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Abstract

Let G be a semi-simple algebraic group over C, B a Borel subgroup, and T

a maximal torus contained in B. In the first part of this thesis, we examine

the singular loci of rationally smooth T -orbit closures X = T · x in the flag

variety G/B in types A and D. In type A, we prove that a T -orbit closure X

in G/B is smooth if and only if it is rationally smooth. In the type D case,

where this statement is known to be false, we investigate how the method used

to prove the type A case fails. In particular, for y ∈ X, S := Ty the stabilizer

of y (assumed to be connected), and Y = S · x, we give a description of the

S-weights of the tangent space Ty(Σ), where Σ ⊆ Y is any irreducible S-stable

surface containing y.

In the second part of this thesis, we examine the maximal singularities of affine

Schubert varieties X(w) in the affine flag variety G/B in type A(1), which are

equipped with the action of a particular torus ˆ︁T . Let E−(X(w), u) be the

set consisting of the ˆ︁T -curves C in X(w) which contain a ˆ︁T -fixed point u,

but whose ˆ︁T -fixed point set C
ˆ︁T = {u, v} satisfies u < v ≤ w. We obtain

a partial characterization of the set E−(X(w), u), where the ˆ︁T -fixed point

u is a maximal singularity of X(w). Furthermore, we provide a necessary

condition for a ˆ︁T -fixed point of a rationally smooth affine Schubert variety

to be a maximal singularity. Finally, we prove that the affine permutation w
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corresponding to any rationally smooth, but singular, Schubert variety X(w)

in G/B contains the pattern 3412. Using this result, we provide a proof of a

conjecture by Billey-Crites that states that a Schubert variety X(w) in G/B

is smooth if and only if it is indexed by an affine permutation w that avoids

the patterns 3412 and 4231.
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Chapter 1

Introduction

In this thesis, we investigate the smoothness of certain rationally smooth sub-

varieties of flag varieties in two different contexts.

Our first context is the classical algebraic group theory setting: given a semi-

simple algebraic group G (eg. SLn(C)) and a Borel subgroup B (eg. for G =

SLn(C), the subgroup of upper triangular matrices) of G, we form the flag

variety G/B. The group G, and hence any subgroup of G, acts as a group of

transformations on G/B (via left translation). One subgroup action of partic-

ular interest is that of a maximal torus T (eg. for G = SLn(C), the subgroup

of diagonal matrices) contained in B. The irreducible T -stable subvarieties

of G/B enjoy the structure of what we call in this thesis a T -variety (See

Definition 2.6.1 below). Many authors have examined the homogeneous space

G/B. Important examples of irreducible T -stable subvarieties of G/B that

often arise in these explorations are T -orbit closures and Schubert varieties

X(w), i.e. closures of B-orbits of T -fixed points w of G/B. Properties of T -

orbit closures have been examined by Morand in [33] and by Carrell and Kurth

in [14]. A good resource for information on Schubert varieties is the book [3]

by Billey-Lakshmibai.

A great deal of attention has been paid to characterizing the smooth loci of

T -stable subvarieties of G/B (as well as other partial flag varieties of G),

but there is also a substantial amount of interest in determining the loci of

rationally smooth points of such varieties and in relating the two properties

(See Definition 2.13.1 below). In the case of Schubert varieties, significant work
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on these topics has been done by Kazhdan-Lusztig (see [23],[24]), Lakshmibai-

Seshadri (see [30]), Carrell-Peterson (see [12], [13]), Kumar (see [27]), Arabia

(see [1]), Boe-Graham (see [7]), and Carrell-Kuttler (see [15]), amongst others.

A considerable amount of the notable research on the singular loci of Schubert

varieties and rational smoothness of Schubert varieties has been included the

aforementioned book [3]. In the more general context of arbitrary varieties

with torus actions, rational smoothness has been studied by Arabia (see [1])

and Brion (see [9], [10]).

Carrell-Peterson showed that a Schubert variety X(w) in G/B is rationally

smooth at a T -fixed point x if and only if the number of irreducible T -stable

curves (T -curves) containing y is equal to the dimension of X(w) for all x ≤
y ≤ w,1 that is, the Bruhat graph of X(w) is (dimX(w))-regular at x and

all vertices above x (See Theorem E in [13]). More generally, Brion (see [9])

showed that a T -variety X is rationally smooth at an attractive2 T -fixed point

x if it is rationally smooth in a punctured neighbourhood of x and the number

of T -curves in X containing x is equal to the dimension of X.

Dale Peterson showed that, when working over the field C of complex numbers,

if G is simply laced (i.e. of type A, D, or E), then all rationally smooth

Schubert varieties in G/B are nonsingular (more generally, Peterson showed

that the smooth and rationally smooth loci coincide for such Schubert varieties;

see [15]). This was originally proven for type A by Deodhar (see [18]). From

the research of Carrell-Kuttler, it is known that Peterson’s theorem does not

extend to arbitrary T -varieties in G/B, when G is simply laced. Indeed,

Carrell-Kuttler have produced an example in the type D case of a T -orbit

closure X in G/B containing a T -fixed point at which X is rationally smooth,

but singular (see Example 7.1 in [15]).

In this thesis, based on the work of Carrell-Kuttler in [15], we considered this

problem for T -orbit closures in G/B in the type A case. In [15], Carrell-

Kuttler obtained a sufficient condition for an attractive T -fixed point of a T -

variety to be nonsingular (see Theorem 1.4 in [15] or Theorem 2.11.5 below).

This condition involves so-called Peterson translates along curves. Peterson

translates have figured prominently in our work throughout this thesis. Using

1where ≤ denotes the Bruhat-Chevalley order on the Weyl group W .
2See Definition 2.9.1 below. Note, any T -fixed point of a T -variety in G/B is attractive.
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Carrell-Kuttler’s condition, we have proven that, in type A, a T -orbit closure

in G/B is rationally smooth if and only if it is smooth (see Theorem 3.9.5

below). We remark that some preliminary investigations on this problem were

carried out by Yasmin Omanovic as part of an undergraduate summer research

project supervised by Jochen Kuttler, but our work is independent of these

investigations.

The second context appearing in this thesis is an infinite dimensional analogue

to the situation above which is referred to as the Kac-Moody setting. The flag

variety under consideration is G/B, where G = SLn(C((x))) and B = ev−1(B),

where ev : P := SLn(C[[x]]) → SLn(C) is entry-wise evaluation at x = 0 and

B is the Borel subgroup of SLn(C) consisting of upper triangular matrices.

The quotient G/B is an ind-variety, that is, a direct limit of finite dimensional

projective varieties over C. In this case, G, B, and hence G/B are equipped

with the action of the product torus ˆ︁T = T × S, where T is the subset of

G consisting of the diagonal matrices with constant entries, which acts by

translation on G, and S = C∗ which acts on G through its obvious action on

C((x)) (i.e. (s · f)(x) = f(s · x)). This torus plays a role analogous to the

maximal torus in the classical G/B framework.

In this context, there is a natural generalization of the concept of a Schubert

variety known as an affine Schubert variety. Once again, there is interest in

describing the singular and rationally smooth loci of affine Schubert varieties

and, in particular, knowing to what extent the results in the classical setting

carry over to the affine context. One particularly influential such result from

the classical backdrop is due to Lakshmibai-Sandhya. In [29], they introduced

the concept of pattern avoidance for permutations in Sn and proved that a

classical Schubert variety X(w) in the type A case is smooth if and only if

its associated permutation w avoids the patterns 3412 and 4231 (see Theorem

1 in [29] or Theorem 6.1.1 below). This result was generalized by Billey-

Postnikov to all types (see [4]). Also in [29], Lakshmibai-Sandhya formulated

a conjecture that would identify the maximal singularities of X(w) with those

permutations having a specific combinatorial relationship to either the 3412 or

4231 pattern in w (by a maximal singularity of X(w) we mean a singular fixed

point for the action of the maximal torus which is maximal with respect to the

Bruhat-Chevalley order; note that these points determine the singular locus

of X(w)). This conjecture was later proven concurrently and independently
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by Billey-Warrington (see [5]), Cortez (see [16]), Kassel-Lascoux-Reutenauer

(see [22]), and Manivel (see [32]).

Returning to the affine setting, in [2] Billey-Crites defined the concept of pat-

tern avoidance for affine permutations and then used it to give a full character-

ization of rationally smooth Schubert varieties in G/B for n ≥ 3 (see Theorem

1.1 in [2] or Theorem 6.1.3 below). From this theorem, they proved that a

Schubert variety X(w) in G/B is singular if its corresponding affine permuta-

tion w contains either of the patterns 3412 or 4231 (see Corollary 1.2 in [2]

or Corollary 6.1.5 below). Furthermore, they conjectured that converse is also

true, which would mean that a Schubert variety X(w) in G/B is smooth if and

only if it is indexed by an affine permutation w that avoids the pattern 3412

or 4231 (see Conjecture 1 in [2] or Conjecture 6.1.6 below). They have verified

this up to n = 5.

In this thesis, we provide a proof of the Billey-Crites conjecture (See Theorem

6.5.2 below). This conjecture was independently proven by Richmond-Slofstra

in [35] using a different method from the one used in this document. Our work

on this project began with some initial discussions with Andrew Crites, one of

the coauthors of [2], during which a general strategy was developed for finding

the proof. However, the proof, as presented in this thesis, is more involved and

provides a more detailed description of the maximal singularities of singular

rationally smooth Schubert varieties in G/B than was initially discussed. In

order to prove this conjecture, it sufficed to show that the affine permutation w

corresponding to any rationally smooth, but singular, Schubert variety X(w)

in G/B contains the pattern 3412. Our approach to solving this problem

involved an examination of the maximal singularities of singular rationally

smooth Schubert varieties in G/B.

Our work on maximal singularities is both geometric and combinatorial in

nature, involving ˆ︁T - weights of certain tangent spaces, irreducible ˆ︁T -stable
curves and surfaces, and the Bruhat-Chevalley order on the affine Weyl groupˆ︂W . While Peterson translates are crucial to the proof of our main result in

the classical G/B setting, they figure far more prominently in our work in

the affine setting. In addition, our results on irreducible ˆ︁T -stable surfaces in

G/P as presented in [11] are central to our research here. In Theorem 5.9.5,

we provide a necessary condition for a ˆ︁T -fixed point of a rationally smooth
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Schubert variety X(w) in G/B to be a maximal singularity. Specifically, we

showed that the Bruhut graph of X(w) contains one of two “kite patterns”

(see Definitions 5.8.1 and 5.8.2 below) going through each maximal singularity.

Now, for every maximal singularity of X(w), the maximal ˆ︁T -fixed point (with

respect to the Bruhat-Chevalley order on ˆ︂W ) appearing in its kite pattern

contains the pattern 3412 (see Theorem 6.4.1 below). Using this, we are able

to show that w contains the pattern 3412 (See Theorem 6.5.1 below).

Regarding the structure of thesis, in Chapter 2, we provide some general back-

ground material which applies to our work in both the classical and affine set-

tings. Specifically, we recall some standard facts about linear algebraic groups

and varieties, including facts concerning torus actions and T -orbits and their

closures. It is in this chapter that we introduce and review some well-know

results about those objects which are central to our work, namely, T -varieties,

T -curves, T -surfaces, attractive T -fixed points, and Peterson translates. None

of the material presented in this chapter is original to this thesis.

Our main result in Chapter 3 is that, in the (classical) type A case, a T -

orbit closure X in G/B is smooth if and only if it is rationally smooth (see

Theorem 3.9.5). The structure of this chapter is as follows: after providing

some well-known background information on the general G/B context, we

introduce the notion of combinatorial regularity (see Definition 3.4.1 below)

for points of T -varieties. We work with this notion since it is equivalent to

the concept of rational smoothness for T -orbit closures in G/B under the

assumption that all stabilizers in T are connected (which we show using a

result of Brion, see Theorem 3.8.1), but is more user-friendly for the methods

deployed in this chapter. Then, to each point y in a T -orbit closure X we

associate a subvariety Y of X which has the structure of an S-variety, where

S is the stabilizer of y in T . Using well-established techniques, we relate the

(combinatorially) regular loci ofX and Y . We then use an inductive argument,

which reduces to applying the methods of Carrell-Kutter to Y (see Theorem

1.4 in [15] or Theorem 2.11.5 below), to prove that X is regular whenever

it is combinatorially regular (see Theorem 3.9.4). Our main result follows.

The statement of Theorem 3.9.5 is known to be false in general in the type

D case owing to an example of Carrell-Kuttler (see Example 7.1 in [15]). As

such, in Section 3.10, we analyze the failure of the method we used for type

A in the type D context. Specifically, in the type A case, all S-surfaces in Y
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through y are nonsingular, whereas in the type D case this is no longer true

(see Examples 3.10.7 and 3.10.8). For an S-surface Σ which is singular at y,

the tangent space Ty(Σ) has at least three S-weights. In Lemma 3.10.5, we

give a description of the possible S-weights of Ty(Σ).

Chapter 4 is primarily dedicated to describing the G/B context and present-

ing the background material required for our work in Chapter 5 on maximal

singularities of Schubert varieties in G/B. Although most of the chapter con-

tains previously-known results there is some original material presented there,

including Example 4.8.11, Lemma 4.9.4, and the material in Sections 4.12 and

4.13.

Chapter 5 is where we present our work on maximal singularities of Schu-

bert varieties X(w) in G/B. Much of our effort is focused on describing the

set E−(X(w), u) consisting of the ˆ︁T -curves in X(w) which contain a ˆ︁T -fixed
point u, but whose ˆ︁T -fixed point set C

ˆ︁T = {u, v} satisfies u < v ≤ w. De-

scribing E−(X(w), u) in turn gives descriptions of weights of Tu
(︁
X(w)

)︁
, the

tangent space of X(w) at u. Indeed, almost all characterizations of the ele-

ments of E−(X(w), u) are accompanied by the corresponding characterizations

of the roots associated with the ˆ︁T -curves. In Section 5.2 we define four types

of root/ˆ︁T -curve pairs: Type I (strong, weak), Type II, and pseudo Type II.

These root/ˆ︁T -curve pair types stem from our work in [11] on ˆ︁T -surfaces in

G/P . Using these pair types, we obtain a partial characterization of the set

E−(X(w), u), where the ˆ︁T -fixed point u is a maximal singularity of any sin-

gular Schubert variety in G/B (see Theorem 5.6.1 and Theorem 5.6.3). In the

case that X(w) is rationally smooth, we prove that E−(X(w), u) contains a

strong Type I pair of ˆ︁T -curves, again when the ˆ︁T -fixed point u is a maximal

singularity (see Theorem 5.7.2). From this, we obtain our main result of this

chapter: a maximal singularity u ∈ X(w)
ˆ︁T of a rationally smooth Schubert

variety X(w) in G/B satisfies one of two “kite properties”, that is, the Bruhut

graph of X(w) contains one of the two aforementioned kite patterns passing

through u (see Definitions 5.8.1 and 5.8.2 and Theorem 5.9.5).

In Chapter 6, we first review the work of Billey-Crites on pattern avoidance

and (rationally) smooth Schubert varieties in G/B as presented in [2]. We

then define the notion of a wide affine permutation (see Definition 6.3.1 be-

low) and develop some theory regarding wide affine permutations related to
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the Bruhat-Chevalley order on the affine Weyl group ˆ︂W and to our work on

maximal singularities (and kite properties) in Chapter 5, specifically Theorem

5.9.5. Wide permutations are significant since they all contain the pattern

3412. Using the theory of wide affine permutations we prove that the affine

permutation w corresponding to a singular rationally smooth Schubert variety

X(w) in G/B contains the pattern 3412 (See Theorem 6.5.1). We conclude the

chapter by providing a proof of Conjecture 6.1.6 (See Theorem 6.5.2 below).

Before we go any further, we will establish some notation and state our univer-

sal assumptions used in this thesis. We will always work over C. We will view

varieties as sets of closed points and assume all algebraic groups are affine.

The coordinate ring of an affine variety X will be denoted by C[X] and, if X

is irreducible, its quotient field will be denoted by C(X). The tangent space

of a variety X at a point x ∈ X will be denoted by Tx(X). When we specify

that an algebraic group acts on a variety, we assume it acts morphically. For a

variety X with the action of an algebraic group T , we will write XT for the set

of T -fixed points of X. For a point x ∈ X, we will use Tx and T · x to denote

the stabilizer of x and the orbit of x, respectively. Given a finite-dimensional

complex vector space V , we will often identify V with the associated affine

space A(V ). In particular, this will enable us to talk about subvarieties of V .

Finally, if S is a set, then |S| denotes the cardinality of the set.
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Chapter 2

Preliminaries

In this chapter, we will provide the general background information which

underlies both of our research projects. None of the material presented in this

chapter is original to this thesis. We will review some basic facts regarding

linear algebraic groups and varieties, many of which can be found in the books

by Borel (see [8]), Humphreys (see [20]), and Hartshorne (see [19]). In [11], we

stated some well-known results in these areas and provided a few of the proofs

as a convenience to the reader. As many of those results are also relevant to

this thesis, we will state them again here, but this time without proofs. In

some instances, we will refer the reader back to [11] as an example of where

certain proofs can be found.

2.1 Tori

Definition 2.1.1. A torus T is an algebraic group isomorphic to Gn
m, for some

n ∈ N. A diagonalizable group is an algebraic group which is isomorphic to a

closed subgroup of a torus.

For example, the set of all n× n diagonal matrices in the general linear group

GLn(C) is a torus. As a closed subgroup of Gm, the group µn of nth roots of

unity is a diagonalizable group.
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Every connected diagonalizable group over C is a torus. Homomorphic images

of tori are again tori. Notably, any connected subgroup of a torus and any

quotient of a torus by a torus is again a torus.

2.2 Characters and One-Parameter Subgroups

A character of an algebraic group G is a homomorphisms χ : G → Gm. The

set of all such homomorphisms, denoted X(G), has the natural structure of

an abelian group (we use additive notation (χ1 + χ2)(g) = χ1(g)χ2(g), for all

g ∈ G). The set X(G) can be identified with the group-like elements of the

Hopf algebra C[G].

If ϕ : G ↦→ H is a homomorphism of algebraic groups, then there is an in-

duced group homomorphism ϕ∗ : X(H) → X(G) given by ϕ∗(χ) = χ ◦ ϕ
(alternatively, restrict the C-algebra homomorphism ϕ∗ : C[H] → C[G] to the

group-like elements). Thus, we have a contravariant functor from the category

of algebraic groups to the category of abelian groups sending G to X(G).

Restricting this functor to the subcategory of diagonalizable groups yields

an anti-equivalence between the latter category and the category of finitely

generated abelian groups, under which the n-dimensional tori correspond to

free abelian groups of rank n. In particular, X(Gn
m) is the free abelian group

on the n projections

(c1, c2, . . . , cn) ↦→ ci.

In the other direction, a homomorphism λ : Gm → G is called a one-parameter

subgroups (or cocharacter) of G. If G is a diagonalizable group, then the set

Y (G) of all one-parameter subgroups also has a natural structure of a free

abelian group of finite rank ((λ1+λ2)(c) = λ1(c)λ2(c), for all c ∈ Gm). In this

case, there is a pairing

X(G)× Y (G) → X(Gm) ≃ Z

given by

(χ, λ) ↦→ ⟨χ, λ⟩,
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where ⟨χ, λ⟩ is the integer such that (χ ◦ λ)(c) = c⟨χ,λ⟩. If G is a torus T ,

then the pairing is non-degenerate, that is, it identifies X(T ) with Y (T )∗ =

HomZ(Y (T ),Z). In particular, if T is an n-dimensional torus, then Y (T ) is a

free abelian group of rank n. Concretely, Y (Gm) is the free abelian group on

the n cocharacters

c ↦→ (1, 1, . . . , 1, c, 1, . . . , 1).

2.3 Representations of Algebraic Groups

Finite-dimensional complex vector spaces with torus actions play a prominent

role in our work as we will often be able to reduce questions involving varieties

with T -actions to problems concerning vector spaces.

Let V be a C-vector space. A (rational) representation ρ : G→ GL(V ) induces

a linear action of G (as an abstract group) on V given by g · v = ρ(g)(v). In

this case, we say that the vector space V is a G-module and that the algebraic

group G acts on V . Of particular interest to us, is the case in which G is a

torus T .

We will now recall some well-known results concerning T -modules. We begin

with a fundamental fact, which we will use frequently. Let V be a T -module.

Then V has a weight space decomposition:

V =
⨁︂

α∈X(T )

Vα,

where

Vα = {v ∈ V | t · v = α(t)v, for all t ∈ T}.

The α for which Vα ̸= 0 are called the weights of T in V and Vα is called a

weight space. We denote the set of weights by ΩT (V ) or simply Ω(V ) if the

torus involved is clear.

Remark 2.3.1. More generally, it suffices in the above discussion that T be

a diagonalizable group.
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If v =
∑︁
vα ∈ V , where vα ∈ Vα, then the set

s(v) := {α | vα ̸= 0}

in X(T ) is called the support of v. Also, a T -module V is called multiplicity

free if dimVα = 1, for all α ∈ Ω(V ).

Any Gm-module V has an induced Z-grading defined by Vd := Vα, where

α(c) = cd. For an arbitrary torus T , we obtain a Gm-module structure on a

T -module V by fixing a λ ∈ Y (T ) and defining c · v := λ(c) · v. This in turn

induces a Z-grading on a V by setting

Vd :=
⨁︂

α∈X(T )
⟨α,λ⟩=d

Vα.

Using this Z-grading, we define

V− :=
⨁︂
d<0

Vd, V0 :=
⨁︂
d=0

Vd, and V+ :=
⨁︂
d>0

Vd.

If W is a T -stable subspace of a T -module V , then both W and V/W in-

herit T -modules structures from V . They are endowed with the weight space

decompositions

W =
⨁︂

α∈X(T )

Wα, where Wα = W ∩ Vα,

and

V/B =
⨁︂

α∈X(T )

(V/W )α, where (V/W )α = Vα/Wα.

In particular,

Ω(W ), Ω
(︁
V/W

)︁
⊆ Ω(V ).

In the event that V is multiplicity free, these decompositions become

W =
⨁︂
α∈Γ

Vα
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and

V/W =
⨁︂

α∈Ω(V )\Γ

Vα,

for some Γ ⊆ Ω(V ).

In addition, the dual space V ∗ inherits a T -module structure from V via the

action (t · f)(v) = f(t−1 · v), for all t ∈ T , f ∈ V ∗. It is clear that V ∗

decomposes under this action as

V ∗ =
⨁︂

α∈Ω(V )

(Vα)
∗,

where the weight of (Vα)
∗ is −α, and hence

Ω(V ∗) = −Ω(V ).

2.4 Algebraic Group Actions on Varieties

Let G be an algebraic group and let X be a variety. By a (left) action of G on

X, we mean a morphism G ×X → X that equips the underlying set X with

a left action of the abstract group G. We will write g · x to denote the image

of (g, x) under such a morphism.

A map f : X → Y of varieties with G-actions is called G-equivariant if

g · (f(x)) = f(g · x)

for all x ∈ X, g ∈ G.

Example 2.4.1. To give an action of an algebraic group G on a finite-

dimensional C-vector space V is equivalent to giving an action of G on the

affine space A(V ).

Example 2.4.2. If V is a G-module, then the action of G on V induces an

action of G on the projective space P(V ), where G acts on each line [v] by the

rule g · [v] = [g · v].
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We will use XG, G · x, and Gx to denote the set of fixed points of G, the orbit

of x, and the stabilizer of x, respectively. The following basic facts can be

found in chapters 7 and 8 of [20]:

Lemma 2.4.3. Let G be any algebraic group and let X be variety with a

G-action.

1) G-orbits are open in their closures.

2) G-orbits are irreducible, if G is connected.

3) G-orbits are smooth.

4) G-orbit closures are G-stable.

5) Every G-orbit closure contains a closed orbit.

6) XG is closed in X.

7) Gx is a closed subgroup of G, for all x ∈ X.

From Property 1) of Lemma 2.4.3, we observe that G · x can be equipped

with the structure of a locally closed subvariety of X. The Orbit-Stabilizer

Theorem is then valid, i.e the natural map

G/Gx → G · x

is a G-equivariant isomorphism of varieties.

In addition to G-actions on varieties, we also want to consider G-actions on

structures associated with varieties.

Let X be a variety with G-action and let x ∈ XG. There is an induced action

of G on the tangent space Tx(X): let g ∈ G and also use g to denote the map

g : X → X defined by y ↦→ g · y, with differential dxg : Tx(X) → Tx(X),

then the induced action of G on Tx(X) is given by g · δ = dxg(δ). If Y is any

G-stable subvariety of X containing x, then Tx(Y ) is a G-stable subspace of

Tx(X).
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In the case that X is an affine variety with G-action, there is an induced

G-action on the coordinate ring C[X] given by

(g · f)(x) = f(t−1 · x),

for all g ∈ G, f ∈ C[X], and x ∈ X. This, in turn, induces a G-action on the

field of rational functions C(X) in the obvious way. Moreover, if x ∈ XG, then

the maximum ideal mx in C[X] of functions which vanish at x is also G-stable.

The action of G on C[X] is locally finite, that is, for each f ∈ C[X], there

exists a finite dimensional subspace of C[X] containing G · f . In particular,

this yields that C[X] is the union of finite dimensional G-stable subspaces,

upon each of which G acts rationally. In the case that G is a torus T , we

obtain a weight space decomposition

C[X] =
⨁︂

α∈X(T )

C[X]α.

If f, g ∈ C[X] are elements of weight α and β, respectively, then f/g ∈ C(X)

has weight α − β. Furthermore, in light of the given G actions on C[X] and

Tx(X), the canonical isomorphism

mx/m
2
x ≃ Tx(X)∗,

where the coset f +m2
x is identified with dxf , is G-equivariant when x is fixed

by G. In particular, taking G to be a torus T yields that

Ω
(︁
Tx(X)∗

)︁
= Ω

(︁
mx/m

2
x

)︁
⊂ Ω

(︁
C[x]

)︁
.

This is significant as it enables us to apply results about the weights of C[X]

to the weights of Tx(X)∗ and, subsequently, to the weights of Tx(X), when X

is an affine variety with T -action.
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2.5 Torus Orbits and Torus Orbit Closures

In this section, we will review some useful facts concerning T -orbits and their

closures, including some lemmas which will be utilized in our work on torus

orbit closures in Chapter 3.

In addition to satisfying the properties listed in Lemma 2.4.3, T -orbits are also

affine, which follows from the Orbit-Stabilizer Theorem and the fact that T is

commutative.

In the context of T -modules, we have a convenient tool for computing dimen-

sions of T -orbits:

Lemma 2.5.1. If v is an element of a T -module V with support s(v), then

dimT · v = rankM , where M is the Z-module generated by s(v).

Proof. See for example Lemma 2.9 in [11].

As a consequence, a T -orbit T ·v is one dimensional if and only if the elements

of s(v) are proportional over Q and at least one is nonzero.

One of the benefits of working with affine T -orbit closures X is the connection

between the geometry of the T -action on X and the representation of T on

C[X] described in the following well-known lemma.

Lemma 2.5.2. Let X be an affine variety with T -action. The following are

equivalent:

1) X has finitely many orbits.

2) X has an open dense orbit.

3) C[X] is multiplicity free.

Proof. For example, see Lemma 2.15 in [11].

More can be said in the case of affine T -orbit closures, as indicted in the next

lemma:
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Lemma 2.5.3. If X is an affine variety with T -action containing an open

dense orbit T · x, then X \ (T · x) is pure of codimension one, that is, every

irreducible component of X \ (T · x) has codimension one.

Proof. More generally, it is well known that if U is a dense open affine subva-

riety of a variety X, then X \U is pure of codimension one. In the case where

X is normal, this may be deduced from Proposition 6.3 A in [19]. The general

case then follows by passing to the normalization of X.

Consequently, in light of Lemma 2.5.2, the dimension of T -orbits in an affine

T -orbit closure X go down by one, in other words, if dimX = n, then there

is a T -orbit of dimension i, for all 0 ≤ i ≤ n.

Now, if T is a torus with closed subgroup S and X is a variety with T -action,

then

s · (t, x) := (ts−1, s · x)

defines an action of S on the product T ×X. Taking the quotient of T ×X by

this S-action we obtain T ×S X, the contracted product of T and X, whose

points are identified with the S-orbits in T×X. The variety T×SX is equipped

with an action of T by setting

t′ · (t, x) := (t′t, x)

Furthermore, the product (T/S)×X is equipped with a T -action by defining

t′ · (t, x) = (t′t, t′ · x)

A routine calculation shows the following:

Lemma 2.5.4. Let T act on T ×SX and (T/S)×X as above. Then the map

ψ : T ×S X → (T/S)×X

(t, x) ↦→ (t, t · x)

is a well-defined T -equivariant isomorphism.

Now, for any S-stable closed subvariety Z of X, we can again form the con-

tracted product T ×S Z. Equipped with a T -action on the left factor, T ×S Z
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is a T -stable closed subvariety of T ×S X. Thus, if we fix an S-stable closed

subvariety Y of X, we obtain an inclusion preserving map

θ :

{︄
S-stable closed

subvarieties of Y

}︄
→

{︄
T -stable closed

subvarieties of T ×S Y

}︄
Z ↦→ T ×S Z

Given a T -stable closed subvariety of W of T ×S Y , let Z denote its preimage

under the natural map

Y → T ×S Y

y ↦→ (1, y)

A straightforward calculation then shows that the map sending W to Z is an

inverse of θ, so that:

Lemma 2.5.5. θ is a bijection.

We now consider a special case of this situation. Suppose that we are given a

T -equivariant morphism f : X → T/S and let u ∈ T/S. Then S acts on the

fibre Y := f−1(u).

Lemma 2.5.6. The map

η : T ×S Y → X

(t, y) ↦→ t · y

is a well-defined T -equivariant isomorphism.

Proof. The map

T × Y → X

(t, y) ↦→ t · y

is constant on S-orbits since it send s · (t, y) = (ts−1, s · y) to t · y. As such, η
is well-defined. Furthermore, it is clear that η is T -equivariant. Now consider

the diagram
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T ×S Y

η
↘↘

↘ ↙ →→ T ×S X
ψ →→ (T/S)×X

π
←←

X

The first horizontal map on the left is the inclusion of T ×S Y as a closed

subvariety of T ×S X, and the map π is the projection

π : (T/S)×X → X

(t, x) ↦→ x

It follows from the definitions of η and ψ that this diagram commutes. Now

let Γ ⊆ (T/S) × X be the image of T ×S Y in (T/S) × X under the closed

embedding formed by the horizontal composition. By the commutativity of

this diagram, η is an isomorphism if the projection π induces an isomorphism

Γ → X. According the definition of ψ, Γ consists of pairs (t, t · y) such that

t ∈ T and y ∈ Y . Now, let x ∈ X. Then x = t · y for some t ∈ T and some

y ∈ Y . Indeed, setting f(x) := w ∈ T/S, we know that there exists a t ∈ T

such that t−1w = u and hence f(t−1 · x) = t−1f(x) = t−1w = u. Therefore,

x = t · (t−1 · x), where t ∈ T and t−1 · x ∈ Y . Consequently, since

f(x) = f(t · y) = tf(y) = tu,

Γ is the graph of the morphism

X → T/S

x ↦→ f(x)u−1

As such, the projection π yields an isomorphism from Γ to X, as required.

The subsequent lemma provides us with a nice relationship between T -orbit

closures and S-orbit closures of elements of the fibre Y := f−1(u).

Lemma 2.5.7. Let T be a torus with subgroup S, let X be a variety with

T -action, and let f : X → T/S be a T -equivariant map. If x, y ∈ f−1(u), for

some u ∈ T/S, then x ∈ T · y if and only if x ∈ S · y.

Proof. One direction is immediate since S · y ⊂ T · y.
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Now consider an element a = (1, y) ∈ T ×S Y . The T -orbit closure T · a in

T ×S Y is the smallest T -stable closed subvariety of T ×S Y containing a. As a

result of Lemma 2.5.5, this is equal to T×SZ, where Z is the smallest S-stable

closed subvariety of Y containing y. However, S · y is the smallest S-stable

closed subvariety of Y containing y. Ergo, T · a = T ×S S · y. Furthermore,

by Lemma 2.5.6, the map

η : T ×S Y → X

(t, y′) ↦→ t · y′

identifies T · a with T · y. Hence, if x ∈ T · y, then (1, x) ∈ T · a = T ×S S · y.
Consequently, (1, x) = (t, w), for some t ∈ T and some w ∈ S · y. This means

that s · (1, x) = (s−1, s ·x) = (t, w) for some s ∈ S. In particular, we have that

s · x = w and so x = s−1 · w. Finally, since S · y is S-stable, we obtain that

x ∈ S · y, as required.

Before we state the last fact of this section, we will first define some notation

which appears in the lemma. Given a morphism f : Gm → X of varieties, the

expression

lim
g→0

f(g) = y

is used to mean that we extend f to a morphism f̃ : A1 → X, by defining

f̃(0) = y. This gives us the usual notion of a limit when working in a vector

space.

Lemma 2.5.8. Let X be an irreducible affine or projective variety with T -

action that contains an open T -orbit T · x. Then for any y ∈ X, there exists

a λ ∈ Y (T ) such that lim
g→0

λ(g) · x ∈ T · y.

Proof. See [25] and Lemma 2.1 in [14].

This lemma, which is a version of the Hilbert-Mumford criterion, is significant

as it gives us a method in concrete examples of determining which T -orbits

are contained in a given T -orbit closure.
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2.6 T -Varieties

We now consider an important type of variety with T -action:

Definition 2.6.1. A T -variety X is an irreducible variety with a T -action

such that XT is finite and for all x ∈ XT there is an open T -stable affine

neighborhood of x, which we will denote by Xx.

Remark 2.6.2. If X is a T -variety, then any closed irreducible T -stable sub-

variety Y of X is also a T -variety by taking Yy := Y ∩Xy for all y in the finite

set Y T = Y ∩XT .

A key example for our purposes is:

Example 2.6.3. If V is a multiplicity free T -module of dimension n+1, then

any closed irreducible T -stable subvariety of the projective n-space P(V ) is a

T -variety. (See Lemma 2.13 in [11], for example.)

This can be generalized as follows:

Example 2.6.4. As a corollary of Sumihiro’s Theorem (see [36], [37]), if Y is a

normal variety with T -action, then any closed irreducible T -stable subvariety

X with finite T -fixed point set XT is a T -variety.

2.7 T -Curves

Definition 2.7.1. Let X be a variety with T -action. A curve in X which is

the closure of a one-dimensional T -orbit is called a T -curve.

Example 2.7.2. If C is a closed irreducible curve with T -action for which

C ̸= CT , then C is a T -orbit closure and hence a T -curve. In particular, any

closed T -stable irreducible curve in a T -variety X is a T -curve.

A specific type of T -curve of interest to us is:

Definition 2.7.3. A T -curve in a variety X with T -action is said to be good

if C = T · z, where X is nonsingular at z.
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One useful fact pertaining to T -curves is given in the following lemma.

Lemma 2.7.4. If V is a multiplicity free T -module such that no two weights

are proportional, then the only T -curves contained in V are the weight spaces

Vα.

Proof. See, for example, Lemma 2.20 in [11].

Let X be a variety with T -action. Denote by ET (X) the set of all closed

irreducible T -stable curves in X and denote by ET (X, x) the set of all closed

irreducible T -stable curves in X containing a T -fixed point x. If the torus

involved is clear, we will denote these sets simply by E(X) and E(X, x), re-

spectively. Moreover, if X is a T -variety, then both E(X) and E(X, x) consist

entirely of T -curves.

From Lemma 2.7.4, we know that if V is a multiplicity free T -module where

no two weights are proportional, then E(V, 0) is a finite set.

In the event that E(X) is a finite set such that |CT | = 2 for all C ∈ E(X),

then X has an affiliated graph Γ(X), called a Bruhat graph, whose vertex set

is XT and edge set is E(X). More precisely, two T -fixed points x and y are

connected by an edge if and only if there is a T -curve C in E(X) such that

CT = {x, y}.

When working with T -varieties of dimension at least 1, we are guaranteed by

the following lemma, that there is at least one T -curve passing through each

T -fixed point.

Lemma 2.7.5. If x ∈ XT , where X is a T -variety, then |E(X, x)| ≥ dimX.

Proof. See Lemma 2 in [13] or Lemma 2.4 in [15].

In particular, this means that the Bruhat graph of X has at least dimX edges

attached to every vertex. It was proven in Lemma 2.3 of [15] that the Bruhat

graph of a projective T -variety is connected.

Furthermore, in the T -variety setting, there is also a useful relationship be-

tween the T -curves in E(X, x) and the T -stable lines in Tx(X) as explained in

the next lemma.
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Lemma 2.7.6. Let X be a T -variety, let x ∈ XT , and let L be any T -stable

line in Tx(X). If X is nonsingular at x, then there exists a C ∈ E(X, x) such

that Tx(C) = L.

Proof. Let L1 be a T -stable line in Tx(X). Therefore L1 ⊆ Tx(X)α, for some

α ∈ Ω
(︁
Tx(X)

)︁
. Let f1 ∈ C[Xx]−α such that dxf1 spans L∗

1. Now choose T -

eigenvectors f2, . . . , fn ∈ mx such that dxf1, dxf2, . . . , dxfn is a basis of Tx(X)∗.

Let Li := Span(fi), then

Tx(X) =
n⨁︂
i=1

Li

Let Cx := Z(f2, . . . fn) ⊆ Xx. Thus,

dimCx ≥ dimX − (n− 1) = n− (n− 1) = 1

since X is nonsingular at x. Furthermore, since

Tx(Cx) =
n⋂︂
i=2

ker(dxfi) = L1,

we have that dimCx ≤ 1 and hence dimCx = 1. Clearly, x ∈ Cx and since the

fi are T -eigenvectors, Cx is T -stable. Now, since x is a nonsingular T -fixed

point of Cx, the irreducible component of Cx containing x is a T -stable curve.

Thus, replacing Cx with this irreducible component if necessary, and taking

C = Cx ⊂ X, we have C ∈ E(X, x) such that Tx(C) = L1 as required.

2.8 T -Fixed Points

Thus far and in much of what follows, a great deal of emphasis has and will be

placed on the set of T -fixed points of a variety with T -action. Indeed, T -fixed

points are a useful diagnostic tool, in particular, when working with projective

varieties. Borel’s fixed point theorem guarantees that:

Lemma 2.8.1. Every nonempty closed T -stable subset of a projective variety

X with T -action contains a T -fixed point. In particular, XT ̸= ∅.

Proof. See Theorem 10.4 in [8].
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Hence, whenever the set of all points with a specific property forms a closed

T -stable subset of X, if there is a point with that property, then there is a

T -fixed point with that property. Thus the T -fixed points are indicators of

whether or not a projective variety possesses certain properties.

Of particular interest to us is identifying the presence of singular points. The

set SingX of singular points of a variety X is a proper closed subset of X (see

Corollary 17.2 in [8]). If X is endowed with a T -action, then SingX is clearly

T -stable. Hence,

Lemma 2.8.2. For any projective variety X with T -action, the set SingX of

singular points of X is a proper closed T -stable subset of X which contains a

T -fixed point, if nonempty.

Thus, determining if a projective variety with T -action is singular or nonsingu-

lar can be accomplished by checking if any of the T -fixed points are singular.

2.9 Attractive T -Fixed Points

Much of our work relies heavily on the following aptly named object:

Definition 2.9.1. Let X be a T -variety. A T -fixed point x and Xx are called

attractive if there is a λ ∈ Y (T ) such that ⟨α, λ⟩ > 0, for all α ∈ Ω
(︁
Tx(X)

)︁
.

Remark 2.9.2. Let X be a T -variety with attractive T -fixed point x and

let λ ∈ Y (T ) such that ⟨α, λ⟩ > 0, for all α ∈ Ω(Tx(X)). If Y is a closed

irreducible T -stable subvariety of X which contains x, then x and Yx := Y ∩Xx

are attractive in Y since ⟨α, λ⟩ > 0, for all α ∈ Ω
(︁
Tx(Y )

)︁
⊆ Ω

(︁
Tx(X)

)︁
.

The justification for the term “attractive” is apparent from statement 3) of

Lemma 2.9.6 below. However, attractive points/neighbourhoods are also de-

serving of their names based upon their usefulness, as evidenced by the fol-

lowing lemma:

Lemma 2.9.3. If X is an affine variety with T -action, then there is a T -

equivariant embedding X ↪→ V , for some T -module V . In the case that x is

an attractive fixed point of some T -variety X, then Xx embeds into Tx(X).
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Proof. For example, see Lemma 2.23 in [11].

Remark 2.9.4. If x is a nonsingular attractive T -fixed point of a T -variety

X, then

Xx ≃ Tx(X)

(T -equivariantly).

Remark 2.9.5. If Y is a closed irreducible T -stable subvariety of X contain-

ing the attractive T -fixed point x, then one can choose T -equivariant embed-

dings Yx ↪→ Tx(Y ) and Xx ↪→ Tx(X) compatible with the natural embedding

Tx(Y ) ↪→ Tx(X), that is, such that the diagram below commutes:

Yx = Y ∩Xx ↪→ Xx

↪→ ↪→

Tx(Y ) ↪→ Tx(X)

We will state two equivalent notions of attractiveness. In order to do this, we

first make a clarifying remark: a subset S of Ω(V ) is said to lie on one side

of a hyperplane in X(T )⊗Q ≃ Qn if there is a linear function on Qn that is

strictly positive on S.

Lemma 2.9.6. Let X be a T -variety and let x ∈ XT . The following are

equivalent:

1) x is attractive.

2) Ω(Tx(X)) lies on one side of a hyperplane in X(T )⊗Q.

3) There exists a λ ∈ Y (T ) such that lim
g→0

λ(g) · y = x, for all y ∈ Xx.

Proof. For example, see Lemma 2.25 in [11].

Remark 2.9.7. The equivalence of 1) and 3) can be made more precise as

follows: let λ ∈ Y (T ). Then ⟨α, λ⟩ > 0, for all α ∈ Ω(Tx(X)) if and only if

lim
g→0

λ(g) · y = x, for all y ∈ Xx.
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There are two immediate consequences of the equivalence of 1) and 3) worth

noting.

Corollary 2.9.8. Let X be a T -variety and let x ∈ XT be attractive. The

open neighbourhood Xx is unique.

Proof. See, for example, [11].

Corollary 2.9.9. Let X be a T -variety and let x ∈ XT be attractive. The

only T -fixed point in Xx is x.

Proof. Clear.

Furthermore, keeping in mind that Xx embeds into Tx(X), an attractive T -

fixed point x is equal to 0 when viewed as element of Tx(X). Indeed, write

x =
∑︁
vαi

∈ Xx, for some αi ∈ Ω(Tx(X)), and let λ be an element of Y (T )

which makes x is attractive. Therefore,

x = lim
c→0

λ(c) · x = lim
c→0

∑︂
αi(λ(c))vαi

= lim
c→0

∑︂
cdivαi

= 0,

since di := ⟨αi, λ⟩ > 0.

Additionally, in subsequent chapters we will require the following result per-

taining to attractive fixed points. This is Lemma 2.1 in [15].

Lemma 2.9.10. Given a map f : X → Y of affine T -varieties, where X

contains an attractive T -fixed point x, then f is a finite morphism if and only

if the fibre f−1(f(x)) is a finite set.
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2.10 T -Orbit Closures with Attractive

T -Fixed Points

Now let X be a T -variety which contains a dense T -orbit T ·y and suppose that

x ∈ XT is attractive. By Lemma 2.9.3, there is a T -equivariant embedding of

the attractive affine neighbourhood Xx into Tx(X). Clearly, T · y ⊆ Xx, since

Xx ∩ (T · y) is nonempty and T -stable. Therefore, we also have Xx = T · y
in Tx(X). It now follows from Lemma 2.5.2 that C[Xx] is multiplicity free.

Recall that if mx is the ideal in C[Xx] of all functions vanishing at x, then

Tx(X)∗ ≃ mx/m
2
x (T-equivariantly) under the assignment dxf ↦→ f̄ . As a

consequence, Tx(X) is multiplicity free as well. Specifically, this means that

Tx(X) has a weight space decomposition

Tx(X) =
⨁︂
α∈Γ

Tx(X)α,

where Γ = Ω
(︁
Tx(X)

)︁
and each Tx(X)α has dimension 1. Certainly, if we

know Γ and dimX, we can determine whether or not a T -fixed point x ∈ X

is singular. (For example, if we know the support s(y) of y, viewed as an

element of Tx(X), we can compute dimXx = dimX using Lemma 2.5.1 and

then compare dimX with |Γ| = dimTx(X).)

More can be said about Γ if we take into account the fact that

−Γ = Ω(Tx(X)∗) ⊆ Ω(C[Xx]).

Before we elaborate further, we will gives some clarifying remarks.

Let h ∈ Tx(X)∗, then since Xx embeds in Tx(X), we can restrict h to Xx.

Computing the differential of h|Xx at x, we obtain that dx(h|Xx) = h. In light

of the above assignment, we also have h|Xx ∈ mx. In addition, if h|Xx = 0,

then dx(h|Xx) = h = 0 or equivalently, if h ̸= 0, then h|Xx ̸= 0.

Returning to our previous discussion, there is a convenient relationship be-

tween the weights Γ of Tx(X) and the restrictions to Xx of the variables on

the weight spaces Tx(X)α.
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Lemma 2.10.1. Let {α1, α2, . . . , αm} ⊆ Ω(Tx(X)) and let zαi
∈ C[Xx] be the

restriction to Xx of a variable on Tx(X)αi
, for each i. If

m∑︂
i=1

aiαi =
m∑︂
i=1

biαi,

where ai, bi ∈ N0, then
m∏︂
i=1

zaiαi
=

m∏︂
i=1

zbiαi
,

up to scalars.

Proof. We first note that the weight of zαi
is −αi. Let

d = −
m∑︂
i=1

aiαi.

Then,
m∏︂
i=1

zaiαi
,
m∏︂
i=1

zbiαi
∈ C[Xx]d.

Since Xx is a T -orbit closure, by Lemma 2.5.2, the integral domain C[Xx] is a

multiplicity free T -module. Therefore,

m∏︂
i=1

zaiαi
= c

m∏︂
i=1

zbiαi
,

for some c ∈ C (which we assume to be 1 by an appropriate choice of variables).

From the relationship specified in the previous lemma, we obtain another well-

known fact about the weights Γ of Tx(X), which is a useful tool when attempt-

ing to identify the elements of Γ:

Lemma 2.10.2. Let X be a T -variety containing a dense open T -orbit and

let x ∈ XT be attractive. Any linear combination
m∑︂
i=1

aiαi of weights of Tx(X),

with m, ai ∈ N and
m∑︂
i=1

ai > 1 is not a weight of Tx(X).
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Proof. Let α1, α2, . . . , αm be weights of Tx(X) and let zαi
∈ C[Xx] be the

restriction to Xx of the variable on Tx(X)αi
, for each i. Now, suppose that

ω =
∑︁
aiαi is a weight of Tx(X), such that

∑︁
ai > 1, and let zω ∈ C[Xx]

be the restriction to Xx of a variable on Tx(X)ω. Therefore, zω = c
∏︁
zaiαi

, for

some c ∈ C, by Lemma 2.10.1. As was discussed above, zαi
∈ mx, for each i.

Thus, since
∑︁
ai > 1, we obtain that

∏︁
zaiαi

∈ m2
x and consequently dxzω = 0

(in mx/m
2
x), which is a contradiction.

2.11 Peterson Translates

One particularly useful method for determining the regular locus of T -variety

is presented by Carrell and Kuttler in [15]. The key construction in this

method is an object known as a Peterson translate: let X be a T -variety, let

x be an attractive T -fixed point of X, whose attractive neighbourhood will

be denoted Xx, and let C ∈ E(X, x), which we will assume is smooth. As

a T -curve, C is a T -orbit closure, say C = T · z, for some z ∈ C. The set

Cx := Xx∩C = T ·z∪{x} is an open affine T -stable attractive neighbourhood

of x in C (see Remark 2.9.2).

Now, for any t ∈ T , the map t : X → X given by z ↦→ t · z is an isomorphism

and hence the differential dct : Tc(X) → Tt·c(X) is an isomorphism for any

c ∈ X, but in particular for any c ∈ C \ CT . Thus, the tangent spaces Tc(X)

along the open orbit C \CT have a common dimension, which we will denote

as d.

Furthermore, since the attractive neighbourhood Xx embeds into Tx(X), the

differential of this embedding at any c ∈ C \ CT enables us to view Tc(X) as

a subspace of Tx(X), for all c ∈ C \ CT .

Let V := Tx(X) and set G(d, V ) to be the Grassmannian of d-planes in V.

Then the map φ : C \ CT → G(d, V ), given by c ↦→ Tc(X), extends uniquely

to a map φ̃ : Cx → G(d, v). The point φ̃(x) of G(d, V ) is the following object:
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Definition 2.11.1. The Peterson translate of X along C is the limit

τC(X, x) := lim
c→x

Tc(X),

where c ∈ C \ CT .

Now, for all t ∈ T , set t : V → V to be the map given by v ↦→ t · v (which can

be restricted to Xx). In this setting we have

Xx ↪→ V

t

−→ −→ t
Xx ↪→ V

Tc(X) ↪→ V

dct
−→ −→ t

Tt·c(X) ↪→ V

where the diagram on the right is obtained from the one on the left by taking

differentials at the appropriate points. From the commutativity of the right

diagram it follows that φ is T -equivariant, which implies that φ(C \ CT ) is

T -stable.

Let Γφ := {
(︁
c, φ(c)

)︁
} denote the graph of φ in C \ CT × G(d, V ). Since φ is

T -equivariant, Γφ is stable under the diagonal action of T on C \CT ×G(d, V ).

Its closure Γφ in Cx ×G(d, V ) is the graph of the unique extension φ̃ of φ to

Cx and is therefore equal to Γφ ∪{(x, τC(X, x))}. In particular, Γφ is T -stable

under the diagonal T -action on Cx × G(d, V ). Since Γφ is also T -stable, it

follows that (x, τC(X, x)) is a T -fixed point. Therefore, the Peterson translate

τC(X, x) is a T -stable subspace of V = Tx(X).

From the construction of the Peterson translate of X along C, it is clear that

dimX ≤ dim τC(X, x) ≤ dimTx(X).

Hence, if X is nonsingular at x, then

τC(X, x) = Tx(X)

for all C ∈ E(X, x).
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Furthermore, if C is a good T -curve in X, that is C = T · z, where z is a

nonsingular point of X, then

dim τC(X, x) = dimX.

In addition to constructing Peterson translates for X, we can also construct

them for any closed irreducible T -stable subvariety Y of X. If X and Y both

contain an attractive point x and a smooth curve C through x, then there

is a convenient relationship between the two Peterson translates τC(Y, x) and

τC(X, x). In order to describe this relationship, we first identify Tx(Y ) with a

subspace of Tx(X) in the usual way and fix a commutative diagram

Yx = Y ∩Xx ↪→ Xx

↪→ ↪→

Tx(Y ) ↪→ Tx(X)

of T -equivariant embeddings as in Remark 2.9.5.

Lemma 2.11.2. In the situation above, we have that τC(Y, x) ⊆ τC(X, x) as

T -modules.

Proof. Let d be the common dimension of the tangent spaces Tc(X) for all

c ∈ C\CT and letm be the common dimension of the tangent spaces Tc(Y ) for

all c ∈ C\CT . Let Fm,d be the closed subvariety of G
(︁
m,Tx(Y )

)︁
×G

(︁
d, Tx(X)

)︁
consisting of points (A,B) such that A ⊆ B, that is,

Fm,d = Flag(m, d, Tx(X)) ∩
(︂
G
(︁
m,Tx(Y )

)︁
×G

(︁
d, Tx(X)

)︁)︂
,

where Flag(m, d, Tx(X)) is the variety of (m, d)-flags in Tx(X). (Recall that

we are identifying Tx(Y ) with a subspace of Tx(X).) Since C is smooth and

Fm,d is projective, the map ρ : C \ CT → Fm,d given by c ↦→
(︁
Tc(Y ), Tc(X)

)︁
has a unique extension ρ̃ : Cx → Fm,d.

Now let πm : Fm,d ↠ G
(︁
m,Tx(Y )

)︁
and πd : Fm,d ↠ G

(︁
d, Tx(X)

)︁
be the

projection maps. The composition map

φm := πm ◦ ρ : C \ CT → G
(︁
m,Tx(Y )

)︁
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has a unique extension

φ̃m : Cx → G
(︁
m,Tx(Y )

)︁
.

By definition, φ̃m(x) = τC(Y, x). Likewise, the map

φd := πd ◦ ρ : C \ CT → G
(︁
d, Tx(X)

)︁
has unique extension

φ̃d : Cx → G
(︁
d, Tx(X)

)︁
.

Again, by definition, φ̃d(x) = τC(X, x). By the uniqueness of the maps in-

volved, we obtain that the following diagrams commute:

C \ CT
↙ ↖

↓↓

ρ →→ Fm,d

πm
↓↓

Cx φ̃m

→→

ρ̃
↗↗

G
(︁
m,Tx(Y )

)︁
C \ CT

↙ ↖

↓↓

ρ →→ Fm,d

πd
↓↓

Cx φ̃d

→→

ρ̃
↗↗

G
(︁
d, Tx(X)

)︁
As a result,

ρ̃(x) =
(︁
φ̃m(x), φ̃d(x)

)︁
=

(︁
τC(Y, x), τC(X, x)

)︁
.

Since the image of ρ̃ lies in Flag(m, d, Tx(X)), it follows that

τC(Y, x) ⊆ τC(X, x).

Corollary 2.11.3. The tangent space Tx(C) is a T -stable subspace of τC(X, x).

Proof. The fact that C is smooth, in conjunction with Lemma 2.11.2, yields

Tx(C) = τC(C, x) ⊆ τC(X, x).
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In addition to Peterson translates, we will also use the following structure:

Definition 2.11.4. Let X be any T -variety with T -fixed point x. The tangent

space to E(X, x) at x is the subspace of Tx(X) given by

TE(X, x) :=
∑︂

C∈E(X,x)

Tx(C).

In the case that x is a nonsingular point of X, Lemma 2.7.6 gives that every

T -stable line in Tx(X) is tangent to some T -curve in E(X, x) and therefore

TE(X, x) = Tx(X).

Since τC(X, x) and TE(X, x) are both subspaces of Tx(X), it is natural to ask

if there is any connection between them. If x is in the regular locus of X, then

the two coincide for all C ∈ E(X, x). Conversely, one is lead to ask: are there

circumstances under which τC(X, x) = TE(X, x) implies thatX is nonsingular

at x? One particular set of such conditions is given in the following theorem.

(This is Theorem 1.4 in [15].)

Theorem 2.11.5. Let X be a T -variety with an attractive T -fixed point x.

Assume that E(X, x) contains only smooth curves and that for any distinct

C,D ∈ E(X, x), the T -weights of Tx(C) and Tx(D) as T -modules are not

equal. If either

1) TE(X, x) = τC(X, x) for at least two good T -curves C ∈ E(X, x), or

2) X is Cohen-Macaulay at x and TE(X, x) = τC(X, x) for at least one

good C ∈ E(X, x),

holds, then X is nonsingular at x.

2.12 T -Surfaces

In regards to Theorem 2.11.5, matters can be simplified further by considering

surfaces. Let X be a variety with T -action and let C be a closed irreducible
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T -stable curve in X. We define ΣT (X,C) (or simply Σ(X,C) if the torus

involved is clear) be the set of all closed irreducible T -stable surfaces in X

which contain C. If X is a T -variety, then whenever C is a good T -curve, the

Peterson translate τC(X, x) of X depends on the Peterson translates τC(Σ, x),

for Σ ∈ Σ(X,C) as outlined below (cf. Lemma 5.1 in [15]):

Lemma 2.12.1. Let X be a T -variety, let x ∈ X be an attractive T -fixed

point, and let C ∈ E(X, x) be good. Then

τC(X, x) =
∑︂

Σ∈Σ(X,C)

τC(Σ, x).

This is a powerful result as it enables us to reduce our considerations to the

T -stable surfaces contained in X.

Due to a result by Brion, one of the benefits of working with surfaces with

T -actions is that they often contain exactly two closed irreducible T -stable

curves.

Lemma 2.12.2. Suppose Σ is an irreducible surface with T -action which con-

tains an attractive point x such that |E(Σ, x)| is finite. Then |E(Σ, x)| = 2.

Proof. See Corollary 1 and Corollary 2 in Section 1.4 of [9].

As is the case for curves, we are particularly interested in those surfaces which

contain a dense open T -orbit.

Definition 2.12.3. Let X be a variety with T -action. A surface in X which

is the closure of a two-dimensional T -orbit is called a T -surface.

For example, any irreducible T -stable surface in a variety X with T -action for

which both XT and E(X) are finite is a T -surface.

Now let Σ = T · y be a T -variety and suppose that Σ contains an attractive

T -fixed point x. We will also assume that E(Σ, x) is a finite set which contains

only smooth T -curves. By Lemma 2.12.2, we know that |E(Σ, x)| = 2, so let

C,D be these two T -curves. Finally, we will also assume that the T -weights

of Tx(C) and Tx(D) as T -modules, say α and β, respectively, are not equal.
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By Lemma 2.9.3, there is a T -equivariant embedding of Σx into Tx(Σ) and

since C and D are smooth, by Remark 2.9.4, Cx ≃ Tx(C) and Dx ≃ Tx(D).

We have

Cx, Dx ↪→ Σx ↪→ Tx(Σ) =
⨁︂
α∈Γ

Tx(Σ)α,

where Γ = Ω
(︁
Tx(Σ)

)︁
. As in Section 2.10, we have that Σx = T · x when viewed

in Tx(Σ) and hence that Tx(Σ) is multiplicity free. Thus, Tx(C) = Tx(Σ)α and

Tx(D) = Tx(Σ)β.

For simplicity, we will write Vα := Tx(Σ)α and Vβ := Tx(Σ)β

Let zα, zβ ∈ C[Σx] be the restrictions to Σx of the variables on Vα and Vβ in

Tx(Σ), respectively. As such, zα and zβ have weight −α and −β, respectively,
in the T -representation on C[Σx]. The following lemma is a version of a fact

that is presented in the proof of Proposition 5.2 in [15]. This lemma will,

once again, enable us to use a result regarding coordinate rings to understand

weights of tangent spaces.

Lemma 2.12.4. Let −ω ∈ Ω(C[Σx]). Then there exists an N ∈ N such that

N(−ω) = a(−α) + b(−β), for some a, b ∈ N0.

Proof. Let ρ : Σx → Vα ⊕ Vβ be the restriction to Σx of the unique T -

equivariant projection ρ̃ : Tx(Σ) ↠ Vα ⊕ Vβ, so that dxρ = ρ̃. Since x is

attractive, x = 0 in Tx(Σ), and hence ρ(x) = 0. If the fibre over 0 is infinite,

then its dimension is at least 1. Moreover, by attractiveness, every irreducible

component contains x. Therefore, by Lemma 2.7.5, it contains at least one

T -curve passing through x, which we may assume is Cx. Thus ρ(Cx) = 0,

which yields that dxρ(Tx(Cx)) = 0, which in turn implies that

ρ̃(Vα) = ρ̃(Tx(Cx)) = 0.

As this is clearly a contradiction, the fibre over ρ(x) is finite and thus by

Lemma 2.9.10, ρ is a finite morphism. As such, since Vα ⊕ Vβ is affine,by

definition the C[zα, zβ]-algebra C[Σx] is a finitely generated C[zα, zβ]-module,

that is, ρ∗ : C[zα, zβ] → C[Σx] is a finite ring homomorphism. In particular,

ρ∗ is integral and so C[Σx] is integral over C[zα, zβ].
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Let f ̸= 0 ∈ C[Σx]−ω. There is an N ∈ N such that

fN = hN−1f
N−1 + · · ·+ h1f + h0,

where hN−i ∈ C[zα, zβ] , for 1 ≤ i ≤ N , and h0 ̸= 0. Since C[zα, zβ] has a

weight space decomposition with respect to T ,

hN−i =
∑︂

µ∈X(T )

hN−i,µ,

where hN−i,µ ∈ C[zα, zβ]µ. Also, as f ∈ C[Σx]−ω, we know that fN has weight

N(−ω) and hence

fN =
N∑︂
i=1

hN−i,i(−ω)f
N−i,

where h0,N(−ω) ̸= 0 and each summand has weight N(−ω). Therefore, N(−ω)
is a weight of C[zα, zβ].

Consequently, we have:

Lemma 2.12.5. Let ω ∈ Ω
(︁
Tx(Σ)

)︁
. Then there exists an N ∈ N such that

Nω = aα + bβ, for some a, b ∈ N0.

2.13 Rationally Smooth Varieties

Definition 2.13.1. Let X be an equidimensional variety. A point x ∈ X

is said to be rationally smooth if there is an open neighbourhood Ux of x in

the analytic topology on X such that for every y ∈ Ux, the relative singular

cohomology group Hj(X,X \ {y},Q) is 0 when j ̸= 2dimX and isomorphic

to Q otherwise. We say that X is rationally smooth if it is rationally smooth

at each of its points.

The locus of rationally smooth points on a variety X is open in the Zariski

topology on X and contains the smooth locus of X (see [26, p471]). The

notion of rational smoothness turns out to be useful for studying singularities

of Schubert varieties and their torus orbit closures. Later we will give some

equivalent conditions for rational smoothness in the latter context.
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Chapter 3

In the Context of G/B

In this chapter we consider the singular locus of a rationally smooth T -orbit

closure X in G/B in types A and D. If every point of X has a connected

stabilizer in T , then it follows from the work of Brion that rational smoothness

is equivalent to a more concrete notion which is referred to as combinatorial

regularity (see Definition 3.4.1 below). Using this, we show that in type A,

a T -orbit closure in G/B is rationally smooth if and only if it is smooth (see

Theorem 3.9.5 below). In type D, Carrell and Kuttler have shown in [15] that

there are rationally smooth T -orbit closures in G/B that are singular (see

Example 7.1 in [15]). Nonetheless, we have studied the case for type D, in

particular, how the techniques applied in the type A case fail for type D.

3.1 Notation and Terminology

Let G be a connected semi-simple algebraic group, B a Borel subgroup, and

T ⊂ B a maximal torus. LetW := NG(T )/T denote the Weyl group of (G, T ).

It is well-known that W is a finite group. The group W acts homomorphically

on T by conjugation, which induces (left) actions of W on the character group

X(T ) and the cocharacter group Y (T ) in the obvious way.

The homogeneous space G/B, known as the flag variety of G, is an irreducible

smooth projective variety with a T -action defined in the obvious way. As a
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projective variety, we know from Borel’s fixed point theorem that

(G/B)T ̸= ∅.

Moreover, (G/B)T is a finite set. Indeed, there is a well known one-to-one

correspondence between the Weyl group W and (G/B)T under which w cor-

responds to ẇB, where ẇ is a representative of w in NG(T ). Henceforth, we

will identify the T -fixed points of G/B with the corresponding element of W

by simply writing w for ẇB. (For example, we will write e for the coset rep-

resented by the identity element of G.) Moreover, the natural action of G on

G/B determines a transitive action of W on (G/B)T . With the identification

above, this action corresponds to the transitive action of W on itself by left

multiplication.

Since G/B is normal (even smooth), it follows from Example 2.6.4 that G/B

and any of its closed irreducible T -stable subvarieties are T -varieties in the

sense of Definition 2.6.1. Concretely, for any w ∈ (G/B)T ,

(G/B)w := (ẇU−) · e

is a T -stable open affine neighborhood, where ẇ ∈ NG(T ) is a representa-

tive of w and U− is the unipotent radical of B−, the Borel opposite B. For

convenience, we will use the notation Uw to denote (G/B)w.

Furthermore, for any closed irreducible T -stable subvariety X of G/B and any

w ∈ XT , the set

Xw := Uw ∩X

is an open affine T -stable neighborhood of w in X.

3.2 Weight Space Decompositions

Let g, b, and h denote the Lie algebras of G, B, and T , respectively. Since G

is semi-simple and we are working over the characteristic 0 field C, g is also

semi-simple. By restricting the adjoint representation Ad : G → GL(g) to T ,

we obtain an action of T on g which yields the root space decomposition:
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g = (
⨁︂
α∈Φ

gα)⊕ h,

where gα = {g ∈ g | t·g = α(t)g, for all t ∈ T}. The elements of Φ := Ω(g)\{0}
are called the roots of G with respect to T . It is well-known that dim gα = 1,

for all α ∈ Φ.

The natural action of the Weyl group W on X(T ) restricts to an action of W

on Φ. For any w ∈ W and α ∈ Φ, we have

gw·α = ẇgα

(here ẇ is any representative of w in NG(T ), acting on g through the adjoint

action of G).

Let α ∈ Φ. We will denote by sα the unique reflection automorphism in

X(T )⊗Z R which sends α to −α. The natural map

W → AutR
(︁
X(T )⊗Z R

)︁
is injective and identifiesW with the subgroup of AutR

(︁
X(T )⊗Z R

)︁
generated

by the sα. (See Theorem 27.1 in [20].)

There is a notion of positivity defined on Φ which arises from the root space

decomposition of b: the set of positive roots, denoted Φ+, is

Φ+ := {α ∈ Φ | gα ⊂ b}.

This is equivalent to setting

Φ+ := {α ∈ Φ | ⟨α, λ⟩ > 0},

where λ ∈ Y (T ) that depends on the choice of Borel subgroup B. The set

of negative roots will be denoted by Φ−. The notation α > 0 indicates that

α ∈ Φ+ and α < 0 indicates that α ∈ Φ−. Therefore, since we also have h ⊂ b,

we obtain that

g/b =
⨁︂
α<0

gα.

38



Tangent spaces are crucial in the study of singularities and in the G/B context

they have useful descriptions. For the T -fixed point e ∈ G/B:

Te(G/B) ≃ g/b =
⨁︂
α<0

gα.

For an arbitrary w ∈ (G/B)T we have:

Tw(G/B) ≃ g/wbw−1 ≃
⨁︂

w−1(α)<0

gα.

Also, Φ is a reduced root system and, as such, the roots in Φ−, or more

generally in w(Φ−), for any w ∈ W , are nonproportional. In particular, this

means that the T -curves in Tw(G/B) are the weight spaces gα, by Lemma

2.7.4.

From the characterizations above, an important fact about G/B can be ob-

tained:

Lemma 3.2.1. Every element of (G/B)T is attractive.

Proof. From our notion of positivity on Φ, we know that there is a λ ∈ Y (T )

such that ⟨α, λ⟩ < 0 for all α < 0 and hence ⟨α,−λ⟩ > 0 for all α < 0. Thus,

the T -fixed point e is attractive since Ω
(︁
Te(G/B)

)︁
= Φ−. An arbitrary T -fixed

point w is also attractive, since for any α ∈ Ω
(︁
Tw(G/B)

)︁
= w

(︁
Φ−)︁, we have

w−1(α) < 0, so that ⟨α,w(−λ)⟩ = ⟨w−1(α),−λ⟩ > 0.

As a consequence of Lemma 3.2.1, in conjunction with Remark 2.9.4, we obtain

that for every w ∈ (G/B)T ,

Uw ≃ Tw(G/B).

Moreover, in view of Lemma 2.8.1, we observe that G/B can be covered by

the attractive T -stable open affine neighbourhoods Uw, for w ∈ (G/B)T .
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3.3 T -Curves in G/B

As G/B is a T -variety, we know that every irreducible T -stable curve in G/B

is a T -curve, that is, the closure of a one dimensional T -orbit. The T -curves in

G/B are very well understood objects. Recall that, for any T -stable subvariety

X of G/B, the set E(X) consists of all T -curves in X.

Lemma 3.3.1. Let X be a nonempty T -stable subvariety of G/B. Then the

following hold:

1) E(X) is finite.

2) Every element of E(X) is smooth.

3) Every element of E(X) contains exactly two T -fixed points.

4) If C ̸= D are elements of E(X) with nonempty intersection, then

C ∩D = {x}, for some x ∈ XT .

Proof. See Theorems D and F in [13].

As a result of Lemma 3.3.1, we obtain a nice description of certain surfaces in

G/B: since (G/B)T and E(G/B) are both finite sets, the T -stable irreducible

surfaces in G/B are T -surfaces, that is, they are closures of two-dimensional

T -orbits.

A more precise characterization of each T -curve in G/B can be given in terms

of its T -fixed points. Recall that E(G/B,w) is the set of T -curves in G/B

which pass through the T -fixed point w. Also, let Uα be the unique connected

T -stable subgroup of G with Lie algebra gα.

Lemma 3.3.2. Let w ∈ (G/B)T and let C ∈ E(G/B,w). Then C = Uα · w,
for some α ∈ Φ, and CT = {w, sαw}, where sα is the reflection in the Weyl

group W corresponding to α. Moreover, Tw(C) = gα and Tsαw(C) = g−α.

Proof. This also follows from Theorems D and F in [13].
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Taking into account that all T -fixed points in G/B are attractive, for any

C = Uα · w ∈ E(G/B,w), we in fact have

Cw ≃ Tw(C) = gα.

Lemma 3.3.3. There are precisely d T -curves through w ∈ (G/B)T , where

d = dimG/B.

Proof. The assignment C ↦→ Cw gives a one-to-one correspondence between T -

curves in G/B passing through w and T -curves in the open subset Uw passing

through w. Since Uw is T -equivariantly isomorphic to Tw(G/B) (with w being

mapped to 0) the claim follows from Lemma 2.7.4.

3.4 Combinatorially Regular Points

In order to introduce the notion of combinatorial regularity, we will first es-

tablish some notation. For a T -variety X, we specify a partial order ≤X on

the elements of X by setting

z ≤X w if and only if T · z ⊆ T · w.

We shall use the notation

z ≈X w

to denote when two points of X are equal under this partial order. Note that

z ≈X w if and only if z ∈ T · w

Let w ∈ X with stabilizer Tw. Define

XT,w := {q ∈ X| w ∈ Tw · q }.
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It is immediate that XT,w is a Tw-stable subset of X which contains only one

Tw-fixed point, namely w. Now, XT,w is a well-known object, in particular, it is

known that XT,w is locally closed. We provide a verification of this for T -orbit

closures in G/B below. The argument for a general T -variety is similar.

Definition 3.4.1. A T -variety X with a dense T -orbit is said to be combina-

torially regular at z if, for all w ≥X z, XT,w is irreducible and

|ETw(XT,w, w)| = dimXT,w.

X is combinatorially regular if it is combinatorially regular at all z ∈ X.

Let x ∈ G/B and set X := T · x. Fix y ∈ X, let S = Ty be the stabilizer of y,

and set Y = XT,y := {q ∈ X| y ∈ S · q }. Suppose S is connected.

The significance of the set Y goes beyond its appearance in the definition

above. We will show in this chapter that for any point z ∈ Y , X is combinato-

rially regular at z if and only if Y is combinatorially regular at z. Furthermore,

z is a nonsingular point of X if and only if z is a nonsingular point of Y . Using

these facts, the problem of determining if a combinatorially regular X is non-

singular at z has been reduced to determining if the combinatorially regular

Y is nonsingular at z. The benefit of this is that Y possesses properties that

simplify the process of identifying nonsingular points. We would like to note

that the results and techniques appearing in Sections 3.5 through 3.8, includ-

ing the two facts mentioned above, are refinements of well-established ideas to

our context. We begin by examining some of the properties of Y .

3.5 Properties of Y

In this section, we will continue to use the notation as defined in the previous

section. As mentioned above, Y is an S-stable subset of X containing y such

that Y S = {y}.

As y ∈ G/B, it is contained in an attractive T -stable neighbourhood Up of

some T -fixed point p ∈ G/B. Now, T · x ⊆ X ∩ Up. It is straightforward

to show that Y ⊆ X ∩ Up and that, for every z ∈ Y , y ∈ S · z, where the

closure is taken in Up. Thus, in what follows, we may assume that X is affine
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by replacing X with the affine T -variety X ∩ Up = T · x, where the closure is

taken in Up. Consequently,

Y ⊆ X ⊆ Up ≃ Tp(Up) ≃ V := Tp(G/B) =
⨁︂
α∈˜︁Φ

gα,

for some subset ˜︁Φ ⊆ Φ.

By Lemma 2.5.8, there exists a λ ∈ Y (T ) such that

lim
g→0

λ(g)x ∈ T · y

and hence there is a t ∈ T such that

lim
g→0

λ(g)(t · x) = y.

Replacing x with t−1 · x, we have

lim
g→0

λ(g)x = y.

We use λ to obtain a Gm-action on V and hence a Z-grading on V . Thus we

may write:

V = V− ⊕ V0 ⊕ V+ =
⨁︂
α∈˜︁Φ

⟨α,λ⟩<0

gα ⊕
⨁︂
α∈˜︁Φ

⟨α,λ⟩=0

gα ⊕
⨁︂
α∈˜︁Φ

⟨α,λ⟩>0

gα

As an element of V , x = x− + x0 + x+, where x− ∈ V−, x0 ∈ V0, and x+ ∈ V+.

Since the above limit exists, x− = 0, which yields that x ∈ V0 ⊕ V+ and

consequently

X = T · x ⊆ V0 ⊕ V+.

Furthermore,

lim
g→0

λ(g)x = x0,

but since it is also equal to y, we have x0 = y. Thus

x = y + x+
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and, moreover, y ∈ V0, i.e. y is a fixed point under the Gm-action induced by

λ. Hence λ(Gm) ⊆ S and therefore

λ ∈ Y (S).

Now, for any v = v0 + v+ ∈ V0 ⊕ V+, lim
g→0

λ(g)v exists. Specifically,

lim
g→0

λ(g)v = v0.

Consequently, viewed as a map on V0⊕V+, lim
g→0

λ(g) is the T -equivariant linear

projection

f : V0 ⊕ V+ → V0

In particular, f(x) = y and f(y) = y. Subsequently,

f(X) = f(T · x) ⊆ f(T · x) = T · f(x) = T · y

and thus we obtain f(X) ⊆ T · y. In particular, this gives us that the points

of f(X) are S-fixed points.

Let
Xλ,y :={q ∈ X| lim

g→0
λ(g)q = y}

={q ∈ X|f(q) = y}

=f−1(y) ∩X.

Note that x ∈ Xλ,y. As λ has image in S,

Xλ,y ⊆ Y := {q ∈ X| y ∈ S · q }.

Let z = z0 + z+ ∈ Y . Then y ∈ S · z. Since z0 = f(z) ∈ f(X) is an S-fixed

point we have

f(S · z) ⊆ S · f(z) = S · z0 = {z0}.
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In particular, f(y) = z0, but as f(y) = y, we obtain f(z) = y. Thus, Y ⊆ Xλ,y

and so we have

Y = Xλ,y

Therefore, Y is a closed subset of X containing x (and so a locally closed

subset of the original X in G/B).

Remark 3.5.1. An arbitrary T -variety X comes equipped with a covering

by T -stable affine open subsets. For any w ∈ X, w lies in some T -stable

affine neighbourhood, say U , which then also contains XT,w. As U is an affine

T -variety, there is a T -equivariant embedding of U into some T -module Vw

(Lemma 2.9.3). Using an argument identical to the one given directly above

with U in place of X ∩ Up and Vw in place of V := Tp(G/B), we obtain that

XT,w is a closed subset of U and hence a locally closed subset of X.

Returning to the nature of Y , it is also evident that Y ∩ T · y = {y}. As

Y is S-stable, S · x ⊆ Y . Since for any z ∈ Y ⊆ X = T · x we have that

f(z) = y = f(x), by Lemma 2.5.7 applied to the projection

T · y × V+ → T · y ≃ T/S,

which is the restriction of f to the irreducible affine variety T · y × V+, we

obtain that z ∈ S · x and hence Y ⊆ S · x. As a result,

Y = S · x

and thus we may regard Y as an irreducible affine subvariety of X. In partic-

ular, Y is an S-variety with sole S-fixed point y.

In summary,

Proposition 3.5.2.

Y := XT,y = Xλ,y = f−1(y) ∩X = S · x
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As a result,

Corollary 3.5.3.

1. y is an attractive fixed point of the S-variety Y .

2. ⟨α, λ⟩ > 0, for all α ∈ ΩS(Ty(Y )).

3. The elements of ΩS(Ty(Y )) are all non-zero.

4. There is an S-equivariant embedding Y ↪→ Ty(Y ).

5. y = 0 as an element of Ty(Y ).

6. Ty(Y ) is multiplicity free.

Proof. Since lim
g→0

λ(g)q = y for all q in the affine S-variety Y , the first assertion

is immediate from Lemma 2.9.6. The second statement is the definition of what

it means for y to be attractive. The third observation follows immediately from

point number two. Statement four is a consequence of Lemma 2.9.3 since y is

attractive and Yy = Y . Point five is clear given item four. Finally, as Y has an

open dense S-orbit, by Lemma 2.5.2, C[Y ] is multiplicity free and subsequently

Ty(Y ) is as well.

Remark 3.5.4. During the realization of Y as S · x, we replaced x with t−1 ·x.
In general, given w ∈ X = T · x, as above we have that there exists a ˜︁λ ∈
Y (Tw) and a t̃ ∈ T such that

lim
g→0

˜︁λ(g)(t̃ · x) = w

Without relabeling, it follows that

XT,w = Tw · (t̃ · x)

We shall use this remark freely throughout the next section.

For the remainder of this section, we will elaborate on the structure of Ty(Y ).
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We have the following situation:

Y ⊆ X ⊆ V =
⨁︂
α∈˜︁Φ

gα

for some subset ˜︁Φ ⊆ Φ. However, as Y is an S-variety, we would like to have

a decomposition in terms of the set of weights ΩS(g) of g with respect to S,

where S acts via the restriction of the T -action on g (which is the same as

restricting the adjoint representation Ad : G → GL(g) to S). It is clear that

gα ⊆ gα|S . As a result we have an embedding,

Y ↪→
⨁︂
α|S∈Γ

gα|S =
⨁︂
α∈Γ

gα

for some subset Γ of ΩS(g).

Taking the differential at y of this embedding, we obtain

Ty(Y ) ↪→
⨁︂
α∈Γ

gα.

By Corollary 3.5.3, we know that ⟨α, λ⟩ > 0, for all α ∈ ΩS(Ty(Y )). Conse-

quently,

Lemma 3.5.5. ΩS(Ty(Y )) ⊆ {α ∈ ΩS(g)|⟨α, λ⟩ > 0}

Furthermore, since Ty(Y ) is multiplicity free by Corollary 3.5.3, we also have

Lemma 3.5.6.

Ty(Y ) =
⨁︂

α∈ΩS(Ty(Y ))

Lα,

where each Lα is a line in gα, for some α ∈ ΩS(g).
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3.6 Combinatorially Regular Points:

Relating X and Y

Continuing with the notation established in the previous sections, in this sec-

tion we shall provide a proof of the fact that for any z ∈ Y , X is combinatori-

ally regular at z if and only if Y is combinatorially regular at z. To that end,

we begin with the following lemma.

Lemma 3.6.1. If z, w ∈ X such that z ≈X w, then

XT,z is irreducible and |ETz(XT,z, z)| = dimXT,z

if and only if

XT,w is irreducible and |ETw(XT,w, w)| = dimXT,w.

Proof. Since z ≈X w, we have that z ∈ T · w, i.e. z = t · w for some t ∈ T . It

is obvious that Tz = Tw. In addition, if

lim
g→0

˜︁λ(g)(t̃ · x) = w

for some ˜︁λ ∈ Y (Tw) and some t̃ ∈ T , then

lim
g→0

˜︁λ(g)((t · t̃) · x) = t · w = z.

Consequently,

XT,w = Tw · (t̃ · x) and XT,z = Tw · ((t · t̃) · x)

From these descriptions it is clear that XT,w is irreducible if and only if XT,z

is irreducible and dimXT,w = dimXT,z. Furthermore, the assignment

ETw(XT,w, w) → ETz(XT,z, z)

C ↦→ t · C
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is a bijection, which yields

|ETw(XT,w, w)| = |ETz(XT,z, z)|

The result follows.

A useful consequence of the above Lemma is the following:

Corollary 3.6.2. Let X = T · x be affine. Let y1, y2, . . . , yr ∈ X such that

X =
r⋃︂
i=1

(T · yi). Then X is combinatorially regular if and only if XT,yi is

irreducible and

|ETyi (XT,yi , yi)| = dimXT,yi

for all i.

Proof. Note that by Lemma 2.5.2, the affine T -orbit closure X has finitely

many orbits.

One direction is clear. For the other, assume that XT,yi is irreducible and

|ETyi (XT,yi , yi)| = dimXT,yi , for all i. Let z ∈ X. We will verify that X

is combinatorially regular at z. Let w ∈ X such that w ≥X z. Since w ∈

X =
r⋃︂
i=1

(T · yi), we obtain that w ∈ T · yi, for some i and hence w ≈X yi.

Thus, as established in Lemma 3.6.1, XT,w is irreducible and |ETw(XT,w, w)| =
dimXT,w. Consequently, X is combinatorially regular at z, for all z ∈ X, and

as a result X is combinatorially regular.

We will make use of Corollary 3.6.2 in Section 3.10 when generating local

examples of combinatorially regular T -orbit closures.

Returning to the work in progress, let w ∈ Y . By Proposition 3.5.2, f(w) = y

and so for any t ∈ Tw,

t · y = t · f(w) = f(t · w) = f(w) = y

and thus t ∈ Sw. Hence Tw ⊆ Sw. As S ⊆ T , it is clear that Sw ⊆ Tw, so that

Sw = Tw. (3.1)
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By applying Lemma 2.5.8 to the S-variety Y = S · x, we obtain that there

exists a ˜︁λ ∈ Y (S) and an s ∈ S such that

lim
g→0

˜︁λ(g)(s · x) = w

and as a result
YS,w : = {q ∈ Y |w ∈ Sw · q}

= Sw · (s · x)

However, as s ∈ S ⊆ T and ˜︁λ ∈ Y (S) ⊆ Y (T ), we also have

XT,w : = {q ∈ X| w ∈ Tw · q }

= Tw · (s · x)

= Sw · (s · x)

Therefore, for all w ∈ Y ,

XT,w = YS,w. (3.2)

With this description in hand, we are now in a position to prove the following:

Lemma 3.6.3. Let z ∈ Y . Then X is combinatorially regular at z if and only

if Y is combinatorially regular at z.

Proof. Let z ∈ Y . Suppose that X is combinatorially regular at z and take w

to be any element of Y such that z ≤Y w. Therefore, S · z ⊆ S · w, so that,

in particular, z ∈ S · w ⊆ T · w. Hence T · z ⊆ T · w and thus z ≤X w. Since

X is combinatorially regular at z, XT,w is irreducible and

|ETw(XT,w, w)| = dimXT,w.

However, as Tw = Sw and XT,w = YS,w (by Equations (3.1) and (3.2) above),

we in fact have that YS,w is irreducible and

|ESw(YS,w, w)| = dimYS,w

and as a result, Y is combinatorially regular at z.
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For the opposite direction, assume that Y is combinatorially regular at z and

let w ∈ X such that z ≤X w. Accordingly, T · z ⊆ T · w. Since z ∈ Y , by

definition y ∈ S · z ⊆ T · z. Let W := T · w in X. Thus y ∈ W . By Lemma

2.5.8 applied to W we find that there is a ˜︁λ ∈ Y (T ) and a t ∈ T such that

lim
g→0

˜︁λ(g)(t · w) = y

and hence

WT,y = S · (t · w)

Thus,

t · w ∈ WT,y ⊆ XT,y = Y.

Seeing that z, t · w ∈ Y , we have f(z) = y = f(t · w). From this and the fact

that z ∈ T · w = T · (t · w), it follows that z ∈ S · (t · w), by Lemma 2.5.7.

Therefore, z ≤Y t · w. As Y is combinatorially regular at z, we know that

YS,t·w is irreducible and

|ESt·w(YS,t·w, t · w)| = dimYS,t·w

and subsequently from Equation 3.2, XT,t·w is irreducible and

|ETt·w(XT,t·w, t · w)| = dimXT,t·w.

Finally, since t ·w ≈X w, from Lemma 3.6.1, we obtain that XT,w is irreducible

and

|ETw(XT,w, w)| = dimXT,w.

Consequently, X is combinatorially regular at z.

3.7 Regular Points: Relating X and Y

This section is devoted to showing that for any z ∈ Y , z is a nonsingular

point of X if and only if z is a nonsingular point of Y . The key to this is the

following set:
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Let

U := f−1(T · y) ∩X,

then U is an open T -stable subset of X which contains y and hence contains

the orbit T ·y. Let u ∈ U , then T ·u ⊆ U and we form T · u, where the closure
is taken in U . As f(u) ∈ T · y, there is a t ∈ T such that

lim
g→0

λ(g)(t · u) = f(t · u) = y.

Therefore, y ∈ U is a limit point of T · u and is thus contained in T · u.
Subsequently, T · y ⊆ T · u and thus

dimT · y ≤ dimT · u.

Also, if z ∈ Y \ {y}, then z ̸∈ T · y as T · y ∩ Y = {y}. It follows that

T · y ⊂ T · z \ T · z,

and so

dimT · y < dimT · z.

Therefore, we have:

Lemma 3.7.1. Let U = f−1(T · y) ∩X, then T · y is the minimal orbit in U .

In particular, if z ∈ Y \ {y}, then dimT · y < dimT · z.

The significance of U is the fact that

U ≃ T · y × Y

as T -varieties.

To prove this, we will use the following description of T .

Lemma 3.7.2. T ≃ S × (T/S).

Proof. The exact sequence of tori

1 → S ↪→ T ↠ T/S → 1
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yields the exact sequence

0 → X(T/S) ↪→ X(T ) ↠ X(S) → 0.

As X(S) is a torsion-free finitely generated abelian group, it is free and hence a

projective Z-module. As a result, the latter sequence splits, and for that reason

X(T ) ≃ X(S)⊕X(T/S). Accordingly, the projection X(T ) → X(T/S) yields

a section T/S → T of the quotient map T → T/S. Consequently, the exact

sequence of tori splits and T ≃ S × (T/S).

Lemma 3.7.3. Let U := f−1(T · y) ∩X, then U ≃ T · y × Y , as T -varieties.

Proof. Since T · y is a locally closed subset of V0, f
−1(T · y) is locally closed

in V0 ⊕ V+ and hence carries a unique structure as a subvariety, namely

f−1(T · y) = T · y × V+.

We obtain an S-action on V+ by restricting the T -action. Hence we have:

T ×S V+ ≃ T/S × V+ ≃ T · y × V+ = f−1(T · y)

⊆ ⊆ ⊆ ⊆

S ×S V+ ≃ {eS} × V+ ≃ {y} × V+ = f−1(y)

(Here A ×S B denotes the contracted product, i.e. the quotient of A × B by

the S-action s · (a, b) = (as−1, s · b). See Section 2.5, in particular, Lemma

2.5.4.) Now, f−1(T · y)∩X = U is a closed subvariety of f−1(T · y) and hence

also of T ×S V+.

With this identification, U has the form T ×S F , where

F = U ∩ V+ = (f−1(T · y) ∩X) ∩ f−1(y) = f−1(y) ∩X = Y

in f−1(T ·y). By Lemma 3.7.2, T ≃ S×(T/S). Thus we may use the projection

T → S to obtain an action of T on Y . As a result,

U ≃ T ×S Y ≃ T/S × Y ≃ T · y × Y.
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We are now in a position to prove the following lemma:

Lemma 3.7.4.

If z ∈ Y , then X is regular at z if and only if Y is regular at z.

Proof. We have the following situation:

U ⊆ X

≃
⊆

T · y × Y → Y

where T · y × Y → Y is the S-equivariant projection map.

As U is open in X, X is nonsingular at z if and only if U is nonsingular at z.

Since T · y is nonsingular, the map T · y × Y → Y is smooth. As a result, U

is nonsingular at z if and only if Y is nonsingular at z.

There are two important consequences of this set up that we would like to

note. The first is that

dimY = dimX − dimT · y. (3.3)

The second is given in the following remark:

Remark 3.7.5. For any z ∈ Y , X is rationally smooth at z if and only if Y

is rationally smooth at z. Indeed, X is rationally smooth at z if and only if

U is rationally smooth at z. Furthermore, since T · y × Y → Y is smooth,

U is rationally smooth at z if and only if Y is rationally smooth at z (see

Proposition A1 in [9]).

3.8 Combinatorial Regularity and Rational

Smoothness

As previously mentioned, our interest in the notion of combinatorial regularity

comes from its equivalence to the concept of rational smoothness for T -orbit
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closures in G/B under the assumption that all stabilizers in T are connected.

This fact follows from the work of Brion in [9].

Theorem 3.8.1. Let x ∈ G/B, set X := T · x, and let y ∈ X. Suppose that

the stabilizers Tz are connected for all z ∈ X. Then X is rationally smooth at

y if and only if X is combinatorially regular at y. In particular, X is rationally

smooth if and only if X is combinatorially regular.

Proof. Let y ∈ X and form Y and S as above. Suppose that X is rationally

smooth at y. Then by Remark 3.7.5, Y is rationally smooth at y. Now let

w ̸= y ∈ Y . According to the definition of Y , y ∈ S · w and hence the

rationally smooth locus of Y meets S · w. Furthermore, since S ·w is dense in

S · w and the rationally smooth locus of Y is open, the rationally smooth locus

of Y meets S ·w. Moreover, since it is also S-stable, it contains w. Therefore,

Y is rationally smooth.

We know that Y is irreducible and, since Y is rationally smooth at y, from [9,

Cor. 2] we obtain that

|ES(Y, y)| = dimY.

By Equations (3.1) and (3.2) above, we know that Tw = Sw and XT,w = YS,w,

respectively. By assumption, Tw is connected and so, just as was done for Y ,

we determine that XT,w is irreducible. Furthermore, Remark 3.7.5 yields that

X is rationally smooth at w. Since Remark 3.7.5 equally applies to X and

XT,w, we obtain that XT,w is rationally smooth at w. A second application of

[9, Cor. 2] yields that

|ETw(XT,w, w)| = dimXT,w

and hence

|ESw(YS,w, w)| = dimYS,w.

Therefore, Y is combinatorially regular at y and hence X is combinatorially

regular at y, as a result of Lemma 3.6.3.

Conversely, suppose that X is combinatorially regular at y. Thus, for all

z ≥X y, XT,z is irreducible and

|ETz(XT,z, z)| = dimXT,z.
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As such, X is also combinatorially regular at all z ∈ X such that z ≥X y. In

addition, this means that

|ES(Y, y)| = dimY.

We will prove by induction on the codimension of T ·y in X (i.e. the dimension

of Y ) that X is rationally smooth at y. If codimT · y = 0, so that dimY = 0,

then y ∈ T · x. Since the rationally smooth locus of X is open and T -stable,

and since T · x is dense in X, it follows that X is rationally smooth at y.

Now suppose that codimT ·y ≥ 1 and assume that any combinatorially regular

point of X whose T -orbit has codimension less that codimT · y is rationally

smooth. Let w ∈ Y \ {y}. Since y ∈ S · w, we have that T · y ⊆ T · w, hence
w ≥X y, and therefore X is combinatorially regular at w. Furthermore, since

w ∈ Y \ {y} ⊆ U , Lemma 3.7.1 yields that dimT · y < dimT · w. Thus, by

our induction assumption, X is rationally smooth at w and subsequently Y

is rationally smooth at w, by Remark 3.7.5. Hence Y is rationally smooth

on Y \ {y}. Thus, Y is rationally smooth in a punctured neighbourhood of

the attractive S-fixed point y and |ES(Y, y)| = dimY . It now follows from [9,

Cor. 2] that Y is rationally smooth at y and hence, by Remark 3.7.5, X is

rationally smooth at y.

3.9 Combinatorially Regular Orbit Closures

in G/B for G=PGLn+1

In this section, continuing with the notation adopted in Sections 3.4 to 3.8,

we will prove Theorem 3.9.4 which states that in type A, a combinatorially

regular T -orbit closure X is in fact regular. Our preliminary results leading

up to Theorem 3.9.4 use techniques which are based on well-established ideas.

Following Theorem 3.9.4, we will prove our main result in the type A case,

namely Theorem 3.9.5. To that end, let G = PGLn+1. Since some of the

constructions in the previous sections depend on the fact that S is connected,

we begin by verifying this.
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Consider the quotient map of reductive groups:

GLn+1 ↠ PGLn+1 .

The preimage ˜︁T of T is a maximal torus and hence is conjugate to the torus

consisting of invertible diagonal matrices D, i.e. g ˜︁Tg−1 = D. The preimage˜︁S of S is the stabilizer ˜︁Ty and g ˜︁Tyg−1 = Dgy. Since it is the common ker-

nel of some roots of GLn+1 with respect to D, Dgy consists of all invertible

diagonal matrices with particular sets of entries identical and is thus a torus.

Consequently, ˜︁S = ˜︁Ty is a torus and so its image S is as well.

As we are interested in the regular points of Y , we return to the subject of the

weights of the tangent space Ty(Y ).

Since G is an algebraic group of adjoint type and S is connected,

S = ker(αr+1, αr+2, . . . , αn),

for some simple system ∆ = {α1, α2, . . . , αn} ⊆ Φ. Let

∆(S) = {α1|S, α2|S, . . . , αr|S}.

To simplify notation, we will denote αi|S by αi for each i. As every element of

X(S) can be obtained from an element ofX(T ) by restriction, every β ∈ ΩS(g)

has the form

β =
∑︂

αi∈∆(S)

βiαi,

where all βi ∈ {0, 1} or all βi ∈ {0,−1}.

Lemma 3.9.1. No two weights of the S-module Ty(Y ) are proportional.

Proof. Let

β =
∑︂

αi∈∆(S)

βiαi and γ =
∑︂

αi∈∆(S)

γiαi

be any elements of ΩS(Ty(Y )) and suppose that γ = rβ, for some r ∈ Q.

Since the αi are linearly independent, for each i we obtain γi = rβi, where

γi, βi ∈ {0,±1}. By Corollary 3.5.3, γ ̸= 0. Thus there exists a γi ̸= 0, so
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that γi, βi ∈ {±1} and hence r = ±1. Consequently γ = ±β. However, as

⟨γ, λ⟩, ⟨β, λ⟩ > 0 (Corollary 3.5.3), γ = β.

Since the weights of Ty(Y ) are non-proportional, by Lemma 2.7.4 the S-curves

in Ty(Y ) are weight spaces. Thus for any S-curve C in Y ,

C ↪→ Y ↪→ Ty(Y ) =
⨁︂

Lα

and hence C = Lα, for some α ∈ ΩS(Ty(Y )). Thus

Ty(C) = Ty(Lα) ≃ Lα

and hence C is nonsingular at y. Since C = S · z for some z ∈ Y \ {y}, C is

regular along S · z, and CS = {y}, we obtain that C is regular. Consequently

we have:

Lemma 3.9.2. If C is an S-curve in Y containing y, then C is regular. In

particular, if dimY = 1, then Y is regular.

Furthermore, if C and D are distinct S-curves in Ty(Y ), then their tangents

spaces at y, Ty(C) and Ty(D), are distinct. Indeed, suppose not and let

Ty(C) = Lα = Ty(D) and

Ty(C ∪D) =
⨁︂

β∈Φ′⊂ΩS(Ty(Y ))

Lβ.

As the tangent space Ty(C ∪D) of the singular variety C ∪D has dimension

at least 2, there are at least 2 weights in Φ′. Now, the connected component

(kerα)◦ of the kernel of α acts trivially on Ty(C) ≃ C and Ty(D) ≃ D, so

also on C ∪ D and consequently on Ty(C ∪ D). Therefore, the weights in Φ′

are proportional, which contradicts the fact that Ty(Y ) has non-proportional

weights.

Consequently, in this setting,

TE(Y, y) =
⨁︂

C∈ES(Y,y)

Ty(C)

with dimension |ES(Y, y)|.
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The other vital ingredient in the proof of Theorem 3.9.4 is the Peterson Trans-

late τC(Y, y). In order to apply Lemma 2.12.1, we will use the following lemma

regarding S-surfaces in Y .

Lemma 3.9.3. Assume dimY ≥ 2 and let Σ ∈ ΣS(Y, y), then Σ is nonsingu-

lar at y.

Proof. If dimY = 2, then Σ = Y in what follows. By Lemma 2.12.2, there are

two S-curves C and D contained in Σ. Since Σy = Σ, we have

C,D ⊆ Σ ↪→ Ty(Σ) ↪→ Ty(Y ) =
⨁︂

Lα,

so that C = Lβ and D = Lγ, for some β, γ ∈ ΩS(Ty(Y )), such that β ̸= γ.

Furthermore, β ̸= −γ since ⟨β, λ⟩, ⟨γ, λ⟩ > 0 (see Corollary 3.5.3).

To show that Σ is nonsingular at y, we will show that β and γ are the only

two weights of Ty(Σ). To that end, let ω ∈ ΩS(Ty(Σ)). We write β =
∑︁
βiαi,

γ =
∑︁
γiαi, and ω =

∑︁
ωiαi, where the αi are those elements of ∆(S) for

which the coefficients βi, γi, and ωi are not all 0. In addition, all βi ∈ {0, 1}
or all βi ∈ {0,−1}, all γi ∈ {0, 1} or all γi ∈ {0,−1}, and all ωi ∈ {0, 1} or all

ωi ∈ {0,−1}.

By Lemma 2.12.5 there exists an N ∈ N and g, b ∈ Z≥0 such that

Nω = bβ + gγ.

We may assume that gcd(N, b, g) = 1.

We will prove that either b = 0 or g = 0 (exclusively since N ̸= 0 and ω ̸= 0

(Corollary 3.5.3)). Suppose, for the sake of contradiction, that b, g > 0. From

the linearly independence of the roots αi we obtain

Nωi = bβi + gγi

for all i. Now, there exists an i for which either βi = 0 or γi = 0 (exclusively

since N ̸= 0 and by assumption, βi, γi, and ωi are not all 0). Indeed, if not,

then βi = βj = ±1 and γi = γj = ±1 for all i and j, which implies that

β = ±γ.
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Without loss of generality, we may assume that βi = 0 (so that γi ̸= 0). As a

result, we obtain that Nωi = gγi, where γi = ωi = ±1, since N, g > 0. Thus

N = g. As β ̸= 0 (Corollary 3.5.3), there is a j such that βj ̸= 0 (so βj = ±1).

Accordingly,

Nωj = bβj +Nγj

which yields

N(ωj − γj) = bβj.

Consequently,

N |bβj

and since bβj = ±b, we obtain

N | ± b.

However, gcd(N, b) = gcd(N, b, g) = 1, from which we obtain that N = 1.

Thus

ω = bβ + γ

where b > 0. By Lemma 2.10.2 this implies that ω is not a weight of Ty(Σ),

hence providing us with the required contradiction.

We thus conclude that exactly one of b and g is 0. Thus, ω is proportional to

either β or γ, which by Lemma 3.9.1 yields that ω = β or ω = γ. As a result,

β and γ are the only weights of Ty(Σ) and hence Σ is nonsingular at y.

Theorem 3.9.4. Let G = PGLn+1, B a Borel subgroup, and T ⊆ B a maximal

torus. Let x ∈ G/B and X := T · x. If X is combinatorially regular, then X

is regular.

Proof. Assume X is combinatorially regular. As X is regular along the open

orbit T · x, it remains to show that X is nonsingular at all points in X \ T · x.
Let y ∈ X \ T · x and form Y as above. We will prove by induction on the

codimension of T · y, i.e. the dimension of Y , that X is nonsingular at all

points of Y . To that end, Lemma 3.7.1 shows that for any z ∈ Y \ {y} ⊆ U ,

codimT · y > codimT · z.

If codimT · y = 1, then dimY = 1. By Lemma 3.9.2, Y is regular and hence,

by Lemma 3.7.4, X is nonsingular along Y .

Now suppose that codimT · y = d, for d ≥ 2, and assume that any T -orbit
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with codimension strictly less than d is contained in the regular locus of X.

Thus, as codimT · y > codimT · z for all z ∈ Y \ {y}, X is regular along

Y \ {y}. It remains to show that Y is nonsingular at y.

To accomplish this, let C ∈ ES(Y, y), then C = S · z for some z ∈ Y \ {y}
and hence C is good. Let D ∈ ES(Y, y) other than C and set Ty(C) = Lγ and

Ty(D) = Lβ. Let ρ : Y ↠ TE(Y, y) be the restriction to Y of the S-equivariant

projection ˜︁ρ : Ty(Y ) ↠ TE(Y, y), so that dyρ = ˜︁ρ. Then ρ−1(0) is finite, as

otherwise ρ−1(0) would contain an S-curve through y whose tangent space

would be an element of TE(Y, y) that vanishes under ˜︁ρ. Therefore, by Lemma

2.9.10, ρ is a finite surjective morphism and thus, by a dimensional argument,

one of the irreducible component of ρ−1(Lγ ⊕ Lβ) is a surface Σ containing C

and D. Fortunately, by Lemma 3.9.3, Σ is nonsingular at y. From this and

Lemma 2.12.1 we have

Ty(D) ↪→ Ty(Σ) = τC(Σ, y) ⊆ τC(Y, y).

Consequently, TE(Y, y) ⊆ τC(Y, y). Since X is combinatorially regular at y,

by Lemma 3.6.3, Y is combinatorially regular at y and hence

dimY = |ES(Y, y)| = dimTE(Y, y).

As C is good, dim τC(Y, y) = dimY and subsequently

TE(Y, y) = τC(Y, y).

As this is true for at least two good curves, it follows from Theorem 2.11.5 that

Y is nonsingular at y. Finally, by Lemma 3.7.4, X is nonsingular at y.

Theorem 3.9.5. Let G = PGLn+1, B a Borel subgroup, and T ⊆ B a maximal

torus. Let x ∈ G/B and X := T · x. Then X is rationally smooth if and only

if X is smooth.

Proof. One direction is clear. Now assume that X is rationally smooth. Thus,

by Theorem 3.8.1 X is combinatorially regular and hence, by Theorem 3.9.4

X is smooth.
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3.10 Combinatorially Regular Orbit Closures

in G/B for G =PSO2n

When considering type D, we use the constructions from Sections 3.5 through

3.7. Throughout this section, we shall assume that all stabilizers S are con-

nected. We then attempt to employ the method used to investigate type A

in Section 3.9. It is still the case in type D that no two weights of Ty(Y )

are proportional and hence that the S-curves in Y containing y are regu-

lar. However, this approach breaks down when examining the possible rela-

tions between the weights of the tangent space Ty(Σ) of an S-surface in Y

containing y. If Σ ∈ ΣS(Y, y), then Σ contains two S-curves, say C = Lβ

and D = Lγ, from which it follows that β and γ are both weights of Ty(Σ).

Now, if w ∈ ΩS(Ty(Y )), then there exists an N ∈ N and b, g ∈ N such that

Nω = bβ+gγ. In type A, we were able to use this equation to verify that β and

γ are the only two weights of Ty(Σ), from which it followed that the S-surfaces

in Y are nonsingular. As a consequence of this, we obtained that combinato-

rially regular T -orbit closures in G/B are regular. In type D, however, there

are two possible bad relations resulting from Nω = bβ + gγ:

2ω = β + γ

2ω = 2β + γ

Furthermore, we know from the work of Carrell and Kuttler that there are

rationally smooth T -orbit closures in G/B that are singular (see Example 7.1

in [15]).

In this section, we will verify that no two weights of Ty(Y ) are proportional

and then prove that these two equations are the only two possible bad rela-

tions involving weights of Ty(Σ). We will also provide a local example of a

combinatorially regular orbit closure which is singular (see Example 3.10.6).

Once again, as G is an algebraic group of adjoint type, we have that

S =
⋂︂
i∈I

ker(αi),
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for some simple system ∆ = {α1, α2, . . . , αn} ⊆ Φ and some indexing set

I ⊆ {1, 2, . . . , n}.

Remark 3.10.1. For type D considerations, we will make explicit the a par-

ticular ordering of the roots αi. Consider the following algebraic group:

SO(B) := {g ∈ SLn(C)|gTBg = B},

where B is the following 2n× 2n matrix:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

. .
.

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

In SO(B), there is a maximal torus consisting of diagonal matrices

diag(g1, g2, . . . , gn, g
−1
n , g−1

n−1, . . . , g
−1
1 ).

Let ei be the projection onto the ith diagonal entry, for 1 ≤ i ≤ n . The set

∆′ = {e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en} is a system of simple roots for

a root system of type Dn. As such, there is an element w of the Weyl group

NG(T )/T such that w∆′ = ∆. We now relabel the elements of ∆, so that

αi = w(ei − ei+1), for 1 ≤ i ≤ n− 1

αn = w(en−1 + en)

and change the set I accordingly.

Let

∆(S) = {α1|S, α2|S, . . . , αn|S} \ {αi|S | i ∈ I}.

To simplify notation, we will denote αi|S by αi for each i.
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Thus, every β ∈ ΩS(g) has the form

β =
∑︂

αi∈∆(S)

βiαi,

where all βi ∈ {0, 1, 2} or all βi ∈ {0,−1,−2}.

Using this descriptions, we will verify the following:

Lemma 3.10.2. If S is connected, then no two weights of the S-module Ty(Y )

are proportional.

Proof. Let β, γ ∈ ΩS(Ty(Y )). By Corollary 3.5.3, β, γ ̸= 0. Hence,

β =
∑︂

βiαi and γ =
∑︂

γiαi,

where βi, γi ∈ {0,±1,±2} and the αi appearing in the sums are those elements

of ∆(S) for which the coefficients βi and γi are not both 0.

Suppose that bβ = gγ, for some non-zero b, g ∈ Z. By the linear independence

of the αi, for all i we obtain

bβi = gγi

Since βi and γi are not both 0 and b, g ̸= 0, it follows that βi, γi ∈ {±1,±2}.
This results in six possibilities:

b = ±g

b = ±2g

g = ±2b.

These yield:

β = ±γ

β = ±2γ

γ = ±2β

However, since ⟨β, λ⟩, ⟨γ, λ⟩ > 0 by Corollary 3.5.3, we eliminate β = −γ,
β = −2γ, and γ = −2β as possibilities. Furthermore, we can eliminate the

linear combinations β = 2γ and γ = 2β using Lemma 2.10.2. Therefore,

β = γ.
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Consequently, as in type A we have

Lemma 3.10.3. If C is an S-curve in Y containing y, where S is connected,

then C is regular.

To verify that there are only two possible bad relationships between the weights

of Ty(Σ), we will use a property of the coefficients of a root of type Dn using

the simple system indicated above.

Remark 3.10.4 (2-Section Condition). Let β =
n∑︂
i=1

βiαi be a root of type

Dn, where ∆ = {α1, α2, . . . , αn} ⊆ Φ is the simple system described above.

A coefficient of ±2 may only appear on α2, α3, . . . , αn−2. The sum
n−2∑︂
i=2

βiαi is

what we shall refer to as the 2-section. If βi = ±2 for some i, then βj = ±2

for all j such that i ≤ j ≤ n− 2.

Restricting to S deletes some of the simple roots appearing in β, but doesn’t

change the coefficients on the simple roots that remain. Thus it is still the case

that, for elements of ΩS(g), once a coefficient of ±2 appears in the 2-section,

all subsequent coefficients on the surviving simple roots in the 2-section are

±2.

In order to prove Lemma 3.10.5, we will consider a number of cases involving

possible combinations of values of coefficients. The 2-section condition will be

used in the proof of Lemma 3.10.5 to eliminate cases with following conditions:

Suppose β =
∑︂

βiαi and γ =
∑︂

γiαi are elements of ΩS(g), such that

βi = ±2 βj = 0,±1

γi = 0,±1 γj = ±2

for some i ̸= j. If i < j, then β violates the 2-section condition and if i > j,

then γ breaks the 2-section condition. Consequently, this situation cannot

occur.
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Lemma 3.10.5. Assume S is connected. Let Σ ∈ ΣS(Y, y) and suppose that

Σ contains the two S-curves C = Lβ and D = Lγ, so that β and γ are distinct

weights of Ty(Σ). Assume that ω is a third distinct element of ΩS(Ty(Σ)).

Then one of the following holds:

2ω = β + γ

2ω = 2β + γ

Proof. Let

ω =
∑︂

ωiαi, β =
∑︂

βiαi, and γ =
∑︂

γiαi,

where ωi, βi, γi ∈ {0,±1,±2} such that

all ωi ≥ 0 or all ωi ≤ 0,

all βi ≥ 0 or all βi ≤ 0, (3.4)

and all γi ≥ 0 or all γi ≤ 0.

Furthermore, the αi appearing in the sums are those elements of ∆(S) for

which the coefficients ωi, βi, and γi are not all 0 (ω, β, γ ̸= 0 by Corollary

3.5.3). From Lemma 2.12.5 we obtain that there exist an N ∈ N and b, g ∈ Z≥0

such that

Nω = bβ + gγ. (3.5)

We may assume that gcd(N, b, g) = 1. As an immediate consequence of equa-

tion 3.5, since ∆(S) is a linearly independent set, we have that for each i

Nωi = bβi + gγi. (3.6)

As the weights of Ty(Y ) are non-proportional (Lemma 3.10.2), the weights of

Ty(Σ) are also non-proportional. From this, equation 3.5, and the fact that

N ̸= 0 and ω ̸= 0, it follows that neither b nor g is 0. Moreover, if N = 1,

then ω = bβ + gγ, where b + g > 1, which by Lemma 2.10.2 yields that ω is

not a weight of Ty(Σ). Consequently, as ω is a weight of Ty(Σ), N ≥ 2.
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We will now show that there is an i such that ωi, βi, or γi is 0. To that end,

assume that ωi, βi, γi ∈ {±1,±2}, for all i. According to Corollary 3.5.3, for

the distinct weights β and γ we have that ⟨β, λ⟩, ⟨γ, λ⟩ > 0 and subsequently

β ̸= ±γ. Thus, in view of 3.4 above, there exists an i such that βi ̸= ±γi. As
ωi, βi, γi ∈ {±1,±2}, ωi = ±βi or ωi = ±γi.

Without loss of generality, we may assume that ωi = ±βi. As it is also the

case that ⟨ω, λ⟩ > 0 (Corollary 3.5.3), ω ̸= ±β. Therefore, there exists a j ̸= i

for which ωj ̸= ±βj. By 3.6 above we have a system of equations

Nωi = bβi + gγi

Nωj = bβj + gγj

which yields

N(ωi − ωj) = b(βi − βj) + g(γi − γj) (3.7)

Taking into account that ωi, βi ∈ {±1,±2}, ωi = ±βi, ωj ̸= ±βj, and 3.4

above, we have that either

ωi = ωj or ωi ̸= ωj.

βi ̸= βj βi = βj

In the first case, equation 3.7 becomes 0 = b(βi−βj)+ g(γi−γj). As g, b, and

βi−βj are all non-zero, we also have γi−γj ̸= 0 and hence γi ̸= γj. Therefore,

we have that βi ̸= βj, γi ̸= γj, and βi ̸= ±γi, with βi, βj, γi, γj ∈ {±1,±2}
such that 3.4 holds. Thus, we have either

βi = ±1 βj = ±2 βi = ±2 βj = ±1

or

γi = ±2 γj = ±1 γi = ±1 γj = ±2

In both situations we obtain a contradiction with the 2-section condition (see

Remark 3.10.4).

In the second case, equation 3.7 becomes N(ωi−ωj) = g(γi−γj). We obtain a

contradiction in this instance as we did in case one, but using the coefficients

of ω in place of the coefficients of β.
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Thus ωi, βi, or γi is 0, for some i. Hence, from 3.6 above we obtain the

following three possibilities:

0 = bβi + gγi Nωi = gγi Nωi = bβi

It follows from these equations that exactly one of ωi, βi, and γi is 0, since not

all three are 0 by assumption and N, b, g ̸= 0.

Case 1: 0 = bβi + gγi

In this case, ωi = 0. Since b, g > 0, we also have either βi ∈ {1, 2} with

γi ∈ {−1,−2} or βi ∈ {−1,−2} with γi ∈ {1, 2}. This leads to three subcases:

b = g b = 2g g = 2b

As gcd(N, b, g) = 1, gcd(N, b) = 1 and gcd(N, g) = 1 in all three subcases.

As ω ̸= 0, there exists a j such that ωj ̸= 0. By 3.6 we know that

Nωj = bβj + gγj,

which produces:

Nωj = b(βj + γj) Nωj = g(2βj + γj) Nωj = b(βj + 2γj) (3.8)

Noting that N, b, g, ωj ̸= 0, we know:

βj + γj ̸= 0 2βj + γj ̸= 0 βj + 2γj ̸= 0

Consequently, since gcd(N, b) = 1 and gcd(N, g) = 1, we obtain:

b|ωj g|ωj b|ωj

Taking into account that ωj ∈ {±1,±2}, our three subcases result in:

Subcase 1 Subcase 2 Subcase 3

b = 1 b = 2 b = 2 b = 4 b = 1 b = 2

g = 1 g = 2 g = 1 g = 2 g = 2 g = 4

ωj = ±1 ωj = ±2 ωj = ±1 ωj = ±2 ωj = ±1 ωj = ±2

(3.9)
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Using these values, after simplification 3.8 becomes:

±N = βj + γj ±N = 2βj + γj ±N = βj + 2γj (3.10)

In view of 3.4, since βi and γi have opposite signs, we have one of βj and γj is

an element of {0,−1,−2} and the other is an element of {0, 1, 2}. In addition,

since N ̸= 0, from 3.10 we know

βj ̸= −γj 2βj ̸= −γj βj ̸= −2γj

Based on this, we compute:

βj+γj = ±1,±2 2βj+γj = ±1,±2,±3,±4 βj+2γj = ±1,±2,±3,±4

Subcase 2 is that b = 2g, which resulted from βi = ±1, γi = ∓2. We obtained

2βj + γj = ±3 from βj = ±2 and γj = ∓1, whereas 2βj + γj = ±4 arose from

βj = ±2 and γj = 0. Hence, 2βj + γj ̸= ±3,±4 since the 2-section condition

fails:

βi = ±1 βj = ±2

γi = ∓2 γj = 0,∓1

By symmetry, we determine that βj + 2γj ̸= ±3,±4 for Subcase 3 as well.

Thus we have:

βj + γj = ±1,±2 2βj + γj = ±1,±2 βj + 2γj = ±1,±2

As N ≥ 2, we see that N = 2 in all three subcases. Furthermore, as

gcd(N, b, g) = 1, the possibilities presented in 3.9 reduce to:

Subcase 1 Subcase 2 Subcase 3

N = 2 N = 2 N = 2

b = 1 g = 1 b = 1

g = 1 b = 2 g = 2
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The resulting relations are:

2ω = β + γ 2ω = 2β + γ 2ω = β + 2γ

Case 2: Nωi = gγi

In this case, βi = 0 and either ωi, γi ∈ {1, 2} or ωi, γi ∈ {−1,−2}. We will

write γ as follows:

γ =
∑︂

γkαk =
∑︂

−γ′kαk,

where γ′k = −γk. It is still that the case that γ′k ∈ {0, 1, 2} for all k or

γ′k ∈ {0,−1,−2} for all k. Henceforth, we will use −γ′k in place of γk for all k.

Accordingly, Nωi = gγi becomes

Nωi + gγ′i = 0

where either ωi ∈ {1, 2} and γ′i ∈ {−1,−2} or ωi ∈ {−1,−2} and γ′i ∈ {1, 2}.
We may now argue as we did in Case 1, but with a few minor modifications,

resulting from the fact that N and b have interchanged roles, but have different

restrictions: N ≥ 2, whereas b ≥ 1. As before, we have three subcases:

N = g N = 2g g = 2N

Following the procedure in Case 1, since N ≥ 2, we see that 3.9 above becomes

Subcase 1 Subcase 2 Subcase 3

N = 2 N = 2 N = 4 N = 2

g = 2 g = 1 g = 2 g = 4

βj = ±2 βj = ±1 βj = ±2 βj = ±2

for some j ̸= i, and 3.10 becomes:

±b = ωj + γ′j ± b = 2ωj + γ′j ± b = ωj + 2γ′j
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We then determine that:

ωj + γ′j = ±1,±2 2ωj + γ′j = ±1,±2 ωj + 2γ′j = ±1,±2

So b = 1 or 2 in all subcases, however, as gcd(N, b, g) = 1, we reduce to:

Subcase 1 Subcase 2 Subcase 3

b = 1 b = 1 or 2 b = 1 b = 1

N = 2 N = 2 N = 4 N = 2

g = 2 g = 1 g = 2 g = 4

We can further reduce this list by once again using the 2-section condition.

For Case 2, we assumed that βi = 0. For Subcase 2, we used γi = ±2 and

the instance in Subcase 2 in which b = 1, N = 4, and g = 2 was obtained by

taking βj = ±2 and γj = ±1. Thus

βi = 0 βj = ±2

γi = ±2 γj = ±1

violates the 2-section condition. Similarly, we exclude Subcase 3 (using the

coefficients of ω in place of those of γ).

Thus Case 2 yields:

Subcase 1 Subcase 2

b = 1 b = 1 or 2

N = 2 N = 2

g = 2 g = 1

The resulting relations are:

2ω = β + 2γ 2ω = β + γ 2ω = 2β + γ

Case 3: Nωi = bβi

By symmetry, we obtain the same three relations as in Case 2.
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Thus, all three case yield the relations:

2ω = 2β + γ 2ω = β + γ 2ω = β + 2γ

By symmetry, we reduce to the two equations:

2ω = β + γ 2ω = 2β + γ

As mentioned above, we have produced a local example of a combinatorially

regular T -orbit closure that is singular. Before providing this example, we

outline the procedure used to examine such local examples.

We construct X = T · x in the tangent space of some T -fixed point p ∈ G/B,

Tp(G/B) =
⨁︂
α∈˜︁Φ

gα,

for some subset ˜︁Φ ⊆ Φ. As this tangent space is open in G/B, the closure of

X in G/B is a T -orbit closure.

Suppose

x =
∑︂

xα ∈
⨁︂
α∈˜︁Φ

gα,

According to Lemma 2.5.8, for every point z ∈ X = T · x, there exists a

λ ∈ Y (T ) such that

lim
g→0

λ(g)x ∈ T · z

Given any λ ∈ Y (T ) and any g ∈ Gm, we have

λ(g)x =
∑︂

λ(g)xα =
∑︂

(α ◦ λ)(g)xα =
∑︂

g⟨α,λ⟩xα

Hence, for

lim
g→0

λ(g)x = lim
g→0

∑︂
g⟨α,λ⟩xα

to exist, we must have ⟨α, λ⟩ ≥ 0, for all α ∈ s(x), and the result of taking
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this limit is a partial sum of x:

y :=
∑︂
α∈s(x)
⟨α,λ⟩=0

xα.

As we will see in Example 3.10.6, it is not necessarily the case that all partial

sums of x can be obtained in this way. Certain partial sums of x may be

unattainable as no such λ may exist.

In summary, every T -orbit in X contains exactly one partial sum of x realized

in the above manner. In particular, by determining all such partial sums, we

essentially determine all T -orbits of X.

As established in Lemma 3.6.2, to verify that X is combinatorially regular, it

suffices to show that XT,y is irreducible and

|ETy(XT,y, y)| = dimXT,y

holds for one point y in each T -orbit in X. Thus, for each attainable partial

sum y we construct Y := XT,y, verify that the above equation holds, and

confirm that Ty is connected, which by Proposition 3.5.2 yields that Y is

irreducible. To compute Y , we use the fact that

Y ⊆ X ⊆ Span
(︁
xα | α ∈ s(x)

)︁
≃ A|s(x)|.

Hence any w ∈ Y can be written in the form w =
∑︂
α∈s(x)

wαxα, where the wα

are elements of C which satisfy the defining equations of X, which by Lemma

2.10.1 result from integral relations amongst roots in the support s(x) of x.

As stated in Proposition 3.5.2,

Y = Xλ,y := {w ∈ X| lim
g→0

λ(g)w = y}.

Since

lim
g→0

λ(g)w = lim
g→0

∑︂
λ(g)wαxα = lim

g→0

∑︂
g⟨α,λ⟩wαxα = y,

wα = 1 for all α in the support s(y) of y. Therefore Y consists of all elements
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of X of the form

y +
∑︂

α∈s(x)\s(y)

wαxα.

Note, that the λ used to compute Y for a given partial sum y is not unique. In

fact, as demonstrated in Section 3.5, Y = Xλ,y for any λ where lim
g→0

λ(g)x = y.

We will conclude by commenting on how we will indicate the form to be used

to state an appropriate one-parameter subgroup λ for each partial sum y.

Let T ′ = T/Tx. As X = T · x = T ′ · x, we may replace T with T ′ in the

above process. Doing so will enable us to specify an isomorphism between

T and (C∗)n using a basis of the Z-module generated by the support s(x) of

x, since the character group X(T ′) is generated by the support s(x). The

choice of basis may depend on the y under consideration. In Examples 3.10.6

and 3.10.8, we use this isomorphism to verify that Ty is connected. When

we specify a particular one-parameter subgroup, we will state its image in

(C∗)n under this isomorphism, from which we may readily compute the value

of ⟨α, λ⟩ for each α ∈ s(x).

For our example, we take G = PSO8. Let α1 = e1 − e2, α2 = e2 − e3,

α3 = e3 − e4, and α4 = e3 + e4 the simple system of roots in D4 as described

in Remark 3.10.1

Example 3.10.6. Let x = xα + xβ + xγ + xδ + xϵ, where

α = α1

β = α3

γ = α4

δ = α1 + 2α2 + α3 + α4

ϵ = α1 + α2 + α3 + α4

These roots satisfy

2ϵ = α + β + γ + δ

and so the support of x, s(x), generates a Z-module of rank 4.
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As such, in view of Lemma 2.10.1, X = T · x is isomorphic to an affine variety

of dimension 4 given by the equation z2ϵ = zαzβzγzδ , where zα, zβ, zγ, zδ, zϵ ∈
C[X] are variables of weights −α,−β,−γ,−δ, and −ϵ, respectively. It is

clear that X is singular at 0. To compute the orbits contained in X, we

determine which of the partial sums of x can be obtained from lim
g→0

λ(g)x, for

some λ ∈ Y (T ).

For

lim
g→0

λ(g)x = lim
g→0

(g ⟨α,λ⟩xα + g ⟨β,λ⟩xβ + g ⟨γ,λ⟩xγ + g ⟨δ,λ⟩xδ + g ⟨ϵ,λ⟩xϵ)

to exist we require

⟨α, λ⟩, ⟨β, λ⟩, ⟨γ, λ⟩, ⟨δ, λ⟩, ⟨ϵ, λ⟩ ≥ 0,

in which case

lim
g→0

λ(g)x =
∑︂
ρ∈s(x)
⟨ρ,λ⟩=0

xρ.

Since 2ϵ = α + β + γ + δ,

2⟨ϵ, λ⟩ = ⟨α, λ⟩+ ⟨β, λ⟩+ ⟨γ, λ⟩+ ⟨δ, λ⟩ (3.11)

Thus ⟨ϵ, λ⟩ = 0 if and only if ⟨α, λ⟩ = ⟨β, λ⟩ = ⟨γ, λ⟩ = ⟨δ, λ⟩ = 0. From this

we ascertain that the orbits

T · xϵ

T · (xα + xϵ), T · (xβ + xϵ), T · (xγ + xϵ), T · (xδ + xϵ),

T · (xα + xβ + xϵ), T · (xα + xγ + xϵ), T · (xα + xδ + xϵ),

T · (xβ + xγ + xϵ), T · (xβ + xδ + xϵ), T · (xγ + xδ + xϵ)

T · (xα + xβ + xγ + xϵ), T · (xα + xβ + xδ + xϵ),

T · (xα + xγ + xδ + xϵ), T · (xβ + xγ + xδ + xϵ),

T · (xα + xβ + xγ + xδ)

are not contained in X.
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As an example, for there to exist a λ ∈ Y (T ) such that lim
g→0

λ(g)x = xγ+xδ+xϵ,

we would require

⟨γ, λ⟩ = ⟨δ, λ⟩ = ⟨ϵ, λ⟩ = 0

whilst

⟨α, λ⟩, ⟨β, λ⟩ > 0.

However, this would violate Equation 3.11. Subsequently, no such λ exits and

so X does not contain the orbit T · (xγ + xδ + xϵ).

An alternate argument that these orbits are not in X is as follows: since the

defining equation of X is z2ϵ = zαzβzγzδ, a point in X has a nonzero coefficient

on xϵ if and only if the point has nonzero coefficients on xα, xβ, xγ, and xδ.

The orbits contained in X are

{0},

T · xα, T · xβ, T · xγ, T · xδ,

T ·(xα+xβ), T ·(xα+xγ), T ·(xα+xδ), T ·(xβ+xγ), T ·(xβ+xδ), T ·(xγ+xδ),

T · (xα + xβ + xγ), T · (xα + xβ + xδ), T · (xα + xγ + xδ), T · (xβ + xγ + xδ),

T · x.

In what follows, we consider each of these orbits individually: we will specify

a point y in that orbit, provide an explicit isomorphism between T and (C∗)4

using a basis for the support s(x) of x, verify that the stabilizer Ty is connected,

state Y and the T -curves contained in Y , and provide a λ for which lim
g→0

λ(g)x =

y (which verifies that the orbit in question is actually contained in X) and that

can be used to determine Y . To define λ, we will indicate the image of λ(s)

in (C∗)4. In each case, Y is both singular and combinatorially regular at y

(identified with 0 when viewed as an element of Ty(Y ), see Corollary 3.5.3).

For y = 0, Ty = T and hence is connected. We have Y = T · x = X, so

dimY = 4 and contains the four T -curves T · xα, T · xβ, T · xγ, and T · xδ.
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For y = xα, we identify T with (C∗)4 using t ↦→ (α(t), β(t), γ(t), ϵ(t)). Then

Ty = ker(α) = {(1, β(t), γ(t), ϵ(t))} ≃ (C∗)3 and so is connected. We see

that Y = {xα + bxβ + cxγ + dxδ + exϵ|bcd = e2}, which can be obtained by

taking λ(s) = (1, s, s, s2). Hence Y is a 3-dimensional affine variety given

by the equation bcd = e2 containing the three Ty-curves b = c = e = 0,

b = d = e = 0, and c = d = e = 0.

For y = xβ, we use T ≃ (C∗)4 via t ↦→ (α(t), β(t), γ(t), ϵ(t)). In this case,

Ty = ker(β) = {(α(t), 1, γ(t), ϵ(t))} ≃ (C∗)3, which again is connected. We

find that Y = {axα + xβ + cxγ + dxδ + exϵ|acd = e2}. We can derive Y using

λ(s) = (s, 1, s, s2). Consequently, Y is an affine variety of dimension 3 given

by the equation acd = e2 and so contains three Ty-curves: a = c = e = 0,

a = d = e = 0, and c = d = e = 0.

For y = xγ, we also use T ≃ (C∗)4 given by t ↦→ (α(t), β(t), γ(t), ϵ(t)). Thus,

Ty = ker(γ) = {(α(t), β(t), 1, ϵ(t))} ≃ (C∗)3 and is therefore connected. We

have Y = {axα+ bxβ +xγ + dxδ+ exϵ|abd = e2} which can be computed using

λ(s) = (s, s, 1, s2). Subsequently, Y is a 3 dimensional affine variety given by

abd = e2. Hence, a = b = e = 0, a = d = e = 0, and b = d = e = 0 are the

three Ty-curves in Y .

For y = xδ, we instead use T ≃ (C∗)4 via t ↦→ (β(t), γ(t), δ(t), ϵ(t)), so that

Ty = ker(δ) = {(β(t), γ(t), 1, ϵ(t))} ≃ (C∗)3. Hence Ty is connected. We

compute Y = {axα+bxβ+cxγ+xδ+exϵ|abc = e2} and this can be done using

λ(s) = (s, s, 1, s2). Therefore, we have that Y is an affine variety of dimension

3 defined by abc = e2. There are three Ty-curves in Y , namely, a = b = e = 0,

a = c = e = 0, and b = c = e = 0.

For y = xα + xβ, we view T as (C∗)4 using the map t ↦→ (α(t), β(t), γ(t), ϵ(t)).

This yields Ty = ker(α) ∩ ker(β) = {(1, 1, γ(t), δ(t))} ≃ (C∗)2 and hence Ty is

connected. Now, Y = {xα+xβ+ cxγ+dxδ+exϵ|cd = e2} which we can obtain

via λ(s) = (1, 1, s, s). Thus, Y is a surface given by the equation cd = e2

containing the two Ty-curves c = e = 0 and d = e = 0. As Y is a singular

surface, we know from Lemma 3.10.5 that the weights of its tangent space

at y (identified with 0, see Corollary 3.5.3) satisfy one of two equations. In

this case, the weights of Ty(Y ), namely γ|Ty , δ|Ty , and ϵ|Ty , satisfy the relation

2ϵ|Ty = γ|Ty + δ|Ty (see Example 3.10.7).
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For y = xα+xγ, we identify T with (C∗)4 by sending t ↦→ (α(t), β(t), γ(t), ϵ(t)).

As a result, Ty = ker(α) ∩ ker(γ) = {(1, β(t), 1, ϵ(t))} ≃ (C∗)2 and thus is

connected. We can use λ(s) = (1, s, 1, s) to determine that, in this situation,

Y = {xα + bxβ + xγ + dxδ + exϵ|bd = e2}. Hence, Y is a surface defined

by bd = e2 which contains the two Ty-curves b = e = 0 and d = e = 0.

The weights of Ty(Y ) are β|Ty , δ|Ty , and ϵ|Ty and they satisfy the equation

2ϵ|Ty = β|Ty + δ|Ty .

For y = xα+xδ, we use t ↦→ (α(t), γ(t), δ(t), ϵ(t)) to obtain T ≃ (C∗)4. We have

that Ty is connected since Ty = ker(α) ∩ ker(δ) = {(1, γ(t), 1, ϵ(t))} ≃ (C∗)2.

To see that Y = {xα+bxβ+cxγ+xδ+exϵ|bc = e2}, we choose λ(s) = (1, s, 1, s).

Consequently, Y is a surface given by bc = e2 and the two Ty-curves contained

in Y are b = e = 0 and c = e = 0. For this surface, we have that the weights

of Ty(Y ) are β|Ty , γ|Ty , and ϵ|Ty and that 2ϵ|Ty = β|Ty + γ|Ty .

For y = xβ+xγ, the map t ↦→ (α(t), β(t), γ(t), ϵ(t)) allows us to identify T with

(C∗)4. Subsequently, the stabilizer Ty is connected as Ty = ker(β) ∩ ker(γ) =

{(α(t), 1, 1, ϵ(t))} ≃ (C∗)2. Here, Y = {axα + xβ + xγ + dxδ + exϵ|ad = e2}.
To find this, we may take λ(s) = (s, 1, 1, s). Thus, Y is a surface defined by

the equation ad = e2. There are two Ty-curves contained in Y , specifically,

a = e = 0 and d = e = 0. In this case, the weights of Ty(Y ) are α|Ty , δ|Ty , and
ϵ|Ty and they satisfy 2ϵ|Ty = α|Ty + δ|Ty .

For y = xβ + xδ, we have T ≃ (C∗)4 from the map t ↦→ (β(t), γ(t), δ(t), ϵ(t)).

Therefore, Ty = ker(β) ∩ ker(δ) = {(1, γ(t), 1, ϵ(t))} ≃ (C∗)2 and hence is

connected. In this case, Y = {axα + xβ + cxγ + xδ + exϵ|ac = e2} and thus

is a surface given by ac = e2. To determine Y , we can use λ(s) = (1, s, 1, s).

The two Ty-curves in Y are a = e = 0 and c = e = 0. The weights of Ty(Y )

are α|Ty , γ|Ty , and ϵ|Ty which satisfy 2ϵ|Ty = α|Ty + γ|Ty .

For y = xγ + xδ, we again use t ↦→ (β(t), γ(t), δ(t), ϵ(t)) to view T as (C∗)4.

This gives us that Ty = ker(γ) ∩ ker(δ) = {(β(t), 1, 1, ϵ(t))} ≃ (C∗)2 and so

Ty is connected. We can choose λ(s) = (s, 1, 1, s) in order to determine that

Y = {axα + bxβ + xγ + xδ + exϵ|ab = e2} and is therefore a surface defined

by ab = e2. The two Ty-curves contained in Y are a = e = 0 and b = e = 0.

We have that 2ϵ|Ty = α|Ty + β|Ty , where α|Ty , β|Ty , and ϵ|Ty are the weights of

Ty(Y ).
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For y = xα + xβ + xγ, identify T with (C∗)4 using t ↦→ (α(t), β(t), γ(t), ϵ(t)),

in which case Ty = ker(α) ∩ ker(β) ∩ ker(γ) = {(1, 1, 1, ϵ(t))} ≃ C∗ and hence

is connected. We have that Y = {xα + xβ + xγ + dxδ + exϵ|d = e2} which can

be obtained using λ(s) = (1, 1, 1, s). Consequently Y is a Ty-curve given by

d = e2.

For y = xα+xβ+xδ, we view T as (C∗)4 via t ↦→ (α(t), β(t), δ(t), ϵ(t)). As such,

Ty is connected since Ty = ker(α)∩ker(β)∩ker(δ) = {(1, 1, 1, ϵ(t))} ≃ C∗. We

can take λ(s) = (1, 1, 1, s) to see that Y = {xα + xβ + cxγ + xδ + exϵ | c = e2 }
and is hence a Ty-curve defined by the equation c = e2.

For y = xα + xγ + xδ, we obtain T ≃ (C∗)4 from t ↦→ (α(t), γ(t), δ(t), ϵ(t)). In

this situation, Ty = ker(α)∩ker(γ)∩ker(δ) = {(1, 1, 1, ϵ(t))} ≃ C∗. Therefore,

Ty is connected. We find that Y = {xα + bxβ + xγ + xδ + exϵ | b = e2 }, which
can be done by choosing λ(s) = (1, 1, 1, s). Thus Y is a Ty-curve with defining

equation b = e2.

For y = xβ + xγ + xδ, we have that T ≃ (C∗)4 using t ↦→ (β(t), γ(t), δ(t), ϵ(t)).

Thus Ty is connected since Ty = ker(β)∩ker(γ)∩ker(δ) = {(1, 1, 1, ϵ(t))} ≃ C∗.

We see that Y = { axα+xβ+xγ+xδ+exϵ | a = e2 }, which can be determined

using λ(s) = (1, 1, 1, s). Consequently, Y is a Ty-curve given by the equation

a = e2.

In the proof of Lemma 3.10.5, we used the process of elimination determine

that 2ω = β + γ and 2ω = 2β + γ are the only two possible relationships

amongst the weights of Ty(Σ). We did not, however, show that these relations

actually occur. We will now provide examples to verify that these bad relations

do in fact occur.

Example 3.10.7. In Example 3.10.6 above, we explicitly construct a T -orbit

closure X and produce several different sets Y . There are six cases in which

Y itself is a surface and in all six cases, the weights of Ty(Σ) all satisfy an

equation of the form 2ω = β + γ.

Example 3.10.8. Let α1 = e1−e2, α2 = e2−e3, α3 = e3−e4, α4 = e4−e5, α5 =

e5−e6, α6 = e5+e6 be the simple system of roots in D6 as indicated in Remark

3.10.1.
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Let x = xα + xβ + xγ + xδ + xϵ + xζ , where

α = α1

β = α5

γ = α6

δ = α1 + 2α2 + 2α3 + 2α4 + α5 + α6

ϵ = α3 + α4

ζ = α2 + 2α3 + 2α4 + α5 + α6

These roots satisfy

2ζ + α = β + γ + δ + 2ϵ

and so the support of x, s(x), generates a Z-module of rank 5.

As such, X = T · x is isomorphic to an affine variety of dimension 5 given by

the equation z2ζzα = zβzγzδz
2
ϵ , where zα, zβ, zγ, zδ, zϵ, zζ ∈ C[X] are variables of

weights −α,−β,−γ,−δ, −ϵ, and −ζ respectively. It is clear that X is singular

at 0.

We identify T with (C∗)6 using t ↦→ (α1(t), α2(t), α3(t), α4(t), α5(t), α6(t)).

Now, Ty = ker(α1) ∩ ker(α5) ∩ ker(α6) = {1, α2(t), α3(t), α4(t), 1, 1)} ≃ (C∗)3

and hence is connected. Using λ(s) = (1, s, s, s, 1, 1), we see that y = xα+xβ+

xγ is a point of X and that Y = {xα + xβ + xγ + dxδ + exϵ + fxζ |f 2 = de2}.
Hence, Y is a singular surface defined by f 2 = de2 which contains the two

Ty-curves f = d = 0 and f = e = 0. The weights of Ty(Y ) are

δ|Ty = 2α2 + 2α3 + 2α4

ϵ|Ty = α3 + α4

ζ|Ty = α2 + 2α3 + 2α4

and they satisfy the equation 2ζ|Ty = δ|Ty + 2ϵ|Ty .
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Chapter 4

In the Context of G/B

In this chapter, we will provide an overview of some of the objects and concepts

in the G/B setting that we require for our work. Much of this information can

be found in the book by Kumar ([26]). The interested reader is directed there

for a more detailed examination of this material.

4.1 Notation and Terminology

Let G = SLn(C((x))) and P = SLn(C[[x]]), for some n ∈ N. Also, let B =

ev−1(B), where ev : P → SLn(C) is entry-wise evaluation at x = 0 and B is

the Borel subgroup of SLn(C) consisting of upper triangular matrices. Thus,

B is the subgroup of P composed of matrices whose entries below the diagonal

have no constant term.

The quotients G/P and G/B are projective ind-varieties and hence can be

expressed in the form

lim
→
Xi,

where each Xi is an irreducible normal finite-dimensional projective variety.

We refer to G/P as the affine Grassmannian.

The n-dimensional torus of interest in this setting is ˆ︁T = T ×S, where T ⊂ B
is the maximal torus comprised of diagonal matrices in SLn(C), which acts on

G by conjugation, and S = C∗ is the element of the automorphism group of G
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which acts on each g ∈ G by acting on each entry of g according to the rule

s ·

⎛⎝ ∞∑︂
i=ℓ

xi

⎞⎠ =
∞∑︂
i=ℓ

sixi,

for all s ∈ S. These actions commute and hence ˆ︁T acts on G. As B is alsoˆ︁T -stable, the ˆ︁T action descends to the quotient G/B.

Let ˆ︂W := NG⋊S(ˆ︁T )/ˆ︁T ≃ NG(ˆ︁T )/T
denote the affine Weyl group of G. The identity element of ˆ︂W will be denoted

as e and we will define w0 = e, for all w ∈ ˆ︂W . As in the classical setting,

the ˆ︁T -fixed points of G/B are in a one-to-one correspondence with the points

of the set ˆ︂W , and moreover, ˆ︂W acts transitively on (G/B)ˆ︁T . Henceforth, we

will identify the elements of (G/B)ˆ︁T with the elements of ˆ︂W . In addition, the

affine Weyl group ˆ︂W acts on ˆ︁T by conjugation, which induces actions of ˆ︂W
on the character group X(ˆ︁T ) and the cocharacter group Y (ˆ︁T ) in the obvious

way.

4.2 Weight Space Decompositions

Let g denote the Lie algebra of SLn(C), let b is the Lie algebra of B, and let

h denote the Lie algebra of T . The set of roots of SLn(C) with respect to T

form a root system of type An−1 and will be denoted as Φ. We will use the

notation (ij) to represent the root ei − ej, since the notation ei will be used

to denote a different object later on.

Let ĝ := g⊗ C[x, x−1] and let b̂ := b⊕
(︁
g⊗ xC[x]

)︁
.

The torus ˆ︁T acts on ĝ by the rule

(t, s) · (g ⊗ xi) = tgt−1 ⊗ sixi.

In particular, for g ∈ gα, the action is

(t, s) · (g ⊗ xi) = α(t)g ⊗ sixi = α(t)si(g ⊗ xi).
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Accordingly, the roots of ˆ︁T in ĝ are

ˆ︁Φ := {α + hδ | α ∈ Φ and h ∈ Z} ∪ {hδ | h ∈ Z \ {0}},

where we define (α + hδ)(t, s) := α(t)sh. For α̂ = α + hδ ∈ ˆ︁Φ, we define

Re(α̂) := α.

The induced action of the affine Weyl group ˆ︂W on the character group X(ˆ︁T )
restricts to an action on ˆ︁Φ. This action satisfies

w(α + hδ) = w(α) + hδ,

and, in particular, we have

w(hδ) = hδ

for all h ∈ Z \ {0}.

The imaginary roots are the element of {hδ | h ∈ Z\{0}}. All other roots are
said to be real. We will denote the set of imaginary roots by Im(ˆ︁Φ).
There is a notion of positivity on ˆ︁Φ which arises from the weight space decom-

position of b̂, that is,

ˆ︁Φ+ := {α + hδ | h > 0 or h = 0 and α > 0}.

We can also describe ˆ︁Φ+ in terms of one-parameter subgroups: we first recall

that

Φ+ = {α ∈ Φ | ⟨α, λ⟩ > 0},

for some λ ∈ Y (T ). Furthermore, as Φ is finite there exists a k ∈ N such that

|⟨α, λ⟩| < k for all α ∈ Φ. Now, using λ̂ := λ + kδ to represent the element

(λ, k) ∈ Y (ˆ︁T ) ≃ Y (T )⊕ Z, we know that

⟨α + hδ, λ+ kδ⟩ = m+ kh,

where |m| < k, and hence

ˆ︁Φ+ = {α + hδ | ⟨α + hδ, λ+ kδ⟩ > 0}

= {α̂ ∈ ˆ︁Φ | ⟨α̂, λ̂⟩ > 0}.
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Thus we also have,

ˆ︁Φ− = {α + hδ | h < 0 or h = 0 and α < 0}

= {α̂ ∈ ˆ︁Φ | ⟨α̂,−λ̂⟩ > 0}.

We will use the notation α̂ > 0 to indicate that α̂ ∈ ˆ︁Φ+ and α̂ < 0 to indicate

that α̂ ∈ ˆ︁Φ−. The positive imaginary roots will be denoted by Im(ˆ︁Φ)+ and

the negative imaginary roots will be denoted by Im(ˆ︁Φ)−.
Regarding the weight spaces ĝα̂, for a real root α̂ = α + hδ, we have

ĝα̂ = gα ⊗ (C[x, x−1])h.

Since gα and (C[x, x−1])h are both 1-dimensional, dim ĝα̂ = 1. If α̂ = hδ is

imaginary, we have

ĝα̂ = h⊗ (C[x, x−1])h.

The quotient space ĝ/b̂ decomposes as

ĝ/b̂ =
⨁︂
α̂<0

ĝα̂.

Relating this to tangent spaces, for e ∈ ˆ︂W we have

Te(G/B) = ĝ/b̂

and for arbitrary w ∈ ˆ︂W , we have

Tw(G/B) = ĝ/wb̂w−1 =
⨁︂

w−1(α̂)<0

ĝα̂

Specifically,

Ω
(︁
Tw(G/B)

)︁
= w

(︂ˆ︁Φ−
)︂
= {α̂ ∈ ˆ︁Φ | w−1(α̂) < 0}.

Since w−1(α̂) ∈ ˆ︁Φ−, we know that ⟨w−1(α̂),−λ̂⟩ > 0. Accordingly, we also
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have

Ω
(︁
Tw(G/B)

)︁
= {α̂ ∈ ˆ︁Φ | ⟨α̂, w(−λ̂)⟩ > 0}.

Due to the fact that w−1(−α̂) = −w−1(α̂), we know that for any α̂ ∈ ˆ︁Φ,
exactly one of α̂ or −α̂ appears as a weight of Tw(G/B). Furthermore, for

h > 0,

w−1(hδ) = hδ > 0.

As such, for any w ∈ ˆ︂W , the set Ω
(︁
Tw(G/B)

)︁
does not contain any positive

imaginary roots.

4.3 The Affine Weyl Group ˆ︂W
In this section, we will further discuss the affine Weyl group ˆ︂W , in particular,

its realization as a Coxeter group. Information on Coxeter groups, including

some general theory presented in this section, is available in [21] and [6]. We

begin by reviewing two ways to view ˆ︂W and its elements.

Analogous to the classical case, the affine Weyl group can be realized as a

group generated by reflections sα̂ associated to elements α̂ ∈ ˆ︁Φ, where in this

case α̂ is required to be real. In what follows, we will outline this identification

as presented in [28].

LetW = Sn be the Weyl group of SLn(C), that is, the symmetric group on the

set {1, 2, . . . , n}, and let S∞ be the group of bijections of Z. Let r + nq ∈ Z,
where q is any integer and r is an integer such that 1 ≤ r ≤ n. The set Sn can

be viewed as a subgroup of S∞ by defining for each σ ∈ Sn

σ(r + nq) = σ(r) + nq.

Moreover, we embed Zn in S∞ by assigning z = (z1, z2, . . . , zn) ∈ Zn to the

map σz defined by

σz(r + nq) = r + n(q + zr).
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Let ˜︂W = {σ ∈ S∞ | σ(q + n) = σ(q) + n, ∀q ∈ Z},

then ˜︂W = W⋉Zn and the affineWeyl group ˆ︂W is the subgroup of ˜︂W consisting

of those (w, z) for which
n∑︂
i=1

zi = 0.

Suppose that α̂ = α + hδ ∈ ˆ︁Φ is a real root, where α = (ij) ∈ Φ+ with

1 ≤ i < j ≤ n. Let sα be the reflection in W associated to α and let {ek}
represent the standard basis of Zn.

The reflection sα̂ associated to α̂ is the element
(︁
sα, h(ei − ej)

)︁
∈ ˆ︂W . Thus sα̂

acts on Z as follows:

sα̂(r + nq) :=

⎧⎪⎪⎨⎪⎪⎩
r + nq if r ̸= i, j

j + n(q + h) if r = i

i+ n(q − h) if r = j

Moreover, we define s−α̂ := sα̂.

Example 4.3.1. Let n = 5, let α̂ = (14) + 2δ, let and β̂ = −(25) + δ, where

(14), (25) ∈ Φ+. Note that −β̂ = (25)− δ.

sα̂(6) = sα̂(1 + 5(1)) = 4 + 5(1 + 2) = 19

sα̂(−3) = sα̂(2 + 5(−1)) = 2 + 5(−1) = −3

sα̂(8) = sα̂(3 + 5(1)) = 3 + 5(1) = 8

sα̂(4) = sα̂(4 + 5(0)) = 1 + 5(0− 2) = −9

sα̂(0) = sα̂(5 + 5(−1) = 5 + 5(−1) = 0

sβ̂(6) = s−β̂(6) = s−β̂(1 + 5(1)) = 1 + 5(1) = 6

sβ̂(−3) = s−β̂(−3) = s−β̂(2 + 5(−1)) = 5 + 5(−1 + (−1)) = −5

sβ̂(8) = s−β̂(8) = s−β̂(3 + 5(1)) = 3 + 5(1) = 8

sβ̂(4) = s−β̂(4) = s−β̂(4 + 5(0))) = 4 + 5(0) = 4

sβ̂(0) = s−β̂(0) = s−β̂(5 + 5(−1)) = 2 + 5(−1− (−1)) = 2
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Alternatively, ˆ︂W is the affine symmetric group ˆ︁Sn, which is defined (See [31],

Section 3.6) to be the set of all permutations w of Z satisfying:

w(z + n) = w(z) + n and
n∑︂
z=1

w(z) =
n(n+ 1)

2
.

The elements of ˆ︁Sn are referred to as affine permutations and can be expressed

in one-line notation: if w ∈ ˆ︂W and we let wz = w(z), for all z ∈ Z, then w

can be written as an infinite string

· · ·w−3w−2w−1w0w1w2w3 · · ·

As w commutes with shifting by n, any w ∈ ˆ︁Sn can be defined by specifying

w1, w2, . . ., wn (or the image of any n consecutive integers). As such, unless we

require additional entries in the string, we will typically write w in standard

window form:

w = [w1, w2, . . . , wn].

For example, in ˆ︁S5, we have the element

w = [−3, 6, 0, 8, 4].

This description of the elements of ˆ︂W = ˆ︁Sn is the one presented in [2] when

introducing the notion of pattern avoidance. We will discuss pattern avoidance

in Chapter 6.

Let i < j be integers such that 1 ≤ i ≤ n and i ̸≡ j mod n. An affine

transposition, denoted ti,j, is the permutation that interchanges i + nq and

j+nq, for all q ∈ Z, and fixes any integer k which is not congruent modulo n to

either i or j. The reflections in ˆ︁Sn are the affine transformations and the simple

reflections, which generate ˆ︁Sn as a Coxeter group, are the transformations

s0 := tn,n+1 and

si := ti,i+1, for 1 ≤ i ≤ n− 1.
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Relating our two notations for elements of ˆ︂W = ˆ︁Sn, we have s0 = sα̂, where

α̂ = (1n)−δ, and si = sα̂, where α̂ is the root (i i+1) ∈ Φ+, for 1 ≤ i ≤ n−1.

For w = [w1, w2, . . . , wn], we compute sα̂w by the rule

sα̂w = [sα̂(w1), sα̂(w2), . . . , sα̂(wn)],

where sα̂ is the reflection associated to some α̂ ∈ ˆ︁Φ.
Example 4.3.2. Let n = 5, let α̂ = (14) + 2δ, let β̂ = −(25) + δ, and let

w = [−3, 6, 0, 8, 4].

Using our computations in Example 4.3.1, we calculate

sα̂w = [sα̂(−3), sα̂(6), sα̂(0), sα̂(8), sα̂(4)] = [−3, 19, 0, 8,−9]

and

sβ̂w = [sβ̂(−3), sβ̂(6), sβ̂(0), sβ̂(8), sβ̂(4)] = [−5, 6, 2, 8, 4].

As a Coxeter group, ˆ︂W comes equipped with a particular length function ℓ.

We set

ℓ(e) = 0.

Now, for any w ∈ ˆ︂W , we can write w in infinitely many ways as a product of

(not necessarily distinct) simple reflections

w = si1si2 · · · sik .

If w ̸= e, such an expression is said to be reduced if k is minimal. For w ̸= e, we

set ℓ(w) to be the value of k for which w = si1si2 · · · sik is a reduced expression

for w.

As in the classical Sn case, the length of an element of ˆ︁Sn can be computed

using the notion of an inversion. Let w = [w1, w2, . . . , wn]. An affine inver-

sion in w is a pair of indices (i, j), where 1 ≤ i ≤ n, for which i < j, but

wi > wj. We will denote the set of all affine inversions in w as Invˆ︁Sn
(w) and

use
⃓⃓⃓
Invˆ︁Sn

(w)
⃓⃓⃓
to denote the number of elements in Invˆ︁Sn

(w). According to

Proposition 8.3.1 in [6]

ℓ(w) =
⃓⃓⃓
Invˆ︁Sn

(w)
⃓⃓⃓
.
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For example, in ˆ︁S5, for

w = [−3, 6, 0, 8, 4]2, 11, 5, 13, 9, 7, . . .

we compute that

Invˆ︁Sn
(w) = {(2, 3), (2, 5), (2, 6), (2, 8), (4, 5), (4, 6), (4, 8), (4, 11), (5, 6)}

and thus ℓ(w) = 9.

The length function ℓ on ˆ︂W can be used to define a partial order on ˆ︂W referred

to as the Bruhat-Chevalley ordering on ˆ︂W . First, we write u→ w if w = sα̂u

for some reflection sα̂ ∈ ˆ︂W and ℓ(u) < ℓ(w). Many authors will use w = usα̂

instead of sα̂u. The two approaches are related as follows: if w = usα̂, then

w = sβ̂u, where β̂ = w(α̂).

Now set u < w, if there exits u1, u2, . . . , uk ∈ ˆ︂W such that

u→ u1 → u2 → . . .→ uk → w.

If u ≤ w, then the interval from u to w is defined to be

[u,w] := {y ∈ ˆ︂W}|u ≤ y ≤ w}.

For u < w, we also want to consider the set of roots defined as follows:

R(u,w) := {α̂ ∈ ˆ︁Φ+ | α̂ is real and u < sα̂u ≤ w}.

The theory of Coxeter groups gives us another useful fact regarding ˆ︂W : let

α̂ ∈ Φ+ be real, then

w < sα̂w if and only if w−1(α̂) > 0

(See Lemma 5.7 and Proposition 5.7 in [21]).
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Relating this to our description of the weights of Tw(G/B), we obtain:

Lemma 4.3.3. Let w ∈ ˆ︂W and let α̂ ∈ Φ+ be real.

The following are equivalent:

1) α̂ ∈ Ω
(︁
Tw(G/B)

)︁
2) w−1(α̂) < 0

3) sα̂w < w

The following are equivalent:

1) −α̂ ∈ Ω
(︁
Tw(G/B)

)︁
2) w−1(−α̂) < 0

3) w < sα̂w

4.4 Schubert Varieties in G/B

For each w ∈ ˆ︂W , the object

X(w) := Bw

is an irreducible finite-dimensional (dimX(w) = ℓ(w)) normal projective ˆ︁T -
stable variety known as an affine Schubert variety. It can also be described as

a union of B-orbits, each containing a unique ˆ︁T -fixed point:

X(w) =
⋃︂

y∈[e,w]

By.

As such, the Bruhat-Chevalley order on ˆ︂W can also be formulated in terms of

Schubert varieties by setting

u ≤ w ⇐⇒ X(u) ⊆ X(w) ⇐⇒ u ∈ X(w).

In terms of the ind-variety structure of G/B, for each Xi, one may choose

Xi = X(wi), for some wi ∈ ˆ︂W so that

G/B = lim
→
X(wi).

The set (G/B)ˆ︁T of ˆ︁T -fixed points of G/B is discrete and thus

X(w)
ˆ︁T = X(w) ∩ (G/B)ˆ︁T = [e, w]
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is finite. Accordingly, since X(w) is normal and irreducible, Example 2.6.4

establishes that affine Schubert varieties and any of their closed irreducibleˆ︁T -stable subvarieties are ˆ︁T -varieties. Furthermore, Schubert varieties in G/B
are Cohen-Macaulay (see Theorem 8.2.2 in [26] or see [34] for the classical

G/P setting).

Moreover, for any u ∈ X(w)
ˆ︁T , we observe that

Tu
(︁
X(w)

)︁
⊂ Tu(G/B) = ĝ/ub̂u−1 =

⨁︂
u−1(α̂)<0

ĝα̂

as a ˆ︁T -stable subspace and hence

Ω
(︁
Tu(X(w)

)︁
⊂ Ω

(︁
Tu(G/B)

)︁
= {α̂ ∈ ˆ︁Φ | u−1(α̂) < 0}

= {α̂ ∈ ˆ︁Φ | ⟨α̂, u(−λ̂)⟩ > 0},

where λ̂ is the element of Y (ˆ︁T ) specified in Section 4.2. There are several

consequences of this worth mentioning.

Remark 4.4.1.

1) Every element of X(w)
ˆ︁T is attractive.

2) Every weight α̂ of Tu
(︁
X(w)

)︁
satisfies u−1(α̂) < 0.

3) The set Ω
(︂
Tu

(︁
X(w)

)︁)︂
does not contain any elements of Im(ˆ︁Φ)+.

In addition, as X(w) is B-stable, the stabilizer Bu acts on Tu
(︁
X(w)

)︁
.1 Taking

the differential, we obtain an action of its Lie algebra b̂∩ ub̂u−1 on Tu
(︁
X(w)

)︁
which is induced by restricting the usual adjoint action of ub̂u−1 on ĝ/ub̂u−1.

Lemma 4.4.2. Let β̂ ∈ Ω
(︂
Tu

(︁
X(w)

)︁)︂
and let α̂ ∈ ˆ︁Φ+ such that u−1(α̂) > 0.

If α̂ + β̂ ∈ ˆ︁Φ and u−1(α̂ + β̂) < 0, then α̂ + β̂ is a weight of Tu
(︁
X(w)

)︁
.

Proof. Recall that [ĝα̂, ĝβ̂] ⊆ ĝα̂+β̂ for all α̂, β̂ ∈ ˆ︁Φ (see [26, page 9]). Since the

weight space ĝα̂ lies in b̂ ∩ ub̂u−1 if and only if α̂ ∈ ˆ︁Φ+ and u−1(α̂) > 0, the

claim follows from the remarks preceding the statement of the lemma.

1Bu is not to be confused with the set of unipotent elements of B.
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4.5 ˆ︁T -Curves in X(w)

Since a Schubert variety X(w) is a ˆ︁T -variety, every closed irreducible T -stable

curve in X(w) is a ˆ︁T -curve. The ˆ︁T -curves in X(w) are well understood. We

will now review some information about these curves. (See Section 12.1 in

[26], in particular, Proposition 12.1.7. For the classical G/B setting, see [13],

in particular, Theorems D and F.)

Denote by Uα̂ the unique subgroup of G normalized by ˆ︁T which has Lie algebra

ĝα̂ and denote by Gα̂ the copy of SL2(C) in G which is generated by Uα̂ and

U−α̂. Using this notation, the ˆ︁T -curves in X(w) through u ∈ X(w)
ˆ︁T can be

described as follows:

E(X(w), u) = {Gα̂u | α̂ ∈ Φ̂
+
is real and sα̂u ≤ w}

= {Uα̂u | α̂ ∈ Φ̂
+
is real and sα̂u < u ≤ w}

∪ {U−α̂u | α̂ ∈ Φ̂
+
is real and u < sα̂u ≤ w}

The ˆ︁T -curves in E(X(w), u) are smooth and distinct. For C ̸= D ∈ E(X(w), u),

we have that C∩D = {u}. Since every element ofX(w)
ˆ︁T is attractive inX(w),

by Remark 2.9.2, every element of C
ˆ︁T is attractive in C. Since C is smooth

and u is attractive, by Remark 2.9.4, there is a T -equivariant isomorphism

Cu ≃ Tu(C).

We will let

E+(X(w), u) := {Uα̂u | α̂ ∈ Φ̂
+
is real and sα̂u < u ≤ w}

and

E−(X(w), u) := {U−α̂u | α̂ ∈ Φ̂
+
is real and u < sα̂u ≤ w}.

The ˆ︁T -curve C := U−α̂u, where α̂ ∈ ˆ︁Φ+, has ˆ︁T -fixed point set C
ˆ︁T = {u, sα̂u},

with u < sα̂u. The ˆ︁T -fixed point u of C has attractive neighbourhood

Cu = X(w)u ∩ C = C \ {sα̂u} = U−α̂u.
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The tangent space of C at u is Tu(C) = ĝ−α̂ ⊂ Tu
(︁
X(w)

)︁
, which in particular

indicates that u−1(−α̂) < 0.

Likewise, the ˆ︁T -curve D := Uα̂u, where α̂ ∈ ˆ︁Φ+, has D
ˆ︁T = {u, sα̂u}, with

sα̂u < u. The ˆ︁T -fixed point u of D has attractive neighbourhood

Du = X(w)u ∩D = D \ {sα̂u} = Uα̂u.

The tangent space of D at u is Tu(D) = ĝα̂ ⊂ Tu
(︁
X(w)

)︁
, which specifies that

u−1(α̂) < 0.

Since X(w)
ˆ︁T is finite and there is a unique ˆ︁T -curve containing any pair ofˆ︁T -fixed points, it is clear that the set E

(︁
X(w)

)︁
of all ˆ︁T -curves in X(w) is

finite. As such, X(w) has an affiliated Bruhat graph Γ
(︁
X(w)

)︁
.

For C := U−α̂u ∈ E−(X(w), u) (with Tu(C) = ĝ−α̂), we also have that

C = Uα̂(sα̂u) ∈ E+(X(w), sα̂u)

(with Tsα̂u(C) = ĝα̂). We convey this information in the piece of the Bruhat

graph Γ
(︁
X(w)

)︁
which corresponds to C as follows:

sα̂u

u

−α̂

α̂

Also, as indicated in Lemma 2.7.5,

|E(X(w), u)| ≥ dimX(w).

Specifically, this means that there are at least dimX(w) edges attached to

every vertex in Γ
(︁
X(w)

)︁
.
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Recall from Section 4.3 that R(u,w) = {α̂ ∈ ˆ︁Φ+ | α̂ is real and u < sα̂u ≤ w}.
Deodhar’s Inequality states that

|R(u,w)| ≥ ℓ(w)− ℓ(u)

(See Corollary 11.1.20 in [26]) from which it follows that

|E−(X(w), u)| ≥ dimX(w)− dimX(u).

Regarding the tangent space Tu
(︁
X(w)

)︁
, the elements of Ω

(︂
Tu

(︁
X(w)

)︁)︂
which

are weights of the tangent spaces at u of the ˆ︁T -curves in X(w) are significant

in much of what is to come. For ease of reference, we make the following

definition.

Definition 4.5.1. Let X(w) be a Schubert variety in G/B, let u ∈ X(w)
ˆ︁T ,

and let C ∈ E(X(w), u). The elements of

Ω(w, u) :=
⋃︂

C∈E(X(w),u)

Ω(Tu(C))

are called the curve weights of X(w) at u.

Remark 4.5.2. All elements of Ω(w, u) are real.

For any C ∈ E(X(w), u), since u is attractive, by Lemma 2.9.3 we have

Cu ↪→ X(w)u ↪→ Tu
(︁
X(w)

)︁
.

Let Cu = ˆ︁T · v, for some v ∈ Tu
(︁
X(w)

)︁
. Since dimCu = 1, we know from

Lemma 2.5.1 that the rank of the Z-submodule M of X(ˆ︁T ) generated by the

support s(v) of v is 1. Accordingly, M ≃ Z and hence the elements of s(v) are

proportional. The connected component (ˆ︁Tv)◦ of the stabilizer

ˆ︁Tv = ⋂︂
χ̂∈M

ker χ̂

is a codimension 1 torus which acts trivially on ˆ︁T ·v, thus on Cu, and therefore

on Tu(C). Now let Tu(C) = ĝα̂, for some real root α̂ ∈ u(ˆ︁Φ−). Hence,
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(ˆ︁Tv)◦ ⊆ ker α̂. Let N = ker(X(ˆ︁T ) ↠ X((ˆ︁Tv)◦)) (restriction), so N ≃ Z and

contains M . Consequently, M = zN for some z ∈ Z, which gives us that

zα̂ ∈ M . As such, the elements of s(v) are proportional to α̂ and since none

of the other roots in u(ˆ︁Φ−) is proportional to the real root α̂, it must be the

case that v ∈ ĝα̂. Consequently, Cu = ĝα̂. Hence we have proven:

Lemma 4.5.3. For any C ∈ E(X(w), u), the image of Cu under the ˆ︁T -
equivariant embedding X(w)u ↪→ Tu

(︁
X(w)

)︁
is Tu(C).

We conclude this section by making the following remark:

Remark 4.5.4. The tangent space to E(X(w), u) at u, described in Definition

2.11.4, in this setting has the form

TE(X(w), u) =
⨁︂

C∈E(X(w),u)

Tu(C) =
⨁︂

α̂∈Ω(w,u)

ĝα̂

In particular, this means the dimension of TE(X(w), u) is |E(X(w), u)|.

4.6 Rationally Smooth Schubert Varieties in

G/B.

The concept of rational smoothness (see Definition 2.13.1) has a concrete re-

formulation for Schubert varieties in G/B (or in classical G/B).

Theorem 4.6.1. Let w ∈ ˆ︂W . The following are equivalent:

1) X(w) is rationally smooth.

2) |R(u,w)| = ℓ(w)− ℓ(u), for all u ≤ w.

3) |E(X(w), u)| = ℓ(w), for all u ≤ w.

Proof. See Theorems 12.2.8 and 12.2.14 in [26]. See [13], in particular Theo-

rems B and E, for the classical G/B setting.
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Remark 4.6.2. In particular, this means that for a rationally smooth Schu-

bert variety X(w) in G/B, for all u ≤ w we have

|E−(X(w), u)| = dimX(w)− dimX(u)

and

|E(X(w), u)| = dimX(w).

It follows from the latter equation that there are exactly dimX(w) edges

attached to every vertex in Γ
(︁
X(w)

)︁
.

Example 4.6.3. For n = 2, X(w) is rationally smooth for all w ∈ ˆ︂W (see [26,

p476] or [2, p108]).

We conclude this section with a fact which is important in the study of ratio-

nally smooth Schubert varieties.

Remark 4.6.4. As mentioned in Section 2.13, the smooth locus of a Schubert

variety is contained in the rationally smooth locus. In particular, this means

that any smooth Schubert variety is rationally smooth.

4.7 Singular Points of X(w)

According to Lemma 2.8.2, the singular locus Sing
(︁
X(w)

)︁
of a Schubert variety

X(w) is a proper closed ˆ︁T -stable subset of X(w) which contains a ˆ︁T -fixed
point, if Sing

(︁
X(w)

)︁
̸= ∅. Hence to study the singular locus of X(w) we study

its ˆ︁T -fixed point set

X(w)
ˆ︁T = [e, w] ⊂ ˆ︂W.

Much of our work in this thesis focuses on the detection of maximal singu-

larities of Schubert varieties. By maximal singularity of X(w), we mean a

point

u ∈ Sing
(︁
X(w)

)︁
∩ [e, w]

such that for any v ∈ Sing
(︁
X(w)

)︁
∩ [e, w],

u ̸< v,

with respect to the Bruhat-Chevalley ordering on ˆ︂W .
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To investigate maximal singularities of X(w), we will make use of several

well-known facts about Sing
(︁
X(w)

)︁
. First, it is clear that X(w) = Bw is

nonsingular at w. Furthermore, due to a result by Chevalley (recalled in

Proposition 12.1.1 in [26]), we know that affine Schubert varieties in G/B are

nonsingular in codimension 1.

As indicated in Section 12.1 in [26], the set Sing
(︁
X(w)

)︁
is also a B-stable closed

subvariety of X(w) and as such, if nonempty, Sing
(︁
X(w)

)︁
can be expressed

as a union of specific Schubert varieties X(u), for some u < w. Some of the

information given below, such as Lemma 4.7.3, follows easily from this fact.

However, as ˆ︁T -curves are essential to our work, we will focus on how they can

be used in this setting.

Let v ∈ X(w)
ˆ︁T and let C := Uα̂v ∈ E+(X(w), v), with C

ˆ︁T = {u, v}, where
u < v. Consider the tangent spaces of X(w) along C:

v Tv
(︁
X(w)

)︁
cC Tc

(︁
X(w)

)︁
u Tu

(︁
X(w)

)︁

SinceX(w) is B-stable and since Uα̂ ⊂ B, we know thatX(w) is also Uα̂-stable.

Remark 4.7.1. It follows that

dimTv(X(w)) = dimTc(X(w))

for all points c in the orbit Uα̂v = C \ {u}.

Thus X(w) is nonsingular at v if and only if it is nonsingular along Uα̂v. In

particular, this means that C is good (see Definition 2.7.3) if and only if X(w)

is nonsingular at v.
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Now, C is also equal to the curve U−α̂u ∈ E−(X(w), u). Since the attractive

neighbourhood X(w)u embeds into Tu
(︁
X(w)

)︁
, for any c in the open ˆ︁T -orbit

C \ C ˆ︁T ⊆ X(w)u we have

Tc
(︁
X(w)

)︁
↪→ Tu

(︁
X(w)

)︁
.

by taking the differential of the embedding at c.

Remark 4.7.2. Thus,

dimX(w) ≤ dimTc
(︁
X(w)

)︁
≤ dimTu

(︁
X(w)

)︁
for all c ∈ C.

As such, if X(w) is nonsingular at u, then it is also nonsingular at v, or

equivalently, if X(w) is singular at v, then it is also singular at u.

More generally, we have the following:

Lemma 4.7.3. Let u, v ∈ X(w)
ˆ︁T such that u < v. If v is a singular point of

X(w), then u is a singular point of X(w).

Proof. If v = sα̂u, for some reflection sα̂ ∈ ˆ︂W , where α̂ ∈ ˆ︁Φ+, then C = U−α̂u

is a ˆ︁T -curve in E−(X(w), u) with C
ˆ︁T = {u, v}. According to the argument

given directly above, if v is a singular point of X(w), so is u.

For an arbitrary v such that u < v, inductively, if v is a singular point of

X(w), then u is also a singular point since

u < sα̂1u < sα̂2sα̂1u < · · · < sα̂k
sα̂k−1

· · · sα̂2sα̂1u = v

for some reflections sα̂1 , sα̂2 , . . . , sα̂k
∈ ˆ︂W , for some k ≥ 1.

There is one particular consequences of this discussion preceding Lemma 4.7.3

that we would like to highlight:

Remark 4.7.4. Let u ∈ X(w)
ˆ︁T and let C ∈ E−(X(w), u) with C

ˆ︁T = {u, v},
so that u < v. If X(w) is nonsingular at u or v, then C is good. In particular,

if u is a maximal singularity of X(w), then C is good.
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The ˆ︁T -curves in X(w) also yield another useful tool for detecting singularities

in X(w). Recall from Section 2.11 that, if X(w) is nonsingular at a ˆ︁T -fixed
point u, then TE(X(w), u) = Tu

(︁
X(w)

)︁
. Thus, in view of Remark 4.5.4, for

a nonsingular ˆ︁T -fixed point u of X(w) we have

Tu
(︁
X(w)

)︁
=

⨁︂
C∈E(X(w),u)

Tu(C) =
⨁︂

α̂∈Ω(w,u)

ĝα̂

As a consequences, we obtain:

Lemma 4.7.5. Let u ∈ X(w)
ˆ︁T . If Ω

(︂
Tu

(︁
X(w)

)︁)︂
contains an element of

Im(ˆ︁Φ−), then u is a singular point of X(w).

Proof. If X(w) is nonsingular at u, then Ω
(︂
Tu

(︁
X(w)

)︁)︂
= Ω(w, u). However,

all elements of Ω(w, u) are real (see Remark 4.5.2). Thus, if Ω
(︂
Tu

(︁
X(w)

)︁)︂
contains an imaginary weight, then u is a singular point of X(w).

Note: this result appears as Lemma 4.6 in [28], in the context of Schubert

varieties in G/P .

4.8 Peterson Translates of X(w)

In this section we will review some well-known results regarding Peterson trans-

lates of Schubert Varieties in G/B, including facts that are based upon material

presented in [15], such as Proposition 3.4. We have also drawn heavily upon

the ideas presented in Section 8 of [15] (which we have translated to the affine

setting). Of the material in this section, only Example 4.8.11 is original to

this thesis.

LetX(w) be a Schubert variety in G/B, let u ∈ X(w)
ˆ︁T , and let C ∈ E(X(w), u).

Recall from Section 2.11 that the Peterson translate τC
(︁
X(w), u

)︁
is a ˆ︁T -stable

subspace of Tu
(︁
X(w)

)︁
which satisfies

dimX(w) ≤ dim τC
(︁
X(w), u

)︁
≤ dimTu

(︁
X(w)

)︁
,

where the dimension of τC
(︁
X(w), u

)︁
is equal to the common dimension of the
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tangent spaces Tc(X) along the orbit C \C ˆ︁T . In the case that C is good, this

yields that

dimX(w) = dim τC
(︁
X(w), u

)︁
.

Also recall that if X(w) is nonsingular at u, then

τC
(︁
X(w), u

)︁
= TE(X(w), u) = Tu

(︁
X(w)

)︁
,

where

TE(X(w), u) =
⨁︂

α̂∈Ω(w,u)

ĝα̂.

Remark 4.8.1. In particular, this means that Ω
(︂
τC

(︁
X(w), u

)︁)︂
= Ω(w, u) for

all C ∈ E(X(w), u), whenever X(w) is nonsingular at u.

We note that the requirements of Theorem 2.11.5 are fulfilled by any Schu-

bert variety in G/B. In fact, since Schubert varieties are Cohen-Macaulay, by

condition 2) of Theorem 2.11.5, we only require TE(X(w), u) = τC
(︁
X(w), u

)︁
for one good ˆ︁T -curve C to conclude that X(w) is nonsingular at u.

Remark 4.8.2. If u is a singular ˆ︁T -fixed point of X(w), then

TE
(︁
X(w), u

)︁
̸= τC

(︁
X(w), u

)︁
,

for all good ˆ︁T -curves C ∈ E(X(w), u).

Since τC
(︁
X(w), u

)︁
is a ˆ︁T -stable subspace of Tu

(︁
X(w)

)︁
, it has a weight space

decomposition as a ˆ︁T -module and

Ω
(︂
τC

(︁
X(w), u

)︁)︂
⊆ Ω

(︂
Tu

(︁
X(w)

)︁)︂
.
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Consequently, we have the following:

Lemma 4.8.3.

1) u−1(α̂) < 0 for all α̂ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
.

2) τC
(︁
X(w), u

)︁
has no positive imaginary weights.

3) If Ω
(︂
τC

(︁
X(w), u

)︁)︂
contains an element of Im(ˆ︁Φ−), then u is a singular

point of X(w).

Proof. Statements 1) and 2) follow from Remark 4.4.1 and statement 3) is a

consequence of Lemma 4.7.5.

From Corollary 2.11.3 we know that the tangent space Tu(C) is a ˆ︁T -stable
subspace of τC

(︁
X(w), u

)︁
.

Remark 4.8.4. As such, the weight of Tu(C) as a ˆ︁T -module is a weight of

τC
(︁
X(w), u

)︁
.

In addition to Tu(C), the Peterson translate τC
(︁
X(w), u

)︁
also contains the

tangent spaces at u of all ˆ︁T -curves in E+(X(w), u):

Lemma 4.8.5. Let X(w) be a Schubert variety in G/B, let u ∈ X(w)
ˆ︁T , and

let C ∈ E(X(w), u). If D ∈ E+(X(w), u), then Tu(D) ⊆ τC
(︁
X(w), u

)︁
, as aˆ︁T -stable subspace.

Proof. Let D ∈ E+(X(w), u). If D = C ∈ E+(X(w), u), then we know that

Tu(D) = Tu(C) ⊆ τC
(︁
X(w), u

)︁
. See the proof of Theorem 5.9 in [11] for the

case in which C ̸= D.

Remark 4.8.6. Accordingly, the weight of Tu(D) as a ˆ︁T -module is a weight

of τC
(︁
X(w), u

)︁
, for all ˆ︁T -curves D ∈ E+(X(w), u).

Therefore, in terms of the set E(X(w), u), the question remains: for which

D ∈ E−(X(w), u) is Tu(D) ⊆ τC
(︁
X(w), u

)︁
?

Now consider a ˆ︁T -curve C ∈ E−(X(w), u). We know that C = U−α̂u, for some

α̂ ∈ ˆ︁Φ+, and that C
ˆ︁T = {u, sαu}, where u < sα̂u ≤ w. Let v := sα̂u. There

are two Peterson translates related to this C: τC
(︁
X(w), u

)︁
and τC

(︁
X(w), v

)︁
.
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c

v = sα̂u

u

−α̂ τC
(︁
X(w), u

)︁
α̂ τC

(︁
X(w), v

)︁

We know from Remark 4.7.1 and by the construction of τC
(︁
X(w), v

)︁
that

dimTv(X(w)) = dimTc(X(w)) = dim τC
(︁
X(w), v

)︁
for all points c ∈ C \ C ˆ︁T . Therefore, since τC

(︁
X(w), v

)︁
is a subspace of

Tv
(︁
X(w)

)︁
, it is clear that

τC
(︁
X(w), v

)︁
= Tv

(︁
X(w)

)︁
.

In terms of the other ˆ︁T -fixed point of C, the Peterson translate τC
(︁
X(w), u

)︁
constructed at u has a useful property for determining its weights:

Lemma 4.8.7. Let C ∈ E−(X(w), u), so that C = U−α̂u, for some α̂ ∈ ˆ︁Φ+,

and let β̂ be any weight of τC
(︁
X(w), u

)︁
. If α̂ + β̂ ∈ ˆ︁Φ and u−1(α̂ + β̂) < 0,

then α̂ + β̂ is a weight of τC
(︁
X(w), u

)︁
.

Proof. Since Uα̂ ⊂ B, Uα̂ acts on X(w). This action restricts to an action on

the curve

C = U−α̂u = Uα̂(sα̂u) = Uα̂(sα̂u) ∪ {u},

for which u is a fixed point. This induces an action of Uα̂ on Tu
(︁
X(w)

)︁
and

hence on the Grassmannian of d-planes in Tu
(︁
X(w)

)︁
, where d = dimTc(X(w))

for all c ∈ C \ CT . The map

φ : C \ CT → G
(︂
d, Tu

(︁
X(w)

)︁)︂
c ↦→ Tc(X(w))

is Uα̂-equivariant and a similar argument to the one given in the discussion

following Definition 2.11.1 shows that the Peterson translate τC
(︁
X(w), u

)︁
is a

Uα̂-stable subspace of Tu
(︁
X(w)

)︁
.
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Let β̂ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
⊂ Ω

(︂
Tu

(︁
X(w)

)︁)︂
. If α̂+ β̂ ∈ ˆ︁Φ and u−1(α̂+ β̂) < 0,

then α̂+ β̂ ∈ Ω
(︂
Tu

(︁
X(w)

)︁)︂
, by Lemma 4.4.2. However, since τC

(︁
X(w), u

)︁
is

Uα̂-stable and since the Lie algebra of Uα̂ is ĝα̂, we have

[ĝα̂, ĝβ̂] ⊆ ĝα̂+β̂ ⊂ τC
(︁
X(w), u

)︁
.

Therefore, α̂ + β̂ is a weight of τC
(︁
X(w), u

)︁
.

For both of the Peterson translates of X(w) along C = U−α̂u, there is a nice

description of their respective weights in terms of α̂.

Lemma 4.8.8. Let C ∈ E−(X(w), u), so that C = U−α̂u, for some α̂ ∈ ˆ︁Φ+.

Let v = sα̂u. Let c ∈ C \ C ˆ︁T and let ˆ︁S = ˆ︁Tc, the stabilizer of c. Then:

1) ˆ︁S = ker α̂.

2) V := τC
(︁
X(w), v

)︁
or τC

(︁
X(w), u

)︁
is an ˆ︁S-module such that the weight

space for each ω̂ ∈ Ωˆ︁S(V ) ⊆ X(ˆ︁S) is a ˆ︁T -module which decomposes as

Vω̂ =
⨁︂

β̂∈X(ˆ︁T )
β̂|ˆ︁S=ω̂

Vβ̂

Furthermore, if β̂ ∈ Ωˆ︁T (Vω̂), then all ˆ︁T -weights of Vω̂ are elements of

β̂ + Zα̂ and hence are elements of the α̂-string through β̂.

Proof. To prove statement 1), we first fix an isomorphism φ : Ga → Uα̂ (See

[26, pages 175, 177, 189, 455]). Since C = Uα̂v = Uα̂v ∪ {u}, c = φ(b)v for

some b ∈ Ga. Furthermore, t · c = tφ(b)t−1v = φ(α̂(t)b)v.

Therefore,

t ∈ ˆ︁S ⇐⇒ c = t · c

⇐⇒ φ(b)v = φ(α̂(t)b)v

⇐⇒ φ(b) = φ(α̂(t)b)

⇐⇒ b = α̂(t)b

⇐⇒ α̂(t) = 1

⇐⇒ t ∈ ker α̂
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Thus, ˆ︁S = ker α̂, as required.

Now consider statement 2). The stabilizer ˆ︁S is a codimension 1 diagonalizable

subgroup of ˆ︁T which acts on the Peterson translate V := τC
(︁
X(w), v

)︁
or

τC
(︁
X(w), u

)︁
by restricting the action of ˆ︁T on V . As such, V also has a weight

space decomposition as an ˆ︁S-module:

V =
⨁︂

ω̂∈X(ˆ︁S)
Vω̂

Since the actions of ˆ︁S and ˆ︁T on V commute, it follows that each weight space

Vω̂ in this decomposition is also ˆ︁T -stable.
Moreover, from the exact sequence of diagonalizable groups

1 → ˆ︁S ↪−→ ˆ︁T α̂−→→ Gm → 1,

we obtain the exact sequence

0 → Z ↪−→ X(ˆ︁T ) ρ−−−−−−→
(restriction)

→ X(ˆ︁S) → 0,

where ker ρ = Zα̂. Consequently, for each weight ω̂ ∈ X(ˆ︁S), we have

Vω̂ =
⨁︂

β̂∈X(ˆ︁T )
β̂|ˆ︁S=ω̂

Vβ̂

and for any β̂1, β̂2 ∈ Ωˆ︁T (Vω̂), we have that (β̂1 − β̂2)
⃓⃓⃓
ˆ︁S = 0, and therefore

β̂1 − β̂2 ∈ Zα̂. Thus, if we fix some β̂ ∈ Ωˆ︁T (Vω̂), then any other weight

γ̂ ∈ Ωˆ︁T (Vω̂) is an element of β̂ + Zα̂.

Remark 4.8.9. The number of elements of β̂ + Zα̂ which appear as weights

of a ˆ︁T -module V is referred to as the length of the α̂-string through β̂ in V .

As τC
(︁
X(w), u

)︁
and τC

(︁
X(w), v

)︁
are constructed using the same ˆ︁T -orbit, it

is natural to ask if there are any connections between them. One particularly

useful relationship is given in the following lemma:
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Lemma 4.8.10. Let C ∈ E−(X(w), u), so that C = U−α̂u, for some α̂ ∈ ˆ︁Φ+.

Let v = sα̂u. Let c ∈ C \ C ˆ︁T and let ˆ︁S = ˆ︁Tc, the stabilizer of c. Then:

1) The Peterson translates τC
(︁
X(w), u

)︁
and τC

(︁
X(w), v

)︁
are isomorphic

as ˆ︁S-modules.

2) If β̂ is a ˆ︁T -weight of τC(︁X(w), u
)︁
, then there exists a (not necessarily

unique) z ∈ Z such that β̂ + zα̂ is a ˆ︁T -weight of τC(︁X(w), v
)︁
.

3) If β̂ is a ˆ︁T -weight of τC(︁X(w), v
)︁
, then there exists a (not necessarily

unique) z ∈ Z such that β̂ + zα̂ is a ˆ︁T -weight of τC(︁X(w), u
)︁
.

4) If v is a nonsingular point of X(w) and β̂ is a ˆ︁T -weight of either τC(︁X(w), u
)︁

or τC
(︁
X(w), v

)︁
, then the length of the α̂-string through β̂ in τC

(︁
X(w), v

)︁
is greater than or equal to the length of the α̂-string through β̂ in τC

(︁
X(w), u

)︁
.

Proof. Statement 1) holds by Proposition 3.4 in [15].

Now let V := τC
(︁
X(w), u

)︁
and W := τC

(︁
X(w), v

)︁
.

To prove statement 2), let β̂ ∈ Ωˆ︁T (V ). Thus, by Lemma 4.8.8, β̂ ∈ Ωˆ︁T (Vω̂),
where ω̂ ∈ X(ˆ︁S) such that β̂

⃓⃓⃓
ˆ︁S = ω̂. By part 1), ω̂ is also an ˆ︁S-weight of W

and

1 ≤ dimVω̂ = dimWω̂.

Hence, by Lemma 4.8.8, there exits a ˆ︁T -weight γ̂ ∈ Ωˆ︁T (W ) which satisfies

γ̂|ˆ︁S = ω̂. Therefore, γ̂, β̂ ∈ X(ˆ︁T ) such that (γ̂ − β̂)
⃓⃓⃓
ˆ︁S = 0. By Lemma 4.8.8,

we know that ˆ︁S = ker α̂ and hence we have γ̂− β̂ ∈ Zα̂, so that γ̂ = β̂+zα̂, for

some z ∈ Z. Thus, statement 2) holds. The proof of statement 3) is similar.

Now, to prove statement 4), suppose that v is a nonsingular ˆ︁T -fixed point of

X(w). Therefore, by Lemma 4.8.3, the set Ωˆ︁T (W ) contains only real roots

and consequently dimWγ̂ = 1, for all γ̂ ∈ Ωˆ︁T (W ). Let β̂ ∈ Ωˆ︁T (V ) and let

ω̂ ∈ X(ˆ︁S) such that β̂
⃓⃓⃓
ˆ︁S = ω̂. By Lemma 4.8.8, we have

Vω̂ =
⨁︂
z∈Z

β̂+zα̂∈Ω ˆ︁T (V )

Vβ̂+zα̂
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and hence the length of the α̂-string through β̂ in V is less than or equal to

dimVω̂.

It now follows from part 2), Lemma 4.8.8, and the fact that v is a nonsingular

point of X(w) that

Wω̂ =
⨁︂
z′∈Z

β̂+z′α̂∈Ω ˆ︁T (W )

Wβ̂+z′α̂

where each Wβ̂+z′α̂ has dimension 1. In particular, this mean that the length

of the α̂-string through β̂ in W is equal to dimWω̂. Since dimVω̂ = dimWω̂,

by part 1), we obtain that statement 4) holds for β̂ ∈ Ωˆ︁T (V ). The case for

β̂ ∈ Ωˆ︁T (W ) is similar.

At this point, we will give an example in which we compute some of the Pe-

terson translates of a particular Schubert variety.

Example 4.8.11. Let us consider the case when n = 2.

Let w = [−2, 5] ∈ ˆ︂W = ˆ︁S2 and form the Schubert variety X(w) = Bw ⊆ G/B.
From Example 4.6.3, we know that X(w) is rationally smooth and hence from

Theorem 4.6.1 we know that |E(X(w), w′)| = ℓ(w) = 3, for all w′ ∈ [e, w].

Let u = [2, 1], v = [3, 0], y = [0, 3], and x = [−1, 4]. Let α = (12) ∈ Φ and set

C = Uα−δu and D = U−αy. The Bruhat graph Γ(X(w)) is
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e

α− 2δ

α− δ−α

y = [0, 3]

D

−α

−α + δ

α− 2δ

x = [−1, 4]

α− δ

α

α + δ

u = [2, 1]

C

α− δ

α

−α− δ

v = [3, 0]

α− 3δ

−α + δ

−α + 2δ

w = [−2, 5]

−α + δ−α + 3δ

−α + 2δ

As Schubert varieties are nonsingular in codimension 1, we know that X(w)

is nonsingular at x and v.

Since X(w) is nonsingular at x, we know

τD
(︁
X(w), x

)︁
= Tx

(︁
X(w)

)︁
= TE

(︁
X(w), x

)︁
= gα ⊕ gα+δ ⊕ gα−δ

Thus, τD
(︁
X(w), x

)︁
has three weights, each weight on an α-string of length 1.

Consequently, by Lemma 4.8.10, we know that τD
(︁
X(w), y

)︁
has three weights,

each of which is on an α-string of length 1.

Since D = U−αy, we know that Ty(D) = g−α and hence −α is a weight of

τD
(︁
X(w), y

)︁
, by Remark 4.8.4. Furthermore, by Remark 4.8.6, we determine

that −α + δ is a weight of τD
(︁
X(w), y

)︁
. In fact, −α + δ is the weight of

τD
(︁
X(w), y

)︁
which is obtained, in the sense of Lemma 4.8.10, from the weight

α + δ of τD
(︁
X(w), x

)︁
. Indeed, α + δ corresponds to a weight of τD

(︁
X(w), y

)︁
which must be one of the following roots

α + δ δ − α + δ

However, we know from Lemma 4.8.3 that τD
(︁
X(w), y

)︁
has no positive imag-
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inary weight, so it cannot be δ. Also, since −α is a weight of τD
(︁
X(w), y

)︁
, we

obtain from Lemma 4.8.3 that y−1(−α) < 0 and hence y−1(α) > 0. Thus,

y−1(α + δ) = y−1(α) + δ > 0

and therefore α + δ is not a weight of τD
(︁
X(w), y

)︁
, by Lemma 4.8.3. This

leaves −α + δ as the only possibility.

All that remains is to determine the third weight of τD
(︁
X(w), y

)︁
. By Lemma

4.8.10, the weight α−δ of τD
(︁
X(w), x

)︁
corresponds to a weight α̂ of τD

(︁
X(w), y

)︁
which is on the α-string through α− δ. The candidates for α̂ are:

α− δ − δ − α− δ

To identify α̂, we first note that since −α + δ is a weight of τD
(︁
X(w), y

)︁
, we

know y−1(−α + δ) < 0 from Lemma 4.8.3. Hence,

y−1(α− δ) = −y−1(−α + δ) > 0,

which implies that α − δ is not a weight of τD
(︁
X(w), y

)︁
, by Lemma 4.8.3.

Subsequently α̂ ̸= α − δ. Furthermore, if −α − δ is a weight of τD
(︁
X(w), y

)︁
,

then from Lemma 4.8.7, we obtain that

α + (−α− δ) = −δ ∈ Ω
(︂
τD

(︁
X(w), y

)︁)︂
,

since y−1(−δ) = −δ < 0. However, this would mean that the α-string through

α−δ in Ω
(︂
τD

(︁
X(w), y

)︁)︂
has length at least 2, which is impossible since it has

length 1. As a result, we deduce that α̂ ̸= −α − δ. Therefore, by the process

of elimination, we obtain that α̂ = −δ. Hence,

τD
(︁
X(w), y

)︁
= g−α ⊕ g−δ ⊕ g−α+δ

We note that since −δ is a weight of τD
(︁
X(w), y

)︁
, the Schubert variety X(w)

is singular at y by Lemma 4.8.3.
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So now let’s consider the ˆ︁T -curve C. Again, since X(w) is nonsingular at the

u, we know

τC
(︁
X(w), v

)︁
= Tv

(︁
X(w)

)︁
= TE

(︁
X(w), v

)︁
= g−α+δ ⊕ g−α+2δ ⊕ gα−3δ

Thus, τC
(︁
X(w), u

)︁
has three weights, each weight on a (−α + δ)-string of

length 1. Accordingly, by Lemma 4.8.10, the Peterson translate τC
(︁
X(w), u

)︁
also has three weights, each of which is on an (−α + δ)-string of length 1.

Using a similar argument as in the previous case, we know that α − δ and α

are weights of τC
(︁
X(w), u

)︁
, where α corresponds to the weight −α + 2δ of

τC
(︁
X(w), v

)︁
. So now, by Lemma 4.8.10, the weight α − 3δ of τC

(︁
X(w), v

)︁
corresponds to a weight α̂ of τC

(︁
X(w), u

)︁
which is on the (−α + δ)-string

through α− 3δ. The options for α̂ are:

α− 3δ − 2δ − α− δ

However, using Lemma 4.8.7, if α− 3δ is a weight of τC
(︁
X(w), u

)︁
, then

−2δ = (−α + δ) + (a− 3δ)

and

−α− δ = (−α + δ) + (−2δ)

are also weights of τC
(︁
X(w), u

)︁
. Likewise, if −2δ is a weight of τC

(︁
X(w), u

)︁
,

then −α − δ is as well. Thus, since the (−α + δ)-string through α − 3δ in

Ω
(︂
τC

(︁
X(w), u

)︁)︂
has length 1, α̂ = −α− δ. Consequently,

τC
(︁
X(w), u

)︁
= gα−δ ⊕ g−α−δ ⊕ gα

Furthermore, since X(w) is nonsingular at v, the ˆ︁T -curve C is good (see Re-

mark 4.7.4). Therefore since

τC
(︁
X(w), u

)︁
= TE

(︁
X(w), u

)︁
we obtain from Theorem 2.11.5 that X(w) is nonsingular at u.
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We conclude this section by summarizing some useful equivalences discussed

throughout the past few sections. For the sake of convenience, we have assem-

bled these statement into two lemmas. We first present a list for positive real

roots α̂:

Lemma 4.8.12. Let α̂ ∈ ˆ︁Φ+ be real. Let X(w) be a Schubert variety in G/B,
let u ∈ X(w)

ˆ︁T , and let C ∈ E(X(w), u). The following are equivalent:

1) u−1(α̂) < 0

2) sα̂u < u

3) Uα̂u ∈ E+(X(w), u)

4) Tu

(︂
Uα̂u

)︂
⊆ τC

(︁
X(w), u

)︁
as a ˆ︁T -stable subspace

5) α̂ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
6) α̂ ∈ Ω

(︂
Tu

(︁
X(w)

)︁)︂
7) α̂ ∈ Ω

(︁
Tu(G/B)

)︁
Proof. Statement 1) implies statement 2) by Lemma 4.3.3. Statement 2) im-

plies statement 3) by the definition of the E+(X(w), u) (see Section 4.5). From

Lemma 4.8.5, we determine that statement 3) implies statement 4). Since

Tu

(︂
Uα̂u

)︂
= ĝα̂, statement 5) follows from statement 4). We can obtain that

statement 5) implies statement 6) and statement 6) implies statement 7) from

the fact that

τC
(︁
X(w), u

)︁
⊂ Tu

(︁
X(w)

)︁
⊂ Tu(G/B)

as ˆ︁T -stable subspaces. Finally, statement 7) implies statement 1) by Lemma

4.3.3.

Unfortunately, for negative real roots −α̂, we do not have such an extensive

list of equivalences unless, we include an additional condition.
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Lemma 4.8.13. Let α̂ ∈ ˆ︁Φ+ be real. Let X(w) be a Schubert variety in G/B,
let u ∈ X(w)

ˆ︁T be a nonsingular point of X(w), and let C ∈ E(X(w), u). The

following are equivalent:

1) u < sα̂u ≤ w

2) U−α̂u ∈ E−(X(w), u)

3) Tu

(︂
U−α̂u

)︂
⊆ τC

(︁
X(w), u

)︁
as a ˆ︁T -stable subspace

4) −α̂ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
5) −α̂ ∈ Ω

(︂
Tu

(︁
X(w)

)︁)︂
Proof. Statement 1) is equivalent to statement 2) by the definition of the

E−(X(w), u) (see Section 4.5). Since X(w) is nonsingular at u, we have that

τC
(︁
X(w), u

)︁
= TE(X(w), u) = Tu

(︁
X(w)

)︁
Furthermore, we have that Tu

(︂
U−α̂u

)︂
= ĝ−α̂. The equivalence of statements

2), 3), 4), and 5) now follows.

4.9 ˆ︁T - Surfaces in G/B

Let Σ be a closed irreducible ˆ︁T -stable surface in G/B. As such, Σ is a closed ir-

reducible subvariety of some Schubert variety X(w). Since X(w) is a ˆ︁T -variety
and E

(︁
X(w)

)︁
is finite, Σ is a ˆ︁T -variety which also a ˆ︁T -surface, that is, the

closure of a two-dimensional ˆ︁T -orbit. Furthermore, Lemma 2.12.2 establishes

that |E(Σ, u)| = 2, for any u ∈ Σ
ˆ︁T . In the case that X(w) is a rationally

smooth Schubert variety, it is well known that the converse also holds, that is,

any two ˆ︁T -curves passing through a ˆ︁T -fixed point u of X(w) are contained in

some ˆ︁T -surface:
Lemma 4.9.1. Let X(w) be a rationally smooth Schubert variety in G/B and

let u be a ˆ︁T -fixed point of X(w). If C,D ∈ E(X(w), u), then there exists aˆ︁T -surface Σ ∈ Σ
(︁
X(w), u

)︁
which contains C and D.
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Proof. Let π : X(w)u → TE(X(w), u) be the restriction to X(w)u of theˆ︁T -equivariant projection π̃ : Tu
(︁
X(w)

)︁
↠ TE(X(w), u). Using a similar

argument as given in the proof of Lemma 2.12.4, we obtain that π is a finite

morphism. Since X(w) is rationally smooth, we know from Theorem 4.6.1

that dimX(w) = |E(X(w), u)|. Therefore,

dimX(w)u = dimTE(X(w), u),

which in turn implies that the finite morphism π is surjective.

Let Σ′ = Tu(C)⊕ Tu(D). For dimension reasons, some irreducible component

Σ of π−1(Σ′) is a ˆ︁T - surface, which by Lemma 2.12.2 contains two ˆ︁T -curves,
say C ′

u and D′
u, for some C ′, D′ ∈ E(X(w), u). However, by Lemma 4.5.3,

π(C ′
u) = Tu(C

′) and π(D′
u) = Tu(D

′). It follows that {C ′, D′} = {C,D} and

hence C, D are contained in the ˆ︁T -surface Σ.

In Section 4.3 in [11], we obtained some results regarding ˆ︁T -surfaces in G/P ,

but in Remark 4.13 of [11], we ascertain that all of our work, including material

presented here in Theorem 4.9.2 and Lemma 4.9.3, also holds for ˆ︁T -surfaces in
G/B. In the G/P setting, the two ˆ︁T -curves in E(Σ, u), for u = e, have the form

C = U−α̂u and D = U−β̂u, where α̂ = α + hαδ and β̂ = β + hβδ are elements

of ˆ︁Φ+ with α, β ̸= 0 and hα, hβ > 0. The only difference in the G/B context

is that hα, hβ ≥ 0. However, as indicated in Remark 4.13, the deductions

involved in the G/P case never used the assumption that hα, hβ ̸= 0. We have

incorporated some of these results into the following theorem:

Theorem 4.9.2. Let Σ be a ˆ︁T -surface in G/B, let u ∈ Σ
ˆ︁T , and let C and D

be the two ˆ︁T -curves in E(Σ, u). Let α̂ := α+hαδ and β̂ := β+hβδ be elements

of u
(︂ˆ︁Φ+

)︂
such that Tu(C) = ĝ−α̂ and Tu(D) = ĝ−β̂. If

1) β ̸= ±α,

2) β = α and |hβ − hα| = 1, or

3) β = −α and hβ + hα = 1,

then Σ is nonsingular at u.
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Proof. For u = e, see Section 4.3 in [11]. Refer to Theorem 4.3 in [11] for the

case in which β ̸= ±α. Theorem 4.5 in [11] addresses the case where β = α.

The case for which β = −α is handled in Theorem 4.14 in [11].

For u ̸= e, consider the ˆ︁T -surface u−1Σ, which contains e. The two ˆ︁T -
curves in E(u−1Σ, e) are u−1C and u−1D, which have Te(u

−1C) = ĝ−u−1(α̂)

and Te(u
−1D) = ĝ−u−1(β̂) .

Let u−1(α) := γ + hγδ and u−1(β) := ω + hωδ . Accordingly, we have

u−1(α̂) = u−1(α) + hαδ = γ + (hγ + hα)δ

and

u−1(β̂) = u−1(β) + hβδ = ω + (hω + hβ)δ

Suppose that β ̸= ±α. Since u−1(α) = γ+ hγδ and u
−1(β) = ω+ hωδ, we also

have

u(γ) = α− hγδ and u(ω) = β − hωδ.

Since β ̸= ±α, we obtain that u(ω) ̸= ±u(γ) and consequently ω ̸= ±γ.
Therefore, u−1Σ is nonsingular at e and hence Σ is nonsingular at u.

Now, suppose that β = α and |hβ − hα| = 1. Thus, u−1(β) = u−1(α), so that

ω = γ and hω = hγ. Thus,

|(hω + hβ)− (hγ + hα)| = |hγ + hβ − hγ − hα| = |hβ − hα| = 1

Subsequently, u−1Σ is nonsingular at e and therefore Σ is nonsingular at u.

Finally, suppose that β = −α and hβ + hα = 1. Thus, u−1(β) = −u−1(α), so

that ω = −γ and hω = −hγ. Thus,

(hω + hβ) + (hγ + hα) = −hγ + hβ + hγ + hα = hβ + hα = 1

Once again, this yields that u−1Σ is nonsingular at e and hence Σ is nonsingular

at u.
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Section 4.3 in [11] also provides us with another piece of useful information. For

a ˆ︁T -surface to be singular at a ˆ︁T -fixed point u, we know that dimTu(Σ) > 2,

which means that Ω
(︁
Tu(Σ)

)︁
must contain at least one weight in addition to

−α̂ and −β̂. The possible forms for such a weight are described in Section 4.3

in [11] and presented in the following lemma:

Lemma 4.9.3. Let Σ be a ˆ︁T -surface in G/B which is singular at u ∈ Σ
ˆ︁T . Let

C and D be the two ˆ︁T -curves in E(Σ, u). Let α̂ := α+ hαδ and β̂ := β + hβδ

be elements of u
(︂ˆ︁Φ+

)︂
such that Tu(C) = ĝ−α̂ and Tu(D) = ĝ−β̂. Then any

weight of Tu(Σ), other than −α̂ and −β̂, is a weight −γ̂, where γ̂ ∈ u
(︂ˆ︁Φ+

)︂
,

and either

1) β = α and γ̂ = α + hγδ where hα < hγ < hβ (assuming hα < hβ), or

2) β = −α and γ̂ = α̂ + lδ, lδ, or β̂ + lδ, for some integer l ≥ 1.

Proof. For the case in which u = e, see Lemma 4.2, Theorem 4.3, Theorem

4.5, and Theorem 4.14 in [11].

For u ̸= e, since Σ is singular at u, the set Ω
(︁
Tu(Σ)

)︁
contains at least one

weight in addition to −α̂ and −β̂. Let −γ̂, where γ̂ := γ + hγδ ∈ u
(︂ˆ︁Φ+

)︂
, be

any such weight.

Now consider the ˆ︁T -surface u−1Σ, which is singular at e. We know that

−u−1(α̂), −u−1(β̂),−u−1(γ̂) are weights of Te(u
−1Σ).

Let u−1(α) := ζ + hζδ and u−1(β) := ω + hωδ. Correspondingly, we have

u−1(α̂) = u−1(α) + hαδ = ζ + (hζ + hα)δ ∈ ˆ︁Φ+

and

u−1(β̂) = u−1(β) + hβδ = ω + (hω + hβ)δ ∈ ˆ︁Φ+

We also know that

u(ζ) = α− hζδ and u(ω) = β − hωδ

Since u−1Σ is singular at e, one of two situations occurs.
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For the first situation, we have ω = ζ. Therefore, u(ω) = u(ζ) and hence

β = α and hω = hζ . Thus, in this case we have

α̂ = α + hαδ and β̂ = α + hβδ,

where hα ̸= hβ, as well as

u−1(α̂) = ζ + (hζ + hα)δ and u−1(β̂) = ζ + (hζ + hβ)δ.

Without loss of generality, assume hα < hβ. Consequently, for this situation,

we also know that u−1(γ̂) = ζ+hδ where hζ+hα < h < hζ+hβ. Subsequently,

γ̂ = u(ζ + hδ) = u(ζ) + hδ = (α− hζδ) + hδ = α + (h− hζ)δ,

where hα < h− hζ < hβ, as required.

For the second situation, we have that ω = −ζ and u−1(γ̂) = u−1(α̂) + lδ, lδ,

or u−1(β̂) + lδ, for some integer l ≥ 1. It follows that

γ̂ = u
(︁
u−1(α̂) + lδ

)︁
= u

(︁
u−1(α̂)

)︁
+ lδ = α̂ + lδ,

γ̂ = u(lδ) = lδ, or

γ̂ = u
(︂
u−1(β̂) + lδ

)︂
= u

(︂
u−1(β̂)

)︂
+ lδ = β̂ + lδ,

for some integer l ≥ 1. Moreover, since ω = −ζ, we have u(ω) = −u(ζ), which
implies β = −α.

Based upon our work with ˆ︁T -surfaces in G/B, we have developed the following

tool for computing some of the weights of τC
(︁
X(w), u

)︁
:
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Lemma 4.9.4. Let X(w) be a rationally smooth Schubert variety in G/B, let
u be a ˆ︁T -fixed point of X(w), and let C ∈ E(X(w), u), with Tu(C) = ĝ−α̂,

where α̂ = α + hαδ ∈ u
(︂ˆ︁Φ+

)︂
.

If D ∈ E+(X(w), u), so that D = Uβ̂u, for some β̂ ∈ ˆ︁Φ+ ∩ u(ˆ︁Φ−), then β̂

is a weight of τC
(︁
X(w), u

)︁
. If D ∈ E−(X(w), u), so that D = U−β̂u, where

β̂ = β + hβδ ∈ ˆ︁Φ+ ∩ u(ˆ︁Φ+) such that

1) β ̸= ±α,

2) β = α and |hβ − hα| = 1, or

3) β = −α and hβ + hα = 1,

then −β̂ is a weight of τC
(︁
X(w), v

)︁
.

Proof. If D = Uβ̂u ∈ E+(X(w), u), then Lemma 4.8.5 gives us that

ĝβ̂ = Tu(D) ⊆ τC
(︁
X(w), u

)︁
and so β̂ is a weight of τC

(︁
X(w), u

)︁
. Suppose that D = U−β̂u ∈ E−(X(w), u).

By Lemma 4.9.1, there is a ˆ︁T -surface Σ ∈ Σ
(︁
X(w), u

)︁
containing C and D.

Thus, by Theorem 4.9.2 Σ is nonsingular at u and hence τC(Σ, u) = Tu(Σ).

Thus, we establish that

ĝ−β̂ = Tu(D) ⊆ Tu(Σ) = τC(Σ, u) ⊆ τC
(︁
X(w), u

)︁
with the last inclusion coming from Lemma 2.11.2. Therefore, −β̂ is a weight

of τC
(︁
X(w), v

)︁
.

4.10 Reflection Formulas

In much of what follows, we want to express reflections sα̂ associated to ele-

ments α̂ ∈ ˆ︁Φ as a product of other such reflections, in particular, reflection of

the form sα and sα−δ, for some α ∈ Φ. In this section, we will state several

key reflection formulas.
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We begin with a well-known formula (See Lemma 5.7 in [21]):

Remark 4.10.1.

sα̂sβ̂s
−1
α̂ = ssα̂(β̂)

for any real roots α̂, β̂ ∈ ˆ︁Φ.
The remainder of the formulas in this section are based on the descriptions of

the roots involved. Let r + nq ∈ Z, where 1 ≤ r ≤ n and q ∈ Z. Recall that

for a real root α̂ = α + hδ ∈ ˆ︁Φ, where α = (ij) ∈ Φ+ with 1 ≤ i < j ≤ n, the

reflection sα̂ acts on Z as follows:

sα̂(r + nq) :=

⎧⎪⎪⎨⎪⎪⎩
r + nq if r ̸= i, j

j + n(q + h) if r = i

i+ n(q − h) if r = j

In order to condense some proofs, instead of considering r = i and r = j

separately, we will let r = i and then account for the last two cases in the

definition above by writing

sα̂(z) = sα̂(i+ nq) = j + n(q ± h)

Lemma 4.10.2. Let α̂ = α + hδ ∈ ˆ︁Φ be a real root and let sα̂ ∈ ˆ︂W be the

reflection associated to α̂. For any integer k ≥ 0, we have

sα̂+kδ = (sαsα−δ)
ksα̂ (4.1)

and

sα̂−kδ = (sα−δsα)
ksα̂ (4.2)

Proof. Let z = r + nq ∈ Z, where 1 ≤ r ≤ n and q ∈ Z.

We begin by considering equation (4.1). If r ̸= i, j, then it is immediate that

sα̂+kδ(z) = z = (sαsα−δ)
ksα̂(z)
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So now assume that r = i. For k = 0 we have

sα̂+0δ = sα̂ = e · sα̂ = (sαsα−δ)
0sα̂

Inductively, we have

(sαsα−δ)
ksα̂(z) = sαsα−δ(sαsα−δ)

k−1sα̂(z)

= sαsα−δsα̂+(k−1)δ(z)

= sαsα−δsα̂+(k−1)δ(i+ nq)

= sαsα−δ

(︂
j + n

(︁
q ± (h+ k − 1)

)︁)︂
= sα

(︂
i+ n

(︁
q ± (h+ k − 1)∓ (−1)

)︁)︂
= sα

(︂
i+ n

(︁
q ± (h+ k)

)︁)︂
= j + n

(︁
q ± (h+ k)

)︁
= sα̂+kδ(i+ nq)

= sα̂+kδ(z)

and hence sα̂+kδ = (sαsα−δ)
ksα̂ for all integers k ≥ 0. Moving on to equation

(4.2), once again it is immediate that

sα̂−kδ(z) = z = (sα−δsα)
ksα̂(z)

when r ̸= i, j. Now taking r = i, for k = 0, we have

sα̂−0δ = sα̂ = e · sα̂ = (sα−δsα)
0sα̂

Consequently, equation (4.2) holds for k = 0. Proceeding by induction on k,

we obtain
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(sα−δsα)
ksα̂(z) = sα−δsα(sα−δsα)

k−1sα̂(z)

= sα−δsαsα̂−(k−1)δ(z)

= sα−δsαsα̂−(k−1)δ(i+ nq)

= sα−δsα

(︂
j + n

(︁
q ± (h− k + 1)

)︁)︂
= sα−δ

(︂
i+ n

(︁
q ± (h− k + 1)

)︁)︂
= j + n

(︁
q ± (h− k + 1)± (−1)

)︁
= j + n

(︁
q ± (h− k)

)︁
= sα̂−kδ(i+ nq)

= sα̂−kδ(z)

and therefore, sα̂−kδ = (sα−δsα)
ksα̂ for all integers k ≥ 0.

Remark 4.10.3. We will make frequent use of a special case of Lemma 4.10.2

in which α̂ = α ∈ Φ, specifically

sα+kδ = (sαsα−δ)
ksα,

where k ≥ 0 is an integer and

sα−kδ = (sα−δsα)
k−1sα−δ

for any integer k ≥ 1.

Finally, we will require the following equations in Section 5.8 to define the

concept of a kite property.

Lemma 4.10.4. Let α ∈ Φ. For any integer k ≥ 1, we have

sα−δsα = sα−(k+1)δsα−kδ

and

sαsα−δ = sα+(k+1)δsα+kδ
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Proof. These follow immediately from Remark 4.10.3. The equation

sα−δsα = sα−(k+1)δsα−kδ

can be obtained from

sα−(k+1)δ = (sα−δsα)
ksα−δ = sα−δsα(sα−δsα)

k−1sα−δ = sα−δsαsα−kδ

and

sαsα−δ = sα+(k+1)δsα+kδ

comes from

sα+(k+1)δ = (sαsα−δ)
k+1sα = sαsα−δ(sαsα−δ)

ksα = sαsα−δsα+kδ

4.11 The Bruhat-Chevalley Order on ˆ︂W and

Reflections

From Lemma 4.10.2, it should be apparent that alternating products of sα and

sα−δ will be important in what follows. Of particular interest to us are the

relationships between ˆ︁T -fixed points of the form

u, sαu, sα−δsαu, sαsα−δsαu, sα−δsαsα−δsαu, . . . (4.3)

or of the form

u, sα−δu, sαsα−δu, sα−δsαsα−δu, sαsα−δsαsα−δu, . . . (4.4)

in terms of the Bruhat-Chevalley order on ˆ︂W . A useful tool in understanding

such relationships is given in the following lemma:
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Lemma 4.11.1. Let u ∈ ˆ︂W and let α ∈ Φ+. If u < sαu, then sαu < sα−δsαu.

If u < sα−δu, then sα−δu < sαsα−δu.

Proof. Let u1 = sαu, and suppose that u < u1. Therefore, u = s−1
α u1 = sαu1

and so sαu1 < u1. Hence, by Lemma 4.3.3, u−1
1 (α) < 0, from which we obtain

that

u−1
1 (α− δ) = u−1

1 (α)− δ < 0

Consequently, since α− δ < 0, by Lemma 4.3.3, we have u1 < sa−δu1, that is,

sαu < sα−δsαu. The Bruhat graph for this case is:

sα−δsαu

u

−α

α
u1 = sαu

α− δ

−α + δ

Now let ũ1 = sα−δu and assume u < ũ1. Thus, u = s−1
α−δũ1 = sα−δũ1, which

yields sα−δũ1 < ũ1. As −α + δ > 0, by Lemma 4.3.3,

(ũ1)
−1(−α + δ) = (ũ1)

−1(−α) + δ < 0,

which forces (ũ1)
−1(−α) < 0. The Bruhat graph for this situation is:

sαsα−δu

u

α− δ

−α + δ
ũ1 = sα−δu

−α

α
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To simplify matters, we introduce the following notation:

Let u0 = u and for l ≥ 1 (an integer) set

ul =

{︄
(sαsα−δ)

l−1
2 sαu if l is odd

(sα−δsα)
l
2u if l is even

or recursively set

ul =

{︄
sαul−1 if l is odd

sα−δul−1 if l is even

Similarly, let ũ0 = u and for l ≥ 1 (an integer) set

ũl =

{︄
(sα−δsα)

l−1
2 sα−δu if l is odd

(sαsα−δ)
l
2u if l is even

or recursively set

ũl =

{︄
sα−δũl−1 if l is odd

sαũl−1 if l is even

With this notation, Sequences (4.3) and (4.4) become

u0, u1, u2, u3, u4, . . . (4.5)

and

ũ0, ũ1, ũ2, ũ3, ũ4, . . . (4.6)

respectively.

Lemma 4.11.2. Let u ∈ ˆ︂W and let α ∈ Φ+. Using the notation given above,

if ui < ui+1, for some integer i ≥ 0, then ul < uk for all integers i ≤ l < k, and

if ũj < ũj+1, for some integer j ≥ 0, then ũl < ũk for all integers j ≤ l < k.
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Proof. Suppose that ui < ui+1, for some integer i ≥ 0. Repeated application

of Lemma 4.11.1 yields the following:

ui < ui+1 < ui+2 < ui+3 < ui+4 < ui+5 · · ·

In particular,

ui+a < ui+b,

for any 0 ≤ a < b. So, if k, L are any integers such that i ≤ l < k, then

l = i+ a,and k = i+ b, for some 0 ≤ a < b, and hence

ul < uk,

as required.

Likewise, if ũj < ũj+1, for some integer j ≥ 0, then repeated application of

Lemma 4.11.1 gives us that

ũj < ũj+1 < ũj+2 < ũj+3 < ũj+4 < ũj+5 < · · ·

Specifically, we have

ũj+a < ũj+b

for any 0 ≤ a < b. Once again, if k, L are any integers such that j ≤ l < k,

then l = j + a,and k = j + b, for some 0 ≤ a < b, and consequently

ũl < ũk,

as required.

Sequences (4.5) and (4.6) might begin with a strictly decreasing portion, which

must terminate since the Bruhat-Chevalley order on ˆ︂W has the unique minimal

element e. Thus we have:

u0 > u1 > u2 > · · · > ui and ũ0 > ũ1 > ũ2 > · · · > ũj

for some i, j ≥ 0.
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Thereafter, as indicated in Lemma 4.11.2, the sequences become strictly in-

creasing:

ui < ui+1 < ui+2 < · · · and ũj < ũj+1 < ũj+2 < · · ·

Bruhat graphs depicting these two sequences are:

u0
u1
u2

ui

ui+1

ui+2

ui+3

ũ0
ũ1
ũ2

ũj

ũj+1

ũj+2

ũj+3

These descriptions were obtained by considering these sequences in isolation,

however, we can determine even more about their behaviour if we consider

their influence on each other. Indeed, we observe that

u−1(α) < 0 =⇒ u−1(−α) > 0 =⇒ u−1(−α + δ) = u−1(−α) + δ > 0

and

u−1(−α + δ) = u−1(−α) + δ < 0 =⇒ u−1(−α) < 0 =⇒ u−1(α) > 0.

Thus, by Lemma 4.3.3, we can not have both

u > sαu and u > sα−δu,

and hence we have:

Remark 4.11.3. Either

u < sαu or u < sα−δu,

inclusively.

Therefore, for a fixed u, at least one of (4.5) or (4.6) is strictly increasing.
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4.12 More on the Bruhat-Chevalley Order onˆ︂W and Reflections

In this section, we closely examine relationships amongst the terms of Sequence

(4.3) (or Sequence (4.5)) and relationships amongst the terms of Sequence

(4.4) (or Sequence (4.6)) with respect to the Bruhat-Chevalley order on ˆ︂W .

We present our results in several lemmas. These lemmas are of a technical

nature and we created them to address specific situations that we encountered

in our work.

Before we begin, we will make a comment regarding our notation. From Re-

mark 4.10.3, we know that

sα+kδ = (sαsα−δ)
ksα and sα−kδ = (sα−δsα)

k−1sα−δ

Thus, in terms of Sequences (4.5) and (4.6), sα+kδu = u2k+1 and sα−kδu = ũ2k−1

Lemma 4.12.1. Let u ∈ ˆ︂W and let α ∈ Φ+. Using the notation defined in

Section 4.11, if u < sα+kδu, where k ≥ 0 is an integer, then ul < sα+kδu, for

all integers l such that 0 ≤ l ≤ 2k. If u < sα−kδu, where k ≥ 1 is an integer,

then ũl < sα−kδu, for all integers l where 0 ≤ l ≤ 2k − 2.

Proof. Suppose that u < sα+kδu, for some integer k ≥ 0. By Remark 4.10.3

we know that

sα+kδ = (sαsα−δ)
ksα.

Thus, for Sequence (4.5), we have:

u0 = u, u1 = sαu, u2 = sα−δsαu, . . . u2k = (sα−δsα)
ku, u2k+1 = (sαsα−δ)

ksαu

= sα+kδu

As mentioned above, this sequence might begin with a strictly decreasing

portion, but since

u0 = u < sα+kδu = u2k+1,

there is an index i, where 0 ≤ i ≤ 2k, for which ui < ui+1 (take i to be the

smallest such value). As a consequence of Lemma 4.11.2, the remainder of the
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sequence is strictly increasing. Thus, we have

u0 > u1 > u2 > · · · > ui

(which consists only of u0, if i = 0) followed by

ui < ui+1 < · · · < u2k < u2k+1

We see immediately that ul < u2k+1 = sα+kδu, for all l with i ≤ l ≤ 2k.

Furthermore, since u < sα+kδu, for any l such that 0 ≤ l ≤ i, we also have

ul < u0 = u < sα+kδu. Therefore, ul < sα+kδu, for all l where 0 ≤ l ≤ 2k. A

Bruhat graph representing this situation is:

α + kδ

u = u0

u1

u2

ui

ui+1

ui+2

u2k

u2k+1 = sα+kδu

So now assume that u < sα−kδu, for some integer k ≥ 1. This time, we obtain

from Remark 4.10.3 that

sα−kδ = (sα−δsα)
k−1sα−δ,

so that, for Sequence (4.6) we have:

ũ0 = u, ũ1 = sα−δu, ũ2 = sαsα−δu, . . . ũ2k−1 = (sα−δsα)
k−1sα−δu

= sα−kδu
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Again, since

ũ0 = u < sα−kδu = ũ2k−1,

there exists a smallest index j, satisfying 0 ≤ j ≤ 2k− 2, for which ũj < ũj+1.

Once more, we have

ũ0 > ũ1 > ũ2 > · · · > ũj

and

ũj < ũj+1 < · · · < ũ2k−2 < ũ2k−1

At this point, by repeating the argument in the previous case, we obtain that

ũl < sα−kδu, for all integers l where 0 ≤ l ≤ 2k − 2, as required.

A Bruhat graph depicting this scenario is:

α− kδ

u = ũ0

ũ1

ũ2

ũj

ũj+1

ũj+2

ũ2k−2

ũ2k−1 = sα−kδu

Lemma 4.12.2. Let u ∈ ˆ︂W and let α ∈ Φ+. If u < sα+kδu, where k ≥ 0

is an integer, then sα+lδu < sα+kδu, for all integers l where 0 ≤ l < k, and

sα+lδsα+kδu < sα+kδu, for all integers l where 0 ≤ l ≤ k. If u < sα−kδu,

for some integer k ≥ 1, then sα−lδu < sα−kδu, for all integers l such that

1 ≤ l < k, and sα−lδsα−kδu < sα−kδu, for all integers l such that 1 ≤ l ≤ k.
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Proof. Assume that u < sα+kδu, where k ≥ 0 is an integer. Since, for k = 0,

the first part of the statement for this case holds vacuously and the second

part clearly holds, we will assume that k ≥ 1.

Let l be an integer. If l = k, then

sα+lδsα+kδu = sα+kδsα+kδu = u < sα+kδu,

as required.

Now let 0 ≤ l < k. By Remark 4.10.3, we have

sα+kδ = (sαsα−δ)
ksα and sα+lδ = (sαsα−δ)

lsα

from which we can compute that

sα+kδ = (sαsα−δ)
l(sαsα−δ)

k−lsα = (sαsα−δ)
lsα(sα−δsα)

k−l = sα+lδ(sα−δsα)
k−l.

In particular, this means that

sα+lδsα+kδu = (sα−δsα)
k−lu.

Therefore, in regards to Sequence (4.5), we obtain that

sα+kδu = u2k+1,

sα+lδu = u2l+1,

and

sα+lδsα+kδu = u2(k−l).

Since 0 ≤ l < k, it is clear that 0 < 2l + 1, 2(k − l) < 2k + 1. Thus, by

applying Lemma 4.12.1, we determine that

u2l+1 < u2k+1 and u2(k−l) < u2k+1,

so that,

sα+lδu < sα+kδu and sα+lδsα+kδu < sα+kδu.
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Now suppose that u < sα−kδu, where k ≥ 1 is an integer. Again, for k = 1,

the first part of the statement for this case vacuously holds and the second

part is obviously true. Hence, we will assume that k ≥ 2.

This time, if l = k, then

sα−lδsα−kδu = sα−kδsα−kδu = u < sα−kδu,

as claimed.

Moreover, for any integer l where 1 ≤ l < k, Remark 4.10.3 gives us that

sα−kδ = (sα−δsα)
k−1sα−δ,

sα−lδ = (sα−δsα)
l−1sα−δ,

and

sα−kδ = (sα−δsα)
l−1(sα−δsα)

k−lsα−δ = (sα−δsα)
l−1sα−δ(sαsα−δ)

k−l

= sα−lδ(sαsα−δ)
k−l

From this, we see that sα−lδsα−kδu = (sαsα−δ)
k−lu. Hence, referring to Se-

quence (4.6), we determine that

sα−kδu = ũ2k−1,

sα−lδu = ũ2l−1,

and

sα−lδsα−kδu = ũ2(k−l).

Again, as 1 ≤ l < k, we know that 1 ≤ 2l − 1, 2(k − l) < 2k − 1. It now

follows from Lemma 4.12.1 that

ũ2l−1 < ũ2k−1 and ũ2(k−l) < ũ2k−1

and hence

sα−lδu < sα−kδu and sα−lδsα−kδu < sα−kδu.
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Lemma 4.12.3. If u < sα+iδu for some integer i ≥ 0, then sα+iδu < sα+kδu,

for all integers k > i and thus, in particular, u < sα+kδu, for all integers k ≥ i.

If u < sα−jδu for some integer j ≥ 1, then sα−jδu < sα−kδu for all integers

k > j, and thus, in particular, u < sα−kδu for all integers k ≥ j .

Proof. Suppose that u < sα+iδu, for some integer i ≥ 0, and let k be any

integer such that k ≥ i. The statement clearly holds for k = i, so assume

k > i.

Using Lemma 4.12.2, we compute that

sα(sα+iδu) < sα+iδu.

Also, by Remark 4.10.3, we obtain that

sα+iδ = (sαsα−δ)
isα

and

sαsα+iδ = sα(sαsα−δ)
isα = (sα−δsα)

i.

Thus, regarded as terms of Sequence (4.5),

sα(sα+iδu) = u2i and sα+iδu = u2i+1.

Using this notation in our work above, we have that

u2i < u2i+1.

Thus, since 2i < 2i+ 1 < 2k + 1, according Lemma 4.11.2

u2i+1 < u2k+1.

Consequently, since

u2k+1 = sα+kδu,

we in fact have

sα+iδu < sα+kδu,

which in turn implies that

u < sα+kδu.
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Now instead suppose that u < sα−jδu, for some integer j ≥ 1, and let k be

any integer such that k ≥ j. Again, as the statement clearly holds for k = j,

assume k > j.

Lemma 4.12.2

sα−δ
(︁
sα−jδu

)︁
< sα−jδu.

In addition, from Remark 4.10.3, we determine that

sα−jδ = (sα−δsα)
j−1sα−δ

and

sα−δsα−jδ = sα−δ(sα−δsα)
j−1sα−δ = (sαsα−δ)

j−1.

Thus, referring to Sequence (4.6), we have

sα−δ
(︁
sα−jδu

)︁
= u2j−2 and sα−jδu = u2j−1.

Using this notation, our work above gives us that

u2j−2 < u2j−1.

Hence, as 2j − 2 < 2j − 1 < 2k − 1, Lemma 4.11.2 yields

u2j−1 < u2k−1.

Thus,

sα−jδu < sα−kδu,

since

u2k−1 = sα−kδu,

and therefore, as required,

u < sα−kδu.
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Lemma 4.12.4. Let u ∈ ˆ︂W and let α ∈ Φ+. If u < sα+kδu, where k ≥ 0 is

an integer, then sα+kδu < sα−lδ(sα+kδu) for all integers l ≥ 1. If u < sα−kδu,

where k ≥ 1 is an integer, then sα−kδu < sα+lδ(sα−kδu) for all integers l ≥ 0.

Proof. Suppose that u < sα+kδu, where k ≥ 0 is an integer. Hence, Lemma

4.12.2 gives us that

sα(sα+kδu) < sα+kδu.

This can be restated as

sα(sα+kδu) < sα
(︁
sα(sα+kδu)

)︁
.

Applying Lemma 4.11.1 to this yields

sα
(︁
sα(sα+kδu)

)︁
< sα−δ

(︂
sα
(︁
sα(sα+kδu)

)︁)︂
which simplifies to

sα+kδu < sα−δ(sα+kδu).

Hence, as a consequence of Lemma 4.12.3, we obtain that

sα+kδu < sα−lδ(sα+kδu),

for all l ≥ 1.

Now instead suppose that u < sα−kδu, where k ≥ 1 is an integer. Thus, we

can use Lemma 4.12.2 to compute that

sα−δ(sα−kδu) < sα−kδu

which is the same as

sα−δ(sα−kδu) < sα−δ
(︁
sα−δ(sα−kδu)

)︁
.

From this, we are able to calculate, using Lemma 4.11.1, that

sα−δ
(︁
sα−δ(sα−kδu)

)︁
< sα

(︂
sα−δ

(︁
sα−δ(sα−kδu)

)︁)︂
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and so

sα−kδu < sα(sα−kδu).

To this, we apply Lemma 4.12.3 to obtain that

sα−kδu < sα+lδ(sα−kδu),

for all l ≥ 0.

4.13 The Bruhat-Chevalley Order on ˆ︂W and

E−(X(w), u)

Based upon our results in the previous section, we have developed a tool for

identifying elements of E−(X(w), u).

Lemma 4.13.1. Let X(w) be a Schubert variety in G/B, let u ∈ X(w)
ˆ︁T ,

and let α ∈ Φ+. If Uα−kδu ∈ E−(X(w), u), for some integer k ≥ 2, and

u < sα−lδu, for some integer l with 1 ≤ l < k, then Uα−lδu ∈ E−(X(w), u).

If U−α−kδu ∈ E−(X(w), u), for some integer k ≥ 1, and u < sα+lδu, for some

integer l with 0 ≤ l < k, then U−α−lδu ∈ E−(X(w), u).

Proof. Suppose that Uα−kδu ∈ E−(X(w), u), for some integer k ≥ 2, which, in

particular, means that

u < sα−kδu ≤ w.

Also suppose that u < sα−lδu, for some integer l with 1 ≤ l < k. Thus, by

Lemma 4.12.2

sα−lδu < sα−kδu,

and hence

u < sα−lδu < w.

Therefore Uα−lδu ∈ E−(X(w), u).

Now instead suppose that U−α−kδu ∈ E−(X(w), u), for some k ≥ 1. Thus,

u < sα+kδu ≤ w.
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As well, suppose that u < sα+lδu, for some integer l with 0 ≤ l < k. This

time, Lemma 4.12.2 yields that

sα+lδu < sα+kδu.

Consequently,

u < sα+lδu < w

and so U−α−lδu ∈ E−(X(w), u).
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Chapter 5

Maximal Singularities of

Schubert Varieties in G/B

In this chapter, we will present our work on maximal singularities of Schu-

bert varieties X(w) in G/B. Much of our work focuses on describing the set

E−(X(w), u) for u ∈ X(w)
ˆ︁T with the goal of understanding the nature of this

set in the case that u is a maximal singularity.

In [11], we examined the two ˆ︁T -curves in the set E(Σ, u) and their correspond-

ing weights in the dual tangent space Tu(Σ)
∗ for a ˆ︁T -surface Σ in G/P and

u ∈ Σ
ˆ︁T (where u was assumed to be e). These results carry over to ˆ︁T -surfaces

in G/B. In particular, we showed that the roots corresponding to the pair ofˆ︁T -curves in E(Σ, u) satisfied one of two relationships when Σ is singular at u.

As a result of Lemma 5.1 in [15] (see Lemma 2.12.1 above), questions involv-

ing singularities of a Schubert variety X(w) in G/B can often be reduced to

considering the ˆ︁T -surfaces contained in X(w). Thus, the aforementioned rela-

tionships we found in [11] are relevant to the work in this thesis and, as such,

we have introduced terminology to identify these relationships.

We refer to the pairs of roots which satisfy these relationships as either a Type

I pair of roots or a Type II pair of roots and the corresponding ˆ︁T -curves are
then either a Type I or a Type II pair of curves. (See Section 5.2 below).

Our work on this project began with some initial discussions with Andrew

Crites regarding how to prove that the affine permutation w indexing a singular
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rationally smooth Schubert variety in G/B contains the pattern 3412. The

strategy discussed involved considering the presence of either a Type I or Type

II pair of ˆ︁T -curves passing through (possibly non-maximal) ˆ︁T -fixed points.

So when we commenced working on obtaining a description of the maximal

singularities of a rationally smooth Schubert variety, we first considered the

presence of either a Type I or Type II pair of ˆ︁T -curves passing through the

maximal singularity. We soon realized that a specific case of a Type I pair ofˆ︁T -curves, which we have called a strong Type I pair, was key in obtaining a

characterization of maximal singularities.

In this chapter, we will provide a partial characterization of the set E−(X(w), u),

where X(w) is an arbitrary singular Schubert variety in G/B and the ˆ︁T -fixed
point u is a maximal singularity of X(w) (see Theorem 5.6.1 and Theorem

5.6.3). Furthermore, we will also provide necessary conditions for a ˆ︁T -fixed
point of a rationally smooth Schubert variety X(w) in G/B to be a maximal

singularity (see Theorem 5.9.5 and Lemma 5.10.1).

5.1 Chain Properties

In Chapter 4 we spent a significant amount of time examining the behaviour

of the Sequences (4.3)/(4.5) and (4.4)/(4.6). It should come as no surprise

that they will play a vital role in this chapter. One of the reasons that these

sequences are useful is that they can be used to detect singular ˆ︁T -fixed points

in Schubert varieties. In order to make this relationship explicit, we begin

with the following definitions:

Definition 5.1.1. Let X(w) be a Schubert variety in G/B and let u ∈ X(w)
ˆ︁T .

Then u is said to satisfy the (−α)–chain property in X(w) if there is a root

α ∈ Φ+ such that

sα−δu < u < sαu < sα−δsαu ≤ w.

Definition 5.1.2. Let X(w) be a Schubert variety in G/B and let u ∈ X(w)
ˆ︁T .

Then u is said to satisfy the (α− δ)-chain property in X(w) if there is a root

α ∈ Φ+ such that

sαu < u < sα−δu < sαsα−δu ≤ w.
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Lemma 5.1.3. Let X(w) be a Schubert variety in G/B and let u ∈ X(w)
ˆ︁T .

If u satisfies either the (−α)–chain property or the (α − δ)–chain property in

X(w), then u is a singular point of X(w).

Proof. Suppose that u satisfies the (−α)–chain property in X(w), for some

α ∈ Φ+, that is,

sα−δu < u < sαu < sα−δsαu ≤ w.

Let v := sαu and let C := U−αu ∈ E−(X(w), u). A Bruhat graph summarizing

this case is:

sα−δsαu

w

sα−δu

u

−α
C

−α + δ

v = sαu

α− δ

If v is a singular point of X(w), then by Lemma 4.7.3, u is also a singular

point of X(w).

So now assume that X(w) is nonsingular at v. Thus, we know from Lemma

4.8.13 that α − δ is a weight of τC
(︁
X(w), v

)︁
. As such, by Lemma 4.8.10,

Ω
(︂
τC

(︁
X(w), u

)︁)︂
has at least one element which is in the α-string through

α− δ. The candidates for this element are:

α− δ − δ − α− δ
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Since sα−δu < u, Lemma 4.8.12 specifies that

u−1(−α + δ) < 0

As a result,

u−1(α− δ) > 0

from which it follows that α − δ is not a weight of τC
(︁
X(w), u

)︁
, by Lemma

4.8.3. Thus, either −δ or −α − δ is a weight of τC
(︁
X(w), u

)︁
. However, if

−α− δ is a weight of τC
(︁
X(w), u

)︁
, then by Lemma 4.8.7,

α + (−α− δ) = −δ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂

since u−1(−δ) = −δ < 0. Consequently, −δ is a weight of τC
(︁
X(w), u

)︁
. Thus,

as a result of Lemma 4.8.3, we obtain that u is a singular point of X(w).

Next suppose that u satisfies the (α− δ)–chain property in X(w), so that

sαu < u < sα−δu < sαsα−δu ≤ w

Relabel v = sα−δu and C := Uα−δu ∈ E−(X(w), u). A Bruhat graph repre-

senting this case is:

sαsα−δu

w

sαu

u

α− δ
C

α

v = sα−δu

−α
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As before, if v is a singular point of X(w), then u is also a singular point of

X(w) due to Lemma 4.7.3. So assume that X(w) is nonsingular at v. Conse-

quently, it follows from Lemma 4.8.13 that −α is a weight of τC
(︁
X(w), v

)︁
. As

a result, Lemma 4.8.10 guarantees that at least one member of the (−α+ δ)-

string through −α is a weight of τC
(︁
X(w), u

)︁
. The possibilities for this weight

are:

−α − δ α− 2δ

However, sαu < u, so that by Lemma 4.8.12

u−1(α) < 0

which means,

u−1(−α) > 0.

Therefore, −α is not in Ω
(︂
τC

(︁
X(w), u

)︁)︂
, by Lemma 4.8.3. Thus it remains to

consider −δ and α− 2δ. If α− 2δ is a weight of τC
(︁
X(w), u

)︁
, then by Lemma

4.8.7,

(−α + δ) + (α− 2δ) = −δ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
,

since u−1(−δ) = −δ < 0. Thus, we must have −δ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
and once

again, Lemma 4.8.3 gives us that u is a singular point ofX(w), as required.

5.2 Root / ˆ︁T -Curve Pair Types

Motivated by our work on ˆ︁T -surfaces and the pair of ˆ︁T -curves they contain

through each ˆ︁T -fixed point (see [11] for the G/P case and Section 4.9 for the

G/B case), we have identified four key types of pairs of ˆ︁T -curves which have

proven useful in studying singularities of Schubert varieties.

The definition of each ˆ︁T -curve pair type involves first defining a type of pair

of roots. That being the case, for the remainder of this section, we will let

α̂ := α + hαδ and β̂ := β + hβδ be elements of ˆ︁Φ+. We will also let X(w) be

a Schubert variety in G/B and u ∈ X(w)
ˆ︁T .
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Definition 5.2.1. The pair α̂, β̂ ∈ Φ+ is said to be of Type I if β = −α and

hβ + hα ≥ 2. Thus,

β̂ = β + hβδ = −α + hβδ = −α− hαδ + (hβ + hα)δ = −α̂ + (hβ + hα)δ

Setting k = hβ + hα, we have that a Type I pair is one which satisfies

β̂ = −α̂ + kδ,

for some integer k ≥ 2.

Furthermore, ˆ︁T -curves C−α̂, C−β̂ ∈ E−(X(w), u) are said to be a Type I pair

if C−α̂ = U−α̂u and C−β̂ = U−β̂u, where α̂ and β̂ form a Type I pair of roots.

Remark 5.2.2. When working with a Type I pair of roots, we will assume,

without loss of generality, that α ∈ Φ is positive. Therefore, in order for

β̂ = −α + hβδ ∈ ˆ︁Φ+, we require hβ ≥ 1.

Definition 5.2.3. The pair α̂, β̂ ∈ Φ+ is said to be of strong Type I if it is

a Type I pair, i.e. β = −α (where α > 0) and hβ + hα ≥ 2, with the added

condition that hα = 0 or hβ = 1, exclusively. In other words, a strong Type I

pair has either the form

α̂ = α and β̂ = −α + kδ, where k = hβ ≥ 2

or

α̂ = α + kδ and β̂ = −α + δ, where k = hα ≥ 1.

The pair α̂, β̂ ∈ Φ+ is said to be of weak Type I if it is a Type I pair which

is not strong. Explicitly, a weak Type I pair has the form α̂ = α + hαδ and

β̂ = β + hβδ, where hα ≥ 1 and hβ ≥ 2.

Moreover, ˆ︁T -curves C−α̂, C−β̂ ∈ E−(X(w), u) are said to be a strong Type I

pair (respectively, weak Type I pair) if C−α̂ = U−α̂u and C−β̂ = U−β̂u, where

α̂ and β̂ form a strong Type I (respectively, weak Type I) pair of roots.
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Definition 5.2.4. The pair α̂, β̂ ∈ Φ+ is said to be of Type II if β = α and

|hβ − hα| ≥ 2. Assuming that hβ > hα, we have

β̂ = α̂ + kδ,

for some integer k ≥ 2. A pair of ˆ︁T -curves C−α̂, C−β̂ ∈ E−(X(w), u) is said

to be a Type II pair if C−α̂ = U−α̂u and C−β̂ = U−β̂u, where α̂ and β̂ form a

Type II pair of roots.

Definition 5.2.5. The pair α̂, β̂ ∈ Φ+ is said to be of pseudo Type II if β = α

and |hβ − hα| = 1. Again, assuming that hβ > hα, a pseudo Type II pair α̂, β̂

is one in which

β̂ = α̂ + δ.

A pair of ˆ︁T -curves C−α̂, C−β̂ ∈ E−(X(w), u) is said to be a pseudo Type II

pair if C−α̂ = U−α̂u and C−β̂ = U−β̂u, where α̂ and β̂ form a pseudo Type II

pair of roots.

Note that, unlike for a Type I pair of roots where we may assume that α > 0,

in the definitions of Type II and pseudo Type II root pairs, α may be positive

or negative.

5.3 Pseudo Type II Pairs of Roots / ˆ︁T -Curves

Although the focus of this section is ˆ︁T -fixed points u ∈ X(w) which have a

pseudo Type II pair of ˆ︁T -curves in E−(X(w), u), we begin with an observation

that applies to ˆ︁T -fixed points u for which E−(X(w), u) contains either a Type

II or pseudo Type II pair.

Remark 5.3.1. If E−(X(w), u) contains a Type II or pseudo Type II pair ofˆ︁T -curves, then X(w) is singular at u. Indeed, if C−α̂, C−β̂ ∈ E−(X(w), u) are

a Type II or pseudo Type II pair of ˆ︁T -curves, then α̂, β̂ ∈ Φ+ form a Type II

or pseudo Type II pair of roots, that is, α̂ = α+ hαδ and β̂ = α+ hβδ, where

α ∈ Φ and hβ − hα ≥ 1. As −α̂,−β̂ ∈ Ω
(︂
Tu

(︁
X(w)

)︁)︂
, from Lemma 4.4.2, we
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obtain

α̂− β̂ = (hα − hβ)δ = −(hβ − hα)δ ∈ Ω
(︂
Tu

(︁
X(w)

)︁)︂
since u−1

(︁
−(hβ − hα)δ

)︁
= −(hβ−hα)δ < 0. Subsequently, since Ω

(︂
Tu

(︁
X(w)

)︁)︂
contains an element of Im(ˆ︁Φ−), we obtain from Lemma 4.7.5 that X(w) is sin-

gular at u.

Returning to the case that E−(X(w), u) contains a pseudo Type II pair ofˆ︁T -curves, even though u is a singular point of X(w), such a u can not be a

maximal singularity, as indicated in the following lemma. Note that in the

proof of this lemma 5.3.2, we give an alternative argument showing that u is

a singular point of X(w).

Lemma 5.3.2. If u ∈ X(w)
ˆ︁T such that E−(X(w), u) contains a pseudo Type

II pair of ˆ︁T -curves, then u is a singular point of X(w) which is not a maximal

singularity.

Proof. Let C−α̂ = U−α̂u and C−β̂ = U−β̂u be a pseudo Type II pair of ˆ︁T -curves
in E−(X(w), u). Thus α̂ = α + hαδ and β̂ = α̂ + δ, where α ∈ Φ. We also

know that

u < sα̂u ≤ w and u < sβ̂u ≤ w.

Let v = sα̂u. Furthermore, Lemma 4.10.2 indicates that

sβ̂u = sαsα−δsα̂u = sαsα−δv.

Suppose that α ∈ Φ+. Thus, hα ≥ 0. A Bruhat graph representing this case

is:

sβ̂u = sαsα−δv

u

−β̂
−α̂

v = sα̂u

α− δ

sα−δv
−α
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Since u < v = sα+hαδu, where α ∈ Φ+ and hα ≥ 0, we learn from Lemma

4.12.2 that

sαv = sα(sα+hαδu) < sα+hαδu = v

and we obtain from Lemma 4.12.4 that

v = sα+hαδu < sα−δ(sα+hαδu) = sα−δv.

This in turn implies that

sα−δv < sα(sα−δv)

by Lemma 4.11.1. Collectively, we have determine that

sαv < v < sα−δv < sαsα−δv ≤ w.

Hence, v satisfies the (α−δ)–chain property in X(w) and therefore, by Lemma

5.1.3, v is a singular point of X(w). Thus, since u < v, we simultaneously

deduce that u is a singular point of X(w) (see Lemma 4.7.3) which is not a

maximal singularity.

Now instead, suppose that α ∈ Φ−, so that hα ≥ 1. Relabel the roots, so that

α̂ = −α + hαδ and β̂ = α̂ + δ, where α ∈ Φ+. This time, with our relabeling,

Lemma 4.10.2 and Remark 4.10.3 specify that

sβ̂u = s−αs−α−δsα̂u = sαsα+δsα̂u = sα(sαsα−δsα)sα̂u = sα−δsαsα̂u = sα−δsαv.

A Bruhat graph illustrating this case is:

sβ̂u = sα−δsαv

u

−β̂
−α̂

v = sα̂u

−α

sαv
α− δ
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Since u < v = s−α+hαδu = sα−hαδu, where α ∈ Φ+ and hα ≥ 1, Lemma 4.12.2

tells us that

sα−δv = sα−δ(sα−hαδu) < sα−hαδu = v

and Lemma 4.12.4 gives us that

v = sα−hαδu < sα(sα−hαδu) = sαv.

Applying Lemma 4.11.1 to this yields

sαv < sα−δ(sαv).

In summary, we have obtained that

sα−δv < v < sαv < sα−δsαv ≤ w.

Thus we have shown that v satisfies the (−α)–chain property in X(w) and

hence, by Lemma 5.1.3, we know that v is a singular point of X(w). Therefore,

since u < v, we determine not only that u is a singular point of X(w) (via

Lemma 4.7.3), but also that u is not a maximal singularity.

Corollary 5.3.3. If u ∈ X(w)
ˆ︁T for which E−(X(w), u) contains a pseudo

Type II pair of ˆ︁T -curves, then the codimension of X(u) in X(w) is at least 3.

Proof. From the proof of Lemma 5.3.2, we have either

u < v < sα−δv < sαsα−δv ≤ w

or

u < v < sαv < sα−δsαv ≤ w.

Subsequently, ℓ(w)− ℓ(u) ≥ 3 and so the codimension of X(u) in X(w) is at

least 3.
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5.4 Type II Pairs of Roots / ˆ︁T -Curves

We now consider the case in which the set E−(X(w), u) contains a Type II

pair of ˆ︁T -curves. We showed in Remark 5.3.1 that such a u is a singular

point of X(w). As with the pseudo Type II case, a ˆ︁T -fixed point u for which

E−(X(w), u) contains a Type II pair of ˆ︁T -curves can not be a maximal singu-

larity.

Lemma 5.4.1. If u ∈ X(w)
ˆ︁T such that E−(X(w), u) contains a Type II pair

of ˆ︁T -curves, then u is a singular point of X(w) which is not a maximal sin-

gularity. In addition, there exists u′ > u ∈ X(w)
ˆ︁T for which E−(X(w), u′)

contains a pseudo Type II pair of ˆ︁T -curves.
Proof. Suppose that C−α̂, C−β̂ ∈ E−(X(w), u) which form a Type II pair. As

such,

u < sα̂u, sβ̂u ≤ w

and α̂, β̂ ∈ ˆ︁Φ+ for which α̂ = α+ hαδ and β̂ = α̂+ kδ, for some integer k ≥ 2.

Let v = sα̂u. Using Lemma 4.10.2, we compute that

sβ̂u = sα̂+kδu = (sαsα−δ)
ksα̂u = (sαsα−δ)

kv.

We will first consider the case in which α > 0, so that hα ≥ 0. In order to

give a general overview of the proof, we begin with a Bruhat graph which

represents this case. The technical details of the proof will follow the graph.
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ṽ2k

u

−β̂
−α̂

v = ṽ0

α− δ

ṽ1

−α

ṽ2k−4

α− δ

−α
ṽ2k−3 = u′

−α− δ

ṽ2k−2

α− δ

ṽ2k−1

−α

We will construct an instance of Sequence (4.6) starting with v: let ṽ0 = v,

let ṽ1 = sα−δv and, for 2 ≤ j ≤ 2k, set

ṽj =

{︄
(sαsα−δ)

j
2v if j is even

(sα−δsα)
j−1
2 sα−δv if j is odd

or recursively, for 1 ≤ j ≤ 2k, set

ṽj =

{︄
sαṽj−1 if j is even

sα−δṽj−1 if j is odd

In particular, ṽ2k = (sαsα−δ)
kv = (sαsα−δ)

ksα̂u = sβ̂u.
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Since u < v = sα+hαδu, where α ∈ Φ+ and hα ≥ 0, Lemma 4.12.4 establishes

that

v = sα+hαδu < sα−δ(sα+hαδu) = sα−δv,

or, in terms of our instance of Sequence (4.6),

ṽ0 < ṽ1.

Thus, as a result of Lemma 4.11.2, the entire sequence is strictly increasing

and hence we have

u < v = ṽ0 < ṽ1 < ṽ2 < · · · < ṽ2k−3 < ṽ2k−2 < ṽ2k−1 < ṽ2k = sβ̂u ≤ w. (5.1)

As a consequence, ṽj ∈ X(w), for 0 ≤ j ≤ 2k and since k ≥ 2, we are

guaranteed that ṽ0, ṽ1, . . . , ṽ4 ∈ X(w). In particular, we have that

v = sα−δṽ1 < ṽ1 < sαṽ1 = ṽ2 < sα−δsαṽ1 = ṽ3 ≤ w

which means that ṽ1 satisfies the (−α)–chain property in X(w). Thus, by

Lemma 5.1.3, ṽ1 is a singular point of X(w). Furthermore, since u < ṽ1, we

know that u is a singular point of X(w), from Lemma 4.7.3, that is not a

maximal singularity.

In addition, as k ≥ 2, so that 1 ≤ 2k − 3 ≤ 2k, we know ṽ2k−3 ∈ X(w) and

ṽ2k−3 > u. We claim that E−(X(w), ṽ2k−3) contains a pseudo Type II pair.

To prove this claim, we first note that, by definition,

ṽ2k−2 = sαṽ2k−3 and ṽ2k = sαsα−δsαṽ2k−3,

but, since

sα+δ = sαsα−δsα

(see Remark 4.10.3), we also have

ṽ2k = sα+δṽ2k−3.

Hence, in view of (5.1), we obtain

ṽ2k−3 < sαṽ2k−3 < sα+δṽ2k−3 ≤ w.
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Therefore, the ˆ︁T -curves C = U−αṽ2k−3 and D = U−α−δṽ2k−3 are elements of

E−(X(w), ṽ2k−3) which form a pseudo Type II pair (since α and α + δ form

a pseudo Type II pair of roots). Hence, in the case for which α > 0, we can

take u′ in the statement of this Lemma to be the point ṽ2k−3.

We note that by Lemma 5.3.2, u′ = ṽ2k−3 is singular point of X(w) and hence,

since u < u′, we could have used u′ instead of ṽ1 to show that u is a non-

maximal singularity of X(w).

Now consider the case in which α < 0. We first relabel so that α > 0, making

α̂ = −α + hαδ and β̂ = α̂ + kδ, where hα ≥ 1 and k ≥ 2. Once again, we

provide a Bruhat graph depicting the entire proof:

v2k

u

−β̂
−α̂

v = v0

−α

v1

α− δ

v2k−4

−α

α− δ

v2k−3 = u′
α− 2δ

v2k−2

−α

v2k−1

α− δ
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Taking into account our relabeling, Lemma 4.10.2 and Remark 4.10.3 give us

that

sβ̂u = (s−αs−α−δ)
ksα̂u = (sαsα+δ)

ksα̂u =
(︁
sα(sαsα−δsα)

)︁k
sα̂u = (sα−δsα)

ksα̂u

= (sα−δsα)
kv.

This time, we construct an instance of Sequence (4.5) starting with v: let

v0 = v, set v1 = sαv and, for 2 ≤ i ≤ 2k, define

vi =

{︄
(sα−δsα)

j
2v if i is even

(sαsα−δ)
j−1
2 sαv if i is odd

or recursively, for 1 ≤ i ≤ 2k, define

vi =

{︄
sα−δvi−1 if i is even

sαvi−1 if i is odd

Note that v2k = (sα−δsα)
kv = (sα−δsα)

ksα̂u = sβ̂u.

Since u < v = s−α+hαδ = sα−hαδu, where α ∈ Φ+ and hα ≥ 1, we learn from

Lemma 4.12.4 that

v = sα−hαδu < sα

(︂
sα−hβδu

)︂
= sαv,

which means, in regards to our instance of Sequence (4.5), we have

v0 < v1.

As such, it follows from Lemma 4.11.2 that

u < v = v0 < v1 < v2 < · · · < v2k−3 < v2k−2 < v2k−1 < v2k = sβ̂u ≤ w. (5.2)

Thus, vi ∈ X(w), for 0 ≤ i ≤ 2k. As k ≥ 2, we are assured that v0, v1, . . . , v4 ∈
X(w). Therefore, we have established that

v = sαv1 < v1 < sα−δv1 = v2 < sαsα−δv1 = v3 ≤ w
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and consequently, v1 satisfies the (α − δ)–chain property in X(w). Hence, v1

is a singular point of X(w), by Lemma 5.1.3. Moreover, as u < v1, we deduce

that u is a non-maximal singular point of X(w) (see Lemma 4.7.3).

Additionally, since k ≥ 2, so that 1 ≤ 2k− 3 ≤ 2k, we have v2k−3 ∈ X(w) and

v2k−3 > u.

Claim: E−(X(w), v2k−3) contains a pseudo Type II pair. To prove this, we

first note that by definition,

v2k−2 = sα−δv2k−3 and v2k = sα−δsαsα−δv2k−3,

and since

sα−2δ = sα−δsαsα−δ

(see Remark 4.10.3), we in fact have

v2k = sα−2δv2k−3.

It follows from (5.2) that

v2k−3 < sα−δv2k−3 < sα−2δv2k−3 ≤ w

Thus, theˆ︁T -curves C = Uα−δv2k−3 and D = Uα−2δv2k−3 are elements of

E−(X(w), v2k−3) which form a pseudo Type II pair (since −α+ δ and −α+2δ

form a pseudo Type II pair of roots). Therefore, in the second case, we can

take u′ in the statement of this Lemma to be the point v2k−3.

As in the first case, we know from Lemma 5.3.2 that u′ = v2k−3 is singular

point of X(w) and hence, since u < u′, we could have used u′ instead of v1 to

show that u is a non-maximal singularity of X(w).

Corollary 5.4.2. If u ∈ X(w)
ˆ︁T for which E−(X(w), u) contains a Type II

pair of ˆ︁T -curves, then the codimension of X(u) in X(w) is at least 5.
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Proof. Using the notation established in the proof of Lemma 5.4.1, since k ≥ 2,

v2k ≥ v4 and ṽ2k ≥ ṽ4, and hence we have either

u < v0 < v1 < v2 < v3 < v4 ≤ v2k ≤ w

or

u < ṽ0 < ṽ1 < ṽ2 < ṽ3 < ṽ4 ≤ ṽ2k ≤ w.

Consequently, ℓ(w)− ℓ(u) ≥ 5 and so the codimension of X(u) in X(w) is at

least 5.

5.5 Weak Type I Pairs of Roots / ˆ︁T -Curves

At this point, we move on to considering the case in which E−(X(w), u) con-

tains a weak Type I pair of ˆ︁T -curves.
Lemma 5.5.1. If u ∈ X(w)

ˆ︁T such that E−(X(w), u) contains a weak Type I

pair of ˆ︁T -curves, then u is a singular point of X(w), which is not a maximal

singularity.

Proof. Assume that C−α̂ = U−α̂u and C−β̂ = U−β̂u are a weak Type I pairˆ︁T -curves contained in E−(X(w), u). Thus, α̂ = α + hαδ and β̂ = −α + hβδ,

where α ∈ Φ+, hα ≥ 1, and hβ ≥ 2. We also know that u < sα̂u ≤ w and

u < sβ̂u ≤ w. Furthermore, Remark 4.11.3 tells us that we must have at least

one of

u < sαu or u < sα−δu.

If u < sαu, then since

C−α̂ = U−α̂u = U−α−hαδu ∈ E−(X(w), u),

where hα ≥ 1, Lemma 4.13.1 indicates that

U−αu ∈ E−(X(w), u).

As C−α̂ = U−α−hαδu and U−αu form either a pseudo Type II or Type II pair
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of ˆ︁T -curves, we obtain from Lemmas 5.3.2 and 5.4.1 that u is a non-maximal

singularity of X(w).

If instead u < sα−δu, then using the fact that

C−β̂ = U−β̂u = Uα−hβδu ∈ E−(X(w), u),

where hβ ≥ 2, we determine that

Uα−δu ∈ E−(X(w), u),

by Lemma 4.13.1. Hence, since C−β̂ = Uα−hβδu and Uα−δu form either a pseudo

Type II or Type II pair of ˆ︁T -curves, Lemmas 5.3.2 and 5.4.1 once again yield

that u is a non-maximal singularity of X(w).

5.6 Maximal Singularities and E−(X(w), u)

In this section, we begin an analysis of the set E−(X(w), u), where a ˆ︁T -fixed
point u is a maximal singularity of X(w). In our efforts to characterize what

is contained in E−(X(w), u), we have considered what is not contained in

E−(X(w), u).

Theorem 5.6.1. Let X(w) be a singular Schubert variety in G/B. If the

point u ∈ X(w)
ˆ︁T is a maximal singularity of X(w), then E−(X(w), u) does

not contain a weak Type I, pseudo Type II, or Type II pair of ˆ︁T -curves.
Proof. This follows immediately from Lemma 5.5.1, Lemma 5.3.2, and Lemma

5.4.1.

Of the four types of ˆ︁T -curve pairs defined in Section 5.2, only strong Type I

pairs of ˆ︁T -curves remain as candidates to appear in the set E−(X(w), u) for

a maximal singularity u. We have determined that, for maximal singularities,

the presence of a strong Type I pair of ˆ︁T -curves in E−(X(w), u) impacts

what other ˆ︁T -curves may appear in E−(X(w), u), as specified in the following

lemma:

152



Lemma 5.6.2. Let X(w) be a singular Schubert variety in G/B and let the

point u ∈ X(w)
ˆ︁T be a maximal singularity of X(w). If E−(X(w), u) contains

a pair of strong Type I ˆ︁T -curves C−α̂ = U−α̂u and C−β̂ = U−β̂u, where α̂ =

α + hαδ and β̂ = −α + hβδ, for some α ∈ Φ+, then E−(X(w), u) does not

contain any ˆ︁T -curves, other than C−α̂ and C−β̂, of the form U−γ̂u, where

γ̂ = ±α + hγδ ∈ ˆ︁Φ+.

Proof. Suppose that E−(X(w), u) contains a ˆ︁T -curve C−γ̂ = U−γ̂u, where

γ̂ = ±α + hγδ ∈ ˆ︁Φ+, but γ̂ ̸= α̂, β̂.

Since C−α̂ and C−β̂ are a pair of strong Type I ˆ︁T -curves, there are two possi-

bilities for α̂ and β̂: α̂ = α and β̂ = −α + kδ, for some k ≥ 2, or α̂ = α + kδ

and β̂ = −α + δ, where k ≥ 1.

First, assume that α̂ = α and β̂ = −α + kδ, where k ≥ 2.

If γ̂ = α+ hγδ, then hγ ≥ 1, since γ̂ ̸= α̂. As such, β̂ and γ̂ form a weak Type

I pair of roots and hence E−(X(w), u) contains the weak Type I pair of ˆ︁T -
curves C−β̂ and C−γ̂. However, since u is a maximal singularity, Theorem 5.6.1

stipulates that E−(X(w), u) cannot contain a pair of weak Type I ˆ︁T -curves,
and hence we obtain a contradiction.

Thus γ̂ = −α + hγδ, where hγ ≥ 1, but hγ ̸= k, since γ̂ ̸= β̂. Accordingly,

β̂ and γ̂ form either a pseudo Type II or a Type II pair of roots and hence

E−(X(w), u) contains the pseudo Type II or Type II pair C−β̂ and C−γ̂. This

again leads to a contradiction, since the presence of a pair of pseudo Type II

or Type II ˆ︁T -curves in E−(X(w), u) is impossible, by Theorem 5.6.1.

Now instead suppose that α̂ = α + kδ and β̂ = −α + δ, where k ≥ 1.

Since γ̂ ̸= α̂, if γ̂ = α + hγδ, then hγ ≥ 0 and hγ ̸= k. As a result, α̂ and

γ̂ form either a pseudo Type II or a Type II pair of roots, which means that

C−α̂ and C−γ̂ are a pair of pseudo Type II or Type II ˆ︁T -curves contained

in E−(X(w), u). Once again, we have a contradictions, since E−(X(w), u)

cannot contain a pair of weak Type I ˆ︁T -curves, due to Theorem 5.6.1.

Therefore, γ̂ = −α + hγδ, where hγ ≥ 2, since γ̂ ̸= β̂. That being so, α̂ and

γ̂ form a weak Type I pair of roots and, as a consequence, the weak Type

I pair of ˆ︁T -curves C−α̂ and C−γ̂ appear in E−(X(w), u). However, this is a
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contradiction since Theorem 5.6.1 specifies that E−(X(w), u) does not contain

such a pair of ˆ︁T -curves.
In the following theorem, we prove that for each a α ∈ Φ+, the set E−(X(w), u)

contains at most two ˆ︁T -curves whose tangent spaces at a ˆ︁T -fixed point u have

weights with real part ±α. Furthermore, if two such ˆ︁T are present, then they

form either a strong Type I pair or the weights of tangent spaces at u are −α
and α− δ.

Theorem 5.6.3. Let X(w) be a singular Schubert variety in G/B and let the

point u ∈ X(w)
ˆ︁T be a maximal singularity of X(w). Then for each α ∈ Φ+,

the set E−(X(w), u) contains at most two ˆ︁T -curves of the form U−α̂u, where

α̂ = ±α+ hαδ ∈ ˆ︁Φ+. Furthermore, if E−(X(w), u) does contain two ˆ︁T -curves
U−α̂u and U−β̂u, where α̂ = ±α + hαδ and β̂ = ±α + hβδ are positive roots,

for some α ∈ Φ+, then one of the following holds:

1) α̂ = α and β̂ = −α + kδ, where k ≥ 1

2) α̂ = α + kδ and β̂ = −α + δ, where k ≥ 0

Proof. Let α ∈ Φ+ and suppose that C−α̂ := U−α̂u, C−β̂ := U−β̂u, C−γ̂ := U−γ̂u

are distinct ˆ︁T -curves in E−(X(w), u) such that α̂, β̂, γ̂ ∈ ˆ︁Φ+ are distinct roots

with

Re(α̂),Re(β̂),Re(γ̂) ∈ {±α}.

We will first consider the case in which all three roots have real part α. To that

end, let α̂ = α+ hαδ, β̂ = α+ hβδ, and γ̂ = α+ hγδ, where hα, hβ, hγ ≥ 0 are

three distinct integers. Without loss of generality, assume 0 ≤ hα < hβ < hγ.

Thus, hγ − hα ≥ 2 and hence α̂ and γ̂ form a Type II pair. Therefore,

E−(X(w), u) contains the Type II pair of ˆ︁T -curves C−α̂ and C−γ̂, which is

contradiction, since, by Theorem 5.6.1, the set E−(X(w), u), for a maximal

singularity u, does not contain a Type II pair of ˆ︁T -curves. Using an identical

argument, we also obtain a contradiction in the case in which α̂ = −α + hαδ,

β̂ = −α + hβδ, and γ̂ = −α + hγδ, where hα, hβ, hγ ≥ 0 are three distinct

integers.

We will now consider the case in which two of the roots have real part α

and the other has real part −α. Accordingly, suppose that α̂ = α + hαδ,
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β̂ = α + hβδ, and γ̂ = −α + hγδ, where hα, hβ ≥ 0 are distinct integers and

hγ ≥ 1 is an integer. Without loss of generality, assume that 0 ≤ hα < hβ

and hence hβ ≥ 1. Therefore hβ + hγ ≥ 2 and thus C−β̂ and C−γ̂ form a

Type I pair of ˆ︁T -curves. If they form a weak Type I pair, then we obtain

a contradiction with Theorem 5.6.1, which states that E−(X(w), u) does not

contain a weak Type I pair of ˆ︁T -curves. If they form a strong Type I pair, then

a contradiction stems from Lemma 5.6.2, which indicates that E−(X(w), u)

cannot contain C−α̂ as well as the strong Type I pair C−β̂ and C−γ̂.

The case in which two of the roots have real part −α and the other has real

part α is very similar to the previous case. If α̂ = −α + hαδ, β̂ = −α + hβδ,

and γ̂ = α + hγδ, where 1 ≤ hα < hβ are distinct integers and hγ ≥ 0 is

an integer, then C−β̂ and C−γ̂ still form a Type I pair, since hβ ≥ 2 and so

hβ + hγ ≥ 2. A contradiction now ensues, as above.

Therefore, E−(X(w), u) contains at most two ˆ︁T -curves U−α̂u and U−β̂u, where

α̂ = ±α + hαδ and β̂ = ±α + hβδ, for some α ∈ Φ+.

So now suppose that E−(X(w), u) does contain two such ˆ︁T -curves. Thus, α̂

and β̂ are either a weak Type I pair, a strong Type I pair, a pseudo Type II

pair, a Type II pair, or the pair α and −α + δ. However, since E−(X(w), u)

cannot contain a weak Type I pair, a pseudo Type II pair, or a Type II pair

of ˆ︁T -curves, according to Theorem 5.6.1, α̂ and β̂ must form either a strong

Type I pair or be the pair α and −α + δ.

5.7 Strong Type I Pairs of Roots / ˆ︁T -Curves

In this section, we will show that the set E−(X(w), u), for a rationally smooth

Schubert variety X(w) and a maximal singularity u, contains a strong Type I

pair of ˆ︁T -curves. To do this, we first prove the following result:

Lemma 5.7.1. Let Σ be a ˆ︁T -surface in G/B, let u ∈ Σ
ˆ︁T , and let C and D be

the two ˆ︁T -curves in E(Σ, u). Let α̂ := α + hαδ and β̂ := β + hβδ be elements

of u
(︂ˆ︁Φ+

)︂
such that Tu(C) = ĝ−α̂ and Tu(D) = ĝ−β̂. If α̂, β̂ ∈ ˆ︁Φ+ and if Σ is

singular at u, then α̂ and β̂ form a Type I or Type II pair of roots.
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Proof. As indicated in Theorem 4.9.2, if β ̸= ±α, if β = α and |hβ − hα| = 1,

or if β = −α and hβ + hα = 1, then Σ is nonsingular at u. Thus, for Σ to

be singular at u, either we have |hβ − hα| ≥ 2 , when β = α, or we have

hα + hβ ≥ 2, when β = −α. In other words, if α̂, β̂ ∈ ˆ︁Φ+, then α̂ and β̂ form

a Type II or Type I pair of roots, respectively.

Theorem 5.7.2. Let X(w) be a singular rationally smooth Schubert variety

in G/B. If u ∈ X(w)
ˆ︁T is a maximal singularity, then E−(X(w), u) contains a

strong Type I pair of ˆ︁T -curves.
Proof. Since X(w) is nonsingular at w and in codimension 1, u must be in

codimension 2 or higher. Since X(w) is rationally smooth, we know from

Remark 4.6.2 that |E(X(w), u)| = dimX(w) and

|E−(X(w), u)| = dimX(w)− dimX(u) ≥ 2.

Let C ∈ E−(X(w), u). Then C = U−α̂u, for some real α̂ ∈ ˆ︁Φ+. Since u < sα̂u

and u is a maximal singularity of X(w), we know from Remark 4.7.4 that C

is good. Thus

dim τC
(︁
X(w), u

)︁
= dimX(w) = |E(X(w), u)| = dimTE

(︁
X(w), u

)︁
.

Since X(w) is singular at u and X(w) is Cohen-Macaulay, it follows from

Theorem 2.11.5 that

TE
(︁
X(w), u

)︁
̸= τC

(︁
X(w), u

)︁
and as a result

TE
(︁
X(w), u

)︁
̸⊆ τC

(︁
X(w), u

)︁
since they have the same dimension. By Lemma 4.8.5, for anyD ∈ E+(X(w), u),

Tu(D) ⊆ τC
(︁
X(w), u

)︁
and, as a consequence, there exists D ∈ E−(X(w), u) such that

Tu(D) ̸⊆ τC
(︁
X(w), u

)︁
.
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Let D = U−β̂u, where β̂ ∈ ˆ︁Φ+ is real. Again, as u is a maximal singularity

of X(w), Remark 4.7.4 indicates that the ˆ︁T -curve D is good. According to

Lemma 4.9.1, there exists a ˆ︁T -surface Σ ∈ Σ
(︁
X(w), u

)︁
which contains C and

D. If Σ is nonsingular at u, then, in conjunction with Lemma 2.12.1, we obtain

Tu(D) ⊆ Tu(Σ) = τC(Σ, u) ⊆ τC
(︁
X(w), u

)︁
Hence, as this contradicts the statement above, u is a singular point of Σ. It

now follows from Lemma 5.7.1, that α̂ and β̂ form a Type I or Type II pair

of roots. However, as C,D ∈ E−(X(w), u), Theorem 5.6.1 establishes that C

and D cannot be a weak Type I or a Type II pair. As a result, C and D must

form a strong Type I pair, as required.

Unfortunately, for a rationally smooth Schubert variety X(w), the presence of

a strong Type I pair in E−(X(w), u) is a necessary, but not sufficient condition

for a ˆ︁T -fixed point u to be a maximal singularity. In fact, the presence of a

strong Type I pair of ˆ︁T -curves in E−(X(w), u) does not even guarantee that

the point u is singular, as demonstrated in the following example:

Example 5.7.3. Consider the situation of Example 4.8.11:

e

α− 2δ

α− δ−α

y = [0, 3]

D

−α

−α + δ

α− 2δ

x = [−1, 4]

α− δ

α

α + δ

u = [2, 1]

C

α− δ

α

−α− δ

v = [3, 0]

α− 3δ

−α + δ

−α + 2δ

w = [−2, 5]

−α + δ−α + 3δ

−α + 2δ
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The set E−(X(w), u) contains the strong Type I pair of ˆ︁T -curves Uα−δu and

U−α−δu and yet, as shown in Example 4.8.11, X(w) is nonsingular at u.

5.8 Kite Properties

Based upon our work in previous section, it is clear that conditions in addition

to the presence of a strong Type I pair of ˆ︁T -curves in E−(X(w), u) are required

to locate maximal singularities of rationally smooth Schubert varieties. Some

of these conditions come in the form of the following two definitions.

Definition 5.8.1. Let α ∈ Φ+. A ˆ︁T -fixed point u in G/B is said to satisfy

the (−α)–kite property if

sα−δu < u < sαu < sα−δsαu

and

u < sα−kδu < sα−(k+1)δ(sα−kδu)

for some integer k ≥ 2. These conditions are referred to as the (−α)–kite
property through u. By Lemma 4.10.4, we have that

sα−δsαu = sα−(k+1)δ(sα−kδu)

and hence the Bruhat graph illustrating the (−α)–kite property through u

demonstrates a kite-shaped pattern:

uα− kδ −α

−α + δ

α− δα− (k + 1)δ
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If u ∈ X(w), then we say u satisfies the (−α)–kite property in X(w) if

sα−δu < u < sαu < sα−δsαu ≤ w

and

u < sα−kδu < sα−(k+1)δ(sα−kδu) ≤ w

for some integer k ≥ 2.

We note that if a point u satisfies the (−α)–kite property in X(w), then theˆ︁T -curves U−αu and Uα−kδu appear in E−(X(w), u). Hence, in this situation,

we are working a strong Type I pair of roots α̂, β̂ of the form α̂ = α and

β̂ = −α + kδ, where k ≥ 2.

Definition 5.8.2. Let α ∈ Φ+. A ˆ︁T -fixed point u in G/B is said to satisfy

the (α− δ)–kite property if

sαu < u < sα−δu < sαsα−δu

and

u < sα+kδu < sα+(k+1)δ(sα+kδu)

for some integer k ≥ 1.

These conditions are referred to as the (α− δ)–kite property through u. Since

sαsα−δu = sα+(k+1)δ(sα+kδu)

(see Lemma 4.10.4), the Bruhat graph showing the (α − δ)–kite property

through u forms a kite-shaped pattern:
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uα− δ −α− kδ

α

−α− (k + 1)δ−α

If u ∈ X(w), then we say u satisfies the (α− δ)–kite property in X(w) if

sαu < u < sα−δu < sαsα−δu ≤ w

and

u < sα+kδu < sα+(k+1)δ(sα+kδu) ≤ w

for some integer k ≥ 1.

It is worth noting that if a ˆ︁T -fixed point u satisfies the (α− δ)–kite property

in X(w), then the ˆ︁T -curves Uα−δu and Uα+kδu, where k ≥ 1, are contained

in E−(X(w), u) and thus, in this scenario, we are dealing with a strong Type

I pair α̂, β̂ in which α̂ = α + kδ and β̂ = −α + δ.

Remark 5.8.3. As is evident from these definitions, if u ∈ X(w)
ˆ︁T satisfies

one of the two kite properties in X(w), then it also satisfies one of the chain

properties. The (−α)–kite property through u incorporates the (−α)–chain
property:

sα−δu < u < sαu < sα−δsαu ≤ w

and the (α− δ)–kite property through u includes the (α− δ)–chain property:

sαu < u < sα−δu < sαsα−δu ≤ w.

As a consequence, we know from Lemma 5.1.3 that any u ∈ X(w) which fulfills
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the conditions of either kite property is a singular point of X(w). Hence we

have the following result:

Lemma 5.8.4. If u ∈ X(w)
ˆ︁T which satisfies either the (−α)–kite property in

X(w) or (α−δ)– kite property in X(w), for some α ∈ Φ+, then u is a singular

point of X(w).

5.9 Kite Properties at Maximal Singularities

In this section, we will prove that every maximal singularity of a singular ra-

tionally smooth Schubert variety X(w) satisfies either the (−α)–kite property
in X(w) or (α− δ)– kite property in X(w), for some α ∈ Φ+. To that end, we

start with the following lemma.

Lemma 5.9.1. Let X(w) be a singular rationally smooth Schubert variety

in G/B and let u ∈ X(w)
ˆ︁T . Suppose that u is a maximal singularity such

that E−(X(w), u) contains a pair of strong Type I ˆ︁T -curves C−α̂ and C−β̂.

Then, in addition to −α̂, the Peterson translate τC−α̂

(︁
X(w), u

)︁
has a weight

−γ̂ = −α̂−lδ, −lδ, or −β̂−lδ, for some integer l ≥ 1, but does not have −β̂ as

a weight. Likewise, in addition to −β̂, the Peterson translate τC−β̂

(︁
X(w), u

)︁
has a weight −γ̂ = −α̂− lδ, −lδ, or −β̂ − lδ, for some integer l ≥ 1, but does

not have −α̂ as a weight.

Proof. Since C−α̂ and C−β̂ form a strong Type I pair of ˆ︁T -curves, we have

α̂ = α + hαδ and β̂ = −α + hβδ are elements of ˆ︁Φ+ where α ∈ Φ+ and

hβ + hα ≥ 2 such that either hα = 0 or hβ = 1, exclusively. To simplify

notation, let C = C−α̂ and D = C−β̂. Since u is a maximal singularity, both

C and D are good according to Remark 4.7.4. In particular, this means that

dim τC
(︁
X(w), u

)︁
= dimX(w).

Furthermore, as X(w) is rationally smooth,

dimX(w) = |E(X(w), u)| = dimTE
(︁
X(w), u

)︁
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and hence we have established that

dim τC
(︁
X(w), u

)︁
= dimTE

(︁
X(w), u

)︁
.

However, it follows from Theorem 2.11.5 that

TE
(︁
X(w), u

)︁
̸= τC

(︁
X(w), u

)︁
,

which in turn indicates that

TE
(︁
X(w), u

)︁
̸⊆ τC

(︁
X(w), u

)︁
for dimension reasons. Therefore, there exists ˜︁C ∈ E(X(w), u) such that

Tu( ˜︁C) ̸⊆ τC
(︁
X(w), u

)︁
Clearly, ˜︁C ̸= C. Moreover, from Lemma 4.8.5 we determine that ˆ︁C ∈
E−(X(w), u). Let −ν̂ ∈ ˆ︁Φ− be the weight of Tu( ˜︁C). According to Lemma

4.9.4, if ν̂ = ν+hνδ, where ν ̸= ±α, then −ν̂ is a weight of τC
(︁
X(w), u

)︁
. As a

result, ν̂ must have the form ν̂ = ±α+ hνδ. It now follows from Lemma 5.6.2

that ˜︁C = D and hence −β̂ is not a weight of τC
(︁
X(w), u

)︁
, required.

Also, we know from Lemma 4.9.1 that there exists a ˆ︁T -surface Σ ∈ Σ
(︁
X(w), u

)︁
containing C and D. We will now focus our attention on the weights of

τC(Σ, u). First of all, by construction,

τC(Σ, u) ⊆ Tu(Σ)

so that, in particular, any weight of τC(Σ, u) is also a weight Tu(Σ). Secondly,

Lemma 2.12.1 gives us that

τC(Σ, u) ⊆ τC
(︁
X(w), u

)︁
.

This not only tells us that −β̂ is not a weight of τC(Σ, u), but also that Σ

must be singular at u, since otherwise

Tu(D) ⊆ Tu(Σ) = τC(Σ, u) ⊆ τC
(︁
X(w), u

)︁
.
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An immediate result is that dimTu(Σ) ≥ 3. Thirdly, since

dim τC(Σ, u) ≥ dimΣ = 2

we know that τC(Σ, u) has at least one weight (not equal to −β̂) in addition

to −α̂. As this weight is also a weight of Tu(Σ), we learn from Lemma 4.9.3

that it is a negative weight , say −γ̂, which is equal to

−α̂− lδ, −lδ, or − β̂ − lδ,

for some integer l ≥ 1. Finally, as −γ̂ is a weight of τC(Σ, u), it is also a weight

of τC−α̂

(︁
X(w), u

)︁
, as required. This completes the proof of the first claim in

the statement of this lemma.

Furthermore, by relabeling C = C−β̂ and D = C−α̂ and then repeating the

above argument, we also obtain that τC−β̂

(︁
X(w), u

)︁
does not have −α̂ as a

weight, but does have a weight −γ̂ = α̂ + lδ, lδ, or β̂ + lδ, for some integer

l ≥ 1, which is not equal to −β̂.

In the following two lemmas, we will prove that, for a maximal singularity u, if

E−(X(w), u) contains a strong Type I pair of ˆ︁T -curves, then u satisfies at least

one of the two kite properties in X(w). Note, however, that this is true for

any singular Schubert variety X(w). The condition that X(w) be rationally

smooth is not required.

Lemma 5.9.2. Let X(w) be a singular Schubert variety in G/B. Suppose that

u ∈ X(w)
ˆ︁T is a maximal singularity such that E−(X(w), u) contains a pair

of strong Type I ˆ︁T -curves C−α̂ and C−β̂ for which α̂ = α and β̂ = −α + kδ,

where k ≥ 2. Then u satisfies the (−α)–kite property in X(w).

Proof. Let v = sα̂u = sαu, let y = sβ̂u = sα−kδu, and let x = sα−δsαu. We

first note that u < v ≤ w and u < y ≤ w, since C−α̂, C−β̂ ∈ E−(X(w), u).

Furthermore, since u is a maximal singularity of X(w), we know that v and y

are nonsingular points of X(w) and hence C−α̂ and C−β̂ are good by Remark

4.7.4. We also note that, since

sα−δsα = sα−(k+1)δsα−kδ,
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by Lemma 4.10.4, we can alternatively describe

x = sα−(k+1)δ(sα−kδu).

Additionally, we have that sα−δu < u. Suppose not, then u < sα−δu and

since C−β̂ = Cα−kδ = Uα−kδu ∈ E−(X(w), u), according to Lemma 4.13.1, theˆ︁T -curve Cα−δ = Uα−δu is also an element of E−(X(w), u). However, we know

from Lemma 5.6.2 that is impossible, since E−(X(w), u) contains the strong

Type I pair of ˆ︁T -curves C−α̂ = U−αu and C−β̂ = Uα−kδu. Thus

sα−δu < u.

Furthermore, since u < v = sαu, Lemma 4.11.1 yields that

u < sαu < sα−δsαu

Finally, we claim that

y = sα−kδu < sα−(k+1)δ(sα−kδu) = x.

Assume not, then y > x = sα−(k+1)δy and hence by Lemma 4.8.12, −α+(k+1)δ

is a weight of τC−β̂

(︁
X(w), y

)︁
. As such, Lemma 4.8.10 guarantees that at least

one member of the (−α + kδ)-string through −α + (k + 1)δ, i.e.

−α + (k + 1)δ δ α− (k − 1)δ,

is a weight of τC−β̂

(︁
X(w), u

)︁
and hence a weight of Tu

(︁
X(w)

)︁
.

If −α+(k+1)δ appears as a weight of Tu
(︁
X(w)

)︁
, then Lemma 4.8.12 tells us

that u > sα−(k+1)δu. However, since u < y = sα−kδu, we know from Lemma

4.12.3 that u < sα−(k+1)δu. Thus, −α+ (k + 1)δ is not a weight of Tu
(︁
X(w)

)︁
.

We also know by Remark 4.4.1 that δ is not a weight of Tu
(︁
X(w)

)︁
.

Furthermore, if α − (k − 1)δ is a weight of Tu
(︁
X(w)

)︁
, then Lemma 4.3.3

indicates that u < sα−(k−1)δu. From this and the fact that C−β̂ = Uα−kδu is
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in E−(X(w), u), it would follow from Lemma 4.13.1 that Uα−(k−1)δu is also in

E−(X(w), u). As this is impossible by Lemma 5.6.2, we know α− (k − 1)δ is

not a weight of Tu
(︁
X(w)

)︁
.

Thus, since none of the members of the (−α+kδ)-string through −α+(k+1)δ

are weights of Tu
(︁
X(w)

)︁
, we have obtained a contradiction and conclude that

y < x,

as claimed.

In summary, we have determined that

sα−δu < u < sαu < sα−δsαu = x

and

u < sα−kδu < sα−(k+1)δ(sα−kδu) = x

from which, in G/B, we construct the Bruhat graph:

x

y v

u

α− kδ −α

−α + δ

α− δα− (k + 1)δ

Thus u satisfies the (−α)–kite property in G/B, however, we still require that
u satisfies this property in X(w). For this, it suffices to show that x ≤ w.

Let C = C−α̂. To show that x ≤ w, we will use the fact, presented in Lemma

165



5.9.1, that Ω
(︂
τC

(︁
X(w), u

)︁)︂
contains a negative weight −γ̂ =

−α̂− lδ, −lδ, or − β̂ − lδ,

for some integer l ≥ 1, which is not equal to −α̂ or −β̂. Also, for −γ̂ to be

a weight of τC
(︁
X(w), u

)︁
it must first be a weight of Tu

(︁
G/B

)︁
and, as such, in

the event that −γ̂ is real, u < sγ̂u, by Lemma 4.3.3.

Given that α̂ = α and β̂ = −α+ kδ, where k ≥ 2, in this context −γ̂ becomes

one of:

−α− lδ − lδ α− (k + l)δ

from some integer l ≥ 1. We will examine what happens when −γ̂ assumes

each of these three values.

If −γ̂ = −α− lδ, then by Lemma 4.8.7,

α̂ + (−γ̂) = α + (−α− lδ) = −lδ

is also in Ω
(︂
τC

(︁
X(w), u

)︁)︂
. Thus, by Lemma 4.8.10, Ω

(︂
τC

(︁
X(w), v

)︁)︂
must

contain at least two members of the α-string through −α− lδ:

α− lδ − lδ − α− lδ

which are then weights of Tv
(︁
X(w)

)︁
. In light of Lemma 4.7.5, we can eliminate

−lδ, since X(w) is nonsingular at v. This means that α− lδ and −α− lδ are

both weights of Tv
(︁
X(w)

)︁
. In particular, as α − lδ is a weight of Tv

(︁
X(w)

)︁
and X(w) is nonsingular at v, Lemma 4.8.13 gives us that v < sα−lδv ≤ w.

It now follows that x = sα−δv ≤ w, either directly if l = 1 or from Lemma

4.12.2, if l > 1.

Secondly, suppose that −γ̂ = −lδ.

If u−1(α− lδ) < 0, then by Lemma 4.8.7,

α̂ + (−γ̂) = α + (−lδ) = α− lδ
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is a weight of τC
(︁
X(w), u

)︁
. Therefore, for this case we know that −lδ and

α− lδ are weights of τC
(︁
X(w), u

)︁
.

If u−1(α− lδ) > 0, then u−1(−α+ lδ) < 0, which means that the positive root

−α+ lδ is a weight of τC
(︁
X(w), u

)︁
, by Lemma 4.8.12. Thus, for this case, we

have that −lδ and −α + lδ are weights of τC
(︁
X(w), u

)︁
.

Note that, since we have already determined that sα−δu < u above, Lemma

4.8.12 yields that u−1(−α + δ) < 0. Thus, if l = 1, then we are dealing with

the latter of these two options.

If −lδ and α− lδ are weights of τC
(︁
X(w), u

)︁
(so l > 1), then by Lemma 4.8.10,

the set Ω
(︂
τC

(︁
X(w), v

)︁)︂
contains at least two of the members of the α-string

through −lδ:
α− lδ − lδ − α− lδ

Once again, as weights of τC
(︁
X(w), v

)︁
, they are also weights of Tv

(︁
X(w)

)︁
. The

two member must be α− lδ and −α− lδ, since, by Lemma 4.7.5, the tangent

space of X(w) at a nonsingular point does not have any negative imaginary

weights. Specifically, we have that α− lδ is a weight of Tv
(︁
X(w)

)︁
and hence,

using the same argument (for l > 1) as presented in the previous case, we

determine that x = sα−δv ≤ w.

If instead −lδ and −α + lδ are weights of τC
(︁
X(w), u

)︁
, then we know from

Lemma 4.8.10 that Ω
(︂
τC

(︁
X(w), v

)︁)︂
, and hence Ω

(︂
Tv
(︁
X(w)

)︁)︂
, contains at

least one of the elements in the α-string through −lδ:

α− lδ − lδ − α− lδ

and at least one of the elements in the α-string through −α + lδ:

−α + lδ lδ α + lδ

Using Lemma 4.7.5 and Remark 4.4.1, we can exclude −lδ and lδ as possibil-

ities from their respective strings.
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Since u < sαu = v, we also have sαv < v and therefore by Lemma 4.8.12,

v−1(α) < 0

Thus

v−1(−α) > 0.

and hence

v−1(−α + lδ) = v−1(−α) + lδ > 0.

Lemma 4.8.12 now indicates that −α+ lδ is not a weight of Tv
(︁
X(w)

)︁
which

leaves α+ lδ as the member of the α-string through −α+ lδ which appears as

a weight of Tv
(︁
X(w)

)︁
. Therefore, by Lemma 4.8.12

v−1(α + lδ) < 0

so that

v−1(−α− lδ) > 0.

As such, Lemma 4.8.12 indicates that −α − lδ is not a weight of Tv
(︁
X(w)

)︁
.

This elimination means that α − lδ has to be the member of the α-string

through −lδ contained in Ω
(︂
Tv
(︁
X(w)

)︁)︂
. Therefore, as above, we deduce that

x = sα−δv ≤ w.

Finally, we consider the third case in which −γ̂ = α − (k + l)δ. According to

Lemma 4.8.10, at least one of the members of the α-string through α−(k+ l)δ

is a weight of τC
(︁
X(w), v

)︁
and so also of Tv

(︁
X(w)

)︁
:

α− (k + l)δ − (k + l)δ − α− (k + l)δ

We remove −(k + l)δ from this list using the now familiar argument that

Tv
(︁
X(w)

)︁
has no negative imaginary weights (Lemma 4.7.5).

We claim that −α − (k + l)δ is also not weight of Tv
(︁
X(w)

)︁
. To prove this,

we suppose that −α− (k + l)δ is weight of Tv
(︁
X(w)

)︁
.
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A Bruhat graph representing our argument is:

z = sα(sγ̂u)

uα− kδ

−α

−α + δ

−α− (k + l)δ

v

w

sγ̂u

−α

−γ̂ = α− (k + l)δ

We construct this Bruhat graph as follows: since X(w) is nonsingular at v,

from Lemma 4.8.13 we that determine that

v < sα+(k+l)δv ≤ w.

Let z = sα+(k+l)δv and hence we have v ≤ z ≤ w. By Remark 4.10.3, we know

that

sγ̂u = sα−(k+l)δu = (sα−δsα)
k+l−1sα−δu

Remark 4.10.3 also gives us that

z = sα+(k+l)δv = (sαsα−δ)
k+lsαv = (sαsα−δ)

k+lsα(sαu) = (sαsα−δ)
k+lu

and therefore,

z = (sαsα−δ)
k+lu = sαsα−δ(sαsα−δ)

k+l−1u = sα(sα−δsα)
k+l−1sα−δu = sα(sγ̂u).
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Furthermore, since u < sγ̂u = sα−(k+l)δu, where k + l ≥ 3, it follows from

Lemma 4.12.4 that

sγ̂u = sα−(k+l)δu < sα
(︁
sα−(k+l)δu

)︁
= sα

(︁
sγ̂u

)︁
= z

Thus, since z ≤ w, we have that

u < sγ̂u < w.

As a result, U−γ̂u = Uα−(k+l)δu is a ˆ︁T -curve in E−(X(w), u), which contradicts

the fact that E−(X(w), u) does not contain any ˆ︁T -curves of this form, other

than C−α̂ and C−β̂, by Lemma 5.6.2. Thus, −α − (k + l)δ is also not weight

of Tv
(︁
X(w)

)︁
.

Therefore, α−(k+ l)δ is the member of the α-string through α−(k+ l)δ which

is present in Ω
(︂
Tv
(︁
X(w)

)︁)︂
. As such, we obtain from Lemma 4.8.13 that

v < sα−(k+l)δv ≤ w,

where k+ l ≥ 3. Lemma 4.12.2 now yields that sα−δv < sα−(k+l)δv and hence,

for the last time, we deduce that x = sα−δv < w.

Remark 5.9.3. In order to show that x ≤ w in the proof of Lemma 5.9.2,

we used the fact that Ω
(︂
τC

(︁
X(w), u

)︁)︂
contains a weight −γ̂ as described

in Lemma 5.9.1, where C = C−α̂. However, we could have used C = C−β̂

instead. The proof using C = C−β̂ is very similar to the proof provided for

Lemma 5.9.4.

Lemma 5.9.4. Let X(w) be a singular Schubert variety in G/B. Suppose that

u ∈ X(w)
ˆ︁T is a maximal singularity such that E−(X(w), u) contains a pair of

strong Type I ˆ︁T -curves C−α̂ and C−β̂ for which α̂ = α + kδ and β̂ = −α + δ,

where k ≥ 1. Then u satisfies the (α− δ)–kite property in X(w).

Proof. Let v = sα̂u = sα+kδu, let y = sβ̂u = sα−δu, and let x = sαsα−δu

(= sα+(k+1)δsα+kδu, by Lemma 4.10.4). As C−α̂, C−β̂ ∈ E−(X(w), u), we know
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that

u < v ≤ w and u < y ≤ w.

Also, since u is a maximal singularity of X(w), both v and y are nonsingular

points of X(w), which implies that C−α̂ and C−β̂ are good by Remark 4.7.4.

As well, if u < sαu, then Lemma 4.13.1 would indicate that C−α = U−αu is an

element of E−(X(w), u), since C−α̂ = U−α−kδu ∈ E−(X(w), u), where k ≥ 1.

As this would contradict Lemma 5.6.2, it must be the case that

sαu < u.

In addition, since u < y = sα−δu, we determine from Lemma 4.11.1 that

u < sα−δu < sαsα−δu.

Finally, we claim that

v = sα+kδu < sα+(k+1)δ(sα+kδu) = x.

To prove the claim, we assume that v > x = sα+(k+1)δv. Hence, from Lemma

4.8.12, we know that α+(k+1)δ is a weight of τC−α̂

(︁
X(w), v

)︁
. Consequently,

Lemma 4.8.10 implies that Ω
(︂
τC−α̂

(︁
X(w), u

)︁)︂
, and hence Ω

(︂
Tu

(︁
X(w)

)︁)︂
, con-

tains at least one member of the (α + kδ)-string through α + (k + 1)δ:

α + (k + 1)δ δ − α− (k − 1)δ,

However, none of these options are weights of Tu
(︁
X(w)

)︁
. Indeed, if α+(k+1)δ

is a weight of Tu
(︁
X(w)

)︁
, then Lemma 4.8.12 stipulates that u > sα+(k+1)δu. On

the contrary, as u < v = sα+kδu, Lemma 4.12.3 gives us that u < sα+(k+1)δu.

Hence, α + (k + 1)δ is not a weight of Tu
(︁
X(w)

)︁
.

Remark 4.4.1 indicates that δ is not a weight of Tu
(︁
X(w)

)︁
.

Finally, if −α − (k − 1)δ is a weight of Tu
(︁
X(w)

)︁
, then Lemma 4.3.3 would

yield that u < s−α−(k−1)δu. As a result, since C−α̂ = U−α−kδu ∈ E−(X(w), u),
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Lemma 4.13.1 specifies that U−α−(k−1)δu is also a ˆ︁T -curve in E−(X(w), u).

However, according to Lemma 5.6.2 this cannot occur, since the strong Type I

pair C−α̂ and C−β̂ are already present in E−(X(w), u). Therefore, −α−(k−1)δ

is not a weight of Tu
(︁
X(w)

)︁
.

Hence, since none of these three possibilities are weights of Tu
(︁
X(w)

)︁
, we have

obtained a contradiction.

Therefore, as claimed, we have

v < x.

In summary, we have deduced that

sαu < u < y = sα−δu < sαsα−δu = x

and

u < v = sα+kδu < sα+(k+1)δ(sα+kδu) = x

from which, in G/B, we construct the Bruhat graph:

x

y v

u

α− δ −α− kδ

α

−α− (k + 1)δ−α

Thus u satisfies the (α−δ)–kite property in G/B. To show that u satisfies this

property in X(w), we will show that x ≤ w.
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To that end, suppose that −γ̂ is the weight of τC
(︁
X(w), u

)︁
, for C := C−α̂,

specified by Lemma 5.9.1. As such, −γ̂ and has three possible forms:

−α− (k + l)δ − lδ α− (l + 1)δ,

where l ≥ 1 is an integer.

We will first consider the case in which −γ̂ = −α − (k + l)δ. Using Lemma

4.8.7, we obtain that

α̂ + (−γ̂) = α + kδ + (−α− (k + l)δ) = −lδ ∈ Ω
(︂
τC

(︁
X(w), u

)︁)︂
.

As such, Lemma 4.8.10 establishes that Ω
(︂
τC

(︁
X(w), v

)︁)︂
, and subsequently

Ω
(︂
Tv
(︁
X(w)

)︁)︂
, contains at least two members of the (α + kδ)-string through

−α− (k + l)δ:

−α− (k + l)δ − lδ α + (k − l)δ

Lemma 4.7.5 allows us to eliminate −lδ as a possibility and therefore the two

aforementioned weights are −α− (k + l)δ and α+ (k − l)δ. As −α− (k + l)δ

is a weight of Tv
(︁
X(w)

)︁
and X(w) is nonsingular at v, Lemma 4.8.13 tells us

that

v < sα+(k+l)δv ≤ w.

If l = 1, then we have already obtained that x = sα+(k+1)δv ≤ w. If l > 1, then

we use the fact that k+l > k+1 ≥ 2 to determine that sα+(k+1)δv < sα+(k+l)δv,

by Lemma 4.12.2. Thus, x = sα+(k+1)δv < w.

We will now consider the case in which −γ̂ = −lδ. For this, we will take into

account the values of l and k. We first note that l ̸= k+1, since otherwise, by

Lemma 4.8.7,

α̂ + (−γ̂) = α + kδ − (k + 1)δ = α− δ = −β̂

would be a weight of τC
(︁
X(w), u

)︁
, which is impossible by Lemma 5.9.1.
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Now, assume l ≥ k, but l ̸= k + 1. Thus k − l ≤ 0. Also, since sαu < u, we

know from Lemma 4.8.12, that

u−1(α) < 0

and so

u−1(α + (k − l)δ) = u−1(α) + (k − l)δ < 0.

Therefore, by Lemma 4.8.7, we know that

α̂ + (−γ̂) = α + kδ − lδ = α + (k − l)δ

is also a weight of τC
(︁
X(w), u

)︁
. Hence Lemma 4.8.10 yields that the set

Ω
(︂
τC

(︁
X(w), v

)︁)︂
contains at least two of the members of the (α + kδ)-string

through −lδ:

α + (k − l)δ − lδ − α− (k + l)δ

At this point, we may proceed exactly as we did in when −γ̂ = −α− (k + l)δ

to once again determine that x = sα+(k+1)δv ≤ w.

Now assume that l < k, so that k − l > 0. If it is still true that

u−1(α + (k − l)δ) < 0,

then, as in the previous case, we ascertain that x = sα+(k+1)δv ≤ w. Otherwise,

u−1(−α− (k − l)δ) < 0,

which indicates that the negative root −α − (k − l)δ is a weight of Tu
(︁
G/B

)︁
for which u < s−α−(k−l)δu, by Lemma 4.3.3. Moreover, as C−α̂ = U−α−kδu is in

E−(X(w), u) and 1 ≤ k − l < k, Lemma 4.13.1 establishes that U−α−(k−l)δu is

also in E−(X(w), u). However, this leads to a contradiction, since by Lemma

5.6.2, E−(X(w), u) does not contain any ˆ︁T -curves other than C−α̂ and C−β̂ of

this form.
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Finally, suppose that −γ̂ = α − (l + 1)δ. According to Lemma 4.8.10, the

set Ω
(︂
τC

(︁
X(w), v

)︁)︂
must contain at least one member of the (α+ kδ)-string

through α− (l + 1)δ:

α− (l + 1)δ − (k + l + 1)δ − α− (2k + l + 1)δ

which in turn is an element of Ω
(︂
Tv
(︁
X(w)

)︁)︂
. The negative imaginary weight

−(k+ l+1)δ is removed from this list, by Lemma 4.7.5, as X(w) is nonsingular

at v.

If α − (l + 1)δ is the member that appears as a weight of Tv
(︁
X(w)

)︁
, then

Lemma 4.8.13 guarantees that Uα−(l+1)δv is in E−(X(w), v). Further, since

u < sα+kδu = v, Lemma 4.12.4 gives us that

v = sα+kδu < sα−δ(sα+kδu) = sα−δv.

Therefore, by Lemma 4.13.1, we deduce that Uα−δv is in E−(X(w), v). Con-

sequently, E−(X(w), v) contains Uα−(l+1)δv and Uα−δv, which form either a

pseudo Type II or a Type II pair of ˆ︁T -curves. Either way, Lemmas 5.3.2 and

5.4.1 specify that v is a singular point of X(w). As this contradicts the fact

that X(w) is nonsingular at v, we conclude that α − (l + 1)δ is not a weight

of Tv
(︁
X(w)

)︁
.

For this reason, the member of the (α + kδ)-string through α − (l + 1)δ in

Ω
(︂
Tv
(︁
X(w)

)︁)︂
must be −α − (2k + l + 1)δ. We now use Lemma 4.8.13 to

obtain that

v < sα+(2k+l+1)δv ≤ w,

where 2k + l + 1 ≥ 4. Furthermore, since 2k + l + 1 > k + 1 ≥ 2, Lemma

4.12.2 establishes that sα+(k+1)δv < sα+(2k+l+1)δv. Thus, x = sα+(k+1)δv < w,

as required.

With these two lemmas in hand, we are now in a position to prove the main

result of this chapter:
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Theorem 5.9.5. Let X(w) be a singular rationally smooth Schubert variety

in G/B. If u ∈ X(w)
ˆ︁T is a maximal singularity, then u satisfies either the

(−α)–kite property in X(w) or the (α − δ)–kite property in X(w), for some

α ∈ Φ+.

Proof. From Theorem 5.7.2, we know that E−(X(w), u) contains a strong

Type I pair of ˆ︁T -curves, C−α̂ and C−β̂. As α̂ and β̂ form a strong Type I pair

of roots, we have either α̂ = α and β̂ = −α+kδ, for some k ≥ 2, or α̂ = α+kδ

and β̂ = −α + δ, where k ≥ 1. If α̂ = α and β̂ = −α + kδ, for some k ≥ 2,

then by Lemma 5.9.2, u satisfies the (−α)–kite property in X(w). Otherwise,

α̂ = α + kδ and β̂ = −α + δ, where k ≥ 1 and it follows from Lemma 5.9.4

that u satisfies the (α− δ)–kite property in X(w).

Remark 5.9.6. As indicated in Remark 5.8.3, if u ∈ X(w) satisfies one of

the kite properties in X(w), it also satisfies the corresponding chain property.

The specific version of each property that appears (either (−α) or (α− δ) ) is

determined by which version of a strong Type I pair of ˆ︁T -curves is contained
in E−(X(w), u): if C−α and Cα−kδ are present in E

−(X(w), u), then u satisfies

the (−α)–kite property and (−α)–chain property. If C−α−kδ and Cα−δ occur

in E−(X(w), u), then u satisfies the (α − δ)–kite property and (α − δ)–chain

property. Thus, as a consequence of Theorem 5.9.5, if u ∈ X(w)
ˆ︁T is a maximal

singularity, then u satisfies either the (−α)–chain property or the (α−δ)–chain
property, for some α ∈ Φ+.

Remark 5.9.7. We think that it is highly likely that the ideas of Dale Peterson

presented in his proof of his ADE-Theorem (see [15]) can be used to give a

more geometric and shorter proof of Lemmas 5.9.2 and 5.9.4, and Theorem

5.9.5 than what we have provided in this thesis.

5.10 An Additional Condition for Maximality

In previous sections, we have only considered elements of E−(X(w), u) whose

tangent spaces at u have weights with the same real parts, up to sign. We

know from Theorem 5.6.3 that, for a maximal singularity u, there can be
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at most two such ˆ︁T -curves in E−(X(w), u) for each α ∈ Φ+. For a singu-

lar rationally smooth Schubert variety X(w), we know from Theorem 5.7.2

that E−(X(w), u) contains a strong Type I pair of ˆ︁T -curves. We have deter-

mined that this pair of ˆ︁T -curves limits which other ˆ︁T -curves may appear in

E−(X(w), u), based upon the real part of the weights of their tangent spaces

at u.

Lemma 5.10.1. Let X(w) be a singular rationally smooth Schubert variety in

G/B, let u ∈ X(w)
ˆ︁T be a maximal singularity of X(w), and let C−α̂ := U−α̂u

and C−β̂ := U−β̂u be a strong Type I pair of ˆ︁T -curves in E−(X(w), u), where

Re(α̂) = α = (ij) ∈ Φ+. If U−γ̂u ∈ E−(X(w), u), where γ̂ = ±γ + hγδ is a

positive root such that γ = (lk) ∈ Φ+, then l = i, j or k = i, j.

Proof. Let α = (ij) ∈ Φ+ (with i < j) and assume that

D = U−γ̂u ∈ E−(X(w), u),

where γ̂ = ±γ + hγδ is a positive root such that γ = (lk) ∈ Φ+ (with l < k)

and {l, k} ∩ {i, j} = ∅. Let u′ = sγ̂u. Therefore, we know that

u < u′ ≤ w

and that X(w) is nonsingular at u′, since u is a maximal singularity of X(w).

We know from Remark 5.9.6 that u satisfies either the (−α)–chain property

in X(w) or the (α− δ)–chain property in X(w). For our initial case, suppose

that u satisfies the (−α)–chain property in X(w). Thus

sα−δu < u < sαu < sα−δsαu ≤ w.

Let v = sαu, let z = sα−δu, and let x = sα−δsαu (= sα−(k+1)δ(sα−kδu)). Using

this notation, the (−α)–chain property becomes:

z < u < v < x ≤ w

In addition, let C−α = U−αu in E
−(X(w), u), let C−α+δ = U−α+δu in E

+(X(w), u),

and let Cα−δ = Uα−δv in E−(︁X(w), v
)︁
.
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The Bruhat graph depicting this situation is:

C−α

u

w

x

u′

z

Cα−δ

v

−α
D

−γ̂

C−α+δ

−α + δ

α− δ

As u is a maximal singularity of X(w), the points v and x are nonsingular

points of X(w). As z < u, we know that z is a singular point of X(w), by

Lemma 4.7.3.

Since±γ ̸= ±α, we obtain from Lemma 4.9.4 that−γ̂ is a weight of τC−α

(︁
X(w), u

)︁
and, as such, we apply Lemma 4.8.10 to determine that τC−α

(︁
X(w), v

)︁
has at

least one weight which is an element of the α-string through −γ̂. However, as
{l, k}∩ {i, j} = ∅, we know that −γ+ cα is not a root for any c ∈ Z \ {0} and

hence −γ̂+cα is not a root for any c ∈ Z\{0}. Therefore, the α-string through
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−γ̂ consists solely of −γ̂, which implies that −γ̂ is a weight of τC−α

(︁
X(w), v

)︁
and hence

v < sγ̂v ≤ w,

by Lemma 4.8.13, since X(w) is nonsingular at v.

Repeating the above argument using τCα−δ

(︁
X(w), v

)︁
and the point x in place

of τC−α

(︁
X(w), u

)︁
and v, we determine that

x < sγ̂x ≤ w.

We can repeat most of the above argument for τC−α+δ

(︁
X(w), u

)︁
and the point

z, but, since z is a singular point of X(w), we can only go as far as to deduce

that −γ̂ is a weight of τC−α+δ

(︁
X(w), z

)︁
and hence of Tz

(︁
X(w)

)︁
. Although we

have yet to determine if sγ̂z is a point of X(w), we do know by Lemma 4.3.3

that

z < sγ̂z

in G/B, since −γ̂ is also a weight of Tz
(︁
G/B

)︁
.

Let v′ := sγ̂v, let x
′ := sγ̂x, and let z′ := sγ̂z. Summarizing our work above in

terms of these assignments, we have:

v < v′ ≤ w,

x < x′ ≤ w,

and
z < z′.

As an immediate consequence, we observe that X(w) is nonsingular at v′ and

x′, since u is a maximal singularity of X(w) and u < v < x.
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With the addition of these newly defined points our Bruhat graph including

the weight −γ̂ of Tz
(︁
X(w)

)︁
is:

w

u

x

u′

z

v

v′

x′

z′

−α
D

−γ̂

−α + δ

α− δ

−γ̂

−γ̂

−γ̂

Our goal now is to show that u′ also satisfies the (−α)–chain property in X(w)

(involving the points z′, u′, v′, and x′).

To that end, keeping in mind that α ̸= ±γ, we know from Lemma 4.9.4

that −α + δ and −α are weights of τD
(︁
X(w), u

)︁
and hence also weights of

τD
(︁
X(w), u′

)︁
, by Lemma 4.8.10, since −α+ cγ̂ and −α+ δ+ c′γ̂ are not roots
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for any c, c′ ∈ Z \ {0}. Lemma 4.8.12 now indicates that

sα−δu
′ < u′ ≤ w,

and, since X(w) is nonsingular at u′, we learn from Lemma 4.8.13 that

u′ < sαu
′ ≤ w.

Using the same method, we also obtain that

v′ < sα−δv
′ ≤ w.

Further, according to Remark 4.10.1, as {l, k} ∩ {i, j} = ∅, we have the fol-

lowing:

sγ̂sα−δsγ̂ = ssγ̂(α−δ) = sα−δ

sγ̂sαsγ̂ = ssγ̂(α) = sα

Therefore,

sα−δu
′ = sγ̂sα−δsγ̂u

′ = sγ̂sα−δu = sγ̂z = z′

sαu
′ = sγ̂sαsγ̂u

′ = sγ̂sαu = sγ̂v = v′

sα−δv
′ = sγ̂sα−δsγ̂v

′ = sγ̂sα−δv = sγ̂x = x′

Collectively, these computations yield

z′ = sα−δu
′ < u′ < sαu

′ = v′ < sα−δv
′ = x′ ≤ w

and hence u′ satisfies the (−α)–chain property in X(w). We have also con-

firmed that z′ is indeed a point of X(w).
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With this new information our Bruhat graph becomes:

w

u

x

−α + δ

−α

u′

z

v

α− δ

v′

x′

z′

−α

−γ̂

−α + δ

α− δ

−γ̂

−γ̂

−γ̂

Therefore, by Lemma 5.1.3, u′ is a singular point of X(w), which contradicts

the fact that X(w) is nonsingular at u′, since u < u′ and u is a maximal

singularity.

For our second case, suppose instead that u satisfies the (α−δ)–chain property

in X(w), that is,

sαu < u < sα−δu < sαsα−δu ≤ w.

Redefining from the previous case, let z = sαu, let v = sα−δu, and also let
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x = sαsα−δu. Using these, the (α− δ)–chain property condition above can be

expressed as:

z < u < v < x ≤ w.

Once again, since u is a maximal singularity of X(w), we observe that X(w)

is nonsingular at v and x, but singular at z (Lemma 4.7.3).

This time, let Cα−δ = Uα−δu in E−(X(w), u), let Cα = Uαu in E+(X(w), u),

and let C−α = U−αv in E−(︁X(w), v
)︁
.

The Bruhat graph illustrating the set-up of our second case is:

Cα−δ

u

w

x

u′

z

C−α

v

α− δ
D

−γ̂

Cα

α

−α
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Since ±γ ̸= ±α, Lemma 4.9.4 indicates that −γ̂ is a weight of τCα−δ

(︁
X(w), u

)︁
.

Therefore, from Lemma 4.8.10 we are given that τCα−δ

(︁
X(w), v

)︁
has at least

one weight which is in the (−α+δ)-string through −γ̂. However, since {l, k}∩
{i, j} = ∅, we have that −γ̂ + c(−α+ δ) is not a root for any c ∈ Z \ {0} and

thus the (−α + δ)-string through −γ̂ is composed only of −γ̂. Therefore, −γ̂
is a weight of τCα−δ

(︁
X(w), v

)︁
. Furthermore, since X(w) is nonsingular at v,

Lemma 4.8.13 yields that

v < sγ̂v ≤ w.

Likewise, using τC−α

(︁
X(w), v

)︁
and the point x as replacements for τCα−δ

(︁
X(w), u

)︁
and v in the above argument, we establish that

x < sγ̂x ≤ w.

Regarding τCα

(︁
X(w), u

)︁
and the point z, since z is a singular point ofX(w), we

can only ascertain that −γ̂ is a weight of τCα

(︁
X(w), z

)︁
and hence of Tz

(︁
X(w)

)︁
.

At this point, we have not yet demonstrated that sγ̂z is a point of X(w),

however, since −γ̂ is also a weight of Tz
(︁
G/B

)︁
, we know from Lemma 4.3.3

that

z < sγ̂z

in G/B.

Let v′ := sγ̂v, and let x′ := sγ̂x, and let z′ := sγ̂z. In terms of these labels,

our deductions above become:

v < v′ ≤ w,

x < x′ ≤ w,

and
z < z′.

Since u is a maximal singularity of X(w) and u < v, y < x, we obtain that

X(w) is nonsingular at v′ and x′.
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Adding this information to our Bruhat graph (including the weight −γ̂ of

Tz
(︁
X(w)

)︁
) yields:

w

u

x

u′

z

v

v′

x′

z′

α− δ
D

−γ̂

α

−α

−γ̂

−γ̂

−γ̂

At this point, we will show that u′ satisfies the (α−δ)–chain property in X(w).

Accordingly, since −α ̸= ±γ, we determine from Lemma 4.9.4 that α and α−δ
are weights of τD

(︁
X(w), u

)︁
. As well, since α+ cγ̂ and α− δ+ c′γ̂ are not roots

for any c, c′ ∈ Z \ {0}, it follows from Lemma 4.8.10 that α and α − δ are

weights of τD
(︁
X(w), u′

)︁
.
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Thus,

sαu
′ < u′ ≤ w,

by Lemma 4.8.12, and

u′ < sα−δu
′ ≤ w

by Lemma 4.8.13, since X(w) is nonsingular at u′.

Similarly, we ascertain that

v′ < sαv
′ ≤ w.

Moreover, using Remark 4.10.1 and the fact that {l, k} ∩ {i, j} = ∅, we com-

pute:

sγ̂sαsγ̂ = ssγ̂(α) = sα

sγ̂sα−δsγ̂ = ssγ̂(α−δ) = sα−δ

Consequently,

sαu
′ = sγ̂sαsγ̂u

′ = sγ̂sαu = sγ̂z = z′

sα−δu
′ = sγ̂sα−δsγ̂u

′ = sγ̂sα−δu = sγ̂v = v′

sαv
′ = sγ̂sαsγ̂v

′ = sγ̂sαv = sγ̂x = x′

Putting all of this together, we obtain

z′ = sαu
′ < u′ < sα−δu

′ = v′ < sαv
′ = x′ ≤ w

and hence u′ satisfies the (α − δ)–chain property in X(w). This also verifies

that z′ is a point of X(w).
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Thus our finalized Bruhat graph is:

w

u

x

α

α− δ

u′

z

v

−α

v′

x′

z′

α− δ

−γ̂

α

−α

−γ̂

−γ̂

−γ̂

Therefore, by Lemma 5.1.3, u′ is a singular point of X(w). Thus, since u < u′,

we have obtained a contradiction to the fact that u is a maximal singularity

of X(w).

As a consequence of this lemma, we obtain a bound on the size of E−(X(w), u)

and hence also the codimension of X(u) in X(w).
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Corollary 5.10.2. Let X(w) be a singular rationally smooth Schubert variety

in G/B. If u ∈ X(w)
ˆ︁T is a maximal singularity of X(w), then

|E−(X(w), u)| ≤ 4n− 6.

Proof. Let C−α̂ := U−α̂u and C−β̂ := U−β̂u be a strong Type I pair of ˆ︁T -curves
in E−(X(w), u), where Re(α̂) = α = (ij) ∈ Φ+, with i < j. If C−α̂ and C−β̂

are the only ˆ︁T -curves in E−(X(w), u), then

|E−(X(w), u)| = 2 ≤ 4n− 6,

for n ≥ 2, as required. Now suppose that E−(X(w), u) contains at least threeˆ︁T -curves. Let U−γ̂u be any ˆ︁T -curve in E−(X(w), u) other than C−α̂ and C−β̂.

Thus, by Lemma 5.10.1, γ̂ = ±γ + hγδ is a positive root such that γ ∈ Φ+ of

the form

γ = (li), (ik), (l′j), or (jk′),

where l, l′, k, k′ are integers, none of which are equal to i or j, satisfying

1 ≤ l < i < k ≤ n

and

1 ≤ l′ < j < k′ ≤ n.

There are i − 1 possible values for l, n − i − 1 possible values for k, j − 2

possible values for l′, and n− j possible values for k′. Thus, there are

i− 1 + n− i− 1 + j − 2 + n− j = 2n− 4

possibilities for γ. By Theorem 5.6.3, E−(X(w), u) contains at most 2(2n−4)ˆ︁T -curves other than C−α̂ and C−β̂ and hence E−(X(w), u) contains at most

4n− 6 ˆ︁T -curves, as required.
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Corollary 5.10.3. Let X(w) be a singular rationally smooth Schubert variety

in G/B. If u ∈ X(w)
ˆ︁T is a maximal singularity of X(w), then the codimension

of u is at most 4n− 6.

Proof. This follows from Corollary 5.10.2 and the fact that

|E−(X(w), u)| = dimX(w)− dimX(u)

(see Remark 4.6.2).

189



Chapter 6

Smooth Schubert Varieties and

Pattern Avoidance

In this chapter, we will provide a proof of a conjecture due to Billey-Crites

which states that a Schubert variety X(w) in G/B is smooth if and only if w

avoids the patterns 3412 and 4231. Using the results of Billey-Crites in [2], to

prove this conjecture it suffices to prove that the affine permutation w indexing

any singular rationally smooth Schubert variety X(w) in G/B contains the

pattern 3412. To that end, we will introduce the concept of a wide affine

permutation (see Definition 6.3.1 below). These permutations are useful to us

since they all contain the pattern 3412 (see Lemma 6.3.2 below). We know from

Theorem 5.9.5 above that every maximal singularity u of a singular rationally

smooth Schubert variety X(w) in G/B satisfies either the (−α)–kite property

or the (α− δ)–kite property in X(w). We will show that, in this situation, the

maximal ˆ︁T -fixed point appearing in either of the two kite patterns is wide and

hence contains the pattern 3412 (see Theorem 6.4.1 below). Using this fact,

we will then prove that w itself is wide and hence also contains the pattern

3412, as required (see Theorem 6.5.1). We would like to note that some of the

proofs that we have given in this chapter are long and technical in nature, and

that someone with a more extensive background in combinatorics may be able

to find a shorter method to prove Theorem 6.5.1.

190



6.1 The Billey-Crites Conjecture

In this section we describe the research of Billey and Crites presented in [2].

Unless otherwise specified, the source of information given in this section is

[2].

Our work on maximal singularities of Schubert varieties in G/B was initiated,

in part, to prove Conjecture 1 in [2] (given below as Conjecture 6.1.6). Conjec-

ture 6.1.6 is an affine analogue of an earlier results by Lakshmibai and Sandhya

in the classical algebraic group setting regarding Schubert varieties in G/B,

where G = SLn(C) and B is the set of upper triangular matrices in G. Specif-

ically, in [29], Lakshmibai and Sandhya proved the following important result:

Theorem 6.1.1. Let X(w), where w = [a1, a2, . . . , an] ∈ Sn, be a Schubert

variety in G/B. Then X(w) is singular if and only if there are indices i, j, k, l,

where 1 ≤ i < j < k < l ≤ n, for which at least one of the following holds:

1) ak < al < ai < aj

2) al < aj < ak < ai.

Using the natural numbers 1 through 4 to represent the relative size of the

numbers in each inequality, where 1 represents the smallest number and 4 the

largest, these two conditions in one-line permutation notation can be expressed

as:

3 4 1 2

w = [ · · · ai · · · aj · · · ak · · · al · · · ]

and
4 2 3 1

w = [ · · · ai · · · aj · · · ak · · · al · · · ].

In the first case, we say w contains the pattern 3412 and in the second we say

w contains the pattern 4231. If a permutation w does not satisfy condition 1),

we say it avoids the pattern 3412 and if w does not satisfy condition 2), we say
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it avoids the pattern 4231. Thus Theorem 6.1.1 can be restated as: X(w) is

smooth if and only if w avoids the patterns 3412 and 4231. Furthermore, Dale

Peterson, when working over C, proved that for simply laced types all ratio-

nally smooth Schubert varieties are smooth and, moreover, that the rationally

smooth locus and the smooth locus coincide (see [15]). As such, Theorem 6.1.1

still holds if smooth is replaced by rationally smooth.

The concept of pattern avoidance has been generalize to the affine setting. In

order to examine this, we start with a definition given in [2]:

Definition 6.1.2. Let p ∈ Sk and let w ∈ ˆ︂W = ˆ︁Sn. Then w is said to contain

the pattern p if there are indices i1 < i2 < · · · < ik such that the substring

wi1wi2 · · ·wik follows that same relative order as the entries of p. Furthermore,

w is said to avoid the pattern p if no such indices / substring exits.

For example, in ˆ︁S5,

w = [−3, 6, 0, 8, 4]2, 11, 5, 13, 9, 7, . . .

contains the pattern 3412

3 4 1 2

w = [−3, 6, 0, 8, 4] 2, 11, 5, 13, . . .

As in the classical case, the patterns of interest in the affine context are 3412

and 4231. Indeed, Billey and Crites show that if w ∈ ˆ︂W avoids these two pat-

terns, then X(w) ⊂ G/B is rationally smooth. However, in the affine setting,

pattern avoidance no longer gives the full characterization of rational smooth-

ness. One additional concept is required, namely, the notion of a twisted spiral

permutation. As twisted spiral permutations are not explicitly used in this the-

sis, we direct the interested reader to Section 2.5 of [2] for the definition. Two

features of twisted spiral permutations that are relevant to our work are that

they all contain the pattern 3412 and that the affine Schubert varieties they

index are singular (see [2]).

The central result of [2] is Theorem 1.1 (stated here as Theorem 6.1.3), in which

they provide a means of identifying all rationally smooth Schubert varieties in

G/B:
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Theorem 6.1.3. Let w ∈ ˆ︂W = ˆ︁Sn, where n ≥ 3 and let X(w) be a Schubert

variety in G/B. Then X(w) is rationally smooth if and only if either:

1) w avoids the patterns 3412 and 4231, or

2) w is a twisted spiral permutation.

Remark 6.1.4. Theorem 6.1.3 applies to the case in which n ≥ 3. For n = 2,

all Schubert varieties X(w) are rationally smooth (see Example 4.6.3).

The corollary stated below (which is Corollary 1.2 in [2]) follows from Theorem

6.1.3, since any Schubert variety which is not rationally smooth is also not

smooth (see Remark 4.6.4):

Corollary 6.1.5. Let w ∈ ˆ︂W = ˆ︁Sn, where n ≥ 3 and let X(w) be a Schubert

variety in G/B. If w contains either a 3412 pattern or a 4231 pattern, then

X(w) is singular.

In Conjecture 1 in [2] (stated here as Conjecture 6.1.6), Billey and Crites

speculate that Corollary 6.1.5 is, in fact, an equivalence.

Conjecture 6.1.6. Let w ∈ ˆ︂W and let X(w) be a Schubert variety in G/B.
Then X(w) is smooth if and only if w avoids 3412 and 4231.

Billey and Crites indicate in [2] that they have verified this conjecture up to

n = 5. The case for n = 2 is handled in [17].

In this thesis, we will provide a proof for Conjecture 6.1.6 (See Theorem 6.5.2).

6.2 The Bruhat-Chevalley Order on ˆ︂W and

One-line Notation

In order to prove Conjecture 6.1.6, we will show that any Schubert variety

X(w) in G/B which is both rationally smooth and singular is indexed by

an affine permutation w which contains the pattern 3412 (see Theorem 6.5.1
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below). As such, our focus in on pattern detection, as opposed to pattern

avoidance. The method that we have developed involves the entries which

appear in the standard window of an affine permutation expressed in one-line

notation:

w = [w1, w2, . . . , wn]

We want to be able to detect the pattern 3412 in w, however, our work in

Chapter 5 involved maximal singularities u ∈ X(w)
ˆ︁T . In order to link the

two, we want to understand how left multiplication with a reflection changes

the entries which appear in the standard window of u.

In this section, we prove a rather technical lemma which compares the entries

of two affine permutations u and sα̂u when u < sα̂u. Although we did not find

this result in the literature, there is a possibility that this result was previously

known. Before we state this lemma, we will establish some notation.

Since sα̂ = s−α̂ for any α̂ ∈ ˆ︁Φ, henceforth, we will let α̂ = α+hδ, where h ∈ Z
and α = (ab) ∈ Φ+, with 1 ≤ a < b ≤ n. Let u = [u1, u2, . . . , un] ∈ (G/B)ˆ︁T
and let 1 ≤ i, j ≤ n, with i ̸= j be the indices for which ui, uj ∈ {a, b}. Let

v = sα̂u. Thus v = [v1, v2, . . . , vn], where vk = sα̂(uk), for every integer k.

Set

ui = ui + nq,

where 1 ≤ ui ≤ n and q ∈ Z and

uj = uj + np,

where 1 ≤ uj ≤ n and p ∈ Z. Since q, p ∈ Z, we have that q = p+ c, for some

c ∈ Z.
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Thus

vi = sα̂(ui) vj = sα̂(uj)

= sα̂(ui + nq) = sα̂(uj + np)

=

{︄
uj + n(q + h) if ui = a

uj + n(q − h) if ui = b
=

{︄
ui + n(p− h) if uj = b

ui + n(p+ h) if uj = a

= uj + n(q ± h) = ui + n(p∓ h)

= uj + n(p+ c± h) = ui + n(q − c∓ h)

= uj + n(c± h) = ui − n(c± h)

= uj + nd = ui − nd

where d = c± h ∈ Z. From these descriptions we obtain that

ui > vi ⇐⇒ ui > uj + nd ⇐⇒ ui − nd > uj ⇐⇒ vj > uj,

equivalently (since ui ̸= vi and uj ̸= vj),

ui < vi ⇐⇒ vj < uj.

Furthermore,

vj ≤ ui ⇐⇒ ui − nd ≤ ui ⇐⇒ d ≥ 0 ⇐⇒ uj ≤ uj + nd ⇐⇒ uj ≤ vi

and likewise,

vj ≥ ui ⇐⇒ uj ≥ vi

Relabel d = |c± h|. So now, when vj ≤ ui and uj ≤ vi we have

vj = ui − nd = ui−nd and vi = uj + dn = uj+dn, for some d ≥ 0.

If vj < ui and uj < vi, then d ≥ 1.

If vj ≥ ui and uj ≥ vi, then

vj = ui + nd = ui+nd and vi = uj − dn = uj−dn, for some d ≥ 0.
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Again, if vj > ui and uj > vi, then d ≥ 1.

Consequently, there are only eight possible ways that ui, uj, vi, and vj can be

ordered:

vj < uj < ui < vi uj < vj < vi < ui

vj ≤ ui < uj ≤ vi uj ≤ vi < vj ≤ ui

vi ≤ uj < ui ≤ vj ui ≤ vj < vi ≤ uj

vi < ui < uj < vj ui < vi < vj < uj

Lemma 6.2.1. Let α̂ = α + hδ = (ab) + hδ be a real root with associated

reflection sα̂ ∈ ˆ︂W and let u = [u1, u2, . . . , un] ∈ (G/B)ˆ︁T . Let 1 ≤ i < j ≤ n be

the indices for which ui, uj ∈ {a, b}. Then u < v = sα̂u if and only if

|ui − uj| < |vi − vj| if ui > uj or

|ui − uj| ≤ |vi − vj| if uj > ui

Proof. We will first prove the “if” direction of this lemma. Suppose that

|ui − uj| < |vi − vj| if ui > uj or

|ui − uj| ≤ |vi − vj| if uj > ui

Given the eight possible orders for ui, uj, vi, and vj stated above, our assump-

tion implies that exactly one of the following holds:

ui − dn = vj < uj < ui < vi = uj + dn, where d ∈ Z≥1,

ui − dn = vj ≤ ui < uj ≤ vi = uj + dn, where d ∈ Z≥0

uj − dn = vi < uj < ui < vj = ui + dn, where d ∈ Z≥1

uj − dn = vi < ui < uj < vj = ui + dn, where d ∈ Z≥1

As u < sα̂u if and only if ℓ(u) < ℓ(sα̂u), we will show that ℓ(u) < ℓ(sα̂u).

To that end, for each of these cases, we will construct a bijection ρ between

Invˆ︁Sn
(u) and a proper subset of Invˆ︁Sn

(v). We first consider the initial two
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options above:

ui − dn = vj < uj < ui < vi = uj + dn, where d ∈ Z≥1, or

ui − dn = vj ≤ ui < uj ≤ vi = uj + dn, where d ∈ Z≥0

Let k be an integer such that 1 ≤ k ≤ n, but that k ̸= i, j. Subsequently,

vk = sα̂(uk) = uk. For every such k, we define ρ as follows, if applicable.

For any (k, l) ∈ Invˆ︁Sn
(u) with l ̸≡ i, j mod n,

vk = uk > ul = vl

and so (k, l) ∈ Invˆ︁Sn
(v). Consequently, we define

ρ(k, l) = (k, l).

If (k, j+ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, then k < j+ln and uk > uj+ln.

Since uj > vj,

vk = uk > uj+ln = uj + ln > vj + ln = vj+ln,

we know (k, j + ln) ∈ Invˆ︁Sn
(v) and hence we may define

ρ(k, j + ln) = (k, j + ln).

If (k, i+ ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, then k < i+ ln and uk > ui+ln.

If vk > vi+ln, then (k, i+ ln) ∈ Invˆ︁Sn
(v) and we may set

ρ(k, i+ ln) = (k, i+ ln).

If vk < vi+ln, then (k, i+ ln) ̸∈ Invˆ︁Sn
(v). However, as

vk = uk > ui+ln = ui+ln = ui−dn+ln+dn = ui−dn+(l+d)n = vj+(l+d)n = vj+(l+d)n

and

k < i+ ln < j + ln ≤ j + (l + d)n
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we have
(︁
k, j + (l + d)n

)︁
∈ Invˆ︁Sn

(v). Furthermore, since

uk = vk < vi+ln = vi + ln = uj+dn + ln = uj+(l+d)n,(︁
k, j + (l + d)n

)︁
̸∈ Invˆ︁Sn

(u), which means that
(︁
k, j + (l + d)n

)︁
̸∈ Im(ρ) as

currently defined. Subsequently, we may set

ρ(k, i+ ln) =
(︁
k, j + (l + d)n

)︁
.

If (i, k+ ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, then i < k+ ln and ui > uk+ln.

Since

vi > ui > uk+ln = uk + ln = vk + ln = vk+ln,

(i, k + ln) ∈ Invˆ︁Sn
(v). Hence, we define

ρ(i, k + ln) = (i, k + ln)

For any (j, k + ln) ∈ Invˆ︁Sn
(u), where l ≥ 0 is an integer, we have j < k + ln

and uj > uk+ln. If vj > vk+ln, then (j, k + ln) ∈ Invˆ︁Sn
(v) and we let

ρ(j, k + ln) = (j, k + ln)

However, if vj < vk+ln, then (j, k + ln) ̸∈ Invˆ︁Sn
(v), but fortunately we have(︁

i, k + (d+ l)n
)︁
∈ Invˆ︁Sn

(v), as

vi = uj+dn = uj + dn > uk+ln + dn = uk + (l + d)n = vk + (l + d)n = vk+(l+d)n

and

i < j < k + ln ≤ k + (l + d)n

In addition,

ui = ui − dn+ dn = ui−dn + dn = vj + dn < vk+ln + dn = vk+(l+d)n

so that
(︁
i, k + (l + d)n

)︁
̸∈ Invˆ︁Sn

(u). Consequently, as defined thus far,
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(︁
i, k + (l + d)n

)︁
̸∈ Im(ρ). So let

ρ(j, k + ln) =
(︁
i, k + (l + d)n

)︁
At this point, we consider the cases where uj < ui and ui < uj separately in

order to define ρ for the remaining elements of Invˆ︁Sn
(u).

To that end, suppose that uj < ui, that is,

ui − dn = vj < uj < ui < vi = uj + dn, where d ∈ Z≥1

This means that uj < ui + ln, for all l ≥ 0, and hence (j, i + ln) ̸∈ Invˆ︁Sn
(u)

for any l ≥ 0.

Since vi = uj+dn > ui, if Invˆ︁Sn
(u) contains an element of the form (i, j + ln),

then it must be the case that 0 ≤ l < d. So if (i, j + ln) ∈ Invˆ︁Sn
(u), for some

integer 0 ≤ l < d, then i < j + ln and ui > uj+ln. From,

vi > ui > uj+ln = uj + ln > vj + ln = vj+ln,

we obtain that (i, j + ln) ∈ Invˆ︁Sn
(v) and so we may set

ρ(i, j + ln) = (i, j + ln).

At this stage, we have defined the image under ρ of all possible elements of

Invˆ︁Sn
(u). As l < d and d ≥ 1, we observe that (i, j + dn) ̸∈ Im(ρ), but we do

have (i, j + dn) ∈ Invˆ︁Sn
(v) since

vi > ui = ui − dn+ dn = ui−dn + dn = vj + dn = vj+dn

and

i < j < j + dn.

Thus, ρ is an injective map onto a proper subset of Invˆ︁Sn
(v) and hence

ℓ(u) =
⃓⃓⃓
Invˆ︁Sn

(u)
⃓⃓⃓
<

⃓⃓⃓
Invˆ︁Sn

(v)
⃓⃓⃓
= ℓ(v),

as required.
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Now suppose that ui < uj, that is,

ui − dn = vj ≤ ui < uj ≤ vi = uj + dn, where d ∈ Z≥0

Since ui < uj + ln = uj+ln, for all l ≥ 0, we have that (i, j + ln) ̸∈ Invˆ︁Sn
(u)

for any l ≥ 0.

If (j, i+ ln) ∈ Invˆ︁Sn
(u) for some l ≥ 1, then j < i+ ln and uj > ui+ln. (Note

that l ̸= 0, since i < j.)

As

vj < vi < vi + ln = vi+ln

we obtain that (j, i+ ln) ̸∈ Invˆ︁Sn
(v). However,

vi ≥ uj > ui+ln = ui + ln ≥ vj + ln = vj+ln

and

i < j < j + ln.

Thus, (i, j + ln) ∈ Invˆ︁Sn
(v) and we may define

ρ(j, i+ ln) = (i, j + ln).

Since i < j and vi > vj, (i, j) ∈ Invˆ︁Sn
(v). However, since l ≥ 1 in the final

assignment above, we see that (i, j) ̸∈ Im(ρ). Thus, as in the previous case, ρ

is an injective map onto a proper subset of Invˆ︁Sn
(v). As a result,

ℓ(u) =
⃓⃓⃓
Invˆ︁Sn

(u)
⃓⃓⃓
<

⃓⃓⃓
Invˆ︁Sn

(v)
⃓⃓⃓
= ℓ(v),

as required.

We now move on to the last two options given at the beginning of this proof.
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Accordingly, suppose that

uj − dn = vi < uj < ui < vj = ui + dn, where d ∈ Z≥1, or

uj − dn = vi < ui < uj < vj = ui + dn, where d ∈ Z≥1

As before, we will define a bijection ρ from Invˆ︁Sn
(u) to a proper subset of

Invˆ︁Sn
(v). However, as the justification that ρ is well defined and injective is

straightforward and very similar to the previous case, in most of what follows,

we will only give the assignment rules defining ρ.

Now, for every integer k such that 1 ≤ k ≤ n and k ̸= i, j, wherever applicable,

we define ρ in the following manner:

For any (k, l) ∈ Invˆ︁Sn
(u) with l ̸≡ i, j mod n, we define

ρ(k, l) = (k, l).

If (k, i+ ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, we set

ρ(k, i+ ln) = (k, i+ ln)

For any (k, j + ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, we let

ρ(k, j + ln) =

{︄
(k, j + ln) if vk > vj+ln(︁

k, i+ (l + d)n
)︁

if vk < vj+ln

If (j, k + ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, we set

ρ(j, k + ln) = (j, k + ln)

If (i, k + ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, we define

ρ(i, k + ln) =

{︄
(i, k + ln) if vi > vk+ln(︁

j, k + (l + d)n
)︁

if vi < vk+ln

In the case that ui < uj, we have (i, j + ln) ̸∈ Invˆ︁Sn
(u), for any integer l ≥ 0.
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However, if (j, i+ ln) ∈ Invˆ︁Sn
(u), for some integer 0 < l < d, then we define

ρ(j, i+ ln) = (j, i+ ln)

For this definition of ρ, (j, i + dn) is an element of Invˆ︁Sn
(v) which is not in

Im(ρ).

If instead uj < ui, we know (j, i + ln) ̸∈ Invˆ︁Sn
(u), for any integer l ≥ 0. If

(i, j + ln) ∈ Invˆ︁Sn
(u), for some integer l ≥ 0, then i < j + ln and ui > uj+ln.

As

vj+ln = vj + ln > vi + ln = vi+ln,

(i, j + ln) ̸∈ Invˆ︁Sn
(v). However, since d ≥ 1, we have

vj = ui+dn ≥ ui+n > uj+ln+n = uj+ln+n−dn+dn = vi+(l+d+1)n = vi+(l+d+1)n,

and

1 ≤ i < j ≤ n < i+ (l + d+ 1)n

so that
(︁
j, i+ (l + d+ 1)n

)︁
∈ Invˆ︁Sn

(v). As such, we define

ρ(i, j + ln) =
(︁
j, i+ (l + d+ 1)n

)︁
.

We have that (j, i+ dn) ∈ Invˆ︁Sn
(v) as a result of

vj = ui + dn > vi + dn = vi+dn

and, since d ≥ 1,

1 ≤ i < j ≤ n < i+ dn.

It is clear from our definition of ρ that (j, i+ dn) ̸∈ Im(ρ).

Consequently, once again we have that ρ is an injective map onto a proper

subset of Invˆ︁Sn
(v) and this yields

ℓ(u) =
⃓⃓⃓
Invˆ︁Sn

(u)
⃓⃓⃓
<

⃓⃓⃓
Invˆ︁Sn

(v)
⃓⃓⃓
= ℓ(v),
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as required. With this, we have now completed the proof that if

|ui − uj| < |vi − vj| if ui > uj or

|ui − uj| ≤ |vi − vj| if uj > ui

then u < sα̂u.

To verify the “only if” direction of this lemma, we prove its contrapositive.

Assume
|ui − uj| ≥ |vi − vj| if ui > uj or

|ui − uj| > |vi − vj| if uj > ui

We will show that sα̂u < u. Given the eight possible ways to order ui, uj, vi, vj,

we only have to consider the following:

uj < vj < vi < ui

uj ≤ vi < vj ≤ ui

ui < vj < vi < uj

ui < vi < vj < uj

From options one and three, we obtain

|vi − vj| < |ui − uj| if vi > vj

and from options two and four, we know

|vi − vj| ≤ |ui − uj| if vj > vi

Since v = sα̂u, we also have sα̂v = u, where, in particular, ui = sα̂(vi) and

uj = sα̂(vj). As a result, we have

v < sα̂v

(by applying the “if ” part of this lemma, which was proved above, to v as

opposed to u), which yields

sα̂u < u

as required.
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In the proof of 6.2.1, we identified some relationships which will be useful in

subsequent proofs. As such, we restate these in the following remark, for ease

of reference.

Remark 6.2.2. Let u = [u1, u2, . . . , un] ∈ (G/B)ˆ︁T and α̂ = α+hδ = (ab)+hδ

be a real root with associated reflection sα̂ ∈ ˆ︂W such that u < v = sα̂u. Let

1 ≤ i < j ≤ n be the indices for which ui, uj ∈ {a, b} and let vi = sα̂(ui) and

vi = sα̂(ui).

Thus, by Lemma 6.2.1 we have

|ui − uj| < |vi − vj| if ui > uj or

|ui − uj| ≤ |vi − vj| if uj > ui

which yields

uj − dn = vi < uj < ui < vj = ui + dn, where d ∈ Z≥1

ui − dn = vj < uj < ui < vi = uj + dn, where d ∈ Z≥1

uj − dn = vi < ui < uj < vj = ui + dn, where d ∈ Z≥1 or

ui − dn = vj ≤ ui < uj ≤ vi = uj + dn, where d ∈ Z≥0

6.3 Pattern Detection andWide ˆ︁T -Fixed Points

In this section, we will introduce our method for detecting the pattern 3412

in the one-line notation of an affine permutation. We begin with the following

definition.

Definition 6.3.1. A ˆ︁T -fixed point u = [u1, u2, . . . , un] in G/B is said to be

wide if there exists indices 1 ≤ i < j ≤ n such that either ui − uj > 2n or

uj − ui > 3n.

The significance of this definition is made clear in the next lemma.

Lemma 6.3.2. Let u = [u1, u2, . . . , un] ∈ (G/B)ˆ︁T . If u is wide, then u contains

the pattern 3412.
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Proof. Suppose there exists indices 1 ≤ i < j ≤ n such that ui − uj > 2n.

Thus

ui > uj + 2n = uj+2n

and so

uj+n < uj+2n < ui < ui+n

Given that i < j, we have i < i+ n < j + n < j + 2n. Consequently,

uiui+nuj+nuj+2n

is a subword of u which forms a 3412 pattern.

Likewise, if there exists indices 1 ≤ i < j ≤ n for which uj − ui > 3n, we have

uj > ui + 3n = ui+3n

and hence

ui+2n < ui+3n < uj < uj+n

Since 1 ≤ i < j ≤ n, we know 1 + n < j + n ≤ 2n and 1 + 2n ≤ i+ 2n < 3n,

so that j + n < i+ 2n.

Thus, j < j + n < i+ 2n < i+ 3n and hence we have obtained a subword

ujuj+nui+2nui+3n

of u which forms a 3412 pattern.

From Lemma 6.3.2, it should be clear that our goal is to prove that any w

indexing a rationally smooth, but singular Schubert variety X(w) is wide. To

do this, we first show that if an affine permutation is u is wide, then any ˆ︁T -
fixed point above u in the Bruhat-Chevalley order on ˆ︂W is also wide.

Lemma 6.3.3. Let α̂ be a real root with associated reflection sα̂ ∈ ˆ︂W and let

u ∈ (G/B)ˆ︁T . If u is wide and u < v = sα̂u, then v is wide.
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Proof. Suppose that u = [u1, u2, . . . , un] is wide and, as such, let 1 ≤ i < j ≤ n

be indices for which either ui−uj > 2n or uj−ui > 3n. Set v = [v1, v2, . . . , vn],

so that vi = sα̂(ui) = ui, set vj = sα̂(uj) = uj. Finally, let α̂ = (ab) + hδ.

We will consider four main cases: ui, uj ̸∈ {a, b}, ui, uj ∈ {a, b}, ui,∈ {a, b},
but uj ̸∈ {a, b}, and uj ∈ {a, b}, but ui ̸∈ {a, b},

We will first deal with the case in which ui, uj ̸∈ {a, b}. Thus vi = ui and

vj = uj. Consequently, if ui − uj > 2n, then vi − vj > 2n and if uj − ui > 3n,

then vj − vi > 3n. Hence v is wide.

Now suppose that ui, uj ∈ {a, b}. By Remark 6.2.2 there are four possibilities.

If ui − uj > 2n (that is, ui > uj), there are two options:

uj − dn = vi < uj < ui < vj = ui + dn, where d ∈ Z≥1

vj < uj < ui < vi

Hence,

vj − vi = ui + dn− (uj − dn) = ui − uj + 2dn > 2n+ 2dn ≥ 4n > 3n,

since d ≥ 1, or

vi − vj > ui − uj > 2n,

respectively. As i < j, either way, we obtain that v is wide. If uj − ui > 3n

(that is, uj > ui), then the remaining two possibilities from Remark 6.2.2 are

vi < ui < uj < vj

vj ≤ ui < uj ≤ vi

Thus,

vj − vi > uj − ui > 3n

or

vi − vj ≥ uj − ui > 3n > 2n

Once again, both of these situations yield that v is wide.
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Now for case three, we assume that ui, uk ∈ {a, b}, for some 1 ≤ k ≤ n such

that k ̸= i, j ( so uj ̸∈ {a, b}). Thus vj = uj. By Remark 6.2.2, one of the

following must hold:

uk − dn = vi < ui < uk < vk = ui + dn, where d ∈ Z≥1

{︄
uk − dn = vi < uk < ui < vk = ui + dn, where d ∈ Z≥1 if i < k

uk − dn = vi ≤ uk < ui ≤ vk = ui + dn, where d ∈ Z≥0 if k < i

{︄
ui − dn = vk ≤ ui < uk ≤ vi = uk + dn, where d ∈ Z≥0 if i < k

ui − dn = vk < ui < uk < vi = uk + dn, where d ∈ Z≥1 if k < i

ui − dn = vk < uk < ui < vi = uk + dn, where d ∈ Z≥1

We will go through each option in the order given above. We know i < j, but

we could have k > j or k < j. However, for computations involving vj and vk,

if the difference computed is at least 3n, then v is wide for either case.

Assuming ui − uj > 2n:

vk − vj = ui + dn− uj > 2n+ dn > 3n (since d ≥ 1)

vk − vj = ui + dn− uj > 2n+ dn >

{︄
3n if i < k (so d ≥ 1)

2n if k < i < j (so d ≥ 0)

For the third and forth possibilities we have vi − vj > ui − uj > 2n.

Assuming uj − ui > 3n:

For options one and two we have vj − vi > uj − ui > 3n.

For possibility three we obtain

vj − vk

{︄
≥ uj − ui > 3n if i < k

> uj − ui > 3n if k < i
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For the fourth, we have vj − vk > uj − ui > 3n.

Collectively, these computations show that v is wide in this case.

For our fourth and final case, we assume that uj, uk ∈ {a, b}, for some 1 ≤ k ≤
n such that k ̸= i, j ( so ui ̸∈ {a, b}). Therefore, vi = ui. As in the previous

case, Remark 6.2.2 gives us the only possible relationships:

uk − dn = vj < uj < uk < vk = uj + dn, where d ∈ Z≥1

{︄
uk − dn = vj < uk < uj < vk = uj + dn, where d ∈ Z≥1 if j < k

uk − dn = vj ≤ uk < uj ≤ vk = uj + dn, where d ∈ Z≥0 if k < j

{︄
uj − dn = vk ≤ uj < uk ≤ vj = uk + dn, where d ∈ Z≥0 if j < k

uj − dn = vk < uj < uk < vj = uk + dn, where d ∈ Z≥1 if k < j

uj − dn = vk < uk < uj < vj = uk + dn, where d ∈ Z≥1

As above, we have that i < j, but either k > i or k < i is possible. Once

again, for computations involving vi and vk, if the difference computed is at

least 3n, then v is wide for either case.

If ui − uj > 2n:

For the first two options, we have vi − vj = ui − uj > 2n.

For possibility three:

vi − vk = ui − (uj − dn) > 2n+ dn >

{︄
2n if i < j < k (so d ≥ 0)

3n if k < j (so d ≥ 1)

For the fourth:

vi − vk = ui − (uj − dn) > 2n+ dn > 3n (since d ≥ 1)
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If uj − ui > 3n:

The first situations yields vk − vi > uj − ui > 3n.

The second gives

vk − vi

{︄
> uj − ui > 3n if j < k

≥ uj − ui > 3n if k < j

For options three and four we have vj − vi > uj − ui > 3n.

Together, these give that v is wide.

Corollary 6.3.4.

Let u, v ∈ (G/B)ˆ︁T such that u < v. If u is wide, then so is v.

Proof. Since u < v, we have that

u < sα̂1u < sα̂2sα̂1u < · · · < sα̂k
sα̂k−1

· · · sα̂2sα̂1u = v

for some α̂1, α̂2, . . . , α̂k ∈ ˜︁Φ, for some k ≥ 1. From repeated applications of

Lemma 6.3.3, we obtain that each of the ˆ︁T -fixed points in this chain are wide,

and hence v is wide.

The previous result required that we started with a wide ˆ︁T -fixed point. How-

ever, in the next lemma, we give a condition on the real root α̂ associated with

a reflection sα̂ which guarantees that sα̂u is wide when sα̂u > u, even if u is

not.

Lemma 6.3.5. Let α̂ = α + hδ, where |h| ≥ 3, be a real root with associated

reflection sα̂ ∈ ˆ︂W and let u ∈ (G/B)ˆ︁T . If u < v = sα̂u, then v is wide.

Proof. Let α = (ab) ∈ Φ+, where 1 ≤ a < b ≤ n and let h ∈ Z. Let

u = [u1, u2, . . . , un] and let ui = ui + nq, for some q ∈ Z and uj = uj + np, for

some p ∈ Z, be the entries in u with 1 ≤ i < j ≤ n such that ui, uj ∈ {a, b}.
Let Set v = [v1, v2, . . . , vn] = sα̂u, so that vi = sα+hδ(ui) and vj = sα+hδ(uj).
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By Remark 6.2.2, we know that

|ui − uj| < |vi − vj| if ui > uj

|ui − uj| ≤ |vi − vj| if uj > ui

and, as such, there are four ways to order ui, uj, vi, and vj:

vi < uj < ui < vj

vj < uj < ui < vi

vi < ui < uj < vj

vj ≤ ui < uj ≤ vi

Suppose that

ui = a+ nq

uj = b+ np

Thus
vi = b+ n(q + h)

vj = a+ n(p− h)

If h ≥ 3, then vi > ui and vj < uj, so one of

vj < uj < ui < vi

vj ≤ ui < uj ≤ vi

holds. Either way, vi > vj, so that vi − vj > 0. Since 1 ≤ a < b ≤ n, we

have b − a ≥ 1. If ui > uj, then, since a < b, we know that q > p and hence

q − p ≥ 1. If uj > ui, then

uj − ui = |ui − uj| ≤ |vi − vj| = vi − vj

=⇒ b+ np− (a+ nq) ≤ b+ n(q + h)− (a+ n(p− h))

=⇒ b− a+ n(p− q) ≤ b− a+ n(q − p) + 2nh

=⇒ 2n(p− q) ≤ 2nh

=⇒ q − p ≥ −h
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Combining these facts, we obtain

vi − vj = b+ n(q + h)−
(︁
a+ n(p− h)

)︁
= b− a+ n(q − p) + 2nh

≥

{︄
1 + n+ 2nh if ui > uj

1− nh+ 2nh if uj > ui

≥

{︄
1 + 7n if ui > uj

1 + 3n if uj > ui

with the final inequality resulting from the fact that h ≥ 3.

In both cases, we have vi − vj > 2n and hence v is wide.

If instead h ≤ −3, then vi < ui and vj > uj, in which case one of

vi < uj < ui < vj

vi < ui < uj < vj

holds. As such, vj > vi, so that vj − vi > 0. Since 1 ≤ a < b ≤ n, we know

that a− b ≥ 1− n. If uj > ui, then, as a < b, we have p ≥ q and so p− q ≥ 0.

If ui > uj, then

ui − uj = |ui − uj| < |vi − vj| = vj − vi

=⇒ a+ nq − (b+ np) < a+ n(p− h)− (b+ n(q + h)

=⇒ a− b+ n(q − p) < a− b+ n(p− q)− 2nh

=⇒ 2n(q − p) < −2nh

=⇒ p− q > h

=⇒ p− q ≥ h+ 1

since p, q ∈ Z.
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Subsequently,

vj − vi = a+ n(p− h)−
(︁
b+ n(q + h)

)︁
= a− b+ n(p− q)− 2nh

≥

{︄
1− n+ 0− 2nh = 1− n(2h+ 1) if uj > ui

1− n+ n(h+ 1)− 2nh = 1− nh if ui > uj

≥

{︄
1 + 5n if uj > ui

1 + 3n if ui > uj

with the final inequality owing to the fact that h ≤ −3.

Therefore, vj − vi > 3n and subsequently v is wide.

The case in which
ui = b+ nq

uj = a+ np

follows essentially the same argument as the other case. Here we have

vi = a+ n(q − h)

vj = b+ n(p+ h)

If h ≥ 3, we know one of the following is true:

vi < uj < ui < vj

vi < ui < uj < vj

Hence, vj > vi and the end result is that

vj − vi ≥

{︄
1 + 7n if uj > ui

1 + 4n if ui > uj

Thus, vj − vj > 3n and therefore v is wide.
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Finally, if h ≤ −3, it follows that one of

vj < uj < ui < vi

vj < ui < uj < vi

is true. Hence vi > vj and

vi − vj ≥

{︄
1 + 5n if ui > uj

1 + 2n if uj > ui

Hence vi − vj > 2n and as a result, v is wide.

6.4 Wide ˆ︁T -Fixed Points and Kite Patterns

In Section 5.9, we proved that every maximal singularity of a singular ratio-

nally smooth Schubert variety X(w) satisfies either the (−α)–kite property in

X(w) or (α − δ)– kite property in X(w). In this section, we prove that theˆ︁T -fixed point at the top of either kite pattern is wide.

Theorem 6.4.1. Let u ∈ (G/B)ˆ︁T . If u satisfies the (α − δ)–kite property for

some α ∈ Φ+, then sαsα−δu is wide and hence contains the pattern 3412. If

u satisfies the (−α)–kite property for some α ∈ Φ+, then sα−δsαu is wide and

hence contains the pattern 3412.

Proof. Suppose that u satisfies the (−α)–kite property. Thus,

sα−δu < u < sαu < sα−δsαu

and

u < s(−α+kδ)u < s(−α+(k+1)δ) s(−α+kδ)u

for some integer k ≥ 2. Let v = s(−α+kδ)u and v′ = s(−α+(k+1)δ)v ( = sα−δsαu).

The Bruhat graph showing these relations is:
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uα− kδ −α

−α + δ

α− δα− (k + 1)δ

v

v′

Since k ≥ 2, we know that k + 1 ≥ 3. It follows from Lemma 6.3.5 that

v′ = s(−α+(k+1)δ)v is wide and, as such, contains the pattern 3412, by Lemma

6.3.2.

Now suppose that u satisfies the (α− δ)–kite property. Therefore,

sαu < u < sα−δu < sαsα−δu

and

u < s(α+kδ)u < s(α+(k+1)δ)s(α+kδ)u

for some integer k ≥ 1. Let v = s(α+kδ)u and v′ = s(α+(k+1)δ)v. The Bruhat

graph showing these relations is:

uα− δ −α− kδ

α

−α− (k + 1)δ

v

−α

v′
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For k ≥ 2, we have that k+1 ≥ 3. Therefore, by Lemma 6.3.5, v′ = s(α+(k+1)δ)v

is wide and subsequently, by Lemma 6.3.2, v′ contains the pattern 3412.

We are only left to consider k = 1, in which case, v = s(α+δ)u and v′ = s(α+2δ)v.

Let α = (ab) ∈ Φ+, where 1 ≤ a < b ≤ n and set u = [u1, u2, . . . , un]. Let

ui = ui + nq, for some q ∈ Z and uj = uj + np, for some p ∈ Z, be the entries

in u with 1 ≤ i < j ≤ n such that ui, uj ∈ {a, b}. Let v = [v1, v2, . . . , vn] and

v′ = [v′1, v
′
2, . . . , v

′
n].

If ui = a and uj = b (so that ui < uj), then

vi = uj + n(q + 1)

vj = ui + n(p− 1)

and
v′i = ui + n(q + 1− 2) = ui + n(q − 1)

v′j = uj + n(p− 1 + 2) = uj + n(p+ 1)

It follows that

vi − vj = uj − uj + n(q − p+ 2)

and

v′j − v′i = uj − ui + n(p− q + 2)

Also, since ui < uj, we have that uj − ui ≥ 1.

If q − p ≥ 0, then

vi − vj = uj − uj + n(q − p+ 2) ≥ 1 + 2n > 2n

As a result, v is wide and thus, from Lemma 6.3.3, we obtain that v′ is wide.

Therefore, by Lemma 6.3.2, v′ contains the pattern 3412.

Otherwise, p− q ≥ 1, from which we obtain

v′j − v′i = uj − ui + n(p− q + 2) ≥ 1 + 3n > 3n
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Hence, v′ is wide and so, by Lemma 6.3.2, v′ contains the pattern 3412.

On the other hand, if ui = b and uj = a (so that ui > uj), then

vi = uj + n(q − 1)

vj = ui + n(p+ 1)

v′i = ui + n(q − 1 + 2) = ui + n(q + 1)

v′j = uj + n(p+ 1− 2) = uj + n(p− 1)

which gives

vj − vi = uj − uj + n(p− q + 2)

and

v′i − v′j = ui − uj + n(q − p+ 2)

Again, as ui > uj, we have that ui − uj ≥ 1.

This time, if q − p ≥ 0, then

v′i − v′j = ui − uj + n(q − p+ 2) ≥ 1 + 2n > 2n

Consequently, v′ is wide and hence v′ contains the pattern 3412, by Lemma

6.3.2.

However, if p− q ≥ 1, we compute that

v′j − v′i = uj − ui + n(p− q + 2) ≥ 1 + 3n > 3n

which guarantees that v is wide. Due to Lemma 6.3.3, v′ is also wide and thus,

owing to Lemma 6.3.2 we have that v′ contains the pattern 3412.
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6.5 Producing the Pattern 3412

With the previous lemma in hand, we are now in a position to prove our main

result of this chapter, specifically, that the ˆ︁T -fixed point w that indexes a

Schubert variety X(w) in G/B which is both rationally smooth and singular

contains the pattern 3412.

Theorem 6.5.1. Let X(w) be a singular rationally smooth Schubert variety

in G/B. Then w contains the pattern 3412.

Proof. Let u ∈ X(w)
ˆ︁T be a maximal singularity of X(w). By Theorem 5.9.5,

u satisfies either the (−α)–kite property in X(w) or the (α− δ)–kite property

in X(w). From Theorem 6.4.1 we obtain that v′ is wide, where v′ = sα−δsαu

in the case the u satisfies the (−α)–kite property in X(w) or v′ = sαsα−δu in

the case that u satisfies the (α − δ)–kite property in X(w). Since v′ is wide

and v′ < w, it follows from Corollary 6.3.4, that w is wide. Subsequently, by

Lemma 6.3.2, w contains the pattern 3412.

To conclude this chapter, we provide a proof of Conjecture 6.1.6. This conjec-

ture was independently proven by Richmond-Slofstra in [35].

Theorem 6.5.2. Let X(w) be a Schubert variety in G/B. Then X(w) is

smooth if and only if w avoids the patterns 3412 and 4231.

Proof. By Corollary 6.1.5, we know that if w contains either the pattern 3412

or the pattern 4231, then X(w) is singular.

Now suppose that X(w) is singular. If X(w) is not rationally smooth (so

n ≥ 3), then we obtain from Theorem 6.1.3 that w must contain either the

pattern 3412 or the pattern 4231. If X(w) is rationally smooth, then Theorem

6.5.1 yields that w contains the pattern 3412. Therefore, if X(w) is singular,

then w contains either the pattern 3412 or the pattern 4231.
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Chapter 7

Conclusion

In this thesis, we investigated the smoothness of certain rationally smooth

subvarieties of flag varieties in two different contexts: the classicalG/B context

and affine G/B context.

In our work on T -orbit closures in G/B in the type D case, we obtained a

description of the weights of Ty(Σ), where Σ ∈ ΣS(Y, y) (see Lemma 3.10.5

above). We would like to extend this result to a complete characterization of

the singularities of S-surfaces in Y , similar in nature to the results obtained

by Carrell-Kurth for T -surfaces in G/P (see Section 6 in [14]) and by Carrell-

Kuttler for T -surfaces in G/B (see Proposition 5.2 in [15]). We would also like

to further investigate the connectedness of S. In addition, we would like to use

the approach applied in the type A and D cases to study the singular locus of

rationally smooth T -orbit closures in other types. It would also be interesting

to see how far our result on T -orbit closures in the type A case carries over to

simply laced affine Kac-Moody groups.

In the classical backdrop, we would like to develop an explicit algorithm for

computing Peterson translates for T -orbit closures in G/B. Furthermore, it

would be interesting to determine whether the method we used to study T -

orbit closures can be applied to study more general varieties (eg. spherical

and symmetric varieties).

In terms of our work on Schubert varieties X(w) in G/B, in Theorem 5.9.5

and Lemma 5.10.1 we provide necessary conditions for a ˆ︁T -fixed point of a
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rationally smooth Schubert variety to be a maximal singularity, however, we

have not obtained a sufficient condition. We would like to obtain a complete

characterization of the maximal singularities of rationally smooth Schubert

varieties X in G/B. It would be of particular interest to see if there is a

combinatorial relationship between the maximal singularities of X(w) and the

affine permutation w, as was the case in the classical G/B setting (see [29], [5],

[16], [22], [32]). Furthermore, we would like to develop an explicit algorithm

for computing Peterson translates for Schubert varieties in G/B.
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duality, Proc. Symp. Pure Math. A.M.S. 36 (1980), 185–203.

[25] Kempf, G.; Knudsen, Finn Faye; Mumford, D.; Saint-Donat, B.: Toroidal

embeddings. I., Lecture Notes in Mathematics, Vol. 339. Springer-Verlag,

Berlin-New York, 1973.

[26] Kumar, Shrawan: Kac-Moody groups, their flag varieties and representa-

tion theory, Progress in Mathematics, Vol. 204. Birkhüser Boston, Inc.,
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