University of Alberta

Studies towards total synthesis of MPC1001F - a triketopiperazinedihydrooxepin natural product
 by

Dipanjan Bhattacharyya

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry
©Dipanjan Bhattacharyya

Fall 2012
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. D. L. J. Clive, Department of Chemistry (Supervisor)

Dr. L. Li, Department of Chemistry

Dr. T. L. Lowary, Department of Chemistry

Dr. F. G. West, Department of Chemistry

Dr. R. Narain, Department of Chemical and Materials Engineering

Dr. G. Dmitrienko, University of Waterloo (External Examiner)

DEDICATED TO
MY PARENTS AND MY WIFE DEBJANI

Abstract

The thesis describes synthetic studies towards MPC1001F, a triketopiperazine-dihydrooxepin natural product. Another related member of this class of natural products is MPC1001 with an epidithiodioxopiperazine core and potent antitumor activity. Our goal was to construct the molecular skeleton of the comparatively simpler MPC1001F first so that the knowledge gained during this project can be applied to the synthesis of the more complex MPC1001. None of these MPC natural products have yet been synthesized. An enantioselective synthesis of the tricyclic core of MPC1001F is discussed first, by a route which followed the strategy on a related core, already established in our group. The main synthetic challenges encountered in this route are discussed. These involved oxidation of an alcohol without epimerization next to the resulting aldehyde, oxidation of an alcohol in the presence of selenium, and construction of a tetrahydrooxepin ring via a conjugate addition-elimination process. An insurmountable obstacle in this route led us to explore a different strategy.

In the next section, several unsuccessful approaches towards the core, starting from already-synthesized intermediates from the first route, are described. Finally, I designed a new short enantioselective sequence towards the core structure which is shown in the third section of this thesis. The synthesis of the tricyclic core has been achieved following this new strategy. The last few steps to the fully functionalized core are still being studied.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. D. L. J. Clive for his support and guidance throughout my Ph.D. program.

I am grateful to all the present and past group members for their assistance and valuable suggestions and for creating a research-friendly environment.

I thank the support staff of the department (IR, MS, NMR, elemental analysis laboratories, glass blowing, electronic, machine and chemical shops), especially to Mark Miskolzie for his help with NMR problems, Dr. Angelina Morales-Izquierdo for MS characterization, Dr. Wayne Moffatt for his assistance in polarimetry measurements, Dr. Robert McDonald for X-ray crystallographic data, and Jason Dibbs for his help in designing a special glass apparatus required in our ozonolysis process.

I would like to thank the University of Alberta for a graduate teaching and research assistantship.

Finally, I would like to express my gratitude to my parents and my wife Debjani for their continuous encouragement throughout my PhD program.

TABLE OF CONTENTS

1. Introduction 1
1.1. Isolation and structure determination of MPC1001F and biological properties of related compounds. 1
1.2. General biosynthetic origins of ETP-dihydrooxepin class
of natural products 5
1.3. A review on the synthesis of dihydrooxepins 9
1.4. A review on the synthesis of DKP rings containing sulfur substituents 13
2. Results and Discussion 26
2.1. Previous synthetic work in this group 26
2.2. Enantioselective construction of the tricyclic
ABC core of MPC1001F 29
2.3 Synthetic attempts towards the tricyclic core of MPC1001F from previously synthesized late-stage intermediates 54
2.4 New concise enantioselective routes towards the tricyclic core 77
3. Conclusion 91
4. Experimental Section 95
5. Appendix : Crystallographic experimental details 165
6. References 187

LIST OF FIGURES

Figure 1. ORTEP diagram of alcohol 33.1. .. 38
Figure 2. NMR studies. .. 39
Figure 3. NMR comparisons of α and β aldehydes.. 42
Figure 4. ORTEP diagram of 34.4... 43
Figure 5. Special ozonolysis apparatus... 72
Figure 6. ORTEP diagram of 59.3.. 86

LIST OF SCHEMES

Scheme 1. MPC1001F and other ETP natural products... 2
Scheme 2. General biosynthetic proposals of ETP-dihydrooxepin compounds 6
Scheme 3. Rastetter's experiments to validate biosynthetic proposal for oxepins.. 8
Scheme 4. Dihydrooxepin synthesis by Cope rearrangement 9
Scheme 5. White's synthesis of dihydrooxepin.. 10
Scheme 6. Dihydrooxepin synthesis using Criegee rearrangement 10
Scheme 7. Snapper's synthesis of dihydrooxepins... 11
Scheme 8. RCM approaches towards dihydrooxepins .. 12
Scheme 9. Conjugate addition-elimination approach to dihydrooxepin unit 12
Scheme 10. Reisman's synthesis of dihydrooxepin ring...................................... 13
Scheme 11. Dipeptide ester cyclization strategy to synthesize DKP unit 14
Scheme 12. Diels-Alder reaction to make DKP ring ... 15
Scheme 13. Radical cyclization method to synthesize DKP unit 15
Scheme 14. Ugi reaction to synthesize DKP ring .. 16
Scheme 15. Aza-Wittig approach to synthesize DKP unit 17
Scheme 16. Williams's [1,3]-dipolar cycloaddition strategy towards DKP.......... 18
Scheme 17. Motherwell's strategy to synthesize sulfur containing DKP ring..... 19
Scheme 18. Schmidt's method to install sulfur on a DKP ring 19
Scheme 19. Nicolaou's synthesis of DKP unit containing SMe groups 20
Scheme 20. Trown's approach towards sulfur containing DKP ring 21
Scheme 21. Overman's synthesis of the ETP core of (+)-gliocladine C.............. 22

Scheme 22. Movassaghi's method to install sulfur on a DKP ring
Scheme 23. Synthesis of an ETP natural product by Movassaghi 23
Scheme 24. Reisman's synthesis of (-)-acetylaranotin containing an ETP core .. 24
Scheme 25. Dieckmann cyclization strategy towards DKP core of MPC1001 ... 25
Scheme 26. Prior synthetic approach to the tricyclic core of MPC1001 27
Scheme 27. Other DKP-related synthetic works developed in this laboratory.... 28
Scheme 28. Epimerization at C2 of trans-4-hydroxy- L -proline 30
Scheme 29. Synthesis of BC unit present in MPC1001F 31
Scheme 30. Strategies to install an SMe group onto the BC unit of MPC1001F. 34
Scheme 31. Functional group modifications of the BC unit of MPC1001F........ 35
Scheme 32. Protecting group study ... 36
Scheme 33. Oxidation of the primary alcohol side chain of the BC system 38
Scheme 34. Installation and modifications of the side chain on the BC unit 44
Scheme 35. Oxidation in the presence of a PhSe group 46
Scheme 36. First approach towards the tetrahydrooxepin A ring........................ 48
Scheme 37. Second approach towards the tetrahydrooxepin A ring 50
Scheme 38. Third approach towards the tetrahydrooxepin A ring 51
Scheme 39. Fourth approach towards the tetrahydrooxepin A ring 52
Scheme 40. Synthesis of the tetrahydrooxepin ring... 53
Scheme 41. Attempts to remove MEM group from the tetrahydrooxepin $\mathbf{3 6 . 3}$.. 55
Scheme 42. Unsuccessful attempts to remove MEM group 56
Scheme 43. New synthetic plan starting from vinyl ether $\mathbf{3 4 . 4}$........................... 58
Scheme 44. Attempted modifications on vinyl ether side chain of the BC unit.. 60
Scheme 45. Attempted electrophilic attack on the ethoxyvinyl unit 61
Scheme 46. Further synthetic attempts to modify the ethoxyvinyl unit 63
Scheme 47. Deprotection of TBDPS ether 65
Scheme 48. Attempted modifications of the BC system without a THP group .. 66
Scheme 49. Attempts to remove the tetrahydropyranyl unit 68
Scheme 50. Installation of the desired side chain on aldehyde 33.4 69
Scheme 51. Ozonolysis approaches to modify the allyl side chain 71
Scheme 52. Further attempted oxidative modifications of the allyl side chain 74
Scheme 53. Synthetic modifications of diol 50.2 76
Scheme 54. Use of β-alkoxy Grignard reagent 77
Scheme 55. First proposed concise route, using 55.1 79
Scheme 56. Failure of attempted double oxidation 80
Scheme 57. Second concise approach towads the tricyclic core of MPC1001F .. 8
Scheme 58. Current synthetic plan towards the ABC unit of MPC1001F 82
Scheme 59. Concise enantioselective synthesis of the ABC core 85
Scheme 60. Further synthetic modifications of the concise route 88
Scheme 61. Future plans 90
Scheme 62. Summary of attempts to synthesize the tricyclic core of MPC1001F91
Scheme 63. Summary of the new concise route towards the ABC core 92
Scheme 64. NaH-mediated Dieckmann type cyclization and sulfenylation. 93
Scheme 65. The conjugate addition-elimination strategy 94

LIST OF TABLES

Table 1. Optimization of the oxidation step... 41
Table 2. Optimization of the second oxidation step.. 47

LIST OF ABBREVIATIONS

Ac	Acetyl
AD	Asymmetric dihydroxylation
AIBN	2,2'-azobisisobutyronitrile
APT	Attached proton test
Ar	Aromatic ring
BHT	2,6-Di-tert-butyl-4-methylphenol
Bn	Benzyl
Boc	tert-butoxycarbonyl
Bop	Bis(2-oxo-3-oxazolidinyl)phosphonic
brsm	Based on recovered starting material
Bu	n-Butyl
t-Bu (or $\mathrm{Bu}-t)$	tert-Butyl
Bz	Benzoyl
CD	Circular Dichroism
DABCO	1,4-Diazabicyclo[2.2.2]octane
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCC	Dicyclohexylcarbodiimide
DHP	3,4-dihydropyran
DIBAL	Diisobutylaluminum hydride
DKP	Diketopiperazine
DMAP	4-Dimethylaminopyridine
DME	Dimethoxyethane

DMF	N, N-Dimethylformamide
DMF-DMA	Dimethylformamide dimethyl acetal
DMP	Dess-Martin periodinane
DMSO	Dimethyl sulfoxide
DP	Desired product
EDCI	N -Ethyl- N -(3-dimethylaminopropyl)carbodiimide
dr	Diastereomeric ratio
Et	Ethyl
ETP	Epidithiodioxopiperazine
Fmoc	[(9-fluorenylmethyl)oxy]carbonyl
FTIR	Fourier transform infrared spectroscopy
HSQC	Heteronuclear Single Quantum Coherence
IBX	2-Iodoxybenzoic acid
ImH	Imidazole
LDA	Lithium diisopropylamide
m-CPBA	3-Chloroperbenzoic acid
Me	Methyl
MEM	(Methoxyethoxy)methyl
mp	Melting point
MS	Molecular sieves
MW	Microwave
NaHMDS	Sodium hexamethyldisilazide
NBS	N -bromosuccinimide

NCS	N-chlorosuccinimide
NIS	N -iodosuccinimide
NMO	N-Methyl morpholine- N -oxide
NMR	Nuclear magnetic resonance
PCC	Pyridinium chlorochromate
PDC	Pyridinium dichromate
Ph	Phenyl
PMB	para-Methoxybenzyl
PPTS	Pyridinium p-toluenesulfonate
$i-\operatorname{Pr}$	Isopropyl
py	Pyridine
quant.	Quantitative yield
rt	Room temperature
SM	Starting material
TBAF	Tetrabutylammonium fluoride
TEMPO	(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
Teoc	Trimethylsilylethyl carbamate
THP	Tetrahydropyranyl
TPAP	Tetrapropylammonium perruthenate
Ts	p-Toluenesulfonyl
TBS	t-Butyldimethylsilyl
TBDPS	t-Butyldiphenylsilyl
Tf	Trifluoromethanesulfonyl

TFA
TFAA

THF
TLC
TMS

Ts

Trifluoroacetic acid
Trifluoroacetic anhydride
Tetrahydrofuran
Thin layer chromatography
Trimethylsilyl
Toluenesulfonyl

1. Introduction

1.1. Isolation and structure determination of MPC1001F and biological properties of related compounds

MPC1001F (1.1, Scheme 1), a natural product which falls into the class of epipolythiodioxopiperazine (ETP)-dihydrooxepin compounds, possesses some specific characteristic features which have made it a unique member in its class; it should more appropriately be recognized as a member of the triketopiperazinedihydrooxepin class of natural products. Three other biologically significant ETP-dihydrooxepins (1.2, 1.3, 1.4) are also shown in Scheme 1, and it can be seen that MPC1001F is structurally closely related to emestrin (1.2) and MPC1001 (1.3), although 1.1 has a somewhat simpler molecular architecture.

There are at least 14 ETPs known ${ }^{1}$ (without including their derivatives, epipolythio and epimonothiodioxopiperazines), among which gliotoxin (1.4) was the first to be reported and is the most extensively studied. All ETPs are toxic fungal secondary metabolites. MPC1001F was first isolated from the fungus Cladorrhinum sp. KY4922, which was found in a soil sample from Indonesia in the year 2004. ${ }^{2}$ Along with MPC1001F, seven other structurally related new compounds were also isolated, including MPC1001 and MPC1001B, C, D, E, G and H (Scheme 1). These compounds were classified into four different types, IIV. Most of the members including MPC1001 (1.3), fall into Type I having dithio and trithio (only for MPC1001D, 1.7) bridges. Type II members do not possess
any sulfur bridge. Types III and IV have unique features: Type III (MPC1001E,
1.8) has a tetrathio bridge, whereas the Type IV member, MPC1001F (1.1), is a

MPC1001F 1.1

gliotoxin 1.4

MPC1001E 1.8

$R^{1}=H, R^{2}=O H, M P C 1001 B 1.5$ $R^{1}=O H, R^{2}=H, M P C 1001 C 1.6$

$R^{3}=S, M P C 1001 \mathrm{G} 1.9$
$R^{3}=O, M P C 1001 \mathrm{H} 1.10$

MPC1001D 1.7

Scheme 1. MPC1001F and other ETP natural products
monothiotriketopiperazine, containing an SMe unit. In this connection it is worth mentioning that MPC1001 (1.3) was also isolated in 2005, from a fungus found in Musk Ox dung collected in Alaska. ${ }^{3}$ The structure and relative stereochemistry of MPC1001 were determined by extensive NMR experiments ${ }^{2 b}$ and, finally, the absolute configuration was assigned by comparing the CD spectra of MPC1001 and emestrin (the structure of emestrin was established by X-ray crytallography ${ }^{4}$). The structure of MPC1001F was then established by comparing its NMR data with that of MPC1001. This comparison confirmed the existence of the oxepin and benzoate subunits in 1.1. The presence of an SMe group was confirmed by FABMS analysis. ${ }^{13}$ C NMR, NOE, LSPD and HMBC correlations confirmed the rest of the structure ${ }^{2 b}$ The significant NOE correlations are highlighted in Scheme 1.

It has long been known that the presence of the sulfur atoms in the form of the disulfide bridge is an essential feature for the biological activity of ETPs. The desulfurized version of gliotoxin showed no activity against lymphosarcoma tumor cells, even at a concentration of $800 \mu \mathrm{~g} / \mathrm{mL}$, whereas a $1 \mu \mathrm{~g} / \mathrm{mL}$ concentration of gliotoxin itself was good enough for complete growth inhibition of tumor cells. ${ }^{5}$ In a report published in $1974,{ }^{6}$ Middleton showed that derivatives of sporidesmin (an ETP) lacking the disulfide bridge, or having two thiomethyl groups in its place, were absolutely inactive towards swelling of mitochondria. Hence, it is not surprising that MPC1001F was not found to show any biological activity.

It was initially thought that the oxepin ring might not contribute to the biological properties, but some synthetic derivatives of aranotin (an ETPdihydrooxepin class of natural product) where the dihydrooxepin units were replaced by other aromatic groups, did not show the activity possessed by aranotin itself. 7 Hence, one may suspect that the reactive enol ether segment in the dihydrooxepin unit might also be crucial (as is the ETP core) for the biological properties of these compounds. However, the dihydrooxepin unit is not by itself sufficient for activity, as revealed by MPC1001F.

Despite its lack of activity, we were interested in the total synthesis of MPC1001F. Our group has been working on the total synthesis of MPC1001 for the last few years. MPC1001 is biologically very important, and it is worth mentioning some of its biological properties. Our eventual goal was to use the synthetic knowledge gained during the synthesis of MPC1001F towards the subsequent synthesis of MPC1001. None of these MPC compounds (shown in Scheme 1) have been synthetically achieved.

MPC1001 exhibits antimicrobial activity against Gram positive bacteria (e.g. Staphylococcus aureus), but demonstrates comparatively weak effects towards Gram negative bacteria. ${ }^{2 c}$ It has also been found to be about 40 times more effective in terms of its antiproliferative activity against the human prostate cancer cell line DU145 than known antitumor agents like etoposide. ${ }^{2 c}$ The IC_{50} value of etoposide, for example is 400 nM while that for MPC1001 is only 9.3 nM. In 2005 it was discovered that MPC1001 (along with several other ETPs, including emestrin) is an effective chemokine receptor 2 (CCR2) antagonist; it
inhibits the binding of monocyte chemoattractant protein-1 (MCP-1) to CCR2 with an excellent IC_{50} value $(0.8 \mu \mathrm{M}) .{ }^{3}$ The MCP-1-CCR2 complex is associated with diseases like rheumatoid arthritis and atherosclerosis. Hence MPC1001 could possibly have a beneficial therapeutic effect against these diseases.

There are several other ETPs which are known to have activity against viruses, ${ }^{8}$ fungi ${ }^{4}$ and bacteria. ${ }^{9}$ Two possible mechanisms are proposed to account for the cytotoxicity of ETPs. As mentioned earlier, the disulfide bridge is an essential moiety contributing to the biological activity. It is believed that a thiol group on a protein can form a mixed disulfide bond with an ETP in an oxidative manner, thus deactivating the functions of that protein. ${ }^{5,6,10}$ For example, cysteine residues can participate in mixed disulfide bond formation. ${ }^{11}$ The second mechanism involves generation of deleterious reactive oxygen species (superoxide or peroxide), formed in a redox cycle. ${ }^{12}$ The dithio bridge can be reduced to the dithiol in the presence of cellular glutathione ${ }^{12 \mathrm{e}}$ and then the dithiol can be oxidized under aerobic conditions, generating the reactive oxygen species.

1.2. General biosynthetic origins of ETP-dihydrooxepin class of natural products

Although extensive research on biological pathways towards emestrin and MPC1001 and related structures have not been reported, it is hypothesized that emestrin could be generated by the combination of an ETP unit (which is formed
from two molecules of phenylalanine) and one molecule of benzoic acid. ${ }^{4}$ Earlier research on the biosynthesis of gliotoxin using isotopic labeling and feeding

Scheme 2. General biosynthetic proposals of ETP-dihydrooxepin compounds

GliP = gliotoxin peptide synthetase; GliC = gliotoxin cytochrome P450 enzyme; GliG = a gene enabled to code for a glutathione-S-transferase; GliM = gliotoxin methyl transferase; GliT = gliotoxin thioredoxin reductase; GSH = glutathione.
studies revealed that the DKP ring could be synthesized from phenylalanine and serine. ${ }^{1 \mathrm{a}, 13}$ A related ETP, sirodesmin (not shown in this discussion), was proved to come from serine and tyrosine. ${ }^{14}$ Hence, one can speculate that the biosynthesis of MPC1001F should also follow the same pattern (Scheme 2). A general route to the ETP core of gliotoxin ${ }^{1 a, 15}$ is shown in Scheme 2, based on recent research. Condensation of phenylalanine and serine in the presence of peptide synthetase (GliP, the term Gli stands for gliotoxin for all enzymes involved) produces the DKP unit 2.1. Oxygenation of $\mathbf{2 . 1}$ by GliC (cytochrome P450 enzyme) generates 2.2. Intermediate $\mathbf{2 . 2}$ is converted into 2.4 via intermediate iminium ion $\mathbf{2 . 3}$ by GliG (a gene enabled to code for a glutathione-Stransferase) and glutathione (GSH). Thioredoxin reductase (GliT) mediated oxidation finally provides the ETP core (2.5). Earlier labeling experiments ${ }^{16}$ also proved that cysteine is the direct sulfur source, although methionine and sodium sulfate can also be the sources of sulfur. N-Methylation occurs in the presence of methyl transferase (GliM) to afford 2.6. Finally, the synthesis of the dihydroxepin core involves formation of an arene oxide $(\mathbf{2 . 6} \boldsymbol{\rightarrow} \mathbf{2 . 7})$, rearrangement to an oxepin (2.7 $\boldsymbol{\rightarrow} \mathbf{2 . 8}$), a second oxidation to generate oxepin oxide $\mathbf{2 . 9}$, and, finally, intramolecular epoxide opening with stereochemical inversion, providing the dihydrooxepin-pyrrolidine subunit (2.10). ${ }^{17}$ This proposal also satisfies the relative stereochemistry around the core of $\mathbf{2 . 1 0}$.

To validate the above proposal Rastetter et al. carried out a few experiments mimicking the proposed nucleophilic attack on the benzene oxide and oxepin oxide ${ }^{18}$ (Scheme 3). Although the intermolecular reactions followed the expected pathway, the attempted intramolecular reaction with $\mathbf{3 . 5}$ did not give the desired bicyclic product 3.6. However, the postulated common intermediate $\mathbf{2 . 1 0}$ can be elaborated, in principle, to different structurally related natural products, including MPC1001. The biosynthesis of MPC1001F can also be predicted to follow the same pathway, but with the difference that the disulfurization and dithiol oxidation to a disulfide bridge are not required; instead, possibly a monosulfurization occurs on the DKP intermediate 2.1.

Scheme 3. Rastetter's experiments to validate biosynthetic proposal for oxepins

1.3. A review on the synthesis of dihydrooxepins

There are a few methods of constructing dihydrooxepin rings reported in the literature which will be reviewed in this section. There is a review by Snyder et al. ${ }^{19}$ on the synthesis of tetrahydrooxepins, which is beyond the scope of our discussion.

Cope rearrangement is the most common method for the synthesis of dihydrooxepin rings. ${ }^{20}$ Balci et al. ${ }^{20 a, c}$ reported thermal Cope rearrangement of aldehydes 4.1 and 4.3 to 4.2 .

Scheme 4. Dihydrooxepin synthesis by Cope rearrangement

White et al. ${ }^{20 \mathrm{~d}, \mathrm{e}}$ used a similar type of Cope rearrangement, as shown in Scheme 5. Starting from the propargylic alcohols 5.1, a four-step sequence generated the epoxides $\mathbf{5 . 2}$ which, upon heating, afforded the dihydrooxepins 5.3 with syn stereochemistry.

Kishi's group ${ }^{21}$ has explored the effect of several bases on the Criegee rearrangement of the secondary allylic hydroperoxide 6.1. They observed three products and the ratio of 6.3 and $\mathbf{6 . 4}$ was shown to be dependent on the nature of the base. Using a bulky base like 2,6-di-t-butylpyridine they got a 98:2 ratio of
6.4:6.3. Use of a catalytic Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ also gave the same results but none of 6.2 was observed in that case.

Scheme 5. White's synthesis of dihydrooxepin

Scheme 6. Dihydrooxepin synthesis using Criegee rearrangement

A tetrahydrofuran-fused dihydrooxepin synthesis was reported by Snapper's group. ${ }^{22}$ Stereoselective epoxidation of the cyclobutene 7.1 afforded compound 7.2 which, upon heating in the presence of a radical scavenger, generated two diastereomeric dihydrooxepins, 7.3 and 7.4. Several other examples were studied using different types of substituents on the cyclobutane and tetrahydrofuran rings of 7.1.

Scheme 7. Snapper's synthesis of dihydrooxepins

Scheme 8 shows the ring closing metathesis approach adopted by Fustero et al. ${ }^{23 a}$ to make benzo-fused dihydrooxepins. Starting with compound 8.1, RCM, followed by double bond isomerization, afforded the two regioisomeric dihydrooxepins 8.2 and 8.3. Recently, a synthesis of coumarin-fused dihydrooxepins was reported, ${ }^{23 \mathrm{~b}}$ as shown in Scheme 8. Coumarin 8.4 was treated with Grubbs' first generation catalyst to obtain 8.5 in 90% yield.

A conjugate addition-elimination and oxidative deselenylation strategy was adopted in our group, during synthetic studies towards the MPC1001 core, ${ }^{24}$ and this approach was later used by me in my research. The ketone 9.1 was converted into the vinylogous amide 9.2, which was then subjected to acidic
conditions to generate the tetrahydrooxepin 9.3. Selenoxide elimination, using NaIO_{4}, afforded the desired dihydrooxepin 9.4. ${ }^{24 \mathrm{a}}$

Scheme 8. RCM approaches towards dihydrooxepins

Scheme 9. Conjugate addition-elimination approach to dihydrooxepin unit

The first total synthesis of an ETP-dihydrooxepin natural product, (-)acetylaranotin, was recently achieved by Reisman. ${ }^{25}$ A metal-catalyzed cycloisomerization was utilized to synthesize chlorotetrahydrooxepin $\mathbf{1 0 . 2}$ from terminal alkyne $\mathbf{1 0 . 1}$ in excellent yield. Chloride elimination using LiCl and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ at elevated temperature gave dihydrooxepin 10.3. Alternatively, dihydrooxepin $\mathbf{1 0 . 4}$ was also synthesized in a two-step sequence from $\mathbf{1 0 . 2}$, by a method which involved removal of the Teoc protecting group from nitrogen, followed by chloride elimination.

Scheme 10. Reisman's synthesis of dihydrooxepin ring

1.4. A review on the synthesis of DKP rings containing sulfur substituents

2,5-Diketopiperazines (DKP) are very common structural subunits in natural products. A recent review by Borthwick ${ }^{26}$ covers the synthesis, reactions
and biological aspects of various DKPs, and here only a few examples of general strategies to synthesize DKPs will be discussed. Then the main discussion will focus on DKPs containing sulfur groups, as present in MPC1001F.

Since 2,5 -DKPs are essentially cyclodipeptides coming from condensation of two α-amino acids, the most obvious and common synthetic approach towards this ring system is a dipeptide ester cyclization, as utilized by Corey's group during the total synthesis of okaramine N (Scheme 11). ${ }^{27}$ Intermediate $\mathbf{1 1 . 1}$ was converted to DKP 11.2 by removal of the Fmoc protecting group on nitrogen, using $\mathrm{Et}_{2} \mathrm{NH}$, followed by spontaneous cyclization of the free amine onto the methyl ester.

Scheme 11. Dipeptide ester cyclization strategy to synthesize DKP unit

Use of the Diels-Alder reaction is also reported for the construction of the DKP ring, ${ }^{28}$ as shown in Scheme 12. The acylnitroso compound $\mathbf{1 2 . 1}$ was converted to the DKP 12.2 in a stereospecific fashion to form an intermediate towards the synthesis of amino acid $\mathbf{1 2 . 3}$.

The DKP core of stephacidin B was synthesized via a novel green radical cyclization approach ${ }^{29}$ depicted in Scheme 13. The radical cyclization precursor

Scheme 12. Diels-Alder reaction to make DKP ring
13.1 was treated with t-amyl peroxybenzoate at an elevated temperature to afford the DKP core $\mathbf{1 3 . 3}$ in 62% yield.

Scheme 13. Radical cyclization method to synthesize DKP unit

A one-pot multicomponent coupling reaction was developed by Andreana et al. ${ }^{30}$ This was a four component Ugi reaction (using 14.1, 14.2, 14.3, 14.4) under microwave conditions which generated intermediates of type 14.5. These spontaneously underwent intramolecular aza-Michael reaction affording DKPs 14.6. Several examples were examined using different isonitriles (14.3) and aldehydes (14.4).

Scheme 14. Ugi reaction to synthesize DKP ring

Recently, an aza-Wittig sequence was used by Majumdar et al. ${ }^{31}$ for the synthesis of unsymmetrical N -substituted DKPs. The amino esters $\mathbf{1 5 . 1}$ were converted to azides $\mathbf{1 5 . 3}$ in a simple two-step sequence. Treatment of $\mathbf{1 5 . 3}$ with $\mathrm{Ph}_{3} \mathrm{P}$ generated iminophosphoranes 15.4 , which eventually underwent the azaWittig reaction, forming DKPs 15.6 via 15.5.

During synthetic studies on MPC1001, a novel [1,3]-dipolar cycloaddition strategy (Scheme 16) was developed by Williams's group ${ }^{32}$ to tackle the synthesis of the pyrrolidine ring which was then converted to the bicyclic pyrrolidine-DKP unit, as present in MPC1001 (and of course, also in MPC1001F). Compounds 16.1, 16.2 and 16.3 were subjected to the three-component dipolar cycloaddition conditions, which gave a mixture of the desired pyrrolidine $\mathbf{1 6 . 4}$ and unwanted 16.6. After extensive optimization studies, the authors were able to convert $\mathbf{1 6 . 6}$ to $\mathbf{1 6 . 4}$ by heating to a high temperature in a sealed tube. Compound $\mathbf{1 6 . 6}$

Scheme 15. Aza-Wittig approach to synthesize DKP unit
underwent a retro[1,3]/[1,3]-dipolar cycloaddition affording 16.4 in 28% yield. Removal of the chiral auxiliary from 16.4 generated the amino acid 16.7 which, upon coupling with $\mathbf{1 6 . 8}$, gave the desired bicyclic DKP core 16.9.

There are three general strategies to make a sulfur containing DKP. The first is to start with an appropriate sulfur containing precursor and convert that to the desired DKP, as shown in Scheme $17 .{ }^{33}$ The second and third approaches both start with the DKP ring and an electrophilic sulfur reagent; this is the approach used in my research. Alternatively, an electrophilic DKP and a nucleophilic sulfur reagent can be used. There are two reviews ${ }^{34}$ on ETP syntheses.

In 2006, Motherwell's group reported a short synthetic route to an ETP. ${ }^{33}$ The sulfur-containing ester $\mathbf{1 7 . 1}$ was converted into $\mathbf{1 7 . 2}$ by using diacetoxyacetyl chloride. Treatment of $\mathbf{1 7 . 2}$ with benzylamine at room temperature in the presence of PMBSH (p-methoxybenzyl thiol) afforded $\mathbf{1 7 . 3}$ as a cis/trans mixture,

16.7

$\mathrm{BopCl}, \mathrm{Et}_{3} \mathrm{~N}$ MeCN, 60\%

16.9

Scheme 16. Williams's [1,3]-dipolar cycloaddition strategy towards DKP
which was eventually converted into the cis $\mathbf{- 1 7 . 4}$ by simple heating. The DKP 17.4 was then elaborated to ETP 17.5.

Schmidt et al. ${ }^{35}$ were the first to install sulfur on a DKP and to convert the product to an ETP, as shown in Scheme 18. The DKP 18.1 was treated with a strong base in the presence of the electrophile S_{8} to obtain epipolythiodiketo-

Scheme 17. Motherwell's strategy to synthesize sulfur containing DKP ring piperazine 18.2, which then was converted to ETP 18.3 via a reduction-oxidation sequence.

Scheme 18. Schmidt's method to install sulfur on a DKP ring

Very recently, Nicolaou's group has developed a mild strategy ${ }^{36 a}$ to install sulfur on a DKP ring during the total synthesis of epicoccin G. A dipeptide ester cyclization was used (see also Scheme 11 for this strategy) to make the DKP (19.1
$\rightarrow \mathbf{1 9 . 2}$). Compound 19.2 was elaborated to 19.3 , onto which the sulfur was installed, using a similar strategy to that of $\operatorname{Schmidt}^{35}(19.3 \rightarrow \mathbf{1 9 . 4})$. The resulting polysulfides 19.4 were reduced with NaBH_{4} and then methylation on both sulfurs gave 19.5 with two SMe groups on the DKP ring. This method was later generalized and published as a methodology. ${ }^{36 b}$

19.1

19.4
S_{8}, NaHMDS THF, rt;
then 19.3 $\stackrel{\text { then } 19.3}{ }$

19.3

$$
R^{1}, R^{2}=S S_{n} S, n=0-6
$$

19.5

Scheme 19. Nicolaou's synthesis of DKP unit containing SMe groups

Installation of sulfurs on a DKP ring using a nucleophilic sulfur reagent was first developed by Trown's group, ${ }^{37}$ as shown in Scheme 20. The bis-bromo-

DKP 20.1 was treated with thioacetate to obtain $\mathbf{2 0 . 2}$ which was then hydrolyzed to generate bis-thiol-DKP 20.3.

Scheme 20. Trown's approach towards sulfur containing DKP ring

Kishi's group also used this bromination- $\mathrm{S}_{\mathrm{N}} 2$ displacement strategy to synthesize sulfur-containing DKPs, ${ }^{38}$ and utilized the method to carry out a total synthesis of gliotoxin ${ }^{38 f}(\mathbf{1 . 4})$ and several other ETP natural products. ${ }^{38}$

Since bromination of more complicated DKPs is not very straightforward, an alternative strategy was also developed where OH or OR groups are used instead of Br , and then later replaced by sulfur nucleophiles. Overman's group used such an approach in the total synthesis of $(+)$-gliocladine C. ${ }^{39}$ The amide 21.1 was converted into the triketopiperazine $\mathbf{2 1 . 2}$ using 1,1'-oxalyldiimidazole. Compound 21.2 was then transformed into $\mathbf{2 1 . 3}$ in two steps. Coupling of $\mathbf{2 1 . 3}$ and $\mathbf{2 1 . 4}$ produced $\mathbf{2 1 . 5}$, which was elaborated to the advanced stage intermediate diacetate 21.6. $\mathrm{S}_{\mathrm{N}} 2$ displacement of OAc and $\mathrm{OSiMe}_{2} \mathrm{Bu}-t$ groups on the DKP ring by $\mathrm{H}_{2} \mathrm{~S}$ (in the presence of a Lewis acid), followed by in situ oxidation of the resulting thiol, gave the ETP core $\mathbf{2 1 . 7}$ of the natural product. The stereoselectivity of the sulfur introduction is controlled by the stereochemistry of both the indolyl substituent and the acetate group in 21.6.

Scheme 21. Overman's synthesis of the ETP core of (+)-gliocladine C

During the total synthesis of $(+)$-chaetocins A and C and $(+)-12,12^{\prime}-$ dideoxychetracin A (ETP natural products), Movassaghi's group ${ }^{40}$ also used $\mathrm{H}_{2} \mathrm{~S}$ to incorporate sulfur onto DKP systems. The tetrahydroxy intermediate $\mathbf{2 2 . 1}$ was treated with $\mathrm{H}_{2} \mathrm{~S}$ under acidic conditions $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ to generate the bis-thiol which was protected (both thiols and both hydroxyls) affording 22.2.

Scheme 22. Movassaghi's method to install sulfur on a DKP ring

Movassaghi et al. used a similar strategy ${ }^{41}$ to install sulfur onto a DKP ring in the total synthesis of $(+)$-11,11'-dideoxyverticillin A. The DKP ring was constructed using the dipeptide ester cyclization method in the presence of

23.1
23.2

(+)-11,11'-dideoxyverticillin

Scheme 23. Synthesis of an ETP natural product by Movassaghi
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, as shown in Scheme $23(\mathbf{2 3 . 1} \boldsymbol{\rightarrow} \mathbf{2 3 . 2})$.
Intermediate 23.2 was converted into 23.3, the precursor for sulfur incorporation. $\mathrm{K}_{2} \mathrm{CS}_{3}$ was the reagent of choice to introduce the sulfurs onto the DKP system in a cis fashion. Deprotection of the sulfurs and oxidation of the resulting bis-thiol in situ afforded the ETP natural product 23.4.

In the first total synthesis of the ETP-dihydrooxepin natural product (-)acetylaranotin, ${ }^{25}$ Reisman et al. used the most common and usual dipeptide ester cyclization method to construct the DKP system 24.2 (24.1 $\boldsymbol{\rightarrow} \mathbf{2 4 . 2}$). Interestingly, epimerization at both diketopiperazine methine positions also took place under the cyclization conditions. With 24.2 in hand, Reisman's group utilized Nicolaou's

24.2

24.4

$$
\begin{aligned}
& \text { 1. } \mathrm{AcCl}, \mathrm{DMAP} \\
& \mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \% \\
& \text { 2. propane dithiol } \\
& \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN} ; \\
& \text { then } \mathrm{O}_{2}, 45 \%
\end{aligned}
$$

Acetylaranotin

Scheme 24. Reisman's synthesis of (-)-acetylaranotin containing an ETP core
method ${ }^{36}$ (see Scheme 19) of installing sulfur, which afforded the tetrasulfide 24.3. Finally, acetylation of the hydroxyls, mild reduction of the tetrasulfide to a bis-thiol (using propane dithiol) and aerial oxidation generated the ETP natural product 24.4 .

Recently, a Dieckmann type cyclization strategy was developed in our group during studies towards the total synthesis of MPC1001, ${ }^{24 a}$ and this strategy was later generalized as a powerful synthesis of DKPs. ${ }^{42}$ Scheme 25 illustrates the sequence. Ketone $\mathbf{2 5 . 1}$ was subjected to NaH mediated cyclization to obtain 25.2. Treatment of $\mathbf{2 5 . 2}$ with the electrophilic sulfur reagent $\mathbf{2 5 . 3}$ under basic conditions generated the desired sulfur-containing DKP 25.4. Following the same strategy, synthesis of the ETP core of MPC1001 was also achieved in this laboratory. ${ }^{43}$

Scheme 25. Dieckmann cyclization strategy towards DKP core of MPC1001

2. Results and Discussion

2.1. Previous synthetic work in this group

Both the bicyclic $\mathrm{AB}^{24 \mathrm{~b}}$ and tricyclic $\mathrm{ABC}^{24 \mathrm{a}}$ core (without the disulfur bridge) of MPC1001 were synthesized in this group by Dr. Jianbiao Peng. The method developed for the construction of the AB core was successfully employed for the construction of the ABC unit. Although the initial plan was to install the C ring onto the AB system, this approach eventually did not work, ${ }^{44}$ and the C ring was synthesized prior to making the dihydrooxepin A ring. The synthesis of the tricyclic core started with the B-ring which was made from trans-4-hydroxy-Lproline (26.1, see Scheme 26). Upon epimerization at C2 and esterification, it was converted to the salt $\mathbf{2 6 . 2}$ onto which the carbamate side chain was introduced, affording intermediate 26.4. Some standard functional group interconversion and protection-deprotection sequences led to intermediate $\mathbf{2 5 . 1}$ where the stage was set for the key step of constructing the DKP ring. This was achieved by NaH-mediated Dieckmann type cyclization (25.1 $\boldsymbol{\rightarrow} \mathbf{2 5 . 2}$). Basemediated installation of the sulfur unit (to reach 25.4) was performed using a succinimide leaving group on sulfur (reagent 25.3). From here, some standard manipulations gave aldehyde 26.5, which was epimerized using DBU (26.5 $\boldsymbol{\rightarrow}$ 26.6). Addition of ethoxyvinylzinc afforded 26.7, which was converted to the advanced intermediate 9.1, using standard selenium chemistry, followed by several other functional group manipulations. Treatment of this intermediate with

$$
\mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t
$$

26.5

L-ephedrine, $90 \% \downarrow$

26.7

Scheme 26. Prior synthetic approach to the tricyclic core of MPC1001
dimethylformamide dimethyl acetal afforded the vinylogous amide $\mathbf{9 . 2}$. Conjugate addition-elimination mediated by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ then generated the desired tetrahydrooxepin ring (9.3). Finally, oxidative deselenylation gave the tricyclic ABC core 9.4 in low yield (39\%, 27 steps from trans-4-hydroxy-L-proline). This intermediate was synthesized in the hope that it could be elaborated to the epithiopiperazinedione unit; unfortunately attempts to achieve this were unsuccessful, ${ }^{44}$ and the discussion of that work is beyond the scope of this thesis.

Later on Dr. Lihong Wang used intermediate 25.1 (first made by Dr. Peng) and successfully converted it to the desired epidithiopiperazinedione unit of MPC1001, ${ }^{43}$ as summarized in Scheme $27(\mathbf{2 5 . 1} \rightarrow \mathbf{2 7 . 3})$. Very recently, the

25.1
27.1
27.2

$\mathrm{R}^{1}, \mathrm{R}^{2}=$ alkyl groups
ETP core of MPC1001
$\mathrm{R}^{3}=$ electron withdrawing groups,
e.g. COPh, $\mathrm{COMe}, \mathrm{CO}_{2} \mathrm{Me}, \mathrm{CN}$, etc.

Scheme 27. Other DKP-related synthetic works developed in this laboratory

NaH-mediated Dieckmann type condensation procedure, originally used by Dr. Peng and later used by both me and Dr. Wang, was generalized in this laboratory as a method for constructing piperazine-2,5-diones by Claude Larrivee Aboussafy ${ }^{42}$ (see Scheme 27, 27.4 $\boldsymbol{\rightarrow}$ 27.5).

2.2 Enantioselective construction of the tricyclic ABC core of MPC1001F

As mentioned earlier, we were interested in making the comparatively simpler skeleton of MPC1001F in order to identify the difficulties and challenges associated with this structure, so that we could apply our knowledge in making the more complex member, MPC1001. Our initial strategy was very similar to what Dr. Peng had already established.

2.2.1. Construction of the bicyclic BC system with the SMe group

We first concentrated on making the BC ring system, as synthesis of the C ring onto the AB system proved to be troublesome according to the prior research in our group. ${ }^{44}$ Starting with trans-4-hydroxy-L-proline as a source of the B ring, a literature procedure ${ }^{45}$ was followed to epimerize the C 2 center, using $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcOH}$ under reflux conditions (Scheme 28). Although we started with the stereochemistry at C 2 that is present in the natural product, this epimerization was necessary and the reason will be explained in due course (see $25.2 \rightarrow 29.7$ and $\mathbf{2 5 . 1} \boldsymbol{\rightarrow} \mathbf{2 9 . 7}$, Schemes 29 and 30 respectively). The strained bicyclic lactone $\mathbf{2 8 . 1}$
was isolated and characterized by Dr. Wang. ${ }^{46}$ This lactone can be hydrolyzed to the desired epimerized product 28.2. Unfortunately, the proton and carbon NMR

Scheme 28. Epimerization at C2 of trans-4-hydroxy- L -proline
of the product clearly showed the presence of the starting material salt (28.4) as well, presumably because of the formation of the acetylated product 28.3.45c Hence a revised procedure was followed ${ }^{46}$ where the hydrolyzed product was dissolved in refluxing EtOH and recrystallized using hexanes (Scheme 29). The $[\alpha]_{\mathrm{D}}$ value of the recrystallized compound was much higher $(13.6, \mathrm{MeOH}, c=$ 0.67 vs $6.5, \mathrm{MeOH}, c=1.0$) than that of the crude material before recrystallization.

Having the enantiomerically pure salt $\mathbf{2 8 . 2}$ in hand, the next step was to convert the acid to an ester using $\mathrm{SOCl}_{2}(\mathbf{2 8 . 2} \boldsymbol{\rightarrow} \mathbf{2 6 . 2})$. At this stage the side chain on the nitrogen was installed. Treatment of the salt $\mathbf{2 6 . 2}$ with the acid

$\mathrm{NaHCO}_{3}, 26.3$ (see below) dioxane- $\mathrm{H}_{2} \mathrm{O}$ 87\%

29.7
25.2
25.1
$\mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t$

Scheme 29. Synthesis of BC unit present in MPC1001F
chloride 26.3 under basic conditions, using THF-dioxane as solvent, afforded 26.4
in 87% yield. Slow addition of the acid chloride was necessary to achieve a high yield. The desired acid chloride was made in two steps starting with sarcosine (29.1). Sarcosine was treated with PhOCOCl to afford the acid 29.2, which was then converted to 26.3 using $(\mathrm{COCl})_{2}$ and catalytic DMF. Full characterization of the acid chloride was not performed. Swern oxidation of the secondary alcohol 26.4 was performed several times on several scales but unfortunately never yielded 29.3 in the yield (78\%) reported in Dr. Peng's thesis. ${ }^{44}$ Hence PCC oxidation was tried and it gave an excellent yield of the ketone 29.3. An important point to mention here is no work up was done for this reaction; instead the crude product was adsorbed directly on silica gel before being loaded on the chromatography column. This procedure gave a much better yield compared to the process using aqueous work up.

The next few steps were straightforward: protection of the ketone as a ketal $(29.3 \rightarrow 29.4)$ so that the next step, $\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}$ reduction of the ester ${ }^{47}$ (selective for ester over carbamate) could be performed to obtain the primary alcohol 29.5. Quenching this reaction with aqueous HCl also removed the ketal, and protection of the primary alcohol afforded the silyl ether 25.1. The stage was then set to do our first key reaction, the NaH-mediated Dieckmann type condensation, followed by installation of the sulfur group. Here it is important to note that the stereochemistry of the protected primary alcohol side chain should control the stereochemistry of the incoming SMe group (which was eventually the case, see $25.2 \rightarrow 29.7$), hence the epimerization of the side chain carboxylic acid group in trans-4-hydroxy-L-proline in the very first step was required $\mathbf{(2 6 . 1} \boldsymbol{\rightarrow}$
28.2), and a bulky protecting group ($t-\mathrm{BuPh}_{2} \mathrm{Si}$) was also used. At first, the previously reported ${ }^{24 a}$ procedure was tried for the cyclization but, unfortunately, the desired product (25.2) is not very stable, and the yield varied widely (50$80 \%$). Also, isolation of the polar ketone $\mathbf{2 5 . 2}$ caused some problems, giving rise to variable colors during workup and chromatography (blue and yellow), possibly because of decomposition. The next step was also troublesome. The succinimide-based sulfur electrophile $\mathbf{2 9 . 6}$ was used under basic conditions. The doubly activated hydrogen of $\mathbf{2 5 . 2}$ was removed to generate an enolate and the succinimide unit acted as a leaving group, to afford the product 29.7 with an SMe group. The synthesis of $\mathbf{2 9 . 6}$ is shown in Scheme $30 .^{48}$ The very low yield (30$44 \%$) of the sulfenylation step ($\mathbf{2 5 . 2} \boldsymbol{\rightarrow} \mathbf{2 9 . 7}$) led us to design another similar type of electrophile, using the phthalimide unit (30.3, see Scheme 30), which unfortunately did not work at all, leading to recovery of $\mathbf{3 0 . 3}$ and decomposition of 25.2. Obviously, we were in need of a new process. After several optimization studies, the best result was obtained without isolating the unstable intermediate 25.2, rather trapping it in situ as a trimethylsilyl enol ether, followed by treatment with MeSCl (generated in situ in another reaction flask, see Scheme 30) at -78 ${ }^{\circ} \mathrm{C}$. The low yield (40\%) of this three-step sequence $\mathbf{2 5 . 1} \boldsymbol{\rightarrow} 29.7$ (Scheme 30) was attributed to the possible formation of the unwanted diastereomer at the SMe center, although no other isolable components were observed in the crude reaction mixture.

The isolation of this product was difficult as some of the impurities had similar R_{f} values to that of the product. Several column chromatography runs
(first silica gel, then alumina) and then trituration under EtOAc at $-78^{\circ} \mathrm{C}$ were used to isolate the product as white crystals, the colored impurities being soluble in cold EtOAc. Concentration of the mother liquors and cooling to $-78^{\circ} \mathrm{C}$ gave a second crop of the product. It was also observed that the precursor $\mathbf{2 5 . 1}$ should be freshly prepared to obtain the best result in this cyclization-sulfenylation step.

25.2
29.7

Scheme 30. Strategies to install an SMe group onto the BC unit of MPC1001F
2.2.2. The protecting group study: finding an alternative for the THP group

With the bicyclic BC ring in hand, our next goal was to modify the side chain so as to convert it to the dihydrooxepin unit. The first necessary step was to protect the ketone in the B-ring. As shown in prior research on MPC1001 by Dr. Peng, ${ }^{44}$ direct protection of this type of ketone as a ketal was not possible, we followed the same sequence of reduction of the ketone $(29.7 \rightarrow \mathbf{3 1 . 1})$ and protection of the resulting secondary alcohol as a THP-ether (31.2, Scheme 31), as

Scheme 31. Functional group modifications of the BC unit of MPC1001F
used in prior published work from this laboratory. ${ }^{24 a}$ But before choosing the THP protecting group, we decided to examine several other similar protecting groups, as shown in Scheme 32 ($\mathbf{3 2 . 1}$ and 32.2). The advantage of these protecting groups is that unlike the THP group, these groups do not generate a new stereogenic center in the molecule, thus avoiding complication of the spectral
data. Especially, we were interested in the protecting group $\mathbf{3 2 . 2}{ }^{49}$ which is very popular in nucleotide chemistry ${ }^{50 \mathrm{c}}$ and has similar stability as a THP protecting

Scheme 32. Protecting group study
group. We attempted the synthesis of $\mathbf{3 2 . 2}$ via a literature procedure, ${ }^{50}$ starting with homoallyl alcohol 32.3, which was converted to the ketal 32.6. ${ }^{50 \mathrm{a}}$ From this point, we attempted two literature procedures ${ }^{50 b, \mathrm{c}}$ to convert ketal 32.6 to 32.2, but both failed, leading to decomposition of 32.6 . Surprised by the fact that there is no good synthesis of this apparently simple reagent $\mathbf{3 2 . 2}$ reported in the literature, we decided to spend some time on developing a new simple synthesis (Scheme 32). The starting allyl alcohol $\mathbf{3 2 . 7}$ was converted to chloromethylallyl ether $\mathbf{3 2 . 8}$ using a literature method. ${ }^{51 a}$ A simple $\mathrm{S}_{\mathrm{N}} 2$ reaction using the anion of 2methoxypropene (generated with Schlosser's base, at a low and controlled temperature $)^{51 \mathrm{~b}}$ afforded the desired diene 32.9. The attempted metathesis failed $(\mathbf{3 2 . 9} \rightarrow \mathbf{3 2 . 2})$ and we decided to accept our previous route using THP protection.
2.2.3. Adjusting the stereochemistry at C5: solving the problem of oxidation without epimerization

Starting from intermediate 31.2, the next step was removal of the silicon protecting group, which took place smoothly, yielding the primary alcohol $\mathbf{3 3 . 1}$ as a solid. An X-ray crystal structure was obtained (see Figure 1) which clearly showed the relative stereochemistry of the SMe and OTHP groups with respect to the alcohol side chain at C5. Our next task was to perform the required epimerization at C5. Parikh-Doering oxidation gave a very good yield of the aldehydes 33.2, but unfortunately as a 1:2.1 inseparable mixture of diastereomers [the major one being the desired $5 S$ (i.e. α) aldehyde]. As shown in Figure 2, the

Figure 1. ORTEP diagram of alcohol 33.1

Scheme 33. Oxidation of the primary alcohol side chain of the BC system
aldehyde H , the $\mathrm{H} \alpha$-to carbonyl and the carbonyl C , all showed two different signals (the splitting of each of these is due to presence of two diastereomers because of the THP group), confirming the presence of two aldehydes.

Several binary and ternary solvent combinations (having the same solvent strength) were tried to separate the two diastereomers, but without success. To further confirm the presence of two aldehydes, the mixture of aldehydes was reduced (using NaBH_{4}) and the ${ }^{13} \mathrm{C}$ NMR signal (of the mixture of alcohols 33.1 and 33.3) of the carbon containing the primary OH group, clearly showed the presence of two alcohols by comparison with the ${ }^{13} \mathrm{C}$ NMR spectrum of intermediate 33.1 (see Figure 2). Fortunately, these two alcohols were separable

Figure 2. NMR studies
by column chromatography. Hence, we adopted the oxidation-reductionoxidation sequence shown in Scheme 33. $\mathrm{NaBH}(\mathrm{OAc})_{3}$ was the preferred reducing agent as NaBH_{4} gave a poor yield of the alcohols. Upon separation, the β alcohol was subjected to the Parikh-Doering oxidation- $\mathrm{NaBH}(\mathrm{OAc})_{3}$ reduction
sequence, and we now required an oxidation method to convert the α alcohol 33.3 to pure α aldehyde 33.4, without epimerization.

Although formally simple, this step posed a very difficult challenge, and an extensive list of oxidation procedures was screened; the results are summarized in Table 1. DMP oxidation gave a complex mixture, whereas IBX afforded a very low yield of the aldehyde. We were particularly interested in the Ley oxidation ${ }^{52}$ which was successfully employed in a similar type of reaction during the halichlorine synthesis in this laboratory. ${ }^{53}$ We thought it should not cause any epimerization, but unfortunately that was not the case. Although dry NMO improved the yield slightly, significant epimerization ruled out the use of this reagent. We next focused on Swern oxidation, and both attempts with $(\mathrm{COCl})_{2}$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ gave a very low yield but no epimerization. The same was the case under Corey-Kim oxidation conditions. ${ }^{54}$ It appeared that, epimerization occurs only at room temperature and not at a low temperature. TEMPO-mediated oxidation was also not very successful. ${ }^{55}$ A similar type of reagent, the Bobbit reagent (see entry 12), ${ }^{56}$ caused decomposition and loss of the acid sensitive THP group. Chromium(VI)-mediated oxidations under buffered conditions afforded the desired product in very low yield but did not cause any epimerization. Use of the Collins' reagent was also not very satisfactory. Finally, after trying numerous common oxidation procedures, we turned our attention to the comparatively less used Moffatt conditions. Although the soluble version of the Moffatt conditions, using EDC $\cdot \mathrm{HCl},{ }^{57}$ afforded an excellent yield of the aldehyde, we could not totally avoid epimerization. Hence, finally, the Moffatt conditions were tried

Reagents \& Conditions
Yield / Comment

1. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 3.5 h
2. IBX, DMSO, rt, 2 h
3. TPAP, NMO, $4 \AA$ M.S. 46% / epimerization MeCN, 15 min
4. TPAP, NMO (dry)
54% / epimerization
4 Å M.S., MeCN, 30 min
5. $(\mathrm{COCl})_{2}, \mathrm{DMSO},-78^{\circ} \mathrm{C}$
$38 \% /$ no epimerization $\mathrm{py}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$
6. $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{DMSO},-78^{\circ} \mathrm{C} \quad 32 \% /$ no epimerization $\mathrm{py}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{~h}$
7. $\mathrm{NCS}, \mathrm{Me}_{2} \mathrm{~S},-25^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ very little DP $2 \mathrm{~h} ; \mathrm{Et}_{3} \mathrm{~N}$, rt, overnight
8. $\mathrm{Phl}(\mathrm{OAc})_{2}$, TEMPO very little DP $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight
9. PCC, $3 A ̊$ M.S.
41\% / SM recovered $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5 \mathrm{~h}$
10. CrO_{3} (dry), py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$
very little DP

11. PDC, 3Å M.S.
39% / no epimerization $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$
12. Bobbit reagent, silica gel $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~d}$
13. EDC $\cdot \mathrm{HCl}, \mathrm{DMSO}$, py 87% / epimerization TFA, PhH, rt, 19 h
89\% / no epimerization PhH , rt, overnight
$\mathrm{CM}=$ complex mixture; $\mathrm{SM}=$ starting material; $\mathrm{DP}=$ desired product
Table 1. Optimization of the oxidation step
using DCC in the presence of pyridinium trifluoroacetate, ${ }^{58}$ which gave an excellent yield (89\%) of the desired aldehyde without any epimerization at all.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR comparisons clearly show (see Figure 3) the absence of the small peaks for the aldehyde H , the hydrogen α-to the carbonyl and the carbonyl carbon, confirming the absence of epimerization.

Figure 3. NMR comparisons of α and β aldehydes

2.2.4. Construction of the side chain on the desired α-aldehyde

Having the C5 stereochemistry fixed, our next task was to install the two carbon unit on the aldehyde carbon, as such a segment is present in the natural product. From the prior research by Dr. Peng, ${ }^{24 a}$ we knew that the vinylzinc-ate reagent (34.1, which was formed by hydroboration of ethoxyacetylene, followed by transmetallation with zinc, using $\left.\mathrm{Me}_{2} \mathrm{Zn}\right)^{59}$ worked well on this aldehyde, and gave a good yield of ethoxyvinyl alcohols 34.2, as an inseparable mixture of
epimers at the newly generated secondary hydroxyl center. Use of $\mathrm{Et}_{2} \mathrm{Zn}$ instead of $\mathrm{Me}_{2} \mathrm{Zn}$ gave a lower yield (65-70\%) and the yield also dropped significantly in the absence of l-ephedrine. The diastereomers were separable in the next step when the secondary alcohols were protected as MEM ethers $(\mathbf{3 4 . 2} \boldsymbol{\rightarrow} \mathbf{3 4 . 3}$ and 34.4, 1:1.4 ratio). Before adding the MEMCl to the reaction mixture, it is necessary to stir the commercial MEMCl over dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ to remove any HCl present, as the starting material is extremely acid sensitive. Unwanted hydrolysis of the ethoxyvinyl unit of $\mathbf{3 4 . 2}$ was observed when no $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used. One of the MEM-protected compounds was crystalline and an X-ray structure was obtained (see Figure 4) which clearly showed it to be the desired isomer (34.4) having the MEM group β, as present in the natural product. Hence this isomer

Figure 4. ORTEP diagram of $\mathbf{3 4 . 4}$
was carried forward. The unwanted MEM-isomer $\mathbf{3 4 . 3}$ (which was an oil) was set aside for the time being, and we planned to do a Mitsunobu inversion on this
isomer in the future; however, this step was never carried out because this route was later abandoned. Our next step was to remove the ethoxyvinyl unit and install a PhSe group which could serve as a precursor to one of the double bonds in the dihydrooxepin ring. Treatment of the reactive ethoxyvinyl compound $\mathbf{3 4 . 4}$ with PhSeCl served this purpose, affording the α-phenylseleno aldehydes $\mathbf{3 4 . 5}$ in good yield. Reduction of these aldehydes in the presence of the PhSe group posed

Scheme 34. Installation and modifications of the side chain on the BC unit
some problem because of unwanted cleavage of the C-Se bond. Low temperature reduction $\left(\mathbf{3 4 . 5} \boldsymbol{\rightarrow} \mathbf{3 4 . 6}\right.$), using NaBH_{4}, was necessary to minimize this cleavage, but it could not be avoided completely. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and the reaction time was found to be very important. Use of a weaker reducing agent like $\mathrm{NaBH}(\mathrm{OAc})_{3}$ took a much longer time and an elevated temperature was required; these conditions caused a very significant amount of deselenylation. With $\mathbf{3 4 . 6}$ in hand, a sequence of deprotection, protection and oxidation reactions was adopted to go to the advanced intermediate 35.1. Selective deprotection of the THP group in the presence of the MEM ether $(\mathbf{3 4 . 6} \boldsymbol{\rightarrow} \mathbf{3 4 . 7})$ was performed using catalytic pyridinium p-toluenesulfonate at $50^{\circ} \mathrm{C}$. The temperature was very important as too high a temperature caused removal of MEM group. Use of AcOH under different conditions (different temperatures and reaction times, see Scheme 34) gave very poor yields of $\mathbf{3 4 . 7}$. The primary alcohol $\mathbf{3 4 . 7}$ was selectively protected using t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$ to afford 34.8.

2.2.5. Oxidation of the secondary alcohol in the presence of the PhSe group

From 34.8, our next step was to oxidize the secondary alcohol so that we could functionalize α to the resulting ketone (Scheme 35). The presence of selenium actually made this oxidation step extremely challenging ${ }^{60}$ because of the sensitivity of selenium to oxidation, and again this step required extensive screening of oxidation conditions (see Table 2). The Ley oxidation ${ }^{52}$ did not work
at all and the starting material was recovered. DMP oxidation (as used by Dr. Peng in his MPC1001 synthesis) ${ }^{24 a}$ led to a very poor yield and decomposition.

Scheme 35. Oxidation in the presence of a PhSe group

With IBX, the reaction was incomplete and the yield very poor. Triphenylbismuth oxycarbonate ${ }^{60 e, f}$ did not generate any ketone at all, as was the case with the Parikh-Doering reagent, and in both of these cases the starting material was recovered. Both PCC and TEMPO ${ }^{55}$ led to decomposition, as did the Swern oxidation. Based on the literature, ${ }^{60 \mathrm{c}, 54}$ we next tried the Corey-Kim method, which was reported to be suitable for oxidation of alcohols in the presence of selenium. This reaction was tried several times under different conditions, as listed in Table 2. The best result was obtained when then NCS and $\mathrm{Me}_{2} \mathrm{~S}$ were added to the starting material with the mixture being stirred for 3 h , followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ and stirring for another 3 h . This procedure gave 68% of the desired product and some starting material. Hence a longer stirring time was used both at $0{ }^{\circ} \mathrm{C}$ and also after adding $\mathrm{Et}_{3} \mathrm{~N}$. Prolonged stirring at -20 ${ }^{\circ} \mathrm{C}$ led to decomposition and a longer reaction time after adding $\mathrm{Et}_{3} \mathrm{~N}$ dropped the yield significantly. Finally, I was very pleased to find that Moffatt oxidation ${ }^{58}$
worked well, giving 87% yield of ketone 35.1. Removal of the silicon protecting group then released the desired primary alcohol ($\mathbf{3 5 . 1} \boldsymbol{\rightarrow} \mathbf{3 5 . 2}$).

Reagents \& Conditions	Yield / Comment
1. TPAP, NMO, $4 \AA ̊$ M.S. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 15 \mathrm{~min}$	no DP / SM recovered
2. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 5 \mathrm{~h}$	very little DP
3. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight	38\% / CM
4. IBX, DMSO, rt, 5 h	55\% / SM recovered
5. IBX, DMSO, rt, overnight	incomplete reaction
6. $\mathrm{Ph}_{3} \mathrm{BiCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight	SM recovered
7. PCC, $3 \AA ̊ \mathrm{M}$.S. $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$	CM
8. $\mathrm{Phl}(\mathrm{OAc})_{2}$, TEMPO $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight	CM
9. $\mathrm{SO}_{3} \cdot \mathrm{py}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight	no DP / SM recovered
10. $(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2},-78^{\circ} \mathrm{C}$	no DP / no SM
11. NCS, $\mathrm{Me}_{2} \mathrm{~S},-20^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $3 \mathrm{~h} ; \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 3 \mathrm{~h}$	68\% / SM recovered
12. NCS, $\mathrm{Me}_{2} \mathrm{~S},-20^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3 h ; $\mathrm{Et}_{3} \mathrm{~N}$, rt, overnight	28\% / SM recovered
13. NCS, $\mathrm{Me}_{2} \mathrm{~S},-20^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ overnight; $\mathrm{Et}_{3} \mathrm{~N}$, rt, 2 h	no DP / little SM recovered
14. NCS, $\mathrm{Me}_{2} \mathrm{~S},-20^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $8 \mathrm{~h} ; \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 1 \mathrm{~h}$	no DP / little SM recovered
15. DCC, DMSO, py, TFA PhH, rt, overnight	87\%

Table 2. Optimization of the second oxidation step

2.2.6. Construction of the dihydrooxepin ring A: approach I

Our first attempt to generate the dihydrooxepin ring, which is outlined in Scheme 36, started with ketone 35.1. Treatment of this ketone with dimethylformamide dimethyl acetal afforded the vinylogous amide $\mathbf{3 6 . 1}$ in a very low yield. We envisaged that treatment of $\mathbf{3 6 . 1}$ with $\mathrm{Bu}_{4} \mathrm{NF}$ buffered with

35.1

36.3

36.1
TBAF, TFA, THF $0^{\circ} \mathrm{C}$, overnight; then reflux, 40 h

36.2

Scheme 36. First approach towards the tetrahydrooxepin A ring
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ should unmask the primary hydroxyl group (producing 36.2), which should then perform our strategic conjugate addition elimination, affording the desired tetrahydrooxepin unit 36.3. Unfortunately, this attempt only led to decomposition of the starting material.

2.2.7. Construction of the dihydrooxepin ring A : approach II

In our second approach we chose to make the vinylogous amide from the primary alcohol $\mathbf{3 5 . 2}$ (Scheme 37) and, in the event, this gave an acceptable yield (60\%) of 37.1. We tried various acids and bases to perform the conjugate addition-elimination, as summarized in Scheme 37. Heating 37.1 in neat PhMe afforded 36.3, but this reaction was not synthetically useful because of significant recovery of starting material. Use of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (as was used by Dr. Peng in his MPC1001 synthetic work), ${ }^{24 \mathrm{a}} \mathrm{TsOH}$, pyridinium p-toluenesulfonate in MeOH and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ all led to decomposition. The weak base $\mathrm{Et}_{3} \mathrm{~N}$ resulted in recovery of starting material, whereas stronger bases such as DBU and NaH gave complex mixtures. These observations were disappointing, but we later found that $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ is effective provided a trace of water is present (see section 2.2.10).

2.2.8. Construction of the dihydrooxepin ring A: approach III

The failure of our second approach led us to think of a different route, which is outlined in Scheme 38. We proposed that the formylation of ketone $\mathbf{3 5 . 2}$ should afford the enol which, under acidic conditions, should generate ring A $(\mathbf{3 8 . 1} \boldsymbol{\rightarrow} \mathbf{3 6 . 3})$. Three different formylating agents were used (see Scheme 38) under different conditions. The first choice of formylating agent was EtOCHO. ${ }^{61}$ In the presence of the bases NaOMe or $\mathrm{Et}_{3} \mathrm{~N}$ only starting material was recovered, whereas LDA, t-BuOK and NaH led to decomposition. Vilsmeier-Haack

Reagents \& Conditions	Results
1. $\mathrm{PhMe}, 110^{\circ} \mathrm{C}, 16 \mathrm{~h}$	little DP, mainly SM
2. $\mathrm{TFA}, \mathrm{PhMe}, 60^{\circ} \mathrm{C}$, overnight	CM
3. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{PhMe}, 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$	CM
4. $\mathrm{PPTS}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}$, overnight	CM
5. $\mathrm{TfOH}, \mathrm{PhH}, 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$	CM
6. $\mathrm{Et} \mathrm{N}, \mathrm{PhMe}, 50^{\circ} \mathrm{C}$, overnight	SM recovered
7. $\mathrm{DBU}, \mathrm{PhMe}, 60^{\circ} \mathrm{C}$, overnight	CM
8. $\mathrm{NaH}, \mathrm{THF}, 50^{\circ} \mathrm{C}$, overnight	CM

Scheme 37. Second approach towards the tetrahydrooxepin A ring
conditions ${ }^{62}$ also failed to produce the desired enol 38.1. Use of the very hygroscopic formylating agent $\mathrm{ImCHO},{ }^{63}$ under weakly basic conditions $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ gave a very poor yield of 38.1, whereas under acidic conditions $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ only starting material was recovered. Strong bases like NaOMe , NaH and LDA caused decomposition again. We concluded that compound $\mathbf{3 5 . 2}$ is not base-stable, presumably because of the presence of highly enolizable hydrogens α to the ketone, which could led to unwanted side reactions. These reactions were not tried with the protected alcohol as we eventually solved the problem in a different way, as will be discussed later (see section 2.2.10).

Reagents \& Conditions (for formylation)
Results

1. $\mathrm{NaH}, \mathrm{EtOCHO}, \mathrm{THF}, 0^{\circ} \mathrm{C}$	no DP
2. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOCHO}, \mathrm{THF}$, rt, overnight	SM recovered
3. $\mathrm{NaOMe}, \mathrm{EtOCHO}, \mathrm{PhH}, 0^{\circ} \mathrm{C}$	SM recovered
4. LDA, THF, $-78{ }^{\circ} \mathrm{C}, \mathrm{EtOCHO}$	CM
5. t-BuOK, THF, EtOCHO, $0^{\circ} \mathrm{C}$	CM
6. $\mathrm{POCl}_{3}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$	CM
7. $\mathrm{ImCHO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, rt, then $55^{\circ} \mathrm{C}$	low yield
8. ImCHO, NaOMe, THF	CM
9. $\mathrm{ImCHO}, \mathrm{TFA}, \mathrm{THF}, 5{ }^{\circ} \mathrm{C}$	SM only
10. ImCHO, LDA, $-78{ }^{\circ} \mathrm{C}, \mathrm{THF}$	CM
11. ImCHO, $\mathrm{NaH}, \mathrm{THF}$	CM

Scheme 38. Third approach towards the tetrahydrooxepin A ring

2.2.9. Construction of the dihydrooxepin ring A: approach IV

We wanted to convert the vinylogous amide $\mathbf{3 7 . 1}$ to the vinylogous ester 39.1 (see Scheme 39) which should theoretically afford 36.3. As listed in Scheme 39, a few conditions were tried, but without success. When $\mathbf{3 7 . 1}$ was heated in pure MeOH only starting material was recovered, whereas heating in MeOH under acidic or basic conditions caused decomposition.

Reagents \& Conditions (for enol-ether formation)

1. $\mathrm{MeOH}, 60^{\circ} \mathrm{C}$, overnight
2. $\mathrm{MeOH}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 6{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$
3. $\mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}, 60^{\circ} \mathrm{C}$, overnight

SM recovered
CM
CM

Scheme 39. Fourth approach towards the tetrahydrooxepin A ring

2.2.10. Construction of the dihydrooxepin ring A : approach V

Finally, we envisaged that acid hydrolysis of the vinylogous amide $\mathbf{3 7 . 1}$ should generate enol 38.1 which should cyclize in situ at a suitably high temperature (see Scheme 40). To our surprise, hydrochloric acid at $50{ }^{\circ} \mathrm{C}$ worked ${ }^{64}$ well, affording 36.3 (Scheme 40). Hence, a minor modification was made where the vinylogous amide was synthesized from ketone 35.2, and the reaction was quenched with hydrochloric acid (1 N), affording 36.3 in 16% yield. We concluded that water was necessary for this cyclization to happen. Hence, this reaction was repeated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in PhMe (see Scheme 37, entry 2 in section 2.2.7) using $50 \mathrm{~mol} \%$ of water which afforded $\mathbf{3 6 . 3}$ as expected, in 42% yield. Finally, an old bottle of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (probably contaminated with some water) proved to give the best result, delivering the $\mathbf{3 6 . 3}$ in 68% yield as shown in Scheme 40.

THF, $1 \mathrm{~N} \mathrm{HCl}, 50^{\circ} \mathrm{C}, 15 \mathrm{~min}$
37.1

35.2

36.3

26 steps from 26.1

Scheme 40. Synthesis of the tetrahydrooxepin ring

Our next goal was to perform an oxidative deselenylation of $\mathbf{3 6 . 3}$ which would finish the synthesis of the tricyclic core of MPC1001F (40.1) in an enantioselective fashion. Although NaIO_{4} afforded what we suspect to be $\mathbf{4 0 . 1}$ in
$<10 \%$ yield, all other reagents like $m-\mathrm{CPBA}, \mathrm{H}_{2} \mathrm{O}_{2}$ and IBX led to decomposition. We reasoned that there are two possible regiochemistries for the double bond generated upon deselenylation, and also the SMe group is susceptible to oxidation under the conditions employed. Our evidence for the formation of $\mathbf{4 0 . 1}$ is based only on the ${ }^{1} \mathrm{H}$ NMR spectrum and a low resolution mass spectrum. In conclusion, we were able to synthesize $\mathbf{3 6 . 3}$ and probably the full tricyclic core 40.1 of MPC1001F, in a 25-26-step sequence, starting from trans-4-hydroxy-Lproline (26.1), but it was clear that we needed a much shorter and more efficient route to overcome the problems encountered.

2.3. Synthetic attempts towards the tricyclic core of MPC1001F from previously synthesized late-stage intermediates

Since I was able to construct very advanced intermediates, and all the intermediate steps were optimized and the compounds properly characterized, our first attempt was to choose one of these intermediates, and design an improved route towards MPC1001F. The several unsuccessful attempts that were made in this regard will be discussed and analyzed in this section.

2.3.1. Synthetic attempt from tetrahydrooxepin intermediate

The very first obvious attempt started with the most advanced intermediate
36.3. We proposed (see Scheme 41) that removal of the MEM group followed by
oxidation of the resulting alcohol should afford diketone 41.2, from which the oxidative deselenylation should be very easy, as it leads to a conjugated enone system 41.3. Unfortunately, two attempts at deprotection of the MEM ether ($\mathbf{3 6 . 3}$ $\rightarrow 41.1$) did not work, and only decomposition of $\mathbf{3 6 . 3}$ was observed. Before extensive studies could be carried out on this step, we ran out of starting material and decided to bring up more and find a shorter sequence to the same core.

Scheme 41. Attempts to remove MEM group from the tetrahydrooxepin 36.3
2.3.2. Attempts to remove MEM protecting group from other advanced intermediates

Our next choice of intermediate was 35.1. The plan is described in Scheme 42. Removal of both the $t-\mathrm{BuMe}_{2} \mathrm{Si}$ and MEM groups should deliver the ketodiol 42.1. Vinylogous amide formation and conjugate addition-elimination
PPTS, $\mathrm{MeOH}, 55^{\circ} \mathrm{C}$, 12 h gave only loss of TBS;
PPTS, EtOH, $79^{\circ} \mathrm{C}, 12 \mathrm{~h}$ gave decomposition;
PPTS, EtOH, $60^{\circ} \mathrm{C}$, 12 h gave some loss of TBS plus SM;
PPTS, EtOH, $60^{\circ} \mathrm{C}, 79^{\circ} \mathrm{C}, 12 \mathrm{~h}$ gave decomposition

$$
\mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Bu}-t
$$

41.3
41.2

35.1

42.3

Scheme 42. Unsuccessful attempts to remove MEM group
should then give the tetrahydrooxepin $(\mathbf{4 2 . 1} \boldsymbol{\rightarrow} \mathbf{4 2 . 2} \boldsymbol{\rightarrow} \mathbf{4 1 . 1})$. Oxidation of the remaining secondary alcohol and selenoxide elimination would then produce the
target 41.3.
Scheme 42 shows the conditions tried to synthesize the ketodiol 42.1. Removal of the t - $\mathrm{BuMe}_{2} \mathrm{Si}$ group was easy, but prolonged reaction at elevated temperatures using pyridinium p-toluenesulfonate and EtOH , to remove the less labile MEM group, mainly caused decomposition. An attempt to selectively remove the MEM group first, using anhydrous ZnBr_{2} also failed (35.1 $\boldsymbol{\rightarrow} \mathbf{4 2 . 3}$) resulting in a complex mixture.

We then chose intermediate 34.6 (see section 2.2 .4 , Scheme 34) to study removal of the MEM group. We were actually trying to go from $\mathbf{3 4 . 6} \boldsymbol{\rightarrow} \mathbf{3 4 . 7}$ as shown in Scheme 34 (section 2.2.4), and in one of the attempts we obtained some of the triol $\mathbf{4 2 . 4}$ as a side product (see section 2.3.3 for the proposed synthetic plan associated with a similar type of triol, 43.2, Scheme 43). Attempted selective protection of the diol unit in the side chain, using $t-\mathrm{BuMe}_{2} \mathrm{SiCl}$, mainly gave monoprotected (42.5) and only a little of the desired diprotected product (42.6), and hence we aborted this route; we had also run out of this selenium-containing intermediate. In the next sections approaches avoiding selenium chemistry will be discussed.

2.3.3. Synthetic attempts from intermediates containing the ethoxyvinyl unit

From the discussion so far, it was obvious that the selenium route to construct the dihydrooxepin unit was unsatisfactory and we needed an alternative. We were able to make intermediate $\mathbf{3 4 . 4}$ on a multigram scale from our
established old route (see Scheme 34). We proposed that $\mathbf{3 4 . 4}$ could be converted to the aldehyde 43.1 (see Scheme 43). Reduction of the aldehyde would generate the triol 43.2 (see Scheme 42, section 2.3.2 for related triol 42.4, which could potentially also be subjected to this plan, as mentioned earlier). Selective

Scheme 43. New synthetic plan starting from vinyl ether 34.4
protection of the two alcohols in the side chain, using the same protecting group should give 43.3 (see 42.6, Scheme 42 for a related structure). Oxidation of the remaining secondary alcohol, removal of the protecting groups to generate 43.5, installation of the enamine unit, and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-mediated cyclization should afford the tetrahydrooxepin 43.7 (cf. Scheme 40). We reasoned that 7-endo-trig cyclization involving the primary hydroxyl should be preferred over the 4-exo-trig and 5-endo-trig pathways involving the secondary hydroxyl. From 43.7, oxidation of the secondary alcohol and Saegusa oxidation ${ }^{65}$ should finish the synthesis of the tricyclic core 41.3.

As planned, we focused on the conversion of $\mathbf{3 4 . 4}$ to aldehyde $\mathbf{4 3 . 1}$ (Scheme 44). A number of reactions were tried, as shown in Scheme 44. Use of pyridinium p-toluenesulfonate in MeOH gave the unwanted dimethoxy compound 44.1, whereas aqueous hydrochloric acid and aqueous AcOH produced the enal 44.2 formed by loss of the MEMO unit, which is a characteristic reaction of these type of compounds. Inspired by the work of Walsh et al., ${ }^{59 \mathrm{c}}$ a Lewis acid mediated reaction was tried, using $\mathrm{Hg}(\mathrm{OAc})_{2}$ and NaBH_{4}. This afforded the desired 44.3 as a minor component and the unwanted allylic alcohol 44.4 as the major product. Variable reaction times were employed at $0{ }^{\circ} \mathrm{C}$ to minimize the formation of the unwanted product, but unfortunately this method was not synthetically useful. We suspected that probably the MEMO unit is a good leaving group and hence is not even surviving the mild acidic conditions. For this reason we tried these conditions again on intermediates $\mathbf{3 4 . 2}$ (see Scheme 34) having no MEM group. The use of $\mathrm{Hg}(\mathrm{OAc})_{2}$ gave the same unwanted allylic

Scheme 44. Attempted modifications on vinyl ether side chain of the BC unit
alcohol 44.4 as before, and other acids like pyridinium p-toluenesulfonate, hydrochloric acid and AcOH caused decomposition instead of giving the desired 44.5.
2.3.4. Other synthetic attempts from intermediates containing the ethoxyvinyl unit

The general plan of these attempts is summarized in Scheme 45. Since

Scheme 45. Attempted electrophilic attack on the ethoxyvinyl unit
direct conversion of the ethoxyvinyl unit in $\mathbf{3 4 . 4}$ to the desired aldehyde $\mathbf{4 3 . 1}$ was unsuccessful, we planned to use some electrophiles other than PhSeCl (as was used in the previous route of section 2.2.4) to make intermediate of type $\mathbf{4 5 . 1}$ and then to remove that unit to reach aldehyde 45.2, which can then be converted to 43.2. As shown in Scheme 45, attempted synthesis of α-halo aldehydes $\mathbf{4 5 . 3}$ and 45.4 did not work. I_{2} in KI and NBS led to decomposition, whereas NIS clearly caused the loss of the SMe group, as judged from the ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. We proposed that these electrophiles are too strong for the SMe unit.

In search for a weaker electrophile to perform this function, we then reconsidered PhSeCl (see section 2.2.4) in the hope that we could remove the PhSe unit under mild conditions. As outlined in Scheme 46, we synthesized the α-selenoaldehyde 34.5 from 34.4, using the procedure established earlier (see section 2.2.4, Scheme 34), and then treated the crude reaction mixture with PhSeNa (made by treating $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ with NaBH_{4} in EtOH) in order to make deselenylated product 45.2; surprisingly, the deselenation did not work. The result was exactly the same when $\mathrm{Bu}_{3} \mathrm{P}$ was used instead of PhSeNa . In both cases the starting compound $\mathbf{3 4 . 5}$ was recovered. As explained in section 2.2.4, during the NaBH_{4} reduction of the α-selenoaldehyde 34.5, we always observed formation of some deselenylated alcohol 44.3 (evident from high resolution mass spectroscopy), and hence a low temperature was employed to minimize formation of this side product. At this stage we decided to explore the possibility of employing this side reaction in a synthetically useful manner. Hence the
reduction of $\mathbf{3 4 . 5}$ was performed at room temperature in the presence of excess

Scheme 46. Further synthetic attempts to modify the ethoxyvinyl unit
NaBH_{4} for a long time (see Scheme 46). We indeed got some of the desired deselenylated product 44.3 , which was mixed with a lot of selenylated alcohol 34.6; unfortunately, because of their similar polarity, they were not separable. The C-Se bond is sensitive to NaBH_{4} only when it is α to the aldehyde and, since aldehyde reduction is faster than the C-Se bond cleavage, once all the aldehyde has been reduced, no further reaction takes place on the remaining selenylated alcohols 34.6. Finally, we tried radical chemistry on these selenylated alcohols to remove the PhSe group ${ }^{66}$ but this experiment $(\mathbf{3 4 . 6} \rightarrow \mathbf{4 4 . 3})$ was unsuccessful and caused decomposition. Hoping that the C-Se bond will be more sensitive under radical conditions when it is α to a carbonyl, we synthesized α-selenoaldehydes 46.1 (in 60% yield from 34.2, see Scheme 46) and subjected them (as a mixture) to standard radical conditions in the presence of $\mathrm{Bu}_{3} \mathrm{SnH}$; but this approach again failed to generate $\mathbf{4 6 . 2}$ and the starting material decomposed.

2.3.5. Attempts using no THP protecting group and a different side chain unit

From the discussion so far, it is clear that we were in need of a replacement for the ethoxyvinyl unit, as fruitful modifications of this substructure did not work. At the same time we wanted a short concise sequence instead of the lengthy route we were using. We envisaged that if we could make the $1,4-$ dicarbonyl compound 47.1 (see Scheme 47), then it would be possible to convert that keto aldehyde to the keto diol 43.5 (shown in Scheme 43 in section 2.3.3) via selective reaction of the aldehyde in preference to the ketone. The added
advantage of this sequence is that it does not need any functional group interconversions on the ketone center of 29.7 and it avoids the THP protecting group steps (see Scheme 31, section 2.2.2 for use of THP group). Therefore we examined this potentially more efficient strategy (Scheme 47), starting from our BC unit 29.7.

The obvious first step was to remove the $t-\mathrm{BuPh}_{2} \mathrm{Si}$ protecting group (Scheme 47) to make 47.2. Surprisingly, this posed a great deal of problems, and

Reagents \& Conditions for desilylation

> Results

1. TBAF, THF

CM
2. TBAF, AcOH, THF
no DP
3. HF•py, THF

8\% DP
4. $\mathrm{AcCl}, \mathrm{MeOH}$

CM
5. $\mathrm{KH}, 18-\mathrm{C}-6 \quad \mathrm{CM}$
6. $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{SMe}_{3} \mathrm{SiF}_{2}\right]$

SM recovered
7. $\mathrm{Bu}_{4} \mathrm{NPh}_{3} \mathrm{SnF}_{2}$

SM recovered
Scheme 47. Deprotection of TBDPS ether
we were unable to carry out the deprotection. The standard conditions such as the use of $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{Bu}_{4} \mathrm{NF}$ with AcOH , and $\mathrm{HF} \bullet$ py failed to give the desired primary alcohol, with the exception of the last reagent, which gave only 8% of 47.3. Dry $\mathrm{HCl}(\mathrm{AcCl}$ in dry MeOH$)$ and KH with 18 -crown-6 ether ${ }^{67 \mathrm{a}}$ led to decomposition. Dry conditions, using TASF (Me) i.e. $\left[\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{~S} \mathrm{Me}_{3} \mathrm{SiF}_{2}\right]$ and $\mathrm{Bu}_{4} \mathrm{NPh}_{3} \mathrm{SnF}_{2},{ }^{67 \mathrm{~b}}$ resulted in recovery of the starting material. Moreover, oxidation of the resulting primary alcohol $(\mathbf{4 7 . 2} \boldsymbol{\rightarrow} \mathbf{4 7 . 3})$ was also troublesome. Parikh-Doering oxidation led to decomposition, Moffatt oxidation ${ }^{58}$ gave some product with lots of impurities, and Ley oxidation (TPAP, NMO) ${ }^{52}$ gave only starting material. All these observations convinced us that protection of the ketone carbonyl would be

29.7

29.7

48.1

48.2

SM recovered, little DP

$$
\mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t
$$

Scheme 48. Attempted modifications of the BC system without a THP group
necessary before we could do any other structural modifications. Direct ketalization using $\mathrm{MeOH}(\mathbf{2 9 . 7} \boldsymbol{\rightarrow} \mathbf{4 8 . 1}$, Scheme 48) did not work, and resulted in recovery of 29.7, presumably because of steric crowding, and prolonged heating caused some loss of the $t-\mathrm{BuPh}_{2} \mathrm{Si}$ group. Since we eventually needed to make a vinylogous amide (functionalize α to the ketone) we decided to construct the vinylogous amide at this earlier stage, reasoning that the enamine unit would certainly reduce the reactivity of the ketone carbonyl and thus would allow us to make the desired modifications in other parts of the molecule. Hence we attempted the conversion of $\mathbf{2 9 . 7}$ to $\mathbf{4 8 . 2}$ which, as shown in Scheme 48, gave only a trace amount of the desired product.

Our next strategy was to use 31.1 (Scheme 31, section 2.2.2) and then remove the silicon protecting group, followed by a double oxidation to get the desired keto aldehyde 47.3. $\mathrm{Bu}_{4} \mathrm{NF}$ buffered with AcOH gave a quantitative yield of the desired 1,4-diol 48.3 from 31.1. Several attempts at oxidation, including Parikh-Doering and Moffatt procedures, ${ }^{58}$ and use of PCC failed to give 47.3 from 48.3. PCC and Moffatt conditions gave little aldehyde, but no oxidation of the secondary alcohol was observed, and no starting material was recovered. At this point we concluded that this type of 1,4-dicarbonyl compound on a pyrrolidine ring may be unstable, a characteristic that was preventing us from synthesizing this unit; hence we decided to go on with our already-established THP route (shown in section 2.2.2). Our conclusion about the stability of the 1,4-dicarbonyl system is consistent with observations made in another route, discussed later in section 2.4.1, (see $\mathbf{5 6 . 1} \boldsymbol{\rightarrow} \mathbf{5 5 . 2}$, Scheme 56).

Our very last attempt to make keto aldehyde $\mathbf{4 7 . 1}$ is shown in Scheme 49. We wanted to oxidize secondary alcohol 49.1 to reach 47.1. Unfortunately, we were never able to remove the THP group from 33.4 to form aldehyde 49.1. Several attempts were made: pyridinium p-toluenesulfonate in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at 50 ${ }^{\circ} \mathrm{C}$ gave 49.2 and 49.3, whereas pyridinium p-toluenesulfonate in $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ gave decomposition. In aqueous THF, treatment with pyridinium p toluenesulfonate resulted an incomplete reaction after 9 h at $50{ }^{\circ} \mathrm{C}$, whereas prolonged heating resulted in a complex mixture. AcOH in aqueous THF generated very little product with some starting material after 12 h , and dilute

Reagents \& Conditions	Results
1. PPTS, MeOH, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$49.2 \& 49.3$
2. PPTS, t-BuOH, $55^{\circ} \mathrm{C}, 12 \mathrm{~h}$	CM
3. PPTS, aq. THF, $50^{\circ} \mathrm{C}, 9 \mathrm{~h}$	$\mathrm{SM} \&$ little DP
4. PPTS, aq. THF, $50^{\circ} \mathrm{C}, 21 \mathrm{~h}$	CM
5. AcOH, aq. THF, rt, 12 h	$\mathrm{SM} \&$ little DP
6. AcOH, aq. THF, $60^{\circ} \mathrm{C}, 8 \mathrm{~h}$	CM
7. HCl, aq. THF	very little DP

Scheme 49. Attempts to remove the tetrahydropyranyl unit
hydrochloric acid in THF gave a very poor yield of the product 49.1.
Having decided to proceed with the THP group in place, we required a two-carbon nucleophile that could react with aldehyde 33.4. As shown in Scheme 50 , our first choice was a vinyl unit to generate $\mathbf{5 0 . 1}$, which should serve as a precursor to the desired diols $\mathbf{5 0 . 2}$ via hydroboration-oxidation. Intermediate $\mathbf{5 0 . 2}$ can potentially be elaborated to the advanced-stage intermediate of type $\mathbf{4 3 . 5}$. Vinylmagnesium bromide failed to give any product 50.1, whereas vinyl-

Reagents \& Conditions	Results
1. vinylcerium, $-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}$ 2. vinylmgnesium bromide, THF $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}$	SM
3. vinylmagnesium bromide, ZnCl_{2} $-20^{\circ} \mathrm{C}$ to $\mathrm{rt}, 12 \mathrm{~h}$	SM
4. vinylmagnesium bomide, $\mathrm{Me}_{2} \mathrm{Zn}$ $\mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, 12 h	SM
5. vinylmagnesium chloride, THF $-78^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$\mathrm{SM} \& \mathrm{DP}$

Scheme 50. Installation of the desired side chain on aldehyde 33.4
magnesium chloride led to incomplete reaction (Scheme 50). Both vinylcerium (generated from dry CeCl_{3} and vinylmagnesium bromide) ${ }^{68}$ and vinylzinc (generated from vinylmagnesium bromide and dry $\mathrm{ZnCl}_{2}{ }^{69 \mathrm{a}}$ or $\mathrm{Me}_{2} \mathrm{Zn}^{69 \mathrm{~b}}$) led to recovery of starting material. At that stage we found an excellent report ${ }^{70}$ on an allylindium reagent, which worked beautifully to afford $\mathbf{5 0 . 3}$ from $\mathbf{3 3 . 4}$ in 90% yield (Scheme 50).

2.3.6. Attempted modifications of the allyl side chain

The general strategy is shown in Scheme 51. We proposed that conversion of $\mathbf{5 0 . 3}$ to the diols $\mathbf{5 0 . 2}$ is possible under oxidative cleavage conditions. Removal of the THP protecting group should afford the desired triols 51.1 as already discussed (see 43.2, Scheme 43, section 2.3.3).

Since it is reported that oxidation of sulfur is 50 times slower than oxidation of double bonds under ozonolysis conditions, ${ }^{71}$ we first chose to do a selective oxidative cleavage of the double bond using O_{3}, followed by reduction of the resulting ozonide to make $\mathbf{5 0 . 2}$. This step was very difficult to accomplish and extensive screening of different conditions was required (see Scheme 51). We employed $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as the solvent for all of our reactions so that we could use NaBH_{4} as the reducing agent, to break the ozonide and reduce the resulting aldehyde to an alcohol in one step. Bubbling O_{3} through a solution of starting material at $-78{ }^{\circ} \mathrm{C}$ until the solution turned blue, followed by reduction, resulted only in the formation of sulfoxides derived from 50.2. Using Sudan Red

7B as indicator ${ }^{72}$ also gave the same result. Bubbling O_{3} arbitrarily for 30 sec (100 mg scale) and reduction yielded some product plus sulfoxides of $\mathbf{5 0 . 2}$ and recovered starting material. Bubbling O_{3} at $-100{ }^{\circ} \mathrm{C}$ mainly resulted in sulfoxides of both the starting material and $\mathbf{5 0 . 2}$, with very little of $\mathbf{5 0 . 2}$ itself. Obviously, a controlled reaction was required to minimize or stop the formation of sulfoxides. We then decided to use the Rubin apparatus ${ }^{73}$ with which one can add a calculated amount of O_{3}. This is achieved by making a saturated solution of O_{3} in a known

Reagents \& Conditions
Results

1. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, $-78^{\circ} \mathrm{C}$; $\mathrm{MeOH}, \mathrm{NaBH}_{4}$ sulfoxides of DP
2. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, Sudan Red 7B sulfoxides of DP $-78^{\circ} \mathrm{C}$; $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
3. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, bubbled for $30 \mathrm{sec} \quad \mathrm{DP}$, sulfoxides of $-78^{\circ} \mathrm{C}$; $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
4. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, $-100^{\circ} \mathrm{C}$; DP \& SM $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
sulfoxides of SM
5. 1 eqv. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, $-78^{\circ} \mathrm{C}$; \& DP, little DP $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
6. 2 eqv. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, $-78^{\circ} \mathrm{C}$;
21% \& SM $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
7. 1 eqv. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, saturated, $-78^{\circ} \mathrm{C}$;
57% \& SM $\mathrm{MeOH}, \mathrm{NaBH}_{4}$
8. 1 eqv. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, slow addition
little DP \& $-78{ }^{\circ} \mathrm{C}$; $\mathrm{MeOH}, \mathrm{NaBH}_{4}$ mainly SM
9. 1 eqv. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, slow addition little aldehyde DP $-78{ }^{\circ} \mathrm{C}$; $\mathrm{Me}_{2} \mathrm{~S}$ mainly SM

Scheme 51. Ozonolysis approaches to modify the allyl side chain
volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ (the concentration of O_{3} is known) and then transferring that solution to a solution of starting material. Use of one equivalent of O_{3} resulted in significant recovery of starting material plus $\mathbf{5 0 . 2}$ (and no sulfoxides), and with two equivalent of O_{3} we got starting material and a 21% yield of 50.2. Optimizing the reaction with one equivalent of O_{3} on $150-200 \mathrm{mg}$ scale, using NaBH_{4} as reducing agent, we were finally able to get $\mathbf{5 0 . 2}$ in 57% yield (corrected for recovered starting material). Because of the recovery of a significant amount of starting material and the fact that these conditions failed to give a satisfactory result when run on more than 200 mg , we designed a special apparatus where one can actually control the rate of addition of the saturated solution of O_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the solution of starting material by adjustment of a

Figure 5. Special ozonolysis apparatus
vertical piston. Hence, this new apparatus was used and the rate of addition of the $\mathrm{O}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was controlled at a slow dropwise manner at $-78{ }^{\circ} \mathrm{C}$. Disappointingly, this experiment also led mainly to the recovery of starting material. Use of $\mathrm{Me}_{2} \mathrm{~S}$ as reducing agent instead of NaBH_{4} also failed to improve the yield. Hence, although we were able to stop the formation of unwanted sulfoxides, the low yield of this reaction under controlled conditions led us to abandon this method.

We then explored the possibility of using the Johnson-Lemieux oxidation 74 (Scheme 52, 50.3 $\boldsymbol{\rightarrow}$ 52.1), using $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$, but this resulted in decomposition. Finally, we decided to try the stepwise sequence of dihydroxylation-diol cleavage-reduction to get to the desired diol $\mathbf{5 0 . 2}$ from 50.3, as shown in Scheme 52. Sulfides are not oxidized ${ }^{75}$ by stoichiometric OsO_{4}; however, in the presence of strong co-oxidants like trialkylamine N-oxides, sulfides can be oxidized efficiently using both stoichiometric and catalytic $\mathrm{OsO}_{4}{ }^{76}$ It has been shown that AD-mix reagents which contain weaker cooxidant $\left[\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right]$ are less reactive towards sulfur compared to the $\mathrm{OsO}_{4}-\mathrm{NMO}$ system. ${ }^{77}$ Hence, various combinations of AD-mix α and β with or without methanesulfonamide were tried (see chart in Scheme 52). Only AD-mix α without methanesulfonamide resulted in some of the desired $52.2(23 \%$, corrected for recovered starting material) and no sulfoxides were formed, but significant amounts of starting material were recovered, even after two days. With AD-mix α and methanesulfonamide, the major products were the sulfoxides of the starting material, with little starting material, $\mathbf{5 2 . 2}$ and sulfoxides of $\mathbf{5 2 . 2}$, within just 2 h .

Reagents \& Conditions (for dihydroxylation)

Results

AD-mix α, t-BuOH
$\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2$ days
AD-mix α, t-BuOH $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}$

AD-mix β, t-BuOH $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}$

AD-mix β, t-BuOH, $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 12 \mathrm{~h}$
OsO_{4}, $\mathrm{DABCO}, \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$-BuOH, $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{K}_{2} \mathrm{CO}_{3}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, (Kishi conditions)

SM plus DP, no sulfoxides
DP 23\% brsm
2 h : sulfoxides of SM (major) little sulfoxides of DP; 12 h : SM, SM-sulfoxides (major) DP, DP-sulfoxides

SM, sulfoxides of DP, little DP

SM, sulfoxides of DP
sulfoxides of both SM \& DP little DP

Scheme 52. Further attempted oxidative modifications of the allyl side chain

With AD-mix β, with or without methanesulfonamide, the major products were the sulfoxides of $\mathbf{5 2 . 2}$, with some recovered starting material and hardly any of the desired product. Finally the Kishi conditions were tried, using DABCO, which resulted in formation of sulfoxides of both $\mathbf{5 0 . 3}$ and $\mathbf{5 2 . 2}$ within 30 minutes. After prolonged stirring (12 h) some sulfone derived from $\mathbf{5 2 . 2}$ was also detected by low resolution mass spectroscopy. We then decided to try all these reactions after removal of the THP group, which was achieved in 91% yield $(\mathbf{5 0 . 3} \boldsymbol{\rightarrow} \mathbf{5 2 . 3}$, Scheme 52). The Kishi conditions ${ }^{78}$ applied to 52.3 (Scheme 52), gave only sulfoxides of both starting material and of $\mathbf{5 2 . 4}$, within 1.5 h ; after an overnight reaction period, the crude reaction mixture showed only sulfoxides of 52.4. Treatment of $\mathbf{5 2 . 3}$ with only AD-mix α also led to the same result. We thus concluded that oxidative modifications on the allyl unit are not possible in the presence of the SMe group.

While optimizing the oxidative cleavage step, we also decided to explore the next few steps as described in our previous plan (see 51.1, Scheme 51, section 2.3.6, and $\mathbf{4 3 . 2} \rightarrow \mathbf{4 3 . 3}$, Scheme 43, section 2.3.3). The very next step was removal of the THP protecting group (50.2 $\boldsymbol{\rightarrow}$ 51.1, Scheme 53). Numerous conditions were tried. Pyridinium p-toluenesulfonate in MeOH at $55^{\circ} \mathrm{C}$ resulted in impure 51.1. Different concentrations of aqueous hydrochloric acid were tried at room temperature, but these conditions led to incomplete reactions, and heating resulted in decomposition. An equivalent amount of $\mathrm{TsOH} \bullet \mathrm{H}_{2} \mathrm{O}$ in MeOH was used at room temperature (11 days), which also resulted in incomplete reaction. Catalytic (10 mol\%) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in MeOH at $45{ }^{\circ} \mathrm{C}(12 \mathrm{~h})$ provided the same
result. Finally, 1.5 equivalent of $\mathrm{TsOH} \bullet \mathrm{H}_{2} \mathrm{O}$ in MeOH at $45{ }^{\circ} \mathrm{C}$ was successful, yielding the desired triol (51.1) in 68% yield within just 30 min .

Scheme 53. Synthetic modifications of diol 50.2

Selective protection of the diol in the side chain of $\mathbf{5 1 . 1}$ was not very straightforward. Use of t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$ yielded mainly monoprotected product (53.2) with very little of the desired diprotected product (53.1), whereas use of a stronger silylating agent t - $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$, led to a trisilylated product (53.3). Because of the poor yield of the oxidative cleavage step (50.3 $\boldsymbol{\rightarrow} \mathbf{5 0 . 2}$), we eventually decided to abandon this route as well.

2.3.7. Attempted route using a β-alkoxy Grignard reagent

Based on a literature report ${ }^{79}$ we tried to make the Grignard reagent from THP-protected 2-bromoethanol 54.1, and then treated that with aldehyde 33.2 in the hope of making 54.2. The latter, upon removal of THP groups, should afford the desired triol 51.1. However, the Grignard step did not work and instead we

Scheme 54. Use of β-alkoxy Grignard reagent
isolated the reduced product 54.3. We suspect that the reported formation of the Grignard reagent is incorrect; the reagent would be expected to expel the oxygen functionality.

2.4. New concise enantioselective routes towards the tricyclic core

Our experience so far suggested that the allyl group is the correct choice of the side chain which acts as a precursor of the dihydrooxepin unit. We had also
optimized the method to construct the BC bicyclic system with the sulfur group, and we concluded in section 2.3.6 that no chemical modifications were possible on the allylic side chain in the presence of sulfur. Hence we needed a modified route that preserved as much as possible of our previous reactions. Clearly, we needed to install the allyl unit first, then perform the required modifications on it, and finally synthesize the diketopiperazine B ring with the SMe group. Once the BC system is made, efforts would be directed to the task of constructing the dihydrooxepin A ring, because prior research by Dr. Peng ${ }^{44}$ revealed that the DKP ring cannot be formed onto the AB system.

2.4.1. The first new route starting with a Boc protected amino acid

The general plan is outlined in Scheme 55. The plan was to start with N -Boc-4-hydroxy-L-proline (55.1), and convert that to the 1,4-dicarbonyl compound 55.2. We first wanted to check the feasibility of this route, and so we decided not to focus on the epimerization at C 2 , as described in section 2.2.1. Installation of the allyl group (to obtain 55.3), ozonolysis-ozonide reduction, followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}$ selective reduction of the resulting aldehyde should afford the keto diol 55.4. Removal of the Boc group and installation of the carbamate chain using 26.3 (see Scheme 29, section 2.2.1) should give 55.5. Protection of the diol, NaH mediated cyclization-sulfenylation (see Scheme 30, 29.7, section 2.2.1) and removal of the protecting groups would then afford the diketopiperazine BC ring containing the ketodiol system (55.6) similar to what is shown in section 2.3.3

Scheme 55. First proposed concise route, using 55.1
(43.5, Scheme 43). We expected that this intermediate can then be elaborated to the dihydrooxepin 55.7 (see section 2.3.3, Scheme 43, 41.3, for related dihydrooxepin).

The Boc protected amino acid $\mathbf{5 5 . 1}$ was converted to the diol $\mathbf{5 6 . 1}$ via a simple two-step sequence involving esterification and LiBH_{4} reduction of the ester (Scheme 56). Several oxidation attempts, which included PCC, Moffatt, ${ }^{58}$ Swern and Ley ${ }^{52}$ oxidation, failed to give the desired aldehyde $\mathbf{5 5 . 2}$ and resulted only in decomposition of the starting material. This observation was consistent with our conclusion described in section 2.3.5 that this type of 1,4-dicarbonyl
system on a pyrrolidine ring is unstable (see $47.2 \rightarrow \mathbf{4 7 . 3}$, Scheme 47, and 48.3
\rightarrow 47.3, Scheme 48). Hence we did not pursue this route further.

Scheme 56. Failure of attempted double oxidation

2.4.2. The second new route starting with a Cbz protected amino acid

The second strategy was exactly similar to what we discussed in section
2.4.1. 4-Hydroxy-L-proline $\mathbf{2 6 . 1}$ was converted to ester $\mathbf{5 7 . 1}$ in a two-step sequence, Cbz protection of nitrogen and esterification. Again we ignored the epimerization at C 2 for the time being. PCC oxidation of $\mathbf{5 7 . 1}$ afforded the ketoester 57.2 in 96% yield. Protection of the ketone $(\mathbf{5 7 . 2} \boldsymbol{\rightarrow} \mathbf{5 7 . 3})$ was necessary, as we observed in section 2.4.1 that compounds like $\mathbf{5 5 . 2}$ are unstable. DIBAL-H reduction of the ketal $\mathbf{5 7 . 3}$ to aldehyde $\mathbf{5 7 . 5}$ did not work, and so LiBH_{4} reduction and Moffatt oxidation ${ }^{58}$ were employed, both giving excellent yields $(\mathbf{5 7 . 3} \rightarrow \mathbf{5 7 . 4} \boldsymbol{\rightarrow} \mathbf{5 7 . 5})$. Introduction of the allyl side chain ${ }^{70}$ went smoothly ($\mathbf{5 7 . 5} \boldsymbol{\rightarrow} \mathbf{5 7 . 6}$). The one-pot sequence of ozonolysis-reduction and ketal removal gave the keto diol 57.7. Surprisingly, protection of the diol unit of $\mathbf{5 7 . 7}$ using t - $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ was unsuccessful and instead gave the silyl enol ether derived from the desired doubly protected ketone 57.8. Our next planned steps

55.6

Scheme 57. Second concise approach towads the tricyclic core of MPC1001F
were to remove the Cbz group and install the carbamate side chain on nitrogen (using 26.3). The rest of the sequence was to have been exactly the same as described in Scheme 55 (section 2.4.1). It is important to mention at this point that, while working on the above route, we were also working on a third, and potentially more efficient route (discussed in section 2.4.3). Our plan was to try
both of the routes shown in Schemes 57 and 59 at the same time and to choose the one that worked better; this turned out to be the third route, and hence we did not spend any more time optimizing this second route.
2.4.3. Current concise enantioselective approach to the tricyclic $A B C$ core of MPC1001F

We decided to start with the early intermediate 29.4 (see Scheme 29,

1. O_{3}, red.
2. red.
3. deketalization

Scheme 58. Current synthetic plan towards the ABC unit of MPC1001F
section 2.2.1) which we had made earlier. The 16 -step plan towards the core is outlined in Scheme 58. Ketal 29.4 would be converted to aldehyde 58.1 by a reduction-oxidation sequence. Installation of the allyl group, followed by oxidative cleavage of the double bond, reduction and deketalization should generate the ketodiols 58.3 (see 55.5, Scheme 55). Protection of the diols and NaH mediated cyclization-sulfenylation (see section 2.2.1, Scheme 30, $\mathbf{2 5 . 1} \rightarrow$ 29.7) and then removal of the protecting groups should produce the ketodiols $\mathbf{5 8 . 4}$ in a process similar to that mentioned in sections 2.3.3 (Scheme 43, 43.5) and 2.4.1 (Scheme 55, 55.6). The diols $\mathbf{5 8 . 4}$ can then be elaborated to the tetrahydrooxepin 58.5, in the same way as shown in Scheme 43 (43.5 $\boldsymbol{\rightarrow}$ 43.7). Intermediate $\mathbf{5 8 . 5}$ could be converted to the tricyclic core $\mathbf{4 1 . 3}$ via a three step sequence of Moffatt oxidation, epimerization and Saegusa oxidation. ${ }^{65}$

The first step was to perform the same type of $\mathrm{Ca}\left(\mathrm{BH}_{4}\right)_{2}{ }^{47}$ reduction on 29.4 (see Scheme 29, 29.4 $\boldsymbol{\rightarrow} \mathbf{2 9 . 5}$ section 2.2 .1 for related reaction), but to quench the reaction with AcOH instead hydrochloric acid so that the ketal group survives $(\mathbf{2 9 . 4} \boldsymbol{\rightarrow} \mathbf{5 9 . 1}$, Scheme 59). This was the desired outcome as we knew from our previous discussions (sections 2.3.5 and 2.4.1, see $47.2 \rightarrow 47.3$ in Scheme 47, 48.3 $\boldsymbol{\rightarrow} \mathbf{4 7 . 3}$ in Scheme 48 and $\mathbf{5 6 . 1} \boldsymbol{\rightarrow} \mathbf{5 5 . 2}$ in Scheme 56) that formation of the 1,4-dicarbonyl on the pyrrolidine ring was not possible. The Moffatt oxidation, ${ }^{58}$ which had already been proved to cause no epimerization (section 2.2.3, Table 1), when applied to $\mathbf{5 9 . 1}$ gave aldehyde $\mathbf{5 8 . 1}$ in excellent yield. Hence the stage was set to do our critical allylindium reaction ${ }^{70}$ (see section 2.3.5, Scheme 50, $\mathbf{3 3 . 4} \boldsymbol{\rightarrow} \mathbf{5 0 . 3}$) which gave the desired $\mathbf{5 8 . 2}$ in almost
quantitative yield, as an inseparable mixture of diastereomers.
Extensive optimization was again required to perform the next step (58.2
\rightarrow 58.3). A stepwise sequence of ozonolysis, reduction and deketalization gave a poor yield. Johnson-Lemieux oxidation, ${ }^{74}$ using $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$, gave mainly the dihydroxylated product instead of an aldehyde. A stepwise sequence of dihydroxylation, diol cleavage and reduction was also very low-yielding. Finally, it was found that a one-pot sequence of ozonolysis-reduction (using $\mathrm{Me}_{2} \mathrm{~S}$), NaBH_{4} reduction of the resulting aldehyde and dilute hydrochloric acid mediated deketalization afforded the best yield of the desired product (58.3) (60\% over these three steps). Use of just NaBH_{4} as reductant gave a slightly poorer yield. Compound 58.3 was water- soluble and workup involved evaporation of the aqueous layer. This yield (60% over the three steps) was obtained for a reaction done on a 200 mg scale. When the reaction was repeated on a $1-2 \mathrm{~g}$ scale, the yield dropped to $40-45 \%$. Finally, use of NaBH_{4} as a reductant for the ozonide and THF as the solvent for hydrolysis of the ketal, afforded 58.3 in 59% yield on 1-g scale.

Protection of both the hydroxyls as $t-\mathrm{BuMe}_{2} \mathrm{Si}$ ethers was troublesome, as observed earlier for related compounds (see section 2.3.6, 51.1 $\boldsymbol{\rightarrow} \mathbf{5 3 . 1}$, Scheme 53 and section 2.4.2, 57.7 \rightarrow 57.8, Scheme 57). $t-\mathrm{BuMe}_{2} \mathrm{SiCl}$ and t $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ and various combinations of ImH , DMAP, DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2,6-lutidine were used (Scheme 59, $\mathbf{5 8 . 3} \boldsymbol{\rightarrow} \mathbf{5 9 . 5}$). The major product was either monoprotected ether (with t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$) or tris-silylted enol ether (with t $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$). Our strategy was to put the same protecting group on both

58.4
59.3

mass spec evidence only

58.3

Scheme 59. Concise enantioselective synthesis of the ABC core
hydroxyls (necessary for the next step which involved NaH) so that they could be removed in the same step as well. Finally it was gratifying to find that protection of the diol unit in $\mathbf{5 8 . 3}$ as a ketal, using 2-methoxypropene, took place smoothly, providing ketone 59.2 in 88% yield. The same type of NaH-mediated Dieckmann-type cyclization, followed by silyl enol ether formation and then sulfenylation as was used in the very first route (section 2.2.1, Scheme 30) was applied here to reach the diketopiperazine 59.3. The structure of this compound was confirmed by X-ray analysis (the ORTEP diagram is shown in Figure 6). The stereochemical outcome of the sulfenylation was controlled by the stereochemistry of the ketal side chain. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 9 . 3}$ actually showed only one diastereomer, although another minor compound having the same mass, was also isolated as an oil (but not characterized); possibly this second compound could be the other diastereomer either along the $\mathrm{C}-\mathrm{O}$ bond or along the

Figure 6. ORTEP diagram of $\mathbf{5 9 . 3}$

C-S bond. We are not concerned with diastereomers along the C-O bond, as eventually that bond is converted into a double bond.

Removal of the ketal protecting group from $\mathbf{5 9 . 3}$ was straightforward giving the ketodiol $\mathbf{5 8 . 4}$ in 89% yield. Formation of the vinylogous amide $\mathbf{5 9 . 4}$ was not easy, and with dimethylformamide dimethyl acetal the reaction worked, but many impurities were also generated. Reaction between $\mathbf{5 8 . 4}$ and Bredereck's reagent ${ }^{80}$ did not generate any of the desired product 59.4, instead an unidentified side product resulted. Because of the very high polarity of $\mathbf{5 9 . 4}$, it was difficult to purify. Cyclization mediated by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ afforded the desired tetrahydrooxepin 58.5 in a very small scale experiment, and only low resolution mass spectral evidence was acquired. Several other attempts were made which involved use of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in PhMe at different temperatures. Some unwanted trifluoroacetylation of one of the hydroxyl groups of $\mathbf{5 9 . 4}$ was also observed. Clearly, these last two steps still require optimization. It could be possible that impurities present in $\mathbf{5 9 . 4}$ were causing problems in the $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-mediated cyclization. Hence we planned to install the enamine unit on 59.3, before removing the ketal.

The reaction $\mathbf{5 9 . 3} \boldsymbol{\rightarrow} \mathbf{6 0 . 1}$ (Scheme 60) worked in 47% yield and the product can be purified easily. Removal of the ketal under mild conditions without affecting the enamine $(\mathbf{6 0 . 1} \boldsymbol{\rightarrow} \mathbf{5 9 . 4})$ was now necessary, and was achieved by using $\mathrm{BiCl}_{3}{ }^{81 \mathrm{a}}$ or $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$-oxalic acid, ${ }^{81 \mathrm{~b}}$ with the latter giving a cleaner reaction (as evident from low resolution mass spectroscopy). The crude reaction mixture containing 59.4 was subjected to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-mediated cyclization, but the desired process $(\mathbf{5 9 . 4} \boldsymbol{\rightarrow} \mathbf{5 8 . 5})$ did not work, possibly, because of the
presence of unwanted inorganic impurities. Direct treatment of $\mathbf{6 0 . 1}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-water, TsOH and HCl -water to remove the ketal first, followed by conjugate addition-elimination on the vinylogous amide ($\mathbf{6 0 . 1} \boldsymbol{\rightarrow} \mathbf{5 8 . 5}$), was not straightforward either, and mainly showed the enamine hydrolysis product, enoldiol $\mathbf{6 0 . 2}$ (evident from low resolution mass spectroscopy). The conditions

Reagents \& Conditions
Results for $60.1 \rightarrow 58.5$

1. TFA, THF, $\mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 15 \mathrm{~min}$
2. TFA, THF, $\mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$
3. $1 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 4 \mathrm{~h}$
4. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 12 \mathrm{~h}$
5. $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 7{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$
6. TFA, PhMe, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 5 \mathrm{~h}$
58.5 \& 60.2 (major)
60.2
60.2

CM
CM
DP

Scheme 60. Further synthetic modifications of the concise route
tried are summarized in Scheme 60. Use of PhMe as a solvent (entry 6) afforded the desired 58.5 tetrahydrooxepin in a very small scale experiment, and optimization is still in progress.

2.4.4. Alternative modified route and future plans

Because of the problems encountered in our current route during the construction of the A ring, we proposed an alternative pathway, which is shown in Scheme 61. Instead of protecting the diols in $\mathbf{5 8 . 3}$ as an acetonide, they were protected as a benzylidene acetal $(\mathbf{5 8 . 3} \boldsymbol{\rightarrow} \mathbf{6 1 . 1})$ in 42% yield. Dieckmann-type cyclization, followed by sulfenylation should give 61.2. Selective unmasking of the secondary hydroxyl should give the benzyl ether 61.3. ${ }^{82}$ Oxidation of the secondary alcohol, followed by debenzylation should afford 61.4. Epimerization at C5 and selective vinylogous amide formation under controlled conditions (the α-hydrogens in the pyrrolidinone ring are highly enolizable) should give $\mathbf{6 1 . 5}$. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$-mediated conjugate addition-elimination and Saegusa oxidation ${ }^{65}$ would then finish the tricyclic core 41.3 . We are currently working on this route and on the third route mentioned in section 2.4.3. Once the core is synthesized, we are a few steps away from the final target, as shown in Scheme 61. Reduction of the two ketones and Mitsunobu inversions of the resulting hydroxyls (required only if the reduction gives the wrong stereochemistry of the hydroxyls) should afford 61.6. Installation of the third carbonyl in the C ring ($61.6 \rightarrow \mathbf{6 1 . 7}$) and attachment of the aromatic piece (the synthesis of which has already been done in
our group ${ }^{44}$) should finish the total synthesis of $\mathbf{1 . 1}$.

MPC1001F 1.1

Scheme 61. Future plans

3. Conclusion

The first part of this thesis explains how the enantioselective synthesis of the tricyclic core of MPC1001F was achieved along the lines summarized in Scheme 62. Starting material 26.1 was first converted to the bicyclic system 29.7

Scheme 62. Summary of attempts to synthesize the tricyclic core of MPC1001F
containing the SMe group. A one-step strategy was developed to perform the Dieckmann-type cyclization (to make the DKP ring) and sulfenylation. After a linear sequence of functional group interconversions and protection-deprotection steps, the key conjugate addition-elimination step was performed generating the tetrahydrooxepin 36.3. Unfortunately, numerous attepts to make the dihydrooxepin 40.1 from 36.3 failed and evetually this route was abandoned.

Several other optimization studies that were carried out to overcome the challenges faced, were also mentioned in detail in this section.

In the next section of the thesis, numerous unsuccessful attempts towards the core, starting from already-synthesized intermediates from the first route, were examined. Finally, a new, short and efficient enantioselective strategy towards the same core was proposed and discussed in the final part of the thesis. This approach is now being inverstigted in order to advance our efforts to complete the synthesis of MPC1001F. As highlighted in Scheme 63, the same starting compound 26.1 was elaborated to the desired DKP unit $\mathbf{5 9 . 3}$ containing the SMe group by a short sequence. Then $\mathbf{5 9 . 3}$ was further advanced to the tetrahydrooxepin 58.5 in 13 steps from 26.1. However only mass spectroscopic

Scheme 63. Summary of the new concise route towards the ABC core
evidence for the ABC skeleton $\mathbf{5 8 . 5}$ was acquired and further optimization efforts are still in progress.

In conclusion, two major synthetic sequences were developed in this laboratory. Both routes involved the same two key steps to construct the tricyclic core of MPC1001F.

Scheme 64 highlights the NaH-mediated Dieckmann type cyclization, followed by sulfenylation, as a tool for making sulfur-containing DKP systems.

1st Route

29.7

2nd Route

Scheme 64. NaH-mediated Dieckmann type cyclization and sulfenylation

The first enantioselective route showed the synthesis of $\mathbf{2 9 . 7}$ from $\mathbf{2 5 . 1}$ via the intermediate formation of 25.2. In the second route the ketone $\mathbf{5 9 . 2}$ was converted to the DKP $\mathbf{5 9 . 3}$ via the same chemistry.

The conjugate addition-elimination chemistry that was employed to make the tricyclic unit of the natural product is summarized in Scheme 65. The two different vinylogous amides ($\mathbf{3 7 . 1}$ and $\mathbf{6 0 . 1}$) were subjected to these conditions in
the presence of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ to obtain the tetrahydrooxepins $\mathbf{3 6 . 3}$ and $\mathbf{5 8 . 5}$ respectively.
1st Route

2nd Route

Scheme 65. The conjugate addition-elimination strategy

Finally, as described in Scheme 61, a modified strategy has been proposed to overcome the problems. We are hoping to complete the synthesis of tricyclic core 61.6 with proper stereocontrol, via this new route. The advanced stage intermediate $\mathbf{6 1 . 6}$ can possibly be elaborated to the natural product 1.1.

4. Experimental Section

Unless otherwise mentioned, reactions were carried out under a slight static pressure of Ar or N_{2} that had been purified by passage through a column $(3.5 \times 42 \mathrm{~cm})$ of BASF R-311 catalyst and then through a similar column of Drierite. Glassware was dried in an oven $\left(140{ }^{\circ} \mathrm{C}\right)$ overnight before use and cooled in a desiccator over Drierite. Large glassware was cooled under a static pressure of Ar or N_{2}.

Distilled solvents were used in the column chromatography. Commercial thin layer chromatography plates (silica gel, Merck 60F-254) were used. Silica gel for flash chromatography was Merck type 60 (230-400 mesh). Dry solvents were prepared under Ar or N_{2} and transferred by syringe or cannula. For drying the solvents the following methods were applied: THF, toluene and benzene were distilled from sodium and benzophenone. $\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ and pyridine were distilled from CaH_{2}. MeOH and EtOH were distilled from Mg .

The symbols $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q used for ${ }^{13} \mathrm{C}$ NMR spectra indicate zero, one, two, or three attached hydrogens, respectively, and the assignments were made by APT and HSQC spectra.

(2R,4R)-4-Hydroxypyrrolidine-2-carboxylic acid hydrochloride (28.2).

26.1
28.2
trans-4-Hydroxy-L-proline 26.1 ($50.938 \mathrm{~g}, 388.8 \mathrm{mmol}$) was added to a stirred and heated $\left(50{ }^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{AcOH}(373 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(204 \mathrm{~mL}, 2.16$ $\mathrm{mol})$. The solution was refluxed $\left(135^{\circ} \mathrm{C}\right)$ for 7 h , cooled to room temperature and evaporated (rotary evaporator, water pump) to afford a thick yellow oil. This was dissolved in hydrochloric acid $(2.0 \mathrm{M}, 340 \mathrm{~mL})$ and the solution was refluxed for 5 h . Charcoal was added carefully to the hot solution and the mixture was filtered through Celite. Evaporation of the filtrate gave $\mathbf{2 8 . 2}$ as a white solid, which was collected, washed with acetone and dried under oil pump vacuum. The material ($54 \mathrm{~g}, 83 \%$) was used for next stage.

The product 28.2 obtained from above procedure was contaminated with some starting material salt. Hence the following procedure was adopted to make diastereomerically pure 28.2. A mixture of 26.1 ($10 \mathrm{~g}, 76.33 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}$ ($75 \mathrm{~mL}, 793.4 \mathrm{mmol}$) was heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . Evaporation of $\mathrm{Ac}_{2} \mathrm{O}$ generated a thick yellow gel, which was then dissolved in hydrochloric acid (2.0 $\mathrm{M}, 150 \mathrm{~mL}$), followed by heating at $100^{\circ} \mathrm{C}$ for 8 h . The color of the reaction mixture became dark brown. Charcoal was added and the reaction mixture was filtered hot through a pad of Celite, and then the Celite bed was washed with
warm water (100 mL). Evaporation of the filtrate gave a greenish-yellow gel. $\mathrm{EtOH}(95 \%, 120 \mathrm{~mL})$ was added to this gel (which caused solid formation upon dissolution of the gel) and the mixture was refluxed at $100{ }^{\circ} \mathrm{C}$ with vigorous stirring for 2 h , to produce a turbid solution. Most but not all of the solid had dissolved by this time. At this stage hexanes (50 mL) were added, which generated two layers, and this mixture was stirred and heated at $90^{\circ} \mathrm{C}$ for 5 min , cooled to room temperature, put in an ice bath and left overnight. This caused crystal formation. Direct filtration was difficult because of partial solubility of the product 28.2 in EtOH, thus causing blockage in the filter funnel. Hence most of the mother liquor (light brown) was decanted and the rest was filtered which finally gave a gel-like solid. Washing with distilled acetone (200 mL), followed by air-drying, produced a white solid which was further dried under oil pump vacuum to afford $28.2(7.57 \mathrm{~g}, 59 \%): \operatorname{mp} 138-143{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=13.96(c 0.67$, $\mathrm{MeOH})$; FTIR (MeOH, cast) 2100-3400 (br), 1715, 1587, $1376 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 400 \mathrm{MHz}\right) \delta 2.13(\mathrm{ddt}, J=13.6,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=13.7$, 9.6, 4.3 Hz, 1 H), $3.13(\mathrm{dt}, J=11.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=11.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 4.33-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=9.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 9.79(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta 37.0(\mathrm{t}), 52.9$ (t), 53.0 (d), 68.1 (d), $169.6(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3}$ 132.0655 , found 132.0655 . The mother liquor from the above reaction produced more solid after being kept for several days. The solid was a pale brown color and I considered it to be impure; this material was not included in the above reported yield.

Methyl (2R,4R)-4-Hydroxypyrrolidine-2-carboxylate hydrochloride (26.2). ${ }^{24}$

$\mathrm{SOCl}_{2}(6.7 \mathrm{~mL}, 95.1 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ slurry of $\mathbf{2 8 . 2}(13.486 \mathrm{~g}, 80.5 \mathrm{mmol})$ in dry $\mathrm{MeOH}(156 \mathrm{~mL})$ contained in a threenecked flask carrying a drying tube. After 30 min the ice bath was removed and stirring was continued overnight. Evaporation of the solvent gave $\mathbf{2 6 . 2}$ as a colorless solid which was dried under oil pump vacuum at $45^{\circ} \mathrm{C}$. The material $(11.75 \mathrm{~g}, 93 \%)$ was pure enough for the next stage: $\mathrm{mp} 165-168^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=10.16$ (c 1.75, MeOH); FTIR (MeOH, cast) 3291, 3005, 2976, 2936, 2200-3500 (br), 1737, 1568, 1448, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 2.13$ (ddt, $J=$ $13.6,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=13.7,9.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dt}, J=11.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=11.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.33-4.37(\mathrm{~m}, 1 \mathrm{H})$, $4.47(\mathrm{dd}, J=9.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.79(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta 37.0(\mathrm{t}), 52.9$ (t), 53.0 (d), 57.3 (d), 68.1 (d), 169.6 (s); exact mass m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{3}(\mathrm{M}-\mathrm{HCl})$ 145.0739, found 145.0737.

2-[Methyl(phenoxycarbonyl)amino]acetic acid (29.2). ${ }^{24}$

$\mathrm{K}_{2} \mathrm{CO}_{3}(75.2 \mathrm{~g}, 455.1 \mathrm{mmol})$ was added in portions to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of N-methyl glycine (29.1) (40 g, 448.9 mmol$)$ in water (453 mL), and then $\mathrm{PhOCOCl}(64 \mathrm{~mL}, 510.1 \mathrm{mmol})$ was added dropwise over ca 15 min . The ice bath was left in place but not recharged and stirring was continued overnight. The aqueous layer was washed twice with $\mathrm{Et}_{2} \mathrm{O}$ and then acidified with concentrated hydrochloric acid. The acidic aqueous phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford 29.2 as a colorless oil (82.7 g, 88\%): FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2500-3500 (br), 1723, 1477, 1456, $1398 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 3.07(\mathrm{~s}, 1.5 \mathrm{H}$, carbamate rotamers), 3.17 (s, 1.5 H , carbamate rotamers), $4.14(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.10(\mathrm{~m}, 1 \mathrm{H})$, 7.13-7.16(m, 1 H$)$, 7.17-7.22 (m, 1 H$), 7.32-7.39(\mathrm{~m}, 2 \mathrm{H}), 11.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 35.9$ (q), 36.2 (q), 50.7 (t), 121.6 (d), 121.7 (d), 125.55 (d), 125.58 (d), 129.3 (d), 151.1 (s), 151.2 (s), 154.8 (s), 155.6 (s), 174.5 (s), 174.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{4}$ 232.0580, found 232.0581.

Phenyl N-(2-Chloro-2-oxoethyl)- N-methylcarbamate (26.3). ${ }^{24}$

$(\mathrm{COCl})_{2}(8.2 \mathrm{~mL}, 93.96 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $29.2(18.304 \mathrm{~g}, 87.58 \mathrm{mmol})$ and DMF $(0.47 \mathrm{~mL}, 6.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. After 15 min the ice bath was removed and stirring was continued for an arbitrary overnight period. Evaporation of the solvent with protection from moisture gave the crude acid chloride 26.3 (dark yellow) which was used for the next step without further purification. The product was not characterized.

Methyl (2R,4R)-4-Hydroxy-1-\{2-[methyl(phenoxycarbonyl)amino]-

 acetyl\}pyrrolidine-2-carboxylate (26.4).
$\mathrm{NaHCO}_{3}(84.4 \mathrm{~g}, 1004.76 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of amine hydrochloride 26.2 ($41.5 \mathrm{~g}, 228.65 \mathrm{mmol}$) in dioxane (450 mL)
and water $(400 \mathrm{~mL})$. Then a solution of the above crude acid chloride $\mathbf{2 6 . 3}$ [(obtained from the corresponding acid $(74.99 \mathrm{~g}, 358.80 \mathrm{mmol})$] in dry THF (100 mL) was added dropwise over 30 min . The ice bath was left in place but not recharged and stirring was continued overnight. The dioxane-THF was evaporated under water pump vacuum and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($10 \times 10 \mathrm{~cm}$), using 1:40 MeOH-EtOAc and then 1:20 MeOH-EtOAc, gave 26.4 (67.1 g, 87\%) as a white semisolid: $[\alpha]_{\mathrm{D}}=49.46\left(c 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast $) 3443$, 2952, 1726, 1657, 1594, 1455, $1398 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.02-$ $2.08(\mathrm{~m}, 0.78 \mathrm{H}), 2.21-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 0.22 \mathrm{H}), 3.03(\mathrm{~s}, 1.2 \mathrm{H}), 3.17$ $(\mathrm{s}, 1.4 \mathrm{H}), 3.20(\mathrm{~s}, 0.4 \mathrm{H}), 3.56-4.22(\mathrm{~m}, 7 \mathrm{H}), 4.32-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.58(\mathrm{~m}, 1$ H), 7.06-7.11 (m, 2 H), 7.15-7.18 (m, 1 H), 7.29-7.35 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 36.1(\mathrm{q}), 36.37(\mathrm{q}), 36.41(\mathrm{q}), 36.6(\mathrm{t}), 39.4(\mathrm{t}), 39.5(\mathrm{t}), 51.18(\mathrm{t})$, $51.21(\mathrm{t}), 51.3(\mathrm{t}), 51.4(\mathrm{t}), 52.77(\mathrm{q}), 52.84(\mathrm{q}), 54.9(\mathrm{t}), 55.0(\mathrm{t}), 55.6(\mathrm{t}), 55.7(\mathrm{t})$, 57.5 (d), 57.7 (d), 57.9 (d), 58.0 (d), 68.2 (d), 68.4 (d), 71.10 (d), 71.15 (d), 121.65 (d), 121.71 (d), 121.8 (d), 125.3 (d), 125.4 (d), 129.17 (d), 129.20 (d), 151.29 (s), 151.32 (s), 154.9 (s), 155.0 (s), 155.4 (s), 155.5 (s), 167.3 (s), 167.5 (s), 167.6 (s), $168.0(\mathrm{~s}), 172.4$ (s), 172.8 (s), 174.2 (s), 174.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6} 359.1214$, found 359.1213.

Methyl (2R)-1-\{2-[Methyl(phenoxycarbonyl)amino]acetyl\}-4-oxo-

 pyrrolidine-2-carboxylate (29.3).

PCC (19.468 g, 90.31 mmol$)$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $26.4(10.115 \mathrm{~g}, 30.10 \mathrm{mmol}), \mathrm{AcONa}(2.469 \mathrm{~g}, 30.10 \mathrm{mmol})$ and $3 \AA$ molecular sieves ($15.052 \mathrm{~g}, 0.5 \mathrm{~g} / \mathrm{mmol}$ of 26.4) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (350 mL). After 10 min the ice bath was removed and stirring was continued for 1.5 h . The reaction mixture was then filtered through Celite and the filter bed was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Silica gel was added to the filtrate which was evaporated. The resulting solid was loaded onto a silica gel column ($8 \times 20 \mathrm{~cm}$) made up with 2:1 EtOAc-hexanes, and 2:1 EtOAc-hexanes to pure EtOAc were used as eluent to afford 29.3 ($8.978 \mathrm{~g}, 89 \%$) as a white solid: $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=23.78\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $) 2956,1767,1726,1673,1594$, $1477,1455,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.51(\mathrm{ddd}, 0.8 \mathrm{H}, J=18.9$, 9.0, 2.8 Hz), $2.64(\mathrm{~m}, 0.2 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1.1 \mathrm{H}), 3.13-3.14(\mathrm{~m}$, 1.9 H), 3.65-4.31 (m, 7 H), 4.79-4.83 (m, 0.1 H), 4.96-4.99 (m, 0.9 H), 7.03-7.10 $(\mathrm{m}, 2 \mathrm{H}), 7.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$

$51.3(\mathrm{t}), 51.5(\mathrm{t}), 51.6(\mathrm{t}), 51.7(\mathrm{t}), 52.6(\mathrm{q}), 53.0(\mathrm{q}), 55.3(\mathrm{~d}), 55.4(\mathrm{~d}), 55.9(\mathrm{~d})$, 56.1 (d), 121.5 (d), 121.6 (d), 125.25 (d), 125.30 (d), 129.1 (d), 151.1 (s), 151.2 (s), 154.6 (s), 155.2 (s), 167.4 (s), 167.59 (s), 167.64 (s), 170.4 (s), 170.7 (s), 171.3 (s), 171.4 (s), 206.2 (s), 206.4 (s), 206.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 357.1057, found 357.1052.

Methyl (2R)-4,4-Dimethoxy-1-\{2-[methyl(phenoxycarbonyl)amino]-

 acetyl\}pyrrolidine-2-carboxylate (29.4).
$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(591.3 \mathrm{mg}, 3.11 \mathrm{mmol})$ was added to a stirred mixture of ketone 29.3 ($34.16 \mathrm{~g}, 102.27 \mathrm{mmol}$) and $\mathrm{HCH}(\mathrm{OMe})_{3}(13.43 \mathrm{~mL}, 122.72 \mathrm{mmol})$ in a mixture of dry $\mathrm{MeOH}(600 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The mixture was refluxed for 16 h and then cooled to room temperature. Saturated aqueous NaHCO_{3} was added, the MeOH was evaporated and the residual aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($10 \times 10 \mathrm{~cm}$), using 2:1 EtOAc-hexane, gave $29.4(35.04 \mathrm{~g}, 90 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}=78.96\left(c 1.00, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2951, 2837,
$1728,1668,1954,1455,1436,1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.19-$ $2.24(\mathrm{~m}, 0.7 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 0.3 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 9 \mathrm{H})$, 3.60-3.78 (m, 5H), 3.92-3.97 (m, 0.6), 4.14-4.31 (m, 1.4 H), 4.46-4.48 (m, 0.1 H), 4.60-4.66 (m, 0.9 H), 7.08-7.13 (m, 2 H), 7.15-7.19 (m, 1 H), 7.31-7.36 (m, 2 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 35.69(\mathrm{q}), 35.71(\mathrm{t}), 35.9(\mathrm{t}), 36.18(\mathrm{q}), 36.22(\mathrm{q})$, $36.3(\mathrm{q}), 37.8(\mathrm{t}), 38.0(\mathrm{t}), 49.0(\mathrm{q}), 49.2(\mathrm{q}), 49.8(\mathrm{q}), 49.9(\mathrm{q}), 50.0(\mathrm{q}), 51.1(\mathrm{t})$, $51.3(\mathrm{t}), 51.9(\mathrm{t}), 52.0(\mathrm{t}), 52.1(\mathrm{t}), 52.4(\mathrm{q}), 52.7(\mathrm{q}), 57.3(\mathrm{~d}), 57.4(\mathrm{~d}), 57.8(\mathrm{~d})$, 105.4 (s), 107.07 (s), 107.15 (s), 121.59 (d), 121.62 (d), 121.67 (d), 121.70 (d), 125.2 (d), 129.08 (d), 129.12 (d), 151.3 (s), 155.3 (s), 155.4 (s), 166.8 (s), 167.0 (s), 167.5 (s), 167.8 (s), $171.0(\mathrm{~s}), 171.16(\mathrm{~s}), 171.23$ (s), 171.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{7} 403.1476$, found 403.1470.

Phenyl N-\{2-[(2R)-2-(Hydroxymethyl)-4-oxopyrrolidin-1-yl]-2-oxo-

 ethyl $\}$ - N-methylcarbamate (29.5).

Anhydrous $\mathrm{CaCl}_{2}(11.245 \mathrm{~g}, 101.3 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of methyl ester $29.4(35.0 \mathrm{~g}, 92.1 \mathrm{mmol})$ in a mixture of dry THF (110 mL) and dry EtOH (110 mL), and then $\mathrm{NaBH}_{4}(7.669 \mathrm{~g}, 202.6$
mmol) was added in one portion. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 7 h and the mixture was acidified with hydrochloric acid $(1 \mathrm{M}, 225 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was left in place, but not recharged, and stirring was continued overnight. The solution was diluted with EtOAc and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($10 \times 12 \mathrm{~cm}$), using first EtOAc and then 1:20 MeOH-EtOAc, gave 29.5 (26.19 g, 93\%, not dry) as a semi-solid: $[\alpha]_{\mathrm{D}}=-22.02\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (measured on dry material); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3432,2925,1763,1722,1656,1594,1456,1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.33-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.24(\mathrm{~m}, 3 \mathrm{H})$, 3.50-4.18 (m, 5.8 H), 4.30-4.37 (m, 0.28 H), 4.42-4.47 (m, 0.17 H), 4.67-4.77 (m, $0.73 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.6(\mathrm{q}), 36.8(\mathrm{q}), 39.3(\mathrm{t}), 39.4(\mathrm{t}), 40.8(\mathrm{t}), 50.6(\mathrm{t}), 51.8(\mathrm{t})$, $52.2(\mathrm{t}), 52.8(\mathrm{t}), 53.1(\mathrm{t}), 55.9(\mathrm{~d}), 56.1(\mathrm{~d}), 56.4(\mathrm{~d}), 64.2(\mathrm{t}), 64.6(\mathrm{t}), 65.1(\mathrm{t})$, 121.7 (d), 121.8 (d), 125.5 (d), 125.6 (d), 129.31 (d), 129.32 (d), 151.26 ($s)$, 151.29 (s), 155.0 (s), 155.8 (s), 167.48 (s), 167.51 (s), 167.8 (s), 208.5 (s), 208.6 (s), 208.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 329.1108, found 329.1109.

Phenyl $\quad N-\{2-[(2 R)-2-\{[(t e r t-b u t y l d i m e t h y l s i l y l) o x y] m e t h y l\}-4-o x o-$

 pyrrolidin-1-yl]-2-oxoethyl\}-N-methylcarbamate (25.1).
$t-\mathrm{BuPh}_{2} \mathrm{SiCl}(40.7 \mathrm{~mL}, 158.96 \mathrm{mmol})$ was added to a stirred solution of alcohol $29.5(30.4 \mathrm{~g}, 99.35 \mathrm{mmol})$, imidazole ($16.91 \mathrm{~g}, 248.37 \mathrm{mmol})$ and DMAP ($794 \mathrm{mg}, 6.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL}$). Stirring was continued for 36 h and the mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($10 \times 10 \mathrm{~cm}$), using 1:1 EtOAc-hexane, and recycling of the recovered 29.5, gave $25.1(41.95 \mathrm{~g}, 90 \%)$ as a semi-solid: $[\alpha]_{\mathrm{D}}=-6.48(c \quad 1.00$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3072, 3048, 2956, 2931, 2859, 1766, 1726, 1667, 1593, 1473, 1449, $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.48-2.56(\mathrm{~m}, 1 \mathrm{H})$, 2.68 (dd, $0.7 \mathrm{H}, J=18.0,9.7 \mathrm{~Hz}), 2.77-2.84(\mathrm{~m}, 0.3 \mathrm{H}), 2.99(\mathrm{~s}, 0.2 \mathrm{H}), 3.07(\mathrm{~s}$, $0.7 \mathrm{H}), 3.16(\mathrm{~s}, 0.6 \mathrm{H}), 3.21(\mathrm{~s}, 1.3 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1.2 \mathrm{H}), 3.74-4.01(\mathrm{~m}, 2.8 \mathrm{H})$, 4.14-4.38 (m, 2.1 H), 4.52-4.54 (m, 0.2 H), 4.76-4.80 (m, 0.7 H), 7.00-7.09 (m, 1 H), 7.13-7.22 (m, 2 H$), ~ 7.29-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.63(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 19.07$ (s), 19.12 (s), 26.69 (q), 26.72 (q), $26.8(\mathrm{q}), 36.2(\mathrm{q}), 36.4$ (q), $36.5(\mathrm{q}), 36.6(\mathrm{q}), 39.5(\mathrm{t}), 41.0(\mathrm{t}), 41.1(\mathrm{t}), 50.1(\mathrm{t}), 50.2(\mathrm{t}), 51.6(\mathrm{t}), 51.7(\mathrm{t})$,
$52.8(\mathrm{t}), 53.1(\mathrm{t}), 53.3(\mathrm{t}), 55.2(\mathrm{~d}), 55.3(\mathrm{~d}), 55.8(\mathrm{~d}), 56.1(\mathrm{~d}), 65.7(\mathrm{t}), 65.8(\mathrm{t})$, 66.6 (t), 66.9 (t), 121.67 (d), 121.72 (d), 121.78 (d), 121.82 (d), 125.38 (d), 125.41 (d), 125.43 (d), 127.8 (d), 127.87 (d), 127.89 (d), 128.03 (d), 128.05 (d), 129.2 (d), 129.3 (d), 129.9 (d), 130.96 (d), 130.03 (d), 130.06 (d), 130.13 (d), 130.2 (d), 130.3 (d), 132.0 (s), 132.1 (s), 132.16 (s), 132.17 (s), 132.4 (s), 132.5 (s), 132.59 (s), 132.64 (s), 135.3 (d), 135.4 (d), 135.56 (d), 135.61 (d), 135.62 (d), 151.27 (s), 151.31 (s), 151.33 (s), 151.4 (s), 154.8 (s), 154.9 (s), 155.39 (s), 155.44 (s), 166.4 (s), 166.7 (s), 167.3 (s), 208.2 (s), 208.4 (s), 208.56 (s), 208.62 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H}), 545.2466$, found 545.2466. Note: The starting material 29.5 was recovered even after 36 h, and hence it was re-subjected to the same reaction conditions after isolation.
(6R,8aR)-6-\{[(tert-Butyldimethylsilyl)oxy]methyl\}-2-methyl-8a-(methylsulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4,8-trione (29.7).

This experiment was repeated three times and the products were combined before final purification.

First run

$\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $3.93 \mathrm{~g}, 98.27 \mathrm{mmol})$ was added to a stirred solution of ketone 25.1 (24.32 g , 44.67 mmol) in dry THF (400 mL). The reaction flask was then lowered into a pre-heated oil bath set at $70{ }^{\circ} \mathrm{C}$ and the reaction mixture was refluxed for 20 min . After 15 min , TLC monitoring (silica gel, EtOAc) showed no $\mathbf{2 5 . 1}$ left, and only a very polar spot corresponding to the cyclized product was detected $\left(\mathrm{R}_{\mathrm{f}}=0.1\right)$. After a total reaction time of 20 min , the mixture was cooled to room temperature and then to $0{ }^{\circ} \mathrm{C}$. Longer heating results in decomposition. During the reaction almost all of the NaH suspension dissolved and the color of the mixture became yellow.

In a separate flask, $\mathrm{Et}_{3} \mathrm{~N}(9.96 \mathrm{~mL}, 71.47 \mathrm{mmol})$ was added to stirred and cooled $\left(0^{\circ} \mathrm{C}\right) \mathrm{Me}_{3} \mathrm{SiCl}(15.8 \mathrm{~mL}, 125.08 \mathrm{mmol})$ and stirring was continued for 10 min. The resulting milky solution was then added via cannula to the above reaction mixture. A brown color developed and a suspension formed. The mixture was stirred for an arbitrary period of 3.5 h at $0^{\circ} \mathrm{C}$.

In another flask, MeSCl was generated by slow addition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (3.2 $\mathrm{mL}, 40.2 \mathrm{mmol})$ from a syringe to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}$ ($3.7 \mathrm{~mL}, 40.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(275 \mathrm{~mL})$, followed by stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture containing the intermediate silyl enol ether was then cooled to $-78{ }^{\circ} \mathrm{C}$ and the yellow solution of MeSCl was transferred into it via a cannula, and stirring at $-78^{\circ} \mathrm{C}$ was continued for 30 min . The cooling bath was removed and stirring was continued for 4 h , by which time TLC (silica, 1:1 EtOAc-hexane) showed none of the cyclized intermediate remained and that the
reaction was complete. The mixture was quenched with water and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A suspension remained throughout the reaction but disappeared on quenching the mixture with water. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 16 \mathrm{~cm}$), using 2:1 to $1: 1$ EtOAc-hexanes, was done three times to afford 29.7 containing some colored impurities. After evaporating the eluate, cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ EtOAc was added to the impure solid product to cause precipitation of $\mathbf{2 9 . 7}$ (white), which was filtered off. The mother liquor was concentrated and the precipitation-filtration sequence was repeated several times until TLC (silica, 1:1 EtOAc-hexane) showed no 29.7 in the mother liquor.

Second run

$\mathrm{NaH}(60 \%$ in mineral oil, $5.616 \mathrm{~g}, 140.4 \mathrm{mmol})$ was added to a stirred solution of starting ketone $\mathbf{2 5 . 1}$ ($34.74 \mathrm{~g}, 63.82 \mathrm{mmol}$) in dry THF (800 mL). The reaction flask was then lowered into a pre-heated oil bath set at $70{ }^{\circ} \mathrm{C}$ and the mixture was refluxed for 20 min . After 15 min , TLC monitoring (silica gel, EtOAc) showed no $\mathbf{2 5 . 1}$ left, and only a very polar spot corresponding to the cyclized product was detected $\left(\mathrm{R}_{\mathrm{f}}=0.1\right)$. The reaction mixture was cooled to room temperature and then to $0{ }^{\circ} \mathrm{C}$. Longer heating results in decomposition. During the reaction almost all of the NaH suspension dissolved and the color of the mixture became yellow.

In a separate flask, $\mathrm{Et}_{3} \mathrm{~N}(14.2 \mathrm{~mL}, 102.11 \mathrm{mmol})$ was added to stirred and cooled $\left(0^{\circ} \mathrm{C}\right) \mathrm{Me}_{3} \mathrm{SiCl}(22.6 \mathrm{~mL}, 178.69 \mathrm{mmol})$ and stirring was continued for 10 min. The resulting milky solution was then added via cannula to the above reaction mixture. A brown color developed and a suspension formed. The mixture was stirred for and an arbitrary period of 3.5 h at $0^{\circ} \mathrm{C}$.

In another flask, MeSCl was generated by slow addition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(4.57$ $\mathrm{mL}, 56.87 \mathrm{mmol})$ from a syringe to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}(5.17 \mathrm{~mL}, 57.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$, followed by stirring for 15 min at $-78^{\circ} \mathrm{C}$. The rest of the procedure was the same as described above.

Third run

$\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $2.85 \mathrm{~g}, 71.26 \mathrm{mmol})$ was added to a stirred solution of ketone 25.1 ($17.63 \mathrm{~g}, 32.39 \mathrm{mmol}$) in dry THF (400 mL). The reaction flask was then lowered into a pre-heated oil bath set at $70{ }^{\circ} \mathrm{C}$ and the reaction mixture was refluxed for 20 min . After 15 min , TLC monitoring (silica gel, EtOAc) showed no $\mathbf{2 5 . 1}$ left, and only a very polar spot corresponding to the cyclized product was detected $\left(\mathrm{R}_{\mathrm{f}}=0.1\right)$. Immediately after developing the TLC plate (i.e. after a reaction time of 20 min), the reaction flask was raised from the heating bath and the reaction mixture was cooled to room temperature and then to $0{ }^{\circ} \mathrm{C}$. Longer heating results in decomposition. During the reaction almost all of the NaH suspension dissolved and the reaction mixture became yellow.

In a separate flask, $\mathrm{Et}_{3} \mathrm{~N}(7.2 \mathrm{~mL}, 51.82 \mathrm{mmol})$ was added to stirred and cooled $\left(0^{\circ} \mathrm{C}\right) \mathrm{Me}_{3} \mathrm{SiCl}(11.5 \mathrm{~mL}, 90.69 \mathrm{mmol})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$
for 10 min . The resulting milky solution was then added via cannula to the above reaction mixture. A brown color developed and a suspension formed. The mixture was stirred for an arbitrary period of 3.5 h at $0^{\circ} \mathrm{C}$.

In another flask, MeSCl was generated by slow dropwise addition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(2.34 \mathrm{~mL}, 29.15 \mathrm{mmol})$ from a syringe to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}(2.65 \mathrm{~mL}, 29.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, followed by stirring for 15 min at $-78^{\circ} \mathrm{C}$. The rest of the procedure was the same as described above.

The overall yield from the above three reactions was $28.03 \mathrm{~g}(40 \%): \mathrm{mp}$ $152-155{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-4.96\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2931, 2858, 1764, 1727, 1472, 1427, $1410 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93-1.03(\mathrm{~s}, 9$ H), 2.27 (s, 3 H), 2.61 (dd, $J=18.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=18.0$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}$, $J=10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.63(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3$ (q), 19.0 (s), 26.6 (q), 33.7 (q), 36.0 (t), 52.6 (d), 53.1 (t), 62.5 (t), 127.7 (d), 127.8 (d), 129.8 (d), 129.9 (d), 132.6 (s), 135.5 (d), 135.6 (d), 160.3 (s), 165.4 (s), 193.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{SiS} 519.1744$, found 519.1737.
(6R,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-2-methyl-8a-(methylsulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4-dione (31.1).

$\mathrm{NaBH}_{4}(1.663 \mathrm{~g}, 43.95 \mathrm{mmol})$ was added in portions to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $29.7(18.18 \mathrm{~g}, 36.62 \mathrm{mmol})$ in dry $\mathrm{MeOH}(200 \mathrm{~mL})$ and THF (200 mL), and stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 1 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:2 to 1:1 EtOAc-hexanes, gave $31.1(17.77 \mathrm{~g}, 97 \%)$ as a white solid: mp $163-165{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-13.3\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3429, 2929, 2856, 1733, 1663, 1559, 1540, 1472, $1427 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (498 MHz, CDCl_{3}) δ 0.98-1.07 (s, 9 H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.28$ (ddd, $J=12.5,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.50$ (m, 1 H), 2.85 (br s, 1 H), 3.03 (s, 3 H), 3.64 (dd, $J=10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (apparent dt, $J=9.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dd, $J=10.4,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=11.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.48$ (m, 6 H), 7.53-7.64 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3$ (q), 19.2 (s),
$26.8(\mathrm{q}), 31.7(\mathrm{t}), 33.2(\mathrm{q}), 53.6(\mathrm{t}), 55.5(\mathrm{~d}), 62.5(\mathrm{t}), 71.7(\mathrm{~s}), 74.7(\mathrm{~d}), 127.73(\mathrm{~d})$, 127.77 (d), 129.8 (d), 132.8 (s), 133.1 (s), 135.48 (d), 135.57 (d), 164.8 (s), 165.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{SiS} 521.1901$, found 521.1899.
(6R,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-2-methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4dione (31.2).

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(163 \mathrm{mg}, 0.719 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 1 . 1}$ $(17.77 \mathrm{~g}, 35.65 \mathrm{mmol})$ and 3,4-dihydropyran $(9.76 \mathrm{~mL}, 106.97 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The pale yellowish color of the mixture changed to reddish. Stirring at room temperature was continued for 45 min , during which time the color changed to dark greenish. $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL})$ was then added dropwise and the color changed to yellow. Stirring was continued for 10 min and the solvent was evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexanes, gave $31.2(21.05 \mathrm{~g}, 102 \%$, incomplete removal of solvent) as a white semisolid: $[\alpha]_{\mathrm{D}}=-20.92\left(c 2.27, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $)$

3071, 3014, 2932, 2858, 1733, 1678, 1589, 1487, 1471, 1427, $1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.92(\mathrm{~m}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 2.30$ (s, 1 H), $2.34(\mathrm{dd}, J=12.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 3 \mathrm{H})$, 3.44-3.57 (m, 2 H), 3.70 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.98(\mathrm{~m}, 0.7 \mathrm{H}), 4.01-4.18(\mathrm{~m}$, 2 H), 4.33 (apparent td, $J=11.2,3.1 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.40-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.97$ (s, 0.3 H), 5.02-5.20 (m, 1.7 H), 7.32-7.47 (m, 6 H), 7.53-7.60 (m, 2 H$), 7.60-7.68(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.8$ (q), 14.9 (q), 18.2 (t), 19.1 (s), 19.2 (s), $20.1(\mathrm{t}), 25.3(\mathrm{t}), 25.5(\mathrm{t}), 26.6(\mathrm{q}), 26.7(\mathrm{q}), 29.7(\mathrm{t}), 30.1(\mathrm{t}), 30.5(\mathrm{t}), 32.5(\mathrm{t})$, $33.6(\mathrm{q}), 33.7(\mathrm{q}), 53.60(\mathrm{t}), 53.63(\mathrm{t}), 55.2(\mathrm{~d}), 55.8(\mathrm{~d}), 60.8(\mathrm{t}), 62.7(\mathrm{t}), 62.8(\mathrm{t})$, 63.4 (t), 70.7 ($s), 70.8$ ($s), 75.2$ (d), 79.9 (d), 94.5 (d), 100.5 (d), 127.6 (d), 127.7 (d), 129.7 (d), 129.8 (d), 132.8 (s), 133.0 ($s), 135.58$ (d), 135.63 (d), 164.5 ($s)$, 165.0 (s), 165.3 (s), 165.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SiS}$ 605.2476, found 605.2471.

(6R,8S,8aR)-6-(Hydroxymethyl)-2-methyl-8a-(methylsulfanyl)-8-

 (oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-dione (33.1).
31.2
33.1
$\mathrm{Bu}_{4} \mathrm{NF}(1 \mathrm{M}$ in THF, $61.84 \mathrm{~mL}, 61.84 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 1 . 2}(32.74 \mathrm{~g}, 56.22 \mathrm{mmol})$ in dry THF $(500 \mathrm{~mL})$. The ice bath was left in place but not recharged and stirring was continued for 14 h . The solvent was evaporated and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexanes to pure EtOAc and then 1:10 MeOH-EtOAc, gave $\mathbf{3 3 . 1}$ $(16.21 \mathrm{~g}, 84 \%)$ as a white solid: $\mathrm{mp} 170-173{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-51.71\left(c 1.69, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3445,2941,2876,1675,1413 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(498 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.49-1.84(\mathrm{~m}, 6 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 0.8 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 2.5 \mathrm{H}), 2.26-$ $2.29(\mathrm{~s}, 0.5 \mathrm{H}), 2.33$ (apparent dt, $J=12.5,10.2 \mathrm{~Hz}, 0.2 \mathrm{H}$), 2.57 (apparent dt, $J=$ $13.0,10.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.00-3.07(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.67(\mathrm{~m}, 1 \mathrm{H})$, 3.72-3.76 (m, 0.7 H), 3.76-3.82 (m, 1.3 H), 3.87 (ddd, $J=11.3,8.1,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.18 (m, 0.8 H), 4.18-4.24 (m, 0.2 H), 4.30 (apparent td, $J=11.2,3.0 \mathrm{~Hz}, 0.2$ H), 4.41-4.50 (m, 1 H$), 4.65(\mathrm{dd}, J=10.5,7.4 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.80(\mathrm{dd}, J=10.4,6.9$ $\mathrm{Hz}, 0.17 \mathrm{H}), 4.86-4.90(\mathrm{~m}, 0.17 \mathrm{H}), 5.08-5.14(\mathrm{~m}, 0.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.7(\mathrm{q}), 14.9(\mathrm{q}), 18.1(\mathrm{t}), 19.4(\mathrm{t}), 25.3(\mathrm{t}), 25.4(\mathrm{t}), 30.1(\mathrm{t}), 30.2(\mathrm{t})$, $32.2(\mathrm{t}), 33.6(\mathrm{q}), 33.8(\mathrm{q}), 53.4(\mathrm{t}), 56.9(\mathrm{~d}), 57.4(\mathrm{~d}), 61.1(\mathrm{t}), 62.6(\mathrm{t}), 64.65(\mathrm{t})$, 64.69 (t), 70.9 ($s), 75.1$ (d), 79.5 (d), 94.7 (d), 99.9 (d), 163.9 ($s), 164.8$ ($s), 167.0$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}$ 367.1298, found 367.1294. An X-ray structure was obtained for this compound. Crystals for Xray analysis were obtained by dissolving a sample in EtOAc in a shortened NMR
tube which was then placed in a vial containing hexanes. The vial was closed with a stopper so that the hexanes gradually diffused into the EtOAc solution.
(8S,8aR)-2-Methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)-1,4-dioxo-octahydropyrrolo[1,2-a]piperazine-6-carbaldehyde (33.2).

DMSO (dry, $12.4 \mathrm{~mL}, 174.42 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (dry, $12.2 \mathrm{~mL}, 87.21$ $\mathrm{mmol})$ were added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $33.1(3.0 \mathrm{~g}, 8.72$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$. Then $\mathrm{SO}_{3} \bullet \mathrm{Py}(4.164 \mathrm{~g}, 26.16 \mathrm{mmol})$ was tipped into the reaction mixture. Note: It is essential to add $\mathrm{Et}_{3} \mathrm{~N}$ before $\mathrm{SO}_{3} \cdot \mathrm{Py}$. The color of the reaction mixture turned pale yellow. After 30 min the ice bath was removed and stirring was continued overnight during which time the color changed to dark yellow. The mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed twice with water to remove DMSO and $\mathrm{Et}_{3} \mathrm{~N}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.5 \times 15 \mathrm{~cm}$), using 2:1 EtOAc-hexanes to pure EtOAc, afforded 33.2 ($2.491 \mathrm{~g}, 84 \%$) as a yellowish semisolid. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed both isomers of the aldehyde, the major one being the S isomer:

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $2940,2873,1736,1678,1416 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.48-1.88(\mathrm{~m}, 6 \mathrm{H}), 2.02-2.16(\mathrm{~m}, 0.34 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.28-$ $2.47(\mathrm{~m}, 0.63 \mathrm{H}), 2.50-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.11(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.62(\mathrm{~m}, 1 \mathrm{H})$, 3.76-3.90 (m, 2 H), 4.21-4.32 (m, 1 H$), 4.41-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{dd}, J=9.7,6.7$ $\mathrm{Hz}, 0.2 \mathrm{H}$), 4.83-4.91 (m, 0.2 H), 5.06 (apparent $\mathrm{t}, J=3.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.14$ (apparent $\mathrm{t}, J=3.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 9.46-9.57(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.3(\mathrm{q}), 18.0(\mathrm{t}), 19.1(\mathrm{t}), 19.5(\mathrm{t}), 25.22(\mathrm{t}), 25.26(\mathrm{t}), 25.31(\mathrm{t}), 26.9(\mathrm{t}), 29.1(\mathrm{t})$, $29.2(\mathrm{t}), 30.0(\mathrm{t}), 30.2(\mathrm{t}), 33.9(\mathrm{q}), 52.8(\mathrm{t}), 52.9(\mathrm{t}), 60.1(\mathrm{~d}), 60.3(\mathrm{~d}), 60.8(\mathrm{~d})$, $61.2(\mathrm{t}), 62.5(\mathrm{t}), 62.9(\mathrm{t}), 70.2(\mathrm{~s}), 76.1(\mathrm{~d}), 78.9(\mathrm{~d}), 80.2(\mathrm{~d}), 94.8(\mathrm{~d}), 94.9(\mathrm{~d})$, 99.8 (d), 100.2 (d), 164.4 (s), 164.5 (s), 164.6 (s), 164.9 (s), 195.4 (d), 196.7 (d), 196.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S} 365.1142$, found 365.1145 .
(8S,8aR)-6-(Hydroxymethyl)-2-methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-dione (33.1 and 33.3).

$\mathrm{NaBH}(\mathrm{OAc})_{3}(4.027 \mathrm{~g}, 19 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 3 . 2}$ $(1.624 \mathrm{~g}, 4.75 \mathrm{mmol})$ in dry $\mathrm{PhH}(77 \mathrm{~mL})$ contained in a round-bottomed flask
equipped with a condenser, and the flask was lowered into a pre-heated oil bath set at $55^{\circ} \mathrm{C}$. The initial white slurry turned into a milky white solution after 2 min. Heating was continued for 1.5 h and the mixture was then quenched with just sufficient MeOH to produce a clear, pale yellowish solution. TLC (silica gel, pure EtOAc, eluted two times) showed two very close spots (almost a figure eight shape) corresponding to two isomers of the reduced alcohol. Water was added to the reaction mixture which was extracted three times with EtOAc. The combined organic extracts were washed with water, saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 20 \mathrm{~cm}$), using 9:1 EtOAc-hexanes to pure EtOAc (the less polar S alcohol 33.3, which is the major component, elutes with these eluents) to $1: 10 \mathrm{MeOH}-$ EtOAc (more polar R alcohol 33.1 elutes with this eluent), gave the product (as two isomers, $1.42 \mathrm{~g}, 87 \%$ in total). A portion of the S alcohol 33.3 was isolated (from one of the chromatography fractions) as a white semisolid whereas isomer 33.1 was a white solid which was subjected to the Parikh-Doering oxidation as described earlier. Data for S alcohol 33.3: $[\alpha]_{\mathrm{D}}=-33.58\left(c 2.49, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3420,2942,2875,1668,1497,1433,1403 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (498 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45-1.84(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 1$ H), 2.41 (apparent dt, $J=12.8,7.4 \mathrm{~Hz}, 0.8 \mathrm{H}$), 2.45-2.53 (m, 0.2 H), 2.95-3.04 (m, $3 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=$ $11.3,8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dtd, $J=10.0,7.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (apparent td, J $=11.1,3.2 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.38-4.49(\mathrm{~m}, 1.8 \mathrm{H}), 4.60(\mathrm{dd}, J=10.4,6.8 \mathrm{~Hz}, 0.2 \mathrm{H})$, 4.76-4.88 (m, 1 H), 5.07 (apparent $\mathrm{t}, J=3.5 \mathrm{~Hz}, 0.8 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 14.7(\mathrm{q}), 14.9(\mathrm{q}), 18.1(\mathrm{t}), 19.3(\mathrm{t}), 25.3(\mathrm{t}), 25.4(\mathrm{t}), 28.8(\mathrm{t}), 30.1(\mathrm{t})$, $30.2(\mathrm{t}), 31.4(\mathrm{t}), 33.6(\mathrm{q}), 33.8(\mathrm{q}), 52.9(\mathrm{t}), 59.5(\mathrm{~d}), 60.0(\mathrm{~d}), 61.2(\mathrm{t}), 62.6(\mathrm{t})$, $67.4(\mathrm{t}), 67.5(\mathrm{t}), 70.4(\mathrm{~s}), 70.5(\mathrm{~s}), 75.1(\mathrm{~d}), 79.6(\mathrm{~d}), 94.7(\mathrm{~d}), 99.9(\mathrm{~d}), 163.9(\mathrm{~s})$, 164.5 (s), 166.8 (s), 166.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S} 367.1298$, found 367.1297.
(6S,8S,8aR)-2-Methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)-1,4-dioxo-octahydropyrrolo[1,2-a]piperazine-6-carbaldehyde (33.4).

DCC ($10.706 \mathrm{~g}, 51.89 \mathrm{mmol}$) was tipped rapidly (via a powder funnel) into a stirred solution of $33.3(5.95 \mathrm{~g}, 17.29 \mathrm{mmol})$, pyridine $(1.4 \mathrm{~mL}, 17.29$ $\mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.66 \mathrm{~mL}, 8.65 \mathrm{mmol})$ in a mixture of dry DMSO $(45 \mathrm{~mL})$ and dry $\mathrm{PhH}(45 \mathrm{~mL})$. Note: Pyridine has to be added before $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, the substrate, $\mathrm{PhH}, \mathrm{DMSO}$, pyridine, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and then DCC were added to the reaction flask in that order. Within a few minutes dicyclohexylurea precipitated. Stirring at room temperature was continued overnight by which time the mixture had turned pale yellow. The mixture was filtered to remove dicyclohexylurea and the filtrate was washed twice with water. The combined aqueous extracts were
extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. More dicyclohexylurea precipitated and was filtered off and the filtrate was evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexanes (dicyclohexylurea is eluted with this eluent) to pure EtOAc, gave 33.4 ($5.252 \mathrm{~g}, 89 \%$) as a white semisolid: $[\alpha]_{\mathrm{D}}=-45.39\left(c 1.59, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $) 2941,2875,1736,1662,1439$, $1403 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (498 MHz, CDCl_{3}) $\delta 1.47-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.99-2.11(\mathrm{~m}, 0.5$ H), 2.18-2.26(m, 3 H), 2.27-2.33(m, 0.5 H), 2.47-2.63(m, 1 H$), 2.97-3.08(\mathrm{~m}, 3$ H), 3.47-3.59 (m, 1 H$), 3.72-3.87(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.52(\mathrm{~m}, 1$ H), $4.55(\mathrm{dd}, J=10.2,7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.71(\mathrm{dd}, J=9.8,6.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.85$ (apparent $\mathrm{t}, J=2.6 \mathrm{~Hz}, 0.2 \mathrm{H}$), 5.11 (apparent $\mathrm{t}, J=3.5 \mathrm{~Hz}, 0.7 \mathrm{H}$), $9.44-9.53$ (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2(\mathrm{q}), 14.6(\mathrm{q}), 18.0(\mathrm{t}), 19.1(\mathrm{t}), 25.2(\mathrm{t})$, $25.3(\mathrm{t}), 26.9(\mathrm{t}), 29.2(\mathrm{t}), 30.0(\mathrm{t}), 33.9(\mathrm{q}), 34.0(\mathrm{q}), 52.7(\mathrm{t}), 60.3(\mathrm{~d}), 60.8(\mathrm{~d})$, $61.2(\mathrm{t}), 62.5(\mathrm{t}), 70.1(\mathrm{~s}), 70.2(\mathrm{~s}), 76.0(\mathrm{~d}), 80.1(\mathrm{~d}), 94.9(\mathrm{~d}), 99.8(\mathrm{~d}), 163.9(\mathrm{~s})$, 164.5 (s), 164.55 (s), 164.8 (s), 196.7 (d), 196.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}$ 365.1142, found 365.1140. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed that only the desired isomer of the aldehyde was present. Note: Before chromatography it is necessary to filter the residue through a cottonwool plug to remove as much dicyclohexylurea as possible.
(6S,8S,8aR)-6-[(2E)-3-Ethoxy-1-hydroxyprop-2-en-1-yl]-2-methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-
dione (34.2).

Neat $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(1.2 \mathrm{~mL}, 12.39 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of ethoxyacetylene (dark yellow, $50 \% \mathrm{w} / \mathrm{w}$ in hexanes, $4.736 \mathrm{~g}, 33.78 \mathrm{mmol})$ in dry $\mathrm{PhMe}(100 \mathrm{~mL})$. After 5 min the ice bath was removed and stirring at room temperature was continued for 6 h . Then the yellow reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Me}_{2} \mathrm{Zn}(2 \mathrm{M}$ in $\mathrm{PhMe}, 25.34 \mathrm{~mL}, 50.68$ mmol) was added. During the addition the mixture became black. Stirring at 0 ${ }^{\circ} \mathrm{C}$ was continued for 30 min . A solution of $33.4(5.252 \mathrm{~g}, 15.36 \mathrm{mmol})$ and $l-$ ephedrine ($143 \mathrm{mg}, 0.865 \mathrm{mmol}$) in dry $\mathrm{PhMe}(60 \mathrm{~mL})$ was then added. The ice bath was removed after 30 min and stirring at was continued for 2 days. The mixture was quenched with saturated aqueous NaHCO_{3} and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using pure EtOAc to $1: 10 \mathrm{MeOH}-E t O A c$, gave 34.2 (four inseparable isomers, $5.116 \mathrm{~g}, 80 \%$) as yellowish semisolid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3422,2929,1670,1419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR (498 MHz, CDCl_{3}) $\delta 1.20-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.87(\mathrm{~m}, 6 \mathrm{H}), 2.15-2.37(\mathrm{~m}$, $4 \mathrm{H}), 2.95-3.10(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.92(\mathrm{~m}, 3.3 \mathrm{H}), 3.92-4.05(\mathrm{~m}$, 0.7 H), 4.05-4.22 (m, 1 H), 4.28 (apparent td, $J=11.2,2.8 \mathrm{~Hz}, 0.3 \mathrm{H}$), 4.36-4.60 $(\mathrm{m}, 1.6 \mathrm{H}), 4.60-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.93(\mathrm{~m}, 0.3 \mathrm{H}), 4.97-5.14(\mathrm{~m}, 0.6 \mathrm{H})$, 5.51$5.60(\mathrm{~m}, 0.3 \mathrm{H}), 6.46-6.59(\mathrm{~m}, 0.7 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2(\mathrm{q})$, $14.6(\mathrm{q}), 14.9(\mathrm{q}), 15.1(\mathrm{q}), 18.1(\mathrm{t}), 19.4(\mathrm{t}), 19.5(\mathrm{t}), 25.2(\mathrm{t}), 25.4(\mathrm{t}), 30.0(\mathrm{t})$, $30.1(\mathrm{t}), 30.2(\mathrm{t}), 32.7(\mathrm{t}), 33.6(\mathrm{q}), 52.8(\mathrm{t}), 53.1(\mathrm{t}), 61.1(\mathrm{t}), 61.2(\mathrm{t}), 62.3(\mathrm{~d})$, $62.7(\mathrm{t}), 62.8(\mathrm{t}), 62.9(\mathrm{~d}), 63.8(\mathrm{~d}), 64.5(\mathrm{t}), 64.9(\mathrm{t}), 69.6(\mathrm{~d}), 70.5(\mathrm{~d}), 71.03(\mathrm{~s})$, 71.07 (s), 74.8 (d), 75.4 (d), 75.9 (d), 76.1 (d), 79.3 (d), 79.8 (d), 94.6 (d), 94.7 (d), 100.1 (d), 100.2 (d), 100.3 (d), 101.8 (d), 102.4 (d), 150.09 (d), 150.16 (d), 163.8 (s), 164.3 (s), 164.48 (s), 166.5 (s), 166.6 (s), 166.9 (s), 167.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S} 437.1717$, found 437.1717.
(6S,8S,8aR)-2-Methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)-6-[(9E)-2,5,7,11-tetraoxatridec-9-en-8-yl]octahydropyrrolo[1,2-a]piperazine-1,4dione (34.3 and 34.4).

34.2
34.3 and 34.4

MEMCl ($1.4 \mathrm{~mL}, 12.2 \mathrm{mmol}$) was added to flask containing dry THF (4 $\mathrm{mL})$ and oven-dried $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ and the mixture was stirred for 30 min and then let settle.
$\mathrm{Bu}_{4} \mathrm{NI}(901 \mathrm{mg}, 2.44 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(3.8 \mathrm{~mL}, 21.96 \mathrm{mmol})$ were added to a stirred suspension of oven-dried $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ and $34.2(1.012 \mathrm{~g}, 2.44$ mmol) in dry THF (30 mL). The supernatant liquid from the above MEMCl solution was taken up into a syringe and added dropwise to the flask containing 34.2. The resulting stirred suspension was heated at $60^{\circ} \mathrm{C}$ for 12 h by which time the color of the reaction mixture turned dark yellow. TLC (silica gel, EtOAc) showed two isomeric MEM ethers. The reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted three times with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 15 \mathrm{~cm}$), using 9:1 EtOAchexanes to pure EtOAc (the less polar MEM ether $\mathbf{3 4 . 3}$ elutes with this solvent) to 1:10 MeOH-EtOAc (the more polar MEM ether $\mathbf{3 4 . 4}$ elutes with this solvent) gave the product (two MEM isomers, 1.007 g in total, 82%). Compound $\mathbf{3 4 . 3}$ is a yellow oil whereas compound $\mathbf{3 4 . 4}$ is a pale-yellowish solid. An X-ray structure was obtained for 34.4. Less polar MEM isomer 34.3: FTIR (CHCl_{3}, cast) 3336, 2937, 1666, $1415 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($498 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.42-$ 1.83 (m, 7 H), 2.05-2.21 (m, 4 H), 2.21-2.54 (m, 2 H), 2.91-3.03 (m, 3 H), 3.26$3.35(\mathrm{~m}, 3 \mathrm{H}), 3.39-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.72-$ $3.89(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.82-4.88 (m, 0.8 H$), 4.91(\mathrm{dd}, J=9.5,3.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.06$ (apparent $\mathrm{t}, J=3.4$
$\mathrm{Hz}, 1 \mathrm{H})$, 6.43-6.51 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.6$ (q), 14.8 (q), $15.0(\mathrm{q}), 18.1(\mathrm{t}), 19.3(\mathrm{t}), 25.3(\mathrm{t}), 25.4(\mathrm{t}), 25.9(\mathrm{t}), 28.8(\mathrm{t}), 30.1(\mathrm{t}), 30.2(\mathrm{t}), 33.8$ $(\mathrm{q}), 33.9(\mathrm{q}), 53.3(\mathrm{t}), 58.9(\mathrm{q}), 59.5(\mathrm{~d}), 60.1(\mathrm{~d}), 61.0(\mathrm{t}), 62.5(\mathrm{t}), 65.1(\mathrm{t}), 65.2$ (t), 66.7 (t), 66.8 (t), 70.4 (d), 70.6 (d), 71.5 (s), 71.6 (s), 75.7 (d), 80.1 (d), 91.7 $(\mathrm{t}), 91.8(\mathrm{t}), 94.6$ (d), 99.4 (d), 99.5 (d), 99.8 (d), 151.46 (d), $151.49(\mathrm{~d}), 164.4(\mathrm{~s})$, 164.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}$ 525.2241, found 525.2235.

More polar MEM isomer 34.4: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.87(\mathrm{~m}, 6 \mathrm{H}), 2.07-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.94-$ $3.05(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.66-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.98-$ 4.09 (m, 1 H$), 4.38(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=10.6,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57$4.65(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.12$ (apparent t , $J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.68(\mathrm{q})$, $14.71(\mathrm{q}), 19.2(\mathrm{t}), 25.4(\mathrm{t}), 29.6(\mathrm{t}), 30.2(\mathrm{t}), 33.8(\mathrm{q}), 53.3(\mathrm{t}), 57.8(\mathrm{q}), 58.9(\mathrm{~d})$, $62.4(\mathrm{t}), 64.6(\mathrm{t}), 66.9(\mathrm{t}), 71.4(\mathrm{~s}), 71.7(\mathrm{~s}), 72.9(\mathrm{~d}), 79.9(\mathrm{~d}), 92.4(\mathrm{t}), 97.2(\mathrm{~d})$, 99.7 (d), 151.7 (d), 164.4 (s), 165.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S} 525.2241$, found 525.2249.
(3-R)-3-[(6S,8S,8aR)-2-Methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)-1,4-dioxooctahydropyrrolo[1,2-a]piperazin-6-yl]-3-[(2-methoxyethoxy)-methoxy]-2-(phenylselanyl)propanal (34.5).

All the following experiments were done with the more polar MEM ether obtained in the previous step.

$\mathrm{PhSeCl}(601 \mathrm{mg}, 3.14 \mathrm{mmol})$ in $\mathrm{EtOAc}(10 \mathrm{~mL})$ was added slowly to a vigorously stirred biphasic mixture of $34.4(1.433 \mathrm{~g}, 2.85 \mathrm{mmol})$ and NaHCO_{3} ($720 \mathrm{mg}, 8.56 \mathrm{mmol}$) in water $(17 \mathrm{~mL})$ and $\operatorname{EtOAc}(25 \mathrm{~mL})$. Stirring at room temperature was continued for 1 h . The yellow reaction mixture was then extracted twice with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 12 \mathrm{~cm}$), using 1:1 EtOAchexanes to pure EtOAc, gave 34.5 (four inseparable isomers, $1.481 \mathrm{~g}, 82 \%$) as a pale yellow semisolid: $[\alpha]_{\mathrm{D}}=-2.87\left(c 2.66, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2927, 2854, 1675, 1476, 1438, $1416 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43-1.83(\mathrm{~m}$, $6 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.31(\mathrm{~m}, 0.5 \mathrm{H}), 2.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.43$ $(\mathrm{dt}, J=13.1,7.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.67(\mathrm{dt}, J=13.1,10.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.90-2.99(\mathrm{~m}, 3$
H), 3.29-3.35 (m, 3 H$), 3.42-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.59-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.87(\mathrm{~m}, 2$ H), 4.17 (apparent $\mathrm{t}, J=6.1 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.21-4.32(\mathrm{~m}, 2.2 \mathrm{H}), 4.35-4.47(\mathrm{~m}, 1.3$ H), 4.70-4.83 (m, 2.3 H), 4.92 (apparent $\mathrm{t}, J=5.2 \mathrm{~Hz}, 0.78 \mathrm{H}$), 5.05 (apparent t, J $=3.5 \mathrm{~Hz}, 0.3 \mathrm{H}$), 5.08 (apparent $\mathrm{t}, J=3.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.13-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.47-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 1 \mathrm{H}), 9.22-9.31(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 9.35(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 0.3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5$ (q), 14.7 (q), 19.15 (t), 19.19 $(\mathrm{t}), 25.29(\mathrm{t}), 25.33(\mathrm{t}), 30.1(\mathrm{t}), 30.8(\mathrm{t}), 31.0(\mathrm{t}), 33.85(\mathrm{q}), 33.89(\mathrm{q}), 51.7(\mathrm{~d})$, $53.0(\mathrm{t}), 53.2(\mathrm{t}), 53.7(\mathrm{~d}), 57.1(\mathrm{~d}), 57.7(\mathrm{~d}), 58.9(\mathrm{q}), 59.0(\mathrm{q}), 62.4(\mathrm{t}), 68.20(\mathrm{t})$, $68.24(\mathrm{t}), 71.4(\mathrm{~s}), 71.58(\mathrm{t}), 71.64(\mathrm{t}), 72.6(\mathrm{~d}), 79.8(\mathrm{~d}), 79.9(\mathrm{~d}), 96.8(\mathrm{t}), 97.0(\mathrm{t})$, 99.7 (d), 99.8 (d), 126.4 (s$), 126.9$ (s$), 128.49$ (d), 128.52 (d), 128.7 (d), 129.1 (d), 129.2 (d) 135.21 (d), 135.26 (d), 135.41 (d), 135.44 (d), 164.69 (s), 164.74 (s), 165.04 (s) 165.06 (s), 191.0 (d), 191.2 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{SSe}$ 653.1406, found 653.1402.
(6S,8S,8aR)-6-\{(1R)-3-Hydroxy-1-[(2-methoxyethoxy)methoxy]-2-(phenylselanyl)propyl\}-2-methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)octa-hydropyrrolo[1,2-a]piperazine-1,4-dione (34.6).

34.5
34.6
$\mathrm{NaBH}_{4}(98 \mathrm{mg}, 2.59 \mathrm{mmol})$ was added in one portion to a stirred and cooled ($-42{ }^{\circ} \mathrm{C}$, MeCN-dry ice bath) solution of $\mathbf{3 4 . 5}(1.481 \mathrm{~g}, 2.35 \mathrm{mmol})$ in dry $\mathrm{MeOH}(44 \mathrm{~mL})$. After 6 min TLC (silica gel, EtOAc) analysis showed no 34.5 (and some PhSeSePh), and hence the reaction mixture was quenched at $-42{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The color of the mixture turned pale yellow. Note: The temperature and the reaction time are VERY IMPORTANT to minimize concomitant formation of deselenylated product. The reaction mixture was extracted three times with EtOAc, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 12 \mathrm{~cm}$), using pure EtOAc to 1:10 MeOH-EtOAc, gave 34.6 (four inseparable isomers, $1.078 \mathrm{~g}, 72 \%$, with a trace amount of deselenylated product detected in the mass spectrum) as a white semisolid: $[\alpha]_{D}=$ $-59.60\left(c 0.57, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3409,2928,2879,1659,1503,1477$, 1437, $1404 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.49-1.86 (m, 6 H), 2.14-2.30 (m, $3 \mathrm{H}), 2.34-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.89-3.09(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.61(\mathrm{~m}, 4$ H), 3.64-3.90 (m, 6 H), 4.29-4.53 (m, 2.2 H), 4.55-4.68 (m, 1.3 H), 4.68-4.83 (m, $1.3 \mathrm{H}), 4.83-4.95(\mathrm{~m}, 1.2 \mathrm{H}), 5.04-5.19(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.77$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3$ (q), 14.6 (q), 19.1 (t), 25.31 (t), $25.35(\mathrm{t}), 30.10(\mathrm{t}), 30.14(\mathrm{t}), 31.8(\mathrm{t}), 33.84(\mathrm{q}), 33.89(\mathrm{q}), 48.6(\mathrm{~d}), 53.1(\mathrm{t}), 58.6$ $(\mathrm{d}), 58.95(\mathrm{q}), 58.98(\mathrm{q}), 62.3(\mathrm{t}), 63.6(\mathrm{t}), 67.8(\mathrm{t}), 68.1(\mathrm{t}), 71.5(\mathrm{t}), 71.6(\mathrm{t}), 71.8$ (s), 78.2 (d), 80.3 (d), 80.6 (d), 96.4 (t), 99.83 (d), 99.87 (d), 127.4 (d), 128.94 (d), 128.97 (d), 129.0 (d), 129.3 (s), 134.2 (d), 135.2 (d), 164.4 (s), 164.49 (s), 164.51
(s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{SSe} 655.1563$, found 655.1563.
(6S,8S,8aR)-8-Hydroxy-6-\{(1R)-3-hydroxy-1-[(2-methoxyethoxy)-methoxy]-2-(phenylselanyl)propyl\}-2-methyl-8a-(methylsulfanyl)octahydro-pyrrolo-[1,2-a]piperazine-1,4-dione (34.7).

A catalytic amount of pyridinium p-toluenesulfonate $(52 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 4 . 6}(519 \mathrm{mg}, 0.82 \mathrm{mmol})$ in dry $\mathrm{MeOH}(16$ mL) contained in a flask equipped with a condenser, and the mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was cooled and quenched with saturated aqueous NaHCO_{3}. The MeOH was evaporated and the mixture was extracted three times with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 10 \mathrm{~cm}$), using pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$, gave 34.7 (two inseparable isomers, $363 \mathrm{mg}, 81 \%)$ as a white semisolid: $[\alpha]_{\mathrm{D}}=-46.92(c 0.28$, $\left.\mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3440,2926,2886,1663,1503,1478,1437,1401 \mathrm{~cm}^{-}$

[^0]$2.45(\mathrm{~m}, 1.5 \mathrm{H}), 2.92-3.06(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.48(\mathrm{~m}, 1.2 \mathrm{H})$, 3.49-3.58 (m, 2.8 H), 3.58-3.64 (m, 1 H$), 3.64-3.79(\mathrm{~m}, 2.5 \mathrm{H}), 3.79-3.93(\mathrm{~m}, 2$ H), 4.24-4.34 (m, 1 H$), 4.34-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.47(\mathrm{~m}, 0.5 \mathrm{H}), 4.49(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 0.6 \mathrm{H}), 4.65-4.79(\mathrm{~m}, 1.7 \mathrm{H}), 4.79-4.92(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.15(\mathrm{~m}, 0.3 \mathrm{H}), 7.17-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.8(\mathrm{q}), 13.0$ (q), $30.9(\mathrm{t}), 31.2(\mathrm{t}), 33.55(\mathrm{q}), 33.59(\mathrm{q}), 47.3(\mathrm{~d}), 48.9(\mathrm{~d}), 53.2(\mathrm{t}), 57.5(\mathrm{~d})$, $58.5(\mathrm{~d}), 58.9(\mathrm{q}), 59.0(\mathrm{q}), 62.9(\mathrm{t}), 63.3(\mathrm{t}), 67.9(\mathrm{t}), 68.3(\mathrm{t}), 71.5(\mathrm{t}), 71.7(\mathrm{t})$, 73.2 (s), 75.5 (d), 75.7 (d), 79.2 (d), 82.6 (d), 96.5 (t), 97.7 (t), 127.5 (d), 127.9 (d), 128.2 (s$), 129.09$ (d), 129.14 (s), 129.2 (d), 134.1 (d), 135.0 (d), 163.6 (s), 163.8 (s), 165.8 (s), 165.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSe} 571.0988$, found 571.0989. No deselenylated product was detected. Note: The reaction time is very important as prolonged heating causes hydrolysis of the MEM group.
(6S,8S,8aR)-8-Hydroxy-2-methyl-8a-(methylsulfanyl)-6-[(8R)-

12,12,13,13-tetramethyl-9-(phenylselanyl)-2,5,7,11-tetraoxa-12-silatetra-

 decan-8-yl]octa-hydropyrrolo[1,2-a]piperazine-1,4-dione (34.8).
34.8
$t-\mathrm{BuMe}_{2} \mathrm{SiCl}(148 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 4 . 7}$ ($245 \mathrm{mg}, 0.45 \mathrm{mmol}$), imidazole ($76 \mathrm{mg}, 1.12 \mathrm{mmol}$) and DMAP (3 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$, resulting in formation of a white precipitate. Stirring at room temperature was continued for 2 days. The mixture was quenched with water (to form two clear phases) and extracted twice with EtOAc. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 10 \mathrm{~cm}$), using 2:1 EtOAc-hexanes to pure EtOAc, gave 34.8 (two inseparable isomers, $647 \mathrm{mg}, 86 \%$) as a white semisolid: $[\alpha]_{\mathrm{D}}=-$ 28.64 (c 0.40, CHCl_{3}); FTIR (CHCl_{3}, cast) 3450, 2952, 2927, 2885, 2856, 1663, 1501, 1471, 1463, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.06-0.01(\mathrm{~m}, 6 \mathrm{H})$, 0.79-0.87 (m, 9 H), 2.12-2.20 (m, 3 H), 2.28-2.41 (m, $2 H$), 2.97-3.04 (m, $3 H$), 3.32-3.37 (m, 3 H$), 3.37-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.59(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.80(\mathrm{~m}, 4 \mathrm{H})$, 3.81-3.89 (m, 1 H$), 4.23-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=10.0,7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.88(\mathrm{~m}, 1$ H), 7.18-7.28 (m, 3 H), 7.49-7.65 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.47$ (q), $-5.45(\mathrm{q}),-5.43(\mathrm{q}),-5.40(\mathrm{q}), 11.8(\mathrm{q}), 12.2(\mathrm{q}), 18.1(\mathrm{~s}), 25.8(\mathrm{q}), 25.9(\mathrm{q})$, 30.5 (t), 31.8 (t), 33.58 (q), 33.59 (q), 48.9 (d), 53.3 (t), 57.5 (d), 58.1 (d), 58.9 $(\mathrm{q}), 62.8(\mathrm{t}), 64.1(\mathrm{t}), 68.1(\mathrm{t}), 68.2(\mathrm{t}), 71.77(\mathrm{t}), 71.79(\mathrm{t}), 73.7(\mathrm{~s}), 73.9(\mathrm{~s}), 75.7$ (d), 76.8 (d), 79.6 (d), 97.3 (t), 97.5 (t), 127.2 (d), 127.6 (d), 128.9 (d), 129.05 (d), 129.07 (d), 129.12 (d), 129.6 (s), 129.8 (s), 133.68 (d), 133.73 (d), 134.4 (d), $162.9(\mathrm{~s}), 163.1(\mathrm{~s}), 166.1(\mathrm{~s}), 166.4(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSeSi} 685.1852$, found 685.1856 .
(6S,8aR)-2-Methyl-8a-(methylsulfanyl)-6-[(8R)-12,12,13,13-tetra-methyl-9-(phenylselanyl)-2,5,7,11-tetraoxa-12-silatetradecan-8-yl]octahydro-pyrrolo[1,2-a]piperazine-1,4,8-trione (35.1).

DCC ($327 \mathrm{mg}, 1.58 \mathrm{mmol}$) was tipped into a stirred solution of $\mathbf{3 4 . 8}$ (349 $\mathrm{mg}, 0.53 \mathrm{mmol})$, pyridine ($43 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(20 \mu \mathrm{~L}, 0.26 \mathrm{mmol})$ in a mixture of dry DMSO (3 mL) and dry $\mathrm{PhH}(3 \mathrm{~mL})$. Note: Pyridine has to be added before $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, the substrate, PhH , DMSO , pyridine, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and then DCC were added to the reaction flask in that order. Within a few min dicyclohexylurea precipitated and the reaction mixture turned pale pink. Stirring at room temperature was continued for 15 h . The reaction mixture was filtered to remove dicyclohexylurea and the filtrate was washed twice with water. The combined aqueous extracts were extracted twice with EtOAc. The filtrate and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. More dicyclohexylurea precipitated and was filtered off and the filtrate was evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 10 \mathrm{~cm}$), using $1: 1$ EtOAc-hexanes (dicyclohexylurea is eluted with this eluent) to $4: 1$ EtOAchexanes to pure EtOAc, gave $\mathbf{3 5 . 1}$ (two inseparable isomers, $303 \mathrm{mg}, 87 \%$) as a
white semisolid: $[\alpha]_{\mathrm{D}}=-7.33\left(c 0.12, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2952, 2928, 2884, 2857, 1769, 1689, 1472, 1463, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$0.06-0.04(\mathrm{~m}, 6 \mathrm{H}), 0.80-0.92(\mathrm{~m}, 9 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{dd}, J=18.8$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (apparent $\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.86-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.41$ (m, 1 H), 4.46 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.92(\mathrm{~m}, 1 \mathrm{H}), 5.01$ (ddd, $J=9.6,6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.5(\mathrm{q}),-5.4(\mathrm{q}), 14.4(\mathrm{q}), 18.1$ (s), $25.8(\mathrm{q}), 34.4(\mathrm{q}), 38.3$ $(\mathrm{t}), 49.5(\mathrm{~d}), 52.8(\mathrm{t}), 54.8(\mathrm{~d}), 59.0(\mathrm{q}), 63.9(\mathrm{t}), 68.3(\mathrm{t}), 71.7(\mathrm{~s}), 78.9(\mathrm{~d}), 97.5$ (t), 127.40 (d), 127.43 (d), 128.9 (d), 129.0 (d), 129.5 (s), 133.8 (d), 160.1 (s$)$, 164.4 (s), 198.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSeSi}$ 683.1696, found 683.1696 . Note: Before chromatography it is necessary to filter the residue through a plug of cottonwool to remove as much dicyclohexylurea as possible.
(6S,8aR)-6-\{(1R)-3-Hydroxy-1-[(2-methoxyethoxy)methoxy]-2-(phenylselanyl)propyl\}-2-methyl-8a-(methylsulfanyl)octahydropyrrolo[1,2-a]piper-azine-1,4,8-trione (35.2).

35.1
35.2

A mixture of 35.1 ($303 \mathrm{mg}, 0.46 \mathrm{mmol}$), AcOH, water and THF was stirred at room temperature for 3 days. The mixture was quenched with saturated aqueous NaHCO_{3} and extracted three times with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(1.5 \times 10 \mathrm{~cm})$, using pure EtOAc to 1:10 MeOH-EtOAc, gave 35.2 (two inseparable isomers, $198 \mathrm{mg}, 79 \%$) as a white semisolid: $[\alpha]_{\mathrm{D}}=-0.75\left(c 2.00, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3402 , 2925, 2892, 2854, 1762, 1676, 1578, 1559, 1477, 1435, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 2.32-2.39 (m, 3 H), 2.61-2.89 (m, 2 H$), ~ 2.98-3.09(\mathrm{~m}, 3 \mathrm{H}), ~ 3.34-3.41$ $(\mathrm{m}, 4 \mathrm{H}), 3.41-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.98(\mathrm{~m}, 4 \mathrm{H}), 4.35(\mathrm{dd}, J=$ $7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1$ H), $5.21(\mathrm{ddd}, J=9.9,7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.69(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5$ (q), 34.3 (q), $38.2(\mathrm{t}), 39.0(\mathrm{t}), 48.2$ (d), 49.9 (d), $52.7(\mathrm{t}), 54.6(\mathrm{~d}), 55.1(\mathrm{~d}), 58.95(\mathrm{q}), 58.97(\mathrm{q}), 62.7(\mathrm{t}), 62.8(\mathrm{t}), 68.0(\mathrm{t}), 68.7$ $(\mathrm{s}), 71.5(\mathrm{t}), 71.7(\mathrm{t}), 78.6(\mathrm{~d}), 96.6(\mathrm{t}), 97.5(\mathrm{t}), 127.7(\mathrm{~d}), 129.0(\mathrm{~s}), 129.2(\mathrm{~d})$, 129.3 (d), 134.1 (d), 135.4 (d), 159.8 (s), 160.1 (s), 164.5 (s), 165.3 (s), 198.5 (s), 199.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSe} 569.0831$, found 569.0846 .
(6S,7Z,8aR)-7-[(Dimethylamino)methylidene]-2-methyl-8a-(methyl-sulfanyl)-6-[(8R)-12,12,13,13-tetramethyl-9-(phenylselanyl)-2,5,7,11-tetraoxa-12-silatetradecan-8-yl]octahydropyrrolo[1,2-a]piperazine-1,4,8-trione (36.1).

$\mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}(10 \mu \mathrm{~L}, 0.075 \mathrm{mmol})$ was added to a stirred solution of $35.1(20 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$ and the mixture was refluxed for 22 h. The pale yellow color of the initial mixture turned to dark yellow during the course of the reaction. The solvent was evaporated and flash chromatography of the residue over silica gel $(0.5 \times 5 \mathrm{~cm})$, using pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$, gave 36.1 ($5.6 \mathrm{mg}, 26 \%$) as a dark yellow oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -$0.06-0.02(\mathrm{~m}, 6 \mathrm{H}), 0.78-0.92(\mathrm{~m}, 9 \mathrm{H}), 2.44-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.93-3.04(\mathrm{~m}, 4 \mathrm{H})$, 3.14-3.16(m, 5 H$), 3.38-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.56-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 3 \mathrm{H})$, 3.75-3.94 (m, 4 H$), 4.36$ (apparent s, 0.6 H), $4.52(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.86(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (apparent s, 0.7 H$), 7.21-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5(\mathrm{q}),-$ 5.3 (q), 14.4 (q), 18.2 (s$), 25.9(\mathrm{q}), 34.5(\mathrm{q}), 38.9(\mathrm{q}), 49.0(\mathrm{~d}), 52.1(\mathrm{t}), 52.8(\mathrm{t})$, $53.6(\mathrm{~d}), 59.0(\mathrm{~d}), 60.4(\mathrm{~d}), 64.8(\mathrm{t}), 68.08(\mathrm{t}), 68.14(\mathrm{t}), 71.8(\mathrm{~s}), 77.9(\mathrm{~d}), 96.4(\mathrm{t})$, 96.9 (t), 126.7 (d), 126.9 (d), 128.8 (d), 128.9 (d), 130.1 (s), 132.5 (d), 133.4 (d),
150.1 (d), 161.8 (s), 165.1 (s), 187.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{NaO}_{7} \mathrm{SSe} 738.2118$, found 738.2114.
(6S,7Z,8aR)-7-[(Dimethylamino)methylidene]-6-\{(1R)-3-hydroxy-1-[(2-methoxyethoxy)methoxy]-2-(phenylselanyl)propyl\}-2-methyl-8a-(methyl-sulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4,8-trione (37.1).

$\mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}(21 \mu \mathrm{~L}, 0.160 \mathrm{mmol})$ was added to a stirred solution of $35.2(35 \mathrm{mg}, 0.064 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ and the mixture was heated at 55 ${ }^{\circ} \mathrm{C}$ for 16 h . The pale yellow color of the initial mixture turned to dark yellow during the course of the reaction. The solvent was evaporated and flash chromatography of the residue over silica gel $(0.5 \times 7 \mathrm{~cm})$, using pure EtOAc to 1:10 MeOH-EtOAc, gave $37.1(23 \mathrm{mg}, 60 \%)$ as a dark yellow oil which contained two inseparable isomers: $[\alpha]_{\mathrm{D}}=-14.61\left(c \quad 0.36, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $)$ $3359,3056,2927,1682,1590,1477,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.44-2.52 (m, 3 H$), 3.03(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.21(\mathrm{~m}, 6 \mathrm{H}), 3.36-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.52-$ $3.64(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.95(\mathrm{~m}, 2 \mathrm{H}), 4.39$ (apparent $\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ 7.57 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2$ (q), 14.3 (q), 14.56 (q), 14.58 (q), 29.7 (t), 34.2 (q), 34.4 (q), 34.5 (q), 35.1 (q), 46.9 (d), 48.7 (d), 49.6 (d), 52.3 (t), $52.4(\mathrm{t}), 52.7(\mathrm{t}), 52.8(\mathrm{t}), 55.2(\mathrm{~d}), 56.1(\mathrm{~d}), 58.9(\mathrm{q}), 59.0(\mathrm{q}), 60.0(\mathrm{q}), 64.0$ $(\mathrm{t}), 67.8(\mathrm{t}), 67.9(\mathrm{t}), 68.6(\mathrm{t}), 68.7(\mathrm{t}), 69.1(\mathrm{t}), 71.6(\mathrm{~s}), 71.7(\mathrm{~s}), 80.3(\mathrm{~d}), 83.2(\mathrm{~d})$, 95.5 (t), 95.7 (t), 96.9 (t), 127.2 (d), 128.4 (d), 128.8 (d), 129.1 (d), 129.2 (d), 129.3 (d), 129.4 (d), 129.53 (s), 129.57 (s), 133.6 (d), 133.7 (d), 133.9 (d), 134.3 (d), 135.2 (d), 136.1 (d), 150.7 (d), 160.1 (s), 161.8 (s), 163.2 ($s), 163.6$ ($s), 164.8$ $(\mathrm{s}), 185.5(\mathrm{~s}), 185.8(\mathrm{~s}), 187.3(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{7} \mathrm{SSe}$ 624.1253, found 624.1254.

(1S,7R,14R)-14-[(2-Methoxyethoxy)methoxy]-5-methyl-7-(methyl-

 sulfanyl)-13-(phenylselanyl)-11-oxa-2,5-diazatricyclo[7.5.0.0 ${ }^{2,7}$]tetradec-9-ene-3,6,8-trione (36.3).
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(10 \mu \mathrm{~L}, 0.1259 \mathrm{mmol}\right.$, an old bottle of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was used) was added to a stirred solution of freshly-prepared $\mathbf{3 7 . 1}$ ($63 \mathrm{mg}, 0.1049 \mathrm{mmol}$) in dry PhMe (6 mL) and the solution was heated at $45^{\circ} \mathrm{C}$ for 12 h . Evaporation of the
solvent at $30-35^{\circ} \mathrm{C}$ and flash chromatography of the residue over silica gel $(1.5 \mathrm{x}$ 6.5 cm), using EtOAc to $1: 5 \mathrm{MeOH}-\mathrm{EtOAc}$, followed by filtration of a solution of the product in EtOAc through a plug of cotton wool, gave $36.3(39.5 \mathrm{mg}, 68 \%)$ as a semisolid: $\quad[\alpha]_{\mathrm{D}}=-79.84\left(c 0.07, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, neat) 3055, 2925, $2890,1733,1679,1621,1477,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($498 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.34-$ $2.41(\mathrm{~m}, 3 \mathrm{H}), 2.99-3.08(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.64-$ $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=13.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=$ $10.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.91(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, 7.60-7.71 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.6$ (q), 34.3 (q), 48.7 (d), $52.4(\mathrm{t}), 56.1(\mathrm{~d}), 59.01(\mathrm{q}), 59.07(\mathrm{q}), 62.3(\mathrm{t}), 67.8(\mathrm{t}), 69.2(\mathrm{~s}), 71.7(\mathrm{t}), 83.2(\mathrm{~d})$, 95.8 (t), 106.7 (s$), 127.5$ (s$), 128.8$ (d), 129.2 (d), 129.3 (d), 129.4 (d), 136.1 (d), $157.6(\mathrm{~d}), 160.1(\mathrm{~s}), 163.7(\mathrm{~s}), 185.5(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSe} 579.0676$, found 579.0676.

When a new bottle of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was used, the reaction did not work; however, if a trace of water was added $\left[0.4 \mathrm{~mL}\right.$ of water was added to $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (4.5 mL) in $\mathrm{PhMe}(2 \mathrm{~mL})$, and 0.5 mL of this stock solution was used], the reaction proceeds in 37% yield.
(6R,8S,8aR)-8-Hydroxy-6-(hydroxymethyl)-2-methyl-8a-(methyl-sulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4-dione (48.3).

Bu ${ }_{4}$ NF (1 M in THF, $0.25 \mathrm{~mL}, 0.246 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $31.1(102 \mathrm{mg}, 0.205 \mathrm{mmol})$ and glacial AcOH $(18 \mu \mathrm{~L}, 0.307 \mathrm{mmol})$ in dry THF. The ice bath was left in place but not recharged and stirring was continued for 2 days. The reaction mixture remained colorless throughout. The solvent was evaporated and flash chromatography of the residue over silica gel ($2 \times 7 \mathrm{~cm}$), using pure EtOAc to $1: 40 \mathrm{MeOH}-\mathrm{EtOAc}$, afforded 48.3 ($55 \mathrm{mg}, 107 \%$) as a white semisolid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.12 (ddd, $J=12.7,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.51(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3$ H), 3.60-3.66 (m, 1 H$), 3.68-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 1$ H), 4.08-4.15 (m, 1 H$), 4.33-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=10.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1$ (q), 31.7 (t$), 33.3$ (q), 53.5 (t$), 56.9$ (d), 63.5 (t), 71.7 (s), 74.3 (d), 165.9 (s), 166.3 (s); only low resolution mass spectroscopic data was collected: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$ 283.3, found 283.0.

sulfanyl)-8-(oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-dione (50.3).

33.4

50.3

Indium metal ($1.217 \mathrm{~g}, 10.6 \mathrm{mmol}$) was cut into small pieces (ca 5×10 mm) which were pressed into thin long pieces. The In pieces were dropped into stirred, dry THF (100 mL), followed by addition of allyl bromide $(0.83 \mathrm{~mL}, 9.62$ mmol). Stirring at room temperature was continued for 3 h , by which time most of the In had dissolved, generating a grey colored solution. Very vigorous stirring is required to ensure that almost all the In dissolves. Then a solution of $\mathbf{3 3 . 4}$ ($1.645 \mathrm{~g}, 4.81 \mathrm{mmol}$) in THF (15 mL) was added dropwise and stirring was continued overnight. The solvent was evaporated to give a thick yellowish gel, which was then dissolved in EtOAc. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to form a white slurry with no separation of layers. The whole mixture was filtered through Celite $(5 \times 7 \mathrm{~cm})$ and the filter bed was washed with EtOAc. The filtrate separated into two layers. The milky, white aqueous layer was extracted twice with EtOAc and the combined organic extracts and organic filtrates were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 8 \mathrm{~cm}$), using 9:1 EtOAc-hexanes to pure EtOAc,
afforded $\mathbf{5 0 . 3}$ as a white semisolid ($1.595 \mathrm{~g}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.48-1.84 (m, 6 H), 1.96-2.12 (m, 1 H), 2.14-2.22 (m, $3 H$), 2.22-2.45 (m, $3 H$), 2.96-3.05 (m, 3 H$), 3.49-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.82-4.05(\mathrm{~m}, 4 \mathrm{H})$, 4.23-4.30 (m, 0.22 H), 4.36-4.54 (m, 2 H$), 4.64(\mathrm{~m}, 0.16 \mathrm{H}), 4.90(\mathrm{br} \mathrm{s}, 0.24 \mathrm{H})$, 5.03-5.16 (m, 3 H), $5.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.21 \mathrm{H}), 5.82-6.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.8(\mathrm{q}), 15.0(\mathrm{q}), 19.3(\mathrm{t}), 19.5(\mathrm{t}), 25.29(\mathrm{t}), 25.33(\mathrm{t}), 25.39$ $(\mathrm{t}), 30.05(\mathrm{t}), 30.16(\mathrm{t}), 30.19(\mathrm{t}), 30.24(\mathrm{t}), 33.6(\mathrm{q}), 33.8(\mathrm{q}), 33.9(\mathrm{q}), 36.80(\mathrm{t})$, $36.83(\mathrm{t}), 38.4(\mathrm{t}), 52.8(\mathrm{t}), 53.1(\mathrm{t}), 61.7(\mathrm{~d}), 61.9(\mathrm{~d}), 62.6(\mathrm{t}), 62.84(\mathrm{t}), 62.87(\mathrm{t})$, 69.5 (d), 69.6 (d), 70.6 (s), 70.9 (s), 79.7 (d), 79.9 (d), 99.9 (d), 100.1 (d), 117.20 (t), 117.25 (t$), 117.5$ (t$), 117.9$ (t$), 133.9$ (d), 134.9 (d), 135.0 (d), 135.1 (d), 164.4 (s), $164.8(\mathrm{~s}), 165.8(\mathrm{~s}), 165.9(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}$ 407.1611, found 407.1606.
(6S,8S,8aR)-8-Hydroxy-6-(1-hydroxybut-3-en-1-yl)-2-methyl-8a-(methylsulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4-dione (52.3).

Hydrochloric acid ($1 \mathrm{~N}, 214 \mu \mathrm{~L}, 0.2135 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{5 0 . 3}$ ($41 \mathrm{mg}, 0.1068 \mathrm{mmol}$) in THF (1.5 mL) and stirring at room
temperature was continued for 36 h . The solvent was evaporated and EtOAc was added. The mixture was quenched with saturated aqueous NaHCO_{3} and extracted twice with EtOAc. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 5 \mathrm{~cm}$), using pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$, afforded $\mathbf{5 2 . 3}$ ($29.1 \mathrm{mg}, 91 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.24(\mathrm{~m}, 3 \mathrm{H})$, 2.24-2.47 (m, 3 H), $3.02-3.09(\mathrm{~m}, 3 \mathrm{H}), 3.41$ (br s, 1 H$), 3.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.67$ H), 3.75-3.82 (m, 0.7 H), $3.87(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.95$ (apparent td, $J=6.0$, $3.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.03-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08-5.21 (m, 2 H), 5.81-6.05 (m, 1 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4(\mathrm{q})$, $13.6(\mathrm{q}), 28.7(\mathrm{t}), 30.9(\mathrm{t}), 33.4(\mathrm{q}), 33.6(\mathrm{q}), 37.4(\mathrm{t}), 38.6(\mathrm{t}), 52.8(\mathrm{t}), 53.2(\mathrm{t})$, 61.5 (d), 61.8 (d), 69.6 (d), 72.3 ($s), 75.1$ (d), 75.4 (d), 117.5 (t), 117.7 (t), 133.7 (d), 134.8 (d), 164.99 (s), 165.99 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S} 323.1036$, found 323.1031.
(6S,8S,8aR)-6-(1,3-Dihydroxypropyl)-2-methyl-8a-(methylsulfanyl)-8-(oxan-2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-dione (50.2).

50.3

50.2

Rubin's apparatus ${ }^{73}$ was used for this reaction.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{~mL})$ was added from a syringe to the reaction flask of the Rubin apparatus ${ }^{73}$ equipped with a drying tube. The apparatus was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a stream of ozonized oxygen was bubbled through the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until a purple color developed. Then a solution of $\mathbf{5 0 . 3}$ ($95.6 \mathrm{mg}, 0.249 \mathrm{mmol}$) in MeOH $(6 \mathrm{~mL})$ was added to the second flask of the apparatus. Both joints of the apparatus were sealed with septa and the saturated O_{3} solution was transferred to the solution of $\mathbf{5 0 . 3}$ by using a slow flow of Ar. The reaction mixture was then stirred for 20 min at $-78{ }^{\circ} \mathrm{C}$, followed by addition of NaBH_{4} ($47 \mathrm{mg}, 1.245$ mmol). The cooling bath was removed and stirring was arbitrarily continued overnight. The solvent was evaporated and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 10 \mathrm{~cm}$), using pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$, afforded $\mathbf{5 0 . 2}$ as a white semisolid (30.4 $\mathrm{mg}, 46 \%$, corrected for recovered $\mathbf{5 0 . 3}(30.7 \mathrm{mg})$]. The product was characterized by low resolution mass spectroscopy: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S} 411.5$, found 411.2.
(6S,8S,8aR)-6-(1,3-Dihydroxypropyl)-8-hydroxy-2-methyl-8a-(methyl-sulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4-dione (51.1).

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(24.4 \mathrm{mg}, 0.128 \mathrm{mmol})$ was added to a solution of $\mathbf{5 0 . 2}$ (33 $\mathrm{mg}, 0.085 \mathrm{mmol}$) in $\mathrm{MeOH}(2.6 \mathrm{~mL})$ and the mixture was lowered into a preheated oil bath set at $50^{\circ} \mathrm{C}$ and heated for 45 min . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and loaded onto a Grade III alumina column which was developed with pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$ to afford 51.1 as a white solid ($17.5 \mathrm{mg}, 68 \%$). The product was characterized by low resolution mass spectroscopy: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S} 327.4$, found 327.2.
(2S,4R)-1-[(Benzyloxy)carbonyl]-4-hydroxypyrrolidine-2-carboxylic acid (57.1a). ${ }^{83}$

26.1

57.1a
$\mathrm{K}_{2} \mathrm{CO}_{3}(7.635 \mathrm{~g}, 55.24 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{2 6 . 1}$ (3.29 $\mathrm{g}, 25.11 \mathrm{mmol})$ in water $(20 \mathrm{~mL})$ and dioxane $(3.5 \mathrm{~mL})$. Then CbzCl was added dropwise and vigorous stirring was continued overnight. The mixture was then extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the aqueous phase was acidified with concentrated hydrochloric acid. The acidic aqueous phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The crude product 57.1a ($4.694 \mathrm{~g}, 70 \%$) was obtained as a colorless oil, which was used for the next step: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.05-2.45 (m, 2 H$), 3.57-3.71(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.62(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.23(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.41$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 37.4(\mathrm{t}), 39.2(\mathrm{t}), 54.6(\mathrm{t}), 55.1(\mathrm{t}), 57.3$ (d), 58.2 (d), $67.4(t), 68.1(t), 69.5(d), 69.6(d), 69.7(d), 127.7(d), 128.1(d)$, 128.4 (d), 128.47 (d), 128.54 (d), 128.6 (d), 135.8 (s), 156.9 (s), 173.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{5}$ 288.0842, found 288.0834.

1-Benzyl 2-Methyl (2S,4R)-4-Hydroxypyrrolidine-1,2-dicarboxylate

(57.1). ${ }^{84}$

$\mathrm{SOCl}_{2}(1.55 \mathrm{~mL}, 21.25 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5 7 . 1} \mathbf{1 a}(4.69 \mathrm{~g}, 17.70 \mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{~mL})$ contained in a three-necked flask equipped with a drying tube packed with Drierite. The ice bath
was left in place but not recharged and stirring was continued overnight. Evaporation of the solvent gave $57.1(4.689 \mathrm{~g}, 95 \%)$ as a colorless oil which was used in the next step: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.07-2.17 (m, 1 H), 2.26$2.39(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.74(\mathrm{~m}, 1.5 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 1.4 \mathrm{H})$, 4.46-4.57(m, 2 H$), 5.04-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.25(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.5$ (t , 39.3 (t$), 52.1$ (q), 52.4 (q), 54.7 (t , 55.3 (t), 57.7 (d), 57.9 (d), 67.3 (t), 69.6 (d), 70.3 (d), 127.8 (d), 127.9 (d), 128.0 (d), 128.1 (d), 128.4 (d), 128.5 (d), 128.6 (d), 136.3 (s), 136.5 (s), 154.5 (s), 154.9 (s), $173.0(\mathrm{~s}), 173.1(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{5}$ 302.0999, found 302.0994.

1-Benzyl 2-Methyl (2S)-4-oxopyrrolidine-1,2-dicarboxylate (57.2). ${ }^{85}$

57.1
57.2

PCC ($10.36 \mathrm{~g}, 48.06 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $57.1(4.47 \mathrm{~g}, 16.02 \mathrm{mmol}), \mathrm{AcONa}(1.314 \mathrm{~g}, 16.02 \mathrm{mmol})$ and $3 \AA$ molecular sieves $(0.5 \mathrm{~g} / 1 \mathrm{mmol}$ of $\mathbf{5 7 . 1}, 8.0 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(165 \mathrm{~mL})$. After 10 min the ice bath was removed and stirring was continued for 1.5 h . The mixture was then filtered through Celite ($5 \times 7 \mathrm{~cm}$) and the filter bed was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Silica gel was added to the filtrate and the mixture was
evaporated at room temperature. The resulting solid was loaded onto a silica gel column ($6 \times 11 \mathrm{~cm}$) made up with 2:1 EtOAc-hexanes, and 2:1 EtOAc-hexanes was used as eluent to afford $57.2(3.934 \mathrm{~g}, 88 \%)$ as a white semisolid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.60(\mathrm{dd}, J=18.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.60-$ $3.81(\mathrm{~m}, 3 \mathrm{H}), 3.90-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.90(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 0.4 \mathrm{H}), 5.10-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.28(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.43(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.6$ (t), 41.2 (t$), 52.5$ (t$), 52.6$ (q), $52.8(\mathrm{q}), 55.9(\mathrm{~d}), 56.0$ (d), 67.7 (t), 67.8 (t), 128.1 (d), 128.2 (d), 128.4 (d), 128.6 (d), 128.8 (d), 135.9 (s), 154.2 (s), 154.9 (s), 171.9 (s), 207.0 (s), 207.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{5} 300.0842$, found 300.0835.

1-Benzyl 2-Methyl (2S)-4,4-Dimethoxypyrrolidine-1,2-dicarboxylate

(57.3).

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(82 \mathrm{mg}, 0.43 \mathrm{mmol})$ was added to a stirred solution of ketone $57.2(3.934 \mathrm{~g}, 14.202 \mathrm{mmol})$ and $\mathrm{HCH}(\mathrm{OMe})_{3}(1.9 \mathrm{~mL}, 17.042 \mathrm{mmol})$ in dry $\mathrm{MeOH}(70 \mathrm{~mL})$. The mixture was refluxed for 16 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($4 \times 8 \mathrm{~cm}$), using 2:1 EtOAc-hexane, gave 57.3 ($4.374 \mathrm{~g}, 95 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.20-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.27(\mathrm{~m}, 6 \mathrm{H})$, $3.52-3.62(\mathrm{~m}, 3 \mathrm{H}), 3.62-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{dd}, J=8.4,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.48(\mathrm{dd}$, $J=8.5,5.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.05-5.23(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.8(\mathrm{t}), 37.8(\mathrm{t}), 49.8(\mathrm{q}), 49.9(\mathrm{q}), 50.0(\mathrm{q}), 52.2(\mathrm{t}), 52.4(\mathrm{q})$, 57.68 (d), 57.73 (d), 67.2 (t), 67.3 (t), 106.1 ($s), 106.9$ ($s), 127.90$ (d), 127.95 (d), 128.0 (d), 128.1 (d), 128.4 (d), 128.5 (d), 136.4 (s), 136.5 (s), 154.3 (s), 154.8 (s), 171.9 (s), 172.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NNaO}_{6}$ 346.1261, found 346.1251.

Benzyl (2S)-2-(Hydroxymethyl)-4,4-dimethoxypyrrolidine-1-

carboxylate (57.4).

57.3

57.4
$\mathrm{LiBH}_{4}(738 \mathrm{mg}, 33.85 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5 7 . 3}$ ($4.374 \mathrm{~g}, 13.54 \mathrm{mmol})$ in dry THF (35 mL). The ice bath was removed after 5 min and stirring was continued for 18 h to produce a white slurry. The reaction was quenched with water and glacial AcOH , forming a clear solution. The organic solvent was evaporated and EtOAc was added to the residual aqueous phase, which was extracted twice with EtOAc. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of
the residue over silica gel ($4 \times 8 \mathrm{~cm}$), using 1:1 EtOAc-hexane, afforded 57.4 (3.848 g, 96\%) as a thick oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.83(\mathrm{dd}, J=12.7$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=12.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.36(\mathrm{~m}, 6 \mathrm{H}), 3.42-3.55(\mathrm{~m}, 2$ H), 3.65-3.86 (m, 2 H), $4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19-4.24(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.22(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.46 (m, 5 H); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{5}$ 318.1312, found 318.1305.

Benzyl (2S)-2-Formyl-4,4-dimethoxypyrrolidine-1-carboxylate (57.5).

DCC ($8.1 \mathrm{~g}, 39.259 \mathrm{mmol}$) was tipped (using a powder funnel) into a stirred solution of $57.4(3.848 \mathrm{~g}, 13.04 \mathrm{mmol})$, pyridine $(1.1 \mathrm{~mL}, 13.5 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.5 \mathrm{~mL}, 6.576 \mathrm{mmol})$ in dry DMSO $(35 \mathrm{~mL})$ and dry $\mathrm{PhH}(35 \mathrm{~mL})$. Note: The substrate, $\mathrm{PhH}, \mathrm{DMSO}$, pyridine, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and then DCC were added to the reaction flask in that order. Within few minutes dicyclohexylurea precipitated. Stirring at room temperature was continued overnight by which time the mixture turned pale yellow. The reaction mixture was filtered to remove dicyclohexylurea and the filtrate was washed twice with water. The combined aqueous extracts were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. More dicyclohexylurea
precipitated and was filtered off and the filtrate was evaporated. Flash chromatography of the residue over silica gel ($4 \times 10 \mathrm{~cm}$), using 1:1 EtOAchexanes (dicyclohexylurea is eluted with this eluent) gave 57.5 ($3.523 \mathrm{~g}, 92 \%$) as a white semisolid. Compound $\mathbf{5 7 . 5}$ was mixed with some dicyclohexylurea as both substances have the same polarity. Note: Before chromatography it is necessary to filter the residue through a plug of cottonwool to remove as much dicyclohexylurea as possible. Compound $\mathbf{5 7 . 5}$ was characterized by low resolution mass spectroscopy and ${ }^{1} \mathrm{H}$ NMR, and was clearly mixed with considerable amount of dicyclohexylurea.

Benzyl (2S)-2-(1-Hydroxybut-3-en-1-yl)-4,4-dimethoxypyrrolidine-1-

 carboxylate (57.6).

Indium metal ($258 \mathrm{mg}, 2.247 \mathrm{mmol}$) was cut into small pieces (ca 5×10 mm) which were pressed into thin long pieces. The In pieces were dropped into stirred dry THF (15 mL), followed by addition of allyl bromide ($175 \mu \mathrm{~L}, 2.021$ mmol). Stirring at room temperature was continued for 3 h , by which time most of the In pieces had dissolved, generating a grey colored solution. Very vigorous stirring is required to ensure that almost all the In dissolves. Then a solution of
$57.5(130 \mathrm{mg}, 0.443 \mathrm{mmol})$ in THF (2 mL) was added dropwise and stirring was continued overnight. The solvent was evaporated to give a thick yellowish gel, which was dissolved in EtOAc. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to form a white slurry with no separation of layers. The mixture was filtered through Celite ($2 \times 5 \mathrm{~cm}$) and the filter bed was washed with EtOAc. The filtrate separated into two layers. The milky white aqueous layer was extracted twice with EtOAc and the combined organic extracts and organic filtrates were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 8 \mathrm{~cm}$), using 2:1 EtOAc-hexanes to $1: 1$ EtOAchexanes, afforded 57.6 as a yellow gel ($121.5 \mathrm{mg}, 82 \%$): exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{6} 358.1625$, found 358.1614.

Benzyl (2S)-2-(1,3-dihydroxypropyl)-4,4-dimethoxypyrrolidine-1-

 carboxylate (57.6a).

57.6

57.6a

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $57.6(121.5 \mathrm{mg}, 0.362 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ until a purple color developed. Then $\mathrm{NaBH}_{4}(137 \mathrm{mg}, 3.62 \mathrm{mmol})$ was added and, after 5 min , the cooling bath was removed and stirring was continued for 2 h .

The solvent was evaporated and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the residue. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 10 \mathrm{~cm}$), using 1:1 EtOAc-hexanes to pure EtOAc, afforded $\mathbf{5 7 . 6 a}(55.5 \mathrm{mg}, 45 \%$) as a colorless semisolid. Compound 57.6a was characterized only by low resolution mass spectroscopy: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaO}_{6} 362.4$, found 362.3.

Phenyl N-\{2-[(2R)-2-(Hydroxymethyl)-4,4-dimethoxypyrrolidin-1-yl]-2-oxoethyl\}- N-methylcarbamate (59.1).

Anhydrous $\mathrm{CaCl}_{2}(3.52 \mathrm{~g}, 31.709 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of methyl ester $29.4(10.97 \mathrm{~g}, 28.868 \mathrm{mmol})$ in a mixture of dry THF (35 mL) and dry EtOH (35 mL), and then $\mathrm{NaBH}_{4}(2.4 \mathrm{~g}, 63.425 \mathrm{mmol}$) was added in one portion. Stirring at $0^{\circ} \mathrm{C}$ was continued for 8 h . The reaction mixture was then quenched at $0{ }^{\circ} \mathrm{C}$ by successive addition of water and glacial AcOH , resulting in a clear solution. Evaporation of the organic solvent resulted in a white slurry. EtOAc and saturated aqueous NaHCO_{3} were added to the slurry,
resulting in precipitation of a calcium salt. Filtration of the biphasic mixture through Celite resulted in a clear organic phase and a milky white aqueous suspension. The layers were separated and the aqueous layer was extracted four times with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (5 x 10 cm), using EtOAc-MeOH mixtures from pure EtOAc to 1:20 MeOH-EtOAc, gave 59.1 ($6.882 \mathrm{~g}, 68 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}=20.28\left(c 1.12, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3432, 2945, 2835, 1726, 1652, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.75-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.33(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.12(\mathrm{~s}, 1 \mathrm{H}), 3.16-3.28(\mathrm{~m}$, $8 \mathrm{H}), 3.44-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.06(\mathrm{~m}, 1$ H), 4.08-4.16 (m, 1 H), 4.25-4.35 (m, 1 H), $4.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0.66 \mathrm{H}), 4.60(\mathrm{t}, J$ $=5.0 \mathrm{~Hz}, 0.33 \mathrm{H}), 7.06-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.9$ (t$), 35.0$ (t$), 36.2$ (q), 36.6 (q), 49.6 (q), 50.21 (q), $50.24(\mathrm{q}), 51.7(\mathrm{t}), 51.8(\mathrm{t}), 52.80(\mathrm{t}), 52.86(\mathrm{t}), 60.7(\mathrm{~d}), 60.8(\mathrm{~d}), 66.1(\mathrm{t}), 66.4(\mathrm{t})$, 106.37 (s), 106.40 (s), 121.68 (d), 121.76 (d), 121.80 (d), 125.4 (d), 125.5 (d), 129.26 (d), 129.31 (d), 151.3 (s), 151.4 (s), 155.5 (s), 169.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6} 375.1527$, found 375.1521.

Phenyl N-\{2-[(2R)-2-Formyl-4,4-dimethoxypyrrolidin-1-yl]-2-oxo-

 ethyl\}- N -methylcarbamate (58.1).

DCC ($11.7 \mathrm{~g}, 56.707 \mathrm{mmol}$) was tipped (using a powder funnel) into a stirred solution of 59.1 ($6.658 \mathrm{~g}, 18.916 \mathrm{mmol})$, pyridine ($1.6 \mathrm{~mL}, 19.644 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.74 \mathrm{~mL}, 9.733 \mathrm{mmol})$ in a mixture of dry DMSO $(45 \mathrm{~mL})$ and dry $\mathrm{PhH}(45 \mathrm{~mL})$. Note: The substrate, $\mathrm{PhH}, \mathrm{DMSO}$, pyridine, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and then DCC were added to the reaction flask in that order. Within a few minutes dicyclohexylurea precipitated. Stirring at room temperature was continued for 24 h , by which time the mixture had turned pale yellow. The reaction mixture was filtered to remove dicyclohexylurea and the filtrate was washed twice with water. The combined aqueous extracts were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. More dicyclohexylurea precipitated and was filtered off and the filtrate was evaporated. Flash chromatography of the residue over silica gel ($5 \times 12 \mathrm{~cm}$), using 1:1 EtOAchexanes (dicyclohexylurea is eluted with this eluent) to pure EtOAc, gave $\mathbf{5 8 . 1}$ $(5.968 \mathrm{~g}, 90 \%)$ as a yellow oil. Note: Before chromatography it is necessary to filter the residue through a plug of cottonwool to remove as much
dicyclohexylurea as possible: $[\alpha]_{\mathrm{D}}=65.66\left(c 0.57, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $)$ 2942, 2836, 1725, 1662, 1594, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.08-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.46(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.16(\mathrm{~m}, 3 \mathrm{H}), 3.19-3.32(\mathrm{~m}, 6 \mathrm{H}), 3.48(\mathrm{~s}$, $0.2 \mathrm{H}), 3.51-3.64(\mathrm{~m}, 0.8 \mathrm{H}), 3.69-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.53(\mathrm{dd}, J=9.2,3.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.05-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 2 \mathrm{H}), 9.42-9.54(\mathrm{~m}, 0.8 \mathrm{H}), 9.57$ (s, 0.2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.7$ (t , 33.8 (t$), 36.25$ (q), 36.29 (q), $36.4(\mathrm{q}), 36.6(\mathrm{q}), 48.8(\mathrm{q}), 49.2(\mathrm{q}), 50.6(\mathrm{q}), 50.9(\mathrm{q}), 51.0(\mathrm{t}), 51.1(\mathrm{t}), 51.3(\mathrm{t})$, 52.2 (t), 52.47 (t), 52.52 (t$), 63.2$ (d), 63.8 (d), 105.3 (s$), 106.87$ (s$), 106.92$ (s$),$ 121.68 (d), 121.74 (d), 121.78 (d), 125.44 (d), 125.48 (d), 125.5 (d), 129.29 (d), 129.34 (d), 151.3 (s), 151.4 (s), 154.8 (s), 155.5 (s), 167.7 (s), 167.9 (s), 199.9 (d), 200.3 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6} 373.1370$, found 373.1363.

Phenyl

N-\{2-[(2R)-2-(1-Hydroxybut-3-en-1-yl)-4,4-dimethoxy-pyrrolidin-1-yl]-2-oxoethyl\}- N -methylcarbamate (58.2).

58.1

58.2

Indium metal ($3.937 \mathrm{~g}, 34.293 \mathrm{mmol}$) was cut into small pieces (ca 5×10 mm) which were pressed into thin long pieces. The In pieces were dropped into dry THF (200 mL), followed by addition of allyl bromide ($2.7 \mathrm{~mL}, 31.176 \mathrm{mmol}$). Stirring at room temperature was continued for 3 h , by which time most of the In had dissolved, generating a grey-colored solution. Very vigorous stirring is required to ensure that almost all the In dissolves. Then a solution of 58.1 (5.456 $\mathrm{g}, 15.588 \mathrm{mmol})$ in THF (40 mL) was added dropwise and stirring was continued overnight. The solvent was evaporated to give a thick yellowish gel, which was then dissolved in EtOAc. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to form a white slurry with no separation of layers. The mixture was filtered through Celite ($5 \times 7 \mathrm{~cm}$) and the filter bed was washed with EtOAc. The filtrate separated into two layers. The milky, white aqueous layer was extracted twice with EtOAc and the combined organic extracts and organic filtrates were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 9 \mathrm{~cm}$), using 1:1 EtOAc-hexane to pure EtOAc, afforded $\mathbf{5 8 . 2}$ as a yellow gel $(6.668 \mathrm{~g}, 99.7 \%):[\alpha]_{\mathrm{D}}=31.48\left(c 0.98, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3444 , 2939, 2834, 1727, 1656, $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01-2.31(\mathrm{~m}$, $4 \mathrm{H}), 3.04-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.24(\mathrm{~m}, 5 \mathrm{H}), 3.25-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.10-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.35(\mathrm{~m}, 1 \mathrm{H}), 5.00-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.79-5.97(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1.2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.35$ (apparent $\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.6(\mathrm{t}), 33.0(\mathrm{t}), 36.2(\mathrm{q}), 36.6$ (q), $37.4(\mathrm{t}), 37.6(\mathrm{t}), 49.21(\mathrm{q}), 49.23(\mathrm{q}), 50.59(\mathrm{q}), 50.63(\mathrm{q}), 51.91(\mathrm{t}), 51.97(\mathrm{t})$,
$52.8(\mathrm{t}), 52.9(\mathrm{t}), 62.1(\mathrm{~d}), 62.4(\mathrm{~d}), 70.1(\mathrm{~d}), 70.8(\mathrm{~d}), 106.63(\mathrm{~s}), 106.67(\mathrm{~s})$, 117.28 (t), 117.33 (t), 121.69 (d), 121.74 (d), 121.83 (d), 125.37 (d), 125.40 (d), 129.25 (d), 129.29 (d), 134.8 (d), 134.9 (d), 151.33 (s), 151.38 (s), 154.9 (s), 155.5 (s), 168.01 (s), 168.15 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6} 415.1840$, found 415.1831.

Phenyl $\quad N$-\{2-[(2R)-2-(1,3-dihydroxypropyl)-4-oxopyrrolidin-1-yl]-2-oxoethyl\}- N-methylcarbamate (58.3).

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5 8 . 2}(163 \mathrm{mg}, 0.416 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ until a purple color developed (2-3 min). Then O_{2} was bubbled through this mixture for 2 min to remove the excess of O_{3}. Then $\mathrm{Me}_{2} \mathrm{~S}(0.2 \mathrm{~mL}, 2.104 \mathrm{mmol})$ was added and the cooling bath was left in place but not recharged, and stirring was continued overnight. The reaction mixture turned orange. The solvent was evaporated and $\mathrm{MeOH}(3 \mathrm{~mL})$ was added. The mixture was stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ and NaBH_{4} ($24 \mathrm{mg}, 0.624 \mathrm{mmol}$) was added. After 5 min the ice bath was removed and stirring was continued for 30 min . Hydrochloric acid (1.5 N) was added and
stirring was continued, the progress of the reaction being monitored by low resolution mass spectroscopy. After 1.5 h the reaction was over (it usually took 1.5-2.5 h depending on the scale). The solvent was evaporated and then the mixture was quenched with saturated aqueous NaHCO_{3}. The mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The pH of the remaining aqueous layer (product $\mathbf{5 8 . 3}$ dissolves partially in water) was adjusted to 7 and the water was evaporated at 60 ${ }^{\circ} \mathrm{C}$, using a rotary evaporator. The residue was thoroughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the combined organic residues over silica gel $(1.5 \times 9 \mathrm{~cm})$, using pure EtOAc to $1: 10 \mathrm{MeOH}-E t O A c$, afforded 58.3 ($87 \mathrm{mg}, 60 \%$) as a yellowish semisolid. This method worked best on a scale of less than 200 mg scale, and for larger scales the yield was poor. Hence a slightly modified procedure was adopted for larger scale reactions as described below.

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $58.2(1.002 \mathrm{~g}, 2.557 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ until a purple color developed (5 min). Then O_{2} was bubbled through the mixture for 5 min to remove the excess of O_{3}. $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(774 \mathrm{mg}, 20.454 \mathrm{mmol})$ were added to the mixture at $-78^{\circ} \mathrm{C}$. The cooling bath was removed and stirring was continued for 1.5 h . The solvent was evaporated to afford a thick yellowish gel which was dissolved in THF (10 mL). Hydrochloric acid ($4.8 \mathrm{M}, 10 \mathrm{~mL}$) was added slowly and stirring at room temperature was continued for 14 h . The pH of this mixture was adjusted to ~ 7 by adding solid NaHCO_{3} with vigorous stirring.

The solvent was then evaporated at $60^{\circ} \mathrm{C}$, using a rotary evaporator. The residue was thoroughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered to remove inorganic products. The filter bed was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were evaporated. Flash chromatography of the residue over silica gel ($3 \times 8 \mathrm{~cm}$), using pure EtOAc to $1: 40 \mathrm{MeOH}-\mathrm{EtOAc}$ to $1: 20 \mathrm{MeOH}-\mathrm{EtOAc}$ and finally $1: 10$ MeOH-EtOAc, afforded $\mathbf{5 8 . 3}$ (527 mg, 59\%) as a white semisolid: $[\alpha]_{\mathrm{D}}=-6.26$ (c $0.94, \mathrm{CHCl}_{3}$); FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3412 (br), $3010,2939,1763,1721,1654$, $1476,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44-1.64(\mathrm{~m}, 1.2 \mathrm{H}), 2.42-2.69$ $(\mathrm{m}, 1.3 \mathrm{H}), 2.98-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.61-3.79(\mathrm{~m}, 2.5 \mathrm{H}), 3.80-$ $3.98(\mathrm{~m}, 1.5 \mathrm{H}), 4.03-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.66(\mathrm{~m}, 1 \mathrm{H}), 7.02-$ 7.15 (m, 2 H), 7.15-7.25 (m, 1 H), 7.29-7.43 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 35.1(\mathrm{t}), 36.2(\mathrm{t}), 36.4(\mathrm{q}), 51.8(\mathrm{t}), 52.7(\mathrm{t}), 59.3(\mathrm{~d}), 60.1(\mathrm{t}), 70.3(\mathrm{~d})$, 121.70 (d), 121.74 (d), 125.5 (d), 125.7 (d), 129.37 (d), 129.39 (d), 151.2 (s), 155.9 (s), 167.2 (s), 208.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 373.1370, found 373.1365.

Phenyl N-\{2-[(2R)-2-(2,2-dimethyl-1,3-dioxan-4-yl)-4-oxopyrrolidin-1-

 yl]-2-oxoethyl\}- N-methylcarbamate (59.2).
58.3
59.2

2-Methoxypropene ($0.23 \mathrm{~mL}, 2.336 \mathrm{mmol}$) was added to a stirred solution of 58.3 ($369 \mathrm{mg}, 1.054 \mathrm{mmol}$) and pyridine p-toluenesulfonate $(5.5 \mathrm{mg}, 0.022$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and stirring was continued overnight. Evaporation of the solvent and flash chromatography of the residue over silica gel ($2 \times 8 \mathrm{~cm}$), using 1:1 EtOAc-hexanes to pure EtOAc, afforded 59.2 ($305 \mathrm{mg}, 74 \%$) as a white semisolid: $[\alpha]_{\mathrm{D}}=11.47\left(c 0.89, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2993, 2938, 1765, $1725,1663,1476,1455,1431 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($498 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14(\mathrm{~s}, 3 \mathrm{H})$, 1.19-1.42 (m, $4 H$), $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 0.34 \mathrm{H}), 2.32-2.51(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.73 (m, 1 H$), 3.01-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.69(\mathrm{~m}, 0.37 \mathrm{H}), 3.72-3.95(\mathrm{~m}, 3 \mathrm{H})$, 3.95-4.17 (m, 2 H), 4.17-4.41 (m, 1 H$), 4.59(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.21(\mathrm{~m}, 3$ H), 7.28-7.39 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.0$ (q), 19.3 (q), 26.8 (t), $26.9(\mathrm{t}), 29.4(\mathrm{q}), 29.44(\mathrm{q}), 36.2(\mathrm{t}), 36.3(\mathrm{t}), 36.4(\mathrm{q}), 36.5(\mathrm{q}), 51.6(\mathrm{t}), 51.9(\mathrm{t})$, 52.5 (t), 52.7 (t), 57.5 (d), 57.6 (d), 59.02 (t), 59.05 (t), 69.7 (d), 69.8 (d), 98.3 (s$)$, 98.4 (s), 98.8 (s$), 121.6$ (d), 121.7 (d), 125.3 (d), 125.4 (d), 129.22 (d), 129.26 (d), 151.3 (s), 154.9 (s), 155.4 (s), 166.7 (s), 166.95 (s), 208.2 (s), 208.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6} 413.1683$, found 413.1680.

(6R,8aR)-6-(2,2-Dimethyl-1,3-dioxan-4-yl)-2-methyl-8a-(methyl-

 sulfanyl)octahydropyrrolo[1,2-a]piperazine-1,4,8-trione (59.3).
$\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $32.5 \mathrm{mg}, 0.814 \mathrm{mmol})$ was added to a stirred solution of ketone $\mathbf{5 9 . 2}$ ($144 \mathrm{mg}, 0.369 \mathrm{mmol}$) in dry THF (5 mL). The reaction flask was lowered into a preheated oil bath set at $70{ }^{\circ} \mathrm{C}$ and the reaction mixture was refluxed for 20 min . After 15 min , TLC (silica, 1:20 MeOH-EtOAc) monitoring showed no $\mathbf{5 9 . 2}$ remained and only a very polar spot corresponding to the cyclized product was detected $\left(\mathrm{R}_{\mathrm{f}} 0.1\right)$. During this time almost all of the NaH suspension dissolved and the color of the reaction mixture became yellow. The mixture was cooled to room temperature and then to $0^{\circ} \mathrm{C}$.

In a separate flask, $\mathrm{Et}_{3} \mathrm{~N}(81 \mu \mathrm{~L}, 0.581 \mathrm{mmol})$ was added to stirred $\mathrm{Me}_{3} \mathrm{SiCl}(132.5 \mu \mathrm{~L}, 1.049 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 10 min . The resulting milky solution was then added by syringe to the original reaction mixture. The mixture turned pale yellow and a suspension was formed. The mixture was stirred for an arbitrary period of 3.5 h at $0^{\circ} \mathrm{C}$.

In another flask, MeSCl was generated by slow dropwise addition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(32 \mu \mathrm{~L}, 0.402 \mathrm{mmol})$ to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}$
($37 \mu \mathrm{~L}, 0.406 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, followed by stirring for 15 min . The reaction mixture containing the intermediate silyl enol ether was then cooled to $-78^{\circ} \mathrm{C}$ and the yellow solution of MeSCl was cannulated into it and stirring was continued overnight, the cooling bath being left in place but not recharged. The solvent was evaporated and the mixture was quenched with water. The mixture was then extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 10 \mathrm{~cm}$), using $1: 1$ to $3: 2$ to $7: 3$ EtOAchexanes, afforded 59.3 ($48.8 \mathrm{mg}, 39 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.25-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.62(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3$ H), $2.78(\mathrm{dd}, J=17.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=17.2,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.88(\mathrm{dd}, J=5.5,1.7 \mathrm{~Hz}, 0.7$ H), 3.91-3.98 (m, 1 H), 4.34 (apparent dt, $J=9.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 0.5 \mathrm{H})$, $4.50(\mathrm{~s}, 0.5 \mathrm{H}), 4.60-4.66(\mathrm{~m}, 1 \mathrm{H})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S} 365.1142$, found 365.1136 .

A sample for single crystal X-ray analysis was obtained by crystallization from EtOAc-hexane by allowing hexane to diffuse into a solution of the compound in EtOAc in a closed container.
(6R,8aR)-6-(1,3-Dihydroxypropyl)-2-methyl-8a-(methylsulfanyl)octa-hydropyrrolo[1,2-a]piperazine-1,4,8-trione (58.4).

Concentrated hydrochloric acid ($20 \mu \mathrm{~L}$) was added to a stirred solution of 59.3 ($21 \mathrm{mg}, 0.0614 \mathrm{mmol}$) in THF (1 mL). Stirring at room temperature was continued for 10 min , the acid was neutralized with the minimum amount of saturated aqueous NaHCO_{3} and the aqueous-organic mixture was evaporated with heating, using a water bath set at $50^{\circ} \mathrm{C}$. Compound $\mathbf{5 8 . 4}$ is soluble in water. The crude residue was dissolved in the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was loaded onto a silica gel column ($1 \times 6 \mathrm{~cm}$) made up with EtOAc. The column was developed using pure EtOAc to 1:10 MeOH-EtOAc, to give $\mathbf{5 8 . 4}$ (16.5 mg , 89%) as a white solid. Only low resolution mass spectroscopic data was collected: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S} 325.3$, found 325.0.
(6R,7Z,8aR)-6-(2,2-Dimethyl-1,3-dioxan-4-yl)-7-[(dimethylamino)-methylidene]-2-methyl-8a-(methylsulfanyl)octahydropyrrolo[1,2-a]pipera-zine-1,4,8-trione (60.1).

$\mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}(78 \mu \mathrm{~L}, 0.585 \mathrm{mmol})$ was added to a solution of $59.3(20$ $\mathrm{mg}, 0.0585 \mathrm{mmol})$ in dry THF (1 mL) and the mixture was heated at $70{ }^{\circ} \mathrm{C}$ overnight. The color of the mixture was dark yellow at this stage. Evaporation of the solvent and flash chromatography of the residue over silica gel ($1 \times 8 \mathrm{~cm}$), using pure EtOAc to $1: 10 \mathrm{MeOH}-\mathrm{EtOAc}$, afforded $\mathbf{6 0 . 1}(11 \mathrm{mg}, 47 \%)$ as a pale yellow solid (containing some impurities). Only low resolution mass spectroscopic data was collected: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S} 420.5$, found 420.1.

(1R,7R)-14-Hydroxy-5-methyl-7-(methylsulfanyl)-11-oxa-2,5-diaza-

 tricyclo[7.5.0.0 ${ }^{2,7}$ tetradec-9-ene-3,6,8-trione (58.5).
60.1
58.5
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (from an old bottle, $1 \mu \mathrm{~L}, 0.0126 \mathrm{mmol}$) and water $(1 \mu \mathrm{~L})$ were added to a solution of $\mathbf{6 0 . 1}(1 \mathrm{mg}, 0.0025 \mathrm{mmol})$ in toluene $(0.3 \mathrm{~mL})$ and then the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 5 h . TLC showed complete consumption of $\mathbf{6 0 . 1}$ and formation of a new compound, which was isolated by preparative TLC, using pure EtOAc, (R_{f} of the new compound was 0.3). Only low resolution mass spectroscopic data was collected for the new compound which is believed to be 58.5: m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}$ 335.3, found 335.0.

5. Appendix : Crystallographic Experimental Details

5.1. ($6 R, 8 S, 8 a R$)-6-(Hydroxymethyl)-2-methyl-8a-(methylsulfanyl)-8-(oxan-

2-yloxy)octahydropyrrolo[1,2-a]piperazine-1,4-dione (33.1).

Table 1. Crystallographic Experimental Details
A. Crystal Data
formula
formula weight
crystal dimensions (mm)
crystal system
space group
unit cell parameters ${ }^{a}$

$a(\AA)$	$9.8302(17)$
$b(\AA)$	$9.4825(16)$
$c(\AA)$	$9.9978(17)$
$\beta(\mathrm{deg})$	$115.4426(18)$
$V\left(\AA^{3}\right)$	$841.6(2)$
Z	2
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.359
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.219

B. Data Collection and Refinement Conditions
diffractometer
radiation $(\lambda[\AA])$
(0.71073)
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
$\leq l \leq 13$)
independent reflections
number of observed reflections ($N O$)
structure solution method
refinement method
(SHELXL-97c)
absorption correction method

Bruker D8/APEX II CCD ${ }^{b}$
graphite-monochromated Mo $\mathrm{K} \alpha$
-100
ω scans (0.3°) (20 s exposures)
55.88
$7364(-12 \leq h \leq 12,-12 \leq k \leq 12,-13$
$3870\left(R_{\text {int }}=0.0259\right)$
$3542\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right]$
direct methods (SHELXS-97c)
full-matrix least-squares on F^{2}
Gaussian integration (face-indexed)
range of transmission factors
data/restraints/parameters
Flack absolute structure parameter ${ }^{d}$
goodness-of-fit ($S)^{e}$
final R indices f

$$
\begin{aligned}
& \quad R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] \\
& w R_{2}\left[F_{\mathrm{o}}^{2} \geq-3 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] \\
& \text { largest difference peak and hole }
\end{aligned}
$$

0.9679-0.8854
$3870\left[F_{0}^{2} \geq-3 \sigma\left(F_{0}^{2}\right)\right] / 0 / 211$
0.08(6)
$1.046\left[F_{\mathrm{o}}{ }^{2} \geq-3 o\left(F_{0}^{2}\right)\right]$
0.0339
0.0903
0.249 and -0.185 e \AA^{-3}
${ }^{a}$ Obtained from least-squares refinement of 7375 reflections with $4.52^{\circ}<2 \theta<$ 55.54°.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
${ }^{d}$ Flack, H. D. Acta Crystallogr. 1983, A39, 876-881; Flack, H. D.; Bernardinelli, G. Acta Crystallogr. 1999, A55, 908-915; Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration. In this case the relatively large standard uncertainty indicates that the structural data alone should not be used to confirm absolute stereochemistry, but should be used in conjunction with the established stereochemistry of the precursor compound.
$e^{e} S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0490 P)^{2}+0.0776 P\right]^{-1}$ where $P=\left[\operatorname{Max}\left(F_{0}^{2}, 0\right)+\right.$ $2 F_{\mathrm{c}^{2}}{ }^{2} / 3$).
$f_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{4}\right)\right]^{1 / 2}$.

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Atom	x	y	z	$U_{\text {eq }}, \AA^{2}$
S	$0.08761(5)$			
O1	$0.08975(5)$	$0.06849(5)$	$0.03928(13)^{*}$	
O2	$0.4926(2)$	$0.18357(17)$	$0.00932(17)$	$0.0488(4)^{*}$
O3	$0.20753(14)$	$-0.04078(13)$	$0.37141(14)$	$0.0326(3)^{*}$
O4	$0.66960(16)$	$0.02343(14)$	$0.41959(15)$	$0.0376(3)^{*}$
O5	$0.35616(17)$	$-0.06703(19)$	$0.62566(16)$	$0.0501(4)^{*}$
N1	$0.30405(19)$	$0.36816(15)$	$0.19335(17)$	$0.0335(3)^{*}$
N2	$0.38674(17)$	$0.09934(16)$	$0.15525(15)$	$0.0304(3)^{*}$
C1	$0.28848(18)$	$0.26666(17)$	$0.27864(18)$	$0.0265(3)^{*}$

C2	$0.3296(3)$	$0.3383(2)$	$0.0625(2)$	$0.0419(5)^{*}$
C3	$0.4118(2)$	$0.2004(2)$	$0.0728(2)$	$0.0376(4)^{*}$
C4	$0.4606(2)$	$-0.04097(18)$	$0.1847(2)$	$0.0338(4)^{*}$
C5	$0.3811(2)$	$-0.11790(18)$	$0.2659(2)$	$0.0344(4)^{*}$
C6	$0.32757(19)$	$0.00026(16)$	$0.33700(18)$	$0.0261(3)^{*}$
C7	$0.27972(19)$	$0.11745(16)$	$0.21906(18)$	$0.0273(3)^{*}$
C8	$0.3004(2)$	$0.51657(18)$	$0.2333(2)$	$0.0382(4)^{*}$
C9	$0.6302(2)$	$-0.0294(2)$	$0.2746(2)$	$0.0404(4)^{*}$
C10	$0.2558(2)$	$-0.1327(2)$	$0.4978(2)$	$0.0395(4)^{*}$
C11	$0.1150(3)$	$-0.1831(3)$	$0.5106(3)$	$0.0577(6)^{*}$
C12	$0.0457(3)$	$-0.0673(4)$	$0.5652(4)$	$0.0744(10)^{*}$
C13	$0.1647(4)$	$0.0000(4)$	$0.7051(3)$	$0.0770(10)^{*}$
C14	$0.2949(4)$	$0.0479(3)$	$0.6736(3)$	$0.0627(7)^{*}$
C15	$-0.0324(3)$	$0.1587(3)$	$0.1490(3)$	$0.0560(6)^{*}$

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+\right.\right.$ $\left.\left.l^{2} c^{* 2} U_{33}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)\right]$.

Table 3. Selected Interatomic Distances (\AA)

Atom1	Atom2	Distance		Atom1	Atom2
	Distance				
S	C7	$1.8598(18)$	N 2	C 3	$1.354(2)$
S	C 15	$1.812(2)$	N 2	C 4	$1.483(2)$
O1	O^{a}	$2.7962(18)^{b}$	N 2	C 7	$1.456(2)$
O1	C 1	$1.232(2)$	C 1	C 7	$1.523(2)$
O1	${\mathrm{H} 4 \mathrm{O}^{a}}^{b}$	1.96^{b}	C 2	C 3	$1.516(3)$
O2	C^{b}	$1.222(3)$	C 4	C 5	$1.532(3)$
O3	C 6	$1.418(2)$	C 4	C 9	$1.520(3)$
O3	C 10	$1.438(2)$	C 5	C 6	$1.536(2)$
O4	C 9	$1.421(2)$	C 6	C 7	$1.539(2)$
O5	C 10	$1.383(3)$	C 10	C 11	$1.521(3)$
O5	C 14	$1.424(3)$	C 11	C 12	$1.512(4)$
N 1	C 1	$1.337(2)$	C 12	C 13	$1.525(5)$
N 1	C 2	$1.462(3)$	C 13	C 14	$1.514(4)$
N1	C 8	$1.468(2)$			

${ }^{a}$ At $1-x,{ }^{1 / 2+y, 1-z . ~}{ }^{b}$ Nonbonded distance.

Table 4. Selected Interatomic Angles (deg)

Atom1$\mathrm{C} 7$	Atom2 Atom3	Angle	Atom1 Atom2	Atom3
	S C15	C4	C5 C6	
	102.58(9)		104.60(13)	
C6	O3 C10	O3	C6 C5	
	112.63(13)		113.47(13)	
C10	O5 C14	O3	C6 C7	
	114.78(18)		111.82(13)	
C1	N1 C2	C5	C6 C7	
	122.80(15)		103.00(13)	
C1	N1 C8	S	C7 N2	
	119.58(15)		107.59(11)	
C2	N1 C8	S	C7 C1	
	117.59(15)		108.35(11)	
C3	N2 C4	S	C7 C6	
	123.66(15)		112.83(11)	
C3	N2 C7	N2	C7 C1	
	122.54(15)		110.53(14)	
C4	N2 C7	N2	C7 C6	
	113.77(14)		102.12(13)	
O1	C1 N1	C1	C7 C6	
	123.88(15)		115.07(13)	
O1	C1 C7	O4	C9 C4	
	121.13(15)		112.20(15)	
N1	C1 C7	O3	C10 O5	
	114.95(14)		111.98(15)	
N1	C2 C3	O3	C10 C11	
	113.44(15)		107.21(17)	
O2	C3 N2	O5	C10 C11	
	123.53(19)		112.15(19)	
O2	C3 C2	C10	C11 C12	
	121.60(17)		111.7(2)	
N2	C3 C2	C11	C12 C13	
	114.87(17)		110.3(2)	
N2	C4 C5	C12	C13 C14	
	102.39(14)		108.6(2)	
N2	C4 C9	O5	C14 C13	
	111.82(15)		111.0(2)	
C5	C4 C9	O4	$\mathrm{H} 4 \mathrm{O} \quad \mathrm{Ol}^{c}$	
	113.58(16)		$175.1{ }^{\text {d }}$	

${ }^{c}$ At $1-x,^{-1 / 2+y, 1-z . ~}{ }^{d}$ Angle includes nonbonded $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Table 5. Torsional Angles (deg)

C4	N2	C7	C1
141.81(15)			
C4	N2	C7	C6
18.91(17)			
O1	C1	C7	S
100.78(16)			
O1	C1	C7	N2
141.56(16)			
O1	C1	C7	C6 -26.5(2)
N1	C1	C7	S-77.06(16)
N1	C1	C7	N2 40.6(2)
N1	C1	C7	C6
155.61(15)			
N1	C2	C3	O2
150.7(2)			
N1	C2	C3	N2 30.0(3)
N2	C4	C5	C6
25.57(18)			
C9	C4	C5	C6
95.16(18)			
N2	C4	C9	O4 65.3(2)
C5	C4	C9	O4-49.9(2)
C4	C5	C6	O3
158.49(14)			
C4	C5	C6	C7
37.42(18)			
O3	C6	C7	S-40.78(16)
O3	C6	C7	N2
155.98(13)			
O3	C6	C7	C1
84.25(17)			
C5	C6	C7	S 81.41(14)
C5	C6	C7	N2
33.79(16)			
C5	C6	C7	C1
153.56(15)			
O3	C10	C11	C12
72.8(3)			
O5	C10	C11	C12 50.5(3)
C10	C11	C12	C13
50.8(3)			
C11	C12	C13	C14 54.1(3)
C12	C13	C14	O5-57.6(3)

Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Atom	x	y	z	U_{eq}, \AA^{2}
H4O	0.6833	-0.0443	0.4782	0.056
H2A	0.3890	0.4162	0.0481	0.050
H2B	0.2312	0.3352	-0.0256	0.050
H4	0.4380	-0.0896	0.0887	0.041
H5A	0.4516	-0.1820	0.3425	0.041
H5B	0.2946	-0.1735	0.1958	0.041
H6	0.4142	0.0340	0.4290	0.031
H8A	0.1996	0.5400	0.2240	0.046
H8B	0.3246	0.5768	0.1668	0.046
H8C	0.3746	0.5320	0.3357	0.046
H9A	0.6761	-0.1237	0.2818	0.048
H9B	0.6717	0.0339	0.2226	0.048
H10	0.3068	-0.2164	0.4787	0.047
H11A	0.0403	-0.2161	0.4126	0.069
H11B	0.1411	-0.2638	0.5800	0.069
H12A	-0.0361	-0.1070	0.5866	0.089
H12B	0.0014	0.0053	0.4873	0.089
H13A	0.1211	0.0816	0.7348	0.092
H13B	0.2004	-0.0693	0.7872	0.092
H14A	0.2597	0.1216	0.5960	0.075
H14B	0.3743	0.0895	0.7644	0.075
H15A	-0.1375	0.1344	0.0854	0.067
H15B	-0.0217	0.2614	0.1577	0.067
H15C	-0.0028	0.1174	0.2475	0.067

5.2. 2-methyl-8a-(methylsulfanyl)-8-(tetrahydro-2H-pyran-2-yloxy)-6-(2,5,7,11-tetraoxatridec-9-en-8-yl)hexahydropyrrolo[1,2-a]pyrazine-1,4-dione (34.4).

Table 1. Crystallographic Experimental Details
A. Crystal Data
formula
formula weight
crystal dimensions (mm)
crystal system
space group
unit cell parameters ${ }^{a}$

$a(\AA)$	$7.8318(4)$
$b(\AA)$	$12.0684(6)$
$c(\AA)$	$27.3364(15)$
$V\left(\AA^{3}\right)$	$2583.8(2)$
Z	4
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.292
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.523

B. Data Collection and Refinement Conditions
diffractometer
radiation $(\lambda[\AA])$
source)
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
$l \leq 32$)
independent reflections
number of observed reflections ($N O$)
structure solution method
(SHELXD ${ }^{c}$)
refinement method
(SHELXL-97d)
absorption correction method
range of transmission factors
data/restraints/parameters
extinction coefficient $(x)^{e}$
Flack absolute structure parameter f
$\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$
502.61
$0.51 \times 0.12 \times 0.06$
orthorhombic
$P 2_{1} 2_{1} 2_{1}$ (No. 19)
7.8318 (4)
12.0684 (6)
27.3364 (15)
2583.8 (2)

4
1.292
1.523

Bruker D8/APEX II CCD ${ }^{b}$
$\mathrm{CuK} \alpha(1.54178)$ (microfocus
-100
ω and ϕ scans (1.0°) (5 s exposures)
136.00
$17261(-9 \leq h \leq 9,-13 \leq k \leq 14,-32 \leq$
$4661\left(R_{\text {int }}=0.0975\right)$
$3012\left[F_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right]$
direct methods/dual space
full-matrix least-squares on F^{2}
Gaussian integration (face-indexed)
0.9141-0.5081

4661 / 0 / 310
0.0045(6)
0.01(5)
goodness-of-fit $(S)^{g}$ [all data]
1.039
final R indices ${ }^{h}$
$R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] \quad 0.0837$
$w R_{2}$ [all data] 0.2290
largest difference peak and hole $\quad 0.528$ and $-0.411 \mathrm{e} \AA^{-3}$
${ }^{a}$ Obtained from least-squares refinement of 3714 reflections with $6.46^{\circ}<2 \theta<$ 132.60°.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ Schneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.
${ }^{d}$ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
${ }^{e} F_{\mathrm{c}} *=k F_{\mathrm{c}}\left[1+x\left\{0.001 F_{\mathrm{c}}{ }^{2} \lambda^{3} / \sin (2 \theta)\right\}\right]^{-1 / 4}$ where k is the overall scale factor.
f Flack, H. D. Acta Crystallogr. 1983, A39, 876-881; Flack, H. D.; Bernardinelli, G. Acta Crystallogr. 1999, A55, 908-915; Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration.
$g S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0931 P)^{2}+2.7409 P\right]^{-1}$ where $P=\left[\operatorname{Max}\left(F_{0}^{2}, 0\right)+\right.$ $2 F_{\mathrm{c}}{ }^{2} \mathrm{~J} / 3$).
$h_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2 / \Sigma w}\left(F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}$.

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Atom		y	z	U_{eq}, \AA^{2}
S	$0.4940(2)$	$0.31674(16)$	$0.32209(6)$	$0.0692(5)^{*}$
O1	$0.4681(6)$	$0.5680(4)$	$0.38486(18)$	$0.0729(13)^{*}$
O2	$0.4189(5)$	$0.1917(4)$	$0.47501(16)$	$0.0640(11)^{*}$
O3	$-0.0385(5)$	$0.1182(4)$	$0.38877(19)$	$0.0709(13)^{*}$
O4	$-0.1185(6)$	$-0.0349(4)$	$0.4355(2)$	$0.0723(13)^{*}$
O5	$-0.3882(7)$	$-0.1407(4)$	$0.49003(19)$	$0.0853(16)^{*}$
O6	$0.4526(6)$	$-0.0655(4)$	$0.34732(18)$	$0.0726(13)^{*}$
O7	$0.1959(5)$	$0.4694(4)$	$0.31234(16)$	$0.0643(12)^{*}$
O8	$-0.0279(7)$	$0.5902(5)$	$0.3296(2)$	$0.0872(15)^{*}$
N1	$0.6071(7)$	$0.4340(5)$	$0.4274(2)$	$0.0632(14)^{*}$
N2	$0.3393(6)$	$0.2928(4)$	$0.40882(18)$	$0.0532(12)^{*}$
C1	$0.4902(7)$	$0.4691(5)$	$0.3956(2)$	$0.0566(15)^{*}$
C2	$0.6234(7)$	$0.3168(6)$	$0.4403(3)$	$0.0631(16)^{*}$

C3	$0.4512(7)$	$0.2604(5)$	$0.4434(2)$	$0.0570(15)^{*}$
C4	$0.1571(7)$	$0.2540(6)$	$0.4070(3)$	$0.0605(17)^{*}$
C5	$0.0897(7)$	$0.3150(6)$	$0.3626(3)$	$0.0636(16)^{*}$
C6	$0.1968(8)$	$0.4208(5)$	$0.3589(2)$	$0.0563(15)^{*}$
C7	$0.3766(7)$	$0.3799(5)$	$0.3729(2)$	$0.0523(14)^{*}$
C8	$0.7351(8)$	$0.5098(6)$	$0.4471(3)$	$0.076(2)^{*}$
C9	$0.1409(7)$	$0.1302(6)$	$0.4032(3)$	$0.0624(17)^{*}$
C10	$-0.1009(9)$	$0.0080(6)$	$0.3881(3)$	$0.073(2)^{*}$
C11	$-0.2431(9)$	$0.0208(6)$	$0.4648(3)$	$0.077(2)^{*}$
C12	$-0.2904(9)$	$-0.0481(7)$	$0.5070(3)$	$0.077(2)^{*}$
C13	$-0.4180(13)$	$-0.2195(8)$	$0.5281(3)$	$0.112(3)^{*}$
C14	$0.2564(8)$	$0.0755(6)$	$0.3674(3)$	$0.0660(18)^{*}$
C15	$0.3472(8)$	$-0.0159(6)$	$0.3804(3)$	$0.0687(18)^{*}$
C16	$0.5197(9)$	$-0.1698(5)$	$0.3636(3)$	$0.0681(17)^{*}$
C17	$0.6197(10)$	$-0.2221(6)$	$0.3229(3)$	$0.080(2)^{*}$
C18	$0.058(3)$	$0.5260(12)$	$0.2988(4)$	$0.233(11)^{*}$
C19	$0.0676(14)$	$0.5657(8)$	$0.2442(3)$	$0.109(3)^{*}$
C20	$0.1682(9)$	$0.6678(10)$	$0.2486(4)$	$0.107(3)^{*}$
C21	$0.0830(12)$	$0.7459(8)$	$0.2824(4)$	$0.107(3)^{*}$
C22	$0.0695(11)$	$0.6880(9)$	$0.3318(4)$	$0.106(3)^{*}$
C23	$0.5703(11)$	$0.4360(7)$	$0.2877(3)$	$0.087(2)^{*}$

Anisotropically-refined atoms are marked with an asterisk $\left({ }^{*}\right)$. The form of the anisotropic displacement parameter is: $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+\right.\right.$ $\left.\left.l^{2} c^{* 2} U_{33}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)\right]$.

Table 3. Selected Interatomic Distances (\AA)

Atom1	Atom2	Distance		Atom1	Atom2
	Distance				
S	C7	$1.831(6)$	O6	C16	$1.433(7)$
S	C23	$1.820(8)$	O7	C6	$1.402(7)$
O1	C1	$1.240(7)$	O7	C18	$1.331(15)$
O2	C3	$1.224(7)$	O8	C18	$1.326(12)$
O3	C9	$1.466(7)$	O8	C22	$1.406(11)$
O3	C10	$1.416(7)$	N1	C1	$1.333(8)$
O4	C10	$1.403(9)$	N1	C2	$1.463(9)$
O4	C11	$1.430(8)$			
O5	C12	$1.432(8)$			
O5	C13	$1.429(9)$			
O6	C15	$1.363(8)$			

N 1	C 8	$1.459(8)$
N 2	C 3	$1.347(8)$
N 2	C 4	$1.503(7)$
N 2	C 7	$1.469(7)$
C 1	C 7	$1.529(8)$
C 2	C 3	$1.513(8)$
C 4	C 5	$1.514(9)$
C 4	C 9	$1.504(9)$
C 5	C 6	$1.532(9)$
C 6	C 7	$1.540(8)$
C 9	C 14	$1.487(9)$
C 11	C 12	$1.472(11)$
C 14	C 15	$1.360(9)$
C 16	C 17	$1.499(9)$
C 18	C 19	$1.569(13)$
C 19	C 20	$1.468(14)$
C 20	C 21	$1.478(13)$
C 21	C 22	$1.524(12)$

Table 4. Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle		Atom1	Atom2	Atom3
C7	S	C 23		N2	C4	C5	
	103.1(3)						
C9	O3	C10		N2	C4	C9	
	115.3(5)						
C10	O4	C11		C5	C4	C9	
	114.2(6)						
C12	O5	C13		C4	C5	C6	
	111.7(6)						
C15	O6	C16		O7	C6	C5	
	113.7(6)						
C6	O7	C18					
	118.1(6)						
C18	O8	C 22					
	104.0(11)						
C1	N1	C 2					
	121.6(5)						
C1	N1	C8					
	120.8(6)						
C2	N1	C8					
	117.2(5)						
C3	N2	C4					
	$123.4(5)$						
C3	N2	C7					
	$123.3(5)$						
C4	N2	C7					
	112.9(5)						
O1	C1	N1					
	123.8(6)						
O1	C1	C7					
	120.0(5)						
N1	C1	C7					
	116.2(5)						
N1	C2	C3					
	111.7(5)						
O2	C3	N2					
	123.9(6)						
O2	C3	C 2					
	121.9(6)						
N2	C3	C 2					
	114.2(6)						

O7	C6	C7		110.1(7)	
	111.3(5)		C20	C21	C22
C5	C6	C7		107.0(9)	
	102.5(5)		O8	C22	C21
S	C7	N2		112.6(8)	
	108.0(4)				
S	C7	C1			
	108.0(4)				
S	C7	C6			
	113.9(4)				
N2	C7	C1			
	110.3(5)				
N2	C7	C6			
	102.3(4)				
C1	C7	C6			
	114.0(5)				
O3	C9	C4			
	101.4(5)				
O3	C9	C14			
	111.2(6)				
C4	C9	C14			
	115.8(6)				
O3	C10	O4			
	111.6(6)				
O4	C11	C12			
	110.2(6)				
O5	C12	C11			
	108.7(6)				
C9	C14	C15			
	120.4(7)				
O6	C15	C14			
	120.0(7)				
O6	C16	C17			
	109.3(6)				
O7	C18	O8			
	122.3(12)				
O7	C18	C19			
	112.4(10)				
O8	C18	C19			
	116.7(8)				
C18	C19	C20			
	101.8(11)				
C19	C20	C21			

Table 5. Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4 Angle		Atom1	Atom2	Atom3
	Atom4	Angle					
C23	S	C7	N2	C3	N2	C4	C5 179.4(6)
168.3(4)				C3	N2	C4	C9 -58.5(9)
C23	S	C7	C1-49.0(5)	C7	N2	C4	C5 6.5(7)
C23	S	C7	C6 78.8(5)	C7	N2	C4	C9 128.7(6)
C10	O3	C9	C4	C3	N2	C7	S 83.8(6)
172.3(6)				C3	N2	C7	C1 -34.0(8)
C10	O3	C9	C14 64.0(8)	C3	N2	C7	C6
C9	O3	C10	O4 70.9(8)				
C11	O4	C10	O3 64.5(7)				
C10	O4	C11	C12				
162.8(6)							
C13	O5	C12	C11				
	171.7(7)						
C16	O6	C15	C14				
171.1(6)							
C15	O6	C16	C17				
	174.6(6)						
C18	O7	C6	C5 76.4(12)				
C18	O7	C6	C7				
168.3(11)							
C6	O7	C18	O8 39(2)				
C6	O7	C18	C19				
174.4(10)							
C22	O8	C18	O7 79.4(16)				
C22	O8	C18	C19				
66.1(18)							
C18	O8	C22	C21				
61.8(10)							
C2	N1	C1	O1 177.5(6)				
C2	N1	C1	C7 -0.8(9)				
C8	N1	C1	O1-8.8(10)				
C8	N1	C1	C7 172.8(6)				
C1	N1	C2	C3 -37.6(9)				
C8	N1	C2	C3 148.5(6)				
C4	N2	C3	O2 4.3(10)				
C4	N2	C3	C2				
175.5(6)							
C7	N2	C3	O2 176.4(6)				
C7	N2	C3	C2 -3.4(8)				

```
C4 N2 C7 S -103.3(5) 57.6(11)
C4 N2 C7 C1 138.9(5) C19 C20 C21 C22
C4 N2 C7 C6 17.2(7)
O1 C1 C7 S 99.6(6)
O1 C1 C7 N2 -
142.6(6)
O1 C1 C7 C6 -28.1(8)
N1 C1 C7 S -82.0(6)
N1 C1 C7 N2 35.8(7)
N1 C1 C7 C6 150.3(6)
N1 C2 C3 O2 -
140.8(6)
N1 C2 C3 N2 39.1(8)
N2 C4 C5 C6 -28.0(6)
C9 C4 C5 C6 -
149.9(5)
N2 C4 C9 O3 -
165.3(5)
N2 C4 C9 C14 -
44.8(9)
C5 C4 C9 O3 -49.8(7)
C5 C4 C9 C14 70.7(7)
C4 C5 C6 O7 159.4(5)
C4 C5 C6 C7 39.1(6)
O7 C6 C7 S -39.3(7)
O7 C6 C7 N2 -
155.6(5)
O7 C6 C7 C1 85.3(6)
C5 C6 C7 S 82.9(5)
C5 C6 C7 N2 -33.4(6)
C5 C6 C7 C1
152.6(5)
O3 C9 C14 C15 -
112.5(7)
C4 C9 C14 C15
        132.4(7)
O4 C11 C12 O5 -70.6(7)
C9 C14 C15 O6 179.9(6)
O7 C18 C19 C20 -
83.3(15)
O8 C18 C19 C20
    65.5(18)
C18 C19 C20 C21 -
```

Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Atom	x	y	z	$U_{\text {eq }}, \AA^{2}$
H2A	0.6824	0.3102	0.4722	0.076
H2B	0.6941	0.2789	0.4154	0.076
H4	0.0955	0.2804	0.4368	0.073
H5A	-0.0327	0.3331	0.3668	0.076
H5B	0.1031	0.2693	0.3328	0.076
H6	0.1562	0.4758	0.3837	0.068
H8A	0.6957	0.5863	0.4431	0.092
H8B	0.8429	0.4997	0.4294	0.092
H8C	0.7527	0.4942	0.4819	0.092
H9	0.1580	0.0964	0.4362	0.075
H10A	-0.2131	0.0064	0.3714	0.088
H10B	-0.0213	-0.0393	0.3692	0.088
H11A	-0.3458	0.0365	0.4448	0.092
H11B	-0.1962	0.0924	0.4763	0.092
H12A	-0.1863	-0.0745	0.5240	0.092
H12B	-0.3587	-0.0040	0.5305	0.092
H13A	-0.4866	-0.2810	0.5154	0.135
H13B	-0.4793	-0.1836	0.5551	0.135
H13C	-0.3085	-0.2480	0.5401	0.135
H14	0.2668	0.1046	0.3352	0.079
H15	0.3371	-0.0452	0.4125	0.082
H16A	0.4249	-0.2193	0.3734	0.082
H16B	0.5945	-0.1582	0.3923	0.082
H17A	0.6631	-0.2942	0.3336	0.096
H17B	0.7158	-0.1740	0.3141	0.096
H17C	0.5456	-0.2321	0.2944	0.096
H18	-0.0254	0.4637	0.2953	0.280
H19A	0.1260	0.5104	0.2234	0.130
H19B	-0.0475	0.5807	0.2308	0.130
H20A	0.1806	0.7027	0.2160	0.128
H20B	0.2837	0.6500	0.2610	0.128
H21A	-0.0321	0.7651	0.2700	0.129
H21B	0.1506	0.8148	0.2854	0.129
H22A	0.1857	0.6699	0.3436	0.127
H22B	0.0168	0.7393	0.3557	0.127
H23A	0.6542	0.4117	0.2633	0.105
H23B	0.6238	0.4890	0.3101	0.105
H23C	0.4739	0.4716	0.2710	0.105

5.3. (6R,8aR)-6-(2,2-Dimethyl-1,3-dioxan-4-yl)-2-methyl-8a-(methylsulfanyl)-

 octahydropyrrolo[1,2-a]piperazine-1,4,8-trione (59.3).Table 1. Crystallographic Experimental Details

A. Crystal Data

formula $\quad \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$
formula weight
crystal dimensions (mm)
crystal system
space group
unit cell parameters ${ }^{a}$

$a(\AA)$	$8.2786(6)$
$b(\AA)$	$9.5353(6)$
$c(\AA)$	$11.2789(7)$
$\beta(\mathrm{deg})$	$107.900(4)$
$V\left(\AA^{3}\right)$	$847.25(10)$
Z	2
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.342
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.935

B. Data Collection and Refinement Conditions
diffractometer
radiation $(\lambda[\AA])$
source)
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
$l \leq 13$)
independent reflections
number of observed reflections ($N O$)
structure solution method
refinement method
(SHELXL-97d)
absorption correction method
range of transmission factors
data/restraints/parameters
Flack absolute structure parametere
goodness-of-fit ($S)^{f}$ [all data]
final R indices g

Bruker D8/APEX II CCD ${ }^{b}$
$\mathrm{CuK} \alpha(1.54178)$ (microfocus
-100
ω scans (0.8°) (5 s exposures)
139.80
$5392(-10 \leq h \leq 9,-11 \leq k \leq 11,-13 \leq$
$3124\left(R_{\mathrm{int}}=0.0418\right)$
$2859\left[F_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right]$
direct methods (SHELXD ${ }^{c}$)
full-matrix least-squares on F^{2}
Gaussian integration (face-indexed)
0.8574-0.7733

3124 / $0 / 210$
0.03(2)
1.056
.

342.41
$0.14 \times 0.11 \times 0.08$
monoclinic
P2 1 (No. 4)
8.2786 (6)
9.5353 (6)
11.2789 (7)
107.900 (4)
847.25 (10)

2
1.34
1.935

$$
\begin{array}{cl}
R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] & 0.0476 \\
w R_{2} \text { [all data] } & 0.1277 \\
\text { largest difference peak and hole } & 0.387 \text { and }-0.253 \mathrm{e} \AA^{-3}
\end{array}
$$

${ }^{a}$ Obtained from least-squares refinement of 4632 reflections with $8.24^{\circ}<2 \theta<$ 138.36°.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ Schneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.
${ }^{d}$ Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
${ }^{e}$ Flack, H. D. Acta Crystallogr. 1983, A39, 876-881; Flack, H. D.; Bernardinelli, G. Acta Crystallogr. 1999, A55, 908-915; Flack, H. D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration.
$f_{S}=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0768 P)^{2}\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3\right)$.
$g_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2 / \Sigma} w\left(F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}$.

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Atom	x	y	z	U_{eq}, \AA^{2}
S	$0.09638(9)$	$0.25538(8)$	$0.41158(6)$	$0.0389(2)^{*}$
O1	$0.3967(3)$	$-0.0138(2)$	$0.43671(19)$	$0.0423(5)^{*}$
O2	$0.3008(3)$	$0.3917(2)$	$0.11436(18)$	$0.0361(5)^{*}$
O3	$0.0319(3)$	$-0.0722(2)$	$0.3182(2)$	$0.0450(5)^{*}$
O4	$0.2594(2)$	$-0.0360(2)$	$0.11987(17)$	$0.0331(4)^{*}$
O5	$0.3155(3)$	$-0.1816(3)$	$-0.0282(2)$	$0.0473(6)^{*}$
N1	$0.4838(3)$	$0.1974(3)$	$0.3863(2)$	$0.0359(5)^{*}$
N2	$0.1794(3)$	$0.2254(2)$	$0.20249(18)$	$0.0285(5)^{*}$
C1	$0.3669(3)$	$0.0990(3)$	$0.3849(2)$	$0.0335(6)^{*}$
C2	$0.4384(4)$	$0.3344(3)$	$0.3288(3)$	$0.0367(6)^{*}$
C3	$0.3007(3)$	$0.3230(3)$	$0.2045(2)$	$0.0298(6)^{*}$
C4	$0.0800(3)$	$0.1586(3)$	$0.0841(2)$	$0.0304(6)^{*}$
C5	$-0.0409(3)$	$0.0635(3)$	$0.1263(3)$	$0.0318(6)^{*}$
C6	$0.0571(3)$	$0.0253(3)$	$0.2598(3)$	$0.0321(6)^{*}$
C7	$0.1856(3)$	$0.1439(3)$	$0.3119(2)$	$0.0300(6)^{*}$
C8	$0.6624(4)$	$0.1734(4)$	$0.4560(3)$	$0.0473(8)^{*}$
C9	$0.2038(4)$	$0.0761(3)$	$0.0335(2)$	$0.0324(6)^{*}$
C10	$0.1300(4)$	$0.0189(4)$	$-0.0976(3)$	$0.0404(7)^{*}$

C11	$0.2640(5)$	$-0.0779(4)$	$-0.1214(3)$	$0.0507(9)^{*}$
C12	$0.3805(4)$	$-0.1302(4)$	$0.0953(3)$	$0.0402(7)^{*}$
C13	$0.5525(4)$	$-0.0585(4)$	$0.1200(3)$	$0.0487(8)^{*}$
C14	$0.3886(4)$	$-0.2527(4)$	$0.1814(4)$	$0.0548(8)^{*}$
C15	$0.1297(5)$	$0.1479(5)$	$0.5504(3)$	$0.0558(10)^{*}$

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+\right.\right.$ $\left.\left.l^{2} c^{* 2} U_{33}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)\right]$.

Table 3. Selected Interatomic Distances (\AA)

Atom1	Atom2	Distance		Atom1	Atom2
	Distance				
S	C7	$1.857(3)$	N2	C4	$1.479(3)$
S	C15	$1.820(4)$	N2	C7	$1.446(3)$
O1	C1	$1.213(4)$	C1	C7	$1.534(4)$
O2	C3	$1.210(3)$	C2	C3	$1.514(4)$
O3	C6	$1.194(4)$	C4	C5	$1.531(4)$
O4	C9	$1.424(3)$	C4	C9	$1.535(4)$
O4	C12	$1.435(3)$	C5	C6	$1.518(4)$
O5	C11	$1.410(5)$	C6	C7	$1.541(4)$
O5	C12	$1.418(4)$	C9	C10	$1.517(4)$
N1	C1	$1.344(4)$	C10	C11	$1.529(5)$
N1	C2	$1.455(4)$	C12	C13	$1.526(4)$
N1	C8	$1.464(4)$	C12	C14	$1.507(5)$
N2	C3	$1.364(4)$			

Table 4. Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle		Atom1	Atom2	Atom3
C7	S	C 15		C 2	N 1	C 8	
	$102.42(16)$			$117.4(3)$			
C 9	O 4	C 12		C 3	N 2	C 4	
	$115.9(2)$			$120.7(2)$			
C 11	O 5	C 12		C 3	N 2	C 7	
	$115.2(2)$			$121.3(2)$			
C 1	N 1	C 2		C 4	N 2	C 7	
	$122.3(2)$			$113.8(2)$			
C 1	N 1	C 8		O 1	C 1	N 1	
	$120.1(3)$			$125.0(3)$			

O1	C1	C7	O3	C6	C5
	121.8(3)			127.1(3)	
N1	C1	C7	O3	C6	C7
	113.2(3)			125.3(3)	
N1	C2	C3	C5	C6	C7
	111.5(2)			107.3(2)	
O 2	C3	N2	S	C7	N2
	123.1(2)			107.05(19)	
O 2	C3	C 2	S	C7	C1
	123.0(3)			109.90(18)	
N2	C3	C 2	S	C7	C6
	113.9(2)			107.14(17)	
N2	C 4	C5	N2	C7	C1
	102.1(2)			112.3(2)	
N2	C4	C9	N2	C7	C6
	107.8(2)			103.3(2)	
C5	C4	C9	C1	C7	C6
	112.7(2)			116.5(2)	
C4	C5	C6	O4	C9	C4
	104.5(2)			$104.1(2)$	
			O4	C9	C10
				110.2(2)	
			C4	C9	C10
				115.6(2)	
			C9	C10	C11
				106.9(2)	
			O5	C11	C10
				111.2(2)	
			O4	C12	O5
				109.2(2)	
			O4	C12	C13
				110.7(3)	
			O4	C12	C14
				104.8(2)	
			O5	C12	C 13
				112.6(2)	
			O5	C12	C14
				107.1(3)	
			C13	C12	C14
				112.0(3)	

Table 5. Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4 Angle		Atom 1	Atom2	Atom3
	Atom4	Angle					
C15	S	C7	N2	C4	N2	C7	S -121.7(2)
175.0(2)				C4	N2	C7	C1 117.6(2)
C15	S	C7	C1-52.7(2)	C4	N2	C7	C6 -8.8(3)
C15	S	C7	C6 74.8(2)	O1	C1	C7	S 97.0(3)
C12	O4	C9	C4	O1	C1	C7	N2 -
179.1(2)				144.0(3)			
C12	O4	C9	C10 56.3(3)	O1	C1	C7	C6 -25.1(4)
C9	O4	C12	O5-53.8(3)	N1	C1	C7	S -81.9(2)
C9	O4	C12	C13 70.7(3)	N1	C1	C7	N2 37.1(3)
C9	O4	C12	C14	N1	C1	C7	C6 156.0(2)
168.3(3)				N1	C2	C3	O2
C12	O5	C11	C10	139.6(3)			
57.1(3)				N1	C2	C3	N2 38.5(3)
C11	O5	C12	O4 53.8(3)	N2	C4	C5	C6 -29.6(3)
C11	O5	C12	C13	C9	C4	C5	C6 85.8(3)
69.6(4)				N2	C4	C9	O4 68.3(3)
C11	O5	C12	C14	N2	C4	C9	C10
	166.8(3)			170.7(2)			
C2	N1	C1	O1	C5	C4	C9	O4-43.7(3)
176.0(3)				C5	C4	C9	C10 77.3(3)
C2	N1	C1	C7 2.8(4)	C4	C5	C6	O3
C8	N1	C1	O1-1.2(4)	159.6(3)			
C8	N1	C1	C7 177.7(3)	C4	C5	C6	C7 25.9(3)
C1	N1	C2	C3 -41.3(4)	O3	C6	C7	S -73.0(3)
C8	N1	C2	C3 143.7(3)	O3	C6	C7	N2 174.2(3)
C4	N2	C3	O2 23.4(4)	O3	C6	C7	C1 50.6(4)
C4	N2	C3	C2	C5	C6	C7	S 101.7(2)
154.7(2)				C5	C6	C7	N2 -11.2(3)
C7	N2	C3	O2 179.0(2)	C5	C6	C7	C1
C7	N2	C3	C2 0.9(4)	134.8(2)			
C3	N2	C4	C5	O4	C9	C10	C11
178.1(2)				53.5(3)			
C3	N2	C4	C9 62.9(3)	C4	C9	C10	C11
C7	N2	C4	C5 24.6(3)	171.			
C7	N2	C4	C9 -94.4(3)	C9	C10	C11	O5 54.4(3)
C3	N2	C7	S 81.1(3)				
C3	N2	C7	C1 -39.6(3)				
C3	N2	C7	C6				
166.0(2)							

Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Atom	x	y	z	$U_{\text {eq }}, \AA^{2}$
H2A	0.5401	0.3786	0.3164	0.044
H2B	0.3983	0.3952	0.3852	0.044
H4	0.0160	0.2301	0.0226	0.036
H5A	-0.1471	0.1136	0.1225	0.038
H5B	-0.0694	-0.0215	0.0736	0.038
H8A	0.6777	0.0760	0.4850	0.057
H8B	0.6964	0.2368	0.5278	0.057
H8C	0.7327	0.1913	0.4017	0.057
H9	0.3031	0.1373	0.0366	0.039
H10A	0.1034	0.0966	-0.1588	0.048
H10B	0.0243	-0.0338	-0.1052	0.048
H11A	0.2170	-0.1235	-0.2037	0.061
H11B	0.3638	-0.0217	-0.1232	0.061
H13A	0.5418	0.0203	0.0622	0.058
H13B	0.6351	-0.1260	0.1076	0.058
H13C	0.5910	-0.0238	0.2059	0.058
H14A	0.2760	-0.2956	0.1627	0.066
H14B	0.4255	-0.2199	0.2680	0.066
H14C	0.4696	-0.3221	0.1697	0.066
H15A	0.0848	0.1967	0.6100	0.067
H15B	0.2514	0.1310	0.5885	0.067
H15C	0.0708	0.0581	0.5274	0.067

6. References

(1) (a) Gardiner, D. M.; Waring, P.; Howlett, B. J. Microbiology 2005, 151, 1021-1032. (b) Fox, E. M.; Howlett, B. J. Mycol. Res. 2008, 112, 162169.
(2) (a) Rahayu, E. S.; Yamashita, Y.; Tsumagari, K.; Nakai, R.; Kanda, Y.; Ogawa, T.; Onodera, H.; Hasegawa, A.; Ando, K. WO Patent 2002026744, 2002. (b) Onodera, H.; Hasegawa, A.; Tsumagari, N.; Nakai, R.; Ogawa, T.; Kanda, Y. Org. Lett. 2004, 6, 4101-4104. (c) Tsumagari, N.; Nakai, R.; Onodera, H.; Hasegawa, A.; Rahayu, E. S.; Ando, K.; Yamashita, Y. J. Antibiot. 2004, 57, 532-534.
(3) Herath, K. B.; Jayasuriya, H.; Ondeyka, J. G.; Polishook, J. D.; Bills, G. F.; Dombrowski, A. W.; Cabello, A.; Vicario, P. P.; Zweerink, H.; Guan, Z.; Singh, S. B. J. Antibiot. 2005, 58, 686-694.
(4) Seya, H.; Nozawa, K.; Nakajima, S.; Kawai, K.-i.; Udagawa, S.-i. J. Chem. Soc., Perkin Trans. 1 1986, 109-116.
(5) Mason, J. W.; Kidd, J. G. J. Immunol. 1951, 66, 99-106.
(6) Middleton, M. C. Biochem. Pharmacol. 1974, 23, 811-820.
(7) Coffen, D. L.; Katonak, D. A.; Nelson, N. R.; Sancilio, F. D. J. Org. Chem. 1977, 42, 948-952.
(8) (a) Murdock, K. C. J. Med. Chem. 1974, 17, 827-835. (b) Cosulich, D. B.; Nelson, N. R.; Van den Hende, J. H. J. Am. Chem. Soc. 1968, 90, 65196521.
(9) Seya, H.; Nozawa, K.; Udagawa, S.; Nakajima, S.; Kawai, K. Chem. Pharm. Bull. 1986, 34, 2411-2416.
(10) Jordan, T. W.; Cordiner, S. J. Trends Pharmacol. Sci. 1987, 8, 144-149.
(11) Waring, P.; Sjaarda, A.; Lin, Q. H. Biochem. Pharmacol. 1995, 49, 11951201.
(12) (a) Munday, R. J. Appl. Toxicol. 1985, 5, 69-73. (b) Munday, R. J. Appl. Toxicol. 1984, 4, 176-181. (c) Munday, R. J. Appl. Toxicol. 1984, 4, 182186. (d) Munday, R. Chem. Biol. Interact. 1982, 41, 361-374. (e) Bernardo, P. H.; Brasch, N.; Chai, C. L. L.; Waring, P. J. Biol. Chem. 2003, 278, 46549-46555.
(13) (a) Winstead, J. A.; Suhadolnik, R. J. J. Am. Chem. Soc. 1960, 82, 16441647. (b) Suhadolnik, R. J.; Fischer, A.; Wilson, J. Fed. Proc. 1960, 19, 8-8. (c) Suhadolnik, R. J.; Chenoweth, R. G. J. Am. Chem. Soc. 1958, 80, 4391-4392.
(14) Ferezou, J.-P.; Quesneau-Thierry, A.; Servy, C.; Zissmann, E.; Barbier, M. J. Chem. Soc., Perkin Trans. 1 1980, 1739-1746.
(15) (a) Cramer, R. A.; Gamcsik, M. P.; Brooking, R. M.; Najvar, L. K.; Kirkpatrick, W. R.; Patterson, T. F.; Balibar, C. J.; Graybill, J. R.; Perfect, J. R.; Abraham, S. N.; Steinbach, W. J. Eukaryot. Cell 2006, 5, 972-980. (b) Kupfahl, C.; Heinekamp, T.; Geginat, G.; Ruppert, T.; Hartl, A.; Hof, H.; Brakhage, A. A. Mol. Microbiol. 2006, 62, 292-302. (c) Bok, J. W.; Chung, D.; Balajee, S. A.; Marr, K. A.; Andes, D.; Nielsen, K. F.; Frisvad, J. C.; Kirby, K. A.; Keller, N. P. Infect. Immun. 2006, 74, 6761-6768. (d)

Balibar, C. J.; Walsh, C. T. Biochem. 2006, 45, 15029-15038. (e) Scharf, D. H.; Remme, N.; Habel, A.; Chankhamjon, P.; Scherlach, K.; Heinekamp, T.; Hortschansky, P.; Brakhage, A. A.; Hertweck, C. J. Am. Chem. Soc. 2011, 133, 12322-12325.
(16) (a) Neuss, N.; Boeck, L. D.; Brannon, D. R.; Cline, J. C.; DeLong, D. C.; Gorman, M.; Huckstep, L. L.; Lively, D. H.; Mabe, J.; Marsh, M. M.; Molloy, B. B.; Nagarajan, R.; Nelson, J. D.; Stark, W. M. Antimicrob. Agents Chemother. 1968, 8, 213-219. (b) Kirby, G. W. Pure Appl. Chem. 1979, 51, 705-708.
(17) (a) Neuss, N.; Nagarajan, R.; Molloy, B. B.; Huckstep, L. L. Tetrahedron Lett. 1968, 9, 4467-4471. (b) Molloy, B. B.; Gorman, M.; Neuss, N.; Kastner, R. E.; Lively, D. H.; Boeck, L. D.; Huckstep, L. L.; Higgens, C. E.; Gale, R. M. J. Antibiot. 1972, 25, 137-140. (c) Johns, N.; Kirby, G. W. J. Chem. Soc., Chem. Commun. 1971, 163-164.
(18) Rastetter, W. H.; Chancellor, T.; Richard, T. J. J. Org. Chem. 1982, 47, 1509-1512.
(19) Snyder, N. L.; Haines, H. M.; Peczuh, M. W. Tetrahedron 2006, 62, 93019320.
(20) (a) Sütbeyaz, Y.; Seçen, H.; Balci, M. J. Org. Chem. 1988, 53, 2312-2317. (b) Sengül, M. E.; Balci, M. J. Chem. Soc., Perkin Trans. 1 1997, 20712078. (c) Balci, M.; Sütbeyaz, Y. Tetrahedron Lett. 1983, 24, 4135-4138.
(d) Chou, W. N.; White, J. B.; Smith, W. B. J. Am. Chem. Soc. 1992, 114,

4658-4667. (e) Clark, D. L.; Chou, W. N.; White, J. B. J. Org. Chem. 1990, 55, 3975-3977.
(21) Goodman, R. M.; Kishi, Y. J. Org. Chem. 1994, 59, 5125-5127.
(22) Leyhane, A. J.; Snapper, M. L. Org. Lett. 2006, 8, 5183-5186.
(23) (a) Fustero, S.; Sánchez-Roselló, M.; Jiménez, D.; Sanz-Cervera, J. F.; del Pozo, C.; Aceña, J. L. J. Org. Chem. 2006, 71, 2706-2714. (b) Litinas, K. E.; Mangos, A.; Nikkou, T. E.; Hadjipavlou-Litina, D. J. J. Enzyme Inhib. Med. Chem. 2011, 26, 805-812.
(24) (a) Peng, J.; Clive, D. L. J. J. Org. Chem. 2009, 74, 513-519. (b) Peng, J.; Clive, D. L. J. Org. Lett. 2007, 9, 2939-2941.
(25) Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S. E. J. Am. Chem. Soc. 2012, 134, 1930-1933.
(26) Borthwick, A. D. Chem. Rev. 2012, 112, 3641-3716.
(27) Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628-5629.
(28) Sheradsky, T.; Silcoff, E. R. Molecules 1998, 3, 80-87.
(29) Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 5342-5344.
(30) Santra, S.; Andreana, P. R. Org. Lett. 2007, 9, 5035-5038.
(31) Majumdar, K. C.; Ray, K.; Ganai, S. Synlett 2010, 2122-2124.
(32) Schuber, P. T.; Williams, R. M. Heterocycles 2012, 84, 1193-1207.
(33) Aliev, A. E.; Hilton, S. T.; Motherwell, W. B.; Selwood, D. L. Tetrahedron Lett. 2006, 47, 2387-2390.
(a) Waring, P.; Eichner, R. D.; Müllbacher, A. Med. Res. Rev. 1988, 8, 499-524. (b) Iwasa, E.; Hamashima, Y.; Sodeoka, M. Isr. J. Chem. 2011, 51, 420-433.
(35) Öhler, E.; Poisel, H.; Tataruch, F.; Schmidt, U. Chem. Ber. 1972, 105, 635-641.
(a) Nicolaou, K. C.; Totokotsopoulos, S.; Giguère, D.; Sun, Y.-P.; Sarlah, D. J. Am. Chem. Soc. 2011, 133, 8150-8153. (b) Nicolaou, K. C.; Giguère, D.; Totokotsopoulos, S.; Sun, Y.-P. Angew. Chem. Ent. Ed. 2012, 51, 728732.
(37) (a) Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33, 402-407. (b) Trown, P. W. U.S. Patent 3562253, 1971.
(38) (a) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6490-6492. (b) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6492-6493. (c) Kishi, Y.; Nakatsuka, S.; Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95, 6493-6495. (d) Nakatsuka, S.; Fukuyama, T.; Kishi, Y. Tetrahedron Lett. 1974, 15, 1549-1552. (e) Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1976, 98, 6723-6724. (f) Fukuyama, T.; Nakatsuka, S.-I.; Kishi, Y. Tetrahedron 1981, 37, 2045-2078.
(39) DeLorbe, J. E.; Jabri, S. Y.; Mennen, S. M.; Overman, L. E.; Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549-6552.
(40) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010, 132, 14376-14378.
(41) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238-241.
(42) Larrivée Aboussafy, C.; Clive, D. L. J. J. Org. Chem. 2012, 77, 51255131.
(43) Wang, L.; Clive, D. L. J. Tetrahedron Lett. 2012, 53, 1504-1506.
(44) Peng, J. Ph.D. Thesis, University of Alberta, 2009.
(45) (a) Heindl, C.; Hübner, H.; Gmeiner, P. Tetrahedron: Asymmetry 2003, 14, 3141-3152. (b) Baker, G. L.; Fritschel, S. J.; Stille, J. R.; Stille, J. K. J. Org. Chem. 1981, 46, 2954-2960. (c) Dalla Croce, P.; La Rosa, C. Tetrahedron: Asymmetry 2002, 13, 197-201.
(46) Wang, L. Ph.D. Thesis, University of Alberta, 2011.
(47) Konradi, A. W.; Kemp, S. J.; Pedersen, S. F. J. Am. Chem. Soc. 1994, 116, 1316-1323.
(48) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794-797.
(49) Kocienski, P. J. In Protecting Groups, 3rd ed.; Georg Thieme: Stuttgart, 2005; pp 286-295 and 315-320.
(50) (a) Farberov, M. I.; Shemyakina, N. K. J. Gen. Chem. USSR 1955, 25, 119-121. (b) Reese, C. B.; Saffhill, R; Sulston, J. E. Tetrahedron 1970, 26, 1023-1030. (c) Panchal, N.; Fernandez-Yarza, A.; Free, P.; Gaffney, P. R. J. Tetrahedron Lett. 2008, 49, 1836-1838.
(51) (a) Hurd, C. D.; Ginger, L. G.; Gershbein, L. L.; Yarnall, W. A. J. Am. Chem. Soc. 1952, 74, 5128-5130. (b) Taherirastgar, F.; Brandsma, L. Chem. Ber./Recueil 1997, 130, 45-48.
(52) (a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625-1627. (b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639-666.
(53) Liu, D.; Acharya, H. P.; Yu, M.; Wang, J.; Yeh, V. S. C.; Kang, S.; Chiruta, C.; Jachak, S. M.; Clive, D. L. J. J. Org. Chem. 2009, 74, 74177428.
(54) Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 94, 7586-7587.
(55) (a) Jauch, J. Angew. Chem. Ent. Ed. 2000, 39, 2764-2765. (b) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974-6977.
(56) Bobbitt, J. M. J. Org. Chem. 1998, 63, 9367-9374.
(57) Hanessian, S.; Lavallee, P. Can. J. Chem. 1981, 59, 870-877.
(58) Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87, 5670-5678.
(59) (a) Miyaura, N.; Maeda, K.; Suginome, H.; Suzuki, A. J. Org. Chem. 1982, 47, 2117-2120. (b) Chaloner, P. A.; Langadianou, E. Tetrahedron Lett. 1990, 31, 5185-5188. (c) Jeon, S. J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729-1732. (d) Valenta, P.; Drucker, N. A.; Bode, J, W.; Walsh, P. J. Org. Lett. 2009, 11, 2117-2119.
(60) (a) Shimizu, M.; Kuwajima, I. Tetrahedron Lett. 1979, 20, 2801-2804. (b) Shimizu, M.; Urabe, H.; Kuwajima, I. Tetrahedron Lett. 1981, 22, 21832186. (c) Baudat, R.; Petrzilka, M. Helv. Chim. Acta 1979, 62, 1406-1410. (d) Posner, G. H.; Chapdelaine, M. J. Tetrahedron Lett. 1977, 18, 32273230. (e) Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Papoul, M.
T. B. J. Chem. Soc., Chem. Commun. 1980, 246-247. (f) Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Papoul, M. T. B. J. Chem. Soc., Chem. Comтии. 1979, 705-707.
(61) Corey, E. J.; Cane, D. E. J. Org. Chem. 1971, 36, 3070.
(62) Movassaghi, M.; Tjandra, M.; Qi, J. J. Am. Chem. Soc. 2009, 131, 96489650.
(63) (a) Krishnamurty, H. G.; Prasad, J. S. Tetrahedron Lett. 1977, 18, 30713072. (b) Staab, H. A. Angew. Chem. Int. Ed. 1962, 1, 351-367.
(64) Apparao, S.; Maier, M. E.; Schmidt, R. R. Synthesis 1987, 900-904.
(65) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
(66) Clive, D. L. J.; Chittattu, G. J.; Farina, V.; Kiel, W. A.; Menchen, S. M.; Russell, C. G.; Singh, A.; Wong, C. K.; Curtis, N. J. J. Am. Chem. Soc. 1980, 102, 4438-4447.
(67) (a) Shekhani, M. S.; Khan, K. M.; Mahmood, K.; Shah, P. M.; Malik, S. Tetrahedron Lett. 1990, 31, 1669-1670. (b) Aissa, C.; Riveiros, R.; Ragot, J.; Furstner, A. J. Am. Chem. Soc. 2003, 125, 15512-15520.
(68) (a) Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233-4236. (b) Suzuki, M.; Kimura, Y.; Terashima, S. Chem. Lett. 1984, 1543-1545. (c) Jung, P. M. J.; Burger, A.; Biellmann, J.-F. Tetrahedron Lett. 1995, 36, 1031-1034. (d) Clive, D. L. J.; Bo, Y.; Tao. Y.; Daigneault, S.; Wu, Y.-J.; Meignan, G. J. Am. Chem. Soc. 1996, 118, 4904-4905.
(69) (a) Soucy, R. L.; Kozhinov, D.; Behar, V. J. Org. Chem. 2002, 67, 19471952. (b) von dem Bussche-Hunnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719-5730.
(70) Yadav, J. S.; Subba Reddy, B. V.; Biswas, S. K.; Sengupta, S.; Vishnumurthy, P. Tetrahedron Lett. 2008, 49, 1034-1036.
(71) Barnard, D. J. Chem. Soc. 1957, 4547-4555.
(72) Veysoglu, T.; Mitscher, L. A.; Swayze, J, K. Synthesis 1980, 807-810.
(73) Rubin, M. B. J. Chem. Educ. 1964, 41, 388.
(74) Pappo, R.; Allen, D. S. Jr.; Lemieux, R. U.; Johnson, W. S. J. Org. Chem. 1956, 21, 478-479.
(75) (a) Stork, G.; van Tamelen, E. E.; Friedman, L. J.; Burgstahler, A. W. J. Am. Chem. Soc. 1953, 75, 384-392. (b) Djerasi, C.; Engle, R. R. J. Am. Chem. Soc. 1953, 75, 3838-3840. (c) Vedejs, E.; McClure, C. K. J. Am. Chem. Soc. 1986, 108, 1094-1096.
(76) (a) Kaldor, S.; Hammond, M. Tetrahedron Lett. 1991, 32, 5043-5046. (b) Priebe, W.; Grynkiewcz, G. Tetrahedron Lett. 1991, 32, 7353-7356.
(77) (a) Walsh, P. J.; Ho, P. T.; King, S. B.; Sharpless, K. B. Tetrahedron Lett. 1994, 35, 5129-5132. (b) Sammakia, T.; Hurley, T. B.; Sammond, D. M.; Smith, R. S.; Sobolov, S. B.; Oeschger, T. R. Tetrahedron Lett. 1996, 37, 4427-4430. (c) Caggiano, L.; Fox, D. J.; House, D.; Jones, Z. A.; Kerr, F.; Warren, S. J. Chem. Soc., Perkin Trans. 1 2002, 2634-2645.
(78) Spangenberg, T.; Aubry, S.; Kishi, Y. Tetrahedron Lett. 2010, 51, 17821785.
(79) Vakhidov, R. R.; Musina, I. N. Chem. Nat. Comp. 2007, 43, 282-284.
(80) (a) Bredereck, H.; Effenberger, F.; Simchen, G. Angew. Chem. Int. Ed. 1962, 1, 331-332. (b) Wasserman, H. H.; Ives, J. L. J. Org. Chem. 1985, 50, 3573-3580.
(81) (a) Raghavendra Swamy, N.; Venkateswarlu, Y. Tetrahedron Lett. 2002, 43, 7549-7552. (b) Xiao, X.; Bai, D. Synlett 2001, 535-537.
(82) Garegg, P. J.; Hultberg, H. Carbohydr. Res. 1981, 93, C10-C11.
(83) Huang, J.; Zhang, X.; Armstrong, D. W. Angew. Chem. Int. Ed. 2007, 46, 9073-9077.
(84) Barrett, A. G. M.; Pilipauskas, D. J. Org. Chem. 1991, 56, 2787-2800.
(85) Ganellin, C. R.; Bishop, P. B.; Bambal, R. B.; Chan, S. M. T.; Leblond, B.; Moore, A. N. J.; Zhao, L.; Bourgeat, P.; Rose, C.; Vargas, F.; Schwartz, J.C. J. Med. Chem. 2005, 48, 7333-7342.

[^0]: ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.21-$

