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Abstract

This thesis focuses on characterizing an optimal trading strategy for a large

trader, who has to buy (or sell) a fixed large volume over a given time period.

We propose a model in discrete time, based on VWAP (Volume Weighted

Average Price). The objective is to minimize expected deviations between the

trader’s relative volumes and the market relative volumes at all times.

By applying dynamic programming, we characterize the optimal strategy

under three different assumptions on the intraday market volumes: i.i.d. vol-

umes, general independent volumes and independent Gamma distributed vol-

umes. The optimal strategy under the last assumption is meaningful and

explicit. For three exemplary Chinese stocks, we present its good data fit and

illustrate the improved performance (reduced deviations to the market rela-

tive volumes) compared with the empirical strategy, which is one of the most

popular and efficient VWAP strategies in the financial industry.
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Chapter 1

Introduction

Algorithmic trading means executing orders automatically through computer-

based predefined algorithms. It is widely used by investment banks and other

large traders. According to data1 in 2009, 73% of the volume in all US equities

was executed by algorithms. The percentage is still increasing year by year.

Due to its popularity, it attracts the attentions of researchers. Generally,

these kinds of orders are very large so that even a small gain from a better

strategy can lead to a large profit. Therefore, researchers are interested in

finding good execution strategies. Among the published papers, there exist

several criteria to define a good strategy. The first model in this area is pro-

posed by Bertsimas and Lo [3], who set up a discrete-time model to minimize

the expected transaction costs with price impact. In a seminal paper, Alm-

gren and Chriss [2] extend the previous work by taking risk into consideration.

They minimize both the transaction costs and the volatility risk. Schied and

Schöneborn [18] characterize the optimal strategy to maximize the utility func-

tion. Many other related papers are similar to these models, but use different

1Source: advancedtrading.com
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models for price dynamics or price impact. We refer to Gatheral and Schied [9]

and Gökay, Roch and Soner [10] for a detailed exposition of research progress

in algorithmic trading.

In investment banks, traders often execute the order to meet or even beat

a benchmark set by their clients or themselves. The benchmark can be used to

evaluate the quality of trading on a selected interval, such as one trading day.

The simplest benchmark is the opening price, called arrival price benchmark.

However, it is often not adequate to use the price at only one point to evaluate

the trading over a whole day. An alternative is TWAP, which stands for Time

Weighted Average Price. It is the average price over a selected interval, just

like the payoff of an Asian option. Usually, it is more appropriate than the

arrival price benchmark, since it considers all prices during the trading period.

However, it does not consider the trading volume, which is the key factor to

calculate the transaction cost. Currently, VWAP (Volume Weighted Average

Price) is the most popular benchmark in the financial industry. It is the sum of

prices in all periods weighted by the corresponding relative volumes. Suppose

there are n trading periods, and we execute (ui)i=1,...,n shares at corresponding

prices (pi)i=1,...,n. Then, the VWAP is defined by

VWAP =
n∑
i=1

ui∑n
j=1 uj

pi,

where ui∑n
j=1 uj

is the weight corresponding to pi. We call it the relative volume

in period i. VWAP takes both the prices and trading volumes into considera-

tion. As Frei and Westray [7] mention, VWAP is a good benchmark because

it is simple to calculate, considered as fair benchmark and encourages to split

large order into smaller ones.
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Our goal in this thesis is to characterize and examine optimal strategies

to help traders meet the VWAP benchmark. However, future volumes are

random and may deviate from historical volumes. Therefore, a predictable

strategy cannot exactly meet the market VWAP. We try to minimize expected

deviations between the trader’s VWAP and the market VWAP in all periods,

for all possible stock prices pi. Similar to the illustration in Bialkowski et

al. [4, 5], if there were no price impact and a trader could keep her trading

pattern the same as that of the market, the trader’s VWAP would match

the market VWAP. However, the terminal market volume is unknown, hence

needs to be estimated or approximated in some way, which leads to tracking

errors. In our case, we minimize the expected deviations between the traders’

relative volumes and the market relative volumes at all times. Suppose there

are n trading periods. The trader’s volume in period i is denoted by ui, and the

corresponding market volume (excluding the trader’s volume) is yi. Therefore,

the trader’s and market relative volume in period i are given by ui∑n
j=1 uj

and

ui+yi∑n
j=1 uj+

∑n
j=1 yj

, respectively. We aim to minimize

E

 n∑
i=1

(
ui∑n
j=1 uj

− ui + yi∑n
j=1 uj +

∑n
j=1 yj

)2
 . (1.1)

While there is a huge literatures on using an arrival price benchmark, there are

less papers related to VWAP. Konishi [14] first investigates the optimal trad-

ing under the VWAP benchmark when the stock price is a Brownian motion.

He derives a static optimal execution strategy of a VWAP order to minimize

the expected squared execution error. McCulloch and Kazakov [16] extend the

work by applying the quadratic hedging theory when the stock price is a semi-
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martingale. They derive a dynamic mean-variance VWAP trading strategy.

Bialkowski et al. [4, 5] decompose the trading volume into two parts to model

the dynamics of intraday volume, which leads to a significant reduction of the

execution risk in VWAP, compared with a static VWAP strategy. Humphery-

Jenner [12] defines a dynamic VWAP strategy which allows traders to utilize

random news during the trading. Kakade et al. [13] study competitive algo-

rithms for VWAP trading in an online learning model. Fuh et al. [8] present

cross-boundary, relative rank and hybrid strategies as alternatives for VWAP

trading. Pemy [17] finds an optimal strategy to maximize the trading VWAP

for a large seller when the stock prices follow a geometric Brownian motion, by

applying the stochastic control method with resource constraints. Bouchard

and Dang [6] apply the stochastic target approach to the VWAP guaranteed

contract.

The most recent work is done by Frei and Westray [7], who initiated this

thesis. They introduce a Gamma bridge to describe the relative volumes,

and characterize an explicit optimal strategy to minimize both the mean and

variance of the order slippage with respect to VWAP. In contrast to [7], we

also take the trader’s own volume into consideration when calculating relative

market volumes per period, see (1.1). As discussed in Hu [11], the VWAP

cost excluding the trader’s execution overstates costs, compared with that

including their execution. Especially, if the order is 20% of the market volume,

it overestimates costs by 25%. Our setting is meaningful for large VWAP

orders (> 20% of daily volume when scaled to a day). For tractability, we

consider a discrete-time model and minimize the deviations of the relative

volumes rather than VWAP directly. This makes the analysis independent of

the stock price dynamics.
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As mentioned before, the order size in algorithmic trading is often large.

Generally, these orders cannot be liquidated immediately without adverse im-

pact on the market prices, which increases the transaction costs substantially.

To reduce the price impact, traders have to slice the orders into small pieces.

There are three kinds of price impact investigated in the previous litera-

ture; see Alfonsi, Schied and Slynko[1]. The temporary impact only affects the

current trading period. The permanent impact shifts the price permanently.

The transient impact affects the current trading period seriously and will last

in the following several periods, but will eventually disappear. As explained

above, we do not specify the price dynamics in our model, but only measure

the deviations in relative volumes. Since price impact is typically linked to

the relation between the trader’s and the remaining market volume, the min-

imization of (1.1) automatically reduces the price impact. Additionally, we

investigate in Section 5 how a linear price impact affects the trading decisions.

The crucial point in this thesis is that, when calculating the market rela-

tive volumes, we also consider the trader’s own volumes, which is important

for large orders. Simultaneously, this significantly increases the difficulty of

the optimization problem. We study a tractable problem formulated by mini-

mizing expected deviations between the trader’s and market relative volumes

rather than directly the trader’s and market VWAP. Through dynamic pro-

gramming, we characterize a sequence of optimal trading strategies. It allows

us to utilize updated market information. Moreover, we also consider the case

when there is linear price impact. Through adjusting the coefficient of the

linear price impact, we can fit our model to any kind of orders, even very huge

orders. To obtain more explicit strategies, we introduce the Gamma distribu-

tion to describe the market volumes in discrete time. This results in explicit
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strategies, whose performance we analyze statistically.

The thesis is organized as follows. In Section 2, we state the main assump-

tions and set up the model. Section 3 characterizes the optimal strategies in

both two-period and n-period case under three different assumptions on the

intraday market volumes. In Section 4, we complete the statistical test and

introduce a correlation structure to describe the intraday volumes in the two-

period case. Additionally, a linear price impact is taken into consideration in

Section 5. We conclude the thesis by discussing future work in Section 6. The

Appendices A and B contain auxiliary calculations and MATLAB code used

for our results.
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Chapter 2

Problem formulation

In this chapter, we state our main assumptions and formulate the problem. Be-

fore setting up the model, we first introduce the definition of VWAP. Suppose

there are n trading periods, and we execute (ui)i=1,...,n shares at corresponding

prices (pi)i=1,...,n. Then, the VWAP is defined by

VWAP =
n∑
i=1

ui∑n
j=1 uj

pi,

where ui∑n
j=1 uj

is the weight corresponding to pi. We call it the relative volume

in period i.

In our model, we consider the case when we have to buy or sell X > 0

shares during n trading periods. Our cumulative traded volume is zero at the

beginning, and X at the end. The executed volume ui in period i is decided

at the beginning of period i, with the help of information until that time.

This means that (ui)i=1,...,n needs to be predictable to the market filtration

while (pi)i=1,...,n is adapted. Since we have to execute the entire volume after
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n periods, our trading strategy must satisfy

n∑
i=1

ui = X.

We denote by (yi)i=1,...,n the remaining volume, which is the market volume

excluding our volume. The total market volume in period i is ui + yi. For

the empirical part, we will consider different trading days, each grouped in

the same n trading periods. The market volumes on different days are sup-

posed to be independent and those in corresponding periods are assumed to

be identically distributed. This assumption allows us to use the historical

data to estimate the distribution of future market volumes. All assumptions

specified for the market volumes in this thesis are based on the relations am-

ong the intraday market volumes. For example, in the two-period model, we

have both morning volumes and afternoon volumes on days 1, . . . ,m. Morn-

ing (Afternoon) volumes on different days are assumed to be independent and

identically distributed. The assumptions specified in the thesis are based on

the relation between morning volume and afternoon volume.

Our goal is to minimize expected deviation between our VWAP and market

VWAP for all possible stock prices pi. Now, we compare our VWAP and

market VWAP,

Our VWAP =
n∑
i=1

ui∑n
j=1 uj

pi,

Market VWAP =
n∑
i=1

ui + yi∑n
j=1(uj + yj)

pi.

If we assume that we use the same prices in calculating our and the market

VWAP, the only differences are the relative volumes. Since we want to keep
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these two VWAPs close for all possible pi and we do not specify the process of

stock prices, we aim to keep our trading pattern consistent with the market

pattern. That is, we can keep our relative volume close to the market relative

volume all the time. Our relative volume in period i is equal to ui∑n
j=1 uj

= ui
X

.

The market relative volume is ui+yi
X+

∑n
j=1 yj

.

This leads to a minimization problem. We choose a quadratic function

to measure the closeness, which penalizes both the positive and negative de-

viations. Since we want to make these two VWAPs close all the time, the

objective function should be a sum of deviations in all periods. We notice

that there are random variables in the quadratic function, so we take the ex-

pectation of the quadratic function. Our aim is to find a sequence of trading

strategies (ui)i=1,...,n which minimize the objective function

f(u1, . . . , un) = E

 n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2


subject to
∑n

i=1 ui = X.

The difficulties of realizing this goal are as follows: firstly, in contrast to [7],

we consider the trader’s own volume when calculating the market relative vol-

umes, which significantly increases the difficulty of the minimization problem.

Secondly, the future market volumes are unknown. When we make our deci-

sion ui, we have no information about the precise value of yi, but we can use

historical data to estimate it. Thirdly, it is a dynamic programming problem.

For an n-period case, we should make decisions for n− 1 times and adjust our

strategy based on updated market information.
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Chapter 3

Main results

In this chapter, we discuss three cases when intraday market volumes are

independent. We characterize the optimal trading strategy in each case. Each

case consists of two parts: a two-period model and an n-period model. In

Section 3.1, we assume that the intraday market volumes are independent

and identically distributed. The optimal strategy is a TWAP strategy, which

means splitting the order evenly over time. The case with general independent

volumes is investigated in Section 3.2. Section 3.3 is a special case of Section

3.2, where market volumes are assumed to be Gamma distributed with same

scale parameter.

The two-period model is equivalent to dividing a trading day into morning

and afternoon sessions. We decide at the beginning of the day how many shares

should be executed in the morning and how many in the afternoon. The reason

why we discuss the two-period case individually is that there are lunch breaks

in some Asian markets, such as the Shanghai Stock Exchange, Tokyo Stock

Exchange, and Hong Kong Stock Exchange. The lunch break naturally divides

a trading day into two parts. The two-period model corresponds exactly to
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the trading pattern in these Asian markets.

In the n-period model, we divide a trading day into n periods with the

same length. The number of trading periods varies with different markets,

even though the lengths of a trading period in each market are the same, since

the trading hours in different markets are not the same. If we divide a trading

day into 5-minute intervals, there are 102, 78 and 48 trading periods per day

for the UK, US and China market, respectively.

3.1 Solution for general i.i.d. volumes

In this section, market volumes are independent and identically distributed.

That is, the market volumes in every trading period have the same distribu-

tion type and same parameters. However, it is not necessary to specify the

distribution type or parameters.

3.1.1 Two-period case

This case is the simplest one. We only need to make one decision on our trading

strategy. At time zero, we decide to buy (or sell in the case of a sell order)

u1 shares in period one, where u1 is deterministic. Since our total volume is

fixed, our strategy in period two is automatically determined, namely, X−u1.

Hence, we aim to minimize the objective function

f(u1) = E

[(
u1

X
− u1 + y1

X + y1 + y2

)2

+

(
X − u1

X
− X − u1 + y2

X + y1 + y2

)2
]
.

11



We notice that y1 and y2 are i.i.d. The objective function is equivalent to the

one where in the numerator of X−u1+y2

X+y1+y2
, y2 is replaced by y1,

f(u1) = E

[(
u1

X
− u1 + y1

X + y1 + y2

)2

+

(
X − u1

X
− X − u1 + y1

X + y1 + y2

)2
]
.

For this function, we just need to find the optimal value of u1, which enables

the objective function to achieve its minimum. To this aim, take the derivative

of f with respect to u1, and set it equal to zero, which gives,

f ′(u1) =E

[
2

(
u1

X
− u1 + y1

X + y1 + y2

)(
1

X
− 1

X + y1 + y2

)
+ 2

(
X − u1

X
− X − u1 + y1

X + y1 + y2

)(
− 1

X
+

1

X + y1 + y2

)]
= 0.

By simplifying it, we get

E

[(
1

X
− 1

X + y1 + y2

)2

(−X + 2u1)

]
= 0.

Since market volumes are strictly positive,
(

1
X
− 1

X+y1+y2

)2

is always nonzero.

Therefore, the above equation is true if and only if −X + 2u1 = 0. We obtain

u∗1 = u∗2 =
X

2
.

That is, in the two-period i.i.d. case, our optimal strategy is buying X
2

shares

in each period. It is a TWAP strategy, which is exactly what we expected.

The reason is, under the i.i.d. assumption, the distributions of market volumes

in each period are the same, so that we minimize the deviations to the relative

market volumes by splitting our order equally.
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3.1.2 n-period case

In this part, we assume there are n trading periods per day. We do not need to

make all decisions at the beginning of the trading day. Indeed, we can decide

uj at the beginning of period j. Therefore, it is a dynamic programming

problem. Before solving it, we would like to clarify five important ingredients

for the dynamic programming in this problem. Firstly, state variables, which

are the information we need to make our decision. These include the number

j of the current trading period, our total volume Wj before the current period,

and the market total volume Zj before the current period. Secondly, control

variables are our decision variables. We decide to execute uj shares in period

j. Thirdly, randomness. In this model, future market volumes are unknown.

We model future market volumes as random variables. Fourthly, the objective

function. Since we want to minimize the expected deviations all the time, the

objective function is the sum of expected deviations in each trading period.

The last one is the law of motion. It summarizes the relations between state

variables in the neighboring periods. The relations between Wj+1 and Wj,

Zj+1 and Zj are given by

Wj+1 = Wj + uj, Zj+1 = Zj + yj.

Our goal is to find the optimal strategy {u∗1, u∗2, ..., u∗n} in every trading period.

Based on the property of dynamic programming, {u∗i , ..., u∗n} is also optimal

for the remaining program starting at the beginning of period i, 1 < i ≤ n.

This property can be summarized by the following Bellman equation, which
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is the key to solving this dynamic programming problem,

V (j,Wj, Zj) = min
uj

E

(uj
X
− uj + yj
X +

∑n
`=j y` + Zj

)2

+ V (j + 1,Wj + uj, Zj + yj)

]

subject to 0 ≤ uj ≤ X −Wj.

It is reasonable to add this constraint, since it is not sensible to trade in the

opposite direction (selling during a buy order or buying during a sell order).

That is, our strategy cannot be negative. Moreover, before we make the deci-

sion on uj, we have already executed Wj shares and our total number of shares

is X at the end. Therefore, uj cannot be greater than our remaining shares,

X−Wj. With this Bellman equation, we can start the dynamic programming.

In period n, the value function only has the first term. It is obvious that

we have to execute all the remaining shares to complete our task. Therefore,

it is reasonable that we start at the beginning of period n − 1. The value

function then equals

V (n− 1,Wn−1, Zn−1) = min
un−1

f(un−1, n− 1,Wn−1, Zn−1),

f(un−1, n− 1,Wn−1, Zn−1) = E

[(
un−1

X
− un−1 + yn−1

X + yn−1 + yn + Zn−1

)2

+

(
X −Wn−1 − un−1

X
− X −Wn−1 − un−1 + yn

X + yn−1 + yn + Zn−1

)2
]
.

Take the derivative of f (un−1, n− 1,Wn−1, Zn−1) with respect to un−1, and
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set it equal to zero, which gives

∂f(un−1, n− 1,Wn−1, Zn−1)

∂un−1

= E

[(
1

X
− 1

X + yn−1 + yn + Zn−1

)
×
(

2un−1 +Wn−1 −X
X

+
X −Wn−1 − 2un−1 + yn − yn−1

X + yn−1 + yn + Zn−1

)]
= 0.

We separate the expectation into three terms,

E

[(
1

X
− 1

X + yn−1 + yn + Zn−1

)2

(2un−1 +Wn−1 −X)

]

+ E

[
yn

X + yn−1 + yn + Zn−1

(
1

X
− 1

X + yn−1 + yn + Zn−1

)]
− E

[
yn−1

X + yn−1 + yn + Zn−1

(
1

X
− 1

X + yn−1 + yn + Zn−1

)]
= 0.

It is important to recall that yn−1 and yn are i.i.d. Since the second and third

terms have the same structure, the difference must be zero, which leads to

E

[(
1

X
− 1

X + yn−1 + yn + Zn−1

)2

(2un−1 +Wn−1 −X)

]
= 0.

It is obvious that
(

1
X
− 1

X+yn−1+yn+Zn−1

)2

is always positive. Using that

un−1,Wn−1, and X are deterministic, the above equation is true if and on-

ly if

2un−1 +Wn−1 −X = 0.

This yields the optimal strategy in period n− 1, namely

u∗n−1 =
X −Wn−1

2
.

By putting the optimal strategy back into the value function V (n− 1,Wn−1, Zn−1),
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we obtain

V (n− 1,Wn−1, Zn−1) =
1

2
E

[(
X −Wn−1

X
− X −Wn−1 + 2yn−1

X + yn−1 + yn + Zn−1

)2
]
.

Observing the structure of the value function and optimal strategy in period

n − 1, we find some interesting patterns. For the optimal strategy, we just

need to split our remaining shares evenly. For the value function, 1
2

is the

inverse of 2, which is the number of the remaining trading periods. X−Wn−1

X

is the portion of our remaining volume. X−Wn−1+2yn−1

X+yn−1+yn+Zn−1
is the portion of the

remaining market volume. Based on these observations, we make the following

induction hypotheses on the value function and optimal strategy in any period

n− i, 0 < i < n− 1,

u∗n−i =
X −Wn−i

i+ 1
, (3.1)

V (n− i,Wn−i, Zn−i) =
1

i+ 1
E

(X −Wn−i

X
− X −Wn−i + (i+ 1)yn−i

X +
∑n

j=n−i yj + Zn−i

)2
 .

Applying the Bellman equation, we get the value function at the beginning of

period n− i− 1,

V (n− i− 1,Wn−i−1, Zn−i−1)

= min
un−i−1

E

(un−i−1

X
− un−i−1 + yn−i−1

X +
∑n

j=n−i−1 yj + Zn−i−1

)2

+
1

i+ 1

(
X −Wn−i−1 − un−i−1

X
− X −Wn−i−1 − un−i−1 + (i+ 1)yn−i

X +
∑n

j=n−i−1 yj + Zn−i−1

)2
 .
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By using the same method, we can get

u∗n−i−1 =
X −Wn−i−1

i+ 2
,

V (n− i− 1,Wn−i−1, Zn−i−1)

=
1

i+ 2
E

(X −Wn−i−1

X
− X −Wn−i−1 + (i+ 2)yn−i−1

X +
∑n

j=n−i−1 yj + Zn−i−1

)2
 .

The solution is consistent with our induction hypotheses regarding the optimal

strategy and value function. By backward induction, we conclude that these

properties hold for every trading period i, 0 < i < n− 1.

For the first period with W1 = 0 and Z1 = 0, we get the optimal strategy

in period 1, u∗1 and the value function, V (1, 0, 0),

u∗1 =
X

n
,

V (1, 0, 0) =
1

n
E

(1− X + ny1

X +
∑n

j=1 yj

)2
 .

By substituting, we get all the optimal strategies,

u∗1 = u∗2 = · · · = u∗n =
X

n
.

Therefore, in the n-period i.i.d. case, our optimal strategy is to buy X
n

shares

in each period, which is exactly the TWAP strategy. The trading strategies in

each period are exactly the same, and there is no adjustment on our strategy

based on the market information, although we collect more information from

the market as time goes by. This is reasonable because past market information

is independent of future market volumes by assumption. This information is
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not helpful in inferring future market volumes, which are i.i.d. Therefore, we

make no adjustment based on the past market information, which leads to

continuing splitting the remaining order evenly.

3.2 Solution for general independent volumes

In the previous section, we analyzed i.i.d. volumes. However, when we observe

the intraday volumes, we find some U-shape patterns. That is, the volumes at

the beginning and end of the day are higher than those in the middle of the day.

In this case, i.i.d. volumes may not be close to the reality. In this section, we

consider general independent volumes. We still do not specify the distribution

type and parameters. It makes the optimal strategy more complicated, but

also more interesting. As expected, we cannot get an explicit formula for the

optimal strategy, but we can implement it through Monte-Carlo simulation.

The structure of this section is the same as in the i.i.d. case, we first consider

the two-period case, then the n-period case.

3.2.1 Two-period case

As in Section 3.1.1, we aim to minimize

f(u1) = E

[(
u1

X
− u1 + y1

X + y1 + y2

)2

+

(
X − u1

X
− X − u1 + y2

X + y1 + y2

)2
]
.

Unlike the i.i.d. case, we cannot replace y2 in the numerator of X−u1+y2

X+y1+y2
by y1.

Take the derivative and set it equal to zero,

f ′(u1) = E

[
y1 + y2

X2 (X + y1 + y2)2 (u1y1 + u1y2 −Xy1)

]
= 0.
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Then, we can calculate our optimal strategy

u∗1 =
E
[

y1(y1+y2)

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]X, u∗2 =

1−
E
[

y1(y1+y2)

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]
X. (3.2)

Hence, the optimal strategy is to buy
E

[
y1(y1+y2)

(X+y1+y2)2

]
E

[
(y1+y2)2

(X+y1+y2)2

]X shares in period one,

and the remaining shares in period two. It seems that the optimal strategy

is complicated, in particular, if we want to generalize it to the n-period case.

Nevertheless, we can use the historical trading data to estimate the distribu-

tions of y1 and y2. Moreover, our trading volume X is fixed. We can calculate

the optimal strategy numerically. Observing the structure of u∗1, we find that

the numerator and denominator look very similar. We sperate the numerator

into two parts

u∗1 =
E
[

y1

y1+y2

(y1+y2)2

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

] X.

If y1

y1+y2
is independent of y1 + y2, we are able to simplify it to

u∗1 = E

[
y1

y1 + y2

]
X, u∗2 = E

[
y2

y1 + y2

]
X.

If we can get this strategy, it substantially reduces the time to calculate it.

It also makes sense to have a strategy proportional to the expectation of the

relative market volumes. We are asking ourselves if we can find a distribution

type which achieves it and fits the data well. We discuss this in Section 3.3.
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3.2.2 n-period case

As in Section 3.1.2, it is a dynamic programming problem. We can no longer

get an explicit formula for the value function, but we show in Appendix A.1

that the optimal strategy in the n-period case with W1 = 0 and Z1 = 0 is

given by

u∗i (Zi) =
E
[
(Zi + (n− i+ 1)yi)

Zi+
∑n

j=i yj

(X+Zi+
∑n

j=i yj)2

]
(n− i+ 1)E

[
(Zi+

∑n
j=i yj)2

(X+Zi+
∑n

j=i yj)2

] X −
∑i−1

j=1 u
∗
j

n− i+ 1
, (3.3)

for any i, 1 ≤ i ≤ n − 1, where u∗i is a function of Zi, the cumulative market

volume up to period i− 1. Because the yj are independent, we have

u∗i =

E

[(
1

n−i+1

∑i−1
`=1 y` + yi

) ∑n
j=1 yj

(X+
∑n

j=1 yj)
2

∣∣∣∣Fi−1

]
E

[
(
∑n

j=1 yj)
2

(X+
∑n

j=1 yj)
2

∣∣∣∣Fi−1

] X −
∑i−1

j=1 u
∗
j

n− i+ 1
,

where Fi−1 is the σ-algebra generated by y1, . . . , yi−1.

Remarks. 1) As mentioned in Section 3.1.2, it is sensible that the optimal

strategy should be positive. In Section 4.3, we use real data to calculate the

optimal strategies. In all these examples, the optimal strategies are strictly

positive. Generally, with reasonable parameter choices, the optimal strategy

generated by (3.3) is positive. However, in some extreme case, the optimal

strategy may be negative. For example, consider three trading periods. The

expectation of y1 is large and that of y2 is almost zero. However, the actual y1

is very small (almost zero). In this case, u∗1 is still very big. For u∗2, the first

term is almost zero, but the second term is negative, which gives us a negative

strategy in period two.
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2) We can regain (3.1) from (3.3) if (yj)j=1,...,n are identically distributed.

Indeed, we then have that

E

(Zi + (n− i+ 1) y`)
Zi +

∑n
j=i yj(

X + Zi +
∑n

j=i yj

)2


takes the same value for all ` = i, . . . , n. Therefore, we obtain

E

(Zi + (n− i+ 1) yi)
Zi +

∑n
j=i yj(

X + Zi +
∑n

j=i yj

)2


= E


(
Zi +

∑n
j=i yj

)2

(
X + Zi +

∑n
j=i yj

)2


and then it follows from (3.3) that

u∗i =
X −

∑i−1
j=1 u

∗
j

n− i+ 1
,

which is equivalent to (3.1).

Observing the structure of the optimal strategy, we still find some inter-

esting patterns. The first term mainly depends on the market information. It

includes at period i, the past cumulative market volume
i−1∑̀
=1

y`, the estimation

of the future market volumes through {yi, ..., yn}, and our total trading vol-

ume X. Although it is not an explicit solution, we can calculate it numerically.

The second term depends on the past information regarding our own trading.

The numerator is the sum of the volumes we have already traded before our

decision, and the denominator is the number of the remaining trading periods.

The first term can be seen as a strategy in period i if we have no trading
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before that time. However, we have already executed
∑i−1

j=1 u
∗
j before period

i. We have to make adjustments to take our previous trading into consider-

ation. It is reasonable to have an optimal strategy which depends on all the

information that we need to make our decision.

3.3 Solution for independent Gamma distribut-

ed volumes

As mentioned in Section 3.2.1, we are asking ourselves if we can find a distribu-

tion type which fits the data well and makes the optimal strategy proportional

to the expected relative market volumes. In this section, we show that the

Gamma distribution with same scale parameter works. There are three rea-

sons why we choose Gamma distribution with same scale parameter. Firstly,

it is reasonable from mathematical and financial perspectives. Since trading

volumes are positive, the Gamma distribution meets this first requirement.

More importantly, the Gamma distribution is widely used in actuarial science

to model the accumulation of losses, which is comparable with the accumu-

lation of trading volume. Secondly, in Chapter 4, we show that it fits the

data well through statistical tests. Thirdly, it leads to an explicit solution. In

the general case, the solution looks very complicated. Our goal is to find a

distribution type to simplify the solution. The Lukacs’ proportion-sum inde-

pendence theorem and the relation between the Gamma distribution and the

Beta distribution can help us realize our goal.

Before we start this special case, we recall this useful theorem from prob-

ability theory.
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Theorem 3.1: Lukacs’ proportion-sum independence theorem [15]

If y1 and y2 are non-degenerate, independent random variables, then the

random variables y1 + y2 and y1

y1+y2
are independently distributed if and only

if both y1 and y2 have Gamma distributions with same scale parameter.

3.3.1 Two-period case

We assume the morning market volume y1 and afternoon market volume y2

satisfy

y1 ∼ Γ(k1, θ), y2 ∼ Γ(k2, θ).

They have the same scale parameter. Since it is a special case of general

volumes, we apply the result obtained from Section 3.2.1, namely,

u∗1 =
E
[

y1(y1+y2)

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]X.
The numerator is equal to E

[
y1

y1+y2

(y1+y2)2

(X+y1+y2)2

]
. The first term y1

y1+y2
is the

fraction, and the second term (y1+y2)2

(X+y1+y2)2 is a function of the sum y1 + y2.

According to Lukacs’ proportion-sum independence theorem, these two terms

are independent. Then, we calculate the optimal strategy

u∗1 =
E
[

y1

y1+y2

(y1+y2)2

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

] X = E

[
y1

y1 + y2

]
X,

which is proportional to the relative market volumes. It is exactly what we

expected. We also find another nice property of the Gamma distribution with

same scale parameter. If y1 ∼ Γ(k1, θ), y2 ∼ Γ(k2, θ), then y1

y1+y2
∼ β(k1, k2).
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The property of the Beta distribution gives us

u∗1 =
k1

k1 + k2

X.

Indeed, it is also proportional to the expected market volume since

u∗1 =
k1

k1 + k2

X =
k1θ

k1θ + k2θ
X =

E[y1]

E[y1] + E[y2]
X. (3.4)

In period one, we should buy k1

k1+k2
X shares, and k2

k1+k2
X shares in period

two. With this optimal strategy, in practice, we just need to estimate two

parameters and directly get the result, which increases the speed.

In the financial industry, one of the most popular and efficient VWAP

strategies is the empirical strategy, which means executing the order propor-

tionally to the average of the historical relative market volumes. Since our

Gamma strategy is proportional to the expectation of relative market volumes

by (3.4), it corresponds to the empirical strategy. However, we will see in the

next section that this does not hold for the n-period case with n > 2.

3.3.2 n-period case

Since it is a special case of independent general volumes, we directly use the

result in Section 3.2.2. By (3.3), the optimal strategy in period i, 1 ≤ i ≤ n−1,

is

u∗i =
E
[
(Zi + (n− i+ 1)yi)

Zi+
∑n

j=i yj

(X+Zi+
∑n

j=i yj)2

]
(n− i+ 1)E

[
(Zi+

∑n
j=i yj)2

(X+Zi+
∑n

j=i yj)2

] X −
∑i−1

j=1 u
∗
j

n− i+ 1
. (3.5)
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In this n-period case, we also wish to get a sequence of optimal strategies which

are proportional to the expected relative market volumes, just like the two-

period case. Unfortunately, we are unable to obtain it. As in the two-period

case, we rewrite the numerator of the first term as

E

[
Zi + (n− i+ 1)yi
Zi +

∑n
j=i yj

(Zi +
∑n

j=i yj)
2

(X + Zi +
∑n

j=i yj)
2

]
.

Although the second term is a function of
∑n

j=i yj, the first term cannot be

treated as the fraction of Gamma distributed random variables, due to the

existence of market information Zi in the denominator. That is, we cannot

apply Lukacs’ theorem in the n-period case. A solution in closed form is not

available in this situation. However, we can use MLE (maximum likelihood

estimation) to approximate the parameters of the Gamma distribution, then

use Monte-Carlo simulation to get the strategy numerically (see Appendix

B.1). We will introduce the MLE for this case.

We want to estimate the parameters for the market volumes in all periods.

There are n random variables (yi)i=1,...,n corresponding to periods i = 1, ..., n.

Since we assume that these variables are independent and Gamma distributed

with same scale parameter, we have n+1 parameters to approximate, namely,

the shape parameters ki of yi for i = 1, ..., n and the scale parameter θ of all

the random variables.

We use 60 successive days to estimate the parameters for the trading strate-

gy on the next day. For each random variable yi, there are 60 observations. Let

y
(j)
i denote the jth observation of yi. Based on the independence assumption,
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we get the log-likelihood function

`(k1, · · ·, kn, θ) =
n∑
i=1

(ki − 1)
60∑
j=1

ln
(
y

(j)
i

)
−

n∑
i=1

60∑
j=1

y
(j)
i

θ

−
n∑
i=1

(
60ki ln(θ) + 60 ln (Γ(ki))

)

where Γ(x) =
∫∞

0
tx−1e−t dt is the Gamma function. Take the derivative of the

log-likelihood function with respect to θ and set it equal to zero

∂`

∂θ
=

n∑
i=1

60∑
j=1

y
(j)
i

θ2
−

n∑
i=1

60ki
θ

= 0,

which gives us the estimation of θ, namely,

θ̂ =

∑n
i=1

∑60
j=1 y

(j)
i

60
∑n

i=1 ki
.

Then we can substitute it back into the log-likelihood function, which yields

`(k1, . . . , kn) =
n∑
i=1

(ki − 1)
60∑
j=1

ln
(
y

(j)
i

)
− 60

n∑
i=i

ki

− 60

(
n∑
i=1

ki

)
ln

(∑n
i=1

∑60
j=1 y

(j)
i

60
∑n

i=1 ki

)
− 60

n∑
i=1

ln (Γ(ki)) .

To approximate the values of k1, . . . , kn, we can take the partial derivatives

of `(k1, . . . , kn) with respect to k1, . . . , kn. It gives us a system of n equations

with n variables. It is nonlinear system, but we can solve it numerically. The

ith equation is

1

60

60∑
j=1

ln
(
y

(j)
i

)
− ln

(
1

60

n∑
i=1

60∑
j=1

y
(j)
i

)
+ ln

(
n∑
i=1

ki

)
− ψ(ki) = 0,
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where ψ(ki) = Γ′(ki)
Γ(ki)

is the digamma function.

After we have estimated these n shape parameters and the scale param-

eter, we are able to generate samples of the random variables (yi)i=1,...,n.

This helps us to calculate numerically the expectations E
[

(Zi+
∑n

j=i yj)2

(X+Zi+
∑n

j=i yj)2

]
and E

[
(Zi + (n− i+ 1)yi)

Zi+
∑n

j=i yj

(X+Zi+
∑n

j=i yj)2

]
appearing in denominator and nu-

merator of (3.5).

The previous Gamma strategy is dynamic and quite complicated. The cost

of collecting market information and doing the calculations on time may not

be ignored. We next analyze the gain in performance compared to a static

and deterministic strategy. This comparison is useful to decide whether the

gain in performance outweighs the costs due to a higher complexity. A static

Gamma strategy means that we make all the decisions on (ui)i=1,...,n at the

beginning of the trading day, under the same Gamma assumptions. That is,

(ui)i=1,...,n has to be deterministic. Recall the n period model, where we aim

to minimize

E

 n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2


subject to
∑n

i=1 ui = X.

Although we have n decision variables, we only make n − 1 decisions at

the same time due to the total volume constraint. The last strategy un is

automatically determined by the other decisions. Since all the decision vari-

ables are deterministic, we do not need dynamic programming. To enable the

objective function to achieve the minimum, we first replace un by X−
∑n−1

i=1 ui

and then take the partial derivative of the objective function with respect to

ui, for i = 1, . . . , n − 1. We set each partial derivative equal to zero, which
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gives us n− 1 equations with n− 1 decision variables. The ith equation is

E

[
2

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)(
1

X
− 1

X +
∑n

j=1 yj

)

+ 2

(
X −

∑n−1
j=1 uj

X
−
X −

∑n−1
j=1 uj + yn

X +
∑n

j=1 yj

)(
− 1

X
+

1

X +
∑n

j=1 yj

)]
= 0.

By simplifying, we obtain

(
n−1∑
j=1

uj + ui −X

)
E

[
(
∑n

j=1 yj)
2

X2(X +
∑n

j=1 yj)
2

]

= E

[
(
∑n

j=1 yj)
2

X2(X +
∑n

j=1 yj)
2

yi − yn∑n
j=1 yj

]
X.

The right-hand side looks very similar to the two-period Gamma case. Un-

like the dynamic Gamma strategy, there is no Zj in the expectation, which

allows us to apply the Lukacs’ theorem. The first term in the expectation,

(
∑n

j=1 yj)2

X2(X+
∑n

j=1 yj)2 is the function of the sum
∑n

j=1 yj. The second term is the

difference of two fractions, yi∑n
j=1 yj

and yn∑n
j=1 yj

, both of which are independent

of the sum. Therefore, these two terms are independent, which yields

(
n−1∑
j=1

uj + ui −X

)
E

[
(
∑n

j=1 yj)
2

X2(X +
∑n

j=1 yj)
2

]

= E

[
(
∑n

j=1 yj)
2

X2(X +
∑n

j=1 yj)
2

]
E

[
yi − yn∑n
j=1 yj

]
X.

The term E
[

(
∑n

j=1 yj)2

X2(X+
∑n

j=1 yj)2

]
on both sides can be canceled. The remaining of

the right-hand side can be calculated by the property of the Beta distribution,
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namely,

E

[
y1 − yn∑n
j=1 yj

]
X = E

[
y1∑n
j=1 yj

]
X − E

[
yn∑n
j=1 yj

]
X =

ki − kn∑n
j=1 kj

X.

The system of equations is



2u1 + u2 + · · ·+ un−1 −X =
k1 − kn

k1 + · · ·+ kn
X,

...

u1 + · · ·+ 2ui + · · ·+ un−1 −X =
ki − kn

k1 + · · ·+ kn
X,

...

u1 + · · ·+ un−2 + 2un−1 −X =
kn−1 − kn

k1 + · · ·+ kn
X.

This system gives us our optimal strategy in period i, namely

ui =
ki∑n
j=1 kj

=
kiθ∑n
j=1 kjθ

=
E[yi]∑n
j=1E[yj]

.

The static Gamma strategy is proportional to the relative market volumes,

also to the expected market volumes, which exactly meets our expectation. In

other words, the static Gamma strategy corresponds to the n-period empirical

strategy, like the Gamma strategy in two periods as presented in Section 3.3.1.

Therefore, we do not analyze them separately. We will compare the perfor-

mance of the dynamic Gamma strategy with that of the empirical strategy in

Section 4.3. The result shows that the dynamic Gamma strategy may improve

the performance, but is computationally more costly.
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Chapter 4

Data fit and analysis

In this chapter, we fit the two-period Gamma based model to real data. Then

we introduce a multivariate Gamma distribution to describe the correlation

between intraday volumes in the two-period case. We also present how to

estimate the parameters of the multivariate Gamma distribution through the

method of moments. Finally, we compare the performance of the strategies

that we obtain with that of the empirical strategy.

4.1 Statistical test

In this section, we show that the two-period Gamma based model fits the data

well. We divide a trading day into two parts of equal length: morning session

and afternoon session. We analyze the morning and afternoon market volumes.

In the Gamma based model, we assume the morning and afternoon market

volumes are independent and Gamma distributed with same scale parameter.

Under this assumption, the relative market volumes are Beta distributed. To

reduce the influence of seasonal fluctuations on market volumes, we investigate
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the relative market volumes rather than the absolute volumes.

We analyze data from 120 trading days, starting from April 24, 20121. We

consolidate the data to obtain the morning and afternoon volumes. To re-

flect generality, we choose five exemplary representative companies from three

major markets: North America, Europe and Asia. The companies are MSFT

(Microsoft) from US, VOD (Vodafone) from UK, PC (Petro China), ICBC

(Industrial and Commercial Bank of China) and SINOPEC (China Petroleum

and Chemical Corporation) from China. We choose more companies from

China for three reasons: firstly, there is a lunch break in the Chinese market,

which naturally divides a trading day into two two-hour trading sessions. The

situation is exactly as in our two-period model. Secondly, the Chinese market

is booming. The total trading volume at the Shanghai Stock Exchange ranks

the third all over the world, following NYSE and NASDAQ. We are interested

in such an emerging market. Thirdly, algorithmic trading is not very popular

in China right now. However, its popularity is expected to increase quickly.

In the two-period case, the relative market volume in the afternoon is

equal to one minus the relative market volume in the morning. Therefore, we

only test the relative market volume in the morning, since the result for the

afternoon is exactly the same. Maximum likelihood estimation is applied to

approximate the two shape parameters of the Beta distribution in the first 60

trading days. The second 60 trading days are the test data set. We use a

Kolmogorov-Smirnov (K-S) test to obtain p-values (see Appendix B.2). The

null hypothesis of the K-S test is that the relative market volumes are Beta

distributed. The result of the K-S test is shown in Table 4.1.

From the table, we see that, except for MSFT, the p-values are bigger than

1Data is used with the permission of Bloomberg L.P.
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p-value
VOD 0.1510

MSFT 0.0145
PC 0.3493

ICBC 0.6513
SINOPEC 0.3802

Table 4.1: p-values of K-S test

15%. This means the K-S test does not reject our null hypothesis. Of course,

one can never prove the null hypothesis by means of a statistical test, and real

trading volume is not Gamma distributed. However, the p-values indicate that

our assumptions of Gamma distributed volumes is reasonable, in particular,

for our prime example of the Chinese market.

We also completed the statistical test in the n-period case by dividing a

trading day into 10-minute trading periods. However, the p-values were not as

good as in the two-period case. The reason is that, in the two-period case, we

test the Beta distribution, which reduces the influence of the fluctuations in the

total market volume, which is highly volatile. However, in the n-period case,

we test the Gamma distribution, using absolute and not relative volumes. It is

to be expected that we cannot obtain a good statistical result in the n-period

case. However, in Section 4.3, we also show that our dynamic Gamma strat-

egy works better than the empirical strategy in the chosen stocks, except for

MSFT. This means our dynamic Gamma strategy is still meaningful although

the underlying model assumption may not fit well in the n-period case.
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4.2 Correlated market volumes

In the previous parts, we mainly discussed independent situations. Intuitive-

ly, there should be some correlations among the intraday volumes. We are

seeking for a correlation structure suitable for the intraday volumes. Based

on our previous discussion, a Gamma distribution with correlation structure

seems natural. We also notice that in actuarial science, multivariate Gamma

distributions are widely used to decompose risk capital. In this section, we in-

troduce the multivariate Gamma distribution to our setting in the two-period

case by decomposing market volume into a common part and a unique part.

The n-period correlated case is much more difficult. We cannot use the same

technique as in Chapter 3 because its application hinged on the independence

assumption, which allowed us to calculate the value function by taking the

derivative with respect to the control variable.

Let v0, v1, v2 be random variables which are mutually independent and

Gamma distributed with shape parameters ki and scale parameters θi. Set

y1 =
θ1

θ0

v0 + v1, y2 =
θ2

θ0

v0 + v2.

Applying the property of Gamma distributions, we deduce

y1 ∼ Γ(k0 + k1, θ1), y2 ∼ Γ(k0 + k2, θ2).

In the two-period case, we only make one decision at the beginning of the

trading day. When we make the decision, there is no available updated market

information. Both u1 and u2 are deterministic. In this situation, even though

the morning and afternoon market volumes are correlated, the case is the same
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as in Section 3.2.1. Recall from (3.2) that the optimal strategy is given by,

u∗1 =
E
[

y1(y1+y2)

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]X, u∗2 =

1−
E
[

y1(y1+y2)

(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]
X.

Because y1 and y2 are not independent, we need to estimate y1 and y2 to

calculate our strategy numerically. Since y1 and y2 are generated by v0, v1

and v2, we should estimate six parameters of these three random variables.

However, y1 and y2 depend only on five parameters and there is no dependence

on θ0. This means that the value of θ0 makes no difference, as long as it is

positive. In the simulation, we set it equal to one.

We do not have the data of v0, v1 and v2. Instead, we can use the data of

market volumes to estimate the parameters. Denote the morning volume on

day i by yi1 and the afternoon volume on day i by yi2. Then, we can calculate

the first and second moments and the covariance of these two variables

m1
1 =

y1
1 + y2

1 + · · ·+ yn1
n

, m2
1 =

(y1
1)2 + (y2

1)2 + · · ·+ (yn1 )2

n
,

m1
2 =

y1
2 + y2

2 + · · ·+ yn2
n

, m2
2 =

(y1
2)2 + (y2

2)2 + · · ·+ (yn2 )2

n
,

Cov(y1, y2) =

∑n
i=1(yi1 −m1

1)(yi2 −m1
2)

n
.

Applying the property of the Gamma distribution, we can link the moments

and covariance to the five parameters that we need to estimate by five equa-
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tions

m1
1 =(k̂0 + k̂1)θ̂1, m2

1 = (k̂0 + k̂1 + 1)(k̂0 + k̂1)(θ̂1)2,

m1
2 =(k̂0 + k̂2)θ̂2, m2

2 = (k̂0 + k̂2 + 1)(k̂0 + k̂2)(θ̂2)2,

Cov(y1, y2) =E[y1y2]− E[y1]E[y2] = k̂0θ̂1θ̂2.

Solving the system gives

k̂0 =
Cov(y1, y2)

θ̂1θ̂2

, θ̂1 =
(m2

1 − (m1
1)2)

m1
1

,

k̂1 =
(m1

1)2

(m2
1 − (m1

1)2)
− k̂0, θ̂2 =

(m2
2 − (m1

2)2)

m1
2

,

k̂2 =
(m1

2)2

(m2
2 − (m1

2)2)
− k̂0.

With these parameters, we can generate samples of the random variables v0, v1,

and v2, which indirectly generate samples for the random variables y1 and y2.

Then, we can calculate our multivariate Gamma strategy numerically. In

Section 4.3, we analyze the performance of the multivariate Gamma strategy

in the two-period case.

4.3 Performance

So far, we have obtained three strategies in the two-period case: TWAP, Gam-

ma and multivariate Gamma strategies. In practice, the empirical strategy is

often used and works very well. The empirical strategy is obtained as follows.

When we make the decision on one day, we collect the trading data in the

past several days. Then, we take the average of relative market volumes in

each period. The trading strategy in each period is just proportional to the
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average historical relative market volumes. We showed in Section 3.3.1 that

the Gamma strategy corresponds to the empirical strategy. In this part, we

compare the performance of TWAP, multivariate Gamma strategy and em-

pirical strategy by rolling parameter estimations in a two-period model (see

Appendix B.3). Recall the two-period model with optimization criterion

Performance = E

[(
u1

X
− u1 + y1

X + y1 + y2

)2

+

(
X − u1

X
− X − u1 + y2

X + y1 + y2

)2
]
.

We compare the average performance of each strategy. Here, we use the 120

days data to compute the performance of each strategy from day 61 to day

120. Then we take the average of performance in these 60 days.

To calculate estimations of the parameters for the multivariate Gamma

and empirical strategies, we use a rolling method. For multivariate Gamma

strategy, we use 60 successive days to estimate the distribution parameters.

For the empirical strategy, we take the average of relative market volumes, in

the 60 successive days. These parameters and average are used to calculate

strategies on day 61. Then, we put the strategies into the model with the real

morning and afternoon market volumes on day 61, and get the performance

on day 61 for each strategy. Then, moving one day forward, we repeat the

same work to get the performance on day 62. We repeat this from day 61 to

day 120. Finally, we take the average of the performance over the 60 trading

days.

For the TWAP strategy, it is easier. We do not need to estimate the

parameters or take average. Since the strategy is fixed, we just execute one

half in the morning and the other in the afternoon. We can directly use the

strategy with real data from day 61 to day 120 to get the performance, then
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take the average over the 60 trading days.

Since the trader’s total volume X has an effect on the performance, we

compare the average performance for different values of X. We consider 20

cases. The minimum value of X is 5% of the average total market volume.

We increase it by 5% until 100% of the average total market volume.

In Figures 4.1–4.5, we plot five graphs for the five companies. Each graph

includes three curves, which represent the average performance of these three

strategies. We find several interesting patterns in the graphs:
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Figure 4.1: VOD: performance in the two-period model

1. The multivariate Gamma strategy performs nearly the same as the em-

pirical strategy, which results from assuming independent and Gamma

distributed volume. The reason is that the two-period case is static.

Therefore, information about the correlation cannot be used beneficially

because we are not allowed to update the strategy during the day. Both
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Figure 4.2: MSFT: performance in the two-period model
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Figure 4.3: PC: performance in the two-period model

strategies perform better than the TWAP strategy, except for MSFT.

2. As X is getting bigger, the three average performances are getting lower
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Figure 4.4: ICBC: performance in the two-period model
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Figure 4.5: SINOPEC: performance in the two-period model

and closer. Observe that the performance here is only a criterion for the

deviation of our relative volume to that of the market, and it does not
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say anything about the price impact. The bigger our order, the easier to

follow the market pattern, since our own volume counts a large parts of

the market.

3. For VOD, the multivariate Gamma strategy and the empirical strategy

perform much better than the TWAP strategy. This is due to lower

morning market volume in the London market. In the afternoon, the

traders from the US also get into the market, which leads to higher

market volume in the afternoon.

4. For MSFT, TWAP is the best. The relative market volume of MSFT in

the morning is approximately the same as that in the afternoon. In this

case, splitting our order evenly is reasonable. Moreover, in the statistical

part, the p-value for MSFT is very low, which means that using historical

data to estimate future market volumes may not work well.

5. For SINOPEC, at the left part, the empirical strategy beats the multi-

variate Gamma strategy. Intuitively, the multivariate Gamma strategy

should be better. Here, the reason may be that there is more fluctu-

ation in the total market volume of SINOPEC. The empirical strategy

uses the average of the historical market relative volumes, which reduces

the influence of fluctuations in the total market volumes. On the con-

trary, the absolute market volume is used to estimate the parameters of

the multivariate Gamma strategy. The estimation error may negatively

affect its performance.

After investigating the two-period case, we compare the performance of the

dynamic Gamma strategy with the empirical strategy, which corresponds to
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Number of days Improvement
VOD 33/60 1.51%

MSFT 23/60 -16.98%
PC 39/60 3.18%

ICBC 46/60 2.88%
SINOPEC 44/60 4.20%

Table 4.2: Performance of dynamic Gamma strategy and empirical strategy
in the n-period case

the static Gamma strategy in the n-period case (see Appendix B.4). Here,

we divide a trading day into 10-minute trading periods, and fix the trader’s

total volume by setting it to 20% of the total market volume. We compare

two criteria: the number of days when the dynamic Gamma strategy performs

better and the improvement2 in the average performance.

As shown in Table 4.2, except for MSFT, the dynamic Gamma strategy

performs better, compared with the empirical strategy. Especially, in the ex-

emplary stocks from the China market, the dynamic Gamma strategy performs

better in approximately 75% of the 60 days. It gives an improvement between

1.5% and 4.2% in the average performance. Although the improvement is

not that big, it can be important considering the large order size. This indi-

cates that, although the dynamic Gamma strategy is more complex and time

consuming to implement, it may be worth it due to the better performance.

However, this is just a snapshot based on a few stocks and over a relatively

short trading period. More research would need to be done to confirm or revise

these findings; see Chapter 6.

2Improvement=1− Average performance of dynamic Gamma strategy
Average performance of empirical strategy
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Chapter 5

Incorporating linear price

impact

So far, we have considered the minimization of expected deviations between

our and the market relative volumes in any period. Finding such a strategy

whose relative volume is close to that of the market automatically reduces the

price impact of our order. Therefore, it is not really necessary to incorporate

a price impact separately in our problem formulation. Still, we introduce in

this section an additional linear (temporary) price impact in the optimization

criterion. This allows us to study how such a price impact affects the optimal

strategies.

We consider a buy order. Sell orders can be treated analogously by chang-

ing the signs. Price impact eventually increases the cost of our order. Assume

the stock prices without price impact denoted by (pi)i=1,...,n is a martingale.

We denote by the coefficient of the linear (temporary) price impact. The ac-

tual price per share we pay in period i is given by pi + κui. The total costs of
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our order are

E

[
n∑
i=1

(pi + κui)ui

]
= E

[
n∑
i=1

piui

]
+ E

[
n∑
i=1

κu2
i

]
,

which consists of two parts. The first part is the cost without price impact,

and the second one is the cost originated from the price impact. Applying the

martingale property of (pi)i=1,...,n and using that (ui)i=1,...,n is predictable, we

can deduce that

E

[
n∑
i=1

piui

]
= E

[
n−1∑
i=1

(pi − pn)ui + pnX

]
= p0X,

which is a constant independent of our trading strategy. When we compare

different strategies, we can just consider the second part, E [
∑n

i=1 κu
2
i ].

Now, we want to add the price impact term to our original model. However,

the value we get from the original model is a deviation of relative volumes,

but the additional term represents costs. We cannot directly combine them.

We first set up a linear mapping from the volume deviation to cost. Then, we

have a new model with price impact. We aim to minimize

E

λ n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2

+
n∑
i=1

κu2
i


over (ui)i=1,...,n, subject to

∑n
i=1 ui = X, where λ > 0 is the coefficient of the

linear mapping.

To simplify the model, we divide both parts by λ. The objective function
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is equivalent to

E

 n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2

+
n∑
i=1

κ̃u2
i

 ,
where κ̃ = κ

λ
.

The value of κ̃ depends on our optimization preferences through λ and

varies for different stocks through κ. Intuitively, if κ̃ is large and the second

term dominates the first, we will split our order evenly over the time. As in

Chapter 3, we solve this problem in three cases.

5.1 Solution for general i.i.d. volumes

In the case of i.i.d. volume, the optimal strategy is still the TWAP strategy

with

u∗1 = u∗2 = · · · = u∗n =
X

n
. (5.1)

To see this, we note that

min
ui

E

 n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2

+
n∑
i=1

κ̃u2
i

 (5.2)

≥ min
ui

E

 n∑
i=1

(
ui
X
− ui + yi
X +

∑n
j=1 yj

)2
+ κ̃min

ui
E

[
n∑
i=1

u2
i

]
, (5.3)

where the minima are subject to
∑n

i=1 ui = X.
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Jensen’s inequality yields

1

n

n∑
i=1

u2
i ≥

1

n2

(
n∑
i=1

ui

)2

=
1

n2
X2

with equality for (u∗i )i=1,...,n given in (5.1). By Section 3.1.2, the two opti-

mization problems in (5.3) have the same minimizer, which thus is also the

minimization of the original problem. In the case of i.i.d. volumes, we can min-

imize simultaneously the price impact and the volume deviation by slitting our

order evenly.

5.2 Solution for general independent volumes

We start this section with the two-period case. The goal is to minimize

E

[(
u1

X
− u1 + y1

X + y1 + y2

)2

+ κ̃u2
1 +

(
X − u1

X
− X − u1 + y2

X + y1 + y2

)2

+ κ̃(X − u1)2

]
.

Taking the derivative and setting it equal to zero, we obtain

E

[((
1

X
− 1

X + y1 + y2

)2

+ κ̃

)
(2u1 −X)

]
+ E

[
y2

2 − y2
1

X(X + y1 + y2)2

]
= 0.

Here, y1 and y2 are not i.i.d. The second term is not equal to zero. We just

keep it and solve for the optimal strategy

u∗1 =
X

2
+

E
[

y2
1−y2

2

X2(X+y1+y2)2

]
2E
[

(y1+y2)2

X2(X+y1+y2)2 + κ̃
]X.

The optimal strategy can be decomposed into two parts. The first term is a

TWAP strategy. The second term is an adjustment, which mainly depends on
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the deviation between y1 and y2, the coefficient of linear price impact, and our

total volume.

If κ̃→ 0, we have

u∗1 →
X

2
+

E
[

y2
1−y2

2

X2(X+y1+y2)2

]
2E
[

(y1+y2)2

X2(X+y1+y2)2

]X =
E
[

y1(y1+y2)
(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]X.
It is exactly the same as the solution in Section 3.2.1, which is the special case

κ̃ = 0.

If κ̃→∞, the second term vanishes, which leads to

u∗1 →
X

2
. (5.4)

This means, if we have a huge linear price impact on the market, our optimal

strategy is a TWAP strategy, which helps us to reduce the price impact.

After analyzing the two-period case, we go to the n-period case. By use

dynamic programming as in Section 3.2.2 (see Appendix A.2), we obtain the

optimal strategy in period i, 1 ≤ i ≤ n− 1,

u∗i =

X −
i−1∑
j=1

u∗j

n+ 1− i
+

E

[
(
∑n

j=i yj+Zi)((n−i)yi−
∑n

j=i+1 yj)
X2(X+

∑n
j=i yj+Zi)

2

]
(n+ 1− i)E

[
(
∑n

j=i yj+Zi)
2

X2(X+
∑n

j=i yj+Zi)
2 + κ̃

]X.

This optimal strategy can also been decomposed into two parts. Without the

second term, the first term indeed is a TWAP strategy. The second term is

an adjustment based on the difference among the market volumes in different

periods and the linear price impact. It is very similar to Corollary 3.4 of Frei

and Westray [7], which shows that the optimal strategy in their continuous-
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time setting can be decomposed into two parts: TWAP and an adjustment

due to the randomness and jumps of the relative market volumes.

5.3 Solution for independent Gamma distribut-

ed volumes

Since it is a special case of Section 5.2. We directly apply the result of that

part. Recall the optimal strategy in the two-period case is

u∗1 =
X

2
+

E
[

y2
1−y2

2

X2(X+y1+y2)2

]
2E
[

(y1+y2)2

X2(X+y1+y2)2 + κ̃
]X.

We rewrite it as

u∗1 =
E
[

y1(y1+y2)
(X+y1+y2)2

]
E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

X +
κ̃X3

2E
[

(y1+y2)2

(X+y1+y2)2

]
+ 2κ̃X2

.

Apply Lukacs’ theorem to the first term, which yields

u∗1 =

k1

k1+k2
X
(
E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

)
E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

−
k1

k1+k2
κ̃X3

E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

+
κ̃X3

2
(
E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

) .
After simplifying, we get the optimal strategy

u∗1 =
k1

k1 + k2

X +
k2−k1

k1+k2
κ̃X2

2
(
E
[

(y1+y2)2

(X+y1+y2)2

]
+ κ̃X2

)X.
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The optimal strategy can still be decomposed into two parts. The first term

is the empirical strategy. The second part is an adjustment mainly based on

the deviation between y1 and y2, the coefficient of the linear price impact κ̃

and our total volume X.

If κ̃→ 0, we have

u∗1 →
k1

k1 + k2

X.

This is the empirical strategy, which corresponds to the optimal strategy in

Section 3.3.1 for the special case κ̃ = 0.

If κ̃→∞, κ̃X2 dominates E
[

(y1+y2)2

(X+y1+y2)2

]
. It give us, as in (5.4),

u∗1 →
k1

k1 + k2

X +
k2−k1

k1+k2
X3

2X2
=
X

2
.

For the n-period case, we cannot apply Lukacs’ theorem and thus there is

no fully explicit solution. We still can calculate it numerically as in Section

3.3.2.
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Chapter 6

Future work

In this thesis, we minimize the expected deviations in relative trading volumes.

A better estimation of the market relative volume contributes to an improve-

ment of the trading strategies. In a next step, we can extend the current work

in several directions.

1. For the intraday volumes, we mainly discuss the independent situations,

and introduce a multivariate Gamma distribution to describe correlation

structure in the two-period case. We can extend the multivariate Gamma

distribution to n-period case by applying copula. However, the difficulty

of the dynamic programming is significantly increased. In this case, our

control variable is no longer independent of the filtration, which means

we cannot directly take the derivative of the value function with respect

to the control variable.

2. In the data fit part, we find that our model does not work well for MSFT,

even though other companies show good data fit. We can also investigate

more companies from the US market to see if our model is suitable for

49



other companies from the US market. Moreover, we can analyze the

performance deviations between the dynamic Gamma strategy and the

empirical strategy for more companies and more trading days to see

whether we obtain a statistically significant improvement.

3. We assume that the market volumes on different days are independent

and volumes in corresponding periods are identically distribution. This

enables us to estimate the future volumes by historical data. However,

we also observe seasonal patterns in the market volumes. To better

estimate the market volumes, we could incorporate the seasonal patterns.

To decide how many days should be used to estimate the parameters is

also very interesting.

4. As the seminal Black-Scholes model, which can be derived from the

discrete-time model, we could also study the behavior of the current

model in the limit and investigate the continuous case. However, our

Gamma strategy is not in closed form.
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Appendix A

Auxiliary calculations

A.1 n-period case without price impact

In period n, we execute all the remaining volume. We start the dynamic

programming at period n − 1. The value function at the beginning of this

period is

V (n− 1,Wn−1, Zn−1) = min
un−1

E

[(
un−1

X
− un−1 + yn−1

X + yn−1 + yn + Zn−1

)2

+

(
X −Wn−1 − un−1

X
− X −Wn−1 − un−1 + yn

X + yn−1 + yn + Zn−1

)2
]
.

By using the same method as in Section 3.2.1, we can get the optimal strategy

in period n− 1,

u∗n−1 =− Wn−1

2
+
E
[
(Zn−1 + 2yn−1) Zn−1+yn−1+yn

(X+Zn−1+yn−1+yn)2

]
2E
[

(Zn−1+yn−1+yn)2

(X+Zn−1+yn−1+yn)2

] X

=− Wn−1

2
+ b(n− 1, Zn−1),
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where we use the notation

b(n− j, Z) =

E

(Z + (j + 1)yn−j)
Z+

n∑
`=n−j

y`(
X+Z+

n∑
`=n−j

y`

)2


(j + 1)E


(
Z+

n∑
`=n−j

y`

)2

(
X+Z+

n∑
`=n−j

y`

)2


X,

for Z ≥ 0 and 0 ≤ j < n.

Then, we go back to period n− 2. From the law of motion, we know

Wn−1 = Wn−2 + un−2, Zn−1 = Zn−2 + yn−2.

We use un−2, Wn−2, Zn−2 and yn−2 to express u∗n−1 and u∗n. That is,

u∗n−1 = −Wn−2 + un−2

2
+ b(n− 1, Zn−2 + yn−2),

u∗n = X − Wn−2 + un−2

2
− b(n− 1, Zn−2 + yn−2).

The value function at the beginning of period n− 2 equals

V (n− 2,Wn−2, Zn−2) = min
un−2

f(un−2, n− 2,Wn−2, Zn−2),

f(un−2, n− 2,Wn−2, Zn−2) = E

[(
un−2

X
− un−2 + yn−2

X + Zn−2 + yn−2 + yn−1 + yn

)2

+


(
−Wn−2+un−2

2
+B

)
(Zn−2 + yn−2 + yn−1 + yn)− yn−1X

X(X + Zn−2 + yn−2 + yn−1 + yn)

2

+


(
X − Wn−2+un−2

2
+B

)
(Zn−2 + yn−2 + yn−1 + yn)− ynX

X(X + Zn−2 + yn−2 + yn−1 + yn)

2
 ,
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where B = b(n−1, Zn−2 +yn−2). Here, un−2 is the only control variable. More-

over, it is deterministic. We take the derivative of f(un−2, n− 2,Wn−2, Zn−2)

with respect to un−2 and set it equal to zero. This gives,

∂f(un−2, n− 2,Wn−2, Zn−2)

∂un−2

= E

[
Zn−2 + yn−2 + yn−1 + yn

X2 (X + Zn−2 + yn−2 + yn−1 + yn)2((
Zn−2 + yn−2 + yn−1 + yn

)(
3un−2 +Wn−2

)
−XZn−2 − 3Xyn−2

)]
= 0.

It is surprising that b(n − 1, Zn−2 + yn−2) has disappeared after taking the

derivative. The reason is that b(n − 1, Zn−2 + yn−2) is independent of un−2

and some signs of b(n − 1, Zn−2 + yn−2) are positive, and some are negative.

They are canceled in the calculation. Then, we can get the optimal strategy

in period n− 2, namely

u∗n−2 = −Wn−2

3
+ b(n− 2, Zn−2),

which has the same form as u∗n−1. The optimal strategy is not a closed-form

solution. Hence, the value function is not available in closed form. We cannot

do the same backward induction as in Section 3.1.2. However, when observing

u∗n−1 and u∗n−2, we are able to find the same structure. Based on this observa-

tion, we use as induction hypothesis that the optimal strategy in period n− i,

0 < i < n− 1, is

u∗n−i = −Wn−i

i+ 1
+ b(n− i, Zn−i).

With this assumption, we consider the value function in period n−i−1, which

contains un−i−1, u
∗
n−i, . . . , u

∗
n. To minimize the value function, we try to avoid
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u∗n−i, . . . , u
∗
n. Therefore, we use un−i−1 to express them,

u∗n−i =− un−i−1 +Wn−i−1

i+ 1
+ b(n− i, Zn−i−1 + yn−i−1)

...

u∗n−i+j =− un−i−1 +Wn−i−1

i+ 1
+ b

(
n− i+ j, Zn−i−1 +

n−i−1+j∑
`=n−i−1

y`

)

−
j∑

k=1

1

i+ 1− k
b

(
n− i− 1 + k, Zn−i−1 +

n−i−2+k∑
`=n−i−1

y`

)
...

u∗n =X − un−i−1 +Wn−i−1

i+ 1

−
i∑

k=1

1

i+ 1− k
b

(
n− i− 1 + k, Zn−i−1 +

n−i−2+k∑
`=n−i−1

y`

)

Although it looks complicated, b
(
n− i− 1 + k, Zn−i−1 +

∑n−i−2+k
`=n−i−1 y`

)
does

not depend on un−i−1. When we take the derivative of f(un−i−1, n − i −

1,Wn−i−1, Zn−i−1) with respect to un−i−1, b

(
n− i− 1 + k, Zn−i−1 +

n−i−2+k∑
`=n−i−1

y`

)
makes no difference. It gives

E


(
Z` +

n∑
j=`

yj

)
((i+ 2)u` +W` −X)−X

(
(i+ 1)y` −

n∑
j=`+1

yj

)

X

(
X + Z` +

n∑
j=`

yj

)

×
Z` +

n∑
j=`

yj

X

(
X + Z` +

n∑
j=`

yj

)
 = 0,

where ` = n− i− 1. By solving this equation, we get the optimal strategy in
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period n− i− 1

u∗n−i−1 = −Wn−i−1

i+ 2
+ b(n− i− 1, Zn−i−1).

It confirms our induction hypothesis. Then going back to period one with

W1 = 0 and Z1 = 0, we can calculate

u∗1 =
E
[ ∑n

j=1 yj

(X+
∑n

j=1 yj)2y1

]
E
[

(
∑n

j=1 yj)2

(X+
∑n

j=1 yj)2

] X.

If n = 2 (two-period case), we get u∗1 =
E
[

y1+y2
(X+y1+y2)2

y1

]
E
[

(y1+y2)2

(X+y1+y2)2

] X, which is consistent

with the result that we obtain in Section 3.2.1. By substituting, we obtain

(3.3).

A.2 n-period case with price impact

We start the dynamic programming in period n− 1. The value function is,

V (n− 1,Wn−1, Zn−1) = min
un−1

[(
un−1

X
− un−1 + yn−1

X + yn−1 + yn + Zn−1

)2

+ κ̃u2
n−1

+

(
X −Wn−1 − un−1

X
− X −Wn−1 − un−1 + yn

X + yn−1 + yn + Zn−1

)2

+ κ̃(X −Wn−1 − un−1)2

]
.

Here, the situation is similar to the two-period case, except for the existence of

updated information Wn−1 and Zn−1. By using the same method as in Section

5.2, we obtain the optimal strategy in period n− 1

u∗n−1 =
X −Wn−1

2
+

E
[

(yn−1+yn+Zn−1)(yn−1−yn)
X2(X+yn−1+yn+Zn−1)2

]
2E
[

(yn−1+yn+Zn−1)2

X2(X+yn−1+yn+Zn−1)2 + κ̃
]X.
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The first term is a TWAP strategy, and second term is an adjustment based on

the deviation between future volumes and the coefficient of the linear price im-

pact. To continue the dynamic programming, we rewrite the optimal strategy,

which helps us simplify the process

u∗n−1 = −Wn−1

2
+
E
[

(yn−1+yn+Zn−1)(2yn−1+Zn−1)
X2(X+yn−1+yn+Zn−1)2 + κ̃

]
2E
[

(yn−1+yn+Zn−1)2

X2(X+yn−1+yn+Zn−1)2 + κ̃
] X.

The second term is very complicated. However, it is not dependent on our

decision variables. When we take the derivative of the value function with

respect to the decision variable, it keeps the same. We use the abbreviation

b(n− j, Z) =

E

(Z + (j + 1)yn−j)
Z+

n∑
`=n−j

y`

X2

(
X+Z+

n∑
`=n−j

y`

)2 + κ̃


(j + 1)E


(
Z+

n∑
`=n−j

y`

)2

X2

(
X+Z+

n∑
`=n−j

y`

)2 + κ̃


X,

for Z ≥ 0 and 0 ≤ j < n. The optimal strategy in period n− 1 and period n

can be rewritten as

u∗n−1 = −Wn−1

2
+ b(n− 1, Zn−1), u∗n = X − Wn−1

2
− b(n− 1, Zn−1).

Then, we go back to period n− 2. We use un−2,Wn−2, yn−2 and Zn−2 to write

u∗n−1 = −Wn−2 + un−2

2
+ b(n− 1, Zn−2 + yn−2),

u∗n = X − Wn−2 + un−2

2
− b(n− 1, Zn−2 + yn−2).
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By plugging in, we get the value function in period n− 2,

V (n− 2,Wn−2, Zn−2) = min
un−2

f(un−2, n− 2,Wn−2, Zn−2),

f(un−2, n− 2,Wn−2, Zn−2) = E

[(
un−2

X
− un−2 + yn−2

X + Zn−2 + yn−2 + yn−1 + yn

)2

+


(
−Wn−2+un−2

2
+B

)
(Zn−2 + yn−2 + yn−1 + yn)− yn−1X

X(X + Zn−2 + yn−2 + yn−1 + yn)

2

+


(
X − Wn−2+un−2

2
+B

)
(Zn−2 + yn−2 + yn−1 + yn)− ynX

X(X + Zn−2 + yn−2 + yn−1 + yn)

2

+ κ̃u2
n−2 + κ̃

(
−Wn−2 + un−2

2
+B

)2

+ κ̃

(
X − Wn−2 + un−2

2
−B

)2
]
,

where B = b(n − 1, Zn−2 + yn−2). We take the derivative of f(un−2, n −

2,Wn−2, Zn−2) with respect to un−2 and set it equal to zero

E

[
(3un−2 +Wn−2 −X)

(
(yn−2 + yn−1 + yn + Zn−2)2

X2(X + yn−2 + yn−1 + yn + Zn−2)2
+ κ̃

)
− (yn−2 + yn−1 + yn + Zn−2)(2yn−2 − yn−1 − yn)

X(X + yn−2 + yn−1 + yn + Zn−2)2

]
= 0,

which gives us the optimal strategy in period n− 2, namely

u∗n−2 =
X −Wn−2

3
+
E
[

(yn−2+yn−1+yn+Zn−2)(2yn−2−yn−1−yn)
X2(X+yn−2+yn−1+yn+Zn−2)2

]
3E
[

(yn−2+yn−1+yn+Zn−2)2

X2(X+yn−2+yn−1+yn+Zn−2)2 + κ̃
] X.

As the strategy in period n− 1, we rewrite the strategy to continue the back-

ward induction,

u∗n−2 = −Wn−2

3
+ b(n− 2, Zn−2)
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Since the optimal strategy is not in closed form, even though we put it back

to the value function, we are unable to obtain a value function in closed form.

However, we still can continue our backward induction for the form of the

optimal strategy. Based on our observation that the optimal strategy in period

n−2 and that in period n−1 have the same structure, we consider the induction

hypothesis that, for any i, 0 < i < n− 1, the optimal strategy in period n− i

is

u∗n−i = −Wn−i

i+ 1
+ b(n− i, Zn−i).

Now, we consider the optimal strategy in period n− i− 1. We use un−i−1 to

represent the optimal strategy (u∗n−i+j)j=0,...,i through the induction hypothe-

sis,

u∗n−i =− un−i−1 +Wn−i−1

i+ 1
+ b(n− i, Zn−i−1 + yn−i−1)

...

u∗n−i+j =− un−i−1 +Wn−i−1

i+ 1
+ b

(
n− i+ j, Zn−i−1 +

n−i−1+j∑
l=n−i−1

yl

)

−
j∑

k=1

1

i+ 1− k
b

(
n− i− 1 + k, Zn−i−1 +

n−i−2+k∑
l=n−i−1

yl

)
...

u∗n =X − un−i−1 +Wn−i−1

i+ 1

−
i∑

k=1

1

i+ 1− k
b

(
n− i− 1 + k, Zn−i−1 +

n−i−2+k∑
l=n−i−1

yl

)

We plug these strategies into the value function in period n − i − 1. Then,

we take the derivative of f(un−i−1, n − i − 1, Zn−i−1,Wn−i−1) with respect to
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un−i−1 and set it equal to zero, which gives us

E


(
Z` +

n∑
j=`

yj

)
((i+ 2)u` +W` −X)−X

(
(i+ 1)y` −

n∑
j=`

yj

)

X

(
X + Z` +

n∑
j=`

yj

)

×
Z` +

n∑
j=`

yj

X

(
X + Z` +

n∑
j=`

yj

) + κ̃ ((i+ 2)u` +W` −X)

 = 0,

Where ` = n− i− 1. By solving this equation, we obtain the optimal strategy

in period n− i− 1

u∗n−i−1 =
X −Wn−i−1

i+ 2
+

E

[
(
∑n

j=n−i−1 yj+Zn−i−1)((i+1)yn−i−1−
∑n

j=n−i yj)
X2(X+

∑n
j=n−i−1 yj+Zn−i−1)

2

]
(i+ 2)E

[
(
∑n

j=n−i−1 yj+Zn−i−1)
2

X2(X+
∑n

j=n−i−1 yj+Zn−i−1)
2 + κ̃

] X

It has exactly the same structure as that of u∗n−i, which confirms the induction

hypothesis.
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Appendix B

MATLAB code

B.1 MLE for the dynamic Gamma strategy

function [k,theta]=mlegamma(A)

%The function mlegamma returns shape parameters and scale ...

parameter through maximum likelihood estimation. A is an ...

m*n matrix, which includes the market volumes. n is the ...

number of trading periods. k is an n−dimensional vector, ...

which contains n shape parameters, and theta is the scale ...

parameter.

[m,n]=size(A);

s=sum(sum(A));

l=sum(log(A));

d=log(s/m);

function F=myfun(x);

F=l/m−d+log(sum(x))−psi(x);

end

x=ones(1,n);
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k=fsolve(@myfun,x);

theta=s/(m*sum(k));

end

B.2 K-S test for the two-period Gamma based

model

function p = betatest(M)

%The betatest function returns the p−value of the K−S test. M ...

is the market relative volume in the morning. It contains ...

120 data. The first 60 data is used to estimate the ...

parameters of the Beta distribution. The second 60 data is ...

the test dataset for the K−S test.

A=M(1:60);

[a,¬]=mle('beta',A);

pd = ProbDistUnivParam('beta',[a(1),a(2)]);

[¬,p] = kstest(M(61:120),pd);

B.3 Performance comparison in the two-period

case

function compareX(M,A,P,n)

%Compare the average performance of TWAP strategy, ...

multivariate Gamma strategy and empirical strategy by ...
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rolling parameter estimations. M is the morning volume, A ...

is the afternoon volume, and n is the length of days that ...

are used to estimate parameters. Our volume relative to ...

the market is chosen variably as 0.05, 0.1,..., 1

average=mean(M)+mean(A);

a=zeros(20,1);

c=zeros(20,1);

d=zeros(20,1);

for i=1:20

X=i*5/100*average;

[¬,a(i,1)]=TTPer(M,A,n,X);

[¬,c(i,1)]=TMGPer(M,A,n,X);

[¬,d(i,1)]=TEPer(M,A,n,X);

end

X=0.05:0.05:1;

figure, plot(X, a, X, c, X, d, 'LineWidth', 2),

set(gca, 'FontSize', 16),

title('SINOPEC: Performance'),

legend('TWAP Strategy', 'Multivariate Gamma Strategy',

'Empirical strategy'),

xlabel('Trader total volume as fraction of market total volume');

ylabel('Deviation');

B.3.1 Performance of the TWAP strategy

function [u1,TTPer]=TTPer(M,A,n,X)

%The function TTPer returns the average performance of TWAP ...

strategy in two−period case. M is the morning volume, A is ...

the afternoon volume, n is the length of days that are ...
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used to estimate parameters, and X is our total volume ...

relative to that of the market.

l=length(M);

c=l−n;

per=zeros(c,1);

u1=zeros(c,1);

for i=1:c

u1(i,1)=X/2;

y1=M(i+n,1);

y2=A(i+n,1);

per(i,1)=(u1(i,1)/X−(u1(i,1)+y1)/(X+y1+y2))ˆ2+((X−u1(i,1))/X

−(X−u1(i,1)+y2)/(X+y1+y2))ˆ2;

end

TTPer=mean(per);

B.3.2 Performance of the multivariate Gamma strategy

function [u1,TMGPer]=TMGPer(M,A,n,X)

%The function TMGPer returns the average performance of ...

multivariate Gamma strategy in two−period case. M is the ...

morning volume, A is the afternoon volume, n is the length ...

of days that are used to estimate parameters, and X is our ...

total volume relative to that of the market.

rng('default');

l=length(M);

c=l−n;

Per=zeros(c,1);

u1=zeros(c,1);

for i=1:c
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d=i+n−1;

one=sum(M(i:d));

two=sum(M(i:d).ˆ2);

m1M=one/n; %First moment of morning volumes

m2M=two/n; %Second moment of morning volumes

one1=sum(A(i:d));

two1=sum(A(i:d).ˆ2);

m1A=one1/n; %First moment of afternoon volumes

m2A=two1/n; %Second moment of afternoon volumes

theta1=(m2M−m1M*m1M)/m1M;

theta2=(m2A−m1A*m1A)/m1A;

meanm=mean(M(i:d));

meana=mean(A(i:d));

a=sum((M(i:d)−meanm).*(A(i:d)−meana));

covMA=a/n; %Cov between morning and afternoon volumes

k0=covMA/theta1/theta2;

k1=m1M*m1M/(m2M−m1M*m1M)−k0;

k2=m1A*m1A/(m2A−m1A*m1A)−k0;

x0=gamrnd(k0,1,10000,1);

x1=gamrnd(k1,theta1,10000,1);

x2=gamrnd(k2,theta2,10000,1);

y1=theta1*x0+x1;

y2=theta2*x0+x2;

top=y1.*(y1+y2)./(X+y1+y2).ˆ2;

bottom=(y1+y2).ˆ2./(X+y1+y2).ˆ2;

u1(i,1)=mean(top)/mean(bottom)*X;

mv=M(i+n,1);

av=A(i+n,1);

Per(i,1)=(u1(i,1)/X−(u1(i,1)+mv)/(X+mv+av))ˆ2+((X−u1(i,1))/X

−(X−u1(i,1)+av)/(X+mv+av))ˆ2;

end
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TMGPer=mean(Per);

B.3.3 Performance of the empirical strategy

function [u1,TEPer]=TEPer(M,A,n,X)

%The function TEPer returns the average performance of ...

empirical strategy in two−period case. M is the market ...

volumes in the morning, A is the market volumes in the ...

afternoon, n is the length of days that are used to ...

estimate parameters, and X is our total volume relative to ...

that of the market.

P=M./(M+A);

l=length(P);

c=l−n;

per=zeros(c,1);

u1=zeros(c,1);

for i=1:c

d=i+n−1;

avepor=mean(P(i:d,1));

u1(i,1)=avepor*X;

y1=M(i+n,1);

y2=A(i+n,1);

per(i,1)=(u1(i,1)/X−(u1(i,1)+y1)/(X+y1+y2))ˆ2+((X−u1(i,1))/X

−(X−u1(i,1)+y2)/(X+y1+y2))ˆ2;

end

TEPer=mean(per);
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B.4 Performance of dynamic Gamma strate-

gy and empirical strategy in the n-period

case

function [dynerr,emperr]=degamma(A)

% Compare the performance of dynamic Gamma strategy (DGS) and ...

empirical strategy (ES). A is an m*n matrix, which stores ...

the market volumes. m is the number of trading days. n is ...

the number of trading periods on each day. A(i,j) means ...

the market volume in period j on day i.

rng('default');

X=0.2*sum(A(1,:)); %X is our total volume on one day. We ...

assume it is 20% of the market total volume on day 1.

[m,n]=size(A); %m is the number of trading days, n is the ...

number of periods

c=m−60;

dynerr=zeros(c,1); %Performance of DGS.

emperr=zeros(c,1); %Performance of ES.

ave=zeros(c,n); %ave(i,j): average market volume in period j ...

from day i to day i+59.

Z=zeros(c,n); %Z(i,j): total market volume before period j on ...

day i+60.

du=zeros(c,n); %du(i,j): DGS in period j on day i+60.

eu=zeros(c,n); %eu(i,j): ES in period j on day i+60.

As=repmat(sum(A,2),1,n);

prop=A./As;

for i=1:1:c %Compute the performance from day 1+60 to day c+60.

d=i+59;
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B=A(i:d,1:n);

[k,theta]=mlegamma(B);

sumy=sum(A(60+i,1:n));

y=gamrnd(repmat(k,1000,1),theta);

Z(i,2:n)=cumsum(A(i+60,1:n−1));

top=zeros(1000,1);

bottom=zeros(1000,1);

for q=1:1000

top(q,1)=(Z(i,1)+n*y(q,1))*(Z(i,1)+sum(y(q,1:n)))/(X+Z(i,1)

+sum(y(q,1:n)))ˆ2;

bottom(q,1)=(Z(i,1)+sum(y(q,1:n)))ˆ2/(X+Z(i,1)

+sum(y(q,1:n)))ˆ2;

end

du(i,1)=mean(top)/mean(bottom)/n*X;

for j=2:n

top=(Z(i,j)+(n−j+1)*y(:,j)).*(Z(i,j)+sum(y(:,j:n),2))

./(X+Z(i,j)+sum(y(:,j:n),2)).ˆ2;

bottom=(Z(i,j)+sum(y(:,j:n),2)).ˆ2./(X+Z(i,j)

+sum(y(:,j:n),2)).ˆ2;

du(i,j)=mean(top)/(n−j+1)*X/mean(bottom)−sum(du(i,1:(j−1)))

/(n−j+1);

end

dynerr(i,1)=sum((du(i,:)/X−(du(i,:)+A(60+i,:))

/(X+sumy)).ˆ2);

%Compute the performance of ES

ave(i,:)=mean(prop(i:i+59,:));

eu(i,:)=ave(i,:)*X;

emperr(i,1)=sum((eu(i,:)/X−(eu(i,:)+A(60+i,:))

/(X+sumy)).ˆ2);

end
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