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Abstract

This thesis introduces a new approach for grounding concepts to vision using visual

descriptions1, which are text-based descriptions of visual attributes. We hypothesize

that these descriptions can enhance the grounding of concepts to vision, thereby im-

proving performance in vision-language tasks. We also suggest that these descriptions

can be effectively produced using pre-trained language models. Toward validating our

hypotheses, we conduct two studies.

In the first study, we address the task of visual word sense disambiguation. This

task aims to select the image that best represents the meaning of a word in con-

text. Here, we demonstrate that augmenting the original context with rich visual

descriptions produced by a language model significantly improves performance.

In the second study, we attempt to produce visual descriptions for arbitrary, con-

crete concepts, focusing on two downstream tasks: zero-shot image classification and

zero-shot class-conditional image generation. Primarily, we demonstrate that con-

ditioning a large language model with lexico-semantic knowledge from a semantic

knowledge base produces richer, and better grounded visual descriptions than previ-

ous methods. Furthermore, these visual descriptions result in substantial empirical

improvements in the aforementioned downstream tasks.

Overall, this thesis confirms our initial hypothesis and demonstrates that visual

descriptions offer a robust mechanism for grounding concepts to the visual domain.

1https://en.wikipedia.org/wiki/Visual_description
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Preface

The work presented in Chapter 2 is published as M. Ogezi, B. Hauer, T. Omarov,

N. Shi, and G. Kondrak “UAlberta at SemEval 2023 Task 1: Context Augmentation

and Translation for Multilingual Visual Word Sense Disambiguation” (Ogezi et al.,

2023b). The author of this thesis has implemented the methods and conducted all

experiments described in the chapter.

Chapter 3 is adapted from the research article M. Ogezi, B. Hauer, and G. Kon-

drak “Visualy-Grounded Descriptions Improve Zero-Shot Image Classification” (Ogezi

et al., 2023a) in submission. The author of this thesis has implemented all methods

and performed all experiments described in the chapter.
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“Vision is the art of seeing what is invisible to others.”

-Jonathan Swift

iv



To my parents, who loved me unconditionally, not merely as a biological imperative,

but as a profound act of devotion that shaped my life. Your unwavering support and

belief in me have been the bedrock of my journey. This work is a testament to your

love and sacrifice.

v



Acknowledgements

I express my gratitude to my supervisor, Greg Kondrak, for his guidance. I also

appreciate Alona Fyshe and Lili Mou for warmly welcoming me into their group

meetings and for creating a conducive environment for research discussions.

In no particular order, I owe a debt of gratitude to Sam, Uduak, Ning, Talgat, Eric,

Abhishek, Bryan, Siting, Revan, Sacha, Justin, Daniela, Aidan, Dawn, Tales, Jiayi,

Abdul, Sambo, Francesco, Sumedh, Shreya, Anna, Prabhat, Shibhansh, Farzane,

Bradley, Alan, Gabriel, and Runor for their invaluable emotional and research support

during my degree. I have made many great friends here and appreciate all the amazing

memories I’ve shared with them.

I extend my profound gratitude to my cherished family friends in Edmonton:

Bunmi and Niyi, as well as, Funmi and Gbenga. They have not only made my stay

delightful but have also been my family away from home.

I extend my gratitude to my siblings Susan, Oja, Enoche, Eunice, and Tina, as

well as my parents Eunice and Agbaji. Their steadfast support has been instrumental

to all I have achieved.

I am thankful to the Alberta Machine Intelligence Institute (Amii) for their un-

wavering support towards me and all AI graduate students.

This thesis was made possible through the funding provided by Amii.

vi



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Language Grounding . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Semantic Knowledge Bases . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Main Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Visual Word Sense Disambiguation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Task & Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Primary Systems . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Alternative Systems . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Supplementary Method . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Distribution Shift . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Traditional WSD . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.3 English-Langauge Bias . . . . . . . . . . . . . . . . . . . . . . 21
2.7.4 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.5 Text-Conditioned Image Segmentation . . . . . . . . . . . . . 22

vii



2.7.6 Algorithm Hyperparameters . . . . . . . . . . . . . . . . . . . 22
2.8 SemEval-2023 Shared Task Reflections . . . . . . . . . . . . . . . . . 23

2.8.1 Common Strategies . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.2 Top-Performing Methods . . . . . . . . . . . . . . . . . . . . . 24

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Visual Concept Description 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Mapping Classes to WordNet Synsets . . . . . . . . . . . . . . 31
3.4.2 V-GLOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3 Baseline & Previous Methods . . . . . . . . . . . . . . . . . . 37
3.5.4 Experiment 1: V-GLOSS Silver . . . . . . . . . . . . . . . . . 38
3.5.5 Experiment 2: ZSIC . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Conclusion 46
4.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendix A: Text-Conditioned Image Segmentation 58
A.1 Success Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.2 Failure Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



List of Tables

2.1 Languages within a sample of 100 training set instances . . . . . . . . 13
2.2 Binarized grid search results for weight hyperparameters. . . . . . . . 15
2.3 System performance on English, Italian, and Farsi test sets . . . . . . 18
2.4 Distribution shift between the training and test sets . . . . . . . . . . 20

3.1 WordNet glosses vs. V-GLOSS Silver descriptions . . . . . . . . . . . 28
3.2 Normal V-GLOSS vs. Contrastive V-GLOSS . . . . . . . . . . . . . . 34
3.3 Classification false positives vs. contrastive algorithm selections . . . 35
3.4 Extrinsic evaluation with zero-shot image classification and generation 39
3.5 Performance in zero-shot image classification . . . . . . . . . . . . . . 40

ix



List of Figures

2.1 Visual Word Sense Disambiguation Task . . . . . . . . . . . . . . . . 10
2.2 Overfitting on the training/dev set . . . . . . . . . . . . . . . . . . . 20
2.3 Hit rate vs. number of images generated for Gen and Gen+Def. . . 22
2.4 Original images and masks for andromeda (Japanese plant and galaxy) 23

3.1 V-GLOSS and V-GLOSS adaptations . . . . . . . . . . . . . . . . . . 27
3.2 V-GLOSS vs. CuPL . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 WordNet’s tree-based hypernym hierarchy . . . . . . . . . . . . . . . 33
3.4 V-GLOSS Attention Map . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 WordNet Gloss Attention Map . . . . . . . . . . . . . . . . . . . . . . 43

A.1 Andromeda (Japanese plant vs. galaxy) . . . . . . . . . . . . . . . . 59
A.2 Seg conditioned on “andromeda tree” . . . . . . . . . . . . . . . . 59
A.3 Seg conditioned on “andromeda” . . . . . . . . . . . . . . . . . . . 59
A.4 Seg conditioned on “tree” . . . . . . . . . . . . . . . . . . . . . . . . 59
A.5 Bank (finance vs. river) . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.6 Seg conditioned on “bank erosion” . . . . . . . . . . . . . . . . . . 60
A.7 Seg conditioned on “bank” . . . . . . . . . . . . . . . . . . . . . . . 60
A.8 Seg conditioned on “erosion” . . . . . . . . . . . . . . . . . . . . . . 60

x



Glossary of Terms

Image Classification A task in computer vision that involves predicting the class
or category of an image.

Language Model (LM) A statistical model that predicts the likelihood of a se-
quence of words in a sentence.

Large Language Model (LLM) A language model parameterized by a large neu-
ral network and trained on extensive text data.

Visual Concept Description (VCD) A novel task that involves describing the
visual attributes of a class or concept with text.

Visual Description A text description that specifies the visual attributes of a class
or concept.

Visual Word Sense Disambiguation (V-WSD) A vision-language task that in-
volves selecting the image from a set of candidates that best depicts a word’s
meaning in context.

Word Sense Disambiguation (WSD) A task in natural language processing that
involves determining the correct meaning of a word based on its context.

WordNet A lexical semantic knowledge base.

Zero-Shot A machine learning paradigm where a model is able to perform tasks it
has not been trained on.

Zero-Shot Class-Conditional Image Generation (ZSCIG) A vision-language task
where a model generates images based on a dynamic set of classes that it has
not been trained on.

Zero-Shot Image Classification (ZSIC) A vision-language task that involves cat-
egorizing images into a dynamic set of classes that it has not been trained on.

xi



Chapter 1

Introduction

The intersection of natural language processing (NLP) and computer vision (CV)

represents a critical frontier in the field of artificial intelligence. The ability to under-

stand and process both language and vision is of paramount importance in creating

systems that can interact with the world in a more human-like manner. This involves

not only interpreting language and vision as separate entities but also connecting

both modalities to create a more holistic understanding of the real world.

In this thesis, we aim to contribute to this fast-growing field by conducting studies

that focus on two language-vision tasks: visual word sense disambiguation (V-WSD)

and visual concept description (VCD). V-WSD involves selecting, from a set, the

image which best represents the contextual meaning of a word, while VCD involves

producing visual descriptions for concepts. These tasks have significant real-world

applications. For instance, in text-based image retrieval, understanding the visual

context to which text queries relate can result in more accurate and relevant results.

Similarly, in zero-shot image classification and generation, the ability to accurately

represent concepts and associate them with relevant images can greatly enhance the

performance of solution systems.

The first study focuses on the visual word sense disambiguation (V-WSD) task.

Here, we augment the very short context already provided. During augmentation,

we extend the context with a rich, visual description of the original. This approach

1



yields strong improvements in performance.

The second study focuses on the novel task of visual concept description (VCD).

Visual descriptions produced by VCD can subsequently be used for downstream tasks

such as zero-shot image classification and generation. This is a valuable upstream

task as it allows systems to produce and understand descriptions of concepts that

they have not been explicitly trained on. Our two-part approach leverages semantic

knowledge bases and transformer-based, pre-trained large language models to produce

rich and well-grounded descriptions of concepts. We earn strong improvements in

our downstream tasks, demonstrating the benefits of improved visual descriptions in

language-vision systems.

Both studies show the value of rich and well-grounded visual descriptions in bridg-

ing the gap between concepts and the images depicting them. We enhance the ca-

pabilities of language-vision models and pave the way for a deeper understanding of

concepts across both modalities.

1.1 Background

This section provides an overview of the key ideas that underpin our work. We discuss

language grounding, semantic knowledge bases, concepts, and language models, all of

which play a crucial role in our proposed methods.

1.1.1 Language Grounding

Language grounding involves connecting linguistic symbols (language) to perceptual

experiences and actions (Harnad, 1990). Thus, language grounding enables us to

associate everyday language with common experiences, knowledge, or emotions.

1.1.2 Semantic Knowledge Bases

Semantic knowledge bases (SKBs) are repositories of knowledge that capture informa-

tion about the world. This knowledge is structured as concepts and the relationships
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between them and the relationships between them. Prime examples of SKBs, in this

work, are wordnets such as Princeton WordNet (Miller, 1998), BabelNet (Navigli and

Ponzetto, 2012), and the Open Multilingual Wordnet (OMW) (Bond and Paik, 2012).

SKBs are composed of basic semantic units called synsets.

Synsets and Semantic Relationships

A synset is a set of words that are interchangeable in some context without changing

the truth value of the proposition in which they are embedded. For instance, consider

the synset, happy.1 with the constituent words “happy”, “elated”, and “felicitous.”

These words can be used interchangeably in a sentence like “She is [happy/elated/fe-

licitous] about the news,” without altering the overall meaning.

SKBs model various relationships between synsets. The relationships we focus on

in this work are hypernymy and hyponymy, which model the is-a relationship. More

specifically, hypernyms are supersets, while hyponyms are subsets. For example, an

apple is a kind of fruit; thus, fruit is a hypernym of apple, and apple is a hyponym of

fruit.

Lexico-Semantic Knowledge

SKBs also store lexico-semantic knowledge about synsets. This includes glosses (brief

definitions), usage examples, and semantic relationships. For instance, the gloss for

the synset apple.1 might be “a round fruit with red or yellow or green skin,” providing

a brief definition of the concept represented by the synset.

1.1.3 Concepts

A concept is an abstract notion that generalizes a class or category of objects, events,

or experiences (Spitzer, 1975). In the context of SKBs, we can think of a synset as a

group of words that can express the same concept. Hence, the relationship between

synsets and concepts is direct, and a synset is a representation of a concept.
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For example, consider the word “apple” in the sentence “I ate an apple.” Next,

consider an image of an apple. Although these two examples involve a lexical rep-

resentation and a visual representation, respectively, they both indicate the same

concept, which can be expressed both lexically and visually.

1.1.4 Language Models

Language models (LMs) are probabilistic, computational models that predict the

likelihood of a sequence of words (Jurafsky and Martin, 2023). They play a crucial

role in many NLP tasks, such as machine translation, sentiment analysis, and question

answering. In this work, we describe two types of language models: n-gram language

models and neural language models.

N-Gram Language Models

N-gram language models are a type of probabilistic language model used to predict

the next word in a sequence given the previous n − 1 words (Jurafsky and Martin,

2023; Charniak, 1996). For example, a bigram model (2-gram) predicts the next word

based on the preceding word. Given the word “New”, a bi-gram model might predict

“York” as the next word if “New York” appears frequently in its training data.

Neural Language Models

Neural language models (NLMs) use neural networks to predict the next word in a

sequence. Unlike n-gram models, which estimate probabilities based on the frequency

of sequences in the training data, NLMs learn continuous vector representations, or

embeddings, of words and use these embeddings to compute the probability of a

sequence of words (Bengio et al., 2000).

Transformer-Based Language Models The Transformer model (Vaswani et al.,

2017a) is a type of NLM that uses a self-attention mechanism to consider all words

in the input simultaneously. This allows the model to capture both local and global
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dependencies in the data. Transformer-based models, such as BERT (Devlin et al.,

2018) and GPTs (Radford et al., 2018, 2019; Brown et al., 2020), have shown remark-

able success in a wide range of NLP tasks.

We have described the key ideas of our work: language grounding, semantic knowl-

edge bases, concepts, and language models. Next, we will briefly describe the link

between these ideas. In essence, concepts and the relationships between them are rep-

resented within semantic knowledge bases as synsets, and we use the lexico-semantic

information linked to these synsets to prompt a language model to produce text that

improves language-to-vision grounding.

1.2 Contribution

This section presents our hypothesis, thesis statement, and the tasks we undertake.

We also outline our specific scientific contributions.

1.2.1 Hypothesis

Our hypothesis is twofold:

1. Visual descriptions focusing on the visual attributes of a concept perform better

in zero-shot language-vision tasks.

2. These descriptions can be reliably produced using relevant lexico-semantic knowl-

edge and a pre-trained large language model.

To validate our hypothesis, we compare descriptions produced by our method to

the baselines and previous methods on a range of language-vision tasks. This thesis

contributes significantly to the language-vision field, particularly in the novel tasks of

visual word sense disambiguation and visual concept description, and their relevance

to language grounding.
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1.2.2 Thesis Statement

This thesis demonstrates that language models conditioned with lexico-semantic knowl-

edge from a semantic knowledge base can produce visual descriptions that better ground

lexical concepts to vision.

Take the term brambling, for instance. This term refers to a small bird from

the Finch family. In WordNet (Miller, 1998), it is simply defined as a “Eurasian

finch”. However, our method generates a more detailed description: “Small brown

bird with a black head and a white patch on its chest.” This description is not only

richer but also more visually descriptive than the WordNet baseline. The empirical

evidence presented in this thesis demonstrates that our descriptions are more effective

in grounding concepts to vision, as they outperform baselines and previous methods

in zero-shot language-vision tasks.

Our research not only deepens the theoretical comprehension of the tasks under

consideration but also offers practical solutions that enhance performance across var-

ious applications.

From our work, we make three primary contributions.

Contribution #1: We demonstrate that prompting a language model with

lexico-semantic knowledge can produce visual descriptions that improve

language-to-vision grounding and enhance performance on language-vision

tasks We focus on two general tasks: visual word sense disambiguation and visual

concept description, demonstrating that both benefit from visual descriptions pro-

duced using our method.

Contribution #2: We introduce contrastive prompting, a novel prompting

method that induces a language model to produce visual descriptions that

are particularly useful in distinguishing similar concepts We demonstrate
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that contrastive prompting induces our language model to produce visual attributes

that differentiate one concept from another. For instance, when contrasting alliga-

tors and crocodiles, contrastive prompting produces descriptions such as “gray, round

snout” for alligators and “green, v-shaped snout” for crocodiles.

Contribution #3: We create a silver dataset of visual descriptions for the

1,000 classes in ImageNet and demonstrate that it outperforms previous

alternatives for vision-language tasks We produce a single, best description

for each class in ImageNet. We then extrinsically evaluate this dataset based on its

performance on a suite of language-vision tasks.

1.2.3 Main Tasks

Below is a summary of the tasks we undertake and the similar methods we employ to

address them. Both strategies utilize transformer-based, pre-trained large language

models to some extent. Our reliance on these models is based on two key observations.

Firstly, they generate contextually relevant text, thanks to the attention mechanism

(Vaswani et al., 2017b). Secondly, their extensive pre-training on a comprehensive

dataset equips them with a wealth of world knowledge (Brown et al., 2020), which

proves beneficial for the tasks at hand.

Visual Word Sense Disambiguation This task, which involves selecting the most

suitable image that represents the meaning of a word within a given context, is a

challenging problem due to the inherent ambiguity of words. Our approach addresses

this challenge by using a language model to augment the context already provided in

the task. We construct an algorithm that scores images based on their similarity to

both the augmented context and the potential senses of the focus word. This novel

approach yields strong improvements in performance, demonstrating the potential of

pre-trained large language models in enhancing our understanding of word meanings

in the vision domain.
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Visual Concept Description This task involves producing visual descriptions for

classes or concepts. These descriptions can then subsequently be used for down-

stream tasks such as zero-shot image classification. Our two-part approach leverages

semantic knowledge bases and transformer-based, pre-trained large language models

to produce rich, well-grounded visual descriptions of concepts. This approach yields

strong improvements in our downstream tasks, demonstrating the power of visually-

grounded descriptions in enhancing the performance of language-vision systems.

In both studies, we show the value of using visually-grounded descriptions to bridge

the gap between concepts and images. By leveraging transformer-based, pre-trained

large language models and semantic knowledge bases, we may enhance the capabilities

of language-vision models and pave the way for a deeper understanding of concepts

within both modalities. This work represents a significant step forward in integrating

NLP and CV, contributing to the development of more robust, effective, and useful

language-vision systems.

1.3 Outline

The remainder of this thesis is organized as follows: Chapter 2 focuses on the task of

visual word sense disambiguation, detailing our novel approach and the experimental

results that demonstrate its effectiveness. Chapter 3 introduces the novel task of

visual concept description. It presents our unique approach that leverages semantic

knowledge bases and pre-trained language models and discusses the significant im-

provements observed in downstream tasks. Finally, Chapter 4 concludes the thesis.

It provides a summary of our findings, discusses their implications for the field of

language-vision tasks, describes some limitations, and suggests potential directions

for future research.
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Chapter 2

Visual Word Sense Disambiguation

2.1 Introduction

This chapter addresses our work on SemEval-2023 Task 1: Visual Word Sense Disam-

biguation1 (Raganato et al., 2023). The visual word sense disambiguation (V-WSD)

task is closely related to the word sense disambiguation (WSD) task, and similarly

involves understanding and classifying the meaning of a polysemous word in context.

The distinction is in how classes are defined: In WSD, a system has access to a sense

inventory that enumerates the possible senses of each word, and the task is to classify

the focus word according to the sense that best corresponds to its intended meaning.

In V-WSD, a system is given a set of candidate images, and the task is to select the

image which depicts the intended meaning of the focus word. Despite the apparent

similarities, the relationship between WSD and V-WSD is not as straightforward as

it might seem. On closer observation, V-WSD appears to closely resemble text-based

image retrieval. Furthermore, one could argue that a more intuitive V-WSD task

might involve using both images and text as context, with the goal of selecting the

most appropriate meaning of a word from a sense repository, considering both contex-

tual elements. However, in this work, we set aside these alternative perspectives and

concentrate on the task at hand, even if its naming may seem somewhat misleading.

The multi-modal nature of V-WSD introduces challenges not encountered in WSD.
1https://raganato.github.io/vwsd/
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Figure 2.1: The task is to select the image that best represents the meaning of the
focus word (e.g., bat) in the context (e.g., “baseball bat.”)

First, image processing is generally more computationally intensive than text process-

ing. Second, a V-WSD system must represent the meanings of both images and text,

and must have mechanisms to compare these multi-modal semantic representations.

Last, since the candidate images in V-WSD are not restricted to a sense inventory,

they may exhibit highly variable levels of sense granularity.

The V-WSD task is motivated by cases where textual context alone is insufficient

to disambiguate a word. In such cases, visual context may be available to facilitate

disambiguation. For example, the word play is ambiguous in the context “That was

a good play,” as it may refer to a theatrical performance or an action in a sport.

However, an associated image of a stage or a sports field would enable a V-WSD

system to disambiguate play.

We propose a novel V-WSD algorithm that ranks candidate images by embedding

images and words-in-context in a shared semantic space, while also taking advantage

of lexical knowledge bases commonly used in WSD. In particular, our method uses

sense glosses of the focus word to create representations of the possible meanings

that word may have. Our algorithm is flexible and includes several optional modules,

as well as hyper-parameters that facilitate customization, optimization, and detailed

analysis.

We test various configurations of our method and analyze their performance. We

draw three principal conclusions. First and foremost, the augmentation of the original

textual context plays a crucial role in improving performance. Second, there is a
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considerable gap between English and non-English performance, indicating that bias

towards English models extends to the multi-modal setting. Third, we observe a

major distribution shift between the train and test sets, which is confirmed by our

ablation study.

2.2 Related Work

The field of Word Sense Disambiguation (WSD) has made considerable strides in

recent years, with research primarily diverging into two main approaches: supervised

and knowledge-based systems. Supervised WSD methods, which hinge on extensive

training corpora where content words are tagged with their correct senses, have been

the subject of numerous studies (Blevins and Zettlemoyer, 2020; Barba et al., 2021).

Conversely, knowledge-based methods draw on other linguistic knowledge sources,

providing a distinct perspective on the problem (Wang and Wang, 2020). Despite

the contrasting approaches, contemporary supervised methods have generally out-

performed knowledge-based ones (Pasini et al., 2021).

The evolution of WSD saw the integration of visual information, leading to the

emergence of the early precursors of Visual Word Sense Disambiguation (V-WSD).

The then groundbreaking work by Barnard et al. (2003) signaled the onset of this

new direction, proposing a statistical model that links image regions with words to

predict word senses, thereby setting the stage for future V-WSD research. Building

on this groundwork, Loeff et al. (2006) employed spectral clustering to group similar

images corresponding to the same senses, further honing the methodologies within

this area. In a different vein, Saenko and Darrell (2008) used an unsupervised method

to assign senses to images using surrounding texts and dictionary definitions, subse-

quently training a visual SVM classifier to disambiguate unseen images. The field

was further broadened with the introduction of the task of visual verb sense disam-

biguation by Gella et al. (2019). This task, which involved selecting an image based

on a given context, bore a striking resemblance to V-WSD. Vascon et al. (2021) fur-
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ther evolved this concept by proposing a graph-based semi-supervised transductive

learning method for visual verb sense disambiguation.

The advent of multi-modal foundation models (Bommasani et al., 2021), such as

CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), has paved new paths for

V-WSD and, more broadly, for research areas incorporating visual knowledge into

lexical semantics. These models, capable of representing both text and images in a

shared embedding space, have revolutionized the field. Recent work2 (Bianchi et al.,

2021; Sajjad Ayoubi, 2022) has further enhanced the text encoder by bootstrapping

off pre-trained text-only encoders like BERT (Devlin et al., 2018), thereby further

bridging the gap between text and visual information in WSD. Our method builds

upon these recent advances, as well as text-based language models (Devlin et al.,

2018; Brown et al., 2020; Ouyang et al., 2022), to address the task of V-WSD.

2.3 Task & Dataset

Task Definition: Given a focus word w in a short context c, and a set of candidate

images I, the task is to select the image i∗ ∈ I which best represents the meaning

of w in c. For example, when given the context “baseball bat” with bat as the focus

word., a V-WSD system should choose the image that depicts the bat used in baseball

(Figure 2.1).

Dataset: The training data provided for this shared task consists of a silver dataset

with 12,869 V-WSD instances. Each sample is a 4-tuple ⟨f, c, I, i∗ ∈ I⟩ where |I| = 10.

The contexts are generally very short, often just a single word in addition to the focus

word. We randomly select 10% of the training data for the development set. The test

dataset consists of 968 instances, of which 463 are English, 200 are Farsi, and 305 are

Italian. We observe that many of the incorrect candidate images in the training data

have nothing to do with any sense of the focus word. However, in the test data, we
2https://github.com/moein-shariatnia/OpenAI-CLIP
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observe that this is less often the case, making the test set considerably more difficult.

Evaluation Metrics: The primary metric is the hit rate, which is equivalent to

top-1 accuracy, or simply accuracy. This is the proportion of instances for which

the system selects the correct image. We also compute the mean reciprocal rank

(Voorhees and Tice, 2000) which represents how highly V-WSD systems rank the

ground-truth image, on average.

Language % Example
English 82 waxflower wildflower
Latin 15 shorea genus

German 2 truppenübungsplatz workplace
French 1 brumaire month

Table 2.1: The languages observed within a sample of 100 instances from the training
set. The focus word is underlined.

Language Distribution: We observed some instances where the context contained

non-English words. To estimate the prevalence of this phenomenon, we randomly

selected 100 instances from the training set and manually identified the language of

each. For example, the focus word shorea in “shorea genus” is derived from new Latin,

and refers to a genus of mainly rainforest trees. Table 2.1 shows the frequency of each

language in our sample.

2.4 Method

In this section, we describe the key components of our systems, including an algorithm

that combines text and image similarity measures.

2.4.1 Algorithm

We propose an algorithm to select a single image from a set of candidates that best

matches the context. To reiterate the problem, we are given a context c containing a
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focus word w and a set I of candidate images. We assume that we also have a non-

empty set G containing possible glosses of w; in practice, we obtain G from BabelNet

using the freely available API.3

Our algorithm makes calls to two similarity functions: The first is simL, a written

language similarity function, which takes as input two text strings and returns a value

indicating the semantic similarity between them. The second is simV L, a vision-to-

written language similarity function, which takes as input an image and a text string

and returns a value indicating the similarity between what the image depicts and

what the text describes.

With these functions, for each candidate image i ∈ I, and for each gloss g ∈ G of

the focus word w, we compute the pairwise similarity between:

1. The image and context: sic = simV L(i, c)

2. The image and gloss: sig = simV L(i, g)

3. The context and gloss: scg = simL(c, g)

This allows us to identify the pair of a candidate image i∗ and gloss g∗ that maximizes

a weighted average of these three similarity scores. Algorithm 1 shows the pseudocode

for this algorithm.

Hyperparameters: Our algorithm depends on three weight hyperparameters: wic,

wig, and wcg. They represent the weights for image-context, image-gloss, and context-

gloss similarity, respectively. Table 2.2 shows the results of the hyperparameter bi-

narized grid search performed on a 500-sample of the training set. Based on our

development experiment results, we decided to set all hyperparameter weights to 1

for simplicity, except where otherwise noted. We discuss the hyperparameters further

in Section 2.7.5.
3https://babelnet.org/guide

14

https://babelnet.org/guide


Algorithm 1 Candidate Image Scoring
1: c← the context of the focus word
2: G← list of glosses for the focus word
3: I ← list of candidate images
4: for i in I do
5: sg ← 0
6: for g in G do
7: sig ← wig · simV L(i, g)
8: scg ← wcg · simL(c, g)
9: sg ← max(sg, sig + scg)

10: scores[i]← sg + wic · simV L(i, c)

11: return scores

Context Augmentation: For each instance, we prompt InstructGPT (Brown

et al., 2020; Ouyang et al., 2022) to generate a definition for the context phrase.

We use the following prompt template: “For each line, define the phrase:” followed

by the contexts, one per line. For example, the context “baseball bat” is augmented

to become “baseball bat: a bat used to hit a baseball during the game of baseball.”

The use of this additional context is described in Section 2.5.3

Supplementary Training Data: We speculate that the size of the training dataset

may be a limiting factor in the accuracy of our method. We, therefore, experiment

with augmenting the training data with additional data derived from BabelPic (Cal-

abrese et al., 2020), a multi-modal resource that maps a subset of BabelNet synsets

to sets of one or more images. For each pair of a synset and an image, we enumerate

wic wig wcg Accuracy (%)
1 1 1 79.2
1 1 0 79.2
1 0 1 72.2
1 0 0 72.2
0 1 1 68.4
0 1 0 68.6
0 0 1 11.0

Table 2.2: Binarized grid search results for weight hyperparameters.
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a lemma from the base synset and a lemma from a related synset. The two lemmas

are concatenated, starting with the lemma from the related base synset, to form a

two-word context. We then select nine other random images from BabelPic, forming

an instance comparable to those in the training set: a two-word context with a single

focus word, with ten images, one depicting the correct sense of the focus. We create

54,968 instances this way and experiment with adding this dataset to the training

data at training time.

Glosses: For each instance, we enumerate the BabelNet (Navigli and Ponzetto,

2012) glosses corresponding to each sense of the focus word. If there are multiple

glosses for a single sense, we pick the first and add it to the set G. This prevents

senses from being over-represented due to the number of glosses in BabelNet.

2.5 Systems

In this section, we describe our systems for the V-WSD task, Our official system

submissions are based on our primary systems: Tr and LangSpec. We also describe

two alternative systems, which do not use Algorithm 1. Both perform worse than the

primary systems, but their results are nevertheless valuable for analysis. We also

present a supplementary method, which can be optionally used in combination with

our other systems. Non-English instances are translated using DeepL4 for Italian and

ChatGPT5 for Farsi.

2.5.1 Primary Systems

Tr: Image Scoring with Translations If the input instance is not English, we

translate it into English. Then we apply Algorithm 1. We compute simV L using

embeddings from CLIP (Radford et al., 2021), an English-only model which encodes

text and images in a shared embedding space. We compute simL using BERT (Devlin
4https://www.deepl.com/translator
5https://openai.com/blog/chatgpt/
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et al., 2018) as an English-only text encoder. We set the weight parameters: wic, wig,

and wcg to 1 in this specific case.

LangSpec: Image Scoring with Language-Specific Models This system is

similar to Tr, except that non-English instances are not translated into English. This

is our only system that directly operates in other languages. Given a non-English in-

stance, we replace CLIP and BERT with language-specific models to compute simV L

and simL. For English instances, this method is the same as Tr. For Italian, we use

CLIP-Italian (Bianchi et al., 2021) to compute simV L and Italian BERT6 to com-

pute simL. For Farsi, we use CLIPfa (Sajjad Ayoubi, 2022) to compute simV L and

ParsBERT (Farahani et al., 2021) to compute simL.

2.5.2 Alternative Systems

Gen: Generative Image Model This method takes a different approach com-

pared to Tr and LangSpec; it does not use Algorithm 1. Instead, we provide the

context (translated into English, if needed, as outlined above) as input to Stable Dif-

fusion (Rombach et al., 2022), a generative model which takes a text prompt as input

and produces candidate images to depict what the text describes. For each context,

we generate 10 images using 20 diffusion steps each. We set the guidance scale hy-

perparameter to 7.5. For each candidate image, we compute its cosine similarity with

each generated image based on embeddings produced by CLIP. The candidate with

the highest similarity to the generated images is chosen as the output.

Seg: Text-Conditioned Image Segmentation As with Gen, this method does

not use Algorithm 1. Instead, we use a zero-shot image segmentation system (Lüd-

decke and Ecker, 2022) to segment images based on the provided context. This system

produces a mean mask value, which we use as a measure of similarity between the
6https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
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EN IT FA Avg

Baseline 60.5 22.6 28.5 37.2

Tr* 61.1 59.3 43.0 54.5

Tr+Def 69.1 63.3 40.0 57.5

LangSpec* 56.8 37.7 14.5 36.3

Gen 51.6 45.9 39.0 45.5

Gen+Def 58.1 48.5 34.5 47.0

Seg 31.5 29.8 20.5 27.3

Seg+Def 34.1 36.7 20.0 30.3

Table 2.3: Accuracy for English, Italian, and Farsi, along with the macro average for
all languages. We indicate our official system submissions with *.

context and the segmented image; we return the image with the highest mean mask

value, given the context.

2.5.3 Supplementary Method

Def: Generating Additional Context Tr, Gen, and Seg make use of the input

context, translated to English as needed. However, the contexts provided in the official

dataset for this task are extremely short. With Def, we generate additional context

by using the original context to prompt InstructGPT for a more extensive description,

as described in Section 2.4.1. We then concatenate the generated text to the context

and pass this augmented context to Tr, Gen, or Seg. We refer to the methods using

this supplementary method as Tr+Def, Gen+Def, and Seg+Def, respectively.

We do not combine Def with LangSpec, as we observe that InstructGPT is less

robust to short non-English contexts.

For Tr+Def, we set wig and wcg to 0, as the improved context obviates the need

for their corresponding terms in Algorithm 1. Gen+Def and Seg+Def, being based

on Gen and Seg, do not depend on Algorithm 1.
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2.6 Results

Table 2.3 shows our performance on the test set. We find that accuracy has a 99.46%

Pearson correlation with mean reciprocal rank, and so for conciseness, we report accu-

racy alone. The translation-based systems, Tr and Tr+Def, yield the best results.

One explanation for this outcome is the disproportionate amount of English training

data available to the models we build upon: CLIP and BERT. The higher perfor-

mance of these models on English appears to compensate for the noise introduced by

the translation process. We discuss this further in Section 2.7.3.

An interesting trend is the benefit of context augmentation, (Section 2.5.3). Be-

tween Tr and Tr+Def, we observe a 3% average improvement in accuracy. We

observe a similar trend in Gen versus Gen+Def and Seg versus Seg+Def.

We further observe that accuracy on English instances is highest, accuracy on

Farsi instances is lowest, while accuracy on Italian instances is in between both. This

corresponds to the quality and quantity of resources available for each language. We

undertake more thorough analyses in the next section.

2.7 Discussion

2.7.1 Distribution Shift

As shown in Table 2.4, we observe a clear disparity in polysemy, and the proportion

of focus words which are nouns, between the training and test sets. This difference

is especially notable when considering the performance gap between the sets. As

previously mentioned, this discrepancy stems from the fact that the training dataset

was generated automatically, while the test dataset was curated by humans.

Zero-shot vs. Fine-tuning: We observe that fine-tuning on the training set leads

to a drop in performance on the test set (Figure 2.2). This may be due to the

divergence between the training and test datasets outlined above.
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Train Test

EN EN IT FA

Polysemy 6.8 23.1 13.6 10.7

Nouns (%) 74.7 88.1 91.5 92.5

Table 2.4: Distribution shifts between the training and test sets. Polysemy indicates
the average number of senses each focus word in the set has.
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Figure 2.2: As we fine-tune on the training set for more epochs, we see an increase in
dev set performance, but a drop in test set performance. This indicates that both the
training and dev sets are similar to each other but different from the test set. Epoch
0 refers to using the model zero-shot.

2.7.2 Traditional WSD

Although both the V-WSD and WSD tasks have some similarities, we found that

some ideas drawn from WSD prove ineffective for V-WSD.

Using Glosses: We observe empirically worse performance when using glosses in

our algorithm. Specifically, with Tr on the English test set, we obtain a hit rate of

61.1% when we do not use glosses and 56.8% when we do. Such a steep drop (4.3%) is

surprising, especially since most state-of-the-art WSD systems explicitly use glosses

in their methods.

We posit that sense disambiguation in V-WSD is more focused on homonymy than

polysemy and, as a result, can be less nuanced than in WSD. For example, apple
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could refer to a fruit or a tree. In an image depicting both, the focus may be unclear.

In WSD, this distinction is critical since tree and fruit are distinct senses. In V-WSD,

however, we can make a correct prediction without deciding between both senses. As

a result of this lower granularity, glosses become less important.

Performance of WSD Systems on Context: We manually disambiguated the

sense of the focus word in a randomly-selected set of 16 instances from the training

set. We then applied a state-of-the-art WSD system, ConSec (Barba et al., 2021), to

these instances. We observe that ConSec sense predictions were accurate 50% of the

time, falling considerably below its reported accuracy of 82%.

2.7.3 English-Langauge Bias

Natural language processing research often focuses on the English language, at the

expense of other languages (Magueresse et al., 2020). The relative performance of Tr

and LangSpec reflects this phenomenon: Translating non-English text to English,

in order to apply an English encoder, can be expected to introduce some noise due

to translation errors and information loss. However, we observe that this pipeline

approach produces better results than using an Italian or Farsi encoder directly. This

suggests that the field’s focus on English has yielded (multi-modal) English encoders

that perform well, but do so at the expense of other languages such as Italian or

Farsi. Advancing the state-of-the-art for non-English encoders may potentially further

improve performance in those languages, by avoiding the need to translate to English.

2.7.4 Image Generation

As shown in Figure 2.3, when applying our image generation system (Gen), we

observe an increase in performance as we generate more images. Although the per-

formance jump when transitioning from 1 to 5 images is most pronounced, we see

benefits from scaling until a certain point, 10 images, where the trend becomes unre-
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liable.
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Figure 2.3: Hit rate (%) vs. number of images generated for Gen and Gen+Def.

2.7.5 Text-Conditioned Image Segmentation

With Seg, we can sometimes robustly segment images and predict masks indicating

the correct image, conditioning on the full context. However, this method sometimes

forms incorrect semantic representations. Appendix A details more examples of Seg’s

usage. In addition to Figure 2.4, we present more extensive examples in Appendix A.

2.7.6 Algorithm Hyperparameters

Algorithm 1 uses three weights hyperparameters to balance pairwise similarities. We

set all weights to 1 based on Table 2.2. Comparison of results with wcg set to 0

or 1 suggests that simL(c, g) does not improve performance. Two reasons support

this finding. Firstly, images encode richer representations, producing more precise

simV L(i, g) and simV L(i, c), while both context and glosses are discrete textual fea-

tures, introducing uncertainty to simL(c, g). Secondly, we use CLIP and BERT to

calculate simV L and simL, respectively. CLIP’s multi-modal pre-training may offer

better similarity scores, fitting this task better. Understanding these findings more

deeply is an interesting avenue for future research.
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Figure 2.4: Original images from the dataset depicting andromeda (Japanese plant),
andromeda (galaxy) and their two masks conditioned on “andromeda tree.”

2.8 SemEval-2023 Shared Task Reflections

This section highlights common strategies employed by the best methods in the Visual

Word Sense Disambiguation (V-WSD) SemEval-2023 shared task (Raganato et al.,

2023), then goes on to briefly describe the four top-performing methods.

2.8.1 Common Strategies

Here are the common strategies employed in work by various groups on the shared

task. We employ all these strategies in our study.

Contextual Information Enrichment Strategies to enrich contextual informa-

tion, such as establishing relationships between concepts and sentences, are commonly

employed. This is closely related to our method and core thesis.

Pre-trained Vision-and-Language Models All methods utilize pre-trained mod-

els like CLIP in a zero-shot setting.

Generative Models and Data Augmentation Additional or augmented train-

ing data is often created to enhance model robustness.

Integration of External Resources Resources such as Wikipedia and semantic

knowledge bases are frequently used to enrich models with linguistic and semantic

knowledge.
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Ensemble Techniques Top methods often combine different models or system

modules to leverage their strengths.

2.8.2 Top-Performing Methods

TAM of SCNU (Yang et al., 2023) This system uses a Fine-grained Contrastive

Language-Image Learning (FCLL) model and a new multilingual, multi-modal knowl-

edge base for ambiguous words.

Samsung Research China - Beijing (Zhang et al., 2023) This model builds a

reference sense inventory from definitions and synonyms of the target word and uses

a bi-encoder architecture with SimCSE as the backbone.

Zywiolak (Dadas, 2023) This hybrid system combines multi-modal embeddings and

knowledge-based approaches, integrating various system modules using a learning to

rank (LTR) model.

Rahul (Patil et al., 2023) This system is an ensemble of different neural models,

including CLIP models for English and text-to-text translation models for Farsi-to-

English and Italian-to-English.

These methods demonstrate the effectiveness of combining pre-trained models, data

augmentation, external resources, ensemble techniques, and contextual enrichment

strategies in V-WSD.

2.9 Conclusion

In this chapter, we outlined our work on the recently-proposed task of visual word

sense disambiguation (V-WSD). We found that many ideas from traditional WSD are

difficult to adapt to V-WSD, and, that in general, WSD systems are not useful for

V-WSD. We were particularly surprised to find that, unlike in WSD, glosses appear to
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be unhelpful for V-WSD. Contrariwise, our innovation of augmenting the context did

yield substantial gains in accuracy. We posit that this happens because the process

of augmentation more strongly grounds the concept being represented in the sample

in the visual domain. Consequently, language-vision models like CLIP can form more

robust semantic representations.

Further research will be needed to establish the connection between V-WSD and

the broader field of lexical semantics. We speculate that developing systems for joint

WSD and V-WSD may yield improvements in one or both tasks. Our work here serves

as a proof-of-concept establishing the utility of language models and lexico-semantic

resources in the developing task of V-WSD.
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Chapter 3

Visual Concept Description

3.1 Introduction

Language-vision models (Radford et al., 2021; Jia et al., 2021) have made significant

progress in zero-shot vision tasks. However, we hypothesize that their accuracy is

limited by a lack of visual descriptions that are both expressive and specific with

regard to an intended concept, that is, glosses that describe what a concept or class

looks like. In this work, we introduce the visual concept description (VCD) task, and

we investigate our hypothesis by creating and testing a novel method for producing

these descriptions.

Improving visual descriptions is crucial for enhancing system performance in zero-

shot vision tasks. Such descriptions facilitate the creation of more useful represen-

tations. Additionally, being able to describe a concept in terms of its appearance

is essential for developing more robust and adaptable methods incorporating diverse

visual information across various domains, without the need for extensive re-training.

Existing approaches to generating class descriptions, such as those employed by

CLIP (Radford et al., 2021) and CuPL (Pratt et al., 2022), involve directly plugging

class labels into fixed templates (e.g., a photo of X), or using large language models

such as InstructGPT (Ouyang et al., 2022) to generate descriptions based on class

labels (e.g., what does X look like?). These methods suffer from two main issues:

class granularity and label ambiguity. Class granularity refers to the difficulty in
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(a) V-GLOSS producing a dog description.

(b) V-GLOSS for ZSCIG: generating a dog image.

(c) V-GLOSS for ZSIC: classifying a test image.

Figure 3.1: For the dog class, we depict (a) V-GLOSS’s architecture (Section 3.4.2),
along with adaptations: (b) ZSCIG (Section 3.5.4) and (c) ZSIC (Section 3.5.4)
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Class / Concept WordNet Gloss V-GLOSS (Ours)
Corkscrew

A bottle opener that pulls
corks.

A tool with a spiral blade
that is used to remove corks
from bottles.

Brambling

Eurasian finch. A small brown bird with a
black head and a white
patch on its chest.

Broccoli

Branched green undeveloped
flower heads.

A green vegetable with a
thick stalk and florets that
grow in a dense head.

Table 3.1: A qualitative comparison between WordNet concept glosses and V-GLOSS
(Silver) class descriptions for some ImageNet classes. Our method describes what a
class looks like, instead of what it does or is.

distinguishing between visually similar classes, such as alligator and crocodile.

Label ambiguity is caused by using polysemous words as labels for distinct concepts.

For example, crane can refer to either a bird or a construction machine. These

issues adversely affect the performance of existing models (Radford et al., 2021).

To address these challenges, we introduce V-GLOSS, a novel method that leverages

transformer-based, pre-trained large language models (LLMs) and semantic knowl-

edge bases (SKBs) to generate visually-grounded class descriptions – visual glosses.

Table 3.1 shows some examples. By combining structured semantic information from

SKBs such as WordNet (Miller, 1998), with a contrastive algorithm to distinguish

similar classes, V-GLOSS is designed to mitigate the dual issues of granularity and

ambiguity.

Our results demonstrate the effectiveness of V-GLOSS in improving the perfor-

mance of ZSIC systems. We achieve state-of-the-art (SOTA) results on benchmark
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datasets such as ImageNet (Deng et al., 2009), CIFAR-10, and CIFAR-100 (Krizhevsky

et al., 2009) in the zero-shot setting, and STL-10 (Coates et al., 2011) in both the

zero-shot and supervised settings. In addition to this principal contribution, we also

introduce and make available V-GLOSS Silver, a silver dataset constructed by V-

GLOSS, consisting of a visual gloss for each ImageNet class. We show that V-GLOSS

Silver is useful for vision tasks such as ZSIC and ZSCIG, comparing favorably to

WordNet glosses.

3.2 Tasks

The main task, visual concept description (VCD), is to produce a visual description

for a given class or concept. For example, if an image classification dataset has the

class dog, we aim to produce a description such as “A dog is a furry, four-legged

canine.” We consider such a description to be a specific kind of gloss.

We use two downstream tasks to compare methods of producing class descriptions:

zero-shot image classification (ZSIC), and zero-shot class-conditional image genera-

tion (ZSCIG). In ZSIC, the goal is to classify an image based on a set of classes,

without having seen any labeled images belonging to those classes. The set of classes

depends on the dataset. For example, given an image depicting a dog, we aim to

predict the class dog. In ZSCIG, the goal is to generate an image that corresponds

to a specific class, again without having seen any labeled examples. For example,

given a class dog, we aim to generate an image of a dog.

In short, ZSIC is the task of classifying a given image, while ZSCIG is the task of

generating an image given a class. Both involve classes and images. VCD provides

useful knowledge to facilitate both tasks, by making it easier to either recognize or

generate images of each class. Therefore, by developing a novel method of producing

such descriptions which focuses on the visual properties of a class, we hypothesize

that performance on ZSIC and ZSCIG can be improved.
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3.3 Related Work

Transformer-Based LLMs Transformer-based large language models have revo-

lutionized many natural language processing tasks (Radford et al., 2018; Devlin et al.,

2018; Radford et al., 2019; Brown et al., 2020; Black et al., 2022; Ouyang et al., 2022).

As these models are scaled up in terms of the number of parameters and the quantity

of training data, abilities such as few-shot and zero-shot learning emerge (Wei et al.,

2022).

Language-Vision Models Based on transformer-based architectures similar to

those used by language models, language-vision models such as CLIP (Radford et al.,

2021) and ALIGN (Jia et al., 2021) have made rapid and significant progress, partic-

ularly in applying contrastive pre-training approaches on large image-text datasets.

These advancements have led to better representation learning for both text and

images, improving performance on several multi-modal tasks (Mokady et al., 2021;

Song et al., 2022). Further progress has been achieved by scaling up pre-training

with greater computational resources and larger datasets, as well as incorporating

auxiliary training objectives (Pham et al., 2021; Yu et al., 2022).

Producing Visual Descriptions Following the rapid improvements in language-

vision models, many zero-shot multi-modal tasks such as zero-shot image classification

became more tractable (Radford et al., 2021). Toward tacking such tasks, Radford

et al. (2021) introduce the template ensemble (TE) method, which employs a custom

set of class labels as well as a fixed set of templates into which each label is inserted.

The set of completed templates for each class is then aggregated into a single repre-

sentation of the class. CuPL (Pratt et al., 2022) utilizes InstructGPT (Brown et al.,

2020; Ouyang et al., 2022) to generate descriptions for ImageNet classes. Both TE and

CuPL can be used for zero-shot image classification. Hao et al. (2022) also fine-tune

GPT models (Radford et al., 2018, 2019) to rephrase image-generation prompts, re-
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sulting in improved images. In this work, we use LLMs as a foundation for generating

visually grounded descriptions, while sourcing additional lexico-semantic knowledge

from SKBs.

3.4 Method

We begin by describing how we map classes to concepts in a semantic knowledge base

(SKB), in order to leverage the concept-specific lexico-semantic knowledge the SKB

contains. We then introduce our novel method V-GLOSS, which has two variants,

normal and contrastive. We conclude by describing the construction of V-GLOSS

Silver, a set of visual concept descriptions produced using V-GLOSS which we will

make available.

3.4.1 Mapping Classes to WordNet Synsets

The ImageNet classes are already mapped to WordNet synsets by the dataset’s cre-

ators. For the other datasets, we employ a heuristic that starts by mapping each

class to the most-frequent sense of the class label, as determined by WordNet1. For

CIFAR-10 and STL-10, this heuristic is sufficient. However, for CIFAR-100, we man-

ually re-map 18 classes. For instance, we needed to re-map ray from light to sea

creature, as the light sense is the most frequent according to WordNet, but the ray

images in the dataset depict sea creatures.

3.4.2 V-GLOSS

We discuss the two variants of V-GLOSS below, normal and contrastive. The normal

variant involves generating independent visual descriptions for each concept, while the

contrastive variant aims to create descriptions that distinguish between two concepts.

In both, for each class, we produce multiple descriptions resulting in an ensemble.
1https://www.nltk.org/
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(a) CuPL (Pratt et al., 2022)

(b) V-GLOSS (Ours)

Figure 3.2: Class descriptions for Platypus generated by two different methods that
use LLMs. Input prompts, output descriptions, and plugged values are shown.
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Figure 3.3: A sample of WordNet hypernym hierarchy. For contrastive prompting,
we only distinguish classes that are semantically similar to the target class, like al-
ligator to crocodile.

Normal V-GLOSS

We generate normal descriptions via in-context learning with an LLM, beginning by

providing the LLM with a description of the task to be performed, followed by multiple

input-output examples. The examples are fixed, involving the concepts eagle, bat

(animal), bat (baseball), and television. We selected these to expose the model

to ambiguous class labels (bat), a natural object (eagle), and an artificial object via

(television). For each class, we obtain from WordNet the hypernyms, hyponyms,

usage examples, synonyms, and glosses of the sense to which the class is mapped,

and provide this to the LLM. Figure 3.2b shows a session with the LLM, beginning

with the example of eagle, with the output generated for the class platypus. Table 3.1

compares our descriptions to WordNet glosses.

Contrastive V-GLOSS

During development, we observed that many errors were caused by false positives be-

tween visually similar classes. For example, the classes crocodile for alligator

refer to similar-looking animals, and are often confused with one another. The con-

trastive variant of V-GLOSS is designed to address this by using semantic similarity
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Class / Concept Normal Contrastive

Alligator

A large reptile with a long
snout, a broad head, and a
long tail.

A large, dark-colored
reptile with a rounded
snout, found in freshwater.

Crocodile

A reptile with a broad, flat
snout, a long tail, and a long,
pointed snout.

A grayish-green reptile with
a v-shaped snout, found in
brackish or saltwater.

Table 3.2: Two similar classes with key differences between their normal and con-
trastive descriptions.

between classes as a heuristic to estimate visual similarity. For each class, we search

for other classes that are semantically similar, and if any are found, we add a negative

instruction to the LLM prompt, e.g. we generate a description for an alligator but

not a crocodile, using a similar in-context prompt structure to normal V-GLOSS.

A similarity matrix M is created as follows.:

Mi,j = Sim(S[i], S[j]) (3.1)

Sim(s1, s2) is the Wu-Palmer path-similarity function (Wu and Palmer, 1994) com-

paring synsets s1 and s2; this similarity function uses the path between two concepts

in the WordNet hypernym hierarchy (Figure 3.3) to measure semantic relatedness.

S is the set of all classes in a dataset, D, and i and j are indices ranging from 1 to

|S|. Concisely, Equation 3.1 defines a similarity matrix containing similarity scores

between all classes in a dataset. M is one of the inputs to our contrastive V-GLOSS

variant, shown in Algorithm 2.

In Algorithm 2, λ is a threshold for minimum similarity. We only generate con-

trastive descriptions when classes have a similarity that exceeds or is equal to λ. N

represents the maximum number of classes for which contrastive descriptions are gen-
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Class False Positives Contrastives

African
Elephant

Tusker (44), Asian
Elephant (6)

Tusker, Asian Elephant

Notebook Laptop (22), Desktop (10),
Space bar (2)

Laptop, Desktop, Space
bar

Table 3.3: False positives and their counts vs. classes selected by the contrastive
algorithm (see Equation 3.1 and Algorithm 2). Hits and misses are shown.

erated. k is the number of distinct descriptions to generate for a class pair. LLMc

takes in the target class, a neighbor class, and k, then prompts the LLM to gen-

erate k descriptions that distinguish the target and neighbor classes. In summary,

for each class, Algorithm 2 identifies the classes most similar to it, excluding itself,

and generates descriptions that distinguish them. Table 3.2 compares the normal

and contrastive descriptions for alligator and crocodile; note that distinguish-

ing features of the two classes are included in the LLM’s output. Table 3.3 shows

examples of classes with high false positive rates, and the classes they are contrasted

with.

Algorithm 2 Generate Contrastive Descriptions: We generate contrastive descrip-
tions to help distinguish the most similar classes.
Require: M : Equation 3.1 result
Require: λ, N , k: Hyperparameters
Require: S: All classes in dataset, D
Require: LLMc: LLM prompted contrastively

▷ Returns a description to distinguish the second class from the first
1: G← empty |S|-list for class descriptions
2: for i← 0 to |S| − 1 do
3: target← S[i]
4: S∗ ← top N classes : λ ≤Mi,∗ ≤ 1 ▷ Select the classes that are most similar

to the target class
5: for s∗ in S∗ do
6: samples← LLMc(target, s

∗, k)
7: G[i].insert(samples)

8: return G
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3.5 Evaluation

Toward evaluating V-GLOSS, we describe our datasets, evaluation metrics, baselines,

previous methods, and experiments.

3.5.1 Datasets

We evaluate our method on the test splits of four widely-used benchmark datasets:

ImageNet (Deng et al., 2009) consists of 50,000 images equally distributed across 1,000

classes, and serves as our primary benchmark. CIFAR-10 and CIFAR-100 (Krizhevsky

et al., 2009) both comprise 10,000 test samples across 10 and 100 classes, respectively.

Finally, STL-10 (Coates et al., 2011) comprises 100,000 test samples and is designed

for unsupervised learning. For CIFAR-10, CIFAR-100, and STL-10, which are not

pre-mapped to WordNet, we employ the two-step process detailed in Section 3.4.1 to

map each class to a WordNet synset.

Experiment 1 (Section 3.5.4) involves ImageNet alone and covers both the ZSCIG

and ZSIC tasks. In contrast, Experiment 2 (Section 3.5.5), which is our main exper-

iment, tests the impact of various class description methods on the ZSIC task and

uses all datasets. In Experiment 2, we allow methods to use ensembles of descriptions

of each class, while in Experiment 1, we experiment with only a single description.

The datasets we selected to evaluate the following properties of V-GLOSS:

1. Performance on benchmark datasets with varying numbers of classes.

Each dataset has its own set of classes, ranging from ImageNet with 1,000

classes, to CIFAR-100 with 100 classes, to CIFAR-10 and STL-10, each with 10

classes.

2. Ability to represent diverse concepts at varying levels of granularity.

The datasets we use contain a wide range of concepts across various domains,

rather than those targeting specific subareas such as pets (Parkhi et al., 2012),
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foods (Bossard et al., 2014), cars (Krause et al., 2013), scenes (Xiao et al., 2010),

or airplanes (Maji et al., 2013).

3.5.2 Evaluation Metrics

Top-1 Accuracy In ZSIC, this metric is the frequency with which the model’s top

prediction for an image matches the gold label.

Fréchet Inception Distance (FID) For ZSCIG, FID (Heusel et al., 2017) quan-

tifies the divergence between ground truth and generated images, with lower scores

signifying a better ability to produce images similar to the ground truth.

Inception Score Also for ZSCIG, the inception score (Salimans et al., 2016) uses an

Inception model’s (Szegedy et al., 2015) output probability distribution to assess the

diversity and realism of generated images, with higher scores indicating more diverse

and convincing images. Unlike the above metrics, this does not require ground-truth

images to compare to.

3.5.3 Baseline & Previous Methods

In this section, we describe the methods that we compare V-GLOSS to. For methods

that produce ensembles of class descriptions (i.e. multiple descriptions per class), a

single representation of the class is obtained by averaging individual representations.

First, the 1-Template baseline inserts a class label into a single specific template.

For example, given the class dog, the baseline produces “A photo of a dog.”

Template Ensemble (Radford et al., 2021) generates an ensemble of descriptions

for a class by inserting the class label into each member of a set of templates. For

example, some descriptions for dog are: “A photo of a dog.”, “A blurry photo of a

dog.”, and “An origami dog.” This method uses a modified list of class labels2 designed

to reduce ambiguity.
2https://github.com/anishathalye/imagenet-simple-labels
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CuPL (Pratt et al., 2022) also generates an ensemble of descriptions for each class.

The descriptions are generated by prompting an LLM, InstructGPT (Ouyang et al.,

2022), with questions such as: “What does a dog look like?” and “Describe an image

of a dog from the internet.” CuPL uses the same class labels as Template Ensemble.

The authors of CuPL also combined their method with Template Ensemble. The

resulting method, CuPL + Template Ensemble, combines the class descriptions

from both methods.

3.5.4 Experiment 1: V-GLOSS Silver

This experiment evaluates V-GLOSS’s ability to generate a single description for each

class, without relying on ensembling. We then evaluate the V-GLOSS description of

each class against its WordNet gloss.

To construct this set of class descriptions, which we view as a silver dataset of

such descriptions, we generate a single, normal description for each ImageNet class

via greedy decoding. We generate only normal descriptions because they outperform

contrastive ones when only a single description is used. We call the resulting dataset

V-GLOSS Silver.

We extrinsically evaluate V-GLOSS Silver by using it for the ZSIC and ZSCIG

tasks, and comparing the results to those achieved using the 1-Template baseline, and

WordNet glosses. We do not compare V-GLOSS Silver to CuPL or other previous

methods which do not produce a single description for each class.

Technical Details

ZSIC We employ CLIP (Radford et al., 2021), which comprises an image encoder

and a text encoder, as the ZSIC backbone model. Our procedure consists of three

steps: First, we use the CLIP text encoder to create an aggregate representation for

each class based on its description(s). Then, at test time, we employ the CLIP image

encoder to generate a representation of the input image. Finally, we predict the class
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ZSIC ZSCIG

Accuracy ↑ Inception ↑ FID ↓

Baseline (1-Template) 71.0 99.7 25.7

WordNet Glosses 44.7 58.5 30.0

V-GLOSS Silver 72.3 109.6 20.0

Table 3.4: Extrinsic evaluation on the tasks of ZSIC and ZSCIG. ↓ means that lower
is better.

which maximizes the cosine similarity between the representation of its description(s),

and the image representation (see Figure 3.1c). We evaluate the predictions using

top-1 accuracy.

ZSCIG For ZSCIG (see Figure 3.1b), we condition Stable Diffusion (Rombach et al.,

2022) on each class description before generating an image. We use a guidance scale

of 7.5 and run 50 diffusion steps. We evaluate the generated images using Inception

and FID scores.

Results

The results of Experiment 1 are shown in Table 3.4. Based on our extrinsic evaluation

n the ZSIC and ZSCIG tasks, V-GLOSS Silver descriptions yield better performance

compared to baseline and WordNet Glosses. On ZSIC, we improve accuracy by 1.3%;

on ZSCIG, we improve Inception and FID scores by 9.9 and 5.7, respectively. This

demonstrates the effectiveness and utility of V-GLOSS: the visually grounded de-

scriptions V-GLOSS generates yield better results on ZSIC and ZSCIG.

Analysis

V-GLOSS Silver descriptions are considerably more detailed, more expressive, and

better visually grounded than their WordNet gloss counterparts (see Figure 3.1).

Specifically, we observe that V-GLOSS descriptions make greater use of descriptive

words and phrases, e.g. spiral, brown, green, thick, small, etc.
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Method Model
Accuracy (%) on Datasets #

ParametersImageNet CIFAR-100 CIFAR-10 STL-10

Baseline
(1-Template)

ViT 72.4 77.3 95.2 99.5 0RN50 68.7 57.7 81.0 98.4

Template
Ensemble

ViT 76.2 77.9 96.2 99.4 0RN50 73.2 61.3 86.8 98.3

CuPL ViT 76.7 - - - 175B

CuPL + Template
Ensemble

ViT 77.6 - - - 175BRN50 75.1 - - -

V-GLOSS
(Normal-Only)

ViT 77.3 77.5 95.6 99.4 6.1BRN50 73.3 63.5 86.8 98.3

V-GLOSS
(Normal + Contrastive)

ViT 78.5 78.2 97.0 99.6 6.1BRN50 74.5 64.6 87.8 98.8

Table 3.5: Top-1 accuracy on ZSIC. ViT and RN are Transformer- and ResNet-based
CLIP variants.

3.5.5 Experiment 2: ZSIC

Our second experiment assesses the effectiveness of V-GLOSS descriptions in facili-

tating ZSIC. The details for the ZSIC pipeline are largely similar to those described

in Experiment 1 (Section 3.5.4), except that we generate an ensemble of descriptions

per class, as opposed to only one description. We also experiment with two image

encoder variants: ViT (Dosovitskiy et al., 2020) and RN50 (He et al., 2016). For all

baselines and methods (Section 3.5.3, Section 3.4.2), we follow the same evaluation

procedure after generating class descriptions.

Technical Details

We generate class descriptions using the 6.1B-parameter Cohere LLM3. We choose

Cohere over alternatives due to its extensive cost-free availability, reducing the cost of

our experiments. Cohere has comparable performance to the similarly-sized Instruct-

GPT (Brown et al., 2020; Ouyang et al., 2022) variant, as demonstrated by Liang

et al. (2022) across various benchmarks. Therefore, we do not gain any advantage by
3https://docs.cohere.com/docs/models
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using Cohere instead of InstructGPT.

When generating class descriptions with normal V-GLOSS, we use a temperature

of 2.5 to produce an ensemble of 50 descriptions per class. When generating con-

trastively, we use a temperature of 1.5 to generate an ensemble of 20 descriptions

per class. Like Pratt et al. (2022), we observe that performance saturates around

50 descriptions for normal V-GLOSS, but we also observe saturation at around 20

descriptions for contrastive V-GLOSS. Based on tuning on development data, we set

N = 5, λ = 0.5, and k = 4 (see Algorithm 2). In total, we obtain 70 class descriptions.

During generation, we set the maximum number of tokens to 35, but also terminate

generation when the boundary parameter or newline token is reached.

Results

The results of Experiment 2 are shown in Table 3.5. V-GLOSS yields better accu-

racy than the baseline by an average of 3.60% overall (2.22% with ViT and 4.98%

with RN50). V-GLOSS also outperforms Template Ensemble and CuPL + Template

Ensemble, by 1.21% and 0.15% respectively. This improvement is especially notable

since the top 15 results on the ImageNet benchmark differ by less than 1% accuracy.4

In addition, we make the following observations. (1) V-GLOSS (Normal + Con-

trastive) surpasses V-GLOSS (Normal-Only), by an average of 0.91% accuracy. (2)

We outperform CuPL + Template Ensemble using an LLM with 28.7x fewer parame-

ters. (3) The RN backbone (He et al., 2016), which is generally less capable than ViT

(Dosovitskiy et al., 2020), sees a more significant benefit from the V-GLOSS method,

on average 3.8%. (4) For STL-10, V-GLOSS matches the top-performing supervised

system (Gesmundo, 2022) with a score of 99.6%. We also note that the contrastive

component is more helpful on the larger datasets: CIFAR-100 and ImageNet, which

have more opportunities for mutual ambiguity between different classes, than on the

smaller ones: CIFAR-10 and STL-10. Concretely, this improvement is 1.05%, on
4https://paperswithcode.com/sota/image-classification-on-imagenet
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average. Later, in Section 3.6, we discuss these results and their implications more

extensively.

Analysis

In Section 3.1, we pointed out several problems in previous methods. Here, we care-

fully analyze how our V-GLOSS method addresses these issues.

Label Ambiguity: Without adequate context, text models may fail to grasp the

intended meaning of a polysemous word. Crane is a polysemous word, and ImageNet

(Deng et al., 2009) has two classes that refer to different senses of the word: con-

struction machine and wading bird, but use the same label. Thus, in 1-Template, for

example, both classes have the same description. This point highlights an important

benefit of linking classes to WordNet, which resolves such ambiguity. Empirically,

when compared with a ViT backbone to the Lex Baseline, our accuracy on crane

(machine) and crane (bird) increase from 0% and 46% to 76% and 78%, respectively.

Relationship Between Performance & Context: When comparing the base-

lines to the other methods, we observe that accuracy generally improves as the amount

of surrounding context increases. On one hand, if a sentence consists of “my crane.”

alone, the sense of crane is unclear. On the other, if the sentence is “my construction

crane,” the meaning of crane becomes clear. We see that providing additional con-

text helps to disambiguate words. When a description provides more useful context,

models can form better representations of specific classes. By comparing V-GLOSS

to the baselines (see Table 3.5), we can observe that the benefits of additional con-

text extend to the language-vision setting. Concretely, providing visually-grounded

context in the description improves performance.

Class Granularity: We consider pairs of classes that are similar enough to be

mistaken, such as alligator and crocodile. In WordNet, relationships between
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synsets are modeled through is-a (hyponymy-hypernymy) and part-of (meronymy-

holonymy) relationships. For example, crocodilian is a hypernym of both alliga-

tor and crocodile, while only alligator is a holonym of snout, since alligators

have snouts while crocodiles do not. Using our contrastive algorithm, we generate

descriptions that highlight how images of a crocodile should depict a greener ani-

mal with a rounded snout. Empirically, using ViT, the average accuracy of V-GLOSS

across these two classes jumps from 36% to 68% when contrastive glosses are used.

This improvement highlights the effectiveness of our contrastive V-GLOSS variant in

reducing false positives between visually similar classes.

Attention Maps: We analyze the model’s attention maps to understand V-GLOSS’s

impact. Figure 3.4 shows the attention map for V-GLOSS (see Table 3.1 for descrip-

tions), indicating effective utilization of visually-relevant context. Conversely, Figure

3.5 shows the attention map for the WordNet glosses (baseline), where the atten-

tion score on bottle is 3.5x higher, implying less distraction in V-GLOSS. These maps

empirically demonstrate success in steering the model’s attention toward relevant con-

text, thus improving classification accuracy across different classes and descriptions.

Figure 3.4: V-GLOSS Attention Map

Figure 3.5: WordNet Gloss Attention Map
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3.6 Discussion

When looking at our results, a pertinent question arises: Why does an SKB, such as

WordNet, help us do better on tasks related to vision? In this section, we formulate

two insights on how the synergy between SKBs and LLMs supports our improvements.

Insight #1: SKBs represent concepts precisely When LLMs are prompted

with better information, they produce better output (Borgeaud et al., 2022). Word-

Net provides a precise representation of a class and its relationship to other classes,

leaving minimal room for ambiguity. Afterward, we can prompt an LLM with this

precise information to produce unambiguous and high-quality class descriptions.

Insight #2: Pre-trained LLMs hold significant world knowledge By virtue

of their pre-training over an extensive corpus of text, LLMs gain non-trivial knowledge

about the world, that the language describes. This proves useful in our task because

we can extract visual descriptions for all kinds of concepts.

Insight #3: Semantic similarity is a useful proxy for visual similarity

WordNet models lexical semantics as a graph (see Figure 3.3), with synsets as nodes

and is-a relationships as directed edges. The distance between different nodes re-

flects the level of semantic similarity and is by extension an indicator of the level

of visual similarity between synsets. alligator and crocodile are semantically

similar because they are both kinds of crocodilian, but they are visually similar as

well (see Table 3.2). Semantic similarity informs what classes we distinguish with our

contrastive descriptions and why they work (see Table 3.3). This is because semantic

and visual similarity are usually correlated (Brust and Denzler, 2018).
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3.7 Conclusion

This work focuses on the task of generating visual concept descriptions for use in

two downstream tasks: zero-shot image classification and zero-shot class-conditional

image generation. We employ a novel technique that combines semantic knowledge

bases (SKBs) and transformer-based, pre-trained large language models (LLMs) to

produce high-quality visual descriptions. In addition to providing significant empirical

improvements, we gain useful insights into the behavior of both SKBs and LLMs.

First, we learn that the lexico-semantic information tied to concepts from SKBs is

enough to condition an LLM to generate visually-grounded text. Second, we learn

that LLMs, after being pre-trained solely on text data, possess latent knowledge about

the visual properties of concepts which can be accessed and leveraged using our novel

V-GLOSS method. And by extension, we learn that we can ground concepts more

adequately to vision with V-GLOSS. In short: visually-grounded concept descriptions

improve the accuracy of zero-shot image classification and generation models. This

exemplifies the strong relationship between language and vision modalities and opens

up the possibility of LLMs being used, without fine-tuning, for more multi-modal

tasks in the future.
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Chapter 4

Conclusion

This thesis evaluates the hypothesis that visually-grounded descriptions, which em-

phasize the visual attributes of a concept, can enhance performance on language-

vision tasks. Our extensive experiments confirm our hypothesis, demonstrating that

visually-grounded descriptions, produced using pre-trained, transformer-based large

language models and semantic knowledge bases (SKBs), can significantly improve

performance on these tasks. We have shown advancements in two specific tasks: vi-

sual word sense disambiguation (V-WSD), which we focus on in Chapter 2, as well as

visual concept description (VCD), which is applied to two downstream tasks: zero-

shot image classification (ZSIC), and zero-shot class-conditional image generation

(ZSCIG), both of which are addressed in Chapter 3. Our results provide compelling

evidence to support our hypothesis.

In Chapter 2, we proposed an image-scoring algorithm for the V-WSD task. This

algorithm calculates the sum of the similarity between (1) the context and candidate

images, and (2) the context and potential senses of the focus word. Most importantly,

we demonstrated that enhancing the original context with more visually grounded

information, as our hypothesis suggests, significantly improves performance compared

to using the original context directly. Our simple-but-effective method significantly

outperforms the baselines and ranks 13th out of 57 final contestants, demonstrating

the utility of our approach. Moreover, our method is applicable to various languages,
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with only minor performance degradation after translating the context to English.

These results robustly support our hypothesis.

In Chapter 3, we tackled the upstream task of VCD before addressing its re-

lated downstream tasks: ZSIC and ZSCIG. We demonstrated that we could generate

visually-grounded descriptions using specific lexico-semantic information from Word-

Net to prompt a pre-trained, transformer-based large language model. This approach

extends on Chapter 2 by eliminating ambiguity issues due to polysemy, such as the

word “crane” which could refer to a bird or a machine. It also allows us to clearly

differentiate similar concepts, such as “alligator” versus “crocodile”, preventing our

system from confusing them. Our results showed significant improvements compared

to the baselines and previous methods, further supporting our primary hypothesis.

Our work makes three core contributions. Firstly, we demonstrate that lexico-

semantic knowledge can be used to prompt a language model to produce rich, visual

descriptions, thereby improving language-to-vision grounding. Secondly, we intro-

duce contrastive prompting, a method that encourages a language model to generate

descriptions that highlight the most visually distinctive differences between two con-

cepts. Lastly, we create a new silver dataset of visual descriptions for all 1,000 classes

in ImageNet. The validity of all our contributions is experimentally verified.

4.1 Limitations and Future Work

Our work’s primary limitation is the use of visual descriptions instead of actual im-

ages, as some visual concepts are challenging to express in language. In the future,

we aim to develop methods that understand vision natively. We also acknowledge

other limitations and propose potential solutions for future work.

Our next limitation is that the dataset must be mapped to an SKB. The process of

mapping the dataset to WordNet, while a one-time step, is not fully automatic. We

aim to automate this process in future work, potentially by selecting a synset based

on the similarity between sample class images and potential senses of the class label.
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Our final limitation is that we are limited in terms of language, dataset class

count, and the size of the SKB. Our focus on English may limit the applicability of

our method to ZSIC or ZSCIG tasks in other languages. Some classes are strongly

associated with non-English languages. Our largest evaluation dataset, ImageNet

(Deng et al., 2009), only covers 0.64% of WordNet with its 1,000 classes. We plan

to evaluate our methods on a larger ImageNet set, ImageNet-21k, which would cover

14.06% of WordNet. While our method can be applied to BabelNet (Navigli and

Ponzetto, 2012), which has over 1.5 billion synsets, we have focused on WordNet,

which has 155,287. We plan to explore alternative SKBs such as BabelNet or non-

English wordnets, both of which are multilingual.

4.2 Final Remarks

This thesis embarked on a journey to explore the potential of lexico-semantic knowl-

edge combined with language models in aiding grounding. Our hypothesis has been

conclusively confirmed, as the studies in Chapters 2 and 3 effectively demonstrate the

value of visual descriptions for grounding concepts in the visual domain. We hope to

engage in future work that more intimately explores the close relationship between

language and vision.
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Appendix A: Text-Conditioned Image
Segmentation

A.1 Success Mode

In the successful case of this system, we see that we are able to properly segment the

object based on the text provided. See Figure A.4 for details.

A.2 Failure Mode

In the failure case of this system, we see that we cannot confidently segment the

object based on the text provided. See Figure A.8 for details.
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Figure A.1: Original images from the dataset are depicted on the left: andromeda
and on the right: andromeda.

Figure A.2: Conditioned on the full “andromeda tree”

Figure A.3: Conditioned on “andromeda”

Figure A.4: Conditioned on “tree”
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Figure A.5: Original images from the dataset are depicted on the left: bank (finance)
and on the right: bank (river).

Figure A.6: Conditioned on the full “bank erosion”

Figure A.7: Conditioned on “bank”

Figure A.8: Conditioned on “erosion”
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