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Abstract

In this thesis, the impact deposition process of a single boron carbide particle on an

aluminum matrix with a pore at different depths in a cold sprayed coating is simulated

using a three dimensional numerical model. A finite element model within the frame-

work of the Arbitrary Lagrangian Eulerian (ALE) method and two distinct material

models (the Gurson-Tvergaard-Needleman model for the aluminum substrate and the

Johnson-Holmquist-Beissel model for the boron carbide particle) are used in Abaqus

finite element software. The effect of impact velocity, particle size, and pore size and

location on the retention parameters including penetration depth, crater morphology,

and plastic strain is explored. These parameters exhibit a nonlinear relationship and

enhance particle retention synergistically. The effects of pores on strain hardening

and particle fragmentation on the substrate are also explained by localized plastic

strain on the contact surface. This thesis shows that some porosity in the substrate

may improve some particle retention parameters, specifically at low impact velocity

when the pore has a significant impact on particle retention. Consequently, the mod-

els developed here can guide selection of deposition parameters towards improving

material performance in terms of mechanical and tribilogocal properties.
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Chapter 1

Introduction

1.1 Thesis Motivation

Particle reinforced metal matrix composite (PRMMC) coatings often consist of a

ductile matrix (e.g., aluminum alloy [1–7], copper alloy [8–10], nickel alloy [11, 12],

and magnesium alloy [13–15]) and reinforcement particles (e.g., ceramics [16, 17],

hard metals [18, 19]), for which the final products usually take advantage of the con-

stituent material properties (e.g., high strength, high stiffness, and low weight [1]).

Aluminum is the most frequently used metal in the industry because of its high spe-

cific strength, great ductility and toughness, and reasonable cost [20, 21], leading to

its use as the matrix in particle reinforced aluminum matrix composites (PRAMCs)

in recent years [1, 22–27]. On the other hand, ceramics (e.g., SiC [28], Al2O3 [27],

TiC [29], TiB2 [30], and B4C [31]) are often used as reinforcements in PRAMCs be-

cause of their favorable properties (e.g., the high hardness, strength, wear resistance,

corrosion resistance [32], high melting point, chemical inertness, electrical and ther-

mal conductivity [32]). Among PRAMCs reported in the literature, aluminum-boron

carbide (Al/B4C) coatings [31] are widely used in aerospace [33], automotive [31, 34],

nuclear fuel storage [35], and transportation [36] industries due to their tribological

properties [35, 37–40], high hardness and stiffness [37], and fatigue resistance [41].

Typical techniques for manufacturing PRAMCs include friction stir [42], squeeze

casting [43], stir casting [44], powder compaction [45], and thermal spray [44]. Among
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these techniques, the cold spray method [46] has been well adopted to fabricate these

coatings which have been considered as alternatives to metal alloys in recent years

[47–49]. In the cold spray technique, a pressurized and preheated process gas in a de

Laval nozzle accelerates the micron size particles (5-100 µm) to high velocities (300 to

1200 m/s) and impacts on a substrate. To bond to a substrate, particles must travel

at speeds exceeding some critical velocity and be plastically deformed [50, 51]. Cold

spray technique guarantees the solid state of the particles in PRAMCs without a phase

change [50] and reduces the negative effects associated with elevated temperature

gas spray in the industry-standard thermal spraying techniques, such as the tensile

thermal stress, residual stress [51], material phase transformation [52], oxidation [53],

and decarburization [54], because it requires a low deposition temperature. Moreover,

thermally-sensitive and dissimilar materials (e.g., ceramics and metals with distinct

thermal properties) can be mixed in feedstock during the process [46, 55], which

enlarges the space for material and property design.

To improve the mechanical, chemical, and physical properties of cold-sprayed

PRAMCs [2, 23, 56–58], manufacturing (e.g., standoff distance, spraying angle, the

nozzle features, gas temperature, and gas velocity [51, 59]) and deposition parameters

(e.g., particle size, particle shape, particle type, and porosity [31, 60–64]) need to be

carefully chosen to achieve better particle retention since the content and distribution

of ceramic reinforcements in the coating play an important role in the final properties

of PRAMCs [56]. In addition, the porosity in the metal matrix needs to be better

controlled to have desirable structures [65] and favorable mechanical, thermal, and

electrical properties [66]. Recent experimental research has shown the relationship

between the deposition efficiency (or maximum contents) and particle sizes [67–70],

and subsequently, the effect of particle reinforcement size on the tribological prop-

erties (e.g., wear resistance) of PRAMC coatings [71–75]. For example, Shikalov et

al. [76] measured the wear resistance of Al/B4C with two sizes of B4C (17 and 75

µm) and found out that finer particles resulted in higher microhardness with the same
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adhesion strength as the larger particles in the Al/B4C coating. Zhao et al. [67] stud-

ied the effect of B4C particle size (5, 11, 25, and 40 µm) on the Al/B4C deposition

efficiency by examining four particle sizes (5, 11, 25, and 40 µm) and found higher

microhardness for coatings with B4C sizes of 11 and 25 µm. In another study, Zhao

et al. [68] investigated the effect of Al particle size on B4C retention and the Al/B4C

hardness. They showed that small-sized Al improves B4C retention and changes the

wear mechanism from adhesive to abrasive wear.

In addition to these experimental studies, research in the literature has also been

done to numerically quantify the effect of the deposition parameters (particle size,

impact velocity, surface roughness) [77–79] on a single particle impact [77–81] or mul-

tiple particle impact [82–84]. The numerical research has primarily focused on finite

element simulations using different approaches (Lagrangian [85–89], Coupled Eulerian

Lagrangian [83, 90–93], Arbitrary Lagrangian Eulerian [94–101], and Smooth Parti-

cle Hydrodynamics [97, 102–104]) for different material models (e.g., Johnson-Cook

[105] and Mie-Gruneisen [106]). These numerical studies often aim to understand the

influence of the deposition parameters (density, shape, type and impact velocity and

angle) on effective parameters of particle retention (e.g., plastic deformation, surface

roughness, penetration depth) in metal/metal and metal/ceramic coatings [75, 77,

78, 93, 107, 108]. Overall, these studies are limited in their ability to: (1) model the

elastic-plastic behavior of the ceramic particles subjected to a high impact velocity

through physically-relevant ceramic models in order to better understand the fracture

and fragmentation of the ceramic particles that affect the metallic matrix behavior,

and subsequently, particle retention in the composite [56, 76, 79, 108, 109], and (2)

model the substrate porosity effect on the ceramic particle retention considering that

particles are fragmented after impacting the substrate [39]. This thesis addresses

these gaps by utilizing an arbitrary Lagrangian-Eulerian technique and two sophis-

ticated material models (Gurson-Tvergard-Needleman [110] for the Al substrate and

Johnson-Holmquist-Biessel model [111] for the B4C particle) to simulate ceramic par-

3



ticle deposition on a metallic substrate for the purpose of exploring how the matrix

porosity, impact velocity, and particle size affect the effective particle retention pa-

rameters (i.e., depth of penetration, crater morphology, matrix plastic strain, and

particle damage).

1.2 Thesis Objectives

The objective of this thesis is to better understand the role of reinforcement parti-

cles and impact deposition parameters (e.g., porosity and particle velocity) on the

behavior of resulting depth of penetration of the particle, crater morphology, and

average and localized equivalent plastic strain in the matrix, which are related to

particle retention in composite cold sprayed coatings [77, 78, 93, 112]. The pri-

mary focus of this thesis is to explore the effect of porosity of a metallic substrate

on the simulated ceramic particle behavior in the substrate. This objective is ac-

complished via finite element modelling of a single particle undergoing dynamic im-

pact loading. The material constitutive models include both phenomenological (e.g.,

Johnson-Holmquist- type models [111, 113, 114]) and microstructural physics-based

(e.g., Gurson-Tvergaard-Needleman method [110]) approaches to describe high pres-

sure, fracture, and strain-rate dependent behavior of ceramic and ductile materials

under high strain rate loading. Finite element models (adaptive mesh techniques)

[115–117] are used to simulate the large deformation of the substrate and particle

[118]. In this thesis, aluminum-boron carbide (Al/B4C) is chosen given its novelty

and recent interests in the literature [39, 67, 68, 71, 76, 119–122]. Abaqus is the

platform utilized for numerical studies to analyze the high strain-rate impact behav-

iors. Numerical models are developed and validated using both experimental and

numerical data from the literature [123–126], and research outcomes will explore the

effect of porosity and particle size and velocity on important particle retention param-

eters, including depth of penetration, crater morphology, and average and localized

equivalent plastic strain in the deposition process of the cold sprayed Al/B4C coating.
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1.3 Thesis Actions

To accomplish the thesis objectives, the following actions will be taken:

1. Model the deposition process of ceramic particle reinforced metal matrix com-

posites via a numerical approach by simulating a single B4C particle deposition

on an Al substrate that includes a pore with different diameters and depths

from the surface of the substrate. The Johnson-Holmquist-Beissel (JHB) model

[111] is implemented to describe the fracture and fragmentation of the B4C

particle under high strain rate impact, and the Gurson-Tvergaard-Needleman

(GTN) model [110] is used to explain the failure of the Al substrate based on

void nucleation.

2. Study the effect of the particle velocity, particle size, pore size, and pore lo-

cations on the retention parameters (e.g., plastic strain, surface morphology,

penetration depth) and subsequent deposition efficiency of Al/B4C coatings by

simulation of the impact of a B4C particle on an Al substrate.

3. Investigate pore collapse and matrix failure through change in the deposition

parameters (i.e., impact velocity, particle size, pore size, and pore depth) and

link their influence to the particle retention of the Al/B4C coatings using pa-

rameters that are important in particle retention (e.g., equivalent plastic strain,

penetration depth, and crater morphology).

4. Provide data sets required for further statistical analysis inputs (such as particle

size, particle velocity, and pore size) as well as outputs (such as pore collapse,

deformation, and depth of penetration of particles in the substrate) via a sys-

tematic simulation of ceramic particle impact. These data sets can be used in

the future to simulate the deposition process of multiple particles and coating

manufacturing.
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1.4 Thesis Contributions

The key contributions of this thesis are summarized as follows:

1. Improve the fundamental understanding of the effect of porosity on the reten-

tion of the ceramic/metal particles by using a finite element scheme to better

define the relationship between deposition parameters (e.g., particle size, impact

velocity) and retention parameters (e.g., equivalent plastic strain).

2. Address the gap in understanding the behavior of the ceramic particles under

high strain rate impact loading (e.g., elastic and plastic behavior, and damaged

strength) and failure behavior of the ductile materials (high plastic deformation,

plastic zones, nucleation and growth of voids) by implementing phenomenolog-

ical and micromechanical material models to accurately detect the material

response.

3. Understand the interplay between loading and material characteristics (e.g.,

mechanical properties, particle size, impact velocity) that improves the use of

ceramic materials in cold spray [127] and additively manufactured structures

[128].

4. Provide inputs and outputs for future statistical modeling to understand the

mechanical behavior of ceramics under high strain rate loading.

1.5 Thesis Structure

The following outlines the structure of this thesis:

• Chapter 1 introduces the motivation for studying a ceramic particle deposi-

tion process on a metallic substrate. This chapter further outlines the thesis

objectives, actions, contributions and thesis structure.
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• Chapter 2 details a study on modeling the impact of a single B4C particle

on an Al substrate to understand the effect of impact velocity, particle size,

and matrix porosity on the particle retention and deposition behavior of cold-

sprayed Al/B4C coatings. This study, titled “Impact deposition behavior of

Al/B4C cold-sprayed composite coatings: Understanding the role of porosity

on particle retention” has been published in the journal of “ Materials, Special

Issues: Advanced Ceramics and Composites: Design, Structure, Processing,

Properties, and Applications” in March 2023.

• Chapter 3 summarizes the outcomes and implications of the thesis, and outlines

the future work and recommendations for modeling.
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Chapter 2

Impact deposition behavior of
Al/B4C cold-sprayed composite
coatings: Understanding the role
of porosity on particle retention

Part of this Chapter has been published as Hannaneh Manafi Farid; André Mc-

Donald; and James Hogan. Impact deposition behavior of Al/B4C cold-sprayed com-

posite coatings: Understanding the role of porosity on particle retention. Journal of

“Materials, special Issues: Advanced Ceramics and Composites: Design, Structure,

Processing, Properties, and Applications”. (2023)
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2.1 Abstract

This study explores the role of porosity on the impact deposition of a ceramic-

reinforced metal-matrix (i.e., Al/B4C) composite coating fabricated via cold spraying.

The Johnson-Holmquist-Beissel constitutive law and the modified Gurson-Tvergaard-

Needleman model were used to describe the high strain-rate behavior of the boron car-

bide and the aluminum metal matrix during impact deposition, respectively. Within

a finite element model framework, the Arbitrary Lagrangian-Eulerian technique is

implemented to explore the roles of reinforcement particle size and velocity, and pore

size and depth on particle retention by examining the post-impact crater morphol-

ogy, penetration depth, and localized plastic deformation of the aluminum substrate.

Results reveal that some degree of matrix porosity may improve particle retention.

In particular, porosity near the surface facilitates particle retention at lower impact

velocities, while kinetic energy dominates particle retention at higher deposition veloc-

ities. Altogether, these results provide insights into the effect of deposition variables

(i.e., particle size, impact velocity, pore size, and pore depth) on particle retention

that improves coating quality.

2.2 Introduction

Particle-reinforced metal matrix composite (PRMMC) coatings (e.g., Al/B4C [31],

Al/SiC [129], Al/Al2O3 [130]) have been widely employed in a variety of applications

(e.g., aerospace [33], automotive [31, 34], fuel storage [35, 131, 132], and transporta-

tion [36]) because of their favorable tribological properties [35, 37–39], high hardness

and stiffness [37], and fatigue resistance [41]. Typical manufacturing methods for

PRMMCs include friction stir [42], squeeze casting [43], stir casting [44], powder

compaction [45], and thermal spraying [133]. Among these techniques, the cold spray

method [46] was recently adopted because of its favorable attributes: (1) the low

temperature of the process ensures no phase change in the material [46], (2) mate-
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rials with different thermal properties (e.g., ceramics and metals with very different

melting points) and morphology can be mixed in the feedstock during the deposition

process towards fabricating composite coatings [46], (3) cold spraying does not pro-

duce oxidation in the deposited coating [53], and (4) this technique generates lower

residual stresses in the final coating when compared to other thermal spray techniques

[51]. These features make the cold spray method a unique technique to manufacture

composite coatings in order to reduce material consumption and tailor the physical,

mechanical, and tribological properties by blending dissimilar materials to provide

commercial products for a variety of industrial applications including [51] to repair

magnesium parts in aerospace [134], manufacture electro- or thermo-conductive coat-

ings for power electronic circuit boards [135], design of orthopedic devices [134] in

biomedical implants [136]. Moreover, cold-sprayed composite coatings are highly

appealing because they do not undergo alloying, phase transformation, or thermite

reactions during fabrication processes [137].

During the cold spray process, porosity is an indicator of quality because uncon-

trolled porosity can result in friable structures and, subsequently, poor mechanical

properties [65, 84]. In cold spraying, deposition parameters (e.g., temperature and

velocity of the gas, standoff distance, and angle of spraying [51]) and particle mor-

phology (size, shape, type of particles) significantly affect the porosity level in the

final coating [71]. To date, limited studies have focused on exploring the effect of

porosity on the mechanical properties and structural integrity of Al/B4C coatings

[83, 84, 138–140]. In the literature, Zhao et al. [67] systematically investigated the

effect of B4C and Al feedstock particle size on the weight percentage of the B4C in

the cold-sprayed Al/B4C coating, and they found the optimal particle size for Al

and B4C was 15 µm to maximize the volume fraction of the B4C particles (≈ 30%),

and to achieve maximum deposition efficiency. In the recent study by Zhao et al.

[68], they examined the effect of the Al (metal matrix material) particle size on B4C

retention and the tribological properties of an Al/B4C cold sprayed composite coat-
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ing. They found that the smaller Al size facilitated the B4C retention because of the

grain refinement of the coatings, which also improved its wear resistance. In another

study, Shikalov et al. [71] studied the tribological behavior of Al/B4C coatings for

different B4C powder sizes (17 and 75 µm) and volume percentages, and they found

that the higher hardness was attributed to the finer particles, and the B4C size had

no effect on the adhesion strength. Moreover, other studies [39, 51] have shown that

hard ceramic particles (e.g., B4C) fragment more after deposition into softer mate-

rials (e.g., Al), resulting in interfacial gaps between the particles and substrate, and

subsequently, increasing the porosity level. Building on these studies, our efforts in

this study aimed at better understanding the role of the matrix porosity (the size

and location of pores), particle sizes, and impact velocities on the resulting impact

deposition and, by extension, the quality of Al/B4C coatings (i.e., particle retention

[39, 67]).

To study impact deposition processes in cold spray manufacturing, numerical stud-

ies can be used to unravel the effects of deposition parameters (e.g., particle size and

shape and impact velocity) by realizing different deposition configurations. Vari-

ous finite element approaches (e.g., coupled Eulerian-Lagrangian (CEL) [90], arbi-

trary Lagrangian-Eulerian (ALE) [94, 95], and Lagrangian [85]), and material models

(e.g., Johnson-Cook [105] and Mie-Gruneisen [106]) have been employed to model im-

pact deposition responses (e.g., bonding strength[141], retention[142], and rebounding

times [78]). Through simulations, it has been shown that the increase in particle im-

pact velocity increases the temperature and plastic deformation of the contact area,

which has been shown to have an influence on particle retention and final coating

strength [93]. For example, Chakrabarty et al. [77, 107] numerically studied depo-

sition and retention of a single ceramic particle on a metallic substrate at different

particle densities, velocities, and impact angles, and found that the oblique spray an-

gle, higher density, and velocity of the depositing particles resulted in increasing the

jetting region which strengthened the particle retention on the substrate. In another
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study, Elkin et al. [78] numerically studied the role of the surface roughness on the

retention of irregular-shaped SiC particles by using the Johnson-Cook [105] model

and CEL technique and found that irregular particle shapes resulted in less porosity

and better retention when compared to spherical particles [98]. In these studies, the

material models for the ceramic particles were simple elastic models and so more

physically-relevant ceramic models are needed to better understand the fracture and

fragmentation [38, 129] of the particles upon impact into the matrix, which will im-

prove our fundamental understanding of the impact deposition processes. This study

will address this gap by implementing the Johnson-Holmquist-Beissel model [111],

with considerations for the role of matrix porosity on ceramic particle retention.

In this paper, for the first time in the literature on metal-ceramic composites, we

investigate the role of particle size and velocity, and matrix porosity on key parti-

cle retention parameters (i.e., depth of penetration, crater morphology, matrix plas-

tic strain, and particle damage) during the deposition of a boron carbide ceramic

particle into an aluminum matrix with a pore using the finite element approach.

The Johnson-Holmquist-Beissel (JHB) [111] and the Gurson-Tvergaard-Needleman

(GTN) [110] material models are used for the ceramic particle and aluminum sub-

strate, respectively. We will investigate the effect of particle diameter, impact velocity,

pore diameter, and pore location on the particle penetration depth, crater roughness,

and plastic deformation across the contact surfaces in the substrate. Altogether, the

results generated in this study will provide insights on the role of porosity during im-

pact deposition behavior of Al/B4C composites (e.g., matrix strain, roughness, and

penetration depth) towards better informing improved cold spray deposition param-

eters and, eventually, material optimization.

2.3 Methodology and Model Configurations

To better understand the three-dimensional impact deposition behavior of the Al/B4C

coating, and the effect of variables for retention of a B4C particle on an Al matrix
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with a pore, a numerical simulation using Abaqus/explicit finite element software is

employed. In this study, the ceramic particle and metallic matrix are treated as brittle

and ductile materials, respectively, which are subjected to high-strain-rate impact

loadings, and appropriate material models are used to analyze their true behavior.

Therefore, the failure behavior of the ductile aluminum substrate is modeled using

the Gurson-Tvergaard- Needleman (GTN) model because of its ability to account for

the plastic deformation and void growth mechanism [143]. The Johnson-Holmquist-

Beissel (JHB) model is used to describe the elastic-plastic deformation of the ceramic

because it can reasonably capture the strain-rate-dependent mechanical response of

the brittle boron carbide under impact loadings [144]. The following subsections

lay out the major constitutive equations for the material models, the finite element

framework of the Arbitrary Lagrangian Eulerian technique (ALE) [145], and model

configurations used in this study.

2.3.1 The Gurson-Tvergaard-Needlman Model

The Gurson-Tvergaard-Needlman (GTN) model is a well-known elastic-plastic micro-

mechanical model that accounts for the ductile damage accumulation in terms of void

nucleation, growth, and coalescence [146]. The GTN model is based on continuum

damage mechanics and introduces a failure criterion [110]:

ϕ(σ, f) = (
σeq

σy

)2 + 2q1f
∗ cosh (

3q2σm

2σy

)− (1 + q3f
∗2) = 0, (2.1)

where q1,2,3 are constitutive parameters, σm is the hydrostatic or mean normal stress

(σm = (σ11 + σ22 + σ33)/3), σeq is the Von Mises equivalent stress (
√︁
3SijSij/2), Sij

is the deviatoric stress tensor, σy is the yield stress, and f ∗ represents the modified

damage parameter and porosity, which is a function of the volume fraction, f , and

defined as:
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f ∗ =

⎧⎪⎨⎪⎩
f f ≤ fc

fc +
f∗
u−fc

fF−fc
(f − fc) fc ≤ f ≤ fF ,

f ∗
u f ≥ fF

(2.2)

where f∗
u−fc

fF−fc
(f − fc) represents the final phase of ductile failure, fc is the critical void

volume fraction, f ∗
u =

q1+
√

q21−q3

q3
is the ultimate damage parameter, and fF is the final

void volume fraction. The rate of the void volume fraction, df = dfnucleation + dfgrowth,

is an addition of nucleation (dfnucleation) and the void growth (dfgrowth), where:

dfnucleation = Andε
p
eq, (2.3)

with

An =

{︄
fN

SN

√
2π
e
−0.5(

εp−εN
SN

)2
if σm ≥ 0

0 if σm < 0
(2.4)

Here, An is a function of the void nucleation (fN), void nucleation generated strain

(εN), standard deviation of the void nucleation distribution (SN), and plastic strain

(εp). Lastly, the void fraction rate due to the void growth is:

dfgrowth = (1− f)dεpii, (2.5)

where εpii is the plastic hydrostatic strain. In this paper, parameters for the model

are populated from the previous work by the authors [123, 124], and the literature

[125], and these parameters are presented later in Section 2.3.3.

2.3.2 The Johnson-Holmquist-Beissel Model

The JHB model is a phenomenological model that describes the failure behavior of

brittle materials subjected to large strain, high strain rate, and high pressure [111].

In this study, the JHB model is applied to describe the mechanical behavior of boron

carbide (B4C) particles impacting an Al substrate. Previous studies demonstrated

that B4C shows a sudden loss in strength under high pressure after the Hugoniot
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Elastic Limit (HEL) strength is reached [147], for which this behavior can be well

captured by the JHB model [148] because it is more physically relevant for our study.

In general, this model consists of three main curves [148]: (1) a strength curve for

both intact and damaged ceramics, (2) a damage function describing material failure,

and (3) a pressure vs. volumetric strain relationship for bulking and phase change.

Each of these components are subsequently described.

First, the strength model (von Misses equivalent stress versus pressure) consists of

two curves for intact and failed materials. The von Mises equivalent stress, σ, depends

on the pressure, P , the dimensionless equivalent strain rate, ε̇∗, where ε̇∗ = ε̇/ε0̇ and

ε̇0 = 1.0s−1, and the damage, D. D = 0, 0 < D < 1, and D > 1, represent the intact,

partially damaged, and fully damaged or failed materials, respectively. The strength

model for the intact material (D < 1) is defined as:

σ =

{︄
σi(P + T )/(Pi + T ) −T < P < Pi

σi + (σmax − σi){1.0− exp[−αi(P − Pi)]} Pi < P,
(2.6)

where αi = σi/[(σmax − σi)(Pi + T )]. For failed material (D = 1), the the strength

model is:

σ =

{︄
(σf/Pf )P 0 < P < Pf

σf + (σmax − σf ){1.0− exp[−αf (P − Pf )]} Pf < P
(2.7)

where αf = σf/[(σmax − σf )(Pf + T )]. T , σi, σf , Pi, and Pf represent the tensile

pressure, minimum nonlinear stress of the intact and failed material, and the corre-

sponding pressure at the minimum nonlinear stress of the intact and failed material,

respectively. The strain-rate dependent strength for ε̇∗ > 1 is:

σ = σ0(1.0 + C ln ε̇∗), (2.8)

where σ0 is the corresponding strength at ε̇∗ = 1 obtained from Eq. 2.6 or Eq. 2.7,

and C is a dimensionless strain rate constant.

Next, the damage model to describe the material failure is defined as:
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D = Σ(∆εp/ε
f
p), (2.9)

where ∆εp is the increment equivalent plastic strain and εfp is the constant plastic

strain defined as εfp = D1(P
∗ + T ∗)n, where P ∗ = P/σmax, T ∗ = T/σmax, and

dimensionless D1 and n are constants.

Lastly, the hydrostatic pressure model is based on the volumetric strain, µ =

V0

V
− 1 = ρ

ρ0
− 1. V , ρ, V0, and ρ0 are current volume and density, and initial volume

and density, respectively. The pressure model with a phase change and before damage

(D < 1) is defined as:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1µ+K2µ
2 +K3µ

3 0 < µ < µ1

0 < P < P1

(P2−P1

µ2−µ1
)µ+ P1µ2−P2µ1

µ2−µ1
µ1 < µ < µ2

P1 < P < P2

K̄1µ̄+ K̄2µ̄
2 + K̄3µ̄

3 µ > µ2

P > P2

(2.10)

where K1 (bulk modulus), K2, K3, K̄1, K̄2, K̄3, and µ0 are constants. P1 is the

maximum pressure at phase 1 at µ1 and P2 is the minimum pressure at the beginning

of phase 2 at µ2. The transition pressure from phase 1 to phase 2 is a linear model.

After the material fails (D= 1), bulking occurs, and the change in pressure is added

to the Eq. 2.10. For instance, the pressure model for the failed materials (D = 1)

and µ > 0 is:

P = K1µ+K2µ
2 +K3µ

3 +∆P, (2.11)

where ∆P is the pressure increment showing the material bulking after failure, and

it is obtained considering the change in the internal elastic energy:

∆p = −K1µf +
√︂

(K1µf )2 + 2βK1∆U, (2.12)
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where ∆U is the internal elastic energy loss when failure occurs, µf is the volumetric

compression at failure, and β (0 ≤ β ≤ 1) is the fraction of the internal energy loss

converted to potential hydrostatic energy.

2.3.3 Impact Deposition Model Configurations

In this study, a three-dimensional (3D) model of a B4C particle impacting on an

Al substrate is modeled in an Abaqus/Explicit framework to systematically study

the cold spray impact deposition process of ceramic/metal composites with a pore.

The B4C particle is regarded as deformable with elastic-plastic behavior taken into

account, and this is in contrast to the previous models where ceramic particles are

assumed to be elastic using isotropic elastic models [77, 78, 108, 149]. Table 2.1

summarizes the JHB constants for the B4C particle, and these constants are extracted

from the previous study by Johnson and Holmquist [126]. In addition, Table 2.2 also

summarizes the GTN model constants, which are taken from Sayahlitifi et al. [124]

and modified based on the literature [123, 125] to describe the ductile failure of the

Al substrate with void growth considered.

Figure 2.1 shows the model geometry used for the numerical impact simulations.

This model was inspired by the 3D models of a cold sprayed single particle in the

literature [77, 93, 150, 151] and the high velocity impact modeling example in Abaqus

[152]. While the B4C particle has an irregular morphology [153], which results in

better retention in the Al matrix and higher reinforcement contents, in this study,

the particle shape is assumed to be spherical to simplify the simulation. Ceramic

particles with spherical shapes may have a lower reinforcement fraction [62]. However,

they are more likely to increase the in-situ hammering effect, which enhances grain

refinement and structure density [1]. Owing to the axi-symmetry of the geometries (a

cylindrical substrate and a spherical particle) and loading (perpendicular impact of

a particle on a substrate), a slice that is the 1/32 of the entire model following [154]

is used to reduce the computational time in this study. In Figure 2.1, three sets of
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Table 2.1: The parameters of the Johnson-Holmquist-Beissel (JHB)
constitutive model used for the B4C particle [126].

Density ρ0 (kg/m3) = 2508 2cElastic constants

2c—Damage constants Modulus of Elasticity E (GPa) = 442

Damage coefficient D1 = 0.005 Poisson’s ratio ν = 0.162

Damage exponent n = 1.0 Bulk modulus K (GPa) = 218

Max failure strain εfmax = 999.0 Shear modulus G (GPa) = 190

2c—Strength constants 2cPressure constants

Hugoniot elastic limit HEL (GPa) = 0.27 Bulk modulus (phase 1) K1 (GPa) = 218

HEL strength σHEL (GPa) = 12.29 Pressure coefficient (phase 1) K2 (GPa) = 580

HEL pressure PHEL (GPa) = 7.95 Pressure coefficient (phase 1) K3 (GPa) = 0

HEL volumetric strain µHEL = 0.0335 Pressure coefficient (phase 2) K̄1 (GPa) = 307

Hydrostatic tensile strength T (GPa) = 0.27 Pressure coefficient (phase 2) K̄2 (GPa) = 41

Intact strength constant σi (GPa) = 5.9 Pressure coefficient (phase 2) K̄3 (GPa) = 0

Intact strength constant Pi (GPa) = 5.9 Transition Pressure P1 (GPa) = 25

Max intact strength σmax (GPa) = 12.5 Transition strain (from P1) µ1 = 0.092

Strain rate constant C = 0.01 Transition pressure P2 (GPa) = 45

Failure strength constant σf (GPa) = 4.7 Transition strain (from P2) µ2 = 0.174

Failure strength constant Pf (GPa) = 30.0 Reference strain (phase 2) µ0 = 0.03

Table 2.2: The parameters of the Gurson-Tvergaard-Needleman (GTN) model used
for the Al substrate [123–125].

q1 q2 q3 f0 fc fF fN εN SN

1.5 1 2.25 0.0017 0.02 0.0363 0.0242 0.1 0.1
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boundary conditions are applied: (1) along the symmetric axis where all nodes can

only move along the Z axis, (2) on all the side surfaces of the particle and substrate

where circumferential velocities of all nodes are zero, and (3) at the substrate bottom

where all nodes cannot move along the Z-direction. These boundary conditions are

consistent with the literature [152].

Figure 2.1: Three-dimensional numerical model geometry for simulating a single par-
ticle impact during the cold spray deposition process.

In this study, the B4C particle diameter varies from 15, 25, to 40 µm (Table 2.3),

and this is guided by the particle size in experimental studies of Zhao et al. [67].

The substrate height (HSubstrate) and radius (RSubstrate) are chosen to be 75 µm to

avoid any possible wave reflection (i.e., estimated by using the elastic wave velocity

equation, v=
√︁

(E/ρ)). In this study, simulations are performed over the first 24 ns

of impact, which is sufficient to allow for observed behavior to be completed; this also

corresponds to before when the elastic wave is reflected from the rear of the substrate

to return to the impact zone [155]). In addition, the pore shape is assumed to be

spherical to simplify the simulation, and the pore diameters are selected to be 1, 2,

3, and 4 µm. Pore depths are 0.1DParticle-0.5DParticle based on the observation made

in microscopic images of Al/B4C composites from the literature [38, 39, 67, 71, 81,

129]. Lastly, Figure 2.1 also demonstrates the meshed particle and substrate with
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refined areas near the contact region. The mesh size is chosen to be at most 1/50

of the particle diameter near the contact area to avoid element distortion [77, 78,

93]. The friction coefficient is considered to be 0.25 for the contact between particle

and substrate, and this is guided by the literature [156]. The interaction between

the particle and the substrate is defined using the general contact algorithm, which

has been implemented previously in the literature [77, 82, 93]. For employing the

ALE method [81], the frequency is set at ten as a default value [81, 101], and the

number of remeshing sweeps per increment is set between 5 to 8 for various models

in order to avoid errors in analysis [157, 158]. The FS parameter, which is used to

minimize the error between numerical and experimental results, is set at 1.5, based

on Chalmers [159]. The eight-node linear brick element (C3D8R) with a reduced

integration technique and default hourglass is selected for both particle and substrate.

The total number of elements for particle and substrate is between 63227 and 155126

elements in the simulations. This type of mesh has also been used in the literature

[77, 107, 151]. Compute Canada clusters with one node are used to perform the

high-powered parallel computing and minimize the computational time, with a mean

run duration of approximately 9 +/- 1 hours per simulation on one node, depending

on velocity, particle size, and depth.

Table 2.3: The parameters used for numerical models of the impact deposition simu-
lations in the Abaqus software.

2c—Dimension parameters 2cModeling parameters

Particle Size 15, 25, 40 µm [67] Analysis framework Abaqus/explicit

Substrate size 75 µm FEM technique Arbitrary Lagrangian Eulerian (ALE)

Pore sizes 1,2,3,4 µm [38, 39, 67, 71, 81, 129] Interactions General contact

Depth of pores 0.1 to 0.5DParticle [38, 39, 67, 71, 81, 129] Friction coefficient 0.25 [156]

Time 24 ns [160] Element type C3D8R: An 8-node linear brick [77, 93, 107]

Impact velocity 500, 600, 700 m/s Mesh design Reduced integration, hourglass control

FS 1.5 [159]
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2.4 Results and Discussions

Given this study’s wide range of numerical data, we classify the results and discussion

based on the outputs. Specifically, Sub-Section 2.4.1 compares our model with those

in similar studies to verify the model. Sub-Section 2.4.2 describes how the particle

penetration depth is affected by deposition parameters (e.g., particle size, impact ve-

locity, and pore sizes and depths). Sub-Section 2.4.3 explores the effect of the pore

volume change on the plastic strain of the substrate. Sub-Section 2.4.4 investigates

the crater morphology following impact. Sub-Section 2.4.5 examines the pore size

and depth on the equivalent plastic strain (PEEQ) value. Next, Sub-Section 2.4.6

investigates the effect of impact velocity, particle size, and pore size on the equivalent

plastic strain of the contact surface in the substrate. Finally, Sub-Section 2.4.7 ex-

plores results on the localized plastic strain over the contact surface in the substrate.

In all areas, we focus on the role of porosity and impact deposition variables (e.g.,

particle size and velocity) on resulting parameters (e.g., penetration depth, crater

roughness, and plastic deformation) that are believed to be associated with particle

retention [79, 112].

2.4.1 Model Evaluation

In this sub-section, the predictive capability and accuracy of the model are illustrated

through the selection of the mesh size, the trend of accumulation of the equivalent

plastic strain (PEEQ) for both substrate and particle, and the PEEQ magnitude

compared to the previous studies [77, 93]. In addition, the effect of the particle

material type on the plastic strain will be briefly discussed. Prior to presenting

these results, it is worth noting that the model developed in this study is challenging

to experimentally validate with in-situ deposition data given the small scale of the

particles and pores [38, 39, 67, 71, 129], and high speeds of the impact deposition

process [39, 71]. Regardless, we attempt to demonstrate how our model aligns with
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previous published works.

First, Figure 2.2 compares normalized computational time and the number of el-

ements across different mesh sizes: 0.2, 0.3, 0.4, and 0.5 µm. We use this plot to

inform about the tradeoffs between the number of elements and computational time

for physically-relevant mesh sizes, as previously done in the literature [77, 93, 112].

We employ the ALE technique, an adaptive meshing tool, to avoid excessively dis-

torted elements and the analysis stops. In the ALE technique, the mesh exposed to

excessive distortion is replaced by a mesh domain, whose nodes are placed in the inte-

rior of the mesh domain, reducing the overall distortion of the material. However, the

mesh nodes and material points lose their correspondence at each re-meshing time,

which causes an error in the final results showing the material behaviors [161]. In this

case, the mesh convergence analysis, one of the most effective methods to validate a

finite element model, is inaccurate [46]. Therefore, mesh sensitivity analysis is not

beneficial to validate this model. Instead the method that we used here to validate

the model compromises between the element numbers (capturing the relevant physics

based on literature [78, 93, 162]) and computational time, which has been used in

the literature to compare the different numerical methods (e.g., CEL, ALE, and La-

grangian) to show the efficiency and accuracy of the models [93]. It is worth noting

that each numerical FE technique can simulate a different aspect of the cold spray

deposition process [82]. The ALE technique provides high precision and is mainly

used in the literature [81, 101] to simulate the buildup process of coatings and multi-

particle impacts [96]; considering its advantages, we will also use the ALE technique

here for further analysis in the future.

To validate the model, the selected mesh sizes are 0.2, 0.3, 0.4, and 0.5 µm [78,

93, 162], which are also employed in the cold sprayed model in the literature. These

mesh sizes are implemented for a particle diameter of DParticle= 15 µm at the contact

areas of the particle and substrate, and near the pore in the substrate. Specifically,

these mesh sizes are chosen to be at most 1/50 of the particle diameter (i.e., ≤ 0.3
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µm) guided by the literature [77, 79, 112] in order to reduce mesh sensitivity of the

model. It is observed from Figure 2.2 that at the mesh size of 0.3 µm (with the

normalized computational time of 0.148 and the normalized number of elements of

0.991), the number of elements and the associated computational time are notably

lower than mesh sizes of 0.2 µm (with the normalized computational time of 2.163

and the normalized number of elements of 2.431). In contrast, the computational

times are comparable between the mesh size of 0.3 and 0.4 µm. In conclusion, a

refined mesh size of 0.3 µm is chosen in this study for contact areas to balance the

accuracy and computational costs [77, 93, 112].

Figure 2.2: Number of elements and computational time for different refined mesh
sizes (0.2, 0.3, 0.4, and 0.5 µm) using an ALE FEA framework at the particle-matrix
contact areas.

Next, Figure 2.3 shows the PEEQ value over the contact-surface of the substrate

and the particle simulated in this study and compared with similar models in the

literature [93, 107]. We compare this to determine if our implementation produces

results of similar magnitudes and trends to those published in the literature concerning

the impact deposition of ceramic particles into metal substrates [77–79, 82, 93]. In
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Figure 2.3: Comparison between the equivalent plastic strain (PEEQ) generated in
the B4C particle and the Al substrate in this study and previous studies involving Al
and Cu particles and Al and Cu substrates [93, 107]. (a) The average PEEQ value
over the Al contact-surface in an Al/B4C coating in the current study (Al/B4C, V
= 700 m/s) and in Al/Al coating reprinted from the literature [93] (Al/Al, V = 700
m/s) with DParticle = 25 µm and VImpact = 700 m/s is calculated using an Arbitrary
Lagrangian–Eulerian (ALE) and Coupled Eulerian–Lagrangian (CEL) technique, re-
spectively, in Abaqus. The GTN material model in the current study and the original
Johnson–Cook (JC) model in the literature [93] are employed. (b) The average PEEQ
value over the entire B4C particle in Al/B4C using the JHB model (Al/B4C, V = 650
m/s) and ALE technique, and over the entire Cu particle in Cu/Cu coating using the
modified Johnson–Cook (JC) model with and without consideration of strain gradi-
ent plasticity (Cu/Cu, SGP, V = 650 m/s and Cu/Cu, No-SGP, V = 650 m/s) and
CEL technique as reprinted from reference [107]. The calculations are performed with
DParticle = 41 µm and VImpact = 650 m/s.
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Figure 2.3a, the PEEQ value over the Al contact-surface in our Al/B4C coating in the

current study and in Al/Al coating reprinted from the literature [93] with a particle

diameter of 25 µm and impact velocity of 700 m/s shows that the plastic strain

of the Al substrate in this simulation is comparable to previous studies [93]. The

solid line in Figure 2.3a represents the PEEQ value over the Al contact-surface for

the Al/B4C cold sprayed coating in this study. For this simulation, the Arbitrary

Eulerian-Lagrangian (ALE) method is employed to study the deposition behavior of

the particle. The dashed lines represent the PEEQ value over the Al contact-surface

in the substrate of Al/Al coating simulated using the Coupled Eulerian Lagrangian

(CEL) technique reprinted from the study by Xie et al. [93]. The PEEQ curve

trends are similar, and there is no further accumulation of PEEQ after about 30 ns

for both coatings (Al/B4C and Al/Al). This may be due to strain hardening caused

by the high velocity impact on the substrate [112]. However, particle material types

(ceramic, B4C, in Al/B4C and metal, Al, in Al/Al) account for the difference in

PEEQ values [93]. The degree of particle ductility influences particle deposition in

the cold spray process, since the high velocity impact of softer materials results in

additional thermal softening [93], leading to larger plastic deformation, especially at

the edges of the deformed particle. Conversely, hard particles (e.g., B4C) do not

thermally soften and are likely to spall at the edges as a result of high impact velocity

and pressure waves [160]. Therefore, softer or more ductile materials contribute more

to mechanical interlocking than harder ones [79]. Figure 2.3b compares the PEEQ

value over the entire B4C particle in the Al/B4C coating (in this study) with the

PEEQ value over the entire Copper (Cu) particle in the Cu/Cu coating reprinted

from reference [107] and shows consistency of two distinct material models: the JHB

model and modified Johnson-Cook (JC) model with strain gradient plasticity (SGP).

In these two simulations in Figure 2.3b, the particle diameter is 41 µm, the impact

velocity is 650 m/s, and the numerical techniques are Coupled Eulerian-Lagrangian

(CEL) for Cu/Cu and Arbitrary Lagrangian-Eulerian (ALE) for Al/B4C. The trend
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of the average PEEQ over B4C particle using the JHB model is analogous to that

of the average PEEQ over the Cu particle using the modified JC model with SGP,

demonstrating the consistency between the modified JC with the SGP effect and the

JHB material model. This is attributed to the inclusion of the plastic strain rate

effect in these two models, which is more representative of dynamic impact loading

cases [163–165]. Figure 2.3b also shows that the B4C deformation rate in the Al/B4C

coating is higher than the Cu deformation rate in the Cu/Cu coating, which can be

attributed to different particle types and material models. High velocity impacts of

harder materials (i.e., B4C here) result in greater plastic deformation, which enhances

the retention of particles [93, 166]. As a result, the JHB model and other models,

including the strain-rate-dependency model, play an important role in understanding

the mechanical response of materials during impact deposition.

2.4.2 Effect of Pore Size, Particle Size, and Impact Velocity
on Penetration Depth

This sub-section will explore the effect of particle size, impact velocity, and pore size

on the particle penetration depth. Here, the deeper penetration depth increases the

chance of mechanical interlocking; therefore, this is important to quantify in order

to better understand particle retention behaviors during deposition into a substrate

[77].

Figure 2.4 shows the penetration depth of the center of the substrate during depo-

sition of a single B4C particle on an Al substrate within 24 ns of impact in order to

explore the effect of impact velocities (Figure 2.4a), particle sizes (Figure 2.4b), pore

sizes (Figure 2.4c), and pore-to-particle-size ratio (Figure 2.4d) on the penetration

depth. In Figure 2.4a with a fixed particle diameter (15 µm) and a range of velocities

(500, 600, and 700 m/s) impacting on an intact substrate without a pore, deeper

penetration occurs for the higher impact velocities. This is well aligned with the

numerical results for different impact velocities in the literature [78] since the higher
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impact velocities result in greater kinetic energy that is the main driver of particle

retention in the cold spray technique [46]. Figure 2.4b shows results with a fixed

impact velocity (500 m/s) and different particle sizes (15, 25, and 40 µm), and results

show that deeper penetration occurs for larger particle sizes, as expected, given the

greater kinetic energy [46]. For implementation in manufacturing, the deeper particle

penetration increases the contact surfaces between particle and substrate, thereby en-

hancing the chance of mechanical interlocking of the particle and improving particle

retention in the substrate [77].

Figure 2.4c shows the combined effect of both pore sizes (1, 2, 3, and 4 µm) and

impacting velocities (500, 600, and 700 m/s) on the penetration depth with a pore

embedded at a depth of 0.4DParticle into the substrate. The particle size is taken as

DParticle= 15 µm. The pore depth of 0.4DParticle is selected based on the literature

[39, 71] because there is no noticeable change in behavior for penetration depths in

the range of 0.4DParticle to 1DParticle, while no clear trend is observed for the range of

0.1DParticle to 0.3DParticle. In Figure 2.4c, it is observed that higher impact velocities

result in deeper penetrations in all cases with different pore diameters, and this is

expected due to higher kinetic energy [46], and numerically demonstrated in the

literature [78] that the higher impact velocities of the SiC particle result in deeper

penetrations. In addition, the effect of including the pore on the penetration depth at

higher velocities (i.e., 600 and 700 m/s) is minor. Specifically, the penetration depth

for all considered pore diameters is approximately 4 and 5 µm at impact velocities

of 600 and 700 m/s, which are close to the penetration depth for the cases without

a pore from Figure 2.4a. Conversely, at the lower impact velocity of 500 m/s, the

inclusion of pores has a noticeable influence on the penetration depth compared to

the higher impact velocities. Namely, at VImpact= 500 m/s, the penetration depth

for different pore diameters except for a pore with DPore= 1 µm is generally more

than 4 µm, with no obvious trends for the 2 and 3 µm sizes for ranging impact

velocities. This is likely related to the complex interplay of particle comminution
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[39], matrix plastic deformation [167], pore crushing and tamping effect [51], and

wave mechanics [160] occurring at these small length scales and short time scales in

this single particle impact process. Finally, the particle penetrates nearly twice as

much as the case without a pore (see Figure 2.4a) or the case with a pore diameter

of 1 µm (see Figure 2.4a). Overall, it is believed that the impact velocity has a more

significant influence on penetration and is more controllable during cold spray than

the pore diameter because of the importance of higher kinetic energy on retention of

the particles [46].

Lastly, Figure 2.4d presents results on the effect of a pore with DPore= 4 and 8 µm

at a depth of 0.4DParticle from the surface with different particle sizes: 15, 25, and 40

µm to show the effect of different pore-to-particle-size ratio on the penetration depth.

As before (Figure 2.4b), the larger particles result in deeper penetrations, and this is

believed to be related to greater kinetic energy [46]. In Figure 2.4d, The penetration

depth curves for the pore-to-particle-size ratio of particle diameters of 25 and 40 µm

do not plateau at the truncated time of the simulation (i.e., t = 24 ns), indicating

that larger particles will penetrate deeper for a longer period. The penetration depth

increases from 2 in Figure 2.4b to 4.2 µm in Figure 2.4d for the pore-to-particle-size

ratio of 0.27 ( DPore

DParticle
= 4

15
), increases from 5 to 8 µm for the pore-to-particle-size ratio

of 0.16 ( DPore

DParticle
= 4

25
), increases from 6.5 to 8 µm for the pore-to-particle-size ratio

of 0.1 ( DPore

DParticle
= 4

40
), and increases from 6.5 to 10 µm for the pore-to-particle-size

ratio of 0.2 ( DPore

DParticle
= 8

40
) in Figure 2.4d. These results show that a higher pore-to-

particle-size ratio causes deeper particle penetration (the pore-to-particle-size ratio of

0.27 has a maximum penetration depth increase of approximately 4.2
2

times). In this

study, pore-to-particle-size ratios equal to or less than 0.16 have a limited influence on

the penetration depth. To the authors’ best knowledge, no studies have investigated

the effect of the pore-to-particle-size ratio on particle retention. However, the SEM

images in the literature [39, 67, 71, 129] show larger pore sizes for larger particles and

smaller pores for relatively smaller particle diameters. The results suggest that the
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ratio of the pore to particle size should be considered in manufacturing the porous

structure using cold spraying [82].

2.4.3 Effect of Change in Pore Volume on the Equivalent
Plastic Strain

This sub-section will explore the effect of the pore volume change on the PEEQ value

toward better understanding its effect on particle retention [51]. Figure 2.5 illustrates

the typical time-evolving changes in pore morphology and the values of PEEQ on the

contact-surface in the substrate during the impact of a particle with DParticle= 15 µm

at VImpact= 500 m/s on a substrate including a pore with DPore= 4 µm at a depth

of 0.3DParticle. This figure is shown to better understand the pore volume change

during the deposition, and its effect on the PEEQ value, with numerical conditions

motivated by literature [51, 64]. Figure 2.5a shows the average PEEQ value over

the contact-surface in the substrate, indicating the maximum average PEEQ value

is 6, which is used in the following figures. Figure 2.5b - f are the time-resolved still

frames corresponding to the different time stamps (5, 10, 15, 20, and 24 ns), and

these are chosen to demonstrate the pore morphology, the crater morphology, and

the PEEQ value over the Al contact-surface during pore collapsing. At a time of t =

5 and 10 ns (Figure 2.5b and c), the pore is collapsing as the PEEQ value over the Al

contact-surface is increasing, particularly near the crater edges, and jetting begins to

happen at t = 10 ns at the crater edges. However, the PEEQ value is lower than the

contact-surface average PEEQ value of 6. Figure 2.5d shows that the pore at time

of t = 15 ns is not completely collapsed, and the crater edges demonstrate a higher

PEEQ value than the crater center, as well as a larger amount of plastic deformation

or jetting. The pore collapses at approximately 17 ns, which is determined by tracking

the volume of the pore through time. At t= 20 ns in Figure 2.5e, the pore has already

collapsed, and the PEEQ value has increased to 6.9, which is higher than the average

PEEQ value of 6 (see Figure 2.5a). Increasing the PEEQ value without changing
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Figure 2.4: The penetration depth of the B4C particle in an Al substrate vs. time
for varying impact velocities, particle size, and pore sizes: (a) The penetration depth
of the particle with DParticle= 15 µm for VImpact= 500, 600, and 700 m/s. (b) The
penetration depth of the particles with DParticle= 15, 25, and 40 µm and VImpact=500
m/s. (c) The penetration depth vs. time for DParticle= 15 µm at VImpact= 500, 600,
and 700 m/s on the substrate including a pore with DPore= 1, 2, 3, and 4 µm placed
at a depth of 0.4DParticle. (d) The penetration depth of particle with DParticle= 15,
25, and 40 µm and VImpact= 500 m/s on the substrate with DPore= 4 and 8 µm placed
at a depth of 0.4DParticle. The curves associated with DPore

DParticle
of 0.27, 0.16, 0.1, and

0.2 correspond to DPore

DParticle
= 4

15
, 4

25
, 4

40
, and 8

40
, respectively.

30



the pore morphology improves the particle retention in the Al substrate because the

kinetic energy converts to plastic deformation energy at the contact-surface rather

than changing the pore morphology, which will be discussed in detail in subsequent

figure descriptions. Finally, Figure 2.5f shows a further increase in PEEQ value across

the Al contact surface, particularly near the crater edges, while the crater morphology,

specifically at the crater edges, does not change. This plateauing behavior can be

related to the saturation in strain hardening at the contact surface of the particle due

to the high impact velocity [112]. More specifically, high impact velocities promote

the plastic deformation of the matrix, resulting in surface hardening through the

tamping effect that leads to the collapse of the interfacial gaps, flaws, and surface

porosity, as well as strengthens the bonding at the metal/ceramic interfaces [51, 168].

2.4.4 Effect of Pore Size, Particle Size, and Impact Velocity
on Crater Morphology

Next, we explore the effect of particle size, impact velocity, and pore size on the

crater morphology. Surface morphology and its roughness is an effective parameter

for improving particle retention [77, 78]. Figure 2.6 illustrates the side and top views

of the impact crater at different configurations regarding substrates, pore sizes, and

impact velocities at a fixed particle diameter (i.e., 15 µm) and time (i.e., t = 24 ns).

Also, the PEEQ vs. time curve for impact velocities of 500 and 700 m/s demonstrates

the maximum average PEEQ value over the crater surface used in this figure to

determine the distribution of the PEEQ. Figure 2.6a shows the Al substrate crater

morphology without a pore at an impact velocity of 500 m/s. A smooth crater without

any discontinuous bump across the crater is observed with a graduate increase in

PEEQ value towards the crater center. In addition, the PEEQ value at the center is

higher than the averaged PEEQ value, indicating localized plastic deformation and

stronger bonding at the crater center, as discussed in the literature [79]. As explained

in Figure 2.4, the penetration depth is lower for the case without a pore compared to
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Figure 2.5: The time-resolved still frames showing pore morphology behavior and
PEEQ values for a pore with DPore= 4 µm at a depth of 0.3DParticle and VImpact=
500 m/s. (a) The average PEEQ value vs. time to determine the maximum PEEQ
value which is 6. The top view and the side view of the substrate with a pore are
demonstrated at a time range of (b) 5 ns, (c) 10 ns, (d) 15 ns, (e) 20 ns, and (f) 24
ns in order to show pore volume changes.

32



the other cases containing a pore, which applies for all sub-figures here. In Figure 2.6b

with DPore= 1 µm at a depth of 0.3DPore and VImpact= 500 m/s, the deformation at

the crater edges is similar to the case without a pore (Figure 2.6a), and the crater

center displays higher plastic strains, which is in agreement with the literature [79].

In Figure 2.6c, d, and e, the crater shapes from the side views are more non-uniform

and uneven, and the crater edges are distorted. The higher PEEQ value is found at

the edges of the crater rather than its center for the cases with complete (Figure 2.6c

or d) or partial (Figure 2.6e) pore collapses. The severe plastic deformation at the

crater edges or jetting [160, 169] occurs in the cases containing a pore with a diameter

greater than 1 µm (i.e., Figure 2.6d, e, and f) compared to Figure 2.6a and b. The

jetting implies that the particle localized fragmentation occurs at the crater edges

and results in material flowing near the crater edges, which has also been shown in

literature [160]. Specific particle fragmentation and material flow behaviors will be

further explored in Sub-Section 2.4.7. Figure 2.6f shows a substrate that includes a

pore with a diameter of DPore= 4 µm at a pore depth of 0.4DParticle at VImpact= 700

m/s, with the saturation of plastic deformation (illustrated as gray color) with PEEQ

values of 8.6 being observed across most of the contact surface. Comparing the crater

deformation in Figure 2.6f and Figure 2.6a without a pore at VImpact = 500 m/s reveals

that the substrate material expands more at the crater edges, the deeper penetration

occurs at the crater center, and there is a bump near the middle of the crater, which

is attributed to the higher impact velocity and higher kinetic energy generation [112,

160]. Altogether, these results are important because they show that, generally, a

pore in the substrate significantly contributes to particle deposition. Specifically, the

partial or complete pore collapse results in a deeper penetration (see Figure 2.4) and

also leads to the non-uniform crater shapes (see Figure 2.6) of the contact-surface

and excessive distortion of the crater edges (see Figure 2.5 and 2.6). The pore effect

on the crater morphology and deeper penetration can facilitate improved mechanical

interlocking, subsequent particle retention, and finally, increased deposition efficiency
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of ceramics in the coating [77, 78, 160].

Figure 2.6: Comparison of the substrate crater morphology for DParticle= 15 µm
cases of: (a) Without pore and VImpact= 500 m/s. (b) With pore of DPore= 1 µm
at a depth of 0.3DParticle and VImpact= 500 m/s. (c) With pore of DPore= 2 µm at
a depth of 0.2DParticle and VImpact= 500 m/s. (d) With pore of DPore= 3 µm at a
depth of 0.3DParticle and VImpact= 500 m/s. (e) With pore of DPore= 4 µm at a depth
of 0.4DParticle and VImpact= 500 m/s. (f) With pore of DPore= 4 µm at a depth of
0.4DParticle and VImpact= 700 m/s.

2.4.5 Effect of Pore Size and Depth on the Time-evolved
Equivalent Plastic Strain

In this sub-section, we explore the effect of pore size and depth on the average PEEQ

value over the contact surface in the substrate at an impact velocity of 500 m/s, mo-

tivated by deposition conditions from the literature [51]. The PEEQ value indicates

the contact-surface’s plastic deformation, which contributes to the localized soften-

ing of a thin (few micrometers) layer of the metallic substrate and ceramic particles,

leading to enhanced mechanical interlocking [112, 170].
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Figure 2.7 demonstrates the PEEQ value over the crater surface of a substrate

without a pore and with a pore of different diameters (2, 3, and 4 µm) placed at dif-

ferent depths (0.1DParticle to 0.5DParticle) from the surface at a fixed particle diameter

(15 µm) and impact velocity (500 m/s) within 24 ns of impact to examine the effect of

pore diameter and depth on the PEEQ value over the Al contact surface. Figure 2.7

shows the pores with the diameter of 1 and 2 µm have no clear trend on the PEEQ

value over the Al surface, which is in contrast to the general trend observed for pore

diameters of 3 and 4 µm. For example, a pore with DPore= 2 µm at different depths

slightly affects the PEEQ value compared to the PEEQ value of a substrate without

a pore (see solid orange line). On the other hand, a pore with DPore= 3 and 4 µm

significantly impacts the PEEQ value before approximately 17.5 ns, which is denoted

in the figure as t*, and defines a time for comparative purposes across all tests after

which PEEQ increases linearly at more-or-less the same rate across all conditions. At

t∗, the amount of PEEQ value increases, and the particle stops penetrating deeper,

which is also demonstrated in Figure 2.5 and described in Sub-Section 2.4.2. This

behavior can be attributed to the strain hardening that occurs at the contact-surface

in the substrate at this time (between 15 and 20 ns) due to the peening effect of a hard

particle on the deformable substrate, which both improves the tribological properties

of the surface [73, 171] and increases the PEEQ value, facilitating particle retention

[112]. The impact of hard ceramic particles on a metallic matrix reduces the inter-

facial gaps between the matrix and particles and flattens the metallic matrix due to

large plastic deformation. This helps the metallic matrix remain soft, which improves

the retention of the ceramic particles (specifically the smaller size) in the matrix [61,

172–174], increasing the deposition efficiency, and by association, the tribological and

mechanical properties of the coatings [175].
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Figure 2.7: The equivalent plastic strain (PEEQ) over the contact-surface of the
Al substrate and B4C particle for DParticle= 15 µm and VImpact= 500 m/s with a
pore with diameters: DPore= 2, 3, and 4 µm, placed at different depths from the
surfaces (0.1DParticle, 0.2DParticle, 0.3DParticle, 0.4DParticle, and 0.5DParticle). t* in
the figure defines a time for comparative purposes across all tests after which the
PEEQ increases linearly at more-or-less the same rate across all conditions.
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2.4.6 Effect of Impact Velocity, Particle Size, and Pore Size
on Time-evolved Equivalent Plastic Strain

In this sub-section, the effect of impact velocity, particle size, pore size (at a fixed

depth of 0.4DPaericle), and particle-to-pore-size ratio on the PEEQ value over the

contact surface in the substrate will be further explored to quantify their effects on the

PEEQ value, an indicator of particle retention [46, 70, 82, 93, 149]. Figure 2.8 shows

the time-evolved PEEQ over the Al substrate for different simulations to investigate

the effects of impact velocities (Figure 2.8a), particle sizes (Figure 2.8b), pore sizes

(Figure 2.8c), and pore-to-particle-size ratios (Figure 2.8d). Figure 2.8a demonstrates

the average PEEQ value measured over the Al contact-surface of three simulations

with a fixed particle diameter of 15 µm and different impact velocities (500, 600, and

700 m/s) to examine the effect of impact velocities on an Al substrate without a pore.

From Figure 2.8a, there is a correlation showing the higher PEEQ values for higher

impact velocity. Increasing the velocity generates more kinetic energy, which results

in higher plastic strain and causes a higher plastic-strain-rate over the contact surface

in the substrate [176].

In Figure 2.8b, we present the effect of particle sizes (DParticle= 15, 25, and 40

µm) at a fixed impact velocity (500 m/s) on the PEEQ value to examine the particle

size effect. We observe a correlation between particle diameters and PEEQ values,

where the smaller particles are associated with a higher PEEQ value. The particle

with DParticle= 15 µm has a higher PEEQ than the particle with DParticle= 25 µm,

and DParticle= 25 µm has a higher PEEQ value than the particle with DParticle=

40 µm. While this observation may be in contrast to the fact that larger particles

with larger masses result in higher kinetic energies, experimental studies in the liter-

ature [67] have shown the deposition efficiency of B4C with DParticle= 15 µm in an

Al substrate is higher than the deposition efficiency corresponding to particles with

DParticle= 25 and 40 µm. Other studies [56, 129, 166, 177, 178] have also shown non-

intuitive relationships between particle size and velocity on impact deposition. While
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still challenging to unravel, our results show consistency between the PEEQ value

of different particle sizes and the retention of the particles in experimental observa-

tions [67], indicating that determination of optimum particle size and velocity can

be attributed to the PEEQ value or the plastic strain deformation over the substrate

contact surface. To better understand the particle size effect on the PEEQ value,

the evolution of localized plastic strain across the contact surface is explored later in

Sub-Section 2.4.7.

Next, Figure 2.8c shows the PEEQ value over the contact-surface of an Al sub-

strate containing a pore with a diameter of 1, 2, 3, and 4 µm placed at a depth of

0.4DParticle with a fixed particle diameter of 15 µm and impact velocities of 500, 600,

and 700 m/s. By comparing Figure 2.8a and 2.8c, the PEEQ value increases from 5.8

in Figure 2.8a to 6.0 in Figure 2.8c, indicating that higher PEEQ values correspond

to higher impact velocities, as expected. Three more important conclusions can be

drawn from Figure 2.8c. First, a pore of any diameter affects the PEEQ value in a

nonuniform pattern at a lower impact velocity (500 m/s); a pore causes an increase

then a decrease in the PEEQ value within 24 ns of deposition. Second, a pore sig-

nificantly increases the PEEQ value at higher impact velocities (600 and 700 m/s).

However, the relationship between the pore diameter and the increase in PEEQ value

does not follow a predictable pattern. Three, comparing Figure 2.8c and Figure 2.4c,

the effect of including a pore in the substrate on penetration depth (see Figure 2.4c

and d) is greater than the effect of including a pore on the increase in PEEQ value

(see Figure 2.8c), which might be related to the conversion of kinetic energy into

penetration rather than plastic deformation and an increase in PEEQ.

Lastly, Figure 2.8d further explores the effect of the ratio between the pore and

particle size on the PEEQ values for different particle diameters of 15, 25, and 40

µm and pore diameters of 4 and 8 µm placed at a depth of 0.4DParticle at a fixed

impact velocity of 500 m/s. In Figure 2.8d, the curves associated with DPore

DParticle
of

0.27, 0.16, 0.1, and 0.2 correspond to the DPore

DParticle
= 4

15
, 4

25
, 4

40
, and 8

40
, respectively.
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Comparing Figure 2.8b with Figure 2.8d shows that the pore-to-particle-size ratio

influences PEEQ slightly. Moreover, the increase in PEEQ value for different pore-

to-particle-size ratios does not follow a predictable pattern; for example, the PEEQ

value for the pore-to-particle-size ratio of 0.2 ( DPore

DParticle
= 8

40
) increases by 3.9

2.1
times at

17.5 ns, which is the most significant increase in PEEQ value compared to the other

cases. Overall, the comparison between Figure 2.8d with Figure 2.4d reveals that the

effect of including a pore in the substrate on PEEQ is notably less than the effect of

including a pore on the penetration depth, recognizing both penetration depth and

PEEQ are important for particle retention [51].

2.4.7 Effect of Pore Size, Particle Size, and Impact Veloc-
ity on the Localized Equivalent Plastic Strain in the
Substrate

This final sub-section examines the effect of impact velocity, particle size, and pore size

on the localized PEEQ value across the contact-surface in the substrate towards link-

ing the effect of plastic strain localization on particle retention [112]. Here, localized

PEEQ vs. normalized distance along the substrate surface is plotted to investigate

the effects of impact velocity (Figure 2.9), particle size (Figure 2.10), and pore size

(Figure 2.11). First, Figure 2.9 investigates the effect of impact velocity on localized

PEEQ over the Al contact surface without a pore at a fixed particle diameter of 15

µm. The figure shows the time-evolved localized plastic deformation (PEEQ value)

over the Al contact-surface along the distance spanning the particle diameter (2R)

at impact velocities of 500, 600, and 700 m/s and at fixed times (i.e., t = 5, 10, 15,

20, and 24 ns). The substrate PEEQ values at times of 5 and 10 ns at the impact

velocity of 500 m/s and at the time of 5 ns at an impact velocity of 600 m/s have

a maximum value near the crater edges of the Al substrate (at 0.6 particle radius).

This PEEQ behavior is similar to the PEEQ curve trend of the Al substrate in the

Al/Al coating from the literature [93], where the PEEQ curve peaks near the edges.
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Figure 2.8: Time-evolved equivalent plastic strain (PEEQ) over the contact-surface
between the Al substrate and the B4C particle in the Al substrate. (a) Particles with
DParticle=15 µm and VImpact= 500, 600, and 700 m/s. (b) Particles with DParticle=
15, 25, 40 µm and the VImpact= 500 m/s. (c) DParticle= 15 µm and VImpact= 500, 600,
and 700 m/s with a pore of DPore= 1, 2, 3, and 4 µm placed at a depth of 0.4DParticle.
(d) Particles with DParticle= 15, 25, and 40 µm and VImpact= 500 m/s impacting on a
substrate including a pore with diameters of DPore= 4 and 8 µm placed at a depth of
0.4DParticle. The curves associated with DPore

DParticle
of 0.27, 0.16, 0.1, and 0.2 correspond

to DPore

DParticle
= 4

15
, 4

25
, 4

40
, and 8

40
, respectively.
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Figure 2.9 at the VImpact= 500 m/s also illustrates the sudden increase in PEEQ value

near the crater center after 10 ns in the Al/B4C coating. In Figure 2.9, the maximum

PEEQ value is observed near the crater center and also near the crater edges (0.6R)

at VImpact = 600 and 700 m/s. Although the localized plastic strain trend is analogous

at impact velocities of 600 and 700 m/s, the PEEQ value is different, and the higher

PEEQ value corresponds to the higher impact velocity.

The abrupt increases in PEEQ value in Al/B4C observed here can be attributed

to the distinct material types of the particle and substrate. When a harder ceramic

particle (B4C) impacts a softer metallic substrate (Al), its kinetic energy transforms

into plastic deformation by a cushioning mechanism, and the matrix surface acts as a

cushion and is largely deformed to provide a place for the ceramic particles to retain

[167]. This embedment mechanism causes localization of the plastic deformation

across the crater surface [51, 93, 167], leading to fracture and fragmentation of the

ceramic at the center [51]. The high plastic deformation at the center creates a strong

bonding between particle and matrix and facilitates particle retention, as reported for

the ceramic/metal coatings in the literature [79]. The discontinuous high PEEQ value

at the crater edges stems from the intense pressure wave [70, 179] causing jetting at

the crater edges and enhancing the fragmentation and the flow of the comminuted

ceramic particles [56]. Hence, we conclude that the B4C particle impact on the Al

substrate results in a maximum PEEQ value near the crater center at all impact

velocities and another maximum PEEQ value near the crater edges at higher impact

velocities where the comminuted ceramic flow is more visible [79].

Next, Figure 2.10 examines the effect of the B4C particle size on the localization

of the plastic strain over the contact-surface in the Al substrate by demonstrating

the PEEQ value vs. the distance per particle radius (Distance/R) across the surface

in the substrate for particles with diameters of 15, 25, and 40 µm at a fixed impact

velocity (500 m/s) and a substrate without a pore at a range of times (5, 10, 15, 20,

24 ns). In Figure 2.10, an abrupt increase in PEEQ values is observed near the crater
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Figure 2.9: The time-evolved localized plastic deformation (PEEQ) over contact-
surface between the Al substrate and the B4C particle in the Al surface. The particle
size is DParticle=15 µm and impact velocities of 500, 600, and 700 m/s on the Al
substrate without pores.

center at the impact of a particle with diameters of 15, 25, and 40 µm on a sub-

strate. These three sub-figures show that the maximum PEEQ value near the center

is higher for larger particles (the maximum magnitude corresponds to the particle

with DParticle= 40 µm). In contrast, the PEEQ value dramatically decreases after

its sudden increase, resulting in a lower average PEEQ value for larger particles (see

Figure 2.8b), subsequently, lower particle retention, and lower deposition efficiency

according to experimental data [67]. A concentration of plastic strain occurs at the

center of the crater due to the high kinetic energy of impact, and the rate of defor-

mation increases more rapidly than in the rest of the substrate, which requires more

energy and stress to deform. Meanwhile, a more considerable amount of kinetic en-

ergy is released at the beginning of the particle deposition and converted into a high

plastic strain, whereas there is no further stress or energy to cause another significant

localized plastic strain; this is known as strain hardening [31]. Consequently, the

lower average PEEQ value for larger particles can be attributed to the strain hard-

ening phenomenon at the crater center, resulting in a considerable localized plastic

strain and a significant decrease in PEEQ across the contact-surface in the substrate

without an increase [31].

Finally, Figure 2.11 explores the effect of a pore in an Al substrate subjected to

the different B4C impact velocities on the localized plastic deformation (PEEQ) over
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Figure 2.10: The time-evolved localized plastic deformation (PEEQ) over the contact-
surface between the Al substrate and the B4C particle in the Al substrate for different
particle diameters of: 15, 25, and 40 µm at a fixed impact velocity (500 m/s) on the
Al substrate without a pore.

the contact-surface in the Al substrate. Figure 2.11 consists of three sub-figures

showing the PEEQ value vs. the distance per particle radius (Distance/R) across the

substrate surface at the time of 24 ns, when the particles stop penetrating deeper

(see Figure 2.4c). The particle diameter is fixed (DParticle= 15 µm) and the particle

velocities are 500, 600, and 700 m/s, and the Al substrate includes a pore with

DPore= 1, 2, 3, and 4 µm at a depth of 0.4DParticle. In Figure 2.11, at VImpact=

500, 600, and 700 m/s, the PEEQ curve trend and value of the cases containing a

pore with DParticle= 1 µm are almost identical to those of the cases without a pore,

indicating the minor effect of the pore with DPore = 1 µm on the PEEQ localization

and magnitude, as shown in Figure 2.4. Also, there is no trend in the localized plastic

strain for the cases with pore diameters of 2, 3, and 4 µm. Nevertheless, the PEEQ

value tends to suddenly increase at 0.6R near the crater edges, as well as at 0.2R near

the crater center, similar to Figure 2.9 for the substrate without a pore subjected to

the impact velocities of 600 and 700 m/s. However, higher impact velocities result

in higher PEEQ values in Figure 2.11, which has already been noted many times

previously. Additionally, the sudden increase in PEEQ values near the crater center

for the cases containing a pore with DPore= 2, 3, and 4 µm shifts toward the peak

PEEQ value near the crater edges, and this can be related to the existence of a pore

at the center.
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Overall, in these sub-figures, the localized PEEQ value near the crater center re-

sults in fracture and fragmentation of the B4C particle. The comminuted particles

cause a secondary impact and the subsequent rebound of the B4C particles, lead-

ing to a lower deposition efficiency [56]; however, Huang et al. [39] experimentally

showed that the fragmented B4C particles are mechanically interlocked at the crater

center in the substrate due to the large plastic deformation and deeper indent of the

crater, and Chakrabarty et al. [79] proved this using smoothed-particle hydrodynam-

ics method. In addition, the particle fragmentation, spall-like processes, and the flow

of the comminuted particles at the crater edges can be attributed to the maximum

PEEQ value near the crater edges. Overall, our results show that the inclusion of a

pore promotes damage and fracture in the ceramic particle, leading to larger plastic

deformation and, subsequently, enhanced retention [51]. This brings new consider-

ations for designing and manufacturing cold-sprayed coatings, especially those with

inherent porosity and under lower-speed deposition rates [82, 180].

Figure 2.11: The time-evolved localized plastic deformation (PEEQ) over the contact-
surface between the Al substrate and the B4C particle with DParticle= 15 µm in the
Al substrate with a pore (DPore= 1, 2, 3, and 4 µm) at a depth of 0.4DParticle at
the impact velocities of 500 m/s, 600 m/s, and 700 m/s. These results are taken
at 24 ns after impact for comparative purposes, with 24 ns being a time where the
particle with different impact velocities no longer continues to penetrate the substrate
according to Figure 2.4c.
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2.5 Conclusions

In this study, the impact of a single B4C particle on an Al substrate in Al/B4C

composite coatings is numerically simulated to examine the effect of impact velocity,

particle size, and matrix porosity on the key particle retention parameters (i.e., pene-

tration depth of the particle, the crater morphology, and plastic deformation (PEEQ)

of the contact-surface in the substrate). The summarized key results are:

• Higher impact velocities, larger particles, and greater matrix porosity result in

deeper penetration.

• Higher impact velocities and smaller particles lead to higher PEEQ values in

the substrate.

• The effect of matrix pore size and depth on the PEEQ value is unclear.

• The partial or complete crush of a pore increases the non-uniform shape of the

crater.

• A pore at low impact velocities produces a non-uniform distribution of the plas-

tic strain and causes a complex interplay between penetration depth, contact-

surface roughness, and the PEEQ value along the contact-surface in the sub-

strate.

Overall, the results indicate that some porosity in the coating prior to deposition may

improve particle retention and, by association, coating quality.
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Chapter 3

Concluding remarks

3.1 Implications

This thesis explored the effect of a pore in an Al substrate on important particle

retention parameters (e.g., depth of penetration of the particle, crater morphology,

and value and localization of plastic strain of the substrate) at different impact veloc-

ities and with varying B4C particle sizes in cold sprayed Al/B4C coatings. The main

implications of this thesis are summarized below:

1. This thesis presents an approach for modeling metal/ceramic cold sprayed com-

posite coatings by taking account into the elastic-plastic behavior of the ceramic

particle in order to describe the effect of its fracture and fragmentation on sub-

strate behavior, and, subsequently, particle retention. It follows that a model

incorporating ceramic elastic-plastic behavior should be used when modeling

the deposition of ceramic particles in order to properly represent the physics of

the process.

2. This thesis determines the effect of porosity, particle size, and impact velocity on

retention of the ceramic particle in a metallic substrate by studying the penetra-

tion depth, the crater morphology, equivalent plastic strain and deformation at

the crater surface, and distribution of plastic strain across the contact surface.

According to the results, this thesis suggests a strategy for modeling a porous
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substrate based on the experimental SEM images in the numerical simulations

of cold sprayed processes in order to better understand the deposition process

and properties of the PRAMC coatings.

3. This thesis provides an insight into the effect of porosity on the plastic strain

localization and distribution of the plastic strain across the crater surface, which

is similar to the plastic strain distribution induced by higher velocities; conse-

quently, it recommends taking account into the effect of porosity in the sub-

strate and pre-deposited coatings in the manufacturing process of the Al/B4C

composite coatings and similar ceramic/metal coatings at lower velocities.

3.2 Future Works and Recommendations

To build upon the current work of this thesis, future possible research directions are

outlined below in terms of numerical modeling and manufacturing recommendations:

• Considering an interface model - The current model considers two distinct ma-

terial models for the boron carbide particle and aluminum substrate that include

the effect of plastic strain rate and plastic deformation under impact loading.

In the current paper, the interface response is not captured between the par-

ticle and substrate, which may play an important role during an impact event

[181]. To augment the model, an interface material model including a contact

criterion for dynamic loading [182, 183] can be developed via a user subroutine,

or by placing a cohesive layer between the particle and substrate [184].

• Considering a porous substrate - This model can be further expanded to a sub-

strate with random pores to predict the behavior of a more realistic substrate

based on experimental observations (e.g., SEM images with random pore dis-

tribution [39]). The pores in the substrate can be modeled as air or vacuum by

developing an user subroutine in Abaqus to determine the effect of the porous

substrate on the particle retention parameters.
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• Considering thermal-mechanical effects in the substrate model - The material

model used in this simulation consists of two distinct models for ceramic and

metallic materials without considering the effect of temperature change. The

high velocity impacts of particles result in increasing the temperature that

softens the material and may lead to more extensive plastic deformation [93].

The temperature change in ceramic particles will likely not affect the particle

thermal-mechanical response due to their high heat resistance, but temperature

will affect the metal substrate behavior.
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