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ABSTRACT

An important aspect in the study of multivariate box splines is the fact that
polynomials contained in the linear span of lattice translates of a box spline are
precisely the common kernel of a family of linear partial operators. Dahmen and
Micchelli were the first to compute the dimension of this kernel and to realize that
the dimension theory extends to general linear operators indexed by a finite sct X
with matroid structure. Dahmen and Micchelli related the dimension problem to
solvability of certain systems of linear operator equations.

The first study of this thesis is related to the study of Dahmen and Micchelli.
Let G be a semigroup of linear operators on a linear space into itself with the op-
cration of composition. A subset of G is indexed by a finite set X with matroid
structure. The kernel space is induced by the matroid structurc on X and the
dimension can be given as sum of the dimensions of simpler kerncls if and only if
G has s- dimensional additivity. The method also allows us to discuss some other
structures on the index set. As applications, we show that constant coefficient par-
tial differential equations and difference equations corresponding to polynomials in
s variables have the s-dimensional additivity property. Another general problem
related to this is the solvability of systems of linear operator equations. We also
discuss conditions under which simple necessary conditions, the compatibility con-
ditions, are sufficient for the system of linear operator equations to have solutions.
In particular, we apply these results to systems of partial differential and difference
equations.

The second part of this thesis is wavelet decompositons. We discuss orthog-
onal decompositions of multiresolution approximation generated by box splines in

dimensions s = 1,2, 3.
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CHAPTER 1
INTRODUCTION

The first basic question addressed in the first four chapters of this thesis is one
of expressing the dimension of the intersection of kerneis of linear operators that
arise naturally in multivariate approximation theory in terms of the more easily
computable dimensions of some basic building blocks. The theory, as it has pro-
gressed, connects concepts arising in multivariate approximation theory with ideas
from general algebra and algebraic geometry. We shall first describe the present
setting for the problem and then describe its development and our motivation from
the point of view of approximation theory.

In the first four chapters of thesis, G will denote a semigroup of commuting
linear operators on a linear space S over a field k with the group operation taken
as composition of linear operators. An important property for our study is the
s-dimensional additivity of such a semigroup G. This concept can be described

as follows: From the two subsets of linear operators
Fi={b,....6,...,8) and F={,...,0,...,4}
in G, a new subset F is formed by
Fi={,...,8i¢;,...,0}.

We say that G has s-dimensional additivity if for arbitrary Fi, F> and F as
above:

dim K(F) = dim K(F) + dim K(F3),

where, for any subset F™* of s operators from G, K(F*) is the intersection of kernel

spaces

(1.1) K(F*):= n ker ¢, kerl:={f € S:£f =0}.
LcF*
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The kernels of interest to us arise when an external structure is imposed on
a subset of G through the structure of a finite index set. Let X be an index set
with cardinality |X| < co. A matroid structure is imposed on X by a collection of
“independent” subsets, 7, satisfying: i) The empty sct is in 7. ii) If V" € 7, then
any subset of V is in 7. iii) For arbitrary U,V € T with |U| = |V| + 1, there exists
z € U\V such that V U {z} € T. (See, for example, the book of Welsh [W] for a
detailed account of matroids.) Of course, there can be many matroid structures on
a given X, but we shall simply say the matroid X to refer to X with some fixed
matroid structure and only specify the structure if it has some importance. One
exception is that for an arbitrary subset Y of a matroid X, we will always assume
that the submatroid structure is imposed.

For any matroid there is a rank function, g : 2¥ — ZZ4, defined on subsets
V C X by

p(V):=max{|Y|: Y CV, YeT}.

A maximal independent subset of X is called a base for the matroid X. Every base
of X has the same cardinality, o(X'), which is called the rank of X. We deal mainly

with matroids of rank s (this number is connected with the s-dimensional additivity

of G).
The collection B(X) of all bases for the matroid X is described as

B(X):={B < X :|B|=o(B) = o(X)}.

For a subcollection fo) C B(X), we define A(X,B{™) to be all the subscts of X

which intersect all bases in fo); ie.,
AX,BXNY:={vcx:vnB#0 VBeBX).

We are now in a position to describe the kernel spaces of interest: For a ma-

troid X with rank o(X) = s, and the commutative semigroup G of linear operators
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on S, we take Lx to be the image of some mapping X — G that associates a linear

operator £, € G to each z € X. For any subset V C X, we set
Ly={l: zeV}

and decfine

eV = Hez')

zeV
to be the composition (in any order) of the operators from Ly.

The main problem is to describe the dimension of the kernel spaces
(1.2) K(Lx,B¥):={feS:tyf=0, VVe AX, BN,

in terms of the dimensions of the kernels K(Lp) given in (1.1) for the s linear
operators Lg, B € ng).

How did such a question arise from approximation theory and why would its
answer be interesting? Kernels of the type (1.2) appear in de Boor and Héllig’s paper
[BH], the first one dealing extensively with the properties of box splines. Without
going into details, for a given sct of nonzero vectors X that span IR® (with the
natural matroid structure on X), the box spline is a compactly supported piecewise
polynomial function with the polynomial pieces from D(X) which is the kernel in
(1.2) with B!X) = B(X) and the operators £; = D, the directional derivative in

the direction of z, z € X. The dimension formula
(1.3) dim D(X) = |B(X)|

was first shown by Dahmen and Micchelli [DM;]. Its importance is derived from
the fact that when the directions X are in ZZ°, the polynomials in the linear space
spanned by the integer translates of the box spline are precisely the functions in

D(X), and this plays an essential role in both de Boor and Hollig’s and Dahmen
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and Micchelli’s studies of the algebraic and approximation properties of such spaces
((BH] & [DMy1,5]).

There is a natural -elation between the directional derivatives D, and the
difference operators V. : f++ f — f(- — z), z € R’.

The corresponding kernel space V(X) given as in (1.2) with Bi‘\’) = B(X)

and £, = V., and the formula ([DMj3]) for its dimension

(1.4) dmV(X)= Y  |detB|,
BeB(X)

were also crucial in Dahmen and Micchelli’s studies of the algebraic properties of
box splines.

As a natural extension of the box spline, Ron [Ro,;] introduced the exponential
box splines for a set of directions X and complex numbers cx = {¢;},ex. The ker-
nels D, (X) and V, (X) defined as in (1.2) for the differential operators D, ¢, :=
D; — ¢z, = € X, and the difference operators V., : f +— f — exp(e)f(- — z),
z € X, played the same type of essential role in the studies of exponential box
splines by Dahmen and Micchelli [DMy 5], Ron [R], and Ben-Artzi and Ron [BeR].
In particular, the dimension formulas for D., (X) and V,, (X) are the same as
given in (1.3) and (1.4) respectively. This (nontrivial) extension precipitated two
separate but related lines of study into the deeper algebraic ideas behind the box
spline theory.

Dahmen and Micchelli ([DMs]) realized in their investigations of exponential
box splines that the problem could be formulated for B(X) in terms of matroids
and linear operators. Their results were announced previously in [DM,]. When
|X| = s, the sums in (1.3) and (1.4) reduce to one summand and the definitions

(1.1) and (1.2) agree. Therefore, both (1.3) and (1.4) are expressible as

(1.5) dimK(Lx,B(X))= »_ dimK(Lp).
BeB(X)

Dahmen and Micchelli proved the following theorm in {DMs].
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(1.6)Theorem. [DMs] For any matriod X with o(X) = s, and any Lx C G

associated with X.

(1.7) dimK(Lx,B(X))< Y, dimK(Lp).
BEB(X)

Furthermore, their studies also led to an important theorem which gave a

sufficient condition [DMs, Theorem 3.3] for equality based on the solvability of

certain systems of operator equations [DMs, Theorem 3.2].

(1.8)Theorem. [DM;] Suppose that Lx is associated with a matriod X of rank s

and dim K(Lp) < oo. If the system of equations
Lf=¢y yE€Y,

has, for each Y € B((X)), the independent subsets of cardinalityrin X,1<r <,

a solution provided that the compatibity conditions
Ly by = LyPy

hold for each y,y € Y, then equality holds in Theorem (1.6).

In another paper [DMg], Dahmen and Micchelli investigated the dimensions
of certain spline spaces and the relationship of these questions to syzygies and the
kernels of systems of differential equations. In particular, they proved that if the
linear operators in G are the partial differential operators given by homogeneous
polynomials on R’, then (1.5) holds for ng) = B(X) in the cases s = 2 and
for general s but with restricted X (a fixed basis of IR® with each of its elements
having arbitrary multipicity). They conjectured that it would always hold and this

conjecture initiated our the study in the first part of this thesis.
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Along other lines, de Boor, Dyn, and Ron ([DRy,2], [BRi 23], and [BDR))

were taking advantage of polynomial ideals, their varieties and codimensions to
gain new insights and results for various problems in multivariate interpolation,
approximation and spline theory. They also encountered dimension problems of the
type considered here, usually in the context of partial differential operators given
by polynomials, but sometimes free from any matroid structure. For example, in
the case when G consists of differential operators given by affine polynomials, de

Boor and Ron [BR;, Theorem 6.6] give the lower bound
dim K(Lx,B{™) > |B{™|

for arbitrary B{x) C B(X), in contrast to the upper bound in (1.7). They also prove
that equality holds for these special operators if ng) is an order closed subset of

B(X) [BR;, Theorem 6.9].

(1.9)Theorem. [BR] For Lx = {pz,u, (D) =D; + piz : € X}
dim K(Lx,B{") > [B{)|.

Morever, if fo) is an order closed subset of B(X), then the equality holds.

We have used these two approaches in our research. As Dahmen and Mi«chelli
pointed out, the dimension of kernels of linear operators is related to the solvabil-
ity of the certain systems of linear operator equations. In Chapter 2, we closcly
investigate solvability problems of systems of linear operator equations and extend
Theorem (1.9) to the case of general linear operators from some semigroup G. It
turns out that s-dimensional additivity is the key to this problem. In Chapter 3
and 4, we use polynomial ideals, their varieties and codimensions together with the
results obtained in Chapter 2 to discuss the s-dimensional additivity and corre-

sponding dimension problems for partial differential and difference operators given
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by polynomials of s varibles. In particular, we confirm the conjecture in Chapter 3.
We also establish some solvability criteria for systems of differential and difference
equations. The research began with [Sh] where the Dahmen and Micchelli conjec-
ture, Theorem (3.7), was solved as a consequence of Theorem (2.16) and a version of
Theorem (2.10). In joint research with Professors Jia and Riemenschneider [J RS),
these ideas were extended to the order closed case and the s-dimensional additivity
of constant coefficient partial differential and difference operators were established.
This research led naturally to the consideration of solvability of systems of linear
operator equations and its connection to s-dimensional additivity (see [SJ R]). The
results in chapter 2-4 are based on the papers [Sh], [JRS], and [SJR].

The second topic of this thesis is wavelet decompositions. This problem has
been studied by Meyer and Mallat for the univariate case (see [Me] [M]). Daubechies
[D] gives a construction of compactly supported wavelets, along with a compre-
hensive overview of the subject. Dahmen and Micchelli [DM7] using stationary
subdivision techniques provided some improvement of [D] and gave an alternative
derivation of Daubechies’ theorem. The cardinal spline approach to wavelet de-
compositions for the univariate case was considered by Chui and Wang in [CW]. In
Chapter 5, we will give a constructive way to obtain orthogonal decompositions of
multiresolution approximation generated by box splines in dimensions s = 1,2,3.

This construction was part of a joint work with Professor Riemenschneider (see

[RS)).



CHAPTER 2
SOLVABILITY OF SYSTEMS LINEAR OPERATOR EQUATIONS
AND DIMENSION FORMULAE

We wish to determine some conditions on Bix) under which the dimension
formula (1.5) holds. To this purpose, we first discuss solvability of systems of lincar
operator equations.

Let G be a semigroup of commuting linear operators on a lincar space S with

the group operation of composition. The solvability of the system of equations
(2.1) Lif = ¢, t=1,...,r,

where £; € G and ¢; € S, was considered by Dahmen and Micchelli in their studies
of the dimension of the kernel space of certain linear operators (sce [DMs]). It is

clear that the compatibility conditions

(2.2) £igi =Lig; (i #7)

are necessary for the system (2.1) to have a solution in S. However, in general, the

compatibility conditions do not provide sufficient conditions for the system (2.1)
to be solvable in S. In this Chapter, we shall discuss what kind of conditions on
operators will make the conditions (2.2) sufficient for the system (2.1) to be solvable
in S.

First, we observe the easy case in which one of the operators is invertible.

(2.3)Theorem. Let G be a commutative semigroup of linear operators on S, and
let £y,...,¢, be elements of G. Assume that one of them, say ¢,, is invertible on S.

Then for given ¢;,...,¢, in S, the system of equations

e]f=¢1) j=1,---,7',



has a solution in S if and only if the compatibility conditions
Ligp =Lbrdj, 1<j<k<m,

hold.
Proof. We claim that £ commutes with each £;, j = 1,...,r. Indeed,

it follows from ¢,¢; = {;¢, that
e;‘e,- = efl(ejel )El_l = e;l(e,e,-)e;‘ = Ejffl.

Let f = £7'¢1. Then f is a solution to the system. o
Let M be a subspace of S. An element £ € G is called nilpotent on M if for

any ¢ € M, there exists a positive integer m such that £™¢$ = 0 (m may depend
on ¢). We say that M is compatible with G if the following two conditions are
satisfied:

(i) M is invariant under G, i.e., for any £ € G, £{(M) C M;

(ii) For any £ € G, £|p is either invertible or nilpotent.

(2.4)Theorem. Let G be a commutative semigroup of linear operators on S which
possesses s-dimensional additivity. Suppose that S is a direct sum of two subspaces
M and N which are invariant under G. Moreover, assume that ¢;,...,¢; € G
are nilpotent on M and have the property dim (ker (41, ... 8s)) < oo. Letr €

{1,...,s}. Then for given ¢,,...,¢, € M, the system of operator equations
(2'5) ejf=¢j7 j=1’°"‘,r,
has a solution in M if and only if the compatibility conditions

(2.6) lidr =lxdj, 1<j<k<rm,
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hold.

Proof. Obviously, the compatibility conditions (2.6) are necessary for the

system (2.5) to have a solution.

For the sufficiency part, we first consider the special case where r = s and
¢2 = -+ = ¢, = 0. Since £1|p is nilpotent, there exists a positive integer m such

that £*¢; = 0. Let
F:=ker (', 6,...,8,),

F' :=Xker (e7,4,,...,4,),
F" :=ker(l1,0z,...,4,).
By the compatibility conditions (2.6), £;¢; = 0 for j = 2,...,s. Hence ¢; € F'.

Observe that ¢; is a linear mapping from F to F' with F" being its kernel. Hence
dim(F) = dim(F") + dim(¢; (F)).
On the other hand, since G possesses s-dimensional additivity, we have
dim(F) = dim(F") + dim(F").

Comparing these two equations gives ¢;(F) = F'. Since ¢, € F', it follows that
there exists f € F such that ¢;f = ¢;. This f also satisfies £;f =0, j = 2,...,s.
Since S is a direct sum of M and N, f has a unique decomposition f = f; + f3,
where f; € M and f; € N. But both M and N are invariant under G, hence the
element f; satisfies {1 fi = ¢ and ¢;f, =0,7=2,...,s.

The general case will be proved by induction on r. For the case r = 1, the
compatibility conditions (2.6) are satisfied since there is only one equation. The
solvability of equation ¢; = ¢; can be proved in the same way as the following
induction step. Suppose that the theorem holds for r — 1. Given ¢,,...,¢, € M,

by the induction hypothesis, we can find an f; € M such that

bifi=¢i, 1=1,...,7—1.



11
Choose f; to be 0 in the case r = 1. Let g = £rf1. Then g € M and
big=20i(L.fL) =L (bif1) =Ledi, i=1,...,7— L

This together with the compatibility conditions implies
(2.7) i(pr —g)=Lidr — i =0, 1=1,...,r—1L
Moreover, since j|p (j =7 +1,...,s) are nilpotent, there exists a positive integer
m such that
(2.8) £ (¢r—9)=0, j=r+1,...,s
Consider the following system of operator equations for h:

bh=0, 21=1,...,r~1,

(2.9) bh=¢,—g

£h=0, j=r+1,...,s
By (2.7) and (2.8), the compatibility conditions corresponding to the system (2.9)
are satisfied. This is just the special case we discussed before. Therefore the system

(2.9) has a solution h in M. Let f = f; + h. Then
bif=L;fi+Ch=¢; 1=1,...,7—1,
and
bf =L f1 +lh=g+(ér —9g) = ¢r

This shows that f is a solution to the system (2.5). [ )

To carry our investigations further, we need the following concepts. For a
matroid X, we say that a set of linear operators Lx C G is well associated with
(X, B, if dim K(Lp) < oo for any B € BX). If, for any Lx C G, the formula

dimK(Lx,B{) = Y dimK(Lg)
BeB{™)



holds, then G is said to be excellently associated with (X, Bg'\’)).
Let us recall that B(X') is the collection of all bases for the matroid X. For a
subcollection ng) C B(X), we define A(X, ng)) to be all the minimal subsets of

X which intersect all bases in ng); ie.,

AX,BX):={VCX:VNB#0 VBeB™ and WyeV 3 BeBY
such that (V\{y})n B = 0}.

We also set
M(X, B = {X\V : V € AX, BY))).

Equivalently, M(X, ng) ) is the set of all maximal subsets of X such that X\ M in-
tersect all B € ng) , or, the maximal subsets of X that do not contain any clements
of ng). When B{¥) = B(X), M(X, B§X)) =: H(X) is the set of “hyperplanes” for
the matroid structure.

Note that we have changed the definition of A(X, ng)), but this does not
affect the definition of the space K(Lx, B{X)).

We give the solvability of a special system of linear operator equations in the
next theorem. The usefulness of the solvability of the system in investigation of the
dimension of the kernel spaces was recognized by Dahmen and Micchelli in [DMg]

(see (1.8) Theorem).

(2.10)Theorem. Let X U ( be a matroid with rank o(X U() = s and let G
be a semi-group of linear operators with s-dimensional additivity and Bqu() C
B(X U(¢). Suppose that Lxu¢ € G and M € M(X,BX) are given and satisfy the
following conditions:

i) Lx and Lpy¢ are well associated to (X, ng)) and (MUC,B}MUO) respectively;

ii) G is excellently associated to (M U (, B;M UC));
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iii) For any B € BMY and y € X\M, (B\{¢})U {y} € B

Then the system

Lx\mf=¢
(2.11) X
tvf=0 YV eAX,BONX\M}
is solvable for any ¢ € K(Lyuc, BMY9).
Proof. To each z € M U ( we associate two linear operators E, and 2, as
follows:

s — {ecex\M, 1f:c=(

¢z Lz, otherwise,

and

7 = x\m, ifz=(
z £, otherwise.

Then we set

EMU<:={Z,: teMU(}

and
Z’MUC:={Zz: zeMUC(}.
Both EMU< and Lpy are well associated with (M U ¢ ,BfMUC)). Thus, for any
V € MU(, we have
7, = by, ifC¢V;
V= Zx\Mev, if¢eV.
Hence, £x\n maps K(Earug, B{M9) into K (Laruc, BS") with K(Lruc, B ™)

as its kernel. Moreover, since G has s-dimensional additivity and is excellently as-

sociated to M U (, we have

dim K(pug, BMY) = Y dimK(Ip)

BEB&M u¢)
= Y dmK({@p)+ Y, 6 dimK(Lg)
BepMvo) BeB{M <)

= dim K(E pug, BMY9) + dim K (Larug, BMY9).



Hence £x\a is surjective, since the dimension of K (E MU, BfMUO) is finite.
Now that the image of the mapping €x\ar is K(Lauc, BgMUC)), for any given

pE K(LMUC,BfMUO), we can find a function f € K(EMU‘;, BfMUc)) such that
Ex\mf = .
We claim that this f also satisfies
Lwf=0 YW e AX,BPN{x\M).

Let W € A(X,BP)\{X\M}. Then there is y € X\M, such that y ¢ W. Oth-
erwise, W = X\M by the minimal property of W. We want to show that W
intersects any base in BgMUO. For this purpose, we pick B € BfMUo. Then ¢ € B,
and B := (B\{¢}) U {y} € B! by iii). Therefore,

WNnB=Wn(B\{¢})=WnB #4.

§M“" . Therefore, by the very defini-

This shows that W intersects any base in B
tion of A(M U C,BgMUC)), W must contain some V € A(M U C,BfMUC)). Since
¢ ¢ W, we have ¢ ¢ V, hence &y = &v. Now, f € K(ZMU(,BfMUO) and

V € A(M U ¢,BMYUY imply
tvf=10vf=0.

It follows that
bwf=2£.)vf=0.

Therefore, for the given ¢, the system (2.11) is solvable. ]
Next, we use the last theorem to prove the main result about the dimension
of kernel spaces of linear operators. The conditions imposed on fo) under which

the dimension formula (1.5) will hold is that ng) be an order closed subset of
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B(X). This concept was first introduced by de Boor and Ron in [BR]. In fact,
they proved the dimension formula (1.5) for the case that the linear operators are
the differential operators induced by affine polynomials.

Suppose that a total order on X is given. This order induces a partial order

on B(X);
B=(z1,...,25) < B =(31,...,%,) <= ;<% j=1...,

where the elements of each sequence are arranged in an increasing order. We say

that fo) C B(X) is an order closed subset of B(X), if

B, eBX), B,eB(X), and B; <B; => B, e B

(2.12)Theorem. Let X be an arbitrary matroid with rank o(X) = s and ng) be
an arbitrary order closed subset of B(X). If G is a semigroup of linear operators
on S, then, for arbitrary Lx C G,
dimK(Lx,B)= Y dimK(Lp),
BeB{™)

if and only if G has the s-dimensonally additive property.

Proof. “—=3" If Lx is not well associated with (X, ng) ), then the equal-
ity holds simply because there exists a B € ng) such that dim K(Lg) = oo and
K(Lp) € K(Lx,B{™).

For the case that Lx is well associated with (X, Bix)), we will prove the
equality by induction on |X|. When o(X) = |X| = s, the theorem is obviously true.
Suppose now that the theorem holds for all X with s < |X| < n and o(X) = s. We
want to establish it for (Y, B§Y) ) with |Y| = n + 1, where ny) is an order closed

subset of B(Y) and o(Y') = s. Let

¢:=sup{yeY:o(Y\{y})=s}
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We write X for Y\(. ThenY = X U (.
Let P be the mapping given by

Pf= (eX\Mf)Me.M(x,sg"))v f € K(Lxue,BYY).

Since the mapping £x\p maps K(Lxuc, BiXuc)) to K(Laue, BgM U6 ), the mapping

P maps K(L xU(,nguo) to the Cartesian product

Il  E@wmue,BM).
MeM(X,B*))
Note that K(Lasuc, B9 = 0 if BIMYO = ¢,
Observe that ker (P) =~ K(Lx, ng)). Therefore,
(2.13)

dimK(Lxue, BXY) <dimK(Lx,B*)+ Y dimK(Laug, B9,
MeMm(x,B8{*))

Equality will hold in (2.13) if the mapping P is surjective. Before showing

this, we pick out the nontrivial components in the image of P: We claim
MeMX,B?)y and BMYO 29 = M e H(X).

For this purpose, we shall show p(M) < s. Suppose to the contrary that p(M) =
s. Since B§M°° # 0, there exists a base B € Bf’"“"; it follows that ¢ € B
and p(B\() = s — 1. But p(M) = s; hence there exists some y € M such that
p((B\¢) Uy) = s. By the very definition of ¢, we have y < (. Therefore, B, :=
(B\{)Uy € Bg)(uc) , because nguo is order closed. Thus, M would contain a base
B; in fo). This contradicts the choice of M. Hence, o(M) < s, so M C H for
some H € H(X). But (X\H)N B # 0, for any B € B(X); it follows that H = M
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by the maximality of M. In particular, this implies that the following union is a

disjoint union:
(Xu (X (MuU(¢)

This fact will be used below.

The mapping P is surjective if and only if for each M € M(X, BX)) with
BfMUO # @, the system (2.11) is solvable for any ¢ € K(LMU(;,BgMUC)). Thus, it
suffices to prove that Theorem 2.10 can be applied here. Condition i) of Theorem
2.10 holds since we have already restricted ourselves to the well associated case.
Condition ii) holds by the induction hypothesis since |M U (| < |X|. Condition iii)
holds because of the following reason. Suppose that B§MU0 #0. Let B € BiMUO
and y € X\M. Note that BMY) 2 @ implies (M U () = s. Thus, if y € X\M,
then p(X U ¢\y) = p(M U () = s. Hence, by the choice of ¢, we have y < (. Since
Bg)(uc) is order closed, for any B € BiMUC) and y € X\ M, we have B :=(B\{)Uy €
Bix) . Therefore, Theorem 2.10 can be applied and equality holds in (2.13):

(2.14)

dim K(Lxug, BXY) = dimK(Lx, B0+ Y. dimK(Zaug,B"0).
MeMm(X,B{"))

Finally, applying the induction hypothesis to X and to each M U (, M. €
M(X, B, we obtain

(2.15)
dimK(Lx,B)+ Y dimK(Lpug, BYMYY)
MeM(X,B(%))

= Y dimK(Is)+ Y. > dimK(Lp)

BeB™) MeM(X,8{%)) BeBM <)

= Y dimK(Lp).

Xu
BeB{* Y9
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Substituting this ini;o (2.14) gives the desired result:

dimK(Lxue, B{*9) = Y dimK(Lp).
BeB{*Y9

“4&=" Suppose F}, F, and F are the sets of linear operators given as above.
Let X = {e1,...,€j,...,€s,€j} where e1,...,e, are linearly independent vectors
in R’, and é; = ej. Then X has a natural matroid structure with o(X) = s.

Moreover, B(X) = {B, B;} with,
By = {e1,.--,€j,-.-1€s}, Ba={e1,...,&;,...,€,}

The set of linear operators Ly := {{;,...,¢;,... ,8,,2,-} is associated to X by the
correspondencee; ¢« £;,j =1,...,sand €; « Zj. We observe that K(F') = K(Ly).
Therefore, since G is excellently associated with X, we have
dim K(F) =dim K(Lx) =dim K(Lp, )+ dim K(Lg,)
= dim K(F}) + dim K(F,).
Thus, G is s-dimensionally additive. [ )

For the special case that fo) = B(X), we have following theorem.

(2.16)Theorem. The semigroup G is s-dimensionally additive if and only if G is
excellently associated with any matroid X of rank o(X) = s, i.e. forany Lx C G

associated with X,

dmK(Lx)= Y, dimK(Lp).
BeB(X)



CHAPTER 3
APPLICATION TO CONSTANT COEFFICIENT
PARTIAL DIFFERENTIAL OPERATORS

The first part of this chapter ;onsists of background material from algebraic
geometry. It is meant to give a concise account of the material that is required for
our purposes with appropriate references for the details.

Let k be an algebraically closed field, and k°® the s-dimensional affine space
over k. Denote the ring of polynomials in s indeterminates over the field £ by
k[Z] = k[Z1,...,2,). The ideal generated by pi,...,pm € k[Z] will be denoted by
(p1,--.,Ppm). The codimension of an ideal I, denoted by codim (I), is the dimension
of the quotient linear space k[Z]/I over k.

For a multi-index & € IN’, the formal differential operator D* on k[Z] is

defined by

agf . _ B! B—a
D°Z7 := (ﬂ—a)!Z .

Here we make the convention that Z8~% =0, if @ £ 8. For a polynomial p(Z) =

1

3o @ Z%, the corresponding partial differential operator p(D) is defined by p(D):

Yo GaD”.
An ideal I of k[Z] determines its variety

Var(I):={a€k®: pla)y=0 Vpel}.

Such a variety is a finite irredundant union of irreducible varieties (e.g. see [K,

p-122)).
Given an algebraic variety V, we denote by I(V') the ideal of all polynomials

which vanish on V. The ring

k[V] == k[2Z)/I(V)

19
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is called the coordinate ring of V. If V is irreducible, then k[V] is an integral domain.
In this case the quotient field of k[V] is called the field of rational functions on V,
and is written k(V).

Suppose that § = (6,...,6,) is an isolated zero of I; that is, {6} is one of the

irreducible components of Var(I). Let

be a reduced primary decomposition, where I; is Pj-primary for j = 1,...,n, and
the prime ideals Py, ..., P, are all different. To the component {8} of Var (I) there
corresponds one prime ideal, say Py, such that P, = (Z, — 6,,...,2Z, — 6,). Then

we have

0 ¢ Var (P;) = Var(I;), j=2,...,n,

for othefwise {6} would not be a component of Var (I). In what follows we write
Iy for I,.
The set
So:={g € kZ]: g(6) £0)

is a multiplicative set of k[Z] =: R. Let Qg := S 'R be the quotient ring of R by

Sg (the localization of R at Sy); i.e.,
Og = {f/g : fag € k[Z]7 g(e) 7£ 0}

Thus, Oy is the local ring of the point 8 (e.g. see [Sf, Chapter 2]). If I is an idcal
of R, then S; 1 is an ideal of O,.
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(3.1)Lemma. S;'I=5;"1I,.
o 0

Proof. Since 8 ¢ Var (I;) for j > 1, we can find a polynomial f; € k[Z]
such that f; vanishes on Var (I;) but f;(6) # 0. By Hilbert’s Nullstellensatz, ff € I;

for some positive integer €. Thus, we have
fi e SenI;.
It follows that
IES;le, j=2,...,n

This gives

Sy =N, (S ;) = S5 s,

as desired. [
Let I be an ideal of k[Zy,...,Z,]. If 6 is an isolated zero of I, we define the

intersection index of I at 8 as follows:
indg(I) := dim(OQy/(Sy1I)).

If  is an isolated zero of I, then we also can talk about the multiplicity of I
at 6. Let
Pro:={p € HZ]: p(D)f(6) =0, VfeI}.
The space Pj g is finite dimensional and is called the multiplicity space of I at 0.
The dimension of Py g is called the multiplicity of I at 6. It is known that (e.g.

see [BRz, (8.12)Proposition])
Io={f€kZ]:p(D)f(6) =0, VpePrp}.

The following theorem shows that the multiplicity of I at 6 is just the intersection

index of I at 6.
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(3.2)Theorem. Let I be an ideal of k[Z,,...,2Z,). If 8 is an isolated zero of I,
then
dlm(Og/(sa_lI)) = dim P['g.

Proof.  For g € O, the residue class of g in Qg/(S;*I) will be denoted
by g. Consider the following bilinear function for the pair (p, g) where p € Py 4 and
g € 0g/(S1I):

{p,3) := p(D)g(6).

This is well defined on Og/(S;'I), because for any p € Prg and f € S;'1,
p(D)f(6) = 0. Furthermore, the bilinear function has actually a scalar product
type property. To this end, suppose that (p,§) = 0 for all § € Op/(S;'I). Then
for any f € k[Z],

p(D)f(6) = (p,f) = 0.

It follows that p = 0.
On the other hand, suppose that (p,§) = 0 for all p € Py g. Let g = f/h, with
f,h € k[Z] and h(6) # 0. Since Pt ¢ is D-invariant, by Leibnitz’ formula, we have

p(D)f(8) = p(D)(gh)(6) =0, Vp€ Py
Hence, f € Prg. This gives

g==€S;I,=S;I;

SR e

ie.,g=0.
Define T : Prg — Og/(S;'I) by
n
T(p) = Y _(p,5:)3:
i=1
for a given fixed basis §1,...,gn of ©Op/(S5I). Then, T is an a 1 — 1 map between

P ¢ and 09/(5';1[).



23

Similarly, we define T" : Op/(S5'I) — Pr,e by

T'(3) = Y_{pi, )i
i=1
for a fixed basis p; ...pm. The map T" is a 1 — 1 map between 00 /(S5 I) and Py 4.

Therefore, these two spaces must have the same dimension. [ )

The following additivity theorem plays an essential role in our study of kernels

of differential and difference operators.

(3.3)Theorem (Additivity). If § is an isolated common zero of fi,...,fs, and

if f, is the product of two polynomials, fs = f,f,, then
indO(fl)- .. 1fa—1afs) = inda(fl,' .- 1fs—l)f;) + inde(fls cesyJas—1s ;,)-

Proof.  This theorem can be proved as follows (see [Sf, Chapter IV §1.3]).
We denote the ring Qg/(S; " (f1,- .-, fs=1)) by O, and the images of f, and f; in

& under the canonical homomorphism by f' and f". Then
indg(f1,. - -1 fae1,fs) = dim(O/(f' ")),
indg(f1,- .-, fo-1,fs) = dim(O/(f")),
indg(f1,.-+» fo—1, fy') = dim(O/(f")).

Since the sequence
0 — (/S ") — O/(f'f") — Of(f') — O
is exact, we have
dim(O/(f' ")) = dim(O/(f")) + dim((f")/(f' f*))-

It can be shown that f" is not a zero divisor in O (see [Sf, Chapter IV §1.3,

Lemma 1 and Lemma 2]). Then the homomorphism from O to (f")/(f' f") given by
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f = ff"+(f'f") is surjective and has (f') as its kernel. Hence, dim((f")/(f'f")) =
dm(O/(f). &

The result above combined with those of Chapter 2 can be used to gain infor-
mation about the kernels of linear partial differential operators defined on the ring
of formal power series in s indeterminates, k[[Z,,...,Z,]] =: k[[Z]]. We take the

commutative semigroup G of linear operators to be the partial differential operators
Giz|(D) = {p(D) : p € k[Z,..., Z,]}

defined in the usual way. For polynomials py,. .., pm, there is a relationship between

the dimension of the kernel space,
Kpy,.pu)(D) :={f €K[[Z2]] : p1(D)f = 0,...,pu(D)f =0},
and the cardinality of the variety Var(py,...,pm); namely,
dim Ky, ... p..)(D) < 00 <= |[Var (py,...,pm)| < 0,

see [DMs, Proposition 2.1] and [BR3, Corollary 3.21]. In fact, [BR2] gives an explicit

formula

(34) dimK,, . ,.)(D) = codim(pi,...,pm) = > inde(ps,...,Pm).
8€Var (p1,eeesPem )

These results were proved for C, but hold equally well for any algebraically closed
field k (the exponential function is defined by its formal power series).

As an immediate consequence of Theorem 3.3 and (3.4), we have
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(3.5)Corollary. If p, = p,p}, then the kernel spaces for the ideals
I=(pi,---1Ps=1,Ps) I'= (p1,--- 7pa—-lap'a)a and I'" =(py,... aPa—lapg)v

satisfy the relation
dim(K (D)) = dim(K (D)) + dim(K+(D)).

In particular, Gy(z)(D) is a semigroup of linear operators with s-dimensional addi-
tivity.

For any matroid X and a collection of bases ng), we can consider the ker-
nel spaces (1.2) for arbitrary operators, Lx C Giz(D), associated with X. By

Corollary 3.5 and Theorem 2.12, we have

(3.6)Theorem. If the matroid X has rank o(X) = s and B§x) is an order closed
subset of B(X), then for Lx C Gz (D),
dimK(Lx,BX)= ) dimK(Lp).
BeB{*)

We now give a formula for the intersection index for some special polynomial
ideals. Let (py,...,ps) be the ideal generated by the homogeneous polynomials
P1,...,Ps € k[Z1,...,2Z,). If zero is the only cornmon zer. of pi,...,ps, then the
intersection index of py,...,ps at 0 is just codim (py,...,ps). Moreover,

codim (py,...,ps) = Hdegp,-.

i=1
When k = C, Stiller [St] established a formula for codim(py,...,ps), while
Dahmen and Micchelli [DMg] pointed out that this formula could be written in the
above form.
Taking the semi-group G yom (D) to be the differential operators generated by
s- variable homogeneous polynomials, we have the following result which confirms

a conjecture of Dahmen and Micchelli [DMg).
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(3.7)Theorem. If the matroid X has rank o(X) = s, then for Lx C Gnom(D),
dimK(Lx,B(X))= ) dimK(Lp).
BEB(X)
Moreover, if dim K(Lp) < oo for all B € B(X), then
dimK(Lx,B(X))= Y []dega.
BeB(X)bEB
Another case in which an explicit formula can be given is discussed in the

following example.

(3.8)Example. Consider the semigroup Gn(D) C Gyz)(D) defined by products
of linear polynomials in k[Z]; i.e.,

Gu(D) == {p(D) : p(Z) = [[(\j-Z—c;), \; € ks cj €k, j =1,...,m, m =m(p)},
i=1

where A - Z = AM1)Z1 + ... + M(8)Z, for A = (A(1),...,A(s)) € k* and Z =
(Z1,...,2,). Let X be a matroid and Lx C Gn(D) be the associated opcrators.
For each polynomial
p(Z2) =[N 2 —c3), beBeB(X),
i=1

there is a corresponding set of elements from k*® given by

Ap:={dj:7=1,...,mp}.

For any B € B(X), we consider Ag to be the set of all possible matrices in k***

with columns indexed by b € B and with the bth column chosen from A,. Let Qp

be the set of all matrices in Ag of rank < s.
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(3.9)Corollary. If the set Lx C Gn(D) is well associated to the matroid X,
o(X) =s, and ng) is an order closed subset of B(X), then

aimK(Lx,B®) = 3 [I] degn - 1951,
BGBEX) beB

Proof. By Theorem 3.6, we only have to show that
dimK(Lp) = [1‘[ deg py — |QB|], vB e BX.
beB

From given B € B(X) and the associated Lg, we construct a matroid Yp
and a corresponding set of operators EYB . The matroid Yz consists of the elements
b taken degp; times with the notion of independence inherited from B. For the
operators Ly, , we take any one-to-one correspondence between {y € Yp : y = b}
and the linear factors of p,. Thus, a basis W € B(Yp) corresponds to a selection of
linear factors from pp, b € B, i.e. to a matrix A(W) = [As,jw)JseB € Ap, and the
operators Lw are just the linear partial differential operators {(As,jow)y-D—cs,j(w) )}

With the above construction, K(Lp) = K(Ly,) and

Gy { L AW € Ap\Ds;
dim K(Lw) = {0, if A(W) € Q3.

Therefore, by Theorem 3.6 once again,

dimK(Lg) =dimK(Iy,)= Y, dimK(Iw)
weB(Ys)

= [[ degps — 128 &

beB
When k = C, X = {A1,..., A} C €**" has nonzero columns, and Lx =
{D»x — ¢, A € X}, then Corollary 3.9 contains the result of de Boor and Ron [BRs,

Theorem 6.9].
Corollary (3.5) can also be used to discuss solvability of systems of differential

equations. It turns out the s-dimensional addvitivity plays an important role here.
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Recently, Dahmen and Micchelli [DMg], among other things, investigated the
solvability problem when G is the set of all partial differential operators, p(D),
induced by homogeneous polynomials in s variables and S := #(IR*), the lincar

space of polynomials in s variables. Their studies led to the following theorem.

(3.10)Theorem. [DMg] Let p;,...,pn be homogencous polynomials on IR*. Con-

sider the system of differential equations
pi(D)f = ¢5, j=1,...,n,
where ¢; and f € m(IR°) and there is some integer N such that
degd;+degp; =N, j=1,...,n

Then the above system of differential equations has a solution in w(IR") if and only

if whenever ¢, ...,q, € m(IR*®) satisfy
n
Y g;pj =0, degg; =N —degp;
i=1

it follows that

> gi(D); =0.
=1

When s = 2, and p;, p2 have no common factors, they obtained the following

(3.11)Corollary. [DMs] Let p; and p; be any homogeneous polynomials on IR?

with no common nontrivial zeros. Then, the system of equations
p(D)f =41, pa(D)=¢2; 1,42 € n(IR?)
has a solution if and only if

p2(D)¢1 = p1(D)é2.
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We observe that the conditions in Corollary (3.11) are easier to check than
the conditions in Theorem (3.10). However, it was not clear at that time whether
the above corollary can be extended to the case s > 2. Our next goal is to extend
the above corollary to the case s > 2 and to the case that p(D) are the differential
operators induced by arbitrary polynomials in s variables. To this end, we need

some further basic notions and results of algebraic geometry.

(3.12)Definition. The dimension of an irreducible variety V, dim(V), is the tran-
scendence degree of k(V') over k. The dimension of a variety is the maximum of the

dimensions of its irreducible components.

It is obvious that a single point has dimension 0. Let V' C k* be an algebraic
varicty. For a polynomial f € k[Z], we define the variety Vy :={a € V : f(a) = 0}.
The following theorem is useful for proving some of the results in this section.

The proof of this theorem can be found in [L], Chap.II, Theorem 11 and [Sh], Chap.1

§6, Theorem 4.

(3.13)Theorem. (Dimension Theorem) Let V' be an irreducible variety of dimen-
sion n > 1 in k*. If a polynomial f € k[Z] does not vanish on all of V and Vy # 0,

then each irreducible component of Vy has dimension n — 1.

(3.14)Theorem. Suppose that every irreducible component of a variety U in k*
has dimensionn (n > 1). Let § = (61,...,0s) € U. Then there exists a vector

v = (vy,...,v,) € k* such that
F,:=(Z2, =601 +---+(Z, — 0)v, € k[Z]

does not vanish on any component of U. Consequently, every irreducible component

of U N V(F,) has dimension n — 1.
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Proof. Let U = U, U---U U, be the decomposition of U/ into irreducible
components with U; € U; for all 7 # j. Let

Lj:={v=(v,...,v,) €Ek*: F, vanishesonallof U;}, j=1,...,m.

Clearly, L; is a linear subspace of k° for each j. The dimension of L; is at most
s — n, for otherwise we would have dim(U;) < n. Since n > 1, the set A"\ UJL, L;
is nonempty. For any v € k*\ UJL, L;, F, does not vanish on any of U; for cach
j=1...,m. [

(3.15)Corollary. Let U C k* be an algebraic variety with all its irreducible com-
ponents having the same dimension n. For any § € U there exist n polynomials
P1,-..,Pn Of degree 1 such that they vanish at 6 and that U N V(py,...,p,) is a

finite set.
Finally, we have following theorem which extends Corollary (3.11).

(3.16)Theorem. Letp,,...,p, (r < s) be polynomialson k*. Assume that the va-
riety V(p1,...,pr) is either empty or each of its irreducible componcnts has dimen-
sion s — r. Then for given polynomials (resp. exponential polynomials) ¢y,..., .,

the system of differential equations
(3.17) pj(D)f = ¢J', ] =1,...,7r,

has a polynomial (resp. exponential polynomial) solution f if and only if the com-

patibility conditions
pi(D)ox = pe(D)gj, 1<j<k<r,

hold.

L]

Proof. Let S be the linear space of all exponential polynomials on k

and G := Gqr(s-)(D). It is clear that we only need to consider ¢; € con(k*) for
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some 8 = (01,...,0,) € k* since egn(k®) is G-invariant. Let M = egm(k®). Given
é1,...,¢r € M, we consider the solvability for f € M of the system (3.17). If
p;j(6) # 0 for some j, then p;(D) is invertible on M. Hence, the theorem follows

from Theorem (2.3).

If pj() =0forallj=1,...,r, then 6 € V(p1,...,pr). By hypothesis, every
irreducible component of V(py,...,pr) has dimension s — r. Applying Corollary
(3.15) to V(p1,...,pr), We see that there exist polynomials pri1,...,Ps of degree

one such that they vanish at 8 and the set

V(pl"' s PryPr+1y. - ,pa)

is finite. Thus, an application of Theorem (2.4) gives the desired result. [ )

(3.18)Corollary. Let pi,...,ps be polynomials on k* such that V(p1,---,ps) is a

finite set. The system of differential equations

(3.19) pi(D)f = ¢, i=1,...,s,

where ¢;’s are exponential polynomials, has a solution in the the space of exponen-

tial polynomials if and only if the compatibility conditions
pi(D)¢x =pe(D)gj, 15j<k=<s,

hold. [



CHAPTER 4
APPLICATION TO LINEAR DIFFERENCE OPERATORS

Let ZZ be the set of integers and s be a positive integer. As before & s
an algebraically closed field. A mapping from Z° to k is called an s-variate k-
sequence, and we denote the linear space of all s-variate k-sequences by A. We
wish to consider translation operators on A. These can be best described using the

primitive translation operators 7; given by
7if = f(- +e;), j=1,...,s, for feA,

where
€; = (0, ,1, ,0),
jth

Jj =1,...,s, are the canonical unit vectors in ZZ*. For a multiindex « € IN¥, we

define
T =7 e
For a polynomial p € k[Z,,...,2,], p(Z) = ), axZ?, there is a corresponding

translation operator
p(7) == Z aq7°.

Similarly, for 8 € k°, we define
p(0r) := Zaoﬁ"‘r“.

If ¢ € k[Z4,...,2Z,], then the sequence given by 8 — ¢(f3), f € ZZ* will also
be simply denoted by ¢. Similarly, if @ is a subspace of k[Z;,...,Z,], then the
sequence space {8 — ¢(B) : ¢ € @} will again be denoted by Q. For any pair
of polynomials p,q € k[Z], the notation p(7)gq means the sequence obtained by

applying the difference operator p(7) to the sequence ¢ : f+— ¢(fB), f € ZZ".

32
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Given an ideal I of k[Z], the kernel space K(7) of all the difference operators

p(7), p € I, is defined by
Ki(r):={feA:p(r)f=0 Vpel}.
We wish to single out some special elements in Kr(7). Let
(k\{0})* = {(a1,-.-,as) €k’ : a1 #0,...,a, # 0}

For any 0 € (k\{0})*, we denote by 6¢) the sequence given by 8+ 6%, f € ZZ°. 1t

follows from the definition of K;(7) that

60) € K;(r) < 6 € Var(I).

(4.1)Theorem. The dimension of K(r) is finite if and only if the set Var(I) N
(k\{0})* is finite. Moreover, in this cove, to each 8 € Var(I) N (k\{0})*, there
corresponds a translation invariant space @1 ¢ of polynomials such that
Ki(r) = b 63Qy 6.
8€Var (I)n(k\{0})*

Proof. When k& = C, the proof of this theorem can be found in [L],
[DIM], and [BR;3]. Their proofs can be easily carried over for the case when & is an
algebruicaliy closcd field. Let us find the spaces Q¢ explicitly. Observe that for

a € IN? and q € A, we have
7%(60)q) = 603(8%7%9).
It follows ihat for any f € I,

F(r)(6q) = 60 (f(67)q).
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Thus,
60ge Ki(r) <= f(6r)g=0, Vfel.

This shows that

(4.2) Qre={q€k[2]: f(6r)g=0, Vfel}. &

Recall that if 6 is an isolated zero of I, then the multiplicity space, Pj g, of I

at 6 is defined as
Pr:={p€k[Z]: p(D)f(6) =0, Vfel}

The following theorem shows that the spaces Q¢ and Py ¢ have the same dimen-
sion.
(4.3)Theorem. dim(Q;,¢) = dim(Pr ).

Proof.  To prove that dim(Qr,¢) = dim(Py4), it suffices to establish a
linear isomorphism between the spaces Py g and Q7,¢. For this purpose, we introduce
(2)? :=[Z:)Pr---[Z,)7, PBeNN,

with
(217 = Zi(2Z; - 1)---(Z; — B; + 1)

Let A; be the jth forward difference operator:
Djg:=q(-+ej)—g¢, gEA

It is easy to verify that

8% = ol P

Here we make the convention that [ [#~* =0if a £ 3.



35

To cach p € k[Z], p(Z) = 35 b Z”, we associate ¢(Z) = 35 bs67F(Z]P. The
mapping o : p — ¢ is a linear automorphism on k[Z]. We want to show that ¢ is an

isomorphism from Py ¢ to Q. For this purpose, we compute p(D)f(8) and f(07)q
as follows. Suppose f(Z) =3, aa(Z — 0)*. Then

p(D)f(6) =) aabaat,

and

7(6r)0(2) = (3 aa(62)?) (X bs6~4121°)
o B

8
= 2; %=

g~ (=) [Z]P—

= 3 (X aebassla+ 1) 2.

Let ¢ € Q1 and p = 07 Y(g). Then for any f € I, f(67)g = 0; hence, Yoo Gabaal =
0 from the above formula. It follows that p(D)f(8) = 0, Vf € I; i.e., p € Prg.
Conversely, suppose p € P; g and ¢ = o(p). Then D7p € Py 4 for any v € IN“, since

Py g is D-invariant. We have

_ B! B—v — B+ s
D7p ;bp(ﬂ_’y)!z v ;bp.*.., I ZF,

Therefore,

0= (D PD)®) = Y aaTF 010t = 3 aabasala+ )

[+ 4

This shows that f(67)g = 0 for all f € I; i.e., ¢ € Q9. We conclude that o 1s a
linear isomorphism from Pr g to Qr,e. [ )

Suppose now that I is generated by s polynomials fi,..., fs from k[Z], and
that Var (I)N(k\{0})* is a finite set. Then dim(K (7)) is finite, so by Theorem 4.1
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and Theorem 4.3, we have

dim(K (7)) = 3 dim(Q1,s)

P
d€Var (I)n(k\{0})’

= > dim(Py,q)

geVar (I)N(k\{0})

— Z indg(f1,..., fs)-

8€Var (1)n(k\{0})*

(4.4)Theorem. Suppose f1,..., fs—1, f2, fi! € k[Z] and f, = fif. For the idcals

I=(f1,""f-’—1’f")’ Ilz(fl""7f3_l’f;)7 a‘nd I,,z(fl""7f3"‘l?./.:’l,)‘
we have the relation
dim(K (7)) = dim(K (7)) + dim(K(7)).

Proof.  If one of the dimensions of K /(1) or K+(7) is infinite, then the di-
mension of K;(7) is also infinite, since K(7) contains both K () and Ny« (7). Sup-
pose that both K/(7) and K«(7) are finite dimensional. Then Var (I') N (k\{0})*
and Var(I") N (k\{0})* are finite sets, hence Var (I) N (k\{0})* is finite as well.

Thus, by Theorem 3.3 and the above results, we obtain

dim(K;(r))= ) inde(f1,-.., fou1,fs)

#€Var n(k\{0}))*

= X (ndeCfiees fot S Hindo(fi o fomr, 1)

6eVar n(k\{0})*
=dim(Kp (7)) + dim(K(7)). &

Again we can combine this theorem with the results in Chapter 2 to obtain
information about the kernels of partial difference equations on the sequence space

A. The semigroup of commutative operators in this case will be
Guz)(7) :={p(r) : p € k|Z:,...,Z,]}

The statement of Theorem 4.4 is simply the s-dimensional additivity of Gz (7).
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(4.5)Theorem. The semigroup Gy z)(T) of difference operators has s-dimensional

additivity. In particular, Theorem 2.12 holds for Gz)(T).

A special case of this theorem has arisen previously in the study of the alge-
braic properties of box splines and exponential box splines. In that case an explicit
formula for dim K(Lg), B € ng), can be given. Our next example extends these

explicit formulae to a wider class of polynomials.
(4.6)Example. Let k = C be the field of complex numbers. The polynomials in

C[Z] to be associated with the matroid X in this example will be taken from the

subset

m

P:.= {H(Z’\f—pj):/\jEIN’ and FJEC\{O}a .7-:11"',771}‘

J=1

The translation operators, IP(7) := {p(7) : p € P}, correspond to products of
difference operators (with & = exp(c))

Aisef :=f(-+ A) — exp(c)f(-)

(4.7)
=:V2cf(- + 1) = T Va.f.

The difference operators V), . arise quite naturally in the study of exponential
box splines. Here, we following the notion and setup of [DM;s] and briefly recall
the exponential box splines case. Their relation to our situation is quite clear from
(4.7): If po(Z) = Z* —exp(ce), £ =1,...,s, then

I((Pn---,P.)(T) = Vcly---'c. ([’\1’ MR A5])
(4.8)
={f:Vaef=0 £=1,...,s}

When dim Ve, ..., ([A1,...,As]) < 00, an explicit formula for the dimension can be

given:

(4.9) dim Ve, ... c.(,- -5 As]) = [det[Ar, -+, Aol
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3
If A1,..., A, are linearly dependent, then dim K;,, . .) is cither 0 or oo depending
on whether p;,...,p, have no common zeros in (C\{0})* or (nccessarily) infinitely

many common zeros in (C\{0})*.
The formula (4.9) is a special case of the following setup: Let X = A be a

matrix of rank s in ZZ**" with nonzero columns. To cach A € A we choose a ¢y € €

and associate the difference operator given Iby
Ve f=f—exp(ea)f(- = ).
For V C A, let Ve, :=[[,ev Vu,c.- Then the kernel space
Vea(A) :={f: V., f=0, VHeHA)},
has dimension given by
dim(Ve,(A)) = D [det(B)|

BEB(A)

As was done in Example 3.8, we wish to separate the matroid structurc from the
associated linear difference operators, using the matroid only as an index sect. for Ly
(as opposed to using it to give the directions of the translations), and at the same
time for each index we consider a product of difference operators (induced by the
polynomials from IP). In order to state the result, let Ag be the set of all possible

matrices with columns indexed by b € B and with the bth column chosen from the

exponents in py, namely, Ay := {Xpj:j =1,...,mp}.

(4.10)Corollary. Let the set Lx C IP(7) be associated with a matroid X, p(X') =
s, and suppose ng) is an order closed subset of B(X). If for every B € fo), the
polynomials {py}sep have only finitely many common zeros in (C\{0})*, theu

dmK(Lx,B) = Y 3 |dew].
Beng)"VGAD
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Proof. By Theorem 4.5, we only need to show that

dimK(Lg)= Y |detW].
WeAp

This can be done using the techniques in the proof of Corollary 3.9 together with
(4.8) and (4.9) above. )

Finally, as we did before, we briefly discuss the solvability for the system of
difference equations.

Let V C k* be an algebraic variety. A subset U C V is said to be closed,
if U itself is an algebraic variety. A subset O C V is said to be open, if V\O is
closed in V. Let O be a nonempty open subset of an irreducible algebraic variety
V. If a polynomial f € k[Z] vanishes on O, then it must vanish on V/, for otherwise
V = (V\O) U V; gives a decomposition of V with V\O # V and Vy # V. This
contradicts the irreducibility of V. Thus, I(O) = I(V'). Hence, the coordinate ring
k[O] is the same as the coordinate ring k[V]. Consequently, the quotient field £(O)
of k[O] is the same as k(V). In particular, this shows that dim(0) = dim(V') for any
nonempty open subset O of an irreducible variety V. Moreover, if V' is irreducible,
then k[Q] = k[V] is an integral domain, hence O is also irreducible.

Let V be an algebraic variety and let

V=UU---UUn
be the decomposition of V into its irreducible components. For an open subset
O C V,0NU; is open in Uj for each j = 1,...,m. If O NU; is nonempty, then
O N Uj is an irreducible component of O. Thus, after discarding some possible
empty sets,
O=0nU)U---U(0NUn)

gives a decomposition of O into its irreducible components.

The results of Theorem (3.14) and its corollary can be extended to the case

where U is an open subset of an algebraic variety.
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(4.11)Theorem. Let O C k* be an open subset of an algebraic variety with all
its irreducible components having the same dimension n. Then for any 6 ¢ ()
there exist n polynomials py,...,pn of degree 1 such that they vanish at 0 and that

ONV(p1,...,pn) is a finite set.

Finally we establish the following theorem about difference equatious.

(4.12)Theorem. Let py,...,pr (r < s) be polynomials on k*. Assume that the
intersection of the variety V(py,...,p,) with (k\{0})® is either empty or cach of its
irreducible components has dimension s — r. Then for given polynomial sequences
(resp. exponential polynomial sequences) ¢, ..., ¢, the system of difference cqua-

tions
(4'13) pJ(T)f=¢J, j =1,-..,7‘,

has a polynomial sequence (resp. exponential polynomial scquence) solution [ if

and only if the compatibility conditions
pi(T)ér =pr(T)djy, 1<j<k<r,

hold.

Proof. Let S be the linear space of all exponential polynomial k-scquences
on 7Z°. Without loss of generality, we may assume that ¢,,..., ¢, € 60 n(k*) =: M
for some 8 = (64,...,6,) € (k\{0})*.

If pj(8) # 0 for some j, then by Theorem (2.3), the system (3.28) has a
solution in M provided the compatibility conditions hold.

Suppose that p;j(§) =0forallj =1,...,r. Then 8 € V(py,...,p,), and henee

each irreducible component of V(py,...,pr) N (k\{0})* has dimension s — r by the
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hypothesis. Again we can find polynomials py41,...,ps of degree 1 such that they

vanish at @ and the set

V(pli' <+ PryPr41y. .. ,Pa) n (k\{o})s

is finite. Thus, an application of Theorem (2.4) gives the desired result. o



CHAPTER 5
WAVELET DECOMPOSITIONS

In this chapter, we discuss the orthogonal decompositions from multiresolution
approximations to Ly(IR’) generated by lower dimension box splines. To this end,
we start with the definition of box spline.

The ordinary box spline, Mz, in IR’ associated with an s X n integer matrix
= € ZZ°*" is defined by

(5.1) (Mz,9) := Y(Ex)dz, ¥ € C(IRY).

(0,1)

Its Fourier transform is

— 1- -2
Ma(y) = H e)?;g z./ﬁ).
gez

Similarly, a centered box spline is defined by
(5.2) (ME, ) = / $(Ez)ds, € C(IRY).
[~1/2,1/2]
Its Fourier transform

sin(y£/2)

(5.3) M) =[] =57

€=
plays an essential role in our discussions. (Our notational conventions arc that
for all set relations involving a matrix Z, the matrix is considered as a set of its
columns, and that the product y€ of two vectors in IR? is the usual inner product.
The same column £ can appear several times in Z; the number of times being its
multiplicity.)
Clearly, ME = Mz(- + cz), where

(»]
3]
l
m
m
0]
oy
~
N
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is the center of the box spline.

Wlen rank Z = s, the box spline is a piecewise polynomial of total degree at
most n — s, symmetric about the center, and with compact support.

The space associated with Mg is generated by its integer translates:
(5.4) S(ME):= {ME+ a:= ) a(j)ME(-—j): a:Z° - C}.

JEZ
When the sequences, a, are restricted to a particular space, we so label S; e.g.,

S(MS, £;) is derived by restricting the sequences to £2(Z2°). Of course, it is impor-
tant to have the functions in (5.4) uniquely representable by MS ' a; i.e.,ME *'a =
ME *' b implies a = b. This is the (global) linear independence of the integer

translates of M which is characterized hy the statement
(5.5) Vu € C®3j€Z° suchthat ME(2rj —u)#0.

(see [L], [DM;], and [Ro,]). In our case of an integer matrix, the linear independence

(and therefore (5.5)) is equivalent to the matrix = being unimodular,
(5.6) |det Z| =1 V column bases Z C =

(de Boor and Héllig [BH], Dahmen and Micchelli [DMy], Jia [J;-J5]).

Another concept is the characteristic polynomial of MZ defined by
(5.7) P:=Pz:= Y ME(j)exp(ij-).
Jjez’
From the Poisson summation formula and the symmetry about the origin of MZ,
we have

(5.8) P=(y)= Y Mg(2mj—y)= ) M(y+2mj).
JEZ" JEZ’
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It is well known that if Z is a unimodular integer matrix of rank s with columns

of only even multiplicities, Pz > 0. In particular,

Pouz(y) :=Pe= Y [ME(y +275)1 > 0.

JEZ*
Let
(5.9) R = Mz/(P)'2,
then, the function K satisfies
(5.10) > By +2m) = ) Mi(y+2n5)/Paly) = 1,
jez. jez:

since |JTI5| = Iﬂﬂ Notice that in (5.9), the polynomial in the denominator is
defined using the Fourier transform of the centered box spline while the ordinary

box spline appears in the numerator. The function K has the representation

(5.11) K=Y ak(j)Mz(- - j)
i€z

where the coefficient sequence ag is given by

gy e L exp(=4jy) A
K(J) o (27!')" ‘/[j"“"’r]' (‘Pz(y))ll2 dJ, 7 € Z .

Furthermore, we have the following property of function K.

(5.12)Theorem. If Mz is the box spline associated with a unimodular matrix =
of rank s, then the translates {K(- — j)}jez- of the function K given in (5.9) foru

an orthonormal basis for the space S(Mz,{;). Moreover,

(5.13) |ak(F)| < constexp(—|j|/const) and |K(z)| < constexp(—|z|/const),
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for some positive constants and, for any p € 1,00,

5.14 K+'all, < constl|al|,.
P P

Proof.  The fact that {K(- — j)}jez- is an orthonormal system is a con-
sequence of (5.10). The first of the inequalities (5.13) follows from the fact that
1/(P;)'/? is analytic in a neighborhoed of [—,7]* in C*, while the second follows
from the first and the compact support of M=.

For (5.14), it is enough to realize that |K(z)| < const exp(—|k|/const) for all
z € k+[—1/2,1/2]° and that convolution with an exponentially decaying sequence
is a bounded operator on £,(ZZ*).

It only remains to show that
(5.15) S(Mz,t2) =Vo =:{ > a()K(-—j), a€&(Z")}.

JEZ*
For this we observe that
Mz = R(P)? = Mz = ) am(§)K(-— j),
jez’
where the coefficients aps, being the Fourier coefficients of (P,)!/?, have exponential
decay. The equivalence (5.15) now follows since for any sequence b with exponential
decay, [la*b||2 < constllal|z, and K*'a = Mz+'(ak *a), Mz+'a = K+'(ap *a). [ )

The last useful notion is multiresolution approximation of Ly(IR’). A scale of
spaces {V, }yez is a multiresolution approximation of Ly(IR’) if the following
hold:

(i) V», C Vugr, v € Z.
(ii) Uvez Ve is dense in Lo(IR®) and Nyez Ve = {0}.
(i) feV, <= f(2:) € Vos1, VW EZ.
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(iv) feV,= f(-—27Yj)€V,,YVv € Z,and Vj € ZZ°.
(v) There is an isomorphism from Vj outo €3(Z*) which comumutes with the action
of ZZ°.

The spaces V, in the present case are

V, ={ Y a(j)K(2" - —j): a € &(Z°))
JEZ"

={ ) a(j)M=(2" - —j) : a € &(Z)}.

€z’
When do these form a multiresolution approximation for Ly(IR*)? For item (i),
it suffices to show that the generator, K(-/2)/2°, of V_; helongs to 4. Now,
K(-/2)/2° € V, is equivalent to {K(-/2)/2°Y(y) = K(2y) = H(y)E(y) for some
2w-periodic function H € L,([0, 2:r]*), and
_ Rey) _ Mzey)(Paw)'”
K(y) Mz(y)(P(29))'/?
G o Ll PR
£€E

H(y):
(5.16)

(Pa(29))'/?

Since P, is positive and 2#-periodic, H is also 2a-periodic. Therefore,
K(-/2)/2° = ) an()K(- - J),
jez

where the coefficients ay are real-valued and have exponential decay. Itemn (ii)
holds by the well-known approximation properties of box spline spaces and the
exponential decay of the orthogonal basis functions K(- — 7). Items (1) and (iv)
are obvious. Finally, the mapping a + K*a is an isomorphism since {J{(- — j)} is
an orthogonal base for V.

In order to find a dense orthogonal system in L,(IR’), we begin by looking
for the orthogonal complement, V-, of V,,—; in V,. More precisely, we scarch for
an orthogonal decomposition of V; into 2° spaces where each space is generated

by the (orthogonal) translates of a single function and hope that V_; is one of
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these spaces. If this were the case, then there is an orthonormal set of 2° functions
I, , Ky, such that each K, has orthogonal translates, K,(-/2)/2° € V;, and

for any a € €,(ZZ°), there exist sequences b, € £,(Z*) for which

,
(5.17) 3 i) (~3)=_ Y bu()(Eu(-/2-3)/2°)
JEZ! n=1;5€2Z*

is an orthonormal decomposition. The requirement that K,(-/2)/2° € Vp is equiv-

alent to
(518) (K#(’/z)/Qs)A(y) = Hﬂ(y)I?(y)7 H= 1, Tt 231

with the functions H, € L2([0,2]°).
Taking the Fourier transform of (5.17) and using (5.18), we find

(5.19) AWKy =Y B.WH.w)E(Y) or A@y) =) Bu(y)H.(),

where
Ay)= Y a(j)exp(~ijy) and Bu(y)= ) bu(j)exp(=i2jy),
JER! JEZ’
with the B, n-periodic in each variable.
By the orthonormality of the translates of K and Parseval’s theorem, the
orthogonality of the decomposition (5.17) is equivalent to the relation
20
(5.20) 141 qomey = 2 I1Bullato
p=
This relation will be compared to the one obtained by computing norms on woth
sides of the second equation in (5.19). To describe the latter, we let A = 27°

and ' * G = G, := ZZ°/ A be its factor group identified with the integer points in
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[0,2)*. Then computing the norms on both sides of that equation by using the inner
product, we obtain

20 2
A% o .2m) = ZZ/[“ : Bu(y)Hu(v)B-(v)H-(y) dy
u=1r=1 2]’
20 2 -
= E }:/[0 , By, (y)B-(y) Z Hy(y+ nk)H (y + wk) dy.

keg

(5.21)

p=1r=1
The equations (5.20) and (5.21) would be the same provided the functions H,

satisfy the relations

SO+ =1, p=1,-,2, and

(5.22) i
S H(-+7k)H (- +7k)=0, p#r.
keg

Therefore, the problem is reduced to the construction of functions , with the
desired properties. This is aided by the fact that the function H in (5.16) satisfics

the first of the relations (5.22) since

1= Y K2y +2m)? = > [H(y+m)PIR (y + =)

JEZ* /A
(5.23) =3 3 |H(y + wk + 20)PIR (5 + 7k + 2m5)[?
kegG jeZ+
=Y |H(y + 7k)[%.
keG

We find it convenient to index the functions H, by the 2* clements in ¢ and

to choose these functions to be of Lthe form

H(y + wk), if 2¢czk is even;

_ keg,
H(y + wk), if 2czk is odd;

(5.24) Hi(y) = exp(iyn(k)) {

with n(k) € G. Then the first of the requirements (5.22) is met (by applying (5.23))

and it remains to choose n(k) in such a way that the second condition is also met.
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For k; # kg, consider the terms in the second equation of (5.22) with k = k*, say,
and again with k = k; 4+ k; + k* (they are distinct since k; + k2 # 0). To help
distinquish the cases, set Gi(y + wk) := Hi(y) exp(—iyn(k)); i.e.,Gi is either H or

H. The term for k = k* is ‘
Hi, (- + 7k*) Hiy (- + k) = (=1) 00 =0kD¥ exp(in(ky ) — n(ks))-)

X Gk, (- + (k1 + k%)) G, (- + m(k2 + %)),
while since Gy is 27-periodic, the term for k = k* + k; + k2 is
(__1)('7(k:)—'l(k2))(k'+kx +k2) exp(i(n(ky) — n(k2))")
X Gk, (- + m(k2 + k%)) G (- + w(ky + £%)).

The exponential factors of these two terms will be of opposite sign if and only if

(5.25) (n(k1) = n(kz))(ky + k3)  is odd for all &y # ky.

Therefore, the terms themselves will be equal and of opposite sign once we have

shown that
(5.26)
Gi, (- + w(ky + k*))Gr (- + w(k2 + k*)) = Gk, (- + w(ka + k*))Gi, (- + 7(ky + k7).

If onc of 2czk; and 2czk; is even and the other is odd, then Gj, and —@k, are
either both H or both H and (5.26) is immediate. In case the parities of 2czk; and

2czk, are the same, one of Gy, and ﬁk, is H and the other is H, and we use the

observation obtained from (5.16) that
H(y + 7k) = exp(i2¢czy)(—1)?>=*H(y + k),

since ZGEE & = 2c=. Then, if say both 2czk; and 2czk,; are odd, we have

G, (- + 7(ky + £°))Gr, (- + 7(k2 + £¥))
= exp(i2cz-)(—1)2 = +RO H(. 4 w(k* + k1)) H(- + 7(k* + k2))

= exp(i2¢cz-)(—1)2=* R H (. 4 n(k* + k) H(- + (k" + k1))

= G, (- + m(k2 + k)G, (- + 7 (k1 + k*)).
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Therefore, it is sufficient to choose 7 as a 1-1 mapping on G so that (5.25) holds.
To ensure that Hy = H for k =0 € G, we need 7(0) = 0.
Finally, when Hj are chosen as in (5.24), their Fourier cocflicients exhibit
exponential decay. Therefore, any function of the form
D b(EK(-/2-7)/2,  bi € &(Z7),
JEZ’
belongs to Vj.

Assume for the moment that a mapping 7 can be found with the properties
(5.27) n(0) =0, and (n(k1)+ n(k2))(k1 + k2) is odd if ky # k.

Let O_, i denote the spaces generated by the 7ZZ° translates of I(-/2)/2", k € G;
then O_;,0 = V_1. The question remains as to whether we have captured all of ¥

in this way; i.e., whether

V_-Ll - @ 0_.1'};.

€0

x#0
This is equivalent to whether given arbitrary A € L3([0,27]*), the functions B, in
(5.19) can be found. The m-periodicity of B, in each variable allows the expansion
of (5.19) into 2° equations in the unknowns B,: (For convenience, we again change
the index to the set G.)
(5.28) A(y+7k)= Y Bi(y)Hie(y +7k), VE€G.

k*eg

Therefore, the decomposition

(5.29) Vo=VaeVi=vVao @ O-1,k

kEC
k70

exists if the system of equations (5.28) is solvable. But this system is solvable
provided the mapping n exists. Indeed, if the rows of the matrix W of the system

(5.28) are indexed by k € G and the columns by &* € G, then

W = [Hko(' + Wk)]kea'k.eg .
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The conditions (5.22) imply that
det(WTW) = [] (z |Hk,(-+7rk)|2> =1.
ki €C \k€C
The spaces O, i generated by the ZZ* translates of Kx(2*-), k € G\{0},v € ZZ,
give an orthogonal decomposition of Ly(IR’).
(5.30)Theorem. If Mz is the box spline associated with a unimodular matrix

= € ZZ°%", then the decomposition (5.29) exists for s = 1,2,3. In particular, there

are spline functions Ky, k € G, for which the set of dilations and translations,
{Kk(z" —j):jE€T, vER, k€ g\{O}},

form a dense orthogonal set in Ly(IR®).

Proof. From the above discussion, we must find a 1-1 mapping  : Gs —

G. with the properties (5.27).
The mapping n with 7(0) = 0 and n(1) = 1 is easy to construct if s = 1.

When s = 2, one choice of the mapping 7 is
(0,0) = (0,0)  (0,1)—(0,1)

(5.31)
(1,0) = (1,1)  (1,1)+=(1,0).

Finally, a suitable mapping 1 in the case of s = 3 is
(0,0,0) — (0,0,0), (1,0,0) — (1,1,0), (0,1,0) ~— (0,1,1),
(1,1,0) » (1,0,0), (0,0,1) ~ (1,0,1), (1,0,1) ~ (0,0,1),
(0,1,1) = (0,1,0), (1,1,1) — (1,1,1). &
It should be noted that it is impossible to find the mapping 5 for s > 4; i.e.,

the choice (5.24) for the functions H} cannot work in general. When cz € Z°,
then Gi(y) = H(y) = exp(—iycz)G*(y) for every k € G where G* is a real valued
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function. In this case, the complex exponentials could be factored out of the matrix
W to obtain a 2° x 2° matrix W, with entries £z for 2° indeterminants & such
that

Wiw; = () _ 23" I.
keg

Such matrices exist only for s = 0,1,2,3 (see Taussky [T]). Of course it would be
interesting to determine whether there are choices of the functions Hy that would

lead to a solvable system (5.28).
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