
How do words compete? Quantifying lexical
competition with acoustic distance

Matthew C. Kelley & Benjamin V. Tucker 

Department of Linguistics, University of Alberta, Edmonton, AB, Canada 

PRESENTED AT:



I. INTRODUCTION 
Literature commonly refers to concepts like acoustic distance and sound
similarity
Originally, the concept of phonological neighbors (https://eric.ed.gov/?
id=ED353610), in particular, appealed to notions of sound similarity
However, methods of detecting phonological neighbors have relied on edit
distance for strings of symbols, rather than acoustic comparisons
Acoustic distance between words has yet to be well defined
Here, we propose using dynamic time warping cost from time-series analysis
as a form of acoustic distance (see dynamic time warping panel for more
details)
Hypothesis: words that are more acoustically similar to other words will
take longer to recognize, and words that are less acoustically similar to other
words will take less time to recognize

https://eric.ed.gov/?id=ED353610


II. ANALYSIS 1: SINGLE SPEAKER COMPARISONS 
We operationalize a concept of "acoustic distinctiveness" as a word's mean
acoustic distance to all other words in the lexicon, as determined by dynamic
time warping cost
Fit generalized additive mixed models with mgcv R package
(https://doi.org/10.1111/j.1467-9868.2010.00749.) to response latencies from
the Massive Auditory Lexical Decision database
(https://doi.org/10.3758/s13428-018-1056-1)
Final model had smooths for phonological uniqueness point, trial number,
log COCA frequency (https://www.english-corpora.org/coca/)+1, and log
acoustic distinctiveness, along with a random intercept for subject
Smooth for log acoustic distinctiveness shown below. Trend is as expected,
with words that are highly distinctive (have few competitors) are recognized
faster, and words that are not very distinctive (have more competitors) are
recognized slower

Acoustic distinctiveness and acoustic distance seem to bear some relation to
spoken word recognition overall and serve as evidence in favor of our
hypothesis

https://doi.org/10.1111/j.1467-9868.2010.00749.
https://doi.org/10.3758/s13428-018-1056-1
https://www.english-corpora.org/coca/


I (CONT). DYNAMIC TIME WARPING IN DETAIL 

Dynamic time warping is a process that finds a pairing between time steps in
time series data (like speech) such that the summed distance between the
pairings is minimized
At each stage of comparison, at least one frame number from one of the
sequences must be incremented
Has historically been used in speech recognition
Still popular in data mining and time series analysis/comparison
(https://doi.org/10.1145/2339530.2339576)
Has been used to compare single phones to each
(https://doi.org/10.1016/j.lingua.2011.04.006) other before
For our speech data, we convert to a series of Mel frequency cepstral
coefficient vectors, calculated over 25 ms windows spaced at 10 ms intervals
Opting not to use delta and delta-delta features (first- and second-order
discrete derivatives) for now to simplify analysis

https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1016/j.lingua.2011.04.006


III. ANALYSIS 2: MULTI-SPEAKER COMPARISONS 
Want to see whether comparing experiment stimuli to acoustic word
prototypes from other speakers also yields useful acoustic distinctiveness
values
Compute multi-speaker acoustic prototypes by averaging speakers together
using dynamic barycenter averaging
(https://doi.org/10.1016/j.patcog.2010.09.013) technique from data mining
(https://doi.org/10.1109/ICDM.2014.27)
The three speakers were the young male speaker from the Massive Auditory
Lexical Decision database, in addition to a young female speaker and an
older male speaker reading the same words
Compare models with different acoustic distinctiveness calculations to
baseline model using fREML from R itsadug package (https://cran.r-
project.org/web/packages/itsadug/index.html), where greater reductions in
fREML indicate better fit
All models fit from the baseline model caused significant reductions in
fREML, and the magnitudes of the reductions are visualized in the figure
below

Prototypes that included the young male speaker caused greatest decrease,
likely due to containing acoustic information the participants heard (similar

https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/ICDM.2014.27
https://cran.r-project.org/web/packages/itsadug/index.html


to evaluating a machine learning model on data it was trained on)
All models using acoustic distinctiveness caused significantly greater
decreases to fREML than neighborhood density did
Results suggest that acoustic distinctiveness has a stronger relationship to
the lexical decision data than does neighborhood density



IV. ANALYSIS 3: COMPARING TO NEIGHBORHOOD DENSITY 
Want to see if phonological neighborhood density still has explanatory
power in the face of acoustic distinctiveness
Add phonological neighborhood density to each of the acoustic
distinctiveness models from analysis 2 and see how much fREML changes
Magnitude of fREML decreases visualized below, where adding
neighborhood density caused a decrease in for all models

Overall, suggests that neighborhood density and acoustic distinctiveness are
not measuring the exact same thing
Question remains of how much of the remaining effect of neighborhood
density has to do with lexical competition.
For example, It is possible that a portion of neighborhood density's effect has
to do with effects of orthography because phonological forms of English
words are somewhat related to orthography
Further experimentation is needed to determine whether neighborhood
density is still useful in the face of a measure like acoustic distinctiveness
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