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Abstract

In the first part of this dissertation, we prove a generalization of a theorem of

Drinfeld’s [Dri85] which allows one to rebuild the Yangian of an arbitrary simple Lie

algebra starting from any of its finite-dimensional modules satisfying a non-triviality

condition. This is achieved using the so-called R-matrix formalism, and the resulting

realizing of the Yangian is called its R-matrix presentation. When the underlying

module is assumed to be irreducible, our result coincides with Drinfeld’s and, in

particular, makes available a proof of his theorem – which has never appeared in the

literature.

In addition, we provide a detailed study of the algebraic structure of the extended

Yangian and prove several generalizations of results which are known to hold in the

special case where the underlying module is the vector representation of a classical

Lie algebra.

In the second part of this dissertation, we address the problem of classifying

the finite-dimensional irreducible representations for twisted Yangians associated to

orthogonal and symplectic symmetric pairs of Lie algebras. We lay the foundation

needed to solve this problem by developing a highest weight theory and proving that

the highest weight of a finite-dimensional irreducible module necessarily satisfies a

set of relations involving a distinguished complex scalar and a tuple of polynomials

whose set of roots are invariant under certain reflections.

Our main results on this topic provide a complete classification of finite-dimensional

irreducible modules for twisted Yangians associated to a large family of orthogonal

and symplectic symmetric pairs.
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Chapter 1

Introduction

Let g be a simple Lie algebra over the complex numbers C, and let g[z] denote
the polynomial current algebra associated to g. That is, g[z] is the Lie algebra of
polynomial maps f : C→ g, with Lie bracket given pointwise.

The Yangian Y (g) associated to g is a quantum group of affine type which provides
the canonical filtered Hopf algebra deformation of the enveloping algebra U(g[z]). In
particular, it is a filtered Hopf algebra over C, with associated graded algebra grY (g)
isomorphic to U(g[z]) as a graded Hopf algebra:

U(g[z]) ∼= grY (g).

Yangians originally appeared under the guise of their representations in the work
of mathematical physicists studying the quantum inverse scattering method (see
[KS82a,KS82b], for instance). They were later formally introduced by V. Drinfeld
[Dri85], who laid the rigorous foundation for what has grown into a captivating theory.
Since Drinfeld’s pioneering work, this theory has become entangled with many differ-
ent areas and topics in mathematics and mathematical physics. For instance, various
applications of Yangians to the theories of classical Lie algebras [Naz91,NT94,Naz98,
Mol06, Mol07], finite W -algebras [RS99, Rag01, BR01, BK06, BK08, Bro09, Bro11],
classical W -algebras and affine vertex algebras [MM14, MM17, Mol13] have been
discovered. In addition, the representation theory of Yangians and affine quantum
groups has now manifested itself in many geometric settings [Var00,Nak13,KWWY14,
KTW+15,SV17,SV18,YZ18a,YZ18b,FKP+18,MO19,Li19]. Many of these develop-
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ments are in some way related to the fundamental fact that representations of Yan-
gians produce rational R-matrices – rational solutions of the quantum Yang-Baxter
equation (see (2.2.9)).

In this dissertation, we consider two different topics in the representation theory
of Yangians related to R-matrices.

In its first part, we consider the topic of the R-matrix formalism for the Yangian of
an arbitrary complex simple Lie algebra. Our main goal, which is realized in Chapter
2, is to prove a generalization of a theorem of Drinfeld’s [Dri85] which allows one
to rebuild the Yangian from any finite-dimensional, non-trivial, representation. This
goal, and our approach to realizing it, is described in detail in §1.1 below.

In its second part, we focus on the representation theory of orthogonal and sym-
plectic twisted Yangians. Twisted Yangians are coideal subalgebras of Yangians as-
sociated to symmetric pairs of Lie algebras and are intimately linked to an elegant
relation called the reflection equation. The orthogonal and symplectic Yangians which
we consider were introduced by N. Guay and V. Regelskis in [GR16], and are built
inside a special instance of the R-matrix presentation of the Yangian constructed in
Chapter 2. Our goal, which is realized in Chapters 4 and 5, is to lay the ground-
work needed to solve the problem of classifying the finite-dimensional irreducible
representation of these twisted Yangians. In fact, we solve this classification problem
completely for a large family of twisted Yangians. This is described in §1.2.

1.1 The R-matrix presentation of the Yangian

1.1.1 Background and motivation

Yangians admit at least three important presentations: Drinfeld’s original (or “J”)
presentation, the R-matrix (or “RTT”) realization, and Drinfeld’s new (or “current”)
presentation [Dri85, Dri88, FRT90]. Here, we will be primarily concerned with the
R-matrix presentation.

The general construction of the R-matrix presentation of the Yangian and its
equivalence with Drinfeld’s original (or J) presentation was succinctly explained in
[Dri85, Theorem 6].

2



Drinfeld’s construction begins with a fixed finite-dimensional irreducible repre-
sentation V of Y (g), where g is any simple Lie algebra and the Yangian Y (g) is in
Drinfeld’s original presentation (see §2.2). Starting from this data, one may define a
Hopf algebra X(g) – the extended Yangian – whose generators are organized into a
matrix

T (u) ∈ EndV ⊗X(g)[[u−1]],

with defining relations encoded in the ternary matrix relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v),

called the RTT -relation. Here R(u) is a solution of the quantum Yang-Baxter equa-
tion associated to V , which comes from evaluating a formal series

R(u) ∈ (Y (g)⊗ Y (g))[[u−1]],

called the universal R-matrix of the Yangian, on V ⊗V . After being translated to fit
our informal setup, Theorem 6 of [Dri85] can be expressed as follows1.

Theorem A. There is an epimorphism of Hopf algebras

Φ̃ : X(g) � Y (g)

whose kernel is generated by central elements {cr}r∈N which satisfy

∆(c(u)) = c(u)⊗ c(u),

where c(u) = 1 +
∑
r≥1

cru
−r ∈ X(g)[[u−1]]

and ∆ is the coproduct for X(g).

The R-matrix presentation of the Yangian associated to V is then defined to be
the quotient

YR(g) = X(g)/(c(u)− 1),

where (c(u)− 1) denotes the ideal generated by {cr}r∈N.

1) This is stated more precisely in Theorem 2.7.2.
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There are, however, many important aspects of this construction which remain
mysterious:

(a) YR(g) has only been explicitly studied in the special cases where g is a classical
Lie algebra (i.e. g = slN , soN or spN) and V is the vector representation CN .

(b) A proof of Theorem A has never appeared in the literature in full generality.

(c) No general expression for the central series c(u) has been given, nor has any
alternate procedure for describing Ker(Φ̃).

(d) It is not clear how well Theorem A generalizes when the irreducibility assump-
tion on V is dropped.

This brings us to the first main goal behind our work in Chapter 2: To address
the points (b)-(d) in detail and, in particular, to show that Theorem A admits a
generalization where the irreducibility assumption on V is removed.

Our second goal concerns understanding the algebraic structure of the extended
Yangian X(g). To provide some context, let us temporarily narrow our focus to the
setting of (a). In these cases, X(g) has the following properties:

(e) The series c(u) may be chosen so that it’s coefficients {cr}r∈N are algebraically
independent and generate the center ZX(g) of X(g). In particular,

ZX(g) ∼= C[cr]r∈N = C[c1, c2, . . .].

(f) X(g) admits the tensor product decomposition

X(g) ∼= ZX(g)⊗ YR(g) ∼= C[cr]r∈N ⊗ YR(g).

(g) There is an isomorphism of graded Hopf algebras

U(g[z]⊕ C[z]) ∼= grX(g).

(h) There is a family of automorphisms {mf} ⊂ Aut(X(g)), indexed by

f = f(u) ∈ 1 + u−1C[[u−1]],
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such that YR(g) is equal to the subalgebra of X(g) fixed by all mf :

YR(g) =
{
Y ∈ X(g) : mf (Y ) = Y ∀ f(u) ∈ 1 + u−1C[[u−1]]

}
.

When g = slN , such a c(u) is provided by the quantum determinant qdetT (u) (see
(2.7.7)), while if g = soN or spN , one may take c(u) to instead by the series z(u)
defined by (2.7.17). Proofs of the above assertions may be found in [Mol07, Chapter
1] for g equal to slN and [AMR06,AAC+03] for g equal to soN or spN .

Many known applications of Yangians are specific to the case where g = slN and
make extensive use of X(slN), which is often denoted Y (glN) and provides a filtered
deformation of U(glN [z]). In particular, the fact that X(slN) has a large center
governed by qdetT (u) has led to many interesting results: see [Mol07, Chapter 7].

Our second goal in Chapter 2 is to prove that (e)–(h) admit a generalization which
holds for any complex simple Lie algebra g, with the underlying module V chosen to
be any finite-dimensional Y (g)-module satisfying a non-triviality condition.

1.1.2 Main Results

We now provide a description of the of main results of Chapter 2, which realize both
goals laid out in §1.1.1. Let g be an arbitrary simple Lie algebra over C, and fix V to
be any finite-dimensional Y (g)-module which has a non-trivial irreducible summand
when viewed as a module over g ⊂ Y (g).

The extended Yangian associated to V , which we will denote by XI(g), can be
constructed as in §1.1.1 (see Definition 2.4.1) and has a natural filtered Hopf algebra
structure. Here I is an indexing set satisfying

|I| = dim EndY (g)V

and is omitted as a subscript of XI(g) when V is irreducible. We then define the
Yangian YR(g) as the quotient

YR(g) = XI(g)/(Z(u)− 1),

where Z(u) = S2
I(T (u))T (u+ 1

2cg)
−1 ∈ EndV ⊗XI(g)[[u−1]].
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Here SI is the antipode of XI(g) (see (2.4.2)), cg is the eigenvalue of the Casimir
element of g in the adjoint representation, and (Z(u) − 1) is the ideal generated by
the coefficients of Z(u).

Our first collection of results, summarized in the following theorem, provide strong
justification for this definition.

Theorem B. The Yangian YR(g) has the following properties.

(1) There is an epimorphism of filtered Hopf algebras

Φ̃ : XI(g) � Y (g)

with kernel Ker(Φ̃) = (Z(u)− 1). In particular, Φ̃ induces an isomorphism

Φ : YR(g) ∼−→ Y (g).

(2) There is an isomorphism of graded Hopf algebras U(g[z]) ∼= grYR(g).

(3) The center ZYR(g) of YR(g) is trivial: ZYR(g) = C · 1.

In §2.5, this theorem is broken into three distinct parts: see Theorem 2.5.2, The-
orem 2.5.5 and Corollary 2.5.6. We note that Part (1) does not immediately imply
Theorem A, as it does not state that Z(u) is a central, grouplike series multiple of
the identity matrix when V is assumed irreducible.

The next theorem realizes our second goal described in §1.1.1 by providing gen-
eralizations of (e), (f), (g) and (h).

Theorem C. Let ZXI(g) denote the center of XI(g). Then:

(1) There is an isomorphism of filtered Hopf algebras

XI(g) ∼= C[y(r)
λ ]λ∈I,r∈N ⊗ YR(g).

(2) There is an isomorphism of graded Hopf algebras

U(g[z]⊕ zI [z]) ∼= grXI(g),

where zI is a commutative Lie algebra of dimension |I| = dim EndY (g)V .
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(3) The matrix Z(u) belongs to

EndY (g)V ⊗ ZXI(g)[[u−1]],

and its coefficients generate a polynomial algebra C[z(r)
λ ]λ∈I,r≥2 satisfying

C[z(r)
λ ]λ∈I,r≥2 ∼= ZXI(g) ∼= C[y(r)

λ ]λ∈I,r∈N.

(4) There is a family of automorphisms {mf} ⊂ Aut(XI(g)) which are indexed by

f = f(u) ∈ I + EndY (g)V ⊗ u−1C[[u−1]],

such that YR(g) is equal to the subalgebra of XI(g) fixed by all mf :

YR(g) =
{
Y ∈ XI(g) : mf (Y ) = Y ∀ f(u) ∈ I + EndY (g)V ⊗ u−1C[[u−1]]

}
.

This theorem is a stripped down combination of Theorem 2.6.3, Proposition 2.6.6,
Theorem 2.6.7, Proposition 2.6.9 and Theorem 2.6.11.

The relation between the elements {z(r)
λ }λ∈I,r≥2 of Part (3) and Z(u) is given

precisely by

Z(u) = I +
∑
λ∈I

X•λ ⊗ zλ(u), where zλ(u) =
∑
r≥2

z
(r)
λ u−r

and {X•λ}λ∈I is a fixed basis of EndY (g)V containing the identity operator I.

Similarly, the central elements {y(r)
λ }λ∈I,r∈N from Parts (1) and (3) are encoded

as the coefficients of a matrix Y(u). This matrix is realized explicitly as the unique
solution of the formal difference equation

Y(u+ 1
2cg)Z(u) = Y(u) in I + EndY (g)V ⊗ u−1XI(g)[[u−1]].

The image of Y(u) and Z(u) under the coproduct, counit and antipode of XI(g) is
explicitly computed in Lemma 2.6.8 and Corollary 2.6.10. In particular, one has

∆I(Y(u)) = Y[1](u)Y[2](u) and ∆I(Z(u)) = Y[1](u)Z[2](u)Y[1](u+ 1
2cg)

−1, (1.1.1)
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where the notation is as in §2.1 and ∆I is the coproduct for XI(g).

Let us now explain how the above results imply Theorem A. Suppose that V is
irreducible. Then EndY (g)V = CI and the matrices Z(u) and Y(u) necessarily take
the form

Z(u) = z(u) · I and Y(u) = y(u) · I,

where z(u) ∈ 1 + u−1X(g)[[u−1]] and y(u) ∈ 1 + u−1X(g)[[u−1]]

In addition, the formulas (1.1.1) collapse to

∆(z(u)) = z(u)⊗ z(u) and ∆(y(u)) = y(u)⊗ y(u).

Combining these observations with Part (1) of Theorem B gives the following theorem,
which is a summary of the first two parts of Theorem 2.7.2.

Theorem D. Theorem A holds with c(u) taken to be either z(u) or y(u).

More generally, Part (1) of Theorem B, combined with Part (3) of Theorem C and
(1.1.1) should be viewed as a generalization of Theorem A. This is explained further
in Remark 2.7.3.

Our proofs of Theorems B, C and D are based on the construction of “matrix”
presentations for the Lie algebra g and for an auxiliary Lie algebra gI satisfying

gI ∼= g⊕ zI .

They are obtained in §2.3 by studying EndV as a g-module equipped with an adjoint
action, and provide the g-analogues of the R-matrix presentation of the Yangian
and of the extended Yangian. In particular, Proposition 2.3.4 gives a procedure for
rebuilding g from the evaluation of its Casimir two tensor Ω ∈ g ⊗ g on the tensor
square V ⊗ V of any fixed finite-dimensional, non-trivial, g-module V .

These realizations of g and gI naturally lead to the so-called r-matrix presenta-
tions of the current algebras g[z] and gI [z]: see Propositions 2.3.9 and 2.3.16. Our
treatment of these topics in §2.3 appears to be novel, and leads to interesting results
even for the simple Lie algebra g.
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1.2 Representations of twisted Yangians of types
B, C and D

1.2.1 Background and motivation

The goal of the second part of this dissertation, which is contained in Chapters 3–5, is
to address the problem of classifying all finite-dimensional irreducible representations
for twisted Yangians associated to symmetric pairs of types B, C and D.

Twisted Yangians provide one of the main examples of quantum symmetric pairs of
affine type and can be defined starting from any symmetric pair structure (g, gϑ) on a
simple Lie algebra g, where gϑ denotes the Lie subalgebra of g consisting of elements
fixed by a given involution ϑ ∈ Aut(g). A twisted Yangian Y (g, gϑ)tw associated
to such a pair is a certain left coideal subalgebra of Y (g) which provides a filtered
deformation of the enveloping algebra U(g[z]ϑ̌), where ϑ̌ is the non-trivial extension
of ϑ to an involution of g[z] given by

ϑ̌(f)(z) = ϑ(f(−z)) ∀ z ∈ C

and g[z]ϑ̌ is the subalgebra of g[z] consisting of elements fixed by ϑ̌. The left coideal
property means that the restriction of the coproduct ∆ of Y (g) to Y (g, gϑ)tw satisfies

∆(Y (g, gϑ)tw) ⊂ Y (g)⊗ Y (g, gϑ)tw

and the filtered deformation property means that there is an isomorphism of graded
algebras

U(g[z]ϑ̌) ∼= grY (g, gϑ)tw

compatible with the isomorphism of Hopf algebras U(g[z]) ∼= grY (g).

For a general definition of Y (g, gϑ)tw given in terms of generators and relations
which is compatible with Drinfeld’s original presentation of the Yangian, we refer
the reader to the recent work of S. Belliard and V. Regelskis [BR17]. Our approach
to studying twisted Yangians of orthogonal and symplectic type will instead follow
[GR16], where they are constructed within the R-matrix presentation of the Yangians
Y (soN) and Y (spN) associated to the vector representation CN (as in (a) of §1.1.1).
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A complete list of symmetric pairs of types B, C and D is given by

B0 : (so2n+1, so2n+1), D0 : (so2n, so2n), C0 : (sp2n, sp2n),

BI : (so2n+1, so2n+1−q ⊕ soq), DI : (so2n, so2n−q ⊕ soq), CII : (sp2n, sp2n−q ⊕ spq),

CI : (sp2n, gln) and DIII : (so2n, gln),

where q is necessarily even for the type CII pairs and the labeling comes from Car-
tan’s classification of symmetric spaces: see [Hel01, Chapter X]. Our focus will be
entirely on twisted Yangians associated to symmetric pairs which arise from inner
automorphisms. By Table II and Theorem 5.16 of [Hel01, Chapter X], this includes
all symmetric pairs from the above list except for those of the form (so2n, so2n−q⊕soq)
with q taking odd values. The pairs (gN , gϑN) which we do consider are therefore given
by the list

(g2n, gln) and (gN , gN−q ⊕ gq), where 0 ≤ q < N and q ∈ 2Z.

Here (and henceforth) gN always denotes either soN or spN , where N ≥ 2 if gN = spN

and N ≥ 3 if gN = soN . In particular, we include the non-simple case so4 ∼= sl2⊕ sl2.

The problem of classifying finite-dimensional irreducible representations of Yan-
gians and twisted Yangians has a history dating back to Drinfeld’s work in the 1980’s.
In [Dri88, Theorem 2], it was established that the finite-dimensional irreducible rep-
resentations of Y (g) are classified up to isomorphism by tuples of monic polynomials

(Pi(u))rank(g)
i=1 ∈ C[u]rank(g),

which have since been called Drinfeld polynomials. Drinfeld’s classification result was
reproved for symplectic and orthogonal Yangians in their R-matrix presentations in
[AMR06]: see §4.1.

For twisted Yangians of type A (see §3.4), the analogous classification problem
was solved by A. Molev for symmetric pairs of type AI and AII [Mol92,Mol98,Mol07]
and by A. Molev and E. Ragoucy for symmetric pairs of type AIII [MR02]. The
resulting classifications are again given in terms of monic polynomials, but these
polynomials are now subject to additional conditions and, when slϑN has a center,
there is a complex parameter which also plays a role.
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A common theme in the above results is that the polynomials at the heart of
each classification manifest themselves in certain relations satisfied by the highest
weight of a finite-dimensional irreducible module. Therefore, it should not come
as a surprise that our approach to addressing the problem of classifying the finite-
dimensional irreducible representations of Y (gN , gϑN)tw will involve first developing
a highest weight theory. Moreover, following Molev and Ragoucy, we shall work
almost exclusively with the extended twisted Yangian X(gN , gϑN)tw, which is a coideal
subalgebra of the extended Yangian X(gN) whose relation to Y (gN , gϑN)tw mirrors
X(gN)’s relation with Y (gN).

1.2.2 Main Results

In Chapter 3 we will give a detailed survey of Guay and Regelskis’ construction of
the twisted Yangian Y (gN , gϑN)tw and of the extended Yangian X(gN , gϑN)tw. For the
sake of the reader, we will include several proofs to illustrate how many results can
be obtained as an application of the general theory of Chapter 2.

In Chapter 4, we develop a highest weight theory for X(gN , gϑN)tw and demon-
strate that it provides the right tool for distinguishing finite-dimensional irreducible
modules. The definitions which form the basis of this theory are given in §4.2.2. For
the moment, it will be sufficient to know that highest weights take the form of tuples

µ(u) = (µi(u))i∈I+
N
∈
∏
i∈I+

N

(gii + u−1C[[u−1]]),

where I+
N = {2n−N + 1, . . . , n} for n = bN/2c

and the gii take values in {±1} determined by the underlying involution ϑ.

One may define a Verma module M(µ(u)) associated to any such µ(u) and, pro-
vided it is non-trivial, it has a unique irreducible quotient V (µ(u)). Our main results
of Chapter 4 include a characterization of precisely when M(µ(u)) is non-trivial, and
a proof that every finite-dimensional irreducible module is of highest weight type:

Theorem E. The Verma module M(µ(u)) is non-trivial if and only if the relations

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i)

ug(u)µ̃0(κ− u) = (κ− u) g(κ− u)µ̃0(u)
(1.2.1)
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hold for all i ∈ I+
N \ {n}, where κ = cgN/4. Moreover, every finite-dimensional

irreducible module V satisfies
V ∼= V (µ(u))

for a unique tuple µ(u) solving the relations (1.2.1).

The auxiliary tuple µ̃(u) = (µ̃i(u))i∈I+
N
which appears in (1.2.1) is defined by

µ̃i(u) = (2u− n+ i)µi(u) +
n∑

`=i+1
µ`(u) ∀ i ∈ I+

N ,

and g(u) is a rational function of u determined by ϑ: see (3.3.3). Theorem E will be
a consequence of Theorem 4.2.6, Proposition 4.2.9 and Theorem 4.4.4.

The second assertion of Theorem E reduces the problem of classifying the finite-
dimensional irreducible representations of X(gN , gϑN)tw up to isomorphism to the
problem of determining an explicit description of the setµ(u) ∈

∏
i∈I+

N

(gii + u−1C[[u−1]]) : dim V (µ(u)) <∞

 .
Our first main result of Chapter 5 provides a list of conditions on µ(u) which are
necessarily satisfied whenever it belongs to the above set. Set δ = δgN ,spN .

Theorem F. Suppose the X(gN , gϑN)tw-module V (µ(u)) is finite-dimensional. Then
there exists monic polynomials P1(u), . . . , Pn(u) in u, with

P1(u) = P1(−u+ κ+ 2δ),

Pi(u) = Pi(−u+ n− i+ 2) ∀ 2 ≤ i ≤ n,
(1.2.2)

together with a scalar α ∈ C \ Z(Pk(G)+1(u))2 such that

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u)

(
α− u

α + u− l

)δi,k(G)+1
∀ 2 ≤ i ≤ n,

u

κ− u
· µ̃a(κ− u)

µ̃b(u) = g(κ− u)
g(u) · P1(u+ d)

P1(u)

(
α− u

α + u− κ+ d− 2δ
)δk(G),0

.

2) Z(P (u)) denotes the set of roots of a fixed polynomial P (u): see Definition 5.2.3.
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Moreover, if ϑ is non-trivial and gϑN is semisimple, then α satisfies

21−δ
(
α− N

4

)
∈ Z.

The symbols a, b, d and k(G) all take non-negative integer values and are defined
at the beginning of §5.2.2. The statement of the above theorem will be proven in
Propositions 5.2.5 and 5.2.13.

The freeness of the scalar α which appears in Theorem F is controlled by the
existence of non-trivial one-dimensional representations for Y (gN , gϑN)tw. This obser-
vation motivates our second main result of Chapter 5, which provides a classification
of all one-dimensional representations of X(gN , gϑN)tw and Y (gN , gϑN)tw. The below
theorem summarizes the Y (gN , gϑN)tw version of this result.

Theorem G. In what follows, V (G) denotes the one-dimensional representation of
Y (gN , gϑN)tw obtained by restricting the counit of Y (gN).

(1) If gϑN is semisimple, then every one-dimensional representation of Y (gN , gϑN)tw

is isomorphic to V (G).

(2) If gϑN has a one-dimensional center, then Y (gN , gϑN)tw has a one-parameter fam-
ily of representations

{V (α)}α∈C with dim V (α) = 1 ∀ α ∈ C.

Additionally, a Y (gN , gϑN)tw-module V is one-dimensional if and only if there is
α ∈ C such that

V ∼= V (α).

Note that every symmetric pair (gN , gϑN) under consideration satisfies the hypoth-
esis of either Part (1) or Part (2) except if gϑN = so2 ⊕ so2, in which case gN is the
non-simple Lie algebra so4. This exceptional case is discussed in Remark 5.3.7. Part
(1) of Theorem G is stated as Corollary 5.3.2 in §5.3, while Part (2) is a combination
of Corollaries 5.3.6 and 5.3.11 from the same section.

The final set of main results of Chapter 5 are also the most significant results con-
tained in the second part of this dissertation. They provide a complete classification
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of all finite-dimensional irreducible representations of X(gN , gϑN)tw and Y (gN , gϑN)tw,
up to isomorphism, for all symmetric pairs (gN , gϑN) of the form

(so2n+1, so2n),

(gN , gN), (g2n, gln) and (soN , soN−2 ⊕ so2),

For those pairs appearing on the second line above, the necessary conditions of Theo-
rem F are also sufficient conditions and give rise to the desired classifications. These
results are proven in §5.4. Here, we will only present those results which pertain to
pairs (so2n+1, so2n), where n ≥ 2.

Given α, β ∈ C such that α− β ∈ Z, define the string S(α, β) ⊂ C by

S(α, β) = {β + k : k ∈ Z and 0 ≤ k ≤ α− β − 1}.

The next theorem provides a complete description of when the X(so2n+1, so2n)tw-
module V (µ(u)) is finite-dimensional.

Theorem H. Let µ(u) = (µi(u))i∈I+
2n+1

satisfy (1.2.1). Then the X(so2n+1, so2n)tw-
module V (µ(u)) is finite-dimensional if and only if there exists monic polynomials
P1(u), . . . , Pn(u) in u satisfying (1.2.2), together with α ∈ C \ Z(P1(u)) such that

α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),

µ̃i−1(u)
µ̃i(u) =

Pi(u+ 1− δi1
2 )

Pi(u)

(
α− u

α + u− n

)δi,1
∀ 1 ≤ i ≤ n.

This theorem will be proven in §5.5 as Theorem 5.5.7. By applying it in conjunc-
tion with certain structural properties of X(so2n+1, so2n)tw, we will be able to prove
the classification results stated in the next, and final, theorem of this section.

Theorem I. Let (1 + u−1C[[u−1]])refκ denote the subset of 1 + u−1C[[u−1]] consisting
of series invariant under the transformation u 7→ κ− u. Then

(1) The isomorphism classes of finite-dimensional irreducible representations of
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X(so2n+1, so2n)tw are parameterized by tuples

(g(u); (α, (Pi(u))ni=1)) ∈ (1 + u−1C[[u−1]])refκ × C× C[u]n

which satisfy the following set of conditions:

each Pi(u) is monic,

α ∈ C \ Z(P1(u)), α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),

P1(u) = P1(−u+ κ+ 1) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

(1.2.3)

(2) The isomorphism classes of finite-dimensional irreducible representations of
Y (so2n+1, so2n)tw are parameterized by tuples

(α, (Pi(u))ni=1) ∈ C× C[u]n

which satisfy the conditions (1.2.3).

Parts (1) and (2) of this theorem will appear as Proposition 5.5.8 and Corollary
5.5.9, respectively, in §5.5.2.

In Chapter 6, we will provide an indication of how well the above results generalize
to the twisted Yangians associated to the remaining symmetric pairs of types B, C
and D. We will also briefly comment on some natural problems which are motivated
by both parts of this dissertation.

15



Chapter 2

The R-matrix Presentation of the
Yangian

In this chapter, we develop the R-matrix formalism for the Yangian associated to an
arbitrary simple Lie algebra g and prove the results outlined in §1.1.2. The various
pieces of Theorems B, C and D will be proven in §2.5, §2.6 and §2.7, respectively.

The rest of this chapter will proceed as follows. Section 2.1 serves as a preliminary
section where relevant notation and basic facts are gathered. That section will also
serve, in part, as a preliminary section for the rest of this dissertation. In §2.2, we
recall the definition of Y (g) in Drinfeld’s original presentation and survey some of its
main properties, following [Dri85]. In §2.3, we construct the r-matrix presentations of
the current algebras g[z] and gI [z] by first developing a matrix formalism for the Lie
algebras g and gI . The results of this section should be viewed as classical analogues
of Theorems B, C and D.

In §2.4, we introduce the extended Yangian XI(g) and the R-matrix presentation
of the Yangian YR(g) associated to a fixed finite-dimensional Y (g)-module V . In
addition, we establish some of their basic algebraic properties. After proving our
main results in §2.5, §2.6 and §2.7.1, we conclude Chapter 2 in §2.7.2 by explaining
in more detail how the results of §2.6 generalize results which are known to hold in
the special case where g = slN , soN or spN and the underlying Y (g)-module V is the
vector representation CN .
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2.1 Preliminaries

2.1.1 Simple Lie algebras and their polynomial current alge-
bras

Throughout this chapter we assume that g is a finite-dimensional complex simple
Lie algebra with symmetric non-degenerate invariant bilinear form (·, ·). Following
the notation of [Dri85], we fix an orthonormal basis {Xλ}λ∈Λ of g with respect to
this form, where Λ is an indexing set of size dim g. Let {αγλν}λ,ν,γ∈Λ be the structure
constants with respect to this basis:

[Xλ, Xν ] =
∑
γ∈Λ

αγλνXγ.

In particular, αγλν = −αγνλ and αγλν = −ανλγ for all λ, ν, γ ∈ Λ, the second of these
equalities being a consequence of the invariance of the bilinear form (·, ·).

Let Ω and ω denote the Casimir elements

Ω =
∑
λ∈Λ

Xλ ⊗Xλ ∈ g⊗ g and ω =
∑
λ∈Λ

X2
λ ∈ U(g),

and let cg denote the eigenvalue of ω in the adjoint representation. Here U(g) denotes
the enveloping algebra of g. More generally, the notation U(a) will be used to denote
the enveloping algebra of an arbitrary complex Lie algebra a, and ∆ will denote the
standard coproduct on U(a).

The polynomial current algebra of a complex Lie algebra a is the Lie algebra which
is equal to a[z] = a⊗ C[z] as a vector space, with Lie bracket given by

[X ⊗ f(z), Y ⊗ g(z)] = [X, Y ]g ⊗ f(z)g(z) ∀ X, Y ∈ a and f(z), g(z) ∈ C[z].

Equivalently, a[z] is the space of polynomial maps C → g with Lie bracket given
pointwise. If a = g is a complex simple Lie algebra, then the enveloping algebra
U(g[z]) is isomorphic to the unital associative algebra generated by elements {Xλz

r :
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λ ∈ Λ, r ≥ 0} subject to the defining relations

[Xλz
r, Xµz

s] =
∑
γ∈Λ

αγλµXγz
r+s ∀ λ, µ ∈ Λ and r, s ≥ 0. (2.1.1)

The Lie algebra a[z] is graded: we have a[z] = ⊕
k≥0 az

k, with azk = a⊗Czk. If a = g

is simple, then g[z] is generated as a Lie algebra by g and gz.

In addition to having the structure of a Lie algebra, g[z] admits the structure of
a Lie bialgebra determined by the classical r-matrix

rg = −
∑

λ∈Λ,k≥0
Xλv

k ⊗Xλu
−k−1 ∈ g[v]⊗̂g((u−1)).

That is, its Lie bialgebra cocommutator δ : g[z]→ g[z]⊗ g[z] ∼= (g⊗ g)[v, u] is given
by

δ(f(z))(v, u) = [f(v)⊗ 1 + 1⊗ f(u), rg] ∀ f(z) ∈ g[z].

That the right-hand side of the above expression indeed belongs to (g⊗g)[v, u] follows
from the observation that rg may be identified with the element

− Ω
u− v

= −
∑
k≥0

Ωvku−k−1 ∈ (g⊗ g)⊗ (C[v])[[u−1]],

together with the fact that [∆(X),Ω] = 0 for all X ∈ g. The statement that rg is
an r-matrix is meant to indicate that it is a solution of the classical Yang-Baxter
equation with spectral parameter: see [ES02, §6.3.2], as well as §6.2 of loc. cit. for a
more complete description of the Lie bialgebra structure on g[z].

A deep understanding of the bialgebra (g[z], δ) will not be needed here, although
the r-matrix Ω

u−v will play a significant role. We, however, adapt the viewpoint that
this element be treated as a rational function in u − v which can be expanded as a
formal series in (g⊗ g)⊗ C[[v±1, u±1]] in various ways: see Remark 2.3.10.

2.1.2 Matrix, formal series, and miscellaneous notation

In what follows, all vector spaces and algebras are assumed to be over the complex
numbers C, and we will maintain this assumption for the remainder of this thesis.
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Suppose that W is an arbitrary vector space and that V is a finite-dimensional
vector space of dimension N with a fixed basis {e1, . . . , eN}, and let {Eij}1≤i,j≤N

denote the elementary matrices of EndV with respect to this basis. We will often be
working with spaces of the form (EndV )⊗m ⊗W , with m ≥ 1. Given

A =
N∑

i,j=1
Eij ⊗ aij ∈ EndV ⊗W

and 1 ≤ k ≤ m, we set

Ak =
N∑

i,j=1
1⊗(k−1) ⊗ Eij ⊗ 1⊗(m−k) ⊗ aij ∈ (EndV )⊗m ⊗W.

If W is a formal power series ring or if more generally A = A(u) depends on a formal
parameter u, we will indicate this by writing Aa(u) in place of Aa (and rather than
A(u)a).

Similarly, if A is a unital algebra and B = ∑r
i=1 ai⊗bi ∈ A⊗Awith 1 ≤ k < l ≤ m

and m ≥ 2, then we will denote by Bkl the element

Bkl =
r∑
i=1

1⊗(k−1) ⊗ ai ⊗ 1⊗(l−k−1) ⊗ bi ⊗ 1⊗(m−l) ∈ A⊗m.

We instead write Bkl(u) if B = B(u) depends on a formal parameter u.

Throughout this thesis, we will consider embeddings of elements A(u) ∈ EndV ⊗
A[[u−1]] into EndV ⊗ (A⊗A)[[u−1]]. With this in mind, given

A(u) =
N∑

i,j=1
Eij ⊗ aij(u) ∈ EndV ⊗A[[u−1]]

and 1 ≤ k ≤ 2, we define

A[k](u) =
N∑

i,j=1
Eij ⊗ 1⊗(k−1) ⊗ aij(u)⊗ 1⊗(2−k) ∈ EndV ⊗ (A⊗A)[[u−1]].

Now suppose that W1 and W2 are arbitrary vector spaces, and let φ : W1 → W2 be a
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linear map. Then, given

a(u) =
∑
r≥0

aru
−r ∈ W1[[u−1]] and b(u) =

∑
r≥0

bru
−r ∈ W2[[u−1]],

we will write φ(a(u)) = b(u) to indicate that φ(ar) = br for all r ≥ 0. Conversely,
we will use expressions of the form φ(a(u)) = b(u) (understood in the same way)
to define linear maps, algebra homomorphisms and anti-homomorphisms. Similarly,
expressions of the form

φ(A(u)) = (id⊗ φ)A(u) = B(u)

with A(u) ∈ EndV ⊗W1[[u−1]] and B(u) ∈ EndV ⊗W2[[u−1]] will be used to define
and interpret transformations φ : W1 → W2.

For any two vector spaces W1 and W2, let

σW1,W2 : W1 ⊗W2 → W2 ⊗W1

be the canonical permutation operator, which is defined on simple tensors by

σW1,W2(w1 ⊗ w2) = w2 ⊗ w1 ∀ w1 ∈ W1 and w2 ∈ W2.

In practice, we will drop the subscripts and simply write σ = σW1,W2 ; the underlying
vector spaces will always be clear from context. We will also write

R21 = σ(R) ∈ W2 ⊗W1 ∀ R ∈ W1 ⊗W2.

Finally, for any unital associative algebra A we denote by Lie(A) the Lie algebra
which is equal to A as a vector space and has Lie bracket equal to the commutator
bracket:

[a1, a2] = a1a2 − a2a1 ∀ a1, a1 ∈ A.
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2.2 The Yangian of a simple Lie algebra

In this section we recall the definition for the Yangian of g in its J-presentation, as
well as some of its properties which will play a role in §2.5 and §2.6. Aside from
Proposition 2.2.2 and a few brief remarks, all of the contents of this section appeared
in Drinfeld’s seminal paper [Dri85].

Definition 2.2.1 ([Dri85]). The Yangian Y (g) is the unital associative C-algebra
generated by the set of elements {X, J(X) : X ∈ g} subject to the defining relations

XY − Y X = [X, Y ]g, J([X, Y ]) = [J(X), Y ], (2.2.1)

J(cX + dY ) = cJ(X) + dJ(Y ), (2.2.2)

[J(X), [J(Y ), Z]]− [X, [J(Y ), J(Z)]]

=
∑

λ,µ,ν∈Λ
([X,Xλ], [[Y,Xµ], [Z,Xν ]]){Xλ, Xµ, Xν}, (2.2.3)

[[J(X), J(Y )], [Z, J(W )]] + [[J(Z), J(W )], [X, J(Y )]]

=
∑

λ,µ,ν∈Λ

(
([X,Xλ], [[Y,Xµ], [[Z,W ], Xν ]])

+ ([Z,Xλ], [[W,Xµ], [[X, Y ], Xν ]])
)
{Xλ, Xµ, J(Xν)},

(2.2.4)

for all X, Y, Z,W ∈ g and c, d ∈ C, where

{x1, x2, x3} = 1
24

∑
π∈S3

xπ(1)xπ(2)xπ(3) ∀ x1, x2, x3 ∈ Y (g).

The algebra Y (g) is equipped with an ascending filtration FJ defined by

degX = 0 and deg J(X) = 1 ∀ X ∈ g.

For each k ≥ 0, let FJ
k denote the subspace of Y (g) spanned by elements of degree less

than or equal to k and denote by X̄ and J(X) the images of X and J(X), respectively,
in FJ

0 and FJ
1/FJ

0 , respectively. By convention, we also set FJ
−1 = {0}. A proof of

the following well-known result, dating back to [Dri85], was made available recently
in [GRW19a].
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Proposition 2.2.2 ([GRW19a, Proposition 2.2]). The associated graded algebra

grY (g) =
⊕
k≥0

FJ
k/FJ

k−1

is isomorphic to U(g[z]). An isomorphism ϕJ : U(g[z]) ∼−→ grY (g) is provided by the
assignment

Xλz 7→ J(Xλ), Xλ 7→ Xλ ∀ λ ∈ Λ.

We pause momentarily to comment on the relations (2.2.3) and (2.2.4). It was
pointed out in [Dri85] that

(a) when g ∼= sl2 the relation (2.2.3) follows from (2.2.1) together with (2.2.2), and

(b) when g � sl2 the relation (2.2.4) follows from the relations (2.2.1)-(2.2.3).

One way of seeing this is to appeal to the proof of [GRW19a, Theorem 2.6]. A careful
reading of that proof together with [GNW18, 3(ii)] shows that if g � sl2 then the
relation (2.2.4) can be omitted and the relation (2.2.3) can even be replaced with the
relation

[J(h), J(h′)] = 1
4

∑
α,β∈∆+

α(h)β(h′)[x−αx+
α , x

−
β x

+
β ] ∀ h, h′ ∈ h,

where h denotes the Cartan subalgebra of g, ∆+ denotes the set of positive roots of
g, and for each α ∈ ∆+ x±α ∈ g±α are such that (x+

α , x
−
α ) = 1. If instead g ∼= sl2, then

the proof of [GRW19a, Theorem 2.6] found in Appendix A of loc. cit. shows that the
relation (2.2.3) can be omitted and (2.2.4) can be replaced with

[[J(e), J(f)], J(h)] = (fJ(e)− J(f)e)h,

where {e, f, h} is the standard sl2-triple and (·, ·) has been normalized to equal the
trace form.

By [Dri85, Theorem 2], Y (g) is a Hopf algebra with comultiplication ∆, counit ε,
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and antipode S given by

∆(X) = X ⊗ 1 + 1⊗X,

∆(J(X)) = J(X)⊗ 1 + 1⊗ J(X) + 1
2 [X ⊗ 1,Ω],

ε(X) = ε(J(X)) = 0,

S(X) = −X, S(J(x)) = −J(X) + 1
4cgX,

(2.2.5)

where X is an arbitrary element of g. A proof that ∆ is an algebra homomorphism
may be found in [GNW18].

The enveloping algebra U(g[z]) has a one parameter family of Hopf algebra auto-
morphisms τ c, indexed by c ∈ C, which are determined by

τ c : Xzr → X(z + c)r ∀ r ≥ 0 and X ∈ g.

The Yangian Y (g) also possesses such a family of Hopf algebra automorphisms which
can be viewed as quantizations of these shift automorphisms. Explicitly, for each
c ∈ C, there is a Hopf algebra automorphism τc of Y (g) given by the assignment

X 7→ X, J(X) 7→ J(X) + cX ∀ X ∈ g. (2.2.6)

By replacing c ∈ C with a formal variable u, we obtain an automorphism τu of the
polynomial algebra Y (g)[u] or even of the formal power series algebra Y (g)((u−1)).
Given complex numbers c, d ∈ C and formal variables u, v, we will write τc,d = τc⊗ τd
and τu,v = τu ⊗ τv. We will also denote by ∆op the opposite coproduct of Y (g); that
is,

∆op = σ ◦∆, where σ = σY (g),Y (g).

The next corollary follows immediately from the definition of the antipode S given in
(2.2.5).

Corollary 2.2.3. The square of the antipode S is given by S2 = τ− 1
2 cg

.

We are now prepared to introduce the universal R-matrix of Y (g).

Theorem 2.2.4 ([Dri85, Theorem 3]). There is a unique formal series

R(u) = 1 +
∞∑
k=1
Rku

−k ∈ (Y (g)⊗ Y (g))[[u−1]]
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satisfying the relations

(id⊗∆)R(u) = R12(u)R13(u), (2.2.7)

τ0,u∆op(Y ) = R(u)−1(τ0,u∆(Y ))R(u) ∀ Y ∈ Y (g). (2.2.8)

The series R(u) is called the universal R-matrix of Y (g) and it also satisfies the
quantum Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v), (2.2.9)

as well as the relations

R12(u)R21(−u) = 1, τc,dR(u) = R(u+ d− c), (2.2.10)

R(u) = 1 + Ωu−1 +
∑
λ∈Λ

(J(Xλ)⊗Xλ −Xλ ⊗ J(Xλ))u−2 + 1
2Ω2u−2

+O(u−3).
(2.2.11)

Note that (2.2.8) should be viewed as a relation in (Y (g) ⊗ Y (g))((u−1)) and the
quantum Yang-Baxter equation (2.2.9) can be interpreted as an equality in the space
(Y (g)⊗ Y (g)⊗ Y (g))[[v±1, u±1]].

In addition to those properties of R(u) listed in the above theorem, standard
arguments show that

(id⊗ S)R(u) = R(u)−1 and (id⊗ ε)(R(u)) = 1. (2.2.12)

We end this section by recalling a result which concerns the uniqueness and rationality
ofR(u) when evaluated on any two finite-dimensional irreducible representations. Let
ρV and ρW be finite-dimensional irreducible representations of Y (g) on the spaces V
and W , respectively, and set

RV,W (u) = (ρV ⊗ ρW )R(−u).

Theorem 2.2.5 ([Dri85, Theorem 4] and [GRW19a, Theorem 3.10]). Up to multi-
plication by elements of C[[u−1]], RV,W (u) is the unique solution R(u) ∈ End(V ⊗
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W )[[u−1]] of the equation

(ρV ⊗ ρW )(τu,v∆(J(X)))R(u− v)

= R(u− v)(ρV ⊗ ρW )(τu,v∆op(J(X))) ∀ X ∈ g.
(2.2.13)

Additionally, there exists a formal series f(u) ∈ 1 + u−1C[[u−1]] such that

f(u)RV,W (u) ∈ End(V ⊗W )⊗ C(u).

The negative sign which appears in the definition of RV,W (u) does not play an
important role in this result and has been included so that, up to multiplication by a
formal series, RCN ,CN (u) coincides with the R-matrix R(u) given by (2.7.4) if g = slN

and (2.7.15) if g = soN or spN : see [GRW19a, Proposition 3.13].

2.3 The r-matrix presentation of the current alge-
bra g[z]

An important ingredient needed to prove the isomorphism between the Drinfeld Yan-
gian Y (g) and the RTT -Yangian YR(g) (see §2.4) is a presentation of the polynomial
current algebra g[z] which is determined by the image of the Casimir element Ω, or
more precisely the classical r-matrix of g[z], under a fixed representation of the Lie
algebra g. In this section we obtain such a realization of g[z] (see Corollary 2.3.7
and Proposition 2.3.9), and also for the current algebra (g⊕ zI)[z] of a certain trivial
central extension g⊕ zI of g (see Proposition 2.3.16). The polynomial current algebra
(g ⊕ zI)[z] will play an analogous role to g[z] in the study of the extended Yangian
XI(g).

2.3.1 Setup

Let V be a finite-dimensional g-module with associated homomorphism

ρ : g→ gl(V ).
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SetN = dimV , and assume that V is not isomorphic to a direct sum ofN copies of the
trivial representation. The following setup will be used throughout this chapter, with
the exception that from §2.3.3 onwards V will be assumed to be a finite-dimensional
Y (g)-module.

As in the preliminary section, we fix a basis {ei}1≤i≤N of V and let {Eij}1≤i j≤N

denote the usual elementary matrices with respect to this basis. Let Ωρ denote the
image of Ω under ρ⊗ ρ:

Ωρ = (ρ⊗ ρ)(Ω).

Since g is simple and Ker(ρ) ( g, the homomorphism ρ is injective, and hence

{X•λ = ρ(Xλ)}λ∈Λ

is a linearly independent set in gl(V ) which spans a Lie subalgebra ρ(g) isomorphic to
g. The Lie algebra gl(V ) acts on itself via the adjoint action, and we may restrict this
action to g ∼= ρ(g) to obtain a finite-dimensional representation of g. We denote the
resulting g-module by adg(gl(V )), and we let % denote the corresponding Lie algebra
homomorphism:

% : g→ End(gl(V )).

We use the same notation when adg(gl(V )) is viewed as a U(g)-module.

The space span{X•λ}λ∈Λ forms a submodule of adg(gl(V )) isomorphic to the adjoint
representation of g. Accordingly, we will write

ad(g) = span{X•λ}λ∈Λ

when the space on the right-hand side is viewed as a g-submodule of adg(gl(V )).

We will extend the basis {X•λ}λ∈Λ of ad(g) to a basis {X•λ}λ∈Λ• of EndV which
respects the decomposition of adg(gl(V )) into irreducible submodules. Consider the
subspace of intertwiners Eg defined by

Eg = EndgV.

This is a submodule of adg(gl(V )) isomorphic to a direct sum of copies of the trivial
representation Cg of g. As Eg intersects with ad(g) trivially, the direct sum ad(g)⊕Eg
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is also a submodule of adg(gl(V )). By complete reducibility, there is a submodule W ′

of adg(gl(V )) complimentary to ad(g)⊕ Eg. Let

W ′ = W1 ⊕ · · · ⊕Wm (2.3.1)

be its decomposition into a direct sum of irreducible g-submodules of adg(gl(V )), and
set W = Eg ⊕W ′. In summary, we have the g-module decomposition

adg(gl(V )) = ad(g)⊕W = ad(g)⊕ Eg ⊕W ′ = ad(g)⊕ Eg ⊕W1 ⊕ · · · ⊕Wm.

Note that, by definition, every trivial subrepresentation of adg(gl(V )) consists of
endomorphisms which commute with ρ(g), and hence is contained in Eg. In particular,
this implies that Wi � Cg for any 1 ≤ i ≤ m. Let J and Λi, for each 1 ≤ i ≤ m, be
indexing sets such that {X•λ}λ∈J is a basis for Eg, and {X•λ}λ∈Λi is a basis for Wi for
each fixed 1 ≤ i ≤ m. We then set

Λc = J t Λ1 t · · · t Λm and Λ• = Λ ∪ Λc.

Finally, we define a family of complex scalars {cλij, aλij : λ ∈ Λ•, 1 ≤ i, j ≤ N} by

X•λ =
N∑

i,j=1
cλijEij and Eij =

∑
λ∈Λ•

aλijX
•
λ. (2.3.2)

2.3.2 The Lie algebras gJ , gρ and their polynomial current
algebras

We now turn to giving a presentation for the enveloping algebra of g which is governed
by Ωρ. This naturally leads to the desired presentation of the polynomial current
algebra g[z]: see Corollary 2.3.7 and Proposition 2.3.9.

2.3.2.1 Uρ(g) and the extended enveloping algebra UJ (g)

We begin by defining an algebra UJ (g) which can be viewed as an extension of U(g).
It will be proven in Proposition 2.3.6 that this algebra is isomorphic to the enveloping
algebra of the Lie algebra g⊕ zJ , where zJ is a commutative Lie algebra of dimension
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dim EndgV .

Definition 2.3.1. The extended enveloping algebra UJ (g) is defined to be the uni-
tal associative C-algebra generated by elements {FJij }1≤i,j≤N subject to the defining
relation

[FJ1 , FJ2 ] = [Ωρ, F
J
2 ] in (EndV )⊗2 ⊗ UJ (g), (2.3.3)

where FJ = ∑N
i,j=1Eij⊗FJij ∈ EndV ⊗UJ (g) and Ωρ has been identified with Ωρ⊗1.

For each λ ∈ Λ•, set XJλ = ∑N
i,j=1 a

λ
ijF
J
ij (see (2.3.2)) so that

FJ =
∑
λ∈Λ•

X•λ ⊗XJλ ,

and let K = ∑N
i,j=1Eij ⊗ kij be the element of EndV ⊗ UJ (g) defined by

K =
N∑

i,j=1
Eij ⊗ kij =

∑
λ∈Λc

X•λ ⊗XJλ . (2.3.4)

Given an arbitrary vector space U and A = ∑N
i,j=1Eij ⊗ uij ∈ EndV ⊗U, define

ω(A) =
N∑

i,j=1
ω(Eij)⊗ uij ∈ EndV ⊗U, where ω(Eij) = %(ω)(Eij),

and let ∇ : EndV ⊗EndV → EndV denote the multiplication (or composition) map.

Lemma 2.3.2. K satisfies the following properties:

(1) The coefficients kij of K are central,

(2) [Ωρ, K2] = 0 = [Ωρ, K1] and ω(K) = 0,

(3) XJλ = 0 for all λ ∈ Λc \ J . In particular, K = ∑
λ∈J X

•
λ ⊗XJλ .

Proof. Consider first (1). After setting F = FJ −K ∈ ad(g)⊗ UJ (g), (2.3.3) gives

[K1, F
J
2 ] = [Ωρ, F

J
2 ]− [F1, F

J
2 ] ∈ ad(g)⊗ EndV ⊗ UJ (g). (2.3.5)

Since [K1, F
J
2 ] ∈ W ⊗ EndV ⊗ UJ (g), both sides of this equality must vanish, which

proves (1).
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Proof of (2). By Part (1) and (2.3.5), we have

[Ωρ, K2] = [F2,Ωρ] + [F1,F2] ∈ ad(g)⊗ ad(g)⊗ UJ (g). (2.3.6)

As W is a submodule of adg(gl(V )), [Ωρ, K2] ∈ ad(g) ⊗ W ⊗ UJ (g). Therefore
[Ωρ, K2] = 0, and applying the permutation operator σ ⊗ 1 to both sides of this
equality gives [Ωρ, K1] = 0. These two relations also imply that

0 = (∇⊗ 1)([Ωρ, K2 −K1]) =
∑

λ∈Λ,µ∈Λc

[
X•λ, [X•λ, X•µ]

]
⊗XJµ = ω(K).

Proof of (3). On each irreducible component Wi of W ′ (see (2.3.1)), ω operates as
multiplication by a scalar ci. Hence, from the equality ω(K) = 0 and the fact that
ω(X•µ) = 0 for all µ ∈ J , we obtain

0 =
m∑
i=1

ci

∑
µ∈Λi

X•µ ⊗XJµ

 =
∑

µ∈Λc\J
X•µ ⊗ cµXJµ , (2.3.7)

where in the second equality we have defined cµ, for each µ ∈ Λc \ J , to be equal to
ci for the unique i ∈ {1, . . . ,m} such that µ ∈ Λi. It is well known result from the
classical theory of simple Lie algebras over C that the Casimir element operates as a
nonzero scalar in every non-trivial finite-dimensional irreducible module. Therefore,
ci 6= 0 for all 1 ≤ i ≤ m and (2.3.7) implies that XJµ = 0 for all µ ∈ Λc \ J .

The next lemma gives two equivalent definitions of K and proves that there is a
morphism U(g)→ UJ (g).

Lemma 2.3.3. The matrices FJ and K satisfy the identities

[Ωρ, F
J
2 ] = [FJ1 , FJ2 ] = [FJ1 ,Ωρ], (2.3.8)

FJ − 2c−1
g (∇⊗ 1)[FJ1 , FJ2 ] = K = FJ − c−1

g ω(FJ ). (2.3.9)

Moreover, the assignment Xλ 7→ −XJλ for all λ ∈ Λ extends to a homomorphism

ιJ : U(g)→ UJ (g).
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Proof. Applying the permutation operator σ ⊗ 1 to [FJ1 , FJ2 ] = [Ωρ, F
J
2 ] gives

−[FJ1 , FJ2 ] = [Ωρ, F
J
1 ],

which implies (2.3.8).

By Part (2) of Lemma 2.3.2, FJ − c−1
g ω(FJ ) = K. Since

(∇⊗ 1)[FJ1 , FJ2 ] = (∇⊗ 1)[Ωρ, F
J
2 ],

the relation (2.3.8) yields

(∇⊗ 1)[FJ1 , FJ2 ] = 1
2(∇⊗ 1)([Ωρ, F

J
2 ]− [Ωρ, F

J
1 ]) = 1

2ω(FJ ),

which proves (2.3.9).

As for the second part of the lemma, we obtain from Part (2) of Lemma 2.3.2 and
(2.3.6) that [F1,F2] = [Ωρ,F2], where F = FJ −K. Expanding in terms of the basis
{X•λ ⊗X•µ}λ,µ∈Λ of ad(g)⊗ ad(g) gives

[XJλ , XJµ ] =
∑
γ∈Λ

αµλγX
J
γ = −

∑
γ∈Λ

αγλµX
J
γ ∀ λ, µ ∈ Λ.

Thus, the assignment Xλ 7→ −XJλ , for all λ ∈ Λ, extends to a homomorphism
ιJ : U(g)→ UJ (g).

We now simultaneously define the algebra Uρ(g) as a quotient of UJ (g) and prove
that it is isomorphic to the enveloping algebra U(g).

Proposition 2.3.4. Let Uρ(g) be the quotient of UJ (g) by the two-sided ideal gen-
erated by the coefficients of the central matrix K. Equivalently, Uρ(g) is the unital
associative C-algebra generated by elements {Fij}1≤i,j≤N subject to the defining rela-
tions

[F1, F2] = [Ωρ, F2], (2.3.10)

F = c−1
g ω(F ), (2.3.11)

where F = ∑N
i,j=1Eij ⊗ Fij ∈ EndV ⊗ Uρ(g).
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Then Uρ(g) is isomorphic to the enveloping algebra U(g). An isomorphism φρ is
given by

φρ : Uρ(g) ∼−→ U(g), F 7→ −(ρ⊗ 1)Ω. (2.3.12)

Proof. Set F = ∑N
i,j=1Eij ⊗ Fij = −(ρ⊗ 1)Ω. By (2.3.2), the element Fij = φρ(Fij)

is equal to −∑λ∈Λ c
λ
ijXλ.

Step 1 : φρ is a homomorphism of algebras.

Recall that [Ω,∆(X)] = 0 for all X ∈ g. This implies that, in g⊗ g⊗ g, we have
the identity [Ω13,Ω23] = −[Ω12,Ω23]. Applying the homomorphism ρ⊗ ρ⊗ 1 to both
sides of this identity, we obtain the relation

[F1,F2] = [Ωρ,F2] in (EndV )⊗2 ⊗ g.

Hence, the assignment (2.3.12) preserves the relation (2.3.10).

Since we also have F = −∑λ∈ΛX
•
λ ⊗ Xλ ∈ ad(g) ⊗ g, and ω acts on ad(g) as

multiplication by the scalar cg, the relation F = c−1
g ω(F) is satisfied, and thus φρ is

a homomorphism.

Step 2: φρ is an isomorphism.

For each λ ∈ Λ•, define Xρ
λ to be the image of XJλ under the natural quotient

map q : UJ (g) � Uρ(g).

Since q(K) = 0, Xρ
λ = 0 for all λ ∈ Λc. Let ψ = q ◦ ιJ : U(g) → Uρ(g), where

ιJ : U(g) → UJ (g) is the morphism from Lemma 2.3.3. Then φρ ◦ ψ = idU(g), and
to see that ψ ◦ φρ = idUρ(g) it suffices to note that {Xρ

λ}λ∈Λ generates Uρ(g), which is
immediate since it is the image of the generating set {XJλ }λ∈Λ• of UJ (g). This proves
that φρ is an isomorphism with inverse ψ.

Remark 2.3.5. After expanding Ωρ = ∑N
i,j,k,l=1 cklijEij ⊗ Ekl, we may rewrite the

relations (2.3.10) and (2.3.11) of Uρ(g) more explicitly in terms of the generators Fij.
They are

[Fij, Fkl] =
N∑
a=1

(
ckaij Fal − calijFka

)

Fij = 2c−1
g

N∑
a=1

[Fia, Faj]
(2.3.13)

for all 1 ≤ i, j, k, l ≤ N , where to obtain the second relation we have employed that,
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by (2.3.9), c−1
g ω(F ) = 2c−1

g (∇⊗ 1)[F1, F2].

Let gρ be the Lie subalgebra of Lie(Uρ(g)) generated by {Xρ
λ}λ∈Λ, or equivalently

by {Fij}1≤i,j≤N . Then Proposition 2.3.4 implies that (2.3.10) and (2.3.11) are defining
relations for gρ and that φρ|gρ is an isomorphism of Lie algebras gρ ∼−→ g. Consequently
U(gρ) ∼= Uρ(g), and we will henceforth exploit this fact and denote Uρ(g) instead by
U(gρ).

We now return to the study of the algebra UJ (g). Define zJ to be the commutative
Lie algebra with basis {KJλ }λ∈J , and identify the enveloping algebra U(zJ ) with

C[KJλ : λ ∈ J ].

We will denote the matrix ∑λ∈J X
•
λ ⊗KJλ ∈ EndV ⊗ zJ by KJ .

Proposition 2.3.6. The assignment FJ 7→ F + KJ extends to an isomorphism of
algebras

φJ : UJ (g) ∼−→ C[KJλ : λ ∈ J ]⊗ U(gρ). (2.3.14)

Proof. Since KJ ∈ Eg ⊗ zJ , we have [Ωρ,K
J
2 ] = 0. As the coefficients of KJ are

also central and F satisfies (2.3.10), F + KJ satisfies the defining relation (2.3.3) of
UJ (g). Thus the assignment FJ 7→ F + KJ extends to a homomorphism

φJ : UJ (g)→ C[KJλ : λ ∈ J ]⊗ U(gρ).

Since the coefficients of K are central, we deduce that there is an algebra homomor-
phism ψzJ : C[KJλ : λ ∈ J ]→ UJ (g) given by KJ 7→ K. Let ι = ιJ ◦ φρ : U(gρ)→
UJ (g). Since [ι(X), ψzJ (Y )] = 0 for all X ∈ U(gρ) and Y ∈ C[KJλ : λ ∈ J ], there is
a unique homomorphism

ψJ = ψzJ ⊗ ι : C[KJλ : λ ∈ J ]⊗ U(gρ)→ UJ (g)

satisfying ψJ (KJ ) = K and ψJ (F ) = F, where we recall that F = FJ −K. As φJ is
completely determined by φJ (K) = KJ and φJ (F) = F , it follows immediately that
ψJ = φ−1

J .

Define gJ to be the Lie subalgebra of Lie(UJ (g)) generated by {FJij }1≤i,j≤N . Then
the restriction φJ |gJ (see (2.3.14)) and its composition with id ⊗ φρ (see (2.3.12))
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produce isomorphisms
gJ ∼−→ gρ ⊕ zJ ∼−→ g⊕ zJ , (2.3.15)

and we have U(gJ ) ∼= UJ (g). Accordingly, we will henceforth denote UJ (g) by U(gJ ).

2.3.2.2 The polynomial current algebras gρ[z] and gJ [z]

As a consequence of Proposition 2.3.4 and the comments following Remark 2.3.5, the
current algebras gρ[z] and g[z] are isomorphic. Similarly, Proposition 2.3.6 and the
isomorphism (2.3.15) imply that gJ [z] ∼= (g⊕ zJ )[z]. The former identification leads
to the so called r-matrix realization of g[z], as we will illustrate in this subsection.

Corollary 2.3.7. An isomorphism φzρ : gρ[z]→ g[z] is provided by the assignment

φzρ : F (r) 7→ −(ρ⊗ 1)(Ωzr) ∀ r ≥ 0, where

F (r) =
N∑

i,j=1
Eij ⊗ Fijzr ∈ EndV ⊗ gρ[z] and Ωzr =

∑
λ∈Λ

Xλ ⊗Xλz
r ∈ g⊗ g[z].

In particular, U(g[z]) is isomorphic to the unital associative C-algebra generated by
the family of elements {F (r)

ij = Fijz
r : 1 ≤ i, j ≤ N, r ∈ Z≥0} subject to the defining

relations

[F (r)
1 , F

(s)
2 ] = [Ωρ, F

(r+s)
2 ] ∀ r, s ≥ 0, (2.3.16)

F (r) = c−1
g ω(F (r)) ∀ r ≥ 0. (2.3.17)

Proof. The corollary follows from Proposition 2.3.4, the three sentences following
Remark 2.3.5, and the definition of the current algebra g[z] (see (2.1.1)).

Remark 2.3.8. The relations (2.3.16) and (2.3.17) are, of course, just the defining
relations of U(gρ[z]). Omitting the relation (2.3.17) gives the definition of U(gJ [z]).

Introduce the generating matrix

F (u) =
N∑

i,j=1
Eij ⊗ Fij(u) ∈ EndV ⊗ (gρ[z])[[u−1]], where

Fij(u) =
∑
r≥0

F
(r)
ij u

−r−1 ∈ (gρ[z])[[u−1]].
(2.3.18)
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Using this notation, we can express the defining relations of g[z] (or more precisely
those of gρ[z]) using the classical r-matrix Ω

u−v associated to its standard Lie bialgebra
structure.

Proposition 2.3.9. The defining relations (2.3.16) and (2.3.17) are equivalent to the
relations

[F1(u), F2(v)] =
[

Ωρ

u− v
, F1(u) + F2(v)

]
, (2.3.19)

F (u) = c−1
g ω(F (u)). (2.3.20)

The relation (2.3.19) independently serves as the defining relation of U(gJ [z]).

Proof. It is clear that the relation (2.3.20) is equivalent to (2.3.17). To prove the
equivalence of (2.3.19) with (2.3.16), we will expand

(u− v)−1 =
∑
p≥0

vpu−p−1 ∈ (C[v])[[u−1]], (2.3.21)

view (2.3.19) as an equality in the space (EndV )⊗2⊗U(gρ[z])[[v±1, u−1]], and compare
the coefficient of vsu−r on each side for s ∈ Z and r ∈ Z≥0. Note that (2.3.21) is not
the unique expansion of (u− v)−1 in C[[v±1, u±1]], and thus there are other equivalent
ways of viewing (2.3.19): see Remark 2.3.10.

Expanding (2.3.19) using (2.3.21), we obtain

∑
r,s≥0

[F (r)
1 , F

(s)
2 ]v−s−1u−r−1

=
∑

p,a,b≥0

(
[Ωρ, F

(a)
1 ]vpu−p−a−2 + [Ωρ, F

(b)
2 ]vp−b−1u−p−1

) (2.3.22)

Comparing the coefficient of u−r−1v−s−1 in both sides, for r, s ∈ Z≥0, we obtain
(2.3.17):

[F (r)
1 , F

(s)
2 ] = [Ωρ, F

(r+s)
2 ] ∀ r, s ≥ 0.

We must also compare the coefficient of vsu−r (for r, s ∈ Z≥0) in both sides of (2.3.22)
to guarantee that this relation does not imply any additional relations which are not
satisfied in U(gρ[z]). If 0 ≤ r < 2 or s > r − 2, the coefficient of u−rvs on both sides
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of (2.3.19) is zero. Otherwise, we obtain

0 = [Ωρ, F
(r−s−2)
1 ] + [Ωρ, F

(r−s−2)
2 ],

which is also a consequence of (2.3.16): this can be deduced from (2.3.16) in the same
way that the relation (2.3.8) of Lemma 2.3.3 was deduced from (2.3.3).

Remark 2.3.10. In the proof of Proposition 2.3.9 we have expanded the rational
expression (u− v)−1 as an element of (C[v])[[u−1]] and then interpreted (2.3.19) as an
equality in (EndV )⊗2 ⊗ U(gρ[z])[[v±1, u−1]]. As mentioned in the proof of the propo-
sition, this is not the only way we could have proceeded. Working in a more general
framework, (2.3.19) should be viewed as an equality in (EndV )⊗2⊗U(gρ[z])[[v±1, u±1]].
In particular, (u − v)−1 can be expanded as the formal series −∑p≥0 u

pv−p−1 in
(C[u])[[v−1]], leading to an equivalent set of defining relations.

An alternative expansion involves multiplying both sides of (2.3.19) by the polyno-
mial u−v and then expanding both sides as elements of (EndV )⊗2⊗U(gρ[z])[[u−1, v−1]]:
see for instance §1.1 of [Mol07].

2.3.3 The extended Lie algebra gI and its polynomial current
algebra

In this subsection we consider an algebra UI(g) which is constructed from a fixed
finite-dimensional Y (g)-module. Like U(gJ ) = UJ (g), it is an extension of the en-
veloping algebra U(gρ), but the role played by EndgV is instead played by EndY (g)V .
Consequently, UI(g) encodes certain information about the underlying Y (g)-module
structure which U(gJ ) does not.

Henceforth, we assume that V is a finite-dimensional Y (g)-module with corre-
sponding homomorphism ρ : Y (g) → EndV . We also assume that V contains a
non-trivial irreducible submodule. This hypothesis guarantees that V has at least
one non-trivial irreducible component when viewed as a g-module (via restriction),
and hence that we are in the situation of §2.3.1. In particular, all the definitions and
results of the previous subsection apply.

Going forward, we will need to specialize our basis {X•λ}λ∈J of Eg = Endg(V ). Let
E ⊂ Eg denote the subspace of Y (g)-module endomorphisms, and let Ec be a subspace
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of Eg complimentary to E :

E = EndY (g)V ⊂ Eg, Eg = E ⊕ Ec.

We may then partition J = I t Ic and choose {X•λ}λ∈J in such a way that {X•λ}λ∈I
is a basis of E and {X•λ}λ∈Ic is a basis of Ec.

2.3.3.1 The extended enveloping algebra UI(g)

Following our convention of labeling X• = ρ(X) for each X ∈ g, we will write
J(X•) for the image of J(X) in EndV under ρ. In addition, we define a module
homomorphism

J : ad(g)→ adg(gl(V )), X• 7→ J(X•) ∀ X ∈ g.

Definition 2.3.11. Define UI(g) to be the quotient of U(gJ ) by the two-sided ideal
generated by the relation [K2, (1 ⊗ J)(Ωρ)] = [K1, (J ⊗ 1)(Ωρ)]. That is, UI(g) is
the associative unital C-algebra generated by elements {F Iij}1≤i,j≤N subject to the
defining relations

[F I1 , F I2 ] = [Ωρ, F
I
2 ], (2.3.23)

[KI2 , (1⊗ J)(Ωρ)] = [KI1 , (J ⊗ 1)(Ωρ)] (2.3.24)

where F I = ∑N
i,j=1Eij ⊗ F Iij ∈ EndV ⊗ UI(g) and KI = F I − c−1

g ω(F I).

We now work towards establishing an analogue of Proposition 2.3.6. For each
λ ∈ Λ•, let XIλ denote the image of XJλ in UI(g). Explicitly, XIλ = ∑N

i,j=1 a
λ
ijF
I
ij (see

(2.3.2)) and we have F I = ∑
λ∈Λ• X

•
λ ⊗XIλ . In fact, by Part (3) of Lemma 2.3.2, we

have
KI =

∑
λ∈J

X•λ ⊗XIλ and F I =
∑

λ∈Λ∪J
X•λ ⊗XIλ .

As a first step, we construct for each x ∈ Eg a g-module W (x) which is either zero or
isomorphic to ad(g), but which cannot have a nonzero intersection with ad(g). Fix
x ∈ Eg and let

W (x) = span{[x, J(X•λ)]}λ∈Λ.
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Note that W (x) is a submodule of the g-module adg(gl(V )), and that there is a
module homomorphism

ϕx : ad(g)→ W (x), X•λ 7→ [x, J(X•λ)] ∀ λ ∈ Λ.

This homomorphism is surjective and, by Schur’s lemma, it is either an isomorphism
or the zero morphism. We also have E = {x ∈ Eg : ϕx = 0} = {x ∈ Eg : W (x) = 0}.

Lemma 2.3.12. There does not exist x ∈ Eg such that W (x) ∩ ad(g) 6= {0}.

Proof. Suppose that x ∈ Eg satisfies W (x) ∩ ad(g) 6= {0}. Then W (x) is irreducible
and, since the same is true for ad(g), we haveW (x) = ad(g). In particular, ϕx must be
an isomorphism, and by Schur’s lemma, every module homomorphismW (x)→ ad(g)
is a scalar multiple of ϕ−1

x : [x, J(X•λ)] 7→ X•λ. As the identity map provides such a
homomorphism, there exists c ∈ C× such that [x, J(X•λ)] = cX•λ for all λ ∈ Λ. After
re-normalizing x if necessary, we can assume that c = 1. Consider the linear map

adx : EndV → EndV, X 7→ [x,X] ∀ X ∈ EndV.

Since adx(J(X•λ)) = X•λ and adx(X•λ) = 0 for all λ ∈ Λ, we deduce from the fact that
adx is a derivation that it restricts to a linear map

adρ,x : ρ(Y (g))→ ρ(Y (g)).

Given a monomial X in the variables {J(X•λ), X•γ}λ,γ∈Λ, we denote by `(X) the degree
of this monomial with respect to the assignment degX•γ = 0 and deg J(X•λ) = 1. For
each k ≥ 0, let Hk denote the subspace of ρ(Y (g)) which is spanned by monomials
X such that `(X) ≤ k, i.e. Hk = ρ(FJ

k ), where FJ = {FJ
k}k≥0 is the filtration defined

below Definition 2.2.1. We then have adρ,x(H0) = 0 and adρ,x(Hk) ⊂ Hk−1 for all
k ≥ 1. This follows from the facts that adρ,x(J(X•λ)) = X•λ for all λ ∈ Λ, adρ,x(X•γ) = 0
for all γ ∈ Λ, and that adρ,x is a derivation. We will break the remainder of our proof
into two steps:

Step 1: There exists k ≥ 1 such that adkρ,x = 0.

Note that Hk−1 ⊂ Ker(adkρ,x) for all k ≥ 1. Indeed, since adρ,x(Hk−1) ⊂ Hk−2 for
all k ≥ 1 (here Ha = {0} for all a < 0), we obtain inductively that adkρ,x(Hk−1) ⊂
H−1 = {0}. Since ρ(Y (g)) ⊂ EndV is finite-dimensional, it has a finite basis
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{B1, . . . , Bdim ρ(Y (g))} consisting of monomials Bi in the variables {J(X•λ), X•γ}λ,γ∈Λ.
Let ` denote the finite integer max{`(Bi) : 1 ≤ i ≤ dim ρ(Y (g))}. Then each Bi be-
longs to H` and hence so does all of ρ(Y (g)). Since ad`+1

ρ,x (H`) = 0, ad`+1
ρ,x is identically

zero.

Step 2: The image of adkρ,x contains ρ(g) ∼= g for every k ≥ 1.

For each k ≥ 1 and k-tuple α1, . . . , αk ∈ Λ, set

Aα1,...,αk = [J(X•α1), [J(X•α2), · · · , [J(X•αk−1
), J(X•αk)] · · · ]],

Yα1,...,αk = [X•α1 , [X
•
α2 , · · · , [X

•
αk−1

, X•αk ] · · · ]].

If k = 1, then it is understood that Aα = J(X•α) and Yα = X•α.

Claim: adkρ,x(Aα1,...,αk) = k!Yα1,...,αk for all k ≥ 1.

We will prove the claim by induction on k. If k = 1 then it is just the statement
that adρ,x(J(X•α)) = X•α. Suppose inductively that the claim holds whenever k = l,
and consider adl+1

ρ,x (Aα1,...,αl+1). We have

adl+1
ρ,x (Aα1,...,αl+1) =

l+1∑
j=0

(
l + 1
j

) [
adjρ,x(J(X•α1)), adl+1−j

ρ,x (Aα2,...,αl+1)
]
.

Since ad2
ρ,x(J(X•α1)) = 0 and adl+1

ρ,x (Aα2,...,αl+1) = 0 (since Aα2,...,αl+1 ∈ Hl), the only
term of the sum on the right-hand side which does not necessarily vanish corresponds
to j = 1. As adρ,x(J(X•α1)) = X•α1 and, by induction, adlρ,x(Aα2,...,αl+1) = l!Yα2,...,αl+1 ,
we have

adl+1
ρ,x (Aα1,...,αl+1) = (l + 1)l!

[
X•α1 , Yα2,...,αl+1

]
= (l + 1)!Yα1,...,αl+1 .

This completes the proof of the claim.

To complete the proof of Step 2, it remains to note that, since ρ(g) is a simple Lie
algebra, it is perfect and thus spanned by the collection of elements {Yα1,...,αk}αi∈Λ

for any fixed k ≥ 1.

We can now finish the proof of the lemma. By Step 1, there exists k ≥ 1 such
that adkρ,x = 0. By Step 2, ρ(g) ⊂ adkρ,x(ρ(Y (g))) = {0}, which is a contradiction.
Therefore there cannot exist x ∈ Eg such that W (x) ∩ ad(g) 6= {0}.
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This leads us to the following analogue of Part (3) of Lemma 2.3.2.

Lemma 2.3.13. We have XIµ = 0 for all µ ∈ Ic. In particular, KI = ∑
λ∈I X

•
λ⊗XIλ .

Proof. Since [X•µ, J(X•λ)] = 0 for all µ ∈ I and λ ∈ Λ, (2.3.24) is equivalent to

∑
λ∈Λ,µ∈Ic

X•λ ⊗ [X•µ, J(X•λ)]⊗XIµ =
∑

λ∈Λ,µ∈Ic
[X•µ, J(X•λ)]⊗X•λ ⊗XIµ . (2.3.25)

Let’s first show that for any fixed λ ∈ Λ, {[X•µ, J(X•λ)]}µ∈Ic is a linearly indepen-
dent set. Suppose that

∑
µ∈Ic

aµ[X•µ, J(X•λ)] = 0 for some {aµ}µ∈Ic ⊂ C.

Then x = ∑
µ∈Ic aµX

•
µ must belong to E , because ϕx cannot be an isomorphism as its

kernel contains X•λ. Since x also belongs to Ec, we must have x = 0. The assertion
then follows from the linear independence of the set {X•µ}µ∈Ic .

Next, we deduce that, for any fixed λ ∈ Λ, the set {X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic

must also be linearly independent. Indeed, if 0 6= ∑
µ∈Ic aµ[X•µ, J(X•λ)] ∈ ad(g), then

x = ∑
µ∈Ic aµX

•
µ is such that W (x) ∩ ad(g) 6= {0}. By Lemma 2.3.12, no such x

can exist, and hence we have shown that spanµ∈Ic{[X•µ, J(X•λ)]} intersects trivially
with ad(g), from which the linear independence of {X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic follows
automatically from the previous assertion and the linear independence of {X•γ}γ∈Λ.

Let {fµ}µ∈Λ• ⊂ (EndV )∗ denote the dual basis to {X•λ}λ∈Λ• ⊂ EndV . By the
linear independence of {X•γ , [X•µ, J(X•λ)]}γ∈Λ,µ∈Ic , applying fλ ⊗ id⊗ id to both sides
of (2.3.25) for a fixed λ ∈ Λ yields

∑
µ∈Ic

[X•µ, J(X•λ)]⊗XIµ = 0.

The linear independence of {[X•µ, J(X•λ)]}µ∈Ic then implies XIµ = 0 for all µ ∈ Ic.

We define zI similarly to zJ : it is the commutative Lie algebra with basis {KIλ}λ∈I .
We identify its enveloping algebra with the polynomial ring C[KIλ : λ ∈ I], and set
KI = ∑

λ∈I X
•
λ ⊗ KIλ ∈ EndV ⊗ zI . We are now prepared to state the analogue of

Proposition 2.3.6.
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Proposition 2.3.14. The assignment F I 7→ F + KI extends to an isomorphism of
algebras

φI : UI(g) ∼−→ C[KIλ : λ ∈ I]⊗ U(gρ). (2.3.26)

Proof. Let π : C[KJλ : λ ∈ J ] � C[KIλ : λ ∈ I] be the surjection given by

π(KJλ ) =

K
I
λ if λ ∈ I,

0 if λ ∈ Ic.

Consider the tensor product π⊗id : C[KJλ : λ ∈ J ]⊗U(gρ) � C[KIλ : λ ∈ I]⊗U(gρ).
Its kernel is precisely the ideal generated by {KJλ }λ∈Ic , which is the image of the
ideal generated by {XJµ }µ∈Ic under the isomorphism φJ of Proposition 2.3.6. By
Lemma 2.3.13 and the definition of UI(g), this ideal is contained in the two-sided
ideal I of UJ (g) generated by the relation [K2, (1 ⊗ J)(Ωρ)] = [K1, (J ⊗ 1)(Ωρ)],
hence Ker((π ⊗ id) ◦ φJ ) ⊂ I. Since [KI2 , (1 ⊗ J)(Ωρ)] = [KI1 , (J ⊗ 1)(Ωρ)] trivially
holds in C[KIλ : λ ∈ I]⊗U(gρ), we indeed have the equality Ker((π⊗ id) ◦ φJ ) = I.
Thus (π ⊗ id) ◦ φJ induces an isomorphism φI : UI(g) ∼−→ C[KIλ : λ ∈ I] ⊗ U(gρ)
which is given by F I 7→ F + KI .

We conclude our discussion of UI(g) by emphasizing that Proposition 2.3.14 can be
naturally interpreted at the level of Lie algebras. Letting gI denote the Lie subalgebra
of Lie(UI(g)) generated by {F Iij}1≤i,j≤N , we find that φI |gI and its composition with
id⊗ φρ induce isomorphisms

gI ∼−→ gρ ⊕ zI ∼−→ g⊕ zI , (2.3.27)

and moreover that U(gI) ∼= UI(g). With this in mind, UI(g) will be denoted U(gI)
from this point on.

2.3.3.2 The extended polynomial current algebra gI [z]

By (2.3.23), (2.3.24) and (2.3.27), the enveloping algebra U(gI [z]) is isomorphic to
the unital associative C-algebra generated by elements {F(r)

ij = F Iijz
r : 1 ≤ i, j ≤
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N, r ∈ Z≥0} subject to the defining relations

[F(r)
1 ,F

(s)
2 ] = [Ωρ,F

(r+s)
2 ] ∀ r, s ≥ 0, (2.3.28)

[K(r)
2 , (1⊗ J)(Ωρ)] = [K(r)

1 , (J ⊗ 1)(Ωρ)] ∀ r ≥ 0, (2.3.29)

where F(a) = ∑N
i,j=1Eij ⊗ F

(a)
ij ∈ EndV ⊗ U(gI [z]) and K(a) = F(a) − c−1

g ω(F(a)) for
all a ≥ 0.

Following (2.3.18), let us define

F(u) =
N∑

i,j=1
Eij ⊗ Fij(u) ∈ EndV ⊗ (gI [z])[[u−1]], where

Fij(u) =
∑
r≥0
F

(r)
ij u

−r−1 ∈ (gI [z])[[u−1]].
(2.3.30)

Recall that, for each λ ∈ Λ•, XIλ = ∑
i,j a

λ
ijF
I
ij ∈ gI , where the family of scalars {aλij} is

defined in (2.3.2). To every λ ∈ Λ• we associate the series Xλ(u) = ∑
r≥0X

(r)
λ u−r−1 ∈

(gI [z])[[u−1]], where X(r)
λ = XIλ z

r.

Finally, we set K(r)
λ = KIλzr−1, so that U(zI [z]) ∼= C[K(r)

λ : λ ∈ I, r ≥ 1], and
define

K(u) =
∑
λ∈I

X•λ ⊗Kλ(u), where Kλ(u) =
∑
r≥1
K(r)
λ u−r.

We can now state the polynomial current algebra version of Proposition 2.3.14:

Proposition 2.3.15. The assignment F(u) 7→ F (u) + K(u) extends to an isomor-
phism of algebras

φzI : U(gI [z]) ∼−→ C[K(r)
λ : λ ∈ I, r ≥ 1]⊗ U(gρ[z]). (2.3.31)

Proof. The isomorphism gI ∼−→ gρ⊕ zI furnished by Proposition 2.3.14 (see (2.3.27))
extends to an isomorphism gI [z] ∼−→ (gρ ⊕ zI)[z] ∼= gρ[z] ⊕ zI [z], which induces the
desired isomorphism φzI between the corresponding enveloping algebras.

Setting K(u) = ∑
r≥0K

(r)u−r−1, we have φzI(K(u)) = K(u) and K(u) = F(u) −
c−1
g ω(F(u)). By Lemma 2.3.13,K(u) can be equivalently defined byK(u) = ∑

λ∈I X
•
λ⊗

Xλ(u).

We will end this section by rewriting the defining relations of U(gI [z]) using the
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classical r-matrix formalism, which is achieved with the use of Proposition 2.3.9.

Proposition 2.3.16. The defining relations (2.3.28) and (2.3.29) are equivalent to
the relations

[F1(u),F2(v)] =
[

Ωρ

u− v
,F1(u) + F2(v)

]
, (2.3.32)

[K2(u), (1⊗ J)(Ωρ)] = [K1(u), (J ⊗ 1)(Ωρ)], (2.3.33)

where K(u) = F(u)− c−1
g ω(F(u)).

2.4 The R-matrix presentation of the Yangian Y (g)

We have now reached the second and main part of this chapter, where we will focus
on establishing the Yangian version of the results of §2.3 and studying them in more
detail. In this section specifically, we define the extended Yangian XI(g), the RTT -
Yangian YR(g), and we then study some of their basic properties.

We continue to assume that V is a fixed finite-dimensional Y (g)-module with
corresponding homomorphism ρ, and that V has a non-trivial (not necessarily proper)
irreducible submodule. We let R(u) denote the image of the universal R-matrix
R(−u) (see Theorem 2.2.4) under ρ⊗ ρ:

R(u) = (ρ⊗ ρ)R(−u) ∈ End(V ⊗ V )[[u−1]].

We adapt all of the notation from §2.3. In particular, we fix a basis {e1, . . . , eN} of
V and we let {Eij}1≤i,j≤N denote the usual elementary matrices with respect to this
basis.

2.4.1 The extended Yangian XI(g)

In this subsection we define and study a Hopf algebra XI(g) larger than Y (g) which
we will eventually prove (in §2.6) is a filtered deformation of U(gI [z]).
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2.4.1.1 Definition of the extended Yangian

We begin with the definition of XI(g) as an algebra.

Definition 2.4.1. The extended Yangian XI(g) is the unital associative C-algebra
generated by elements {t(r)ij : 1 ≤ i, j ≤ N, r ≥ 1} subject to the defining RTT -
relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

in (EndV )⊗2 ⊗XI(g)[[v±1, u±1]],
(2.4.1)

where T (u) = ∑N
i,j=1Eij ⊗ tij(u) with tij(u) = δij +∑

r≥1 t
(r)
ij u

−r for all 1 ≤ i, j ≤ N ,
and R(u− v) has been identified with R(u− v)⊗ 1.

Remark 2.4.2. An equivalent definition is obtained by replacing R(u) by f(u)R(u)
for any fixed f(u) ∈ 1+u−1C[[u−1]]. In particular, if V is irreducible then, by Theorem
2.2.5, R(u) can be replaced with a rational R-matrix.

Since no explicit description of the coefficients Rk of R(u) is known, R(u) can-
not be computed directly by evaluating R(−u). In practice, R(u) is obtained by
instead solving the equation (2.2.13). By Theorem 2.2.5, this determines R(u) up
to multiplication by elements of C[[u−1]], provided V is irreducible. See for example
[GRW19a, Proposition 3.13].

Note that XI(g) comes equipped with a natural action on the underlying Y (g)-
module V . Namely, there is an algebra homomorphism

XI(g)→ EndV, T (u) 7→ R(u).

A standard argument (see [Mol07, Theorem 1.5.1] and [FRT90]) shows that XI(g)
is a Hopf algebra with coproduct ∆I , antipode SI , and counit εI given by

∆I(T (u)) = T[1](u)T[2](u), SI(T (u)) = T (u)−1, εI(T (u)) = I, (2.4.2)

respectively. Expressing ∆I in terms of the generating series tij(u) and the generators
t
(r)
ij , we have

∆I(tij(u)) =
N∑
a=1

tia(u)⊗ taj(u) and ∆I(t(r)ij ) =
N∑
a=1

r∑
b=0

t
(b)
ia ⊗ t

(r−b)
aj ,
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where t(0)
kl = δkl for all 1 ≤ k, l ≤ N .

2.4.1.2 Automorphisms of XI(g)

The extended Yangian XI(g) has at least three important families of automorphisms.
The first family we will discuss turns out to be closely tied to the Yangian YR(g), as
we will make precise in §2.6.2.

Recall that E = EndY (g)V ⊂ EndV , and consider the tensor product E⊗u−1C[[u−1]].
This space can be identified with ∏λ∈I(u−1C[[u−1]])λ, i.e. the collection of all tuples
(fλ(u))λ∈I ⊂ u−1C[[u−1]], the identification being given by

(fλ(u))λ∈I ∈
∏
λ∈I

(u−1C[[u−1]])λ

7→ f◦(u) =
∑
λ∈I

X•λ ⊗ fλ(u) ∈ E ⊗ u−1C[[u−1]].
(2.4.3)

Here (u−1C[[u−1]])λ just denotes a copy of u−1C[[u−1]] associated to λ. The follow-
ing lemma demonstrates that XI(g) admits a family of automorphisms indexed by∏
λ∈I(u−1C[[u−1]])λ.

Lemma 2.4.3. Let (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ and set f(u) = I + f◦(u). Then

the assignment
mf : T (u) 7→ f(u)T (u) (2.4.4)

extends to an automorphism mf of XI(g).

Proof. Using that f(u) ∈ E ⊗ C[[u−1]] and R(u) ∈ (ρ(Y (g)) ⊗ ρ(Y (g)))[[u−1]], we can
conclude that f(u) satisfies the defining RTT -relation of XI(g). Indeed, by definition
E is the centralizer of ρ(Y (g)) in EndV , which implies R(u− v)fa(u) = fa(u)R(u− v)
for a ∈ {1, 2}. Moreover, [f1(u), f2(v)] = 0, from which the assertion follows easily.

Applying this observation in conjunction with [f1(u), T2(v)] = 0 = [f2(v), T1(u)],
we deduce that mf extends to an algebra endomorphism of XI(g). The invertibility
of mf follows from the invertibility of f(u) as an element E [[u−1]].

The second family of automorphisms is indexed by the complex numbers. For
each c ∈ C, the assignment

T (u) 7→ T (u− c) (2.4.5)
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extends to an automorphism of XI(g). These automorphisms are closely related to
the automorphisms τc of Y (g) defined in (2.2.6). The third family of automorphisms
will be introduced in Chapter 3: see Lemma 3.2.4.

2.4.1.3 The associated graded algebra grXI(g)

By (2.2.11), the R-matrix R(u) admits an expansion

R(u) = I +
∑
k≥1

R(k)u−k

= I − Ωρu
−1 +

(
(J ⊗ 1− 1⊗ J)(Ωρ) + 1

2Ω2
ρ

)
u−2 +

∑
k≥3

R(k)u−r
(2.4.6)

with R(k) = (−1)k(ρ⊗ ρ)(Rk) for each k ≥ 1. Setting T ◦(u) = T (u)− I, the defining
relation (2.4.1) can be rewritten as

[T ◦1 (u), T ◦2 (v)]

= 1
u− v

[Ωρ, T
◦
1 (u)] + [Ωρ, T

◦
2 (v)]

+ ΩρT
◦
1 (u)T ◦2 (v)− T ◦2 (v)T ◦1 (u)Ωρ


+
∑
k≥2

1
(u− v)k

[T ◦2 (v), R(k)] + [T ◦1 (u), R(k)]
+ T ◦2 (v)T ◦1 (u)R(k) −R(k)T ◦1 (u)T ◦2 (v)

,

(2.4.7)

where Ωρ and R(k) have been identified with Ωρ ⊗ 1 and R(k) ⊗ 1, respectively.

The degree assignment

deg t(r)ij = r − 1 ∀ 1 ≤ i, j ≤ N and r ≥ 1 (2.4.8)

equips XI(g) with the structure of a filtered algebra. Let Fk(XI(g)) (or FIk for
brevity) denote the subspace spanned by elements of degree less than or equal to k,
and set t̄(r)ij to be the image of t(r)ij in FIr−1/FIr−2 ⊂ grXI(g).

Proposition 2.4.4. The assignment

ϕI : F(r−1)
ij 7→ t̄

(r)
ij ∀ 1 ≤ i, j ≤ N, r ≥ 1 (2.4.9)
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extends to a surjective morphism of algebras ϕI : U(gI [z]) � grXI(g).

Proof. Let T(u) = ∑
k≥1T

(k)u−k, where T(k) = ∑N
i,j=1Eij ⊗ t̄

(k)
ij .

Step 1 : The relation [T1(u),T2(v)] =
[

Ωρ
u−v ,T1(u) + T2(v)

]
is satisfied.

For each k > 0, we expand (u− v)−k as an element of (C[v])[[u−1]]:

(u− v)−k =
∑
s≥0

(
k + s− 1

s

)
vsu−s−k. (2.4.10)

Note the following simple fact: if

A(u, v) =
∑
a,b≥1

Aa,bu
−av−b with Aa,b ∈ (EndV )⊗2 ⊗ FIa+b−c,

then we have

1
(u− v)kA(u, v) =

∑
a∈Z≥k+1,b∈Z

Ba,bu
−av−b, where

Ba,b ∈ (EndV )⊗2 ⊗ FIa+b−c−k ∀ a, b ≥ 0
(2.4.11)

and FI−l = {0} for all l ∈ N. Here c is assumed to be a fixed positive integer depending
on A(u, v).

For each l ≥ 0, set

Fl(u, v) = (EndV )⊗2 ⊗
∏

a∈Z≥0,b∈Z
FIa+b−lu

−av−b ⊂ (EndV )⊗2 ⊗XI(g)[[v±1, u−1]],

and note that Fl(u, v)/Fl+1(u, v) can be naturally identified with

(EndV )⊗2 ⊗
∏

a∈Z≥0,b∈Z
(gra+b−lXI(g))u−av−b ⊂ (EndV )⊗2 ⊗ (grXI(g))[[v±1, u−1]],

where grkXI(g) denotes the k-th graded component of grXI(g), which is understood
to equal zero if k < 0.

We will simultaneously show both sides of (2.4.7) belong to F2(u, v) and compute
their images in the quotient F2(u, v)/F3(u, v). By the above observation this yields
an identity in (EndV )⊗2 ⊗ (grXI(g))[[v±1, u−1]].

46



If A(u, v) = ΩρT
◦
1 (u)T ◦2 (v) or A(u, v) = T ◦2 (v)T ◦1 (u)Ωρ, then the integer c (see

(2.4.11)) is equal to 2 and hence (u− v)−1A(u, v) ≡ 0 mod F3(u, v).

If instead A(u, v) is equal to one of the terms that appears within the parentheses
on the second line of the right-hand side of (2.4.7) (i.e. a term involving R(k) with
k ≥ 2), then c = 1 or 2 but k ≥ 2. Therefore the observation (2.4.11) yields that
(u− v)−kA(u, v) ≡ 0 mod F3(u, v).

Since [T ◦1 (u), T ◦2 (v)] and [ Ωρ
u−v , T

◦
1 (u) + T ◦2 (v)] belong to F2(u, v) with images

[T1(u),T2(v)] and
[

Ωρ

u− v
,T1(u) + T2(v)

]

in F2(u, v)/F3(u, v), respectively, we obtain the relation

[T1(u),T2(v)] =
[

Ωρ

u− v
,T1(u) + T2(v)

]
.

Note that Step 1 implies that there is a surjective algebra homomorphism

U(gJ [z]) � grXI(g).

To verify that it factors through U(gI [z]), we must show that the assignment ϕI pre-
serves the relation (2.3.33). In order to state this more precisely we define, following
(2.3.2),

t̄
(k)
λ =

N∑
i,j=1

aλij t̄
(k)
ij ∀ λ ∈ Λ• and k ≥ 1.

Then the statement that ϕI preserves (2.3.33) is equivalent to the statement that,
for each k ≥ 1, D(k) = ∑

λ∈J X
•
λ ⊗ t̄

(k)
λ satisfies

[D(k)
2 , (1⊗ J)(Ωρ)] = [D(k)

1 , (J ⊗ 1)(Ωρ)]. (2.4.12)

Step 2: the relation (2.4.12) is satisfied for every k ≥ 1.

We will divide this step of the proof into a few smaller steps.

Step 2.1: The relation

[T(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[T(k)

1 , (J ⊗ 1− 1⊗ J)(Ωρ)] (2.4.13)
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holds in grXI(g) for all k ≥ 1.

We will prove (2.4.13) by expanding (2.4.7) in two different ways. First, we com-
pute for each k ≥ 1 the v0u−k−2 coefficient of both sides of (2.4.7) modulo FIk−2, using
the expansion (2.4.10). Using (2.4.11), it is not difficult to deduce that no term on
the right-hand side of (2.4.7) involving R(k) with k ≥ 3 makes a contribution, and
the same is true for the terms T ◦2 (v)T ◦1 (u)R(2) and R(2)T ◦1 (u)T ◦2 (v). As the coefficient
of v0u−k−2 in [T ◦1 (u), T ◦2 (v)] is zero, we are left with the equivalence

0 ≡[Ωρ, T
(k+1)
1 ] + [Ωρ, T

(k+1)
2 ]

+
k∑
a=1

(ΩρT
(k+1−a)
1 T

(a)
2 − T (a)

2 T
(k+1−a)
1 Ωρ)

+ [T (k)
1 , R(2)] + (k + 1)[T (k)

2 , R(2)] mod FIk−2.

(2.4.14)

Next, we compute the u0v−k−2 coefficient of both sides of (2.4.7) modulo FIk−2 after
expanding (u− v)−r as an element of (C[u])[[v−1]] and viewing (2.4.7) as an equality
in (EndV )⊗2 ⊗XI(g)[[u±1, v−1]]. Using the symmetry and skew-symmetry between u
and v in the relation (2.4.7), we deduce from (2.4.14) the equivalence

0 ≡− [Ωρ, T
(k+1)
1 ]− [Ωρ, T

(k+1)
2 ]

−
k∑
b=1

(ΩρT
(b)
1 T

(k+1−b)
2 − T (k+1−b)

2 T
(b)
1 Ωρ)

+ (k + 1)[T (k)
1 , R(2)] + [T (k)

2 , R(2)] mod FIk−2.

(2.4.15)

Adding (2.4.14) and (2.4.15) and dividing by k + 2, we obtain

[T (k)
2 , R(2)] ≡ −[T (k)

1 , R(2)] mod FIk−2

=⇒ [T(k)
2 , R(2)] = −[T(k)

1 , R(2)] in grXI(g).

Recall from (2.4.6) that R(2) = (J ⊗ 1− 1⊗ J)(Ωρ) + 1
2Ω2

ρ. Substituting this into the
above equality gives

[T(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] + 1

2 [T(k)
2 ,Ω2

ρ]

= −[T(k)
1 , (J ⊗ 1− 1⊗ J)(Ωρ)]− 1

2 [T(k)
1 ,Ω2

ρ].
(2.4.16)
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Since T(k) is a homomorphic image of FJ zk−1 ∈ U(gJ [z]), Lemma 2.3.3 yields

[T(k)
2 ,Ωρ] = −[T(k)

1 ,Ωρ],

from which the identity
1
2 [T(k)

2 ,Ω2
ρ] = −1

2 [T(k)
1 ,Ω2

ρ]

follows directly. Therefore the relation (2.4.16) implies the relation (2.4.13).

Step 2.2: We have

[D(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[D(k)

1 , (J ⊗ 1− 1⊗ J)(Ωρ)]. (2.4.17)

for each k ≥ 1.

For each k ≥ 1, set L(k) = T(k) −D(k), so that L(k) = ∑
λ∈ΛX

•
λ ⊗ t̄

(k)
λ . Using that

J : ad(g) → adg(gl(V )) is a morphism of g-modules, it is straightforward to derive
from the relation [Ωρ,L

(k)
2 ] = −[Ωρ,L

(k)
1 ] that

[L(k)
2 , (J ⊗ 1− 1⊗ J)(Ωρ)] = −[L(k)

1 , (J ⊗ 1− 1⊗ J)(Ωρ)]. (2.4.18)

Subtracting (2.4.18) from (2.4.13) yields (2.4.17).

Since D(k) is a homomorphic image of ∑N
i,j=1Eij ⊗ Kijz

k−1 ∈ EndV ⊗ U(gJ [z]),
Lemma 2.3.2 implies that [Ωρ,D

(k)
2 ] = 0 = [Ωρ,D

(k)
1 ]. We thus also have

[D(k)
2 , (J ⊗ 1)(Ωρ)] = 0 = [D(k)

1 , (1⊗ J)(Ωρ)].

Subtracting this identity from (2.4.17) leaves us with the equality (2.4.12).

By Step 1, Step 2 and Proposition 2.3.16, the assignment (2.4.9) extends to an
epimorphism ϕI : U(gI [z]) � grXI(g).

We will prove that ϕI is in fact an isomorphism, but this will be delayed until
§2.6.1.
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2.4.2 The RTT -Yangian YR(g)

Our present goal is to give an exposition of YR(g) analogous to that given for XI(g)
in the previous subsection.

2.4.2.1 Definition of the RTT -Yangian

Let us begin with the definition of the Yangian YR(g):

Definition 2.4.5. The RTT -Yangian YR(g) is the quotient of XI(g) by the two-sided
ideal generated by the elements z(r)

ij , for 1 ≤ i, j ≤ N and r ≥ 1, defined by

Z(u) =
N∑

i,j=1
Eij ⊗ zij(u) = S2

I(T (u))T (u+ 1
2cg)

−1, (2.4.19)

where zij(u) = δij +∑
r≥1 z

(r)
ij u

−r for each pair of indices 1 ≤ i, j ≤ N .

The ideal of XI(g) generated by {z(r)
ij : 1 ≤ i, j ≤ N, r ≥ 1} will be conveniently

denoted by (Z(u) − I). Note that it is not obvious that this ideal is a Hopf ideal,
and hence that YR(g) inherits the structure of a Hopf algebra from XI(g). This will,
however, be a consequence of Lemma 2.5.1 and Theorem 2.5.2, which will be proven
in the next section.

We will denote the images of t(r)ij , tij(u) and T (u) in YR(g) by τ (r)
ij , τij(u) and T (u),

respectively.

For each c ∈ C the automorphism (2.4.5) factors through the Yangian YR(g)
yielding an automorphism given by the assignment T (u) 7→ T (u− c). We will prove
in §2.6.2 that each automorphism mf of XI(g) (see Lemma 2.4.3) also induces an
automorphism of YR(g), but that these turn out to all be equal to the identity map.
This fact will be used to give an equivalent characterization of YR(g).

2.4.2.2 The associated graded algebra grYR(g)

The RTT -Yangian YR(g) inherits an algebra filtration from XI(g) via the quotient
filtration; this is equivalent to assigning deg τ (r)

ij = r − 1. Let τ̄ (r)
ij denote the image

of τ (r)
ij in Fr−1(YR(g))/Fr−2(YR(g)) = grr−1YR(g).
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Proposition 2.4.6. The assignment

ϕ : F (r−1)
ij 7→ τ̄

(r)
ij ∀ 1 ≤ i, j ≤ N, r ≥ 1

extends to a surjective algebra morphism ϕ : U(gρ[z]) � grYR(g).

Proof. We will take a slightly more explicit route than taken in the proof of Proposi-
tion 2.4.4 and work directly with the generators τ̄ (r)

ij of grYR(g). By (2.3.13), Corollary
2.3.7 and Proposition 2.4.4 it suffices to show that

1
2 τ̄

(r)
ij = c−1

g

N∑
a=1

[τ̄ (r)
ia , τ̄

(1)
aj ] ∀ r ≥ 1. (2.4.20)

In YR(g) we have, by (2.4.19), the relation T (u+ 1
2cg) = S2

I(T (u)) where S2
I(T (u)) is

understood to equal the image of S2
I(T (u)) in YR(g) under the natural quotient map.

Since (
u+ 1

2cg
)−k

=
∑
s≥0

(
k + s− 1

s

)(
−1

2cg
)s
u−s−k ∀ k ≥ 1,

the u−r−1 coefficient of τij(u+ 1
2cg) is equal to

τ
(r+1)
ij − r

2cgτ
(r)
ij mod Fr−2(YR(g)). (2.4.21)

Let T̂ (r) = ∑N
i,j=1Eij ⊗ t̂

(r)
ij denote the u−r coefficient of T (u)−1. In particular, T̂ (r)

can be determined inductively from the relation

T̂ (r) = −
r∑
b=1

T (b)T̂ (r−b) = −
r∑
b=1

N∑
i,j=1

Eij ⊗
(

N∑
a=1

t
(b)
ia t̂

(r−b)
aj

)
.

By definition of the antipode SI , we thus have

S2
I(t

(r+1)
ij ) = −SI(

r+1∑
b=1

N∑
a=1

t
(b)
ia t̂

(r+1−b)
aj ) = −

r+1∑
b=1

N∑
a=1

SI(t̂(r+1−b)
aj )t̂(b)ia .

Expanding the right-hand side and using that SI is a filtration preserving map with

SI(t(s)kl ) = t̂
(s)
kl ≡ −t

(s)
kl mod FIs−2 ∀ s ≥ 1,
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we obtain

S2
I(t

(r+1)
ij ) =

r+1∑
b=1

N∑
a=1

SI(t̂(r+1−b)
aj )(t(b)ia +

b−1∑
d=1

N∑
c=1

t
(d)
ic t̂

(b−d)
ca )

≡ t
(r+1)
ij −

r∑
b=1

N∑
a=1

t̂
(r+1−b)
aj t

(b)
ia +

r∑
d=1

N∑
c=1

t
(d)
ic t̂

(r+1−d)
cj mod FIr−2

≡ t
(r+1)
ij +

r∑
b=1

N∑
a=1

[t(r+1−b)
aj , t

(b)
ia ] mod FIr−2.

Combining this with the relation [T(r)
1 ,T

(s)
2 ] = [Ωρ,T

(r+s)
2 ] of grXI(g) (which holds

by Proposition 2.4.4), we arrive at the relation

S2
I(t

(r+1)
ij ) ≡ t

(r+1)
ij + r

N∑
a=1

[t(1)
aj , t

(r)
ia ] mod FIr−2.

As the same relation must hold in YR(g)/Fr−2(YR(g)) with each generator t(s)kl replaced
by τ (s)

kl , equating the resulting expression with (2.4.21) and subtracting τ (r+1)
ij from

both sides gives (2.4.20).

We conclude this section by noting a simple, but rather useful, corollary of Propo-
sition 2.4.6.

Corollary 2.4.7. The algebra YR(g) is generated by the elements τ (r)
ij with 1 ≤ i, j ≤

N and 1 ≤ r ≤ 2.

Proof. Since U(gρ[z]) is generated by {F (0)
ij , F

(1)
ij }1≤i,j≤N and ϕ : U(gρ[z])→ grYR(g)

is surjective, grYR(g) is generated by {τ̄ (1)
ij , τ̄

(2)
ij }1≤i,j≤N . If r > 2, then we may write

τ̄
(r)
ij as a homogeneous polynomial Q in the variables {τ̄ (1)

kl , τ̄
(2)
kl }1≤i,j≤N of degree r−1.

Let P be the polynomial in {τ (1)
kl , τ

(2)
kl }1≤i,j≤N obtained from Q by replacing τ̄ (s)

kl with
τ

(s)
kl for s = 1, 2 and 1 ≤ k, l ≤ N . Then P ∈ Fr−1(YR(g)) and

τ
(r)
ij − P ∈ Fr−2(YR(g)).

The result thus follows by a straightforward induction on r ≥ 1.
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2.5 Equivalence of the two definitions of the Yan-
gian

In this section we prove that, irrespective of the choice of V , we always have YR(g) ∼=
Y (g). In the process we prove that the surjection ϕ : U(gρ[z]) � grYR(g) from
Proposition 2.4.6 is an isomorphism, yielding a Poincaré-Birkhoff-Witt theorem for
YR(g): see Theorem 2.5.5. This in turn implies that the center of YR(g) is trivial, as
will be explained in Corollary 2.5.6.

The first step in proving the equivalence of the two Yangians is the construction
of a surjective Hopf algebra homomorphism XI(g) � Y (g), and this is the content
of the next lemma.

Lemma 2.5.1. The assignment

Φ̃ : T (u)→ (ρ⊗ 1)(R(−u)) (2.5.1)

extends to a surjective homomorphism of Hopf algebras Φ̃ : XI(g) � Y (g).

Proof. The lemma follows from the same kind of arguments as used to prove [GRW19a,
Theorem 3.16]. By (2.2.9), R(u) satisfies

R12(v − u)R13(−u)R23(−v) = R23(−v)R13(−u)R12(v − u).

Applying the homomorphism ρ ⊗ ρ ⊗ 1 to both sides of this relation we obtain that
Φ̃(T (u)) satisfies the defining RTT -relation (2.4.1). Therefore, Φ̃ extends to a homo-
morphism Φ̃ : XI(g)→ Y (g). By (2.2.11),

R(−u) =1− Ωu−1 +
∑
λ∈Λ

(J(Xλ)⊗Xλ −Xλ ⊗ J(Xλ))u−2

+ 1
2Ω2u−2 +O(u−3).

(2.5.2)

After applying ρ⊗ 1 to both sides, we obtain that

Φ̃(t(1)
ij ) = Fij and Φ̃(t(2)

ij ) ≡ J(Fij) mod FJ
0 ∀ 1 ≤ i, j ≤ N, (2.5.3)

where we recall that the elements Fij ∈ g, which were defined in the proof of Propo-
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sition 2.3.4, are determined by ∑N
i,j=1Eij ⊗Fij = −(ρ⊗ 1)Ω.

Since FJ
0 = U(g) is generated by {Fij}1≤i,j≤N , this shows that Φ̃ is surjective.

The proof that Φ̃ is a coalgebra morphism commuting with the antipodes of XI(g)
and Y (g) follows from the relations (2.2.7) and (2.2.12): see the proof of [GRW19a,
Theorem 3.16].

We are now prepared to prove that YR(g) and Y (g) are isomorphic.

Theorem 2.5.2. The homomorphism Φ̃ factors through the quotient algebra

YR(g) = XI(g)/(Z(u)− I)

to yield an isomorphism of algebras

Φ : YR(g) ∼−→ Y (g), T (u) 7→ (ρ⊗ 1)(R(−u)).

Proof. By Corollary 2.2.3 the relation S2 = τ− 1
2 cg

is satisfied in Y (g) and by the
second identity of (2.2.10) we have (1⊗ τ− 1

2 cg
)(R(−u)) = R(−u − 1

2cg). This shows
that

(1⊗ S2)(R(−u))R(−u− 1
2cg)

−1 = 1.

Applying ρ⊗ 1 to both sides of this equality and using that Φ̃ is a morphism of Hopf
algebras, we arrive at the relation

Φ̃(Z(u)) = Φ̃(S2
I(T (u)))Φ̃(T (u+ 1

2cg))
−1 = I.

This proves that (Z(u)−I) ⊂ Ker(Φ̃) and hence that Φ̃ factors through YR(g) to yield
an algebra epimorphism Φ : YR(g) � Y (g) determined by T (u) 7→ (ρ⊗ 1)(R(−u)).

By (2.5.3),

Φ(τ (1)
ij ) = Fij and Φ(τ (2)

ij ) ≡ J(Fij) mod U(g) ∀ 1 ≤ i, j ≤ N

Since, by Corollary 2.4.7, YR(g) is generated by {τ (1)
ij , τ

(2)
ij }1≤i,j≤N , this shows that Φ is

a filtered homomorphism. To conclude that Φ is an isomorphism, it is enough to show
that the associated graded morphism gr(Φ) : grYR(g)→ grY (g) is an isomorphism.
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Set
ϕ• = (φzρ)−1 ◦ ϕ−1

J ◦ gr(Φ) : grYR(g)→ U(gρ[z]),

where ϕJ is the isomorphism U(g[z]) ∼−→ grY (g) of Proposition 2.2.2 and φzρ :
U(gρ[z]) ∼−→ U(g[z]) is the isomorphism of Corollary 2.3.7. This morphism sends
τ̄

(r)
ij to F (r−1)

ij = Fijz
r−1 for all 1 ≤ r ≤ 2 and 1 ≤ i, j ≤ N . Consider the compo-

sition ϕ• ◦ ϕ where ϕ : U(gρ[z]) � grYR(g) is the epimorphism of Proposition 2.4.6.
This composition sends F (r)

ij to F (r)
ij for r = 0, 1 and hence is equal to the identity

morphism. Therefore gr(Φ), and thus Φ, is an isomorphism.

In particular, we have shown that the ideal (Z(u) − I) is the kernel of the Hopf
algebra morphism Φ̃, and hence is a Hopf ideal. The Yangian YR(g) thus inherits
from XI(g) the unique Hopf algebra structure such that Φ becomes an isomorphism
of Hopf algebras. Explicitly, it has coproduct ∆R, antipode SR, and counit εR given
by

∆R(T (u)) = T[1](u)T[2](u), SR(T (u)) = T (u)−1, εR(T (u)) = I. (2.5.4)

As was noted in Remark 2.4.2, the coefficients Rk of the universal R-matrix R(u)
have not been explicitly written down, and consequently the elements Φ(τ (r)

ij ) do not
in general admit an explicit description. Nonetheless, such a description does exist for
the images of the elements {τ (1)

ij , τ
(2)
ij }1≤i,j≤N which, by Corollary 2.4.7, do generate

YR(g). Since the J-presentation Y (g) of the Yangian is defined only in terms of
degree one and degree zero generators, it is perhaps more natural to rephrase this
observation by stating that Φ−1 can be concretely described, which is the purpose of
the next corollary.

Corollary 2.5.3. For each 1 ≤ i, j ≤ N let {b(ij)
kl }1≤k,l≤N ⊂ C be defined by

(J ⊗ 1)(F) =
N∑

i,j=1
Eij ⊗

 N∑
k,l=1

b
(ij)
kl Fkl

 .
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Then Φ−1 is determined on the generators {Fij, J(Fij)}1≤i,j≤N of Y (g) by

Fij 7→ τ
(1)
ij ,

J(Fij) 7→ τ
(2)
ij − 1

2

N∑
a=1

τ
(1)
ia τ

(1)
aj +

N∑
k,l=1

b
(ij)
kl τ

(1)
kl

(2.5.5)

for all 1 ≤ i, j ≤ N .

Proof. For each r ≥ 1, set T (r) = ∑N
i,j=1Eij ⊗ τ

(r)
ij and define

J(F) =
N∑

i,j=1
Eij ⊗ J(Fij) ∈ EndV ⊗ Y (g).

Then, using the expansion (2.5.2) we find that Φ(T (1)) = F and Φ(T (2)) = J(F) −
(J ⊗ 1)(F) + 1

2F
2. Thus,

Φ−1(J(F)) = T (2) − 1
2(T (1))2 + (J ⊗ 1)(T (1)),

which implies (2.5.5).

Remark 2.5.4. When g is a symplectic or orthogonal Lie algebra and V is its vec-
tor representation, it was proven in Proposition 3.19 of [GRW19a] directly that the
assignment (2.5.5) extends to an isomorphism Y (g) ∼−→ YR(g). In that case, and
more generally in any case where ρ(J(X)) = 0 for all X ∈ g, the term involving the
coefficients b(ij)

kl in (2.5.5) vanishes and we have

J(Fij) 7→ τ
(2)
ij − 1

2

N∑
a=1

τ
(1)
ia τ

(1)
aj .

In the process of proving Theorem 2.5.2 we have also shown that the homomor-
phism ϕ of Proposition 2.4.6 is injective. We thus obtain the following Poincaré-
Birkhoff-Witt type theorem for YR(g):

Theorem 2.5.5. The surjective homomorphism ϕ : U(gρ[z]) � grYR(g) of Proposi-
tion 2.4.6, which is given by F (r−1)

ij → τ̄
(r)
ij , is an isomorphism of algebras. Conse-

quently, the assignment
Fij 7→ τ

(1)
ij ∀ 1 ≤ i, j ≤ N
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defines an embedding U(gρ) ↪→ YR(g).

The above theorem can be employed to obtain a complete description of the center
of YR(g):

Corollary 2.5.6. The center of YR(g) is equal to C · 1.

Proof. The center of the universal enveloping algebra U(gρ[z]) ∼= U(g[z]) is known
to be trivial: see for instance [Mol07, Lemma 1.7.4]. As a consequence of Theorem
2.5.5, the same must be true for the associated graded algebra grYR(g), and thus
the Yangian YR(g). See also [Ols92, Theorem 1.12], [Mol07, Theorem 1.7.5], and
[AMR06, Corollary 3.9] for the version of this result corresponding to the case where
g is equal to slN , soN , or spN and V = CN , which is proven in the exact same way.

2.6 Structure of the extended Yangian

Using the results of the previous section one can extract a fair amount of information
about the extended Yangian XI(g), and in fact prove several results which are known
to hold when g is a classical Lie algebra and V is its vector representation. Making
this explicit is the main goal of the current section.

2.6.1 The tensor product decomposition, the center, and the
PBW theorem

In this subsection we will prove that XI(g) is isomorphic to the tensor product of
a polynomial algebra in countably many variables with the Yangian YR(g). This
will allow us to deduce a Poincaré-Birkhoff-Witt type theorem for XI(g) and also to
obtain a complete description of its center.

For brevity, we shall write

C[y(r)
λ ]λ,r = C[y(r)

λ : λ ∈ I, r ≥ 1].

Definition 2.6.1. We define the auxiliary algebra XI(g) to be the tensor product of
C[y(r)

λ ]λ,r with YR(g):
XI(g) = C[y(r)

λ ]λ,r ⊗ YR(g).
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Our present goal is to prove the deformed version of Proposition 2.3.15. Namely,
we will prove that XI(g) and XI(g) are isomorphic algebras. Define Y(u) ∈ E ⊗
(C[y(r)

λ ]λ,r)[[u−1]] by

Y(u) = I +
∑
λ∈I

X•λ ⊗ yλ(u), where yλ(u) =
∑
r≥1

y
(r)
λ u−r.

It will also be useful to expand

Y(u) =
N∑

i,j=1
Eij ⊗ yij(u), where yij(u) = δij +

∑
λ∈I

cλijyλ(u)

and the cλij are as in (2.3.2).

Set
T(u) = Y(u)T (u) ∈ EndV ⊗XI(g)[[u−1]],

and denote by tij(u) = δij +∑
r≥1 t

(r)
ij u

−r the (i, j)-th entry of T(u) (that is, T(u) =∑N
i,j=1Eij ⊗ tij(u)). We then have

t
(r)
ij = τ

(r)
ij + y

(r)
ij +

N∑
a=1

r−1∑
c=1

y
(c)
ia τ

(r−c)
aj ∀ 1 ≤ i, j ≤ N, r ≥ 1. (2.6.1)

The degree assignment

deg y
(r)
λ = r − 1 ∀ λ ∈ I and r ≥ 1

defines a grading on the polynomial algebra C[y(r)
λ ]λ,r. Let Gk denote the subspace

spanned by monomials of degree equal to k and denote the direct sum ⊕ki=0Gk by Hk.
In particular, we have y

(r)
ij ∈ Gr−1 for all r ≥ 1 and 1 ≤ i, j ≤ N . After equipping

XI(g) with the tensor product filtration defined by

Fr(XI(g)) =
∑
k+l=r

Hk ⊗ Fl(YR(g)) =
r⊕

a=0
Ga ⊗ Fr−a(YR(g)),

it becomes a filtered algebra with grXI(g) ∼= C[y(r)
λ ]λ,r ⊗ grYR(g). It is immediate

from (2.6.1) that the following relations are satisfied in grXI(g):

t̄
(r)
ij = τ̄

(r)
ij + ȳ

(r)
ij , ∀ 1 ≤ i, j ≤ N, r ≥ 1.
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Here t̄
(r)
ij and ȳ

(r)
ij denote the images of t(r)

ij and y
(r)
ij , respectively, in

Fr−1(XI(g))/Fr−2(XI(g)) ⊂ grXI(g).

It follows from Theorem 2.5.5 that the assignment

(ȳ(r)
ij , τ̄

(r)
ij ) 7→ (y(r)

ij , F
(r−1)
ij ) ∀ r ≥ 1 and 1 ≤ i, j ≤ N

extends to an isomorphism grXI(g) ∼−→ C[y(r)
λ ]λ,r ⊗ U(gρ[z]). Composing with the

inverse of the isomorphism φzI of Proposition 2.3.15 (after identifying K(r)
λ with y

(r)
λ )

yields an isomorphism

ϕX : grXI(g) ∼−→ U(gI [z]), t̄
(r)
ij 7→ F

(r−1)
ij = F Iijz

r−1. (2.6.2)

Remark 2.6.2. In Step 2 of the proof of Proposition 2.4.4, it was useful to ex-
pand T (u) with respect to the basis {X•λ}λ∈Λ• of EndV . It is also sometimes more
natural to expand T(u) and T (u) in this way. Setting t

(r)
λ = ∑N

i,j=1 a
λ
ijt

(r)
ij and

τ
(r)
λ = ∑N

i,j=1 a
λ
ijτ

(r)
ij for each λ ∈ Λ• and r ≥ 1, we obtain

T(u) = I +
∑
λ∈Λ•

X•λ ⊗ tλ(u) and T (u) = I +
∑
λ∈Λ•

X•λ ⊗ τλ(u),

where (tλ(u), τλ(u)) = (∑r≥1 t
(r)
λ u−r,

∑
r≥1 τ

(r)
λ u−r) for all λ ∈ Λ•. We then have

t̄
(r)
λ =


τ̄

(r)
λ if λ ∈ Λ,

ȳ
(r)
λ if λ ∈ I,

0 otherwise,

in grXI(g), and the isomorphism ϕX from (2.6.2) is also determined by τ̄ (r)
λ 7→ X

(r−1)
λ

for all λ ∈ Λ and ȳ
(r)
λ 7→ X

(r−1)
λ for all λ ∈ I: see §2.3.3.2.

The next theorem is the first main result of this section, and, as previously sug-
gested, it may be viewed as the Yangian analogue of Proposition 2.3.15.

Theorem 2.6.3. The assignment T (u) 7→ T(u) extends uniquely to yield an algebra
isomorphism

ΦI : XI(g) ∼−→ XI(g) = C[y(r)
λ ]λ,r ⊗ YR(g).
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Proof. Since Y(u) ∈ E⊗(C[y(r)
λ ]λ,r)[[u−1]] and T (u) satisfies the RTT -relation (2.4.1),

the same argument as used to prove Lemma 2.4.3 shows that T(u) = Y(u)T (u) also
satisfies (2.4.1). Therefore, ΦI : T (u) 7→ T(u) extends uniquely to an algebra homo-
morphism XI(g) → XI(g). By (2.6.1), ΦI is filtration preserving. To prove that ΦI
is an isomorphism, we will follow the same argument as employed to prove Theorem
2.5.2 and show that the associated graded morphism gr(ΦI) is an isomorphism.

The composition gr(ΦI) ◦ ϕI , where ϕI : U(gI [z]) � grXI(g) is the epimorphism
of Proposition 2.4.4, sends F(r−1)

ij to t̄
(r)
ij for all r ≥ 1 and 1 ≤ i, j ≤ N . Composing

with the isomorphism ϕX : grXI(g) ∼−→ U(gI [z]) defined in (2.6.2) therefore gives the
identity map idU(gI [z]). This implies that gr(ΦI) is indeed an isomorphism, and the
same must be true of ΦI .

Our next goal is to use Theorem 2.6.3 to obtain a complete description of the
center of XI(g), and to prove a Poincaré-Birkhoff-Witt theorem for XI(g). We will
need a few preliminary lemmas, the first being a consequence of Theorem 2.5.2.

Lemma 2.6.4. We have

T (u) ∈ ρ(Y (g))⊗ YR(g)[[u−1]] ⊂ EndV ⊗ YR(g)[[u−1]].

Consequently, the commutation relations

Y(u)T (u) = T (u)Y(u) and Y(u)T(u) = T(u)Y(u)

are satisfied in EndV ⊗XI(g).

Proof. Since R(u) ∈ (Y (g)⊗ Y (g))[[u−1]], Theorem 2.5.2 implies the first part of the
Lemma. As Y(u) ∈ E⊗ (C[y(r)

λ ]λ,r)[[u−1]] and E is the centralizer of ρ(Y (g)) in EndV ,
[Y(u), T (u)] = 0 = [Y(u),T(u)].

Next, define Y(u) to be the preimage of Y(u) under ΦI :

Y(u) = I +
∑
λ∈I

X•λ ⊗ yλ(u) = Φ−1
I (Y(u)) ∈ E ⊗XI(g)[[u−1]],

and write yλ(u) = ∑
r≥1 y

(r)
λ u−r. As was the case for Y(u), we shall also make use of

the expansion of Y(u) with respect to the basis of elementary matrices {Eij}1≤i,j≤N .
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That is, we may write

Y(u) =
N∑

i,j=1
Eij ⊗ yij(u) with yij(u) = δij +

∑
λ∈I

cλijyλ(u).

For each λ ∈ I (resp. 1 ≤ i, j ≤ N) and r ≥ 1, the element y(r)
λ (resp. y

(r)
ij )

belongs to FIr−1, and we will denote by ȳ
(r)
λ (resp. ȳ

(r)
ij ) its image in the quotient

FIr−1/FIr−2 = grr−1XI(g).

Lemma 2.6.5. The following statements hold:

(1) Z(u) = Y(u)Y(u+ 1
2cg)

−1 ∈ E ⊗XI(g)[[u−1]],

(2) z(r+1)
ij ∈ FIr−1 for all 1 ≤ i, j ≤ N and r ≥ 0 (where FI−1 = {0}),

(3) z̄(r+1)
ij = r

2cgȳ
(r)
ij ∀ 1 ≤ i, j ≤ N and r ≥ 0, where z̄(r+1)

ij denotes the image of
z

(r+1)
ij in grr−1XI(g).

Proof. Consider (1). Since Y(u) is an invertible element of

(E ⊗ C[y(r)
λ ]λ,r)[[u−1]] ∼= E ⊗ (C[y(r)

λ ]λ,r)[[u−1]],

we obtain an automorphism SY of C[y(r)
λ ]λ,r which is determined by Y(u) 7→ Y(u)−1.

Consider the tensor product SX = SY⊗ SR, where we recall from (2.5.4) that SR is
the antipode of YR(g), and it is given by T (u) 7→ T (u)−1. Then SX is the anti-
automorphism of the algebra XI(g) = C[y(r)

λ ]λ,r ⊗ YR(g) completely determined by

SX(T(u)) = Y(u)−1T (u)−1 = T (u)−1Y(u)−1 = T(u)−1,

where in the second equality we have appealed to Lemma 2.6.4. Consequently,

SX ◦ ΦI = ΦI ◦ SI .

Since Φ : YR(g)→ Y (g) is a Hopf algebra morphism and (1⊗ S2)R(−u) = R(−u−
1
2cg), we have S2

R(T (u)) = T (u+ 1
2cg). Therefore,

ΦI(Z(u)) = ΦI(S2
I(T (u))T (u+ 1

2cg)
−1)

= S2
X(T(u))T(u+ 1

2cg)
−1 = S2

X(Y(u))Y(u+ 1
2cg)

−1.
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Since SX restricts to an automorphism of C[y(r)
λ ]λ,r (namely SY) and SX(Y(u)) =

Y(u)−1, we have S2
X(Y(u)) = Y(u), and we may thus conclude that

ΦI(Z(u)) = Y(u)Y(u+ 1
2cg)

−1,

and hence that Z(u) = Y(u)Y(u + 1
2cg)

−1. Since E = EndY (g)V is an algebra, Z(u)
also belongs to E ⊗XI(g)[[u−1]]. This observation concludes the proof of (1).

Proof of (2). The (i, j)-th entry of the u−r−1 coefficient of Y(u+ 1
2cg)

−1 is equal to

−y(r+1)
ij mod FIr−1.

It is a straightforward consequence of this fact that the u−r−1 coefficient of the (i, j)-th
entry of Y(u)Y(u+ 1

2cg)
−1, which is equal to z(r+1)

ij , is contained in FIr−1.

Proof of (3). The argument we give is similar to the proof of Proposition 2.4.6. By
(1), we have

Z(u)Y(u+ 1
2cg) = Y(u).

Taking the (i, j)-th coefficient of both sides yields

N∑
a=1

zia(u)yaj(u+ 1
2cg) = yij(u).

Writing yaj(u+ 1
2cg) = ∑

r≥0 y
◦(r)
aj u−r, we have y◦(r)aj ∈ FIr−1 for each r ≥ 0 and

yij(u) =
N∑
a=1

zia(u)yaj(u+ 1
2cg)

= yij(u+ 1
2cg) + zij(u) +

N∑
a=1

∑
k,s≥1

z
(k)
ia y

◦(s)
aj u−k−s

(2.6.3)

By (2), z(k)
ia y

◦(s)
aj ∈ FIk+s−3. Thus, the coefficient of u−r−1 in the summation on the

right-hand side of the above equality is contained in FIr−2. On the other hand, the
same argument as used to establish (2.4.21) allows us to deduce that the u−r−1 co-
efficient of yij(u + 1

2cg) is equivalent to y(r+1)
ij − r

2cgy
(r)
ij modulo FIr−2. Thus, (2.6.3)

implies that
y

(r+1)
ij ≡ y

(r+1)
ij + z

(r+1)
ij − r

2cgy
(r)
ij mod FIr−2,
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and hence that z̄(r+1)
ij = r

2cgȳ
(r)
ij for all 1 ≤ i, j ≤ N, r ≥ 0.

For each λ ∈ Λ•, set zλ(u) = ∑
r≥1 z

(r)
λ u−r with z

(r)
λ = ∑N

i,j=1 a
λ
ijz

(r)
ij . Then, by

Part (1) of Lemma 2.6.5,

Z(u) = I +
∑
λ∈Λ•

X•λ ⊗ zλ(u) = I +
∑
λ∈I

X•λ ⊗ zλ(u).

The following Proposition gives a complete description of the center of XI(g) in terms
of the coefficients z(r)

λ of Z(u).

Proposition 2.6.6. Let ZXI(g) denote the center of XI(g). The set of elements
{y(r)

λ }λ∈I,r≥1 is algebraically independent and generates ZXI(g), and the same is true
of the set {z(r)

λ }λ∈I,r≥2. Consequently,

C[y(r)
λ : λ ∈ I, r ≥ 1] ∼= ZXI(g) ∼= C[z(r)

λ : λ ∈ I, r ≥ 2].

Proof. By Corollary 2.5.6, the center of XI(g) is equal to the polynomial algebra
C[y(r)

λ ]λ,r. Since the isomorphism ΦI of Theorem 2.6.3 satisfies

ΦI(y(r)
λ ) = y

(r)
λ ∀ λ ∈ I and r ≥ 1,

the set {y(r)
λ }λ∈I,r≥1 must be an algebraically independent set which generates the

center of XI(g). In particular, ZXI(g) ∼= C[y(r)
λ : λ ∈ I, r ≥ 1].

Since the coefficients {z(r)
λ }λ∈I,r≥2 are central, the assignment y(r)

λ 7→ z
(r+1)
λ , for all

λ ∈ I and r ≥ 1, extends to an algebra endomorphism

ϕy,z : ZXI(g) ∼= C[y(r)
λ : λ ∈ I, r ≥ 1]→ ZXI(g).

By Part (2) of Lemma 2.6.5, ϕy,z is a filtered morphism, and by Part (3) of Lemma
2.6.5 the associated graded morphism gr(ϕy,z) is just the rescaling automorphism of
C[y(r)

λ : λ ∈ I, r ≥ 1] determined by

y
(r)
λ 7→ 2(rcg)−1y

(r)
λ ∀ λ ∈ I and r ≥ 1.

Thus ϕy,z is an automorphism of ZXI(g) and hence {z(r)
λ }λ∈I,r≥2 is an algebraically

independent set which generates the center ZXI(g) of XI(g).
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With the help of Theorem 2.6.3 or, more accurately, its proof, we obtain the
following Poincaré-Birkhoff-Witt theorem for XI(g):

Theorem 2.6.7. The surjective homomorphism ϕI : U(gI [z])→ grXI(g) of Proposi-
tion 2.4.4, which is given by Fr−1

ij 7→ t̄
(r)
ij , is an isomorphism of algebras. Consequently,

the assignment
F Iij 7→ t

(1)
ij ∀ 1 ≤ i, j ≤ N (2.6.4)

defines an embedding U(gI) ↪→ XI(g), while the assignment

Fij 7→ t
(1)
ij − 2c−1

g z
(2)
ij ∀ 1 ≤ i, j ≤ N (2.6.5)

defines an embedding U(gρ) ↪→ XI(g).

Proof. The injectivity of ϕI was proven in the course of the proof of Theorem 2.6.3,
and that (2.6.4) defines an embedding follows immediately.

As for the last statement of the theorem, consider the embedding

ιR : YR(g) ↪→ XI(g), T (u) 7→ Y(u)−1T (u).

It sends τ (1)
ij to t(1)

ij − y
(1)
ij for all 1 ≤ i, j ≤ N . Composing with the embedding

U(gρ) ↪→ YR(g), Fij 7→ τ
(1)
ij ∀ 1 ≤ i, j ≤ N

of Theorem 2.5.5, we obtain an injection

U(gρ) ↪→ XI(g), Fij 7→ t
(1)
ij − y

(1)
ij ∀ 1 ≤ i, j ≤ N.

The proof that this coincides with (2.6.5) is completed by noting that, by Part (3) of
Lemma 2.6.5, we have y(1)

ij = 2c−1
g z

(2)
ij for all 1 ≤ i, j ≤ N .
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2.6.2 The Yangian as a Hopf subalgebra of the extended Yan-
gian

By Theorem 2.6.3, YR(g) may also be identified as a subalgebra of XI(g) via the
embedding

ιR : YR(g) ↪→ XI(g), T (u) 7→ Y(u)−1T (u), (2.6.6)

which played a role in the proof of Theorem 2.6.7. In this subsection we study YR(g)
from this viewpoint, our main goals being to show that ιR is a Hopf algebra morphism,
to study the behaviour of the center under the coproduct ∆I , and to show that YR(g)
can in fact be realized as a fixed point subalgebra of XI(g).

In order to distinguish between the identifications of YR(g) as a quotient and as a
subalgebra of XI(g), we shall denote by ỸR(g) ⊂ XI(g) the isomorphic copy of YR(g)
obtained from the embedding ιR. We also set

T̃ (u) = Y(u)−1T (u) =
∑
i,j

Eij ⊗ τ̃ij(u).

The first and main step in showing that ιR is a morphism of Hopf algebras is to
study the behaviour of Y(u) under the coproduct, counit, and antipode of XI(g).
This is the purpose of the next lemma.

Lemma 2.6.8. The central matrix Y(u) satisfies

∆I(Y(u)) = Y[1](u)Y[2](u), SI(Y(u)) = Y(u)−1, εI(Y(u)) = I.

Proof. We have already demonstrated in the course of the proof of Lemma 2.6.5 that
SI(Y(u)) = Y(u)−1. More precisely, we showed that SX(Y(u)) = Y(u)−1, where SX

is the antiautomorphism of XI(g) determined by SX(T(u)) = T(u)−1. Since

SX = ΦI ◦ SI ◦ Φ−1
I ,

this implies that SI(Y(u)) = Y(u)−1.

The Hopf algebra axioms dictate that εI ◦ SI = εI , and hence εI(Y(u)) =
εI(Y(u))−1. The equality εI(Y(u)Y(u)−1) = I then implies that εI(Y(u))2 = I. Since
the identity matrix I is the unique square root of itself belong to I+u−1(EndV )[[u−1]],
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we can conclude that εI(Y(u)) = I.

It remains to see that ∆I(Y(u)) = Y[1](u)Y[2](u). Let ∆Y be the algebra morphism
C[y(r)

λ ]λ,r → C[y(r)
λ ]λ,r ⊗ C[y(r)

λ ]λ,r determined by

∆Y(Y(u)) = Y[1](u)Y[2](u) ∈ E ⊗ (C[y(r)
λ ]λ,r ⊗ C[y(r)

λ ]λ,r)[[u−1]].

We then obtain an algebra morphism

∆X = σ23 ◦ (∆Y⊗∆R) : XI(g)→ XI(g)⊗XI(g),

where σ23 = idC[y(r)
λ

]λ,r
⊗ σ⊗ idYR(g) and σ : YR(g)⊗C[y(r)

λ ]λ,r → C[y(r)
λ ]λ,r ⊗ YR(g) is

the flip map. By definition,

∆X(T(u)) = Y[1](u)Y[2](u)T[1](u)T[2](u) ∈ EndV ⊗ (XI(g)⊗XI(g))[[u−1]].

Since Y[2](u) commutes with T[1](u), we can rewrite this as

∆X(T(u)) = Y[1](u)T[1](u)Y[2](u)T[2](u) = T[1](u)T[2](u),

and hence (ΦI ⊗ΦI) ◦∆I = ∆X◦ΦI . This implies that ∆I = (Φ−1
I ⊗Φ−1

I ) ◦∆X◦ΦI ,
and consequently

∆I(Y(u)) = (Φ−1
I ⊗ Φ−1

I )(Y[1](u)Y[2](u)) = Y[1](u)Y[2](u).

The above lemma leads us to the first main result of this subsection. Let εY be
the homomorphism C[y(r)

λ ]λ,r → C, Y(u) 7→ I, and recall that ΦI : XI(g) → XI(g)
is the algebra isomorphism of Theorem 2.6.3.

Proposition 2.6.9. C[y(r)
λ ]λ,r is a Hopf algebra with coproduct ∆Y, counit εY and

antipode SY, and if XI(g) is equipped with the standard tensor product of Hopf al-
gebras structure, ΦI : XI(g) → XI(g) becomes an isomorphism of Hopf algebras. In
particular, The embedding ιR : YR(g) ↪→ XI(g) is a morphism of Hopf algebras.

Proof. XI(g) becomes a Hopf algebra, and ΦI a Hopf algebra isomorphism, after
being given the coproduct (ΦI ⊗ ΦI) ◦ ∆I ◦ Φ−1

I (which, by Lemma 2.6.8, is ∆X),
counit εI ◦ Φ−1

I (which, by Lemma 2.6.8, is εX), and antipode ΦI ◦ SI ◦ Φ−1
I (which,
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by Lemma 2.6.8, is SX). Since the tuple (∆Y, εY, SY) coincides with

(∆X|C[y(r)
λ

]λ,r
, εX|C[y(r)

λ
]λ,r
, SX|C[y(r)

λ
]λ,r

),

it endows C[y(r)
λ ]λ,r with the structure of a Hopf algebra.

Since ∆X = σ23◦(∆Y⊗∆R), εX = η◦(εY⊗εR) (where η : C⊗C→ C is the natural
isomorphism), and SX = SY⊗SR, the Hopf algebra structure on XI(g) induced from
XI(g) via ΦI coincides with the Hopf algebra structure obtained via the standard
tensor product of Hopf algebras construction.

Before moving onto the last main result of this subsection, we note the following
corollary of Lemma 2.6.8.

Corollary 2.6.10. The central matrix Z(u) satisfies

∆I(Z(u)) = Y[1](u)Z[2](u)Y[1](u+ 1
2cg)

−1,

SI(Z(u)) = Y(u)−1Y(u+ 1
2cg) and εI(Z(u)) = I.

Proof. By Lemma 2.6.5, Z(u) = Y(u)Y(u + 1
2cg)

−1. Therefore, by Lemma 2.6.8, we
have

∆I(Z(u)) = Y[1](u)Y[2](u)Y[2](u+ 1
2cg)

−1Y[1](u+ 1
2cg)

−1

= Y[1](u)Z[2](u)Y[1](u+ 1
2cg)

−1.

Similarly, εI(Z(u)) = ε(Y(u))ε(Y(u+ 1
2cg))

−1 = I. Lastly, since the restriction of SI
to the center ZXI(g) is an automorphism,

SI(Z(u)) = SI(Y(u))SI(Y(u+ 1
2cg))

−1 = Y(u)−1Y(u+ 1
2cg).

Recall that, by Lemma 2.4.3, for each (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ there is an

automorphsim mf of XI(g) determined by the assignment (2.4.4). The next theorem
proves that ỸR(g) can be realized as a fixed point subalgebra of XI(g).

Theorem 2.6.11. The Yangian ỸR(g) is equal to the subalgebra of XI(g) fixed by all
automorphisms mf :

ỸR(g) =

Y ∈ XI(g) : mf (Y ) = Y ∀ (fλ(u))λ∈I ∈
∏
λ∈I

(u−1C[[u−1]])λ

 . (2.6.7)
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Proof. Recall from (2.4.3) that (fλ(u))λ∈I is identified with the matrix f◦(u) =∑
λ∈I X

•
λ⊗ fλ(u), and that, by (2.4.4), mf (T (u)) = f(u)T (u), where f(u) = I + f◦(u).

Let us denote the right-hand side of (2.6.7) by XI(g)mf .

For each (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ, the assignment

Y(u) 7→ f(u)Y(u)

extends to an automorphism mY
f of C[y(r)

λ ]λ,r. Consider the automorphism mX
f =

mY
f ⊗ id of XI(g). It satisfies

mX
f (T(u)) = mX

f (Y(u))mX
f (T (u)) = f(u)T(u),

and thus mX
f ◦ ΦI = ΦI ◦mf . It follows that

mf (Y(u)) = f(u)Y(u) (2.6.8)

for every tuple (fλ(u))λ∈I . Therefore, for each (fλ(u))λ∈I ∈
∏
λ∈I(u−1C[[u−1]])λ,

mf (T̃ (u)) = mf (Y(u))−1mf (T (u))

= Y(u)−1f(u)−1f(u)T (u) = Y(u)−1T (u) = T̃ (u).

This proves that ỸR(g) ⊂ XI(g)mf .

To obtain the reverse inclusion, we employ similar techniques as used to prove
[AMR06, Theorem 3.1]. Suppose towards a contradiction that there is X ∈ XI(g)mf \
ỸR(g). By Theorem 2.6.3 we may writeX as a polynomial in the variables {y(r)

λ }λ∈I,r≥1

with coefficients in ỸR(g). This polynomial is non-constant by assumption. Only
finitely many variables can appear in this polynomial, so there is m ≥ 1 such that X
depends only on the variables {y(r)

λ }λ∈I,r=1,...,m. We take m to be minimal with this
property, and we fix µ ∈ I such that X depends on y(m)

µ .

Let X = ∑
a≥0Xa(y(m)

µ )a be the expansion of X as a polynomial in the single
variable y(m)

µ and set P (y(m)
µ ) = ∑

a≥1Xa(y(m)
µ )a. The polynomial P (y(m)

µ ) has degree
at least 1, as otherwise X would not depend on y(m)

µ . For each w ∈ C, define
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f◦w(u) = (fλ(u))λ∈I by

fλ(u) =

0 if λ 6= µ,

wu−m if λ = µ.

As a matrix in E ⊗ u−1C[[u−1]], f◦w(u) = X•µ ⊗ wu−m. Note that

fw(u)Y(u) = (I +X•µ ⊗ wu−m)Y(u) = Y(u) +X•µ ⊗ wu−m + (X•µ ⊗ wu−m)Y◦(u),

where Y◦(u) = Y(u) − I. This implies that, for 1 ≤ r ≤ m and λ ∈ I, the image of
y

(r)
λ under mfw is given by

mfw(y(r)
λ ) =

y
(r)
λ if (λ, r) 6= (µ,m),

y(m)
µ + w if (λ, r) = (µ,m).

Consequently,

X = mfw(X) = X0 +mfw(P (y(m)
µ )) = X0 + P (y(m)

µ + w) ∀ w ∈ C.

Here P (y(m)
µ + w) is the polynomial obtained from P (y(m)

µ ) by substituting y(m)
µ 7→

y(m)
µ + w. This allows us to deduce that

P (y(m)
µ ) = P (y(m)

µ + w) ∀ w ∈ C. (2.6.9)

For each w ∈ C, let evw be the algebra endomorphism of C[y(r)
λ ]λ,r given by y(r)

λ 7→ y
(r)
λ

for all (λ, r) 6= (µ,m) and y(m)
µ 7→ −w. Note that ∩w∈CKer(evw) = {0}. We can

extend evw to obtain an endomorphism evX
w of XI(g) by setting evX

w = evw ⊗ id. We
then have Ker(evX

w) = Ker(evw)⊗ YR(g) and ∩w∈CKer(evX
w) = {0}.

The equality (2.6.9) implies that evX
w(ΦI(P (y(m)

µ ))) = 0 for all w ∈ C. This shows
that ΦI(P (y(m)

µ )) = 0, and thus that P (y(m)
µ ) = 0. This contradicts the fact that

P (y(m)
µ ) is a non-constant polynomial of degree at least 1. Thus no such X can exist,

and we may conclude that ỸR(g) = XI(g)mf .
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2.7 Drinfeld’s theorem and classical Lie algebras

When V is assumed to be irreducible, one can recover from the results of §2.4, §2.5
and §2.6 a proof of [Dri85, Theorem 6]. Our first task is to formalize this statement:
this will be accomplished in §2.7.1. We will conclude in §2.7.2 by explaining how
many of the results of this chapter reduce to, and have been motivated by, results
which are known to hold when V is the vector representation of a classical Lie algebra
g.

2.7.1 Drinfeld’s theorem and the irreducibility assumption

We now restrict our attention to the setting where the underlying Y (g)-module V
is irreducible. As has been explained in Remark 2.4.2, this situation has additional
practical value, since, at least in principle, R(u) can be computed by solving the
equation (2.2.13) and, after a suitable re-normalization, is equal to a rational R-
matrix.

Since V is irreducible, Schur’s lemma implies that

E = EndY (g)V = C · I.

In particular, the indexing set I contains a single element, say ς, and the basis element
X•ς of E can be chosen to equal the identity matrix I. With this in mind, we shall
henceforth denote XI(g) simply by X(g) whenever V is assumed to be irreducible.

Set

z(u) = 1 +
∑
r≥2

zru
−r = 1 + zς(u) and y(u) = 1 +

∑
r≥1

yru
−r = 1 + yς(u). (2.7.1)

The observation made in the previous paragraph implies the first part of the following
result.

Corollary 2.7.1. The matrices Z(u) and Y(u) are equal to z(u) · I and y(u) · I,
respectively. In particular, z(u) is uniquely determined by the relation

S2
I(T (u))T (u+ 1

2cg)
−1 = z(u) · I = T (u+ 1

2cg)
−1S2

I(T (u)).
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Proof. The relation z(u) · I = S2
I(T (u))T (u+ 1

2cg)
−1 is immediate from (2.4.19). This

relation, together with the centrality of z(u), implies that

z(u)T (u+ 1
2cg) = T (u+ 1

2cg)z(u) = S2
I(T (u)),

and hence that z(u) · I = T (u+ 1
2cg)

−1S2
I(T (u)).

These simplifications allow us to write down a proof of the following theorem,
whose first two parts are precisely the statement of [Dri85, Theorem 6].

Theorem 2.7.2 ([Dri85, Theorem 6]). The following three statements are satisfied:

(1) There is an epimorphism of Hopf algebras Φ̃ : X(g) � Y (g) such that

Φ̃(T (u)) = (ρ⊗ 1)(R(−u)).

(2) There is a series c(u) = 1 + ∑
r≥1 cru

−r, whose coefficients {cr}r≥1 are central
and generate Ker(Φ̃) as an ideal, which satisfies

∆I(c(u)) = c(u)⊗ c(u). (2.7.2)

(3) The coefficients of c(u) generate the center of X(g), which is a polynomial
algebra in countably many variables.

Proof. The first statement is precisely Lemma 2.5.1, which we have seen holds even
when V is not irreducible. Let us turn to (2). There are two natural candidates for
the series c(u), the first being z(u) and the second being y(u), and both satisfy the
desired properties. If c(u) = z(u), then by Corollaries 2.6.10 and 2.7.1 we have

∆I(z(u)) = (y(u)⊗ 1)(1⊗ z(u))(y(u+ 1
2cg)

−1 ⊗ 1) = z(u)⊗ z(u),

while Theorem 2.5.2 gives Ker(Φ̃) = (z(u) − 1). If instead c(u) = y(u), then it is
immediate from Lemma 2.6.8 and Corollary 2.7.1 that c(u) satisfies the grouplike
property (2.7.2). As the ideal (y(u)−1) generated by the coefficients {yr}r≥1 is equal
to (z(u)− 1), we also have Ker(Φ̃) = (y(u)− 1).

As for part (3), Proposition 2.6.6 and Corollary 2.7.1 guarantee that both {zr}r≥2

and {yr}r≥1 are algebraically independent sets which generate ZX(g).
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Remark 2.7.3. More generally, when V is not assumed to be irreducible, we have
shown that C(u) = Y(u) ∈ I + E ⊗ u−1XI(g)[[u−1]] has central coefficients which
generate the ideal (Z(u)− I) = Ker(Φ̃), and moreover that C(u) satisfies ∆(C(u)) =
C[1](u)C[2](u). This should be viewed as a generalization of (2), and the statement
that the coefficients y(r)

λ of C(u) are algebraically independent generators of ZXI(g)
(see Proposition 2.6.6) should be viewed as a generalization of (3).

Remark 2.7.4. In the special case where g = soN or spN and V = CN , Theorem
2.7.2 follows from [GRW19a, Theorem 3.16] and the results of [AMR06].

In the proof of Theorem 2.7.2 we have observed that the series z(u) is grouplike.
It is thus also the case that SI(z(u)) = z(u)−1 (as can also be seen from Corollary
2.6.10). The next corollary summarizes these results.

Corollary 2.7.5. When V is irreducible the formulas of Corollary 2.6.10 reduce to

∆I(z(u)) = z(u)⊗ z(u), SI(z(u)) = z(u)−1, εI(z(u)) = 1.

We conclude this subsection by noting that, since E = C · I, every automorphism
mf (see (2.4.4)) takes the form

T (u) 7→ f(u)T (u) (2.7.3)

for a series f(u) ∈ 1 + u−1C[[u−1]] uniquely determined by f(u) = I ⊗ f(u). With this
in mind, we will denote mf by mf whenever V is assumed to be irreducible, which
will henceforth be the case.

2.7.2 The vector representation of the Yangian of a classical
Lie algebra

We now narrow our focus to the case where g is a Lie algebra of classical type and V
is specialized to its vector representation, our goal being to briefly highlight results in
the literature which have motivated some of the results of this paper, with emphasis
on the results of §2.6.

We remark that these specializations fall into the slightly more general framework
in which the representation V of Y (g) is irreducible as a g-module. Considering
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only such modules leads to fairly significant simplifications. For instance, gI always
coincides with gJ and hence §2.3.3 and Step 2 of the proof of Proposition 2.4.4 are no
longer needed. There are, however, examples where R(u) has been computed when
V is not irreducible as a g-module: see [CP91].

2.7.2.1 The special linear Lie algebra slN

Fix N ≥ 2, let {e1, . . . , eN} denote the standard basis of CN , and view g = slN as
the space of traceless N ×N matrices. Fixing the invariant form (·, ·) to be the trace
form, we have

Ωρ = P − 1
N
I and cg = 2N,

where P = ∑N
i,j=1Eij ⊗Eji is the permutation operator σ on CN ⊗CN . Additionally,

we have gJ = gI ∼= glN .

It is well known that the slN -module CN admits a Y (slN)-module structure defined
by allowing J(X), for each X ∈ slN , to act as the zero operator: see for instance
Example 1 of [Dri85]. In this case (ρ⊗ρ)(R(−u)) is, up to multiplication by a formal
series in u−1, equal to Yang’s R-matrix

R(u) = I − P

u
, (2.7.4)

as can be deduced by directly solving the equation (2.2.13) with V = W = CN . The
associated extended Yangian X(slN) is usually denoted Y (glN) in the literature, and
has been studied extensively. Using the above rational form of R(u), one deduces that
the definingRTT -relation (2.4.1) can be rewritten in terms of the series {tij(u)}1≤i,j≤N

as
[tij(u), tkl(v)] = 1

u− v

(
tkj(u)til(v)− tkj(v)til(u)

)
. (2.7.5)

In what follows we do not attempt to provide a full account of the history behind
each result, but instead refer the reader to the appropriate results in the monograph
[Mol07] where a detailed bibliography is given.

The central series y(u) and z(u) (adapting the notation from (2.7.1)) both admit
rather concrete descriptions. The series y(u) is equal to the series d̃(u) which has
appeared in the proof of [Mol07, Theorem 1.8.2]: it is the unique central series in
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1 + u−1ZX(slN)[[u−1]] such that

d̃(u)d̃(u− 1) · · · d̃(u−N + 1) = qdetT (u), (2.7.6)

where qdetT (u) is the quantum determinant of the generating matrix T (u): see Def-
inition 1.6.5 of [Mol07]. By [Mol07, Proposition 1.6.6], it is given by

qdetT (u) =
∑
π∈SN

sign(π) · tπ(1),1(u) · · · tπ(N),N(u−N + 1). (2.7.7)

The series z(u) is related to the series

z(u) = qdetT (u− 1)
qdetT (u) ,

which was defined in [Mol07, (1.68)], by z(u) = z(u + N), as can be seen using
[Mol07, Theorem 1.9.9]. The relation z(u) = 1 is equivalent to qdetT (u) = 1, as was
pointed out in the original statement of [Dri85, Theorem 6].

Theorem 2.6.3 reduces to the statements of Theorems 1.7.5 and 1.8.2 of [Mol07],
and Proposition 2.6.6 follows from these same results together with [Mol07, Corollary
1.9.7]. The Poincaré-Birkhoff-Witt theorem for X(slN) (Theorem 2.6.7 with (g, V ) =
(slN ,CN)) is given in [Mol07, Theorem 1.4.1].

The description of YR(slN) as the subalgebra of X(slN) consisting of all elements
stable under all automorphisms of the form mf , which is provided by Theorem 2.6.11,
was actually taken as the definition of YR(slN) in [Mol07]. It was then proven in
Corollary 1.8.3 of [Mol07] that YR(slN) could be equivalently characterized as in
Definition 2.4.1. According to [Mol07, Bibliographical notes 1.8], the description of
YR(slN) using the automorphisms mf is originally due to Drinfeld, as is the more
general fact that YR(slN) can be realized as a subalgebra of X(slN): see Theorem
1.13 of [Ols92].

2.7.2.2 The orthogonal and symplectic Lie algebras soN and sp2n

Still assuming N ≥ 2, let n ∈ N be defined by N = 2n (if N is even) and N = 2n+ 1
(if N is odd). We now assume that gN = g is either equal to soN or spN , where N
is necessarily even in the latter case. It is convenient to relabel the standard basis of
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CN using the indexing set

IN = {−n, . . . ,−1, (0), 1, . . . , n}, (2.7.8)

where (0) = 0 if N = 2n+ 1 and should be omitted otherwise. That is, we denote the
standard basis of CN by {e−n, . . . , e−1, (e0), e1, . . . , eN}. Let t : EndCN → EndCN

denote the transposition determined by

(Eij)t = θijE−j,−i where θij =

1 if gN = soN ,

sign(i)sign(j) if gN = spN .
(2.7.9)

The Lie algebra gN can then be realized as the Lie subalgebra slθN of slN consisting
of elements fixed by the involution θ ∈ Aut(slN) defined by

θ(X) = −X t ∀ X ∈ slN . (2.7.10)

We will see below that this realization of gN is consistent with that given by Propo-
sition 2.3.4.

Letting (·, ·) be equal to one half of the trace form, we have Ωρ = P − Q and
cg = 4κ, where

P =
∑

i,j∈IN
Eij ⊗ Eji, Q = P t2 =

∑
i,j∈IN

θijEij ⊗ E−i,−j

and κ =

N/2− 1 if gN = soN ,

n+ 1 if gN = spN .

(2.7.11)

We will also write κ = N/2∓ 1, where ∓ = −(±) and

± =

+ if gN = soN ,

− if gN = spN .
(2.7.12)

The presentation of gN furnished by Proposition 2.3.4 takes the following explicit
form: Firstly, the above data implies that the relation (2.3.10) is equivalent to

[Fij, Fkl] = δjkFil − δilFkj + δj,−lθijFk,−i − δi,−kθijF−j,l.
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As for the relation (2.3.11), using (2.3.13) and the above relation, we deduce that it
is equivalent to the set of relations

±Fij = δijtr(F )∓ θijF−j,−i ∀ i, j ∈ IN .

Taking i = j and summing over i ∈ IN gives tr(F ) = 0, and hence (2.3.11) implies
that

Fij + θijF−j,−i = 0 ∀ i, j ∈ IN .

Since this relation clearly implies that tr(F ) = 0, it is equivalent to (2.3.11). In
summary, gN is isomorphic to the Lie algebra generated by {Fij}i,j∈IN , subject only
to the relations

[Fij, Fkl] = δjkFil − δilFkj + δj,−lθijFk,−i − δi,−kθijF−j,l
Fij + θijF−j,−i = 0

(2.7.13)

for all i, j, k, l ∈ IN . As hinted at earlier, this recovers the realization of gN as the
fixed point subalgebra slθN , with θ as in (2.7.10). Indeed, the identification is given
by

Fij = Eij − θijE−j,−i = Eij + θ(Eij) ∀ i, j ∈ IN . (2.7.14)

As in the g = slN case, it is well known that the vector representation CN of gN
extends to a representation of Y (gN) by setting ρ(J(X)) = 0 for all X ∈ gN . For an
explicit proof see [GRW19a, Proposition 3.1]. The R-matrix (ρ⊗ ρ)(R(−u)) can be
computed from (2.2.13) and is equal to

R(u) = I − P

u
+ Q

u− κ
, (2.7.15)

up to multiplication by an invertible element of C[[u−1]]. This has certainly been
known for a long time (see [KS82b] and [Dri85, Example 2]), but for a complete proof
we refer the reader to Proposition 3.13 of the recent paper [GRW19a]. The RTT -
Yangian YR(gN) and the extended Yangian X(gN) have not been studied to the same
extent as their slN analogues, although there has been an increase in efforts over the
last fifteen years [AAC+03,AMR06,MM14,MM17,GRW19a, JLM18]. In [GRW19a],
a proof of Theorem A was given in [GRW19a] using the algebraic theory developed
in [AMR06]. Using (2.7.15), the defining relation (2.4.1) of X(gN) can be rewritten
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in terms of the generating series {tij(u)}i,j∈IN as

[tij(u), tkl(v)] = 1
u− v

(
tkj(u)til(v)− tkj(v)til(u)

)
− 1
u− v − κ

∑
a∈IN

(
δk,−iθiataj(u)t−a,l(v)− δl,−jθjatk,−a(v)tia(u)

)
.

(2.7.16)
It was proven in [AAC+03] (see also [AMR06, (2.26)]) that there is a central series
z(u) ∈ 1 + u−1ZX(gN)[[u−1]] determined by

z(u) · I = T t(u+ κ)T (u) = T (u)T t(u+ κ),

where T t(u) =
∑

i,j∈IN
(Eij)t ⊗ tij(u). (2.7.17)

By comparing (2.31) of [AMR06] with the relation S2
I(T (u)) = z(u)T (u + 2κ) of

Corollary 2.7.1, we can conclude that

z(u) = z(u)
z(u+ κ) .

Conversely y(u) is equal to the central series y(u) defined in [AMR06, Theorem 3.1]:
it is uniquely determined by

y(u)y(u+ κ) = z(u). (2.7.18)

It was also noted in the statement of [Dri85, Theorem 6] that, when (g, V ) =
(soN ,CN), the coefficients of z(u) − 1 generate the kernel of the epimorphism Φ̃
from Lemma 2.5.1 as an ideal.

Theorem 2.6.3 with (g, V ) = (gN ,CN) is precisely Theorem 3.1 of [AMR06], while
Corollary 2.6.6 is deduced from that same theorem of [AMR06] together with [AMR06,
Corollary 3.9]. The Poincaré-Birkhoff-Witt theorem for X(gN) when V = CN was
stated and proven in Corollary 3.10 of [AMR06]: see also [AMR06, Theorem 3.6],
which is exactly Theorem 2.5.5 in the particular case being discussed.

Just as was the case for g = slN with V = CN , the authors of [AMR06] first
defined YR(gN) as the fixed point subalgebra of X(gN) under all automorphisms mf ,
and then in [AMR06, Corollary 3.2] proved that it could be equivalently defined as a
quotient of X(gN).
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To conclude this subsection, we would like to mention that there is an alternative
route to proving that YR(g) and Y (g) are isomorphic when g = slN , soN or spN and
V = CN . This alternative uses the Gauss decomposition of the generating matrix
T (u) of X(g) to construct an isomorphism

ΦD : YR(g) ∼−→ YD(g),

where YD(g) denotes the current (or “Drinfeld’s new”) realization of the Yangian. For
g = slN , such an isomorphism was constructed by J. Brundan and A. Kleshchev in
[BK05] (see also [Mol07, §3.1]). For g = soN and g = spN this has been achieved in
the recent paper [JLM18] of N. Jing, M. Liu and A. Molev.

One may then compose ΦD with the inverse of the isomorphism Y (g) ∼−→ YD(g)
from Theorem 1 of [Dri88] to obtain an isomorphism

YR(g) ∼−→ Y (g).

Although a proof of [Dri88, Theorem 1] did not appear in Drinfeld’s original paper,
one has recently been made available in [GRW19a, Theorem 2.6], where YD(g) was
denoted Y cr(g).
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Chapter 3

Twisted Yangians of Classical Type

We have now reached the second part of this thesis, where our attention will deviate
from the study of the Yangian Y (g) itself and instead focus on the theory of twisted
Yangians – certain coideal subalgebras of Yangians associated to symmetric pairs
(g, gϑ) of Lie algebras.

In this chapter, we provide a introduction to the theory of twisted Yangians asso-
ciated to symmetric pairs of classical type, with emphasis on those of type B, C, D
of the form

(g2n, gln) and (gN , gN−q ⊕ gq) with 0 ≤ q < N, q ∈ 2Z. (3.0.1)

Here gN always denotes the symplectic Lie algebra spN or the orthogonal Lie algebra
soN , as in §2.7.2.2. These twisted Yangians, introduced by Guay and Regelskis in
[GR16], are built inside the special instance of the R-matrix presentation of the
Yangian considered in §2.7.2.2. Our exposition will mostly follow [GR16], though
we will present the theory in a manner more consistent with the general theory of
Chapter 2 where possible.

One novel feature of our exposition is §3.2, where a general construction of sym-
metric pairs (coming from an adjoint action) is given which is consistent with the
R-matrix formalism of Chapter 2. This construction should form the basis of a more
general construction of twisted Yangians inside the R-matrix presentation of the Yan-
gian, which does not yet exist.
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The rest of this chapter will unfold as follows. In §3.1.1, we gather notation which
is specific to the setting of §2.7.2– this is the setting in which we will be working
for the remainder of this thesis (excluding §3.2.1). In §3.2.2, we construct explicit
realizations of the pairs (3.0.1). The twisted Yangians X(gN , gϑN)tw and Y (gN , gϑN)tw

associated to symmetric pairs (gN , gϑN) of the form (3.0.1) are then defined in §3.3,
which is the main section of this chapter. That section gives a detailed survey of the
algebraic theory of twisted Yangians of types B, C and D, and should remind the
reader of many of the results we have encountered in Chapter 2. In §3.4, the last
section of this Chapter, we give a very brief introduction to twisted Yangians of type
A, which play an important role in Chapters 4 and 5.

3.1 Notation

As indicated above, the remainder of this thesis will take place within the framework of
§2.7.2, and almost exclusively in the special case where g is of orthogonal or symplectic
type. In this section, we introduce and recall notation which reflects our narrowed
focus. We will break from this notation only in §3.2.1, where a general construction
for symmetric pairs is given which is compatible with the R-matrix formalism of
Chapter 2.

In addition to this specialized notation, we shall also frequently use the following
standard terminology. Suppose that A and B are unital associative C-algebras, V is
any B-module, and Ψ is an algebra homomorphism

Ψ : A→ B.

Then we denote by Ψ∗(V ) the A-module which is equal to V as a vector space and
has module structure given by

X · v = Ψ(X)v ∀ X ∈ A and v ∈ V.

In other words, Ψ∗ is the usual restriction of scalars functor associated to Ψ.
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3.1.1 The Lie algebras gN and g̊N

As in §2.7.2.2, we fix N ≥ 2 and define n ∈ N by N = 2n+ 1 or N = 2n, depending
on the parity of N . Except for in §3.4.2, we will always label the standard basis of
CN using the indexing set

IN = {−n, . . . ,−1, (0), 1, . . . , n}

defined in (2.7.8). In addition, we introduce the set of non-negative integers

I+
N = IN ∩ Z≥0.

We will continue to write gN for either soN or spN and we will always assume
that these Lie algebras are in the presentations given by Proposition 2.3.4 with ρ

the vector representation. As demonstrated in (2.7.13), this means that gN is the
complex Lie algebra generated by {Fij}i,j∈IN , subject to the defining relations

[Fij, Fkl] = δjkFil − δilFkj + δj,−lθijFk,−i − δi,−kθijF−j,l,

Fij + θijF−j,−i = 0.

In this presentation, a natural choice of Cartan subalgebra is given by

hN = spanC{Fii : 1 ≤ i ≤ n}. (3.1.1)

The theory developed in Chapter 2 is also valid for complex semisimple Lie al-
gebras which are not necessarily simple, provided the underlying representation V is
faithful. In particular, our fixed realization of gN holds for so4 ∼= sl2 ⊕ sl2. It also
holds for the one-dimensional Lie algebra so2, though we will assume that n ≥ 2 when
working with Yangians and twisted Yangians associated to so2n.

By (2.7.14), gN can be viewed as the fixed point subalgebra slθN (see (2.7.10)) by
identifying

Fij = Eij − Et
ij = Eij − θijE−j−i ∀ i, j ∈ IN ,

where the transpose t is defined in (2.7.9). We will also continue to employ the
notation κ, ± and ∓: see (2.7.11) and (2.7.12).
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Consider now the Lie algebras (gN)J and (gN)I from §2.3. As CN is irreducible
as a gN -module, both of these Lie algebras coincide and are trivial one-dimensional
central extensions of gN . We denote both of these Lie algebras by g̊N and set

F̊ =
∑

i,j∈IN
Eij ⊗ F̊ij, where F̊ij = FJij

and {FJij }i,j∈IN are as in Definition 2.3.1. With this notation, g̊N is the complex Lie
algebra generated by {F̊ij}i,j∈IN , subject to the defining relations

[F̊ij, F̊kl] = δjkF̊il − δilF̊kj + δj,−lθijF̊k,−i − δi,−kθijF̊−j,l.

The matrix K (see (2.3.4)) takes the form K = K · I for a central element K ∈ g̊N

and, by Proposition 2.3.6, we have the Lie algebra decomposition

g̊N = gN ⊕ CK,

where the generators Fij of gN are related to F̊ij and K by

F̊ij = Fij + δijK ∀ i, j ∈ IN .

Moreover, the second relation of (2.7.13) implies that K is determined by

F̊ij + θijF̊−j,−i = 2δijK.

Taking the sum over i = j ∈ IN gives the equivalent expression

K = 1
N

tr(F̊ ).

For the generators of the current algebra g̊N [z], we will adopt the notation used
for (gN)I [z] in (2.3.30). That is, we set F(r)

ij = F̊ijz
r and then define

F(u) =
∑

i,j∈IN
Eij ⊗ Fij(u), where Fij(u) =

∑
r≥0
F

(r)
ij u

−r−1.

In addition, we will write Kr = Kzr and K(u) = ∑
r≥0Kru−r−1, so that in the notation

of §2.3.3.2 we have K(u) = K(u) · I.
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To conclude this subsection, we record vector space bases of gN and g̊N . Introduce
BN ⊂ IN × IN by

BN = {(i, j) ∈ IN × IN : i+ j ≥ δgN ,soN}. (3.1.2)

As g̊N = gN ⊕ CK with F̊ = F +K · I, it follows from (2.7.14) that gN and g̊N have
bases

{Fij}(i,j)∈BN and {F̊ij}(i,j)∈BN ∪ {K}, (3.1.3)

respectively.

3.1.2 The Yangians X(gN) and Y (gN)

Henceforth, X(gN) shall be as in §2.7.2.2 of Chapter 2. It is generated by {t(r)ij }i,j∈IN ,
subject to the defining RTT -relation (2.4.1) with {1, . . . , N} replaced by IN and R(u)
taken to be the rational R-matrix (2.7.15). That is,

R(u) = I − P

u
+ Q

u− κ
,

with P , Q and κ as in (2.7.11). The defining relation (2.4.1) can be equivalently
expressed in terms of the generating series {tij(u)}i,j∈IN as in (2.7.16).

It will be useful to note that the operators P and Q satisfy

P 2 = I, Q2 = NQ, PQ = ±Q = QP,

PA1 = A2P, QA1 = QAt2 and QA1Q = tr(A)Q,
(3.1.4)

where A ∈ End(CN). In particular, 1
N
Q is a projection operator whose image is the

one-dimensional subspace CvQ of CN ⊗ CN , where

vQ =
∑
i∈IN

θiei ⊗ e−i with θi =

sign(i) if gN = spN ,

1 if gN = soN .
(3.1.5)

As a consequence of the first three relations in (3.1.4), the R-matrix R(u) satisfies

R(u)R(−u) =
(

1− 1
u2

)
I and R(u) = R(κ− u)t, (3.1.6)
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where the transpose t is as in (2.7.9) and is applied in either the first or second tensor
factor.

As we will be exclusively working in the R-matrix realization of Y (gN) associated
to CN (as in §2.7.2.2), we shall henceforth write

Y (gN) = YR(gN),

where the underlying R-matrix R(u) is understood to be given by (2.7.15), as above.
As the J-presentation of Y (gN) introduced in §2.2 will no longer appear, this notation
should not cause any confusion. In addition, we will usually drop the subscripts “I”
and “R” which featured prominently in Chapter 2. In particular, the coproduct,
antipode and counit for both X(gN) and Y (gN) will be denoted

∆, S and ε,

respectively. These are defined explicitly in (2.4.2) and (2.5.4).

We will also follow the same notational conventions for the Yangian and extended
Yangian associated to slN , with the role of §2.7.2.2 played instead by §2.7.2.1. In
particular, in this case R(u) is given by Yang’s R-matrix

R(u) = I − P

u
,

and the defining RTT -relation of X(slN) = Y (glN) is given in terms of {tij(u)}i,j∈IN
in (2.7.5).

3.2 Symmetric pairs and twisted current algebras

Our first order of business is to introduce a presentation for the symmetric pairs
(3.0.1) which is compatible with the R-matrix formulation of the Yangian studied
in Chapter 2. In fact, we take a more general route applicable to a wide range of
symmetric pairs.
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3.2.1 Adjoint action and symmetric pairs

Let us for a moment return to the general setting of §2.3.2, where g is an arbitrary
simple Lie algebra and V is a finite-dimensional, faithful, g-module of dimension N ,
with g-action given by ρ : g→ gl(V ).

Let G(Ω) be the subgroup of GL(V ) defined by

G(Ω) = {G ∈ GL(V ) : Ad(G1G2)(Ωρ) = Ωρ},

where Ad(G)(X) = GXG−1 for all G ∈ GL(V ⊗ V ) and X ∈ gl(V ⊗ V ).

Let exp(g) denote the image of ρ(g) ∼= g under the matrix exponential map

exp : gl(V )→ GL(V )

and define G ⊂ GL(V ) to be the subgroup generated by exp(g):

G = 〈exp(g)〉 ⊂ GL(V ).

Recall that U(gJ ) = UJ (g) is the extension of U(g) introduced in Definition 2.3.1,
and U(gρ) = Uρ(g) is the presentation of U(g) obtained in Proposition 2.3.4. The
following simple lemma will give us a familiar source of automorphisms of U(g).

Lemma 3.2.1. The group G is a subgroup of G(Ω). Moreover:

(1) For any G ∈ G(Ω), the assignment

AdJ (G) : FJ 7→ GFJG−1

extends uniquely to an automorphism AdJ (G) of U(gJ ).

(2) If in addition G ∈ λG for some λ ∈ C×, then the assignment

Adρ(G) : F 7→ GFG−1

extends uniquely to an automorphism Adρ(G) of U(gρ).

85



Proof. Suppose that G = exp(ρ(X)) for some X ∈ g. Then

Ad(G1G2)(Ωρ) = Ad(exp(ρ(X)⊗ 1 + 1⊗ ρ(X)))(Ωρ)

= exp ((ρ⊗ ρ)ad(∆(X))) (Ωρ)

= Ωρ,

where the last equality is a consequence of the relation [∆(X),Ω] = 0. It follows that
G ⊂ G(Ω).

Suppose now that G ∈ G(Ω). We must show that the assignment AdJ (G) preserves
the defining relation (2.3.3) of U(gJ ). We have

[G1F
J
1 G−1

1 ,G2F
J
2 G−1

2 ] = G1G2[FJ1 , FJ2 ]G−1
1 G−1

2 = G1G2[Ωρ, F
J
2 ]G−1

1 G−1
2 .

Since G,G−1 ∈ G(Ω), we have

G1G2[Ωρ, F
J
2 ]G−1

1 G−1
2 = G1G2(ΩρF

J
2 − FJ2 Ωρ)G−1

1 G−1
2 = [Ωρ,G2F

J
2 G−1

2 ].

Thus, the assignment AdJ (G) extends to an algebra endomorphism of U(gJ ). As it
is invertible with inverse AdJ (G−1), Part (1) holds.

To prove Part (2), it suffices to assume G ∈ G. We claim that the automorphism
AdJ (G) fixes the matrix K from (2.3.4). Indeed, by Lemma 2.3.2, K ∈ Eg ⊗ U(gJ ),
where Eg = EndgV . Hence, we have

[exp(ρ(X)), K] = 0 ∀ X ∈ g,

which implies that GKG−1 = K. The relation (2.3.9) of Lemma 2.3.3, together with
the decomposition FJ = F +K (see Proposition 2.3.6), then gives

AdJ (G)(K) = AdJ (G)(FJ − c−1
g ω(FJ ))

= GFG−1 +K − c−1
g ω(GFG−1 +K) = K,

where the last equality follows from

ω(K) = 0, Ad(G)(ρ(g)) ⊂ ρ(g) and GFG−1 ∈ ad(g)⊗ UJ (g),
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the third fact being a consequence of the second fact and that F ∈ ad(g)⊗ U(gJ ).

As U(gρ) is isomorphic to the quotient of U(gJ ) by the ideal generated by the
coefficients of K, we can conclude that AdJ (G) induces an automorphism of U(gρ)
as in Part (2).

Remark 3.2.2. It should be emphasized that AdJ (G) and Adρ(G) are given by
conjugating FJ and F , respectively, in the first tensor factor, and not the second
(which would have no meaning in general).

Suppose now that V is also a Y (g)-module, as in §2.3.3. Since the automorphism
AdJ (G) of U(gJ ) fixes K for any G ∈ λG, it also preserves the relation (2.3.24) of
U(gI) = UI(g). We thus obtain the following corollary.

Corollary 3.2.3. Suppose that G ∈ λG for some λ ∈ C×. Then the assignment

AdI(G) : F I 7→ GF IG−1

extends uniquely to an automorphism AdI(G) of U(gI).

It will be useful for us to note that Lemma 3.2.1 also admits a Yangian analogue.
Let R(u) be as in §2.4, and define the group

G(R) = {G ∈ GL(V ) : Ad(G1G2)(R(u)) = R(u)}

We then have the following result.

Lemma 3.2.4. The group G is a subgroup of G(R). Moreover:

(1) For any G ∈ G(R), the assignment

AdR(G) : T (u) 7→ GT (u)G−1

extends uniquely to an automorphism AdR(G) of XI(g).

(2) If in addition G ∈ λG for some λ ∈ C×, then the assignment

AdR(G) : T (u) 7→ GT (u)G−1

extends uniquely to an automorphism AdR(G) of YR(g).
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Proof. The relation (2.2.8) implies that [R(u),∆(X)] = 0 for all X ∈ g. Hence, the
same argument as used in the proof of Lemma 3.2.1 to show G ⊂ G(Ω) can be used
to show G ⊂ G(R).

Consider now Part (1). For any G ∈ G(R), we have

R(u− v)G1T1(u)G−1
1 G2T2(v)G−1

2 = R(u− v)G1G2T1(u)T2(v)G−1
1 G−1

2

= G1G2R(u− v)T1(u)T2(v)G−1
1 G−1

2

= G1G2T2(v)T1(u)R(u− v)G−1
1 G−1

2

= G2T2(v)G−1
2 G1T1(u)G−1

1 R(u− v).

Therefore, the assignment AdR(G) uniquely extends to an algebra endomorphism of
XI(g), which is invertible with inverse AdR(G−1).

To prove Part (2), it suffices to show that AdR(G) ∈ Aut(XI(g)) from Part (1)
satisfies

AdR(G)(Z(u)) = Z(u) ∀ G ∈ G, (3.2.1)

where Z(u) is as in (2.4.19). Since the antipode SI commutes with AdR(G), we have

AdR(G)(Z(u)) = GS2
I(T (u))G−1GT (u+ 1

2cg)
−1G−1 = GZ(u)G−1.

By Lemma 2.6.5, Z(u) ∈ Eg ⊗XI(g)[[u−1]], where Eg = EndgV . As G is in the group
G = 〈exp(g)〉, it commutes with all g-intertwiners. Therefore, GZ(u)G−1 = Z(u),
and we may conclude that (3.2.1) holds.

Let us now shift our focus to symmetric pairs of Lie algebras. We continue to
assume V is a finite-dimensional Y (g)-module which is faithful as a g-module. Let us
fix an element G ∈ G(Ω) which belongs to λG for some λ ∈ C× and satisfies G2 = I.
Let ϑ be the involution

ϑ = Adρ(G)|gρ ∈ Aut(gρ). (3.2.2)

From any ϑ as above, we obtain a symmetric pair of Lie algebras

(gρ, gϑρ), where gϑρ = {X ∈ gρ : ϑ(X) = X}.
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Such a pair is always associated with an eigenspace decomposition

g = gϑρ ⊕ p where p = {X ∈ gρ : ϑ(X) = −X}.

Each symmetric pair of type B, C and D (i.e. when g = soN or spN) can be realized
in the form (gρ, gϑρ), with (ρ, V ) the vector representation of Y (gN) on CN as in §2.7.2.
We shall spell this out explicitly in §3.2.2 for all pairs of the form (3.0.1). For the
moment, we shift our attention to twisted polynomial current algebras, which are the
classical analogues of twisted Yangians.

Let ν : C[z]→ C[z] be involution given by

ν : f(z) 7→ f(−z) ∀ z ∈ C[z].

The tensor product ϑ̌ = ϑ ⊗ ν is then an involution of gρ[z] = gρ ⊗ C[z], which is
given by

ϑ̌(F (u)) = −GF (−u)G−1, (3.2.3)

where F (u) ∈ EndV ⊗ (gρ[z])[[u−1]] is as in (2.3.18).

The twisted polynomial current algebra associated to this data is

gρ[z]ϑ̌ = {f(z) ∈ gρ[z] : ϑ̌(f(z)) = f(z)}

=
⊕
n≥0

(gϑρ ⊗ Cz2n)⊕
⊕
n≥0

(p⊗ Cz2r+1)

= gϑρ [z2]⊕ zp[z2].

(3.2.4)

There are two important extensions of ϑ̌ to an involution of gI [z] which occur in
the theory of twisted Yangians:

(1) The extension obtained by replacing ϑ by AdI(G)|gI in the definition ϑ̌.

(2) The extension obtained by replacing ϑ with

ϑI = σK ◦ AdI(G)|gI

in the definition of ϑ̌, where σK is the involution of gI ∼= gρ ⊕ zI which fixes gρ
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and satisfies σK(KI) = −KI (see §2.3.3). Equivalently, ϑI is given by

ϑI(F I) = GFG−1 −KI = GF IG−1 − 2KI .

The extension (1) is relevant to the theory of twisted Yangians of type AIII considered
in §3.4. However, it is (2) which occurs in the theory of orthogonal and symplectic
twisted Yangians introduced in [GR16], and we will therefore only consider it in our
current discussion.

Observe that with the above definition of ϑI , the commutative subalgebra zI

belongs to eigenspace for the eigenvalue −1, which is

p⊕ zI .

Let us set ϑ̌ = ϑI ⊗ ν ∈ Aut(gI [z]), as suggested by (2) above. If

F(u),K(u) ∈ EndV ⊗ (gI [z])[[u−1]]

are as in (2.3.30), then we have

ϑ̌(F(u)) = 2K(−u)− GF(−u)G−1,

ϑ̌(F (u)) = −GF (−u)G−1, ϑ̌(K(u)) = K(−u).

In particular, ϑ̌ ∈ Aut(gI [z]) does indeed restrict to the automorphism ϑ̌ ∈ Aut(gρ[z])
(see (3.2.3)), which justifies our choice of notation. In addition, we find that

gI [z]ϑ̌ = gϑρ [z2]⊕ zp[z2]⊕ zzI [z2]. (3.2.5)

The next lemma provides a useful spanning set for p, gϑρ , gρ[z]ϑ̌ and gI [z]ϑ̌.

Lemma 3.2.5. Define

F p =
N∑

i,j=1
Eij ⊗ F p

ij = FG − GF, F ϑ =
N∑

i,j=1
Eij ⊗ F ϑ

ij = FG + GF,

F (u)ϑ̌ =
N∑

i,j=1
Eij ⊗ Fij(u)ϑ̌ = F (u)G − GF (−u),
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F(u)ϑ̌ =
N∑

i,j=1
Eij ⊗ Fij(u)ϑ̌ = F(u)G − GF(−u) + 2K(−u)G,

Then p, gϑρ , gρ[z]ϑ̌ and gI [z]ϑ̌ are linearly spanned by the coefficients of F p, F ϑ, F (u)ϑ̌

and F(u)ϑ̌, respectively.

Proof. By (2.3.10), gρ is spanned by the coefficients Fij of F . As G is invertible, gρ
is also spanned by the coefficients of FG. As

ϑ(F ϑ) = F ϑ, ϑ(F p) = −F p,

and 2FG = F ϑ + F p,

it follows from the decomposition gρ = gϑρ ⊕ p that gϑρ (resp. p) is the linear span of
the coefficients of F ϑ (resp. F p). The argument is similar for F (u)ϑ̌ and F(u)ϑ̌.

3.2.2 Symmetric pairs of type B, C and D

Let us now return to the special case where g = gN is soN or spN and (ρ, V ) is the
vector representation of the Yangian Y (gN) in the space CN . We henceforth assume
all notation is as in §3.1; in particular, the indexing set {1, . . . , N} is replaced with
IN (see (2.7.8)).

Define
GN(C) = {A ∈ SLN(C) : AAt = I}, (3.2.6)

so that GN(C) ∼= SON(C) if gN = soN and GN(C) ∼= SPN(C) if gN = spN . By
(2.7.14),

gN = {X ∈ slN : X = −X t},

and hence the exponential map exp : gN → G has image contained in GN(C). As
GN(C) is a connected Lie group, we have

G = 〈exp(g)〉 = GN(C).

We shall be particularly interested in those involutions ϑ as in (3.2.2) for which
the underlying matrix G is diagonal. When this is the case, we will write Ad(G) in
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place of Adρ(G)|gN , so that
ϑ = Ad(G).

The following lemma provides justification for this notation.

Lemma 3.2.6. Let G = ∑
i,j∈I gijEij ∈ λGN(C) for some λ ∈ C×. Then, under the

identification
Fij = Eij − θijE−j,−i ∈ slN ,

we have
Adρ(G)(Fij) = G ′Fij(G ′)−1, where G ′ =

∑
i,j∈IN

gjiEij.

In particular, if G satisfies G = G ′, then

Adρ(G)(Fij) = GFijG−1 ∀ i, j ∈ IN .

Proof. Assume that G ∈ GLN(C) is arbitrary and write G−1 = ∑
i,j∈IN g

∗
ijEij. Then

GEijG−1 =
∑

a,b∈IN
gaig

∗
jbEab. (3.2.7)

If in addition G ∈ λGN(C), then by (3.2.6) we have Gt = λ2G−1. It follows that

GFijG−1 =
∑

a,b∈IN
gaig

∗
jbEab − θij

∑
a,b∈IN

g−b,−jg
∗
−i,−aE−b,−a =

∑
a,b∈IN

gaig
∗
jbFab.

On the other hand, (3.2.7) implies that

Adρ(G)(F ) =
∑

i,j∈IN

 ∑
a,b∈IN

gaig
∗
jbEab

⊗ Fij =
∑

i,j∈IN
Eij ⊗

 ∑
a,b∈IN

giag
∗
bjFab

 .
Therefore, Adρ(G)(Fij) = ∑

a,b∈IN giag
∗
bjFab = G ′Fij(G ′)−1.

Another benefit to working under the hypothesis that G is diagonal is that, by
Lemma 3.2.5, the Lie algebras gϑN , gN [z]ϑ̌ and g̊N [z]ϑ̌ all admit simple descriptions.
In particular, it is not difficult to write down bases of these Lie algebras using (3.1.3).

Given λ ∈ C× and G ∈ λGN(C) such that G2 = I, we define B+
G ,B−G ⊂ BN by

B+
G = {(i, j) ∈ BN : gii = gjj} and B−G = {(i, j) ∈ BN : gii = −gjj},
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where G = ∑
i∈IN giiEii. As G is diagonal, it has entries in {±1} and (3.1.3) together

with Lemma 3.2.5 imply that gϑN and p have bases

{Fij}(i,j)∈B+
G

and {Fij}(i,j)∈B−G
, (3.2.8)

respectively. Let {Fij(u)ϑ̌}i,j∈IN and {Fij(u)ϑ̌}i,j∈IN be as in Lemma 3.2.5. We will
expand these series as

Fij(u)ϑ̌ =
∑
r≥0

F̌
(r)
ij u

−r−1 and Fij(u)ϑ̌ =
∑
r≥0
F̌

(r)
ij u

−r−1.

Corollary 3.2.7. The Lie algebra gN [z]ϑ̌ has basis

{F̌ (2r)
ij }(i,j)∈B+

G ,r≥0 ∪ {F̌
(2r+1)
ij }(i,j)∈B−G ,r≥0, (3.2.9)

while g̊N [z]ϑ̌ has basis given by

{F̌(2r)
ij }(i,j)∈B+

G ,r≥0 ∪ {F̌
(2r+1)
ij }(i,j)∈B−G ,r≥0 ∪ {K2r+1}r≥0. (3.2.10)

Proof. Consider first gN [z]ϑ̌. By (3.2.4) and (3.2.8), it has basis given by

{F (2r)
ij }(i,j)∈B+

G ,r≥0 ∪ {F
(2r+1)
ij }(i,j)∈B−G ,r≥0,

On the other hand, Lemma 3.2.5 gives

F̌
(r)
ij = (gjj + (−1)rgii)F (r)

ij ∀ i, j ∈ IN and r ≥ 0,

which implies that (3.2.9) is indeed a basis.

As for g̊N [z]ϑ̌, (3.2.5) and (3.2.8) imply that it has basis

{F (2r)
ij }(i,j)∈B+

G ,r≥0 ∪ {F
(2r+1)
ij }(i,j)∈B−G ,r≥0 ∪ {K2r+1}r≥0.

That (3.2.10) also provides a basis is then a consequence of the relations

F̌
(2r)
ij = (gii + gjj)F(2r)

ij − 2gjjδijK2r

= (gii + gjj)F (2r)
ij ,
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F̌
(2r+1)
ij = (gjj − gii)F(2r)

ij + 2gjjδijK2r+1

= (gjj − gii)F (2r)
ij + 2gjjδijK2r+1.

We will now fix particular choices of G which will lead us to an explicit realization
for the symmetric pairs (3.0.1).

Given q ∈ 2Z satisfying 0 ≤ q < N , we define two distinct matrices G by

G =
n∑
i=1

(Eii − E−i,−i) ∈ GL2n(C), (3.2.11)

G = I − 2
q/2∑
a=1

(EN+1−a,N+1−a + Ea−N−1,a−N−1) ∈ GLN(C). (3.2.12)

In both cases, we will continue to write

G =
∑

i,j∈IN
gijEij =

∑
i∈IN

giiEii.

Proposition 3.2.8. Let ϑ ∈ Aut(gN) be as in (3.2.2) and set p = N − q. Then:

(1) If G is as in (3.2.11), then
√
−1G ∈ GN(C) and

gln ∼= gϑ2n = spanC{F ϑ
ij = (gii + gjj)Fij : i, j ∈ I2n}

= spanC{Fij : 1 ≤ i, j ≤ n}.

(2) If G is as in (3.2.12), then G ∈ GN(C) and

gp ⊕ gq ∼= gϑN = spanC{F ϑ
ij = (gii + gjj)Fij : i, j ∈ IN},

where

gp ∼= spanC{Fij : i, j ∈ Ip} and gq ∼= spanC{Fij : |i|, |j| > n− q/2}.

Proof. Consider first Part (1). Setting

X =
n∑
i=1

π
√
−1

2 (Eii − E−i,−i) ∈ ρ(g2n),

we have
√
−1G = exp(X) ∈ GN(C). Alternatively, by (3.2.6),

√
−1G ∈ GN(C)
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follows from G = −Gt and det(G) = (−1)n. By Lemma 3.2.5, we have

gϑ2n = spanC{F ϑ
ij = (gii + gjj)Fij : i, j ∈ I2n} = spanC{Fij : 1 ≤ i, j ≤ n}.

The defining relations (2.7.13) imply that

[Fij, Fkl] = δjkFil − δilFkj ∀ 1 ≤ i, j, k, l ≤ n.

Hence, there is a Lie algebra homomorphism gln → gϑ2n given by Eij 7→ Fij for all
1 ≤ i, j ≤ n. Since {Fij}ni,j=1 is a linearly independent set, it is an isomorphism.

Consider now Part (2). Setting

X =
q/2∑
a=1

π
√
−1(EN+1−a,N+1−a − Ea−N−1,a−N−1) ∈ ρ(gN),

we have G = exp(X) ∈ GN(C). Alternatively, G = Gt and det(G) = 1 imply that
G ∈ GN(C). Next, by Lemma 3.2.5, we have

gϑN = spanC{F ϑ
ij = (gii + gjj)Fij : i, j ∈ IN}

= spanC{Fij : i, j ∈ Ip}+ spanC{Fij : |i|, |j| > n− q/2}

The defining relations (2.7.13) imply that both summands above are Lie subalgebras
of gN and, moreover, that the sum is in fact a direct sum of Lie algebras. It is clear
that

gp ∼= spanC{Fij : i, j ∈ Ip} ⊂ gϑN .

An isomorphism of Lie algebras gq ∼−→ spanC{Fij : |i|, |j| > n− q/2} is given by

Fij 7→ Fi+sign(i)(n−q/2),j+sign(j)(n−q/2) ∀ i, j ∈ Iq.

Henceforth, we will assume that the symmetric pairs

(g2n, gln) and (gN , gp ⊕ gq), where 0 ≤ q < N and q ∈ 2Z,

are of the form (gN , gϑN) with ϑ = Ad(G) as in (3.2.2), and G as in (3.2.11) or
(3.2.12). These choices of G are not unique, and we refer the reader to [GR16, §3.1]
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for a discussion of this point. They are chosen due to the fact that they are diagonal,
which leads to a very simple description of gϑN and also simplifies the treatment of
the representation theory of twisted Yangians given in Chapters 4 and 5.

3.3 Twisted Yangians of type B, C and D

In this section, we recall the definitions and main properties of the orthogonal and
symplectic twisted Yangians associated to the pairs (gN , gϑN) of §3.2.2.

We introduce the following notation: For any G ∈ GLN(C) for which
√
−1G or G

belongs to GN(C) (see (3.2.6)), we define (±)G ∈ {±} by

GGt = (±)GI.

In all cases we consider, G will be of the form (3.2.11) or (3.2.12) and we will write
(±) = (±)G. Explicitly, we have

(±) =

+ if (gN , gϑN) = (gN , gp ⊕ gq),

− if (gN , gϑN) = (g2n, gln).

3.3.1 The matrix G(u)

The starting point for defining a twisted Yangian using the R-matrix formalism is a
matrix

G(u) ∈ End(CN)[[u−1]]

which is the expansion at u =∞ of a End(CN)-valued rational function of u, and is
a solution of the so-called reflection equation. For us, this equation takes the form

R(u− v)G1(u)R(u+ v)G2(v) = G2(v)R(u+ v)G1(u)R(u− v), (3.3.1)

where R(u) is given by (2.7.15). The matrix G(u) will equip the corresponding twisted
Yangian with a trivial representation, and will also provide the necessary ingredient
for rebuilding it using the reflection algebra formalism: see §3.3.5.

The desired source of solutions to (3.3.1) is provided by Lemma 4.1 of [GR16].
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Given G as in (3.2.11) or (3.2.12), we define

G(u) =
∑

i,j∈IN
gij(u)Eij = tr(G)I − 4uG

tr(G)− 4u . (3.3.2)

Lemma 3.3.1 ([GR16, Lemma 4.1]). The matrix G(u) given by (3.3.2) is a solution
of (3.3.1). Moreover, G(u) satisfies the unitary relation

G(u)G(−u) = I.

Hereafter, we will assume that G(u) is always given by (3.3.2). We also define

g(u) =


N − 4u

tr(G)− 4u if (gN , gϑN) = (gN , gp ⊕ gq),

u−1 if (gN , gϑN) = (g2n, gln).
(3.3.3)

In particular, if tr(G) 6= 0, then g(u) is uniquely determined by

tr(G(u)) = g(u)tr(G). (3.3.4)

The rational function g(u) will play an important role throughout this thesis, as will
the series pG(u) defined by the following lemma.

Lemma 3.3.2 ([GR16, Lemma 5.1]). There is a unique series pG(u) ∈ C[[u−1]] satis-
fying the relation

QG1(u)R(2u− κ)G−1
2 (κ− u) = G−1

2 (κ− u)R(2u− κ)G1(u)Q = pG(u)Q. (3.3.5)

Proof. Multiplying both sides of (3.3.1) by G2(v)−1 yields

G2(v)−1R(u− v)G1(u)R(u+ v) = R(u+ v)G1(u)R(u− v)G2(v)−1.

Multiplying both sides by u+ v − κ and taking the limit as v 7→ κ− u yields

G2(κ− u)−1R(2u− κ)G1(u)Q = QG1(u)R(2u− κ)G2(κ− u)−1.

As Q projects CN ⊗CN onto a one dimensional subspace, the above equality implies
that there is a unique series pG(u) satisfying (3.3.5).
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In the special case where G = I, the relation (3.3.5) reduces to

QR(2u− κ) = R(2u− κ)Q = pI(u)Q. (3.3.6)

Since PQ = ±Q = QP and Q2 = N , we find that

pI(u) = 1∓ 1
2u− κ + N

2u− 2κ.

Equivalently,
pI(u) = u

κ− u
· κ− 2u∓ 1

2u− κ . (3.3.7)

Using this observation, we can compute pG(u) in general.

Proposition 3.3.3. pG(u) satisfies

pI(u)pG(u)−1 = g(κ− u)g(u)−1. (3.3.8)

and is given explicitly by

pG(u) = (±)1∓ 1
2u− κ + tr(G(u))

2u− 2κ . (3.3.9)

Proof. Suppose first that tr(G) = 0. In this case, G(u) = G and Lemma 3.3.2 gives

G2R(2u− κ)G1Q = pG(u)Q.

By (3.1.4) and G2 = I, the left-hand side is

G2G1Q∓
Q

2u− κ + tr(G)Q
2u− 2κ = (±)Q∓ Q

2u− κ.

and hence we obtain
pG(u) = (±)1∓ 1

2u− κ.

This proves (3.3.9) when tr(G) = 0, and the expression (3.3.8) is easily obtained using
(3.3.7) and (3.3.3) in these cases.

Suppose now that tr(G) 6= 0. Left multiplying (3.3.5) by QG2(κ− u), we obtain

QR(2u− κ)G1(u)Q = pG(u)QG2(κ− u)Q.

98



Since G(u)t = G(u), (3.3.6) and QG2(u) = QG1(u)t yield the identity

pI(u)QG1(u)Q = pG(u)QG1(κ− u)Q,

which by (3.1.4) is equivalent to

pI(u)tr(G(u))Q = pG(u)tr(G(κ− u))Q.

Using the relation (3.3.4), we can conclude that (3.3.8) holds.

It remains to show that (3.3.9) holds whenever (gN , gϑN) = (gN , gp ⊕ gq) with
p 6= q. This was proven in [GR16, Lemma 5.1] directly. Below, we offer a different
proof using (3.3.8).

From (3.3.7) and (3.3.3), we obtain

pG(u) = pI(u) g(u)
g(κ− u) = u

κ− u
· N − 4u

tr(G)− 4u ·
tr(G)− 4κ+ 4u

2κ− 4u

As limu→∞ pG(u) = 1, pG(u) admits a partial fraction decomposition of the form

pG(u) = 1 + z1

u− κ
+ z2

u− κ/2 + z3

u− tr(G)/4 , (3.3.10)

and the coefficients zi are readily computed and found to be

z1 = tr(G) 4κ−N
8κ− 2tr(G) , z2 = ∓1

2 , z3 = tr(G) N − tr(G)
8κ− 2tr(G) .

On the other hand, we have the partial fraction decomposition

tr(G(u))
2u− 2κ = tr(G) N − 4u

(tr(G)− 4u)(2u− 2κ) = z1

u− κ
+ z3

u− tr(G)/4 .

Substituting this identity and the value z2 = ∓1
2 into (3.3.10) returns (3.3.9).

The last property of pG(u) which we will need is given by the next corollary.

Corollary 3.3.4. The series pG(u) satisfies

pG(u)pG(κ− u) = 1− 1
(2u− κ)2 . (3.3.11)
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Proof. By (3.3.6) and (3.1.6), pI(u)pI(κ− u) is uniquely determined by

NpI(u)pI(κ− u)Q = QR(2u− κ)R(κ− 2u)Q = N

(
1− 1

(2u− κ)2

)
Q.

This proves that pI(u) satisfies (3.3.11). In the general case, (3.3.8) yields

pG(u)pG(κ− u) = pI(u)pI(κ− u) = 1− 1
(2u− κ)2 .

Remark 3.3.5. We will often suppress the subscript G of pG(u) and simply write

p(u) = pG(u).

3.3.2 Definitions and first properties

We are now prepared to define the twisted Yangians associated to the symmetric pairs
(gN , gϑN) of the form (3.0.1).

Definition 3.3.6. Let G(u) be as in (3.3.2). Then:

(1) The extended twisted Yangian X(gN , gϑN)tw is the subalgebra ofX(gN) generated
by the coefficients {s(r)

ij }i,j∈IN ,r∈N of

S(u) = T (u− κ/2)G(u)T t(−u+ κ/2) ∈ End(CN)⊗X(gN)[[u−1]],

where S(u) =
∑

i,j∈IN
Eij ⊗ sij(u) and sij(u) = gij +

∑
r≥1

s
(r)
ij u

−r.
(3.3.12)

(2) The twisted Yangian Y (gN , gϑN)tw is the subalgebra of Y (gN) generated by the
coefficients {σ(r)

ij }i,j∈IN ,r∈N of

S(u) = T (u− κ/2)G(u)T t(−u+ κ/2) ∈ End(CN)⊗ Y (gN)[[u−1]],

where S(u) =
∑

i,j∈IN
Eij ⊗ σij(u) and σij(u) = gij +

∑
r≥1

σ
(r)
ij u

−r.
(3.3.13)

Let us discuss some immediate consequences of these definitions.
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Since T (u) = y(u)T (u), the relation (2.7.17) implies that

S(u)S(−u) = w(u) · I and S(u)S(−u) = I,

where w(u) = z(u− κ/2)z(−u− κ/2) ∈ ZX(gN)[[u−2]].

The first relation above implies that the coefficients of w(u) belong to the center
ZX(gN , gϑN)tw of X(gN , gϑN)tw. We shall expand w(u) as

w(u) = 1 +
∑
r≥1

w2ru
−2r ∈ 1 + u−2ZX(gN , gϑN)tw[[u−2]]. (3.3.14)

We may then define q(u) = 1 +∑
r≥1 qru

−r to be the unique solution of the equation

w(u) = q(u)q(u+ κ) in 1 + u−1ZX(gN , gϑN)tw[[u−1]]. (3.3.15)

The uniqueness of q(u) together with (2.7.18) yields

q(u) = q(κ− u) and q(u) = y(u− κ/2)y(−u+ κ/2). (3.3.16)

In particular, Y (gN , gϑN)tw is a subalgebra of X(gN , gϑN)tw and we have

S(u) = q(u)S(u).

The following lemma, which is a restatement of Proposition 3.2 and Corollary 3.2 in
[GR16], shows that both Y (gN , gϑN)tw and X(gN , gϑN)tw have a coideal structure.

Lemma 3.3.7. The twisted Yangians X(gN , gϑN)tw and Y (gN , gϑN)tw are left coideal
subalgebras of X(gN) and Y (gN), respectively. That is, we have

∆(X(gN , gϑN)tw) ⊂ X(gN)⊗X(gN , gϑN)tw,

∆(Y (gN , gϑN)tw) ⊂ Y (gN)⊗ Y (gN , gϑN)tw.

The lemma follows from (2.4.2), (2.5.4) and Lemma 3.3.1, which give

∆(S(u)) = T[1](u− κ/2)S[2](u)T t[1](−u+ κ/2),

∆(S(u)) = T[1](u− κ/2)S[2](u)T t[1](−u+ κ/2).

101



These formulas are expanded in terms of sij(u) and σij(u) as

∆(sij(u)) =
∑

a,b∈IN
θbjtia(u− κ/2)t−j,−b(−u+ κ/2)⊗ sab(u),

∆(σij(u)) =
∑

a,b∈IN
θbjτia(u− κ/2)τ−j,−b(−u+ κ/2)⊗ σab(u).

(3.3.17)

As alluded to in §3.3.1, the restriction of the counit ε of X(gN) to X(gN , gϑN)tw and
Y (gN , gϑN)tw is given by the matrix G(u):

ε(S(u)) = G(u) and ε(S(u)) = G(u).

This equips both X(gN , gϑN)tw and Y (gN , gϑN)tw with a trivial representation: a one-
dimensional representation with action given by ε. We will always denote this repre-
sentation by V (G).

In Chapter 2, an important role was played by the automorphisms mf (see (2.4.4)
and (2.7.3)) of X(gN). A similar story unfolds in the twisted Yangian setting. By
definition of S(u), we have

mf (S(u)) = f(u− κ/2)f(−u+ κ/2)S(u) ∀ f(u) ∈ 1 + u−1C[[u−1]].

Consequently, mf restricts to an automorphism of X(gN , gϑN)tw. Note that for any
f(u) ∈ 1 + u−1C[[u−1]] the corresponding series

g(u) = f(u− κ/2)f(−u+ κ/2) (3.3.18)

satisfies
g(u) = g(κ− u) and mf (S(u)) = g(u)S(u).

Conversely, if g(u) ∈ 1 + u−1C[[u−1]] is an arbitrary series satisfying g(u) = g(κ− u),
then we may construct f(u) such that mf (S(u)) = g(u)S(u). Indeed, we can take
f(u) to be the unique series in 1 + u−1C[[u−1]] satisfying

g(u) = f(u)f(u− κ/2).

As g(u) = g(κ− u), the uniqueness of f(u) implies that f(u) = f(−u+ κ/2), and we
thus have mf (S(u)) = g(u)S(u), as claimed.
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Hence, for any g(u) ∈ 1 + u−1C[[u−1]] satisfying g(u) = g(κ− u), the assignment

νg : S(u) 7→ g(u)S(u) (3.3.19)

extends to an automorphism νg ∈ Aut(X(gN , gϑN)tw) with the property that

νg = mf |X(gN ,gϑN )tw

for any f(u) satisfying (3.3.18). Moreover (2.6.8), (3.3.15) and (3.3.16) imply that

νg(q(u)) = g(u)q(u) and νg(w(u)) = g(u)g(u+ κ)w(u). (3.3.20)

As a corollary to the above discussion and Theorem 2.6.11, we obtain the following
characterization of Y (gN , gϑN)tw, which was partially given in [GR16, Corollary 3.1].

Corollary 3.3.8. The twisted Yangian Y (gN , gϑN)tw is equal to the subalgebra of
X(gN , gϑN)tw fixed by all automorphisms νg:

Y (gN , gϑN)tw = {Y ∈ X(gN , gϑN)tw : νg(Y ) = Y ∀ g(u)},

where g(u) varies over the subset of 1+u−1C[[u−1]] consisting of series invariant under
the transformation u 7→ κ− u.

A second family of automorphisms for X(gN , gϑN)tw is provided by Lemma 3.2.4.
Suppose that A ∈ λGN(C) (see (3.2.6)) for some λ ∈ C×. Then the automorphism
AdR(A) of X(gN) satisfies

AdR(A)(S(u)) = AT (u− κ/2)A−1G(u)(A−1)tT t(−u+ κ/2)At

= AT (u− κ/2)A−1G(u)AT t(−u+ κ/2)A−1.

where we have used that A−1 = λ2At. If in addition A−1GA = G, then

A−1G(u)A = tr(G)I − 4uA−1GA
tr(G)− 4u = G(u).

We can thus conclude that, for every A satisfying

A ∈ C× ·GN(C) and AGA−1 = G,
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the assignment
Adϑ(A) : S(u) 7→ AS(u)A−1 (3.3.21)

extends to an automorphism Adϑ(A) ∈ Aut(X(gN , gϑN)tw) which satisfies

Adϑ(A) = AdR(A)|X(gN ,gϑN )tw .

Moreover, the second part of Lemma 3.2.4 implies that Adϑ(A) restricts to an auto-
morphism of Y (gN , gϑN)tw.

3.3.3 Poincaré-Birkhoff-Witt Theorem

Thanks to Theorems 2.5.5 and 2.6.7, it is not difficult to establish a Poincaré-Birkhoff-
Witt type theorem for X(gN , gϑN)tw and Y (gN , gϑN)tw. Recall from (2.4.8) that the
filtration {Fk(X(gN))}k≥0 on X(gN) is given the degree assignment

deg t(r)ij = r − 1 ∀ i, j ∈ IN and r ∈ N

Both X(gN , gϑN)tw and Y (gN , gϑN)tw inherit a filtered structure from X(gN), and we
denote the corresponding filtrations by

{Fk(X(gN , gϑN)tw)}k≥0 and {Fk(Y (gN , gϑN)tw)}k≥0.

It is immediate from the definitions of S(u) and S(u) that

s
(r)
ij ∈ Fr−1(X(gN , gϑN)tw) and σ(r)

ij ∈ Fr−1(X(gN , gϑN)tw)

for all i, j ∈ IN and r ∈ N. Let s̄(r)
ij and σ̄

(r)
ij denote the images of s(r)

ij and σ
(r)
ij in

grr−1X(gN , gϑN)tw and grr−1Y (gN , gϑN)tw, respectively. We then define

S(u) =
∑
k≥1
S(k)u−k ∈ End(CN)⊗ (grX(gN , gϑN)tw)[[u−1]],

Σ(u) =
∑
k≥1

Σ(k)u−k ∈ End(CN)⊗ (grY (gN , gϑN)tw)[[u−1]],

where S(k) =
∑

i,j∈IN
Eij ⊗ s̄(k)

ij and Σ(k) =
∑

i,j∈IN
Eij ⊗ σ̄(k)

ij .
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The below theorem was given in [GR16, Proposition 3.3] for Y (gN , gϑN)tw. Let
Resu(G(u)) denote the residue of G(u) at u = 0. Explicitly,

Resu(G(u)) = (G − I)tr(G)
4 .

Theorem 3.3.9. Let F(u)ϑ̌ and F (u)ϑ̌ be as in Lemma 3.2.5. Then:

(1) The assignment
ϕϑ : F(u)ϑ̌ 7→ S(u)− Resu(G(u)) (3.3.22)

extends to an isomorphism of graded algebras

ϕϑ : U (̊gN [z]ϑ̌) ∼−→ grX(gN , gϑN)tw.

(2) ϕϑ restricts to an isomorphism of graded algebras

U(gN [z]ϑ̌) ∼−→ grX(gN , gϑN)tw,

which is given by F (u)ϑ̌ 7→ Σ(u)− Resu(G(u)).

Proof. Let ϕϑ denote the restriction of the isomorphism ϕI : U (̊gN [z]) ∼−→ grX(gN)
from Theorem 2.6.7 to the subalgebra U (̊gN [z]ϑ̌) ⊂ U (̊gN [z]). This is an injection

ϕϑ : U (̊gN [z]ϑ̌) ↪→ grX(gN),

and hence to prove Part (1) it suffices to show that ϕϑ has image equal to the subalge-
bra grX(gN , gϑN)tw of grX(gN), and that it is indeed given by the formula (3.3.22). As
the coefficients of S(u) generate grX(gN , gϑN)tw, it suffices to prove the latter assertion.

Note that S(u) is the image of

S(u)− G ∈ End(CN)⊗
∏
r≥0

Fr−1(X(gN))u−r

in the space

End(CN)⊗
∏
r≥0

grr−1(X(gN))u−r ⊂ End(CN)⊗ (grX(gN))[[u−1]]. (3.3.23)
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On the other hand, the image of T (u−κ/2)G(u)T t(−u+κ/2)−G is easily seen to be

T(u)G + GTt(−u) + Resu(G(u)),

where T(u) is the image of T (u)− 1 in (3.3.23), as in the proof of Proposition 2.4.4.
As ϕI(F(u)) = T(u), we thus have

ϕ−1
ϑ (S(u)) = F(u)G + GFt(−u) + Resu(G(u))

= F(u)G − GF(−u) + 2K(−u)G + Resu(G(u)),
(3.3.24)

where we have used that

F(u) = F (u) +K(u), F t(u) = −F (u) and Kt(u) = K(u).

The second equality above is a consequence of the relation in (2.7.13), while the third
equality is due to the fact that K(u) = K(u) · I is a central series multiple of the
identity matrix.

Combining Lemma 3.2.5 with (3.3.24), we obtain the desired equality

ϕϑ(F(u)ϑ̌) = S(u)− Resu(G(u)).

Consider now Part (2). It is enough to prove that

ϕϑ(F (u)ϑ̌) = Σ(u)− Resu(G(u)).

It follows from the second equality in (3.3.16) that

qr ≡ (1 + (−1)r)yr mod Fr−2(X(gN)). (3.3.25)

For each r ∈ N, let ȳr denote the image of yr in grr−1X(gN), so that ϕI(Kr−1) = ȳr.
As q(u)S(u) = S(u), we obtain

ϕ−1
ϑ (S(u)) = F(u)ϑ̌ + Resu(G(u)) = ϕ−1

ϑ (Σ(u)) +K(u)G +K(−u)G.
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As K(u) commutes with G and F(u) = F (u) +K(u), this gives

ϕ−1
ϑ (Σ(u)) = F(u)G − GF(−u) +K(−u)G −K(u)G + Resu(G(u))

= F (u)G − GF (−u) + Resu(G(u))

= F (u)ϑ̌ + Resu(G(u)).

Remark 3.3.10. The above theorem shows that X(gN , gϑN)tw and Y (gN , gϑN)tw are
filtered algebra deformations of the enveloping algebras U (̊gN [z]ϑ̌) and U(gN [z]ϑ̌), re-
spectively. In fact, they are filtered coideal deformations of these enveloping algebras.

Indeed, the Hopf algebra structure on X(gN) is filtered, and induces a Hopf struc-
ture on grX(gN) ∼= U (̊gN [z]) such that the isomorphism ϕI of Theorem 2.6.7 is an
isomorphism of Hopf algebras. In particular,

(ϕI ⊗ ϕI) ◦ ∆̄ ◦ ϕ−1
I = gr(∆),

where ∆̄ is the standard coproduct on U (̊gN [z]). The coideal structure onX(gN , gϑN)tw

given by Lemma 3.3.7 then induces the trivial coideal structure on U (̊gN [z]ϑ̌) ⊂
U (̊gN [z]) given by its standard Hopf subalgebra structure. That is, we have

(ϕI ⊗ ϕϑ) ◦ ∆̄|U (̊gN [z]ϑ̌) ◦ ϕ
−1
ϑ = gr(∆|X(gN ,gϑN )tw).

Now let us briefly discuss a few consequences of Theorem 3.3.9.

As U(gϑN) ⊂ U(gN [z]ϑ̌) ⊂ U (̊gN [z]ϑ̌) consists of elements of degree zero and
F0(X(gN , gϑN)tw) embeds into grX(gN , gϑN)tw, Theorem 3.3.9 yields an embedding

U(gϑN) ↪→ Y (gN , gϑN)tw ⊂ X(gN , gϑN)tw.

In order to make this explicit, let us write

ḡij = (gij − δij)
tr(G)

4 ,

so that Resu(G(u)) = ∑
i,j∈IN ḡijEij. In addition, we recall from Lemma 3.2.5 and

Proposition 3.2.8 that

F ϑ
ij = (gii + gjj)Fij ∀ i, j ∈ IN .
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Corollary 3.3.11 ([GR16, Corollary 3.3]). The assignment

F ϑ
ij 7→ σ

(1)
ij − ḡij = s

(1)
ij − ḡij ∀ i, j ∈ IN (3.3.26)

extends to an injective algebra homomorphism

U(gϑN) ↪→ Y (gN , gϑN)tw ⊂ X(gN , gϑN)tw.

As any graded basis of the associated graded algebra gr(A) (A being a N-filtered
unital, associative C-algebra) may be lifted to a basis of A, an important consequence
of Theorem 3.3.9 is that graded bases of U (̊gN [z]ϑ̌) and U(gN [z]ϑ̌) may be lifted to
bases of X(gN , gϑN)tw and Y (gN , gϑN)tw, respectively.

Using Corollary 3.2.7, the formula (3.3.22) and the relation (3.3.25), we obtain
the following version of Theorem 3.2 and Corollary 3.4 from [GR16].

Corollary 3.3.12. Fix any total orderings on the sets

BY = {σ(2r−1)
ij }(i,j)∈B+

G ,r∈N
∪ {σ(2r)

ij }(i,j)∈B−G ,r∈N
,

BX = {s(2r−1)
ij }(i,j)∈B+

G ,r∈N
∪ {s(2r)

ij }(i,j)∈B−G ,r∈N
∪ {q2r}r∈N.

Then the set of ordered monomials in the elements of BY is a basis of Y (gN , gϑN)tw,
and the set of ordered monomials in the elements of BX is a basis of X(gN , gϑN)tw.

3.3.4 Tensor product decomposition and the center

By Proposition 2.6.6, the center ZX(gN) of X(gN) is isomorphic to the polynomial al-
gebra C[yr]r∈N. Similarly, the subalgebraW (gN , gϑN) of ZX(gN) generated by {qr}r∈N
is isomorphic to the polynomial ring C[q2r]r∈N.

Lemma 3.3.13. The algebra homomorphism

ϕW : C[x2r]r∈N → W (gN , gϑN), x2r 7→ q2r ∀ r ∈ N.

is an isomorphism.

Proof. The injectivity of ϕW follows from Corollary 3.3.12, though we will not make
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use of this here. We view C[x2r]r∈N as a graded (and thus filtered) algebra by setting

deg x2r = 2r − 1 ∀ r ∈ N.

The homomorphism ϕW is then filtered, and to prove it is an isomorphism it suffices
to prove that

gr(ϕW ) : grC[x2r]r∈N ∼= C[x2r]r∈N → grW (gN , gϑN)

is an isomorphism.

By (3.3.25), the image of qr in the associated graded algebra

grW (gN , gϑN) ⊂ grZX(gN) ∼= C[yr]r∈N

is (1+(−1)r)yr, and thus grZX(gN) ∼= C[y2r]r∈N. Therefore, gr(ϕW ) can be identified
with the isomorphism

C[x2r]r∈N ∼−→ C[y2r]r∈N, x2r 7→ 2y2r ∀ r ∈ N.

It follows from (3.3.15) that W (gN , gϑN) is also generated by {w2r}r∈N and that

C[q2r]r∈N ∼= W (gN , gϑN) ∼= C[w2r]r∈N.

Employing this identification and restricting the isomorphism

X(gN) ∼−→ ZX(gN)⊗ Y (gN) ∼= C[yr]r∈N ⊗ Y (gN),

of Theorem 2.6.3 to the subalgebra X(gN , gϑN)tw, we recover [GR16, Theorem 3.1].

Theorem 3.3.14. The identification S(u) = q(u)S(u) induces an isomorphism

X(gN , gϑN)tw ∼= C[q2r]r∈N ⊗ Y (gN , gϑN)tw ∼= C[w2r]r∈N ⊗ Y (gN , gϑN)tw.

One consequence of this theorem is that we may realize Y (gN , gϑN)tw as a quotient
of X(gN , gϑN)tw. Let

εϑ = ε|W (gN ,gϑN ) ⊗ id : X(gN , gϑN)tw � Y (gN , gϑN)tw, (3.3.27)
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where, as usual, ε denotes the counit of X(gN). As ε(q(u)) = ε(w(u)) = 1, the kernel
Ker(ε|W (gN ,gϑN )) is generated as an ideal by the coefficients of q(u)−1 or, equivalently,
by the coefficients of w(u)− 1.

Corollary 3.3.15. The epimorphism εϑ induces an isomorphism

X(gN , gϑN)tw/(w(u)− 1) ∼−→ Y (gN , gϑN)tw.

The same assertion holds with w(u) replaced by q(u).

Remark 3.3.16. In fact, this is how the twisted Yangian Y (gN , gϑN)tw was first
defined in [GR16].

We have not yet shown that W (gN , gϑN) is the whole center ZX(gN , gϑN)tw of
X(gN , gϑN)tw. By Theorem 3.3.14, this will be true if Y (gN , gϑN)tw has trivial center.
This is proven using the argument used to prove Corollary 2.5.6 after replacing the
role of [Mol07, Lemma 1.7.4] by [GR16, Proposition 3.4]. The following corollary
summarizes this result.

Corollary 3.3.17 ([GR16, Corollary 3.5]). ZY (gN , gϑN)tw and ZX(gN , gϑN)tw satisfy

ZY (gN , gϑN)tw = C · 1,

ZX(gN , gϑN)tw = W (gN , gϑN) ∼= C[q2r]r∈N ∼= C[w2r]r∈N.

In particular, Theorem 3.3.14 implies that

X(gN , gϑN)tw ∼= ZX(gN , gϑN)tw ⊗ Y (gN , gϑN)tw.

3.3.5 The reflection algebra construction

Though we have been able to prove many fundamental properties of the twisted Yan-
gians X(gN , gϑN)tw and Y (gN , gϑN)tw, we have not yet given a set of defining relations
for either algebra in closed form. This was achieved in [GR16, §4–§5] using the re-
flection equation algebra formalism, which is intimately tied to the theory of twisted
Yangians.

In this subsection, we survey this construction. Although the techniques used to
develop it are very similar to those we have used in Chapter 2, our exposition will
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be less complete than in §3.3.2–§3.3.4, where the results consisted almost entirely of
corollaries to our earlier work on (extended) Yangians.

We begin by defining the so-called reflection algebra associated to the symmetric
pairs (gN , gϑN) from (3.0.1). We continue to assume that G is as in (3.2.11) or (3.2.12).

Definition 3.3.18. The reflection algebra X(gN , gϑN)tw is the unital associative C-
algebra generated by {s(r)

ij }i,j∈IN ,r∈N, which are subject to the defining reflection equa-
tion

R(u− v)S1(u)R(u+ v)S2(v) = S2(v)R(u+ v)S1(u)R(u− v)

in End(CN)⊗2 ⊗ X(gN , gϑN)tw[[u±1, v±1]],
(3.3.28)

where S(u) ∈ End(CN)⊗ X(gN , gϑN)tw[[u−1]] is given by

S(u) =
∑

i,j∈IN
Eij ⊗ sij(u), with sij(u) = gij +

∑
r≥1

s(r)
ij u

−r−1.

By Lemma 3.3.1, X(gN , gϑN)tw has a one dimensional representation given by the
matrix G(u) (see (3.3.2)). Equivalently, there is an algebra homomorphism

εX : X(gN , gϑN)tw → C, S(u) 7→ G(u). (3.3.29)

The reflection algebra also admits analogues of the automorphisms (3.3.19) and
(3.3.21) of X(gN , gϑN)tw. Indeed, for any g(u) ∈ 1 + u−1C[[u−1]], the assignment

νg : S(u) 7→ g(u)S(u) (3.3.30)

extends to an automorphism νg ∈ Aut(X(gN , gϑN)tw). We will see in a short while that
these automorphisms induce the automorphisms νg ∈ Aut(X(gN , gϑN)tw) defined in
(3.3.19), which will provide justification for our notation.

Similarly, if A ∈ G(R) satisfies AGA−1 = G, then the same type of argument as
used to prove Part (1) of Lemma 3.2.4 shows that the assignment

Adϑ(A) : S(u)→ AS(u)A−1 (3.3.31)

extends to an automorphism Adϑ(A) ∈ Aut(X(gN , gϑN)tw).
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Remark 3.3.19. If AGA−1 is not equal to G, then the assignment (3.3.31) does not
preserve the unit. However, AS(u)At will still be a solution of the reflection equation
(3.3.28).

The following theorem, which combines Proposition 5.1, Theorem 5.1 and Theo-
rem 5.2 of [GR16], can be viewed as universal version of Lemma 3.3.2. Let p(u) =
pG(u) be as in (3.3.9).

Theorem 3.3.20. There exists a unique central series

c(u) = 1 +
∑
r≥1

cru−r−1 ∈ 1 + u−1ZX(gN , gϑN)tw[[u−1]]

satisfying the relation

QS1(u)R(2u− κ)S−1
2 (κ− u) = S−1

2 (κ− u)R(2u− κ)S1(u)Q = p(u)c(u)Q. (3.3.32)

Moreover, c(u) is uniquely determined by

p(u)c(u)S(κ− u) = St(u)∓ S(u)
2u− κ + tr(S(u)) · I

2u− 2κ . (3.3.33)

Proof. The same argument as used to prove Lemma 3.3.2 shows that there exists a
unique series x(u) ∈ X(gN , gϑN)tw[[u−1]] satisfying

QS1(u)R(2u− κ)S−1
2 (κ− u) = S−1

2 (κ− u)R(2u− κ)S1(u)Q = x(u)Q.

We then define c(u) = p(u)−1x(u). Applying the homomorphism εX from (3.3.29) to
both sides of the above and appealing to Lemma 3.3.2, we find that εX(c(u)) = 1,
and hence c(u) has constant term 1.

The proof that c(u) has coefficients belonging to the center ZX(gN , gϑN)tw of
X(gN , gϑN)tw is more complicated, and we refer the reader to [GR16, Theorem 5.1]
for complete details.

Consider now the relation (3.3.33). If it holds, then it uniquely determines c(u)
as S(κ− u) is invertible. Let us prove that it indeed holds. By (3.3.32), we have

QS1(u)R(2u− κ) = p(u)c(u)QS2(κ− u).
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Using the relations from (3.1.4) to expand the left-hand side, we find that

Q

(
St2(u)∓ S2(u)

2u− κ + tr(S(u)) · I
2u− 2κ

)
= p(u)c(u)QS2(κ− u).

Fixing i, j ∈ IN and applying both sides of the above to e−i ⊗ ej gives

θ−ivQ ⊗
(
θijs−j−i(u)∓ sij(u)

2u− κ + δij
tr(S(u))
2u− 2κ

)
= θ−ivQ ⊗ p(u)c(u)sij(κ− u),

where vQ and θ−i are as in (3.1.5). As vQ is nonzero, these relations are equivalent to
(3.3.33).

As a corollary to the above theorem, we obtain a universal version of the relation
(3.3.8) from Proposition 3.3.3.

Corollary 3.3.21. The central series c(u) ∈ X(gN , gϑN)tw[[u−1]] the equivalent rela-
tions

c(u)p(u)tr(S(κ− u)) = pI(u)tr(S(u)),

c(u)g(u)tr(S(κ− u)) = g(κ− u)tr(S(u)).
(3.3.34)

These relations uniquely determine c(u) when tr(G) 6= 0.

Proof. Taking the trace of both sides of (3.3.33) gives the first relation in (3.3.34).
That this is equivalent to the second relation is due to (3.3.8). Since

tr(S(u)) ∈ tr(G) + u−1X(gN , gϑN)tw[[u−1]],

the series tr(S(κ−u)) will be a unit in X(gN , gϑN)tw[[u−1]] provided tr(G) 6= 0, in which
case

c(u) = g(κ− u)
g(u) · tr(S(u))

tr(S(κ− u)) .

We are now in a position to state the main theorem of this subsection, which
relates the extended Yangian X(gN , gϑN)tw to the reflection algebra X(gN , gϑN)tw and,
consequently, gives a concrete set of defining relations for the former algebra.

Theorem 3.3.22 ([GR16, Theorem 4.2]). The assignment S(u) 7→ S(u) extends to
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an epimorphism of algebras

Φϑ : X(gN , gϑN)tw � X(gN , gϑN)tw

with kernel Ker(Φϑ) = (c(u)− 1).

Proof. We will not give a complete proof, but we will show S(u) 7→ S(u) defines an
epimorphism Φϑ which induces a surjection

Φc
ϑ : X(gN , gϑN)tw/(c(u)− 1) � X(gN , gϑN)tw. (3.3.35)

These results have been established in Lemmas 4.2 and 4.3 of [GR16], though our ar-
guments will differ slightly. To show that there is an epimorphism as in the statement
of the theorem, we must show S(u) satisfies the reflection equation (3.3.28).

By (2.7.17), we have

T t(u) = z(u− κ)T (u− κ)−1, (3.3.36)

and hence, by the centrality of z(u) and the definition of S(u) (see (3.3.12)), it suffices
to prove that

R(u− v)T1(̊u)G1(u)T1( •
u)−1R(u+ v)T2(̊v)G2(v)T2( •

v)−1

= T2(̊v)G2(v)T2( •
v)−1R(u+ v)T1(̊u)G1(u)T1( •

u)−1R(u− v),
(3.3.37)

where ů = u− κ/2 and •
u = −u− κ/2. We will make use of the relations

T2(v)−1R(u− v)T1(u) = T1(u)R(u− v)T2(v)−1,

T1(v)−1R(u− v)T2(u) = T2(u)R(u− v)T1(v)−1,

R(u− v)T2(v)−1T1(u)−1 = T1(u)−1T2(v)−1R(u− v),

R(u− v)T1(v)−1T2(u)−1 = T2(u)−1T1(v)−1R(u− v).

(3.3.38)

The first and third relations follow immediately from (2.4.1), while the second and
fourth relations follow from the first and third, respectively, after applying the per-
mutation operator σ ⊗ 1 (here σ = σCN ,CN in the notation of §2.1).
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As v̊ − •
u = u+ v, the second relation of (3.3.38) implies that

R(u− v)T1(̊u)G1(u)T1( •
u)−1R(u+ v)T2(̊v)G2(v)T2( •

v)−1

= R(u− v)T1(̊u)T2(̊v)G1(u)R(u+ v)G2(v)T1( •
u)−1T2( •

v)−1

= T2(̊v)T1(̊u)R(u− v)G1(u)R(u+ v)G2(v)T1( •
u)−1T2( •

v)−1,

where to obtain the last equality we have applied (2.4.1). By Lemma 3.3.1, G(u) is a
solution to the reflection equation. Therefore,

R(u− v)T1(̊u)G1(u)T1( •
u)−1R(u+ v)T2(̊v)G2(v)T2( •

v)−1

= T2(̊v)T1(̊u)G2(v)R(u+ v)G1(u)R(u− v)T1( •
u)−1T2( •

v)−1

= T2(̊v)G2(v)T1(̊u)R(u+ v)T2( •
v)−1G1(u)T1( •

u)−1R(u− v),

where to obtain the last equality we have employed the fourth relation of (3.3.38). A
single application of the first relation in (3.3.38) then completes the proof of (3.3.37).

To prove that Φϑ(c(u)) = 1, it is enough to show that

QS1(u)R(2u− κ) = p(u)QS2(κ− u). (3.3.39)

Indeed, by the proof of the relation (3.3.33), this will imply that (3.3.33) holds with
c(u) replaced by 1 and S(u) by S(u).

Since QT1(u) = QT t2(u) (see (3.1.4)), the left-hand side of (3.3.39) is equal to

QG1(u)T t2(u−κ/2)T t1(−u+κ/2)R(2u−κ) = QG1(u)R(2u−κ)T t1(−u+κ/2)T t2(u−κ/2),

where we have used (3.3.36) together with the last relation of (3.3.38). By (3.3.5)
and (3.1.4), we thus have

QS1(u)R(2u− κ) = p(u)QT t1(−u+ κ/2)G2(κ− u)T t2(u− κ/2)

= p(u)QT2(−u+ κ/2)G2(κ− u)T t2(u− κ/2)

= p(u)QS2(κ− u).

Therefore, Φϑ(c(u)) = 1, and we can conclude that Φϑ induces Φc
ϑ as in (3.3.35).

Now let us provide a partial sketch of the proof that Φc
ϑ is an isomorphism, using
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the recurring ideas of Chapter 2. One defines a filtration on X(gN , gϑN)tw by assigning
filtration degrees

deg s(r)
ij = r − 1 ∀ r ∈ N.

This induces a filtration on the quotient X(gN , gϑN)tw/(c(u)−1) such that Φc
ϑ is filtered.

It thus suffices to prove that the associated graded morphism

gr(Φc
ϑ) : gr(X(gN , gϑN)tw/(c(u)− 1))→ grX(gN , gϑN)tw ∼= U (̊gN [z]ϑ̌)

is an isomorphism. This is achieved by composing gr(Φc
ϑ) with an epimorphism

U (̊gN [z]ϑ̌) � gr(X(gN , gϑN)tw/(c(u)− 1))

and showing that the resulting map is an automorphism of U (̊gN [z]ϑ̌). To construct
an epimorphism as above, one needs to identify defining relations for U (̊gN [z]ϑ̌). This
can be done in general using a variant of the construction given in §2.3.

In [GR16], this was first done for Y (gN , gϑN)tw rather than X(gN , gϑN)tw: see the
proof of [GR16, Theorem 4.1].

Corollary 3.3.23. The extended twisted Yangian X(gN , gϑN)tw is isomorphic to the
unital associative C-algebra generated by {s(r)

ij }i,j∈IN ,r∈N, subject only to the relations

R(u− v)S1(u)R(u+ v)S2(v) = S2(v)R(u+ v)S1(u)R(u− v), (3.3.40)

p(u)S(κ− u) = St(u)∓ S(u)
2u− κ + tr(S(u)) · I

2u− 2κ , (3.3.41)

where S(u) ∈ End(CN)⊗X(gN , gϑN)tw[[u−1]] is given by

S(u) =
∑

i,j∈IN
Eij ⊗ sij(u), with sij(u) = gij +

∑
r≥1

s
(r)
ij u

−r−1.

The defining relation (3.3.41) will be called the symmetry relation forX(gN , gϑN)tw.
It is equivalent to

p(u)sij(κ− u) = θijs−j,−i(u)∓ sij(u)
2u− κ + δij

tr(S(u))
2u− 2κ ∀ i, j ∈ IN ,

with p(u) = pG(u) given explicitly by (3.3.9).
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Using the expansion (2.7.15) of R(u), one can also expand the reflection equation
(3.3.40) in terms of the generating series {sij(u)}i,j∈IN . This yields the following
relations for all i, j, k, l ∈ IN :

[sij(u), skl(v)]

= 1
u− v

(
skj(u) sil(v)− skj(v) sil(u)

)
+ 1
u+ v

∑
a∈IN

(
δkj sia(u) sal(v)− δil ska(v) saj(u)

)

− 1
u2 − v2

∑
a∈IN

δij

(
ska(u) sal(v)− ska(v) sal(u)

)

− 1
u− v − κ

∑
a∈IN

(
δk,−i θia saj(u) s−a,l(v)− δl,−j θaj sk,−a(v) sia(u)

)

− 1
u+ v − κ

(
θj,−k si,−k(u) s−j,l(v)− θi,−l sk,−i(v) s−l,j(u)

)
+ θi,−j

(u+ v)(u− v − κ)
∑
a∈IN

(
δk,−i s−j,a(u) sal(v)− δl,−j ska(v) sa,−i(u)

)

+ θi,−j
(u− v)(u+ v − κ)

(
sk,−i(u) s−j,l(v)− sk,−i(v) s−j,l(u)

)
− θij

(u− v − κ)(u+ v − κ)
∑
a∈IN

(
δk,−i saa(u) s−j,l(v)− δl,−j sk,−i(v) saa(u)

)
.

(3.3.42)

By Corollary 3.3.15, to obtain defining relations for Y (gN , gϑN)tw, one replaces s(r)
ij ,

sij(u), and S(u) by σ(r)
ij , σij(u) and S(u), respectively, in Corollary 3.3.23 and imposes

the additional unitary relation

S(u)S(−u) = I.

As a consequence of Corollary 3.3.21, one can equivalently characterize the sym-
metry relation (3.3.41) in terms of the trace of S(u) provided tr(G) 6= 0. This is
spelled out in the next result.

Corollary 3.3.24. The symmetry relation (3.3.41) implies that

g(u)tr(S(κ− u)) = g(κ− u)tr(S(u)).

If tr(G) 6= 0, then this relation is equivalent to (3.3.41).
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Next, as promised, we explain how the automorphism νg of (3.3.30) induces the
automorphism (3.3.19) of X(gN , gϑN)tw, following [GR16, Proposition 5.2]. Let g(u) ∈
1 + u−1C[[u−1]]. By (3.3.32), we have

νg(c(u)) = g(u)g(κ− u)−1c(u). (3.3.43)

Consequently, νg fixes c(u) if and only if g(u) = g(κ − u). When this is the case,
Theorem 3.3.22 implies that νg induces an automorphism ofX(gN , gϑN)tw which is nec-
essarily determined by S(u) 7→ g(u)S(u), and hence coincides with the automorphism
(3.3.19).

The reflection algebra X(gN , gϑN)tw has many other interesting properties which we
are not able to discuss in detail here. For instance, the subalgebra generated by the
coefficients of c(u) is a polynomial algebra C[c2r−1]r∈N, and there is an isomorphism

X(gN , gϑN)tw ∼−→ C[c2r−1]r∈N ⊗X(gN , gϑN)tw

which identifies X(gN , gϑN)tw with a subalgebra of X(gN , gϑN)tw fixed by a subfamily
of the automorphisms νg. The reader is referred to §5 of [GR16] for more details.

3.3.6 Equivalent presentations

We now address two potential ambiguities which arise with our definitions of the
twisted Yangians X(gN , gϑN)tw and Y (gN , gϑN)tw.

Suppose first that (gN , gϑN) is of the form (gN , gp ⊕ gq), where in addition to our
usual assumption that 0 ≤ q < N is an even integer, we assume p = N − q is even
and strictly less that N (in particular, N = 2n). In this case our definition of the
automorphism ϑ (see (3.2.2)) can take as input the matrix G = Gq or G = Gp, where

Gq = I − 2
q/2∑
a=1

(EN+1−a,N+1−a + Ea−N−1,a−N−1),

Gp = I − 2
p/2∑
a=1

(EN+1−a,N+1−a + Ea−N−1,a−N−1).

Definition 3.3.6 then gives two different extended twisted Yangians associated to the
pair (gN , gp ⊕ gq). The first takes as input G(u) = Gq(u) and the second is defined
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using G(u) = Gp(u). We follow the convention that gq is always the right summand,
so X(gN , gp ⊕ gq)tw corresponds to Gq(u) and X(gN , gq ⊕ gp)tw corresponds to Gp(u).
Such a distinction is only necessary when the underlying involution ϑ = Ad(G) is not
specified. As

gp ⊕ gq ∼= gq ⊕ gp,

one would hope that there is an isomorphism

X(gN , gq ⊕ gp)tw ∼−→ X(gN , gp ⊕ gq)tw

which induces an isomorphism between Y (gN , gq ⊕ gp)tw and Y (gN , gp ⊕ gq)tw. Our
first goal of this subsection is to construct such an isomorphism explicitly.

For each a ∈ {p, q}, let

(p(u)a,g(u)a, w(u)a, S(u)a)

be the tuple (pGa(u),g(u), w(u), S(u)) corresponding to X(gN , gN−a ⊕ ga)tw. Set

A =
n∑
i=1

(Ei,n−i+1 + E−i,−n+i−1).

The matrix A belongs to GN(C) (see (3.2.6)) and satisfies

AGqA−1 = AGqAt = −Gp and A2 = I.

Proposition 3.3.25. The assignment

Θp,q : S(u)p 7→
(

tr(Gq)− 4u
tr(Gq) + 4u

)
AS(u)qAt (3.3.44)

extends to an isomorphism

Θp,q : X(gN , gq ⊕ gp)tw ∼−→ X(gN , gp ⊕ gq)tw.

Moreover, Θp,q induces an isomorphism between Y (gN , gq⊕gp)tw and Y (gN , gp⊕gq)tw.
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Proof. First note that

Gp(u) = tr(Gp)I − 4uGp
tr(Gp)− 4u = −tr(Gq)AAt − 4uAGqAt

−tr(Gq)− 4u

=
(

tr(Gq)− 4u
tr(Gq) + 4u

)
AGq(u)At.

In particular, the assignment Θp,q defined by (3.3.44) preserves the unit.

Since A ∈ GN(C) ⊂ G(R), (3.3.31) and Remark 3.3.19 imply that AS(u)qA−1,
and thus Θp,q(S(u)p), satisfies the reflection equation (3.3.40).

Next, note that
tr(Gq)− 4u
tr(Gq) + 4u = −g(u)p

g(u)q
and consider the symmetry relation (3.3.41). We have

p(u)qAS(κ− u)qAt = ASt(u)qAt ∓
AS(u)qAt

2u− κ + tr(AS(u)qAt) · I
2u− 2κ

It follows that Θp,q(S(u)p) will satisfy (3.3.41) provided

p(u)qg(u)pg(u)−1
q = p(u)pg(κ− u)pg(κ− u)−1

q .

This relation is a consequence of the relation (3.3.8) of Proposition 3.3.3. Therefore,
(3.3.44) defines a homomorphism Θp,q. It is easily seen to be an isomorphism: in fact,
it satisfies

Θq,p = Θ−1
p,q.

Since Θp,q also satisfies

Θp,q(w(u)pI) = Θp,q(S(u)pS(−u)p) = AS(u)S(−u)At = w(u)qI,

Corollary 3.3.15 implies that it induces an isomorphism between Y (gN , gq⊕gp)tw and
Y (gN , gp ⊕ gq)tw.

Remark 3.3.26. Proposition 3.3.25 provides justification for the restriction p ≥ q

which was imposed in [GR16,GRW17,GRW19b]. We will, however, not impose this
condition until Chapter 5, as it will not have any bearing on our results until that
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point. One reason for working in this generality is that the restriction of scalars
functor Θ∗p,q does not commute with the notion of highest weight module to be defined
in Chapter 4, but instead interchanges the role of highest and lowest weight theory.

Let us now consider instead those symmetric pairs which are of type BI. That is,

(gN , gϑN) = (so2n+1, sop ⊕ soq),

where p = N − q = 2n+ 1− q is necessarily odd. In [GRW17,GRW19b], the type BI
classification was refined into

BI(a) : (so2n+1, sop ⊕ soq) with p > q,

BI(b) : (so2n+1, sop ⊕ soq) with p < q.

In the latter case, the underlying matrix G used to define the pair was replaced with
−G, where G is as in (3.2.12). That is,

GGRW = −G = I − 2
∑
a∈Ip

Eaa.

Such a refinement is in fact not necessary, and the definition given in this thesis leads
to a more uniform theory. However, we should still show that the definition given here
is consistent with that from [GRW17,GRW19b]. In other words, we should establish
an isomorphism

X(so2n+1, sop ⊕ soq)tw ∼= X(so2n+1, sop ⊕ soq)twGRW (3.3.45)

whenever p < q, where X(so2n+1, sop ⊕ soq)twGRW is defined by Definition 3.3.6 with
G(u) replaced by

G(u)GRW = tr(GGRW)I − 4uGGRW

tr(GGRW)− 4u =
(

tr(G)− 4u
tr(G) + 4u

)
G(u).

Let S(u)GRW be the generating matrix S(u) corresponding to X(so2n+1, sop⊕soq)twGRW.
We then have the following proposition.
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Proposition 3.3.27. Suppose p < q. Then the assignment

ΘBI(b)
q : S(u) 7→

(
tr(GGRW)− 4u
tr(GGRW) + 4u

)
S(u)GRW

extends to an isomorphism

ΘBI(b)
q : X(so2n+1, sop ⊕ soq)tw ∼−→ X(so2n+1, sop ⊕ soq)twGRW.

In addition, ΘBI(b)
q induces an isomorphism

Y (so2n+1, sop ⊕ soq)tw ∼= Y (so2n+1, sop ⊕ soq)twGRW.

Proof. The proposition is proven in the same way as Proposition 3.3.25, verbatim.

3.4 Twisted Yangians of type A

We conclude this chapter by providing an unfairly brief introduction to twisted Yan-
gians associated to symmetric pairs of type A. These pairs take the form

A0 : (slN , slN),

AIII : (slN , slp ⊕ glq) ∼= (slN , slp ⊕ C⊕ slq) ∼= (slN , glp ⊕ slq),

AI : (slN , soN) and AII : (slN , spN),

where 0 < q < N and p = N − q. It will be convenient for us to enlarge the AIII
family as

AIII : (slN , slp ⊕ glq) with 0 ≤ q < N,

so that the special case q = 0 encodes the trivial pairs (slN , slN) of type A0.

The pairs (slN , slp ⊕ glq) can be explicitly realized using the construction of §3.2:
one takes ϑ = Ad(G) = Adρ(G)|slN (as in (3.2.2)) with

G = 2
p∑
a=1

Eaa − I = I − 2
q∑

a=1
EN−a+1,N−a+1, (3.4.1)

where in this case we replace IN by {1, . . . , N}.
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We have already seen the symmetric pairs (slN , gN) of AI and AII realized using
the involution θ introduced in (2.7.10). Indeed, this is precisely our fixed realization
of gN : see §3.1.1. We note that θ is not an inner automorphism, and thus not equal
to an involution of the form (3.2.2).

In what follows, we will write Y (glN) for X(glN), as is the convention in the
literature: see §2.7.2.1 and §3.1.1. In this section alone, R(u) will always denote the
rational R-matrix (2.7.4).

3.4.1 Twisted Yangians associated to (slN , gN)

Fix N ≥ 2 if gN = spN and N ≥ 3 if g = soN . The definitions and results given below
are borrowed from [Mol07], though we shall proceed in an order consistent with the
previous sections.

Definition 3.4.1. Let t be the transpose (2.7.9). Then:

(1) The extended twisted Yangian X(slN , gN)tw is the subalgebra of Y (glN) gener-
ated by the coefficients {s(r)

ij }i,j∈IN ,r∈N of

S(u) = T (u)T t(−u) ∈ End(CN)⊗ Y (glN)[[u−1]],

where S(u) =
∑

i,j∈IN
Eij ⊗ sij(u) and sij(u) = δij +

∑
r≥1

s
(r)
ij u

−r.

(2) The twisted Yangian Y (slN , gN)tw is the subalgebra of Y (slN) generated by the
coefficients {σ(r)

ij }i,j∈IN ,r∈N of

S(u) = T (u)T t(−u) ∈ End(CN)⊗ Y (slN)[[u−1]],

where S(u) =
∑

i,j∈IN
Eij ⊗ σij(u) and σij(u) = δij +

∑
r≥1

σ
(r)
ij u

−r.

The center of the twisted YangianX(slN , gN)tw can be described using the Sklyanin
determinant sdetS(u), which serves as a twisted Yangian analogue of the quantum
determinant qdetT (u) given by (2.7.7). To define it, we introduce the scalar series
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αN(u) by

αN(u) =


1 if gN = spN ,

2u+ 1
2u−N + 1 if gN = soN .

The series sdetS(u) is then given by

sdetS(u) = αN(u)qdetT (u)qdetT (−u+N − 1) ∈ ZY (glN)[[u−1]] (3.4.2)

By Proposition 2.5.1 and Theorem 2.5.3 of [Mol07], the coefficients of sdetS(u) belong
to X(slN , gN)tw, and thus to its center ZX(slN , gN)tw.

Now recall from §2.7.2.1 that the central series y(u) from (2.7.1) is equal to the
series d̃(u) uniquely determined by (2.7.6). Set

q̊(u) = y(u)y(−u) = 1 +
∑
r≥1

q̊2ru
−2r ∈ 1 + u−1ZY (glN)[[u−1]].

Then q̊(u) is the unique solution of

αN(u)−1sdetS(u) = q̊(u)q̊(u− 1) · · · q̊(u−N + 1)

in 1 + u−1ZY (glN)[[u−1]], and it thus has coefficients in ZX(slN , gN)tw. As

S(u) = q̊(u)S(u),

the natural embedding Y (slN , gN)tw ↪→ Y (glN) does in fact have image contained in
X(slN , gN)tw. Analogously to Theorem 3.3.14, restricting the isomorphism of Theo-
rem 2.6.3 leads to a tensor decomposition

X(slN , gN)tw ∼= ZX(slN , gN)tw ⊗ Y (slN , gN)tw ∼= C[̊q2r]r∈N ⊗ Y (slN , gN)tw,

which in turn implies that

Y (slN , gN)tw ∼= X(slN , gN)tw/(q̊(u)− 1) ∼= X(slN , gN)tw/(αN(u)−1sdetS(u)− 1).

The twisted Yangian X(slN , gN)tw may also be reconstructed using the reflection
algebra formalism; however, one must alter the underlying reflection equation. The
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following theorem, which is a consequence of [Mol07, Theorem 2.4.3] and [Mol07,
Proposition 2.15.1], provides the desired presentation.

Theorem 3.4.2. The extended twisted Yangian X(slN , gN)tw is isomorphic to the
unital associative C-algebra generated by {s(r)

ij }i,j∈IN ,r∈N, subject only to the relations

R(u− v)S1(u)Rt(−u− v)S2(v) = S2(v)Rt(−u− v)S1(u)R(u− v), (3.4.3)

St(u) = S(−u)± S(u)− S(−u)
2u , (3.4.4)

where S(u) ∈ End(CN)⊗X(slN , gN)tw[[u−1]] is given by

S(u) =
∑

i,j∈IN
Eij ⊗ sij(u), with sij(u) = δij +

∑
r≥1

s
(r)
ij u

−r−1.

The relation (3.4.4) is called the symmetry relation for X(slN , gN)tw. The defining
reflection equation (3.4.3) may be expanded explicitly as

[ sij(u), skl(v)] = 1
u− v

(
skj(u) sil(v)− skj(v) sil(u)

)
− 1
u+ v

(
θk,−j si,−k(u) s−j,l(v)− θi,−l sk,−i(v) s−l,j(u)

)
+ 1
u2 − v2 θi,−j

(
sk,−i(u) s−j,l(v)− sk,−i(v) s−j,l(u)

)
,

(3.4.5)

where i, j, k, l take values in IN .

A truly remarkable property of the twisted Yangians X(slN , gN)tw is that they
admit evaluation homomorphisms onto the enveloping algebra U(gN). These are
defined in the following proposition.

Proposition 3.4.3 ([Mol07, Proposition 2.1.2]). The assignment

ev : sij(u) 7→ δij + Fij

(
u± 1

2

)−1
∀ i, j ∈ IN

extends to an algebra epimorphism ev : X(slN , gN)tw � U(gN), called the evaluation
homomorphism. Additionally, the assignment

Fij 7→ s
(1)
ij ∀ i, j ∈ IN
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extends to an algebra embedding ι : U(gN) ↪→ X(slN , gN)tw which satisfies

ev ◦ ι = idU(gN ).

For the above formulation of [Mol07, Proposition 2.1.2], we refer the reader to
[Mol07, (2.106)].

The algebras X(slN , gN)tw and Y (slN , gN)tw were introduced by G. Olshanski in
the 1991 paper [Ols92], where they were denoted Y ±(N) and [Y ±(N)], respectively.
In [Mol07], they are denoted Y (gN) and SY (gN). It was in [Ols92] where the terminol-
ogy twisted Yangian was first used. In this subsection, we have barely even scratched
the surface of Olshanski’s original work. Since then, there have been extensive ad-
vances – including several interesting applications of the evaluation homomorphisms
of Proposition 3.4.3. We refer to the reader to [Mol07] for a more satisfying exposition.

3.4.2 Twisted Yangians associated to (slN , slp ⊕ glq)

We now fix N ≥ 2 and replace IN by the indexing set {1, . . . , N}. In addition, we fix
an integer 0 ≤ q ≤ N and set p = N − q.

Definition 3.4.4. Let G = ∑N
i,j=1 gijEij be given by (3.4.1). Then:

(1) The extended twisted Yangian X(slN , slp ⊕ glq)tw is the subalgebra of Y (glN)
generated by the coefficients {b(r)

ij }1≤i,j≤N,r∈N of

B(u) = T (u)GT (−u)−1 ∈ End(CN)⊗ Y (glN)[[u−1]],

where B(u) =
N∑

i,j=1
Eij ⊗ bij(u) and bij(u) = gij +

∑
r≥1

b
(r)
ij u

−r.

(2) The twisted Yangian Y (slN , slp ⊕ glq)tw is the subalgebra of Y (slN) generated
by the coefficients {σ(r)

ij }1≤i,j≤N,r∈N of

B(u) = T (u)GT (−u)−1 ∈ End(CN)⊗ Y (slN)[[u−1]],

where B(u) =
N∑

i,j=1
Eij ⊗ σij(u) and σij(u) = gij +

∑
r≥1

σ
(r)
ij u

−r.
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Remark 3.4.5. We have included the value q = N in order to simplify our lives in
§4.4. However, in this case our notation becomes a bit misleading as the underlying
symmetric pair is of course not actually (slN , glN), but rather (slN , slN). This will
not cause any confusion; after all, X(slN , slN)tw and X(slN , glN)tw as defined above
are equal as subalgebras of Y (glN), with the generating matrix B(u) of both equal
up to a negative sign. The same assertion holds for Y (slN , slN)tw and Y (slN , glN)tw.

Like in the (slN , gN) case, there is a Sklyanin determinant sdetB(u) which may
be used to describe the center ZX(slN , slp⊕ glq)tw of X(slN , slp⊕ glq)tw. We will not
take this approach here, and instead refer the reader to [MR02,Roz10].

Recall that y(u) = d̃(u), where d̃(u) is as in (2.7.6), and define

•
q(u) = y(u)y(−u)−1 = 1 +

∑
r≥1

•
qru
−r ∈ 1 + u−1ZY (glN)[[u−1]].

It is not immediate from this definition that the coefficients of •
q(u) actually belong

to X(slN , slp ⊕ glq)tw. However, they do generate a subalgebra of

ZY (glN) ∼= C[yr]r∈N

isomorphic to the polynomial ring C[ •
q2r−1]r∈N in the odd coefficients of q(u). Indeed,

this is just a consequence of the fact that

•
qr ≡ yr − (−1)ryr mod Fr−2(Y (glN)).

Moreover, •
q(u) satisfies the relation

B(u) = •
q(u)B(u).

Restricting the isomorphism of Theorem 2.6.3 to X(slN , slp ⊕ glq)tw thus gives an
injection

X(slN , slp ⊕ glq)tw ↪→ C[ •
q2r−1]r∈N ⊗ Y (slN , slp ⊕ glq)tw,

which is easily seen to be surjective by considering the associated graded map. In
particular, the coefficients of •

q(u) do belong to (the center of) X(slN , slp⊕ glq)tw and
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the proof of Corollary 3.3.15 shows that

Y (slN , slp ⊕ glq)tw ∼= X(slN , slp ⊕ glq)tw/( •
q(u)− 1).

It was argued in the proof of [MR02, Theorem 3.4] that Y (slN , slp⊕ glq)tw has trivial
center, and hence we also have

X(slN , slp ⊕ glq)tw ∼= ZY (slN , slp ⊕ glq)tw ⊗ Y (slN , slp ⊕ glq)tw,

and ZY (slN , slp ⊕ glq)tw ∼= C[ •
q2r−1]r∈N.

Now let us turn to the reflection algebra formalism for X(slN , slp ⊕ glq)tw.

Definition 3.4.6. The reflection algebra X(slN , slp ⊕ glq)tw is the unital associative
C-algebra generated by {b(r)

ij }i,j∈IN ,r∈N, which are subject to the defining reflection
equation

R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v)

in End(CN)⊗2 ⊗ X(slN , slp ⊕ glq)tw[[u±1, v±1]],
(3.4.6)

where B(u) ∈ End(CN)⊗ X(slN , slp ⊕ glq)tw[[u−1]] is given by

B(u) =
∑

i,j∈IN
Eij ⊗ bij(u), with bij(u) = gij +

∑
r≥1

b(r)
ij u

−r−1.

By expanding R(u) in (3.4.6), we find that it is equivalent to

[bij(u), bkl(v)] ≡ 1
u− v

(
bkj(u)bi`(v)− bkj(v)bil(u)

)
+ 1
u+ v

n∑
a=1

(
δkjbia(u)bal(v)− δilbka(v)baj(u)

)

− 1
u2 − v2

n∑
a=1

δij

(
bka(u)bal(v)− bka(v)bal(u)

)
,

(3.4.7)

where i, j, k, l take values in {1, . . . , N}. In Proposition 2.1 of [MR02], it was shown
that there exists an even central series

f(u) ∈ 1 + u−1X(slN , slp ⊕ glq)tw[[u−1]]
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uniquely determined by
B(u)B(−u) = f(u)I.

One then has the following analogue of Theorem 3.3.22 and Corollary 3.3.23, which
is equivalent to [MR02, Theorem 3.1].

Theorem 3.4.7. The assignment B(u) 7→ B(u) extends to an epimorphism of alge-
bras

X(slN , slp ⊕ glq)tw � X(slN , slp ⊕ glq)tw

with kernel equal to (f(u) − 1). Consequently, X(slN , slp ⊕ glq)tw isomorphic to the
unital associative C-algebra generated by {b(r)

ij }1≤i,j≤N,r∈N, subject only to the relations

R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v),

B(u)B(−u) = I,

where B(u) ∈ End(CN)⊗X(slN , slp ⊕ glq)tw[[u−1]] is given by

B(u) =
∑

i,j∈IN
Eij ⊗ bij(u), with bij(u) = gij +

∑
r≥1

b
(r)
ij u

−r−1.

Reflection algebras of type AIII were introduced by E. Sklyanin in the 1988 pa-
per [Skl88], while the twisted Yangians X(slN , slp ⊕ glq)tw and Y (slN , slp ⊕ glq)tw

were introduced by A. Molev and E. Ragoucy in [MR02], where they were denoted
B(N, q) and SB(N, q), respectively. This notation was also used in [GRW16,GRW17,
GRW19b], where B(N, q) was called the Molev-Ragoucy reflection algebra. They have
been less studied then their type AI and AII counterparts, but will play a very im-
portant role in Chapters 4 and 5 below.
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Chapter 4

Highest Weight Theory for Twisted
Yangians

We now turn to studying the representation theory for the twisted Yangians of types
B, C and D introduced in §3.3, with a emphasis on the finite-dimensional irreducible
representations of the extended twisted Yangian X(gN , gϑN)tw1. Our goal in this chap-
ter is to lay the foundations needed to classify the finite-dimensional irreducible rep-
resentations of both X(gN , gϑN)tw and Y (gN , gϑN)tw – a classification which will be
partially achieved in Chapter 5.

The first ingredient needed is a highest weight theory for X(gN , gϑN)tw compatible
with its finite-dimensional irreducible modules. Such a theory is developed in §4.2
using a familiar approach. In §4.2.2, we give the relevant definitions and first results,
including a proof that every finite-dimensional irreducible module is of highest weight
type: see Theorem 4.2.6. In §4.2.3, we introduce Verma modules and study the
compatibility of our notion of highest weight module with the coideal structure of
X(gN , gϑN)tw: see Proposition 4.2.11 and Corollary 4.2.12.

In §4.3 and §4.4, we construct two other tools instrumental to the study of finite-
dimensional irreducible X(gN , gϑN)tw-modules. The first of these tools, developed in
§4.3, addresses the problem that there is no obvious embedding

X(gN−2, g
ϑ(2)
N−2)tw ↪→ X(gN , gϑN)tw.

1) The emphasis on X(gN , g
ϑ
N )tw, rather than Y (gN , g

ϑ
N )tw, will be explained in §4.2.1.
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(Here our notation is as in §4.3.) Our solution to this problem, which is inspired by a
result of [MR02], is to show that one can still build a X(gN−2, g

ϑ(2)
N−2)tw-module struc-

ture on a subspace of any X(gN , gϑN)tw-module V , in a manner which is compatible
with highest weight theory: see Proposition 4.3.4 and Corollary 4.3.7.

The tool constructed in §4.4 is similar, but the role of X(gN−2, g
ϑ(2)
N−2)tw is played

instead by a twisted YangianX(sln, slk⊕gll)tw of type AIII: see Proposition 4.4.1. We
use this tool to prove Theorem 4.4.4, which characterizes exactly when a X(gN , gϑN)tw

Verma module is non-trivial. In addition, it will allow us to associate a (n−1)-tuple of
polynomials (Pi(u))ni=2, together with a scalar α, to any finite-dimensional irreducible
module: see Proposition 4.4.5.

Our approach to the representation theory of X(gN , gϑN)tw depends, in many ways,
on the representation theory of the extended Yangian X(gN), which has been studied
by D. Arnaudon, A. Molev and E. Ragoucy in [AMR06]. For this reason, we have
included an exposition to their results in the first section of this chapter.

4.1 Representations of X(gN) and Y (gN)

Let us begin by recalling some of the results developed in [AMR06] for the extended
Yangians X(gN) and the Yangian Y (gN).

4.1.1 Representations of X(gN)

A representation V ofX(gN) is a highest weight representation if there exists a nonzero
vector ξ ∈ V such that V = X(gN) ξ and

tij(u)ξ = 0 ∀ i < j ∈ IN ,

tii(u)ξ = λi(u)ξ ∀ i ∈ IN ,

where, for each i ∈ IN , λi(u) is a formal power series in C[[u−1]] of the form

λi(u) = 1 +
∞∑
r=1

λ
(r)
i u−r, λ

(r)
i ∈ C.
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The vector ξ is called the highest weight vector of V and theN -tuple λ(u) = (λi(u))i∈IN
is called the highest weight of V.

Theorem 4.1.1 ([AMR06, Theorem 5.1]). Every finite-dimensional irreducible rep-
resentation V of X(gN) is a highest weight representation. Moreover, V contains a
unique highest weight vector, up to multiplication by a nonzero scalar.

Given an N -tuple λ(u), the Verma module M(λ(u)) is defined as the quotient of
X(gN) by the left ideal generated by all the coefficients of the series

tij(u) with i < j ∈ IN ,

tii(u)− λi(u) with i ∈ IN .

It is not the case that M(λ(u)) is always non-trivial. However, there is a precise
classification of when this occurs due to Arnaudon, Molev and Ragoucy.

Proposition 4.1.2 ([AMR06, Proposition 5.14]). M(λ(u)) is non-trivial if and only
if the components of the highest weight satisfy

λ−i(u)
λ−i−1(u) = λi+1(u− κ+ n− i)

λi(u− κ+ n− i) for i ∈ I+
N \ {n}. (4.1.1)

The following simple lemma from [GRW17] will play an important role in estab-
lishing the X(gN , gϑN)tw-analogue of the above result in §4.4.

Lemma 4.1.3. Fix a tuple (λi(u))i∈I+
N
with λi(u) ∈ 1 + u−1C[[u−1]] for each i ∈ I+

N ,
and let ν(u) be any series of the same form. Then

(1) If N = 2n + 1, then there is a unique N-tuple λ(u) extending (λi(u))i∈I+
N
with

the property that the X(gN)-module M(λ(u)) is non-trivial.

(2) If N = 2n, then for each fixed k ∈ I+
N there exists a unique N-tuple λ(u)

extending (λi(u))i∈I+
N

with the property that λ−k(u) = ν(u) and the X(gN)-
module M(λ(u)) is non-trivial.

Proof. Suppose first that N = 2n+ 1. The condition (4.1.1) forces us to define

λ−1(u) = λ0(u− κ+ n)
λ1(u− κ+ n)λ0(u)
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and recursively

λ−i−1(u) = λi(u− κ+ n− i)
λi+1(u− κ+ n− i)λ−i(u) ∀ 1 ≤ i ≤ n− 1.

In this way we can associate a uniqueN -tuple λ(u) to (λ(u))i∈I+
N
satisfying the claimed

properties.

If instead N = 2n, then the condition (4.1.1) alone no longer uniquely determines
an N -tuple λ(u) from (λ(u))i∈I+

N
. However, fixing k ∈ I+

N and setting λ−k(u) = ν(u),
a simple modification of the argument used in the N = 2n + 1 case shows that the
condition (4.1.1) does produce a unique 2n-tuple with the desired properties.

If M(λ(u)) is non-trivial, then it has a unique irreducible (non-zero) quotient
L(λ(u)), and any irreducible highest weight X(gN)-module with the highest weight
λ(u) is isomorphic to L(λ(u)). In particular, by Theorem 4.1.1 above, every finite-
dimensional irreducible module is isomorphic to a module of this form.

Theorem 4.1.4 ([AMR06, Theorem 5.16]). Let λ(u) satisfy (4.1.1), so the Verma
module M(λ(u)) is non-trivial. Then the irreducible X(gN)-module L(λ(u)) is finite-
dimensional if and only if there exist monic polynomials P1(u), . . . , Pn(u) in u such
that

λi−1(u)
λi(u) = Pi(u+ 1)

Pi(u) for all 2 ≤ i ≤ n,

and in addition

λ0(u)
λ1(u) = P1(u+ 1/2)

P1(u) if gN = so2n+1,

λ−1(u)
λ1(u) = P1(u+ 2)

P1(u) if gN = sp2n,

λ−1(u)
λ2(u) = P1(u+ 1)

P1(u) if gN = so2n.

The polynomials P1(u), . . . , Pn(u) are called the Drinfeld polynomials associated
to L(λ(u)): they are uniquely determined by the highest weight λ(u).

Theorem 4.1.4 gives rise to an elegant parameterization of the set of isomorphism
classes of finite-dimensional irreducible X(gN)-modules. To make this precise, let us
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introduce the notation

Irrepfd(X(gN)) and Irrepfd(Y (gN))

for the set of isomorphism classes of finite-dimensional irreducible X(gN) and Y (gN)
modules, respectively. In general, we shall write [V ] to denote the isomorphism class
of a module V . However, we will drop the brackets when making use of the natural
identification

Irrepfd(X(gN)) = {L(λ(u)) : dimL(λ(u)) <∞} 2

in order to emphasize L(λ(u)) � L(λ](u)) for λ(u) 6= λ](u).

We may now define a function

Irrepfd(X(gN))→ {(Pi(u))ni=1 ∈ C[u]n : Pi(u) monic} (4.1.2)

which assigns to L(λ(u)) the Drinfeld polynomials (Pi(u))ni=1 furnished by Theorem
4.1.4.

It is not difficult to show (using Lemma 4.1.3, for instance) that this is a surjective
function. It is not, however, injective: Two finite-dimensional irreducible modules
L(λ(u)) and L(λ](u)) share the same n-tuple of Drinfeld polynomials if and only if
there is f(u) ∈ 1 + u−1C[[u−1]] such that

L(λ](u)) = m∗f (L(λ(u))),

where mf is the automorphism (2.7.3) (see also (2.4.4)).

The next proposition explains how to modify (4.1.2) to account for this observa-
tion. Recall that y(u) ∈ ZX(gN)[[u−1]] is the central series defined in (2.7.1) (see also
(2.7.18)).

Proposition 4.1.5. The isomorphism classes of finite-dimensional irreducible repre-
sentations of X(gN) are parameterized by tuples

(f(u); (Pi(u))ni=1) ∈ (1 + u−1C[[u−1]])× C[u]n,

2) On the right-hand side it is implictly assumed that L(λ(u)) exists, and thus that λ(u) satisfies
(4.1.1).
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where each Pi(u) is monic.

The underlying correspondence ΓX(gN ) is given

ΓX(gN )(L(λ(u))) = (f(u); (Pi(u))ni=1)), where (4.1.3)

(a) f(u) ∈ 1 + u−1C[[u−1]] is the unique scalar series such that

y(u)|m∗
f

(L(λ(u))) = idm∗
f

(L(λ(u))).

(b) (Pi(u))ni=1 is the n-tuple of Drinfeld polynomials associated to L(λ(u)).

Proof. Assume that L(λ(u)) is finite-dimensional. As y(u) is a central series, it oper-
ates in L(λ(u)) as multiplication by a scalar series f(u)λ ∈ 1+u−1C[[u−1]]. By (2.6.8),
we have

mf (y(u)) = f(u)y(u) ∀ f(u) ∈ 1 + u−1C[[u−1]], (4.1.4)

and hence f(u) = f(u)−1
λ is the unique series such that y(u) operates as the identity

operator in m∗f (L(λ(u))). This justifies the existence of f(u) as in (a), and thus the
existence of ΓX(gN ) as in (4.1.3).

We now establish the bijectivity of this correspondence. By (4.1.4), we have

m∗h(L(λ(u))) 7→ (h(u)−1f(u); (Pi(u))ni=1).

Note that for any fixed λ(u) (and thus fixed (Pi(u))ni=1), h(u)−1f(u) can be made to
take arbitrary values in 1+u−1C[[u−1]] by varying h(u) appropriately. The surjectivity
of ΓX(gN ) thus follows from the surjectivity of (4.1.2).

As h(u)−1f(u) = f(u) if and only if h(u) = 1, we can also conclude from the
discussion preceding the statement of the proposition that ΓX(gN ) is injective.

The following result, which in fact plays a crucial role in the proof of Theorem
4.1.4 (see [AMR06, Theorem 5.16]), illustrates that ΓX(gN ) translates tensor products
of modules to multiplication of polynomials.

Proposition 4.1.6 ([AMR06, Lemma 5.17]). Let ξ ∈ L(λ(u)) and ξ] ∈ L(λ](u)) be
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highest weight vectors. Then the X(gN)-module

X(gN)(ξ ⊗ ξ]) ⊂ L(λ(u))⊗ L(λ](u))

is a highest weight module with the highest weight vector (λi(u)λ]i(u))i∈IN . In partic-
ular, if L(λ(u)) and L(λ](u)) are finite-dimensional with

ΓX(gN )(L(λ(u)) = (f(u), (Pi(u))ni=1) and ΓX(gN )(L(λ](u)) = (f ](u), (P ]
i (u))ni=1),

then the irreducible quotient V of X(gN)(ξ ⊗ ξ]) satisfies

ΓX(gN )([V ]) = (f(u)f ](u), (Pi(u)P ]
i (u))ni=1).

4.1.2 Representations of Y (gN)

Let us now focus on the finite-dimensional irreducible representations of the Yangian
Y (gN). Due to Theorem 2.6.3, one can obtain a classification of such modules from
the results of §4.1.1 with little effort.

Let
εy : X(gN) � Y (gN), T (u) 7→ T (u)

be the natural quotient map. Here the notation comes from the observation that
under the identification

X(gN) ∼= C[yr : r ≥ 1]⊗ Y (gN) ∼= ZX(gN)⊗ Y (gN)

given by Theorem 2.6.3 and Proposition 2.6.6, we have εy = εY⊗ id with εY equal to
the restriction of the counit ε of X(gN) to ZX(gN) (see above Proposition 2.6.9).

Corollary 4.1.7 ([AMR06, Corollary 5.19]).

(1) The function

Γ : Irrepfd(Y (gN))→ Irrepfd(X(gN)), [V ] 7→ [ε∗y(V )]
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is injective with image equal to

{L(λ(u)) ∈ Irrepfd(X(gN)) : y(u)|L(λ(u)) = idL(λ(u))} (4.1.5)

(2) The isomorphism classes of finite-dimensional irreducible Y (gN)-modules are
parameterized by tuples of monic polynomials

(Pi(u))ni=1 ∈ C[u]n.

The parameterization is given by ΓY (gN ) = ΓX(gN ) ◦ Γ.

Proof. It is clear that Γ is injective with image contained in (4.1.5). Suppose that
L(λ(u)) is finite-dimensional and that y(u)|L(λ(u)) is the identity operator. Consider
the Y (gN)-module ι∗(L(λ(u))), where ι : Y (gN) ↪→ X(gN) is the embedding (2.6.6)
(as usual, we drop the subscript R).

As T (u) operates as T (u) in ι∗(L(λ(u))), it is an irreducible Y (gN)-module which
satisfies

ε∗y(ι∗(L(λ(u)))) = L(λ(u)).

Hence ΓY (gN )([ι∗(L(λ(u)))]) = L(λ(u)), and we may conclude that Part (1) of the
corollary holds.

As for Part (2), observe that (4.1.5) is mapped bijectively onto the set of tuples
(1; (Pi(u))ni=1) under ΓX(gN ), which can naturally be identified with the set of n-tuples
of monic polynomials in u. Hence, the desired conclusion follows from Part (1).

We conclude this subsection with a brief discussion of some of the most elementary
finite-dimensional irreducible Y (gN)-modules: the fundamental representations.

Definition 4.1.8. Fix α ∈ C and 1 ≤ i ≤ n. The fundamental representation L(i : α)
is the unique, up to isomorphism, finite-dimensional irreducible representation of
Y (gN) satisfying

ΓY (gN )([L(i : α)]) = (Pj(u))nj=1, where Pj(u) = (u− α)δij .

These representations play an important role in the representation theory of the
Yangian, where they serve as a basic building block. This is illustrated in part by the
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following simple, but deep consequence of Proposition 4.1.6 and Corollary 4.1.7.

Corollary 4.1.9 ([AMR06, Corollary 5.20]). Suppose that V is a finite-dimensional
irreducible Y (gN)-module. Then there is m ≥ 0, 1 ≤ i1, . . . , im ≤ n and α1, . . . , αm ∈
C such that V is isomorphic to the unique irreducible quotient of

Y (gN)(ξ1 ⊗ · · · ⊗ ξm) ⊂ L(i1 : α1)⊗ · · · ⊗ L(im : αm),

where, for each 1 ≤ k ≤ n, ξk ⊂ L(i : α) is a highest weight vector and both sides are
identified with the trivial representation if m = 0.

For an explicit description of the fundamental representations L(i : α) compatible
with the R-matrix presentation of the Yangian, the reader is referred to [AMR06,
§5.4].

4.1.3 From Drinfeld polynomials to dominant integral gN-
weights

Let us now recall some aspects of the representation theory of gN . Following §4.2 of
[Mol07], for any n-tuple

λ = (λ1, . . . , λn) ∈ Cn

we denote by V (λ) the irreducible gN -module with the highest weight λ. That is,
V (λ) is the irreducible module generated by a nonzero vector ξ such that

Fijξ = 0 ∀ i < j ∈ IN ,

Fkkξ = λkξ ∀ 1 ≤ k ≤ n.

The module V (λ) is finite-dimensional if and only if

λi−1 − λi ∈ Z≥0 ∀ 2 ≤ i ≤ n and

−λ1 ∈ Z≥0 if gN = spN ,

−2λ1 ∈ Z≥0 if gN = so2n+1,

−λ1 − λ2 ∈ Z≥0 if gN = so2n.

(4.1.6)
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We can express this in terms of a more standard Chevalley-Serre type Cartan basis
as follows. Following [GRW19a, §3.1]3, we set

(di, hi) = (1, Fi−1,i−1 − Fii) ∀ 2 ≤ i ≤ n and

(d1, h1) =


(2,−2F11) if gN = spN ,

(1/2,−F11) if gN = so2n+1,

(1,−F11 − F22) if gN = so2n.

(4.1.7)

Then the conditions (4.1.6) are equivalent to the requirement that

d−1
i hi(ξ) ∈ Z≥0ξ ∀ 1 ≤ i ≤ n. (4.1.8)

By Theorems 2.5.5 and 2.6.7 and the relations (2.7.17) and (2.7.18), the assignment

Fij 7→ τ
(1)
ij = t

(1)
ij − δijy1 = 1

2(tij − θijt−j,−i) ∀ i, j ∈ IN

extends to an embedding U(gN) ↪→ Y (gN) ⊂ X(gN), and consequently we may regard
any X(gN) or Y (gN) module as a gN -module. Using this embedding and the relations
of Theorem 4.1.4, we deduce the following corollary.

Corollary 4.1.10. Suppose that L(λ(u)) is finite-dimensional with highest weight
vector ξ and Drinfeld tuple P = (Pi(u))ni=1. Then the gN -module U(gN)ξ is a highest
weight module with highest weight λP = (λP,i)ni=1 whose components are given by

λP,i = λP −
i∑

a=2
degPa(u) ∀ 1 ≤ i ≤ n, where

λP =


− degP1(u) if gN = sp2n,

−1
2 degP1(u) if gN = so2n+1,

1
2(degP2(u)− degP1(u)) if gN = so2n.

(4.1.9)

Equivalently, we have

d−1
i hi(ξ) = degPi(u)ξ ∈ Z≥0ξ ∀ 1 ≤ i ≤ n.

3) To obtain the formulation given in [GRW19a], (di, hi) should be replaced with (di−1, hi−1).
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4.2 Highest weight theory for twisted Yangians

In this section, we develop a highest weight theory for representations of the extended
twisted Yangians X(gN , gϑN)tw of type B, C and D considered in Chapter 3.

4.2.1 From twisted Yangians to extended twisted Yangians

Before getting into the heart of the matter, it is worth taking a moment to explain
the emphasis on the extended twisted Yangian X(gN , gϑN)tw rather than the twisted
Yangian Y (gN , gϑN)tw itself. Let

εϑ : X(gN , gϑN)tw � Y (gN , gϑN)tw, S(u) 7→ S(u)

be the natural quotient homomorphism, as in (3.3.27). Recall that, under the iden-
tification

X(gN , gϑN)tw ∼= ZX(gN , gϑN)tw ⊗ Y (gN , gϑN)tw

provided by Theorem 3.3.14, εϑ = ε|ZX(gN ,gϑN )tw ⊗ id, where ε is the counit of X(gN).
Equivalently, εϑ = εy|X(gN ,gϑN )tw , where εy is as in §4.1.2.

Following §4.1.2, we will use the notation

Irrepfd(X(gN , gϑN)tw) and Irrepfd(Y (gN , gϑN)tw)

to denote the set of isomorphism classes of all finite-dimensional irreducible represen-
tations of X(gN , gϑN)tw and Y (gN , gϑN)tw, respectively. As in §4.1, we will generally
write [V ] for the isomorphism class of a module V .

Lemma 4.2.1. The function

Γϑ : Irrepfd(Y (gN , gϑN)tw)→ Irrepfd(X(gN , gϑN)tw), [V ] 7→ [ε∗ϑ(V )]

is injective with image equal to

{[V ] ∈ Irrepfd(X(gN , gϑN)tw) : q(u)|V = idV }.
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Moreover, for each [V ] ∈ Irrepfd(X(gN , gϑN)tw), there exists a unique series

g(u) ∈ 1 + u−1C[[u−1]] with g(u) = g(κ− u)

such that [ν∗g (V )] ∈ Im(Γϑ).

Proof. The first part of the lemma is proven using the same argument as used to
establish Part (1) of Corollary 4.1.7. It thus suffices to show that, if V is a finite-
dimensional irreducible X(gN , gϑN)tw-module, then there is a unique element g(u) of
1 + u−1C[[u−1]] with g(u) = g(κ− u) and

q(u)|ν∗g (V ) = idν∗g (V ). (4.2.1)

As q(u) is a central series, it operates in V as multiplication by a scalar series qV (u).
Since q(u) satisfies q(u) = q(κ − u), we also have qV (u) = qV (κ − u). By (3.3.20),
q(u) satisfies

νg(q(u)) = g(u)q(u) ∀ g(u) ∈ 1 + u−1C[[u−1]] with g(u) = g(κ− u).

Therefore, g(u) = qV (u)−1 is the unique series such that (4.2.1) holds.

Remark 4.2.2. By Corollary 3.3.8, ν∗g (V ) and V are always identical as Y (gN , gϑN)tw-
modules. A right inverse to Γϑ is thus given by

[V ] 7→ [ι∗ϑ(V )],

where ιϑ is the natural embedding of Y (gN , gϑN)tw into X(gN , gϑN)tw.

Our goal is to develop a highest weight theory for X(gN , gϑN)tw which will al-
low us to simultaneously classify the finite-dimensional irreducible representations of
X(gN , gϑN)tw and Y (gN , gϑN)tw using the above lemma, in the same way that Part
(1) of Corollary 4.1.7 allowed us to pass from the parameterization of Irrepfd(X(gN))
given by Proposition 4.1.5 to the parameterization of Irrepfd(Y (gN)) by Drinfeld poly-
nomials given in Part (2) of Corollary 4.1.7.
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4.2.2 Definitions and first results

Definition 4.2.3. A representation V of X(gN , gϑN)tw is called a highest weight rep-
resentation if there exists a nonzero vector ξ ∈ V such that V = X(gN , gϑN)twξ and

sij(u)ξ = 0 ∀ i < j ∈ IN ,

sii(u)ξ = µi(u)ξ ∀ i ∈ I+
N ,

where each µi(u) is a formal power series in C[[u−1]] of the form

µi(u) = gii +
∞∑
r=1

µ
(r)
i u−r, µ

(r)
i ∈ C.

The vector ξ is called the highest weight vector and (N −n)-tuple µ(u) = (µi(u))i∈I+
N

is called the highest weight.

Given a highest weight representation V with highest weight vector ξ, a natural
question to ask is whether or not ξ is a simultaneous eigenvector for the diagonal
elements s−i,−i(u) with 1 ≤ i ≤ n. This is indeed the case. By the symmetry relation
(3.3.41) we have

s−i,−i(u)+ 1
2u− 2κ

n∑
`=1

s−`,−`(u)

= p(u)sii(κ− u)± sii(u)
2u− κ −

1
2u− 2κ

∑
`∈I+

N

s``(u).
(4.2.2)

Summing over 1 ≤ i ≤ n yields

(2u− 2κ+ n

2u− 2κ

) n∑
`=1

s−`,−`(u)

=
n∑
`=1

(
p(u)s``(κ− u)± s``(u)

2u− κ

)
− n

2u− 2κ
∑
`∈I+

N

s``(u).
(4.2.3)

Substituting this equation back into (4.2.2) leads to the following result.

Proposition 4.2.4. Let V be a highest weight representation of X(gN , gϑN)tw with
the highest weight vector ξ and the highest weight µ(u). Then ξ is an eigenvector for
the action of s−i,−i(u) for all 1 ≤ i ≤ n. More explicitly, for each 1 ≤ i ≤ n we have
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the relation:

(2κ− 2u− n)s−i,−i(u)ξ

=
n∑
`=1

βi,`(u)
(
p(u)µ`(κ− u)± µ`(u)

2u− κ

)
ξ +

∑
`∈I+

N

µ`(u)ξ, (4.2.4)

where βi,`(u) = 1 if ` 6= i and βi,`(u) = (2κ− 2u− n+ 1) otherwise.

Given a highest weight µ(u), we shall frequently make use of the corresponding
tuple µ̃(u) = (µ̃i(u))i∈I+

N
whose components are given by

µ̃i(u) = (2u− n+ i)µi(u) +
n∑

`=i+1
µ`(u) ∀ i ∈ I+

N . (4.2.5)

The following proposition imposes one important restriction on µ̃0(u).

Proposition 4.2.5. Suppose that gN = so2n+1 and let V be a highest weight repre-
sentation of X(gN , gϑN)tw with the highest weight µ(u). Then the series µ̃0(u) satisfies

ug(u)µ̃0(κ− u) = (κ− u) g(κ− u)µ̃0(u), (4.2.6)

where g(u) is the rational function of u defined in (3.3.3).

Proof. Let ξ ∈ V be a highest weight vector. By the symmetry relation (3.3.41) we
have

s00(u) = p(u)s00(κ− u) + s00(u)
2u− κ −

tr(S(u))
2u− 2κ ,

which can be rearranged to

(
1− 1

2u− κ + 1
2u− 2κ

)
s00(u) + 1

2u− 2κ

n∑
`=1

s``(u)

= p(u)s00(κ− u)− 1
2u− 2κ

n∑
`=1

s−`,−`(u).
(4.2.7)

Multiplying both sides of this relation by (2κ− 2u− n) and substituting in relation
(4.2.3), the right-hand side becomes:

p(u)
(

(2κ− 2u− n)s00(κ− u) +
n∑
`=1

s``(κ− u)
)
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+
( 1

2u− κ −
n

2u− 2κ

) n∑
`=1

s``(u)− n

2u− 2κs00(u).

Therefore, on Cξ, (4.2.7) can be expressed as

p(u)µ̃0(κ− u)

= (2u− n)
(
−1− 1

2u− κ

)
µ0(u) +

(
−1− 1

2u− κ

) n∑
`=1

µ`(u).

Using Proposition 3.3.3, we deduce that the relation (4.2.6) follows from

− 1− 1
2u− κ = pI(u)κ− u

u
, (4.2.8)

which is readily verified using (3.3.7), as in the type CI and DIII instances of Propo-
sition 3.3.3.

Recall from Lemma 3.2.5 that the family of generators {F ϑ
ij}i,j∈IN ⊂ U(gϑN) are

defined by
F ϑ
ij = (gii + gjj)Fij ∀ i, j ∈ IN .

Using the embedding of Corollary 3.3.11, we may restrict the adjoint action of
Lie(X(gN , gϑN)tw) to gϑN . Appealing to the explicit form of the reflection equation
(3.3.42), we find that the resulting gϑN -module structure on X(gN , gϑN)tw is given by

[F ϑ
ij, sk`(v)]

= (gii + gjj) (δkjsi`(v)− δi`skj(v)− δk,−iθijs−j,`(v) + δ`,−jθijsk,−i(v)) .
(4.2.9)

Recall from (3.1.1) that our fixed choice of Cartan subalgebra for gN is

hN = spanC{Fii : 1 ≤ i ≤ n}.

As the involution ϑ satisfies
ϑ|hN = idhN ,

hN is also a Cartan subalgebra for gϑN . For each 1 ≤ i ≤ n, define εi ∈ h∗N by

εi(Fkk) = δik ∀ 1 ≤ k ≤ n.
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In addition, define auxiliary elements αk,` ∈ h∗N by

αk,` = sign(k)ε|k| − sign(`)ε|`| ∀ k, ` ∈ IN ,

where ε0 is the zero functional. Then from equation (4.2.9) we obtain

[F ϑ
ii , sk`(v)] = 2gii (δik − δi` − δi,−k + δi,−`) sk`(v) = αk,`(F ϑ

ii )sk`(v) (4.2.10)

for all 1 ≤ i ≤ n and k, ` ∈ IN .

Let ∆+ be the standard set of positive roots of gN for our choice of hN (as in
[AMR06]), so

∆+ = {αk,` : k < ` ∈ IN and (k, `) ∈ BN} ,

where BN is defined in (3.1.2). Let � be the corresponding partial ordering on h∗N .
That is, � is defined by

µ � λ ⇐⇒ λ− µ ∈ Q+ =
∑
α∈∆+

Z≥0α.

We are now in a position to prove the first theorem of this section.

Theorem 4.2.6. Every finite-dimensional irreducible representation V of the twisted
Yangian X(gN , gϑN)tw is a highest weight representation. Additionally, V contains a
unique highest weight vector ξ up to scalar multiplication.

Proof. Define the subspace V 0 of V by

V 0 = {ξ ∈ V : sij(u)ξ = 0 ∀ i < j ∈ IN}.

Step 1: V 0 is nonzero.

Via the embedding gϑN ↪→ X(gN , gϑN)tw, we may view V as a gϑN -module. Since V
is finite-dimensional, the F ϑ

ii have a mutual weight vector ξ. Let L be the set of all
weights of the gϑN -module V , so L is a nonempty finite set. Therefore, there exists
µ ∈ L such that µ+αk,` is not a weight for any k < ` ∈ IN . Then the µ-weight vector
ξ must belong to V 0. Indeed, suppose there exists k < ` ∈ IN such that sk`(u)ξ 6= 0.
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Then from (4.2.10) we obtain:

F ϑ
ii (sk`(v)ξ) = (αk,` + µ) (F ϑ

ii )sk`(v)ξ

for all 1 ≤ i ≤ n. This contradicts the maximality of µ, and so we must have ξ ∈ V 0.
Therefore V 0 is nonzero.

Step 2: The subspace V 0 is preserved by the operators sii(u) for all i ∈ I+
N .

We will consider separately the cases when N is even and when N is odd.

Step 2.1: N = 2n.

By definition of V 0, we must show that sk`(u)sii(v) ≡ 0 for all k < ` and 1 ≤ i ≤ n,
where ≡ denotes equality of operators on V 0.

Claim: It suffices to show that

sk`(u)sii(v) ≡ 0, s−k,`(u)sii(v) ≡ 0 and s−j,j(u)sii(v) ≡ 0

for all 0 < k < ` and i, j > 0.

This claim follows from the symmetry relation (3.3.41).

Step 2.1.1: sk`(u)sii(v) ≡ 0 for all 0 < k < ` and i > 0.

Assume first that k < i. Then it is immediate from (3.3.42) and the relation

sk`(u)sii(v) ≡ [sk`(u), sii(v)]

that sk`(u)sii(v) ≡ 0 unless i = `. If i = `, we obtain

sk`(u)s``(v) ≡ 1
u+ v

n∑
a=`

ska(u)sa`(v),

and thus for a ≥ ` > k, (3.3.42) yields

ska(u)sa`(v) ≡ [ska(u), sa`(v)] ≡ 1
u+ v

n∑
b=`

skb(u)sb`(v) ≡ sk`(u)s``(v).
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Therefore we obtain (
1− n− `+ 1

u+ v

)
sk`(u)s``(v) ≡ 0,

and so we must have sk`(u)s``(v) ≡ 0, as desired.

If instead k ≥ i, then we write [sk`(u), sii(v)] = −[sii(v), sk`(u)]. Relation (3.3.42)
then gives

[sii(v), sk`(u)] ≡ δik
v + u

n∑
a=`

sia(v)sa`(u)− 1
v2 − u2

n∑
a=`

(ska(v)sa`(u)− ska(u)sa`(v))

≡
(

δik
v + u

− 1
v2 − u2

)
n∑
a=`

ska(v)sa`(u) + 1
v2 − u2

n∑
a=`

ska(u)sa`(v).

From the above proof that sk`(u)s``(v) ≡ 0, we see that the right-hand side of the
previous line is ≡ 0. This completes the proof that sk`(u)sii(v) ≡ 0 for all 0 < k < `

and i > 0.

Step 2.1.2: s−k,`(u)sii(v) ≡ 0 for all i > 0 and ` > k > 0.

This is an immediate consequence of relation (3.3.42) unless i = ` or i = k. The
case i = ` is similar to Step 2.1.1, so we concentrate on the case i = k. By (3.3.42)
we have

s−k,`(u)skk(v) ≡− 1
u− v − κ

n∑
a=k

s−a,`(u)sak(v)

+ 1
(u+ v)(u− v − κ)

n∑
a=k

s−`,a(u)sak(v).
(4.2.11)

Since s−a,`(u)sak(v) ≡ [s−a,`(u), sak(v)], for a ≥ k we have

s−a,`(u)sak(v) ≡ δa`
u+ v

n∑
b=k

s−a,b(u)sbk(v)

− 1
u− v − κ

(
n∑
b=k

s−b,`(u)sbk(v)− 1
u+ v

n∑
b=k

s−`,b(u)sbk(v)
)

≡ δa`
u+ v

n∑
b=k

s−`,b(u)sbk(v) + s−k,`(u)skk(v).
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Substituting this result back into (4.2.11), we obtain
(

1 + n− k + 1
u− v − κ

)
s−k,`(u)skk(v) ≡ 0

and so we must have s−k,`(u)skk(v) ≡ 0 whenever 0 < k < `.

Step 2.1.3: s−j,j(u)sii(v) ≡ 0 for all i, j > 0.

To begin, it is an immediate consequence of (3.3.42) that s−j,j(u)sii(v) ≡ 0 unless
i = j, so without loss of generality we may assume i = j. We have

[s−i,i(u), sii(v)] ≡
(

1
u+ v

+ 1
(u+ v)(u− v − κ)

)
n∑
a=i

s−i,a(u)sai(v)

− 1
u− v − κ

n∑
a=i

s−a,i(u)sai(v).
(4.2.12)

Let us compute s−a,i(u)sai(v) for a > i. From (3.3.42) we see that

s−a,i(u)sai(v)

≡ − 1
u− v − κ

n∑
b=i

s−b,i(u)sbi(v) + 1
(u+ v)(u− v − κ)

n∑
b=i

s−i,b(u)sbi(v)

≡ [s−i,i(u), sii(v)]− 1
u+ v

n∑
a=i

s−i,a(u)sai(v),

where the second equivalence follows from (4.2.12). Substituting this result back into
relation (4.2.12), we get

(
1 + n− i+ 1

u− v − κ

)
[s−i,i(u), sii(v)]

≡
(

1
u+ v

+ n− i+ 1
(u− v − κ)(u+ v)

)
n∑
a=i

s−i,a(u)sai(v),

from which we obtain

[s−i,i(u), sii(v)] ≡ 1
u+ v

n∑
a=i

s−i,a(u)sai(v). (4.2.13)
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By (3.3.42), we have that for all a > i

s−i,a(u)sai(v) = 1
u+ v

n∑
b=i

s−i,b(u)sbi(v).

Substituting this into (4.2.13) leads to [s−i,i(u), sii(v)] ≡ 0. This completes the proof
of Step 2 when N = 2n.

Step 2.2: N = 2n+ 1.

The argument is essentially the same in this case. By the symmetry relation
(3.3.41), it suffices to show that

sk`(u)sii(v), s−k,`(u)sii(v), s−j,j(u)sii(v) and s0j(u)sii(v)

all vanish on V 0 whenever 0 < k < `, j > 0 and i ≥ 0.

Step 2.2.1: sk`(u)sii(v), s−k,`(u)sii(v) and s−j,j(u)sii(v) operate as zero on V 0 when-
ever 0 < k < `, j > 0 and i ≥ 0.

The same arguments as those given for the N = 2n case show that

sk`(u)sii(v) ≡ s−k,`(u)sii(v) ≡ s−j,j(u)sii(v) ≡ 0

whenever i, j > 0 and ` > k > 0. Moreover, given the same restrictions on j, ` and k,
the reflection equation (3.3.42) immediately yields

s−k,`(u)s00(v) ≡ s−j,j(u)s00(v) ≡ 0.

Additionally, if 0 < k < ` then sk`(u)s00(v) ≡ −[s00(v), sk`(u)] and (3.3.42) gives

[s00(v), sk`(u)] ≡ − 1
v2 − u2

n∑
a=`

(ska(v)sa`(u)− ska(u)sa`(v)).

By the same argument as in Step 2.1.1, the right-hand side vanishes.

Step 2.2.2: s0j(u)sii(v) ≡ 0 for all j > 0 and i ≥ 0.

Assume first i > 0. Then (3.3.42) implies that s0j(u)sii(v) ≡ 0 unless i = j.
Moreover, the proof that s0j(u)sjj(v) ≡ 0 proceeds identically to the proof that
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s−k,`(u)s``(v) ≡ 0 for all ` > k > 0.

To prove that s0j(u)s00(v) ≡ 0 for all j > 0, note first that

s0j(u)s00(v) ≡ −[s00(v), s0j(u)]

and hence, by (3.3.42), we have

[s00(v), s0j(u)] ≡
(

1− 1
v − u

+ 1
v − u− κ

)
B(v, u)

+ 1
v − u

B(u, v)− 1
v − u− κ

n∑
a=j

s−a,0(v)saj(u),
(4.2.14)

where B(u, v) = 1
u+v

∑n
a=j s0a(u)saj(v). However, since s0j(u)sjj(v) ≡ 0 by the previ-

ous step, (3.3.42) yields

0 ≡ s0j(u)sjj(v) ≡ 1
u+ v

n∑
a=j

s0a(u)saj(v) = B(u, v),

and the symmetry relation (3.3.41) gives

n∑
a=j

s−a,0(v)saj(u) ≡ p(v)(κ− v + u)B(κ− v, u)± v + u

2v − κB(v, u) ≡ 0.

Therefore, by (4.2.14) we have s0j(u)sjj(v) ≡ 0 for all j > 0.

Step 3: Viewed as operators on V 0, sii(u) and sjj(v) commute for all i, j ∈ I+
N .

Again, we will treat the cases N = 2n and N = 2n+ 1 separately.

Step 3.1: N = 2n.

Let us define the operator Aij(u, v) on V 0 by

Aij(u, v) = sij(u)sji(v)− sij(v)sji(u). (4.2.15)

As a consequence of (3.3.42) we have:

Aii(u, v) ≡ 1
u+ v

n∑
a=i

Aia(u, v). (4.2.16)
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On the other hand, for 0 < i < j we have sji(v)sij(u) ≡ sji(u)sij(v) ≡ 0, and hence
we can rewrite Aij(u, v) as

Aij(u, v) ≡ [sij(u), sji(v)] + [sji(u), sij(v)].

Using (3.3.42) to compute [sij(u), sji(v)] and [sji(u), sij(v)], we obtain

Aij(u, v) ≡ 1
u− v

([sii(u), sjj(v)] + [sjj(u), sii(v)])

+ 1
u+ v

 n∑
a=i

Aia(u, v) +
n∑
a=j

Aja(u, v)
 . (4.2.17)

We apply (3.3.42) again to compute

[sii(u), sjj(v)] ≡ − 1
u2 − v2

n∑
a=j

Aja(u, v), (4.2.18)

from which it follows that [sii(u), sjj(v)] + [sjj(u), sii(v)] ≡ 0. Combining this with
(4.2.16), equation (4.2.17) can be rewritten as

Aij(u, v) ≡ Aii(u, v) + Ajj(u, v). (4.2.19)

Taking the sum as j goes from i+ 1 to n and adding Aii(u, v) to both sides we arrive
at the relation

n∑
j=i

Aij(u, v) ≡ (n− i+ 1)Aii(u, v) +
n∑

j=i+1
Ajj(u, v).

However, by (4.2.16), the left hand side is equivalent to (u + v)Aii(u, v), so we may
rewrite the above as

(u+ v − n+ i− 1)Aii(u, v) ≡
n∑

j=i+1
Ajj(u, v).

A simple downward induction on i then proves that Aii(u, v) ≡ 0 for all i ∈ I+
N .

Since Aii(u, v) = [sii(u), sii(v)], this proves that sii(u) and sii(v) commute for all
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i ∈ I+
N . Moreover, combining equations (4.2.18) and (4.2.16), we have that

[sii(u), sjj(v)] ≡ − 1
u2 − v2

n∑
a=j

Aja(u, v) ≡ − 1
u− v

Ajj(u, v) ≡ 0 (4.2.20)

for all j > i > 0.

Step 3.2: N = 2n+ 1.

The arguments from Step 3.1 show that [sii(u), sjj(v)] ≡ 0 whenever 1 ≤ i, j ≤ n,
so it suffices to show that [s00(u), sjj(v)] ≡ 0 for all j ≥ 0. Suppose first that j > 0.
Then by (3.3.42) and (4.2.20), we have

[s00(u), sjj(v)] ≡ − 1
u2 − v2

n∑
a=j

Aja(u, v) ≡ − 1
u− v

Ajj(u, v) ≡ 0. (4.2.21)

Hence, it remains to see [s00(u), s00(v)] ≡ 0. The same calculations as those used to
obtain (4.2.17) give

A0j(u, v) ≡ 1
u+ v

n∑
a=0

A0a(u, v) ∀ j > 0. (4.2.22)

Summing this expression over 1 ≤ j ≤ n and adding A00(u, v) to both sides yields

A00(u, v) ≡ (u+ v − n)A0j(u, v) ∀ j > 0. (4.2.23)

It follows from (3.3.42) that
(

1− 1
u− v

+ 1
u+ v − κ

− 1
(u− v)(u+ v − κ)

)
A00(u, v)

≡
(

1− 1
u− v

+ 1
u− v − κ

) 1
u+ v − n

A00(u, v)

− 1
u− v − κ

n∑
a=0

(s−a,0(u)sa0(v)− s0a(v)s0,−a(u))

− 1
(u− v − κ)(u+ v − κ)

0∑
a=−n

[saa(u), s00(v)].

(4.2.24)
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Since [saa(u), s00(v)] ≡ 0 for any a > 0, the symmetry relation (3.3.41) implies that

[s−a,−a(u), s00(v)] ≡ − 1
2u− 2κ

n∑
b=0

[s−b,−b(u), s00(v)]. (4.2.25)

Taking the sum of both sides as a goes from 1 to n and adding A00(u, v), we obtain
the two identities

(
1 + n

2u− 2κ

) n∑
b=0

[s−b,−b(u), s00(v)] ≡ A00(u, v),

(2κ− 2u− n)[s−a,−a(u), s00(v)] ≡ A00(u, v),
(4.2.26)

for any a > 0.

On the other hand, the explicit form of the defining reflection equation (3.3.42)
implies that

[s−a,−a(u), s00(v)] ≡ − 1
u2 − v2

n∑
b=0

A0b(u, v) + 1
(u− v)(u+ v − κ)A0a(u, v)

− 1
u+ v − κ

(s−a,0(u)sa0(v)− s0a(v)s0,−a(u)).

Multiplying both sides by (u+ v−n) and appealing to (4.2.22), (4.2.23) and (4.2.26)
we obtain(

u+ v − n
2κ− 2u− n + 1

u− v
− 1

(u− v)(u+ v − κ)

)
A00(u, v)

≡ −
(
u+ v − n
u+ v − κ

)
(s−a,0(u)sa0(v)− s0a(v)s0,−a(u))

for any a > 0. Taking the sum of both sides as a goes from 1 to n, adding
−u+v−n
u+v−κA00(u, v), and then multiplying both sides by u+v−κ

u+v−n we get

n(u+ v − κ)
2κ− 2u− n + n(u+ v − κ)

(u− v)(u+ v − n) −
n

(u− v)(u+ v − n) − 1
A00(u, v)

≡ −
n∑
a=0

(s−a,0(u)sa0(v)− s0a(v)s0,−a(u)). (4.2.27)
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Substituting (4.2.27) and (4.2.26) into (4.2.24), we obtain a relation of the form

f(u, v)A00(u, v) ≡ 0 with f(u, v) ∈ 1 + u−1C[v][[u−1]].

This implies that we must have A00(u, v) ≡ 0.

Step 4: V is a highest weight representation.

By Step 2, we may view {s(r)
ii }i∈I+

N ,r∈N
as a family of linear endomorphisms of V 0.

By Step 3, this is a commutative family, and hence has a common eigenvector ξ ∈ V 0.
That is, there is {µ(r)

i }i∈I+
N ,r∈N

⊂ C such that

sii(u)ξ = µi(u)ξ, where µi(u) = gii +
∞∑
r=1

µ
(r)
i u−r ∀ i ∈ I+

N .

Therefore, the submodule X(gN , gϑN)twξ is a highest weight representation with high-
est weight vector ξ and highest weight (µi(u))i∈I+

N
. As V was assumed to be irre-

ducible, we must have V = X(gN , gϑN)twξ. This proves that every finite-dimensional
irreducible representation of X(gN , gϑN)tw is a highest weight representation.

Step 5: Uniqueness of the highest weight vector.

Let µ ∈ h∗N be the weight of the gϑN -module V corresponding to ξ, so

µ(F ϑ
ii ) = µ

(1)
i − ḡii ∀ 1 ≤ i ≤ n.

As the central series q(u) must act as a scalar series multiple of idV , Corollary 3.3.12
implies that V is spanned by elements of the form

s
(r1)
j1,i1 · · · s

(rm)
jm,imξ (4.2.28)

with ja > ia, (ja, ia) ∈ BN (see (3.1.2)), ra ≥ 1 for all 1 ≤ a ≤ m, and m ≥ 0. It
follows by (4.2.10) that v ∈ V can only belong to the µ-weight space Vµ if v ∈ C · ξ,
thus Vµ is one dimensional, and moreover any other weight λ of V satisfies λ ≺ µ.

We now determine how the coefficients of the distinguished central series w(u)
(see (3.3.14)) act on any highest weight representation of X(gN , gϑN)tw.
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Proposition 4.2.7. Let V be a highest weight representation of X(gN , gϑN)tw with
the highest weight µ(u). Then

w(u)|V = µn(−u)µn(u)idV .

Proof. Let ξ ∈ V be the highest weight vector. Since the coefficients of w(u) belong to
the center ZX(gN , gϑN)tw and V is spanned by elements of the form given in (4.2.28),
the action of the 2r-th coefficient w2r of w(u) on V is completely determined by its
action on ξ. By (3.3.14) we have the relation S(u)S(−u) = w(u) · I. Applying the
(n, n)th entry of both sides to the highest weight vector ξ we obtain

w(u)ξ =
∑
`∈IN

sn`(u)s`n(−u)ξ = snn(u)snn(−u)ξ = µn(−u)µn(u)ξ.

4.2.3 Verma modules and tensor products

We now introduce a universal highest weight module associated to any highest weight.
As usual, these are called Verma modules.

Definition 4.2.8. Let µ(u) = (µi(u))i∈I+
N

with µi(u) in gii + u−1C[[u−1]] for each
i ∈ I+

N . We define the Verma module M(µ(u)) over X(gN , gϑN)tw as the quotient

M(µ(u)) = X(gN , gϑN)tw/J

where J is left ideal of X(gN , gϑN)tw generated by the coefficients of

sij(u) ∀ i < j ∈ IN ,

skk(u)− µk(u) ∀ k ∈ I+
N .

We will see in Theorem 4.4.4 below that, similarly to the Verma modules for
X(gN) (see Proposition 4.1.2), some choices of µ(u) may result in M(µ(u)) being
trivial. In fact, by Proposition 4.2.5, we already know that in the type B case µ̃0(u)
necessarily satisfies the invariance relation (4.2.6) whenever M(µ(u)) is non-trivial.

If M(µ(u)) is non-trivial, then it is a highest weight module with the highest
weight µ(u) and the highest weight vector 1µ(u) equal to the image of the identity
element 1 ∈ X(gN , gϑN)tw under the natural quotient map X(gN , gϑN)tw �M(µ(u)).
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As a consequence of Corollary 3.3.12, M(µ(u)) is spanned by elements of the form

s
(r1)
j1,i1 · · · s

(rm)
jm,im1µ(u)

with ja > ia, (ja, ia) ∈ BN (see (3.1.2)), ra ≥ 1 for all 1 ≤ a ≤ m, and m ≥ 0. Using
this fact, together with the commutator relation (4.2.10), one can prove the following
standard result.

Proposition 4.2.9. Suppose µ(u) = (µi(u))i∈I+
N

is such that the Verma module
M(µ(u)) is non-trivial. Then

(1) If K is a submodule of M(µ(u)), then K = ⊕
λKλ where

Kλ = {v ∈ K : F ϑ
iiv = λiv ∀ 1 ≤ i ≤ n} = M(µ(u))λ ∩K.

(2) If K is a proper submodule of M(µ(u)), then K ⊆⊕λ 6=µM(µ(u))λ, where

µ = (µ(1)
i − ḡii)i∈I+

N
.

(3) M(µ(u)) admits a unique irreducible quotient V (µ(u)).

(4) Any irreducible highest weight X(gN , gϑN)tw-module with the highest weight µ(u)
is isomorphic to V (µ(u)).

Recall from the proof of Theorem 4.2.6 that, given an X(gN , gϑN)tw-module V , V 0

is the subspace
V 0 = {ξ ∈ V : sij(u)ξ = 0 ∀ i < j ∈ IN}.

The next corollary follows from a modification of the proof of the uniqueness of the
highest weight vector in Theorem 4.2.6 and is analogous to Corollaries 3.2.8 and 4.2.7
of [Mol07].

Corollary 4.2.10. Assume that the Verma module M(µ(u)) is non-trivial and let
ξ ∈ V (µ(u)) be a highest weight vector. Then V (µ(u))0 = Cξ.

Since X(gN , gϑN)tw is a left coideal subalgebra of X(gN), the tensor product of
an X(gN)-module L and an X(gN , gϑN)tw-module V inherits the structure of an
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X(gN , gϑN)tw-module via the coproduct ∆ (see Lemma 3.3.7). More explicitly, for
all x ∈ X(gN , gϑN)tw, the action on L⊗ V is given by

x · w ⊗ v = ∆(x)(w ⊗ v) ∀ w ∈ L and v ∈ V.

In particular, we may take L = L(λ(u)) for some N -tuple λ(u) = (λi(u))i∈IN satisfy-
ing (4.1.1), and V = V (µ(u)), where µ(u) is such that the Verma module M(µ(u)) is
non-trivial. If L(λ(u)) has the highest weight vector ξ and V (µ(u)) has the highest
weight vector η, then we may consider the X(gN , gϑN)tw-module

X(gN , gϑN)tw(ξ ⊗ η).

Our present goal is to show that this module is of highest weight type, and to compute
its highest weight explicitly.

Set t′ij(u) = θijt−j,−i(u) for all i, j ∈ IN . After rewriting

[tij(u), t′kl(v)] = −[t′kl(v), tij(u)],

the defining relation (2.7.16) of X(gN) takes the form

[tij(u), t′kl(v)] = 1
v − u

(
θj,−kti,−k(u)t′−j,l(v)− θi,−lt′k,−i(v)t−l,j(u)

)
− 1
v − u− κ

∑
a∈IN

(
δjktia(u)t′al(v)− δilt′ka(v)taj(u)

)
.

(4.2.29)

Recall that, given a tuple of series µ(u) = (µi(u))i∈I+
N
, µ̃(u) = (µ̃i(u))i∈I+

N
is the

corresponding tuple whose components have been defined in (4.2.5).

Proposition 4.2.11. Let ξ ∈ L(λ(u)) and η ∈ V (µ(u)) be highest weight vectors.
Then X(gN , gϑN)tw(ξ ⊗ η) is a highest weight X(gN , gϑN)tw-module with the highest
weight vector ξ ⊗ η, and the highest weight γ(u) = (γi(u))i∈I+

N
whose components are

determined by the relations

γ̃i(u) = µ̃i(u)λi(u− κ/2)λ−i(−u+ κ/2) ∀ i ∈ I+
N . (4.2.30)

Proof. We will use the symbol ≡ to denote equality of operators on the spaces C(ξ⊗η)
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or Cξ. We begin by showing that

sij(u) · (ξ ⊗ η) = 0 ∀ i < j.

By the symmetry relation (3.3.41), it is enough to consider the cases where i < 0 < j

or 0 ≤ i < j. By (3.3.17), we have

∆(sij(u)) ≡
∑
b≤a

tia(u− κ/2)t′bj(−u+ κ/2)⊗ sab(u).

Moreover, we have t′bj(v)ξ = 0 whenever b < j, so we can assume b ≥ j. Since
i < j ≤ b ≤ a, we have tia(u)ξ = 0 and also a, b > 0 since j > 0. By (4.2.29), we have

tia(u)t′bj(v) ≡ δab
u− v + κ

n∑
c=j

tic(u)t′cj(v). (4.2.31)

Taking a = b in the above and summing over a ≥ j gives

n∑
a=j

tia(u)t′aj(v) ≡ n− j + 1
u− v + κ

n∑
a=j

tia(u)t′aj(v).

It follows from this that the right-hand side of (4.2.31) vanishes. This completes the
proof that ∆(sij(u))(ξ ⊗ η) = 0 for all i < j.

Next, we compute ∆(sii(u))(ξ ⊗ η) for all i ∈ I+
N . Using computations similar to

those above, one can argue that tia(u)t′bi(v)ξ = 0 whenever a > b. Thus,

∆(sii(u))(ξ ⊗ η)

=
n∑
a=i

tia(u− κ/2)t′ai(−u+ κ/2)ξ ⊗ saa(u)η = (ŝii(u)ξ)⊗ η,
(4.2.32)

where ŝii(u) is the operator defined by the formula

ŝii(u) =
n∑
a=i

µa(u)tia(u− κ/2)t′ai(−u+ κ/2).

As a consequence of our work so far, it remains only to determine the eigenvalue γi(u)
of the operator ŝii(u) corresponding to the vector ξ. Define the operator Ai(u) by the
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formula
Ai(u) =

n∑
a=i

tia(u− κ/2)t′ai(−u+ κ/2). (4.2.33)

We first show that Ai(u)ξ = µ•i (u)ξ for some scalar series µ•i (u). By (4.2.29), for all
a > i ≥ 0, we have

tia(u− κ/2)t′ai(−u+ κ/2)

≡ 1
2u

(
n∑
b=i

tib(u− κ/2)t′bi(−u+ κ/2)−
n∑
b=a

t′ab(−u+ κ/2)tba(u− κ/2)
)
.

(4.2.34)

This implies that

Ai(u) ≡ tii (u− κ/2) t′ii (−u+ κ/2) + n− i
2u Ai(u)− 1

2u

n∑
a=i+1

Ba(u),

where
Ba(u) =

n∑
b=a

t′ab (−u+ κ/2) tba (u− κ/2) .

Consequently,

2u− n+ i

2u Ai(u) ≡ tii (u− κ/2) t′ii (−u+ κ/2)− 1
2u

n∑
a=i+1

Ba(u). (4.2.35)

Using the same method, one shows using (4.2.29) that

2u− n+ i

2u Bi(u) ≡ tii (u− κ/2) t′ii (−u+ κ/2)− 1
2u

n∑
a=i+1

Aa(u) (4.2.36)

for all i ∈ I+
N . An easy downward induction then shows

Bi(u) ≡ Ai(u) ∀ i ∈ I+
N .

Substituting this result back into (4.2.35), we obtain

2u− n+ i

2u Ai(u) ≡ tii (u− κ/2) t′ii(−u+ κ/2)− 1
2u

n∑
a=i+1

Aa(u). (4.2.37)

It follows by downward induction on i ∈ I+
N that there is a tuple of formal series

µ•(u) = (µ•i (u))i∈I+
N
such that Ai(u)ξ = µ•i (u)ξ for all i ∈ I+

N . Moreover, the compo-
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nents of µ•(u) are determined by the relations

µ̃•i (u) = 2uλi(u− κ/2)λ−i(−u+ κ/2) ∀ i ∈ I+
N .

As Bi(u) ≡ Ai(u) for all i ∈ I+
N , we may express (4.2.34) as

tia(u− κ/2)t′ai(−u+ κ/2) ≡ 1
2u (Ai(u)− Aa(u)) ∀ a > i.

This gives ŝii(u)ξ = γi(u)ξ with

γi(u) = µi(u)λi(u− κ/2)λ−i(−u+ κ/2) + 1
2u

n∑
a=i+1

µa(u) (µ•i (u)− µ•a(u)) . (4.2.38)

We now want to obtain the formula (4.2.30). Since

µ•i (u) = 1
2u− n+ i

µ̃•i (u)−
∑
a≥i+1

µ•a(u)
 ,

equation (4.2.38) implies that

(2u− n+ i)γi(u) = 2u− n+ i

2u µi(u)µ̃•i (u) + 1
2u

∑
j≥i+1

µj(u)µ̃•i (u)

− 1
2u

∑
a,j≥i+1

µj(u)µ•a(u)− 2u− n+ i

2u
∑
j≥i+1

µj(u)µ•j(u).
(4.2.39)

A straightforward downward induction on i ∈ In then shows that

∑
j≥i+1

γj(u) = 1
2u

∑
a,j≥i+1

µj(u)µ•a(u) + 2u− n+ i

2u
∑
j≥i+1

µj(u)µ•j(u).

Combining this with (4.2.39) proves that (4.2.30) holds for all i ∈ I+
N .

Define the non-negative integers l and k by

l=

0 if (gN , gρN) = (g2n, gln),

q/2 otherwise,
and k = n− l. (4.2.40)

An important instance of Proposition 4.2.11 occurs when µ(u) = (gii(u))i∈I+
N
, in which
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case V (µ(u)) coincides with the trivial representation V (G) with action given by the
counit ε.

As theX(gN , gϑN)tw-modules L(λ(u)) and L(λ(u))⊗V (G) are naturally isomorphic,
(4.2.30) provides formulas for the highest weight of the X(gN , gϑN)tw-module

X(gN , gϑN)twξ ⊂ L(λ(u)).

Corollary 4.2.12. Let ξ ∈ L(λ(u)) be a highest weight vector. Then X(gN , gϑN)twξ is
a highest weight module with the highest weight µ(u) = (µi(u))i∈I+

N
whose components

are determined by

µ̃i(u) =

2uλi(u− κ/2)λ−i(−u+ κ/2) if (gN , gϑN) = (g2n, gln)

2uḡi(u)λi(u− κ/2)λ−i(−u+ κ/2) if (gN , gϑN) = (gN , gp ⊕ gq)
(4.2.41)

where ḡi(u) is the rational function of u

ḡi(u) =


g(u) if i ≤ k,(

tr(G) + 4u
tr(G)− 4u

)
if i ≥ k+ 1.

Proof. If (gN , gϑN) = (g2n, gln), then g̃ii(u) = 2u for all i ∈ I+
N , and Proposition 4.2.11

gives
µ̃i(u) = 2uλi(u− κ/2)λ−i(−u+ κ/2) ∀ i ∈ I+

N .

Suppose instead that (gN , gϑN) is of the form (gN , gp ⊕ gq). Then

gii(u) = 1 ∀ i ≤ k and gii(u) = tr(G) + 4u
tr(G)− 4u ∀ i > k.

It follows that g̃ii(u) = ḡi(u) for all i > k, and

g̃ii(u) = (2u− l)
(

tr(G)− 4u
tr(G)− 4u

)
+ l

(
tr(G) + 4u
tr(G)− 4u

)

= 2u
(

tr(G) + 4l− 4u
tr(G)− 4u

)
= 2ug(u)

for all i ≤ k. Hence, (4.2.41) follows from (4.2.30).
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4.3 Lowering the rank

Given a positive integer m < n− δgN ,so2n , consider the natural embedding

ιm : gN−2m ↪→ gN , Fij 7→ Fij ∀ i, j ∈ IN−2m.

This injection satisfies ιm(gϑ(m)
N−2m) ⊂ gϑN , where

ϑ(m) = Ad(Gm) and Gm =
∑

i,j∈IN−2m

gijEij.

In particular, ιm can be viewed as an embedding of symmetric pairs

ιm : (gN−2m, g
ϑ(m)
N−2m) ↪→ (gN , gϑN).

Any gϑN -module V can be studied as a g
ϑ(m)
N−2m-module via the functor ι∗m which sends

V to ι∗m(V ), the g
ϑ(m)
N−2m-module equal to V as a vector space, and in which

Fij(v) = ιm(Fij)v ∀ i, j ∈ IN−2m and v ∈ V.

Restriction functors of this type play an important role in the finite-dimensional
representation theory of semisimple Lie algebras as they preserve information about
highest weight theory and can be used for inductive arguments.

Unfortunately, one cannot mimic the above in the twisted Yangian setting as the
assignment sij(u) 7→ sij(u) for i, j ∈ IN−2m does not extend to a homomorphism

X(gN−2m, g
ϑ(m)
N−2m)tw → X(gN , gϑN)tw.

In this section, we show that, despite this fact, there is a functor4 from the cate-
gory of finite-dimensional X(gN , gϑN)tw-modules to the category of finite-dimensional
X(gN−2m, g

ϑ(m)
N−2m)tw-modules which plays a role entirely analogous to ι∗m.

4) We will not make any explicit reference to a functor below, but this interpretation should be
implicitly understood.
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4.3.1 From X(gN , gϑN)tw to X(gN−2m, g
ϑ(m)
N−2m)tw

Let 1 ≤ m < n− δgN ,so2n . In what follows we will consider

X(gN , gϑN)tw and X(gN−2m, g
ϑ(m)
N−2m)tw

simultaneously, and for this reason it will be convenient to employ the notation pm(u)
for the rational function pGm(u) defined in (3.3.9). That is,

pm(u) = (±)1∓ 1
2u− κ + tr(Gm(u))

2u− 2κ , where Gm(u) = tr(Gm)I − 4uGm
tr(Gm)− 4u .

For each i, j ∈ IN−2m, define s◦mij (u) ∈ gij + u−1X(gN , gϑN)tw[[u−1]] by

s◦mij (u) = sij(u+ m
2 ) + δij

2u

n∑
a=n−m+1

saa(u+ m
2 ). (4.3.1)

Given an arbitrary representation V of X(gN , gϑN)tw, let V(+,m) ⊂ V be the subspace

V(+,m) = {v ∈ V : sij(u)v = 0 ∀ i < j with n−m+ 1 ≤ j ≤ n}. (4.3.2)

If V is finite-dimensional and nonzero, then it contains an irreducible submodule and
hence, by Theorem 4.2.6, a highest weight vector ξ ∈ V(+,m). In particular, V(+,m) is
nonzero.

Our goal is to show that V(+,m) can be given the structure of aX(gN−2m, g
ϑ(m)
N−2m)tw-

module using the series (4.3.1). This will be realized in Proposition 4.3.4 after treating
the m = 1 case in Lemmas 4.3.1 and 4.3.3 below. In this setting, we will write

V+ = V(+,1) and s◦ij(u) = s◦1ij (u) ∀ i, j ∈ IN−2.

Lemma 4.3.1. Let V be an X(gN , gϑN)tw-module. Then

(1) V+ is stable under the action of {s◦ij(u)}i,j∈IN−2. That is, we may view

s◦ij(u) ∈ End(V+)[[u−1]] ∀ i, j ∈ IN−2.
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(2) Setting
sij(u) · v = s◦ij(u)v ∀ v ∈ V+ and i, j ∈ IN−2 (4.3.3)

equips V+ with the structure of an X(gN−2, g
ϑ(1)
N−2)tw-module.

Proof. The proof of the Lemma is straightforward, but very technical.

Step 1: s◦ij(u) ∈ End(V+)[[u−1]] for all i, j ∈ IN−2.

We will use ≡ to denote equality of operators on V+. We first show that

skn(u)sij(v) ≡ 0 ∀ k < n and i, j ∈ IN−2.

Since skn(u)sij(v) ≡ −[sij(v), skn(u)], it is enough to show [sij(v), skn(u)] ≡ 0. By
(3.3.42),

[sij(v), skn(u)]

≡ δkj
v + u

sin(v)snn(u)− δij
v2 − u2 (skn(v)snn(u)− skn(u)snn(v))

− δk,−i
v − u− κ

θi,−ns−n,j(v)snn(u) + δk,−i
(v + u)(v − u− κ)θi,−js−j,n(v)snn(u).

By the symmetry relation (3.3.41), it remains only to see s`n(v)snn(u) ≡ 0 for any
` ∈ IN−2. Using the expansion (3.3.42), we compute

s`n(v)snn(u) ≡ 1
v + u

s`n(v)snn(u). (4.3.4)

Therefore, s`n(v)snn(u) ≡ 0 for all ` ∈ IN−2. This completes the proof that V+ is
stable under the action of all sij(u) with i, j ∈ IN−2. Moreover, it shows that V+ is
stable under the action of the operator snn(u). Thus, by definition V+ is also stable
under the action of all operators s◦ij(u).

Step 2: The action (4.3.3) defines an algebra homomorphism

X(gN−2, g
ϑ(1)
N−2)tw → End(V+).
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First observe that

[s−n,−n(u), snn(v)] ≡ 0, [snn(u), snn(v)] ≡ 0 and [snn(u), sij(v)] ≡ 0 (4.3.5)

for all i, j ∈ IN−2. To see this, note that by (3.3.42) we have

[snn(u), snn(v)] ≡
( 1
u− v

+ 1
u+ v

− 1
u2 − v2

)
[snn(u), snn(v)],

which implies [snn(u), snn(v)] ≡ 0. Furthermore,

[sij(u), snn(v)] ≡ − δij
u2 − v2 [snn(u), snn(v)] ≡ 0 ∀ i, j ∈ IN−2.

The symmetry relation (3.3.41) together with the second and third equivalences of
(4.3.5) then give

[s−n,−n(u), snn(v)] ≡ − 1
2u− 2κ

n∑
a=−n

[saa(u), snn(v)] ≡ − 1
2u− 2κ [s−n,−n(u), snn(v)].

Hence, [s−n,−n(u), snn(v)] ≡ 0.

Now let i, j, k, ` ∈ IN−2. As a consequence of the second and third equivalences
in (4.3.5), we have

[s◦ij(u), s◦k`(v)] ≡ [sij (̊u), sk`(̊v)],

where
ů = u+ 1/2 and v̊ = v + 1/2.

Thus, appealing to (3.3.42), we obtain the expression

[s◦ij(u), s◦k`(v)]

≡ 1
u− v

(skj (̊u)si`(̊v)− skj (̊v)si`(̊u))

+ 1
ů+ v̊

∑
a∈IN−2

(δkjsia(̊u)sa`(̊v)− δi`ska(̊v)saj (̊u))

− δij
ů2 − v̊2

∑
a∈IN−2

(ska(̊u)sa`(̊v)− ska(̊v)sa`(̊u))

− 1
ů− v̊ − κ

∑
a∈IN−2

(δk,−iθiasaj (̊u)s−a,`(̊v)− δl,−jθajsk,−a(̊v)sia(̊u))
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− 1
ů+ v̊ − κ

(θj,−ksi,−k (̊u)s−j,`(̊v)− θi,−`sk,−i(̊v)s−`,j (̊u))

+ θi,−j
(̊u+ v̊)(̊u− v̊ − κ)

∑
a∈IN−2

(δk,−is−j,a(̊u)sa`(̊v)− δ`,−jska(̊v)sa,−i(̊u))

+ θi,−j
(̊u− v̊)(̊u+ v̊ − κ) (sk,−i(̊u)s−j,`(̊v)− sk,−i(̊v)s−j,`(̊u))

− θij
(̊u− v̊ − κ)(̊u+ v̊ − κ)

∑
a∈IN−2

(δk,−isaa(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)saa(̊u))

+ 1
ů+ v̊

(δkjsin(̊u)sn`(̊v)− δi`skn(̊v)snj (̊u)) (4.3.6)

− δij
ů2 − v̊2 (skn(̊u)sn`(̊v)− skn(̊v)sn`(̊u)) (4.3.7)

− 1
ů− v̊ − κ

(δk,−iθi,−ns−n,j (̊u)sn`(̊v)− δl,−jθ−n,jskn(̊v)si,−n(̊u)) (4.3.8)

+ θi,−j
(̊u+ v̊)(̊u− v̊ − κ) (δk,−is−j,n(̊u)sn`(̊v)− δ`,−jskn(̊v)sn,−i(̊u)) (4.3.9)

− θij
(̊u− v̊ − κ)(̊u+ v̊ − κ) (δk,−is−n,−n(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)s−n,−n(̊u))

− θij
(̊u− v̊ − κ)(̊u+ v̊ − κ) (δk,−isnn(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)snn(̊u)) .

We now need to rewrite (4.3.6)–(4.3.9) in a way that will enable us to compare the
right-hand side above with the right-hand side of the reflection equation (3.3.42) for
X(gN−2, g

ϑ(1)
N−2)tw with {s1

ij(u)}i,j∈IN−2 replaced by {s◦ij(u)}i,j∈IN−2 .

Step 2.1: Re-expressing (4.3.6).

Using the reflection equation (3.3.42) for [sin(̊u), sn`(̊v)] with i ∈ IN−2 and rear-
ranging the terms yields

1
ů+ v̊

sin(̊u)sn`(̊v) ≡ 1
(̊u− v̊)(̊u+ v̊ − 1) (snn(̊u)si`(̊v)− snn(̊v)si`(̊u))

+ 1
(̊u+ v̊)(̊u+ v̊ − 1)

∑
a∈IN−2

sia(̊u)sa`(̊v)

− δi`
(̊u+ v̊)(̊u+ v̊ − 1) snn(̊v)snn(̊u).

(4.3.10)

This computation, together with (4.3.5), implies that the expression (4.3.6) can be
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rewritten as

1
ů+ v̊

(δkjsin(̊u)sn`(̊v)− δi`skn(̊v)snj (̊u))

≡ 1
(̊u− v̊)(̊u+ v̊ − 1)

(
δkj (snn(̊u)si`(̊v)− snn(̊v)si`(̊u))

+ δi` (snn(̊v)skj (̊u)− snn(̊u)skj (̊v))
)

+ 1
(̊u+ v̊)(̊u+ v̊ − 1)

∑
a∈IN−2

(δkjsia(̊u)sa`(̊v)− δi`ska(̊v)saj (̊u)) .

(4.3.11)

Step 2.2: Re-expressing (4.3.7).

Similarly, (4.3.10) and (4.3.5) imply that (4.3.7) can be expressed as:

− δij
ů2 − v̊2 (skn(̊u)sn`(̊v)− skn(̊v)sn`(̊u))

≡ − δij
(̊u2 − v̊2)(̊u+ v̊ − 1)

∑
a∈IN−2

(ska(̊u)sa`(̊v)− ska(̊v)sa`(̊u)) .
(4.3.12)

Step 2.3: Re-expressing (4.3.8).

An analogous but more lengthy computation to that used in obtaining (4.3.10)
gives the relation

ů− v̊ − κ+ 1
ů− v̊ − κ

s−n,j (̊u)sn`(̊v)

≡ − 1
ů− v̊ − κ

∑
a∈IN−2

θ−n,asaj (̊u)s−a,`(̊v) + δ`,−j
ů− v̊ − κ

θ−n,jsnn(̊v)s−n,−n(̊u)

− 1
ů+ v̊ − κ

(θj,−ns−n,−n(̊u)s−j,`(̊v)− θ−n,−`snn(̊v)s−`,j (̊u))

+ θ−n,−j
(̊u+ v̊)(̊u− v̊ − κ)

∑
a∈IN−2

s−j,a(̊u)sa`(̊v)

+ θ−n,−j
(̊u+ v̊)(̊u− v̊ − κ)s−j,n(̊u)sn`(̊v)− θ−n,−jδ`,−j

(̊u+ v̊)(̊u− v̊ − κ)snn(̊v)snn(̊u)

+ θ−n,−j
(̊u− v̊)(̊u+ v̊ − κ) (snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

− θ−n,j
(̊u− v̊ − κ)(̊u+ v̊ − κ)

∑
a∈IN

(saa(̊u)s−j,`(̊v)− δ`,−jsnn(̊v)saa(̊u)) .

(4.3.13)
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Similarly, since skn(̊v)si,−n(̊u) ≡ −[si,−n(̊u), skn(̊v)], we have

ů− v̊ − κ+ 1
ů− v̊ − κ

skn(̊v)si,−n(̊u)

≡ − 1
ů− v̊ − κ

∑
a∈IN−2

θa,−nsk,−a(̊v)sia(̊u) + δk,−i
ů− v̊ − κ

θi,−ns−n,−n(̊u)snn(̊v)

+ 1
ů+ v̊ − κ

(θ−n,−ksi,−k (̊u)snn(̊v)− θi,−nsk,−i(̊v)s−n,−n(̊u))

+ θin
(̊u+ v̊)(̊u− v̊ − κ)

∑
a∈IN−2

ska(̊v)sa,−i(̊u)

+ θin
(̊u+ v̊)(̊u− v̊ − κ)skn(̊v)sn,−i(̊u)− θinδk,−i

(̊u+ v̊)(̊u− v̊ − κ)snn(̊u)snn(̊v)

− θin
(̊u− v̊)(̊u+ v̊ − κ) (sk,−i(̊u)snn(̊v)− sk,−i(̊v)snn(̊u))

+ θi,−n
(̊u− v̊ − κ)(̊u+ v̊ − κ)

∑
a∈IN

(δk,−isaa(̊u)snn(̊v)− sk,−i(̊v)saa(̊u)) .

(4.3.14)

Using the two equivalences (4.3.13) and (4.3.14), together with (4.3.5), we obtain the
following expression for (4.3.8):

−1
ů− v̊ − κ

(δk,−iθi,−ns−n,j (̊u)sn`(̊v)− δl,−jθ−n,jskn(̊v)si,−n(̊u))

= f−(u, v)
∑

a∈IN−2

(δk,−iθiasaj (̊u)s−a,`(̊v)− δl,−jθajsk,−a(̊v)sia(̊u))

− θi,−j
f−(u, v)
ů+ v̊

∑
a∈IN−2

(δk,−is−j,a(̊u)sa`(̊v)− δ`,−jska(̊v)sa,−i(̊u))

+ θij
f−(u, v)
ů+ v̊ − κ

∑
a∈IN

(δk,−isaa(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)saa(̊u))

+ f+(u, v)δk,−i (θijs−n,−n(̊u)s−j,`(̊v)− θi,−`snn(̊v)s−`,j (̊u))

+ f+(u, v)δ`,−j (θj,−ksi,−k (̊u)snn(̊v)− θijsk,−i(̊v)s−n,−n(̊u))

− θi,−jδk,−i
f+(u, v)
ů− v̊

(snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

− θi,−jδ`,−j
f+(u, v)
ů− v̊

(sk,−i(̊u)snn(̊v)− sk,−i(̊v)snn(̊u))

− θi,−j
f−(u, v)
ů+ v̊

(δk,−is−j,n(̊u)sn,`(̊v)− δ`,−jskn(̊v)sn,−i(̊u)) ,

(4.3.15)
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where f±(u, v) is given by

f±(u, v) = 1
(̊u± v̊ − κ)(̊u− v̊ − κ+ 1) .

Step 2.4: Re-expressing (4.3.9).

If we add the last line of (4.3.15) to (4.3.9), we obtain

θi,−j
(̊u+ v̊)(̊u− v̊ − κ+ 1) (δk,−is−j,n(̊u)sn,`(̊v)− δ`,−jskn(̊v)sn,−i(̊u)) .

We can also re-express this using (4.3.10) and (4.3.5). This yields

θi,−j
(̊u+ v̊)(̊u− v̊ − κ+ 1) (δk,−is−j,n(̊u)sn,`(̊v)− δ`,−jskn(̊v)sn,−i(̊u))

= θi,−jδk,−i
f(u, v)
ů− v̊

(snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

+ θi,−jδ`,−j
f(u, v)
ů− v̊

(snn(̊v)sk,−i(̊u)− snn(̊u)sk,−i(̊v))

+ θi,−j
f(u, v)
ů+ v̊

∑
a∈IN−2

(δk,−is−j,a(̊u)sa`(̊v)− δl,−jska(̊v)sa,−i(̊u)), (4.3.16)

where f(u, v) is given by

f(u, v) = 1
(̊u+ v̊ − 1)(̊u− v̊ − κ+ 1) .

Step 2.5: The reflection equation (3.3.42) is preserved.

Next, observe that the following identities hold:

1
ů+ v̊

+ 1
(̊u+ v̊)(̊u+ v̊ − 1) = 1

u+ v
,

f−(u, v)− 1
ů− v̊ − κ

= − 1
u− v − κ̊

,

1
(̊u+ v̊)(̊u− v̊ − κ) −

f−(u, v)
ů+ v̊

+ f(u, v)
ů+ v̊

= 1
(u− v − κ̊)(u+ v) ,

where κ̊ = κ−1 is 1
4cgN−2 . Therefore, combining the new expressions (4.3.11), (4.3.12),
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(4.3.15) and (4.3.16) and substituting them back into (4.3.6)–(4.3.9) gives:

[s◦ij(u), s◦k`(v)]

≡ 1
u− v

(skj (̊u)si`(̊v)− skj (̊v)si`(̊u))

+ 1
u+ v

∑
a∈IN−2

(δkjsia(̊u)sa`(̊v)− δi`ska(̊v)saj (̊u))

− δij
u2 − v2

∑
a∈IN−2

(ska(̊u)sa`(̊v)− ska(̊v)sa`(̊u))

− 1
u− v − κ̊

∑
a∈IN−2

(δk,−iθiasaj (̊u)s−a,`(̊v)− δl,−jθajsk,−a(̊v)sia(̊u))

− 1
u+ v − κ̊

(θj,−ksi,−k (̊u)s−j,`(̊v)− θi,−`sk,−i(̊v)s−`,j (̊u))

+ θi,−j
(u+ v)(u− v − κ̊)

∑
a∈IN−2

(δk,−is−j,a(̊u)sa`(̊v)− δ`,−jska(̊v)sa,−i(̊u))

+ θi,−j
(u− v)(u+ v − κ̊) (sk,−i(̊u)s−j,`(̊v)− sk,−i(̊v)s−j,`(̊u))

− θij
(u− v − κ̊)(u+ v − κ̊)

∑
a∈IN−2

(δk,−isaa(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)saa(̊u))

+ B(u, v),

where B(u, v) is defined as the operator

B(u, v)

= δkj
u2 − v2 (snn(̊u)si`(̊v)− snn(̊v)si`(̊u))

+ δi`
u2 − v2 (snn(̊v)skj (̊u)− snn(̊u)skj (̊v))

+ 1
(u+ v − κ̊)(u− v − κ̊)δk,−i (θijs−n,−n(̊u)s−j,`(̊v)− θi,−`snn(̊v)s−`,j (̊u))

+ 1
(u+ v − κ̊)(u− v − κ̊)δ`,−j (θj,−ksi,−k (̊u)snn(̊v)− θijsk,−i(̊v)s−n,−n(̊u))

− θi,−jδk,−i
(u− v)(u+ v − κ̊)(u− v − κ̊) (snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

− θi,−jδ`,−j
(u− v)(u+ v − κ̊)(u− v − κ̊) (sk,−i(̊u)snn(̊v)− sk,−i(̊v)snn(̊u))

170



+ θi,−jδk,−i
(u− v)(u+ v)(u− v − κ̊) (snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

+ θi,−jδ`,−j
(u− v)(u+ v)(u− v − κ̊) (snn(̊v)sk,−i(̊u)− snn(̊u)sk,−i(̊v))

− θij
(u− v − κ̊)(u+ v − κ̊) (δk,−is−n,−n(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)s−n,−n(̊u))

− θij
(u− v − κ̊)(u+ v − κ̊) (δk,−isnn(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)snn(̊u)) .

Adding terms together, and applying (4.3.5) where necessary, we obtain the equiva-
lence of operators

B(u, v)

≡ δkj
u2 − v2 (snn(̊u)si`(̊v)− snn(̊v)si`(̊u))

+ δi`
u2 − v2 (snn(̊v)skj (̊u)− snn(̊u)skj (̊v))

+ 1
(u+ v − κ̊)(u− v − κ̊)δ`,−j (θj,−ksi,−k (̊u)snn(̊v) + θijsk,−i(̊v)snn(̊u))

− 1
(u+ v − κ̊)(u− v − κ̊)δk,−i (θi,−`snn(̊v)s−`,j (̊u) + θijsnn(̊u)s−j,`(̊v))

− κ̊δk,−iθi,−j
(u2 − v2)(u+ v − κ̊)(u− v − κ̊) (snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

− κ̊δ`,−jθi,−j
(u2 − v2)(u+ v − κ̊)(u− v − κ̊) (snn(̊v)sk,−i(̊u)− snn(̊u)sk,−i(̊v)) .

(4.3.17)

Let D(u, v) be the expression on the right-hand side of the reflection equation
(3.3.42) for X(gN−2, g

ϑ(1)
N−2)tw with {s1

ij(u)}i,j∈IN−2 replaced by {s◦ij(u)}i,j∈IN−2 . A
lengthy computation using the definition of the elements s◦ij(u) and again appeal-
ing to (4.3.5) where necessary yields the equivalence

D(u, v) ≡ [s◦ij(u), s◦k`(v)]− B(u, v) +A(u, v),

where A(u, v) is the operator defined by:

A(u, v)

≡ δkj
u2 − v2 (snn(̊u)si`(̊v)− snn(̊v)si`(̊u))
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+ δi`
u2 − v2 (snn(̊v)skj (̊u)− snn(̊u)skj (̊v))

+ 1
(u+ v − κ̊)(u− v − κ̊)δ`,−j (θj,−ksi,−k (̊u)snn(̊v) + θijsk,−i(̊v)snn(̊u))

− 1
(u+ v − κ̊)(u− v − κ̊)δk,−i (θi,−`snn(̊v)s−`,j (̊u) + θijsnn(̊u)s−j,`(̊v))

+ κ̊θij + θi,−j
u(u+ v − κ̊)(u− v − κ̊) (δk,−isnn(̊u)s−j,`(̊v)− δ`,−jsnn(̊u)sk,−i(̊v))

− κ̊δk,−iθi,−j
(u2 − v2)(u+ v − κ̊)(u− v − κ̊) (snn(̊u)s−j,`(̊v)− snn(̊v)s−j,`(̊u))

− κ̊δ`,−jθi,−j
(u2 − v2)(u+ v − κ̊)(u− v − κ̊) (snn(̊v)sk,−i(̊u)− snn(̊u)sk,−i(̊v))

− θij(N − 2)
2u(u− v − κ̊)(u+ v − κ̊) (δk,−isnn(̊u)s−j,`(̊v)− δ`,−jsk,−i(̊v)snn(̊u)) .

Therefore, to complete the proof of the lemma it remains only to seeA(u, v) ≡ B(u, v).
Comparing the above expression for A(u, v) with (4.3.17), we see that it is enough to
show

κ̊θij + θi,−j − θij(N2 − 1) = 0

This follows from the identities

κ = N

2 ∓ 1, N

2 − 1 = κ− 1± 1 = κ̊± 1 and θi,−j = ±θi,j.

Remark 4.3.2. The definition of the operators {s◦ij(u)}i,j∈IN−2 are motivated by
the proof of [MR02, Theorem 4.6], where a similar result to Lemma 4.3.1 played an
integral role.

One could postulate that the action of the reflection algebra X(gN−2, g
ϑ(1)
N−2)tw on

V+ given by Lemma 4.3.1 factors through X(gN−2, g
ϑ(1)
N−2)tw. We will soon see that if

(gN , gρN) = (g2n, gln), then this is indeed the case. However, if the pair (gN , gρN) is of
the form (gN , gp⊕gq), then the operators (4.3.1) fail to satisfy the defining symmetry
relation (3.3.41) of the algebra X(gN−2, g

ϑ(1)
N−2)tw.

The next Lemma shows that this issue can be avoided by replacing s◦ij(u) with
h(u)s◦ij(u) for a suitable formal series h(u) ∈ 1 + u−1C[[u−1]].

Lemma 4.3.3. Let V be an X(gN , gϑN)tw-module such that V+ is nonzero, and fix
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h(u) ∈ 1 + u−1C[[u−1]]. Then

sij(u) · v = h(u)s◦ij(u)v ∀ v ∈ V+ and i, j ∈ IN−2 (4.3.18)

defines an X(gN−2, g
ϑ(1)
N−2)tw-module structure on V+ if and only if

h(u)h(κ− 1− u)−1 = p1(u)p(u+ 1
2)−1. (4.3.19)

Moreover, a solution h(u) of (4.3.19) exists in 1 + u−1C[[u−1]].

Proof. Let us equip V+ with the X(gN−2, g
ϑ(1)
N−2)tw-module structure given by Lemma

4.3.1. By Theorem 3.3.22,

X(gN−2, g
ϑ(1)
N−2)tw ∼= X(gN−2, g

ϑ(1)
N−2)tw/(c(u)− 1)

and thus the first assertion of the lemma is equivalent to the statement that c(u)
operates as the identity operator in the twisted module ν∗h(V+) if and only if h(u)
satisfies (4.3.19). By (3.3.43), the automorphsim νh satisfies

νh(c(u)) = h(̊κ− u)−1h(u)c(u), where κ̊ = κ− 1,

and it therefore suffices to prove that

c(u)|V+ = p(u+ 1
2)p1(u)−1idV+ . (4.3.20)

Fix i ∈ IN−2. Since s◦ii(u) ∈ gii + u−1End(V+)[[u−1]] is invertible, it follows from
(3.3.33) that the action of c(u) on V(+,m) is completely determined by

p1(u)c(u)s◦ii(̊κ− u) = s◦−i,−i(u)∓ s◦ii(u)
2u− κ̊ +

∑
k∈IN−2 s

◦
kk(u)

2u− 2̊κ .

The identity (4.3.20) will therefore hold if

p(̊u)s◦ii(̊κ− u) = s◦−i,−i(u)∓ s◦ii(u)
2u− κ̊ +

∑
k∈IN−2 s

◦
kk(u)

2u− 2̊κ , (4.3.21)
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where ů = u+ 1
2 . By (4.3.1), we have

s◦−i,−i(u)∓ s◦ii(u)
2u− κ̊ +

∑
k∈IN−2 s

◦
kk(u)

2u− 2̊κ

= s−i,−i(̊u)∓ sii(̊u)
2u− κ̊ +

∑
k∈IN−2 skk (̊u)

2u− 2̊κ + pI(u)snn(̊u)
2u ,

(4.3.22)

where pI(u) = pIN−2(u). By the symmetry relation in X(gN , gϑN)tw,

p(̊u)sjj(κ− ů) = s−j,−j (̊u)∓ sjj (̊u)
2u− κ̊ + tr(S (̊u)) · I

2u− 2̊κ− 1 ∀ j ∈ IN .

This implies that

p(̊u)s◦ii(̊κ− u)

= p(̊u)sii(κ− ů) + p(̊u)
2̊κ− 2u snn(κ− ů)

= s−i,−i(̊u)∓ sii(̊u)
2u− κ̊ +

∑
k∈IN−2 skk (̊u)

2u− 2̊κ

+
(

1
2u− 2̊κ− 1 + 1

2̊κ− 2u + 1
(2̊κ− 2u)(2u− 2̊κ− 1)

)
s−n,−n(̊u)

+
(

1
2u− 2̊κ− 1 ∓

1
(2u− κ̊)(2̊κ− 2u) + 1

(2u− 2̊κ− 1)(2̊κ− 2u)

)
snn(̊u)

= s−i,−i(̊u)∓ sii(̊u)
2u− κ̊ +

∑
k∈IN−2 skk (̊u)

2u− 2̊κ + pI(u)snn(̊u)
2u ,

where in the last line we have used (3.3.7). Comparing with (4.3.22), we deduce that
(4.3.21) holds.

We now turn to establishing the existence of h(u) ∈ 1 + u−1C[[u−1]] satisfying
(4.3.19). Set

c(u) = p(u+ 1
2)p1(u)−1 ∈ 1 + u−1C[[u−1]].

Let h(u) be the unique solution of h(u)2 = c(u)−1 in 1 + u−1C[[u−1]]. It follows from
(3.3.11) that c(u) satisfies

c(̊κ− u) = p1(u)p(u+ 1
2)−1 = c(u)−1.
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Hence we have
1 = c(u)−1c(̊κ− u)−1 = (h(u)h(̊κ− u))2.

As 1 is the unique square root of itself in 1 + u−1C[[u−1]], we can conclude that
h(u)h(̊κ− u) = 1, and thus that

h(u)h(̊κ− u)−1 = h(u)2 = c(u)−1 = p1(u)p(u+ 1
2)−1.

We now once again assume that 1 ≤ m < n − δgN ,so2n . The next proposition
generalizes Lemmas 4.3.1 and 4.3.3.

Proposition 4.3.4. Let V be an X(gN , gϑN)tw-module. Then

(1) V(+,m) is stable under the action of {s◦mij (u)}i,j∈IN−2m. That is, we may view

s◦mij (u) ∈ End(V(+,m))[[u−1]] ∀ i, j ∈ IN−2m.

(2) For any h(u) ∈ 1 + u−1C[[u−1]], setting

sij(u) · v = h(u)s◦mij (u)v ∀ v ∈ V(+,m) and i, j ∈ IN−2m (4.3.23)

equips V(+,m) with the structure of an X(gN−2m, g
ϑ(m)
N−2m)tw-module.

(3) Provided V(+,m) is nonzero, (4.3.23) descends to an X(gN−2m, g
ϑ(m)
N−2m)tw-action

if and only if
h(u)h(κ−m− u)−1 = pm(u)p(u+ m

2 )−1. (4.3.24)

Moreover, a solution h(u) of (4.3.24) exists in 1 + u−1C[[u−1]].
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Proof. First note that if k + 1 < n− δgN ,so2n then, for each i, j ∈ IN−2(k+1), we have

s◦kij (u+ 1
2) + δij

2us
◦k
n−k,n−k(u+ 1

2)

=sij(u+ k+1
2 ) + δij

2u+ 1

n∑
a=n−k+1

s◦kaa(u+ k+1
2 )

+ 1
2u

sn−k,n−k(u+ k+1
2 ) + 1

2u+ 1

n∑
a=n−k+1

s◦kaa(u+ k+1
2 )


= sij(u+ k+1
2 ) + δij

2u

n∑
a=n−k

s◦kaa(u+ k+1
2 )

= s
◦(k+1)
ij (u).

(4.3.25)

By the existence statement for h(u) in Lemma 4.3.3, we may choose

{ha(u)}ma=1 ⊂ 1 + u−1C[[u−1]]

satisfying the set of relations

ha(u)ha(κ− a− u)−1 = pa(u)pa−1(u+ 1
2)−1 ∀ 1 ≤ a ≤ m. (4.3.26)

Combining Lemmas 4.3.1 and 4.3.3 with the relation (4.3.25) and the definition of
V(+,m), we deduce using a simple induction argument that

sij(u) · v = d(u)s◦mij (u)v ∀ v ∈ V(+,m) and i, j ∈ IN−2m (4.3.27)

defines an X(gN−2m, g
ϑ(m)
N−2m)tw-module structure on V(+,m), where

d(u) = hm(u)hm−1(u+ 1
2) · · ·h1(u+ m−1

2 ).

Since d(u) is invertible, this implicitly implies that Part (1) holds.

Consider now Part (2). Replacing {sij(u)}i,j∈IN−2m by {sij(u)}i,j∈IN−2m in (4.3.27)
equips V(+,m) with an X(gN−2m, g

ϑ(m)
N−2m)tw-module structure in which c(u) operates as

the identity.

Given a fixed series h(u) ∈ 1+u−1C[[u−1]], set g(u) = h(u)d(u)−1. Then the action
of X(gN−2m, g

ϑ(m)
N−2m)tw on the module ν∗g (V(+,m)) is given by (4.3.23), and thus Part

(2) holds.
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Now let us turn to proving Part (3). By (3.3.43), we have

νg(c(u)) = g(κ−m− u)g(u)−1c(u).

It follows that the central series c(u) operates as

g(κ−m− u)g(u)−1idV(+,m) = h(κ−m− u)h(u)−1d(κ−m− u)−1d(u)idV(+,m)

in ν∗g (V(+,m)). Thus, the action (4.3.23) descends to an X(gN−2m, g
ϑ(m)
N−2m)tw-action if

and only if
h(κ−m− u)h(u)−1 = d(κ−m− u)d(u)−1.

By (4.3.26) and the definition of d(u), the right-hand side is

m−1∏
a=0

hm−a(κ−m− u+ a
2)hm−a(u+ a

2)−1

=
m−1∏
a=0

pm−a(u+ a
2)pm−a−1(u+ a+1

2 )−1

= pm(u)p(u+ m
2 )−1.

Since h(u) = d(u) is a solution to (4.3.24), we may conclude that Part (3) of the
Proposition holds.

4.3.2 Highest weight properties

In this subsection we show that in the special case where V = V (µ(u)), additional
information is encoded in the X(gN−2m, g

ϑ(m)
N−2m)tw-module V(+,m) of Proposition 4.3.4.

First, we prove that there is a particular series h(u) which can be regarded as the
most natural solution of (4.3.24).

Let gm(u) be the rational function from (3.3.3) associated to (gN−2m, g
ϑ(m)
N−2m).

That is,

gm(u) =


N − 2m− 4u
tr(Gm)− 4u if (gN , gϑN) = (gN , gp ⊕ gq),

u−1 if (gN , gϑN) = (g2n, gln).
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Proposition 4.3.5. Fix 1 ≤ m < n− δgN ,so2n. Then the series

h(u) = u

u+ m
2
· gm(u)g(u+ m

2 )−1 ∈ 1 + u−1C[[u−1]] (4.3.28)

satisfies (4.3.24). If (gN , gϑN) = (gN , gp ⊕ gq), this is the unique choice of h(u) with
the property that

V (Gm) ∼= V (G)(+,m),

where the X(gN−2m, g
ϑ(m)
N−2m)tw-module structure on V (G)(+,m) is given by (4.3.23).

Proof. Let us first show that h(u), as defined in (4.3.28), satisfies the equation
(4.3.24). By Proposition 3.3.3 and (3.3.7), we have

h(̊κ− u) = κ̊− u
κ̊− u+ m

2
·
pIN−2m(u)
pIN (u+ m

2 ) ·
p(u+ m

2 )
pm(u) · gm(u)

g(u+ m
2 )

=
p(u+ m

2 )
pm(u) h(u),

where κ̊ = κ−m. Thus, h(u) satisfies (4.3.24).

Suppose now that (gN , gϑN) = (gN , gp ⊕ gq) and let h(u) be an arbitrary solution
of (4.3.24). Since V (G)(+,m) = V (G) as vector spaces, V (G) is a X(gN−2m, g

ϑ(m)
N−2m)tw-

module with action given by (4.3.23). Equivalently,

sij(u) · ξ = h(u)g◦mij (u)ξ ∀ i, j ∈ IN−2m,

where g◦mij (u) = gij(u+ m
2 ) + δij

2u

n∑
a=n−m+1

gaa(u+ m
2 )

and ξ is any nonzero vector in the one-dimensional space V (G). In particular,

V (G)(+,m) ∼= V
(
(h(u)g◦mii (u))i∈IN−2m

)
.

Since any highest weight µ(u) is completely determined by the corresponding series
µ̃(u) defined in (4.2.5), V (G)(+,m) is isomorphic to V (Gm) if and only if

h(u)g̃◦mii (u) = g̃mii (u) ∀ i ∈ I+
N−2m, (4.3.29)

where Gm(u) = ∑
i,j∈IN−2m g

m
ij (u)Eij. The equality (4.3.31) proven in Corollary 4.2.10
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below gives g̃◦mii (u) = g̃ii(u + m
2 ) for all i ∈ I+

N−2m. Since there is at most one h(u)
satisfying the above equations, we are left to show that h(u) given by (4.3.28) satisfies

h(u) = g̃mii (u)g̃ii(u+ m
2 )−1 ∀ i ∈ I+

N−2m.

If i ≤ k, then the proof of Corollary 4.2.12 shows that the right-hand side is

u

u+ m
2
· gm(u)g(u+ m

2 )−1,

as desired. If instead i ≥ k + 1, then we also have k ≤ n − m, and the proof of
Corollary 4.2.12 gives

g̃mii (u)g̃ii(u+ m
2 )−1 = u

u+ m
2

(
tr(Gm) + 4u
tr(Gm)− 4u

)(
tr(G)− 2m− 4u
tr(G) + 2m+ 4u

)

= u

u+ m
2

(
tr(G)− 2m− 4u
tr(G) + 2m− 4u

)

= u

u+ m
2
· gm(u)g(u+ m

2 )−1.

Remark 4.3.6. When (gN , gϑN) = (g2n, gl2n), the expression (4.3.28) collapses to
h(u) = 1. Though this is certainly the most natural solution of (4.3.24), it does not
preserve the trivial representation in the sense described in the second assertion of
Proposition 4.3.5. In fact, no solution to (4.3.24) does: solving the system (4.3.29)
yields

h(u) = u

u+ m
2
,

for which (4.3.24) does not hold.

Henceforth, given a X(gN , gϑN)tw-module V and fixed positive integer m < n −
δgN ,so2n , we will write V(m) for the X(gN−2m, g

ϑ(m)
N−2m)tw-module which is equal to

V(+,m) = {v ∈ V : sij(u)v = 0 ∀ i < j with n−m+ 1 ≤ j ≤ n}
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as a vector space, and has module structure given by

sij(u) · v = h(u)s◦mij (u)v ∀ v ∈ V(+,m) and i, j ∈ IN−2m,

where

h(u) = u

u+ m
2
· gm(u)g(u+ m

2 )−1,

s◦mij (u) = sij(u+ m
2 ) + δij

2u

n∑
a=n−m+1

saa(u+ m
2 ) ∀ i, j ∈ IN−2m.

(4.3.30)

If in addition V is isomorphic to a module of the form V (µ(u)), we will write Vm for
the cyclic submodule

Vm = X(gN−2m, g
ϑ(m)
N−2m)twξ ⊂ V(m),

where ξ ∈ V (µ(u)) is any highest weight vector.

Corollary 4.3.7. Fix a positive integer m < n − δgN ,so2n and let ξ ∈ V (µ(u)) be a
highest weight vector. Then

(1) V (µ(u))m is a highest weight module with the highest weight

h(u)µ◦m(u) = (h(u)µ◦mi (u))i∈I+
N−2m

,

where the components of µ◦m(u) are uniquely determined by

µ̃◦mi (u) = µ̃i(u+ m
2 ) ∀ i ∈ I+

N−2m. (4.3.31)

(2) V (µ(u))m is the unique highest weight submodule of V (µ(u))(m). In particular,
if V (µ(u)) is finite-dimensional then

V (µ(u))m ∼= V (h(u)µ◦m(u)).

Proof. It is clear that V (µ(u))m is a highest weight module with the highest weight
(h(u)µ◦mi (u))i∈I+

N−2m
, where

µ◦mi (u) = µi(u+ m
2 ) + 1

2u

n∑
a=n−m+1

µa(u+ m
2 ) ∀ i ∈ I+

N−2m.
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To prove Part (1), it thus suffices to show that, for each i ∈ I+
N−2m, the corresponding

series µ̃◦mi (u) is indeed given by (4.3.31). By definition,

µ̃◦mi (u) = (2u− n+m+ i)µ◦mi (u) +
n−m∑
k=i+1

µ◦mk (u)

= (2u− n+m+ i)µi(u+ m
2 ) +

n−m∑
k=i+1

µk(u+ m
2 )

+
(2u− n+m+ i

2u + n−m− i
2u

) n∑
a=n−m+1

µa(u+ m
2 )

= (2(u+ m
2 )− n+ i)µi(u+ m

2 ) +
n∑

a=i+1
µa(u+ m

2 )

= µ̃i(u+ m
2 ).

Now let us turn to proving Part (2). Suppose that K is any highest weight submodule
of V (µ(u))(m), and let ξK ∈ K be a highest weight vector. Since V (µ(u))(m) is equal
to V (µ(u))(+,m) as a vector space,

sij(u)ξK = 0 = s−j,−i(u)ξK ∀ i < j with n−m+ 1 ≤ j ≤ n.

Since ξK is a highest weight vector of K, we must also have

sij(u+ m
2 )ξK = 0 =⇒ sij(u)ξK = 0 ∀ i < j ∈ IN−2m,

Combining these two facts gives sij(u)ξK = 0 for all i < j ∈ IN , and thus ξ ∈
V (µ(u))0. By Corollary 4.2.10, V (µ(u))0 = Cξ and therefore ξK is a nonzero scalar
multiple of ξ. As ξ generates V (µ(u))m, this implies K = V (µ(u))m.

The second assertion of Part (2) follows from the first assertion and the fact that,
if V (µ(u))m is finite-dimensional, every proper nonzero submodule K ⊂ V (µ(u))m
must contain an irreducible submodule, and hence a highest weight vector.
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4.4 Reduction to type AIII

Consider now the embedding

ιgl : gln ↪→ gN , Eij 7→ Fij ∀ 1 ≤ i, j ≤ n.

Let ϑgl be the involution of gln defined by ϑgl = Ad(Ggl), where

Ggl =
n∑

i,j=1
gijEij =

k∑
i=1

Eii −
n∑

i=k+1
Eii

and k is the non-negative integer defined in (4.2.40). In particular,

glϑgln
∼= glk⊕ gll

and ιgl may be viewed as an embedding of symmetric pairs

ιgl : (gln, glk⊕ gll) ↪→ (gN , gϑN).

Our goal in this section is construct a twisted Yangian analogue of the functor ι∗gl
and apply it to study highest weight X(gN , gϑN)tw-modules. Analogously to the last
section, this will involve constructing an X(sln, slk ⊕ gll)tw-module structure on a
(generally proper) subspace of any X(gN , gϑN)tw-module, where X(sln, slk ⊕ gll)tw is
the extended twisted Yangian of type AIII from §3.4.

4.4.1 From X(gN , gϑN)tw to X(sln, slk⊕ gll)tw

Let V be an arbitrary representation of X(gN , gϑN)tw, and define J be the left ideal
in X(gN , gϑN)tw generated by the coefficients of the series s−i,j(u) with i ∈ I+

N and
1 ≤ j ≤ n. We define V J to be the subspace of V annihilated by J :

V J = {v ∈ V : s−i,j(u)v = 0 ∀ i ∈ I+
N and 1 ≤ j ≤ n}. (4.4.1)

Note that if V is finite-dimensional or a highest weight module, then V J always
contains a highest weight vector and hence is nonzero.

Proposition 4.4.1. Let V be an X(gN , gϑN)tw-module. Then
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(1) V J is stable under the action of {sij(u)}1≤i,j≤n. That is, we may view

sij(u) ∈ End(V J)[[u−1]] ∀ 1 ≤ i, j ≤ n.

(2) Setting
bij(u) · v = sij(u)v ∀ v ∈ V J and 1 ≤ i, j ≤ n (4.4.2)

equips V J with the structure of an X(sln, slk⊕ gll)tw-module.

(3) Setting
bij(u) · v = σij(u)v ∀ v ∈ V J and 1 ≤ i, j ≤ n (4.4.3)

equips V J with the structure of an X(sln, slk⊕ gll)tw-module.

Proof. We begin with Part (1). We must show that s−i,j(u)sk`(v) = 0 mod J for all
i ∈ I+

N and 1 ≤ j, k, ` ≤ n, or equivalently

[s−i,j(u), sk`(v)] ≡ 0 ∀ i ∈ I+
N and 1 ≤ j, k, ` ≤ n, (4.4.4)

where ≡ is used to denote equality of operators on V J . Let us first show the above
equivalence holds assuming 1 ≤ i ≤ n. This is immediate if k 6= i, j by (3.3.42).
Consider the case where i = j = k. As a consequence of the relation (3.3.42), we have

[s−i,i(u), si`(v)] ≡
(

1
u+ v

+ 1
(u+ v)(u− v − κ)

)
n∑
a=1

s−i,a(u)sa`(v)

− 1
u− v − κ

n∑
a=1

s−a,i(u)sa`(v).
(4.4.5)

Computing s−a,i(u)sa`(v) for a 6= i, we obtain

[s−a,i(u), sa`(v)] ≡ − 1
u− v − κ

n∑
b=1

s−b,i(u)sb`(v)

+ 1
(u+ v)(u− v − κ)

n∑
b=1

s−i,b(u)sb`(v)

≡ [s−i,i(u), si`(v)]− 1
u+ v

n∑
b=1

s−i,b(u)sb`(v),

where the last equivalence is a direct consequence of equation (4.4.5). Substituting
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the above result back into (4.4.5), we get

[s−i,i(u), si`(v)]

≡
(

1
u+ v

+ 1
(u+ v)(u− v − κ)

)
n∑
a=1

s−i,a(u)sa`(v)

− n

u− v − κ
[s−i,i(u), si`(v)] + n− 1

(u+ v)(u− v − κ)

n∑
b=1

s−i,b(u)sb`(v)

≡
(

1 + n

u− v − κ

) 1
u+ v

n∑
a=1

s−i,a(u)sa`(v)− n

u− v − κ
[s−i,i(u), si`(v)],

which implies that

[s−i,i(u), si`(v)] ≡ 1
u+ v

n∑
a=1

s−i,a(u)sa`(v). (4.4.6)

By (3.3.42), for all a 6= i and a ≥ 1, we have the relation

s−i,a(u)sa`(v) ≡ 1
u+ v

n∑
b=1

s−i,b(u)sb`(v) ≡ [s−i,i(u), si`(v)].

Substituting this into (4.4.6), we arrive at

[s−i,i(u), si`(v)] ≡ n

u+ v
[s−i,i(u), si`(v)],

which allows us to conclude that [s−i,i(u), si`(v)] ≡ 0 for all 1 ≤ i ≤ n.

Now, let us consider the case i 6= j. As a consequence of relation (3.3.41), it is
enough to consider the case where j = k. By (3.3.42) we have:

[s−i,j(u), sj`(v)] ≡ 1
u+ v

n∑
a=1

s−i,a(u)sa`(v).

However, by (4.4.6), the right-hand side of the above is equivalent to 0. Thus, we
have shown that (4.4.4) holds for 1 ≤ i ≤ n.

If gN = so2n+1, then we must also show

[s0j(u), sk`(v)] ≡ 0 ∀ 1 ≤ j, k, ` ≤ n.
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This is immediate from (3.3.42) unless j = k, and in this case we obtain

[s0j(u), sj`(v)] ≡ 1
u+ v

n∑
a=1

s0a(u)sa`(v). (4.4.7)

However, the same computation shows that

s0a(u)sa`(v) ≡ 1
u+ v

n∑
b=1

s0b(u)sb`(v) ≡ [s0j(u), sj`(v)],

and so (4.4.7) yields (
1− n

u+ v

)
[s0j(u), sj`(v)] ≡ 0.

This completes the proof of Part (1).

Consider now Part (2). By (3.3.42), we have the following equivalence of operators
for all 1 ≤ i, j, k, l ≤ n:

[sij(u), skl(v)] ≡ 1
u− v

(skj(u)si`(v)− skj(v)sil(u))

+ 1
u+ v

n∑
a=1

(δkjsia(u)sal(v)− δilska(v)saj(u))

− 1
u2 − v2

n∑
a=1

δij (ska(u)sal(v)− ska(v)sal(u)) .

This is precisely the explicit form (3.4.7) of the defining reflection equation for the
algebra X(sln, slk⊕ gll)tw. Hence, Part (2) of the Proposition holds.

As for Part (3), since the generating series σij(u) = q(u)−1sij(u) for the subalgebra
Y (gN , gϑN)tw of X(gN , gϑN)tw satisfy the defining relations (3.3.40) and (3.3.41), Part
(2) implies that setting

bij(u) · v = σij(u)v ∀ v ∈ V J and 1 ≤ i, j ≤ n

equips V J with a X(sln, slk⊕ gll)tw-module structure. By Theorem 3.4.7, we have

X(sln, slk⊕ gll)tw ∼= X(sln, slk⊕ gll)tw/(f(u)− 1),

where f(u)I = B(u)B(−u).

Hence, it suffices to show that ∑n
a=1 σia(u)σaj(−u) ≡ δij for all 1 ≤ i, j ≤ n. This is
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a consequence of the relation ∑a∈IN σia(u)σaj(−u) = δij in Y (gN , gϑN)tw.

Remark 4.4.2. The above proposition has been inspired by the proof of Proposition
4.2.8 in [Mol07], where a similar result was established with X(gN , gϑN)tw replaced by
X(slN , gN)tw and X(sln, slk⊕ gll)tw replaced by Y (gln).

In order to apply Proposition 4.4.1 to study highest weight representations of the
twisted Yangian X(gN , gϑN)tw, we first must recall some of the representation theoretic
results for X(sln, slk⊕ gll)tw developed in [MR02].

4.4.2 Representations of X(sln, slk⊕ gll)tw

A representation V of X(sln, slk ⊕ gll)tw is a highest weight representation if there
exists a nonzero vector ξ ∈ V such that V = X(sln, slk⊕ gll)twξ and

bij(u)ξ = 0 ∀ 1 ≤ i < j ≤ n,

bii(u)ξ = µi(u)ξ ∀ 1 ≤ i ≤ n,

where, for each 1 ≤ i ≤ n, µi(u) is a formal power series in C[[u−1]] of the form

µi(u) = gii +
∞∑
r=1

µ
(r)
i u−r, µ

(r)
i ∈ C.

As usual, we call µ(u) = (µi(u))ni=1 the highest weight of V , and the vector ξ the
highest weight vector. By [MR02, Theorem 4.1], every finite-dimensional irreducible
module V is a highest weight representation.

Given an n-tuple µ(u) = (µi(u))ni=1, the X(sln, slk⊕gll)tw Verma moduleM(µ(u))
is defined as the quotient of X(sln, slk ⊕ gll)tw by the left ideal generated by all the
coefficients of the series

bij(u) with 1 ≤ i < j ≤ n,

bii(u)− µi(u) with 1 ≤ i ≤ n.

When it is non-trivial, M(µ(u)) is a highest weight module with the highest weight
µ(u) and highest weight vector equal to the image of the unit 1.
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A classification of non-trivial Verma modules was obtained by Molev and Ragoucy
in [MR02]: By [MR02, Theorem 4.2], M(µ(u)) is non-trivial if and only if the com-
ponents of the highest weight µ(u) satisfy the relations

µn(u)µn(−u) = 1, (4.4.8)

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i). (4.4.9)

for all 1 ≤ i < n, where the components of µ̃(u) are defined in (4.2.5).

For each n-tuple µ(u) = (µi(u))ni=1 whose components satisfy (4.4.8) and (4.4.9),
the Verma module M(µ(u)) admits a unique irreducible quotient V (µ(u)). Up to
isomorphism, it is the unique irreducible highest weight module with the highest
weight µ(u). In particular, every finite-dimensional irreducible module is isomorphic
to a module of this form.

One of the main results of [MR02] is a complete classification of finite-dimensional
irreducible representations of X(sln, slk ⊕ gll)tw. By [MR02, Theorem 4.6], V (µ(u))
is finite-dimensional if and only if there exists monic polynomials P2(u), . . . , Pn(u) in
u, with

Pi(u) = Pi(−u+ n− i+ 2) ∀ 2 ≤ i ≤ n, (4.4.10)

together with a scalar α ∈ C such that Pk+1(α) 6= 0 and

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u)

(
α− u

α + u− l

)δi,k+1

∀ 2 ≤ i ≤ n. (4.4.11)

Remark 4.4.3.

(1) When k = 0 or k = n, we have k+ 1 /∈ {2, . . . , n} and α plays no role in the
above classification. In particular, (4.4.11) becomes

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u) ∀ 2 ≤ i ≤ n.

(2) In [MR02], the condition l ≤ n/2 was assumed. However, this condition can
be removed and the proof of Theorem 4.6 in [MR02] goes through after only a
small modification.
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4.4.3 Applications to X(gN , gϑN)tw

Using Proposition 4.4.1 and [MR02, Theorem 4.2], we may now make precise the
sufficient and necessary conditions on the tuple µ(u) = (µi(u))i∈I+

N
which results in a

non-trivial X(gN , gϑN)tw Verma module M(µ(u)).

Theorem 4.4.4. The X(gN , gϑN)tw Verma module M(µ(u)) is non-trivial if and only
if the relations

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i)

ug(u)µ̃0(κ− u) = (κ− u) g(κ− u)µ̃0(u)
(4.4.12)

hold for all i ∈ I+
N \ {n}, where the second equation is omitted if gN 6= so2n+1.

Proof. Suppose that V = M(µ(u)) is non-trivial and recall that 1µ(u) ∈ M(µ(u)) is
a highest weight vector associated to the highest weight µ(u). If gN = so2n+1, then
the second relation of (4.4.12) follows immediately from Proposition 4.2.5. Thus, to
show that the relations of (4.4.12) are necessarily satisfied by µ(u), it suffices to show
that

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i) ∀ i ∈ I+
N \ {n}.

Since 1µ(u) belongs to the subspace V J of V (see (4.4.1)) V J is nonzero and by
Proposition 4.4.1 admits the structure of a X(sln, slk ⊕ gll)tw-module. Consider the
submodule

W = X(sln, slk⊕ gll)tw1µ(u) ⊂ V J .

As the central series q(u) is uniquely determined by

w(u) = q(u)q(u+ κ),

Proposition 4.2.7 implies that

q(u)|V = qµ(u)idV , where qµ(u) ∈ 1 + u−1C[[u−1]].

As σij(u) = q(u)−1sij(u), it follows that W is a highest weight representation of
W = X(sln, slk⊕ gll)tw with the highest weight

µ](u) = (qµ(u)−1µi(u))ni=1.
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Therefore, the X(sln, slk ⊕ gll)tw Verma module M(µ](u)) is non-trivial, and by
(4.4.9), we have

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i)

for all 1 ≤ i ≤ n− 1. If gN = so2n+1, then we must also show that

µ̃0(u)µ̃0(−u+ n) = µ̃1(u)µ̃1(−u+ n). (4.4.13)

In fact, the same argument as used in [MR02] to establish (4.4.9) can be applied to
show that (4.4.13) holds. Let us recall the main steps of this argument. Define

βi(u, v) =
n∑
a=i

sia(u)sai(v) ∀ i ∈ I+
N

Using ≡ to denote equality of operators on C1µ(u), we have

βi(u, v)− βi(v, u) =
n∑
a=i

Aia(u, v) ≡ 0,

where the definition of Aij(u, v) has been given in (4.2.15), and the second equivalence
has been proven in Step 3.1 of the proof of Theorem 4.2.6 for i > 0, and in Step 3.2 of
the same proof for i = 0. As a consequence, we have βi(u, v) ≡ βi(v, u) for all i ≥ 0.
From (3.3.42) we obtain

βi(u, v) ≡ sii(u)sii(v) + 1
u− v

n∑
a=i+1

(saa(u)sii(v)− saa(v)sii(u))

+ 1
u+ v

n∑
a=i+1

(βi(u, v)− βa(v, u)) ,

which is equivalent to

(
u+ v − n+ i

u+ v

)
βi(u, v) ≡ sii(u)sii(v)− 1

u+ v

n∑
a=i+1

βa(v, u)

+ 1
u− v

n∑
a=i+1

(saa(u)sii(v)− saa(v)sii(u)).
(4.4.14)
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Subtracting (4.4.14) with i = 1 from (4.4.14) with i = 0 and rearranging, we obtain

u+ v − n
u+ v

(β0(u, v)− β1(u, v))

≡ s00(u)s00(v) + 1
u− v

n∑
a=1

(saa(u)s00(v)− saa(v)s00(u))

− s11(u)s11(v)− 1
u− v

n∑
a=2

(saa(u)s11(v)− saa(v)s11(u)).

Substituting v 7→ n − u, the left-hand side becomes the zero operator and, after
applying both sides to 1µ(u), we arrive at the relation

µ0(u)µ0(v) + 1
2u− n

n∑
a=1

(µa(u)µ0(v)− µa(v)µ0(u))

= µ1(u)µ1(v) + 1
2u− n

n∑
a=2

(µa(u)µ1(v)− µa(v)µ1(u)).

By expanding equation (4.4.13) (using the definition of µ̃i(u)), we see that it is equiv-
alent to the above relation. Therefore, we may conclude that the relations (4.4.12)
are necessarily satisfied when M(µ(u)) is non-trivial.

Conversely, suppose that the components of µ(u) = (µi(u))i∈I+
N

satisfy (4.4.12).
Let h(u) be the rational function in u defined by

h(u) = tr(G) + 4l− 4u
tr(G) + 4u . (4.4.15)

Note that h(u) satisfies the relation h(u)h(l− u) = 1. Define

fi(u) = (h(u))−δik µ̃i(u)
µ̃i+1(u) ∀ i ∈ I+

N \ {n}.

Then, by the first relation of (4.4.12), we have

fi(u)fi(n− u− i) = 1 ∀ i ∈ IN \ {n}.

Thus, for each i ∈ IN \ {n}, there exists gi(u) ∈ 1 + u−1C[[u−1]] such that

fi(u) = gi(u)gi(n− u− i)−1.
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We will use these series to construct a non-trivial X(gN) Verma module M(λ(u))
containing an X(gN , gϑN)tw highest weight module with the highest weight µ(u).

If N = 2n, fix λn(u), λ−n(u) ∈ 1 + u−1C[[u−1]] satisfying the relation

µn(u) =
(

tr(G)− 4ugnn
tr(G)− 4u

)
λn(u− κ/2)λ−n(−u+ κ/2) (4.4.16)

For each i ∈ I+
N \ {n} define λi(u) ∈ 1 +u−1C[[u−1]] recursively in terms of λi+1(u) by

λi(u− κ/2) = gi(u)λi+1(−u− κ/2 + n− i)−1.

By Lemma 4.1.3, there is a unique N -tuple λ(u) extending (λ−n(u), λ1(u), . . . , λn(u))
with the property that the X(gN) Verma module M(λ(u)) is non-trivial.

If instead N = 2n + 1 then, by the second relation of (4.4.12), there exists λ0(u)
in 1 + u−1C[[u−1]] such that

µ̃0(u) = 2ug(u)λ0(u− κ/2)λ0(−u+ κ/2). (4.4.17)

For each i ∈ I+
N \ {n}, define λi+1(u) in 1 + u−1C[[u−1]] recursively in terms of λi(u)

by
λi+1(−u− κ/2 + n− i) = gi(u)λi(u− κ/2)−1.

Then, by Lemma 4.1.3, there is a unique N -tuple λ(u) extending (λi(u))i∈I+
N

such
that the X(gN) Verma module M(λ(u)) is non-trivial.

In either case, we have produced a nontrivial X(gN) Verma moduleM(λ(u)) with
the highest weight λ(u) whose components satisfy the relations

µ̃i(u)
µ̃i+1(u) = h(u)δikλi(u− κ/2)λi+1(−u− κ/2 + n− i)

λi+1(u− κ/2)λi(−u− κ/2 + n− i)

= h(u)δik λi(u− κ/2)λ−i(−u+ κ/2)
λi+1(u− κ/2)λ−i−1(−u+ κ/2)

for all i ∈ I+
N \ {n}, in addition to the relation (4.4.16) if N = 2n and (4.4.17) if

N = 2n+ 1.

By Corollary 4.2.12, the module X(gN , gϑN)tw1λ(u) ⊂ M(λ(u)) is a non-trivial
highest weight module with highest weight is equal to µ(u). It follows that the
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X(gN , gϑN)tw Verma module M(µ(u)) is non-trivial.

We conclude this chapter with a second application of Proposition 4.4.1, which
gives a first hint at what a classification of finite-dimensional X(gN , gϑN)tw-modules
will look like.

Proposition 4.4.5. Suppose the X(gN , gϑN)tw-module V (µ(u)) is finite-dimensional.
Then there exists monic polynomials P2(u), . . . , Pn(u) in u, with

Pi(u) = Pi(−u+ n− i+ 2) ∀ 2 ≤ i ≤ n, (4.4.18)

together with a scalar α ∈ C such that Pk+1(α) 6= 0 and

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u)

(
α− u

α + u− l

)δi,k+1

∀ 2 ≤ i ≤ n. (4.4.19)

Proof. Let ξ ∈ V (µ(u)) be a highest weight vector. As in the proof of Theorem 4.4.4,
one uses Proposition 4.4.1 to construct a X(sln, slk⊕ gll)tw highest weight module

X(sln, slk⊕ gll)twξ ⊂ V (µ(u))J

with the highest weight µ](u) = (qµ(u)−1µi(u))ni=1, where qµ(u) ∈ 1 + u−1C[[u−1]]. As
V (µ(u)) is finite-dimensional, the same must be true of the X(sln, slk⊕gll)tw-module
V (µ](u)). Therefore, the proposition follows from [MR02, Theorem 4.6]; see (4.4.10)
and (4.4.11).
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Chapter 5

Finite-Dimensional Irreducible
Modules

Our work so far reduces the problem of classifying finite-dimensional irreducible
X(gN , gϑN)tw-modules to the problem of determining precisely for which highest weights

µ(u) = (µi(u))i∈I+
N
∈
∏
i∈I+

N

(gii + u−1C[[u−1]])

the irreducible highest weight module V (µ(u)) is finite-dimensional. By Theorem
4.4.4, the set of all such µ(u) is contained in the subset of ∏i∈I+

N
(gii + u−1C[[u−1]])

consisting of µ(u) satisfying

µ̃i(u)µ̃i(−u+ n− i) = µ̃i+1(u)µ̃i+1(−u+ n− i),

ug(u)µ̃0(κ− u) = (κ− u) g(κ− u)µ̃0(u),

where µ̃(u) = (µ̃i(u))i∈I+
N

is defined by (4.2.5). Indeed, if these conditions are not
satisfied, then V (µ(u)) does not even exist. In addition, Proposition 4.4.5 tells us
that, if V (µ(u)) is finite-dimensional, there is a tuple

(α, (Pi(u))ni=2) ⊂ C× C[u]n

satisfying the relations (4.4.18) and (4.4.19).

In this chapter, we strengthen these necessary conditions significantly (in §5.2),
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classify all one-dimensional representations of X(gN , gϑN)tw (in §5.3) and, for pairs
(gN , gϑN) of the form

(g2n, gln), (gN , gN), (soN , soN−2 ⊕ so2) and (so2n+1, so2n),

we obtain a complete classification of all finite-dimensional irreducible representations
of X(gN , gϑN)tw and of Y (gN , gϑN)tw (in §5.4 and §5.5).

Our proofs of these results will, in part, rely on a detailed study of twisted Yangians
associated to the low rank symmetric pairs

(sp2, sp
ϑ
2), (so3, so

ϑ
3) and (so4, so

ϑ
4),

which is carried out in §5.1. Such a study is possible due to the existence of isomor-
phisms, constructed in [GRW16], between twisted Yangians of the above pairs and
twisted Yangians of type A associated to the pairs (sl2, sp2) and (sl2, so2).

Henceforth, we will assume that for symmetric pairs

(gN , gp ⊕ gq) with N, p, q ∈ 2Z,

we have q ≤ p. At the level of the symmetric pair this assumption changes nothing,
but it fixes a unique choice of twisted Yangian corresponding to each pair: see §3.3.6
and, in particular, Proposition 3.3.25 and Remark 3.3.26. We note, however, that the
arguments we give in this chapter do apply in the q < p case after making only very
small modifications.

5.1 Low rank twisted Yangians

The isomorphisms of low rank classical Lie algebras

gl1 ∼= C ∼= so2,

sl2 ∼= so3 ∼= sp2 and so4 ∼= sl2 ⊕ sl2
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induce isomorphisms of symmetric pairs

(sp2, gl1) ∼= (sl2, so2) ∼= (so3, so2),

(sp2, sp2) ∼= (sl2, sp2) ∼= (so3, so3),

(so4, so2 ⊕ so2) ∼= (sl2, so2)⊕ (sl2, so2),

(so4, gl2) ∼= (sl2, sp2)⊕ (sl2, so2) and (so4, so4) ∼= (sl2, sp2)⊕ (sl2, sp2).

In [GRW16], we constructed the twisted Yangian analogues of these isomorphisms.
In this section, we use the isomorphisms of [GRW16], together with the classification
results for finite-dimensional irreducible modules of the twisted Yangians associated
to (sl2, sp2) and (sl2, so2) [Mol92,Mol98,Mol07], to study the representation theory
of extended twisted Yangians of type B, C and D when the rank of gN is one or two.

Throughout this section, we will make use of the following terminology: A gϑN -
module V is said to be a highest weight module with the highest weight (µi)ni=1 ⊂ Cn

if it is generated by a nonzero vector ξ such that

F ϑ
ijξ = 0 ∀ i < j ∈ IN ,

Fiiξ = µiξ ∀ 1 ≤ i ≤ n.

5.1.1 Low rank twisted Yangians of type AI and AII

The definitions and main properties of the (extended) twisted Yangians X(slN , gN)tw

and Y (slN , gN)tw were briefly surveyed in §3.4. In this section, we will only be con-
cerned with the N = 2 case. For the sake of clarity, we will denote the generators of
X(sl2, g2)tw (resp. Y (sl2, g2)tw) by {s◦(r)ij }i,j∈I2,r∈N (resp. {σ◦(r)ij }i,j∈I2,r∈N). Similarly,
we will write

S◦(u) =
∑
i,j∈I2

Eij ⊗ s◦ij(u) and S◦(u) =
∑
i,j∈I2

Eij ⊗ σ◦ij(u), where

s◦ij(u) = δij +
∑
r≥1

s
◦(r)
ij u−r and σ◦ij(u) = δij +

∑
r≥1

σ
◦(r)
ij u−r ∀ i, j ∈ I2.
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In addition, we will exploit the following explicit formulas for the Sklyanin determi-
nant sdetS◦(u) (see (3.4.2)) which can be found in [MNO96, §4]:

sdetS◦(u) = 2u+ 1
2u± 1

(
s◦−1,−1(u− 1)s◦−1,−1(−u)∓ s◦−1,1(u− 1)s◦1,−1(−u)

)
= 2u+ 1

2u± 1
(
s◦11(−u)s◦11(u− 1)∓ s◦1,−1(−u)s◦−1,1(u− 1)

)
. (5.1.1)

We now give a brief overview of those results from the representation theory of
X(sl2, g2)tw which will be applied in §5.1.2–§5.1.5. For a more complete survey,
we refer the reader to Chapter 4 of the monograph [Mol07].

A representation V of X(sl2, g2)tw is called a highest weight representation if there
exists a nonzero vector ξ ∈ V such that V = X(sl2, g2)twξ,

s◦−1,1(u)ξ = 0 and s◦11(u)ξ = µ(u)ξ

for a scalar series µ(u) ∈ 1 + u−1C[[u−1]]. As usual, we call µ(u) the highest weight of
V and the vector ξ a highest weight vector.

Given an arbitrary series µ(u) ∈ 1 + u−1C[[u−1]], the X(sl2, g2)tw Verma module
M(µ(u)) is defined to be the quotient of X(sl2, g2)tw by the left ideal generated by
the coefficients of the series

s◦−1,1(u) and s◦11(u)− µ(u).

Contrary to the X(gN , gϑN)tw case, the X(sl2, g2)tw Verma module M(µ(u)) is always
non-trivial. It admits a unique irreducible quotient V (µ(u)), and any irreducible
highest weight module with the highest weight µ(u) is isomorphic to V (µ(u)). In
particular, every finite-dimensional irreducible X(sl2, g2)tw-module V is isomorphic
to V (µ(u)) for some µ(u).

The following theorem is a restatement of Theorems 4.4 and 5.4 of [Mol92] (see
also Theorems 4.3.3 and 4.4.3 of [Mol07]).

Theorem 5.1.1. The X(sl2, g2)tw-module V (µ(u)) is finite-dimensional if and only
if there exists a monic polynomial P (u) together with a scalar γ ∈ C such that

P (γ) 6= 0,
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P (u) = P (−u+ 1),
µ(−u)
µ(u) = 2u+ 1

2u∓ 1 ·
P (u+ 1)
P (u) · u− γ

u± γ
. (5.1.2)

Remark 5.1.2. If g2 = sp2, then the symbols ± and ∓ take their upper values and
(5.1.2) reduces to

µ(−u)
µ(u) = P (u+ 1)

P (u) .

In this case, the scalar γ and the condition P (γ) 6= 0 play no role in the above
theorem and should be omitted. Additionally, the polynomial P (u) is always uniquely
determined by µ(u) and, if g2 = so2, then the pair (γ, P (u)) is unique.

Consider now the twisted Yangian Y (sl2, g2)tw. The highest weight module V (µ(u))
remains irreducible when restricted to Y (sl2, g2)tw. Moreover, in complete anal-
ogy with Lemma 4.2.1, the isomorphism class of any finite-dimensional irreducible
Y (sl2, g2)tw-module has a unique representative of the form V (µ(u)) with

sdetS◦(u)|V (µ(u)) = idV (µ(u)).

By (5.1.1), the above condition means precisely that

2u+ 1
2u± 1µ(−u)µ(u− 1) = 1. (5.1.3)

By [Mol07, Corollary 4.3.4], Theorem 5.1.1 implies that the isomorphism classes of
finite-dimensional irreducible Y (sl2, sp2)tw-modules are parameterized by monic poly-
nomials

P (u) ∈ C[u] with P (u) = P (−u+ 1).

Similarly, by [Mol07, Corollary 4.4.5], the isomorphism classes of finite-dimensional
irreducible Y (sl2, so2)tw-modules are parameterized by pairs

(γ, P (u)) ∈ C× C[u],

where P (u) is monic , P (u) = P (−u+ 1) and P (γ) 6= 0.
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5.1.2 Low rank twisted Yangians of type C

We now begin our analysis of twisted Yangians associated to symmetric pairs of type
B, C and D in the low rank setting. In this subsection, we consider the symplectic
pairs (sp2, sp

ϑ
2). That is, (gN , gϑN) takes the form

(sp2, gl1) and (sp2, sp2).

LetK = E11−E−1,−1 ∈ End(C2). By [GRW16, Corollary 4.2], there are isomorphisms
of algebras

ϕC0 : X(sp2, sp2)tw ∼−→ X(sl2, sp2)tw, S(u) 7→ S◦(u/2− 1/2), (5.1.4)

ϕCI : X(sp2, gl1)tw ∼−→ X(sl2, so2)tw, S(u) 7→ S◦(u/2− 1/2)K. (5.1.5)

Moreover, these isomorphisms induce algebra isomorphisms

Y (sp2, sp2)tw ∼= Y (sl2, sp2)tw and Y (sp2, gl1)tw ∼= Y (sl2, so2)tw.

With the help of these isomorphisms and Theorem 5.1.1, we can now prove the
following classification result for finite-dimensional irreducible representations of the
extended twisted Yangian X(sp2, sp

ϑ
2)tw.

Proposition 5.1.3. Let µ(u) ∈ 1 + u−1C[[u−1]]. Then the irreducible X(sp2, sp
ϑ
2)tw-

module V (µ(u)) is finite-dimensional if and only if there exists a monic polynomial
P (u) in u, with

P (u) = P (−u+ 4),

in addition to a scalar α ∈ C with P (α) 6= 0 if spϑ2 = gl1, such that

µ̃(2− u)
µ̃(u) = P (u+ 2)

P (u) · 2− u
u

if spϑ2 = sp2, (5.1.6)

µ̃(2− u)
µ̃(u) = P (u+ 2)

P (u) · α− u
α + u− 2 if spϑ2 = gl1. (5.1.7)

Moreover, when they exist, the polynomial P (u) and the scalar α are uniquely deter-
mined.

Proof. We will only include a detailed proof for the case spϑ2 = gl1; the spϑ2 = sp2
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case is very similar.

The isomorphism ϕCI from (5.1.5) defines an equivalence between the highest
weight representations of X(sp2, gl1)tw and those of X(sl2, so2)tw. To see this, given a
series µ◦(u) ∈ 1+u−1C[[u−1]], let V (µ◦(u)) denote the irreducible X(sl2, so2)tw-module
with the highest weight µ◦(u), as in §5.1.1.

Then, viewed as a X(sl2, so2)tw-module via ϕCI, the irreducible X(sp2, gl1)tw-
module V (µ(u)) is isomorphic to V (µ◦(u)) with

µ◦(u) = µ(2u+ 1).

Indeed, if ξ ∈ V (µ(u)) is the highest weight vector, then we have

s◦−1,1(u) · ξ = ϕ−1
CI (s◦−1,1(u))ξ = s−1,1(2u+ 1)ξ = 0,

s◦11(u) · ξ = ϕ−1
CI (s◦11(u))ξ = s11(2u+ 1)ξ = µ(2u+ 1)ξ.

By Theorem 5.1.1, the X(sl2, so2)tw-module V (µ◦(u)) is finite-dimensional if and only
there exists a pair (Q(u), γ), where Q(u) is a monic polynomial in u with Q(u) =
Q(−u+ 1), γ ∈ C is such that Q(γ) 6= 0, and

µ◦(−u)
µ◦(u) = 2u+ 1

2u− 1 ·
Q(u+ 1)
Q(u) · u− γ

u+ γ

Rewriting this condition using µ(u) and substituting u 7→ u−1
2 , we obtain the expres-

sion
(2− u)µ(2− u)

uµ(u) =
Q(u+1

2 )
Q(u−1

2 ) ·
2γ − (u− 1)
(u− 1) + 2γ . (5.1.8)

Set P (u) = 2degQ(u)Q
(
u−1

2

)
and α = 2γ+ 1, so that P (u) is a monic polynomial with

P (u) = P (−u+4) (since Q(u) = Q(−u+1)) and P (α) = 2degQ(u)Q(γ) 6= 0. Then, by
(5.1.8), we have shown that V (µ(u)) is finite-dimensional if and only if there exists a
pair (P (u), α) as in the statement of the proposition, satisfying

µ̃(2− u)
µ̃(u) = P (u+ 2)

P (u) · α− u
α + u− 2 .

The uniqueness of the pair (P (u), α) follows immediately from the uniqueness of
(Q(u), α) (alternatively, it follows from Lemma 5.2.1 below).
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We conclude our brief analysis of the twisted Yangians associated to (sp2, sp
ϑ
2)

with two applications of Proposition 3.4.3. Recall that

F ϑ
ij = (gii + gjj)Fij ∈ U(spϑ2) ∀ i, j ∈ I2.

Composing the isomorphisms (5.1.4) and (5.1.5) with the evaluation morphism ev
from Proposition 3.4.3, we obtain the following.

Proposition 5.1.4. The assignments

evC0 : sij(u) 7→ δij + F ϑ
ij(u− 2)−1,

evCI : sij(u) 7→ gij + F ϑ
iju
−1,

for all i, j ∈ I2, extend to algebra epimorphisms

evC0 : X(sl2, sp2)tw � U(sp2) and evCI : X(sl2, so2)tw � U(so2).

For any γ ∈ C, let V (γ) denote the irreducible highest weight representation of
spϑ2 with the highest weight γ. That is, V (γ) is the irreducible module generated by
a nonzero vector ξ such that

F ϑ
−1,1ξ = 0 and F11ξ = γξ.

If spϑ2 = gl1, then U(so2) is a polynomial algebra in one variable and V (γ) is always
one-dimensional.

We may view V (γ) as an X(sp2, sp
ϑ
2)tw-module by pulling back via the evaluation

homomorphisms evC0 and evCI.

Corollary 5.1.5. Given µ ∈ C, V (γ) is isomorphic to the irreducible X(sp2, sp
ϑ
2)tw-

module V (µ(u)) with

µ(u) =

1 + 2µ(u− 2)−1 if spϑ2 = sp2,

1 + (2µ)u−1 if spϑ2 = gl1.
(5.1.9)

We will see in Corollary 5.3.11 that the family of one-dimensional representa-
tions {V (γ)}γ∈C yield a complete list of one-dimensional Y (sp2, gl1)tw-modules, up to
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isomorphism (in the notation of §5.3.3, V (γ) is V (α) with α = 2γ).

5.1.3 Low rank twisted Yangians of type D0 and DIII

We now consider those symmetric pairs (so4, so
ϑ
4) of the form

(so4, so4) and (so4, gl2).

The isomorphisms constructed in [GRW16] which concern these pairs involve the
tensor products

Y (sl2, so2)tw ⊗X(sl2, sp2)tw and Y (sl2, sp2)tw ⊗X(sl2, sp2)tw.

To distinguish between the two tensor factors, we will write σ◦ij(u) = σ◦ij(u) ⊗ 1 and
s•ij(u) = 1⊗ s◦ij(u). Similarly, we will denote

S◦(u) = S◦(u)⊗ 1 and S•(u) = 1⊗ S◦(u).

Let V = C2 ⊗ C2 with ordered basis given by

v−2 = e−1 ⊗ e−1, v−1 = e−1 ⊗ e1, v1 = e1 ⊗ e−1 and v2 = −e1 ⊗ e1.

By identifying V with C4 equipped with canonical basis {vi}i∈I4 , we can consider
S(u) as an element of EndV ⊗X(so4, so

ϑ
4)tw[[u−1]], where soϑ4 is either gl2 or so4. By

Corollaries 4.9 and 4.13 of [GRW16], the assignments

ϕD0 : S(u) 7→ S◦(u− 1/2)S•(u− 1/2),

ϕDIII : S(u) 7→ S◦(u− 1/2)K1S
•(u− 1/2),

where we recall that K = E11 − E−1,−1, extend to algebra isomorphisms

ϕD0 :X(so4, so4)tw ∼−→ Y (sl2, sp2)tw ⊗X(sl2, sp2)tw, (5.1.10)

ϕDIII :X(so4, gl2)tw ∼−→ Y (sl2, so2)tw ⊗X(sl2, sp2)tw. (5.1.11)
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These isomorphisms can be recovered from embeddings

ϕ̃D0 :X(so4, so4)tw ↪→ X(sl2, sp2)tw ⊗X(sl2, sp2)tw,

S(u) 7→ S◦(u− 1/2)S•(u− 1/2),

ϕ̃DIII :X(so4, gl2)tw ∼−→ X(sl2, so2)tw ⊗X(sl2, sp2)tw,

S(u) 7→ S◦(u− 1/2)K1S
•(u− 1/2),

(5.1.12)

by composing with the natural quotient map X(sl2, g2)tw � Y (sl2, g2)tw in the first
tensor factor. Here S◦(u) is identified with S◦(u)⊗ 1.

By Corollaries 4.10 and 4.14 of [GRW16], the restrictions of ϕD0 and ϕDIII to the
twisted Yangians Y (so4, so

ϑ
4)tw yield isomorphisms

Y (so4, so4)tw ∼= Y (sl2, sp2)tw ⊗ Y (sl2, sp2)tw,

Y (so4, gl2)tw ∼= Y (sl2, so2)tw ⊗ Y (sl2, sp2)tw.

Using the above isomorphisms, we obtain the following classification result.

Proposition 5.1.6. The irreducible representation V (µ(u)) of X(so4, so
ϑ
4)tw is finite-

dimensional if and only if there exist monic polynomials P (u) and Q(u) in u, with

P (u) = P (−u+ 2) and Q(u) = Q(−u+ 2),

in addition to a scalar α ∈ C with Q(α) 6= 0 if soϑ4 = gl2, such that

µ̃1(u)
µ̃2(u) = P (u+ 1)

P (u) , (5.1.13)

µ̃1(1− u)
µ̃2(u) = Q(u+ 1)

Q(u) · 1− u
u

if soϑ4 = so4, (5.1.14)

µ̃1(1− u)
µ̃2(u) = Q(u+ 1)

Q(u) · α− u
α + u− 1 if soϑ4 = gl2. (5.1.15)

Moreover, when they exist, the pair (Q(u), P (u)) and the scalar α are uniquely deter-
mined.

Proof. We will give details of the proof only for the case soϑ4 = gl2.

It is a general fact that any simple finite-dimensional module over a tensor product
A⊗B of two associative unital C-algebras A and B is of the form MA ⊗MB, where
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MA (resp. MB) is a simple, finite-dimensional module over A (resp. over B): see
Theorem 3.10.2 in [EGH+11]. We show more precisely that the X(so4, gl2)tw-module
V (µ(u)), viewed as a Y (sl2, so2)tw ⊗X(sl2, sp2)tw-module via the isomorphism ϕDIII,
is isomorphic to

V (λ◦(u))⊗ V (λ•(u)),

where the X(sl2, so2)tw-module V (λ◦(u)) is viewed as a Y (sl2, so2)tw by restriction,
and the series λ◦(u) and λ•(u) are completely determined by the two relations

λ•(u)λ•(u− 1)− 1
2u (λ•(u)− λ•(−u))λ•(u− 1)

= µ1(−u+ 1/2)µ2(u− 1/2),
(5.1.16)

λ◦(u) = µ2(u+ 1/2)λ•(u)−1. (5.1.17)

Equivalently, λ◦(u) and λ•(u) are completely determined by

λ◦(−u)λ◦(u− 1) = 1,

µ̃2(u) = 2uλ◦(u− 1/2)λ•(u− 1/2),

µ̃1(u) = 2uλ◦(u− 1/2)λ•(−u+ 1/2).

(5.1.18)

We will need the following explicit formulas for the images of the generators sij(u)
under the isomorphism ϕDIII from (5.1.11):

s−2,−2(u) 7→ −σ◦−1,−1(ũ)s•−1,−1(ũ),

s−2,−1(u) 7→ −σ◦−1,−1(ũ)s•−1,1(ũ),

s−2,1(u) 7→ σ◦−1,1(ũ)s•−1,−1(ũ),

s−2,2(u) 7→ −σ◦−1,1(ũ)s•−1,1(ũ),

s−1,−2(u) 7→ −σ◦−1,−1(ũ)s•1,−1(ũ),

s−1,−1(u) 7→ −σ◦−1,−1(ũ)s•11(ũ),

s−1,1(u) 7→ σ◦−1,1(ũ)s•1,−1(ũ),

s−1,2(u) 7→ −σ◦−1,1(ũ)s•11(ũ),

s1,−2(u) 7→ −σ◦1,−1(ũ)s•−1,−1(ũ),

s1,−1(u) 7→ −σ◦1,−1(ũ)s•−1,1(ũ),

s11(u) 7→ σ◦11(ũ)s•−1,−1(ũ),

s12(u) 7→ −σ◦11(ũ)s•−1,1(ũ),

s2,−2(u) 7→ σ◦1,−1(ũ)s•1,−1(ũ),

s2,−1(u) 7→ σ◦1,−1(ũ)s•11(ũ),

s21(u) 7→ −σ◦11(ũ)s•1,−1(ũ),

s22(u) 7→ σ◦11(ũ)s•11(ũ),

(5.1.19)

where ũ = u− 1/2. It is explained how to obtain these formulas from the definition
of ϕDIII (see (5.1.11)) at the end of the proof of Proposition 4.8 in [GRW16]. These
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formulas together with the expression (5.1.1) and the fact that sdetS◦(u) = 1 give

ϕDIII (s11(−ũ)s22(ũ)− s1,−2(−ũ)s−1,2(ũ))

=
(
σ◦11(−u)σ◦11(u− 1)− σ◦1,−1(−u)σ◦−1,1(u− 1)

)
s•−1,−1(−u)s•11(u− 1)

= s•−1,−1(−u)s•11(u− 1).

(5.1.20)

Letting ξ ∈ V (µ(u)) denote the highest weight vector, this gives

s•−1,−1(−u)s•11(u− 1)ξ = µ1(−ũ)µ2(ũ)ξ.

Employing the defining symmetry relation (3.4.4) of X(sl2, sp2)tw, we can rewrite this
as (

s•11(u)− 1
2u (s•11(u)− s•11(−u))

)
s•11(u− 1)ξ = µ1(−ũ)µ2(ũ)ξ.

By induction on the coefficients s•(r)11 of s•11(u), this implies that there exists

λ•(u) ∈ 1 + u−1C[[u−1]]

such that s•11(u)ξ = λ•(u)ξ, and λ•(u) is determined by (5.1.16). Again appealing to
the formulas (5.1.19), we have ϕDIII(s22(u)) = σ◦11(ũ)s•11(ũ), which implies that ξ is
an eigenvector for the action of σ◦11(u) with weight λ◦(u) determined by the relation
(5.1.17). Notice that it now follows immediately from the explicit formulas (5.1.19)
that

σ◦−1,1(u)ξ = s•−1,1(u)ξ = 0.

Conversely, any vector η with the property that σ◦−1,1(u)η = s•−1,1(u)η = 0 and which
is a weight vector for s•ii(u) must be a highest weight vector of the X(so4, gl2)tw-
module V (µ(u)) by (5.1.19), hence a scalar multiple of ξ. Thus, by the irreducibility
of V (µ(u)) we can conclude that

V (µ(u)) ∼= V (λ◦(u))⊗ V (λ•(u)). (5.1.21)

To see that (5.1.16) and (5.1.17) are equivalent to the relations given in equation
(5.1.18), we observe first that relation (5.1.17) is clearly equivalent to

µ̃2(u) = 2uλ◦(u− 1/2)λ•(u− 1/2).
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Notice also that we may rewrite (5.1.16) as

λ•(u)λ•(u− 1)− 1
2u (λ•(u)− λ•(−u))λ•(u− 1)

= µ1(−u+ 1/2)λ◦(u− 1)λ•(u− 1).
(5.1.22)

Since sdetS◦(u) = 1, by (5.1.3) we have λ◦(−u)−1 = λ◦(u − 1). Using this, we may
rewrite (5.1.22) as

λ•(−u+ 1/2)λ◦(u− 1/2)

− 1
1−2u (λ•(−u+ 1/2)λ◦(u− 1/2)− λ•(u− 1/2)λ◦(u− 1/2)) = µ1(u),

which is equivalent to

2uλ•(−u+ 1/2)λ◦(u− 1/2) = (2u− 1)µ1(u) + µ2(u) = µ̃1(u).

As a consequence of the isomorphism of Y (sl2, so2)tw ⊗ X(sl2, sp2)tw-modules
(5.1.21), we can deduce exactly when V (µ(u)) is finite-dimensional. Indeed, by The-
orem 5.1.1, V (λ◦(u))⊗V (λ•(u)) is finite-dimensional if and only if there exists γ ∈ C
together with monic polynomials P ◦(u), P •(u) such that

P ◦(γ) 6= 0, P ◦(u) = P ◦(−u+ 1), P •(u) = P •(−u+ 1) (5.1.23)

and the following equalities hold:

λ◦(−u)
λ◦(u) = 2u+ 1

2u− 1 ·
P ◦(u+ 1)
P ◦(u) · u− γ

u+ γ
,

λ•(−u)
λ•(u) = P •(u+ 1)

P •(u) .

(5.1.24)

In this case, the triple (γ, P ◦(u), P •(u)) is unique. Since

µ̃1(u)
µ̃2(u) = 2u · λ◦(u− 1/2)λ•(−u+ 1/2)

2u · λ◦(u− 1/2)λ•(u− 1/2) = λ•(−u+ 1/2)
λ•(u− 1/2) ,

the second equation in (5.1.24) is equivalent to

µ̃1(u)
µ̃2(u) = P •(u+ 1/2)

P •(u− 1/2) = P (u+ 1)
P (u) , where P (u) = P •(u− 1/2),
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which is precisely (5.1.13). Similarly, since

µ̃1(1− u)
µ̃2(u) = 2(1− u)λ◦(−u+ 1/2)λ•(u− 1/2)

2uλ◦(u− 1/2)λ•(u− 1/2) = 1− u
u
· λ
◦(−u+ 1/2)
λ◦(u− 1/2) ,

we may rewrite the first equation in (5.1.24) as

µ̃1(1− u)
µ̃2(u) = P ◦(u− 1/2 + 1)

P ◦(u− 1/2) · γ + 1/2− u
u− 1/2 + γ

= Q(u+ 1)
Q(u) · α− u

α + u− 1 ,

where we have set α = γ + 1/2 and Q(u) = P ◦(u − 1/2). This is precisely (5.1.15).
Moreover, by (5.1.23), we have Q(α) 6= 0, P (u) = P (−u+ 1) and Q(u) = Q(−u+ 1).

Finally, we note that the uniqueness of the triple (α,Q(u), P (u)) is immediate
from the uniqueness of (γ, P ◦(u), P •(u)).

We now turn to the construction of evaluation morphisms

X(so4, so4)tw � U(so4) and X(so4, gl2)tw � U(gl2).

Let Ωϑ be the Casimir element of U(so4) if soϑ4 = so4, or of U(sl2) ⊂ U(gl2) if
soϑ4 = gl2, defined by

Ωϑ =

F
2
11 + F 2

22 − 2F22 + 2F21F12 + 2F2,−1F−1,2 if soϑ4 = so4,

1
2(F22 − F11)2 + F12F21 + F21F12 if soϑ4 = gl2.

Here we recall that U(soϑ4) ⊂ U(so4) is generated by F ϑ
ij = (gii+gjj)Fij for all i, j ∈ I4.

If soϑ4 = gl2, define the auxiliary central element z ∈ U(gl2) by

z = F 2
11 + F 2

22 + F12F21 + F21F12 = Ωϑ + 1
2(F11 + F22)2.

In the following proposition it will be convenient to denote the Casimir element Ωϑ

corresponding to soϑ4 = so4 simply by Ω.
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Proposition 5.1.7. The assignments

evD0 :S(u) 7→ I + F ϑ

u− 1 + (F ϑ)2 − 2F ϑ − 2Ω · I
2(u− 1)2 , (5.1.25)

evDIII :S(u) 7→ G + F ϑ

u
+ G (F ϑ)2 − 2z · I

2u(u− 1) , (5.1.26)

extend to algebra epimorphisms

evD0 : X(so4, so4)tw � U(so4) and evDIII : X(so4, gl2)tw � U(gl2).

Proof. Suppose first that soϑ4 = gl2. Consider the Lie algebra so2 ⊕ sp2. Denote the
generators of so2 in this direct sum by F ◦ij, and those of sp2 by F •ij, where i, j ∈ I2.
The Lie algebra so2 is one-dimensional with basis F ◦11, while sp2 is three-dimensional
with basis {F •1,1, F •−1,1, F

•
1,−1}. Let Φ be the isomorphism so2 ⊕ sp2

∼−→ gl2 given by

F ◦11 7→ F11 + F22, F •11 7→ F22 − F11, F •−1,1 7→ −2F12, F •1,−1 7→ −2F21.

It induces an isomorphism Φ̂ : U(so2) ⊗ U(sp2) ∼−→ U(gl2), and we thus obtain an
algebra epimorphism

Φ̂ ◦ (ev⊗ ev) : X(sl2, so2)tw ⊗X(sl2, sp2)tw � U(gl2),

where ev : X(sl2, g2)tw � U(g2) is as in Proposition 3.4.3. Writing this map explicitly,
we have s◦ij(u) 7→ 0 for i 6= j, and

s◦−1,−1(u) 7→ 1− F11 + F22

u+ 1/2 ,

s◦11(u) 7→ 1 + F11 + F22

u+ 1/2 ,

s•−1,−1(u) 7→ 1 + F11 − F22

u− 1/2 , s•−1,1(u) 7→ − 2F12

u− 1/2 ,

s•11(u) 7→ 1 + F22 − F11

u− 1/2 , s•1,−1(u) 7→ − 2F21

u− 1/2 ,

where s◦ij(u) is identified with s◦ij(u)⊗ 1.

The proof is now completed as follows: Composing Φ̂◦(ev⊗ev) with the embedding
ϕ̃DIII from (5.1.12) gives a homomorphism evDIII : X(so4, gl2)tw → U(gl2). It remains
to see that it is given by the assignment (5.1.26) and that it is surjective. However, if
it is indeed given by (5.1.26) then it must be surjective, so it remains only to check the
former claim. This can be shown by a direct calculation using the formulas (5.1.19).
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For instance, since

ϕ̃DIII(s−2,−2(u)) = −s◦−1,−1(u− 1/2)s•−1,−1(u− 1/2),

we have

evDIII(s−2,−2(u)) = −
(

1− F11 + F22

u

)(
1 + F11 − F22

u− 1

)
= −1 + 2F22

u
+ F 2

11 − F 2
22 − F11 + F22

u(u− 1) .
(5.1.27)

On the other hand, since F ϑ
ij = (gii + gjj)Fij and Fij = −F−j,−i in so4, the coefficient

of E−2,−2 in the right-hand side of (5.1.26) is given by

−1 + 2F22

u
+−2F 2

22 − 2F12F21 + F 2
11 + F 2

22 + F12F21 + F21F12

u(u− 1)

= −1 + 2F22

u
+ F 2

11 − F 2
22 + F22 − F11

u(u− 1) ,

which coincides with (5.1.27). The images of the remaining generators can be verified
similarly.

If instead soϑ4 = so4, the argument is similar. Denote the generators corresponding
to the first copy of sp2 in the direct sum sp2 ⊕ sp2 by F ◦ij, and those corresponding
to the second copy of sp2 by F •ij, where in both cases i, j ∈ I2. A basis for sp2 ⊕ sp2

is then given by the union of {F ◦1,1, F ◦−1,1, F
◦
1,−1} and {F •1,1, F •−1,1, F

•
1,−1}. Let Φ be the

isomorphism sp2 ⊕ sp2
∼−→ so4 given by

F ◦11 7→ F11 + F22, F ◦−1,1 7→ 2F−2,1, F ◦1,−1 7→ 2F1,−2

F •11 7→ F22 − F11, F •−1,1 7→ −2F12, F •1,−1 7→ −2F21.

Φ induces an isomorphism Φ̂ : U(sp2) ⊗ U(sp2) ∼−→ U(so4), and so the composition
Φ̂◦(ev⊗ev) is a surjective homomorphismX(sl2, sp2)tw⊗X(sl2, sp2)tw � U(so4). The
composition of this map with the embedding ϕ̃D0 from (5.1.12) gives a homomorphism
evD0 : X(so4, so4)tw → U(so4). If it is indeed given by the assignment (5.1.25) then it
is surjective, so we need only verify that this is the case. This can be shown directly by
first computing the explicit images ϕ̃D0(sij(u)) (as in (5.1.19)), and then performing
computations similar to those carried out in the soϑ4 = gl2 case.

208



Given µ1, µ2 ∈ C, let V (µ1, µ2) denote the irreducible soϑ4 -module with the highest
weight (µ1, µ2). The pull-back of V (µ1, µ2) via the appropriate epimorphism from
Proposition 5.1.7 is an irreducible X(so4, so

ϑ
4)tw-module, which we call an evaluation

module.

Corollary 5.1.8. Given µ1, µ2 ∈ C, the evaluation module V (µ1, µ2) is isomorphic
to the X(so4, so

ϑ
4)tw-module V (µ1(u), µ2(u)) where

µ1(u) = 1 + 2µ1

u
+ µ2

1 − µ2
2 + µ1 − µ2

u(u− 1)

µ2(u) = 1 + 2µ2

u
+ µ2

2 − µ2
1 + µ2 − µ1

u(u− 1)

if soϑ4 = gl2,

µ1(u) = 1 + 2µ1

u− 1 + µ2
1 − µ2

2
(u− 1)2

µ2(u) = 1 + 2µ2

u− 1 + µ2
2 − µ2

1
(u− 1)2

if soϑ4 = so4.

Proof. Consider first the case where soϑ4 = gl2. We first show that z acts on V (µ1, µ2)
as the scalar µ2

1 + µ2
2 + µ1− µ2. Since z belongs to the center of U(gl2) and V (µ1, µ2)

is a highest weight module, z acts by scalar multiplication. Therefore, it suffices to
determine how z operates on the highest weight vector ξ. We have

(F 2
11 + F 2

22 + F12F21 + F21F12)ξ = (F 2
11 + F 2

22 + F11 − F22)ξ

= (µ2
1 + µ2

2 + µ1 − µ2)ξ,

as desired. The formula(5.1.26) now shows ξ is a highest weight vector forX(so4, sl2)tw

with the highest weight (µ1(u), µ2(u)) as in the statement of the corollary.

If instead soϑ4 = so4, observe that the Casimir element Ω operates on V (µ1, µ2)
as multiplication by the scalar µ2

1 + µ2
2 − 2µ2. The corollary now follows from the

formula (5.1.25).

5.1.4 Low rank twisted Yangians of type DI

In this subsection, we consider the extended twisted Yangian associated to the sym-
metric pair

(gN , gϑN) = (so4, so2 ⊕ so2).
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The story unfolds similarly to §5.1.3; the only difference is that the fixed point sub-
algebra gϑN is commutative of dimension 2, which leads to an extra parameter in the
classification given by Proposition 5.1.9 below.

By [GRW16, Corollary 4.17], there is an isomorphism of algebras

ϕDI : X(so4, so2 ⊕ so2)tw ∼−→ Y (sl2, so2)tw ⊗X(sl2, so2)tw,

S(u) 7→ −S◦1 (u− 1/2)K1S
•
2(u− 1/2)K2.

(5.1.28)

This isomorphism can be obtained from the embedding

ϕ̃DI : X(so4, so2 ⊕ so2)tw ↪→ X(sl2, so2)tw ⊗X(sl2, so2)tw,

S(u) 7→ −S◦1(u− 1/2)K1S
•
2(u− 1/2)K2.

(5.1.29)

by applying the natural quotient map X(sl2, so2)tw � Y (sl2, so2)tw in the first tensor
factor. Here it understood that all notation is as in §5.1.3. The sign difference
between (5.1.28) and (4.59) of [GRW16] is due to the fact that the matrix G that we
use equals the matrix −G ′ used in [GRW16].

Proposition 5.1.9. The X(so4, so2 ⊕ so2)tw-module V (µ(u)) is finite-dimensional
if and only if there exists monic polynomials Q(u) and P (u) together with scalars
α, β ∈ C, such that

P (α) 6= 0 6= Q(β),

P (u) = P (−u+ 2), Q(u) = Q(−u+ 2),
µ̃1(u)
µ̃2(u) = P (u+ 1)

P (u) · α− u
α + u− 1 ,

µ̃1(1− u)
µ̃2(u) = u

1− u ·
Q(u+ 1)
Q(u) · β − u

β + u− 1 .

Moreover, when it exists, the tuple (α, β,Q(u), P (u)) is uniquely determined by µ(u) =
(µi(u))i∈I+

4
.

Proof. The proof of this proposition is very similar to that of Proposition 5.1.6.
We begin by showing that the X(so4, so2 ⊕ so2)tw-module V (µ(u)), viewed as a
Y (sl2, so2)tw ⊗X(sl2, so2)tw-module via the isomorphism ϕDI, is isomorphic to

V (µ◦(u))⊗ V (µ•(u)),
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where the pair (µ◦(u), µ•(u)) is completely determined by the relations

µ◦(−u)µ◦(1− u) = 1,

µ̃2(u) = −2uµ◦(u− 1/2)µ•(u− 1/2),

µ̃1(u) = (2u− 2)µ◦(u− 1/2)µ•(−u+ 1/2).

(5.1.30)

Writing the map (5.1.28) explicitly we have that

ϕDI :

 s11(u) 7→ σ◦11(ũ) s•−1,−1(ũ), s−1,2(u) 7→ σ◦−1,1(ũ) s•11(ũ),

s22(u) 7→ −σ◦11(ũ) s•11(ũ), s1,−2(u) 7→ −σ◦1,−1(ũ) s•−1,−1(ũ),
(5.1.31)

where ũ = u− 1/2. Moreover, a computation analogous to (5.1.20) shows that

ϕDI : s1,−2(−ũ) s−1,2(ũ)− s11(−ũ) s22(ũ) 7→ s•−1,−1(−u) s•11(u− 1).

Letting ξ ∈ V (µ(u)) denote the highest weight vector, this in turn implies that

s•−1,−1(−u)s•11(u− 1) ξ = −µ1(−ũ)µ2(ũ) ξ.

Using the symmetry relation (3.4.4) for X(sl2, so2)tw, we can rewrite the equality
above as (

s•11(u) + s•11(u)− s•11(−u)
2u

)
s•11(u− 1)ξ = −µ1(−ũ)µ2(ũ)ξ.

By induction on the coefficients s•(r)11 of s•11(u), this implies that there exists µ•(u) in
1 + u−1C[[u−1]] satisfying

s•11(u)ξ = µ•(u)ξ.

Moreover, µ•(u) is uniquely determined by the relation
(
µ•(u) + µ•(u)− µ•(−u)

2u

)
µ•(u− 1) = −µ1(−ũ)µ2(ũ). (5.1.32)

Moreover, (5.1.31) implies that ξ is also an eigenvector for the action of σ◦11(u) with
weight µ◦(u) defined by

µ2(u) = −µ◦(ũ)µ•(ũ). (5.1.33)
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The relations (5.1.32) and (5.1.33) are in fact equivalent to (5.1.30). Indeed, since
sdetS◦(u) = 1 we have µ◦(−u)−1 = µ◦(u− 1), and using this relation we can rewrite
(5.1.32) as

µ1(u) = µ◦(ũ)
(
µ•(−ũ) + µ•(ũ)− µ•(−ũ)

2ũ

)
.

This relation, together with µ◦(−u)−1 = µ◦(u − 1) and (5.1.33), yields (5.1.30). On
the other hand, it is easily seen that (5.1.30) has a unique solution; hence the claimed
equivalence holds.

Finally, since [σ◦ij(u), s•kl(v)] = 0, it follows immediately from the definition of ξ
and the two formulas

ϕDI(s−1,2(u)) = σ◦−1,1(ũ) s•11(ũ) and ϕDI(s12(u)) = σ◦11(ũ)s•−1,1(ũ)

that σ◦−1,1(u) ξ = s•−1,1(u) ξ = 0. Thus, by the irreducibility of V (µ(u)) we can
conclude that

V (µ(u)) ∼= V (µ◦(u))⊗ V (µ•(u)).

with (µ◦(u), µ•(u)) the unique solution of (5.1.30).

We can now use the isomorphism above to determine exactly when V (µ(u)) is
finite-dimensional. By Theorem 5.1.1, the module V (µ◦(u)) ⊗ V (µ•(u)) is finite-
dimensional if and only if there exists a tuple (γ◦, γ•, P ◦(u), P •(u)), where γ◦, γ• ∈ C
and P ◦(u), Q•(u) are monic polynomials in u such that

P ◦(γ◦) 6= 0 6= P •(γ•),

P ◦(u) = P ◦(−u+ 1), P •(u) = P •(−u+ 1),

and the following equations hold:

µ◦(−u)
µ◦(u) = 2u+ 1

2u− 1 ·
P ◦(u+ 1)
P ◦(u) · u− γ

◦

u+ γ◦
,

µ•(−u)
µ•(u) = 2u+ 1

2u− 1 ·
P •(u+ 1)
P •(u) · u− γ

•

u+ γ•
.

(5.1.34)

Set P (u) = P •(ũ), Q(u) = P ◦(ũ), α = γ• + 1
2 and β = γ◦ + 1

2 . Substituting u 7→ ũ,
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the above relations become

µ◦(−ũ)
µ◦(ũ) = 2u

2u− 2 ·
P (u+ 1)
P (u) · u− α

u+ α− 1 ,

µ•(−ũ)
µ•(ũ) = 2u

2u− 2 ·
Q(u+ 1)
Q(u) · u− β

u+ β − 1 .

By (5.1.30),

µ̃1(u)
µ̃2(u) = 2− 2u

2u · µ
•(−ũ)
µ•(ũ) and µ̃1(1− u)

µ̃2(u) = µ◦(−ũ)
µ◦(ũ) .

Therefore, (5.1.34) is equivalent to

µ̃1(u)
µ̃2(u) = P (u+ 1)

P (u) · α− u
u+ α− 1 and µ̃1(1− u)

µ̃2(u) = u

1− u ·
Q(u+ 1)
Q(u) · β − u

u+ β − 1 .

Moreover, (α, P (u)) satisfies

P (u) = P •(u− 1/2) = P •(−u+ 1/2 + 1) = P (−u+ 2),

P (α) = P •(α− 1/2) = P •(γ•) 6= 0.

and the same is true of (β,Q(u)). Finally, the uniqueness of (α, β,Q(u), P (u)) follows
either from the uniqueness of (γ◦, γ•, P ◦(u), P •(u)) or Lemma 5.2.1 below.

We now construct an evaluation morphism X(so4, so2 ⊕ so2)tw � U(so2 ⊕ so2).
Note that the fixed point subalgebra U(so2 ⊕ so2) ⊂ U(so4) is generated by the
elements F11 and F22.

Proposition 5.1.10. The assignment

evDI : sij(u) 7→ gij + 2gijFiju−1 + δij(F 2
11 − F 2

22)u−2 (5.1.35)

defines a surjective algebra homomorphism

evDI : X(so4, so2 ⊕ so2)tw � U(so2 ⊕ so2).

Proof. The Lie algebra so2 is one-dimensional and hence so2 ⊕ so2 = CF ◦11 ⊕ CF •11,
where F ◦11 and F •11 denote the generator F11 for the first and second copy of so2,
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respectively.

Let Φ be the isomorphism

Φ : so2 ⊕ so2
∼−→ soϑ4 ,

F ◦11 7→ F11 + F22, F •11 7→ F22 − F11.

Then Φ induces an isomorphism

Φ̂ : U(so2)⊗ U(so2) ∼−→ U(soϑ4) = U(so2 ⊕ so2),

and so the composition Φ̂ ◦ (ev⊗ ev) yields a surjective homomorphism

Φ̂ ◦ (ev⊗ ev) : X(sl2, so2)tw ⊗X(sl2, so2)tw � U(so2 ⊕ so2),

where ev : X(sl2, so2)tw � U(so2) is given by Proposition 3.4.3. Composing Φ̂◦ (ev⊗
ev) with the embedding ϕ̃DI from (5.1.29), we obtain evDI as in (5.1.35).

The morphism evDI allows us to equip any so2 ⊕ so2-module with the structure
of a X(so4, so2 ⊕ so2)tw-module. As usual, modules obtained this way are called
evaluation modules. Let V (µ1, µ2) denote the irreducible soϑ4 = so2 ⊕ so2 module
with the highest weight (µ1, µ2). This is the one-dimensional representation of soϑ4 in
which Fii acts as multiplication by µi ∈ C. The corollary below follows directly from
the formula (5.1.35).

Corollary 5.1.11. For any µ1, µ2 ∈ C, the module V (µ1, µ2) is isomorphic to the
X(so4, so2 ⊕ so2)tw-module V (µ(u)) with

µi(u) = gii + 2giiµiu−1 + (µ2
1 − µ2

2)u−2 for 1 ≤ i ≤ 2.

The collection {V (µ1, µ2)}µ1,µ2∈C provides a family of one-dimensional represen-
tations of X(so4, so2 ⊕ so2)tw indexed by C×C. Note that the trivial representation
V (G) may be recovered in the special case where (µ1, µ2) = (0, 0). In Remark 5.3.7, it
will be explained that these are essentially all of the one-dimensional representations
of X(so4, so2 ⊕ so2)tw.
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5.1.5 Low rank twisted Yangians of type B

Our discussion of low rank twisted Yangians concludes in this subsection with an
analysis of the finite-dimensional irreducible representations for the extended twisted
Yangians associated to the pairs (so3, so

ϑ
3). That is, (gN , gϑN) takes the form

(so3, so3) and (so3, so2).

The latter pairs correspond to (so2n+1, so2n−1 ⊕ so2) with n = 1, as so1 = {0}. We
begin by recalling the relevant isomorphisms from [GRW16].

Let V be the three-dimensional subspace of C2 ⊗ C2 with basis {vi}i∈I3 given by

v−1 = e−1 ⊗ e−1, v0 = 1√
2(e−1 ⊗ e1 + e1 ⊗ e−1) and v1 = −e1 ⊗ e1.

Upon identifying V with C3 we may view

S(u) =
∑
i,j∈I3

EV
ij ⊗ sij(u) ∈ End(V )⊗X(so3, so2)tw[[u−1]],

where EV
ij vk = δjkvi ∀ i, j, k ∈ I3.

Let R◦(u) ∈ End(C2 ⊗ C2) denote the rational R-matrix (2.7.4) corresponding to
N = 2. That is,

R◦(u) = I − P ◦u, where P ◦ =
∑
i,j∈I2

Eij ⊗ Eji

and I2 = {±1}. The operator

QV = 1
2R
◦(−1) = 1

2(I + P ◦) ∈ End(C2 ⊗ C2)

is then a projector of C2 ⊗C2 onto the subspace V . By Proposition 4.3 of [GRW16],
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there are isomorphisms of algebras

ϕB0 :X(so3, so3)tw ∼−→ X(sl2, sp2)tw,

S(u) 7→ QV S
◦
1(2u− 1)R◦(−4u+ 1)tS◦2(2u),

ϕBI :X(so3, so2)tw ∼−→ X(sl2, so2)tw,

S(u) 7→ 1− 4u
1 + 4uQV S

◦
1(2u− 1)R◦(−4u+ 1)tS◦2(2u)K1K2

(5.1.36)

where the transpose t is that corresponding g2 in X(sl2, g2)tw, and it is applied to
either the first or second tensor factor of R◦12(−4u+1). In addition K = E11−E−1,−1,
as in the previous subsections.

Remark 5.1.12. The discrepancy between the definition of ϕBI and that of the
isomorphism from [GRW16, (4.34)] and [GRW19b, (3.11)] is due to the factor

tr(GGRW)− 4u
tr(GGRW) + 4u = 1− 4u

1 + 4u

which appears in Proposition 3.3.27.

By [GRW16, Proposition 4.3], the isomorphisms ϕB0 and ϕBI induce isomorphisms

Y (so3, so3)tw ∼= Y (sl2, sp2)tw and Y (so3, so2)tw ∼= Y (sl2, so2)tw,

though these will not play an important role in this subsection.

Before applying ϕB0 and ϕBI to study the representation theory of X(so3, so
ϑ
3)tw,

we pause to explain how the definitions (5.1.36) should be interpreted. Let’s first
consider ϕB0. Setting ũ = u− 1/2, we have

s−1,−1(u) 7→s◦−1,−1(2ũ)s◦−1,−1(2u)− 1
4u−1s

◦
−1,1(2ũ)s◦1,−1(2u) ,

s−1,0(u) 7→ 1√
2s
◦
−1,−1(2ũ)s◦−1,1(2u)

+ 1√
2(4u−1)

(
4u s◦−1,1(2ũ)s◦−1,−1(2u)− s◦−1,1(2ũ)s◦11(2u)

)
,

s−1,1(u) 7→ − 4u
4u−1s

◦
−1,1(2ũ)s◦−1,1(2u),

s0,−1(u) 7→ 1√
2s
◦
1,−1(2ũ)s◦−1,−1(2u)

+ 1√
2(4u−1)

(
4u s◦−1,−1(2ũ)s◦1,−1(2u)− s◦11(2ũ)s◦1,−1(2u)

)
,

s00(u) 7→ 1
8u−2(4u s◦−1,−1(2ũ)− s◦11(2ũ))s◦11(2u)
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+ 1
8u−2(4u s◦11(2ũ)− s◦−1,−1(2ũ))s◦−1,−1(2u)

+ 1
2

(
s◦1,−1(2ũ)s◦−1,1(2u) + s◦−1,1(2ũ)s◦1,−1(2u)

)
,

s01(u) 7→ − 1√
2s
◦
−1,1(2ũ)s◦11(2u)

− 1√
2(4u−1)

(
4u s◦11(2ũ)s◦−1,1(2u)− s◦−1,−1(2ũ)s◦−1,1(2u)

)
,

s1,−1(u) 7→ − 4u
4u−1s

◦
1,−1(2ũ)s◦1,−1(2u) ,

s10(u) 7→ − 1√
2s
◦
11(2ũ)s◦1,−1(2u)

− 1√
2(4u−1)

(
4u s◦1,−1(2ũ)s◦11(2u)− s◦1,−1(2ũ)s◦−1,−1(2u)

)
,

s11(u) 7→s◦11(2ũ)s◦11(2u)− 1
4u−1s

◦
1,−1(2ũ)s◦−1,1(2u).

To obtain the above from the assignment given in (5.1.36), one must expand S(u)vk
and ϕB0(S(u))vk, for each k ∈ I3 = {0,±1}, as linear combinations of the basis
{vi}i∈I3 of V and then compare coefficients.

As an example, we consider the case where k = 1. Since

S(u)v1 =
∑
i∈I3

vi ⊗ si1(u),

this computation will allow us to compute the images of s−1,1(u), s01(u) and s11(u).
Since v1 = −e1 ⊗ e1, a straightforward computation shows that

ϕB0(S(u))v1 = −QV S
◦
1(2u− 1)R◦(−4u+ 1)tS◦2(2u)(e1 ⊗ e1)

= 1
8u−2

∑
i,k∈I2

(ek ⊗ e1 + e1 ⊗ ek)⊗ s◦ki(2u− 1)s◦i1(2u)

− 2u
4u−1

∑
i,k∈I2

(ek ⊗ ei + ei ⊗ ek)⊗ s◦k1(2u− 1)s◦i1(2u). (5.1.37)

From this expression we can easily compute the X(sl2, sp2)tw-coefficients of v−1 =
e−1 ⊗ e−1 and v1 = −e1 ⊗ e1, which must coincide with the images of s−1,1(u) and
s11(u), respectively. We obtain

ϕB0(s−1,1(u)) = − 4u
4u−1s

◦
−1,1(2u− 1)s◦−1,1(2u),

ϕB0(s11(u)) = s◦11(2u− 1)s◦11(2u)− 1
4u−1s

◦
1,−1(2u− 1)s◦−1,1(2u).
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Similarly, the coefficients of e−1 ⊗ e1 and e1 ⊗ e−1 in (5.1.37) are both equal to

1
8u−2(s◦−1,−1(2u− 1)s◦−1,1(2u)+s◦−1,1(2u− 1)s◦11(2u))

− 4u
8u−2(s◦−1,1(2u− 1)s◦11(2u) + s◦11(2u− 1)s◦−1,1(2u)).

Since v0 = 1√
2(e−1 ⊗ e1 + e1 ⊗ e−1), the image of s01(u) must coincide with the above

expression multiplied by
√

2. After rearranging, this gives

ϕB0(s01(u)) =− 1√
2s
◦
−1,1(2u− 1)s◦11(2u)

− 1√
2(4u−1)(4us

◦
11(2u− 1)s◦−1,1(2u)− s◦−1−1(2u− 1)s◦−1,1(2u)).

The remaining images can all be computed by repeating this procedure with k = 0
and k = 1.

Similar calculations show that the images of the generators sij(u) of X(so3, so2)tw

under ϕBI are given by the following formulas.

s−1,−1(u) 7→ 1−4u
1+4us

◦
−1,−1(2ũ)s◦−1,−1(2u)− 1

4u+1s
◦
−1,1(2ũ)s◦1,−1(2u),

s−1,0(u) 7→ 1√
2

(
4u−1
4u+1

)
s◦−1,−1(2ũ)s◦−1,1(2u)

+ 1√
2(4u+1)

(
s◦−1,1(2ũ)s◦11(2u) + 4us◦−1,1(2ũ)s◦−1,−1(2u)

)
,

s−1,1(u) 7→ 4u
4u+1 s

◦
−1,1(2ũ)s◦−1,1(2u),

s0,−1(u) 7→ 1√
2

(
1−4u
4u+1

)
s◦1,−1(2ũ)s◦−1,−1(2u)

− 1√
2(4u+1)

(
s◦11(2ũ)s◦1,−1(2u) + 4u s◦−1,−1(2ũ)s◦1,−1(2u)

)
,

s00(u) 7→ 4u−1
8u+2

(
s◦−1,1(2ũ)s◦1,−1(2u) + s◦1,−1(2ũ)s◦−1,1(2u)

)
+ 1

8u+2(s◦−1,−1(2ũ) + 4u s◦11(2ũ))s◦−1,−1(2u)

+ 1
8u+2(4u s◦−1,−1(2ũ) + s◦11(2ũ))s◦11(2u),

s01(u) 7→ 1√
2(4u+1)s

◦
−1,−1(2ũ)s◦−1,1(2u)

+ 1√
2

(
4u−1
4u+1

)
s◦−1,1(2ũ)s◦11(2u) + 4u√

2(4u+1)s
◦
11(2ũ)s◦−1,1(2u),

s1,−1(u) 7→ 4u
4u+1 s

◦
1,−1(2ũ)s◦1,−1(2u),

s10(u) 7→ 1√
2

(
1−4u
4u+1

)
s◦11(2ũ)s◦1,−1(2u)

− 1√
2(4u+1)

(
4u s◦1,−1(2ũ) s◦11(2u) + s◦1,−1(2ũ) s◦−1,−1(2u)

)
,

s11(u) 7→ 1−4u
4u+1s

◦
11(2ũ)s◦11(2u)− 1

4u+1s
◦
1,−1(2ũ)s◦−1,1(2u).

(5.1.38)
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The last ingredient we will need is the following lemma.

Lemma 5.1.13. Suppose that µ(u) = (µi(u))i∈I+
3
satisfies (4.4.12). That is,

µ̃0(u)µ̃0(1− u) = µ̃1(u)µ̃1(1− u)

ug(u)µ̃0(1/2− u) = (1/2− u) g(1/2− u)µ̃0(u).

Then there exists a unique series µ◦(u) ∈ 1 + u−1C[[u−1]] satisfying

µ̃1(u) = 2u ḡ(u)µ◦(2u)µ◦(2u− 1),

µ̃0(u) = 2ug(u)µ◦(2u)µ◦(1− 2u),

where ḡ(u) =


1− 4u
1 + 4u if soϑ3 = so2,

1 if soϑ3 = so3,

(5.1.39)

Proof. It suffices to prove the lemma in the case where soϑ3 = so3. Indeed, if in-
stead soϑ3 = so2, then we may define the X(so3, so3)tw highest weight µ](u) from the
X(so3, so2)tw highest weight µ(u) by

µ̃]0(u) = g(u)−1µ̃0(u) and µ̃]1(u) = ḡ(u)−1µ̃1(u).

Since g(u)g(1−u) = ḡ(u)ḡ(1−u), µ](u) satisfies the assumptions of the lemma for
soϑ3 = so3, and a unique solution µ◦(u) of (5.1.39) for µ](u) gives a unique solution
of (5.1.39) for µ(u).

Next, note that if h(u) ∈ 1 + u−1C[[u−1]] and γ ∈ C, then there exists a unique
series k(u) ∈ 1 + u−1C[[u−1]] such that

h(u) = k(u)k(u+ γ).

This is readily observed by expanding both sides.

Now let µ(u) be a X(so3, so2)tw highest weight satisfying the assumptions of the
lemma and set

f(u) = µ̃0(u)
µ̃1(u) .

By the above observation, there is a unique series λ(u) ∈ 1 + u−1C[[u−1]] such that
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µ1(u) = λ(u)λ(u− 1/2). Set µ◦(u) = λ(u/2). Then

µ̃1(u) = 2uµ◦(2u)µ◦(2u− 1).

The uniqueness of λ(u) guarantees that µ◦(u) will be the unique solution of (5.1.39)
provided it satisfies

µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u).

Since f(u)f(1− u) = 1, there exists a series d(u) ∈ 1 + u−1C[[u−1]] such that

f(u) = d(1− 2u)d(2u− 1)−1.

For instance, d(u) = f̊
(

1−u
2

)
, where f̊(u) is the unique solution of the equation

f̊(u)2 = f(u) in 1 + u−1C[[u−1]],

has this property. Set g(u) = d(2u− 1)µ◦(2u− 1)−1. Then

f(u) = µ◦(1− 2u)g(1− u)
µ◦(2u− 1)g(u) = 2uµ◦(2u)µ◦(1− 2u)g(1− u)g(u)−1

µ̃1(u) ,

which implies that µ̃0(u) = 2uµ◦(2u)µ◦(1 − 2u)g(1 − u)g(u)−1. Since µ̃0(u) satisfies
u µ̃0(1/2− u) = (1/2− u) µ̃0(u), we obtain

g(1− u)g(u)−1 = g(u+ 1/2)g(1/2− u)−1.

This implies that k(u) = g(1− u) is the unique solution of

k(u+ 1/2)k(u) = g(u+ 1/2)g(u) in 1 + u−1C[[u−1]].

Therefore, we must have g(u) = k(u) = g(1− u). Hence

µ̃0(u) = 2uµ◦(2u)µ◦(1− 2u)g(1− u)g(u)−1

= 2uµ◦(2u)µ◦(1− 2u).

Proposition 5.1.14. Suppose that µ(u) = (µi(u))i∈I+
3
satisfies the condition (4.4.12).

Then the X(so3, so
ϑ
3)tw-module V (µ(u)) is finite-dimensional if and only if there exists
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a monic polynomial P (u) in u, with

P (u) = P (−u+ 3/2),

in addition to a scalar α ∈ C with P (α) 6= 0 if soϑ3 = so2, such that

µ̃0(u)
µ̃1(u) = P (u+ 1/2)

P (u) if soϑ3 = so3, (5.1.40)

µ̃0(u)
µ̃1(u) = P (u+ 1/2)

P (u) · α− u
α + u− 1 if soϑ3 = so2. (5.1.41)

Moreover, when they exist, the polynomial P (u) and scalar α are unique.

Proof. We will include a detailed proof the soϑ3 = so2; the proof in the soϑ3 = so3 case
is nearly identical and is spelled out explicitly in [GRW17, Proposition 5.8].

By Lemma 5.1.13, there is a unique series µ◦(u) ∈ 1 + u−1C[[u−1]] satisfying

µ̃1(u) = 2u
(1− 4u

1 + 4u

)
µ◦(2u)µ◦(2u− 1),

µ̃0(u) = 2u
(4u− 3

4u+ 1

)
µ◦(2u)µ◦(1− 2u).

(5.1.42)

Since µ̃0(u) = (2u− 1)µ0(u) + µ1(u) and µ̃1(u) = 2uµ1(u), these relations are equiv-
alent to

µ1(u) =
(1− 4u

1 + 4u

)
µ◦(2u)µ◦(2u− 1),

µ0(u) = 1
2ũ

(4u− 3
4u+ 1 · 2uµ

◦(−2ũ) + 4u− 1
4u+ 1 · µ

◦(2ũ)
)
µ◦(2u),

(5.1.43)

where we recall that ũ = u− 1/2.

Let V (µ◦(u)) denote the irreducible highest weight X(sl2, so2)tw-module with the
highest weight µ◦(u) and let ξ denote its highest weight vector. We may view V (µ◦(u))
as aX(so3, so2)tw-module via the isomorphism ϕBI from (5.1.36). It is immediate from
(5.1.38) that sij(u)ξ = 0 for all i < j and

s11(u)ξ =
(1− 4u

1 + 4u

)
µ◦(2ũ)µ◦(2u)ξ = µ1(u)ξ. (5.1.44)
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To compute s00(u)ξ we need to use the following formula, which follows from (3.4.5):

[s◦−1,1(2ũ), s◦1,−1(2u)] = 1
4u−1

(
s◦11(2u) s◦11(2ũ)− s◦−1,−1(2ũ) s◦−1,−1(2u)

)
+ 4u

4u−1

(
s◦11(2u) s◦−1,−1(2ũ)− s◦11(2ũ) s◦−1,−1(2u)

)
.

Combining this formula with the equality [s◦ii(u), s◦jj(v)]ξ = 0 for all i, j ∈ {±1}, we
obtain

s00(u)ξ = 1
4u+ 1

(
4u s◦−1,−1(2ũ) + s◦11(2ũ)

)
s◦11(2u)ξ. (5.1.45)

By the defining symmetry relation (3.4.4) of X(sl2, so2)tw, we have

s◦−1,−1(2ũ) = 1
4ũ ((4u− 3)s◦11(−2ũ) + s◦11(2ũ)) .

Substituting this into (5.1.45) and appealing to (5.1.43), we obtain

s00(u)ξ = 1
2ũ

(4u− 3
4u+ 1 · 2uµ

◦(−2ũ) + 4u− 1
4u+ 1 · µ

◦(2ũ)
)
µ◦(2u)ξ = µ0(u)ξ. (5.1.46)

Equalities (5.1.44) and (5.1.46) show that, as an X(so3, so2)tw-module, V (µ◦(u)) is
isomorphic to V (µ(u)).

We can now use this isomorphism to determine exactly when V (µ(u)) is finite-
dimensional. By Theorem 5.1.1, this occurs precisely when there exists a monic
polynomial Q(u) together with γ ∈ C such that Q(γ) 6= 0 and

Q(u) = Q(−u+ 1),
µ◦(−u)
µ◦(u) = 2u+ 1

2u− 1 ·
Q(u+ 1)
Q(u) · u− γ

u+ γ
.

Using (5.1.42), the second relation above can be rewritten as

µ̃0(u)
µ̃1(u) = 4u− 3

1− 4u ·
µ◦(1− 2u)
µ◦(2u− 1)

= Q(2u)
Q(2u− 1) ·

γ − 2u+ 1
γ + 2u− 1 = P (u+ 1/2)

P (u) · α− u
α + u− 1 ,

where
P (u) = 2− degQQ(2u− 1) and α = γ + 1

2 . (5.1.47)
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With this definition of (α, P (u)) we have P (α) 6= 0 and P (u) = P (−u + 3/2) as
desired. Finally, the uniqueness of (α, P (u)) is guaranteed by the uniqueness of
(γ,Q(u)).

As in §5.1.2–§5.1.4, we conclude this subsection with a brief discussion of evalua-
tion homomorphisms and evaluation modules. Let Ω denote the Casimir element

Ω = F 2
11 − F11 + 2F10F01

of the Lie algebra so3, and set

Ω(u) =
(4u+ 1

4u

)
Ω.

Recall that F ϑ = ∑
i,j∈I3 Eij ⊗ F ϑ

ij ∈ End(C3)⊗ U(soϑ3).

Proposition 5.1.15. The assignments

evB0 :S(u) 7→ I + u

u− 3/4

(
F ϑ

u− 1/4 + (F ϑ)2 − 2F ϑ − 2Ω(u) · I
2(u− 1/4)2

)
, (5.1.48)

evBI :S(u) 7→ G(u)− 4
(4u+ 1)2

(
4uF ϑ + (F ϑ

11)2 · I
)
, (5.1.49)

extend to algebra epimorphisms

evB0 : X(so3, so3)tw � U(so3) and evBI : X(so3, so2)tw � U(so2).

Proof. Consider first the soϑ3 = so2 case. We identify so2 = CF ◦11 in its standard
realization with soϑ3 via the isomorphism F ◦11 7→ F ϑ

11. Composing the evaluation
morphism ev from Proposition 3.4.3 (where gN = so2) with ϕBI from (5.1.36) and
using the aforementioned identification, we obtain an epimorphism

ev ◦ ϕBI : X(so3, so2)tw � U(so2)

which satisfies sij(u) 7→ 0 if i 6= j and

s−1,−1(u) 7→ 1− 4u
1 + 4u −

4
(4u+ 1)2

(
(F ϑ
−1,−1)2 + 4uF ϑ

−1,−1

)
,

s00(u) 7→ 1− 8u
(1− 4u)(1 + 4u)

(
F ϑ
−1,−1 + F ϑ

11

)
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− 2
(1 + 4u)2(1− 4u)

(
(F ϑ

11 + 4uF ϑ
−1,−1)F ϑ

11 + (F ϑ
−1,−1 + 4uF ϑ

11)F ϑ
−1,−1

)
= 1− 4(F ϑ

11)2

(4u+ 1)2 ,

s11(u) 7→ 1− 4u
1 + 4u −

4
(4u+ 1)2

(
(F ϑ

11)2 + 4uF ϑ
11

)
.

Hence, ev ◦ ϕBI gives evBI as in (5.1.49).

Suppose instead that soϑ3 = so3. Let Φ : U(sp2) ∼−→ U(so3) be the isomorphism
given by

F ◦11 7→ 2F11, F ◦−1,1 7→ 2
√

2F−1,0, F ◦1,−1 7→ 2
√

2F0,−1,

where the usual generators of g2 = sp2 are denoted {F ◦ij}i,j∈I2 . We thus obtain an
epimorphism

evB0 = Φ ◦ ev ◦ ϕB0 : X(so3, so3)tw � U(so3)

To complete the proof of the proposition, it remains only to see that this map agrees
with evB0 as given in (5.1.48). This can be checked directly using the explicit formulas
for ϕB0(sij(u)) (see above (5.1.37)) and that ev is given by

s◦ij(u) 7→ δij + F ◦ij

(
u− 1

2

)−1
.

For example,

s11(u) 7→
(

1 + F11

u− 3/4

)(
1 + F11

u− 1/4

)
− 1

2u− 1/2

(
F0,−1

u− 3/4

)(
F−1,0

u− 1/4

)

= 1 + u

u− 3/4

(
2F11

u− 1/4 +
F 2

11 − F11 − 1
4u(F 2

11 − F11 + 2F0,−1F−1,0)
(u− 1/4)2

)
.

Conversely, since F ϑ
ij = 2Fij for all i, j ∈ I2, the coefficient of E11 on the right-hand

side of (5.1.48) is

1+ u

u− 3/4

(
2F11

u− 1/4 +
2F10F01 + 2F 2

11 − 2F11 − 4u+1
4u (F 2

11 − F11 + 2F10F01)
(u− 1/4)2

)

= 1 + u

u− 3/4

(
2F11

u− 1/4 +
F 2

11 − F11 − 1
4u(F 2

11 − F11 + 2F10F01)
(u− 1/4)2

)
.

As F10F01 = F0,−1F−1,0, this shows that evB0(s11(u)) is indeed given as claimed in
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(5.1.48). The images of the other generators can be checked similarly, or one can use
(4.2.9) and the fact that X(so3, so3)tw is generated by the coefficients of s11(u) and
the elements Fij ∈ so3.

Let V (µ) denote the irreducible soϑ3 -module with the highest weight µ ∈ C. As
a consequence of Proposition 5.1.15, we can, and will, view V (µ) as an irreducible
module over X(so3, so

ϑ
3)tw.

Corollary 5.1.16. Let µ ∈ C. Then, as an X(so3, so
ϑ
3)tw-module, V (µ) is isomorphic

to V (µ(u)) with

µ0(u) = (4u+ 1)2 − (4µ)2

(4u+ 1)2

µ1(u) = −(4u+ 4µ)2 − 1
(4u+ 1)2

if soϑ3 = so2,

µ0(u) = 1− 16µµ(4u+ 1) + 4u− 1
(4u− 3)(4u− 1)2

µ1(u) = 1 + 16µ µ+ 2u− 1
(4u− 3)(4u− 1)

if soϑ3 = so3.

Proof. This follows from (5.1.48) and (5.1.49) after observing that Ω operates on V (µ)
as scalar multiplication by µ2 − µ.

When soϑ3 = so2, V (µ) is always one dimension with F11 ∈ soϑ3 operating as µ · id.
In analogy to the two-parameter family {V (µ1, µ2)}µ1,µ2∈C of the previous subsection,
the one-parameter family {V (µ)}µ∈C ofX(so3, so2)tw-modules, which includes V (G) =
V (0), contains every one-dimensional representation of X(so3, so2)tw up to twisting
by automorphisms of the form νg. Indeed, this will be shown in Proposition 5.3.5
below, where V (µ) corresponds to V (α) with α = −µ− 1/4.

5.2 Necessary conditions in the general setting

Henceforth, we will assume that (gN , gϑN) is any of the orthogonal or symplectic pairs
introduced in Chapter 3 which is not equal to (so4, so2 ⊕ so2). That is, (gN , gϑN)
belongs to one of the families

(g2n, gln) and (gN , gp ⊕ gq), where (gN , gp ⊕ gq) 6= (so4, so2 ⊕ so2),
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and 0 ≤ q < N takes even values and satisfies q ≤ p if p = N − q is also even.

In this section we use the machinery developed in Chapter 4, together with the
results of §5.1, to obtain a set of conditions on the highest weight µ(u) of the
X(gN , gϑN)tw-module V (µ(u)), which are satisfied whenever this module is finite-
dimensional: see Propositions 5.2.5 and 5.2.13. The extended twisted Yangian as-
sociated to the pair (so4, so2 ⊕ so2) has been studied in §5.1.4, and is exceptional
due to its two-parameter family of one-dimensional representations, which exist as a
consequence of the fact that soϑ4 = so2 ⊕ so2 is a two-dimensional commutative Lie
algebra.

As a prerequisite to our study, we begin by proving two elementary results per-
taining to polynomials satisfying certain symmetry relations.

5.2.1 Preliminaries on polynomials

The two technical lemmas presented below are inspired by similar results which ap-
peared in Chapters 3 and 4 of [Mol07]. They will play a small, but important, role
in the next chapters.

Lemma 5.2.1. Let α, β ∈ C, l ∈ Z and m ∈ Q. Suppose that P (u) and Q(u) are
both monic polynomials satisfying

P (u) = P (−u+ l), Q(u) = Q(−u+ l),

P (α) 6= 0 6= Q(β),
P (u+m)
P (u) · α− u

α + u− l +m
= Q(u+m)

Q(u) · β − u
β + u− l +m

. (5.2.1)

Then P (u) = Q(u) and α = β.

Proof. This is a generalization of a result proven as part of the proof of [Mol07,
Theorem 4.4.3]. There the statement of the lemma was proven in the special case
where l = m = 1. The same argument works in the general case, and we repeat it
here for the sake of the reader.

If α = β, then
P (u+m)
P (u) = Q(u+m)

Q(u) ,
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which implies that the rational function f(u) = Q(u)/P (u) is periodic. This is
impossible unless f(u) is constant. Since P (u) and Q(u) are monic, we can conclude
that f(u) = 1, and hence P (u) = Q(u).

Therefore it suffices to show that an equality of the form (5.2.1) is impossible
unless α = β. We prove this by induction on k, where k = 1

2(deg P (u) + deg Q(u)).

If k = 0, then this follows from the fact that (5.2.1) collapses to

α− u
α + u− l +m

= β − u
β + u− l +m

.

Suppose inductively that (5.2.1) is impossible whenever α 6= β and k < M for some
M ∈ N. Assume now k = M . By symmetry, we may assume without loss of generality
that degP (u) ≥ 2. Additionally, without loss of generality we may assume that P (u)
and Q(u) have no common roots. Let u0 be a root of P (u) such that u0 +m is not a
root. Then (5.2.1) implies u0 = l −m− β.

Write P (u) = P ](u)(u− u0)(u+ u0 − l) and set β] = l − u0. Then we have

P ](u+m)
P ](u) · α− u

α + u− l +m
= Q(u+m)

Q(u) · β] − u
β] + u− l +m

,

and α 6= β] due to the fact that P (β]) = 0. By the induction hypothesis, this is
impossible.

Lemma 5.2.2. Let α ∈ C, l ∈ Z and m ∈ Q. Suppose that P (u) is a monic
polynomial such that P (u) = P (−u+ l). Then there exists a pair (`mα , Pm

α (u)), where
`mα ∈ Z≥0 and Pm

α (u) is a monic polynomial, satisfying

Pm
α (u) = Pm

α (−u+ l), Pm
α (α−m`mα ) 6= 0,

P (u+m)
P (u) · α− u

α + u− l +m
= Pm

α (u+m)
Pm
α (u) · (α−m`mα )− u

(α−m`mα ) + u− l +m
. (5.2.2)

Moreover, the pair (`mα , Pm
α (u)) is unique with Pm

α (u) equal to P (u) divided by

Q(u) =
`mα −1∏
k=0

(u− α + km)(u− l + α− km). (5.2.3)

Proof. We first define the pair (`mα , Pm
α (u)) and show that it satisfies the desired
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properties. For each a ≥ 0, set

P (a)(u) = P (u)∏a−1
k=0(u− α + km)(u− l + α− km)

∈ C(u), (5.2.4)

where P (0)(u) = P (u). Note that P (a)(u) will be a monic polynomial in u satisfying
P (a)(u) = P (a)(−u+l) whenever P (u) is divisible by ∏a−1

k=0(u−α+km)(u−l+α−km).
Define

` =

0 if P (α) 6= 0,

mink≥1{P (k−1)(α− (k − 1)m) = 0, P (k)(α− km) 6= 0} otherwise.

It a straightforward consequence of the above definitions that P (`)(u) is a monic
polynomial in u satisfying P (`)(u) = P (`)(−u+ l). We may now set

`mα = ` and Pm
α (u) = P (`)(u).

By definition of `mα , we have Pm
α (α−m`mα ) 6= 0. Moreover,

P (u+m)
P (u) = Pm

α (u+m)
Pm
α (u) ·

∏`mα −1
k=0 (u− α + (k + 1)m)(u− l + α− (k − 1)m)∏`mα −1

k=0 (u− α + km)(u− l + α− km)

= Pm
α (u+m)
Pm
α (u) · (α− `mαm)− u

(α− `mαm) + u− l +m
· α + u− l +m

α− u
,

which implies that (5.2.2) holds.

Finally, note that the uniqueness of (`mα , Pm
α (u)) is an immediate corollary of

Lemma 5.2.1.

The statement of Lemma 5.2.2 did not explicitly appear in [Mol07], but similar
ideas were needed in the proof of Theorem 4.4.14 therein. We note that the assump-
tion that m ∈ Q is not necessary in either of the above two lemmas. However, we
will only be concerned with this case.

We conclude this brief subsection by introducing some convenient notation related
to polynomials.

Definition 5.2.3. Let P (u) ∈ C[u] and α, β ∈ C such that α− β ∈ Z.
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(1) We denote the zero set (or zero locus) of P (u) by Z(P (u)):

Z(P (u)) = {z ∈ C : P (z) = 0}.

(2) We define the string S(α, β) ⊂ C to be the set

S(α, β) =

{β, β + 1, . . . , α− 1} if α− β ∈ Z>0,

∅ otherwise.
(5.2.5)

5.2.2 Associating polynomials to V (µ(u))

Let us now define auxiliary parameters a, b ∈ I+
N and d ∈ Q by

(a, b, d) =


(1, 1, 2) if gN = spN ,

(0, 1, 1/2) if gN = so2n+1,

(1, 2, 1) if gN = so2n.

(5.2.6)

These parameters are chosen so that, in the notation of (4.1.7), we have

h1 = −Faa − Fbb and d = d1.

Moreover, with this notation the second set of relations in Theorem 4.1.4 may be
expressed uniformly as

λ−a(u)
λb(u) = P1(u+ d)

P1(u) . (5.2.7)

We will also set
k(G) = kδG,Gt and δ = δgN ,spN .

For the next lemma, we briefly return to the low rank setting of §5.1.

Lemma 5.2.4. Let (gN , gϑN) be a symmetric pair from §5.1 not equal to (so4, so2 ⊕
so2). Then, if V (µ(u)) is finite-dimensional, there exists a monic polynomial Q(u) in
u together with a scalar α ∈ C \ Z(Q(u)) such that

Q(u) = Q(−u+ κ+ 2δ),
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u

κ− u
· µ̃a(κ− u)

µ̃b(u) = g(κ− u)
g(u) · Q(u+ d)

Q(u)

(
α− u

α + u− κ+ d− 2δ
)δk(G),0

.

Proof. If gN = sp2 or gN = so4, then this follows from Propositions 5.1.3 and 5.1.6
together with the definitions of κ, d, δ and g(u). If instead gN = so3, then by
Proposition 4.4.4, we have

u

κ− u
· µ̃0(κ− u)

µ̃1(u)
g(u)

g(κ− u) = µ̃0(u)
µ̃1(u) ,

and the lemma follows from Proposition 5.1.14 together with the facts that κ = 1/2 =
d and 2δ = 1.

Using this lemma, we can improve upon Proposition 4.4.5 of Chapter 4.

Proposition 5.2.5. Suppose the X(gN , gϑN)tw-module V (µ(u)) is finite-dimensional.
Then there exists monic polynomials P1(u), . . . , Pn(u) in u, with

P1(u) = P1(−u+ κ+ 2δ),

Pi(u) = Pi(−u+ n− i+ 2) ∀ 2 ≤ i ≤ n,
(5.2.8)

together with a scalar α ∈ C \ Z(Pk(G)+1(u)) such that

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u)

(
α− u

α + u− l

)δi,k+1

∀ 2 ≤ i ≤ n, (5.2.9)

u

κ− u
· µ̃a(κ− u)

µ̃b(u) = g(κ− u)
g(u) · P1(u+ d)

P1(u)

(
α− u

α + u− κ+ d− 2δ
)δk(G),0

. (5.2.10)

Proof. The existence of P2(u), . . . , Pn(u) along with α ∈ C \ Z(Pk+1(u)) (provided
k(G) 6= 0) satisfying (5.2.8) and (5.2.9) was established in Proposition 4.4.5. There-
fore, it suffices to show that there exists P1(u) (together with α ∈ C \ Z(P1(u)) if
k(G) = 0) satisfying P1(u) = P1(−u+ κ+ 2δ) as well as the relation (5.2.10).

For this, we will make use of the results of §4.3. Define

m = n− 2 if gN = so2n and m = n− 1 if gN = sp2n or so2n+1.
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The symmetric pair (gN−2m, g
ϑ(m)
N−2m) (see §4.3) is then given by

(gN−2m, g
ϑ(m)
N−2m) =


(gN−2m, gln−m) if (gN , gϑN) = (g2n, gln),

(gN−2m, gN−2m) if (gN , gϑN) = (gN , gp ⊕ gq), p > 1,

(so3, so2) if (gN , gϑN) = (so2n+1, so2n).

Here we note that (so2n+1, so2n) = (so2n+1, so1 ⊕ so2n) and that the symmetric pair
(so4, so2 ⊕ so2) does not appear in the above list.

As V (µ(u)) is finite-dimensional, the X(gN−2m, g
ϑ(m)
N−2m)tw-module V (µ(u))m from

Corollary 4.3.7 is finite-dimensional. Moreover, it is isomorphic to V (µ](u)) with

µ](u) = (h(u)µ◦mi (u))i∈IN−2m ,

where h(u) is given by (4.3.28) and (µ◦mi (u))i∈IN−2m is determined by (4.3.31). By
Lemma 5.2.4, there exists a monic polynomial Q(u) in u, with

Q(u) = Q(−u+ κ−m+ 2δ), (5.2.11)

together with a scalar α̊ ∈ C \ Z(Q(u)) such that

u

κ̊− u
· µ̃

]
a(̊κ− u)
µ̃]b(u)

= gm(̊κ− u)
gm(u) · Q(u+ d)

Q(u)

(
α̊− u

α̊ + u− κ̊+ d− 2δ

)δk(Gm),0

, (5.2.12)

where κ̊ = κ−m. By definition of µ](u), the left-hand side is equal to

u+ m
2

κ− u− m
2
· gm(̊κ− u)

gm(u) ·
g(u+ m

2 )
g(κ− u− m

2 ) ·
µ̃a(κ− u− m

2 )
µ̃b(u+ m

2 ) .

Substituting this back into (5.2.12), shifting u 7→ u− m
2 , and using δk(G),0 = δk(Gm),0,

we obtain

u

κ− u
· µ̃a(κ− u)

µ̃b(u) = g(κ− u)
g(u) ·

Q(u− m
2 + d)

Q(u− m
2 )

(
α̊ + m

2 − u
α̊ + m

2 + u− κ+ d− 2δ

)δk(G),0

Setting α = α̊ + m
2 (if k(G) = 0) and P1(u) = Q(u− m

2 ), the relation (5.2.10) holds,
we have α ∈ C \ Z(P1(u)) (provided k(G) = 0), and by (5.2.11) the first identity in
(5.2.8) holds.
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At this point, it is clear that finite-dimensional irreducible X(gN , gϑN)tw-modules
are intimately connected to tuples

(α, (Pi(u))ni=1) ⊂ C× C[u]n

which satisfy certain conditions. In light of this, it is desirable to have terminology
which enables us to quickly translate between the language of highest weights and
that of finite sequences (α, (Pi(u))ni=1) of the form described in Proposition 5.2.5.

Definition 5.2.6. Suppose that (Pi(u))ni=1 ⊂ C[u]n is an n-tuple of monic polynomi-
als in u such that

P1(u) = P1(−u+ κ+ 2δ),

Pi(u) = Pi(−u+ n− i+ 2) ∀ 2 ≤ i ≤ n,

Then, given α ∈ C \ Z(Pk(G)+1(u)), we say that µ(u) is associated to the tuple
(α, (Pi(u))ni=1) if the relations (5.2.9) and (5.2.10) of Proposition 5.2.5 are satisfied
and additionally (4.2.6) holds when gN = so2n+1.

Remark 5.2.7. If (gN , gϑN) = (gN , gN), then the parameter α plays no role in Propo-
sition 5.2.5 or in the above definition, and should be removed.

Note that it follows from the relations (5.2.8), (5.2.9), (5.2.10) and (4.2.6) that
(4.4.12) holds, and hence that if µ(u) is associated to a tuple (α, (Pi(u))ni=1) then the
irreducible module V (µ(u)) exists: see Theorem 4.4.4.

In the case where V (µ(u)) is also finite-dimensional, we follow the convention in
the literature and call (α, (Pi(u))ni=1) the Drinfeld tuple associated to V (µ(u)) and
the polynomials P1(u), . . . , Pn(u) the Drinfeld polynomials.

Lemma 5.2.8. Suppose that µ(u) is associated to (α, (Pi(u))ni=1). Then this is the
unique tuple associated to µ(u). Moreover, if µ](u) is also associated to (α, (Pi(u))ni=1)
then there exists g(u) ∈ 1 + u−1C[[u−1]] such that g(u) = g(κ− u) and

V (µ](u)) ∼= ν∗g (V (µ(u))).

Proof. The uniqueness of (α, (Pi(u))ni=1) is an immediate consequence of Lemma 5.2.1.
Let’s turn to the second statement of the lemma. Suppose that µ](u) is also associated
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to (α, (Pi(u))ni=1). We need to show there is g(u) ∈ 1 + u−1C[[u−1]] such that

g(u) = g(κ− u) and µ̃]i(u) = g(u)µ̃i(u) ∀ i ∈ I+
N .

If this is true, then V (µ](u)) and ν∗g (V (µ(u))) will have the same highest weight and
hence be isomorphic. From (5.2.9) and (5.2.10) we obtain the equalities

µ̃i−1(u)
µ̃i(u) = µ̃]i−1(u)

µ̃]i(u)
∀ 2 ≤ i ≤ n and µ̃a(κ− u)

µ̃b(u) = µ̃]a(κ− u)
µ̃]b(u)

, (5.2.13)

Setting g(u) = µ]n(u)µn(u)−1, we obtain from the first relations in (5.2.13) that

µ̃]i(u) = g(u)µ̃i(u) ∀ i ∈ I+
N \ {0}.

If gN = so2n+1, then the relation (4.2.6) together with the second relation of (5.2.13)
gives

µ̃0(u)
µ̃1(u) = µ̃]0(u)

µ̃]1(u)

and hence µ̃]0(u) = g(u)µ̃0(u) also holds.

To complete the proof, note that the second relation in (5.2.13) now implies that
g(u) = g(κ− u), as desired.

We conclude this subsection by providing a general description of the relationship
between a tuple (α, (Pi(u))ni=1) associated to a X(gN , gϑN) highest weight µ(u), and
the corresponding tuple (α], (P ]

i (u))n−mi=1 ) associated to the highest weight µ](u) of the
X(gN−2m, g

ϑ(m)
N−2m)tw-module V (µ(u))m from Corollary 4.3.7.

Corollary 5.2.9. Suppose that µ(u) is associated to (α, (Pi(u))ni=1), and let 1 ≤
m < n − δgN ,so2n. Then the highest weight µ](u) of the X(gN−2m, g

ϑ(m)
N−2m)tw-module

V (µ(u))m is associated to the tuple

(α], (P ]
i (u))n−mi=1 ) = (α− m

2 , (Pi(u+ m
2 )n−mi=1 )),

where α] = α− m
2 is omitted if gϑ(m)

N = gN−2m.

Proof. It is clear that (P ]
i (u))n−mi=1 satisfies (5.2.8) and that P ]

k(Gm)+1(α]) 6= 0. Hence,
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it suffices to show that the relations (5.2.9) and (5.2.10) hold for

µ](u) and (α], (P ]
i (u))n−mi=1 ).

By Corollary 4.3.7, µ](u) = h(u)µ◦m(u) with h(u) given by (4.3.28) and µ◦m(u)
determined by

µ̃◦mi (u) = µ̃i(u+ m
2 ) ∀i ∈ I+

N−2m.

The relation (5.2.9) then implies that, for each 2 ≤ i ≤ n−m, we have

µ̃]i−1(u)
µ̃]i(u)

=
µ̃i−1(u+ m

2 )
µ̃i(u+ m

2 ) =
Pi(u+ m

2 + 1)
Pi(u+ m

2 )

(
α− m

2 − u
α + m

2 + u− l

)δi,k+1

= P ]
i (u+ 1)
P ]
i (u)

(
α] − u

α] + u− (l−m)

)δi,k+1

.

It remains to show (5.2.10) holds when (µ̃a(u), µ̃b(u),g(u), P1(u), α, κ) is replaced by

(µ̃]a(u), µ̃]b(u),gm(u), P1(u+ m
2 ), α− m

2 , κ−m).

This is shown by repeating the computation done in the proof of Proposition 5.2.5.

5.2.3 Conditions on α

Our aim for the rest of this section is to show that if (α, (Pi(u))ni=1) is a Drinfeld tuple
then α−N/4 must take half integer values whenever gϑN is semisimple. This will be
made precise in Proposition 5.2.13. First, we proceed with two lemmas.

Lemma 5.2.10. Suppose that the X(gN)-module L(λ(u)) is finite-dimensional with
Drinfeld polynomials (Qi(u))ni=1 and that µ(u) is associated to a tuple (α, (Pi(u))ni=1)
such that α, αt /∈ Z(Qk(G)+1(u− κ/2)), where

αt =

−α + l+ 1 if k(G) ≥ 1,

−α + κ+ 2δ if k(G) = 0.

Let ξ ∈ L(λ(u)) and η ∈ V (µ(u)) be highest weight vectors. Then the highest weight
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γ(u) of the X(gN , gϑN)tw-module

X(gN , gϑN)tw(ξ ⊗ η) ⊂ L(λ(u))⊗ V (µ(u))

is associated to the tuple (α, ((Qi � Pi)(u))ni=1), where

(Qi � Pi)(u) =

(−1)degQi Qi(u− κ/2)Qi(−u+ n− i+ 2− κ/2)Pi(u) if i > 1

(−1)degQ1 Q1(u− κ/2)Q1(−u+ κ/2 + 2δ)Pi(u) if i = 1.

Proof. By Propositions 4.1.2 and 4.2.11, we have

γ̃i−1(u)
γ̃i(u) = µ̃i−1(u)

µ̃i(u) ·
λi−1(u− κ/2)λi(−u− κ/2 + n− i+ 1)
λi(u− κ/2)λi−1(−u− κ/2 + n− i+ 1)

= Qi(u− κ/2 + 1)Qi(−u+ n− i+ 1− κ/2)
Qi(u− κ/2)Qi(−u+ n− i+ 2− κ/2) · Pi(u+ 1)

Pi(u)

(
α− u

α + u− l

)δi,k+1

for all i > 1. Similarly,

κ− u
u
· g(u)
g(κ− u) ·

γ̃a(κ− u)
γ̃b(u)

= λa(κ/2− u)
λ−b(κ/2− u) ·

Q1(u− κ/2 + 1)
Q1(u− κ/2) · P1(u+ d)

P1(u)

(
α− u

α + u− κ+ d− 2δ
)δk(G),0

.

Thus, it suffices to show that

λa(κ/2− u)
λ−b(κ/2− u) = Q1(−u+ κ/2 + 2δ − d)

Q1(−u+ κ/2 + 2δ) . (5.2.14)

If gN = spN , then a = b and the above holds by (5.2.7). If instead gN = soN ,
then b = a + 1 and Proposition 4.1.2 gives

λa(u− κ+ n− a)
λ−b(u) = λb(u− κ+ n− a)

λ−a(u) .

If gN = so2n, then substituting u 7→ −u + κ
2 and using (5.2.7) yields (5.2.14). If

gN = so2n+1, then a = 0 and after shifting u 7→ −u+ κ
2 , we can rewrite the above as

λ0(κ/2− u)
λ−b(κ/2− u) = λb(−u+ κ/2 + 1/2)

λ0(−u+ κ/2 + 1/2) .
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By (5.2.7), this coincides with the right-hand side of (5.2.14).

Remark 5.2.11. If α or αt is a root of Qk(G)+1(u− κ/2), then (α, (Qi � Pi)(u))ni=1)
will still satisfy the relations of Proposition 5.2.5, except that the condition

α /∈ Z((Qk(G)+1 � Pk(G)+1)(u))

will fail to hold and one must apply Lemma 5.2.2 to obtain the correct tuple associated
to γ(u).

To state the next lemma, we recall from §5.1 that a gϑN -module V is said to be
a highest weight module with the highest weight (µi)ni=1 ⊂ Cn if it is generated by a
nonzero vector ξ such that

F ϑ
ijξ = 0 ∀ i < j ∈ IN ,

Fiiξ = µiξ ∀ 1 ≤ i ≤ n.

Lemma 5.2.12. Suppose that µ(u) is associated to (α,P = (Pi(u))ni=1), and let ξ be
a highest weight vector in V (µ(u)). Then the gϑN -module U(gϑN)ξ is a highest weight
module with highest weight µ = (µi)ni=1 given by

µi = 1
2λP,i + µϑα(i) ∀ 1 ≤ i ≤ n, (5.2.15)

where λP,i is as in (4.1.9) and µϑα(i) ∈ C is given by

µϑα(i) =


δi>k

(
α− N

4

)
if (gN , gϑN) = (gN , gp ⊕ gq),

α− κ
2 if (gN , gϑN) = (g2n, gln).

Proof. It follows from Corollary 3.3.11 that U(gϑN)ξ is a highest weight module. It
thus suffices to show that, for each 1 ≤ i ≤ n, the Fii-weight of ξ is given by (5.2.15).

Assume first that (gN , gϑN) = (gN , gp ⊕ gq). Let µα(u) = (µα,i(u))i∈I+
N

be the
X(gN , gϑN)tw-highest weight determined by

µ̃α,i(u) =


2ug(u) if i ≤ k,

2ug(u)
(
l− α− u
u− α

)
if i ≥ k+ 1.

(5.2.16)
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As µα(u) satisfies the relations of Theorem 4.4.4, the irreducible module V (µα(u))
exists.

Since Pi(u) = Pi(−u + n − i + 2) for all i ≥ 2, there exists monic polynomials
Q2(u), . . . , Qn(u) such that

Pi(u) = (−1)deg Qi(u)Qi(u− κ/2)Qi(−u+ n− i+ 2− κ/2).

Similarly, since P1(u) = P1(−u+κ+2δ), there is a monic polynomial Q1(u) such that

P1(u) = (−1)deg Q1(u)Q1(u− κ/2)Q1(−u+ κ/2 + 2δ).

Let L(λ(u)) be a finite-dimensional irreducible X(gN)-module with Drinfeld polyno-
mials (Qj(u))nj=1, and suppose ξ] ∈ L(λ(u)) and η ∈ V (µα(u)) are highest weight
vectors. Then, as a consequence of Lemmas 5.2.8 and 5.2.10, there is g(u) ∈ 1 +
u−1C[[u−1]] such that g(u) = g(κ − u) and ν∗g (V (µ(u))) is isomorphic to the irre-
ducible quotient of X(gN , gϑN)tw(ξ] ⊗ η). As gϑN acts identically in ν∗g (V (µ(u))) and
V (µ(u)), we can assume without loss of generality that g(u) = 1.

Observe that

Resu
( 1

2uµ̃α,i(u)
)

=

µ
(1)
α,i − l if i ≤ k,

µ
(1)
α,i if i ≥ k+ 1,

Resu(g(u)) = tr(G)−N
4 = −l,

Resu
(
l− α− u
u− α

)
= l− 2α,

where Resu denotes the formal residue operator at u = 0. We thus obtain from
(5.2.16) the relations

µ
(1)
α,i =

0 if i ≤ k,

2l− 2α if i ≥ k+ 1.
(5.2.17)

Since F ϑ
ii = 2giiFii, Corollary 3.3.11 yields

2giiµα,i + (gii − 1)tr(G)
4 = µ

(1)
α,i ∀ i ∈ I+

N ,
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where µα,i denotes the Fii-weight of η. Combining this with (5.2.17), we obtain

µα,i =

0 if i ≤ k,

α− N
4 if i ≥ k+ 1.

Since
Fii(ξ] ⊗ η) = Fiiξ

] ⊗ η + µα,i(ξ] ⊗ η) ∀ i ∈ I+
N ,

The relation (5.2.15) now follows immediately from the formulas (4.1.9) of Corollary
4.1.10 and the fact that deg Pi(u) = 2 deg Qi(u) for each i.

If instead (gN , gϑN) = (g2n, gln), then one should replace (5.2.16) by

µα,i(u) = 1 + α− κ
u

∀ 1 ≤ i ≤ n.

The Fii-weight of ξ] ⊗ η is then given by

Fii(ξ] ⊗ η) = Fiiξ
] ⊗ η + α− κ

2 (ξ] ⊗ η) ∀ i ∈ I+
N

and hence (5.2.15) again follows from Corollary 4.1.10.

Now let us restrict our attention to the setting where gϑN is semisimple, but not
the whole Lie algebra gN . This means that

(gN , gϑN) = (gN , gp ⊕ gq) with gq � so2 and q 6= 0. (5.2.18)

where we recall that we always assume q ∈ 2Z and that p ≥ q whenever p ∈ 2Z. Let
{dq,i}li=1 ⊂ Q and {hq,i}li=1 ⊂ g2l∩ h be given by

(dq,i, hq,i) = (1, Fk+i−1,k+i−1 − Fk+i,k+i) ∀ 2 ≤ i ≤ l,

(dq,1, hq,1) =

(2,−2Fk+1,k+1) if gN = spN ,

(1,−Fk+1,k+1 − Fk+2,k+2) if gN = soN .

Let µ(u) and ξ be as in Lemma 5.2.12. This lemma implies that U(g2l)ξ ⊂ V (µ(u))
is itself a highest weight module with highest weight determined by

d−1
q,ihq,i(ξ) = 1

2 degPk+i(u)ξ ∀ 2 ≤ i ≤ l,
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d−1
q,1hq,1(ξ) =


(
N
4 − α−

1
2λP,k+1

)
ξ if gN = spN ,(

N
2 − 2α− 1

2λP,k+1 − 1
2λP,k+2

)
ξ if gN = soN .

If in addition V (µ(u)) is assumed to be finite-dimensional then, by (4.1.8), the coef-
ficients of ξ on the right-hand sides of the above equations must take non-negative
integer values. As degPi(u) ∈ 2Z for each 1 ≤ i ≤ n, this observation together with
(4.1.9) yields the following proposition.

Proposition 5.2.13. Suppose that (gN , gϑN) is as in (5.2.18) and let µ(u) and (α,P)
be as in Lemma 5.2.12 with V (µ(u)) finite-dimensional. Then α satisfies

21−δ
(
α− N

4

)
∈ Z

in addition to the relation

4α−N ≤ 2
k+1∑
a=1

degPa(u) if gN = spN ,

4α−N ≤ deg(P1(u)Pk+2(u)) + 2
k+1∑
a=2

degPa(u) if gN = so2n+1,

4α−N ≤ deg(P1(u)P2(u)Pk+2(u)) + 2
k+1∑
a=3

degPa(u) if gN = so2n,

where we recall that δ = δgN ,sp2n.

5.3 One-dimensional representations

In this section we classify the one-dimensional representations of all twisted Yan-
gians of type B, C and D considered in this thesis. In particular, we will prove that
X(gN , gϑN)tw (and thus Y (gN , gϑN)tw) admits non-trivial one-dimensional representa-
tions if and only if gϑN has a non-trivial center. This occurs precisely when

(gN , gϑN) = (g2n, gln) and (gN , gϑN) = (soN , soN−2 ⊕ so2).

In these cases, Y (gN , gϑN)tw admits a family {V (α)}α∈C of one-dimensional represen-
tations, which we will construct explicitly in §5.3.2 and §5.3.3. These one-parameter
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families will play a crucial role in the classification results for finite-dimensional irre-
ducible representations of X(g2n, gln)tw and X(soN , soN−2⊕ so2)tw to be presented in
§5.4.2 and §5.4.3, respectively.

In what follows, we continue to assume that (gN , gϑN) is not equal to (so4, so2⊕so2).

5.3.1 The semisimple setting

We begin by classifying the one-dimensional representations of X(gN , gϑN)tw under
the assumption that gϑN is a complex semisimple Lie algebra. Under this hypothesis,
we have

(gN , gϑN) = (gN , gp ⊕ gq) with gq � so2.

Proposition 5.3.1. Assume that gϑN is a complex, semisimple Lie algebra. Then, a
representation V of X(gN , gϑN)tw is one-dimensional if and only if

V ∼= ν∗g (V (G))

for some g(u) ∈ 1 + u−1C[[u−1]] with g(u) = g(κ− u).

Proof. Suppose that V is a one-dimensional representation ofX(gN , gϑN)tw. By Propo-
sition 5.2.5, V can be assigned a tuple (α, (Pi(u))ni=1), where the scalar α should be
omitted if gϑN = gN . As gϑN is semisimple, it admits no nontrivial one-dimensional
representations. Consequently, when viewed as a gϑN -module, V is isomorphic to the
trivial representation. Therefore, relation (5.2.15) of Lemma 5.2.12 becomes equiva-
lent to

−λP,i = δi>k

(
2α− N

2

)
∀ 1 ≤ i ≤ n,

from which it can be deduced that

degPa(u) =

2α− N
2 if a = k+ 1,

0 otherwise.

If gϑN = gN , then (Pi(u))ni=1 is equal to 1 = (1, . . . , 1), the Drinfeld tuple corresponding
to the trivial representation V (G). In this case, the desired conclusion then follows
from Lemma 5.2.8.
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Therefore, we may assume without loss of generality that gϑN = gp⊕gq with q ≥ 4.
It suffices to show that

degPk+1(u) = 0,

as this will imply (α, (Pi(u))ni=1) = (N4 ,1). Since V (G) is also associated to this tuple,
the desired conclusion will follow from Lemma 5.2.8.

Case 1 : k> 0.

Suppose first that k > 0, and set M = N − 2l+ 2. By Corollary 4.3.7, we may
regard V = Vl−1 as a one-dimensional representation of X(gM , gM−2 ⊕ g2)tw. By
Corollary 5.2.9, the highest weight of this module is associated to

(γ, (Qi(u))k+1
i=1 ), where γ = α− l− 1

2

and Qa(u) =

Pk+1(u+ l−1
2 ) if i = k+ 1,

1 otherwise.

By Proposition 4.4.1, we may then also regard V = (Vl−1)J as a one-dimensional
representation of the twisted Yangian X(slk+1, slk ⊕ gl1)tw. This representation cor-
responds to the tuple (γ, (Qi(u))k+1

i=2 ) in the classification given by [MR02, Theorem
4.6] (see (4.4.10) and (4.4.11)).

Since the X(slk+1, slk⊕ gl1)tw-module V is one-dimensional, it inherits the struc-
ture of a X(sl2, gl1)tw = X(sl2, sl1 ⊕ gl1)tw-module by setting

bij(u) · v = bi+k−1,j+k−1(u)v ∀ v ∈ V and 1 ≤ i, j ≤ 2.

This can be verified directly, but it also follows from a more general result observed in
the first part of the proof of [MR02, Theorem 4.6]. The resulting X(sl2, gl1)tw-module
has Drinfeld tuple (γ,Qk+1(u)).

The twisted Yangians X(sl2, gl1)tw and X(sl2, so2)tw are isomorphic (see [MR02,
Proposition 4.3] as well as the remarks concluding [MR02, §4.2]), hence V can also
be viewed as a one-dimensional representation of X(sl2, so2)tw. The arguments used
to prove [MR02, Proposition 4.4] show that this irreducible X(sl2, so2)tw-module cor-
responds to the pair (γ − 1

2 , Qk+1(u + 1
2)) under the correspondence of Theorem

5.1.1. On the other hand, Corollary 4.4.5 of [Mol07] implies that V ∼= V (γ − 1) as a
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Y (sl2, so2)tw-module, where V (γ − 1) is the one-dimensional representation obtained
by restricting the irreducible X(sl2, so2)tw-module with the highest weight

γ(u) = 1 + (γ − 1/2)u−1

1 + 1/2u−1

(see equation [Mol07, (4.21)]). This module corresponds to the pair (γ − 1
2 , 1), so we

obtain
degPk+1(u) = degQk+1(u) = 0.

Case 2 : k = 0.

In this case, V = Vl−1 is a one-dimensional representation of X(so3, so2)tw which,
by Corollary 5.2.9, is associated to the pair (γ,Q1(u)) = (α− l−1

2 , P1(u+ l−1
2 )). More-

over, it can be made into a X(sl2, so2)tw-module via the isomorphism (5.1.36), and
the proof of Proposition 5.1.14 shows that, as a X(sl2, so2)tw-module, V corresponds
to the pair (2γ − 1, 2degQ1Q1(u+1

2 )): see (5.1.47). Repeating the last part of the ar-
gument of Case 1, we are able to conclude that degP1(u) = 0, which completes the
proof of the Proposition.

The below corollary of Proposition 5.3.1 now follows immediately from Lemma
4.2.1.

Corollary 5.3.2. Assume that gϑN is a complex semisimple Lie algebra. Then, up
to isomorphism, V (G) is the unique one-dimensional representation of the twisted
Yangian Y (gN , gϑN)tw.

5.3.2 Twisted Yangians associated to (soN , soN−2 ⊕ so2)

We now turn to the twisted Yangians associated to pairs of the form

(gN , gϑN) = (soN , soN−2 ⊕ so2) ∼= (soN , soN−2 ⊕ C) with N 6= 4.
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Given α ∈ C, define

K(u;α) = k(u)
(
I − 2u

u− α
E−n,−n −

2u
u+ α− 2dEnn

)
,

where k(u) = (u− α)(u+ α− 2d)
(u− d)2

(5.3.1)

and d = tr(G)
4 = N/4− 1.

Lemma 5.3.3. For each α ∈ C, the assignment

S(u) 7→ K(u;α) ∈ End(CN)⊗ C[[u−1]]

defines a one-dimensional V (α) of X(soN , soN−2 ⊕ so2)tw.

Proof. The proof is straightforward, but highly technical. We begin by showing that
K(u;α) satisfies the reflection equation

R(u− v)K1(u;α)R(u+ v)K2(v;α) = K2(v;α)R(u+ v)K1(u;α)R(u− v).

Notice that we only need to show this for k(u)−1K(u;α). Denote

G(u) = − 2u
u− α

E−n,−n −
2u

u+ α− 2dEnn, (5.3.2)

so that K(u;α) = k(u)(I + G(u)). Since I is a solution to (3.3.40), our task is to
show that

R(u− v)G1(u)R(u+ v) +R(u− v)R(u+ v)G2(v)

+R(u− v)G1(u)R(u+ v)G2(v)

= G2(v)R(u+ v)R(u− v) +R(u+ v)G1(u)R(u− v)

+G2(v)R(u+ v)G1(u)R(u− v).

(5.3.3)
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We first show that(
1− P

u− v

)(
G1(u)

(
1− P

u+ v

)
+
(

1− P

u+ v

)
G2(v)

+G1(u)
(

1− P

u+ v

)
G2(v)

)
+H(u, v)

=
(
G2(v)

(
1− P

u+ v

)
+
(

1− P

u+ v

)
G1(u)

+G2(v)
(

1− P

u+ v

)
G1(u)

)(
1− P

u− v

)
,

(5.3.4)

where H(u, v) is given by

8uv(α− d)
(u− α)(v − α)(u+ α− 2d)(v + α− 2d) (E−n,n ⊗ En,−n − En,−n ⊗ E−n,n) . (5.3.5)

The equality (5.3.4) reduces to

[P, 2v G2(u)− 2uG2(v)− (u− v)G2(u)G2(v)] = 0.

This follows from the following computations:

2v G(u)− 2uG(v)− (u− v)G(u)G(v)

= −
( 4uv
u− α

− 4uv
v − α

)
E−n,−n −

( 4uv
u+ α− 2d −

4uv
v + α− 2d

)
Enn

− 4uv (u− v)
(u− α)(v − α) E−n,−n −

4uv (u− v)
(u+ α− 2d)(v + α− 2d)Enn = 0,

thus implying (5.3.4). Next we use

Q2 = NQ, (1− u−1P )Q = (1− u−1)Q,

QG1(u)Q = QG2(u)Q = g(u)Q,

where g(u) = tr(G(u)) = − 2u
u− α

− 2u
u+ α− 2d

and subtract (5.3.4) from (5.3.3). Then (5.3.3) holds if and only if the following
expression equals H(u, v):

G1(u)Q+QG2(v) +G1(u)QG2(v)
u+ v − κ

− G2(v)Q+QG1(u) +G2(v)QG1(u)
u+ v − κ
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− G2(u)Q+QG2(v) +G2(u)QG2(v)
(u− v)(u+ v − κ) + G2(v)Q+QG2(u) +G2(v)QG2(u)

(u− v)(u+ v − κ)

+ Q (G1(u) +G2(v) +G1(u)G2(v))
u− v − κ

− (G2(v) +G1(u) +G2(v)G1(u))Q
u− v − κ

− Q (G2(u) +G2(v) +G2(u)G2(v))
(u+ v)(u− v − κ) + (G2(v) +G2(u) +G2(v)G2(u))Q

(u+ v)(u− v − κ)

+ g(u)Q+N QG2(v) + g(u)QG2(v)
(u− v − κ)(u+ v − κ) − N G2(v)Q+ g(u)Q+ g(u)G2(v)Q

(u− v − κ)(u+ v − κ) .

Since [G(u), G(v)] = 0, that the previous long expression is equal to H(u, v) is equiv-
alent to

H(u, v)

= [G1(u)−G2(v), Q] +G1(u)QG2(v)−G2(v)QG1(u)
u+ v − κ

+ [Q,G1(u) +G2(v) +G1(u)G2(v)]
u− v − κ

+ [Q,G2(u)−G2(v)] +G2(v)QG2(u)−G2(u)QG2(v)
(u− v)(u+ v − κ)

− [Q,G2(u) +G2(v) +G2(u)G2(v)]
(u+ v)(u− v − κ) + (N + g(u)) [Q,G2(v)]

(u− v − κ)(u+ v − κ) .

(5.3.6)

Now observe that Gt(u) = −u (2d− u)−1G(2d− u), which implies that

G1(u)Q = − u

2d− uG2(2d− u)Q, QG1(u) = − u

2d− uQG2(2d− u).

Moreover,

G2(u)QG2(v) = 4uv
(u− α)(v − α)Enn ⊗ E−n,−n

+ 4uv
(u− α)(v + α− 2d)En,−n ⊗ E−n,n

+ 4uv
(u+ α− 2d)(v − α)E−n,n ⊗ En,−n

+ 4uv
(u+ α− 2d)(v + α− 2d)E−n,−n ⊗ Enn.

(5.3.7)
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Using (5.3.5), (5.3.7) and κ = 2d+ 1 we compute the following identity

G1(u)QG2(v)−G2(v)QG1(u)
u+ v − κ

+ G2(v)QG2(u)−G2(u)QG2(v)
(u− v)(u+ v − κ)

= 4uv
u+ v − κ

(
1

(u− α)(v − α) −
1

(u+ α− 2d)(v + α− 2d)

)
· (E−n,n ⊗ En,−n − En,−n ⊗ E−n,n)

+ 4uv
(u− v)(u+ v − κ)

(
1

(u− α)(v + α− 2d) −
1

(v − α)(u+ α− 2d)

)
· (E−n,n ⊗ En,−n − En,−n ⊗ E−n,n)

= 8uv(α− d)
(u− α)(v − α)(u+ α− 2d)(v + α− 2d) (E−n,n ⊗ En,−n − En,−n ⊗ E−n,n)

= H(u, v).

By combining the identities above and denoting ũ = u (2d − u)−1, we can rewrite
(5.3.6) as

[
Q,

ũG2(2d− u) +G2(v)
u+ v − κ

+ G2(u)−G2(v)
(u− v)(u+ v − κ)

+ (N + g(u))G2(v)
(u− v − κ)(u+ v − κ) −

ũ G2(2d− u)−G2(v) + ũ G2(2d− u)G2(v)
u− v − κ

− G2(u) +G2(v) +G2(u)G2(v)
(u+ v)(u− v − κ)

]
= 0.

Denoting the commutator above by [Q, 1 ⊗ F (u, v)] we only need to verify that
F (u, v) = 0, which follows by a direct computation using (5.3.2), the explicit form
of g(u) and κ = 2d + 1 = N/2 − 1, as we now illustrate. After reorganizing
the various terms and multiplying by (u − v − κ)(u + v − κ), we obtain, with
F ′(u, v) = (u− v − κ)(u+ v − κ)F (u, v):

F ′(u, v)

= −2κv G(u)
u2 − v2 −

2uv G(2d− u)
2d− u

+ 2u
(

1− 1
u− α

− 1
u+ α− 2d + κ

u2 − v2

)
G(v)

− (u+ v − κ)
(
uG(2d− u)G(v)

2d− u + G(u)G(v)
u+ v

)
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= 4uv
(
−
(

1
u+ α− 2d −

κ

(u− α)(u2 − v2)

)
E−n,−n

−
(

1
u− α

− κ

(u+ α− 2d)(u2 − v2)

)
Enn

−
(

1− 1
u− α

− 1
u+ α− 2d + κ

u2 − v2

)(
1

v − α
E−n,−n + 1

v + α− 2dEnn
)

− u+ v − κ
(u− α)(u+ α− 2d)(u+ v)

(
(u+ α− 2d)− (u− α)(u+ v)

v − α
E−n,−n

+ (u− α)− (u+ α− 2d)(u+ v)
v + α− 2d Enn

))

= 2d+ 1− κ
(v − α)(u+ α− 2d)E−n,−n + 2d+ 1− κ

(u− α)(v + α− 2d)Enn = 0.

This completes the proof that K(u;α) is a solution of the reflection equation (3.3.40).

Our work thus far shows that there is an algebra homomorphism

φa : X(soN , soN−2 ⊕ so2)tw → C, S(u) 7→ K(u;α).

By Corollary 3.3.24, to complete the proof of the proposition it suffices to show

g(u)tr(K(κ− u;α)) = g(κ− u)tr(K(u;α)).

Since tr(G) = N − 4 and κ = N/2− 1, we have

g(κ− u)
g(u) = N − 4κ+ 4u

tr(G)− 4κ+ 4u ·
tr(G)− 4u
N − 4u =

(
u+ 1−N/4
u−N/4

)2

. (5.3.8)

By definition of K(u;α),

tr(K(u; a)) = k(u)
(
N − 2u

u− α
− 2u
u+ α− 2d

)
= N(u− α)(u+ α− 2d)− 2u(2u− 2d)

(u− d)2 .

Let P (u) be the numerator of the right-hand side. Using that N = 2κ + 2 and
2d = κ− 1 we find that

P (u) = N(u− α)(u+ α− κ+ 1)− 2u(2u− κ+ 1)

247



= N(u− α)(u+ α− κ)− 2u(2u− 2κ)−Nα,

and hence P (u) is invariant under the substitution u 7→ κ− u. This implies that

tr(K(u;α))
tr(K(κ− u;α)) =

(
κ− u− d
u− d

)2

=
(

u−N/4
u+ 1−N/4

)2

,

which, by (5.3.8), yields the desired result.

The importance of the family {V (α)}α∈C given by Lemma 5.3.3 is encoded in the
following corollary.

Corollary 5.3.4. Let α ∈ C. Then V (α) ∼= V (γα(u)) with γα(u) = (γαi (u))i∈I+
N

defined by

γαi (u) = (u− α)((−1)δinu+ α− 2d)
(d− u)2 ∀ i ∈ I+

N , (5.3.9)

where d = tr(G)
4 = N/4− 1. Moreover, V (α) is associated to the Drinfeld tuple

(γ, P1(u), . . . , Pn(u)) = (κ− α, 1, . . . , 1). (5.3.10)

Proof. The first part of the Corollary follows immediately from Lemma5.3.3 and the
definition of K(u, α): see (5.3.1). The Drinfeld tuple associated to γα(u) is then
readily computed using (5.3.8) and that

γ̃αi (u) = 2u · (u− α)((−1)δinu+ α− κ+ δin)
(d− u)2 ∀ i ∈ I+

N .

The last two results of this subsection provide a complete classification of one-
dimensional representations for X(soN , soN−2 ⊕ so2)tw and of Y (soN , soN−2 ⊕ so2)tw

when N 6= 4.

Proposition 5.3.5. Let N 6= 4. Then a representation V of X(soN , soN−2 ⊕ so2)tw

is one-dimensional if and only if

V ∼= ν∗g (V (α))

for some α ∈ C and g(u) ∈ 1 + u−1C[[u−1]] with g(u) = g(κ− u).
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Proof. Let V be a one-dimensional representation with highest weight associated to
(α, (Pi(u))ni=1). It suffices to prove that

degPi(u) = 0 ∀ 1 ≤ i ≤ n.

Indeed, if this is the case then, by Corollary 5.3.4, V and V (κ − α) share the same
Drinfeld tuple and hence V ∼= ν∗g (V (κ− α)) by Lemma 5.2.8.

If N = 3, this is a consequence of the k = 0 case in the proof of Proposition 5.3.1.

Suppose instead that N ≥ 5. In this case, soN−2 is semisimple and thus V is
equal to the trivial representation when viewed as a soN−2-module. Since so2 is one-
dimensional, Fnn operates in V as multiplication by a scalar γ. In particular, the
highest weight of V as a (soN−2⊕ so2)-module is (µi)ni=1 = (0, . . . , 0, γ). The relation
(5.2.15) of Lemma 5.2.12 therefore implies that

degPi(u) = 0 ∀ 1 ≤ i < n and degPn(u) = 2α− N

2 − 2γ.

To complete the proof, we need to see that degPn(u) = 0. This can shown using the
same argument as given in the k> 0 case of the proof of Proposition 5.3.1.

Corollary 5.3.6. Let N 6= 4. Then a representation V of Y (soN , soN−2 ⊕ so2)tw is
one-dimensional if and only if there is α ∈ C such that V ∼= V (α).

Remark 5.3.7. If V is a one-dimensional representation of

X(so4, so2 ⊕ so2)tw

then there exists (µ1, µ2) ∈ C2 and g(u) ∈ 1 + u−1C[[u−1]] such that g(u) = g(κ− u)
and

V ∼= ν∗g (V (µ1, µ2)),

where V (µ1, µ2) is as in Corollary 5.1.11. This follows from the isomorphism (5.1.28)
together with the fact that the family {V (γ)}γ∈C, which appeared in the proof
of Proposition 5.3.1, provides a complete list of the isomorphisms classes of one-
dimensional representations of Y (sl2, so2)tw. This fact follows from Corollary 4.4.5 of
[Mol07].
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5.3.3 Twisted Yangians associated to (g2n, gln)

We conclude this section with a study of the one-dimensional representations for the
twisted Yangians associated to symmetric pairs of the form

(sp2n, gln) with n ≥ 1 and (so2n, gln) with n ≥ 2.

We begin with the analogue of Lemma 5.3.3. For each α ∈ C, set

K(u;α) = G + α

u
I = α I + uG

u
. (5.3.11)

Lemma 5.3.8. For each α ∈ C, the assignment

S(u) 7→ K(u;α) ∈ End(C2n)⊗ C[[u−1]]

defines a one-dimensional representation V (α) of X(g2n, gln)tw.

Proof. We begin by showing that K(u, α) satisfies the reflection equation (3.3.40):

R12(u− v)(G1 + a u−1I1)R12(u+ v)(G2 + a v−1I2)

= (G2 + a v−1I2)R12(u+ v)(G1 + a u−1I1)R12(u− v).

As the matrices G and I are themselves solutions of (3.3.40), it suffices to show that

v−1R12(u− v)G1R12(u+ v) + u−1R12(u− v)R12(u+ v)G2

= u−1G2R12(u+ v)R12(u− v) + v−1R12(u+ v)G1R12(u− v).
(5.3.12)

Notice first that(
1− P

u− v

)
G1

(
1− P

u+ v

)
v−1 +

(
1− P

u− v

)(
1− P

u+ v

)
G2u

−1

= G2

(
1− P

u+ v

)(
1− P

u− v

)
u−1 +

(
1− P

u+ v

)
G1

(
1− P

u− v

)
v−1.

(5.3.13)

This is verified by expanding both sides. After subtracting (5.3.13), the left-hand

250



side of (5.3.12) becomes

1
u+ v − κ

(
G1Q

v
− PG1Q

(u− v)v + QG2

u
− PQG2

(u− v)u

)

+ 1
u− v − κ

(
QG1

v
− QG1P

v(u+ v) + QG1Q

(u+ v − κ)v

)

+ 1
u− v − κ

(
QG2

u
− QPG2

(u+ v)u + Q2G2

(u+ v − κ)u

)
,

while the right-hand side becomes

1
u− v − κ

(
G2Q

u
− G2PQ

u(u+ v) + G1Q

v
− PG1Q

(u+ v)v

)

+ 1
u+ v − κ

(
G2Q

u
− G2QP

u(u− v) + G2Q
2

u(u− v − κ)

)

+ 1
u+ v − κ

(
QG1

v
− QG1P

(u− v)v + QG1Q

v(u− v − κ)

)
.

Multiplying both sides by (u+v−κ)(u−v−κ)(u2−v2)uv and equating the coefficients
of uivj, we see that it suffices to establish the following relations:

2κQG2 +QPG2 −Q2G2 + PQG2 = 2κG2Q+ G2QP − G2Q
2 + G2PQ, (5.3.14)

QG1 +QG2 − G1Q+QG2 = G2Q−QG1 + G2Q+ G1Q, (5.3.15)

−QG1P +QPG2 + PG1Q+ PQG2 = G2QP +QG1P + G2PQ− PG1Q. (5.3.16)

Since Q2 = NQ and PQ = QP = ±Q, (5.3.14) is equivalent to

(2κ−N)(QG2 − G2Q) = ∓2(QG2 − G2Q),

and since κ = N/2∓ 1, this equality is indeed satisfied. As PG1 = G2P and Gt = −G,
we have

−G1Q = (PG1)t1 = (G2P )t1 = G2Q.

Similarly, QG1 = −QG2. The relation (5.3.15) follows from these identities.

Finally, relation (5.3.16) holds since

PG2 = G1P, PG1 = G2P and PQ = QP.

251



This completes the proof that K(u;α) = G + αu−1I is a solution of (3.3.40).

We are left to show that

p(u)K(κ− u;α) = K(u;α)t ∓ K(u;α)
2u− κ + tr(K(u;α)) · I

2u− 2κ ,

where p(u) = −1∓ 1
2u− κ.

Since this identity holds if K(u;α) is replaced with G, it suffices to show that it also
holds if K(u;α) is replaced with u−1I. This reduces to the identity

u p(u) = (κ− u) pI(u)

which was proven in Proposition 3.3.3.

As an immediate consequence of Lemma 5.3.8 and the definition of K(u;α) (see
(5.3.11)), we obtain the following corollary.

Corollary 5.3.9. Let α ∈ C. Then V (α) ∼= V (γαi (u)) with γα(u) = (γαi (u))i∈I+
N

defined by
γαi (u) = u+ α

u
∀ i ∈ I+

N .

In particular, V (α) is associated to the Drinfeld tuple

(γ, P1(u), . . . , Pn(u)) = (κ+ α, 1, . . . , 1).

We now turn to establishing the (g2n, gln) versions of Proposition 5.3.5 and Corol-
lary 5.3.6.

Proposition 5.3.10. A representation V of X(g2n, gln)tw is one-dimensional if and
only if

V ∼= ν∗g (V (α))

for some α ∈ C and g(u) ∈ 1 + u−1C[[u−1]] with g(u) = g(κ− u).

Proof. As in the proof of Proposition 5.3.5, it suffices to show that the Drinfeld tuple
associated to any one-dimensional X(g2n, gln)tw-module V is of the form

(α, P1(u), . . . , Pn(u)) = (α, 1, . . . , 1).
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Let V be such a representation. As a sl2n ⊂ gl2n module, V must be isomorphic to
the trivial representation. Thus

µi − µi+1 = 0 ∀ 1 ≤ i < n,

where (µi)ni=1 is the highest weight of V as a gl2n-module. By Lemma 5.2.12, this
implies that

λP,1 = λP,2 = . . . = λP,n.

Using (4.1.9), we find that degPi(u) = 0 for all i ≥ 2. It remains to see that
degP1(u) = 0.

Set m = n− 21−δ, so that

(g2(n−m), gln−m) =

(sp2, gl1) if g2n = sp2n,

(so4, gl2) if g2n = so2n.

By Corollaries 4.3.7 and 5.2.9, we may regard V = Vm as a one-dimensional repre-
sentation of X(g2(n−m), gln−m)tw which is necessarily associated to

(α], (P ]
i (u))n−mi=1 ) = (α− m

2 , (Pi(u+ m
2 ))n−mi=1 ).

If g2n = sp2n, then we view V as a X(sl2, so2)tw-module via the isomorphism ϕCI

of (5.1.5). The proof of Proposition 5.1.3 shows that, as a X(sl2, so2)tw-module, V
corresponds to the pair (

α] − 1
2 ,

P ]
1(2u+ 1)
2degP ]1 (u)

)
.

On the other hand, as indicated in the proof of Proposition 5.3.1, a one-dimensional
representation of X(sl2, so2)tw must have Drinfeld polynomials all equal to 1. Hence,

degP ]
1(u) = degP1(u+ n−1

2 ) = degP1(u) = 0.

If g2n = so2n, then we instead view V as a representation of

Y (sl2, so2)tw ⊗X(sl2, sp2)tw

via the isomorphism ϕDIII of (5.1.11). By [Mol07, Proposition 4.3.2], X(sl2, sp2)tw has
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no non-trivial one-dimensional representations. It follows that

V ∼= V ] ⊗ C

as a representation of Y (sl2, so2)tw⊗X(sl2, sp2)tw, where C is the trivial representation
of X(sl2, sp2)tw and V ] is a one-dimensional representation of Y (sl2, so2)tw. The proof
of Proposition 5.1.6 shows that the Y (sl2, so2)tw-module V ] corresponds to the pair

(
α] − 1

2 , P
]
1

(
u+ 1

2

))
.

Therefore, we may conclude as in the g2n = sp2n case that degP1(u) = 0.

Corollary 5.3.11. A representation V of Y (g2n, gln)tw is one-dimensional if and
only if there is α ∈ C such that V ∼= V (α).

5.4 Classification results: I

In this section, we will obtain a complete classification of all finite-dimensional irre-
ducible representations for twisted Yangians associated to the symmetric pairs

(gN , gN), (g2n, gln) and (soN , soN−2 ⊕ so2),

where, as usual, we omit (so4, so2 ⊕ so2). Of all the twisted Yangians of type B,
C and D we have considered, those associated to the above three families of pairs
are exceptional in that only for them are the necessary conditions established in
Proposition 5.2.5 in fact sufficient conditions.

For the remainder of this chapter, it will be useful to employ notation intro-
duced in §4.2.1. We recall that Irrepfd(X(gN , gϑN)tw) and Irrepfd(Y (gN , gϑN)tw) denote
the set of isomorphism classes of all finite-dimensional irreducible representations of
X(gN , gϑN)tw and Y (gN , gϑN)tw, respectively. As in §4.2.1, we will write [V ] for the
isomorphism class of a module V , but we will drop the brackets when making use of
the identification

Irrepfd(X(gN , gϑN)tw) = {V (µ(u)) : dimV (µ(u)) <∞}
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given by Part (4) of Proposition 4.2.9.

5.4.1 Twisted Yangians associated to (gN , gN)

We begin by focusing on the case where ϑ = idgN , and thus (gN , gϑN) = (gN , gN).
Only in this setting is there no complex parameter α present in the conditions of
Proposition 5.2.5 (see Remark 5.2.7), and this is reflected in the following theorem.

Theorem 5.4.1. Let µ(u) = (µi(u))i∈I+
N

satisfy (4.4.12). Then the X(gN , gN)tw-
module V (µ(u)) is finite-dimensional if and only if there exists monic polynomials
P1(u), . . . , Pn(u) in u satisfying (5.2.8), in addition to the relations

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u) ∀ 2 ≤ i ≤ n, (5.4.1)

µ̃a(κ− u)
µ̃b(u) = P1(u+ d)

P1(u) · κ− u
u

, (5.4.2)

where a, b and d are given by (5.2.6).

Proof. First note that, by (3.3.3) and (4.2.40), k(G) = k = n and g(u) = 1. Hence,
the relations (5.2.9) and (5.2.10) collapse to (5.4.1) and (5.4.2), respectively. The
assertion of the theorem is thus equivalent to the statement that V (µ(u)) is finite-
dimensional if and only if µ(u) can be associated to a tuple (Pi(u))ni=1 (see Definition
5.2.6).

If V (µ(u)) is finite-dimensional, then Proposition 5.2.5 implies that µ(u) is asso-
ciated to a tuple (Pi(u))ni=1.

Conversely, assume that µ(u) is associated to (Pi(u))ni=1. We will argue that
V (µ(u)) is necessarily finite-dimensional. As a consequence of (5.2.8), there are monic
polynomials Q1(u), . . . , Qn(u) satisfying

P1(u) = (−1)degQ1Q1(u− κ/2)Q1(−u+ κ/2 + 2δ),

Pi(u) = (−1)degQiQi(u− κ/2)Qi(−u+ n− i+ 2− κ/2) ∀ 2 ≤ i ≤ n.
(5.4.3)

Fix λ(u) = (λi(u))i∈IN to be a X(gN) highest weight with the property that L(λ(u))
is finite-dimensional with Drinfeld polynomials (Qi(u))ni=1. Such a λ(u) exists by
Proposition 4.1.5.
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Let ξ ∈ L(λ(u)) be a highest weight vector. Then, by Lemma 5.2.10 applied with
V (µ(u)) = V (G), the highest weight µ](u) of the X(gN , gN)tw-module

X(gN , gN)twξ ⊂ L(λ(u))

is associated to (Pi(u))ni=1. By Lemma 5.2.8, we thus have

V (µ(u)) = ν∗g (V (µ](u))

for some g(u) ∈ 1+u−1C[[u−1]] with g(u) = g(κ−u). As L(λ(u)) is finite-dimensional,
we can conclude that V (µ(u)) is finite-dimensional.

Remark 5.4.2. When gN = so2n+1, the second relation of (4.4.12) implies that
(5.4.2) is equivalent to

µ̃0(u)
µ̃1(u) =

P1(u+ 1
2)

P1(u) .

We would now like to translate Theorem 5.4.1 into a parameterization of the form
given by Proposition 4.1.5 for the extended Yangian X(gN). Consider the automor-
phism refκ of C[[u−1]] which sends each f(u) ∈ C[[u−1]] to f(κ− u). Let us denote

(1 + u−1C[[u−1]])refκ = {g(u) ∈ 1 + u−1C[[u−1]] : refκ(g(u)) = g(u)}.

Of course, this is precisely 1+(u−κ/2)−2C[[(u−κ/2)−2]], but we shall favor the above
notation which emphasizes the fixed point nature of the underlying set.

Proposition 5.4.3. The isomorphism classes of finite-dimensional irreducible repre-
sentations of X(gN , gN)tw are parameterized by tuples

(g(u); (Pi(u))ni=1) ∈ (1 + u−1C[[u−1]])refκ × C[u]n,

where each Pi(u) is monic,

P1(u) = P1(−u+ κ+ 2δ) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

The underlying correspondence ΓϑX is given

ΓϑX(V (µ(u))) = (g(u); (Pi(u))ni=1), where (5.4.4)
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(a) g(u) ∈ (1 + u−1C[[u−1]])refκ is the unique scalar series such that

q(u)|ν∗g (V (µ(u))) = idν∗g (V (µ(u))).

(b) (Pi(u))ni=1 is the tuple of Drinfeld polynomials associated to V (µ(u)).

Proof. Assume that V (µ(u)) is finite-dimensional. By Lemma 4.2.1, there does indeed
indeed exist g(u) as in (a). Moreover, by Lemma 5.2.8, the tuple (Pi(u))ni=1 associated
to µ(u) is unique. From these two observations, we can conclude that there is a well-
defined correspondence ΓϑX as in (5.4.4).

We now prove that ΓϑX is a bijection. Fix (g(u); (Pi(u))ni=1) as in the statement
of the proposition. The proof of Theorem 5.4.1 shows that there is µ](u) such that
V (µ](u)) is finite-dimensional and

ΓϑX(V (µ](u))) = (f(u); (Pi(u))ni=1)

For some f(u) ∈ (1 + u−1C[[u−1]])refκ . Let h(u) = f(u)−1g(u) and µ(u) = h(u)µ](u).
Then V (µ(u)) = ν∗h(V (µ](u))) is finite-dimensional and

ΓϑX(V (µ(u))) = (g(u); (Pi(u))ni=1).

Hence, ΓϑX is surjective. The injectivity of ΓϑX follows from Lemma 5.2.8.

Using the above parameterization and Lemma 4.2.1, we obtain the following clas-
sification of finite-dimensional irreducible representations for Y (gN , gN)tw.

Corollary 5.4.4. The isomorphism classes of finite-dimensional irreducible repre-
sentations of Y (gN , gN)tw are parameterized by tuples

(Pi(u))ni=1 ∈ C[u]n,

where each Pi(u) is monic,

P1(u) = P1(−u+ κ+ 2δ) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

Proof. By Lemma 4.2.1 and Proposition 5.4.3, the composition

ΓϑY = ΓϑX ◦ Γϑ
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provides a bijection between Irrepfd(Y (gN , gN)tw) and the set of tuples (1; (Pi(u))ni=1)
with (Pi(u))ni=1 as in the statement of the corollary. This yields the desired parame-
terization.

We end this subsection by proving a Y (gN , gN)tw-analogue of Corollary 4.1.9.
Recall from Definition 4.1.8 that, for each 1 ≤ i ≤ n and α ∈ C, the fundamental rep-
resentation L(i : α) is the unique, up to isomorphism, finite-dimensional irreducible
Y (gN)-module with Drinfeld tuple (Pj(u))nj=1, where

Pj(u) = (u− α)δji .

Corollary 5.4.5. Let V be a finite-dimensional irreducible Y (gN , gN)tw-module. Then
there is m ≥ 0, 1 ≤ i1, . . . , im ≤ n and α1, . . . , αm ∈ C such that V is isomorphic to
the unique irreducible quotient of

Y (gN , gN)tw(ξ1 ⊗ · · · ⊗ ξm) ⊂ L(i1 : α1)⊗ · · · ⊗ L(im : αm),

where, for each 1 ≤ k ≤ m, ξk ⊂ L(i : α) is a highest weight vector and both sides
are identified with the trivial representation if m = 0.

Proof. Let (Pi(u))ni=1 be the unique Drinfeld tuple corresponding to V under the pa-
rameterization of Corollary 5.4.4. Let L(Q) denote the unique, up to isomorphism,
finite-dimensional irreducible Y (gN)-module with Drinfeld tuple Q = (Qi(u))ni=1,
where Q is any solution of the equations (5.4.3) (see Corollary 4.1.7).

By Corollary 4.1.9, there is m, (ik)mk=1, (αk)mk=1 and (ξk)mk=1 such that L(Q) is
isomorphic to the unique irreducible quotient of

Y (gN)(ξ1 ⊗ · · · ⊗ ξm) ⊂ L(i1 : α1)⊗ · · · ⊗ L(im : αm).

Let ξ denote the image of ξ1⊗· · ·⊗ ξm in L(Q) under the natural quotient map. The
proof of Theorem 5.4.1 then shows that the irreducible quotient of the Y (gN , gN)tw-
module

Y (gN , gN)twξ ⊂ L(Q)

has Drinfeld tuple (Pi(u))ni=1, and hence is isomorphic to V . As this irreducible
quotient is also isomorphic to the irreducible quotient of Y (gN , gN)tw(ξ1 ⊗ · · · ⊗ ξm),
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we are done.

5.4.2 Twisted Yangians associated to (g2n, gln)

We now shift our attention to the twisted Yangians associated to symmetric pairs of
type CI and DIII. That is, we assume

(gN , gϑN) = (g2n, gln),

where n ≥ 1 if g2n = sp2n and n ≥ 2 if g2n = so2n.

We note that the proofs of the results stated in both this subsection and in §5.4.3
are similar to those given in §5.4.1, and thus, to avoid redundancies, we shall omit
details where possible.

Theorem 5.4.6. The X(g2n, gln)tw-module V (µ(u)) is finite-dimensional if and only
if there exists monic polynomials P1(u), . . . , Pn(u) in u satisfying (5.2.8), together
with a scalar α ∈ C \ Z(P1(u)) such that

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u) ∀ 2 ≤ i ≤ n, (5.4.5)

µ̃a(κ− u)
µ̃b(u) = P1(u+ d)

P1(u) · α− u
α + u− κ

, (5.4.6)

where a, b and d are given by (5.2.6).

Proof. Note that, as k(G) = 0 and g(u) = u−1, the relations (5.4.5) and (5.4.6)
are equivalent to (5.2.9) and (5.2.10), respectively. Therefore, if V (µ(u)) is finite-
dimensional then Proposition 5.2.5 implies that there is (α, (Pi(u))ni=1) as in the
statement of the theorem.

Conversely, assume that µ(u) is associated to a tuple (α, (Pi(u))ni=1). We will
argue that V (µ(u)) is finite-dimensional by modifying the argument used to prove
Theorem 5.4.1.

By Proposition 4.1.5, there is λ(u) = (λi(u))i∈I2n such that the X(g2n)-module
L(λ(u)) is finite-dimensional with Drinfeld tuple Q = (Qi(u))ni=1, where Q is a fixed
solution to (5.4.3) (such a solution exists by (5.2.8)). Let ξ ∈ L(λ(u)) be a highest
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weight vector, and let η be any nonzero vector in the one dimensional representation
V (α− κ) given by Lemma 5.3.8.

By Lemma 5.2.10 and Corollary 5.3.9, the highest weight µ](u) of theX(g2n, gln)tw-
module

X(g2n, gln)tw(ξ ⊗ η) ⊂ L(λ(u))⊗ V (α− κ)

is associated to the tuple (α, (Pi(u))ni=1). The desired conclusion thus follows from
Lemma 5.2.8 and the fact that V (µ](u)) is finite-dimensional: see the proof of Theo-
rem 5.4.1.

The above theorem can be translated to give a parameterization of all finite-
dimensional irreducible X(g2n, gln)tw-modules and Y (g2n, gln)tw-modules. This for-
mulation is given, without proof, in Proposition 5.4.7 and Corollary 5.4.8 below. For
the proofs of these results, we refer the reader to their counterparts in §5.4.1: see
Proposition 5.4.3 and Corollary 5.4.4.

Proposition 5.4.7. The isomorphism classes of finite-dimensional irreducible repre-
sentations of X(g2n, gln)tw are parameterized by tuples

(g(u); (α, (Pi(u))ni=1)) ∈ (1 + u−1C[[u−1]])refκ × C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(P1(u)),

P1(u) = P1(−u+ κ+ 2δ) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

The underlying correspondence ΓϑX is given

ΓϑX(V (µ(u))) = (g(u); (α, (Pi(u))ni=1)) , where

(a) g(u) ∈ (1 + u−1C[[u−1]])refκ is the unique scalar series such that

q(u)|ν∗g (V (µ(u))) = idν∗g (V (µ(u))).

(b) (α, (Pi(u))ni=1) is the Drinfeld tuple associated to µ(u).

Corollary 5.4.8. The isomorphism classes of finite-dimensional irreducible repre-
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sentations of Y (g2n, gln)tw are parameterized by tuples

(α, (Pi(u))ni=1) ∈ C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(P1(u)),

P1(u) = P1(−u+ κ+ 2δ) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

We conclude our analysis of the twisted Yangians of type CI and DIII with the
following analogue of Corollary 5.4.5, which can be proven in the same way after
taking into account the use of the one dimensional representations V (α) in the proof
of Theorem 5.4.6.

Corollary 5.4.9. Suppose that V is a finite-dimensional irreducible representation
of Y (g2n, gln)tw. Then there is m ≥ 0, 1 ≤ i1, . . . , im ≤ n and α, α1, . . . , αm ∈ C such
that V is isomorphic to the unique irreducible quotient of

Y (g2n, gln)tw(ξ1 ⊗ · · · ⊗ ξm ⊗ η) ⊂ L(i1 : α1)⊗ · · · ⊗ L(im : αm)⊗ V (α),

where, for each 1 ≤ k ≤ m, ξk ⊂ L(i : α) is a highest weight vector and η ∈ V (α) is
any nonzero vector.

5.4.3 Twisted Yangians associated to (soN , soN−2 ⊕ so2)

For the remainder of this section, we assume that

(gN , gϑN) = (soN , soN−2 ⊕ so2) with N 6= 4 and N ≥ 3.

Theorem 5.4.10. Let µ(u) = (µi(u))i∈I+
N

satisfy (4.4.12). Then the irreducible
X(soN , soN−2 ⊕ so2)tw-module V (µ(u)) is finite-dimensional if and only if there ex-
ists monic polynomials P1(u), . . . , Pn(u) in u satisfying (5.2.8), together with a scalar
α ∈ C \ Z(Pn(u)) such that

µ̃i−1(u)
µ̃i(u) = Pi(u+ 1)

Pi(u)

(
α− u

α + u− 1

)δi,n
∀ 2 ≤ i ≤ n, (5.4.7)

u

κ− u
· µ̃a(κ− u)

µ̃b(u) =
(
u+ 1− N

4
u− N

4

)2
P1(u+ d)
P1(u)

(
α− u

α + u− 1

)δ1,n
, (5.4.8)
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where a, b and d are given by (5.2.6).

Proof. If V (µ(u)) is finite-dimensional, then by (5.3.8) and Proposition 5.2.5, there
is (α, (Pi(u))ni=1) as in the statement of the theorem.

To prove that V (µ(u)) is finite-dimensional whenever µ(u) is associated to a tuple
(α, (Pi(u))ni=1), one employs the argument given in the proof of Theorem 5.4.6. The
only modification required is that one must replace the one-dimensional X(g2n, gln)tw-
module V (α − κ) by the one-dimensional X(soN , soN−2 ⊕ so2)tw-module V (κ − α):
see Lemma 5.3.3 and Corollary 5.3.4.

Remark 5.4.11. When N is odd the relation (5.4.8) is equivalent to

µ̃0(u)
µ̃1(u) =

P1(u+ 1
2)

P1(u)

(
α− u

α + u− 1

)δ1,n
.

If N is even, then the existence of P1(u) satisfying P1(u) = P1(−u + n) and condi-
tion (5.4.8) can be replaced by the equivalent requirement that there exists a monic
polynomial Q1(u) such that Q1(u) = Q1(−u+ n), n/2 ∈ Z(Q1(u)) and

µ̃1(κ− u)
µ̃2(u) = Q1(u+ 1)

Q1(u) · κ− u
u

.

We conclude this section by presenting the analogues of Proposition 5.4.7, Corol-
lary 5.4.8 and Corollary 5.4.9. For more details, we refer the reader to the proofs
given in §5.4.1.

Proposition 5.4.12. The isomorphism classes of finite-dimensional irreducible rep-
resentations of X(soN , soN−2 ⊕ so2)tw are parameterized by tuples

(g(u); (α, (Pi(u))ni=1)) ∈ (1 + u−1C[[u−1]])refκ × C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(Pn(u)),

P1(u) = P1(−u+ κ+ 1) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

The underlying correspondence ΓϑX is given

ΓϑX(V (µ(u))) = (g(u); (α, (Pi(u))ni=1)) , where
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(a) g(u) ∈ (1 + u−1C[[u−1]])refκ is the unique scalar series such that

q(u)|ν∗g (V (µ(u))) = idν∗g (V (µ(u))).

(b) (α, (Pi(u))ni=1) is the Drinfeld tuple associated to µ(u).

Corollary 5.4.13. The isomorphism classes of finite-dimensional irreducible repre-
sentations of Y (soN , soN−2 ⊕ so2)tw are parameterized by tuples

(α, (Pi(u))ni=1) ∈ C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(Pn(u)),

P1(u) = P1(−u+ κ+ 1) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

Recall that, for each α ∈ C, V (α) denotes the one-dimensional representation
given by Lemma 5.3.3 (see also Corollary 5.3.4).

Corollary 5.4.14. Suppose that V is a finite-dimensional irreducible representation
of Y (soN , soN−2⊕so2)tw. Then there is m ≥ 0, 1 ≤ i1, . . . , im ≤ n and α, α1, . . . , αm ∈
C such that V is isomorphic to the unique irreducible quotient of

Y (soN , soN−2 ⊕ so2)tw(ξ1 ⊗ · · · ⊗ ξm ⊗ η) ⊂ L(i1 : α1)⊗ · · · ⊗ L(im : αm)⊗ V (α),

where, for each 1 ≤ k ≤ m, ξk ⊂ L(i : α) is a highest weight vector and η ∈ V (α) is
any nonzero vector.

5.5 Classification results: II

When gϑN is a complex semisimple Lie algebra which is a proper Lie subalgebra of gN ,
the necessary conditions of §5.2 are no longer sufficient for determining exactly when
the irreducible X(gN , gϑN)tw-module V (µ(u)) is finite-dimensional.

In this section, we illustrate this explicitly by focusing our attention on the twisted
Yangians associated to pairs

(gN , gϑN) = (so2n+1, so2n) with n ≥ 2.
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The culmination of our effort is a classification of all finite-dimensional irreducible
modules for both X(so2n+1, so2n)tw and Y (so2n+1, so2n)tw: see Theorem 5.5.7, Propo-
sition 5.5.8 and Corollary 5.5.9. Our first step towards proving these results is to
study how a certain automorphism ψσ interacts with highest weight modules of
X(so2n+1, so2n)tw. This will play a critical role in the rest of this section, one that is
similar to the role played in the analogous classification for the twisted Yangian of
the symmetric pair (sl2n, so2n) by the automorphism (4.69) of [Mol07].

5.5.1 Permuting finite-dimensional modules

For any n ≥ 1, let S2n+1 denote the symmetric group on the set I2n+1 and let
σ ∈ S2n+1 be the transposition (1,−1). That is

σ(i) =

−i if i ∈ {±1},

i otherwise
∀ i ∈ I2n+1.

Define the involutory permutation matrix Aσ by

Aσ =
∑

i∈I2n+1

Ei,σ(i) ∈ GL2n+1(C).

Since Atσ = Aσ = A−1
σ and det(Aσ) = −1, −Aσ ∈ G2n+1(C) = SO2n+1(C) (see

(3.2.6)). As we also have AσGAtσ = G, (3.3.21) implies that the assignment

ψσ : S(u) 7→ AσS(u)Atσ

extends uniquely to an automorphism ψσ of X(so2n+1, so2n)tw. We will write

ψnσ = ψσ (5.5.1)

when it is necessary to emphasize the rank n of so2n+1. This is not to be confused
with the n-th power (ψσ)n of ψσ.

Our present goal is to determine the highest weight of the twisted module

V (µ(u))ψσ = ψ∗σ(V (µ(u)))
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under the assumption that V (µ(u)) is finite-dimensional. We will first address this
problem for the low rank pair (so2n+1, so2n) = (so3, so2).

Lemma 5.5.1. Suppose that the X(so3, so2)tw-module V (µ(u)) is finite-dimensional
with Drinfeld tuple (α, P (u)), as in Proposition 5.1.14. Then

V (µ(u))ψσ ∼= V (µ](u)),

where the components of µ](u) are uniquely determined by the relations

µ̃]0(u) = µ̃0(u) · 3− 2u− 2α
2α− 2u · 2u− 2α + 2

2u+ 2α− 1 ,

µ̃]1(u) = µ̃1(u) · 2u− 2α + 1
2u+ 2α− 2 ·

2u− 2α + 2
2u+ 2α− 1 .

(5.5.2)

In particular, V (µ(u))ψσ has the Drinfeld tuple (3
2 − α, P (u)).

Proof. We appeal to the isomorphism ϕBI : X(so3, so2)tw ∼−→ X(sl2, so2)tw of (5.1.36),
which we recall is given by

S(u) 7→ 1− 4u
1 + 4uQV S

◦
1(2u− 1)R◦(−4u+ 1)tS◦2(2u)K1K2,

where QV = 1
2R
◦(−1), K = E11 − E−1,−1.

(5.5.3)

Let A = E1,−1 − E−1,1, and let βA be the automorphism of X(sl2, so2)tw given by

βA : S◦(u) 7→ −AS◦(u)At.

More explicitly, βA is defined on generators by the assignment

s◦ij(u) 7→ (−1)δi,−1+δj,−1s◦−i,−j(u) ∀ i, j ∈ I2.

We claim that βA and ψσ are related by

ϕ−1
BI ◦ βA ◦ ϕBI = ψσ. (5.5.4)

Applying βA to the right hand side of (5.5.3) and performing a few straightforward
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manipulations, we obtain

1− 4u
1 + 4uQV (A1A2)S◦1(2u− 1)R◦12(−4u+ 1)tS◦2(2u)K1K2(A1A2).

It follows that

(ϕ−1
BI ◦ βA ◦ ϕBI)(S(u)) = AV S(u)AV ,

where AV = QVA1A2QV ∈ End(V ) ∼= End(C3).

We have AV vi = −v−i for all i ∈ I3, so

AV = −
∑
i∈I3

Ei,σ(i) = −Aσ.

Since AV S(u)AV = AσS(u)Aσ, the relation (5.5.4) does indeed hold.

Now let V (µ(u)) be as in the statement of the lemma. The proof of Proposition
5.1.14 shows that there is an isomorphism of X(sl2, so2)tw-modules

(ϕ−1
BI )∗(V (µ(u))) ∼= V (µ◦(u)),

where µ◦(u) ∈ 1 + u−1C[[u−1]] is uniquely determined from the two relations

µ̃1(u) = 2u
(1− 4u

1 + 4u

)
µ◦(2u)µ◦(2u− 1),

µ̃0(u) = 2u
(4u− 3

4u+ 1

)
µ◦(2u)µ◦(1− 2u).

By Lemma 4.4.13 of [Mol07], the twisted module βA∗(V (µ◦(u))) is isomorphic to
V (µ•(u)), where µ•(u) is given by

µ•(u) = µ◦(u) · u− 2α + 2
u+ 2α− 1 .

As a X(so3, so2)tw-module, V (µ•(u)) is isomorphic to V (µ](u)), where

µ̃]1(u) = 2u
(1− 4u

1 + 4u

)
µ•(2u)µ•(2u− 1)

= µ̃1(u) · 2u− 2α + 1
2u+ 2α− 2 ·

2u− 2α + 2
2u+ 2α− 1 ,
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µ̃]0(u) = 2u
(4u− 3

4u+ 1

)
µ•(2u)µ•(1− 2u)

= µ̃0(u) · 3− 2u− 2α
2α− 2u · 2u− 2α + 2

2u+ 2α− 1 .

As ϕ−1
BI ◦ βA ◦ ϕBI = ψσ, we can conclude that V (µ(u))ψσ is isomorphic to V (µ](u))

with µ](u) as in (5.5.2).

Finally, since µ̃]0(u) satisfies (4.2.6), P (3
2 − α) 6= 0, P (u) = P (−u+ 3

2) and

µ̃]0(u)
µ̃]1(u)

= µ̃0(u)
µ̃1(u) ·

(3
2 − α)− u
α− u

· α + u− 1
(3

2 − α) + u− 1

=
P (u+ 1

2)
P (u) ·

(3
2 − α)− u

(3
2 − α) + u− 1 ,

the module V (µ](u)) ∼= V (µ(u))ψσ is associated to (3
2 − α, P (u)).

We now generalize Lemma 5.5.1 to pairs (so2n+1, so2n) for all n ∈ N.

Proposition 5.5.2. Suppose that the irreducible X(so2n+1, so2n)tw-module V (µ(u))
is finite-dimensional with Drinfeld tuple (α, (Pi(u))ni=1). Then

V (µ(u))ψσ ∼= V (µ](u)),

where the components of µ](u) = (µi(u))i∈I+
2n+1

are determined by

µ]i(u) = µi(u) ∀ 2 ≤ i ≤ n, (5.5.5)

µ̃]1(u) = µ̃1(u) · 2u− 2α + 1
2u+ 2α−N + 1 ·

2u− 2α + 2
2u+ 2α−N + 2 , (5.5.6)

µ̃]0(u) = µ̃0(u) · N − 2u− 2α
2α− 2u · 2u− 2α + 2

2u+ 2α−N + 2 . (5.5.7)

Proof. Since V (µ(u))ψσ has finite dimension and is irreducible, Theorem 4.2.6 and
Proposition 4.2.9 imply that it is isomorphic to V (µ](u)) for some µ](u). Throughout
the proof, we fix highest weight vectors ξ ∈ V (µ(u)) and ξσ ∈ V (µ(u))ψσ .

Set m = n− 1. Since

ψσ(sij(u)) = sσ(i)σ(j)(u) ∀ i, j ∈ I2n+1,
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the two subspaces V (µ(u))(+,m) and (V (µ(u))ψσ)(+,m) of V (µ(u)) (see (4.3.2)) are
identical. Consequently, the identity map provides a C-linear isomorphism

id : (V (µ(u))(m))ψ
1
σ → (V (µ(u))ψnσ )(m), (5.5.8)

where we have used the notation (5.5.1), and the X(so3, so2)tw-modules V (µ(u))(m)

and (V (µ(u))ψnσ )(m) are defined in §4.3: see (4.3.30).

The first step of our proof is to show that this is also a X(so3, so2)tw-module
isomorphism.

Step 1: The identity map (5.5.8) is an isomorphism of X(so3, so2)tw-modules.

To prove that this is the case it suffices to show that the generating series

{sij(u)}i,j∈I3 ⊂ X(so3, so2)tw[[u−1]]

operate identically in (V (µ(u))(m))ψ
1
σ and (V (µ(u))ψnσ )(m) (which coincide as subspaces

of V (µ(u))).

Since sij(u) acts in V (µ(u))(m) as the operator h(u)(s◦mij (u)) (see (4.3.30)), it
operates in (V (µ(u))(m))ψ

1
σ as the operator

h(u)
(
sσ(i)σ(j)(u+ m

2 ) + δij
2u

n∑
a=2

saa(u+ m
2 )
)
.

As σ(a) = a for all a ≥ 2, this is also equal to h(u)ψnσ(s◦mij (u)) which is precisely the
operator by which sij(u) acts in (V (µ(u))ψnσ )(m). This completes the proof of Step 1.

Next, by Corollary 4.3.7, we can form the finite-dimensional irreducible modules

V (µ(u))m = X(so3, so2)twξ ⊂ V (µ(u))(m),

(V (µ(u))ψnσ )m = X(so3, so2)twξσ ⊂ (V (µ(u))ψnσ )(m).

Step 2: ξσ is contained in V (µ(u))m and (V (µ(u))m)ψ1
σ ∼= (V (µ(u))ψnσ )m.

Since theX(so3, so2)tw-module (V (µ(u))m)ψ1
σ is finite-dimensional and irreducible,

it is generated by a highest weight vector ξ]σ ∈ (V (µ(u))m)ψ1
σ .

Since (V (µ(u))m)ψ1
σ is a submodule of (V (µ(u))(m))ψ

1
σ , Step 1 shows that ξ]σ is also
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contained in (V (µ(u))ψnσ )(m) and generates a highest weight submodule. By Part (2)
of Corollary 4.3.7, this submodule must be equal to (V (µ(u))ψnσ )m and thus ξ]σ must
be proportional to ξσ. This implies that ξσ, being a scalar multiple of ξ]σ, is contained
in V (µ(u))m.

Next, Let W be the image of the module (V (µ(u))m)ψ1
σ under the isomorphism

(5.5.8). As W is the irreducible submodule of (V (µ(u))ψnσ )(m) generated by ξσ, it is
equal to (V (µ(u))ψnσ )m.

Step 3: µ]i(u) = µi(u) for all 2 ≤ i ≤ n.

Let us temporarily denote the standard family of generators of X(so3, so2)tw by

{̊s(r)
ij }i,j∈I3,r∈N ⊂ X(so3, so2)tw.

This will distinguish them from the generators {s(r)
ij }i,j∈I2n+1,r∈N ⊂ X(so2n+1, so2n)tw.

Since V (µ(u))m is a X(so3, so2)tw highest weight module, it is generated by mono-
mials of the form

(̊s(r1)
i1j1 · · · s̊

(rc)
icjc) · ξ, where ia > ja ∈ I3 and ra ∈ N ∀ 1 ≤ a ≤ c,

and c takes non-negative integer values. By definition of the X(so3, so2)tw-action,
this implies V (µ(u))m is also spanned by monomials of the form

s
(r1)
i1j1 · · · s

(rc)
icjcξ (5.5.9)

with the same restrictions on the indices. In particular, by Step 2 the highest weight
vector ξσ must be a linear combination of such monomials.

Let Jm be the left ideal of X(so2n+1, so2n)tw generated by the coefficients of

sij(u) ∀ i < j with 2 ≤ j ≤ n.

In particular, V (µ(u))(m) is, as a vector space, equal to the subspace of V (µ(u))
annihilated by Jm. For every 2 ≤ k ≤ n and pair i, j ∈ I3 with j < i, the defining
relation (3.3.42) implies that

[skk(u), sij(v)] = 0 mod Jm,
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and hence the action of skk(u) on a monomial of the form (5.5.9) is given by

skk(u)(s(r1)
i1j1 · · · s

(rc)
icjcξ) = s

(r1)
i1j1 · · · s

(rc)
icjc(skk(u)ξ) = µk(u)(s(r1)

i1j1 · · · s
(rc)
icjcξ).

Since sσ(k)σ(k)(u) = skk(u) for all 2 ≤ k ≤ n, the above observation yields that

ψσ(skk(u))ξσ = µk(u)ξσ ∀ 2 ≤ k ≤ n.

Hence, µk(u) = µ]k(u) for all 2 ≤ k ≤ n.

Step 4: The formulas (5.5.7) and (5.5.6) hold.

To compute (µ]0(u), µ]1(u)), we use Step 2 in conjunction with Lemma 5.5.1. By
Corollary 4.3.7, we have

V (µ(u))m ∼= V (h(u)µ◦(u)) and V (µ](u))m ∼= V (h(u)µ•(u)),

where h(u) is given by (4.3.28), and µ◦(u) = (µ◦i (u))i∈I+
3
, µ•(u) = (µ•i (u))i∈I+

3
are

uniquely determined by

µ̃◦i (u) = µ̃i
(
u+ n−1

2

)
and µ̃•i (u) = µ̃]i

(
u+ n−1

2

)
∀ i ∈ I+

3 .

By Corollary 5.2.9, V (µ(u))m is associated to the tuple

(
α− n−1

2 , P
(
u+ n−1

2

))
,

and by Step 2, we have the sequence of isomorphisms

V (h(u)µ◦(u))ψ1
σ ∼= (V (µ(u))m)ψ1

σ ∼= (V (µ(u))ψnσ )m ∼= V (µ](u))m ∼= V (h(u)µ•(u)).

It thus follows from Lemma 5.5.1 that

µ̃]0(u+ n−1
2 ) = µ̃0(u+ n−1

2 ) · 3− 2u− 2α + n− 1
2α− n+ 1− 2u · 2u− 2α + n+ 1

2u+ 2α− n ,

µ̃]1(u+ n−1
2 ) = µ̃1(u+ n−1

2 ) · 2u− 2α + n

2u+ 2α− n− 1 ·
2u− 2α + n+ 1

2u+ 2α− n .

Substituting u 7→ u− n−1
2 we obtain the formulas (5.5.7) and (5.5.6).
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Henceforth, we assume that n > 1, so that (so2n+1, so2n) is not equal to (so3, so2).

Proposition 5.5.3. Suppose that V (µ(u)) is finite-dimensional with Drinfeld tuple
(α, (Pi(u))ni=1). Then

α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)).

Remark 5.5.4. By definition, the strings S(α, N2 − α) and S(α + 1
2 ,

N
2 − α + 1

2) are
empty unless α > N

4 . Therefore, the condition

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u))

is vacuous whenever α ≤ N
4 .

Proof of Proposition 5.5.3. It was shown in Proposition 5.2.13 that α ∈ 1
2Z + N

4 .
However, we will not assume this in our proof.

As a consequence of Proposition 5.5.2 we have V (µ(u))ψnσ ∼= V (µ](u)) where µ](u)
is as in (5.5.5)–(5.5.7). Since µ(u) is associated to (α, (Pi(u))ni=1), the components of
µ̃](u) satisfy the relations

µ̃]0(u)
µ̃]1(u)

=
P1(u+ 1

2)
P1(u) ·

(N2 − α)− u
u+ (N2 − α)− n

, (5.5.10)

µ̃]1(u)
µ̃]2(u)

= P2(u+ 1)
P2(u) · 2u− 2α + 1

2u+ 2α−N + 1 ·
2u− 2α + 2

2u+ 2α−N + 2 , (5.5.11)

µ̃]i−1(u)
µ̃]i(u)

= Pi(u+ 1)
Pi(u) ∀ 3 ≤ i ≤ n. (5.5.12)

On the other hand, since V (µ](u)) is finite-dimensional, Proposition 5.2.5 implies
that µ](u) can be associated to a Drinfeld tuple (α], (Qi(u))ni=1). Consequently, from
relation (5.5.11) we obtain the equality

Q2(u+ 1)
Q2(u) · (n− α)− u

u+ (n− α)− n+ 1 = P2(u+ 1)
P2(u) ·

(α− 1
2)− u

u+ (α− 1
2)− n+ 1 .

Applying Lemma 5.2.2 to both sides (with m = 1 and l = n) we find that there exists
monic polynomials Q•2(u) and P •2 (u), together with non-negative integers `P and `Q
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such that P •2 (u) = P •2 (−u+ n), Q•2(u) = Q•2(−u+ n), and

Q•2(u+ 1)
Q•2(u) · (n− α− `Q)− u

u+ (n− α− `Q)− n+ 1 = P •2 (u+ 1)
P •2 (u) ·

(α− 1
2 − `P )− u

u+ (α− 1
2 − `P )− n+ 1 ,

with Q•2(n − α − `Q) 6= 0 and P •2 (α − 1
2 − `P ) 6= 0. By Lemma 5.2.1, we must

have Q•2(u) = P •2 (u) and n − α − `Q = α − 1
2 − `P . The latter relation implies that

2α− N
2 = `P − `Q ∈ Z, and thus that

α− N
4 ∈

1
2Z.

If in addition α > N
4 , then

`P ≥ `P − `Q = 2α− N
2 > 0.

Since (`P , P •2 (u)) is the pair (`1
α−1/2, P

1
α−1/2(u)) from Lemma 5.2.2 (where P (u) =

P2(u)), P •2 (u) is equal to P2(u) divided by the polynomial Q(u) from (5.2.3) with
m = 1 and α replaced by α− 1/2. Therefore, P2(u) is divisible by the polynomial

Pα(u) =
2α−N2 −1∏
k=0

(u− α + 1/2 + k)(u− N
2 + α− k)

=
2α−N2 −1∏
k=0

(u− α + 1/2 + k)(u− α + 1 + k).

(5.5.13)

The proof of the proposition is completed by observing that the roots of Pα(u) are
precisely the elements of

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2).

Remark 5.5.5. The statement of Proposition 5.5.3 is much stronger than that of
Proposition 5.2.13 (in the case (gN , gϑN) = (so2n+1, so2n)). The latter tells us that
α ∈ 1

2Z + N
4 and that α − N

4 ≤
1
4(degP1(u) + degP2(u)) but says nothing about the

roots of P2(u). In fact, since the strings S(α, N2 −α) and S(α+ 1
2 ,

N
2 −α+ 1

2) are disjoint
and both have length 2α− N

2 , Proposition 5.5.3 implies that α− N
4 ≤

1
4 degP2(u).
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Provided α > N
4 , the polynomial Pα(u) from (5.5.13) satisfies the relation

Pα(u)
Pα(u+ 1) = 2u− 2α + 1

2u+ 2α−N + 1 ·
2u− 2α + 2

2u+ 2α−N + 2 . (5.5.14)

If instead α ≤ N
4 , let P

−
α (u) be the polynomial

P−α (u) =
N
2 −2α−1∏
k=0

(u− n+ α + k)(u− α− k) =
N
2 −2α−1∏
k=0

(u− α− 1
2 − k)(u− α− k),

where the equality P−α (u) = 1 is understood to hold if α = N
4 . Then P−α (u) satisfies

the relation
P−α (u+ 1)
P−α (u) = 2u− 2α + 1

2u+ 2α−N + 1 ·
2u− 2α + 2

2u+ 2α−N + 2 .

These observations together with the relations (5.5.10)–(5.5.12) imply the following
corollary.

Corollary 5.5.6. Suppose that the X(so2n+1, so2n)tw-module V (µ(u)) has finite di-
mension and Drinfeld tuple (α, (Pi(u))ni=1). Then the Drinfeld tuple of the finite-
dimensional irreducible module V (µ(u))ψσ is

(
N

2 − α, (P
]
i (u))ni=1

)
,

where P ]
i (u) = Pi(u) for all i 6= 2 and

P ]
2(u) =

P2(u)P−α (u) if α ≤ N
4 ,

P2(u)/Pα(u) if α > N
4 .

(5.5.15)

Observe that these formulas together with those of Proposition 5.5.2 imply that,
under the assumption that V (µ(u)) is finite-dimensional with µ(u) associated to
(α, (Pi(u))ni=1), we have

V (µ(u)) ∼= V (µ(u))ψσ ⇐⇒ α = N

4 ,

and the same assertion remains true at the level of Y (so2n+1, so2n)tw-modules.
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5.5.2 Classification of finite-dimensional irreducibles

With Proposition 5.5.3 at our disposal we can now classify the finite-dimensional
irreducible representations of X(so2n+1, so2n)tw. We continue to assume that n > 1.

Theorem 5.5.7. Let µ(u) = (µi(u))i∈I+
2n+1

satisfy (4.4.12). The X(so2n+1, so2n)tw-
module V (µ(u)) is finite-dimensional if and only if there exists monic polynomials
P1(u), . . . , Pn(u) in u satisfying (5.2.8), together with α ∈ C \ Z(P1(u)) such that

α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),
(5.5.16)

µ̃i−1(u)
µ̃i(u) =

Pi(u+ 1− δi1
2 )

Pi(u)

(
α− u

α + u− n

)δi,1
∀ 1 ≤ i ≤ n. (5.5.17)

Proof. Since k = k(G) = 0 and (4.2.6) holds, (5.5.17) is equivalent to the relations
(5.2.9) and (5.2.10). Hence, if V (µ(u)) is finite-dimensional, Propositions 5.2.5 and
(5.5.3) imply that there µ(u) is associated to a tuple (α, (P (u)ni=1)) as in the statement
of the theorem.

Conversely, suppose that µ(u) is associated to a tuple (α, (Pi(u))ni=1) as in Defi-
nition 5.2.6, which in addition satisfies (5.5.16). We will show that V (µ(u)) is finite-
dimensional, splitting our proof into two cases.

Case 1: α ≤ N
4 .

Define the auxiliary tuple (P ◦i (u))ni=1 ⊂ C[u]n by

P ◦i (u) = Pi(u) ∀i > 1,

P ◦1 (u) = P1(u)
N/2−2α−1∏

k=0
(u− N

4 + k
2 )(u− N

4 −
k
2 ).

Note that P ◦1 (u) satisfies P ◦1 (u) = P ◦1 (−u+ N
2 ) = P ◦(−u+ κ+ 1) and

P ◦1 (u+ 1
2)

P ◦1 (u) ·
N
4 − u

N
4 + u− n

=
P1(u+ 1

2)
P1(u) · α− u

α + u− n
. (5.5.18)
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Therefore, by (5.2.8), there are monic polynomials Q1(u), . . . , Qn(u) satisfying

P ◦1 (u) = (−1)degQ1Q1(u− κ/2)Q1(−u+ κ/2 + 1),

P ◦i (u) = (−1)degQiQi(u− κ/2)Qi(−u+ n− i+ 2− κ/2) ∀ 2 ≤ i ≤ n.

By Proposition 4.1.5, there is an X(so2n+1) highest weight λ(u) = (λi(u))i∈I2n+1 with
the property that L(λ(u)) is finite-dimensional with Drinfeld polynomials (Qi(u))ni=1.
Let ξ ∈ L(λ(u)) be a highest weight vector.

Then Lemma 5.2.10 applied with V (µ(u)) = V (G), along with (5.5.18) and Re-
mark 5.2.11, imply that the finite-dimensional highest weight module

X(so2n+1, so2n)twξ ⊂ L(λ(u))

has highest weight ν(u) which is also associated to (α, (Pi(u))ni=1). We may thus
conclude that V (µ(u)) is finite-dimensional using Lemma 5.2.8 and same argument
as given in the proof of Theorem 5.4.1.

Case 2: α > N
4 .

Let µ](u) = (µ]i(u))i∈I+
2n+1

be the tuple determined by (5.5.5)–(5.5.7). Since

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),

the polynomial Pα(u) from (5.5.13) divides P2(u). By (5.5.10)–(5.5.12) and (5.5.14),
µ](u) is associated to

(N2 − α, (P
]
i (u))ni=1), where

P ]
2(u) = P2(u)/Pα(u) and P ]

i (u) = Pi(u) ∀ i 6= 2.

Since N
2 −α <

N
4 , the argument of Case 1 implies that V (µ](u)) is finite-dimensional.

By Proposition 4.7, V (µ](u))ψσ is isomorphic to V (µ(u)), and thus V (µ(u)) is also
finite-dimensional.

Using the above theorem and the arguments of §5.4.1, we obtain a parameteri-
zation of finite-dimensional irreducible representations of both X(so2n+1, so2n)tw and
Y (so2n+1, so2n)tw. This is presented in Proposition 5.5.8 and Corollary 5.5.9 below;
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all notation is as in §5.4.1.

Proposition 5.5.8. The isomorphism classes of finite-dimensional irreducible repre-
sentations of X(so2n+1, so2n)tw are parameterized by tuples

(g(u); (α, (Pi(u))ni=1)) ∈ (1 + u−1C[[u−1]])refκ × C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(P1(u)), α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),

P1(u) = P1(−u+ κ+ 1) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

The underlying correspondence ΓϑX is given

ΓϑX(V (µ(u))) = (g(u); (α, (Pi(u))ni=1)) , where

(a) g(u) ∈ (1 + u−1C[[u−1]])refκ is the unique scalar series such that

q(u)|ν∗g (V (µ(u))) = idν∗g (V (µ(u))).

(b) (α, (Pi(u))ni=1) is the Drinfeld tuple associated to µ(u).

Corollary 5.5.9. The isomorphism classes of finite-dimensional irreducible repre-
sentations of Y (so2n+1, so2n)tw are parameterized by tuples

(α, (Pi(u))ni=1) ∈ C× C[u]n,

where each Pi(u) is monic,

α ∈ C \ Z(P1(u)), α− N
4 ∈

1
2Z,

S(α, N2 − α) ∪ S(α + 1
2 ,

N
2 − α + 1

2) ⊂ Z(P2(u)),

P1(u) = P1(−u+ κ+ 1) and Pi(u) = Pi(−u+ n− i+ 2) ∀ i ≥ 2.

We now turn towards obtaining a result analogous to Corollary 5.4.5 for the
twisted Yangian Y (so2n+1, so2n)tw. Since every automorphism of the form (3.3.21)
restricts to an automorphism of the twisted Yangian Y (gN , gϑN)tw, we may view ψσ

as an automorphism of Y (so2n+1, so2n)tw.
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Given m ≥ 0, 1 ≤ i1, . . . , im ≤ n, and α1, . . . , αm ∈ C, we can form the tensor
product of Y (so2n+1) fundamental representations

L(i1 : α1)⊗ · · · ⊗ L(im : αm), (5.5.19)

where L(ik, αk) is as in Definition 4.1.8. For each 1 ≤ k ≤ m, let ξi be a highest
weight vector of L(ik : αik) and consider the Y (so2n+1, so2n)tw-module

Y (so2n+1, so2n)tw(ξ1 ⊗ · · · ⊗ ξm) ⊂ L(i1 : αi1)⊗ · · · ⊗ L(im : αim), (5.5.20)

where both sides are identified with the trivial representation if m = 0.

Corollary 5.5.10. Let V be a finite-dimensional irreducible Y (so2n+1, so2n)tw-module
with Drinfeld tuple (α, (Pi(u))ni=1). Then

(1) V is isomorphic to the unique irreducible quotient of a module of the form
(5.5.20) if and only if α ≤ N

4 ,

(2) ψ∗σ(V ) is isomorphic to the unique irreducible quotient of a module of the form
(5.5.20) if and only if α ≥ N

4 .

Proof. If V is isomorphic to the irreducible quotient of the module (5.5.20), Lemma
5.2.10 and Remark 5.2.11 with V (µ(u)) = V (G) imply that α = N

4 −
`α
2 , where `α is

a non-negative integer. This proves the (=⇒) direction of (1).

Suppose now that the representation ψ∗σ(V ) is isomorphic to the irreducible quo-
tient of the module (5.5.20). By Corollary 5.5.6, ψ∗σ(V ) is associated to the Drinfeld
tuple

(N2 − α, (P
]
i (u))ni=1),

where P ]
i (u) = Pi(u) for all i 6= 2 and P ]

2(u) is given by (5.5.15). Hence, the same
argument as given in the previous paragraph shows that N

2 − α ≤
N
4 , thus proving

the (=⇒) direction of (2).

The (⇐=) direction of (1) and (2) is now proven using the same argument em-
ployed to prove Corollary 5.4.5, with the role of the proof of Theorem 5.4.1 played
by the proof of Theorem 5.5.7.
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Chapter 6

Conclusion

In this thesis, we have considered two topics in the representation theory of Yangians.
In Chapter 2, we constructed the R-matrix presentation of the Yangian starting
from any fixed finite-dimensional Y (g)-module which has a non-trivial irreducible g-
submodule. Our results in this chapter provide a generalization of [Dri85, Theorem 6]
and, in particular, make available a proof of that result. In addition, we have proven
several structural properties for the extended Yangian which generalize results which
have played an important role in the special case where the underlying module is the
vector representation of a classical Lie algebra.

In Chapters 3–5, we have focused on the problem of classifying all finite-dimensional
irreducible representations for twisted Yangians associated to orthogonal and sym-
plectic symmetric pairs of Lie algebras. Our main results include a complete solution
to this problem when the underlying pair is of the form

(so2n+1, so2n),

(gN , gN), (g2n, gln) and (soN , soN−2 ⊕ so2).

To conclude, we now provide a brief discussion of some natural questions which
arise from our work.
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6.0.1 On the universal R-matrix of the Yangian

The construction of the R-matrix presentation of the Yangian carried out in Chapter
2 depends heavily on the existence of Drinfeld’s universal R-matrix R(u), which is
provided by [Dri85, Theorem 3]: see Theorem 2.2.4. Drinfeld’s proof that such a
remarkable series exists is based on deformation theory and, unfortunately, has not
appeared in the literature1. Due to the non-constructive nature of the argument,
there is no known expression for the evaluation of R(u) on the tensor square V ⊗V of
a given finite-dimensional Y (g)-module V (see Remark 2.4.2). This discussion raises
the following questions:

(Q1) Can the existence of R(u) be proven constructively?

(Q2) Given a fixed finite-dimensional Y (g)-module V and a suitable R-matrix

R(u) ∈ End(V ⊗ V )[[u−1]],

can the results of Chapter 2 be proven with (ρ⊗ρ)R(−u) replaced by R(u) and
without otherwise appealing to R(u)?

(Q3) If the answer to (Q2) is positive, can R(u) be rebuilt from R(u) using the
R-matrix formalism?

It turns out that each of these questions has a positive answer. Question (Q1) is
addressed in the forthcoming work [GTLW] of S. Gautam, V. Toledano Laredo, and
the author. Therein, we construct explicitly a formal series RG(u) by identifying each
factor in its Gauss decomposition

RG(u) = R+(u)R0(u)R−(u) ∈ (Y (g)⊗ Y (g))[[u−1]]. (6.0.1)

The commutative factor R0(u) was constructed by Gautam and Toledano Laredo
in [GTL17]. The triangular factors R±(u) are related by R+(u)−1 = R−21(−u) and
arise as the unique solutions of two related consistent systems of partial differential
equations, as is spelled out in detail in [GTLW]. We then prove that RG(u) satisfies
the defining properties of R(u), the main ingredient (supplemental to [GTL17]) being

1) However, the author has been informed that such a proof will appear in forthcoming work of
P. Etingof and M. Gardini.
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that R−(u) intertwines the so-called deformed Drinfeld coproduct and the standard
coproduct on Y (g). By the uniqueness assertion of Theorem 2.2.4 (a result proven in
[GTLW]), it follows that RG(u) coincides with Drinfeld’s universal R-matrix R(u)2.

Consider now (Q2) and (Q3). Though these questions both have positive answers,
they have not yet been afforded a proper treatment in the literature. For the sake of
the reader, we provide a sketch of some of the relevant ideas below, with emphasis on
(Q2).

Let V and ρ be as in §2.4 and set

R1 = Ω and R2 =
∑
λ∈Λ

(J(Xλ)⊗Xλ −Xλ ⊗ J(Xλ)) + 1
2Ω2,

as in the expansion (2.2.11). Next, suppose we are given

R(u) = I +
∑
k≥1

R(k)u−k ∈ I + u−1End(V ⊗ V )[[u−1]]

satisfying

(1) R(k) = (−1)k(ρ⊗ ρ)(Rk) for k = 1 and k = 2,

(2) R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v),

(3)
((
R(u+ 1

2cg)
t
)−1

)t
= R(u)−1,

where t is the standard transposition Et
ij = Eji and is applied in the first tensor

factor.

Given the above data, we may define XI(g) and YR(g) exactly as before. The
relation (3), called the crossing symmetry relation, is imposed so that the represen-
tation

% : XI(g)→ EndV, T (u) 7→ R(u),

which exists by (2), descends to a representation of YR(g). Due to the condition (1)
on R(u), Propositions 2.4.4 and 2.4.6 still hold and give surjections

ϕI : U(gI [z]) � grXI(g) and ϕ : U(g[z]) � grYR(g).

2) More precisely, we prove that RG(u) = R(−u)−1.
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The Poincaré-Birkhoff-Witt theorem for YR(g) and the isomorphism YR(g) ∼= Y (g)
can still be proven simultaneously, but one must replace the arguments of §2.5, which
make extensive use of R(u). This can be achieved by constructing filtered homomor-
phisms

ΦR : YR(g)→
∏
n∈N

EndC[u1,...,un](V ⊗n[u1, . . . un])← Y (g) : ΦJ

as follows. If Pk denotes the natural projection

Pk :
∏
n∈N

EndC[u1,...,un](V ⊗n[u1, . . . un])→ EndC[u1,...,uk](V ⊗k[u1, . . . uk]),

then ΦJ is uniquely defined by the requirement that

Pk ◦ ΦJ = ρ⊗k ◦ (τu1 ⊗ · · · ⊗ τuk) ◦∆(k−1) : Y (g)→ EndC[u1,...,uk](V ⊗k[u1, . . . uk]),

where all notation is as in §2.2. The homomorphism ΦR is defined similarly, with ρ
replaced by % and τui replaced with the formal analogue of (2.4.5).

It is not difficult to prove that the composite of gr(ΦR) with ϕ is injective, which
implies that both ϕ and ΦR are themselves injective. Similarly, ΦJ is injective. Using
degree zero and one generators together with the condition (1), one then argues that
ΦR and ΦJ have the same image, which implies that the composites Φ−1

J ◦ ΦR and
Φ−1
R ◦ ΦJ are both isomorphisms.

The rest of the constructions of Chapter 2 can now proceed without any serious
modifications. As for (Q3), the universal R-matrix R(u) can now be rebuilt from
R(u) via a fusion type procedure, with a little effort, in the presentation of Y (g)
provided by ΦR(YR(g)).

Remark 6.0.1. We emphasize that the above discussion of (Q2) and (Q3) is not
intended to be rigorous. A more complete, and rigorous, picture will hopefully be
given in future work of the author.

6.0.2 A general R-matrix approach to twisted Yangians

Our approach to symmetric pairs in §3.2, together with our proofs of several results
in §3.3, has hopefully left the impression that is possible to give a general theory
of twisted Yangians using ideas from Chapter 2. Such a theory should allow one to
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construct a twisted Yangian Y (g, gϑ)tw from any involution ϑ = Adρ(G)|gρ (see (3.2.2))
both as a coideal subalgebra of YR(g) and as a quotient of a reflection equation algebra
(as in §3.3.5). We hope to pursue this direction in future work.

Right now, there are at least two missing ingredients needed for carrying out this
construction in full generality:

(1) A gρ[z]ϑ̌-analogue of Proposition 2.3.9.

(2) A source of solutions

G(u) ∈ G + u−1(EndV )[[u−1]]

of the reflection (or boundary Yang-Baxter) equation

R12(u− v)G1(u)R21(u+ v)G2(v) = G2(v)R12(u+ v)G1(u)R21(u− v). (6.0.2)

Note that the reflection equation (6.0.2) reduces to (3.3.1) when R(u) is symmetric,
as is the case in Chapter 3. Both of the above ingredients are needed for describing
Y (g, gϑ)tw precisely as a quotient of a reflection algebra.

The problem of proving that there exists a universal source of solutions to the
reflection equation (6.0.2) is closely related to the (open) problem of establishing
the existence of a universal K-matrix for Y (g, gϑ)tw, which would serve as a twisted
Yangian analogue of R(u): see [BK16,Kol17,Li19].

6.0.3 On the classification problem for twisted Yangians of
types B, C and D

Finally, let us briefly comment on the current state of the classification problem which
has been at the core of our work in Chapters 4 and 5.

Our main results of Chapter 5 do not provide a complete solution to this problem
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when the underlying symmetric pair is of the form

(sp2n, sp2n−q ⊕ spq) with 2 ≤ q ≤ 2n− q,

(so2n, so2n−q ⊕ soq) with 3 ≤ q ≤ 2n− q,

(so2n+1, so2n+1−q ⊕ soq) with 3 ≤ q ≤ 2n− 2,

(6.0.3)

where in all cases q is assumed to be even (see (3.0.1)). When (gN , gϑN) is any of
the above pairs, the necessary conditions established in §5.2 are not sufficient for
determining precisely when the X(gN , gϑN)tw-module V (µ(u)) is finite-dimensional.
However, there is a version of the machinery developed in §5.5.1 for X(so2n+1, so2n)tw

which is applicable to X(gN , gϑN)tw for any pair (gN , gϑN) of the above form. It has
recently been discovered by the author, in joint work with N. Guay and V. Regelskis,
that this type of approach leads to a complete solution to the underlying classification
problem for all twisted Yangians

X(sp2n, sp2n−q ⊕ spq)tw and Y (sp2n, sp2n−q ⊕ spq)tw,

where the same restrictions on q are imposed as in (6.0.3). These results will be
presented in the forthcoming paper [GRW].

For the twisted Yangians associated to the symmetric pairs in (6.0.3) of orthogonal
type, there are additional complications which arise. One difficulty involves showing
that, in the notation of Definition 5.2.6, if µ(u) is associated to the tuple

(N/4− 1/2, (Pi(u))ni=1), where Pi(u) = 1 ∀ 1 ≤ i ≤ n,

then V (µ(u)) is finite-dimensional. By Lemma 5.2.12, any V (µ(u)) with this prop-
erty is closely related to the spinor representation of soq with the highest weight
(−1/2, . . . ,−1/2). For the twisted Yangians associated to (so2n+1, so2n) studied in
§5.5, this difficulty does not arise as such modules can be obtained by restricting the
spinor representations for Y (so2n+1) which are given by [AMR06, Lemma 5.18].

283



Bibliography

[AAC+03] D. Arnaudon, J. Avan, N. Crampé, L. Frappat, and E. Ragoucy, R-matrix presentation
for super-Yangians Y (osp(m|2n)), J. Math. Phys. 44 (2003), no. 1, 302–308.

[AMR06] D. Arnaudon, A. Molev, and E. Ragoucy, On the R-matrix realization of Yangians and
their representations, Ann. Henri Poincaré 7 (2006), no. 7-8, 1269–1325.

[BK05] J. Brundan and A. Kleshchev, Parabolic presentations of the Yangian Y (gln), Comm.
Math. Phys. 254 (2005), no. 1, 191–220.

[BK06] , Shifted Yangians and finite W -algebras, Adv. Math. 200 (2006), no. 1, 136–
195.

[BK08] , Representations of shifted Yangians and finite W -algebras, Mem. Amer. Math.
Soc. 196 (2008), no. 918, viii+107.

[BK16] M. Balagović and S. Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine
Angew. Math. 747 (2016), 299–353.

[BR01] C. Briot and E. Ragoucy, RTT presentation of finite W-algebras, J. Phys. A 34 (2001),
no. 36, 7287–7310.

[BR17] S. Belliard and V. Regelskis, Drinfeld J presentation of twisted Yangians, SIGMA Sym-
metry Integrability Geom. Methods Appl. 13 (2017), Paper No. 011, 35.

[Bro09] J. Brown, Twisted Yangians and finiteW -algebras, Transform. Groups 14 (2009), no. 1,
87–114.

[Bro11] , Representation theory of rectangular finite W -algebras, J. Algebra 340 (2011),
114–150.

[CP91] V. Chari and A. Pressley, Fundamental representations of Yangians and singularities
of R-matrices, J. Reine Angew. Math. 417 (1991), 87–128.

[Dri85] V. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl.
32 (1985), no. 1, 254–258.

[Dri88] , A new realization of Yangians and quantum affine algebras, Soviet Math. Dokl.
36 (1988), no. 2, 212–216.

[EGH+11] P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yu-
dovina, Introduction to representation theory, Student Mathematical Library, vol. 59,
American Mathematical Society, Providence, RI, 2011. With historical interludes by
Slava Gerovitch.

[ES02] P. Etingof and O. Schiffmann, Lectures on quantum groups, Second edition, Lectures
in Mathematical Physics, International Press, Somerville, MA, 2002.

284



[FKP+18] M. Finkelberg, J. Kamnitzer, K. Pham, L. Rybnikov, and A. Weekes, Comultiplication
for shifted Yangians and quantum open Toda lattice, Adv. Math. 327 (2018), 349–389.

[FRT90] L. Faddeev, N. Reshetikhin, and L. Takhtajan, Quantization of Lie groups and Lie
algebras, Leningrad Math. J. 1 (1990), no. 1, 193–225.

[GNW18] N. Guay, H. Nakajima, and C. Wendlandt, Coproduct for Yangians of affine Kac-Moody
algebras, Adv. Math. 338 (2018), 865–911.

[GR16] N. Guay and V. Regelskis, Twisted Yangians for symmetric pairs of types B, C, D,
Math. Z. 284 (2016), no. 1-2, 131–166.

[GRW16] N. Guay, V. Regelskis, and C. Wendlandt, Twisted Yangians of small rank, J. Math.
Phys. 57 (2016), no. 4, 041703, 28.

[GRW17] , Representations of twisted Yangians of types B, C, D: I, Selecta Math. (N.S.)
23 (2017), no. 3, 2071–2156.

[GRW19a] , Equivalences between three presentations of orthogonal and symplectic Yan-
gians, Lett. Math. Phys. 109 (2019), no. 2, 327–379.

[GRW19b] , Representations of twisted Yangians of types B, C, D: II, Transform. Groups
(2019). doi:10.1007/s00031-019-09514-x.

[GRW] , Representations of twisted Yangians of types B, C, D: III. In preparation.

[GTL17] S. Gautam and V. Toledano Laredo, Meromorphic tensor equivalence for Yangians and
quantum loop algebras, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 267–337.

[GTLW] S. Gautam, V. Toledano Laredo, and C. Wendlandt, The analytic R-matrix of the
Yangian. In preparation.

[Hel01] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Stud-
ies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001.
Corrected reprint of the 1978 original.

[JLM18] N. Jing, M. Liu, and A. Molev, Isomorphism between the R-matrix and Drinfeld pre-
sentations of Yangian in types B, C and D, Comm. Math. Phys. 361 (2018), no. 3,
827–872.

[Kol17] S. Kolb, Braided module categories via quantum symmetric pairs, 2017.
arXiv:1705.04238.

[KS82a] P. Kulish and E. Sklyanin, Quantum spectral transform method. Recent developments,
Integrable Quantum Field Theories, 1982, pp. 61–119.

[KS82b] , Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982), 1596–1620.

[KTW+15] J. Kamnitzer, P. Tingley, B. Webster, A. Weekes, and O. Yacobi, Highest weights for
truncated shifted Yangians and product monomial crystals, 2015. arXiv:1511.09131.

[KWWY14] J. Kamnitzer, B. Webster, A. Weekes, and O. Yacobi, Yangians and quantizations of
slices in the affine Grassmannian, Algebra Number Theory 8 (2014), no. 4, 857–893.

[Li19] Yiqiang Li, Quiver varieties and symmetric pairs, Represent. Theory 23 (2019), 1–56.

[MM14] A. Molev and E. Mukhin, Yangian characters and classical W-algebras, Conformal field
theory, automorphic forms and related topics, 2014, pp. 287–334.

[MM17] , Eigenvalues of Bethe vectors in the Gaudin model, Teoret. Mat. Fiz. 192 (2017),
no. 3, 369–394.

285



[MNO96] A. Molev, M. Nazarov, and G. Olshanskii, Yangians and classical Lie algebras, Russian
Math. Surveys 51 (1996), no. 2, 205–282.

[MO19] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, 2019, In press.
arXiv:1211.1287.

[Mol06] A. Molev, Gelfand-Tsetlin bases for classical Lie algebras, Handbook of algebra. Vol.
4, 2006, pp. 109–170.

[Mol07] , Yangians and classical Lie algebras, Mathematical Surveys and Monographs,
vol. 143, American Mathematical Society, Providence, RI, 2007.

[Mol13] , Feigin-Frenkel center in types B, C and D, Invent. Math. 191 (2013), no. 1,
1–34.

[Mol92] , Representations of twisted Yangians, Lett. Math. Phys. 26 (1992), no. 3, 211–
218.

[Mol98] , Finite-dimensional irreducible representations of twisted Yangians, J. Math.
Phys. 39 (1998), no. 10, 5559–5600.

[MR02] A. I. Molev and E. Ragoucy, Representations of reflection algebras, Rev. Math. Phys.
14 (2002), no. 3, 317–342.

[Nak13] H. Nakajima, Quiver varieties and tensor products, II, Symmetries, integrable systems
and representations, 2013, pp. 403–428.

[Naz91] M. Nazarov, Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys.
21 (1991), no. 2, 123–131.

[Naz98] , Yangians and Capelli identities, Kirillov’s seminar on representation theory,
1998, pp. 139–163.

[NT94] M. Nazarov and V. Tarasov, Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math.
Sci. 30 (1994), no. 3, 459–478.

[Ols92] G. Olshanskii, Twisted Yangians and infinite-dimensional classical Lie algebras, Quan-
tum groups (Leningrad, 1990), 1992, pp. 104–119.

[Rag01] E. Ragoucy, Twisted Yangians and folded W-algebras, Internat. J. Modern Phys. A 16
(2001), no. 13, 2411–2433.

[Roz10] N. Rozhkovskaya, Sklyanin determinant for reflection algebra, SIGMA Symmetry Inte-
grability Geom. Methods Appl. 6 (2010), Paper 100, 9.

[RS99] E. Ragoucy and P. Sorba, Yangian realisations from finite W-algebras, Comm. Math.
Phys. 203 (1999), no. 3, 551–572.

[Skl88] E. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988),
no. 10, 2375–2389.

[SV17] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers : Yangians,
2017. arXiv:1705.07491.

[SV18] , On cohomological Hall algebras of quivers : generators, J. Reine Angew. Math.
(2018). doi:10.1515/crelle-2018-0004.

[Var00] M. Varagnolo, Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), no. 4, 273–
283.

[Wen18] C. Wendlandt, The R-matrix presentation for the Yangian of a simple Lie algebra,
Comm. Math. Phys. 363 (2018), no. 1, 289–332.

286



[YZ18a] Y. Yang and G. Zhao, The cohomological Hall algebra of a preprojective algebra, Proc.
Lond. Math. Soc. (3) 116 (2018), no. 5, 1029–1074.

[YZ18b] , Cohomological Hall algebras and affine quantum groups, Selecta Math. (N.S.)
24 (2018), no. 2, 1093–1119.

287


	Introduction
	The R-matrix presentation of the Yangian
	Representations of twisted Yangians of types B, C and D

	The R-matrix Presentation of the Yangian
	Preliminaries
	The Yangian of a simple Lie algebra
	The r-matrix presentation of the current algebra 
	The R-matrix presentation of the Yangian 
	Equivalence of the two definitions of the Yangian
	Structure of the extended Yangian
	Drinfeld's theorem and classical Lie algebras

	Twisted Yangians of Classical Type
	Notation
	Symmetric pairs and twisted current algebras
	Twisted Yangians of type B, C and D
	Twisted Yangians of type A

	Highest Weight Theory for Twisted Yangians
	Representations of X(gN) and Y(gN)
	Highest weight theory for twisted Yangians
	Lowering the rank
	Reduction to type AIII

	Finite-Dimensional Irreducible Modules
	Low rank twisted Yangians
	Necessary conditions in the general setting
	One-dimensional representations
	Classification results: I
	Classification results: II

	Conclusion
	Bibliography

