an eightfold increase in viral load

from mixed to fully segregated populations, potentially impacting tissue response and

patient health significantly. This finding underscores the potential relevance of our

results, particularly in contexts such as COVID-19 mortality prediction, where even

modest changes in viral load can influence outcomes significantly [166]. For example,

in the recent study by [166] (Supplement Figure S1), on SARS-CoV-2 infection in

France, a threshold of 106 was identified as a predictor of COVID-19 mortality. A

factor 8, as we found here, can easily make a difference in the infection outcome. The

spatial distribution of SARS-CoV-2 virus in tissue has been studied in [167], again,

identifying to a highly heterogeneous lung tissue.
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It’s worth noting that although our model is one-dimensional spatially, while exper-

iments are two-dimensional, we justify this simplification based on model symmetry,

which adequately captures experimental trends within error tolerances.

However, there’s room for refinement. While our model aligns with available data,

incorporating additional viral infection dynamics like endocytosis, viral reproduc-

tion, and cell death could enhance its predictive power. Similarly, a more detailed

formulation of virion transport, considering cellular membranes, fluid dynamics, and

intracellular connections which are know to transport virions as well ([168]), might

offer deeper insights. Nevertheless, our surprising biological finding suggests that

spatial separation among cell sub-populations during viral infections might not be

advantageous for overall cell population fitness, indicating that nature favors mixed

populations to enhance fitness.
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Chapter 3

Spatial Oscillations in Oncolytic
Virotherapy

The material of this Chapter has been published as

• A.A. Baabdulla, and T. Hillen. Oscillations in a Spatial Oncolytic Virus Model.

Bulletin of Mathematical Biology, 86:93, 2024.

3.1 Introduction

In Chapter 2, we investigate the impact of spatial heterogeneity on the viral load

within heterogeneous cell populations. Continuing this exploration, the present chap-

ter delves into the dynamics of viral infection within cancer cells, focusing on a treat-

ment strategy known as virotherapy. Numerous mathematical models in virotherapy

reveal oscillatory dynamics similar to predator-prey interactions, originating from an

underlying Hopf bifurcation [66, 88]. Within a spatial framework, these oscillations

give rise to a variety of spatio-temporal phenomena, such as hollow-ring, target, and

dispersed patterns [81].

In this chapter, we further explore the systematic analysis of spatial oscillations and

their significance in clinical applications. Through bifurcation analysis of a spatially

explicit reaction-diffusion model, we aim to elucidate various spatio-temporal virus

infection patterns previously mentioned. Specifically, our focus lies on identifying the

hollow ring pattern, deemed optimal for tumor eradication, and determining precise
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conditions for its manifestation. We opt for these interaction forms due to their

widespread utilization in mathematical modeling, offering comprehensive insights into

the dynamics of virotherapy.

Moreover, we derive the minimal speed of travelling invasion waves for the cancer

and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial

interactions of the virus infection and a new phenomenon of a periodic peak splitting.

An effect that we cannot explain with our current methods.

We start our analysis by employing Pooladvand et al.’s [88] adenovirus infection

model in glioblastoma to investigate the propagation of the viral invasion wave and

explicitly determine the minimum speed of the viral wave. Also, we will understand

how the spatial distribution impacts the existence of a tumor free state. Furthermore,

we relax the assumption of radial symmetry and we determine the conditions under

which we can obtain the favorable viral infection pattern. We again find the spatial

patterns of hollow ring, target patterns and dispersed patterns, which were reported

in Wodarz [81] using an individual based model. We observe that during spatial

oscillations, the number of cancer cells is close to 0 in certain parts of the domain.

For these parts we compute the tumor control probability (TCP), which shows that

a hollow ring structure can lead to a TCP close to 1, i.e. likely treatment success.

The structure of this chapter unfolds as follows: In Section 3.2, we introduce the

mathematical model, expanding upon Pooladvand’s reaction-diffusion model and con-

ducting a non-dimensionalization process to simplify parameters. Moving to Section

3.3, we initially explore the ODE-version of our model, delineating steady states, their

stability, and pinpointing two pertinent bifurcations: a transcritical bifurcation and

a Hopf bifurcation. Subsequently, we establish the minimal invasion speed for the

one-dimensional PDE version of the model. Section 3.4 is dedicated to an extensive

numerical investigation, encompassing both 1D and 2D simulations. Here, we set

base parameter values guided by Pooladvand’s work [88] and compute tumor control

probability for ODE simulations to gauge treatment outcomes. Confirming the theo-
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retical wave speed from Section 3.3, we conduct simulations in 1D. In 2D simulations,

intriguing viral spread patterns emerge, including coexistence steady states, hollow

ring formations, and intricate spatio-temporal interactions. Finally, in Section 3.5, we

offer concluding remarks, contextualizing our findings within the broader landscape

of mathematical modeling and cancer research.

3.2 The Basic Assumptions and the Mathematical

Model

In this section, we will study an extension of Pooladvand et al. [88] reaction diffusion

model on a rectangular or smooth domain Ω ⊂ Rn with the mass-action kintetics:

∂C

∂t
= DC∆C + τC

(︃
1− C + I

L

)︃
− βCV,

∂I

∂t
= DI∆I + βCV − αI,

∂V

∂t
= DV∆V + αbI − ωV,

(3.1)

where the density of susceptible tumor cells, infected tumor cells, and free viruses is

denoted by C(x, t), I(x, t), and V (x, t), respectively. The tumor growth rate is τ and

L is the carrying capacity of tumor cells. The mass action term βCV describes the

interaction between virus particles and the tumor cells. The infection rate is denoted

by β. The death rate of infected cells is denoted by α. The burst size of the virus in

infected cells is denoted by b, and ω is viral clearance rate. The diffusion coefficients of

susceptible cells, infected cells, and viruses are denoted by DC , DI , DV , respectively.

The symbol ∆ denotes the Laplacian, i.e. the sum of all second order derivatives.

In contrast to Pooladvand et al. [88], we deviate by relaxing the assumption of

radial symmetry and Pooladvand et al. use a viral-loss term associated with the

infection of cancer cells. We absorb this term in the viral clearance term ωV. We

assert, in alignment with numerous other authors, that the quantity of virions binding

to a cancer cell is significantly minor compared to the total count of free virus particles.
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We consider system (3.1) with the initial conditions:

C(x, 0) = C0(x) > 0, I(x, 0) = 0, V (x, 0) = V0(x) > 0, (3.2)

and homogenous Nuemann boundary conditions on ∂Ω:

n · ∇C(x, t) = n · ∇I(x, t) = n · ∇V (x, t) = 0, for all x ∈ ∂Ω,

where n denotes an outward normal at x at ∂Ω. In the case of a rectangular domain

some points will have several outer normal vectors. In that case we require the above

boundary conditions for all normal vectors.

To simplify our analysis, we apply the non-dimensionalization method by consid-

ering

Ĉ =
C

L
, Î =

I

L
, V̂ =

β

τ
V, t̂ = τt, and x̂ = x

√︃
τ

DV

.

After dropping the hat, we get the non-dimensional system:

∂C

∂t
= Dc∆C + C (1− C − I)− CV,

∂I

∂t
= Di∆I + CV − aI,

∂V

∂t
= ∆V + θI − γV,

(3.3)

where

Dc =
DC

DV

, Di =
DI

DV

, a =
α

τ
, θ =

αβbL

τ 2
, and γ =

ω

τ
. (3.4)

In the upcoming sections, our bifurcation parameter will be the effective viral

production rate, denoted as θ. This parameter encompasses several crucial factors,

including the death rate of infected cells (α), the burst size (b), the carrying capacity

(L), and the cancer growth rate (τ ). This comprehensive parameterization has been

consistently highlighted in numerous mathematical modeling studies [66, 82, 93, 94,

97], signifying its importance in understanding the dynamics of virotherapy.
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3.3 Analysis of the Model

3.3.1 Analysis of the Kinetic Part

We initially examine the aforementioned model in the spatially homogeneous scenario,

where all spatial dependencies are disregarded. Consequently, the system governing

C(t), I(t), V (t) simplifies to:

dC

dt
= C (1− C − I)− CV,

dI

dt
= CV − aI,

dV

dt
= θI − γV.

(3.5)

Similar systems have been extensively analyzed in existing literature [66, 81], where

a Hopf bifurcation and subsequent oscillations are anticipated. Here, we provide a

summary of these findings.

The system (3.5) has three steady states which are the trivial steady state E0 =

(0, 0, 0), the pure cancer state E1 = (1, 0, 0) and a coexistence steady state

E+ = (C∗, I∗, V ∗) =

(︃
aγ

θ
,

γ(1− C∗)

θ + γ
,

θ(1− C∗)

θ + γ

)︃
,

which exists in the positive quadrant for 0 < C∗ < 1. If θ is increased, the coexistence

steady state arises through a transcritical bifurcation at

θt = aγ. (3.6)

We begin our analysis by computing the basic reproduction number, denoted as R0.

This metric serves as an epidemiological measure used to quantify the contagiousness

or transmissibility of infectious agents, offering valuable insights into their spread

dynamics. To determine R0, we apply the next generation matrix method [169],

utilizing the following approach:

F =

⎡⎢⎣0 1

θ 0

⎤⎥⎦ , Z =

⎡⎢⎣a 0

0 γ

⎤⎥⎦
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where F is the transmission matrix and Z is the transition matrix. Thus, R0 =
θ
aγ

is

the spectral radius of FZ−1. The coexistence steady state E+ exists in the positive

quadrant iff θ > aγ, which is equivalent to R0 > 1.

Now, we are prepared to investigate the stability of the steady states. We begin

by computing the Jacobian matrix of system (3.5) as follows:

J =

⎡⎢⎢⎢⎢⎣
1− 2C − I − V −C −C

V −a C

0 θ −γ

⎤⎥⎥⎥⎥⎦ (3.7)

1. The Jacobian matrix of E0 = (0, 0, 0) is

J(E0) =

⎡⎢⎢⎢⎢⎣
1 0 0

0 −a 0

0 θ −γ

⎤⎥⎥⎥⎥⎦
Therefore, the eigenvalues are λ1 = 1 > 0, λ2 = −a < 0, and λ3 = −γ < 0.

Thus, E0 = (0, 0, 0) is always unstable saddle.

2. The Jacobian matrix of E1 = (1, 0, 0) is

J(E1) =

⎡⎢⎢⎢⎢⎣
−1 −1 −1

0 −a 1

0 θ −γ

⎤⎥⎥⎥⎥⎦
with the characteristic equation (λ + 1)(λ2 + (a + γ)λ + aγ(1 − R0) = 0. The

first eigenvalue is λ1 = −1 < 0, the sign of second and third eigenvalues are

determined by the value of R0 of λ2 + (a+ γ)λ+ aγ(1−R0) = 0.

Proposition 3.3.1 The stability of steady state E1 = (1, 0, 0) with trace =

−(a+ γ) < 0, and determinant = aγ(1−R0) is determined as the following:

(a) If R0 < 1, then λ2 and λ3 have the same sign since λ1λ2 = aγ(1−R0) > 0,

but the trace is negative, therefore, λ2 and λ3 are both negative. Thus, E1

is locally stable.
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(b) If R0 > 1, then λ2 and λ3 have different signs since λ1λ2 = aγ(1−R0) < 0,

therefore E1 is always saddle.

3. The Jacobian matrix of E+ = (C∗, I∗, V ∗) is

J(E+) =

⎡⎢⎢⎢⎢⎣
−C∗ −C∗ −C∗

θ(1−C∗)
θ+γ

−a C∗

0 θ −γ

⎤⎥⎥⎥⎥⎦
Proposition 3.3.2 Consider system (3.5)

1. When R0 < 1, we have two steady states E0 and E1 in the non-negative quad-

rant where E0 is a saddle and E1 is locally asymptotically stable.

2. When R0 > 1, we have three steady states E0, E1, and E+ in the non-negative

quadrant where E0 and E1 are saddles.

3. The equilibrium point E+ = (C∗, I∗, V ∗) is locally asymptotically stable if θ > θt

and κ(θ) > 0, where κ(θ) = −θ3+mθ2+γmθ+aγ3, and m = (a+γ)2+a(γ+1).

4. There exists a value θH > θt with κ(θH) = 0 such that system (3.5) undergoes

a Hopf bifurcation at θH .

Proof. The third and fourth items are not so obvious and we give some details here.

The Jacobian at E+ is

J(E+) =

⎡⎢⎢⎢⎢⎣
−C∗ −C∗ −C∗

θ(1−C∗)
θ+γ

−a C∗

0 θ −γ

⎤⎥⎥⎥⎥⎦
with the characteristic equation given by λ3 + P2λ

2 + P1λ+ P0 = 0, where

P2 = C∗ + a+ γ,

P1 = C∗
(︃
a+ γ +

θ(1− C∗)

θ + γ

)︃
,

P0 = θC∗(1− C∗).
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Based on Routh-Hurwitz criterion, the equilibrium point E+ = (C∗, I∗, V ∗) is locally

asymptotically stable if θ > θt and the following conditions hold:

P2 > 0; P1 > 0; P1P2 − P0 > 0;

It is clear that P2, P1, and P0, are positive when 0 < C∗ < 1. It remains to show that

P2P1 − P0 > 0. We find

P2P1 − P0 = C∗
[︃
C∗(a+ γ) + (a+ γ)2 +

θ(1− C∗)(C∗ + a− θ)

θ + γ

]︃
(3.8)

Substituting C∗ = aγ
θ
in equation (3.8), and after simplifications and re-arrangements,

we get

P2P1 − P0 =
aγ

θ2(θ + γ)
κ(θ),

with κ(θ) = −θ3 +mθ2 + γmθ + aγ3, and m = (a+ γ)2 + a(γ + 1) > 0.(3.9)

Since aγ
θ2(θ+γ)

> 0, and θ ̸= 0, the stability of the coexistence steady state E+ is

determined by the sign of κ(θ) after fixing the parameters a and γ.

To show the Hopf-bifurcation in item 4, we define

H(θ) := P2(θ)P1(θ)− P0(θ)

and use Liu’s criterion [142, 143] Theorem 1.2.9, which states: Assume that P0 ̸= 0.

A Hopf bifurcation occurs at θ = θH for the system (3.5) when the two following

conditions are satisfied: H(θH) = 0, and dH
dθ
|θH ̸= 0. From (3.9) we have

H(θ) =
aγ

θ2(θ + γ)
κ(θ).

Thus, H(θ) = 0 iff κ(θ) = 0. Based on Descartes’ rule of signs, we have one positive

real root and 2 or zero negative real roots. Since θ is a positive real number, there

is a unique value of θ = θH , where H(θH) = 0. We also note that the leading order

term in H(θ) is negative. This means for all θ > θH we have κ(θ) < 0, which implies

θt < θH .
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Figure 3.1: Left: Plot of the function κ(θ) from (3.9) for parameter values from Table
3.1. The two bifurcation points θt = 44.45 for transcritical and θH = 338.45 for Hopf
bifurcation are indicated. Right: Numerical simulation of model (3.3) with different
θ values with initial conditions C=1, I=0, and V=95. The coexistence steady state
is indicated in red.

To obtain the direction of bifurcation we differentiate H(θ) as

dH

dθ
= −aγ[(γ +m)θ3 + 2mγθ2 + (3aγ3 +mγ2)θ + 2aγ4]

θ3(θ + γ)2
.

dH
dθ

= 0 iff (γ+m)θ3+2mγθ2+(3aγ3+mγ2)θ+2aγ4 = 0. Again, using Descartes’

rule of signs, we find all the coefficients of θ’s are positive. Therefore, we have a no

positive real roots. Thus, dH
dθ

̸= 0 for any θ. Satisfying the Hopf bifurcation conditions.

□

We plot κ(θ) and the two bifurcation points θt and θH in Figure 3.1 with parameters

from Table 3.1. In Figure 3.1 we also show some typical simulations of (3.5) with

parameters from Table 3.1, for increasing values of θ. In this case θt = 44.45 and

θH = 338.45. We see that as θ increases past θt the coexistence steady state shows

up (red dot), which becomes unstable to oscillations as we pass θH .
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3.3.2 Wave Fronts of Glioma and Virus

In this section, we compute the invasion wave front of the spatial oncolytic virus

model (3.3) in one spatial dimension by using a leading edge analysis. The domain

is (−∞,∞) and we consider first the tumor in isolation

∂C

∂t
= Dc

∂2C

∂x2
+ C(1− C), (3.10)

with boundary conditions

C(−∞, t) = 1, and C(∞, t) = 0.

The standard traveling wave problem is to ask for a tumor invasion front into

healthy tissue by considering a self-similar solution of the form C(z) with z = x− cct

that solves (3.10) [108]. Here cc ≥ 0 denotes the wave speed. Using the above wave

ansatz, we derive a coupled ODE system for C(z) and C ′(z) and our task is to find a

heteroclinic connection from (1, 0) to (0, 0) in phase space. To find such a connection

we linearize at (0, 0) and obtain a relationship between the wave speed cc and an

exponential decay rate λc, which is called the characteristic equation and can be

written as

G(λc; cc) = 0 with G(λc; cc) = Dcλ
2
c − ccλc + 1. (3.11)

The minimum wave speed is the value such that G = 0 still has a real solution, i.e.

c∗c = 2
√︁
Dc. (3.12)

For later use we also linearize at the point (1, 0) in phase space. This point is a

saddle point, i.e. it has a stable manifold along which solutions converge to (1, 0). The

wave speed c̃c and the exponential decay rate on the stable manifold λ̃c are related as

Dcλ̃
2

c − c̃cλ̃c − 1 = 0. (3.13)

Note the opposite sign of the 1-term as compared to (3.11). For λ̃ >
√
Dc

−1

this equation has a solution for c̃c. However, in phase space for (C,C ′) the unstable
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manifolds of (1, 0) do not connect to the other steady state (0, 0). In fact, going

backwards in time they diverge to ∞ or −∞ and are not suitable solutions to our

problem. Hence the condition (3.13) does not lead to a suitable invasion front.

To consider the invasion of the virus population into an established tumor, we

linearize (3.3) in one dimension at the homogeneous steady state (1, 0, 0) and obtain

∂C

∂t
= Dc

∂2C

∂x2
− C − I − V,

∂I

∂t
= Di

∂2I

∂x2
− aI + V,

∂V

∂t
=
∂2V

∂x2
+ θI − γV.

(3.14)

We now make an explicit ansatz of an exponentially decaying self-similar wave

solution as

(C(x, t), I(x, t), V (x, t)) =
(︂
ϵc e

−λz, ϵi e
−λz, ϵv e

−λz
)︂
, where z = x− ct. (3.15)

Here c denotes the wave speed and λ the exponential decay rate at the wave front.

Substituting ansatz (3.15) into system (3.14), we get

cλϵce
−λz = Dcλ

2ϵce
−λz − ϵce

−λz − ϵie
−λz − ϵve

−λz,

cλϵie
−λz = Diλ

2ϵie
−λz − aϵie

−λz + ϵve
−λz,

cλϵve
−λz = λ2ϵve

−λz + θϵie
−λz − γϵve

−λz,

which after simplification can be written as a linear system⎡⎢⎢⎢⎢⎣
Dcλ

2 − cλ− 1 −1 −1

0 Diλ
2 − cλ− a 1

0 θ λ2 − cλ− γ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ϵc

ϵi

ϵv

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎦ . (3.16)

The characteristic equation of (3.16) is

(︁
Dcλ

2 − cλ− 1
)︁ [︁
Diλ

4 − c(Di + 1)λ3 + (c2 −Diγ − a)λ2 + c(γ + a)λ+ aγ − θ
]︁
= 0.

(3.17)
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The first factor of (3.17) is the same as (3.13) and corresponds to unsuitable orbits

in phase space. Hence we can focus on the second factor

Φ(λ; c) = Diλ
4 − c(Di + 1)λ3 + (c2 −Diγ − a)λ2 + c(γ + a)λ+ aγ − θ. (3.18)

From Φ(λ; c) = 0 we can find the wave speed values c(λ) as functions of λ. To find

the minimum wave speed of the virus, we use implicit differentiation

d

dλ
Φ(λ; c(λ)) = 0

to find conditions for c′(λ) = 0. We have

0 =
d

dλ
Φ(λ; c(λ))

=
(︁
2λ2c+ (γ + a)λ− (Di + 1)λ3

)︁
c′(λ)

+ 4Diλ
3 − 3c(Di + 1)λ2 + 2(c2 −Diγ − a)λ+ c(γ + a),

which can be solved for c′ as

c′(λ) =
Ψ(λ; c)

2cλ2 − (Di + 1)λ3 + (γ + a)λ
,

with

Ψ(λ; c) = 2λc2 + η1c+ η0,

η1 = γ + a− 3(Di + 1)λ2,

η0 = 4Diλ
3 − 2(Diγ + a)λ.

Thus, c′(λ) = 0, iff Ψ(λ; c) = 0.

Hence the minimum wave speed c∗ arises at the intersection of the two manifolds

{Φ(λ; c) = 0} and {Ψ(λ; c) = 0}.

For the parameter values from Table 3.1 we plot these two curves in a (λ, c)-diagram

in Figure 3.2. In that case we find a unique intersection at

λ∗ ≈ 1.5728 and c∗ ≈ 0.9299, (3.19)
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Figure 3.2: The characteristic equation of the tumor and virus as implicit function
with respect to λ and c. The green circle is the minimum decay rate and corresponding
minimum wave speed of tumor cells. The pink circle is the minimum decay rate and
corresponding minimum wave speed of the virus particles. The parameters values are
in Table 3.1.

which is indicated in Figure 3.2. These values should be compared to the tumor

invasion speed in isolation, which according to (3.12) is

c∗c = 2
√
0.025 = 0.3162.

3.4 Numerical Analysis

In this section, we present the numerical outcomes of our model. Initially, we eluci-

date the rationale behind selecting model parameters in Section 3.4.1. Subsequently,

in Section 3.4.2, we depict the bifurcation trajectory of the ODE model (3.3). The

trivial steady state becomes unstable to a transcritical bifurcation at θt, followed by

oscillations post a Hopf bifurcation at θH . In Section 3.4.3, we delve into the discus-

sion of the tumor control probability (TCP), demonstrating that after one oscillation

cycle, the tumor can be deemed eradicated. In Section 3.4.4, we examine the afore-

mentioned model (3.3) within a one-dimensional context, confirming the theoretical
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wave speeds previously derived. Moving on to Section 3.4.5, simulations conducted on

a two-dimensional domain are presented. Herein, we observe the anticipated spread

patterns including uniform spread, and hollow-ring patterns, as reported previously.

Furthermore, beyond the Hopf point, for values of θ substantially distant, unpre-

dictable and chaotic patterns emerge, attributable to spatial interactions of coupled

oscillators via spiral waves and oscillating target patterns. Here we only touch on the

rich variety of patterns that our system can generate and we leave a more complete

analysis of this pattern regime for future work.

3.4.1 Parameter Values

The parameters values that have been used in the simulations are presented in Table

3.1. These parameter values were used by Pooladvand et al. [88] in their study of

adenovirus infections of a solid tumor. Based on Lodish [170], Pooladvand et al. [88]

consider the carrying capacity of a solid tumor of radius 1 mm is about L = 106

cells/mm3, which is also the initial density of uninfected tumor cells C0(x) in our

model. Based on Kim’s et al [41] experiments on adenovirus in a glioblastoma U343

cell line, a tumor growth rate is estimated as τ = 0.3 per day, and a tumor diffusion

coefficient as DC = DI = 0.006mm2 per day. The initial condition for the amount

of adenovirus virions is V0 = 1.9 × 1010 virions per mm3. For the viral diffusion

coefficient, Pooladvand et al. [88] used the same value that has been employed in [74]

which is DV = 0.24 mm2 per day. Since the infected cells lyse on average after 24

hours of injection [171], the death rate of infected cells is about α = 1 per day. The

clearance rate of the virus has been estimated from [172] to be ω = 4 per day. The

infection rate parameter β has been estimated based on Friedman’s et al. [82] paper

to be β = 1.5 × 10−9 per (virus × day). Due to the importance of this parameter,

Pooladvand et al. [88] varied the values of β from low to high, i.e β ∈ [10−9, 5× 10−9]

to investigate its impact on the treatment outcome. Shashkova et al. [173] estimated

the adenovirus burst size b and found it varied between 1,000-100,000 virions per cell.
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Recently, Chen et al. in their paper [174] measured the burst size of adenovirus to

be 3500 virions per cell, which is the value Pooladvand et al. [88] and we consider.

In the virotherapy treatment the crucial parameters for successful treatment are

the infection rate β and the viral burst size b. Therefore, in this paper, we will

focus on the effective virus production rate parameter θ from (3.4), which includes

these two parameters. Thus, using the values in Table 3.1, we have the base value of

θ = 58.33. However, we will use θ as a bifurcation parameter in our study. Therefore,

fixing the parameters L, τ , α, and w, as in Table 3.1, and varying β and b, we find

the effective virus production rate θ is ranged between 11.1111-5555.55.

Parameter Value Units Description

C0(x) 106 cells per mm3 Initial density of uninfected cells

V0(x) 1.9× 1010 viruses per mm3 Initial density of virus particles

DC 0.006 mm2 per day Diffusion coefficient of susceptible cells

DI 0.006 mm2 per day Diffusion coefficient of infected cells

DV 0.24 mm2 per day Diffusion coefficient of viruses

τ 0.3 per day Growth rate of tumor cells

L 106 cell per mm3 Carrying capacity of tumor cells

β 1.5× 10−9, variable per (virus × day) Infection rate of mass action case

α 1 per day Death rate of infected cells

b 3500, variable virus per cell Burst size of viruses

ω 4 per day Clearance rate of viruses

Table 3.1: Summary of model (3.1) parameters. All the parameters values used from
reference [88].

After rescaling (3.4), the parameter values for model (3.3) are given in Table 3.2.
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Rescaled Parameter Meaning Value

Dc cancer diffusion coefficient 0.025

Di infected cells diffusion 0.025

a infected death rate 3.33

γ virus decay rate 13.33

θ effective virus production rate [0,500]

Table 3.2: Base parameter values of the rescaled model (3.3) using the rescaling (3.4).
These parameters are unitless.

3.4.2 ODE Model

We start by examining the ODE system (3.3) with θ as a bifurcation parameter,

derived from (3.4), where θ denotes the effective virus production rate. Figure

3.1 illustrates the dynamic behavior of model (3.3) utilizing parameters from Ta-

ble 3.2 while varying θ. The initial conditions across all four simulations are set to

(C(0), I(0), V (0)) = (1, 0, 95). In Figure 3.3, we present cases for θ = 58.33, 100, 500

plotted as functions of time. The transcritical bifurcation manifests at θt = 44.45,

leading to a coexistence steady state for θ > θt. The Hopf bifurcation occurs at

θH = 338.45 and we obtain periodic orbits beyond that point. Oscillations arise al-

ready for θ < θH . Biologically, the cancer-virus dynamic resembles a predator-prey

system, where periodic orbits and Hopf bifurcations are common characteristics of

such models.

It’s noteworthy that the trivial steady state (0, 0, 0) is consistently unstable in all

scenarios. Consequently, from a mathematical standpoint, complete eradication of

the cancer is unattainable. However, the periodic orbits closely approach (0, 0, 0),

to the extent that a stochastic viewpoint utilizing the tumor control probability, as

discussed in Section 3.4.3, becomes pertinent.

Before we proceed further, we briefly explore the influence of other model param-

eters.

In Figure 3.4, we vary the virus decay rate γ from its baseline value of γ = 13.33,
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Figure 3.3: Numerical simulation with different θ values with initial conditions (1, 0,
95). Here, the susceptible and infected cells are re-scaled by multiplying with 100.
(A): θ = 58.33, (B): θ = 100, and (C): θ = 500.

exploring values γ = 6.67, 10, 16.67. We observe a positive impact on cancer reduction

with a reduced virus decay rate. Although the bifurcation structure remains largely

unchanged for different γ values, oscillation frequencies shift from low frequency for

γ = 6.67 to high frequency for γ = 16.67.

Moving to Figure 3.5, we vary the removal rate of infected cells a from its base value

a = 3.33, incorporating a = 6.67, 10, 13.33. Here, we notice a strong dependency of

bifurcations on the value of a. Increased removal rate leads to the loss of oscillations at

θ = 500, with convergence towards a coexistence steady state. Intriguingly, elevating

the removal rate of infected cells a raises the value of the transcritical bifurcation

point θt = aγ. Such a shift alters treatment outcomes, as depicted in Figure 3.5.

This observation aligns with the findings of Bhatt et al. [97], where increasing the

death rate of infected cells results in treatment failure. Additionally, Bhatt et al. [97]

identified the presence of resistant cancer cells as a contributing factor to treatment

failure. In our model, addressing this can be achieved through a reduced infection

rate β. A reduction in β lowers θ, effectively moving the system to a lower virus

production rate, thereby facilitating easier cancer growth.
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Figure 3.4: The tumor values as function of time with different γ values with a = 3.33
when (A): θ = 30, (B): θ = 58.33, (C): θ = 500.
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Figure 3.5: The tumor values as function of time with different a values with γ = 13.33
when (A): θ = 30, (B): θ = 58.33, (C): θ = 500.
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3.4.3 Tumor Control Probability

Our primary objective is tumor eradication. Although the extinction steady state

(0, 0, 0) is unstable for model (3.3) when θ > θt, complete eradication of cancer cells is

unattainable. However, we observe that during the oscillations described previously,

the density of tumor cells approaches zero closely. In such instances, we enter a

realm where stochastic events become significant, and a deterministic description via

an ODE model might prove insufficient. Stochastic models for tumor eradication

have been developed, particularly in the context of cancer radiation therapy [16, 144,

175, 176]. The tumor control probability (TCP) serves as a metric for assessing

the expected success of a given treatment. Gong et al. [144] compared various

formulations for TCP and concluded that the simplest version, the Poissonian TCP,

serves as a reasonable first-order approximation. Therefore, in this context, we adopt

the Poissonian TCP. Let C0 denote the initial number of tumor cells, and C(t) those

that survive at time t, then

S(t) =
C(t)

C0

(3.20)

denotes the survival fraction and the Poissonian TCP is given as

TCP (t) = e−C0 S(t). (3.21)

The initial number of tumor cells C0 = 106 corresponds to C0 = 1 after non-

dimensionalization. We examine three distinct cases of θ = 58.33, 350, 500, and depict

the TCP as a function of time in Figure 3.6. In the baseline scenario of θ = 58.33, the

TCP initially approaches 1 and subsequently stabilizes at a moderate value around

0.45.

For θ = 350 and 500, lying beyond the Hopf point, we observe plateaus at TCP=1

for prolonged durations immediately following virus infection treatment. This indi-

cates that the TCP reaches 1 after the initial cycle, implying successful treatment.
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Subsequent oscillations, though present mathematically, become irrelevant for treat-

ment outcomes. We revisit this aspect when discussing the two-dimensional simula-

tions.
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Figure 3.6: TCP values of tumor cells when θ is beyond the Hopf bifurcation value
at a = 3.33 and γ = 13.33. (A): θ = 58.33, (B): θ = 350, and (C): θ = 500.

3.4.4 PDE Model 1-D

As we understand the Hopf bifurcation of the ODE model well, it is interesting to see

how the oscillations manifest themselves in the spatial context. It is known through

the influential Kuramoto model [177] that spatially coupled oscillators can lead to all

kind of dynamics such as ring patterns, target patterns, spirals and chaotic patterns

[177, 178]. Those models have been applied with success in neurophysiological oscil-

lations [179, 180], for example. We like to explore here if our model is also able to

generate interesting patterns and evaluate them in the context of cancer treatment.

Starting in 1-D we consider an interval [0, 60] and run simulations up to time 60.

In dimensional parameters this corresponds to an interval of length 54 mm and a

time of up to 200 days. Initially the virus particles are injected in the center of the

domain. We chose zero-flux boundary conditions. The simulations are seen in Figure

3.7. The cancer cell density C(x, t) in (A) and (D) is shown in colors of brown, where

dark color corresponds to maximum tumor cell density. The infected cells I(x, t) in

(B) and (E) are shown in shades of blue, with dark blue indicating low density of

infected cell. In (C) and (F) we show the virus load in colors from blue (low) to red
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(high). In Figure 3.7 (A), (B) and (C), we chose θ = 58.33, i.e. θt < θ < θH .

The initial virus infection grows out from the centre of the domain and forms a

travelling wave profile. After the wave has passed (around time 40) the system reaches

a homogeneous coexistence steady state. We can use this simulation to estimate the

travelling wave speed (slope of the ridges in (A),(B),(C)) as cv = 0.9428, while the

theoretical wave speed (3.19) is c∗ = 0.9299, which is a good match. On the other

hand, when θ = 500, we are past the Hopf-point and we see oscillations in Figure

3.7 (D), (E) and (F). The oscillation synchronises spatially until it becomes a fully

spatially homogeneous oscillation (long term dynamics not shown).

We perform the same simulations with a different initial condition in Figure 3.8

(A),(B),(C). Here we randomly chose five inoculation points along the interval [0, 60].

For θ = 58.33 in (A) we see an initial interaction of the spread waves, which quickly

find the coexistence steady state. For θ = 350 in (B) and θ = 500 in (C) we again

see synchronized oscillations across the domain.

As in the ODE model the oscillations get very close to zero, indicating very low

cancer and virus concentrations. Hence again, we employ the tumor control proba-

bility (3.21) to estimate the expected treatment success. In the spatial context we

integrate over space to get the total surviving fraction of cancer cells. Then the TCP

becomes

TCP (t) = e−
∫︁ l
0 C(x,t)dx, (3.22)

where we use the time point where the cancer concentration C is minimal.

For the cases where we inject the oncolytic virus in the center of the domain we

find that the maximal TCP value is 0 for θ = 58.33, 0.2598 for θ = 350, and 0.9753

for θ = 500. The TCP values were generally higher when the tumor was injected at

five random locations with TCP of 0 for θ = 58.33, 0.8103 for θ = 350, and 0.9944 at

θ = 500. This clearly shows that for the base value of θ = 58.33 treatment failure is

expected. Only if θ is increased beyond the Hopf point we can expect good treatment
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Figure 3.7: 1-D simulations with virus particles injected in the tumor center. The
spatial distribution of the susceptible cells, infected cells and the virus with different
values of θ with a = 3.33 and γ = 13.33. θ = 58.33 for (A), (B) and (C) and θ = 500
for (D) (E) and (F).
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Figure 3.8: 1-D simulations with virus particles injected in different regions of the
tumor. (A): θ = 58.33, (B): θ = 350, and (C): θ = 500.
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outcomes.

We also plot the TCP as function of time in Figure 3.9. In (A) and (C) the virus is

injected into the centre of the domain while in (B) and (D) it is injected in five random

locations. In (A) and (B) we chose θ = 350 and in (C) and (D) we have θ = 500. In

all cases we see the maximum TCP right after the first cycle. We also note that a

distributed injection of virus particles (B) and (D) has a beneficial outcome for the

expected tumor control. The plots of the TCP for θ = 58.33 are not shown, as the

values do not exceed 2× 10−20, which we consider to be 0.

We see a significant difference to the TCP values for the ODE and PDE models.

For example for θ = 58.33 the TCP in the ODE model was 0.45 while in the spatial

model it is 0. Hence the spatial context of cancer and virus spread is very important.
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Figure 3.9: The TCP values of injected tumor cells when θ > θH at a = 3.33 and
γ = 13.33. (A): θ = 350 where the tumor is injected in the center, (B): θ = 350
where the tumor injected in five random locations, (C): θ = 500 where the tumor
is injected in the center, and (D): θ = 500 where the tumor is injected five random
locations.

3.4.5 PDE Model 2-D

In this section, we run the simulations of model (3.3) on a 2-D square domain of

dimensions 60 × 60 up to time 37. In dimensional parameters this corresponds to a

domain of side length 54 mm and a time of up to 123 days. First, in Figure 3.10 we

choose θt < θ < θH with θ = 58.33. Figures (A) and (D) show the cancer cell density

with black for high concentration and brown for low. Figures (B) and (E) show the

density of infected tumor cells, where high infection is white. Figures (C) and (F)

show the distribution of the virus particles from blue (low) to red (high). Figures
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(A),(B),(C) we show t = 10, and Figures (D),(E), (F) are at t = 25. The pattern is a

filled ring pattern that spreads radially and establishes the coexistence steady state

in the inside of the ring. In Figure 3.11, we observe the progression of the filled ring

pattern within the virus at t=1, 5, 10, 15, 20, and 25, with the highest concentrated

region appearing red at the center.

In Figure 3.12 we consider the oscillatory range and choose θ = 500 > θH . We first

observe a hollow ring pattern, where tumor is destroyed by the spreading virus wave,

leaving a close-to zero state in the inside of the ring. However, as the simulation

continues, shown in Figure 3.13, the cancer and the virus come back. They regrow in

the centre of the domain and initiate a second outward moving ring of viral infection.

This repeats periodically, though, it is not an exact period, since the inoculation spot

in the middle of the domain splits up into two spots as seen in Figure 3.13 (t = 24)

and (t = 34). This process of periodic spot splitting is a new effect in reaction-

diffusion equations and has, as far as we know, never been analysed before. Also, we

get concentric rings resulting of the overlap of several hollow rings which has been

remarked in Wodarz et al. [81], Kim et al. [98] and Morselli et al. [91] papers.

Similar behaviour has been induced when we use different injection strategies as we

can see in Figure 3.14 and 3.15. The only difference in this case is that the complex

interaction of the virus particles and their emergence lead to complex interactions

of expanding hollow ring patterns. Again, we observe the periodic peak splitting

mentioned above.

Finally, we were interested in the long-time dynamics, since it is known that cou-

pled oscillators can lead to chaotic patterns [182]. The MATLAB code used above

prevents a very long time analysis, hence we are using a new tool VisualPDE that

was recently developed at Durham University [181]. This tool allows us to run very

long time simulations and also to extend the domain to a circular shape of radius

250. We observe highly dynamic patterns that include oscillations, spiral waves, tar-

get patterns, etc. In Figure 3.16 we show a still image of a typical simulation for
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Figure 3.10: 2-D simulations with virus particles injected in the center of the tumor,
the spatial distribution of the susceptible cells, infected cells and the virus with θ =
58.33, a = 3.33 and γ = 13.33 at t = 10 and t = 25, respectively. (A): C(x,t), (B):
I(x,t), and (C): V(x,t). (D): C(x,t), (E): I(x,t), and (F): V(x,t).

(t= 1) (t= 5) (t= 10)

(t= 15) (t= 20) (t= 25)

Figure 3.11: 2-D simulations with the virus particles injected in the center of the
tumor, the spatial distribution of the virus particles with θ = 58.33, a = 3.33 and
γ = 13.33 at different t.
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Figure 3.12: 2-D simulations with virus particles injected in the center of the tumor,
the spatial distribution of the susceptible cells, infected cells and the virus with θ =
500, a = 3.33 and γ = 13.33 at t = 1 and t = 3, respectively. (A): C(x,t), (B):
I(x,t), and (C): V(x,t). (D): C(x,t), (E): I(x,t), and (F): V(x,t).

(t= 1) (t= 3) (t= 13) (t= 16)

(t= 24) (t= 26) (t= 34) (t= 36)

Figure 3.13: Simulation of model (3.3) for initial conditions where the virus particles
injected in the center of the tumor with θ = 500, a = 3.33 and γ = 13.33.
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(t= 16) (t= 18) (t= 25) (t= 26)

(t= 28) (t= 35) (t= 36) (t= 37)

Figure 3.14: Simulation of model (3.3) for initial conditions where the virus particles
injected in five locations randomly, with θ = 500, a = 3.33 and γ = 13.33.
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(t= 13) (t= 16) (t= 18)

(t= 24) (t= 26) (t= 28)

Figure 3.15: Simulation of model (3.3) for initial conditions where the virus particles
injected the tumor as diagonal with θ = 500, a = 3.33 and γ = 13.33.
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(cancer cells) (infected cells) (virus)

Figure 3.16: Simulations with VisualPDE [181] at time t = 635 (2116 days) with
parameters from Table 3.2 and θ = 500. The cancer cells on the left are shown from 0
(brown) to 0.2 (black). The scale for the infected cells is 0 (blue) to 0.05 (white), and
the scale for the virus is 0 (blue) and 1 (red). A video of the dynamics between t = 600
and t = 700 is available on youtube: https://youtube.com/shorts/V6drXLbs3k0.

the parameter values above with θ = 500. These spatio-temporal patterns persist for

as long as we run the simulation. A short video of these dynamics is available on

youtube: https://youtube.com/shorts/V6drXLbs3k0.

3.5 Conclusion

The mathematical modelling of oncolytic viruses through a susceptible-infected-virus

model is a standard approach (see references in the introduction of this thesis). The

occurance of oscillations is well established and it relates to the predator-prey rela-

tionship of the cancer cells and the virus. Two aspects, which were less studied in the

literature, are considered here: the relevance of these oscillations in clinical practice

and the rich patterns that can arise in the spatial context.

From the medical point of view it is clear that the adaptive immune response is

activated within a few days [183]. Hence our simulations beyond a few days are unre-

alistic for patient outcomes. This includes the prolonged oscillations, which typically

had a wave length of 10 days or so. Rather, it appears that the tumor burden goes

very close to 0 between these oscillatory outbreaks, indicating tumor removal. We

85

 https://youtube.com/shorts/V6drXLbs3k0
 https://youtube.com/shorts/V6drXLbs3k0


computed the tumor control probability (TCP) to express this fact. We find that

with increased viral production rate θ, tumor control can be achieved within a few

days. However, for realistic values of θ = 58.33 we found a TCP of 0 in our spatial

model, which confirms the observation that oncolytic viral therapy alone is insuffi-

cient in many cases [58, 59, 66, 97]. Mechanisms to increase θ seem to be a promising

strategy to improve the outcome of oncolytic virotherapy. We recall that

θ =
αβ bL

τ 2
and a =

α

τ
,

where α denotes the removal rate of infected cells, β denotes the infection rate, b is

the burst size of new virions, L denotes the carrying capacity of cancer cells and τ

denotes the cancer growth rate.

An immediate option to increase the efficiency of oncolytic virotherapy is to in-

crease the viral infectivity β and the viral burst size b. This confirms previous obser-

vations by [66, 68, 97] and it is indeed focus of several virology labs to increase the

efficiency of a viral infection [52, 53].

The cancer growth dynamics are represented in θ as the ratio L/τ 2. I.e. if the effec-

tive growth rate τ is large, then θ is small and cancer gains an advantage. This opens

the door to combine oncolytic virotherapy with growth reduction treatments such as

chemotherapy. Chemotherapy can reduce τ , thereby moving θ into the Hopf region to

gain tumor control. Combinations of oncolytic virotherapy and chemotherapy were

studied in [184–186].

The clearance rate of infected cells α enters our model parameters in two important

ways. On the one hand increasing α also increases θ. But in addition, increasing α

increases our bifurcation values for the transcritical bifurcation θt and for the Hopf

bifurcation θH . For the value of θt this is obvious from (3.6). For the Hopf value θH we

need to look back at the condition κ(θ) = 0 with κ(θ) from (3.9). The coefficient m is

increasing in a, hence all positive terms in κ(θ) are increasing in a. The only negative

term is −θ3. This implies that the positive zero θH is also increasing in a. As a result,
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increasing the infected removal rate shifts the system closer to treatment failure. One

way how α or a are increased is the action of the adaptive immune response. If

the adaptive immune response activates within a few days, a is increased and the

dynamic shifts to reduced viral infection and increased cancer growth. This confirms

the common understanding that the oncolytic virus has to be fast to accomplish

maximal effect before the immune system responds. We did not explicitly model the

immune response here, but the effect is clear. Oncolytic virotherapy with inclusion

of immune responses was modelled in [62, 68, 104] and others.

Overall we observe a conundrum. The first idea is to control cancer with a virus

that is deadly for cancer alone. However, in many cases the virus is not quick enough

to spread through the entire tumor before the adaptive immune system activates.

One strategy to overcome this are multiple virus injections at different sites, as we

have shown in our simulations. The second idea is to not expect the oncolytic virus to

kill, but rather mark cancer cells with an antigen that is recognized by immune cells.

However, immune cell kill might be too quick to allow the viral infection to spread to

the entire tumor. A Goldilocks regime needs to be found, where viral infection and

immune cell kill balance in the right way. This conclusion is further confirmed by

models that include immune response. Storey et al. [68] talk about an intermediate

immune response for optimal treatment outcome, and Eftimie et al. [62, 103] show

the existence of multi-stability and even multi-instability, which is a strong indication

of irregular and chaotic behavior.

In the spatial context we computed the speed of invasion of the virus front. This

important information tells us if the virus infection is quick enough to reach the entire

tumor, before the adaptive immune system kicks in. In Figure 3.7 (A), for example,

with a single injection in the centre of the tumor, it took about 38 time units (129

days) before the entire domain was infected. A distributed injection in Figure 3.8 (A)

only needed 21 time units (70 days).

In addition, we can do what mathematicians have done ever since modelling existed:
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forget the biology for the moment, and consider the model as a mathematical object

of its own interest. We find that the model reproduces typical viral load patterns

such as a coexistence steady state in Figure 3.10 and a spreading hollow-ring pattern

in Figure 3.12. Moreover, we find a new phenomenon of oscillatory peak splitting (see

Figures 3.13 and 3.14 ) which we cannot explain with our current methods. Long time

simulations (see Figure 3.16) revealed very complex spatio-temporal oscillations, and

the analysis of those is currently out of reach.

While these patterns might not be relevant in the context of oncolytic viruses, they

can be relevant for other virus infections. For example many COVID-19 patients suffer

from long lasting recurring effects [187, 188], and we can speculate that continued

oscillations might have such an effect. The variability of virus infections is enormous

[189], and even our abstract mathematical results might develop into useful tools in

the future.
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Chapter 4

Spatial Oscillations with
Michaelis-Menten Kinetics

In this chapter, we further investigate the spatial oscillations within cancer cells, this

time incorporating Michaelis-Menten reaction kinetics. We opt for the Michaelis-

Menten interaction due to its enhanced realism and its demonstrated capability to

align with experimental findings compared to the mass-action case [190]. However,

owing to the analytical complexity associated with Michaelis-Menten kinetics, mass-

action kinetics remain widely employed.

Given the analogous nature of the analysis involving Michaelis-Menten kinetics to

that of mass-action kinetics, we bypass certain basic analyses and proceed directly

to presenting the results. Thus, similar to Chapter 3, we begin by analyzing the

modified Pooladvand et al.’s [88] adenovirus infection model in glioblastoma where we

consider the virus-cancer cell interaction in Michaelis-Menten form. We investigate

the propagation of the viral invasion wave and explicitly determine the minimum

speed of the viral wave. Additionally, we examine how considering the Michaelis-

Menten form impacts the spatio-temporal virus infection patterns.

Similar to the results obtained with mass-action kinetics, our numerical simulations

in 2-D reveal various spatial interactions of the virus infection, such as the hollow-

ring pattern, filled target pattern, and concentric rings. However, unlike the mass-

action results, we observe the loss of the phenomenon of periodic peak splitting.
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Furthermore, we compute the tumor control probability (TCP) for the regions where

the number of cancer cells approaches zero during the spatial oscillations.

Chapter 4 is structured as follows: In Section 4.1, we introduce the modified

Pooladvand’s reaction-diffusion model and apply a non-dimensionalization method

to simplify parameters. In Section 4.2, we investigate the ODE-version of our model,

determine the steady states, their stability, and pinpointing the two relevant bifurca-

tions: a transcritical bifurcation and a Hopf bifurcation. Subsequently, we establish

the minimal invasion speed for the one-dimensional PDE version of the model. Sec-

tion 4.3 is dedicated to the numerical investigation, encompassing both 1D and 2D

simulations. Finally, in Section 4.4, we conclude this chapter.

4.1 The Basic Assumptions and the Mathematical

Model

Considering reaction diffusion model on a rectangular or smooth domain Ω ⊂ Rn:

∂C

∂t
= DC∆C + τC

(︃
1− C + I

L

)︃
− β̂CV

hc + C
,

∂I

∂t
= DI∆I +

β̂CV

hc + C
− αI,

∂V

∂t
= DV∆V + αbI − ωV,

(4.1)

where the density of susceptible tumor cells, infected tumor cells, and free viruses is

denoted by C(x, t), I(x, t), and V (x, t), respectively. The tumor growth rate is τ and

L is the carrying capacity of tumor cells. The Michaelis–Menten term β̂CV
hc+C

describes

the interaction between virus particles and the tumor cells. The infection rate is

denoted by β̂ and hc is the Michaelis–Menten constant. The death rate of infected

cells is denoted by α. The burst size of the virus in infected cells is denoted by b,

and ω is viral clearance rate. The diffusion coefficients of susceptible cells, infected

cells, and viruses are denoted by DC , DI , DV , respectively. The symbol ∆ denotes

the Laplacian, i.e. the sum of all second order derivatives.
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C(x, 0) = C0(x) > 0, I(x, 0) = 0, V (x, 0) = V0(x) > 0, (4.2)

and homogenous Nuemann boundary conditions on ∂Ω:

n · ∇C(x, t) = n · ∇I(x, t) = n · ∇V (x, t) = 0, for all x ∈ ∂Ω,

where n denotes an outward normal at x at ∂Ω. In the case of a rectangular domain

some points will have several outer normal vectors. In that case we require the above

boundary conditions for all normal vectors.

To simplify our analysis, we apply the non-dimensionalization method by consid-

ering

Ĉ =
C

L
, Î =

I

L
, V̂ =

β̂

τhc
V, t̂ = τt, and x̂ = x

√︃
τ

DV

.

After dropping the hat, we get the non-dimensional system:

∂C

∂t
= Dc

∂2C

∂x2
+ C (1− C − I)− jCV

j + C
,

∂I

∂t
= Di

∂2I

∂x2
+

jCV

j + C
− aI,

∂V

∂t
=
∂2V

∂x2
+ θI − γV,

(4.3)

where

Dc =
DC

DV

, Di =
DI

DV

, j =
hc
L
, a =

α

τ
, θ =

αβ̂Lb

hcτ 2
, and γ =

ω

τ
. (4.4)

4.2 Analysis of the Model

4.2.1 Analysis of the Kinetic Part

The ODE system of (4.3) has three steady states which are the trivial steady state

E0 = (0, 0, 0), the pure cancer state E1 = (1, 0, 0) and a coexistence steady state

E+ = (C∗, I∗, V ∗) =

(︃
aγj

jθ − aγ
,

C∗(1− C∗)

C∗ + a
,

θ

γ
I∗
)︃
,

91



which exists in the positive quadrant for 0 < C∗ < 1. If θ is increased, the coexistence

steady state arises through a transcritical bifurcation at

θt =
j + 1

j
aγ. (4.5)

The transcritical bifurcation (4.5) in Michaelis-Menten is just a shift of the trans-

critical bifurcation θt = aγ in the mass-action case by j+1
j
. Similar to the mass-action

model, the effective viral production rate θ will be our bifurcation parameter in the

next sections. We compute the basic reproduction number R0 by next generation

matrix with

F =

⎡⎢⎣0 j
j+1

θ 0

⎤⎥⎦ , V =

⎡⎢⎣a 0

0 γ

⎤⎥⎦
Thus R0 =

jθ
aγ(j+1)

is the spectral radius of FV −1. Since, the coexistence steady state

E+ exists in positive quadrant iff θ > aγ(j+1)
j

, this equivalent to R0 > 1.

The Jacobian matrix of the ODE system (4.3) is

J =

⎡⎢⎢⎢⎢⎣
1− 2C − I − j2V

(j+C)2
−C − jC

j+C

j2V
(j+C)2

−a jC
j+C

0 θ −γ

⎤⎥⎥⎥⎥⎦ (4.6)

1. The Jacobian matrix of E0 = (0, 0, 0) is

J(E0) =

⎡⎢⎢⎢⎢⎣
1 0 0

0 −a 0

0 θ −γ

⎤⎥⎥⎥⎥⎦
Therefore, the eigenvalues are λ1 = 1 > 0, λ2 = −a < 0, and λ3 = −γ < 0.

Thus, E0 = (0, 0, 0) is unstable saddle.

2. The Jacobian matrix of E1 = (1, 0, 0) is

J(E1) =

⎡⎢⎢⎢⎢⎣
−1 −1 − j

j+1

0 −a j
j+1

0 θ −γ

⎤⎥⎥⎥⎥⎦
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If we multiply the second row of the matrix J(E1) by
θ
a
and add it to the third

row, we get

J(E1) =

⎡⎢⎢⎢⎢⎣
−1 −1 − j

j+1

0 −a j
j+1

0 0 jθ
a(j+1)

− γ

⎤⎥⎥⎥⎥⎦
Therefore, the eigenvalues are λ1 = −1 < 0, λ2 = −a < 0, and λ3 =

jθ
a(j+1)

−γ =

jγθ
aγ(j+1)

− γ = γ(R0 − 1). Thus, E1 = (1, 0, 0) is stable if R0 < 1, and unstable if

R0 > 1.

Proposition 4.2.1 The stability of steady state E1 = (1, 0, 0) is determined by

R0.

(a) If R0 < 1, then E1 is locally stable.

(b) If R0 > 1, then E1 is a saddle.

3. The Jacobian matrix of E+ = (C∗, I∗, V ∗) is

J(E+) =

⎡⎢⎢⎢⎢⎣
1− 2C∗ − C∗(1−C∗)

C∗+a
− j2θC∗(1−C∗)

γ(j+C∗)2(C∗+a)
−C∗ − jC∗

j+C∗

j2θC∗(1−C∗)
γ(j+C∗)2(C∗+a)

−a jC∗

j+C∗

0 θ −γ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
b11 −b12 −b13
b21 −a b13

0 θ −γ

⎤⎥⎥⎥⎥⎦
where

b11 = 1− 2C∗ − C∗(1− C∗)

C∗ + a
− j2θC∗(1− C∗)

γ(j + C∗)2(C∗ + a)
,

b12 = C∗,

b13 =
jC∗

j + C∗ ,

b21 =
j2θC∗(1− C∗)

γ(j + C∗)2(C∗ + a)
.

Thus, the characteristic equation of E+ = (C∗, I∗, V ∗) is given by λ3 + P2λ
2 + P1λ+
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P0 = 0, where

P2 = a+ γ − b11,

P1 = aγ + b12b21 − (a+ γ)b11 − θb13,

P0 = θb11b13 + γb12b21 + θb13b21 − aγb11.

The Hopf bifurcation function is given by

H(θ) = aγ(a+ γ)− b13θ(a+ γ + b21) + ab12b21 + b11
[︁
(a+ γ)b11 − b12b21 − (a+ γ)2

]︁
.

In contrast to the mass-action case, proving the stability of the coexistence steady

state E+ = (C∗, I∗, V ∗) and the existence of Hopf bifurcation analytically is chal-

lenging due to the system’s complexity. Thus, we will demonstrate it numerically in

Section 4.3.

4.2.2 Wave Fronts of Glioma and Virus

In Chapter 3, the wave speed of glioma in the absence of viral infection was determined

to be c∗c = 0.3162. The wave speed of the virus, denoted as c∗, can be calculated using

the leading edge method. While the calculation procedure resembles that of the mass-

action case, we omit the details and introduce the characteristic equation:

(︁
Dcλ

2 − cλ− 1
)︁ [︃
Diλ

4 − c(Di + 1)λ3 + (c2 −Diγ − a)λ2 + c(γ + a)λ+ aγ − jθ

j + 1

]︃
= 0.

(4.7)

Since the first factor of (4.7) corresponds to unsuitable orbits in phase space, our

focus lies on the second factor:

Φ(λ; c) = Diλ
4 − c(Di + 1)λ3 + (c2 −Diγ − a)λ2 + c(γ + a)λ+ aγ − jθ

j + 1
. (4.8)

Equation (4.8) closely resembles the characteristic equation (3.17) in the mass-action

case, differing only in the constant term aγ − jθ
j+1

. Thus, by applying implicit dif-

ferentiation to Φ(λ; c) = 0, we derive conditions for c′(λ) = 0 similar to those in the
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mass-action case, given by Ψ(λ; c) = 0, where

Ψ(λ; c) = 2λc2 + η1c+ η0,

η1 = γ + a− 3(Di + 1)λ2,

η0 = 4Diλ
3 − 2(Diγ + a)λ.

Consequently, the minimum wave speed c∗ occurs at the intersection of the two man-

ifolds:

{Φ(λ; c) = 0} and {Ψ(λ; c) = 0}.

For the parameter values from Table 4.1, we depict these curves in a (λ, c)-diagram

in Figure 4.1. In this representation, we identify a unique intersection at:

λ∗ ≈ 0.8276 and c∗ ≈ 0.3952, (4.9)

as illustrated in Figure 4.1. Notably, in the case of Michaelis-Menten interaction, the

viral wave speed is slower than that of mass-action, which were

λ∗mass-action ≈ 1.5728 and c∗mass-action ≈ 0.9299,

see (3.19).

4.3 Numerical Analysis

Numerically solving for the roots of Hopf bifurcation function H(θ) yields

θH = −2134.92, 35.90, 426.52, 438.25, 442.31, and 548.61.

However, θ = −2134.92 is biologically irrelevant since θ > 0. Additionally, θ =

35.90, 426.52, 438.25, and 442.31 are disregarded since within these ranges, the coex-

istence steady state does not exist, leading to the failure of virotherapy treatment.

Considering the values presented in Table 4.1 and Table 4.2, the coexistence steady

state is established for θ > θt = 488.95. Consequently, we select values of θ satisfying
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Figure 4.1: The characteristic equation of the tumor and virus as implicit function
with respect to λ and c. The green circle is the minimum decay rate and corresponding
minimum wave speed of tumor cells. The pink circle is the minimum decay rate and
corresponding minimum wave speed of the virus particles. The parameters values are
in Table 4.1.

θ > 488.95. Moreover, a numerical investigation reveals a Hopf bifurcation occurring

at θH = 548.61 with dH
dθ

|θ=548.62= −1.31 ̸= 0.

This chapter focuses particularly on the Hopf bifurcation region, which corresponds

to the hollow ring pattern. Furthermore, as demonstrated in Chapter 3, the optimal

TCP resides within the Hopf region.

The only parameters requiring estimation are the infection rate β̂ and the Michaelis-

Menten constant hc, with all other parameter values remaining consistent with those

employed in Chapter 3. For the parameter hc, we consider the same value as used in

previous studies [191, 192], which is hc = 105 cells per mm3.

To estimate the infection rate parameter β̂, we establish the relationship between

the infection rates in the mass-action case, denoted by β, and the Michaelis-Menten

case, denoted by β̂. Applying a Taylor expansion on the infection term β̂C
hc+C

about

C = L, we obtain:

β̂C

hc + C
=

β̂L

hc + L
+

β̂hc
(hc + L)2

(C − L) +O((C − L)2).

We consider only the leading term since the term β̂hc

(hc+L)2
(C − L) is very small.
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Thus, we can approximate the infection rate of the Michaelis-Menten model from the

infection rate of the mass-action model as follows:

βL ≈ β̂L

hc + L
.

Therefore, β̂ can be calculated using the formula:

β̂ ≈ (hc + L)β. (4.10)

According to Pooladvand et al. [88], the infection rate β lies within the range

[10−9, 5 × 10−9]. Therefore, using (4.10), we can estimate β̂ to be within the range

[1.1 × 10−3, 5.5 × 10−3]. Additionally, the burst size b is reported to be within the

range [1000, 100000]. Thus, by fixing the parameters τ , L, hc, and α, and varying β̂

and b, we can calculate θ = αβ̂Lb
hcτ2

to be within the range θ ∈ [122.22, 61110.5].

After rescaling (4.4), the parameter values for model (4.3) are given in Table 4.2.

Parameter Value Units Description

C0(x) 106 cells per mm3 Initial density of uninfected cells

V0(x) 1.9× 1010 viruses per mm3 Initial density of virus particles

DC 0.006 mm2 per day Diffusion coefficient of susceptible cells

DI 0.006 mm2 per day Diffusion coefficient of infected cells

DV 0.24 mm2 per day Diffusion coefficient of viruses

τ 0.3 per day Growth rate of tumor cells

L 106 cell per mm3 Carrying capacity of tumor cells

β̂ variable cell per (virus × day) Infection rate of Michaelis-Menten case

hc 105 cell per mm3 Michaelis-Menten constant

α 1 per day Death rate of infected cells

b variable virus per cell Burst size of viruses

ω 4 per day Clearance rate of viruses

Table 4.1: Summary of CIV model parameters. All the parameters values used from
reference [88] except that parameter hc from reference [191, 192].
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Rescaled Parameter Meaning Value

Dc cancer diffusion coefficient 0.025

Di infected cells diffusion 0.025

j Michaelis-Menten constant
cancer cells carrying capacity 0.1

a infected death rate 3.33

γ virus decay rate 13.33

θ effective virus production rate [0,900]

Table 4.2: Base parameter values of the rescaled model (4.3) using the rescaling (4.4).
These parameters are unitless.

We start by analyzing the ODE system (4.3) with θ serving as a bifurcation pa-

rameter, derived from (4.4), where θ represents the effective virus production rate.

Figure 4.3 depicts the dynamic behavior of model (4.3) using parameters from Table

4.2, while varying θ. The initial conditions for all four simulations are uniformly set

to (C(0), I(0), V (0)) = (1, 0, 95). In Figure 4.2 and Figure 4.3, we illustrate cases

for θ = 520, 800, 900 plotted against time. The transcritical bifurcation is evident at

θt = 488.95, resulting in a coexistence steady state for θ > θt. Subsequently, the Hopf

bifurcation occurs at θH = 548.61, leading to the emergence of periodic orbits beyond

that threshold.
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Figure 4.2: Numerical simulation with different θ values with initial conditions (1, 0,
95). Here, the susceptible and infected cells are re-scaled by multiplying with 100.
(A): θ = 520, (B): θ = 800, and (C): θ = 900.
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(A) (B) (C)

Figure 4.3: Numerical simulation of model (4.3) in 3-D with different θ values with
initial conditions C=1, I=0, and V=95. The coexistence steady state is indicated in
red. (A): θ = 520, (B): θ = 800, and (C): θ = 900.

4.3.1 PDE Model 1-D

As we investigate the spatial manifestation of oscillations through mass-action in-

teraction, we aim to explore whether incorporating the Michaelis-Menten case yields

analogous patterns and enables us to attain a tumor control probability (TCP) near-

ing 1.

Similar to Chapter 3, we initiate our study in 1-D within the interval [0, 60] and

conduct simulations up to time 60. In dimensional parameters, this corresponds to a

length interval of 54 mm and a duration of up to 200 days. Initially, virus particles

are injected at the center of the domain, with zero-flux boundary conditions selected.

The results of the simulations are depicted in Figure 4.4. Cancer cell density C(x, t)

is represented in shades of brown in panels (A) and (D), with darker hues indicating

higher tumor cell density. Infected cells I(x, t) are displayed in shades of blue in

panels (B) and (E), with darker shades representing lower densities of infected cells.

The virus load is illustrated in panels (C) and (F), ranging from blue (low) to red

(high). In Figure (A), (B), and (C), we set θ = 520 and θ = 900 for Figure (D), (E),

and (F).

We conduct identical simulations with a distinct initial condition showcased in

Figure 4.5 (A), (B), (C). In this scenario, we randomly select five inoculation points

within the interval [0, 60]. For θ = 520 in (A), we observe an initial interaction
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Figure 4.4: 1-D simulations with virus particles injected in the tumor center. The
spatial distribution of the susceptible cells, infected cells and the virus with different
values of θ with a = 3.33 and γ = 13.33. θ = 520 for (A), (B) and (C) and θ = 900
for (D) (E) and (F).

of spreading waves, swiftly converging to the coexistence steady state. In (B), with

θ = 800, and in (C), with θ = 900, synchronized oscillations persist across the domain.

Since, the oscillations get close to zero, indicating low cancer and virus concentra-

tions. Hence again, we employ the tumor control probability (3.22) to estimate the

expected treatment success in the spatial context.

For the cases where we inject the oncolytic virus in the center of the domain we find

that the maximal TCP value is 0 for θ = 520, 0 for θ = 800, and 0.0611 for θ = 900.

The TCP values were generally higher when the tumor was injected at five random

locations with TCP of 0 for θ = 520, 0.7149 for θ = 800, and 0.6305 at θ = 900. This

clearly shows that for θ = 520 treatment failure is expected.

We also plot the TCP as function of time in Figure 4.6. In (A) and (C) the virus is

injected into the centre of the domain while in (B) and (D) it is injected in five random

locations. In (A) and (B) we chose θ = 800 and in (C) and (D) we have θ = 900. In
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Figure 4.5: 1-D simulations with virus particles injected in different regions of the
tumor. (A): θ = 520, (B): θ = 800, and (C): θ = 900.

all cases we see the maximum TCP right after the first cycle. We also note that a

distributed injection of virus particles (B) and (D) has a beneficial outcome for the

expected tumor control. We refrain from displaying the TCP plots for θ = 520, as

the values do not surpass 7× 10−17, which we consider to be effectively zero.

Additionally, the TCP values for multiple injections were lower than those of the

mass-action case, with the highest TCP in the Michaelis-Menten case reaching 0.7149

for θ = 800, compared to 0.9944 for θ = 500 in the mass-action formulation. Further-

more, contrary to the mass-action case, the TCP of the second cycle exceeds that of

the first cycle. Consequently, extending the simulation duration up to t = 150, we

observe that as the oscillations synchronize over time, the TCP value improves to over

0.97 (not shown). However, it’s worth noting that these results are irrelevant from

a medical standpoint, as this timeframe is too late, given that the immune response

has already occurred.
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Figure 4.6: The TCP values of injected tumor cells when θ > θH at a = 3.33 and
γ = 13.33. (A): θ = 800 where the tumor is injected in the center, (B): θ = 800
where the tumor injected in five random locations, (C): θ = 900 where the tumor
is injected in the center, and (D): θ = 900 where the tumor is injected five random
locations.

4.3.2 PDE Model 2-D

In this section, we conduct simulations using model (4.3) on a 2-D square domain

measuring 60×60 units, extended up to time 55. In terms of dimensional parameters,

this equates to a domain with a side length of 54 mm and a time span of up to 183

days. Initially, in Figure 4.7, we set θt < θ < θH with θ = 520. Panels (A) and

(D) depict the density of cancer cells, represented by black for high concentration

and brown for low. Panels (B) and (E) illustrate the density of infected tumor cells,

where white indicates high infection. Panels (C) and (F) display the distribution of

virus particles, ranging from blue (low concentration) to red (high concentration). In

Panels (A), (B), and (C), we present the results at t = 45, while Panels (D), (E),

and (F) showcase the outcomes at t = 55. The observed pattern resembles a filled

ring that expands radially, establishing a coexistence steady state within the ring’s

interior. In Figure 4.8, we observe the progression of this filled ring pattern within

the virus at time instances t = 1, 5, 10, 15, 20, and 25, with the highest concentration

region appearing red at the center.

In Figure 4.9, we explore the oscillatory regime with θ = 900 > θH . Similar to

the scenario in mass-action dynamics, we observe a distinctive hollow ring pattern,

wherein the tumor succumbs to the advancing virus wave, resulting in a near-zero

state within the ring’s interior. However, as the simulation progresses, as depicted
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(A) (B) (C)

(D) (E) (F)

Figure 4.7: 2-D simulations with virus particles injected in the center of the tumor, the
spatial distribution of the susceptible cells, infected cells and the virus with θ = 520,
a = 3.33 and γ = 13.33 at t = 45 and t = 55, respectively. (A): C(x,t), (B): I(x,t),
and (C): V(x,t). (D): C(x,t), (E): I(x,t), and (F): V(x,t).

in Figure 4.10, both the cancerous cells and the virus stage a resurgence. They

regenerate at the center of the domain, initiating a secondary outward wave of viral

infection. This cycle repeats periodically, although we no longer observe the periodic

spot splitting seen in the mass-action scenario. Additionally, concentric rings form

due to the overlapping of multiple hollow rings.

We observe similar behavior when employing various injection strategies, as de-

picted in Figure 4.11 and 4.12. The notable distinction in this scenario is that the

intricate interplay among virus particles and their emergence results in complex in-

teractions, ultimately giving rise to expanding hollow ring patterns.

Finally, to explore the long-term dynamics, we utilize VisualPDE [181], enabling

us to conduct simulations over extended periods and expand the domain to a circular

shape with a radius of 250. We observe highly dynamic patterns, encompassing

oscillations, spiral waves, target patterns, and more. In Figure 4.13, we present

a static image from a typical simulation using the specified parameter values with
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(t= 1) (t= 5) (t= 10)

(t= 15) (t= 20) (t= 25)

Figure 4.8: 2-D simulations with the virus particles injected in the center of the tumor
with θ = 520, a = 3.33 and γ = 13.33 at different t.

θ = 900. These spatio-temporal patterns persist throughout the duration of the

simulation.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure 4.9: 2-D simulations with virus particles injected in the center of the tumor
with θ = 900, a = 3.33 and γ = 13.33 at t = 5, t = 10, t = 20, and t = 30,
respectively. (A): C(x,t), (B): I(x,t), and (C): V(x,t). (D): C(x,t), (E): I(x,t), and
(F): V(x,t). (G): C(x,t), (H): I(x,t), and (I): V(x,t). (J): C(x,t), (K): I(x,t), and
(L): V(x,t).

105



(t= 1) (t= 5) (t= 10) (t= 26)

(t= 30) (t= 48) (t= 51) (t= 55)

Figure 4.10: 2-D simulations of virus particles injected in the center of the tumor
with θ = 900, a = 3.33 and γ = 13.33.

(t= 4) (t= 10) (t= 18)

(t= 27) (t= 29) (t= 35)

(t= 50) (t=52 ) (t=54 )

Figure 4.11: 2-D simulations of virus particles injected in the tumor randomly with
θ = 900, a = 3.33 and γ = 13.33.
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(t= 3) (t=6 ) (t=9 ) (t=15)

(t=25 ) (t=26 ) (t=29 ) (t=33)

Figure 4.12: 2-D simulations of virus particles injected the tumor as diagonal with
θ = 900, a = 3.33 and γ = 13.33.

(cancer cells) (infected cells) (virus)

Figure 4.13: Simulations with VisualPDE [181] at time t = 635 (2116 days) with
parameters from Table 3.2 and θ = 900. The cancer cells on the left are shown from
0 (brown) to 0.2 (black). The scale for the infected cells is 0 (blue) to 0.05 (white),
and the scale for the virus is 0 (blue) and 1 (red).
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4.4 Conclusion

Continuing from Chapter 3, we delve into the examination of viral spatial patterns,

this time considering the Michaelis-Menten kinetics. Our focus lies on investigating

the results of oscillations stemming from the Hopf bifurcation and their implications

in clinical practice.

Our simulations extending beyond a few days become unrealistic for predicting

patient outcomes, as the adaptive immune response is typically activated within this

timeframe [183]. However, we observe prolonged oscillations with a wavelength of

more than 10 days, during which the tumor burden decreases close to zero. It is

within these oscillatory outbreaks that we compute the tumor control probability

(TCP).

In contrast to the TCP results obtained with the mass-action case, the TCP re-

sults with the Michaelis-Menten case were lower. Even with an increase in the viral

production rate θ and employing multiple viral injection strategies, the maximum

tumor control probability remains around 0.7149. Once again, these findings confirm

the observation that oncolytic viral therapy alone is often insufficient in many cases

[58, 59, 66, 97].

When comparing the viral wave speeds of the Michaelis-Menten and mass-action

models, we observe that the viral wave speed of the Michaelis-Menten model is ap-

proximately one-third slower compared to that of the mass-action model. This dis-

crepancy in wave speeds can contribute to the lower TCP values observed in the

Michaelis-Menten model.

Additionally, considering the model with Michaelis-Menten kinetics, we still en-

counter a transcritical bifurcation θt and a Hopf bifurcation θH . However, in this

case, the parameter θt for the transcritical bifurcation is shifted by a factor of j+1
j
,

where j represents the ratio of the Michaelis-Menten constant to the cancer cells

carrying capacity.

108



Due to the absence of direct information for estimating the infection rate β̂ for

adenovirus using the Michaelis-Menten model, we resort to employing a Taylor ex-

pansion to establish a relationship between the infection rates of the mass-action β

and Michaelis-Menten models, with β̂ being larger than β.

Furthermore, conducting simulations in 2-D leads to the absence of the splitting

peaks phenomenon observed in mass-action interactions. However, we still observe

similar viral patterns as in the mass-action case, including filled rings, hollow rings,

and concentric rings. Long-time simulations in Figure 4.13 reveal very complex spatio-

temporal oscillations. Again, we believe these patterns can be relevant for other virus

infections such as COVID-19 [187, 188], where patients suffering from long-lasting

recurring effects result from continued oscillations.
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Chapter 5

Analysis of Reovirus Binding and
Plaque Size

5.1 Introduction

In this chapter, we investigate the oncolytic potential of reovirus, a nonpathogenic

virus native to the enteric tract of mammals. As a double-stranded RNA virus, re-

ovirus has demonstrated natural capabilities for infecting and lysing tumors under

both in vitro and in vivo conditions [49, 52, 53, 193, 194]. The unmodified form of

reovirus, referred to as T3wt, is currently undergoing evaluation in over 30 clinical

trials targeting various cancer types, including metastatic breast cancer [194, 195],

prostate cancer [196, 197], and colorectal cancer [49, 198]. Additionally, it has pro-

gressed to phase III clinical trials as a potential therapeutic intervention for breast

cancer [195, 199].

Drs. Maya Shmulevitz and Francisca Cristi, researchers affiliated with the Uni-

versity of Alberta, have dedicated their laboratory efforts to the augmentation of

reovirus for oncological therapeutic applications. Comprehensive experimental inves-

tigations were conducted on both the wild-type (T3wt) and the oncolytic mutated

type (SV5) of reovirus. These investigations focused primarily on key parameters,

including binding percentage, virus spread, and infectivity [52, 53]. The outcomes

of these assessments underscore the importance of enhancing virus spread as a crit-

ical mechanism for optimizing therapeutic interventions in the context of oncolytic
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virotherapy. The experimental results reveal a connection between the binding rate

and viral spread, suggesting that a reduction in the binding rate leads to a more

extensive viral spread, characterized by larger plaque sizes. In this context, plaque

size refers to the area resulting from cells that have been infected. This observa-

tion highlights a distinct advantage that the mutated SV5 virus possesses over the

wild-type T3wt, despite similarities in viral production and cell death. Concurrently,

previous studies have delved into the dynamics of viral infection spread within cell

culture contexts [200–202].

The phenomenon of viruses exhibiting reduced binding to host cells has been ex-

tensively documented in the scientific literature. Notably, reovirus variants with

diminished affinity for sialic acid have been identified in both murine and human

species. Furthermore, investigations into the infection dynamics of a sialic-acid-

binding-deficient reovirus variant have revealed heightened infectivity when compared

to the wild-type reovirus, particularly when infecting polarized epithelial cells from

apical or basolateral orientations [203]. This suggests a potential selective advantage

for viruses with reduced binding during the course of natural infections.

Similar observations have been made in the context of rotavirus mutants incapable

of binding to sialic acid. Although these mutants displayed slower replication and

lower titers in mouse cancer cell lines MA104, they paradoxically exhibited increased

pathogenicity in mice [204]. This underscores the nuanced relationship between viral

binding capabilities and infection outcomes under specific conditions.

Expanding beyond reoviruses and rotaviruses, other viruses have demonstrated the

capacity to spread more extensively in monolayer cell cultures without a concomitant

increase in replication. For instance, vaccinia virus-infected cells repel superinfecting

virions, resulting in enhanced viral spread [205]. This phenomenon has also been

observed with SV5. Additionally, reduced adsorption rates to host bacteria have been

linked to increased plaque size in phages [206]. Moreover, various virus variants of

polyomavirus, parvovirus, and Sindbis virus, characterized by deficiencies in binding,
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have been shown to generate larger plaques in vitro [207–210]. Importantly, these

variants exhibited higher pathogenicity and increased spread in vivo.

Building on Dr. Shmulevitz’s experimental data [53], this chapter aims to address

key questions through mathematical modeling: How does the virus spread correlate

with the binding rate? What is the dependence of the invasion speed on the binding

rate? How does the reduction in binding rate impact plaque sizes in vitro experi-

ments? Is there an optimal binding rate, which maximizes viral spread?

To answer these questions, we develop two mathematical models that capture dif-

ferent aspects of viral dynamics. Model 1 focuses on a small time scale (less than

16 hours), enabling observation of viral spread without considering cell death and

viral replication. Model 2 extends the analysis to a longer time scale (about 5 days),

incorporating viral spread, cell death, and viral replication. Model 3 then includes

the cancer cells explicitly, which allows us to compare plaque sizes of different exper-

iments. The results of our models exhibit excellent concordance with the observed

experimental phenomena, providing valuable insights into the dynamics of reovirus-

mediated oncolytic therapy. We also compute the optimal binding rate that leads to

the largest plaque size.

The outline of this chapter encompasses the following: we introduce a multi-scale

mathematical modeling approach to investigate the dynamics of viral spread in cell

culture experiments. The study begins with a short time scale model in Section 5.2,

utilizing data from [53] to estimate the binding rate γb and viral diffusion coefficient

DV. Section 5.3 extends the model to longer time scales, incorporating events such

as cell death and viral production. The viral spread speed is computed via travelling

wave analysis, revealing the relationship between the binding rate γb and the viral

spread speed c∗ in Section 5.4. Model validation is presented in Section 5.5, where

additional experimental data is considered. In Section 5.6 and Section 5.7 we present

the main result on the optimal choice of the binding rate γb. The paper concludes

in Section 5.8, contextualizing the results within the broader scope of mathematical
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modeling and cancer and viral infection research.

5.1.1 Reovirus Experiments

Our mathematical models will be fitted and validated from the data of [53]. In

[53] characteristics of T3wt and SV5 are empirically determined on monolayers of

TUBO cells (spontaneously derived HER2+ murine breast cancer cells) and L929

cells (tumorigenic mouse fibroblasts). TUBO and L929 cells are exposed to T3wt or

SV5 to measure cell attachment, virus replication, cell killing, and the size of plaques

produced over several rounds of infection and re-infection. Reoviruses typically bind

cells within an hour, enter in 3-4 hours, replicate exponentially until 15-18 hours, and

newly-made viruses become released from cells at 18-20 hours post-infection (hpi).

Accordingly, short-term infections of 1 hour are used to monitor binding. Long-

term infections of up to 5 days are used to monitor plaque size. They find that

among a variety of reovirus mutations, the variant SV5 (supervirus 5), which has five

mutations in the virus genome, leads to the largest plaque sizes. Relative to T3wt,

SV5 displays similar kinetics of replication in an infected cell, cell death of the infected

cell, burst size (the titer of virus released from infected cell), and diffusion. However,

SV5 binds less efficiently to cells, and also produces significantly larger plaques over

several rounds of infection. While our mathematical modelling will use the empirical

data derived on cancer cell cultures, it might be of interest to the reader that SV5

also significantly improves tumor regression and mouse survival in the more-complex

mouse models of TUBO-derived tumors.

5.2 Model 1: Short Time Scale

First, we start by answering the following question: How far does the virus spread

depending on the binding rate during a time scale that is short enough such that cell

death and viral replication has not yet taken place? To answer this question, we use

two sets of data from [53]. In short-time experiments the percentage of virus binding
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after 1 hour to L929 cells was measured. These data will be used to estimate the

binding rate γb. Second, to estimate viral diffusion in the extracellular medium, the

viral load was measured after inoculation in a cell free medium.

On the short time scale of 1-16 hours, we consider only two processes, which is

binding of the virus to the cells and diffusion of virions in the cell medium. Hence

our model has the simple form

∂V

∂t
= DV∆V − γbV (5.1)

with the initial condition

V (x, y, 0) = V0δ0(x, y). (5.2)

Here V (x, t) denotes the titre of virus particles, DV is the constant diffusion coefficient,

γb is the constant binding rate and V0 is the amount of virus particles at the start

of the experiment t = 0. Equations (5.1)-(5.2), explain the virus spread in 2-D

depending on the diffusion coefficient DV and the binding rate γb. Here the virus is

initiated at time 0 as a Dirac delta distribution at the centre of our domain. We use

model (5.1) to estimate the binding rate γb and the diffusion coefficient DV.

5.2.1 Binding Rate Estimation

To measure the binding rate γb, we use the data in [53], where three experiments for

each reovirus type were completed to estimate the efficacy of reovirus attachments

to tumor cells. Thus, a transformed murine tumorigenic L929 cells were exposed

to equivalent virus particle doses and incubated at 4oC for 1 hour to enable the

virus attachment without entry into the cells (i.e. entry requires temperatures above

19oC). The unbound virus particles were removed by washing the cells extensively

before harvesting the post-binding lysates. Finally, Western blot analysis was used

to calculate the percentage of cell-bound virus particles based on virus protein levels

in the lysates versus the input. The results show that on average, 62% of T3wt virus
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were bound to L929 cells, compared to on overage 24% of SV5 virus particles bound

to cells (see Table 5.1.)

Virus Type % of Binding mean ± error half-life time t1/2

T3wt 80.64 61.63 ±10.14 0.722 h

T3wt 58.25

T3wt 45.99

SV5 24.25 24.18 ± 5.75 2.476 h

SV5 34.10

SV5 14.19

Table 5.1: The percentage of binding for each virus type at 1 hour for three data sets
each. The estimated data range is computed.

The binding process can be easily described by a simple binding law

d

dt
V (t) = −γbV (t), V (0) = V0.

To estimate the binding rate γb, we assume the data in Table 5.1 is normally

distributed and apply the likelihood method with the least square error (LSE) [108].

We denote the measured %-values of viruses binding as yi, for i=1,2,3, as there are

three independent data points for each virus. Using an exponential model, we can

compute the number of unbound virus particles at time t as

V (t) = V0e
−γbt. (5.3)

Then, the percentage of bound virus particles after t = 1 hour is

yi = 1− e−γb .

Therefore, γb = −ln(1 − yi). As there are several measurements for yi, an average

is necessary, which is generated using the maximum likelihood estimator and the

corresponding confidence interval is then computed (see [108]).

Lemma 5.2.1 The maximum likelihood estimator is

γb̃ = ln

⎛⎝1

k

k∑︂
i=1

(1− yi)

⎞⎠ . (5.4)
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Proof. Fixing t=1, let xi = 1−yi, then the likelihood function of normal distribution

is

L(p) = P (xi = Xi, i = 1, ..., k|p = (γb, σ
2))

=
k∏︂

i=1

1√
2πσ

e
−(xi−e−γb )2

2σ2

and the log-likelihood becomes

LL(p) = −
k∑︂

i=1

ln(
√
2πσ)− 1

2σ2

n∑︂
i=1

(︁
xi − e−γb

)︁2
.

Now, we need to estimate the binding rate γb and the corresponding variance σ2.

To estimate γb, we compute the least square error and its γb-derivative as

LSE =
k∑︂

i=1

(xi − e−γb)2

dLSE

dγb
= 2e−γb

⎛⎝ k∑︂
i=1

xi − ke−γb

⎞⎠ .

To find maxima or minima in γb, we set the above derivative equal to zero and solve

k∑︂
i=1

xi − ke−γb = 0

Therefore,

γb = −ln

⎛⎝1

k

k∑︂
i=1

xi

⎞⎠ = γb̃.

Thus, the maximum likelihood estimator is γb̃. To estimate the variance, we compute

σ derivative as the following

dLL(p)

dσ
= −k

σ
+

1

σ3

k∑︂
i=1

(xi − e−γb)2

0 =
1

σ

⎡⎣ 1

σ2

k∑︂
i=1

(xi − e−γb)2 − k

⎤⎦ .
Since σ ̸= 0, we have

0 =
1

σ2

k∑︂
i=1

(xi − e−γb)2 − k

k =
1

σ2

k∑︂
i=1

(xi − e−γb)2
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Thus, we get

σ2 =

∑︁k
i=1(xi − e−γb)2

k
. □ (5.5)

Applying the formula (5.4) and (5.5) to the data in Table 5.1, we find the binding

rate for the wild type (T3wt) is γbT3wt = 0.96± 0.16 per hour, while for the mutated

type (SV5) is γbSV5 = 0.28±0.09 per hour. These values can be related to the half-life

of the virus population by

t1/2 =
ln 2

γb
.

The T3wt virus population has a shorter time for binding with t1/2 = 0.722 hour

compared to the SV5 virus population with t1/2 = 2.476 hours.

5.2.2 Diffusion Coefficient Estimation

The spatial diffusion of virus inside the culture medium without host cells was mea-

sured using the barrel of 1 mL syringes filled with semi-solid 0.5 % agar medium see

Figure 5.1 (A). The virus was introduced at the top of the medium and allowed to

diffuse over time. The medium was then removed from syringes and divided spatially

into equal fractions (see Figure 5.1 (A)). Each fraction corresponds to 100 µL. The

percentage of viral load that diffused into each fraction was measured at time t = 120

hours. The spatial extent of each fraction is approximately 0.55 cm as we can see

in Figure 5.1 (A). To estimate the diffusion coefficient DV at t=120 hour, we fit the

data in Matlab by applying the Gaussian distribution formula for a diffusion process

V (x) =
V0√
4πDVt

e
−x2

4DVt (5.6)

The parameters V0 and DV are then estimated, where V0 is the number of viruses

particles at t=0, which was not measured in the experiments.

From the data in [53], we have the percentage of the virus in each fraction. We

consider each fraction as sub-interval with length 0.55 cm with the summation of
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Figure 5.1: The diffusion coefficient estimation for T3wt and SV5 particles from the
experiment in Cristi et al. [53]. (A): The diffusion of T3wt and SV5 from the
experiment by measuring the percentage of the virus in each fraction at 120 hour,
(B): The T3wt particles when DV = 0.01 mm2per hour with V0 = 243, and (C): The
SV5 particles when DV = 0.01 mm2per hour with V0 = 265.

these sub-intervals correspond to the total viral contents. Since the virus percentage

is measured for each medium fraction, we can use the area under the curve to estimate

the diffusion coefficient.

There were no significant differences in the diffusion coefficients between T3wt and

SV5 viruses. The estimated diffusion coefficient is DV = 0.01± 0.0015 mm2 per hour

(equivalent DV = 0.0001 ± 0.000015 cm2 per hour) which is the best fit for our data

as we can see in Figure 5.1 (B) and (C).

Another way to evaluate the diffusion coefficient DV of small particles in a medium

is by applying the Stokes-Einstein equation for the diffusion coefficient DV of a spher-

ical particle of radius r in a fluid of dynamic viscosity η at absolute temperature T

[161]. We do not have any direct information from the data to estimate the value of

the viscosity of the 0.5 % agar in Minimum Essential Media (MEM). Therefore, we

use the viscosity of water which is also similar to the viscosity of Dulbecco’s Modified

Eagle Medium (DMEM) (10 % FBS where FBS refers to a Fetal Bovine Serum) [162].

Thus, in our case the Stokes-Einstein relation gives

DV =
kBT

6πηr
= 0.02 mm2 per hour,

where kB is Boltzmann’s constant, r = 35nm [211] is a typical virus radius, and

118



DV (mm2 per hour)

Our model fit estimation 0.01± 0.0015

Stokes-Einstein estimation [161] 0.02

Rioja et al. [70] estimation 0.014

Poolandvand et al. [88] estimation 0.01

Table 5.2: Comparison between the value of the viral diffusion coefficient that have
been estimated in our model, by Stokes-Einstein relation, by Rioja et.al model [70]
and by Poolandvand et al. model [88].

η = 0.001 pa.s is the viscosity of water at T = 21oC. The values of diffusion coefficient

in our estimation and Stokes-Einstein are very close. Furthermore, [70] and [88] use

a similar diffusion coefficient of DRioja = 0.014 mm2 per hour and DP = 0.01 mm2 per

hour for cancer viral therapy, which are similar to our value DV = 0.01 mm2 per hour

as we can see in Table 5.2.

5.2.3 Result: Prediction of the Spread Radius for Short Times

Now, as we estimated the diffusion coefficient DV and the binding rates γb, we come

back to model (5.1) to evaluate the spread radius r as a function of the binding rate

γb.

We solve equations (5.1)-(5.2) with a little trick by setting ϕ = V eγbt. Then

ϕt = Vte
γbt + γbV e

γbt = eγbt (Vt + γbV ) = DVe
γbt∆V = DV∆ϕ.

Hence ϕ satisfies a linear heat equation, which we can solve explicitly using the

fundamental solution in 2-D [108].

ϕ(x, y, t) =
V0

4πDVt
e

−x2−y2

4DVt .

Using ϕ = V eγbt, we obtain

V (x, y, t) = e−γbt
V0

4πDVt
e

−x2−y2

4DVt . (5.7)
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Figure 5.2: The spread radius values as function of the binding rate γb (per hour) with
DV = 0.01 mm2 per hour, and V0

Vmin
= 1000 virus at t=1 hour. The blue line represents

the value of γbT3wt = 0.96, while the red line represents the value of γbSV5 = 0.28.

To compute the spread radius r =
√︁
x2 + y2, we assume that below a level of Vmin

no virus can be measured. Hence at the spread radius r we have

Vmin = e−γbt
V0

4πDVt
e

−r2

4DVt .

We solve this equation for r and obtain

r =

⌜⃓⃓⎷4DVt

(︄
ln

[︃
V0

4πDVVmint

]︃
− γbt

)︄
. (5.8)

Fixing the time t, the diffusion coefficient DV, the number of virus particles at

t=0 i.e V0, and the threshold Vmin, we have the spread radius r as a function of the

binding rate γb. We show this dependence in Figure 5.2. In Figure 5.2 we also show

the estimated binding rate for the wild type virus in blue (γbT3wt = 0.96 per hour)

and for SV5 in red (γbSV5 = 0.28 per hour). Furthermore, we see that the spread

radius declines as the binding rate increases, until after a maximum binding rate of

γb > γ∗b = 9.0, no more spread is possible.

5.3 Model 2: Long Time Scale

5.3.1 Basic Assumptions and the Mathematical Model

In this section, we study the viral spread for time scales that include viral replication

inside the cells, virion release and cell death, (i.e. more than 16 hours). Thus, we
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explain the plaque size results on L929 cell monolayers in [53]. Plaque size refers to

the area of dead cells that result from the viral infection. The larger the plaque size,

the farther the virus has spread. In [53], a monolayer of L929 cells was subjected to

infection by reovirus particles. Following a one-hour incubation at 37oC, a 0.5% agar

overlay was introduced onto the cells. Once the agar solidified, the cells were placed

back into the 37oC incubator for a period of 5 days. Afterward, the cells were treated

with 4% paraformaldehyde (PFA) for fixation and the cellular monolayer was stained

using a 1% (wt/vol) crystal violet solution. Subsequently, plaque size analysis was

performed using the Fiji software with the particle analysis plugin and the results

expressed as a relative plaque size to T3wt after normalization T3wt plaque size to

1.

To analyze the results of plaque size in [53], we assume that the number of cells that

can be infected during the experiment is about constant. This is a strong assumption,

but we feel that it is justified, since the model shows good results. We include a class

of infected cells I(x, t) and extend our previous model (5.1) as

∂I

∂t
= γbνV − αI

∂V

∂t
= DV

∂2V

∂x2
+ αb̃I − γbV,

(5.9)

where the virus diffusion coefficient DV and the binding rate γb are the same as

before in model (5.1)-(5.2). The percentage of binding viruses that lead to infection

is denoted by ν. The infected cells die at rate α, and the burst size of the infectious

viruses is denoted by b̃. Here, we would like to indicate that the rate of virus replication

in infected cells are expressed in some papers by parameter b, where b represents the

infected cells death rate × the virus burst size [69, 201, 212]. This is equivalent in

our model to b = αb̃.

In addition to γb and DV, we have three more parameters to estimate: the death

rate of infected cells α, the percentage of binding virus that lead to an infection ν,

and the burst size b̃. We estimate these values in the next subsections and summarize
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the values in Table 5.4.

In [53] the percentage of cell death at time points 15, 18, 24, 30 and 36 hour after

inoculation had been measured for each virus type T3wt and SV5. We show these

data in Table 5.3 and illustrate them in Figure 5.3 (A). While for 15 and 18 hours,

only one data point had been measured compared to three data points at time 24

hour and two data points at time 30 and 36 hours each. From the data, we can see

that the cells are surviving between 15-24 hours with no significant differences based

on the virus type. The death rate of infected cells α at different time points can be

estimated by data fitting of the exponential function I(t) = 1−e−αt using MATLAB,

as shown in Figure 5.3 (B) and (C). We find no significant difference between the death

rate of the T3wt virus and SV5 virus, which is consistent with the data observation.

Therefore, we estimate the death rate of infected cells as α = 0.057± 0.030 per hour.

Virus Type Time % of Cell Death Estimated Data

T3wt 15 1.470

T3wt 18 40.15

T3wt 24 34.38 36.72 ± 5.27

T3wt 24 46.79

T3wt 24 28.99

T3wt 30 58.64 68.36 ± 9.72

T3wt 30 78.08

T3wt 36 62.35 71.49 ± 9.14

T3wt 36 80.63

SV5 15 1.34

SV5 18 39.05

SV5 24 25.68 31.25 ± 6.751

SV5 24 44.69

SV5 24 23.39

SV5 30 45.34 60.81 ± 15.47

SV5 30 76.28

SV5 36 52.15 64.99 ± 12.84

SV5 36 77.83

Table 5.3: The percentage of cell death at different time points for T3wt and SV5
particles from the experiment in Cristi et al. [53]. The estimated data range is
computed.
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Figure 5.3: The death rate of infected cells estimation for T3wt and SV5 particles
from experiment in Cristi et al. [53]. (A): The percentage of cell death at different
time points. (B): T3wt virus and (C): SV5 virus. Infected cell counts (blue dots)
and the theoretical curve I(t) = 1− e−αt (in red).

5.3.2 Viral Burst Size Estimation

The burst size of the virus is the number of released new virions from one infected cell.

Experimentally in [53], the released number of virions had been measured with two

data sets with multiplicity of infection (MOI) 21 for T3wt and 27 for SV5, respectively,

at different time points: 0, 3, 6, 9, 12, 15, 18, 24, 30, and 36 hour. The Multiplicity

of Infection (MOI) refers to the number of virions that are added per cell during

infection. The data are shown in Figure 5.4 (A). In Figures 5.4 (B), and (C) we use a

logistic fit for these data and estimate the burst size as the carrying capacity value for

this logistic fit. We find b̃T3wt = 514± 114 viable virions per cell and b̃SV5 = 732± 146

viable virions per cell, respectively. Note that the confidence intervals for these two

values overlap. Hence, as reported already in [53], there is no statistically significant

difference in those values. This is an important observation, and we come back to

this issue later.

5.3.3 Percentage of Infectious Viral Particles

The results in [213], show that the percentage of bound reovirus that lead to an

infection is in the range of ν ∈ [ 1
1000

, 1
100

] cells per virus. We choose ν = 0.01 cell

per virus 1. This means out of 100 binding viruses on average one virus leads to a

1After personal communication with Dr. Shmulevitz and Dr. Cristi.
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Figure 5.4: The burst size virus estimation for T3wt and SV5 particles from experi-
ment in Criesti et al. [53]. (A): The percentage of viral burst size at different time
points.(B): b̃T3wt = 514 infectious virus per cell (C): b̃SV5 = 732 infectious virus per
cell. The blue dots show the measured released viral particles per cell, while the red
curve shows our logistic fit

successful infection.

The parameters values are summarized in Table 5.4.

Parameter Description Value Unit

DV Diffusion coefficient of reovirus 0.01± 0.0015 mm2 per hour

γbT3wt Binding rate of wild type 0.96± 0.16 per hour

γbSV5 Binding rate of SV5 0.28± 0.09 per hour

α Death rate of infected cells 0.057± 0.030 per hour

ν Percentage of binding reovirus leads to infection 0.01 cell per virus

b̃ Infectious burst size of reovirus 500-1000 virus per cell

b̃T3wt Infectious burst size of T3wt 514± 114 viable virions per cell

b̃SV5 Infectious burst size of SV5 732± 146 viable virions per cell

Table 5.4: Estimated parameter values of system (5.9).

5.4 Model Analysis

Now, as all model parameters are identified, we can begin its analysis.
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5.4.1 Viral Replication Number

A useful quantity for the analysis of our model is the virus replication number (VRN)

i.e RV of the ODE system (5.9) as defined in [201]. Since the system (5.9) is linear and

the only steady state is (I, V ) = (0, 0), then the corresponding eigenvalue problem is

A

⎡⎢⎣ I
V

⎤⎥⎦ = λ

⎡⎢⎣ I
V

⎤⎥⎦ where A =

⎡⎢⎣−α γbν

αb̃ −γb

⎤⎥⎦ (5.10)

Condition detA = 0 can be written as RV = 1, where

RV = b̃ν. (5.11)

The stability of the steady state (I, V ) = (0, 0) is determined by RV. Mathemat-

ically, if RV < 1, then both eigenvalues of the matrix A are negative and hence the

steady state (0,0) is stable. Biologically, this means that the virus dies out. On the

other hand, if RV > 1, then we have one positive eigenvalue and the second eigenvalue

is negative. Therefore, the steady state is unstable and hence the virus can spread

to infect the neighbouring cells and as a result the virus population grows. From

the experimental data, we find that RV = b̃ν > 1, where RVT3wt = 5.14 ± 1.14 and

RVSV5 = 7.32± 1.46, respectively.

5.4.2 Travelling Invasion Wave

One way to understand the effect of the binding rate γb on the viral invasion in the

L929 cell culture is the invasion wave analysis. Here we assume that RV > 1, such

that the virus can grow. The speed c of the virus invasion is then called the wave

speed and there is an established theory to estimate it [107]. Since our model (5.9) is

linear we use the leading edge method, where we focus on the behaviour of the front

profile of the invasion, near the steady state (I, V ) = (0, 0). We use c to denote the

invasion wave speed and λ to denote its exponential decay rate. Hence we look for

solutions of the form (I(x, t), V (x, t)) = (εie
−λz, εve

−λz) with z = x − ct and small
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constants εi, εv. Substituting the Ansatz for (I(x, t), V (x, t)) into system (5.9), we

get

γbνεv − cλεi − αεi = 0

DVλ
2εv − cλεv + αb̃εi − γbεv = 0 (5.12)

We write system (5.12) in a matrix form Aε = 0,⎡⎢⎣−(cλ+ α) γbν

αb̃ DVλ
2 − cλ− γb

⎤⎥⎦
⎡⎢⎣εi
εv

⎤⎥⎦ =

⎡⎢⎣0
0

⎤⎥⎦ . (5.13)

Thus, to obtain a non-trivial solution, we assume that the determinant of the matrix

A is zero. The characteristic equation of (5.13) is

− (cλ+ α)
(︁
DVλ

2 − cλ− γb
)︁
− αγbb̃ν = 0. (5.14)

Following a method of Volpert [201], we introduce ϱ = cλ > 0, substitute it into

(5.14) and solve it for c2 to obtain

c2 = χ(ϱ) :=
DVϱ

2(α + ϱ)

ϱ2 + (α + γb)ϱ− αγb(b̃ν − 1)
. (5.15)

Next we show that χ(ϱ) has a unique positive minimum at ϱ∗ such that the minimal

wave speed c∗ is given by

c∗ =
√︁
χ(ϱ∗).

Consequently, we find the decay rate of the invasion with minimal speed as

λ∗ =
ϱ∗

c∗
. (5.16)

For the parameter values that we estimated for the two virus types T3wt and SV5,

as reported in Table 5.4, we plot the curves χ(ϱ) in Figure 5.5 (A). The function χ(ϱ)

has zeros at ϱ = 0, and ϱ = −α, which are not relevant since we require ϱ > 0. Also,

χ(ϱ) has a vertical asymptote at

ϱv =
−(α + γb) +

√︂
(α + γb)2 + 4αγb(b̃ν − 1)

2
> 0. (5.17)
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Figure 5.5: The travelling wave when we vary the binding rate γb for the T3wt and
the SV5 with DV = 0.01, α = 0.057, and ν = 0.01. (A): γbT3wt = 0.96, with b̃ = 514,
(B): γbSV5 = 0.28, with b̃ = 732.

The positive minima, indicated as dots in Figure 5.5 (A), are right of the asymptote,

hence we define

c∗ =
√︂

min
ϱ>ϱv

χ(ϱ). (5.18)

For the parameter values from Table 5.4 we get

c∗T3wt = 0.04366 mm per hour and c∗SV5 = 0.05941 mm per hour. (5.19)

In Figure 5.5 (B) and (C) we show numerical simulations of the invasion waves

for these parameters. We see that the invasion wave of T3wt (B) is slower than the

invasion of the SV5 virus (C). If we compute the invasion speeds numerically, we find

cT3wt = 0.04373 mm per hour and cSV5 = 0.05990 mm per hour,

which is very close to the theoretical values above (5.19).

We also determine the corresponding invasion front decay rate (λ∗) by formula

(5.16) and find

λ∗T3wt = 6.9 permm, and λ∗SV5 = 5.4 permm. (5.20)

5.5 Validation of Model 2 on Invasion Front Data

In the previous sections we estimated all the model parameters as summarized in

Table 5.4, plus the invasion speeds c∗ and the decay rates λ∗ at the edge of the
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(A) (B)

Figure 5.6: SV5 spread farther than T3wt. (A): Immunofluorescence pictures of T3wt
and SV5 plaques formation at days 2, 3 and 4 post infection, (B): Quantification of
the fluorescence from the edge of the plaque to represent the spread of the virus. (or
Figure 6 (H) and (I) in [53].)

invasion front. To validate our model (5.9) we compare it now to data that have not

been used to parameterize the model. The set of data is an experiment in [53] where

we use fluorescence measurements of viral load at the edge of the plaques.

When plaques are evaluated by crystal violet staining, as in the above experiments,

then plaque size reflects the size of the clearance produced by killing cells in the center.

Crystal violet staining does not, however, reveal the extent of cells that are infected by

virus but are still alive. Therefore, immunofluorescence was used to directly visualize

reovirus-infected cells in the plaques over days 2, 3 and 4 post infection [53]. The

immunofluorescence allowed visualization of individual infected cells at the rim of the

plaque Figure 5.6. In these experiments, SV5 infected cells at a further distance from

the origin of infection (i.e. center of the plaque) relative to T3wt. Mathematically,

this can be represented by estimating the decay rate λ of the invasion front of T3wt

and SV5 viruses from the plaque edge.
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To estimate the decay rates of the T3wt invasion front λT3wt and the SV5 invasion

front λSV5 from the data, we apply MATLAB to fit the data in Figure 5.6 with an

exponential decay function for the flourescence value Fl(x, t) = e−λ(x−s), where λ is

the invasion front decay rate and s is a shift of the exponential decay function to

place it at the best location for the fit. In Figures 5.7 and 5.8 we show this fit in red

with the corresponding data in blue.

In Figure 5.7 we find the best fit decay rates on days 2,3,4 to be λ = 0.029 ±

0.001, 0.022 ± 0.0004, 0.014 ± 0.0003 per pixel, which has a mean value of λ = 0.022

per pixel. There are 445 pixel per mm, hence we find λT3wt = 9.8 per mm. This

corresponds well with the previous estimate in (5.20) of λ∗T3wt = 6.9 per mm. For the

supervirus SV5 we find the decay rates λ = 0.015 ± 0.0005, 0.011 ± 0.0002, 0.007 ±

0.0002 per pixel, with an average of 0.011. This corresponds to λSV5 = 4.95 per mm.

Again, this is very close to the theoretical value of λ∗SV5 = 5.4 per mm from (5.20).
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Figure 5.7: The T3wt invasion front’s decay rate is illustrated by the blue dots,
depicting the data of the viral spread from the plaque’s edge. The red curve represents
the best fit decay rates. (A): λ = 0.029 at t= 2 days (B):λ = 0.022 at t=3 days and
(C):λ = 0.014 at t=4 days.
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Figure 5.8: The SV5 invasion front’s decay rate is illustrated by the blue dots, de-
picting the data of the viral spread from the plaque’s edge. The red curve represents
the best fit decay rates. (A): λ = 0.015 at t= 2 days (B): λ = 0.011 at t=3 days and
(C): λ = 0.007 at t=4 days.

5.6 The Relationship Between Binding Rate and

Wave Speed

The relationship between the binding rate γb and the invasion wave speed is very

important. To optimize the efficacy of reovirus treatment, we like to find the binding

rate γbmax that maximizes the viral invasion speed c∗. The minimal invasion speed is

given by formula (5.18), where the function χ(ϱ) and the value of the asymptote ϱv

both depend on the binding rate γb. We first look at the extreme cases γb = 0 and

γb → ∞.

In the case of no virus binding (γb = 0), there will be no invasion, since the virus

cannot replicate. In this case we expect c∗ = 0. Indeed, in case of γb = 0, direct

calculation in (5.15) and (5.17) shows that

ϱv = 0 and χ(ϱ) = DVϱ,

and

c∗ =
√︂

min
ϱ≥0

χ(ϱ) = 0.

This means when the binding rate γb = 0, the wave speed for T3wt and SV5 viruses

is zero.
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In the other extreme of very strong binding γb → ∞, the virus will bind imme-

diately to cells and will no longer be able to invade any further. So we also expect

c∗ = 0. In this case we have the singularity of χ(ϱ) at ϱv = α(b̃ν − 1). For ϱ > ϱv we

can apply L’Hopital’s rule to χ(ϱ) given in (5.15) to consider the limit as γb → ∞.

We find

lim
γb→∞

χ(ϱ) = 0,

which implies c∗ = 0.

Since in the two extreme cases of γb the invasion speed is zero, and since χ and ϱv

depend continuously on γb for ϱ > ϱv, we conclude that there is at least one maximum

of c∗ for some intermediate value γb ∈ (0,∞).

To find this value we consider the critical points of χ(ϱ):

0 =χ′(ϱ)

=
DVϱ

(︂
ϱ3 + 2(α + γb)ϱ

2 + (α2 + 4αγb − 3αγbb̃ν)ϱ− 2α2γb(b̃ν − 1)
)︂

[︂
ϱ2 + (α + γb)ϱ− αγb(b̃ν − 1)

]︂2
=
DVϱP3(ϱ)

P 2
2 (ϱ)

,

where

P3(ϱ) = ϱ3 + 2(α + γb)ϱ
2 + (α2 + 4αγb − 3αγbb̃ν)ϱ− 2α2γb(b̃ν − 1).

and

P2(ϱ) = ϱ2 + (α + γb)ϱ− αγb(b̃ν − 1).

Thus, χ′(ϱ) = 0 when ϱ = 0 or P3(ϱ) = 0. Clearly, the coefficient of ϱ3 and ϱ2 are

positive while the sign of the coefficient of ϱ0 is negative. The sign of the coefficient

of ϱ depends on the value of γb after fixing the parameter values of α, b̃, and ν.

Based on Descartes’ rule of signs [214] even if the sign of the coefficient ϱ is positive

or negative, we have only one positive real root and 2 or zero negative real roots of P3.

Therefore, there exist a unique ϱ∗ > 0, such that χ′(ϱ∗) = 0. Furthermore, at ϱ = 0,

we have P3(0) = −2α2γb(b̃ν − 1) < 0, with the continuity of P3(ϱ) and being concave
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up since P ′′
3 (ϱ) = 6ϱ + 4(α + γb) > 0 for each ϱ ≥ 0. Therefore, by the Intermediate

Value Theorem and the Mean Value Theorem, there is only one positive real root i.e

ϱ∗ > 0 such that P3(ϱ
∗) = 0. Thus for each γb > 0, χ(ϱ∗) is a unique minimum with

P3(ϱ
∗) = 0 for ϱ∗ > ρv. The maximum possible invasion speed is then

c∗max = max
γb∈(0,∞)

c∗(γb).

For the parameter values from Table 5.4 for T3wt and SV5 we plot the function

c∗(γb) as red line for T3wt and in purple for SV5 in Figure 5.9 (A). As red and purple

points we indicate the estimated binding rates for the corresponding cases, and in

black we indicate the maximum of these curves.

• For T3wt (red curve) we observe that the invasion speed could be increased by

reducing the binding rate γb from 0.96 per hour to 0.29 per hour. In that case the

speed would change from 0.044 mm per hour to 0.048 mm per hour. Expressed

in percentage of binding after one hour, we aim to decrease the percentage of

binding of T3wt virus from 61.7 % to 25.9 %.

• In the case of SV5 (purple curve) we see that an increase in binding rate from

0.28 to 0.42 would have a small accelerating effect from c∗ = 0.059 to 0.060.

In other words, we like to increase the percentage of binding of SV5 virus after

one hour from 24.4 % to 34.3 %.

• We also notice that this result depends on the burst size of the corresponding

virus. As indicated earlier, and also in [53], the difference in the burst sizes is

not statistically significant. Hence we add, in blue, the corresponding curve for

the mean burst size of b̃ = 623. The curve is very similar to the red and purple

curves and the maximum invasion speed of c∗ = 0.054 is found for a binding

rate near 0.36.

• We also considered some extreme cases for the burst size of b̃ = 500 and b̃ =

1000. For b̃ = 500 we find γbmax = 0.28 per hour with corresponding wave
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speed c∗max = 0.04775 mmper hour, while for the upper bound of burst size

b̃ = 1000 virus per cell we find γbmax = 0.5 per hour with corresponding wave

speed c∗max = 0.07154 mmper hour.

(A) (B)
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0
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Figure 5.9: (A) The relationship between the binding rate γb and the invasion speed c∗

for T3wt, SV5, and when b̃ = 623.We plot the function (5.15) for different values of γb
to find the maximum γbmax that leads to maximum wave speed i.e c∗max. The numerical
results indicate that for T3wt virus, the c∗max = 0.04858 at γbmax = 0.29, while the
c∗max = 0.06002 at γbmax = 0.42 for SV5 virus. Finally, when we choose intermediate
value of infectious burst size b̃, we find the c∗max = 0.05460 at γbmax = 0.36. (B) The
values of the minimum wave speed c∗ when we vary the binding rate γb and the burst
size b̃. The maximum wave speed c∗ is 0.07154 when γb = 0.5 and b̃ = 1000. The
values of the binding rate in (B) have the range γb ∈ [0.15, 0.5].

The previous results emphasize the importance of the burst size parameter b̃ in

determining the viral spread c∗ and, as a result, the plaque size. In Figure 5.9 (B),

we determine the minimum wave speed values, denoted as c∗, by varying the binding

rate γb and the burst size b̃. It is observed that for our range of possible burst sizes

b̃ ∈ [500, 1000], the maximum wave speed c∗ reaches 0.07154 when γb = 0.5 and

b̃ = 1000.
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γb % of Binding c∗ b̃ γmax

b̃

T3wt Data 0.96 61.7 0.04366 514

Max T3wt 0.29 25.2 0.04858 514 0.00056

Intermediate Max 0.36 30.2 0.05460 623 0.00058

SV5 Data 0.28 24.4 0.05941 732

Max SV5 0.42 34.3 0.06002 732 0.00057

Table 5.5: The infectious burst size, the binding rate, % of binding viruses and the
corresponding wave speed for the wild type T3wt, intermediate infectious burst size,
and SV5 virus.

b̃ γbmax
γbmax

b̃
c∗max Plaque Size

virus per cell per hour cell per (virus × hour) mm per hour mm2

500 0.28 0.00056 0.04775 5

550 0.32 0.00058 0.05065 20

600 0.36 0.00060 0.05338 32

650 0.36 0.00055 0.05600 43

700 0.39 0.00056 0.05848 55

750 0.43 0.00057 0.06090 69

800 0.47 0.00059 0.06316 82

850 0.47 0.00055 0.06538 95

900 0.51 0.00057 0.06753 106

950 0.51 0.00054 0.06959 121

1000 0.50 0.00050 0.07154 129

Table 5.6: The ratio of infectious burst size, the corresponding maximum binding
rate, the maximum wave speed and the corresponding plaque size. The plaque size
is computed with Model 3 as described in Section 5.7.

We observe that the ratio γmax

b̃
in Table 5.5 and Table 5.6 remains nearly constant

for each maximum binding rate γmax corresponding to the burst size b̃. Hence, we

might use the ratio γmax

b̃
as a benchmark to assess how closely the experimental results

approach the maximum required viral spread speed. The average number of ratio γmax

b̃

is 0.00056. Therefore, the optimal binding rate and burst size have a ratio of about
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0.00056.

5.7 Model 3: Plaque Size

Results in Section 5.6 emphasize the importance of the burst size parameter b̃ in

determining the viral spread c∗ and, as a result, the plaque size. Motivated by these

findings, this section embarks on an investigation into how variations in both the

burst size b̃ and the binding rate γb parameters influence plaque size.

5.7.1 Plaque Size Experiments

In [53] an experiment is designed to measure the plaque size of the T3wt and SV5

viruses. They reported the relative areas ASV5/AT3wt and found that the relative value

of plaque size between SV5 and T3wt after 5 days varies between 3.4530 to 5.1248.

This means that after 5 days, the plaque size of SV5 virus is about 4 times larger than

the plaque size of the T3wt virus. We would like to point out the reason to measure

the relative value of plaque size. It was observed that repeat experiments lead to

different plaque sizes, due to variables that are out of control of the experimentalist

such as cell viability, humidity, person performing the experiments, etc.. However,

the relative plaque size difference of a factor of 4 were similar in all experiments. The

reported values for ASV5/AT3wt are

7.5575, 4.3643, 3.5976, 3.3551, 4.2194, 4.0628, 4.2596, 3.7092, 3.4748.

with mean and standard error

ASV5

AT3wt

= 4.2889± 0.8359,

which we like to confirm with our model.

To properly keep track of the plaque sizes, we now include the cancer cell compart-

ment C(x, t) explicitly. The plaques correspond to regions of dead cancer cells, and

in our modelling we identify those as regions where C(x, t) is below a small threshold.
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Our previous model (5.9) is now extended to Model 3:

∂C

∂t
= −γbνCV,

∂I

∂t
= γbνCV − αI,

∂V

∂t
= DV

∂2V

∂x2
+ αb̃I − γbV,

(5.21)

where all parameters have already been identified in Table 5.4.

We numerically solve our model (5.21) with virus inoculated in the center of a

two-dimensional domain (see Figure 5.10). We estimate the plaque sizes after 5 days

with threshold for cancer cells of 1%, indicated as a red line in the figures. We find

a ratio ASV5

AT3wt
= 55.4177

15.2053
≈ 3.6, which is very close to the experimental ratio mentioned

above. We note that the T3wt and SV5 invasion forms a hollow ring spread pattern

(see Figure 5.10). Such invasion patterns are typical for virus infections of tissues,

and were also previously found in [81, 215].

Furthermore, we perform simulations of this model for a few chosen parameter

values to see the dependence on γb and b̃. In Figure 5.11 and 5.12, we fix all parameters

as in Table 5.4, while the burst size b̃ is varied as follows: 514 (T3wt), 623 (average),

732 (SV5), and 1000 (max). A notable increase in plaque size is observed for increased

burst size.
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Figure 5.10: The plaque sizes at 5 days. (A)+(B): T3wt spread with cancer cell
density in (A) and viral concentration in (B). The C-level of 1% is indicated as a red
line. (C)+(D): SV5 infection with cancer cells in (C) and SV5 in (D). The computed
plaque sizes are indicated in the red circle in (A) which is 15.2053 for T3wt virus and
55.4177 for SV5 virus in (C). Therefore, the relative plaque size of SV5 related to
T3wt is 3.6446.
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Figure 5.11: The plaque size of T3wt at t=5 days when γb = 0.96 with different burst
size b̃. (A): b̃ = 514 (B): b̃ = 623 (C): b̃ = 732 and (D): b̃ = 1000. The threshold=
1 %.
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Figure 5.12: The plaque size of SV5 at t=5 days when γb = 0.28 with different burst
size b̃. (A): b̃ = 514 (B): b̃ = 623 (C): b̃ = 732 and (D): b̃ = 1000. The threshold=1
%.

The paper [53] presents an additional dataset that we have not included here.

These data pertain to plaque experiments conducted under the administration of the

drug neuraminidase. Neuraminidase, known as a cancer chemotherapy agent, reduces

the binding affinity of the virus. Our extended model (5.21) appears to offer the

appropriate level of detail to simulate these experiments, and I am currently engaged

in discussions with the Shmulevitz lab regarding the specifics of this modeling.

5.8 Conclusion

In this study, we employ a reaction-diffusion model to investigate key aspects of viral

dynamics. Specifically, we explore the impact of the binding rate on virus spread,

the correlation between viral invasion speed and binding rate, and the repercussions

of reducing binding rate on plaque size. Two distinct time scales are considered: a

short duration (less than 16 hours) focusing on viral spread preceding cell death and
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replication events, and a longer time scale addressing viral infection between cells.

All the parameters in our models are estimated using data from [53].

Our model establishes a connection between viral spread speed and binding rate,

revealing the maximum viral spread aligns with a fine balance of viral binding. The

binding has to be fast enough to allow for efficient cell infection, but it also has to

be weak enough to allow the virus to spread throughout the medium. This result

contradicts some common belief that increased binding rate leads to increased viral

invasion. For the specific case of reovirus, our findings indicate that 25.9% binding

after one hour is necessary for T3wt virus to achieve the maximum viral spread rate,

whereas the SV5 virus requires approximately 34.3% binding after one hour.

Despite experimental results in [53] indicating no significant difference in burst size

between T3wt and SV5 viruses, our numerical results present a contrasting perspec-

tive. The burst size parameter emerges as a critical determinant influencing viral

spread, as an increase in burst size corresponds to heightened viral spread speed

and, consequently, larger plaque sizes. This underscores the significance of the burst

size parameter, as supported by various virotherapy references [88, 191]. Therefore,

augmenting the burst size in conjunction with the optimal binding rate has the po-

tential to yield substantial improvements in virotherapy outcomes. Additionally, our

extended model results align with experimental data on relative plaque size and viral

spread from the edge, reinforcing the robustness of our findings.

To sum up, the results of this study hold significant implications for advancing the

development of anti-cancer viruses. The insights gained from this research are antic-

ipated to play a pivotal role in shaping forthcoming strategies aimed at augmenting

the therapeutic efficacy in the context of not only virotherapy but also viral infections

in general.
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Chapter 6

Conclusion and Future Work

The kingdom of viruses is expansive and diverse, encompassing a multitude of forms

and structures, ranging from minuscule viruses to colossal mega-viruses. These enti-

ties play integral roles in the ecosystem, influencing the existence of every species on

the planet. While capable of spreading contagion, viruses also possess the capacity

to confer benefits essential to life itself [10, 55].

Oncolytic virotherapy represents a strategic endeavor to harness viral infections

for our advantage. The concept involves infecting cancer cells with viruses, aiming

either to directly eliminate them or to flag them for targeted immune responses.

However, the path to developing effective oncolytic viruses is complex and convoluted.

Numerous laboratories worldwide are immersed in fundamental research endeavors

aimed at gaining a deeper understanding of the viral life cycle, encompassing processes

such as binding, replication, cell lysis, and subsequent spread. It is within this realm of

foundational research that I contribute, employing mathematical modeling techniques

to shed light on crucial aspects of viral behavior and interaction with host cells.

In Chapter 2, a simple reaction-diffusion model is employed alongside homogeniza-

tion techniques to assess whether the spatial distribution of host cells influences the

effectiveness of viral infection. Through this approach, we not only validate the ex-

perimentally observed phenomenon but also establish a means to quantify the results

using either arithmetic or geometric means.
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Chapter 3 and 4 lead us to a detailed analysis of a prominent model within oncolytic

virotherapy, extensively documented in numerous papers. Central to this model are

oscillations induced by a Hopf bifurcation, which hold significant importance. Our

exploration extends to understanding the spatial coupling of these oscillations, identi-

fying precise conditions conducive to the formation of a hollow ring pattern—a pivotal

configuration for effective tumor eradication. Furthermore, we establish the minimum

wave speed required for the propagation of invading waves, considering both cancer

cells and oncolytic viruses. Through 2-D numerical simulations, we uncover intricate

spatial dynamics in virus infection, unveiling a novel phenomenon characterized by

the periodic splitting of peaks in a mass-action scenario. Furthermore, the long time

simulations uncovered highly complex spatio-temporal oscillations with potential rele-

vance to a broad spectrum of virus infections, including COVID-19. Given that many

COVID-19 patients experience long-lasting recurring effects [187, 188], it’s plausible

to speculate that sustained oscillations could contribute to such outcomes.

In Chapter 5, our focus centers on the examination of specific viruses, specifically

the reovirus T3wt and SV5. We delve into understanding the influence of the binding

rate on virus spread, the relationship between viral invasion speed and binding rate,

and the consequences of reducing the binding rate on plaque size. We establish a

direct link between the speed of viral spread and the binding rate, elucidating that

the optimal viral spread occurs when there is a delicate equilibrium in viral bind-

ing. Our investigation into the reovirus reveals that for the T3wt virus, achieving a

binding rate of 25.9% after one hour is imperative for attaining the maximum rate of

viral spread, while the SV5 virus necessitates approximately 34.3% binding after the

same duration. Moreover, despite the findings of the experiments in [53] indicating

no substantial variance in burst size between T3wt and SV5 viruses, our numerical

analysis presents a contrasting viewpoint. The burst size parameter emerges as a piv-

otal factor influencing viral spread, as an augmentation in burst size correlates with

heightened viral spread speed and consequently, larger plaque sizes. This underscores
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the significance of the burst size parameter, a notion reinforced by several references

in virotherapy literature [88, 191]. Thus, enhancing the burst size alongside achieving

the optimal binding rate holds promise for significantly enhancing virotherapy out-

comes. Furthermore, our extended model’s findings are consistent with experimental

data on relative plaque size and viral spread from the edge, reinforcing the reliability

and robustness of our conclusions.

It is very satisfying to witness how simple mathematical models can significantly

enhance our comprehension of oncolytic virotherapy. Through our modeling efforts,

we have pinpointed optimal binding conditions that enable reovirus to achieve max-

imum spatial spread. Moreover, we have demonstrated that the collective behavior

of cells in a homogeneous mixture may not simply be the sum of their individual

contributions, particularly when considering virus-host oscillations, which can be ad-

vantageous to patients, particularly in scenarios involving hollow-ring dynamics.

Of course, these models can be expanded to incorporate additional factors, with the

foremost being the immune response. Now that we have characterized all parameters

governing viral dynamics, the logical progression is to integrate immune responses. I

aspire to further this research in my future endeavors in cancer research.
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Appendix A: Checkerboard Data

Here we present the raw-data as measured in the experiments by Hesung Now, Ju An

Park, Woo-Jong Kim, Sungjune Jung, and Joo-Yeon Yoo. Table A.1 and A.2 repre-

sent the kinetics of influenza A virus separately in the homogeneous cell populations

in a first and second experiment with triplicated data sets. In both experiments, the

CT (HA) gene expression, CT (mGAPDH) gene expression, ∆CT , ∆∆CT and RQ

have been measured for weak and strong infectivity cells at t=0, t=6, t=12 and t=24

hours respectively. See equations (2.1,2.2,2.3). The viral load is represented by the

RQ value, where the RQ is the relative quantification as we mentioned in section 2.2.

Table A.3, represents the viral load for the checker board experiments at one day

with three independent samples. In the micro-pattering experiment, the CT (HA)

gene expression, CT (GAPDH) gene expression, RQ and the average RQ (average

viral load) have been measured in the mix plate, 1.5 mm, 3 mm and 5 mm, respec-

tively.
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Sample name CT (HA)
(Target gene)

CT (mGAPDH)
(Reference gene)

∆CT ∆∆CT RQ

Weak 0h-1 32.906 13.687 N.D N.D N.D

Weak 6h-1 22.480 16.430 6.0500 0.1090 0.9272

Weak 12h-1 20.533 15.500 5.0330 -0.9080 1.8764

Weak 24h-1 20.008 14.719 5.2890 -0.6520 1.5713

Weak 0h-2 33.670 14.912 N.D N.D N.D

Weak 6h-2 22.681 16.685 5.9960 0.0550 0.9626

Weak 12h-2 20.690 15.757 4.9330 -1.0080 2.0111

Weak 24h-2 20.184 14.417 5.7670 -0.1740 1.1282

Weak 0h-3 33.175 15.184 N.D N.D N.D

Weak 6h-3 22.137 16.360 5.7770 -0.1640 1.1204

Weak 12h-3 20.611 15.687 4.9240 -1.0170 2.0237

Weak 24h-3 19.864 13.947 5.9170 -0.0240 1.0168

Strong 0h-1 33.714 14.757 N.D N.D N.D

Strong 6h-1 21.071 15.869 5.2020 -0.7390 1.6690

Strong 12h-1 9.745 15.780 3.9650 -1.9760 3.9340

Strong 24h-1 17.433 13.385 4.0480 -1.8930 3.7141

Strong 0h-2 34.002 13.825 N.D N.D N.D

Strong 6h-2 20.420 15.398 5.0220 -0.9190 1.8908

Strong 12h-2 19.875 15.901 3.9740 -1.9670 3.9095

Strong 24h-2 18.039 14.757 3.2820 -2.6590 6.3160

Strong 0h-3 34.402 14.588 N.D N.D N.D

Strong 6h-3 20.254 15.299 4.9550 -0.9860 1.9807

Strong 12h-3 19.902 15.728 4.1740 -1.7670 3.4035

Strong 24h-3 18.447 14.939 3.5080 -2.4330 5.4002

Table A.1: The growth rate of influenza A virus in weak and strong population in
first experiment with three data sets for one day. N.D means not determined

159



Sample name CT (HA)
(Target gene)

CT (mGAPDH)
(Reference gene)

∆CT ∆∆CT RQ

Weak 0h-1 N.D 13.927 N.D N.D N.D

Weak 6h-1 24.539 19.245 5.2940 -0.3600 1.2834

Weak 12h-1 18.613 15.948 2.6650 -2.9890 7.9390

Weak 24h-1 20.678 14.778 5.9000 0.2460 0.8432

Weak 0h-2 N.D 14.059 N.D N.D N.D

Weak 6h-2 23.796 17.951 5.8450 0.1910 0.8760

Weak 12h-2 19.146 16.261 2.8850 -2.7690 6.8164

Weak 24h-2 20.581 15.002 5.5790 -0.0750 1.0534

Weak 0h-3 37.975 14.316 N.D N.D N.D

Weak 6h-3 23.748 17.925 5.8230 0.1690 0.8895

Weak 12h-3 19.805 17.057 2.7480 -2.9060 7.4950

Weak 24h-3 20.570 14.960 5.6100 -0.0440 1.0310

Strong 0h-1 N.D 14.942 N.D N.D N.D

Strong 6h-1 21.493 16.308 5.1850 -0.4690 1.3841

Strong 12h-1 16.076 14.713 1.3630 -4.2910 19.576

Strong 24h-1 15.642 14.052 1.5900 -4.0640 16.726

Strong 0h-2 36.907 14.285 N.D N.D N.D

Strong 6h-2 21.513 16.950 4.5630 -1.0910 2.1302

Strong 12h-2 16.607 15.885 0.7220 -4.9320 30.527

Strong 24h-2 16.010 13.580 2.4300 -3.2240 9.3437

Strong 0h-3 N.D 13.836 N.D N.D N.D

Strong 6h-3 20.211 15.401 4.8100 -0.8440 1.7950

Strong 12h-3 15.965 14.355 1.6100 -4.0440 16.495

Strong 24h-3 15.060 13.967 1.0930 -4.5610 23.605

Table A.2: The growth rate of influenza A virus in weak and strong population in
second experiment with three data sets for one day. N.D means not determined
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Size of inner square CT (HA) CT (GAPDH) RQ Average RQ

Mix-1 15.366 15.157 1.0669

Mix-2 14.849 15.013 1.3816 1.2957

Mix-3 14.695 14.917 1.4387

1.5 mm-1 15.148 14.845 1.0000

1.5 mm-2 15.172 15.395 1.4396 1.3305

1.5 mm-3 15.461 15.793 1.5520

3 mm-1 14.621 15.638 1.7034

3 mm-2 15.266 15.087 1.2569 1.9304

3 mm-3 14.440 15.294 2.8308

5 mm-1 14.191 15.060 2.2519

5 mm-2 14.948 16.609 3.8978 3.3996

5 mm-3 14.547 16.262 4.0492

Table A.3: The influenza A viral load on the micro-patterning for the different inner
square sizes with three samples at one day.
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