How do words compete? Quantifying lexical
competition with acoustic distance
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|. INTRODUCTION

. Literature commonly refers to concepts like acoustic distance and sound
similarity

- Originally, the concept of phonological neighbors (https://eric.ed.gov/?
1d=ED353610), in particular, appealed to notions of sound similarity

. However, methods of detecting phonological neighbors have relied on edit
distance for strings of symbols, rather than acoustic comparisons

. Acoustic distance between words has yet to be well defined

. Here, we propose using dynamic time warping cost from time-series analysis
as a form of acoustic distance (see dynamic time warping panel for more
details)

. Hypothesis: words that are more acoustically similar to other words will

take longer to recognize, and words that are less acoustically similar to other
words will take less time to recognize


https://eric.ed.gov/?id=ED353610

Il. ANALYSIS 1: SINGLE SPEAKER COMPARISONS

. We operationalize a concept of "acoustic distinctiveness" as a word's mean
acoustic distance to all other words in the lexicon, as determined by dynamic
time warping cost

. Fit generalized additive mixed models with mgcv R package
(https://doi.org/10.1111/.1467-9868.2010.00749.) to response latencies from
the Massive Auditory Lexical Decision database
(https://doi.org/10.3758/s13428-018-1056-1)

. Final model had smooths for phonological uniqueness point, trial number,
log COCA frequency (https://www.english-corpora.org/coca/)+1, and log
acoustic distinctiveness, along with a random intercept for subject

. Smooth for log acoustic distinctiveness shown below. Trend is as expected,
with words that are highly distinctive (have few competitors) are recognized
faster, and words that are not very distinctive (have more competitors) are
recognized slower
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Log acoustic distinctiveness

. Acoustic distinctiveness and acoustic distance seem to bear some relation to
spoken word recognition overall and serve as evidence in favor of our
hypothesis


https://doi.org/10.1111/j.1467-9868.2010.00749.
https://doi.org/10.3758/s13428-018-1056-1
https://www.english-corpora.org/coca/

| (CONT). DYNAMIC TIME WARPING IN DETAIL
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. Dynamic time warping is a process that finds a pairing between time steps in

time series data (like speech) such that the summed distance between the
pairings is minimized

. At each stage of comparison, at least one frame number from one of the

sequences must be incremented

. Has historically been used in speech recognition
. Still popular in data mining and time series analysis/comparison

(https://doi.org/10.1145/2339530.2339576)

. Has been used to compare single phones to each

(https://doi.org/10.1016/j.1ingua.2011.04.006) other before

. For our speech data, we convert to a series of Mel frequency cepstral

coefficient vectors, calculated over 25 ms windows spaced at 10 ms intervals

. Opting not to use delta and delta-delta features (first- and second-order

discrete derivatives) for now to simplify analysis

1
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https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1016/j.lingua.2011.04.006

[1l. ANALYSIS 2: MULTI-SPEAKER COMPARISONS

. Want to see whether comparing experiment stimuli to acoustic word
prototypes from other speakers also yields useful acoustic distinctiveness
values

. Compute multi-speaker acoustic prototypes by averaging speakers together
using dynamic barycenter averaging
(https://doi.org/10.1016/j.patcog.2010.09.013) technique from data mining
(https://doi.org/10.1109/ICDM.2014.27)

. The three speakers were the young male speaker from the Massive Auditory
Lexical Decision database, in addition to a young female speaker and an
older male speaker reading the same words

. Compare models with different acoustic distinctiveness calculations to
baseline model using fREML from R itsadug package (https://cran.r-
project.org/web/packages/itsadug/index.html), where greater reductions in
fREML indicate better fit

. All models fit from the baseline model caused significant reductions in
fREML, and the magnitudes of the reductions are visualized in the figure
below

3000
|

2500

2000

fREML difference
1500

1000

3312 3220 3178 3111 2124 1119

500
|

Young M Avg: all Young F Avg: YF,OM OIld M Nbrhd density
Template

. Prototypes that included the young male speaker caused greatest decrease,
likely due to containing acoustic information the participants heard (similar


https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/ICDM.2014.27
https://cran.r-project.org/web/packages/itsadug/index.html

to evaluating a machine learning model on data it was trained on)

. All models using acoustic distinctiveness caused significantly greater
decreases to fREML than neighborhood density did

. Results suggest that acoustic distinctiveness has a stronger relationship to
the lexical decision data than does neighborhood density



IV. ANALYSIS 3: COMPARING TO NEIGHBORHOOD DENSITY

. Want to see if phonological neighborhood density still has explanatory
power in the face of acoustic distinctiveness

. Add phonological neighborhood density to each of the acoustic

distinctiveness models from analysis 2 and see how much fREML changes

. Magnitude of fREML decreases visualized below, where adding

neighborhood density caused a decrease in for all models
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. Overall, suggests that neighborhood density and acoustic distinctiveness are

not measuring the exact same thing

. Question remains of how much of the remaining effect of neighborhood
density has to do with lexical competition.

. For example, It is possible that a portion of neighborhood density's effect has

to do with effects of orthography because phonological forms of English
words are somewhat related to orthography

. Further experimentation is needed to determine whether neighborhood
density is still useful in the face of a measure like acoustic distinctiveness
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