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ABSTRACT 

This thesis develops and analyzes centralized and decentralized network-level traffic signal 

control system under in a connected vehicle (CV) environment with mobile edge computing 

(MEC). The goal is to provide a framework of decentralized signal control (DSC) system 

especially for real-time control and large-scale traffic network. Short-term origin-destination 

(OD) demand is used as an input given that the technological paradigm assumed is within the CV 

environment, unlike most previous works that look at network control but in a current 

technological paradigm.  

Considering short-term OD demand as inputs, a queue-based dynamic traffic assignment 

(DTA) model is proposed to predict traffic dynamics in traffic networks with signal control. 

Although DTA has been an effective tool to describe traffic dynamics for traffic optimization, 

and many researchers have considered traffic signal control in their models, signal timings have 

been simplified without considering complex, but realistic, phase sequence and duration 

restrictions. This work formulates traffic signal timing as a component of the link performance 

function with three control variables: cycle length, phase split, and offset. In addition, both user-

optimal (UO) and system-optimal (SO) DTA problems are solved within a single corridor 

network. 

Finally, this thesis provides a simulation-based framework of both centralized and 

decentralized signal control to solve the network-level traffic signal control optimization 

problem. For the centralized system, this work solves the issue of optimal control using a three-

step naïve method. Because the optimization of large-scale network traffic signals is a 

Nondeterministic Polynomial Time (NP)-complete problem, the centralized system is further 



III 
 

decomposed into a decentralized system where the network is divided into subnetworks. – Each 

subnetwork has its own agent that optimizes signals within the subnetwork. The proposed control 

systems are applied to a set of test scenarios constructed using different demand levels in 

different grid networks. This work also investigates the impact of network decomposition 

strategy on the signal control system performance. Results show that network decomposition 

with smaller subnetworks results in less Computational Time (CT), but also increased Average 

Travel Time (ATT) and Total Travel Delay (TTD). 

This thesis contributes to the literature by a queue-based DTA model for traffic network 

with real traffic signal timing plan, a simulation-based framework of DSC system within the 

MEC-enabled CV environment, and a scalable and extendable decomposition method for a DSC 

system. 

Keywords: network-level traffic signal control, mobile edge computing, decentralized signal 

control, short-term origin-destination demand, network decomposition. 
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1 INTRODUCTION 

1.1 Background 

The fundamental principle of active traffic and demand management (ATDM) is reducing traffic 

congestion before breakdown conditions occur. ATDM embodies proactive management rather 

than reactive, and consists of strategies to prevent traffic congestion by re-balancing traffic 

demand and supply through traffic signal control, dynamic lane use control, variable speed limit, 

and adaptive ramp metering. This thesis focusses on optimizing network traffic signal control. 

Network traffic signal control aims to improve network mobility and traffic safety by adjusting 

directional capacity at each signalized intersection. However, network-level traffic signal control 

is hard to implement, and suffers from issues of data quality, computation capacity, and control 

latency (i.e., the sum of computational latency and data transmission latency). 

Rapidly developing Connected Vehicle (CV) technologies that produce increasingly 

numerous types of vehicle data, personal travel data, and geometric data offer the potential to 

resolve this data quality issue. For example, the 2017 SAE J2735 Dedicated Short Range 

Communications (DSRC) report summarizes 17 messages, 156 data frames, 230 data elements, 

and 58 external data element definition references (Perry, 2017). In addition, more types of data 

will be readily available in the near future thanks to the rapid development of Connected Vehicle 

(CV) and communication technologies. For example, Origin-Destination (OD) demand data can 

be generated from a variety of sources such as navigation systems (e.g., Google Maps), ride-

sharing applications (e.g., Uber), and GPS-equipped vehicles, and can include vehicle origin, 

destination, and start time. However, many recent studies for network traffic signal control still 

use data from fixed sensors as inputs, such as vehicle counts from loop detectors. Traffic data 

collected by induction loop detector and other common sensors can only be used to understand 

traffic states in a short period locally. OD demand, however, which is widely used as an input for 

network modeling, can help predict traffic dynamics over some given period on network level. 

Moreover, in congested conditions when demand exceeds capacity, actual flow is lower than 

demand (or capacity), which indicates that using flow as input has fundamental limitations on 

demand management.  
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However, computational capacity limitations remain despite excellent algorithms, 

Artificial intelligence (AI) technology, and large-capacity computers. The primary issue rests 

with the fact that network-level traffic signal control is highly complex, nonlinear, and affected 

by many external and internal factors due to the nature of the traffic system. The network traffic 

signal optimization problem has been proven to be an Nondeterministic Polynomial Time (NP)-

complete problem (Adacher et al., 2014). Computation complexity will increase exponentially 

with respect to the number of nodes in the network (i.e., network size). In a centralized network-

level traffic signal control system, the computational latency caused by the data analysis required 

to determine an optimized solution is a too large to be practical, especially for real-time control. 

With the help of mobile edge computing (MEC), a decentralized signal control (DSC) 

system can be applied to solve the issues of computation capacity and control latency. MEC 

allows more data resources, ensures low data transmission latency, and enables distributed 

computation. Traditional network traffic signal control systems have a central traffic 

management center (TMC) to manage traffic. Although data can be transferred from each end of 

the traffic network in CV environment, the traditional framework is hampered by bandwidth 

limitations during data processing. And data transmission latency worsens as more devices are 

connected to the central TMC. By adding MEC technology, data can be analyzed at the location 

where it is collected. Thus, processed traffic information can be transferred between each end of 

the traffic network easily with low data transmission latency due to its small size, normalized 

format, and accurate information. Moreover, in the DSC system, the network is divided into 

subnetworks, and each subnetwork has its own agent (regional MEC controller) to control 

signals inside it. Each agent is designed to receive messages from surrounding agents, make 

decisions for traffic signal control of intersections inside the subnetwork, and send messages to 

surrounding intersections. As such, decentralized systems reduce data analysis latency by 

breaking the information down into smaller parcels, making them easier to deliver and analyze. 

In other words, a DSC system decomposes network traffic signal control problem in the CSC 

system, making it a distributed structure, thereby reducing the computational latency and need 

for huge computation power. Hence, this research is directed towards investigating and 

developing decentralized traffic signal control. 
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1.2 Research Questions 

This thesis proposes a simulation-based decentralized framework to solve the network-level 

traffic signal optimization problem. Short-term OD demand is used as an input, given that the 

technological paradigm assumed is within the connected, MEC-enabled environment. 

Establishing an efficient decentralized signal control system requires answering the following 

research questions: 

1. Coordinated network traffic signal optimization is based on prediction of traffic 

dynamics. How do we predict traffic dynamics in a large-size traffic network with signalized 

intersections? 

2. In the MEC-enabled CV environment, how do we design the structure of a 

decentralized signal control (DSC) system? And how do we evaluate the performance of these 

systems? 

3. There are many characteristics which impact DSC system performance, such as 

network size, traffic demands, and how a network is decomposed with respect to the traffic 

signal control system. How does each of these affect traffic network performance? 

Addressing the above questions will help to bring the benefits of a decentralized control 

system to urban traffic signal control in the foreseeable future, through more efficient use of 

network computing capacity and improved network traffic performance. 

1.3 Thesis Objectives & Contributions 

The main objective of this thesis is to develop a simulation-based framework to model and test 

different configurations of a decentralized signal control (DSC) system, considering short-term 

OD demand as inputs in a MEC-enabled CV environment. The performances of networks of 

different sizes, decompositions, and with different traffic demand levels are compared and 

assessed.  

 This thesis contributes to the literature by developing the following: 1) A queue-based 

DTA model for traffic network with real traffic signal timing plan; 2) A simulation-based 
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framework of DSC system within the MEC-enabled CV environment; and 3) A scalable and 

extendable decomposition method for a DSC system. 

The significant reduction of computational time in a DSC system, compared to the 

centralized signal control (CSC) system, makes network traffic signal optimization via DSC 

potentially applicable for real-time control. The results can also provide guidance to 

transportation engineers and planners about how to optimize DSC system via network 

decomposition. 

1.4 Thesis Structure 

The remainder of this thesis is organized into the following six chapters. 

Chapter 2 presents a literature review, focusing on four areas of the research literature: 

MEC, network traffic signal control, dynamic traffic assignment (DTA), and DTA based 

network traffic signal control. 

Chapter 3 describes basic assumptions and inputs used in this thesis research. A MEC-

based CV environment ensures the accessibility of short-term OD demand, low data transmission 

latency, and distributed computation ability. Four assumptions on DTA are used to predict traffic 

dynamics. In addition, discussions are provided why short-term demand is chosen as inputs 

instead of local counts, and definitions are given for different short-term demands used in this 

thesis. 

Chapter 4 develops and analyzes a queue-based DTA model for traffic network with real 

traffic signal timing plan considering short-term OD demand, which answers first question in 

Section 1.2. 

Chapter 5 develops and compares centralized and decentralized systems for optimal 

traffic signal control with short-term OD demand as inputs. Performance of both systems from 

computational time (CT), average travel time (ATT), total travel delay (TTD) is investigated via 

numerical simulations within 5 test scenarios. Results answer question 2 & 3 in Section 1.2. 

Chapter 6 concludes the whole thesis, including an overview, main findings, 

contributions, and a brief discussion of future research needs. 
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 Figure 1-1 illustrates the relationship between the literature review (Ch. 2), assumptions 

and inputs (Ch.3), two major chapters (Ch. 4 & 5), and contributions of this thesis. Again, this 

research proposes a simulation-based framework of DSC considering short-term OD demand as 

inputs to optimize network signals. Chapter 3 describe main assumptions and definitions used in 

this thesis, explains why and what short-term demand is used. Chapter 4 takes short-term OD 

demand as inputs and introduces how to predict traffic dynamics with real traffic signal timing 

plan. And Chapter 5 integrates the DTA model with network traffic signal control system and 

analyzes CSC and DSC system in five scenarios.  

MEC enabled 
CV 

environment

Assumptions 
on DTA

Ch. 4 A Queue-based 
DTA Model

Ch. 5 CSC and DSC

MEC

Network Traffic 
Signal Control

DTA

DTA based 
Network Signal 

Control

DTA with signal 
timing plan

Framework of DSC

Decomposition 
Method

Literature Review

Major Chapters

Assumptions & 
Definitions

Contributions

Short-term 
Demand

 

Figure 1-1 Relation of literature review, chapters, and research contributions. 
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2 LITERATURE REVIEW 

 

The earliest literature on traffic signal control is Webster’s fundamental work from 1958 

(Webster, 1958). The need for modeling large-scale networks has motivated many researchers to 

develop innovative control strategies, related models, and problem-solving algorithms. The focus 

of my proposal is to develop a decentralized traffic signal control system given that the 

technological paradigm assumed is within the connected, MEC-enabled environment. And given 

the different components of research needs, this thesis reviews five areas of the research 

literature: Mobile Edge Computing (MEC), Dynamic Traffic Assignment (DTA), network traffic 

signal control, and DTA based network traffic signal control. 

2.1 Mobile Edge Computing (MEC) 

MEC is also referred to multi-access edge computing, which is defined as a network architecture 

concept that enable cloud computing capacities and an IT service environment at the edge of 

cellar network, and more general at the edge of any network (Filali et al., 2020). In traffic 

network, edges can be vehicles, infrastructures, or even the mobile phones of system users. In the 

Introduction (Ch. 1), it was stated that network-level traffic signal control is difficult to 

implement, suffering from issues of data quality, computation capacity, and control latency. MEC 

adds data quality and computational capacity, which will solve at least the issue of data quality in 

the near future.  

Currently, the vehicle is not only the edge of data reception but also data collection. 

Researchers have already introduced a deep learning method for vehicular platoon control based 

on MEC analysis (Ferdowsi et al., 2017). A recent study applied MEC to a new framework of 

Internet of Vehicles (IoV) and developed a resource allocation algorithm to process high-

dimensional data (G. Wang & Xu, 2020). In addition, a MEC-based public vehicle system is 

proposed by researcher recently to improve traffic efficiency and vehicle occupancy ratios by 

scheduling ridesharing among travelers and reduce the delay of decision making by leveraging 

edge computing(Lin et al., 2020). MEC also delivers opportunities to design an edge computing 

ecosystem for autonomous vehicles is to deliver enough computing power, redundancy, and 
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security so as to guarantee the safety of autonomous vehicles (Liu et al., 2019). MEC is more and 

more popular among fields of transportation research.  

Finally, the introduction of 5G will enable MEC to perform efficiently in these contexts. 

The inherent features of 5G such as high connectivity, low latency, and large bandwidth will 

facilitate the demanding computational and communication requirements of MEC (Hu et al., 

2015). A new vehicular network architecture integrated with 5G mobile communication 

technologies and software defined networking is proposed within a CV environment, enabling 

vehicle to talk with roadside units (Ge et al., 2017). The combination of CV, MEC and 5G 

technologies will provide high-quality data, stronger computational hardware, low-latency and 

high-bandwidth communication technology, the basis upon which helps develop more efficient 

signal control systems for network-level traffic and real-time control. This study seeks to 

understand the performance of different network decompositions when fed OD demand as inputs, 

motivated by the possibilities of these new technologies. 

2.2 Dynamic Traffic Assignment (DTA) 

Short-term Origin-Destination (OD) demand is generally defined as time-dependent travel 

demand between origin and destination nodes in the network, which is used as inputs in DTA 

models. DTA describes the path choice or departure time decisions of travelers under time-

dependent demand and capacity constraints, rather than static (Static Traffic Assignment, STA). 

Since the seminal work by Merchant and Nemhauser (M-N model) in 1978, DTA has evolved 

substantially (Merchant & Nemhauser, 1978a, 1978b). The original formulation was pre-

determined as fixed-demand, single-destination, and single-commodity. Subsequent to their work, 

the research has been developed in two directions: analytical approaches and simulation-based 

DTA. 

Taking an analytical approach, Carey formulated convex programming for DTA in 1987 

(Carey, 1987). Then, in 2000, Carey and Subrahmanian illustrated the “First In First Out” (FIFO) 

and holding-back issues (Carey & Subrahmanian, 2000). In addition, their group introduced 

additional objectives or variables such as System Optimal (SO), marginal costs, and tolls into 

their DTA models (Carey & Watling, 2012).  
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Other researchers have focused on the Variable Inequality (VI) form of DTA, which is a 

method that is more computable than general mathematical programming but more specific as 

well. The general VI form of DTA was formulated in 1980 (Dafermos, 2008). Because multiple 

forms developed from that point forward, Nagurney provided a summary of all the VI forms 

related to traffic assignment in 2003 (Nagurney, 2003). In a specific case, Chen and Hsueh 

solved a link-based VI for the User Optimal (UO)-DTA model (H. K. Chen & Hsueh, 1998).  

In addition to the analytical approaches to DTA, some researchers have integrated the 

DTA model into optimal control. Friesz et al. discussed a link-based optimal control formulation 

in the original M-N model for both SO and UO objectives (Friesz & Tobin, 1989). They also 

introduced a VI-based formulation (Friesz et al., 1993). Ran et al. used the optimal control 

approach to formulate a convex model for instantaneous UO-DTA problem-solving considering 

link flows as variables (Ran et al., 1993). 

For simulation-based DTA, simulators, such as DYNASMART (Jayakrishnan et al., 

1994), CONTRAM (https://catalogue.nla.gov.au/Record/2870210), DynaMIT (Ben-Akiva et al., 

1998), have been used. Much simulation has been done in GIS and MATLAB based on the cell 

transmission model (CTM), where the fundamental work was completed by Daganzo (Daganzo, 

1994). 

DTA has been developed extensively over the past decades, proving an effective tool for 

determining traffic control strategies despite their complexity and computational burdens. 

Analytical approaches are hindered by some strong and unrealistic assumptions, which is 

particularly problematic for real-time, large-scale urban network traffic signal control. As such, 

simulation-based DTA has been chosen for prediction of traffic dynamics in this research. 

2.3 Network Traffic Signal Control 

2.3.1 Adaptive signal control 

Traffic signal control in urban transportation networks is optimized to increase network capacity 

utilization, improve mobility (including reducing traveler delays), and reduce vehicle-based 

emissions, amongst other aims. Adaptive Signal Control (ASC) systems are widely used in many 

modern cities, from the earliest SCATS (A. G. Sims & Dobinson, 1980) and SCOOT (Y. T. Wu 

https://catalogue.nla.gov.au/Record/2870210
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& Ho, 2009) systems, to intermediate typical OPAC (Gartner, 1983), RHODES (Mirchandani & 

Head, 2001), UTOPIA (Ben-Akiva et al., 2003), ASC Lite systems (Luyanda et al., 2003), and 

more recent adaptive fine-tuning (AFT) systems (Manolis et al., 2016) and deep learning-based 

system (Gao et al., 2017). However, these approaches all rely on traffic volume data from 

upstream links, or queue lengths on each leg of an intersection. Traffic conditions predicted from 

these types of data only reflect the local traffic state over a short period. 

2.3.2 Centralized signal control (CSC) 

CSC optimizes the parameters of each intersection in the network simultaneously to find an 

optimal control solution. Much of the research literature has focused on the algorithms used in 

different networks towards a range of objectives. For instance, Genetic Algorithms (GA) and 

Approximate Dynamic Programming (ADP) approaches have been proposed for traffic signal 

control in oversaturated networks (Hajbabaie, 2012). Another algorithmic solution for 

oversaturated networks has been the ant colony optimization algorithm (ACO) (Putha et al., 

2012). Other researchers have used heuristic algorithms – for example, Beard and et al. (2007) 

used a mixed integer linear programming (MILP) model to optimize traffic signal control.  

The above CSC cases were studied for small networks. Even escalating to a medium-size 

network means that the complexity (NP-complete) and increased time and topological scale 

caused greater difficulties (Adacher et al., 2014). Thus, strong assumptions are made to avoid 

complex variables and traffic dynamics. For example, Gregoire et al. (2015) applied a 

backpressure algorithm (BP) to solve the network traffic signal control problem, ignoring travel 

times for each link and turning movement to keep the problem tractable. Prashanth and 

Bhatnagar (2011) used Reinforcement Learning (RL) to generate and train data towards 

minimizing average cost for ASC. However, the application of the method results in the curse of 

dimensionality, where network traffic signal control with RL remains an NP-complete problem. 

Although recent advances in computing offer some resources to solve real-time, large-scale data 

collection and processing, the NP-complete problem of network-wide real-time signal control 

remains unresolved.  
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2.3.3 Decentralized Signal Control (DSC) 

There are limitations for CSC systems to handle systems of high dimension and with many 

inputs and outputs. As discussed in the previous section, the optimization problem is still very 

complex. In addition, CSC systems require high levels of connectivity. Network performance is 

quite sensitive to small failures within each part of the network (McKenney & White, 2013). 

Prompted by the difficulties involved in CSC, research attention turned to distributed systems. 

Distributed control is also referred to as decentralized control. Large scale network 

systems have been a topic of heavy interest in the control system field since the 1970s (S. H. 

Wang & Davison, 1973); since this time, there has been much investigation into both the 

hardware and software design requirements for decentralized control architectures. Generally, 

systems with distributed devices, distributed computing, and/or distributed computing can be 

regarded as distributed systems. The distributed control in this thesis can be defined as a spatially 

interconnected system, in which physical control devices are distributed inside the traffic 

network and can communicate with their neighbors (D’Andrea & Dullerud, 2003). 

In transportation area, there are many researchers working on decentralized signal control. 

Gokulan et al. (2010) developed a distributed, multi agent-based approach for a traffic-

responsive signal control system. The distributed signal control was achieved by multi-agents at 

each subnetwork. This method significantly reduced the complexity issue of network-level traffic 

signal control. Chow et al. (2020) recently developed and compared centralized and 

decentralized signal control systems with BP model for a road network in Central London, UK. 

Their results showed that total travel delay was lower with a centralized system while a 

decentralized system reduced computational time by 40%. 

Reinforcement Learning (RL) also plays an important role in DSC systems. Pol & 

Oliehoek (2016) considers explicit coordination mechanisms between learning agents using 

coordination graphs. Researchers have used individual RL agents to control traffic signals in a 

multi-intersection network from two angles: without communication between RL agents as 

“game theory” (Nowé et al., 2012), and with communication between agents as “neighborhoods” 

(Nishi et al., 2018, Wei et al., 2019). The RL method is powerful as it can be applied in real-

world scenarios (2,510 traffic lights in Manhattan) (C. Chen et al., 2020). However, there are 
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several challenges identified by Wei et al. (2019), two of which are critical: learning costs are too 

high for complex problems, and risk management is not widely adopted causing potential traffic 

safety issues in a real world setting. 

Network decomposition topology is an important consideration in some decentralized 

signal control research. Cell-based decomposition (Mehrabipour & Hajbabaie, 2017) and 

intersection-based decomposition (Withanawasam & Karunananda, 2018; Adacher et al., 2014) 

are two common approaches, but both result in subnetworks with only one intersection each. 

Adacher and Tiriolo (2017) addressed this by working with subnetworks containing more than 

one intersection. Their recent research using a Clustering Algorithm (CA) to solve the DSC 

problem based on a Cell Transmission (CTM) model highlighted the importance of spatial 

decompositions (Adacher & Tiriolo, 2020). However, they tested one network that includes a 

specific group of subnetworks with a simplified signal phase, thereby offering limited results. A 

grouping method was developed to decrease delay and number of stops while minimizing traffic 

operators’ subjective decision (Lei Zhang et al., 2017), and was applied to a one-way corridor 

network with 21 intersections in Montgomery County, Maryland. The question of how to 

decompose a network to optimize signal control remains to be solved.  

2.4 DTA-Based Network Traffic Signal Control 

Combining DTA with network traffic signal control is not an innovative pairing. As early as 1977, 

Allsop and Charlesworth had combined traffic signal control and traffic assignment in an 

analytic way (Allsop & Charlesworth, 1977). Later, in 1995, Yang and Yagar looked at the 

relationship between DTA and traffic signal control in a saturated network as a bi-level problem 

(Yang & Yagar, 1995). Sun et al. used GA by adjusting cycle, offset, and phase split in a bi-level 

model (Sun et al., 2006).  

Control objectives for DTA-based network traffic signal control have varied as well. 

Minimizing average travel time (ATT) and total travel delay (TTD) is the most common 

objective of DTA-based traffic signal control. Reverse capacity is considered a measurement of 

network mobility, and Chiou combined DTA and traffic signal control to achieve maximum 

reverse capacity (Chiou, 2007). Cai et al. applied adaptive traffic signal control in approximate 

dynamic programming within a corridor network to minimize the ATT of the network (Cai et al., 
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2009). In a CV environment, objectives such as minimizing TTD and increasing average travel 

speed are considered as well (Lee et al., 2013). Li et al. have addressed the problems of 

simultaneous route guidance and traffic signal optimization to minimize TTD (Li et al., 2015). 

Some researchers expand network capacity via traffic signal control using DTA models 

(Karoonsoontawong & Waller, 2010). 

What is most salient for this research here is that, although many researchers have 

considered traffic signal control in their DTA model, traffic signal timing representations have 

been simplified without considering complex, but realistic, phase sequence and duration 

restrictions. 

 

2.5 Summary 

Considering that local counts are inputs for most existing ASC systems, new technologies such 

as CV and MEC will enable the collection of high-quality data and local data processing thereby 

offering new possibilities for enriched data inputs.  

Given that the technological paradigm assumed is within the connected, MEC-enabled 

environment, short-term OD demand (already an input to DTA models) is chosen as inputs to 

optimize network traffic signal control. DTA is a well-accepted approach to model network 

dynamics, which can predict short-term demand for links. However, although DTA has been 

integrated with signal control for decades, traffic signal timing representations have been heavily 

simplified.  

 Table 2-1 organizes the above discussed literature by the different modeling approaches 

used for network traffic signal control. Except RL and CA, most methods use networks with up 

to 100 control variables. For model inputs, link flows are widely used, as in ASC systems. 

System-level performance objectives include delay, throughput, travel time, and queue length.  
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Table 2-1 Literature on Network traffic signal control 

Solutio
n 

Method 
Author 

Network 
Size 

Control 
Variables 

# of Var 

(estimated) 
Inputs 

CSC 
/DSC 

Objectives 

GA 
Hajbabaie, 
A. (2012) 

4x4 
Cycle, phase 

split, and offset 96 
Upstream 

Volume from 
Gate Signals 

CSC 
Min Delay, Travel 

Time; Max 
Throughput, Trips 

ACO 
Putha et al. 

(2012) 
4x5 one-way 

Green time for 
throughput 

traffic 
40 Link flows CSC Max Throughput 

MILP 
Beard et 

al. (2007) 
1x2 

Cycle, phase 
split, and offset 12 OD Demand CSC 

Min Total Travel 
Time 

BP 

(CSC) 

Gregoire et 
al. (2015) 

8x8 Phase type 64 Queue Length CSC 
Min Total Queue 

Length 

BP 

(DSC) 

Chow, 
Sha, & Li 

(2020) 

Bloomsbury 
network (15 
intersections) 

Green time for 
throughput 

traffic 
30 Link flows 

CSC & 
DSC 

Min Total Delay 

RL 
Chen et al. 

(2020) 

Manhattan 
Network 

(2510 
intersections) 

Phase type 2510 Link flows DSC 
Min Average Travel 
Time & Max Total 

Throughput 

CA 

Adacher & 
Tiriolo 

(2020) 

Rome network 
(39 

intersections) 

Cycle, phase 
split, and offset 234 Path Demand DSC Min Total Delay 

 

For CSC, despite excellent algorithms and machine learning methods, centralized signal 

control optimization problems remain NP-complete without simplifying traffic signal timing 

plans and their representation in models. Furthermore, both signal plan representation and model 

constraints must be kept relatively simple in order to apply algorithms such as BP and ACO. 

DSC appears to be a better approach for a network-level traffic signal control system, due to 

lower computational times achieved with more realistic signal control representations. However, 

how to best decompose a DSC network has not been well defined or investigated. In addition, 
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many previous works look at network control but still use flows or other local counts in a current 

technological paradigm. 

As such, this research addresses the need to explore DSC systems for large-scale 

networks considering greater realism of traffic signal control, new forms of data inputs, and new 

network decomposition method. 
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3 BASIC ASSUMPTIONS & MODEL INPUTS 
 

Chapter 3 gives basic assumptions and inputs of models used in this thesis. Firstly, the network 

traffic signal control system is based the new technical paradigm assumed as a MEC-enabled CV 

environment. Assumptions related to this environment is provided as three points. Secondly, this 

thesis using DTA model to predict traffic dynamics for network traffic signal optimization. 

Assumptions on DTA model include “No departure time choice”, “No reroute”, “FIFO”, and 

“Point Queue”. Thirdly, short-term demand is considered as inputs of models in this thesis. This 

chapter continues to discuss why short-term demand is used and define three types of short-term 

demands for this thesis. 

3.1 CV Environment with Mobile Edge Computing (MEC) 

Traditional signal control systems are under the control of a central Traffic Management Center 

(TMC). In Chapter 1, it was summarized that real-time traffic signal control for large-scale 

network was difficult to implement due to three issues: data quality, computational capacity, and 

control latency. The introduction of MEC enables an environment with distributed computation 

and low data transmission latency. 

Low control latency is a key requirement for network-wide signal control to be 

implemented in real time. Control latency consists of computational latency and data 

transmission latency. For the whole process, data transmission latency includes vehicle-to-

infrastructure (V2I), infrastructure-to-infrastructure (I2I), and infrastructure-to-vehicle (I2V). 

While more devices are connected, types of data with large size are supposed to be sent to the 

central TMC.  There is a massive bandwidth demand to guarantee low data transmission latency. 

Computational latency is the time required for data analysis, which depends on the complexity of 

the problem. For real-time traffic control, the control system will provide signal timing plans for 

all the intersections in the network before new vehicles enter the control area. For example, if a 

vehicle sends their OD information 30 seconds before entering the network, it will require the 

system to generate data from all vehicles, predict traffic dynamics for the whole network, and 

then provide control plans within the 30 seconds. Otherwise, when the system changes signal 

controls after the traffic dynamics have changed, the control plan will become outdated. In 
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addition, low data transmission latency can facilitate the collection of data with high resolution 

and then increase the accuracy of traffic state estimation, which is also a benefit for real-time 

network signal control. Thus, low data transmission latency is very important for the real-time 

control system. 

According to the introduction part of Chapter 1, data quality will not be a critical problem 

due to various data sources in the near future.  Once data transmission latency is low enough, the 

only concern remaining is the computational latency arising from the data analysis required to 

solve the NP-complete CSC problem. Thus, this thesis is to use a distributed structure with MEC 

devices to increase computational efficiency. Data quality is not a problem due to various data 

sources. Once data transmission latency is low enough, the only control latency concerned is 

computational latency coming from data analysis for solving the NP-complete CSC problem. 

Thus, this thesis is to use a distributed structure with MEC devices in order to increase 

computational efficiency.  

With the help of MEC, optimization calculations can be completed at the location where 

data is generated. This benefits the system via reduced data transmission latency, and the 

capabilities of distributed control. Similar to CSC system, in DSC system data transmission 

latency is assumed too low to be counted within the MEC-enabled CV environment. 

  Figure 3-1 compares network traffic signal control system with and without MEC. 
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Figure 3-1 CV environment with/without MEC 

The intercommunication in a CV environment, both with MEC and without MEC, 

includes three major parts: the TMC, infrastructure and vehicles. In traditional ITS architecture 

without MEC, all data is sent to and processed at a centralized TMC. However, the limited 

bandwidth of the backhaul connection between the centralized TMC (Central-TMC) and local 

infrastructure will be exhausted rapidly by the volume of data gathered by the increasing number 

of sensors in the ITS. Likewise, the latency will be insufficient for CV applications that require 

large amounts of CV data.  

After introducing MEC into the framework, data can be processed and applications can 

be run on any local edge unit, regardless of whether it is an infrastructure edge or vehicle edge. 

Thus, the heavy computation workload for the central TMC can be evenly distributed to the 

lower-level mobile edge computers, increasing computation capacity and proximity for real-time 

data processing.  

In summary, this work develops network traffic signal control system within the MEC-

enabled CV environment. This environment is proposed for the testbed in South Campus, 
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Edmonton, Alberta, Canada. All the settings will be applied in field gradually within the next 

four years. MEC devices are located at each intersection of the network, collecting and 

delivering data, and controlling the traffic signal. These MEC devices at each intersection are 

called local MEC and include a computing server, roadside equipment (RSE), and a controller. 

Each vehicle has onboard equipment (OBE), and Central TMC has a cloud computing server. In 

addition, the whole network is decomposed into subnetworks with several intersections. Each 

subnetwork has a regional MEC controller. Each regional MEC controller is designed to receive 

messages from surrounding regional MEC controllers, make decisions for the traffic signal 

control of intersections inside the subnetwork and send messages to surrounding intersections. 

There are three assumptions within the MEC-enabled CV environment: 

1) Short-term OD demands are available for the control needs. 

2) Data transmission latency can be ignored because it is very low compared to the 

computational latency in this environment. 

3) Computation of network traffic signal control can be distributed over MEC devices. 

Noted that, MEC-enabled CV environment assumptions are based on the fact that MEC 

technology has been and will be implemented in fields of transportation for both research and 

practice, see in Section 2.1. The framework of DSC physically consists of local MECs and 

regional MEC controllers, whose definitions coming from recent literatures as well. 

3.2 Basic Assumptions on DTA 

In this thesis, a queue-based DTA model is proposed to predict network traffic dynamics. Four 

basic assumptions are used: 

1) No Departure Time Choice: Since traffic signal control requires a real time control 

strategy, travelers will not stop on their route to avoid high volume traffic. When 

travelers arrive at the network, they must move towards a path immediately.  

2) No Reroute: When travelers enter the network, they will follow the same path until 

they exit the network, regardless of signal control plan changes. 
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3) First In First Out (FIFO): The first vehicle that enters the link will also be the first to 

leave the link. 

4) Point Queue: Upstream links are assumed to hold the queues at each signalized link. 

The link has infinite vehicle storage. Vehicles exit the queue with a constant discharge 

rate 𝑤𝑤.  

3.3 Short-Term Demand 

Traditional traffic control systems use highly localized counts collected by fixed location sensors 

as inputs to optimize traffic. With MEC and CV2X technologies, new data sources are available 

as inputs for network traffic signal control systems. There are some literatures highlighting the 

importance of adopting short-term origin-destination (OD) counts (as opposed to using these 

localized counts) for future traffic control (Ke et al., 2017)(Vlahogianni et al., 2014). This 

section discusses why short-term OD counts are superior to local counts for traffic management, 

and provides three definitions of short-term demand used for the rest of this thesis. 

3.3.1 Limitation of Local Counts 

Traffic data collected by fixed sensors such as loop detector and cameras include data types such 

as vehicle counts, mean vehicle speeds, density etc. These data types are used to describe traffic 

dynamics within several traffic models most notably METANET (Papageorgiou et al., 1989) and 

the Cell Transmission Model (CTM) (Daganzo, 1994). These two models have been used for and 

extended to many developments in traffic demand management over the last several decades. 

One of the basic assumptions in these two models is that flow dynamics follow the macroscopic 

fundamental diagram (MFD).  

Figure 3-2 shows a typical MFD describing the relationship of space mean speed, traffic 

density, and flow. Before it has been demonstrated on empirical local counts (Geroliminis & 

Daganzo, 2008), the network flow model appeared early in 1969 (Godfrey, 1969). Because of its 

ease of use, MFD has been extensively applied to traffic studies, including the development of 

network-wide control strategies (Lele Zhang et al., 2020). 
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Figure 3-2 Macroscopic fundamental diagram. 

 However, in MFD, capacity dynamics and demand dynamics are both ignored. Flow 

equals demand when demand is less than capacity; however, when demand exceeds capacity, 

this is not the case any longer. In the fundamental diagram, shown in Figure 3-2, when density 𝜌𝜌 

is higher than the critical density 𝜌𝜌𝑐𝑐, capacity drops by a fraction 𝜃𝜃, and demand should remain at 

least at the red line. And an investigation via simulation data also indicates that rapidly changing 

traffic  demand affect MFD shape drastically(Ji et al., 2010). MFD cannot describe demand 

dynamics quite well, especially when traffic network is oversaturated. In addition, empirical 

evidence shows that freeway capacity is not constant even with the same condition for different 

days (Papageorgiou et al., 2008). MFD does present variations over time (Nguyen et al., 2016). 

This adds difficulty for MFD related models to capture capacity dynamics and demand dynamics 

in real-time control cases. 

 In addition, traffic state prediction from local counts is also short ranged from both space 

and time. Traffic flow collected by local counts on one link can affect travel cost of other links in 

the traffic network depending on ways it is distributed into the network. Because of its short 

range from space, traffic flow prediction in arterial area need to be updated frequently to 

maintain accuracy. Simulations have been made to show the poor performance in improving 

traffic efficiency of using local counts only for decentralized traffic control system (Tomforde et 

al., 2010). A survey on traffic state prediction shows the focus of research in this area is more on 

data with network attributes, such as short-term OD demand and vehicle trajectories (Yuan & Li, 

2021). 
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3.3.2 Advantage of Short-Term Demand 

Short-term demand forecasting has been the focus of countless papers over the decades 

(Vlahogianni et al., 2014). There are several challenges concluded by the author: complex 

arterial traffic environment, data resolution, excellent responsive algorithm, and travel time 

predict. In this thesis, an assumption is made that short-term OD demand is available in the 

MEC-enabled CV environment in Section 3.1. 

 Short-term demand is the general inputs for Dynamic Traffic Assignment (DTA) models. 

The literature review of Section 2.2 discussed that DTA was developed extensively over the past 

decades, proving an effective tool for determining traffic control strategies despite their 

complexity and computational burdens. And DTA model produces network traffic dynamic, 

captures the interactions between travelers and the whole transportation network, and thus 

becomes more suitable for network-level traffic signal control. The major advantage from using 

short-term OD demand is the ability to apply DTA model for network traffic signal control. 

 As the increasing usage of navigation systems (e.g., Google Maps), ride-sharing 

applications (e.g., Uber), and GPS-equipped vehicles, there will be also more chances to access 

short-term demand data which should include vehicle origin, destination, and start time. The 

foreseeable availability of short-term demand is the second advantage. 

3.3.3 Definitions of Short-Term Demand 

Three types of short-term demand – to be used in the remainder of this thesis – are described 

below: 

 

1) Short-term demand for path 

Short-term demand for path is defined as time-dependent flow entering a path, i.e., 

number of vehicles entering a path during one timestamp. 

 It is notated as 𝑑𝑑𝑝𝑝(1, 𝑡𝑡), where 𝑝𝑝 is the path id, 𝑡𝑡 is timestamp and 1 means it is the first 

link of the path. 
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2) Short-term demand for links on the path 

Suppose path 𝑝𝑝 has 𝑙𝑙 links, short-term demand for the 𝑘𝑘𝑡𝑡ℎ link on path 𝑝𝑝 is defined as 

time-dependent flow on path 𝑝𝑝 entering the 𝑘𝑘𝑡𝑡ℎ link, i.e., number of vehicles on path 𝑝𝑝 

enter 𝑘𝑘𝑡𝑡ℎ link during one timestamp.  

It is notated as 𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡), where 𝑝𝑝 is the path id, 𝑡𝑡 is timestamp and 𝑘𝑘 means it is the 𝑘𝑘𝑡𝑡ℎ 

link of the path.  

Noted: One link can be shared by many paths, but short-term demand for links on path 𝑝𝑝 

only counts flow on 𝑝𝑝. Short-term demand for the same link on other paths may be 

different. 

 

3) Short-term OD demand 

Short-term OD demand is defined as time-dependent flow entering from origin node 𝑜𝑜 

and heading to destination node 𝑑𝑑, i.e., number of vehicles traveling from origin node 𝑜𝑜 

to destination node 𝑑𝑑 during one timestamp.  

It is notated as 𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡) where 𝑜𝑜𝑑𝑑 is the OD pair and 𝑡𝑡 is the timestamp. 

 

Three types of short-term demand are differed by their objectives, such as paths, 

links, and OD pairs. Since short-term demand for path is equal to short-term demand to 

enter the first link on the path, it is a special case of short-term demand for links on path. 

Set of short-term demand for all paths is contained in set of short-term demand for links 

on all paths. In addition, short-term OD demand is the input for DTA model to predict 

short-term demand for links on all paths in traffic network. Thus, the relationship 

between the three short-term demand elements defined above is shown in Figure 3-3.  
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Figure 3-3 Relationship of three definitions of short-term demand. 
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4 A QUEUE-BASED DTA MODEL 
 

This chapter a queue-based dynamic traffic assignment (DTA) model to predict traffic dynamics 

for network with real traffic signal timing plan. Traffic signal timing is formulated as a 

component of the link performance function with three control variables: cycle length, phase 

split, and offset. A G/G/n/FIFO queueing network is proposed to describe experienced travel 

times for links and paths. In addition, a numerical simulation is implemented in MATLAB to 

solve both user-optimal (UO) and system-optimal (SO) DTA problems of a corridor network 

among twelve cases with different demand inputs and traffic signal plans. 

4.1 Notations 

Table 4-1 shows the notations used in this chapter.  
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Table 4-1 Notations of Variables and Parameters 

Symbol Description 
𝑖𝑖, 𝑗𝑗, 𝑜𝑜,𝑑𝑑 Index of node. 

𝑡𝑡 Index of timestamp, a unit of 𝑡𝑡  does not stand for any second or minute. 
𝑎𝑎 Index of link. Let 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗), then the start node for link 𝑎𝑎 is 𝑖𝑖 and the end node 

for link 𝑎𝑎 is 𝑗𝑗.  
𝐴𝐴 Set of all the nodes for the network. 
𝑝𝑝 Index of path. If link 𝑎𝑎 is the 𝑘𝑘𝑡𝑡ℎ link on path 𝑝𝑝, 𝑎𝑎 = 𝑝𝑝(𝑘𝑘). 

𝐿𝐿(𝑝𝑝) Index of length of path, i.e., number of links belonging to the path. 
𝑃𝑃 Set of all the paths for the network. 
𝑤𝑤0 Maximum discharging flow rate for each lane of the link. 

𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) Inflow rate for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 
𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) Outflow rate for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 

𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Inflow rate for the queue of lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 

𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Outflow rate for the queue of lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 
𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Travel cost for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 
𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) Free flow travel time for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 

𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Time spent to clear the queue of lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 

𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Signal waiting time for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 

𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡) Index of length of queue, i.e., number of vehicles in the queue of lane on link 𝑎𝑎 

belongs to path 𝑝𝑝 at time 𝑡𝑡. 
𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞
𝑎𝑎,𝑝𝑝  Length of phase for path 𝑝𝑝 at the intersection of link 𝑎𝑎. 

𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡
𝑎𝑎,𝑝𝑝  Offset for path 𝑝𝑝 at the intersection of link 𝑎𝑎. 
𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎  Cycle length of signal plan for the intersection of link 𝑎𝑎. 
𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝  Length for the red clearance phase for path 𝑝𝑝 at the intersection of link 𝑎𝑎. 

𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝 (𝑡𝑡) Travel cost for path 𝑝𝑝 at time 𝑡𝑡. 
𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡) Timestamp of vehicle entering the network at time 𝑡𝑡 arrive at 𝑘𝑘𝑡𝑡ℎ link on path 𝑝𝑝 
𝜋𝜋(𝑡𝑡) Min travel cost of all the paths at time 𝑡𝑡. 

𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙�𝑎𝑎,𝑝𝑝(𝑡𝑡) Marginal travel cost for the lane on link 𝑎𝑎 belongs to path 𝑝𝑝 at time 𝑡𝑡. 
𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ�𝑝𝑝(𝑡𝑡) Marginal travel cost for path 𝑝𝑝 at time 𝑡𝑡. 
𝜋𝜋�(𝑡𝑡) Min marginal travel cost of all the paths at time 𝑡𝑡. 
𝑞𝑞𝑝𝑝(𝑡𝑡) Demand for path 𝑝𝑝 at time 𝑡𝑡. 
𝑞𝑞(𝑡𝑡) Demand for the single OD network at time 𝑡𝑡. 
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4.2 Introduction 

Wait times at signalized intersections can contribute heavily to overall travel times. The 

development of Connected Vehicle to Everything (CV2X) technology can provide more detailed 

traffic signal timing information, more detailed traffic signal timing information can be accessed 

by travelers prior to their arrival at the intersection than years before, and travelers have 

opportunities to change routes when facing high signal wait times. I assume that all travelers 

have access to experienced travel times for each path immediately before they enter the network. 

Since the seminal work of Merchant and Nemhauser (M-N model) in 1978, Dynamic 

Traffic Assignment (DTA) has been a central focus of transportation research (Merchant & 

Nemhauser, 1978a, 1978b). Given the time-dependent nature of demand and network 

characteristics, DTA models are used principally to predict dynamic traffic flow patterns over a 

network.  

The traffic state prediction in DTA is based primarily on two principles in the traffic 

assignment literature. The first is User-Optimal DTA (UO-DTA). Ran et al. used the optimal 

control approach to formulate a convex model for instantaneous UO-DTA problem-solving that 

considers link flows as variables (Ran et al., 1993). If the actual travel times experienced by 

travelers departing at the same time are equal and minimal, then the dynamic flow over the 

network is in a travel time-based ideal dynamic user-optimal state for each OD pair at each 

interval of time. The second is System-Optimal DTA (SO-DTA). The objective of SO-DTA is to 

minimize the total travel time within the network, i.e., the travel time experienced by all users in 

the network. SO-DTA with full control can be formulated as a linear programing problem 

(Ziliaskopoulos, 2000). 

As discussed in Section 2.4, although many researchers have considered traffic signal 

control in their DTA models, traffic signal timing has been simplified without considering more 

realistic phase sequencing and duration restrictions. In this chapter, signal wait time is included 

in the experienced path travel time, and the signal waiting time function is dependent on the 

control variables of cycle length, phase split, and offset. 
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Queueing theory is proposed to describe traffic dynamics. The earliest well defined 

queueing system was developed in 1953 (Kendall, 1953), with the notation written as 

X/Y/m/D/L, where X represents the distribution of intervals between arrivals, Y represents the 

distribution of service durations, m represents number of servers, D represents the queueing 

principle, and L represents the number of customers. Since the most popular distribution used in 

queueing system is exponential distribution, there are two major types of models according to the 

distribution type (X and/or Y), Markovian Queueing Systems and Non-Markovian Queueing 

Systems (Cruz et al., 2010). There are several principles of queue discipline, such as “First In 

First Out” (FIFO), “Last In First Out with Preemptive” (LIFO-PR), “Processor Sharing” (PS), 

and “Infinite Server” (IS). Moreover, according to the number of customers, there are two major 

types: closed queueing systems with a constant number of customers and open queueing systems 

with varying numbers of customers. These definitions cover most types of queueing systems 

(Karyotis & Khouzani, 2016). 

There are also a number of queueing network model applications. Closed queuing 

network models are applied to the bike sharing problem (Q. L. Li et al., 2016). The same closed 

queueing network is also found in studies on the car rental system (George & Xia, 2011). In 

another application, a simulated queueing network with blocking created by traffic signal control 

achieves the system optimal (SO) assignment (Osorio & Bierlaire, 2013). Moreover, a multi-

class queueing network is defined for air transportation in a study of transient congestion, solved 

by a decomposition algorithm (Peterson et al., 1995).   

With this as our background, the main objective of this chapter is to formulate a queue-

based DTA model to predict traffic dynamics in traffic network with real traffic signal timing 

plan.  

4.3 Model Setup 

Modeling work continues using the four basic assumptions for DTA presented in Section 3.2 (No 

Departure Time Choice, No Reroute, FIFO, and Point Queue), in addition to two more 

assumptions that describe travel behaviors: 

 1) UO-DTA 
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For UO-DTA cases in this chapter, all travelers will choose the path with minimal 

experienced travel time. 

2) SO-DTA 

For SO-DTA cases in this chapter, travelers make decisions to minimize the total travel 

time, i.e., the sum of travel times experienced by all travelers. 

There are two theorems from the literature that rely on the assumptions above, that will 

be used in model development. 

Theorem 1 Marginal Cost for SO-DTA (Ziliaskopoulos, 2000)  

A necessary and sufficient condition for SO-DTA in a single destination network 

is that all traveled paths from any cell, and departure time interval to the 

destination cell, have equal cost to the marginal cost of an additional unit of 

demand at that cell and time interval, while all untraveled paths have costs higher 

than or equal to the marginal cost. 

Theorem 2 Dynamic Process (Friesz et al., 2013) 

The path delay operators usually do not take on any closed form. Instead, they can 

only be evaluated numerically through the dynamic network loading procedure. 

 

 There is an extended version of FIFO for network as Lemma 1 & 2. 

Lemma 1 FIFO for Paths 

The first vehicle that enters the path will also be the first to leave the path. 

Proof  According to No Reroute assumption in Section 3.2, vehicles will not change 

their paths. In addition, FIFO assumption in Section 3.2means that the first vehicle that 

enters the path will be the first to exit each link of the path, which proves Lemma 1. # 
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Lemma 2 FIFO for single OD networks 

The first vehicle that enters the network will leave the network first in UO-DTA cases for 

the single OD network. The latter vehicle will never overtake any previous vehicle. 

Proof Suppose vehicle 𝐴𝐴 enters the network early at 𝑡𝑡𝑎𝑎 and leaves the network at 𝑡𝑡𝐴𝐴, and 

there is another vehicle 𝐵𝐵 that enters the network early at 𝑡𝑡𝑏𝑏 and leaves the network at 𝑡𝑡𝐵𝐵. 

In addition, suppose 𝑡𝑡𝑎𝑎 < 𝑡𝑡𝑏𝑏 and 𝑡𝑡𝐴𝐴 > 𝑡𝑡𝐵𝐵, means that vehicle 𝐴𝐴 enters the network earlier 

than vehicle 𝐵𝐵, but exits the network later. 

According to UO-DTA, let 𝐴𝐴 choose path 𝑝𝑝𝑎𝑎 at time 𝑡𝑡𝑎𝑎 and let 𝐵𝐵 choose path 𝑝𝑝𝑏𝑏 at time 

𝑡𝑡𝑏𝑏 . Then path travel time  𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝𝑎𝑎 (𝑡𝑡𝑎𝑎) ≤ 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ

𝑝𝑝𝑏𝑏 (𝑡𝑡𝑎𝑎) , since 𝑝𝑝𝑎𝑎  is the path with minimal 

experienced travel cost at time 𝑡𝑡𝑎𝑎. 

If 𝐴𝐴 chooses 𝑝𝑝𝑏𝑏, According to FIFO and 𝑡𝑡𝑎𝑎 < 𝑡𝑡𝑏𝑏, then 𝐴𝐴 is in front of 𝐵𝐵 on any link of 

𝑝𝑝𝑏𝑏. Thus, the time A exits the network 𝑡𝑡𝐴𝐴′ < 𝑡𝑡𝐵𝐵, and since 𝑡𝑡𝐵𝐵 < 𝑡𝑡𝐴𝐴, 𝑡𝑡𝐴𝐴′ < 𝑡𝑡𝐴𝐴.  

Then 𝑡𝑡𝐴𝐴′ − 𝑡𝑡𝑎𝑎 < 𝑡𝑡𝐴𝐴 − 𝑡𝑡𝑎𝑎  ⟹  𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝𝑏𝑏 (𝑡𝑡𝑎𝑎) < 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ

𝑝𝑝𝑎𝑎 (𝑡𝑡𝑎𝑎).  

If there is a contradiction with 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝𝑎𝑎 (𝑡𝑡𝑎𝑎) ≤ 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ

𝑝𝑝𝑏𝑏 (𝑡𝑡𝑎𝑎), then the assumption is wrong. The 

lemma holds. # 

 

Models of predicting traffic dynamics are built based on Theorem 1, and Lemmas 1 and 

2. Marginal cost functions with traffic signal control will be formulated in Section 4.4, from 

which SO-DTA cases can be investigated according to Theorem 2. 

Note that Lemma 2 only holds for UO-DTA cases. For SO-DTA cases, an upstream 

vehicle may overtake another previous vehicle, due to the fact that the path with minimal 

marginal experienced cost is not always the same as the path with minimal experienced travel 

cost. As explained shortly, the queueing process used in our simulation can avoid these conflicts. 
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4.4 Model Formulation 

4.4.1 Link Dynamics 

A general link 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) is constructed as in Figure 4-1. The start point and end point of a link is 

denoted 𝑖𝑖, 𝑗𝑗. According to Point Queue, there is a queue at the end of each lane of the link, which 

takes no space in the link. In Figure 4-1, there is one lane and one queue each for the left-turn, 

through, and right-turn movements. In addition, (𝑗𝑗,𝑘𝑘1), (𝑗𝑗,𝑘𝑘2), (𝑗𝑗,𝑘𝑘3) are links for signal phase 

left-turn, through, and right-turn respectively. 

 

 

Figure 4-1 Sample of links. 

  

Suppose link 𝑎𝑎  is the 𝑘𝑘𝑡𝑡ℎ  link on path 𝑝𝑝 . Here Equations (4-1) - (4-3) describe 

conservations of flow and queue. 

𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝 �𝑡𝑡 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)� = 𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝 (𝑡𝑡)      (4-1) 

𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)       (4-2) 

𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝(𝑙𝑙),𝑝𝑝(𝑡𝑡) = 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡

𝑝𝑝(𝑙𝑙−1),𝑝𝑝(𝑡𝑡)       (4-3) 

Lane of link(I,J) on path p1

Lane of link(I,J) on path p2

Lane of link(I,J) on path p3

Queue1

Queue2

Queue3

i j

k1

k2

k3
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 Equation (4-1) shows that the inflow rate of the queue for the lane of link 𝑎𝑎 belonging to 

path 𝑝𝑝 at time 𝑡𝑡 equals the inflow rate of the lane at time 𝑡𝑡 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡). That means when a vehicle 

travels to the end of the lane, it will join the queue directly. Equation (4-2) shows that the 

outflow queue rate will equal to the outflow of the link. Equation (4-3) shows that the inflow rate 

of the lane on path 𝑝𝑝 equals the outflow rate of the lane of the previous lane on path 𝑝𝑝. 

 It is assumed that each traveler will know the experienced travel time for the path. For a 

single link, experienced travel time has three components, as in Equation (4-4). The first 

represents the time cost of travelers traveling from the start point of the link to the start point of 

the queue as 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡). Travelers arrive at the start point of the queue at time 𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡). The time 

cost for travelers to get the front of queue is 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)�.  

𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)�+ 𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)��  

           (4-4) 

When travelers reach front of queue at 𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡)� and the signal 

is red, they will wait for it to turn green. The signal wait time is expressed as 𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 �𝑡𝑡 +

𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡)��. 

 If 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) is given, the second component 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡)� indicates time spent to 

clear the queue, which is formulated as Equation (4-5). It is the ceiling for the ratio of queue 

length (number of vehicles in the queue) to maximum discharging flow rate 𝑤𝑤0. 

 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = �

𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡)

𝑤𝑤0
�       (4-5) 

 Figure 4-2 shows the relationship between queue length and time to clear queue. It is a 

step function that increases after the number of points that represent the maximum discharging 

rate 𝑤𝑤0. 
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Figure 4-2 Relationship between queue length and time to clear queue. 

 

Queue length function is calculated as Equation (4-6). It is the queue inflow rate minus 

the queue outflow rate, summed over previous period. When time index 𝑡𝑡 < 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡), the initial 

queue length is 0. According to Equation (4-1) and (4-2), here gets Equation (4-7).  

 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = ∑ �𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑖𝑖𝑖𝑖

𝑎𝑎,𝑝𝑝 (𝜏𝜏) − 𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎,𝑝𝑝 (𝜏𝜏)�𝑡𝑡

𝜏𝜏=𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜
𝑎𝑎,𝑝𝑝(𝑡𝑡)     (4-6) 

 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = ∑ �𝑓𝑓𝑖𝑖𝑖𝑖

𝑎𝑎,𝑝𝑝 �𝜏𝜏 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝜏𝜏)� − 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡

𝑎𝑎,𝑝𝑝(𝜏𝜏)�𝑡𝑡
𝜏𝜏=𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)    (4-7) 

 The outflow rate for the link is dependent on traffic signal control as Equation (4-8). 

When the traffic signal is red, i.e., signal wait time is positive, the outflow rate is 0. When the 

traffic signal is green, i.e., signal wait time is 0, the outflow rate is the minimum of queue length 

and maximum discharging flow rate 𝑤𝑤0. 
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𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) = �

0
min�𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 (𝑡𝑡),𝑤𝑤0� 
𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) > 0

𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = 0

    (4-8) 

The signal waiting time function is a cyclic function with a cycle length based on the 

cycle length of the traffic signal control in Figure 4-3. 

Offset

1st Cycle 2nd Cycle 3rd Cycle 4th Cycle

…… 

5th Cycle

 

Figure 4-3 Signal waiting time function. 

In addition, this part will formulate the signal waiting time function with cycle length  

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎 , phase split 𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞
𝑎𝑎,𝑝𝑝  (green time for the phase), and offset 𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡

𝑎𝑎,𝑝𝑝  as Equation (4-9). �̂�𝑡 is the 

reference time point in one cycle, which is equal to the remainder of 𝑡𝑡 + 𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡
𝑎𝑎,𝑝𝑝  dividing 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎  

as per Equation (4-10).  𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡
𝑎𝑎,𝑝𝑝  is defined as the start point of green in the first cycle for the 

phase on link 𝑎𝑎 belonging to path 𝑝𝑝. For example, offset is the green vertical line in Figure 4-3. 

Each phase will start with a red clearance as 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝 . 

𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) = max�𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎 − 𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞

𝑎𝑎,𝑝𝑝 + 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝 − �̂�𝑡, 0�    (4-9) 

�̂�𝑡 ≡ �𝑡𝑡 + 𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡
𝑎𝑎,𝑝𝑝 + 𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞

𝑎𝑎,𝑝𝑝 − 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝 � 𝑚𝑚𝑜𝑜𝑑𝑑 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎 , 0 ≤ �̂�𝑡 < 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎    (4-10) 

Note that the arrival rate and the service rate for the queue in each lane, before the traffic 

signals, are the multiplicative inverses of inflow rate 𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝 (𝑡𝑡) and outflow rate 𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜

𝑎𝑎,𝑝𝑝 (𝜏𝜏) 
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respectively. Thus, the time-varying demand and traffic assignment principle (UO or SO) will 

determine the arrival rate for each queue as a specific distribution, and traffic signal control 

patterns (cycle length, phase split, offset) will determine the service rate as a periodic uniform 

distribution. In addition, the number of queues in the network is fixed. Travelers will follow the 

FIFO principle to clear the queue, and the total number of users for the network is not fixed. The 

network dynamics can be regarded as a G/G/n/FIFO open queueing network.  

4.4.2 Path Travel Time 

Path 𝑝𝑝 is defined as a vector of ordered links{𝑎𝑎𝑖𝑖} that can be written as 𝑝𝑝 = {𝑎𝑎𝑖𝑖}..  If link 𝑎𝑎 is the 

𝑘𝑘𝑡𝑡ℎ link on path 𝑝𝑝, 𝑎𝑎 = 𝑝𝑝(𝑘𝑘). 𝐿𝐿(𝑝𝑝) is length of path 𝑝𝑝, i.e., number of links in path 𝑝𝑝. 

 When a traveler on path 𝑝𝑝 arrives at the 𝑘𝑘𝑡𝑡ℎ link 𝑝𝑝(𝑘𝑘), the time is recorded as 𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡). 

�𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡)�𝑙𝑙 is a sequence calculated via Equation (4-11) and (4-12). 

 𝜏𝜏1
𝑝𝑝(𝑡𝑡) = 𝑡𝑡         (4-11) 

𝜏𝜏𝑙𝑙+1
𝑝𝑝 (𝑡𝑡) = 𝜏𝜏𝑙𝑙

𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑝𝑝(𝑙𝑙),𝑝𝑝 �𝜏𝜏𝑙𝑙

𝑝𝑝(𝑡𝑡)� , 2 ≤ 𝑘𝑘 < 𝐿𝐿(𝑝𝑝)    (4-12) 

Then the path travel time can be formulated as Equation (4-13). 

𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝 (𝑡𝑡) = ∑ 𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙

𝑝𝑝(𝑙𝑙),𝑝𝑝 �𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡)�𝐿𝐿(𝑝𝑝)

𝑙𝑙=1       (4-13) 

4.4.3 Marginal Travel Time for Link 

The marginal cost of a link is the cost of an additional unit of demand added to a link. The 

calculation of differentials is based on this principle to compute the limit of ∆𝑇𝑇
∆𝑓𝑓

. A link’s marginal 

cost can be formulated as Equation (4-14). Since 𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) has three components as Equation (4-4) 

(free-flow travel time, queuing time, signal wait time), 
𝜕𝜕𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙

𝑎𝑎,𝑝𝑝 (𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡)  will be calculated as Equation (4-

15). 

 𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙�𝑎𝑎,𝑝𝑝(𝑡𝑡) = 𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡) + 𝑓𝑓𝑖𝑖𝑖𝑖

𝑎𝑎,𝑝𝑝(𝑡𝑡) × 𝜕𝜕𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡)      (4-14) 



35 
 

 
𝜕𝜕𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙

𝑎𝑎,𝑝𝑝 (𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) =

𝜕𝜕𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜
𝑎𝑎,𝑝𝑝(𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) +

𝜕𝜕𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)�

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) +

𝜕𝜕𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)+𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)��

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡)  (4-15) 

 Since 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) is a constant function during the control period, here is  

 
𝜕𝜕𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) = 0         (4-16) 

 According to Figure 4-2, Equation (4-1), and Equation (4-5) - (4-7), here is 

 
𝜕𝜕𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜
𝑎𝑎,𝑝𝑝(𝑡𝑡)�

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) =

𝜕𝜕𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)�

𝜕𝜕𝑓𝑓𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)�
�

0 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)�  𝑚𝑚𝑜𝑜𝑑𝑑 𝑤𝑤0 ≢ 0

1 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡

𝑎𝑎,𝑝𝑝(𝑡𝑡)�  𝑚𝑚𝑜𝑜𝑑𝑑 𝑤𝑤0 ≡ 0
 (4-17) 

 According to Figure 4-3, and Equation (4-9) & (4-10), here is 

 
𝜕𝜕𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙

𝑎𝑎,𝑝𝑝 (𝑡𝑡∗)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) =

𝜕𝜕𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙
𝑎𝑎,𝑝𝑝 (𝑡𝑡∗)

𝜕𝜕𝑡𝑡∗
𝜕𝜕𝑡𝑡∗

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡)      (4-18) 

 𝑡𝑡∗ = 𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡) + 𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞

𝑎𝑎,𝑝𝑝 �𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑡𝑡
𝑎𝑎,𝑝𝑝(𝑡𝑡)�     (4-19) 

 
𝜕𝜕𝑇𝑇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑙𝑙

𝑎𝑎,𝑝𝑝 (𝑡𝑡∗)

𝜕𝜕𝑡𝑡∗
= �𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞

𝑎𝑎 − 𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞
𝑎𝑎,𝑝𝑝 + 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎

𝑎𝑎,𝑝𝑝 𝑡𝑡∗ ≡ 𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞
𝑎𝑎,𝑝𝑝 + 𝑋𝑋𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡

𝑎𝑎,𝑝𝑝 − 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝 𝑚𝑚𝑜𝑜𝑑𝑑 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞𝑎𝑎

0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
 

           (4-20) 

 𝜕𝜕𝑡𝑡∗

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡) =

𝜕𝜕𝑇𝑇𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
𝑎𝑎,𝑝𝑝 �𝑡𝑡+𝑇𝑇𝑓𝑓𝑓𝑓𝑜𝑜

𝑎𝑎,𝑝𝑝(𝑡𝑡)�

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑎𝑎,𝑝𝑝(𝑡𝑡)        (4-21) 

4.4.4 Marginal Travel Time for Path 

The marginal cost of a path is the cost of one additional demand unit added into the path. 

According to Equation (4-13) & (4-15), here is 

 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝� (𝑡𝑡) = 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ

𝑝𝑝 (𝑡𝑡) + 𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝(1),𝑝𝑝(𝑡𝑡) ×

𝜕𝜕𝑇𝑇𝑝𝑝𝑎𝑎𝑜𝑜ℎ
𝑝𝑝 (𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝(1),𝑝𝑝(𝑡𝑡)

    (4-22) 
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The additional user entering the first link of path 𝑝𝑝 at time 𝑡𝑡 will arrive at the 𝑘𝑘𝑡𝑡ℎ link at 

time 𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡). 

 
𝜕𝜕𝑇𝑇𝑝𝑝𝑎𝑎𝑜𝑜ℎ

𝑝𝑝 (𝑡𝑡)

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝(1),𝑝𝑝(𝑡𝑡)

= ∑
𝜕𝜕𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙

𝑝𝑝(𝑙𝑙),𝑝𝑝�𝜏𝜏𝑙𝑙
𝑝𝑝(𝑡𝑡)�

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝑝𝑝(𝑙𝑙),𝑝𝑝�𝜏𝜏𝑙𝑙

𝑝𝑝(𝑡𝑡)�
𝐿𝐿(𝑝𝑝)
𝑙𝑙=1       (4-23) 

  

4.4.5 UO-DTA & SO-DTA 

With the discussion above, the dynamic user optimal (DUO) conditions can be stated as 

Equations (4-24) - (4-27) according to FIFO. And the dynamic system optimal (DSO) 

conditions can be stated as Equations (4-28) - (4-31) according to Theorem 1. The UO-DTA and 

SO-DTA problems are to find feasible solutions for time-varying path demand 𝑑𝑑𝑝𝑝(𝑡𝑡) for all the 

paths constraint with DUO conditions and DSO conditions respectively (Chiu et al., 2010). 

DUO conditions: 

𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝 (𝑡𝑡) − 𝜋𝜋(𝑡𝑡) ≥ 0        (4-24) 

𝑑𝑑𝑝𝑝(𝑡𝑡) �𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝 (𝑡𝑡) − 𝜋𝜋(𝑡𝑡)� = 0       (4-25) 

𝑑𝑑𝑝𝑝(𝑡𝑡) ≥ 0         (4-26)  

∑ 𝑑𝑑𝑝𝑝(𝑡𝑡) = 𝑑𝑑(𝑡𝑡)𝑝𝑝∈𝑃𝑃         (4-27) 

DSO conditions: 

 𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝� (𝑡𝑡) − 𝜋𝜋�(𝑡𝑡) ≥ 0        (4-28) 

𝑑𝑑𝑝𝑝(𝑡𝑡) �𝑇𝑇𝑝𝑝𝑎𝑎𝑡𝑡ℎ
𝑝𝑝� (𝑡𝑡) − 𝜋𝜋�(𝑡𝑡)� = 0       (4-29) 

𝑑𝑑𝑝𝑝(𝑡𝑡) ≥ 0         (4-30) 

∑ 𝑑𝑑𝑝𝑝(𝑡𝑡) = 𝑑𝑑(𝑡𝑡)𝑝𝑝∈𝑃𝑃         (4-31) 
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 The main difference between UO-DTA and SO-DTA is that users choose paths with 

minimal experienced travel time in UO-DTA cases, while users are assigned to paths with 

minimal marginal experienced travel time in SO-DTA cases. 

4.5 Numerical Example 

The simulation uses a single OD network with seven paths. Both UO-DTA and SO-DTA cases 

are tested. Simulations are based on traffic dynamics discussed in previous Section 4.4. 

4.5.1 Network Description 

Figure 4-4 illustrates the single OD network with seven possible paths demarcated by colored 

arrows. The major corridor runs through the middle, labeled as path #5. The numbers on each 

link represents the free flow link travel time, while the numbers on the arrows at the bottom of 

the figure represent the free flow path travel time. There are two signalized intersections. The 

intersection with nodes 7,8,9,10 is noted as ‘Intersection A’, and the other intersection is noted 

as ‘Intersection B’. For links inside each intersection, the left-turn lane costs 3 time units, the 

right-turn lane 2 time units, and the through lane 1 time unit. Each link is a one-way link with 

three lanes at most. Middle links (1,10), (8,14) each have 3 lanes for left, right, and through 

movements each. For the SO-DTA case in this network, the traffic flow entering later has no 

impact on the previous flow. If they are on different paths sharing lanes as 

(1,10), (10,8), 𝑜𝑜𝑒𝑒 (8,14), they will abide by Lemma 1; otherwise, they will not share lanes. The 

maximum discharge rate is set as 𝑤𝑤0 = 3. The red clearance 𝐿𝐿𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑞𝑞𝑎𝑎
𝑎𝑎,𝑝𝑝 = 2 time units for each 

phase of the two intersections. 
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Figure 4-4 A Single OD Network. 

 

The 3-phase signal plan for each intersection is shown as Figure 4-5. Offset is generally 

referred as the time relationship between coordinated phases-defined reference point and a 

defined master reference (master clock or sync pulse). Here offset for each intersection is defined 

as the same value as offset for the left-turn phase in Figure 4-5, which was mentioned before 

Equation (4-6). 

 

Phase 1 Phase 2 Phase 3

 

Figure 4-5 3-phase traffic signal plan. 
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4.5.2 Case Description 

Each signalized intersection has a traffic signal timing plan for each group, as shown in Table 4-

2. For example, green time of each phase for both intersections in Group 1 is 10 time units. In 

addition, for each group, three different short-term demand profiles are tested. The time horizon 

is 100 time units for all demand profiles. Three demand profiles – Levels 1 through 3 – have 1, 3, 

and 5 vehs per time unit, respectively, for the network in Figure 4-4. 

Table 4-2 Three Groups of Phase Plan for Two Intersections 

Time 
Units 

Intersection A Intersection B 
Phase 1 Phase 2 Phase 3 Offset Phase 1 Phase 2 Phase 3 Offset 

Group 1 10 10 10 0 10 10 10 0 
Group 2 20 20 20 0 20 20 20 0 
Group 3 10 40 10 0 10 40 10 0 
Group 4 10 40 10 0 10 40 10 20 

 

The phase split and offset are the same for Groups 1 and 2; the impact of changing cycle 

length between these two groups will be investigated. The cycle length and offset are the same 

for Groups 2 and 3, and the impact of changing phase split will be investigated. The cycle length 

and phase split are the same for Groups 3 and 4, and the impact of changing offset between these 

two groups will be investigated as well. 

According to Section 4.3, travelers will choose paths with minimum experienced travel 

time in cases of UO-DTA, while they will choose paths with minimum marginal experienced 

travel time in cases of SO-DTA. Traffic assignment follows DUO and DSO conditions as per 

Equations (4-24) - (4-31). 

4.5.3 Results 

Results are show in Table 4-3. 
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Table 4-3 Results of 12 Scenarios 

(a) Counts of path choices 
 Demand (veh per time unit) 

1 3 5 

Ph
as

e 
Pl

an
 G

ro
up

 

#1
 

   

#2
 

   

#3
 

   

#4
 

   

(b) ATT for each user 
UO(SO) Demand Level 

Level 1 Level 2 Level 3 
Group of  

Phase Plan 
Group 1 72.46(72.46) 74.18(74.18) 79.13(75.17) 
Group 2 72.76(72.76) 74.55(74.53) 79.70(75.16) 
Group 3 68.50(68.50) 73.02(72.84) 78.87(74.45) 
Group 4 67.50(67.50) 71.41(71.24) 78.03(74.51) 
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According to Tables 4-3(a) and 4-3(b), there are no differences between the UO-DTA 

cases and SO-DTA cases in either path sharing or ATT at Demand Level 1. There are small 

differences at Demand Level 2. However, there are significant differences at Demand Level 3. 

As per Equations (4-17) and (4-20), the marginal experienced travel time increases when: 1) a 

vehicle joins the queue with more cost to clear the queue than the vehicle ahead of it, and/or 2) it 

meets red indication once clearing the queue. These two situations become more frequent at 

higher demands. As a result, SO-DTA cases performs better performance as much lower ATT 

than UO-DTA cases at Demand Level 3. In addition, when demand increases from Level 1 to 

Level 3, ATTs for both UO-DTA and SO-DTA cases in the same group are increasing as well. 

The path sharing rates differ among different groups (shown in columns of Table 4-3 (a)) 

because the signal wait times (and thus, queueing) are largely responsible for the path cost 

changes. 

Group 2 has a phase plan with a higher cycle length than that of Group 1. In most cases, 

ATT of cases in Group 2 is higher than in Group 1. However, when demand increases to 5 at 

Demand Level 3, the SO-DTA case in Group 2 performs the same as that of Group 1 (See in 

Table 4-3 (b) – 75.16 vs 75.17). Given the stochastic simulation, no conclusion can be drawn that 

there is lower ATT at higher cycle lengths, and this should be further investigated in future work. 

When increasing the green times for phase 2 in the signal plans of both intersections, 

there is a significant increase in volumes for path #5 in cases for Group 3, from no volumes for 

this main path in cases of Group 2, since path #5 benefits the most among all paths from phase 2 

as shown in Figure 5.4 & 5.5. Increasing the green time for specific phases will absolutely 

change the path choices of travelers. 

The offset of Intersection B is increased to 20 in Group 4 from that in Group 3. As 

shown in Figure 4-4, the free flow travel time for link (8,14) is 20 time units. This increase in 

offset makes it more likely that travelers on path #5 will meet a green indication when arriving at 

Intersection B. Thus, improved offset makes most cases in Group 4 with the best performance in 

ATT at the same demand level compared to other groups. 
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4.6 Summary 

This chapter investigates the impacts of changing traffic signal control parameters – specifically, 

combinations of cycle length, phase spilt, and offset – on traffic assignment according to UO-

DTA and SO-DTA. 

 To simulate traffic dynamics, this chapter first introduces a G/G/n/FIFO open queueing 

network. Equations are formulated for path travel time and marginal path travel time. In addition, 

DUO and DSO conditions help describe cases of UO-DTA and SO-DTA respectively. 

 12 cases are generated for simulation via three different demand profiles and four 

different traffic signal timing plans. ATT is used as the scale to evaluate all the cases. As 

expected, SO-DTA cases are shown to outperform UO-DTA cases in terms of less ATT. And 

SO-DTA cases perform more better than UO-DTA at higher demand level. In addition, when 

comparing the impact of traffic signal controls variables, such as cycle length, phase split, and 

offset, the results showed that all three variables have significant effects on path sharing and 

ATT. 

 The main contribution of this chapter was to integrate traffic assignment model with real 

traffic signal timing plan. The queue process described in this chapter also shows great potential 

as using for traffic dynamics prediction. Thus, this thesis continues to apply the queue-based 

process to optimize network traffic signal control in Chapter 5. 

There are some limitations on the research presented in this chapter. Firstly, the model is 

only suitable for single-OD network. Travelers in arterial network with more ODs will influence 

the trajectory of each other. Thus, it is hard to formulate a close form of any link travel time 

function or path travel time function. To ignore this limitation and continue work on larger size 

network, instantaneous path travel time will be applied instead of experienced path travel time in 

Chapter 5. Secondly, more cases should be investigated to explore more solid results. Thirdly, 

this work only consider network with one-way links and three-phase traffic signal timing plan, 

further work can add more realism such as network with two-way links and standard four-phase 

traffic signal timing plan. 
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5. CENTRALIZED AND DECENTRALIZED SIGNAL CONTROL 
 

This chapter develops and compares centralized and decentralized systems for optimal traffic 

signal control with short-term Origin-Destination (OD) demand as inputs. To add greater realism 

to the network traffic signal control optimization problem, a standard ring-and-barrier diagram 

with phase plans and all-red intervals are used for all intersections in test grid networks. The 

control variables include cycle length, green times of phases, and offset for each signalized 

intersection of the network. The optimization problem is formulated with a simulation-based 

Queueing Network Model (QNM), to minimize Average Travel Time (ATT) and Total Travel 

Delay (TTD). Computational latency is important for real-time applications. Thus, 

Computational Time (CT) is chosen to compare the performances of the Centralized Signal 

Control (CSC) and Decentralized Signal Control (DSC) systems as well. In addition, studies 

have shown network decomposition to have an important impact on system performance 

(Adacher & Tiriolo, 2020) (Chow et al., 2020). Therefore, the performance of CSC and DSC 

systems is investigated under different decomposition setups, using test scenarios constructed 

with varying demand profiles and grid networks. 

From literature review in Chapter 2, concepts of centralized systems and decentralized 

systems can be defined in different ways from both hardware and software. Centralized signal 

control (CSC) system in this chapter uses central TMC to connect all the local devices and 

process all the data. The computation capacity of central TMC, therefore, is significantly high. 

The optimization algorithm runs inside the central TMC, which is simple and straightforward to 

optimize the traffic signals with all the data from the whole network.  

 Unlike CSC system, decentralized signal control (DSC) system in this part is a spatial 

interconnected distributed system. It is proposed to decompose the original network into a set of 

subnetworks. Each subnetwork has a regional MEC controller, which can communicate with its 

neighbors. Three functions as route guidance, traffic dynamics (traffic state prediction), and 

traffic signal optimization are embedded in the central TMC, the regional MEC controllers, and 

local MECs respectively, to fully use the computational resources and increase computational 

efficiency. Thus, from software side, programs of DSC are distributed over the whole network as 

well. 
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5.1 Notations 

Table 5-1 contains notations and variables used in this chapter. 

Table 5-1 Notation and Variables 

Variables Description 

𝑖𝑖𝑗𝑗 Directed link from node 𝑖𝑖 to node 𝑗𝑗; 𝑖𝑖𝑗𝑗 ∈ 𝐴𝐴 

𝐴𝐴 Set of links 

�𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝐴𝐴 Travel cost matrix at timestamp 𝑡𝑡 

𝑒𝑒𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡) Signal waiting time for signalized link 𝑖𝑖𝑗𝑗 at timestamp 𝑡𝑡 

𝑔𝑔𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡) Green time remaining for signalized link 𝑖𝑖𝑗𝑗 at timestamp 𝑡𝑡 

𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗) Free-flow travel time for link 𝑖𝑖𝑗𝑗 

𝐹𝐹𝐹𝐹𝑇𝑇 Matrix of free-flow travel time (FFT) 

𝑀𝑀 Set of intersections 

𝑥𝑥𝑚𝑚 Control variable vector for intersection 𝑚𝑚, where 𝑥𝑥𝑚𝑚 = (𝑐𝑐𝑙𝑙𝑚𝑚,𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 , 𝑜𝑜𝑓𝑓𝑚𝑚) 

       Χ Set of control variables for all intersections 

𝑜𝑜𝑑𝑑 Original-Destination index, where 𝑜𝑜 is origin node, and 𝑑𝑑 is destination  

𝑂𝑂𝑂𝑂 Set of 𝑜𝑜𝑑𝑑 pairs 

𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡) Short-term demand for OD pair 𝑜𝑜𝑑𝑑 at timestamp 𝑡𝑡 

Δ Set of short-term OD demand 

𝑇𝑇 Time horizon 

𝑃𝑃𝑜𝑜𝑎𝑎,𝑃𝑃𝑠𝑠,𝑃𝑃 Set of paths for 𝑜𝑜𝑑𝑑, for subnetwork 𝑒𝑒, and the whole network respectively 

𝑝𝑝 Path index, 𝑝𝑝 = �𝑝𝑝(1), 𝑝𝑝(2),𝑝𝑝(3), … ,𝑝𝑝(𝑙𝑙)� is a vector with ordered nodes on the path 

𝑙𝑙(𝑝𝑝) Length of path 𝑝𝑝, i.e., the total number of nodes in path 𝑝𝑝 
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𝑡𝑡𝑐𝑐(𝑝𝑝, 𝑡𝑡) Instantaneous travel cost for path 𝑝𝑝 ∈ 𝑃𝑃 at timestamp 𝑡𝑡  

𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡) Short-term demand at node 𝑝𝑝(𝑘𝑘) for path 𝑝𝑝 ∈ 𝑃𝑃 at timestamp 𝑡𝑡 

𝑑𝑑𝑝𝑝𝑠𝑠(𝑘𝑘, 𝑡𝑡) Short-term demand at node 𝑝𝑝(𝑘𝑘) for path 𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠 in subnetwork 𝑒𝑒 at timestamp 𝑡𝑡 

𝑤𝑤 Maximum discharging flow rate for each lane of the link 

𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑖𝑖𝑗𝑗, 𝑡𝑡) Queue length for signalized link 𝑖𝑖𝑗𝑗 at timestamp 𝑡𝑡 

𝑇𝑇𝐴𝐴(∙,∙,∙) Function for the traffic assignment, inputs are short-term OD demand, traffic signal 

control variables, and FFT, output is short-term demand for the first link of all paths 

𝑄𝑄(∙,∙) Function for queueing process, inputs are short-term demand for the first link of all 

the path and traffic signal control variables, output is short-term demand for all paths. 

𝑒𝑒 Subnetwork index 

𝑆𝑆 Set of subnetwork indexes 

𝛤𝛤𝑠𝑠(𝑝𝑝, 𝑝𝑝𝑠𝑠) Path decomposition index 
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5.2 Introduction 

The general goal to optimize signal timing control plans for an urban transportation network is to 

increase network traffic capacity, improve mobility (including reducing travel delays), and 

reduce traffic emissions. However, in many modern cities across the world today, adaptive traffic 

signal control systems such as SCATS (Lowrie, 1990) and SCOOT (Hunt et al., 1981) based on 

fixed sensors such as loop detectors are still widely used.  These systems are poorly maintained 

and ineffective to deal with dynamic traffic demand. In addition, current computing capabilities 

of a centralized traffic management centre, coupled with the relatively high latency, low 

bandwidth, and reduced connectivity of communication between vehicles and infrastructures, as 

well as high data needs, means that network-wide traffic signal control optimization remains 

elusive.  

 To build the network traffic signal control system in this chapter, a MEC-enabled CV 

environment is proposed, within which vehicles and infrastructure can exchange data. MEC is 

assumed to handle data on the devices where it is generated, rather than data being sent to and 

received from the Traffic Management Center (TMC) cloud, which requires more time and 

therefore compromises real-time decision-making at the local level. In addition, MEC devices 

are located at each intersection of the network, collecting and delivering data, and controlling the 

traffic signal. These MEC devices at each intersection are called local MEC and include a 

computing server, roadside equipment (RSE), and a controller.  

In this work, the framework of our DSC system is constructed within a Connected 

Vehicle (CV) environment using Mobile Edge Computing (MEC) to ensure a low impact of data 

transmission latency and enable distributed computing for network traffic signal control. 

Centralized systems are designed to solve the optimal control problem by processing all data 

inside a central Traffic Management Center (TMC). However, without simplifying variables or 

constraints or relaxing the control objective, the optimal control CT is high, causing high 

computational latency for real-time control. Data transmission latency worsens as more devices 

are connected to the central TMC. By adding MEC technology, data can be analyzed at the 

location where it is collected. Thus, traffic data can be transmitted through the network with low 

latency. In the DSC system, the network is divided into subnetworks, and each subnetwork has a 
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dedicated agent to control signals inside it. Thus, the DSC system decomposes the network 

traffic signal control problem in the CSC system, making it a distributed structure allowing 

reduced computational latency.  

In addition, more kinds of data will soon be readily available in the fast-developing CV 

fields. As mentioned in the introduction, Origin-Destination (OD) demand data can be generated 

from a variety of sources such as navigation systems (e.g., Google Maps), ride-sharing 

applications (e.g., Uber), and GPS-equipped vehicles; these data can include vehicle origin, 

destination, and start time. However, in literature reviews, fixed sensor data, such as loop 

detector vehicle counts, is considered by many recent studies for network signal control problem. 

Traffic data collected by induction loop detectors and other standard sensors is short-ranged in 

both space and time scales. However, OD demand, a widely used input for network modeling, 

can help resolve these limitations.  

Assumptions have been made in Section 3.1 that within the MEC enabled CV 

environment: 1) Short-term OD demands are available for the control needs; 2) Data 

transmission latency can be ignored, which is too low compared to computational latency in this 

environment. 3) Computation of network traffic signal control can be distributed over MEC 

devices. Thus, short-term OD demand can be used as inputs for the control systems in this 

chapter as suggested from Section 3.3.  

In addition to the work done in Chapter 4, this chapter will use a simulation-based 

Queueing Network Model (QNM) to predict traffic dynamics. Instead of UO-DTA assumption in 

previous chapter, traveler will choose the path with minimal instantaneous travel time. 

This chapter is the main part for this thesis, work done in this section objects to present 

an analysis of centralized and decentralized signal control systems with short-term OD demand 

for network traffic, investigating the effect of different network decompositions on the 

performance of both systems. 
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5.3 Network Description 

Since the assumption of traveler’s behavior is different from Chapter 4 and the main purpose of 

this chapter is to solve traffic signal optimization problem instead of UO-DTA and SO-DTA 

problems. Network description will have some differences from previous chapter.  

5.3.1 Travel Cost Matrix 

The topology of the network is described using the travel cost matrix �𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑖𝑖𝑖𝑖∈𝐴𝐴, where 𝑖𝑖𝑗𝑗 is the 

link and 𝑡𝑡 is a timestamp index. There are two types of links shown in Figure 5-1: signalized 

links (dotted) and general links (solid). All the links used in this work are two-way as per the 

arrow indications.  

 

Figure 5-1 Sample of an intersection. 

 

The travel time 𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡)  for a signalized link consists of signal wait time 𝑒𝑒𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡) and 

turning time (also considered free-flow travel time 𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗) for signalized link), while that of 

general links consists of only free-flow travel time 𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗). 𝐹𝐹𝐹𝐹𝑇𝑇 = {𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗)}𝑖𝑖𝑖𝑖∈𝐴𝐴 is the matrix of 
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free-flow travel times for all links. If node 𝑖𝑖 is not directly connected to node 𝑗𝑗, then 𝑖𝑖𝑗𝑗 is not a 

link, and the travel cost is infinite. Equation (5-1) describes the travel cost matrix for all links 

and the network topology. 

 𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡) = �

0                                                                               𝑖𝑖 = 𝑗𝑗
∞                                                          𝑖𝑖𝑗𝑗 𝑖𝑖𝑒𝑒 𝑛𝑛𝑜𝑜𝑡𝑡 𝑎𝑎 𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 
𝑒𝑒𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡) + 𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗)           𝑖𝑖𝑗𝑗 𝑖𝑖𝑒𝑒 𝑎𝑎𝑛𝑛 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘
𝑓𝑓𝑡𝑡(𝑖𝑖𝑗𝑗)                                                           𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

   (5-1) 

5.3.2 Control Variables 

Figure 5-2 shows a standard ring-and-barrier diagram for a 4-leg intersection signal control 

strategy. our numerical simulations use this phase plan with control variables Χ = {𝑥𝑥𝑚𝑚 =

(𝑐𝑐𝑙𝑙𝑚𝑚,𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 , 𝑜𝑜𝑓𝑓𝑚𝑚)}𝑚𝑚∈𝑀𝑀, where 𝑥𝑥𝑚𝑚 is a vector consisting of cycle length, green times 

for the four phases and offset for signalized intersection 𝑚𝑚. Phase 1 is a protected left-turn phase 

for northbound and southbound movements; phase 2 is protected for northbound and southbound 

through and right movements; phases 3 and 4 repeat phases 1 and 2 for the eastbound and 

westbound directions. The bars between phases represent all-red intervals. Offset is between 

intersections on a corridor for the matching through-phase, based on a reference point or master 

reference.  
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Figure 5-2 Standard Ring-and-Barrier Diagram. 

 

𝑖𝑖𝑗𝑗 is the signalized link for intersection 𝑚𝑚. Signal waiting time 𝑒𝑒𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡)in Equation (5-1) 

is computed according to the control variable 𝑥𝑥𝑚𝑚, which is a periodic function as per Figure 5-3. 

Similarly, the green time remaining function 𝑔𝑔𝑡𝑡(𝑖𝑖𝑗𝑗, 𝑡𝑡) can be inferred according to the control 

variable 𝑥𝑥𝑚𝑚. 
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Offset

1st Cycle 2nd Cycle 3rd Cycle 4th Cycle

…… 

5th Cycle

 

Figure 5-3 Sample of signal waiting time function. 

 

5.3.3 OD demand and Traffic Assignment 

Short-term OD demand represents the traffic volume between each origin and destination 

pair entering the network in each timestamp. Here uses Δ = {𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡)}𝑜𝑜𝑎𝑎∈𝑂𝑂𝑂𝑂,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇]  to 

represent short-term OD demand for the network during the period [0,𝑇𝑇]. 𝑇𝑇 is the total time 

horizon. 

‘1-0’ principle is applied to assign short-term OD demand, i.e., a traveler will choose the 

path with the minimum instantaneous travel time. It also assumes that travelers will not change 

routes. 

A path is defined as a vector with ordered nodes along the path:  

𝑝𝑝 = �𝑝𝑝(1),𝑝𝑝(2),𝑝𝑝(3), … ,𝑝𝑝(𝑙𝑙)�       (5-2) 

 The path length, 𝑙𝑙(𝑝𝑝), is quantified as the number of nodes on the path. The instantaneous 

travel time for path 𝑝𝑝 at timestamp 𝑡𝑡 is represented as follows: 

𝑡𝑡𝑐𝑐(𝑝𝑝, 𝑡𝑡) = ∑ 𝑇𝑇𝑝𝑝(𝑖𝑖)𝑝𝑝(𝑖𝑖+1)(𝑡𝑡)𝑙𝑙(𝑝𝑝)−1
𝑖𝑖=1        (5-3) 
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 The path with minimum instantaneous travel time for short-term demand 𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡)  is 

expressed as: 

𝑝𝑝𝑜𝑜𝑎𝑎∗ = arg𝑝𝑝∈𝑃𝑃𝑜𝑜𝑜𝑜 min 𝑡𝑡𝑐𝑐(𝑝𝑝, 𝑡𝑡) ≔ {𝑝𝑝𝑜𝑜𝑎𝑎∗ ∈ 𝑃𝑃𝑜𝑜𝑎𝑎: 𝑡𝑡𝑐𝑐(𝑝𝑝𝑜𝑜𝑎𝑎∗ , 𝑡𝑡) ≤ 𝑡𝑡𝑐𝑐(𝑝𝑝, 𝑡𝑡),∀𝑝𝑝 ∈ 𝑃𝑃𝑜𝑜𝑎𝑎} (5-4) 

 Dijkstra’s Shortest Path First algorithm (SPF algorithm) is used to search for Equation (5-

4). 

 Here introduces demand for path 𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡) to describe the traffic flow dynamics. 𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡) 

represents traffic volume at node 𝑝𝑝(𝑘𝑘) for path 𝑝𝑝 at timestamp 𝑡𝑡. And here assigns OD demand 

𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡) to path 𝑝𝑝𝑜𝑜𝑎𝑎∗  with minimal cost: 

𝑑𝑑𝑝𝑝𝑜𝑜𝑜𝑜∗ (1, 𝑡𝑡) = 𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡)          (5-5) 

  𝑇𝑇𝐴𝐴(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇) in Equation (5-6) is to describe the traffic assignment process that takes 

short-term OD demand, traffic signal control variables, and matrix of FFT as inputs to estimate 

short-term demand for the first link of all paths. 

�𝑑𝑑𝑝𝑝(1, 𝑡𝑡)�
𝑝𝑝∈𝑃𝑃=⋃ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂 ,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇] = 𝑇𝑇𝐴𝐴(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)     (5-6)  

5.3.4 Queueing Process 

Three assumptions are used here as described in Section 3.2 for DTA. 

 The input for the queueing process is short-term demand for the first link of all paths 

�𝑑𝑑𝑝𝑝(1, 𝑡𝑡)�
𝑝𝑝∈𝑃𝑃,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇] plus traffic signal control variables Χ during the time horizon. 

Figure 5-4 shows a sample link. The link has three lanes for left, right, and through 

movements, respectively. It is a general link followed by a signalized intersection. Here assumes 

that general links have three lanes (per direction) for each turning movement, while the 

downstream signalized links have one lane per direction. 
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Figure 5-4 Sample link. 

 

 Suppose the queue length on a signalized link at timestamp 𝑡𝑡 is 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑖𝑖𝑗𝑗, 𝑡𝑡). Considering 

the figure describes the movement for short-term OD demand 𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡) , then node 𝑛𝑛𝑖𝑖𝑖𝑖 =

𝑝𝑝(𝑘𝑘),𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑝𝑝(𝑘𝑘 + 1), and 𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 = 𝑝𝑝(𝑘𝑘 + 2). In addition, after the time required to pass the 

link 𝑓𝑓𝑡𝑡(𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡), vehicles will join the queue such that 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞�𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 , 𝑡𝑡 + 𝑓𝑓𝑡𝑡(𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡)� . 

𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 represents the signalized link. 

Suppose the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡  belongs to the ℎ𝑡𝑡ℎ  phase for intersection 𝑚𝑚 . 

According to the control variable 𝑥𝑥𝑚𝑚 = (𝑐𝑐𝑙𝑙𝑚𝑚,𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 , 𝑜𝑜𝑓𝑓𝑚𝑚), additional information can 

be listed: 

(1) Cycle length for the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 is 𝑐𝑐𝑙𝑙𝑚𝑚; 

(2) Green time of the phase for the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 is 𝑔𝑔𝑚𝑚ℎ ; 

(3) Signal waiting time for the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 is 𝑒𝑒𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡); 

(4) Signal green time remaining for the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 is 𝑔𝑔𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 , 𝑡𝑡) 

  

Traffic dynamics then can be predicted via a close loop: 
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Step 0 (Initialization): 𝑡𝑡 = 0, 𝑘𝑘 = 1, input demand profile for all paths 

�𝑑𝑑𝑝𝑝(1, 𝑡𝑡)�
𝑝𝑝∈𝑃𝑃=⋃ 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂 ,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇] 

Step 1 (Demand Update): ∀𝑝𝑝 ∈ 𝑃𝑃 = ⋃ 𝑃𝑃𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎 ,  

𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑘𝑘), 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑝𝑝(𝑘𝑘 + 1), 𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 = 𝑝𝑝(𝑘𝑘 + 2);     (5-7) 

Find intersection 𝑚𝑚, which contains the signalized link 𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡. 

if 𝛼𝛼 = 𝑑𝑑𝑝𝑝(𝑘𝑘, 𝑡𝑡) > 0, then 

  𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽)=𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽 − 1) + 𝛼𝛼;  (5-8)  

  𝛽𝛽 = 𝑓𝑓𝑡𝑡(𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡);        (5-9) 

 Equation (5-7) selects the 𝑘𝑘𝑡𝑡ℎ  link on path 𝑝𝑝. Link layout is the same as Figure 5-4. 

Equation (5-8) updates the queue length for each signalized link. 𝛽𝛽 in Equation (5-9) is the first 

part of total queueing time - the free flow travel time spent on link 𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡. 

 Calculate queueing time 

 Case 1:  When signal is green, 𝑔𝑔𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) > 0 

 ∆𝑡𝑡 = 𝛽𝛽 + �𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)−𝑤𝑤∙𝑠𝑠𝑡𝑡(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤∙𝑠𝑠𝑚𝑚ℎ
� × 𝑐𝑐𝑙𝑙𝑚𝑚 +

𝑚𝑚𝑜𝑜𝑑𝑑 ��𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤
� − 1,𝑔𝑔𝑚𝑚ℎ � + 1        (5-10a) 

 If a vehicle cannot pass the intersection during the green time in the current cycle of the 

signalized link, it will wait for another cycle for the next green phase. The time for the last 

vehicle in the queue to reach the front is �𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤
�. The maximum discharging flow 

rate 𝑤𝑤 describes the maximum number of vehicles that can traverse the signalized link in one 

timestamp.  
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⌈∙⌉ is an operator calculating the ceiling of the inside value, which is a minimal integer 

greater than 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑎𝑎𝑙𝑙𝑣𝑣𝑒𝑒 . For example, if 𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) = 3  and 𝑤𝑤 = 2 , then 

�𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤
� = �3

2
� = 2 .𝑚𝑚𝑜𝑜𝑑𝑑(𝑎𝑎, 𝑏𝑏)  calculates the remainder of 𝑎𝑎  divided by 𝑏𝑏 . For 

example, 𝑚𝑚𝑜𝑜𝑑𝑑(7,4) = 3. 

 Case 2:  When signal is red, 𝑔𝑔𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 , 𝑡𝑡 + 𝛽𝛽) = 0 

  ∆𝑡𝑡 = 𝛽𝛽 + 𝑒𝑒𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) + �𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤∙𝑠𝑠𝑚𝑚ℎ
− 1� × 𝑐𝑐𝑙𝑙𝑚𝑚 +

𝑚𝑚𝑜𝑜𝑑𝑑 ��𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞
(𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑞𝑞𝑛𝑛𝑜𝑜,𝑡𝑡+𝛽𝛽)

𝑤𝑤
� − 1,𝑔𝑔𝑚𝑚ℎ � + 1        (5-10b) 

 In Equation (5-10b), the additional term 𝑒𝑒𝑡𝑡(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) is the wait time (for the red 

signal turning green). 

 Updating Path Demand Function 

𝑑𝑑𝑝𝑝(𝑘𝑘 + 1, 𝑡𝑡 + ∆𝑡𝑡) = 𝑑𝑑𝑝𝑝(𝑘𝑘 + 1, 𝑡𝑡 + ∆𝑡𝑡) + 𝛼𝛼      (5-11) 

After exiting the 𝑘𝑘𝑡𝑡ℎ link on path 𝑝𝑝, traffic will enter the (𝑘𝑘 + 1)𝑡𝑡ℎ link on path 𝑝𝑝. Since 

constant maximum discharging rate 𝑤𝑤 is used, 𝛼𝛼 ≤ 𝑤𝑤 for each iteration. 

Step 2 (Queue Length Update): 

 After demand for all the paths has been assigned, the queue length is updated. 

𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) = �
𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 , 𝑡𝑡 + 𝛽𝛽)         𝑖𝑖𝑓𝑓 𝑇𝑇𝑠𝑠𝑎𝑎𝑞𝑞𝑞𝑞𝑖𝑖(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) = 0
𝐿𝐿𝑞𝑞𝑜𝑜𝑞𝑞𝑜𝑜𝑞𝑞(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡 , 𝑡𝑡 + 𝛽𝛽) −𝑤𝑤 𝑖𝑖𝑓𝑓 𝑇𝑇𝑠𝑠𝑎𝑎𝑞𝑞𝑞𝑞𝑖𝑖(𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡𝑛𝑛𝑖𝑖𝑞𝑞𝑛𝑛𝑡𝑡, 𝑡𝑡 + 𝛽𝛽) > 0 

            (5-12) 

 From Step 1, the length of the queue is increased for each positive demand unit. When 

the signal is green, queue length is reduced by the number of discharging vehicles; when the 

signal is red, the queue length will be the same as Step 1. 

 If 𝑘𝑘 < 𝑙𝑙(𝑝𝑝) − 1, 𝑘𝑘 = 𝑘𝑘 + 1, go to Step 1; otherwise, 𝑘𝑘 = 1, go to Step 3. 

Step 3 (Stop Condition): 
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 If 𝑡𝑡 < 𝑇𝑇 + 𝛿𝛿, 𝑡𝑡 = 𝑡𝑡 + 1, go to Step 1; otherwise, Stop. 

 After all the path demand functions are updated for the current timestamp 𝑡𝑡, the next 

iteration will start for timestamp 𝑡𝑡 + 1. 𝛿𝛿 is extra time for all the vehicles exiting the network. 

 In summary, Equations (5-7) – (5-12) describe the queueing process as 

𝑄𝑄 ��𝑑𝑑𝑝𝑝(1, 𝑡𝑡)�
𝑝𝑝∈𝑃𝑃,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇],Χ� as shown in Equation (5-13), which takes short-term demand on 

the first link for all paths and traffic signal control variables as inputs, and short-term demand of 

all paths as outputs. The short-term demand for a given path consists of the demand for each link 

for the path and timestamp. 

�𝑑𝑑𝑝𝑝�𝑘𝑘𝑝𝑝, 𝑡𝑡��
𝑙𝑙𝑝𝑝∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑙𝑙(𝑝𝑝)],𝑝𝑝∈𝑃𝑃,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇] =  𝑄𝑄 ��𝑑𝑑𝑝𝑝(1, 𝑡𝑡)�

𝑝𝑝∈𝑃𝑃,𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇], Χ� (5-13) 

Since general distributions are used for the demand (the arrival rate) and service rate, 

finite servers (signalized links), and FIFO assumption, network traffic dynamic model in this 

work can be regarded as a G/G/n/FIFO Queueing Network Model (QNM). The QNM is also 

open since the number of customers (vehicles) is not fixed. 

In summary, network dynamics can be predicted using inputs including short-term OD 

demand, traffic signal control variables (cycle length, phase split, and offsets) for all 

intersections, and free flow travel time for each link. The data flow is summarized in Figure 5-5. 
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Figure 5-5 Data flow of network traffic dynamics prediction. 

  

The travel cost matrix is estimated at the first step with inputs free-flow travel time (FFT) 

and signal timing. Traffic assignments are based on the ‘1-0’ principle that assumes travelers will 

choose the minimal instantaneous path. The SPF algorithm is used to generate the shortest path. 

Thus, OD demand is transferred into volumes for the first link of all paths. Then, the traffic 

dynamic is estimated within QNM, combined with traffic signal control variables used in the 

initial step. This estimation is completed via simulation in MATLAB in the numerical simulation 

section. 
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5.4 Objectives of Traffic Signal Control 

As one of the effective traffic control strategies, traffic signal control impacts traffic mobility, 

traffic safety, and environmental benefits. Input and output of traffic signal control models are 

categorized into these three subjects. 

As mentioned in Chapter 2, as literature reviews on DTA-based network-level traffic 

signal control, the most common objective is maximum mobility of network traffic. However, 

maximum mobility can be translated into kinds of targets. In addition to minimizing Total Travel 

Time (TTT), Karoonsoontawong and Waller use the weighted sum of the expected total system 

travel time (TSTT) as an adopted robustness measurement in a Cell Transmission Model (CTM) 

(Karoonsoontawong & Waller, 2010). The input of this CTM is average time dependent on 

demand.  Another well-known method for increasing traffic mobility is to minimize total delay 

(TD). Representatives of such traffic signal control systems are OPAC (Gartner, 1983), 

RHODES (Lucas et al., 2000), SCAT  (A. Sims, 1979) and SCOOT  (Hunt el al., 1982). The 

input of these systems is either time dependent link flows or inflow rates of traffic. Besides the 

direct objective, some researchers focus on increasing transit signal priority (TSP) (Christofa & 

Skabardonis, 2011) (Dion et al., 2004). Minimizing average delay is another measurement that 

can be used instead of minimizing TD (Mirchandani & Head, 2001), which uses sensors to detect 

a delay when a vehicle arrives at each intersection in the network. 

When considering traffic safety, it seems that signal-warning flashers and speed controls 

are more effective for deterring accidents than intersection traffic signal control in terms of linear 

regression models (Wu el al., 2013). In addition, measurements for traffic safety usually rely on 

statistical models, such as before-and after studies based on historic accident/collision data, or 

prediction models, such as time-to-collision based on human factors and environmental 

parameters.  

Environmental factors are often related to vehicle emissions. Researchers use 

measurements such as average/instantaneous speed, stops, acceleration, and deceleration in 

microscopic models (Rakha et al., 2000). However, although microscopic models are data 

intensive, calibration of them for a large-scale network is not usually easy work (Barceló & 

Casas, 2005).  Some researchers, instead, tend to use macroscopic models to estimate emissions. 
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For example, CO2 (Carbon Dioxide) emissions are calculated using average speed and 

acceleration/deceleration in an AVENUE model (Advanced & Visual Evaluator for road 

Networks in Urban arEas)  (Oda et al., 2004). However, macroscopic models lack accuracy, so in 

order to fill the gap between microscopic and macroscopic models, mesoscopic models are 

considered. For example, there are some researchers using functions of space mean speed to 

calculate Carbon monoxide (CO) emissions using a mesoscopic traffic flow model (Aziz & 

Ukkusuri, 2012).  

According to the literature review above, each optimization objective requires specific 

data sets. This work only considers traffic dynamics without any safety or emission models. Thus, 

two macroscopic objectives are considered in this chapter: Average Travel Time (ATT) and Total 

Travel Delay (TTD).   

5.5 Centralized Signal Control System 

Section 6.3 outlines how to predict traffic dynamics using traffic signal control variables, short-

term OD demand, and the FFT matrix within the G/G/n/FIFO open QNM. This work continues 

to develop a Centralized Signal Control (CSC) system to optimize network-wide signal control. 

Low data transmission latency is assumed within the MEC-enabled CV environment in both the 

CSC and DSC systems. Data transmission latency will be investigated in our network traffic 

signal control system in a future study after completing the device test in our Edmonton, Canada 

testbed. The objective functions are formulated using minimal Average Travel Time (ATT) and 

Total Travel Delay (TTD) and apply a three-step naïve method to optimize the network traffic. 

5.5.1 Problem Formulation 

Average Travel Time 

ATT has been used as an objective or evaluation index in many network traffic signal control 

studies as shown in Table 2-1. ATT is the mean time spent by each vehicle traveling inside a 

network and is computed using the difference between a vehicle’s network entry and exit times, 

as in Equation (5-14). However, However, assumption in Chapter 3 cannot generate trajectory 

data (time points of vehicles entering and exiting network) from short-term OD demand to 

calculate ATT. 
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𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑛𝑛(∆𝑡𝑡𝑣𝑣𝑞𝑞ℎ) =
∑ �𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖

𝑞𝑞𝑛𝑛𝑖𝑖𝑜𝑜−𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖
𝑞𝑞𝑖𝑖𝑜𝑜𝑞𝑞𝑒𝑒�  𝑖𝑖

𝑖𝑖=1

𝑖𝑖
      (5-14) 

Equation (5-15) simply rearranges the RHS of Equation (5-14) to represent all vehicles’ 

mean exit and entrance time. Thus, ATT can be calculated by short-term demand of links for all 

paths as (5-16).  

∑ �𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖
𝑞𝑞𝑛𝑛𝑖𝑖𝑜𝑜−𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖

𝑞𝑞𝑖𝑖𝑜𝑜𝑞𝑞𝑒𝑒�  𝑖𝑖
𝑖𝑖=1

𝑖𝑖
= ∑ 𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖

𝑞𝑞𝑛𝑛𝑖𝑖𝑜𝑜𝑖𝑖
𝑖𝑖=1

𝑖𝑖
−

∑ 𝑡𝑡𝑣𝑣𝑞𝑞ℎ𝑖𝑖
𝑞𝑞𝑖𝑖𝑜𝑜𝑞𝑞𝑒𝑒𝑖𝑖

𝑖𝑖=1

𝑖𝑖
      (5-15) 

𝐴𝐴𝑇𝑇𝑇𝑇 =
∑ ∑ 𝑎𝑎𝑝𝑝(𝑙𝑙(𝑝𝑝),𝑡𝑡)×𝑡𝑡𝑝𝑝∈𝑃𝑃
𝑇𝑇+𝛿𝛿
𝑜𝑜=1

𝑖𝑖
−

∑ ∑ 𝑎𝑎𝑝𝑝(1,𝑡𝑡)×𝑡𝑡𝑝𝑝∈𝑃𝑃
𝑇𝑇+𝛿𝛿
𝑜𝑜=1

𝑖𝑖
     (5-16) 

𝛿𝛿 is the additional time required for all demand in 𝑇𝑇 to exit the network. Equation (5-17) 

is the total number of vehicles – the sum of short-term OD demand over the time horizon. 

𝑛𝑛 = ∑ 𝑑𝑑(𝑜𝑜𝑑𝑑, 𝑡𝑡)𝑇𝑇
𝑡𝑡=1          (5-17) 

 From Section 5.3, short-term demand for a path is generated from short-term OD demand 

Δ , control variable Χ , and 𝐹𝐹𝐹𝐹𝑇𝑇 . Here can write one function – Equation (5-18) – to 

compute 𝐴𝐴𝑇𝑇𝑇𝑇 from these three inputs. 

 𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜑𝜑(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)         (5-18) 

Total Travel Delay 

Total travel delay is the additional time all vehicles spend in the network due to signal waiting 

time, idling time in queues, and decelerating and accelerating. In this work, only signal waiting 

time and idling time in queue are considered due to the macroscopic representation of vehicle 

behavior. 

TTD is calculated based on total queueing time with Equations (5-8) - (5-11), while total 

queueing time is calculated as Equation (5-19). Like Equation (5-18), here is one function to 

compute TTD from the original inputs as Equation (5-20). 

𝑇𝑇𝑇𝑇𝑂𝑂 = ∑ ∑ ∑ ∆𝑡𝑡 × 𝛼𝛼 𝑡𝑡∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑇𝑇]𝑝𝑝∈𝑃𝑃𝑙𝑙∈𝑍𝑍 𝑖𝑖𝑖𝑖 [1,𝑙𝑙(𝑝𝑝)]      (5-19) 
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Where ∆𝑡𝑡 and 𝛼𝛼 were previously defined. 

𝑇𝑇𝑇𝑇𝑂𝑂 = 𝜙𝜙(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)         (5-20) 

5.5.2 Centralized Signal Control 

Suppose the cycle length is the same for all intersections, while phases split and offset for 

different intersections can vary with control objectives. Assuming that an intersection signal’s 

cycle length is the sum of green times, and offset is a positive integer less than the cycle length, 

the CSC problem can be formulated as follows: 

min
Χ∈Ω

𝐴𝐴𝑇𝑇𝑇𝑇  𝑜𝑜𝑒𝑒 𝑇𝑇𝑇𝑇𝑂𝑂        (A) 

Subject to:  𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜑𝜑(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇) or 𝑇𝑇𝑇𝑇𝑂𝑂 = 𝜙𝜙(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)    (5-21) 

  ∑ 𝑔𝑔𝑚𝑚𝑙𝑙4
𝑙𝑙=1  = 𝑐𝑐𝑙𝑙𝑚𝑚,∀𝑚𝑚 ∈ 𝑀𝑀       (5-22) 

  𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙𝑖𝑖,∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀       (5-23) 

0 ≤ 𝑜𝑜𝑓𝑓𝑚𝑚 < 𝑐𝑐𝑙𝑙𝑚𝑚,∀𝑚𝑚 ∈ 𝑀𝑀       (5-24) 

Where Ω is the feasible set for Χ, 

Ω = �Χ: 𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙𝑖𝑖 ∈ Ωcycle, (𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 ) ∈ Ωphase, 𝑜𝑜𝑓𝑓𝑚𝑚 ∈ Ωoffset,∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀�  

Ωcycle ⊂ 𝑍𝑍+and Ωoffset ⊂ 𝑍𝑍+ are finite subsets of 𝑍𝑍+. Ωphase ⊂ 𝑍𝑍+4 is finite subset of 𝑍𝑍+4. 

𝛺𝛺𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞, 𝛺𝛺𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞, and 𝛺𝛺𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡 are the feasible sets of cycle length, phase split, and offset for 

a signalized intersection. If the number of elements in each feasible set is 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞, 𝑛𝑛𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞, and 

𝑛𝑛𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡 respectively, then the size of the feasible set 𝛺𝛺 is |𝛺𝛺| = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑞𝑞 × 𝑛𝑛𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑞𝑞
4|𝑀𝑀| × 𝑛𝑛𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑞𝑞𝑡𝑡

4|𝑀𝑀| . The 

total number of intersections inside the network is |𝑀𝑀|. 

The feasible set is not convex and Constraint (5-21) is nonlinear. Network traffic signal 

control is known to be an NP-complete problem (Adacher et al., 2014) such that no method 

currently exists to solve the problem without simplifying variables or constraints, or relaxing the 
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control objective when the network size is relatively large. This work now attempts to address 

this issue. 

5.5.3 Three-Step Naïve Method 

As there is no suitable algorithm available to solve the optimization problem, a simple Three-

Step Naïve Method is proposed.  

After choosing ATT or TTD as objectives, this method decomposes the original Problem 

(A) into three sub-problems: Problem (A1), (A2), and (A3). The simple method is described as 

follows. 

Three-Step Naïve Method 

Step 1 Solve Problem (A1): Optimal cycle length: fix phase splits and offsets for all 

intersections, then find the optimal cycle length as per the optimization objective. 

Step 2 Solve Problem (A2): Optimal phase split: based on the optimal cycle length in Step 1, fix 

the offset and generate all combinations of phase splits, then find the optimal phase split as per 

the optimization objective. 

Step 3 Solve Problem (A3): Optimal offset: based on the first two steps, generate all the 

combinations of offsets for all intersections, then find the optimal offsets plan as per the 

optimization objective. 

This idea to decompose original problem is coming from the traditional signal 

optimization steps, which has been implemented in the simulation software VISSIM as well. 

This naive method is not efficient as ACO, BP or RL methods used in the literature review. 

However, ACO, BP and RL methods have heavily simplified the assumption of signal timing 

plan, which are less realistic than assumptions used in the model of this chapter. In addition, 

although the Three-Step Naïve method is not advanced, it can give the global optimization 

solution for each subproblem, unlike some methods using algorithms such as ACO and RL only 

generate solutions less than the optimal.  
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This chapter consistently uses this method to solve network signal control in CSC system 

and in each subnetwork of DSC system. The main contribution of this work is to focus on the 

framework of DSC system, which is compared to the CSC system. Extended work of this thesis 

may improve the algorithm used for network signal control which have been discussed in the 

conclusion part of this thesis. 

Problem (A1) - (A3) is listed below: 

min
Χ∈Ω1

𝐴𝐴𝑇𝑇𝑇𝑇  𝑜𝑜𝑒𝑒 𝑇𝑇𝑇𝑇𝑂𝑂        (A1) 

Subject to:  𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜑𝜑(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇) or 𝑇𝑇𝑇𝑇𝑂𝑂 = 𝜙𝜙(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)    (5-25) 

  𝑔𝑔𝑚𝑚𝑙𝑙  = 𝑐𝑐𝑙𝑙𝑚𝑚
4

,∀𝑚𝑚 ∈ 𝑀𝑀,  ∀𝑘𝑘 ∈ {1,2,3,4}      (5-26) 

  𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙𝑖𝑖,∀𝑚𝑚,𝑛𝑛 ∈ 𝑀𝑀       (5-27) 

𝑜𝑜𝑓𝑓𝑚𝑚 = 0,∀𝑚𝑚 ∈ 𝑀𝑀        (5-28) 

Where Ω1 = �Χ: 𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙𝑖𝑖 ∈ Ωcycle,𝑔𝑔𝑚𝑚ℎ = 𝑐𝑐𝑙𝑙𝑚𝑚
4

, 𝑜𝑜𝑓𝑓𝑚𝑚 = 0,∀𝑚𝑚, 𝑛𝑛 ∈ 𝑀𝑀,∀ℎ ∈ {1,2,3,4}�. 

 ATT or TTD is a convex curve with respect to cycle length, and Problem (A1) can be 

solved via the Bisection Algorithm (BA). If 𝑐𝑐𝑙𝑙∗ is the optimal cycle length from Problem (A1), 

then Problem (A2) is formulated as follows: 

min
Χ∈Ω2

𝐴𝐴𝑇𝑇𝑇𝑇  𝑜𝑜𝑒𝑒 𝑇𝑇𝑇𝑇𝑂𝑂        (A2) 

Subject to:  𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜑𝜑(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇) or 𝑇𝑇𝑇𝑇𝑂𝑂 = 𝜙𝜙(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)    (5-29) 

  ∑ 𝑔𝑔𝑚𝑚𝑙𝑙4
𝑙𝑙=1  = 𝑐𝑐𝑙𝑙∗,∀𝑚𝑚 ∈ 𝑀𝑀       (5-30) 

𝑜𝑜𝑓𝑓𝑚𝑚 = 0,∀𝑚𝑚 ∈ 𝑀𝑀        (5-31) 

Where Ω2 = �Χ: 𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙∗, (𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 ) ∈ Ωphase, 𝑜𝑜𝑓𝑓𝑚𝑚 = 0,∀𝑚𝑚 ∈ 𝑀𝑀,∀ℎ ∈ {1,2,3,4}�. 
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Although Problem (A2) is simpler than Problem (A), the feasible set of the problem is 

still large and challenging to solve. Although some Genetic Algorithms (GA) may be applied to 

the problem, they cannot guarantee the solution is optimal, and therefore a global search is 

applied. 

 Suppose {(𝑔𝑔𝑚𝑚1∗,𝑔𝑔𝑚𝑚2∗,𝑔𝑔𝑚𝑚3∗,𝑔𝑔𝑚𝑚4∗)}𝑚𝑚∈𝑀𝑀 is the optimal phase split for all intersections from 

Problem (A2). Then Problem (A3) is formulated as follows: 

min
Χ∈Ω3

𝐴𝐴𝑇𝑇𝑇𝑇  𝑜𝑜𝑒𝑒 𝑇𝑇𝑇𝑇𝑂𝑂        (A3) 

Subject to:  𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜑𝜑(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇) or 𝑇𝑇𝑇𝑇𝑂𝑂 = 𝜙𝜙(Δ,Χ,𝐹𝐹𝐹𝐹𝑇𝑇)    (5-32) 

0 ≤ 𝑜𝑜𝑓𝑓𝑚𝑚 < 𝑐𝑐𝑙𝑙∗,∀𝑚𝑚 ∈ 𝑀𝑀       (5-33) 

Where Ω3 = {Χ: 𝑐𝑐𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑙𝑙∗, (𝑔𝑔𝑚𝑚1 ,𝑔𝑔𝑚𝑚2 ,𝑔𝑔𝑚𝑚3 ,𝑔𝑔𝑚𝑚4 ) = (𝑔𝑔𝑚𝑚1∗,𝑔𝑔𝑚𝑚2∗,𝑔𝑔𝑚𝑚3∗,𝑔𝑔𝑚𝑚4∗), 𝑜𝑜𝑓𝑓𝑚𝑚 ∈ Ωoffset,∀𝑚𝑚 ∈ 𝑀𝑀}. 

 The feasible set of this problem is convex, and thus a gradient search approach with a 

constant step size is used to update offset vector value. 

 If there are 𝑛𝑛 intersections, the control variable can be written as a 𝑛𝑛 × 6 matrix 𝑋𝑋�. Each 

row represents the traffic signal control variable 𝑥𝑥𝑚𝑚,𝑚𝑚 = 1,2,3, … 𝑛𝑛. The last column 𝑋𝑋�𝑜𝑜𝑓𝑓 is a 

vector of offsets for all intersections, which is the control variable for Problem (A3). 

 The control variables are updated according to Equations (5-34) - (5-35). 

 𝑋𝑋�𝑜𝑜𝑓𝑓
(𝑖𝑖+1) = 𝑋𝑋�𝑜𝑜𝑓𝑓

(𝑖𝑖) + 𝛼𝛼𝑑𝑑(𝑖𝑖)         (5-34) 

 𝑑𝑑(𝑖𝑖) = arg𝑎𝑎(𝑖𝑖)∈𝑂𝑂 min�𝑋𝑋�𝑜𝑜𝑓𝑓
(𝑖𝑖) + 𝛼𝛼𝑑𝑑(𝑖𝑖)�       (5-35) 

Where 𝑂𝑂 = {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑖𝑖} is the standard basis for vector space 𝑅𝑅𝑖𝑖, 𝛼𝛼 = 𝑐𝑐𝑙𝑙∗

𝛾𝛾 , and 𝛾𝛾 is constant 

value which is a divisor of 𝑐𝑐𝑙𝑙∗. 

Finally, the solution for the network-wide traffic signal optimization can be achieved as 

 Χ∗ = {𝑥𝑥𝑚𝑚∗ = (𝑐𝑐𝑙𝑙∗,𝑔𝑔𝑚𝑚1∗,𝑔𝑔𝑚𝑚2∗,𝑔𝑔𝑚𝑚3∗,𝑔𝑔𝑚𝑚4∗,𝑜𝑜𝑓𝑓𝑚𝑚∗)}𝑚𝑚∈𝑀𝑀. 
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 In summary, Section 5.5 formulated the optimization problem for centralized signal 

control (CSC) with short-term OD demand for a network. ATT and TTD are introduced as the 

control objectives with inputs as short-term demands for all paths. Because this optimization 

problem is NP-complete due to non-convex variables and nonlinear constraints, the problem is 

decomposed with a Three-Step Naïve Method whereby smaller sub-problems can be solved one 

by one. However, this problem remains costly to solve (which is demonstrated in Section 5.7) 

without developing a new algorithm for the problem. 

5.6 Decentralized Signal Control System 

Decentralized signal control (DSC) is also referred to as distributed signal control, and its 

development is motivated by the difficulty of solving CSC. Here, this chapter addresses this by 

developing a DSC system with short-term OD as inputs to control network traffic. Section 5.6.1 

introduces the CV environment with Mobile Edge Computing (MEC). Section 5.6.2 proposes the 

decomposition method. Section 5.6.3 describes the two-layer process for our DSC system. 
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5.6.1 CV Environment with MEC 

In addition to assumptions in Section 3.1, here introduces the CV environment by comparing the data flow of CSC and DSC. 

 

(a) Centralized Signal Control 

 

(b) Decentralized Signal Control 
Figure 5-6 Data flow comparison between CSC and DSC. 
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In the CSC system (Figure 5-6(a)), each vehicle has on-board equipment (OBE) to communicate 

with each intersection. There is local MEC at each intersection to facilitate communicate 

between OBE and Central-TMC. There is a central cloud server for the Central-TMC to 

communicate with local MEC, store and analyze data, and optimize the traffic signal control. 

OBE units collect the basic safety message (BSM) data from vehicles. BSM data include 

real-time speed and real-time location information and are sent to the local MEC at each 

intersection by the OBE units. Local MEC will collect and analyze data locally before send to 

the Central-TMC. According to the data received, the Central-TMC then analyses and optimizes 

for the signals. Finally, the Central-TMC sends the updated signal strategy to the local MEC at 

each intersection. The local MEC then changes the signal plan for the intersection and controls 

the traffic according to the updated signal strategy. In addition, local MEC sends the signal 

information to OBE units of nearby vehicles. 

In the DSC system (Figure 5-6(b)), there is a virtual regional MEC controller for several 

intersections in a small region. Local MECs in the regional will follow the commands from the 

regional MEC controller. And the regional MEC controller will collect data from local MECs. In 

addition, the regional MEC controller will assign computation work to all the local MECs in 

order to compute parallelly. This additional capability facilitates the DSC system to divide the 

network into subnetworks, unlike the CSC system.  A regional MEC controller is assigned to 

each subnetwork, that combines local MECs as a regional computing server, and is able to 

connect to the central cloud server of Central-TMC as well as to the local MECs and OBEs 

inside the subnetwork. 

The vehicle’s OBE collects and sends time-varying OD information and BSM data to the 

local MECs. All the data will be analyzed locally by the local MEC and send to the regional 

MEC controller. The regional MEC controller then analyzes the local data and sends it to the 

Central-TMC. The Central-TMC assigns the time-varying demand to paths, which is the route 

guidance information. This information is delivered to the regional MEC controller and then to 

each end of the traffic network. Meanwhile, the regional MEC controllers estimate the traffic 

dynamics for the whole network with local MECs parallelly. Finally, each regional MEC 
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controller obtains the time-varying OD demand for each subnetwork and optimizes the signals 

inside the subnetwork, respectively. 

5.6.2 Network Decomposition 

Network decomposition is highlighted in recent DSC research (Adacher & Tiriolo, 2020) as an 

important factor for optimizing DSC system. In my work, a grid network is decomposed into 

grid subnetworks. Besides spatial decomposition, this work also decomposes demand for paths 

of the whole network into demand for paths for each subnetwork. Thus, each subnetwork has an 

individual short-term demand profile to optimize network signals inside it as a small CSC system. 

 Figure 5-7 shows an example for a 6x6 network decomposed into 9 2x2 subnetworks.  
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Figure 5-7 An example of network decomposition. 

 

After short-term OD demand is collected at each end of the network, the Central TMC 

will distribute OD and path information to regional MECs in subnetworks. As ‘No Reroute’ 

assumed in Section 3.2, travelers will not reroute on their way. The path from the node in the top 

left corner to the second-to-top right node, illustrated in the figure, is divided into three sub-paths 

through three subnetworks marked as 1, 2, and 3. 
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Path decomposition is achieved by the Path Decomposition Index (PDI) 𝛤𝛤𝑠𝑠(𝑝𝑝,𝑝𝑝𝑠𝑠), where 

𝑒𝑒 is the index for the subnetwork, 𝑝𝑝 is path for the whole network, and 𝑝𝑝𝑠𝑠 is path for subnetwork 

𝑒𝑒. 𝛤𝛤𝑠𝑠(𝑝𝑝,𝑝𝑝𝑠𝑠) = 𝑚𝑚 if the 𝑚𝑚𝑡𝑡ℎ  node of path 𝑝𝑝 is the first node of path 𝑝𝑝𝑠𝑠  for subnetwork 𝑒𝑒. For 

example, suppose the index for the top middle subnetwork in Figure 5-7 is 2. For path 𝑝𝑝 shown, 

since the 4𝑡𝑡ℎ node for the whole path 𝑝𝑝 is the first node of the subpath 𝑝𝑝2 inside the subnetwork, 

then 𝛤𝛤2(𝑝𝑝,𝑝𝑝2) = 4. 

Say 𝑑𝑑𝑝𝑝𝑠𝑠(𝑘𝑘, 𝑡𝑡) is defined as short-term demand at node 𝑝𝑝(𝑘𝑘) for path 𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠 in subnetwork 

𝑒𝑒 at timestamp 𝑡𝑡. Suppose 𝛤𝛤𝑠𝑠(𝑝𝑝, 𝑝𝑝𝑠𝑠) = 𝑚𝑚. Then, 

𝑑𝑑𝑝𝑝𝑠𝑠
𝑠𝑠 (1, 𝑡𝑡) = 𝑑𝑑𝑝𝑝(𝑚𝑚, 𝑡𝑡)         (5-36) 

5.6.3 Two-Layer Process 

With the introduction of a CV environment with MEC and network decomposition with PDI, 

Figure 5-8 illustrated the two-layer process for DSC system with short-term OD demand used for 

this work. 
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Figure 5-8 Two-layer process for decentralized signal control system. 

 

In the first layer, the input is the short-term OD matrix. The Central-TMC will gather this 

information from the regional MEC controllers. The output from this first layer – the short-term 

demand for each path – is input to the second layer. The second layer has two functions: traffic 

dynamics (traffic state prediction) on regional MEC controllers and traffic signal optimization on 

local MECs inside each subnetwork.  

Each subnetwork can be considered a small CSC system since the traffic signal 

optimization is achieved via the three-step naïve method, the same as for CSC systems. In 

addition, traffic dynamics are achieved using the same queueing process. Since the network 

traffic reacts to changes in traffic signal timing plans, traffic dynamics will be re-predicted after 

updating signals. This loop will run until the convergent or iteration number is up to a pre-set 

constant integer 𝑘𝑘. 
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In the CSC system, all three functions are run inside the cloud server of central TMC. 

However, in the DSC system, the sole function of the Central-TMC is to calculate short-term 

path demand to provide route guidance. The remaining optimization tasks are allocated to the 

regional MEC controller inside each subnetwork. In addition, local MECs in the subnetwork are 

involved in the computation of the traffic signal optimization function. All the computation 

resources of the DSC system are fully used. 

In summary, Section 5.6 introduced the environment and decomposition method of DSC 

system in the first instance. The structure of DSC system was described as a two-layer process. 

The DSC system has three main functions: route guidance in central TMC, traffic 

dynamics prediction in regional MEC controller, and signal optimizations with local MECs in 

each subnetwork. PDI plays a vital role in allocating sub-jobs to each regional MEC controller. 

Considering that each subnetwork functions as a small CSC system, the DSC system, as outlined 

here, is an extension of the CSC system that enables network expansion.  

5.7 Numerical Simulation 

This work uses analytic simulation implemented via MATLAB to demonstrate the proposed 

model, instead of an existing traffic simulation software such as SUMO, Aimsum or VISSIM. 

The main reason for choosing analytic simulation over these software programs is that the 

network signal control problem addressed in this thesis includes subproblems such as network 

decomposition and traffic assignment, which would require coding of external APIs in order to 

embed into the simulators. Mainly, however, this thesis focuses on macroscopic traffic 

optimization, which does not require the additional functionality and detail that the simulators 

named provide. As a result, an analytic simulation approach was deemed more suitable for this 

work. 

The computation is finished in the Compute Canada server. The maximum number of 

cores is 40, and the speed for each core is 2.4 GHz. Both the CSC and DSC systems are 

demonstrated below in five scenarios. 1 × 1, 2 × 2, 3 × 3, 4 × 4, 6 × 6 grid networks are tested 

as illustrated in Figure 5-9.  
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Figure 5-9 Grid networks. 

 

The basic settings for all the cases are as follows: 

(1) Time horizon: 𝑇𝑇 = 300  time units, demand is randomly generated from a uniform 

distribution (variance equals mean value) for OD pairs within the time horizon; 

(2) Free-flow travel time for all general links: 10 time units;  

(3) Left turn, right turn, and through for signalized links cost 3, 2, and 1 time units, respectively. 

All-red time for signal control is 2 time units. The discharge rate for each signalized link is 𝑤𝑤 =

2 vehicles per time unit; 

(4) A standard ring-and-barrier diagram (Figure 5-2) is used for all intersection signal timings;  

(5) Cycle length is the same for all intersections. Phase splits (i.e., green times) and offsets may 

vary among different intersections. The unit of control variables and two objectives are in time 

units. 
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For DSC-1 cases, the subnetwork size is 𝟏𝟏 × 𝟏𝟏 with one intersection. For DSC-2 cases, the 

subnetwork size is 𝟐𝟐 × 𝟐𝟐  with four intersections. If CSC case is considered as the whole 

network decomposed into one subnetwork, then CSC, DSC-1, and DSC-2 are regarded as 

different network decompositions for the same network. 

5.7.1 Scenario 1 Three-Step Naïve Method: CSC, 𝟐𝟐 × 𝟐𝟐 Network 

Scenario 1 consists of CSC for a 2 × 2 network. Results of the Three-Step Naïve Method is 

displayed step by step.  

a) Cycle Length  

The first step is to optimize the cycle. Five different demand levels (levels 1-5) are used: 560, 

1120, 1680, 2240, 2800 total vehicles over the time horizon. Results are shown in Figure 5-10. 

Both ATT and TTD are convex, which provides evidence that Bisection Algorithm (BA) can be 

applied to search for the local optimal point of the cycle length. Points of minimal value show 

that when demand is increasing, the optimal cycle length is increasing as well. These results for 

cycle length have the same trend as the initial work done by Webster (1958) for a single 

intersection.  
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Figure 5-10 Curves of ATT and TTD under different demand levels. 
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b) Phase Split 

Demand level 3 has an optimal cycle length 𝑐𝑐𝑙𝑙∗ = 48. The offset is fixed as the initial value 0, 

and here solves the problem via the global search method. 

 Set the feasible set of phase splits for Problem (A2) as  

Ωphase = {(12 12 12 12), (16 16 8 8), (16 8 16 8), (16 8 8 16), (8 16 16 8), (8 16 8 16), (8 8  16 16)} 

 The optimal phase is 𝑔𝑔𝑚𝑚∗ = (12 12 12 12),𝑚𝑚 = 1,2,3,4 , which results from the 

uniformly distributed demand. The minimal 𝐴𝐴𝑇𝑇𝑇𝑇 = 159.27 and 𝑇𝑇𝑇𝑇𝑂𝑂 = 2.24 × 105. 

c) Offset 

Continue with the values above for 𝑐𝑐𝑙𝑙∗, 𝑔𝑔𝑚𝑚∗ , and 𝑚𝑚. Set 𝛾𝛾 = 6, then the step size for the gradient 

search approach 𝛼𝛼 = 𝑐𝑐𝑙𝑙∗

𝛾𝛾
= 8.  The resulting optimal offsets are 𝑜𝑜𝑓𝑓1 = 16, 𝑜𝑜𝑓𝑓2 = 24, 𝑜𝑜𝑓𝑓3 = 32, 

𝑜𝑜𝑓𝑓4 = 0, final 𝐴𝐴𝑇𝑇𝑇𝑇 = 154.74, and 𝑇𝑇𝑇𝑇𝑂𝑂 = 2.19 × 105. 𝐴𝐴𝑇𝑇𝑇𝑇 is reduced by 2.84% and 𝑇𝑇𝑇𝑇𝑂𝑂 by 

2.33% from the previous step. 𝐶𝐶𝑇𝑇 = 32.45 seconds. 

 The results show that the Three-Step Naïve method can solve the CSC problem for a 

2 × 2  network. In addition, the bisection, global search, and gradient search methods are 

applicable for step 1, step 2, and step 3, respectively. 𝐶𝐶𝑇𝑇 is acceptable for the time horizon  𝑇𝑇 =

300 time units. 

5.7.2 Scenario 2 Two-Layer Process: DSC-2, 𝟒𝟒 × 𝟒𝟒 Network 

Scenario 2 shows the two-layer process of the DSC system. The example used is a DSC-2 case 

for a 4 × 4 network. The stop iteration number is 5. The cycle length is fixed to 60. There are 

351 vehicles over the time horizon 𝑇𝑇 = 300. The number of CPU cores is 16. 𝛾𝛾 = 6 for the 

Three-step Naïve Method. Results for each iteration are shown in Table 5-2. 
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Table 5-2 Iterations of Scenario 2 

# of Iteration 1 2 3 4 5 

ATT 180.64 144.67 133.38 133.35 141.16 

TTD 4.31E+04 3.04E+04 2.65E+04 2.65E+04 2.96E+04 

Cycle Length 60 60 60 60 60 

Phase Split & Offset  

in each iteration 

(Each row is green 

 times of 4 phases,  

and offset for each 

 intersection) 
#1:   #2:  

#3:    #4:  
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#5:  
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The optimal solution results in 𝐴𝐴𝑇𝑇𝑇𝑇 = 133.35 and 𝑇𝑇𝑇𝑇𝑂𝑂 = 2.65 × 104. In this scenario, 

𝐶𝐶𝑇𝑇 = 151.81 secs. From the first iteration, 𝐴𝐴𝑇𝑇𝑇𝑇 is reduced by 22.87%, while 𝑇𝑇𝑇𝑇𝑂𝑂 is reduced by 

38.52%. 

Table 5-2 shows each iteration in the DSC case. The remaining scenarios measure the 

impact of CPU core numbers, stop iteration numbers, and different network decompositions 

based on the performance measures used (𝐴𝐴𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑂𝑂, and 𝐶𝐶𝑇𝑇). 

5.7.3 Scenario 3 CPU Cores: CSC, 𝟐𝟐 × 𝟐𝟐 

Core numbers are tested to observe the impact on 𝐶𝐶𝑇𝑇. Here uses a CSC case with a 2 × 2 

network, with 192 vehicles over the time horizon. 

Figure 5-11 shows that when the number of CPUs increases, CT will decrease from over 

250 seconds to around 10 seconds. However, the curve is convex, which means the marginal 

benefit decreases with respect to the number of CPU cores. This decrease demonstrates the 

computational limitations of a centralized system even with a powerful computing cloud server. 

 

Figure 5-11 Impact of CPU cores on CT. 
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5.7.4 Scenario 4 Iteration Number: DSC-1, 𝟐𝟐 × 𝟐𝟐 

Here demonstrates how the number of iterations impacts DSC system performance, using a 

2 × 2 network decomposed into four 1 × 1 subnetworks. There are 192 vehicles over the time 

horizon, the same demand as in Scenario 3. 

The objective function converges as the number of iterations increase (Figure 5-12), 

evidence of the convergence for the two-layer process. In other words, there exists an 

equilibrium between demand and traffic signal optimization. The two objectives, ATT and TTD, 

correlate since they have similar trends when the iteration number increases. 
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Figure 5-12 Number of iterations on performance of DSC system 
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5.7.5 Scenario 5 Network Decompositions 

Scenario 5 is designed to compare different decompositions under different short-term OD 

demand profiles. The demand input is shown in Table 5-3. Demand is increased from level 1 to 

level 3. Short-term OD Demand is generated randomly following uniform distribution over OD 

pairs and the time horizon. The mean value and standard variance are 𝜏𝜏, 2𝜏𝜏, 3𝜏𝜏 /od for the three 

levels, respectively. 𝜏𝜏 is the adjust coefficient for different network sizes to balance saturation 

rate under the same demand level for all the networks. The number of control variables for one 

intersection is 6, so the maximum number of control variables in the simulation is 216 for the 

6 × 6 network. 

 

Table 5-3 Demand Profile of Scenario 5 

Network Size 
Level 1 

(𝝉𝝉/od) 

Level 2 

(𝟐𝟐𝝉𝝉/od) 

Level 3 

(𝟑𝟑𝝉𝝉/od) 
𝝉𝝉 # of intersections # of control variables 

𝟏𝟏 × 𝟏𝟏 96 168 228 12 1 6 

𝟐𝟐 × 𝟐𝟐 192 360 552 6 4 24 

𝟑𝟑 × 𝟑𝟑 284 520 816 4 9 54 

𝟒𝟒 × 𝟒𝟒 351 753 1089 3 16 96 

𝟔𝟔 × 𝟔𝟔 574 1082 1205 2 36 216 

 

For DSC-1 cases, subnetwork size is 1 × 1  with one intersection. For DSC-2 cases, 

subnetwork size is 2 × 2 with four intersections. Considering CSC case as decomposing the 

whole network into one subnetwork, CSC, DSC-1, and DSC-2 are regarded different network 

decompositions for the same network. 

Since the primary calculation of the system is in the local layer of the two-layer process, 

and the local MEC has a computing unit located at each intersection, the total number of cores 
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used for the DSC system is equal to the number of intersections inside the network. Limited to 

the test environment, here will use clusters with the same number of CPU cores to intersections 

instead. The numbers of cores used for DSC cases are 4, 9, 16, 36 for 1 × 1, 2 × 2, 3 × 3, 4 × 4, 

6 × 6 networks, respectively. Since CSC system computation is completed in the cloud server, 

40 cores are used. 

Table 5-4 outlines all the results for Scenario 5. Each case is the result of 10 iterations. 

Table 5-4 Test Results of Scenario 5 

Network 
Size 

Demand 

Level 

DSC-1(subnetwork is 

𝟏𝟏 × 𝟏𝟏) 

DSC-2(subnetwork is 

𝟐𝟐 × 𝟐𝟐) 
CSC 

Level 

1 

Level 

2 

Level 

3 

Level 

1 

Level 

2 

Level 

3 

Level 

1 

Level 

2 

Level 

3 

1 × 1 

ATT       26.76 24.42 19.68 

TTD       
2.04E+

03 

3.54E+

03 

4.46E+

03 

CT (sec)       0.55 0.64 0.65 

2 × 2 

ATT 71.98 74.69 71.73    64.89 68.39 64.84 

TTD 
7.44E+

03 

1.63E+

04 

2.46E+

04    
7.32E+

03 

1.43E+

04 

2.29E+

04 

CT (sec) 6.28 5.51 5.52    14.36 14.76 14.51 

3 × 3 

ATT 105.38 110.81 117.91    100.55 108.08 112.86 

TTD 
1.70E+

04 

3.39E+

04 

6.03E+

04    
1.17E+

04 

2.18E+

04 

3.80E+

04 

CT (sec) 16.44 16.01 16.13    
6023.8

8 

5954.0

0 

6607.2

2 

4 × 4 

ATT 135.25 176.37 170.77 129.46 164.24 169.21    

TTD 
2.74E+

04 

8.98E+

04 

1.26E+

05 

2.51E+

04 

8.13E+

04 

1.26E+

05    

CT (sec) 45.25 44.17 44.81 299.63 303.61 299.01    

6 × 6 

ATT 234.17 299.44 285.00 210.02 281.35 245.14    

TTD 
8.86E+

04 

2.34E+

05 

2.50E+

05 

7.47E+

04 

2.00E+

05 

2.15E+

05    

CT (sec) 287.56 286.19 283.41 772.50 769.49 521.23    
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 * Value of ATT and TTD are in time unit. 

 Table 5-4 outlines the case for CSC only since the 1 × 1  network only has one 

intersection. In addition, 2 × 2  and 3 × 3  networks cannot be divided into more 2 × 2 

subnetworks. The DSC-2 case is not possible for either network. Since CT increases 

exponentially as the CSC case network size increases, there are no CSC cases for 4 × 4 and 

6 × 6 networks. CT for the CSC case of the 3 × 3 network is ~1h 30min, which is high for any 

real-time application, thereby making it problematic for a larger-sized network in these 

conditions. 

In Table 5-4, the best value among different demand levels for cases of the same network 

and decomposition (DSC-1, DSC-2, or CSC) is shaded in grey. For TTD, the best case is always 

the one with the lowest demand. Since demand reflects the total number of vehicles in the 

network, the resulting TTD is correlated. However, for ATT, the best case is not consistent with 

demand level. For example, the best case is demand level 3 for network 1 × 1 in CSC cases and 

network 2 × 2 in both the DSC-1 and CSC cases due to the varying distribution of demand 

profiles. For larger networks, cases with lowest demand have the best ATT and TTD because 

larger networks seem to be oversaturated in the high demand level as compared to smaller 

networks. For example, ATTs in both DSC-1 and DSC-2 cases of network 6 × 6 increase by 30% 

approximately from demand levels 1 to 2. In summary, TTD is positively correlated to demand 

while ATT will depend on demand distribution and signal time, especially in cases of small 

networks.  

Figure 5-13 illustrates the results of comparing CT of cases in the same network 

decomposition.  
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Figure 5-13 Impact of number of intersections on CT, CSC and DSC-1 cases 

 Trend of CTs of CSC and DSC-1 cases are investigated by increasing number of 

signalized intersections. Here, the goodness of fit for CSC cases is measured by power function. 
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number of intersections increase. Given that the relationship is convex, the goodness of fit for 

DSC-1 is measured using 3-degree polynomial function. However, the coefficients for 𝑥𝑥2 and 𝑥𝑥3 
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the DSC-1 cases is nearly linear. R-square values for both cases are over 99%. Fits for the CSC 

cases using polynomial functions are low on goodness of fit and thus, not shown here. The 

coefficients shown here just demonstrate the trend of CTs in both CSC and DSC-1 cases. The 

number may differ in different simulation environment. When network size increases, based on 

results comparison from CT, DSC-1 system is more computational efficient, which is more 

suitable for real-time applications of larger size networks than the CSC system. 

 For cases of same network size, this work further compares the performance of different 

decompositions, as per Table 5-5. Since the intersection of CSC cases and DSC-2 cases are 

empty, the performance ratios over DSC-1 cases is used for other cases with same demand level 

and network size.  

Table 5-5 Comparison Between Different Decompositions 

Network Demand Level 1 Demand Level 2 Demand Level 3 
CSC/DSC-1 

𝟐𝟐 × 𝟐𝟐 
ATT 0.90 0.92 0.90 
TTD 0.98 0.88 0.93 
CT 2.29 2.68 2.63 

𝟑𝟑 × 𝟑𝟑 
ATT 0.95 0.98 0.96 
TTD 0.69 0.65 0.63 
CT 366.42 371.80 409.72 

DSC-2/DSC-1 

𝟒𝟒 × 𝟒𝟒 
ATT 0.96 0.93 0.99 
TTD 0.92 0.91 1.01 
CT 6.62 6.87 6.67 

𝟔𝟔 × 𝟔𝟔 
ATT 0.90 0.94 0.86 
TTD 0.84 0.92 0.80 
CT 2.69 2.69 2.76 

   

From the ratio of CSC versus DSC-1 cases in the upper half of Table 5-5, evidence can be 

found that DSC-1 cases emerge as the most computationally efficient. Ratios for CT in all cases 

are greater than one. In addition, CT is reduced by around 55% and 99.7% as compared to CSC 

cases for 2 × 2 and 3 × 3 networks, respectively. However, ATT and TTD for DSC-1 cases are 

inferior. Ratios for ATT and TTD for all cases are smaller than one. In general, DSC-1 cases 

result in much better CT than CSC cases, but demonstrate poorer performance in ATT and TTD.  
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 When comparing CSC with DSC-1 cases, the improvement of ATT is around 10% for 

2 × 2 network, while the improvement is less than 5% for 3 × 3 network for the CSC cases. 

However, there is significant improvement of TTD for CSC cases in 3 × 3 network compared to 

2 × 2, for which ratios are less than 0.7 when compared to those of 2 × 2 networks (over 0.88).  

The same trend happens when comparing DSC-2 with DSC-1 cases. Cases of 6 × 6 network are 

better in terms of TTD as compared to 4 × 4 network cases.  Suitable objective functions should 

be considered for optimizing cases in different scenarios. 

 In addition to comparing DSC-2 and DSC-1 cases, CT ratios of 6×6 networks are 

approximately 2.7, smaller than the ratios of the 4 × 4 networks. These ratios demonstrate that 

expanding DSC-2 to a more extensive network does not sacrifice much computational efficiency. 

However, the ratio of CT jumps from less than 3 to over 300 with increases in network size when 

looking at CSC cases. This change highlights the limitation of CSC cases when expanding 

network size. 

As a final note, results of DSC-2 and CSC cases cannot be directly compared in Table 5-5. 

However, feasible solutions from the DSC system are a theoretical subset of feasible solutions 

from CSC systems. Thus, the CSC system could achieve better ATT and TTD than all DSC 

systems for the same network. The CT ratio for DSC-2 over DSC-1 in a larger network is 

superior; the CT ratio for CSC over DSC-1 in a larger network is inferior. As a result, it can be 

expected that DSC-2 cases are more computationally efficient than CSC cases in the same-sized 

network.  

 In summary, Section 5.7 has developed five scenarios to test CSC and DSC systems. 

Scenarios 1 and 2 demonstrate the Three-step Naïve Method in a CSC system of a 2 × 2 network 

and two-layer process to optimize signals in a 4 × 4  network by decomposing it into four 

subnetworks, respectively. Scenario 3 shows that an increasing number of cores for the 

computation can increase computational efficiency while marginal revenue decreases. Scenario 4 

shows a convergence of the DSC system when iteration numbers increase. Scenario 5 compares 

cases with different network decompositions and demand levels. Results demonstrate that DSC 

cases have significantly better performance on CT and weaker performance on ATT and TTD. 

Network decomposition also has an impact on three scales. Increases in the subnetwork size may 

see reductions in ATT and TTD and loss of computational efficiency for the cases tested. 
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5.8 Summary 

This chapter aims to develop and compare CSC and DSC systems using short-term OD demand 

as inputs in an MEC-enabled CV environment and to investigate the impact of network 

decomposition on performances for both systems. Control variables are considered cycle length, 

phase split (green times for all phases), and offset for each intersection inside the network. In 

addition, two control objectives are formulated in the optimization model: minimal Average 

Travel Time (ATT) and Total Travel Delay (TD). 

Network dynamics are based on a G/G/n/FIFO open queuing network model, solved by 

simulation in MATLAB. Signal timing is proposed using a standard ring-and-barrier diagram 

with four phases and all-red intervals. Considering each phase as a virtual link, it is assumed that 

travelers will choose the paths with minimal instantaneous travel time. The optimal control 

problem for network signals is formulated with OD demand and free-flow travel time as inputs. 

However, the original problem is NP-complete due to non-convex variables and nonlinear 

constraints. Therefore, a Three-step Naïve Method is applied to decompose it into three 

subproblems and develop a DSC system within a CV environment with MEC. Thus, the DSC 

system decomposes the network into subnetworks, with each subnetwork controlled by an 

individual agent (regional MEC controller). Agents can exchange information in real-time. 

Finally, a two-layer process is proposed to solve the DSC system. 

Both structures of CSC and DSC systems are constructed in the MEC-enabled CV 

environment. And this environment guarantees low data transmission latency. However, data 

analysis in CSC is processed by the cloud server in the central TMC, while data analysis in DSC 

is divided into three major functions run on the cloud server and MEC devices (local MECs and 

regional MEC controllers), which fully uses the computational resources in the network. 

Numerical simulations were performed via five scenarios where demand was randomly 

generated following a uniform distribution. Scenarios 1 and 2 helped identify the basic settings 

and results of the CSC and DSC systems. Scenario 3 demonstrated the limitations of solving 

CSC cases against increasing the number of CPU cores. Scenario 4 gave an example for the 

convergence of the loop in the two-layer process for DSC cases. Scenario 5 investigated both 

systems in cases with different network decompositions and demand levels.  
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The results show that network decomposition with smaller subnetworks results in better 

computational efficiency but reduced performance on ATT and TTD. For example, the CSC case 

for a 3 × 3 network has a CT of 90 minutes, while the DSC-1 case with the same demand takes 

16 seconds – a reduction between 55% - 99.7%, which is more than the 40% reduction of a 

recent study (Chow et al., 2020). In addition, the DSC system can be regarded as the physical 

combination of several small CSC systems if considering each end of the traffic network as 

connected to the central TMC with fiber. The Three-step Naïve Method used in CSC systems to 

solve traffic signal optimization is the same method used to solve optimal traffic signal timing 

plans in each subnetwork of the DSC systems. In this case, the method – a combination of the 

bisection method, global search, and gradient search approaches – is highly inefficient. Thus, the 

main difference between the systems is structure. The results show notable improvement in 

computational efficiency with some, but not significant, loss of ATT and TTD compared to the 

CSC system, thus demonstrating the value of the DSC system structure. 

The results also revealed the ability of the DSC structure, with the scalable 

decomposition method, to apply to more extensive networks, which suffer acceptable losses of 

computational efficiency compared to the CSC system. Although the performances of ATT and 

TD are positively correlated, some cases revealed that suitable objectives should be chosen for 

the different cases. 

This work used a simulation-based method to gather more realism to the framework of 

network signal optimization. Limitations of this work should be highlighted as future research to 

pursue. First, the network traffic signal control system needs to be tested in real-world traffic 

networks in a CV environment with MEC. The simulation in a cloud server with parallel 

computing is not equal to a DSC system within a real-world CV environment with MEC, 

constituting the need for field tests. Second, algorithms for traffic signal optimization are simple 

and time-consuming in the CSC system, and more efficient algorithms must be developed for 

real-world applications. Finally, the route guidance function/traffic assignment model in Central 

TMC is under-investigated in our study, requiring further research into its limitations. 
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6 CONCLUSIONS 
 

This chapter provides a summary of the research, key findings, contributions, and limitations and 

future work. 

6.1 Research Overview 

This thesis develops a traffic signal control system for large-scale networks. The broad goals in 

optimizing the signal timing control plan for an urban traffic network include more efficient 

traffic capacity utilization, improved vehicle mobility. However, network-level traffic signal 

optimization is a Nondeterministic Polynomial Time (NP)-complete problem, and remains 

unsolved with respect to optimizing both objectives and computation resources. It is also difficult 

to implement due to its requirement for high-quality data, low data transmission latency, and 

wide bandwidth communication network. 

 The development of new technologies, such as Connected Vehicle (CV) and Mobile 

Edge Computing (MEC), will provide high-quality data and guarantee low data transmission. In 

fact, 5G and MEC projects with TELUS are in planning phases in a testbed in Edmonton, AB, 

Canada. Thus, the network traffic signal control system developed in this thesis is assumed under 

the MEC-enabled CV environment.   

Chapter 2 provides a literature review in four key areas related to this research: mobile 

edge computing (MEC), dynamic traffic assignment (DTA), network traffic signal control, DTA-

based network traffic signal control. The review reveals a need to explore DSC systems for 

large-scale networks considering greater realism of traffic signal control, new forms of data 

inputs, and new network decomposition methods. 

Chapter 3 introduces basic assumptions and inputs of models used in this work. The 

network traffic signal control system in this thesis is assumed to be constructed in the MEC-

enabled CV environment. This guarantees the availability of short-term OD demand, low data 

transmission latency, and ability of distributed computation. In addition, assumptions on DTA 

model are made such as “No Departure Time Choice”, “First-In-First-Out (FIFO)”, “No 

Reroute”, and “Point Queue” to help predict traffic dynamics within the network traffic signal 
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control systems. At last, this chapter also describes limitation of local counts and advantage of 

short-term demand. Three types of short-term demand used in this thesis are defined. 

Chapter 4 develops a queue-based DTA model with traffic signal timing plan with cycle 

length, phase split, offset, and all-red phases. Combining DTA and traffic signal control is not an 

innovation. But most of the literature only consider simplified traffic signal timing plan. Within 

the model, travelers are assumed to choose the minimal experienced travel time and marginal 

experienced travel time for UO-DTA and SO-DTA cases respectively. Case study is proposed in 

a single OD corridor network. By solving both UO-DTA and SO-DTA. 

Chapter 5 develops and analyzes a simulation-based framework of decentralized signal 

control system in this research. To extend the arterial network study of Chapter 4, a simulation-

based G/G/n/FIFO open Queueing Network Model (QNM) is proposed to predict traffic 

dynamics. Traffic signal timing plans are represented using a standard ring-and-barrier diagram 

with four phases and all-red intervals. Considering each phase of traffic signal control as a virtual 

link with cost as waiting time, it is assumed that travelers will choose paths with minimal 

instantaneous travel time. The optimal control problem for network signals is formulated with 

short-term OD demand and free flow travel time as inputs. However, the original problem is NP-

complete due to non-convex variables and non-linear constraints. Therefore, a Three-step Naïve 

Method is applied to decompose it into three sub-problems, and a DSC system is further 

developed within the MEC-enabled CV environment. The DSC system decomposes the network 

into subnetworks, with each subnetwork controlled by its own agent (regional MEC controller). 

Agents can exchange information in real-time. Lastly, a two-layer process is proposed to solve 

the DSC system. The proposed control systems are applied to a set of test scenarios constructed 

using different demand levels in different grid networks. This chapter also investigates the 

impact of network decomposition strategy on performance of the network traffic signal control 

system. Performance is evaluated via Computational Time (CT), Average Travel Time (ATT), 

and Total Travel Delay (TTD). 
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6.2 Research Findings 

Research findings are presented in the order of the research questions of Section 1.2. 

1. Coordinated network traffic signal optimization is based on prediction of traffic 

dynamics. How do we predict traffic dynamics in a large-size traffic network with 

signalized intersections? 

Network traffic signal control is the management of network traffic demands by adjusting 

the traffic signal timing plan for each intersection. Section 3.3 suggests applying short-

term OD demand as inputs to predict traffic dynamics, since traditional traffic dynamics 

prediction based on local counts is shorted ranged in both time and space. However, DTA 

model, which take short-term OD demand as inputs, shows its advantage to capture the 

interactions between travelers and the whole traffic network. Additional discussion is 

made about the foreseeable availability of short-term demand with new technologies.  

Chapter 4 continues to explore this question by developing a queue-based DTA model to 

predict traffic dynamics, using short-term OD demand as inputs in a corridor network 

with two signalized intersections. 12 cases based on three demand profiles and four 

different signal phase plans are tested. Results show the ability of the queue-based DTA 

model to solve UO-DTA and SO-DTA problems, which are the fundamental problems of 

network traffic assignment. ATT is used to evaluate all the cases. As expected, SO-DTA 

cases are shown to be superior to UO-DTA cases in terms of ATT, with this difference 

increasing with higher demand. In addition, when comparing the impact of variables for 

traffic signal controls as cycle length, phase split, and offset, all three variables have 

significant effects on both path sharing and ATT. 

2. In the MEC-enabled CV environment, how do we design the structure of a 

decentralized signal control (DSC) system? And how do we evaluate the 

performance of these systems? 

This question is answered in Chapter 5. In the MEC-enabled CV environment described 

in Chapter 3, each intersection has a local MEC and each subnetwork has a MEC 

controller. Based on that, this thesis develops a two-layer process of DSC system as show 
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in Figure 5-8. The Central-TMC will gather this OD information from the regional MEC 

controllers. The output from this first layer – the short-term demand for each path – is 

input to the second layer. The second layer has two functions: traffic dynamics (traffic 

state estimation) on regional MEC controllers and traffic signal optimization on local 

MECs inside each subnetwork. In the CSC system, all three functions are run inside the 

cloud server. However, in the DSC system, the sole function of the Central-TMC is to 

calculate short-term path demand to provide route guidance. Remaining optimization 

tasks are allocated to the regional MEC controller inside each subnetwork. In addition, 

local MECs in the subnetwork are involved in the computation of the traffic signal 

optimization function. All the computation resources of the DSC system are fully used. 

In Chapter 5, overall network performance is evaluated using measures of Computational 

Time (CT), Average Travel Time (ATT), and Total Travel Delay (TTD). Five scenarios 

are designed to understand the new structure of DSC system. Findings from scenarios 1-4 

are listed below: 

• The Three-Step Naïve method helps to optimize traffic signals in CSC cases and 

traffic signals in subnetworks of DSC cases, which improves ATT and TTD for 

all systems. 

• The two-layer process can produce convergent solutions for DSC cases. The 

results of ATT or TTD for DSC system will remain the same even with iteration 

number large enough. 

• The optimization of traffic signals in CSC cases is still an NP-complete problem, 

which limits CSC system for any application even with powerful computing cloud 

server. CT of CSC system will increase exponentially when network size 

increases. 

3. There are many characteristics which impact DSC system performance, such as 

network size, traffic demands, and how a network is decomposed with respect to the 

traffic signal control system. How does each of these affect traffic network 

performance? 
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This question is answered by results from Scenario 5 (See Tables 5-4 & 5-5). Network 

size is tested via grid networks varying from 1 × 1 to 6 × 6. Three demand levels are 

tested for each network size. Considering CSC case as a specific network decomposition 

method, there are three types of network decompositions are investigated: CSC, DSC-1, 

DSC-2. For CSC, the network is not divided. For DSC-1, the network is divided into 

subnetworks with size 1 × 1 . And for DSC-2, the network size is divided into 

subnetworks with size 2 × 2. 

The key findings are as follows. 

• When network size increases, ATT, TTD and CT all increases for cases with the 

same demand profile and network decomposition. CT is increasing exponentially 

in CSC cases and increasing almost linearly in DSC-1 cases when network size 

increases. 

• When demand increases, ATT, TTD increases for cases with the same network 

size and network decomposition. However, CT remain almost the same, i.e., it is 

not sensitive to demand. 

• ATT and TTD are positively correlated among cases. However, there are also 

results from a few cases which show that suitable objectives should be chosen for 

different scenarios. 

• Network decomposition with smaller subnetworks results in better computational 

efficiency (less CT), but reduced performance on ATT and TTD.  

• The scalable decomposition method in DSC systems is extendable to larger 

networks, which suffer acceptable losses of computational efficiency as compared 

to the CSC system. Since the curve of CT on number of intersections for DSC-1 

cases is close to linear, and the CT ratio between DSC-2 and DSC-1 cases is 

reduced when size of network increases. 

• The Three-Step Naïve Method used for both systems is highly inefficient resulting 

from CT. However, this highlights the value of the DSC system structure since the 

results show significant improvement in computational efficiency with some, but 

not significant, loss of ATT and TTD as compared to CSC system. 
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6.3 Research Contribution 

This thesis contributes to both academic research and practice in decentralized signal control 

system for large-scale network.  

Academic Contributions 

1) A queue-based DTA model for traffic network with real traffic signal timing plan 

Although DTA has been an effective tool to describe traffic dynamics for traffic 

optimization, and many researchers have considered traffic signal control in their models, 

signal timing representations have been simplified without considering more realistic and 

critical phase sequence and duration restrictions. This work formulates traffic signal 

timing as a component of the link performance function with three control variables: 

cycle length, phase split, and offset. In addition, this work also solves UO-DTA and SO-

DTA in a corridor network. In addition, the queue-based DTA model in Chapter 4 is 

extended to a simulation-based QNM in Chapter 5 to predict traffic dynamics in larger 

networks.  

 

2) A simulation-based framework of DSC system within the MEC-enabled CV 

environment 

Although many researchers have developed network traffic signal control systems within 

current technological paradigm, this work is proposed within a future technological 

paradigm, with the assumption that the DSC system is based on a MEC-enabled CV 

environment. A two-layer process is proposed, in which distributes three functions route 

guidance, traffic dynamics prediction, and traffic signal optimization by decompose the 

whole network into subnetworks. Each subnetwork has a MEC controllers that optimize 

signals within the subnetwork with local MECs at each intersection. This framework 

comes with new data inputs, solving algorithm, and decomposition method compared to 

previous research. In addition, the computational structure of DSC system gains 

significant reduction comparing to CSC system, which is superior to some existing work. 
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3) A scalable and extendable decomposition method for a DSC system 

The decomposition method used for this study is based on size of subnetwork. The size of 

subnetwork can be 1 × 1, 2 × 2, or any other grid size. A Path Decomposition Index 

(PDI) is proposed to explain how the decomposition method not only decomposes the 

geographic of the network, but also decomposes the path demands. The results also 

explain the ability of the scalable decomposition method to apply to larger networks, 

which suffer acceptable losses of computational efficiency. Compared to the previous 

work only consider intersection-based decomposition or subnetwork-based 

decomposition only for specific networks. This decomposition method is more scalable 

and extendable. 

 

Practical Contributions 

1) Guidance to transportation engineers and planners about how to optimize 

decentralized signal control system via network decomposition 

Chapter 5 results show that network decomposition with smaller subnetworks results in 

better computational efficiency (less CT), but reduced performance on ATT and TTD. In 

other words, if higher performance on ATT, TTD, or any other objective is required, 

network decomposition with larger subnetworks should be applied. Meanwhile, 

increasing subnetwork size in DSC system for a large-size network will require more 

computational capacity. As such, constrained to existing computational capacity, 

maximizing subnetwork size is a general way to get the best performance of the whole 

traffic network in terms of the control objective. 

2) Significant reduction in computational time for DSC system compared to CSC 

system 
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Among the three performance metrics ATT, TTD, and CT, the most critical to enable a 

real-time control application is low computational time (CT). Significant reduction of CT 

in DSC system compared to CSC system demonstrates the importance of a DSC system 

in realizing real-time network traffic signal control. For example, the CSC case for a 3×3 

network has a CT of 90 minutes while the DSC-1 case with the same demand profile 

takes 16 seconds, demonstrating a reduction of over 99%. In addition, there remains 

significant room to improve the DSC system documented in this thesis. For example, the 

Three-Step Naïve Method used for traffic signal optimization is highly computational 

inefficient, replacing it with excellent algorithm will make CT much lower. 

 

6.4 Research Limitations and Future Work 

Details on research limitations and potential methods of improvement are described as follows. 

1. The DSC system is not tested in any real-world traffic network and the CV environment with 

MEC is described in a high level. And simulation in cloud server with parallel computing is 

not equal to a DSC system within a real-world CV environment with MEC. However, 

ongoing work is taking place in the testbed of our research group in South Campus. 5G and 

MEC devices will be fully installed in the testbed in the next four years as in the project plan 

with Telus. After devices are ready, there will be chances to test the DSC system in real world. 

 

2. Algorithms for traffic signal optimization are simple and time-consuming in the CSC system. 

The three-step naïve method is inefficient. When network size increases to 3 × 3 , CT 

increases to more than 1.5 hours. This leads the further work to develop innovative 

algorithms to optimize traffic signal controls in CSC system. In addition, each subnetwork in 

DSC system in this work can be regarded as a small CSC system since it runs the same 

algorithm with CSC. Future work will also investigate the potential to develop an algorithm 

specifically for traffic signal control optimization problem in DSC system.  

 

3. Although the focus of this work is network traffic signal control, it requires use and 

assumptions of short-term demand prediction and dynamic traffic assignment. Part of the 
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work on short-term demand prediction and DTA modeling can be improved in the future 

work. 

 

4. As discussed in Chapter 2, optimization on network decomposition is one key to optimizing 

DSC system. However, this thesis has not investigated how to optimize this decomposition 

itself. In future work, since the network decomposition method is scalable in this research, 

there is great potential to develop models and algorithms for optimizing network 

decomposition. And this improvement will also give decision-makers more directed guidance 

on choosing locations of MEC devices. 
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