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Abstract

Recommendation systems have become an indispensable part of our lives, provid-

ing an effective solution to information overload and enhancing user satisfaction by

suggesting the most relevant content. In recent years, deep learning has facilitated

the creation of recommendation technologies that rely on sophisticated deep neu-

ral networks to learn intricate user representations, resulting in remarkable success.

However, the existence of persistent issues, such as data sparsity and various biases,

presents significant obstacles for deep neural methods in the pursuit of creating ef-

fective and unbiased recommendation systems.

Cross-domain recommendation (CDR) is a promising approach that leverages

data and knowledge from auxiliary domains to improve the performance of recom-

mender systems when the data in the target domains is sparse. To address the chal-

lenge of cross-domain sequential recommendation with limited overlapping users,

we developed a novel CDR method inspired by the real-world needs of industrial

companies. Our method offers an effective solution to this problem. Furthermore,

we extended our CDR approach to multi-target scenarios, where the objective is to

enhance recommendation performance for three or more domains simultaneously,

and we tackled the issue of negative transfer in this context.
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The utilization of a temporal heterogeneous graph is a compelling technique

for capturing the intricate interactions between users and items in recommendation

systems. In order to achieve precise sequential recommendations through the use

of temporal graphs, we introduce a novel continuous-time representation learning

model that can extract high-quality user and item representations from a tempo-

ral heterogeneous information network. Moreover, to address the issue of biases

in recommendation systems, we propose an unbiased sequential recommendation

model that incorporates the potential outcome framework (POF) and employs a dis-

entangled graph transformer on a temporal user-item interaction graph to enhance

performance.
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Preface

This dissertation proposes models to address data sparsity and bias issues for accu-

rate user representation learning in various recommendation scenarios. Chapter 1

provides background information and motivations, while Chapter 2 reviews related

literature. The remaining sections of this thesis are the result of collaborative work

with Dr. Di Niu and other co-authors.

Chapter 3 has been published as ªRecGURU: Adversarial learning of general-

ized user representations for cross-domain recommendationº by Li, Chenglin, et

al. in the Proceedings of the fifteenth ACM international conference on web search

and data mining in 2022.

Chapter 4 has been published as ªOne for All, All for One: Learning and Trans-

ferring User Embeddings for Cross-Domain Recommendationº by Li, Chenglin,

et al. in the Proceedings of the Sixteenth ACM International Conference on Web

Search and Data Mining in 2023.

Chapters 5 and 6 are the result of collaborative efforts with Yuanzhen Xie and

Tao Xie from Tencent, as well as my advisor, Dr. Di Niu. These chapters are

currently under submission.
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Chapter 1

Introduction

In today’s era of rapid internet growth, recommendation systems have become in-

creasingly crucial in helping people manage information overload. These systems

are designed to leverage data-driven algorithms and suggest relevant items to users

across a range of domains, including products [1], [2], music [3], and movies [4],

[5]. The primary goal of a recommendation system is to offer personalized and

related items based on users’ interests, preferences, and interactions [6]. Tradi-

tionally, either or both Collaborative Filtering [7], [8] and content-based filtering

[9] are used to achieve personalized recommendations. In recent decades, machine

learning algorithms have been developed to further improve recommendation per-

formance, including shallow models like Matrix Factorization [10] and Factoriza-

tion Machines [11], as well as deep models such as Neural Collaborative Filtering

(NCF) [12], Deep & Wide [13], and AutoInt [14].

Sequential recommendation has taken the concept of general recommendation

to the next level by explicitly modelling the correlations between users’ successive

behaviours. It has been hugely successful in modelling user preferences and has

made significant strides with the introduction of advanced deep learning models,

such as recurrent neural networks (RNNs) [15], attention mechanisms [16], and

Graph Neural Networks (GNN) [17].
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1.1 Data Sparsity and Cross-Domain Recommenda-

tion

Data sparsity is a well-known challenge in recommendation systems, occurring

when the dataset contains only a few interactions between users and items. This

can make it difficult to generate accurate recommendations based on limited data.

Furthermore, data sparsity may result in overfitting or cold-start issues if there is

insufficient data available to train the recommender effectively. Unfortunately, the

data sparsity problem has been a persistent issue that can hinder recommendations

within a single domain.

The cross-domain recommendation (CDR) has been proposed to alleviate the

data sparsity issue by leveraging user behaviour in multiple domains to help recom-

mendations in the target domain and has attracted much attention in both academia

and industry. Recent work on cross-domain recommendation focuses on the trans-

fer learning of user and item information from diverse perspectives. For example,

mapping functions have been proposed to map user representations from one do-

main to another, by learning from the behaviour of users that appear in both domains

[18]. Nevertheless, a common limitation of existing cross-domain recommendation

methods is that they perform transfer learning primarily based on data of the over-

lapped users, and fail to function well when there are few or even no overlapped

users in two domains [18]. However, in many real-world applications, there is often

not a sufficient number of overlapped users.

Moreover, most prior research on cross-domain recommendation focuses on ei-

ther the single-target CDR (STCDR) or dual-target CDR (DTCDR) [19] scenarios,

with only two domains involved. STCDR aims to improve the recommendation

accuracy in the target domain, while DTCDR tries to improve the performance

in both domains simultaneously. Multi-target CDR (MTCDR) is a more general

and challenging problem, which aims to improve the recommendation performance

in multiple participating domains concurrently. Since previous methods solve the

2



STCDR and DTCDR by modelling a pair-wise domain-domain relationship, intu-

itively speaking, extending them to the MTCDR scenario with n domains involves

handling at least
(

n
2

)

pairs of relations, which is not practical when the number of

domains is large.

Relatively fewer efforts have been put into MTCDR. Current state-of-the-art

solutions usually generate a shared cross-domain user representation for each user,

which, combined with domain-specific features, is used to boost recommendations

in any given domain [20], [21]. HeroGRAPH [20] collects user behaviour in all do-

mains to build a heterogeneous graph. It then applies the graph convolutional net-

works (GCN) [22] to generate the cross-domain user and item embeddings, which

are directly transferred to target domains to boost recommendation. However, most

recommender systems are built on users’ sensitive data, e.g., check-in data, and

browsing records, which are held by different domains and cannot be shared di-

rectly to form a large heterogeneous graph. MPF [21] learns a global embedding for

each user, which is directly shared among all domains and optimized by the recom-

mendation losses in all participating domains via multi-task learning. However, the

cross-domain user representation, extracted directly from the collected data from

all domains, may be severely biased by the domains with richer data and may fail

to model the user preferences in sparse domains. The biased global representation

of a user may negatively affect recommendation performance when transferred to a

target domain. This unbalanced data problem also exists in HeroGRAPH [20].

1.2 Temporal Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as the new state-of-the-art approach

for many recommendation problems, thanks to their strong ability to handle struc-

tured data and explore high-order information [23]. For capturing users’ behaviour

histories in recommendation systems, a temporal graph (or dynamic graph), which

is represented as an ordered list or asynchronous "stream" of timed events, such

as the addition or deletion of nodes and edges, is a natural data structure. There-

3



fore, recent research efforts have focused on developing effective temporal graph

methods to enhance the performance of sequential recommendations [24]. Many

real-world tasks can often be expressed as temporal heterogeneous graphs. How-

ever, accurately learning graph representation while dealing with the heterogeneity

and temporal evolution of graph structure poses significant challenges.

1.3 Bias and Debias in Recommendation

Despite the success of sequential recommendation in modelling user preferences,

with advanced deep-learning models such as Markov chains [25], recurrent neu-

ral networks (RNNs) [15], attention mechanisms [16], and Graph Neural Network

(GNN) [17] being widely implemented, real-world scenarios often introduce bi-

ases such as selection bias and exposure bias which lead to missing not-at-random

(MNAR) data that is skewed from the ideal distribution. While previous methods

have achieved remarkable results based on observational data instead of experi-

mental data, this could lead to issues such as the long-tail effect if recommendation

performance is only optimized on this biased observed dataset.

Recent studies have attempted to address the bias problem in recommendation

systems through techniques from the causal inference field, for example, the poten-

tial outcome framework (POF) and inverse propensity scoring (IPS). The effective-

ness of these approaches depends on an accurate estimation of the propensity score

(PS). In traditional methods, a small set of unbiased datasets is often required for

the estimation of PS [26]. Some recent work has extended IPS to enable unbiased

sequential recommendations. The difference between traditional methods and this

approach lies in the specific model used for estimating PS. For example, USR [27]

utilizes a GRU module which takes the historical item sequence of each user as

input to learn its current representation and ultimately for estimating the propensity

score. DEPS [28] further extends this by incorporating user sequences for the rep-

resentation learning of items and achieves the so-called dually enhanced propensity

score estimation. In sequential recommendations, obtaining unbiased datasets for
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estimating PS (as traditional methods do) is extremely difficult or even impossible.

Thus, USR and DEPS train their PS modules on biased observed datasets. This can

lead to inaccurate estimation of PS and consequently biased recommendations.

Additionally, previous debias solutions focus solely on debiasing via an unbi-

ased loss function while ignoring the importance of extracting unbiased represen-

tations of users and items which we argue is the essential and ultimate goal for the

unbiased recommendation. For example, USR [27] and DEPS [28] rely on mod-

elling users’ preferences from their historical interaction records, without taking

into account that such records may have been generated in a biased recommenda-

tion environment. This means that directly modelling the history sequence may

result in biased user and item representations which cannot accurately represent

users’ preferences and degrade the recommendation performance. Moreover, few

attempts have been made to tackle the selection bias in sequential recommendations

with explicit user ratings.

1.4 Contributions and Thesis Outline

RS

Data 
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Chapter 5
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Chapter 3

Figure 1.1. The framework of the components in this dissertation.

Our work addresses the challenges of data sparsity and bias in recommenda-

tion scenarios, making significant contributions to the field. Figure 1.1 provides
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an overview of our proposed method, which involves three methodologies, cross-

domain recommendation, temporal heterogeneous graph, and potential outcome

framework, applied across four different recommendation scenarios. By tackling

these challenges, we aim to improve user representation learning in RS. Specifi-

cally, we discuss the dual-target cross-domain sequential recommendation scenario

in Chapter 3 [29] and we have made the following contributions:

• We propose a dual-target cross-domain sequential recommendation RecGURU

which achieves state-of-the-art performance.

• Instead of knowledge transferring which requires user features from both

domains, RecGURU learns global user representations through adversarial

training which can be applied to non-overlapped users.

• We propose an effective and stable training procedure for RecGURU.

In Chapter 4, we extend the dual-target scenario into the multi-target cross-

domain recommendation (MTCDR) [30] and our contributions are:

• We identified two beneficial embeddings for MTCDR: global user embed-

dings and domain-specific user embeddings in source domains.

• We propose a contrastive autoencoder (CAT) module to extract unbiased

global user representations.

• An attention-based representation transfer (ART) unit is built in each target

domain to integrate domain-specific user embeddings from source domains.

• We effectively avoid negative transfer in MTCDR.

In Chapter 5, we propose a representation learning algorithm from temporal

heterogeneous information networks. Our contributions are:

• We propose an edge-based Hawks process to model the dynamic impact of

historical neighbours of a node.
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• We integrate the dynamic node centrality to weigh the importance of the

neighbours of a node in the local aggregation of a GNN layer.

• We train the model by predicting the occurrence of temporal events (prede-

fined subgraph structures) to capture the evolution of higher-order topological

structures.

In Chapter 6, we discuss the bias and bias methods in recommendations and

propose a novel disentangled graph transformer to alleviate the biases problems.

Specifically, we have made the following contribution in this chapter.

• We studied the explicit feedback-based sequential recommendation and for-

mulate the bias problem within the potential outcome framework.

• We propose a disentangled graph transformer (DGT) model for handling the

selection bias.

• We introduce a new propensity score estimation module for unbiased training

objectives and calibrating interaction records of users.

Finally, we conclude the dissertation in Chapter 7.
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Chapter 2

Related Work

2.1 Cross-Domain Recommendation

2.1.1 Sequential Recommendation

The sequential recommendation has gained popularity and attracted more and more

attention in recent years due to its capability of capturing the sequential behaviour

patterns of users compared to traditional method [6], [31]. Early studies adopt

Markov Chains to capture sequential patterns from users’ historical interactions

[25], [32]. Methods based on Recurrent Neural networks (RNN) and attention

mechanisms have also been proposed, for example, GRU4Rec [33] and its improved

version GRU4Rec+ [15] leverage Gated Recurrent Unit (GRU) with BPR loss to

model a user’s sequential behaviours. In SAS [16], unidirectional self-attention is

adopted here to encode a user’s historical behaviour. Bert4Rec [34] follows the idea

of BERT and trained a bidirectional self-attention model. SHAN [35] adopts a hier-

archical attention framework where two attention networks are used to model users’

long- and short-term preferences. Graph neural networks and MLP models are also

adopted in recent work, for example, FMLP-Rec [36] proposes an all-MLP model

with trainable filters for the sequential recommendation and achieves decent perfor-

mance. [37] adopt sequential hypergraphs to model the dynamic user preferences in

the next-item recommendations. [17], [38] leverages graph neural network (GNN)
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for sequential and session-based recommendation tasks. TGSRec [24] adopt time

encoding and temporal graph neural network for the time-aware sequential recom-

mendation. Some recent work focus on denoising and data augmentation for bet-

ter modelling of sequential patterns, e.g., Causerec [39] and [40], [41]. However,

most previous methods focus on sequential recommendation with implicit feedback

(clicks). In this chapter, we focus on the problem of unbiased sequential recommen-

dation with explicit user feedback and propose novel disentangled representations

of users and items to present their preferences and dislikes.

2.1.2 Cross-domain Sequential Recommendation

Traditional Cross-domain Recommendation. Cross-domain recommendation al-

leviates data sparsity issues posed by single-domain recommendation via auxiliary

information from other domains. CoNet [42] transfers and combines knowledge

across different domains through cross-connections between feed-forward neural

networks. [43] proposes to transfer the item embeddings across domains to avoid

leakages of user privacy. However, these methods only focus on overlapped users.

CATN [44] solves the cold-start problem via aspect transfer which requires side

information of both users and items. [45] leverages meta-transfer learning to ad-

dress the sparsity problem, but it requires multiple contextual information such as

the user’s average spend.

To transfer knowledge from the source domain to the target domain, EMCDR

[18] learns a mapping function on overlapped users which maps user preferences

across domains. DCDCSR [46] maps the latent factors in the target domain to fit

the benchmark factors which combines the features in both the target and source do-

mains. To reduce the dependency on overlapped users, SSCDR [47] adopts a semi-

supervised strategy. DDTCDR [48] and its improved version DOML[49] adopt dual

metric learning (DML). The DOML requires side information to get embeddings of

users and items, however, we focus on the implicit feedback-based cross-domain

sequential recommendation problem in this chapter.

Generative Adversarial Network (GAN) [50] is gaining popularity in cross-
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domain recommendation[51], [52], [52]±[54]. CnGAN [51] introduces the use of

the GAN to learn a better mapping function of user representations from the source

domain to the target domain. Since the discriminator in CnGAN is trained to dis-

tinguish between real and synthetically mapped pairs, where the real mapped pairs

only come from overlapped users. Thus, CnGAN is critically dependent on the

quantity and quality of overlapped users, which usually cannot be guaranteed in

reality. Additionally, the CnGAN tries to stabilize the training of GAN by intro-

ducing more synthetically mapped pairs. However, this makes the input data to

the discriminator unbalanced and thus may fail to train a good mapping function.

Similarly, RecSys-dan [52] adopts an adversarial approach to transfer representa-

tions of users or items from the source domain to the target domain. [53] adopt

adversarial samples in the training process to improve the generalization ability of

the cross-domain recommender system. ATLRec [54] transfers shareable features

across domains, however, it focuses on overlapped users which show up in both the

target and source domains.

Cross-domain Sequential Recommendation. There are also several studies in

the field of cross-domain sequential recommendation. π-Net [55] is able to gener-

ate recommendations for both domains through a cross-domain transfer unit. How-

ever, it requires synchronously shared timestamps and can not be applied to non-

overlapped users. [56] transfers users’ novelty-seeking properties learned from the

sequential data in the source domain to the target domain. [57] proposed a frame-

work that is able to fine-tune a large pre-trained user embedding network to adapt

to downstream tasks in the target domain. However, these studies have different

problem settings from our work. And they can only be applied to overlapped users,

but our method can handle both overlapped and non-overlapped users.

2.1.3 Single-Target Cross-Domain Recommendation

Previous single-target CDR (STCDR) works can be classified into content-based

[58]±[60] and embedding-based approaches[18], [44], [47], [61]. In the former,

[58] uses a deep neural network to learn the preferences of users based on their
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search queries in different domains. [59] proposes a content-based domain adapta-

tion model and a domain separation network for cross-domain recommendations.

[60] proposes a deep domain adaptation model which only relies on the rating

metrics in each domain for the cross-domain recommendation. In the latter, EM-

CDR [18] solves the cold-start problem in the target domain by learning a mapping

function between the user embeddings of the source and the target domain. Semi-

supervised learning is adopted for scenarios with limited user overlapping between

domains [47]. CDIE-C [61] enhances item embedding learning by cross-domain

co-clustering for the sequential recommendation.

2.1.4 Dual-Target Cross-Domain Recommendation

Dual-target CDR is a relatively new recommendation scenario in CDR, and it has

attracted increasing attention in recent years. Given two domains, DTCDR is to im-

prove the recommendation accuracy in both domains at the same time by leverag-

ing their observed information[48], [49], [62]±[66]. [62] first proposed the DTCDR

problem and a DTCDR framework that learns more representative embeddings of

users and items based on multi-sources such as rating, review, user profile, item

details, etc. Then, it combines and shares the embedding of common users across

domains with three different strategies. Then, it combines and shares the embed-

ding of common users across domains with three different strategies. [63] combine

the embeddings of common users based on a fixed strategy, i.e., hyper-parameters

and data sparsity degrees of common users. GA-DTCDR [64] employs graph em-

bedding to generate more informative embeddings of users and items and employs

element-wise attention to combine the embeddings of common users/items across

domains. The deep dual transfer CDR (DDTCDR) [48] considers the bi-directional

latent relations between users and items and applies a latent orthogonal mapping

to extract user preferences. CATN [44] learns aspect correlations across domains

with an attention mechanism. Some work focuses on extracting domain-invariant

or domain-independent user attributes for CDR [67]±[69]. ACDN [68] models an

individual’s propensity from the aesthetic perspective and captures users’ domain-
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independent aesthetic preference for CDR.

2.1.5 Multi-Target Cross-Domain Recommendation

Although multi-target CDR is inspired by dual-target CDR, it aims to achieve a big-

ger goal, i.e. solving the data sparsity problem for all participating domains at the

same time. The MTCDR methods [20], [21], [45], [57], [70], [71] have emerged

to improve the recommendation performance of multiple domains simultaneously.

[70] adopt recurrent neural networks (RNNs) to model the sequential behaviour

of users in multiple domains simultaneously. [57], [71] achieve knowledge trans-

fer through parameter sharing across multiple domains. However, they all focus

on sequential recommendations. Recent works try to extract domain-specific and

cross-domain features simultaneously, e.g., MSDCR [72], HeroGRAPH [20], and

MPF [21]. Specifically, HeroGRAPH [20] constructs a heterogeneous graph from

interactions between users and items from all domains and develops a graph embed-

ding algorithm to extract common features for MTCDR. MPF [21] captures both

the cross-site and site-specific preferences for multi-site video recommendations.

MMT-Net [45] extracts contextual invariances across domains and transfers auxil-

iary information from a source domain to improve the recommendations in multi-

ple domains. However, it requires extra contextual information. GA-MTCDR [73],

extended from GA-DTCDR [64], employs element-wise attention to combine em-

beddings of overlapped users/items from all domains. However, it requires side

information for graph construction in each domain. However, most of the previous

MTCDR methods ignore the data isolation constraint between domains in practice,

and none of them has considered the negative transfer problem. In this study, we

try to solve the MTCDR problem in a more realistic scenario where user and item

data are held by each individual domain and cannot be shared across domains. Fur-

thermore, our framework is also designed to avoid the negative transfer problem in

MTCDR.
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2.2 Unbiased Sequential Recommendation

2.2.1 Debias in Recommendation

Recommendation systems (RS) face a variety of biases including selection bias [74]±

[76], position bias [77], [78], exposure bias [79]±[83], and conformity bias [84] etc.

Bias elimination (debias) in recommendation systems, has become a new trend and

great research efforts have been put into introducing causal inference techniques

such as the potential output framework and inverse propensity weighting into the

RS for unbiased recommendation [85], For examples, [86], [87] leverage the In-

verse Propensity Score (IPS) for an unbiased recommendation. [88] also corrects

the exposure bias through IPS. [89] introduces the doubly robust method in recom-

mendation systems to reduce the high variance caused by the PS method and get

a more robust debias model. Counterfactual thinking from causal inference is also

widely adopted in debias models [90]±[93]. Autodebias [26] combines the IPS and

imputation approaches and proposes a universal debias framework for all types of

bias in the recommendation. [94].

2.2.2 Debias in Sequential Recommendation

USR [27] first extends the debias problem into sequential recommendation and pro-

poses to estimate propensity scores through a GRU channel based on the historical

item sequence of users. DEPS [28] further takes the user’s perspective into account

when estimating the propensity score for a better and more robust sequential debias

model. Unlike the traditional IPS-based method where a small unbiased dataset

is collected in the training process to ensure the correctness of the IPS estimation,

the USR and DEPS methods directly optimize their IPS modules on observational

data which may result in a biased IPS and recommendation. However, collecting a

bias-free dataset in the sequential recommendation scenario with explicit user feed-

back is extremely difficult (if impossible). In this chapter, we propose a novel IPS

estimation module which first decomposes the propensity score of interactions into
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user rating propensity, item rating propensity, and user-item correlation propensity

and leverages the prior distributions of user and item propensities for a more stable

and accurate PS estimation.

2.3 Representation Learning on Temporal Heteroge-

neous Graph

Graph embedding tries to represent nodes in a low-dimensional space while pre-

serving node features and the topological structures of the graph [95], [96]. Tradi-

tional methods mainly focus on the representation learning on static homogeneous

networks, e.g., Deepwalk [97], LINE [98], GCN [99], GAT [100], and do not con-

sider the evolution of graphs.

Recent graph embedding studies focus on two more practical scenarios, i.e., the

heterogeneous information network (HIN) and temporal networks. For HIN, tradi-

tional shallow methods model semantics and structures based on meta-path [101],

e.g., Meta-path2vec [102] and HAN [103], while deep models incorporate heteroge-

neous node/edge information into the graph neural network through different tech-

niques such as attention mechanism HetGNN [104] and HGT [105]. For temporal

networks, most of the existing works resort to taking snapshots of the continuous-

time temporal networks, and model the dynamics of node embeddings from a se-

quence of snapshots, e.g., DySAT [106], MTSN [107], and EvolveGCN [108]. Re-

cent work focuses more on modelling the evolution of networks in a continuous-

time manner, e.g., TGAT [109], TREND [110], CAW [111], and HVGNN [112].

Besides, some work focuses on exploring the evolution patterns of temporal graphs

such as the triadic closure process [113] in social networks. There are also some

works that aim at providing real-time node embedding services from temporal net-

works, e.g., APAN [114], TGL [115] and TGN [116].

There is an increasing trend that focuses on temporal HIN embedding. Most

existing works use meta-path to capture semantics and structures in HIN and take
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snapshots of the temporal network to model the dynamics of node embeddings, like

DHNE [117], Change2vec [118], and DyHNE [119]. Other than taking snapshots,

HDGAN [120] leverages time-level attention to model network evolution. Besides,

some work takes advantage of the Hawkes process [121] to simulate the evolu-

tion of the temporal network, e.g., THINE [122] and HPGE [123] for HIN, and

HTNE [124], MMDNE [125], and TREND [110] for monograph. However, these

methods are not inductive to new nodes, thus, there is still a lack of deep methods

for temporal HINs. TGSRec [24] applied the TGAT model to the sequential rec-

ommendation problem but does not explicitly consider the influence of node het-

erogeneity. Effectively modelling the temporal evolution of heterogeneous graph

structures poses significant challenges for both graph representation learning and

recommendation systems. To fill this gap, in this thesis, we propose a deep graph

neural network for continuous-time representation learning on temporal HINs.
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Chapter 3

Cross-Domain Sequential

Recommendation

3.1 Introduction

In this chapter, we present RecGURU to address the data sparsity problem in the

single-domain sequential recommendation by leveraging knowledge from a source

domain, in which there are only a few overlapping users between the target domain

and source domain. RecGURU consists of two parts: the Generalized User Repre-

sentation Unit (GURU) to obtain a single Generalized User Representation (GUR)

for each user, and the Cross-Domain Sequential Recommendation (CDSRec) unit

to achieve cross-domain collaboration in sequential recommendation tasks. Instead

of mapping user embeddings from one domain to another, we propose to generalize

a user’s embedding, i.e., its GUR, to incorporate information from both domains

through an adversarial learning framework. Once a GUR is obtained for each user,

we integrate the extracted GUR into the CDSRec unit using attention mechanisms

to boost recommendation performance. Specifically, we make the following contri-

butions:

First, in the GURU module, an autoencoder is proposed to generate informative

user embeddings in each domain, which are to be unified later into a generalized

embedding, the GUR, with adversarial learning. The autoencoder consists of a
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self-attentive encoder with model weights shared across both the source and target

domains to produce latent user embeddings and two decoders to reconstruct be-

haviour sequences of users in the source and target domains, respectively. We train

the autoencoder through behaviour sequence reconstructions to generate meaning-

ful preliminary embeddings for users with unsupervised self-learning.

The GURU module further performs adversarial training to unify domain-dependent

user embeddings into a single global (GUR) for each user, which is domain-independent.

Specifically, the encoder part of the proposed autoencoder serves as a generator to

produce user embeddings, while a discriminator is trained to identify the origin do-

main of a generated embedding for a user randomly sampled from either the source

or the target domain. The encoder and discriminator are trained alternately with

adversarial objectives until the discriminator can not distinguish which domain a

given user embedding comes from. This is when the user embeddings in the two

domains become statistically indistinguishable and GURs are supposed to be gener-

alized global user embeddings, incorporating information from both domains. This

method does not rely on common users present in both target and source domains,

therefore eliminating the dependency on overlapped users as required by the prior

art.

Furthermore, we introduce an effective and stable training procedure for RecGURU,

consisting of three phases. We first pre-train the autoencoder to substantially reduce

the reconstruction loss which boost-starts the subsequent adversarial learning. In

the adversarial learning phase, the reconstruction loss is further jointly optimized

in a multi-task fashion which prevents the encoder from generating wild represen-

tations, stabilizing adversarial learning. In the meantime, RecGURU can still lever-

age overlapped users as prior work does, by introducing an l2 penalty in the opti-

mization procedure to explicitly force each common user to have the same shared

embedding in different domains. Finally, the CDSRec module, which incorporates

the GUR with attention mechanisms, is fine-tuned in the target domain with the

next-item recommendation task to boost the recommendation performance.

Through extensive experiments, we show that RecGURU has achieved improve-
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ment in the sequential recommendation, compared to several state-of-the-art single-

domain and cross-domain recommendation methods. Specifically, we outperform

all the baselines on various metrics by a large margin on the Amazon datasets in-

cluding "Sport", "Clothing", "Movie", and "Book". Additionally, we have collected

a large cross-domain recommendation dataset with two domains, i.e. ªWeseeº and

ªTencent Videoº, from two real-world applications which provide video streams

to millions of users. Ablation studies on the collected datasets with various por-

tions of overlapped users are conducted to show the effectiveness of each proposed

sub-module as well as the robustness of our method. The collected datasets will be

made public to facilitate future research in the field of cross-domain and sequential

recommendation.

3.2 Methodology

Overall Architecture of RecGURU
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Figure 3.1. Model structure of the proposed RecGURU. User behaviour sequences

in both domain A and B are fed into the GURU encoder to generate generalized

latent user representations, i.e. hi
a and hi

b. Then, the generated GUR is fed into the

CDSRec model for the next-item recommendation in each individual domain.
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3.2.1 Problem Definition

We first formulate the implicit feedback-based sequential recommendation prob-

lem in a single domain. Let U = {u1, · · · , u|U |} and V = {v1, · · · , v|V |} denote

the sets of users and items, respectively, where |U | and |V | are the total number of

users and items. For each user ui, ∀i ∈ {1, · · · , |U |}, its interactions with items, in

chronological order, are denoted as si = (vi1, · · · , vi|si|), where |si| is the length of

behaviour sequence si. Formally speaking, given a user ui, sequential recommen-

dation aims to predict the next item that the user is most likely to interact with at

the next time step |si|+1 based on his or her past behaviour sequence si, which can

be formalized as modelling the probability over all items:

p(vi|si|+1 = v|si). (3.1)

In cross-domain scenarios, in order to improve the recommendation perfor-

mance, user information from other domains is also taken into account. Specif-

ically, for two domains A and B, given an overlapped user who appears in both

domains, ui ∈ (UA ∩ UB), cross-domain sequential recommendation tries to im-

prove the recommendation accuracy of the next item in one domain by integrating

user information from both domains. For example, for next-item recommendation

in domain A, it can be formulated as modelling the probability over all possible

candidates given the behaviour sequences sia and sib in domains A and B:

p(vi|si
A
|+1 = v|siA, siB). (3.2)

For non-overlapped users, due to a lack of their behaviour in both domains, we

can only exploit the implicit information from the other domain to enhance the

recommendation performance in the target domain. Therefore, Equation (3.2) is

reformulated as

p(vi|si
A
|+1 = v|siA, info(SB)), (3.3)
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where SB = {sjB}, ∀uj ∈ UB denotes the collection of behaviour sequences for all

users in domain B and info(·) represent a model which is used to extract any kinds

of useful information from SB to assist recommendation in domain A.

3.2.2 Overview of Proposed Method

Inspired by previous studies in single domain sequential recommendations which

try to combine the long-term (static) and short-term (dynamic) preferences of users

for next-item recommendation [35], [126], [127], we propose a novel RecGURU

framework. It consists of two parts: a generalized user representation unit (GURU)

which learns the generalized user representation across domains and a cross-domain

sequential recommendation (CDSRec) unit which takes the GUR as input to achieve

cross-domain collaboration for the next-item recommendation task. Here, the GUR

represents the static preference containing the user information in both domains.

The overall architecture of the proposed model is shown in Figure 3.1. The

GURU takes the long-term behaviour sequence as input and generates general-

ized representations for all users from both domains. Then, the short-term user

behaviour together with the extracted general representation is fed into the CD-

SRec module to enhance sequential recommendation in each individual domain.

To construct a GUR, we propose an adversarial training framework that involves an

autoencoder for generating informative user representations and a domain discrim-

inator to unify the representations across different domains. Furthermore, we apply

an additional l2 regularizer on overlapped users to further ensure each overlapped

user has similar representations in both domains.

Note that, motivated by the idea of the cross-lingual language models [128], we

adopt a shared encoder across domains to avoid over-parameterization and achieve

further information sharing via parameter-sharing across domains.

Figure 3.1 gives a further example of how input sequences are processed to pro-

duce GURs and next-item recommendations. Specifically, the behaviour sequences

(vi1, v
i
2, v

i
3, v

i
4, [eos]) and (vj1, v

j
2, v

j
3, [eos]) of user ui ∈ UA and uj ∈ UB, where

[eos] denotes the end of sequence token, are fed into two individual embedding lay-
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ers to produce the embedding vectors (ei
1, e

i
2, e

i
3, e

i
4, e

i
a) and (ej

1, e
j
2, e

j
3, e

j
b) con-

taining both item information and sequence position information. Then, the GURU

encoder takes the embedded sequences as inputs and generates the latent user rep-

resentations hi
a and hj

b of users ui and uj . To make sure the user representation is

meaningful and informative, decoders are applied to reconstruct the original input

sequences, such that, the encoder and decoder in each domain form an autoencoder

framework. Furthermore, in order to get generalized representations which com-

bine information from both the source and target domains, the domain discrimina-

tor is applied to hi
a and hj

b to pull the distributions of user representation in the two

domains close to each other. Hereafter, in each domain, the sequential recommen-

dation model combines the GUR and the short-term user behaviours to generate the

next-item recommendation, for example, the predicted item embeddings Î
j
4 at the

4th timestamp of user uj in domain B.

3.2.3 Generalized User Representations

As shown in Figure 3.1, in the GURU module, user representations are learned in

each individual domain, and information from the other domain is incorporated to

make the representation ªgeneralº through regularizer achieved by domain discrim-

inator on latent user representation.

User Representations in Single Domain. In each individual domain, we use an

autoencoder to learn the latent user representation that is capable of reconstructing

the original input sequence of the user. As compared to extracting user representa-

tions from the next-item prediction task, the autoencoder can produce meaningful

representations through the reconstruction task to boost performance. The autoen-

coder in our framework consists of an embedding module, an encoder module, and

a decoder module.

Formally, to extract a representation for any given user ui with its behaviour

sequence si = (vi1, · · · , vit, · · · , vi|si|), we apply the following autoencoder proce-

21



dures:

ei
1, · · · , ei

t, · · · , ei
|si|, e

i = Embed(vi1, · · · , vit, · · · , vi|si|, [eos]),

hi
1, · · · ,hi

t, · · · ,hi
|si|,h

i = Encoder(ei
1, · · · , ei

t, · · · , ei
|si|, e

i),

vi1, · · · , vit, · · · , vi|si| = Decoder(hi),

(3.4)

where hi
t is the latent representation of item vit at position t, and ei

t represents the

sum of item embedding and positional embedding. ei and hi are the embedding

and latent representation of the [eos] token. We use bold font to indicate vector

variables.

The input sequence of items and the [eos] token are converted into real-valued

vectors through the Embed module, which consists of an item embedding layer

and a positional embedding layer to incorporate both the item information and the

sequential information of behaviour sequences. To this end, we create two trainable

embedding matrices I ⊂ R
(|V|+1)×d and P ⊂ R

(N+1)×d for the item and positional

embeddings, respectively, where d represents the number of dimensions in the latent

space and N+1 is the maximum length of input sequences including the [eos] token.

By summing up the output of item embeddings and positional embeddings with the

point-wise summation, we derive the embedding representations for all items and

the [eos] token, denoted as (ei
1, · · · , ei

t, · · · , ei
|si|, e

i) shown in Equation (3.4).

After the derivation of embeddings, we adopt the autoencoder to obtain the

fixed-length representations of the behaviour sequences of users. Specifically, we

adopt an encoder with a structure similar to Transformer [129] which is composed

of a stack of identical transformer layers. Each transformer layer is composed of

a multi-head, bidirectional self-attention layer, and a position-wise fully connected

feed-forward layer. Shown in Equation (3.4), the Encoder outputs a list of latent

vectors (hi
1, · · · ,hi

|si|,h
i) for all input items in the input sequence. Then, the latent

vector of the [eos] token hi is treated as the representation of the whole behaviour

sequence, i.e. user representation of ui, and is further fed into the decoder.

We adopt a decoder that also consists of multiple transformer layers. In addition
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to the self-attention and feed-forward sub-layers in each transformer layer, another

multi-head attention layer over the user representation hi is inserted right after the

self-attention layer in each decoder layer. Additionally, the masking technique is

applied to ensure that the predictions depend only on previous behaviour sequences.

Formally, shown in Equation (3.4), our Decoder takes the latent user representation

hi as input and reconstructs the original input sequence in an auto-regressive man-

ner [129].

Illustrated in Figure 3.1, different users have different lengths of behaviour se-

quences, thus, we transform the input sequences of all users into fixed-length se-

quences with a length of N + 1, including the [eos] token. Specifically, for users

with sequences longer than N (except for the [eos] token), we consider the most

recent N items, for users with sequences shorter than N we add [pad] to the left of

its original sequence until it has a total length of N .

Following the convention of autoencoder, by optimizing the reconstruction er-

ror between the input samples and the reconstructed samples, our model can learn

the most important attributes of the input behaviour sequence. In this chapter, the

autoencoder structure is applied to sequence samples, thus we formulate the recon-

struction loss for input sequence si as follows:

Lrec(s
i, ŝi) = − log pθ(ŝ

i|si)

= −
N
∑

t=1

log pθ(v̂
i
t|v̂i<t,h

i),
(3.5)

where si and ŝi are the input and reconstruction output of autoencoder, and hi =

Encoder(Embed(si)) denotes the latent user representation of user ui as is shown

in Equation (3.4). Moreover, at any position t, if its original item is the [pad] token,

we simply ignore the reconstruction loss at this position.

Generalizing User Representation Across Domains. We propose to incorpo-

rate information from other domains into the user representation learned in a single

domain to achieve cross-domain collaboration. To achieve this, we unify the distri-

butions of user representations in both domains, as shown in Figure 3.2. Compared
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Figure 3.2. Toy examples demonstrate how to achieve cross-domain knowledge

sharing by unifying the distributions of user representations in both domains.

to the single-domain sequential recommendation, the representations regularized

by the distributional constraints are more general and contain extra information

from other domains. A commonly used technique for autoencoder to integrate prior

knowledge is to add extra penalty terms onto the reconstruction objective function:

Lrec(s
i, ŝi) + Ω(hi), (3.6)

where Ω(·) denotes the penalty function. For example, sparse autoencoder (SAE)

[130] encourages sparsity of latent vectors by adding an l1 or KL divergence penalty,

variational autoencoder (VAE) [131] assumes that the latent representation hi fol-

lows a Multidimensional Gaussian distribution.

Similarly, to integrate knowledge from both domains, a Kullback±Leibler (KL)

divergence penalty can be added to the reconstruction loss, where the KL diver-

gence measures the distance between the distributions of the learned user represen-

tations in both domains, leading to the following reconstruction objectives in both

domains:

Lrec(sA, ŝA) + KL(ρA||ρB),

Lrec(sB, ŝB) + KL(ρB||ρA),
(3.7)

where ρA and ρB denote the learned distributions of latent user representations in

domain A and domain B, respectively. However, there is no closed-form expression

for the distributions of latent user representations. Furthermore, the latent distribu-

tions are characterized by the parameters of the autoencoder, which is constantly
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updated along the training process.

Instead of directly estimating the ground-truth distributions, which is extremely

difficult, we propose to bypass this challenge by adopting an adversarial training

strategy to implicitly minimize the KL divergence between the two learned distri-

butions ρA and ρB. As illustrated in Figure 3.1, the encoders generate latent repre-

sentations hi
a ∼ ρa and h

j
b ∼ ρb, where the distributions are characterized by the

parameters of encoders in domain A and B, respectively. A discriminator is then

built for a binary classification task, where the input is a single latent representation

either from domain A or domain B, while the output is the prediction on which

domain the input representation originates from. We adopt the neg log-likelihood

loss as the objective function for the adversarial optimization process, denoted as:

Ldis(h
i) = −y · logσ(f(hi))− (1− y) · log(1− σ(f(hi))),

y = I(ui ∈ Ua)
(3.8)

where I(·) is the indicator function which equals to 1 when the condition ui ∈ Ua

is true, otherwise, y = 0. σ(·) is the sigmoid function and the logits value f(hi) is

calculated by the domain discriminator f(·).
Following the conventional optimization scheme of GAN, we alternately update

the domain discriminator and the encoder until the model reaches the point where

the discriminator is unable to tell whether a given user representation is from do-

main A or B. At this point, the distributions of user representations ρA and ρB are

supposed to be close to each other, i.e., which contributes to reducing the KL di-

vergence KL(ρA||ρB) between the two distributions. Therefore, we have achieved

information sharing through the distributional constraint on latent user representa-

tions without relying on the information of overlapped users.

In addition to implicitly unifying the user representations with all users, we also

propose an l2 penalty to enforce the explicit representation sharing over domains

for each overlapped user. That is, the representations of the same user should be the

same or close across domains. Illustrated in Figure 3.1, for an overlapped user, i.e.
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Algorithm 1: RecGURU Training Algorithm

Input: User sets UA, UB, item sets V A, V B;

behaviour sets: SA = {siA}, ∀ui ∈ UA, SB = {sjB}, ∀uj ∈ UB;

Overlapped users U o = UA ∩ UB.

Hyper-parameter: CRITIC_ITERS.

Initialization:

Initiate the item and positional embedding matrices: IA ⊂ R
(|VA|+1)×d,

PA ⊂ R
(N+1)×d and IB ⊂ R

(|VB|+1)×d, PA ⊂ R
(N+1)×d.

Initiate the GURU, CDSRec and the domain Discriminator.

Pre-training Phase:

Train autoencoders according to (3.5) on SA and SB.

Multi-task Adversarial Training Phase:

while not converged do

for i← 0 to CRITIC_ITERS do

Sample two batches of users ŪA ∼ UA, ŪB ∼ UB.

Optimize the discriminator loss (3.8).

Sample two batches of users ŪA ∼ UA, ŪB ∼ UB and one batch of

overlapped users Ū o ∼ U o.

Fix the parameters of the domain Discriminator.

Train the model according to the loss defined in (3.13).

Fine-tune:

Fine-tune the CDSRec model according to the BPR loss defined in (3.12) in

each domain.

ui = uj , we add an l2 regularizer on its latent representations in domain A and B:

Ll2 = ||hi
a − h

j
b||2, i = j. (3.9)

By adding the l2 regularizer to the loss function for overlapped users, representa-

tions of the same user in different domains are pushed to be equal or close to each

other, exploiting the information of overlapped users in an explicit way.

3.2.4 Cross-domain Sequential Recommendation

The generalized user representation extracted by the proposed GURU module rep-

resents the overall preference of users in different domains, which is beneficial to

the recommendation task in a specific domain.

For the next-item recommendation task in each domain, a sequential recom-
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mender is built on the derived GURs and it is composed of multiple unidirectional

attention layers and feed-forward layers. Specifically, the GURs are passed into the

model through multi-head attention mechanisms.

Formally, for a given user ui with sequence si = (vi1, · · · , vi|si|), the sequential

recommender takes its generalized user representation hi, defined in Equation (3.4),

and short-term behaviours (vi|si|−m, · · · , vi|si|) as the input and outputs the current

preference vector of the user qi,|si| at time step |si| in the latent space, given by:

hi = Encoder(Embed(vi1, · · · , vi|si|, [eos])),

qi,|si| = CDSRec(hi, (vi|si|−m, · · · , vi|si|)),
(3.10)

where m denotes the length of the short-term behaviour sequence and the GUR is

extracted from the long-term behaviour sequence (vi1, · · · , vi|si|) of user ui. CDSRec

denotes the cross-domain sequential recommender.

The preference scores of the user to all the candidate items are then computed

as the inner product between its current preference qi,|si| and the item embeddings

of all candidates, denoted as

ri,|s
i|,v = qi,|si|Iv, ∀v ∈ V c, ∀ui ∈ U, (3.11)

where Iv is the item embedding of v and the candidate set V c ⊂ V is a subset of the

the entire item set V . Candidate items are then ranked and recommended according

to the calculated preference scores.

We adopt a Bayesian Personalized Ranking (BPR) loss [6] to train the recom-

mendation model. For a given user ui from domain A, we calculate the loss of an

item recommendation at time step t as

Lt
bpr = − log σ(qi,t

A Iv)− log(1− σ(
1

|Ns|
∑

v′∈Ns

q
i,t
A Iv′)), (3.12)

where v and Iv are the target item and its corresponding item embedding, Ns is the

set of negative item samples and σ(·) represents the sigmoid function.
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3.2.5 Training Strategy

We propose a three-phase training algorithm shown in Algorithm 1 to optimize the

proposed model.

In the first phase, we pre-train the autoencoders in each domain individually

with the reconstruction task. Through the pre-training process, the reconstruction

loss is largely reduced, producing a boost-start for the following adversarial train-

ing. In the second phase, following the training process of GAN in [132], at each

iteration, we first optimize the discriminator loss Ldis for CRITIC_ITERS steps

(which equals to 5 in our implementation). Then, the reconstruction task, nega-

tive discriminator loss, and l2 loss on overlapped users are jointly optimized in a

multi-task fashion by minimizing the loss:

L = Lrec − Ldis + Ll2 . (3.13)

With the reconstruction task, we prevent encoders from generating wild represen-

tation stabilizing the adversarial learning. Following the common practice in GAN

training [132], we also adopt the gradient penalty term in the critic optimization

step. Finally, we fine-tune the CDSRec model in each individual domain with the

next-item recommendation task.

3.3 Experiments

In this section, we conduct extensive experiments on two public and one collected

cross-domain sequential recommendation scenarios. Comparison with the state-of-

the-art single-domain and cross-domain baselines shows the effectiveness of our

proposed method. Furthermore, ablation tests demonstrate the impact of each pro-

posed sub-modules on the recommendation result and the robustness of our model

under scenarios of a different portion of overlapped users.
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Table 3.1. Statistics for the three cross-domain scenarios. (ªAvg. Seqlen.º denotes

averaged behaviour length and ª#Overlap.º is the number of overlapped users).

Domain #Users #Items Avg. Seqlen. #Overlap.

Sport 9,024 11,835 6.62
1,062

Cloth 46,810 42,139 7.51

Movie 4,261 5,536 8.307
584

Book 42,940 51,366 9.490

Wesee 1,952,403 335,648 18.196
1,692,893

Tencent Video 2,183,927 1,455,595 28.53

3.3.1 Dataset and Experiment Setup

Datasets. Four publicly available Amazon datasets [133] and two collected datasets

are used to form three cross-domain sequential recommendation datasets: ªSports-

Clothingº, ªMovie-Bookº, and the collected dataset. On Amazon datasets, only

recent positive reviews, posted after October 1, 2017, are selected. Then, we applied

the following pre-processing steps on all four Amazon datasets. First, we selected

all the ratings with a score larger than 2, thus, all the interactions in the selected

dataset are supposed to be positive feedback. We further ignore the review scores

for implicit feedback-based recommendations. Second, we get the 5-core dataset

based on the selected interactions. Third, we re-code all the items from 1 to the

total number of items in each dataset. Finally, we extracted the user IDs for all the

overlapped users in the two cross-domain scenarios, i.e. ªSport-Clothº and ªMovie-

Bookº.

Moreover, we have collected two sequential recommendation datasets from the

real-world applications of ªWeseeº and ªTencent Videoº. With over one hundred

million users, ªTencent Videoº is a Chinese video streaming website offering a

wide range of popular movies, TV shows, and short videos. Meanwhile, ªWeseeº

is a short video-sharing platform boasting over ten million daily active users. Note

that, in real-world scenarios, there are only a few overlapping users between these

two applications (around 10%). However, for the purposes of this study, we chose
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most of the overlapped users due to: firstly, there are still hundreds of thousands of

them which is sufficient to train all the evaluated models; and secondly, with such

a high overlapping rate we can manually adjust it for stress testing.

Specifically, the ªTencent Videoº and ªWeseeº datasets were collected within

the same time frame to ensure consistency in user preferences during dataset collec-

tion, thus allowing for cross-domain collaboration. For each application, interaction

information including action type, item IDs, and timestamps was recorded for all

users. Positive interactions between users and video items include ªclicksº as well

as ªfinishesº, i.e., completely watching the video. All other interactions are ig-

nored. The behaviour of a single user over three consecutive days, from June 26,

2020, to June 28, 2020, is stored as three lists: action list, item ID list and times-

tamp list. Subsequently, entries with bad user IDs or item IDs (such as empty or

garbled codes) are removed from the data set. Moreover, if an item appears mul-

tiple times in a row for the same user’s behaviour sequence then only one copy

is kept to prevent duplicated redundant entries from appearing in our results; any

additional copies are dropped accordingly. Finally, only users with a behaviour se-

quence length larger than 5 have been used in this work; details regarding these two

datasets can be found within our submission document itself.

The detailed breakdown of the three cross-domain sequential recommendation

datasets is shown in Table 3.1. Note that, the collected dataset mostly consists of

overlapped users, thus, we can manually adjust the portion of overlapped users in a

wide range to test the robustness of our method.

Data split and metrics. Following common practices in sequential recommen-

dation [34], for a given user the second to last item in the behaviour sequence is

selected as the validation item, and the last item is used for testing, while the re-

maining items are used for training. Hit Ratio (HR) and Normalized Discounted

Cumulative Gain (NDCG) [134] are adopted to evaluate the performance of all

methods. We follow the strategy used in [12] to reduce the heavy computation

cost. Specifically, for users from public datasets, we sample 200 negative items in

the item list with respect to their frequencies, which together with the ground-truth
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item, form the candidates for recommendation. On collected datasets, the size of

the candidate set becomes 20,000. HR and NDCG with k = 5, 10, 20 are reported.

Competitors The following single-domain and cross-domain baseline algo-

rithms are evaluated:

• POP: All items are recommended according to their popularities.

• BPRMF [6]: It optimizes the matrix factorization with the BPR loss.

• SAS [16]: It adopts unidirectional self-attention to model user behaviors.

• Bert4Rec [34]: It incorporates the idea of Bert [135] to the next item recom-

mendation task.

• AutoRec: It is the single-domain version of the proposed model that adopts

autoencoder to generate static user representation which is used for the se-

quential recommendation.

• CMF [136]: It simultaneously factors interaction matrices in both target and

source domains.

• MFEM: It learns a mapping function on overlapped users. Thus, for non-

overlapped users, we can get their embeddings in the source domain through

the trained mapping function as well as the cross-domain recommendation

through Equation (3.2). Here, the user embeddings are learned with the

BPRMF model.

• CnGAN [51]: It adopts adversarial learning to learn a better mapping func-

tion that maps user embeddings from the source domain to the target domain

or vice versa.

• DOML [49]: It adopts dual metrics learning in the cross-domain recommen-

dation scenario when there are few overlapped users.

• AutoEM: As a variation of the proposed method, it also learns a mapping

function on overlapped users to get the embeddings of non-overlapped users.
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However, here, the item and user embeddings are learned by the proposed

AutoRec model.

3.3.2 Implementation Details

We implement the models using PyTorch with python 3.6 and train our framework

on Tesla P40 GPUs with a memory size of 22.38 GiB and a 1.53 GHz memory

clock rate.

On Amazon datasets, 3 transformer layers are adopted, whereas 6 transformer

layers are used on the collected datasets in the encoder and decoder module. We

use 2 attention heads for all the attention layers throughout the model. And the di-

mension of all feed-forward layers is set to 512. For adversarial training, we build

the domain discriminator with four fully connected layers with a hidden size of

128. Furthermore, we adopt the improved W-GAN [132] framework to alternately

optimize the domain discriminator and the GURU model through the discriminator

loss Ldis. The implementation of W-GAN is based on a publicly available source

on GitHub. 1. For simplification, we adopt the same length of sequence for both au-

toencoder and recommendation tasks, which is 100 on all datasets. The dimension-

ality of user embedding is 64 on both public and collected datasets. Multiple Adam

optimizers [137] are used to update different modules of the proposed RecGURU

framework.

For all the transfer learning-based cross-domain baselines, we first concatenate

the user embeddings from the source and target domains. Then, a fully connected

layer is applied to get the cross-domain user embedding which is further used for

the next item recommendation.

3.3.3 Experimental Results and Analysis

Training Loss. Figure 3.3 shows the training losses on the ªMovie-Bookº dataset.

Specifically, the Wasserstein distance and the critic loss, i.e. discriminator loss, are

1https://github.com/igul222/improved_wgan_training
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Figure 3.3. Training losses on the ªMovie-Bookº dataset.

given in Figure 3.3 (a). Both processes converge around a thousand adversarial iter-

ations. In the beginning, the discriminator is good at distinguishing representations

from different domains with an increasing Wasserstein distance. After more adver-

sarial training iterations, the Wasserstein distance is reduced and converged which

is in line with the training process of standard GANs [132]. The reconstruction

tasks in both target and source domains converge after 400 iterations as is shown in

Figure 3.3 (b). The recommendation task in the target domain converges after only

100 steps of fine-tuning iterations.

Main Results. Due to the memory issue on the huge amounts of items and

users, we aren’t able to evaluate baselines such as BPRMF and CMF on the col-

lected datasets, therefore, we leave this dataset for further ablation study. Table 3.2

and 3.3 summarize the performances of all baselines and the proposed methods on

the two public cross-domain scenarios. Shown in Table 3.2, AutoRec, the single-

domain version of our solution, outperforms SAS and Bert4rec on single-domain

sequential recommendation tasks on most of the public datasets. The success of

AutoRec can be attributed to the adoption of user representations extracted from

the history of user behaviour through an autoencoder.

Shown in Table 3.3, RecGURU outperforms all other baselines with an improve-

ment on HR@10 and NDCG@10 of 6.5%, 9.2%, and 22.5%, 31.3% on the ªSportsº

and ªMovieº datasets, respectively, compared to the best given by all the other

baselines. We can also outperform the state-of-the-art single-domain and cross-
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Table 3.2. Comparison between the proposed method with single-domain baselines

on ªSport-Clothº and ªMovie-Bookº scenarios. All values are in percentage, ªAu-

toRecº is the single-domain version of our proposed method.

Datasets Metric
Single-domain algorithms

POP BPRMF SAS Bert4Rec AutoRec

Sport

HR@5 3.63 16.17 17.51 18.04 18.82

HR@10 5.70 19.62 22.09 22.46 23.37

HR@20 9.04 24.99 28.97 29.21 29.84

NDCG@5 3.03 12.43 14.47 14.57 14.93

NDCG@10 3.70 13.73 15.94 16.01 16.36

NDCG@20 4.53 15.08 17.67 17.71 17.97

Cloth

HR@5 1.48 21.03 23.71 22.68 23.89

HR@10 2.10 23.98 28.40 26.57 27.67

HR@20 5.05 28.27 35.17 32.84 33.46

NDCG@5 0.08 17.89 19.81 19.95 20.51

NDCG@10 0.96 18.86 21.29 21.20 21.70

NDCG@20 1.68 19.89 22.97 22.76 23.11

Movie

HR@5 2.07 12.80 12.18 13.78 14.21

HR@10 5.37 17.28 17.20 19.39 19.51

HR@20 11.59 23.97 24.76 27.41 27.54

NDCG@5 1.26 9.36 8.76 9.79 10.15

NDCG@10 2.30 10.85 10.38 11.55 11.83

NDCG@20 3.85 12.50 12.27 13.56 13.79

Book

HR@5 2.69 22.37 27.15 27.86 28.10

HR@10 5.31 31.28 36.85 37.58 38.20

HR@20 10.44 42.54 47.81 48.30 49.38

NDCG@5 1.79 16.32 19.50 19.93 20.09

NDCG@10 2.62 19.09 22.60 23.03 23.33

NDCG@20 3.90 21.80 25.32 25.73 26.27

domain methods on the ªClothº and ªBookº datasets in most cases but with a rela-

tively smaller margin compared to the results reported on the ªSportº and ªMovieº

datasets. This is reasonable, as is shown in Table 3.1, the ªSportº and ªMovieº

datasets are much smaller and with more sparsity than the ªClothº and ªBookº

datasets. Obviously, when the data in the source domain is highly sparse, we can

only get a limited amount of information from the source domain to help with rec-

ommendations in the target domain. Therefore, AutoRec, AutoEM, and RecGURU

34



Table 3.3. Comparison between the proposed methods and cross-domain baselines

on ªSport-Clothº and ªMovie-Bookº scenarios. ªAutoEMº is a variant of our pro-

posed method. All values are in percentage

.

Datasets Metric
Cross-domain algorithms

CMF MFEM CnGAN DOML AutoEM RecGURU

Sport

HR@5 17.04 15.87 15.88 15.26 17.63 20.78

HR@10 20.55 19.44 19.41 20.29 22.57 24.88

HR@20 29.84 26.00 25.26 25.04 29.66 30.79

NDCG@5 13.37 12.68 12.89 11.66 14.06 16.56

NDCG@10 14.45 13.77 14.05 13.17 15.61 17.87

NDCG@20 17.97 15.84 15.19 15.40 17.36 19.31

Cloth

HR@5 21.53 20.56 20.10 22.70 24.27 25.68

HR@10 24.33 23.41 23.29 28.36 28.71 29.16

HR@20 33.46 28.58 28.08 27.97 35.31 34.79

NDCG@5 18.44 17.51 16.72 17.47 20.44 22.44

NDCG@10 19.30 18.40 17.70 19.29 21.83 23.52

NDCG@20 23.11 20.37 19.54 18.86 23.46 24.92

Movie

HR@5 12.34 14.70 14.03 14.41 12.93 18.97

HR@10 15.46 19.52 18.49 19.78 18.94 24.24

HR@20 27.54 22.73 26.26 25.30 27.11 30.81

NDCG@5 8.36 10.80 10.18 9.75 8.67 14.59

NDCG@10 8.75 12.31 11.57 11.94 10.61 16.17

NDCG@20 13.79 10.46 13.99 13.26 12.61 17.77

Book

HR@5 22.70 23.17 23.24 20.67 28.92 28.15

HR@10 31.56 32.33 32.33 30.86 38.63 38.35

HR@20 49.38 42.81 43.89 43.94 49.88 49.68

NDCG@5 16.38 16.63 16.63 14.18 20.89 20.07

NDCG@10 19.19 19.36 19.36 17.14 23.99 23.06

NDCG@20 26.27 21.98 21.90 22.06 26.98 26.81

achieve close performance on the ªBookº dataset. However, overall RecGURU

outperforms other baselines in most cases. The superiority of RecGURU over Au-

toRec and AutoEM can be attributed to the generalization of user representations

achieved through the adversarial training of the domain discriminator and the au-

toencoder. Furthermore, compared with the improvements RecGURU has achieved

over single-domain sequential recommendation baselines, cross-domain methods

such as MFEM, CnGAN, and DOML achieved limited improvements over BPRMF.
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Table 3.4. Dataset statistics of the four collected cross-domain scenarios with the

portion of overlapped users ranging from 10% to 75%.

Ratio Dataset #User #Item Avg.Seqlen #Overlap

10%
Wesee 1203194 288155 16.16

194756
Tencent Video 1434999 1311440 26.46

30%
Wesee 1398645 303942 16.18

585580
Tencent Video 1630372 1356831 26.49

50%
Wesee 1594256 316338 16.19

976556
Tencent Video 1825737 1397521 26.51

75%
Wesee 1838276 329679 16.19

1464731
Tencent Video 2069892 1438803 26.53

This can be attributed to the fact that these baselines either rely on overlapped users

(MFEM, CnGAN) or need side information for more general user and item embed-

dings (DOML).

3.3.4 Ablation Study

Variants of the proposed method are evaluated on the collected datasets for ablation

studies to show the impact of each proposed sub-modules. We incrementally ac-

commodate different modules into the single-domain sequential recommendation

model SeqRec, until we incorporate all the proposed sub-modules and features.

Specifically, the following models are evaluated:

• SeqRec: Sequential recommendation model without autoencoder.

• +Auto: The AutoRec model introduced in Sec. 3.3.1.

• +GURU: The proposed RecGURU model.

Furthermore, to test the robustness of the proposed method under a variety of over-

lapping rates, we manually change the number of overlapped users to form four

new datasets with an overlapping rate of 10%, 30%, 50%, and 75%. Table 3.4

provides an overview of the four manufactured datasets. For privacy concerns, we
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Table 3.5. Ablation studies on customized collected datasets with the portion of

overlapped users ranging from 10% to 75%. Note that ªNº denotes ªNDCGº and

all values are in percentage.

Models Ratio
Wesee Tencent Video

HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10

30% 15.19 22.47 10.1 12.43 25.95 33.88 18.66 21.16

50% 15.19 22.39 10.05 12.34 27.14 35.89 19.09 21.91

75% 15.59 23.08 10.31 12.68 26.71 34.92 18.91 21.55

+Auto

10% 15.41 22.71 10.36 12.71 28.48 35.8 21.49 23.87

30% 15.49 22.84 10.55 12.91 29.21 36.41 21.7 24.01

50% 15.52 23.08 10.37 12.8 31.99 39.76 23.91 26.4

75% 16.12 23.9 10.89 13.39 31.60 39.76 24.33 26.78

+GURU

10% 16.13 23.61 10.91 13.34 28.26 36.11 20.78 23.32

30% 17.11 24.87 11.64 14.14 29.14 37.12 21.41 23.98

50% 17.15 24.87 11.66 14.11 32.18 38.49 23.12 25.51

75% 16.59 24.34 11.31 13.79 31.23 39.14 23.39 25.9

did not include users’ real ID; thus, for each overlapped user we generated a ran-

dom number to decide whether to keep it as an overlapped user or put it in either

ªWeseeº or ªTencent Videoº. If an overlapped user is put into one domain as a

ªnon-overlappedº user, then its behaviour sequence in the other domain is removed.

Therefore, there may be slight differences in the number of items across different

manufactured datasets.

Table 3.5 summarizes the results of ablation tests of all the introduced variants

on all datasets with various overlapping rates. On the ªWeseeº dataset, each time

we add a new sub-module or feature incrementally on top of the previous model,

we can observe improvement in the overall recommendation performance, which

illustrates the effectiveness of autoencoder and GURU modules. Moreover, this

phenomenon appears on all four datasets with overlapping ranging from 10% to

75% which shows the robustness of our method to user overlapping rate. Similar

to the ªBookº dataset, on the ªTencent Videoº dataset, the single-domain version

of our proposed method, AutoRec, is slightly better than its cross-domain version,

which is also due to the sparsity issue in the source domain, i.e. ªWeseeº, as we

have explained before.
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3.4 Conclusion

In this chapter, we propose RecGURU, a novel cross-domain sequential recom-

mendation framework based on Generalized User Representations (GURs). Dif-

ferent from previous work which aims to transfer knowledge across domains, in

the RecGURU system, we propose the GURU module that is capable of extract-

ing a generalized user representation unified over different domains via adversarial

learning. Specifically, an autoencoder is adopted to generate user representations

in each individual domain. Cross-domain generalization of user representations is

achieved by adversarially training a discriminator and the encoder until the domain-

dependent embeddings are statistically indistinguishable among different domains.

We further propose various schemes to stabilize and boost the learning effective-

ness of RecGURU. Experimental results on both publicly available datasets and

collected datasets show the effectiveness of the proposed method.
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Chapter 4

Multi-Target Cross-Domain

Recommendation

4.1 Introduction

For effective multi-target cross-domain recommendation, we observe that two types

of user embeddings can both be helpful in cross-domain recommendations, includ-

ing 1) the global user embedding, which represents the overall domain-invariant

characteristics of a user, and 2) domain-specific user embeddings, which model

the user behaviour in various individual domains. Two questions naturally arise

concerning the interaction of these embeddings. First, can we generate a global

user representation only based on the user’s embeddings obtained from individual

domains? If this global user embedding is representative enough and not biased

toward a single domain, it can be directly used to improve recommendations in

all domains without worrying about any negative transfer issue on the target do-

mains. We refer to the first goal as ªOne for All", as in One global user embedding

For recommendations in All domains. To ensure better data isolation, ideally, the

global user embedding should be synthesized only based on domain-specific user

embeddings without accessing raw behaviour data in each domain.

On the other hand, what is missing in prior work on MTCDR [20], [21] is the

transfer of domain-specific user embeddings to assist with recommendations in the
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target domain. However, directly transferring these features may cause performance

degradation in the target domain due to various reasons, e.g., low-quality embed-

dings transferred from irrelevant domains. This phenomenon is often referred to

as negative transfer [138]. The second question we ask is±can we also transfer

domain-specific user embeddings in one domain to help improve prediction in an-

other domain while avoiding negative transfer? We refer to the second goal as ªAll

for Oneº, as in All domain-specific user embeddings for helping the recommenda-

tion in One domain.

To address the aforementioned challenges, we propose CAT-ART, a novel multi-

target CDR framework, which starts by using traditional matrix factorization to pre-

train domain-specific user embeddings in each domain. To achieve the concept of

One for All, we propose a Contrastive AuToencoder (CAT) to learn a global user

embedding solely based on the pre-trained domain-specific user embeddings from

all the domains, without directly accessing raw behaviour data in each domain. To

attain the goal of All for One, we build an Attention-based Representation Trans-

fer (ART) unit in each target domain, which transfers and utilizes the pre-trained

domain-specific embeddings to boost its recommendation performance while min-

imizing the impact of negative transfer. Our contributions can be summarized as

follows:

We introduce a contrastive autoencoder (CAT), which learns a general global

embedding for each user by reconstructing the concatenated sequence of domain-

specific user embeddings. To further benefit from self-supervised representation

learning and extract robust representations from domain-specific embeddings, we

randomly mask some domain in the input sequence to the autoencoder and learn to

reconstruct the original sequence, while a contrastive self-supervised loss is used to

ensure the masked and unmasked domain-specific user embedding sequences can

map to similar global user embeddings for the same user.

We propose Attention-based Representation Transfer (ART), which judiciously

adapts the domain-specific user embeddings from other domains to the target do-

main according to an attention mechanism. ART then combines the target domain
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user embedding, the global user embedding, as well as the adapted domain-specific

user embeddings to jointly improve recommendations in the target domain.

To evaluate our method in real scenarios, we have collected a large dataset in-

volving over a million users spanning 5 domains, including App installation (App-

install), Recent App usage (App-use), article viewing, short-video viewing, and

long-video viewing. Each of these domains has its own user behaviour history and

independently pre-trained user embeddings. We conduct extensive experiments

on the collected data and demonstrate the superiority of the proposed CAT-ART

method by comparing it with a range of state-of-the-art MTCDR baselines. Experi-

mental results suggest that CAT-ART significantly outperforms all baselines in most

of the domains, e.g., App-install, App-use, article, and long-video, on several eval-

uation metrics. Moreover, we show that while other state-of-the-art baselines are

severely impacted by negative transfer, CAT-ART can effectively avoid the negative

transfer issue.

4.2 Methodology

Global 

User Embedding

Figure 4.1. The architecture of the CAT-ART model. The CAT module takes

domain-specific user embeddings as input and generates global user representation

in a self-supervised manner. Then, the global user embedding ei and the domain-

specific embeddings from all the other domains are transferred to a target domain,

e.g., domain 2, for boosted recommendations.
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4.2.1 Problem Definition

We focus on the MTCDR problem with a global user set U , and item sets {V1, · · ·Vn}
in n ≥ 3 domains. User-item interactions in domain d ∈ [1, · · · , n] are represented

by a matrix Rd with the shape of |U | × |Vd| where |U | is the number of users and

|Vd| denotes the number of items in domain d. Under the implicit feedback setting,

all the elements in the matrix Rd are with the value of either 1 or 0, which indi-

cates whether there is an interaction between a given user-item pair, i.e., for user

i and item j in domain d, rdij ∈ [0, 1], ∀i ∈ |U |, ∀j ∈ |Vd|. We further consider

the scenario of data isolation in practical applications, that is, the interactive in-

formation between users and items in a specific domain is not observable by other

domains. Our goal is to improve the recommendation accuracy in all n domains

simultaneously based on the interaction matrices.

4.2.2 Architecture Overview of the Proposed CAT-ART

We set two objectives when dealing with the multi-target CDR problem. That is, 1)

One for All: extracting global user representation that is used for recommendations

in all domains. And 2) All for One: transferring domain-specific embeddings from

all available domains to assist the recommendation in a target domain without neg-

ative transfer. To achieve these two objectives and avoid the direct use of raw data

across domains, we propose the CAT-ART model where the Contrastive Autoen-

coder (CAT) module and the Attention-based Representation Transfer (ART) unit

are designed for the above two objectives, respectively.

Figure 4.1 provides an overview of the CAT-ART model. First, the domain-

specific user embeddings are pre-trained within each domain independently using

BPRMF [6]. Then, the CAT module takes the domain-specific embeddings col-

lected from all domains as input and generates global user representation. To create

unbiased cross-domain user embeddings, we combine the reconstruction loss and

contrastive self-supervised loss in model training, so that the CAT module is capa-

ble of extracting informative global user representation. Finally, the ART module
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transfers the domain-specific user embeddings from all the other domains to boost

the recommendation performance in a single domain, e.g., domain 2 in Figure 4.1.

By incorporating attention mechanisms into the ART module, the contribution of

each domain can be judiciously adjusted according to their relevance so as to ad-

dress the negative transfer issue.

4.2.3 Domain-specific User Embedding

Shown in Figure 4.1, in the Single-Domain User Modeling unit, we adopt the

widely used Matrix Factorization (MF) model [10] with the Bayes Personalized

Ranking (BPR) [6] loss to get the user and item embeddings in each domain. For-

mally, to factorize the interaction matrix Rd in domain d, we create two trainable

embedding matrices Id ⊂ R
(|Vd|+1)×m and E

d ⊂ R
(|U |+1)×m to represent item and

user embeddings in domain d, respectively. Where m represents the number of di-

mensions in the latent space. For simplicity, we set the embedding dimensions of

users and items in all domains to be m. In domain d, given a user ui with embed-

ding ed
i ∈ E

d and an item vdj ∈ V d with embedding Id
j ∈ I

d, the preference score

of the user to the item is computed as the inner product between their embeddings,

rdij = ed
i I

d
j . Note that, we use bold font to denote vector variables. Then, the BPR

loss in domain d is formulated as:

Ld
bpr = −

∑

i∈U

∑

j∈pdi

∑

l /∈pdi

log σ(rdij − rdil), (4.1)

where pdi is the set of items that user i has interacted with in domain d, and σ(·)
represents the sigmoid function.

By minimizing the BPR loss, we obtain domain-specific user embeddings suit-

able for recommendation in each domain. Instead of sharing raw user data, we only

share the pre-trained domain-specific user embeddings across domains to enable

knowledge sharing across domains under the raw data isolation constraint.
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4.2.4 Contrastive Autoencoder

The pre-trained domain-specific user embeddings are collected and fed into the

CAT module to get global user representations. To do this, we adopt an autoen-

coder framework which takes the domain-specific embeddings of a user as input

and generates latent user representation. Specifically, we first stitch all domain-

specific user embeddings, which is a set of real-valued dense vectors, into a large

one-dimensional vector in a predefined order, e.g., from domain 1 to domain n.

Then, an encoder is used to extract the latent user presentation which is further

fed into a decoder to reconstruct the input domain-specific embeddings. We use

Multi-Layer Perception (MLP) [139] to build both the encoder and decoder mod-

ules. Formally, for a given user ui with its pre-trained domain-specific embeddings

{e1
i , e

2
i , · · · , en

i }, we apply the following procedures to get its latent representation:

ei = MLPenc(e
1⌢
i e2⌢

i · · ·⌢ en
i )

ē1⌢
i ē2⌢

i · · ·⌢ ēn
i = MLPdec(ei),

(4.2)

where ei is the latent representation of user ui, and e1⌢
i e2

i denotes the long one-

dimensional vector after concatenating the vectors e1
i and e2

i . Here ēd
i represents

the reconstruction of user embedding ed
i in domain d. Note that the latent vector

ei has the same size as domain-specific embeddings in individual domains, i.e.,

|ei| = |ed
i | = m, ∀d ∈ [1, n].

By optimizing the mean square reconstruction error (4.3) between the input

and the reconstructed embeddings, the encoder can learn the most important global

attributes to reconstruct the domain-specific user embeddings in each domain.

Lrec =
1

|U |
∑

i∈U

n
∑

d=1

||ed
i − ēd

i ||2. (4.3)

On the other hand, the effectiveness of the pre-trained domain-specific user em-

beddings, which are the input of the autoencoder, is highly affected by the data

quality and sparsity in each domain. For example, under-trained user embeddings
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from a sparse domain may introduce noise to the input of the autoencoder. Fur-

thermore, the autoencoder may be biased towards domains with a higher quality

of user embedding, as it is easier to reconstruct a well-trained embedding than an

under-trained embedding with noise.

Therefore, we adopt contrastive self-supervised learning [140] to further train

the autoencoder for a more general and robust latent user representation that does

not bias to any specific domain. Contrastive self-supervised learning is gaining pop-

ularity in the field of representation learning for various visual and natural language

processing (NLP) tasks [141]. The core idea of contrastive self-supervised learning

is to make the representation of an input sample agree with that of an augmented

sample, e.g., obtained by applying Gaussian noise or Cutout [140].

In our problem, contrastive self-supervised learning is integrated into the au-

toencoder framework to extract the global representations of users from their domain-

specific embeddings. As shown in Figure 4.1, we adopt an Mask operation to gen-

erate the ªaugmentationsº for an input, e.g., e1⌢
i e2⌢

i · · ·⌢ en
i . Specifically, with

Mask, we generate ªaugmentedº inputs by removing the domain-specific user em-

beddings from several randomly selected domains. Then, the ªaugmentationsº are

also fed into the encoder module for generating the latent representations. Formally,

the following procedure is applied:

e1⌢
i e⌢

m · · ·⌢ en
i = Mask(e1⌢

i e2⌢
i · · ·⌢ en

i )

∗ei = MLPenc(e
1⌢
i e⌢

m · · ·⌢ en
i )

(4.4)

where em is a trainable vector used to replace the domain-specific embeddings of

masked domains, e.g., domain 2 in Figure 4.1. After random masking and padding,

the ªaugmentedº sample, i.e., e1⌢
i e⌢

m · · ·⌢ en
i , is fed into the encoder MLPenc to get

the latent representation ∗ei. Then, a contrastive loss function is defined for the con-

trastive prediction task. Given a set of latent embeddings {e1, · · · ek, ∗e1, · · · , ∗ek}
where (ei, ∗ei) forms a positive pair of representations, the contrastive prediction

is to identify ∗ei in {∗e1, · · · , ∗ek} for a given ei, and vice versa, to identify ei in
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{e1, · · · , ek} for a given ∗ei.

We randomly sample a minibatch of N users and define the contrastive autoen-

coder task on the pairs of ªaugmentedº and original user embeddings derived from

the minibatch, resulting in 2N representations. Let

ϕ(ei, ∗ei) =
ei ∗ eT

i

|ei|| ∗ ei|
(4.5)

denotes the cosine similarity between two row vectors ei and ∗ei. Then, the con-

trastive loss of user i in the minibatch is computed as:

li = −log
exp(ϕ(ei, ∗ei)/τ)

∑N
k=1 exp(ϕ(ei, ∗ek)/τ)

− log
exp(ϕ(∗ei, ei)/τ)

∑N
k=1 exp(ϕ(∗ei, ek)/τ)

, (4.6)

where τ is a temperature parameter. The first term defines the contrastive prediction

loss when identifying ∗ei given ei and the second term is the loss for identifying ei

given ∗ei. By minimizing the contrastive loss, the encoder is trained to put the

embeddings of a user and its ªaugmentationsº, i.e., ei and ∗ei, close to each other

in the latent embedding space. By doing this, we can extract a more general latent

user representation that is robust to noisy input introduced by low-quality domain-

specific user embeddings from a sparse domain.

Apart from the contrastive loss, we further put the ∗ei into the decoder MLPdec

to reconstruct the original input. That is, instead of minimizing the reconstruction

error between the ªaugmentationº, i.e., e1⌢
i e⌢

m · · ·⌢ en
i , and its reconstruction, i.e.,

∗ē1⌢
i ∗ ē2⌢

i · · ·⌢ ∗ ēn
i , we optimize the reconstruction loss between the original

domain-specific embeddings and the reconstructed embeddings from MLPdec(∗ei),

that is,

∗ē1⌢
i ∗ ē2⌢

i · · ·⌢ ∗ ēn
i = MLPdec(∗ei),

L∗
rec =

1

|U |
∑

i∈U

n
∑

d=1

||edi − ∗ēd
i ||2.

(4.7)

By minimizing L∗
rec, the encoder can extract latent representation which is infor-

mative enough to reconstruct the masked domains even when the embeddings of

masked domains are missing. This further encourages the encoder to extract unbi-
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ased global representations of users. Finally, the loss function to train the CAT

module can be summarized as:

Lcat = α1Lrec + α2L∗
rec + (1− α1 − α2)

|U |
∑

i=1

li, (4.8)

where α1 and α2 are hyper-parameters to control the weights of each component.

The third term represents the sum of the contrastive loss over all users.

The extracted global representation represents the general preferences and over-

all characteristics of users, that are beneficial to the recommendation task in each

domain. In addition, because the global user representation is not biased to any

domain, it can be directly transferred to any target domain without worrying about

the negative transfer issue.

4.2.5 Attention-based Representation Transfer

The domain-specific embeddings represent the users’ preferences in different do-

mains, which are useful features to boost recommendations in a specific domain.

However, the direct transfer of domain-specific user embeddings is prone to nega-

tive transfers in the target domain. First, if two domains are unrelated, the trans-

ferred embeddings may have little or even a negative impact on the target domain.

Second, if a domain-specific user embedding is under-trained in its original domain

due to data sparsity or insufficient data quality, directly transferring such an embed-

ding may introduce noise to the target domain, leading to performance degradation.

Therefore, we build an attention-based representation transfer (ART) unit in

each domain, to integrate the domain-specific embeddings from other domains for

better recommendations in the current domain. Specifically, we first build an MLP-

based domain adaptation layer for domain-specific embeddings from each domain.

Then, we adopt the scaled-dot produce attention [129] which uses the user embed-

ding in the target domain as the query and attends to the domain-specific embed-
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dings from other domains. Formally, in domain d, we have

Q = ed
i

K = V = MLPadapt({ek
i }, k ̸= d)

ea
i = Attention(Q,K, V ) = softmax(

QKT

√
m

)V,

(4.9)

where m is the dimensionality of the user embedding ed
i in domain d. With atten-

tion, the ART module can assign more weights to the embeddings from the most

related domains and reduce the influence of noisy embeddings from sparse or unre-

lated domains, and thus can effectively alleviate negative transfers in MTCDR.

Final User Embedding. We build an MLP-based domain adaptation module,

i.e., MLPind(·), which adapts the global embedding to the current domain for rec-

ommendations. Then, we combine features from the global and domain-specific

user embeddings with point-wise addition. For example, in domain d, we have

hd
i = ed

i + MLPind(ei) + ea
i , (4.10)

where the first term is the user embedding in the current domain, the second term

represents the information transferred from the global user representation, and the

last term denotes features from all the other domains. With the user embedding

hd
i , the preference score of the user i to an item j in domain d is recalculated as

rdij = hd
i I

d
j .

4.2.6 Model Training

The training procedure of the CAT-ART model is given in Algorithm 2. Specifi-

cally, the CAT-ART is trained with three stages. First, we apply the BPRMF model

in individual domains to get the pre-trained domain-specific user and item embed-

dings based on BPR loss (4.1). Then, we train the CAT module in a self-supervised

manner with both the reconstruction loss and contrastive loss (4.8). Finally, we fix

the domain-specific user embeddings and the CAT module and optimize the param-
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Algorithm 2: CAT-ART Algorithm

Input: User set U , and item sets: {V1, · · ·Vn}, n ≥ 3;

User-Item interaction matrices: {R1, · · · , Rn};
Stage 1 (parallel):

for ∀d ∈ [1, n] do

Train domain-specific user and item embeddings: Ed and I
d according

to BPR loss.
Stage 2:

Train the CAT module according to reconstruction and contrastive loss.

Stage 3 (parallel):

Fix the CAT module and domain-specific user embeddings in all domains.

for ∀d ∈ [1, n] do
Train the ART unit according to the BPR loss and the enhanced user

embedding.

eters of the MLPind(·) and ART module according to the BPR loss in individual

domains.

4.3 Experiments

We conduct extensive experiments on a collected dataset and compare our approach

with state-of-the-art MTCDR methods.

4.3.1 Datasets

We collected user logs from five domains through multiple real apps owned by

Tencent. Specifically, they are Application installation preferences (ªAPP-Insº),

Application usage preferences (ªAPP-Useº), ªArticlesº, Short Videos (ªVideo-Sº),

and Long Videos (ªVideo-Lº). Among them, the ªAPP-Insº and ªAPP-Useº data

is collected from January 2021 to August 20, 2021, and the data of ªArticlesº,

ªVideo-Sº, and ªVideo-Lº are collected from June 2021 to August 2021. To avoid

the tremendous item sets, we use the tags that can best represent the visited IDs’

features instead of using the item IDs that a user has interacted with. TF-IDF [142]

is applied to select a fixed number of the most informative tags in each domain,

resulting in 100,000 tags in the ªAPP-Insº and ªAPP-Useº domains and 50,000
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tags in the rest of the domains. We filter out users with fewer than 5 visited tags.

Furthermore, the number of tags a user has visited in each domain is truncated to a

fixed number, i.e., a user can have a maximum of 100 tags in the ªVideo-Sº domain,

and a maximum of 300 tags in the other domains. All the above data processing

procedures, e.g., tag selection and cutoff in each domain, are provided by the data

owner (Tencent), and have proven to be effective in real-world tasks such as gender

and age prediction and user profiling, Table 4.1 provides detailed statistics of the

collected dataset with 5 domains.
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Figure 4.2. Histograms that show how many tags users have visited in the 5 domains

on the train part of our collected dataset.
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Table 4.1. Statistics of the Collected Dataset with 5 Domains.

Domain #Users #Items #Interactions Density(‰)

App-Ins

1,166,552

100,000 101,981,793 0.874

APP-Use 100,000 18,156,535 0.155

Articles 50,000 102,832,656 1.763

Video-S 50,000 74,911,020 1.284

Video-L 50,000 11,412,988 0.196

The histograms, provided in Figure 4.2, show how many tags the user has vis-

ited in each domain (on the training part) which shows the data sparsity in a more

visual way. We can see the distributions in the ªAPP-Insº, ªAPP-Useº, and ªAr-

ticleº follow the typical long-tail distribution. The small peak at the end of the

distribution is caused by the truncation operation.

4.3.2 Experimental Setup

Our experiments aim at answering the following questions:

• RQ1. How does CAT-ART perform vs. state-of-the-art baselines in the

MTCDR task?

• RQ2. Does our model handle the problem of negative transfer?

• RQ3. How do the sub-modules help the model succeed in solving the MTCDR

problem?

To train and evaluate a model, we randomly split the interactions of a user in each

domain into three parts training (70%), validation (10%), and testing (20%). The

evaluation metrics are Precision@K, Recall@K, and NDCG@K [134] that are com-

puted by the all-ranking protocol where all items/tags are ranked. We repeat all

experiments three times and give the average and standard deviation of all metrics.

Compared Methods. We compare our model with single-domain recommenda-

tion methods(SMF), STCDR methods(CMF), and MTCDR methods(MPF, GA-
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MTCDR, HeroGRAPH).

• SMF: It factorizes the user-tag interaction matrix of each domain separately

based on the BPR loss [6].

• CMF [136]: It collects interactions from all domains to form a single matrix

which is further factorized for recommendations.

• HeroGRAPH-L: HeroGRAPH [20] learns the cross-domain and domain-

specific representations. Since HeroGRAPH does not open-source its code,

we implement this method based on Lightgcn [23].

• MPF [21]: It captures the cross-domain preference with user’s behaviour in

all domain, and combine it with the user embedding in the target domain for

recommendations.

• GA-MTCDR [73]: It adopts the node2vec [143] model to pre-train the user/item

embeddings in each domain and uses element-wise attention to transfer em-

beddings among multiple domains.

4.3.3 Model Implementation and Complexity

Environment. We implement our model using PyTorch [144] with python 3.6 and

train the framework on Tesla P40 GPUs with a memory size of 22.38 GiB and a

1.53 GHz memory clock rate.

Proposed Method1. We use the BPRMF [6] model with the user and item

embedding size of m = 64 for single domain recommendation and pretraining

of domain-specific user embeddings. We reformulate the contrastive loss function

given in [140] for the contrastive autoencoder task in our model. For the CAT mod-

ule, we build the autoencoder with Multi-Layer Perceptron [139] where the sizes of

the hidden layers are set to be [5 ×m, 3 ×m,m] and [m, 3 ×m, 5 ×m],m = 64

for the encoder and decoder modules, respectively. We adopt the PReLU activation

1https://github.com/Chain123/CAT-ART
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function introduced by [145] between layers. We use a minibatch size of N = 4096

in the training of the CAT module and set τ = 0.1 in the contrastive loss (4.6). For

each user, we mask out the domain-specific user embedding of one randomly se-

lected domain out of the five domains in our collected dataset. In the loss function

Lcat, defined in (4.8), we set α1 = α2 = 0.4. The ART units in each domain have

an identical structure, in which all adaptation modules are MLP layers with only

one hidden layer which has the same size as its input, and the attention module is

with only one head.

Model Complexity. The time complexity of the model training isO(maxi∈[1,n] Ii∗
d + |U |nd2) where n is the number of domains, Ii is the number of interactions in

domain i, |U | is the number of users and d denotes the embedding dimension of

user.

4.3.4 Experimental Results

Table 4.2 and 4.3 summarize the performances of our proposed CAT-ART model

and all the baseline methods on the collected multi-target CDR scenario with 5 do-

mains. The proposed CAT-ART model outperforms all the other baselines in most

of the domains. CAT-ART achieves the best performance in ªAPP-Insº, ª’APP-

Use’, ªArticleº, and ªVideo-Lº domains ( RQ1). CAT-ART also avoids nega-

tive transfer and outperforms most of the baselines in ªVideo-Sº. HeroGRAPH-

L achieves a slightly better performance on ªVideo-Sº. The reasons for this phe-

nomenon are twofold. First, the user behaviours in the ªVideo-Sº domain are richer

and more diverse which makes it less likely to be affected by information from

other domains, that is, it is hard to improve the recommendation performance in

ªVideo-Sº through cross-domain information, as is shown in Table 4.2. This is

reasonable. the user behaviours in the ªVideo-Sº domain are richer and more di-

verse, see Table 4.1, which is less likely to be affected by information from other

domains, that is, it is hard to improve the recommendation in ªVideo-Sº through

CDR, but its also robust to the negative transfer issue, shown in Table 4.2. There-

fore, the recommendation performance in ªVideo-Sº mainly depends on how we
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model user and item embeddings from the diverse user behaviour data in the single

domain. Secondly, we use the state-of-the-art graph-based recommendation model,

i.e., Lightgcn [23], in the HeroGRAPH-L method, which is a deep Graph Con-

volutional Networks (GCN) that can generate better user and item embeddings in

single domain compared to the MF model [146]. In summary, HeroGRAPH-L can

get a slightly better performance than our method in the ªVideo-Sº domain due to

the superiority of GCN over the MF model. However, HeroGRAPH-L still suffers

from the negative transfer problem causing great performance reduction in other

domains, such as ªAPP-Useº, and ªVideo-Lº. Furthermore, CAT-ART outperforms

all the baselines in the other four domains.

Furthermore, the user behaviour in ªVideo-Sº is much more diverse, making the

recommendation accuracy of all methods much low than the performance achieved

in other domains. Combining these two factors, we argue that, the success of the

HeroGRAPh on the ªVideo-Sº domain is mainly attributed to its adoption of the

powerful GCN for user and item embedding generation. However, it still suffers

from the negative transfer issue in other domains, see Table 4.2.

Compared with the SMF, we can see that CAT-ART effectively handles the

negative transfer problem in all domains (RQ2). We attribute the success of the

CAT-ART framework to the architecture design of the CAT and ART, which are

specifically structured to avoid the negative transfer issue while trying to integrate

as much useful information as possible from other domains to boost performance.

Specifically, the CAT module generates high-quality global user embeddings for

recommendations in all domains. And the ART module adoption of the attention

mechanism to integrate domain-specific embeddings from other domains. We give

a detailed analysis of each module in ablation studies in the following subsection.

On the other hand, all the baseline cross-domain methods are severely affected by

the negative transfer problem, causing significant performance degradation in many

domains, e.g., ªAPP-Useº, ªArticlesº, and ªVideo-Lº. This is reasonable. First,

as shown in Table 4.1, the ªAPP-Useº and ªVideo-Lº domains are much sparser

than the other domains. Furthermore, user behaviour in ªApp-Insº, ªAPP-Useº and
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Table 4.2. Results (in %) of the Proposed Method and Baselines. The ↓ represents

negative transfer compared with SMF.

Model Domain
Precision Recall

@10 @20 @10 @20

SMF

APP-Ins 33.82±0.70 25.46±0.88 21.51±0.39 31.91±1.22
APP-Use 20.91±0.23 12.21±0.26 65.5±0.89 75±1.50
Article 16.02±0.73 12.05±0.58 16.64±0.43 23.25±0.40
Video-S 3.9±0.03 3.86±0.02 3.59±0.44 6.9±0.77
Video-L 5.98±0.20 3.91±0.10 26.73±0.87 34.6±0.88

CMF

APP-Ins 33.57±0.37↓ 25.19±0.37↓ 21.8±0.19 32.05±0.43
APP-Use 20.41±0.11↓ 12.17±0.05↓ 64.91±0.27↓ 75.54±0.16
Article 10.29±0.27↓ 8.37±0.19↓ 8.83±0.23↓ 13.79±0.28↓
Video-S 3.87±0.12 3.81±0.12↓ 4.08±0.17 7.6±0.29
Video-L 4.74±0.03↓ 3.26±0.01↓ 21.44±0.12↓ 29.14±0.06↓

MPF

APP-Ins 36.08±1.53 27.11±0.41 23.28±0.99 34.29±0.44
APP-Use 20.95±0.12 12.26±0.16 65.55±0.44 75.18±0.84
Article 14.55±0.16↓ 11.14±0.11↓ 15.35±0.07↓ 21.72±0.12↓
Video-S 3.63±0.29↓ 3.67±0.13↓ 3.71±0.30 7.16±0.68
Video-L 2.74±0.95↓ 2.09±0.52↓ 11.96±4.31↓ 18.2±4.66↓

GA-MTCDR

APP-Ins 16.77±0.05↓ 10.35±0.02↓ 11.7±0.01↓ 14.37±0.03↓
APP-Use 13.88±0.05↓ 10.46±0.01↓ 45.44±0.13↓ 67.2±0.16↓
Article 4.62±0.13↓ 3.73±0.03↓ 4.12±0.14↓ 6.37±0.11↓
Video-S 3.44±0.03↓ 3.1±0.02↓ 3.48±0.08↓ 6.03±0.06↓
Video-L 3.18±0.15↓ 2.22±0.07↓ 14.21±0.74↓ 19.76±0.54↓

HeroGRAPH-L

APP-Ins 34.05±2.01 24.47±1.16↓ 22.34±1.14 31.61±1.35↓
APP-Use 20.68±0.36↓ 11.98±0.15↓ 66.11±0.83 74.96±0.61↓
Article 11.27±0.12↓ 8.61±0.12↓ 15.01±0.2↓ 20.68±0.33↓
Video-S 3.99±0.14 3.7±0.15 5.29±0.21 8.97±0.34
Video-L 5.42±0.29↓ 3.65±0.15↓ 24.62±1.22↓ 32.84±1.29↓

CAT-ART

APP-Ins 38.36±0.58 27.96±0.31 24.86±0.34 35.46±0.39
APP-Use 21.23±0.18 12.33±0.18 66.53±0.65 75.66±1.02
Article 16.82±0.21 12.4±0.13 18.76±0.56 25.47±0.6
Video-S 3.93±0.08 3.93±0.06 3.83±0.50 7.35±0.82
Video-L 6.08±0.09 3.96±0.08 27.18±0.39 35.01±0.67

ªArticleº are monotonous in nature compared with ªVideo-Sº (therefore, the SMF

achieves a much higher precision score in these domains). Obviously, when data

from all domains are collected and trained together, domains with more sparsity
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Table 4.3. NDCG results (in %) of the Proposed Method and Baselines. The ↓
represents negative transfer compared with SMF.

Model Domain
NDCG

@10 @20

SMF

APP-Ins 32.56±0.43 32.53±0.89
APP-Use 57.39±1.46 60.81±1.72
Article 21.59±1.30 21.93±1.06
Video-S 3.83±0.13 4.84±0.25
Video-L 20.37±1.19 22.91±1.2

CMF

APP-Ins 32.39±0.29↓ 32.45±0.27↓
APP-Use 43.99±0.78↓ 47.89±0.74↓
Article 11.24±0.34↓ 12.07±0.31↓
Video-S 4.00±0.14 5.04±0.18
Video-L 12.67±0.07↓ 15.14±0.05↓

MPF

APP-Ins 36.95±5.56 36.53±4.02
APP-Use 55.67±2.71↓ 59.14±2.52↓
Article 20.96±0.63↓ 21.29±0.52↓
Video-S 3.85±0.40 4.91±0.11
Video-L 8.03±3.65↓ 10.01±3.79↓

GA-MTCDR

APP-Ins 17.81±0.08↓ 16.01±0.03↓
APP-Use 32.35±0.13↓ 40.16±0.1↓
Article 6.22±0.18↓ 6.36±0.13↓
Video-S 4.22±0.05 4.69±0.04
Video-L 10.46±0.63↓ 12.23±0.49↓

HeroGRAPH-L

APP-Ins 40.5±1.91 38.12±1.51
APP-Use 59.51±1.08 62.74±0.98
Article 18.19±0.16↓ 18.86±0.23↓
Video-S 5.31±0.18 6.2±0.23
Video-L 18.71±1.21↓ 21.35±1.24↓

CAT-ART

APP-Ins 43.47±1.23 41.55±0.94
APP-Use 59.98±0.86 63.27±1.02
Article 25.97±0.61 25.79±0.58
Video-S 3.93±0.14 5.05±0.24
Video-L 21.03±0.38 23.54±0.86

tend to be overwhelmed by other domains causing biased cross-domain representa-

tion and negative transfer, e.g., in domains ªAPP-Useº and ªVideo-Lº. In addition,

domains with simple and monotonous data are prone to be affected by too much

information in other domains, e.g., for domains ªApp-Insº, ªAPP-Useº, and ªArti-
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clesº. Apparently, according to the experimental results, none of the previous work

can handle these situations( RQ2).

4.3.5 Ablation Study and Analysis

We conduct ablation studies to show the effectiveness of each proposed module and

to demonstrate how negative transfer is addressed through model design (RQ3).

We incrementally accommodate different modules into the single-domain matrix

factorization model (SMF), until we incorporate all the proposed sub-modules and

features. Specifically, the following models are evaluated:

• SMF: The single-domain Matrix Factorization (MF) model.

• +Autoencoder: We add the original autoencoder to extract global represen-

tations for CDR.

• +Contrastive: We further add the contrastive loss for the training of the au-

toencoder, i.e., the CAT module.

• +ART: The ART module is further incorporated to integrate domain-specific

user embedding.

Furthermore, to show the impact of negative transfer when domain-specific em-

beddings are directly transferred without attention, we further remove the attention

layer within the ART module. Specifically, the following model is evaluated:

• -Attention: We remove the attention from the ART and only use MLP layers

to integrate domain-specific features.

Table 4.4 and 4.5 summarize the results of ablation studies. The values of met-

rics Precision@10, Recall@10, and NDCG@10 are given. We can see, each time

we add a new sub-module or feature incrementally on top of the previous model, we

can observe an improvement in the overall recommendation performance, which il-

lustrates the effectiveness of autoencoder, contrastive self-supervised learning, and

57



Table 4.4. Results (in %) of ablation studies. The ↓ represents negative transfer

compared with the SMF model.

Domain Metric SMF +Autoencoder +Contrastive

Precision@10 33.82±0.70 37.64±1.17 37.95±0.45
Recall@10 21.51±0.39 24.35±0.76 24.58±0.35App-Ins

NDCG@10 32.56±0.43 41.34±3.75 42.56±2.02
Precision@10 20.91±0.23 21.00±0.11 21.08±0.23
Recall@10 65.50±0.89 65.77±0.33 66.01±0.88APP-Use

NDCG@10 57.39±1.46 59.09±0.37 58.61±0.40
Precision@10 16.02±0.73 16.54±0.46 16.46±0.34
Recall@10 16.64±0.43 17.48±1.21 17.19±1.13Article

NDCG@10 21.59±1.30 23.98±2.28 23.54±2.75
Precision@10 3.89±0.025 3.91±0.08 3.97±0.13
Recall@10 3.59±0.44 3.71±0.40 3.72±0.37Video-S

NDCG@10 3.83±0.13 3.87±0.08 3.91±0.05
Precision@10 5.98±0.20 6.04±0.01 6.07±0.04
Recall@10 26.73±0.87 27.00±0.08 27.17±0.20Video-L

NDCG@10 20.37±1.19 21.00±0.14 21.12±0.21

Table 4.5. Results (in %) of ablation studies. The ↓ represents negative transfer

compared with the SMF model.

Domain Metric +ART -Attention

Precision@10 38.36±0.58 36.24±0.26
Recall@10 24.86±0.34 23.35±0.23App-Ins

NDCG@10 43.47±1.23 36.08±1.54
Precision@10 21.23±0.18 21.01±0.07
Recall@10 66.53±0.65 65.92±0.41APP-Use

NDCG@10 59.98±0.86 59.28±0.24
Precision@10 16.82±0.21 15.88± 0.15↓

Recall@10 18.76±0.56 15.89±0.38↓Article

NDCG@10 25.97±0.61 22.25±1.71
Precision@10 3.93±0.08 3.82±0.28↓
Recall@10 3.83±0.50 3.46±0.25↓Video-S

NDCG@10 3.93±0.14 3.73±0.18↓
Precision@10 6.08±0.09 5.86±0.03↓
Recall@10 27.18±0.39 26.27±0.09↓Video-L

NDCG@10 21.03±0.38 20.26±0.15↓
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the ART modules. Specifically, with the original autoencoder framework, we al-

ready get rid of the negative transfer in all domains of our dataset. This can be at-

tributed to the natural advantage of the autoencoder framework where the encoder

is trained to extract the most important information to reconstruct the input, thus,

is able to reduce the effect of noisy samples. Furthermore, by adding contrastive

training (+Contrastive), we improve the performance in most of the domains via

a more general user representation. However, the recommendation is not always

improved, especially in the ªArticleº domain. The reasons are twofold. 1) In our

work, the goal of contrastive learning is to make the user embedding more robust

to noise and less dependent on domain-specific information. 2) The ªArticleº do-

main is less related to the rest of the domains, that’s why all the baseline methods

encounter the negative transfer problem in this domain, shown in Table 4.2. There-

fore, a more domain-independent global embedding given by the CAT module has

less domain-specific information from the ªArticleº domain, resulting in slightly

worse recommendation performance compared to the user embedding given by the

autoencoder. Finally, domain-specific embeddings, which represent users’ prefer-

ences in individual domains, are incorporated through the ART module to further

boost recommendation performance while avoiding negative transfer through at-

tention. Note that, due to the special data characteristics in the ªVideo-Sº domain,

we can only get a relatively small improvement. Thus, all variants have close per-

formance. However, it is clearly shown in Table 4.4 and 4.5 that we get the best

performance when incorporating all the modules, i.e., +ART, in the rest of the do-

mains.

Furthermore, without attention (-Attention), the performance is greatly reduced

in all domains and the negative transfer problem also prevails, which demonstrates

the effectiveness of the attention module in avoiding the negative transfer problem.

Figure 4.3 shows the averaged attention scores on the test set, given by the ART

module in each individual domain. Each row represents the attention weights as-

signed to the source domains by the corresponding target domain, therefore the

sum of weights in a row equals 1. We can see, the weights between related domains
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Figure 4.3. Averaged attention scores on the test set. Each row represents the

attention scores assigned by the corresponding domain to the other domains.

are high, e.g., domains ªAPP-Insº and ªAPP-Useº, while weights between unre-

lated domains are low, e.g., ªAPP-Insº and ªVideo-Lº. Furthermore, the asymmetry

of the weight matrix shows the inequality in the use of shared domain embedding

between two domains. For example, ªAPP-Useº assigns a weight of 0.13 to the

ªVideo-Sº domain, while the ªVideo-Sº gives an attention score of 0.5 to the ªAPP-

Useº. This is reasonable, it’s helpful for the recommendation of videos if we know

what Application a user is more likely to use, but the other way around is much

harder. These phenomena further demonstrate the need for a mechanism to select

the most important and helpful information among the features provided by multi-

ple domains.

4.4 Conclusion

In this chapter, we focus on the MTCDR problem and propose the CAT-ART model.

We build a CAT module to extract robust unbiased global user representation in

a self-supervised manner via contrastive learning and an autoencoder framework

based on pre-trained domain-specific user embeddings. Then, the ART module is

built in each domain, which transfers domain-specific user embeddings from other

domains with the attention mechanism. Combining these two modules, CAT-ART
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boosts recommendation in all participating domains and avoids negative transfer at

the same time. We believe CAT-ART has made a valuable contribution to exploring

the MTCDR and the negative transfer issue, approaching the objectives of One for

All and All for One.
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Chapter 5

Representation Learning on

Temporal Heterogeneous Graph

5.1 Introduction

Representation learning on graphs is gaining popularity due to the widespread pres-

ence of graph-structured data in real-world scenarios, e.g., citation networks and

social networks. Most of these real-world graphs exhibit heterogeneity and com-

plex dynamics that evolve continuously in time. For example, a citation network

may have the ªAuthorº and ªPaperº nodes, while an author can write multiple pa-

pers at different points in time. Although an increasing amount of efforts have

been made to study heterogeneous information networks (HINs) and temporal net-

works, most recent studies focus on either static HINs [103], [147] or temporal

monographs [109], [111].

A few recent studies attempt to handle the dynamics and heterogeneity of tem-

poral HINs simultaneously. THINE [122] leverages the attention mechanism and

meta-path to handle the heterogeneity and use the Hawkes process to model the evo-

lution of temporal networks. HPGE [123] also leverages the Hawkes process and

time-importance sampling techniques to model the dynamics of the temporal graph.

However, they produce the all-time general node embeddings, i.e., each node is as-

signed with a single embedding for all timestamps [148], and thus can not generate
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dynamic node embeddings at any given time. In addition, they are all transductive

models that are not inductive and scalable to new nodes. Therefore, there still exists

a gap in the literature to develop deep inductive models for temporal HINs that can

generate time-varying node embeddings in continuous time.

There are two significant challenges to obtaining inductive temporal HIN em-

beddings. The first challenge lies in better modelling the dynamic impact between

heterogeneous nodes. TREND [110] integrates a single Hawkes process to model

the temporal influence between nodes. However, it can not handle the node hetero-

geneity in HINs. THINE [122] and HPGE [123] create a per-node Hawkes process

to model the exciting effects between heterogeneous nodes. However, they are not

inductive to new nodes and also fail to incorporate the heterogeneity of edges be-

tween heterogeneous nodes.

The other challenge is how to effectively capture the evolution of network struc-

tures of temporal HINs. Capturing the network structure evolution is crucial to a

better understanding of temporal HINs. Most existing works model the evolution

of temporal networks as a link formation process where each temporal link/edge

is treated as the basic evolution unit in the graph. Thus, they often adopt the tem-

poral link prediction task to train the model, e.g., TGAT [109], CAW [111], and

TREND [110]. However, the evolution of real-world temporal HINs often involves

the formation of events with complicated high-order subgraph structures. For ex-

ample, the basic evolution unit in a citation network should be a publication of a

paper, which is a subgraph event including the authors of the paper, the venue the

paper is published in, and the cited papers, where all the edges within the event

are formed at the same time. Capturing the formation process of such subgraph

events with high-order local structures is critical to understanding the evolution of

temporal HINs.

To address the aforementioned challenges, in this chapter, we propose CTRL,

a novel Continue-Time Representation Learning model to capture the temporal in-

fluence between heterogeneous nodes and the high-order structural evolution of

temporal HINs. The CTRL model incorporates temporal and dynamic structural
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information of temporal HINs into the Transformer framework [129]. Specifically,

temporal information which is modelled by an edge-based Hawkes process and dy-

namic structural information which is reflected by the dynamic centrality of graphs

are incorporated into the aggregation stage of a CTRL layer. We train the model by

predicting the event formation in temporal HINs. In proposing CTRL, we make the

following contributions:

First, apart from the semantic correlation between nodes which are measured by

attention scores, we further consider two other key factors in the aggregation pro-

cess of a CTRL layer. They are 1) temporal influence between the target and neigh-

bouring nodes and 2) dynamic centrality, which measures the importance of a node

over time. To be specific, we propose an edge-based Hawkes process where a neural

network is used to extract edge-specific decay rates to capture temporal influence

between heterogeneous nodes. We further use the dynamic degrees of neighbours

to weigh the importance of each neighbour to incorporate the dynamic centrality in

the aggregation procedure. In addition, the messages from heterogeneous temporal

neighbours are transformed through node-type- and edge-type-dependent modules

before the aggregation to handle graph heterogeneity.

Secondly, we propose to train CTRL through the prediction of temporal events

to capture the evolution of high-order structures in temporal HINs. Specifically,

two MLP sub-modules are built to predict the event occurrence probability and

the probabilities of occurrence of all the edges within the event to preserve the

dynamics of both the high-order and first-order local structure. By minimizing the

prediction loss events and edges, the CTRL captures the evolution of the high-order

local structure of temporal HINs.

We conducted extensive experiments on three public datasets to demonstrate the

superiority of CTRL over a range of state-of-the-art approaches and baselines on the

inductive temporal link prediction task. Moreover, we demonstrate the effectiveness

of the model design choices through ablation studies.
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5.2 Preliminaries

In this section, we recap the preliminaries in temporal HINs, graph neural network

and Hawkes process.

5.2.1 Temporal HIN

Temporal HIN is defined as a graph G = (V , E , T ;ϕ, φ) where V is the set of nodes,

E indicates the set of edges and T represents the set of timestamps. ϕ : V 7→ A
and φ : E 7→ R are two mapping functions that map nodes and edges to their

corresponding types. A,R are the sets of types for nodes and edges, respectively.

For HINs, |A|+ |R| > 2.

5.2.2 Continuous-time Temporal HIN Embedding

Given a temporal HIN G, the goal of continuous-time representation learning on

temporal HIN is to learn an embedding function f : V × T 7→ R
d × T where d

is the dimensionality of node embedding. Thus, we can get the low-dimensional

representation of a node at any given time t ∈ T.

5.2.3 Graph Neural Network

The general architecture of a graph neural network (GNN) layer consists of two

parts. They are Message passing, which extracts messages from source nodes and

passes them to the target node; and Aggregation, which aggregates the messages

from source nodes to update the representation of the target node.

In this work, we handle the network heterogeneity through node type- and edge-

type-dependent modules in the message-passing stage and capture the node feature

and temporal topological of a network in the aggregation stage.
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5.2.4 Hawkes Process

Hawkes process [121] is a self-exciting point process in which the probability of

an event occurring at a particular time depends on the history of events up to that

point. Typically, its behaviour is modelled by a conditional intensity function λ(t).

A common formulation of the intensity function is defined as:

λ(t) = µ(t) +
∑

th<t

κ(t− th; δ), (5.1)

where µ(t) is the base intensity of the event at time t, κ(t−th, δ) = exp(−δ(t−th))
denotes the time decay effect of historical event and δ is the decay rate.

In temporal graphs, the Hawks process is used to model the temporal impact be-

tween nodes. Specifically, we apply the time decay effect to determine the temporal

importance of neighbour nodes in the aggregation process of a GNN layer which is

equivalent to the conditional intensity in (5.1), as demonstrated in TREND [110].

5.3 Methodology

In this section, we present the proposed CTRL for temporal HINs. First, we elabo-

rate on the key designs on how we capture the temporal evolution of node features

and network structure. Then, we introduce the future event prediction task for the

optimization of the proposed GNN model.

5.3.1 Model Overview

Figure 5.1 shows the overall structure of a single layer of the CTRL model. An

example is given on how a CTRL layer extracts the temporal representation of node

P1 at time t3. To be specific, we first sample its historical neighbors (A1, P2) which

are connected with P1 through edges t1, e1 and t2, e3, respectively. Then, the en-

coded dynamic centrality, indicating the dynamic importance of a node, is added to

the node features which are the input of the first CTRL layer, i.e., ht,0
P1

, ht,0
A1

, and ht,0
P2

.
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Figure 5.1. The architecture of a layer of the CTRL model.

In message passing, the representations of neighbours are passed to the target node

through node type- and edge-type dependent modules, i.e., FFNV
ϕ(·) and Wmsg

φ(·) . In

addition, we consider three key factors to weigh the importance of neighbour nodes

during the local aggregation process. They are 1) semantic correlation which is

calculated via the heterogeneous attention module, 2) temporal influence which is

measured by the proposed edge-based Hawkes process, 3) and dynamic centrality

measured by the dynamic degree centrality, which is defined as the number of links

incident upon a node before a given timestamp. A node type-dependent adapt

module, i.e., Adaptϕ(P1)
, is built to transform the aggregated message, hm, into the

feature distribution of the target node. Finally, the adapted message is added to

the representation of the target node from the last layer to get its embedding in the

current layer, i.e., residual connection.

5.3.2 Heterogeneous Message Passing

To handle the graph heterogeneity caused by different types of nodes and connec-

tions/edges, we adopt a heterogeneous message-passing mechanism where node

type-dependent modules are used to map feature distributions of different types of

nodes into the same latent. Then edge type-dependent modules are used to handle
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the edge heterogeneity. Specifically, the messages of passed from neighbors {vi}Ni=1

to the target node v in the l-th layer is formulated as

hmsg
v,vi

= FFNV
ϕ(vi)

(hti,l−1
vi

)Wmsg

φ(ei)
, i ∈ [1, N ], (5.2)

where hmsg
v,vi

represents the transformed message passed from vi to v, N is the num-

ber of neighbours, FFNV
ϕ(·) and Wmsg

φ(·) are the node type- and edge type-independent

transformation modules. hti,l−1
vi

) denotes the representation of vi from the l − 1-th

layer (l ≥ 1) at time ti. Moreover, ei denotes the edge between node v and vi, ϕ(v)

and φ(e) denote the types of node v and edge e, respectively. Note that we use bold

font to denote vector variables.

5.3.3 Local Aggregation on Temporal HIN

As mentioned in Sec. 5.3.1, we incorporate three key factors in the aggregation

process of a CTRL layer which are handled by the following sub-modules.

Heterogeneous Attention The attention scores, calculated as the normalized

scaled-dot product values between the representations of the target node and its

neighbours, measure the semantic correlation between nodes and are widely used

in the aggregation process of GNN, e.g., GAT and SAGE. However, in HINs the

target node and its neighbours may have different feature distributions. Moreover,

there may exist different types of edges between a pair of node types. Therefore,

edge information between two nodes should be considered when calculating their

semantic correlation.

Specifically, for an edge, we first map the representations of heterogeneous

nodes into the same latent space via node type-dependent mapping functions to

handle the node heterogeneity. Then, the mapped representations of the source

nodes are further transformed through an edge type-dependent matrix to further in-

corporate the edge heterogeneity. Finally, the attention score is computed by the

scale-dot product between the transformed representations of the source and tar-

get nodes. Therefore, given a target node v at timestamp t with its neighbor set
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{(vi)}Ni=1, the attention score is calculated by

Q = FFN
Q
ϕ(v)(h

t,l−1
v ),

K = {FFNK
ϕ(vi)

(hti,l−1
vi

)WKey
φ(ei)
}Ni=1,

Attnt,v = {attnt,v
vi
}Ni=1 = softmax(

QKT

√
d

),

(5.3)

where d is the dimension of the hidden representations, FFN
Q
ϕ(·) and FFNK

ϕ(·) are

the node type-dependent feedforward network for the Query and Key terms, respec-

tively. WKey
φ(·) is the edge type-dependent matrix which further transfers the repre-

sentations of neighbour nodes based on their connection types between the target

node.

Edge-based Hawkes Process. Intuitively, the impact of historical nodes de-

cays over time. Previous methods often leverage the Hawkes process to model this

temporal impact between nodes. However, in a temporal HIN, different types of

historical nodes may have different dynamics, i.e. different decay rates. Further-

more, the temporal decay of impact may vary even for the same type of node. For

example, in a social network, the impacts of different celebrities may decay differ-

ently for different followers depending on their connection(edge) types, e.g., mutual

follow or unilateral follow.

To this end, we propose an edge-based Hawkes process to measure the influence

of neighbour nodes according to their connection information with the target node.

To be specific, all the available information of an edge, including types and repre-

sentations of the target and source nodes and also the type and feature (if available)

of the edge, are taken into account to generate the edge-specific decay rate for the

corresponding edge-based Hawkes process. Formally, the influence intensities for

a set of historical neighbour nodes {vi}Ni=1 of a target node v at time t are calculated
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by

hq
v = FFN

Q
ϕ(v)(h

t,l−1
v ),

h̄k
vi
= FFNK

ϕ(vi)
(hti,l−1

vi
)WKey

φ(ei)
,

δei = σ(MLP(hq
v ⌢ h̄k

vi
)),

λv,t = {λv,t
vi
}Ni=1 = softmax({κ(t− ti, δei)}Ni=1),

(5.4)

where ei represents the edge between the target node v and neighbor vi, ti(< t)

denotes the time when the edge ei between node v and vi is established, and ⌢

denotes the concatenation operation between two vectors. Moreover, introduced

in (5.3), FFN
Q
ϕ(·) and FFNK

ϕ(·) are node type-dependent modules to handle the node

heterogeneity and WKey
φ(·) is edge type-dependent matrix to deal with the hetero-

geneous connections. Furthermore, the MLP module takes the transformed latent

representations of the target and source nodes, i.e., hq
v and h̄k

vi
, as input and outputs

the decay rate, δei , of the Hawkes process that models the dynamic impact of neigh-

bour vi to v. Introduced in (5.1), κ(∆t, δ) = exp(−δ∆t) calculates the dynamic

influence intensity. Note that, σ(·) is the ReLU [149] activation function. Finally,

the relative temporal influence of all historical neighbour nodes is captured with the

softmax function.

Dynamic Centrality As shown in Figure 5.1, we first get the dynamic degree

centrality of a node at a given timestamp, e.g., the dynamic degree of node P1 at t3

is denoted as Degree(P1, t3). The dynamic degree measures the node importance

at the current time which can is incorporated into the aggregation procedure of

the CTRL layer. However, the degrees of different types of nodes are often not

comparable. For example, in a citation network, the dynamic degree of a venue

(or conference) is much larger than the degree of an author. Therefore, we adopt

trainable node-type dependent variables, i.e., βϕ(·), to scale the degrees of different

types of nodes before feeding into the softmax function. To be specific, given a

target node v and its neighbors {vi}Ni=1 at time t, we have

ωv,t = {ωv,t
vi
}Ni=1 = softmax({βϕ(vi) ∗Dt

vi
}Ni=1), (5.5)
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where Dt
vi

denotes the dynamic degree centrality of node vi at t.

Finally, the hidden representation of node v at time t in the l-the CTRL layer is

formulated as

hmsg
v =

N
∑

i=1

(α1attnv,t
vi

+ α2λ
v,t
vi

+ α3ω
v,t
vi
)hmsg

v,vi
,

ht,l
v = ht,l−1

v + Adaptϕ(v)(h
msg
v ),

(5.6)

where hmsg
v,vi

, defined in (5.2), is the transformed message passed from vi to v,

hmsg
v is the aggregated message received by node v from all its neighbor nodes.

α1 + α2 + α3 = 1 are trainable weights for the semantic importance, temporal in-

fluence, and the dynamic degree centrality of each neighbour. Adaptϕ(v) is the node

type-dependent adapt module, which consists of a single linear layer, that maps the

received message vector, hmsg
v , to the latent feature space of the target node v. Note

that we only consider undirected graphs here, however, the degree of centrality can

be easily extended to directed graphs.

Furthermore, the dynamic degree is also an important dynamic feature of nodes.

Thus, we develop a degree encoding module which assigns real-valued vectors to

the dynamic degree of each node. The degree embedding is further added to the

node feature as the input of the first CTRL layer. That is,

ht,0
vi

= xvi + zvi,t, (5.7)

where xvi is the node feature of node vi, zvi,t is the embedding of the dynamic node

degree of node vi at time t. For a directed graph, zvi,t can be divided into z+
vi,t and

z−
vi,t which stand for the embeddings of the dynamic indegree and outdegree.

5.3.4 Event-based Training

Previous temporal network methods are often trained by modelling the temporal

link formation process which ignores the evolution of high-order network struc-

tures. Therefore, we propose to train the CTRL by modelling the evolution of the
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events in a given temporal HIN.

Different networks have different basic events, for example, the event of a cita-

tion network should be the publication of a paper which is a subgraph including the

authors, venue, and the cited papers. Therefore, we first identify the basic event for

a given temporal HIN and model the evolution of the predefined basic even from

two perspectives.

First, we predict the probability of an event, as a whole, occurring. To be spe-

cific, for an event, which is subgraph, Gts = {V t
s, E ts} at time t. We get the event

embedding by taking averages of the node representations in the event, that is,

hgts =
1

|V t
s|

∑

v∈Vt
s

ht,L
v , (5.8)

where ht,L
v is the latent node representation from the last CTRL layer. Then, we

build an MLP module, MLPevent, which takes the event representation as input and

predicts the probability of an event occurring.

pgts = MLPevent(hgts). (5.9)

Secondly, to preserve the topological information within each event, we further

predict the occurrence probability of each edge in an event. Specifically, we further

build another MLP module, MLPedge, that takes the representations of the source

and target node of an edge as input and outputs the probability of the edge occurring.

Formally, for an given etj = {vi, vj, t} ∈ E ts, the edge probability is calculated as:

pet
k
= MLPedge(h

t,L
vi
||ht,L

vj
). (5.10)

To explore the evolution of the whole network, for each event Gts, we apply

negative sampling on the temporal HIN to create a negative event Gtn = {V t
n, E ts} by

randomly sample a set of negative nodes V t
n. Note that, there are still overlapping

between the node sets of the Gts and Gtn, i.e., V t
s∩V t

n ̸= ∅. Then, the event occurrence
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loss of Gts is calculated as:

Lgts
occur = −log(pgts)− log(1− pgtn), (5.11)

where pgtn is the occurrence probability of the negative event Gtn defined in (5.9).

Furthermore, for each edge etk = {vi, vj, t} ∈ E ts, we create a negative edge êtk =

{vi, v′j, t} by randomly sample a negative target node v′j . Then the structural loss of

event Gts is computed by:

Lgts
topo = −

1

|E ts|
∑

et
k
∈Et

s

(log(pet
k
) + log(1− pêt

k
)), (5.12)

where pêt
k

is the probability of negative edge êtk defined in (5.10) and E ts is the edge

set of event Gts.
Finally, we optimize model parameters θ through the following objective func-

tion

argmin
θ

∑

Gt
s∈G

Lgts
occur + Lgts

topo, (5.13)

where G is a temporal HIN. We optimize the objective with gradient descent on a

batch of predefined events.

5.4 Experiments

We conduct extensive experiments and compare our approach with state-of-the-art

methods to demonstrate the effectiveness of the proposed model.

5.4.1 Experimental Setup

Datasets. We evaluate the proposed approach and all the baseline methods on three

real-world datasets, i.e., ACM1, DBLP, and IMDB2. The ACM and DBLP are two

paper citation networks where the ACM dataset contains three types of nodes (ªpa-

1https://www.aminer.cn/citation#b541
2https://www.imdb.com/interfaces/
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Datasets #N/E-Types #Nodes #Edges Time Range

ACM 3; 3 87,926 204,436 2000-2016

DBLP 4; 4 147,138 612,673 2010-2020

IMDB 2; 6 96,175 217,358 2000-2020

Table 5.1. Data statistics. #N/E-Types denotes the number of node and edge types.

perº, ªauthorº, and ªvenueº) and the DBLP dataset involves four types of nodes

(ªpaperº, ªauthorº, ªvenueº, and ªfieldº). The IMDB dataset is a network with two

types of nodes (ªmovieº and ªpeopleº) and six types of edges (ªeditorº, ªactressº,

ªactorº, ªdirectorº, ªwriterº, and ªproducerº). 3The statistics of these datasets are

shown in Table 5.1.

For citation networks, i.e., ACM and DBLP datasets, we use Doc2vec [150]

model to convert the title and abstract of each paper into a real-valued vector with

a dimension size of 128, which is treated as the raw features of the paper node.

Moreover, in the DBLP dataset, we leverage the word2vec method to convert each

ªfieldº into a vector of length 128. Then, we use all-zero vectors as the raw features

of other node types, i.e., ªauthorº and ªvenueº nodes. For the IMDB dataset, we

encode the raw features of a movie, including its title, genre, and release region,

into a vector of size 246 and also use all-zero vectors as the raw features of ªpeopleº

nodes.

In addition, the basic event for a citation network is defined as the publication

of a paper which includes the authors of the paper, the venue where the paper is

published, the cited papers, and the field of study (available for the DBLP dataset).

For the IMDB dataset, the basic event is defined as the release of a movie consisting

of the movie node and its corresponding crews including director, producer, actor,

editor, etc.

Experimental setup. We split a temporal HIN into three parts for training, val-

idation, and testing, according to the timestamps to make sure that all methods

are trained and evaluated under the same conditions. Specifically, we split up a

3Dataset details can be found in supplementary
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Models Heterogeneity Temporal Centrality

GCN [99] ✘ Sample ✘

SAGE [22] ✘ Sample ✘

GAT [100] ✘ Sample ✘

RGCN [151] ✘ Sample ✘

TGAT [109] ✘ Encode ✘

HGT [105] ✔ Encode ✘

TGSRec [24] ✔ Encode ✘

CAW [111] ✘ Encode ✔

TREND [110] ✘ Hawkes ✔

Table 5.2. Details of baseline methods. The ªTemporalº column indicates how each

baseline utilizes time information where ªSampleº for temporal sampling, ªEmbedº

for time encoding, and ªHawkesº for Hawkes process.

temporal network according to the occurrence time of the predefined basic event.

Therefore, all the events in the validation and testing sets are not involved in the

training process and all the edges in the validation and testing sets are new edges

where at least one node of an edge is not involved in model training. So that we

can evaluate all methods with the inductive link prediction task. We evaluate all

methods with four metrics including Accuracy, Averaged Precision (AP), F1 score,

and AUC. We repeat all experiments at least three times and give out the average

and standard deviation of all metrics.

Baselines. We compare the proposed method with a range of state-of-the-art net-

work embedding methods. Specifically, we have compared with the baseline meth-

ods in Table 5.2. For static methods, i.e., GAT, SAGE, GCN, and RGCN, we use

temporal neighbourhood sampling to adapt to the temporal graph embedding set-

ting.

5.4.2 Implementation Details

We evaluate the proposed method and baselines on a server with AMD EPYC 7K62

48-Core Processor and NVIDIA Tesla P40 GPUs. The experimental environment

is Linux 3.10 with CUDA 10.1. To have fair comparisons, the dimension of node
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Figure 5.2. AUC of the proposed method and temporal network embedding base-

lines on the three datasets.

embedding is set to 128 for all methods. We use the Adam optimizer with a learning

rate of 0.001 and adopt a batch size of 1024. Moreover, we set the number of

neighbours N = 10 and randomly select one negative sample for a positive edge in

both training and evaluation. We apply two GNN layers for both the CTRL model

and all baseline methods. The number of heads of the scaled-dot product module

is set to 2. In the training stage of the CTRL, we sampled (with repeat) 5 authors,

10 cited papers, and 10 fields of study for each paper to form the ªpublication of a

paperº event in the ACM (without the ªfieldº node) and DBLP datasets. Similarly,

10 ªpeopleº nodes with different roles, e.g, director, actor, etc., are sampled for

each movie to form the ªmovie releaseº event in the IMDB dataset. Furthermore,

we use the default settings for other parameters of the baselines.

5.4.3 Main Results

Table 5.3, 5.4, and 5.5 summarize the experimental results of all baselines and the

proposed method on the three real-world temporal HINs. The proposed model sig-

nificantly outperforms all other baselines with a relative performance improvement

on accuracy, average precision (AP), and F1 scores of 12.65%, 8.53%, and 9.53%

on the ACM dataset. Similarly, on the DBLP and IMDB datasets, we achieved a
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Methods Accuracy(%) AP(%) F1(%)

GCN 58.79±0.3 67.29±1.02 65.72±0.16

SAGE 60.7±1.21 63.9±1.18 66.21±0.95

GAT 61.35±0.74 63.96±1.42 63.3±1.08

RGCN 63.37±0.35 65.35±0.42 63.94±0.62

TGAT 72.77±1.47 79.95±1.13 71.43±1.5

HGT 68.01±0.36 71.78±1.24 68.46±0.43

TGSRec 75.02±1.29 73.93±3.95 78.08±1.07

CAW 73.87±0.09 84.64±0.14 76.64±0.09

TREND 55.72±1.53 53.15±0.94 59.54±3.16

CTRL 84.51±0.12 91.86±0.57 85.52±0.06

Imp.(%) 12.65% 8.53% 9.53%

Table 5.3. Results of the inductive temporal link prediction task on the ACM

dataset. Imp.% indicates the relative performance improvement of our methods

compared to the best results given by all the baselines. All improvements are sig-

nificant with a t-test p-value less than 0.05.

Methods Accuracy(%) AP(%) F1(%)

GCN 66.59±0.18 72.62±0.24 67.81±0.16

SAGE 67.47±0.16 73.57±0.14 73.54±0.13

GAT 68.84±0.47 75.91±0.65 67.69±0.65

RGCN 68.8±0.32 73.98±0.43 68.31±0.48

TGAT 75.09±2.11 82.81±2.35 72.93±2.95

HGT 69.65±0.42 77.49±0.19 67.84±0.93

TGSRec 79.76±0.28 86.5±0.08 80.33±0.63

CAW 74.95±0.16 86.68±0.11 70.21±0.56

TREND 54.69±2.44 52.49±8.84 64.11±9.1

CTRL 86.46±0.08 94.15±0.03 86.22±0.08

Imp.(%) 8.4% 8.62% 7.33%

Table 5.4. Results of the inductive temporal link prediction task on the DBLP

dataset. All improvements are significant with a t-test p-value less than 0.05.

77



Methods Accuracy(%) AP(%) F1(%)

GCN 59.26±0.22 62.38±0.41 59.62±0.73

SAGE 61.35±0.56 67.59±1 61.86±1.86

GAT 61.28±0.12 65.6±0.4 62.05±1.48

RGCN 67.33±0.46 71.64±0.7 67.12±1.21

TGAT 82.33±0.3 88.63±0.45 83.14±0.25

HGT 67.35±0.23 72.77±0.23 68.48±0.27

TGSRec 75±0.73 83.47±1.67 77.66±0.91

CAW 74.66±0.03 85.24±0.02 73.45±0.17

TREND 52±0.24 51.04±2.23 55.09±2.43

CTRL 90.91±0.25 95.69±0.39 91.19±0.12

Imp.(%) 10.42% 7.97% 9.68%

Table 5.5. Results of the inductive temporal link prediction task on the IMDB

dataset. All improvements are significant with a t-test p-value less than 0.05.

relative improvement of 8.4%, 8.62%, 7.33% and 10.42%, 7.97%, 9.68%. In ad-

dition, Figure 5.2 shows the AUC scores of our model and other temporal graph

embedding baselines. We observe that the proposed model achieved AUC scores

over 0.9 in all datasets, which significantly outperforms the baselines.

Generally, the temporal methods are able to outperform all the static methods

except for the TREND model. In the training stage, TREND tries to predict the

dynamic node degree which is problematic in some networks, e.g., in citation net-

works, the dynamic degree of the ªvenueº node is on the order of thousands, while

the dynamic degree of ªauthorº node is less than 10 for most authors. Moreover, in

the movie network, the dynamic degree of a movie is also 0. These may cause the

network to focus more on the node degree and fail to preserve the network struc-

ture. In our work, the dynamic degree is encoded into node features and is scaled

with trainable type-dependent variables. Therefore, the proposed model can capture

dynamic centrality without such a problem.
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Figure 5.3. AUC scores of ablation studies.

ACM Dataset

Variants Accuracy(%) AP(%) F1(%)

CTRL 84.51±0.12 91.86±0.57 85.52±0.06

-Event_loss 83.56±0.88 90.91±0.76 84.79±0.7

-Centrality 82.47±0.29 89.64±0.25 83.95±0.26

Hawkes-δ 81.01±0.37 88.97±0.16 81.56±0.37

DBLP Dataset

Variants Accuracy(%) AP(%) F1(%)

CTRL 86.46±0.08 94.15±0.03 86.22±0.08

-Event_loss 86.07±0.31 93.74±0.24 85.87±0.32

-Centrality 84.63±0.13 91.81±0.16 84.79±0.32

Hawkes-δ 83.49±0.27 91.41±0.21 83.37±0.31

IMDB Dataset

Variants Accuracy(%) AP(%) F1(%)

CTRL 90.91±0.25 95.69±0.39 91.19±0.12

-Event_loss 89.3±0.14 93.91±0.05 89.81±0.08

-Centrality 88.4±0.02 94.05±0.26 88.54±0.04

Hawkes-δ 88.19±0.18 94.03±0.1 88.37±0.14

Table 5.6. Results of ablation studies on the three datasets.
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5.4.4 Ablation Study

We further conduct ablation studies where variants of the proposed method are

evaluated to demonstrate the effectiveness of each proposed module and feature.

We gradually remove different sub-modules or features from the CTRL model and

show the impact of each module. Specifically, apart from the proposed method, i.e.,

CTRL, the following variants are evaluated:

• -Event_loss. We remove the event loss and train the model with edge loss,

the same as previous works, TGAT, CAW, etc.

• -Centrality. We further remove the dynamic centrality sub-module.

• Hawkes-δ. We further replace the edge-based Hawkes process with the orig-

inal Hawkes process where a single trainable decay rate, i.e., δ, is used like

TREND.

Table 5.6 summarizes the results of the accuracy, average precision, and F1

score of ablation studies on the ACM, DBLP, and IMDB datasets, respectively.

The AUC score is plotted in Figure 5.3. We observe performance degradation each

time a sub-module or feature is removed from the previous model. Specifically, the

comparison between the CTRL and the -Event_loss model demonstrates the effec-

tiveness of event-based training for capturing the high-order evolution of temporal

HINs. Moreover, the better performance achieved by the -Event_loss compared

to the -Centrality indicates the necessity of integrating the dynamic centrality in

the temporal graph. Finally, comparison results between the -Centrality and the

Hawkes-δ model show the advancement of the proposed edge-based Hawkes pro-

cess over the original Hawkes process on the temporal HINs.

5.5 Conclusion

In this chapter, we propose the CTRL model for continuous-time representation

learning on temporal HINs. In the message passing stage of a CTRL layer, node
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type- and edge-type-dependent parameters are used to handle the graph heterogene-

ity. Moreover, in the aggregation steps, we consider the semantic correlation, tem-

poral influence, and dynamic node centrality to determine the importance of neigh-

bour nodes. Finally, we train CTRL with a future event prediction task to capture

the evolution of high-order network structure. Extensive experiments on three real-

world datasets demonstrate the superiority of CTRL and the effectiveness of the

model design.
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Chapter 6

Unbiased Sequential

Recommendation

6.1 Introduction

In this chapter, we present the DGT and PS-DGT model to address the issues and

bridge the research gap introduced in Chapter 1.3. We first construct a temporal het-

erogeneous network to capture the sequential interactions between users and items,

from which two separate representations of each user are extracted for obtaining

disentangled embeddings of their preference and disfavour features. Subsequently,

we decompose the propensity score of each interaction and leverage prior knowl-

edge of user rating distributions and item rating distributions for a more accurate es-

timation. Finally, the estimated propensity scores are used both to reweigh samples

for unbiased optimization objectives and further calibrate the interaction history in

modelling user/item representation. Specifically, we have made the following con-

tributions:

• We focus on the unbiased sequential recommendation in explicit user feedback

settings, an area which has not been previously studied and (in addition to the

MNAR issue) presents new challenges due to the biases in users’ behaviour se-

quence. As Figure 6.1 illustrates, users tend to express preferences with high
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ratings, but rarely give low ones. This leads to a great disparity in the amount of

data/interactions between preferences and disfavors. Despite its prevalence, little

attention has been paid to this issue for sequential recommendation tasks.

• We propose a novel Disentangled Graph Transformer network DGT which al-

leviates the selection in user and item history interaction records, providing un-

biased user and item representations. Specifically, user preference and disfavour

embeddings are modelled by splitting the interaction records based on their rat-

ing scores: interactions with a rating larger than 3 are used to generate the user’s

preference embedding, while interactions with a rating less than or equal to 3 are

used to create the users’ disfavour representation. This allows us to learn a dis-

entangled user representation that effectively avoids unbalanced training samples

caused by selection bias. The same procedure is applied for each item for creating

its disentangled item representation.

• To achieve an accurate estimation of the propensity score and handle other biases,

we make a mild assumption that the interaction propensity can be factorized into

user rating propensity, item rating propensity, and user-item correlation propen-

sity. An interaction is defined as a user-item-timestamp-rating tuple (u, v, t, r),

indicating that user u rated item v with rating r at time t. The user and item

rating propensities can be represented by their rating distributions on the training

set. The user-item correlation propensity is the probability of user u to rate item v

with r at time t, which can be modelled as a classification problem. With the PS

estimation module, we build the Propensity Score enhanced DGT, i.e, PS-DGT,

by applying the estimated PS as weights in loss functions for training an unbiased

sequential recommender on observational data (addressing the MNAR issue); ad-

ditionally, it serves as a weight for calibrating history records of users and items

in their representation learning process to further mitigate bias from history.

Through extensive experiments on five bench-marking datasets, we show that

our proposed methods have achieved significant improvements on the biased obser-

vational test set in terms of both the traditional metrics and unbiased metrics.
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6.2 Problem Formulation

In this section, we introduce sequence recommendation problems and temporal

heterogeneous graphs. Then, we discuss bias and debiasing in the sequence rec-

ommendation from a causality perspective of view under the potential outcome

framework.

6.2.1 Sequential Recommendation

We first formulate the sequential recommendation problem with explicit user feed-

back. Let U = {u1, · · · , uN} and V = {v1, · · · , vM} denote the sets of users and

items where N and M are the total number of users and items. For a user u ∈ U

and an item v,∈ V , a tuple (u, v, t, r) denotes that user u interacted with item v at

timestamp t with an user feedback (rating score) r ∈ {1, 2, 3, 4, 5}. Formally, in the

explicit feedback scenario, a sequential recommendation model predicts a user’s

rating for an item at a given timestamp based on the current features of the item and

the user, that is,

r̂tu,v = SRec(feattu, feattv), (6.1)

where r̂tu,v is the predicted rating by the sequential recommendation model SRec.

feattu and feattv are the features of the user and the item at timestamp t which may

include context information, e.g., user profile and item attributes, and history inter-

action records. We adopt the mean square error as the loss function to optimize the

model parameters,

L =
1

|S|
∑

(u,v,t,r)∈S

||rtu,v − r̂tu,v||2, (6.2)

where S is the training set and |S| denotes the number of sample in S.

6.2.2 Temporal Heterogeneous Graph

In this work, we model the sequential recommendation as a link prediction problem

on a temporal heterogeneous graph (THG). A THG is defined as a graph G =
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(V , E , T ;ϕ, φ) where V is the set of nodes, E indicates the set of edges and T
represents the set of timestamps. ϕ : V 7→ A and φ : E 7→ R are two mapping

functions that map nodes and edges to their corresponding types. A,R are the sets

of types for nodes and edges, respectively. For HINs, |A| + |R| > 2. In explicit

feedback-based sequential recommendations, we have two types of nodes, i.e., user

and item, and a single edge type, i.e., user-item interaction. Our goal is to predict

the rating score r ∈ {1, 2, 3, 4, 5} for a given edge.

6.2.3 Bias and Debias in Sequential Recommendation

6.2.3.1 Bias in Sequential Recommendation.

Inspired by the notions in previous literature [27], [83], we introduce three vari-

ables: the interaction variable Iu,v,t,r, the relevance variable Ru,v,t = r ∈ {1, 2, 3, 4, 5}
and the observation variable Ou,v,t,r. Iu,v,t,r = 1 represents an interaction happens

between user u and item v at time t with a user feedback of r, and 0 otherwise.

Ru,v,t = r denotes the user’s feedback on the item at the given time. Ou,v,t,r = 1

means the interaction (u, v, t, r) is observed the item at t, and 0 otherwise. At times-

tamp t, an interaction (u, v, t, r) happens when user u observes and rates the item

v with rating r at t. Thus, the probability of observing a tuple (u, v, t, r) can be

formulated as:

P (Iu,v,t,r = 1) = P (Ou,v,t,r = 1, Ru,v,t = r) (6.3)

In the ideal distribution P ∗, all the users are exposed to the entire item set at any

given time and users are always willing to share their true feedback. This means

all interactions are observable, i.e., P ∗(Ou,v,t,r = 1) = 1 and P (Iu,v,t,r = 1) =

P (Ru,v,t = r) which indicates the interactions reflect users’ true behaviour patterns.

Therefore, we can extract users’ true preferences by minimizing the loss function

defined in (6.2) on a training set S∗ collected from the ideal distribution P ∗.

Missing Not At Random. However, in real scenarios, each user is only ex-

posed to a small subset of the item dataset due to its vast size. Moreover, various

biases, e.g., selection bias [74], exposure bias [81], and conformity bias [84], occur
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Figure 6.1. Causal graph in the sequential recommendation with explicit feedback.

User u tends to express its preferences rather than dislikes leading to a biased his-

tory.

in the data generation procedure (exposure and data collection) of real-world rec-

ommendation systems [85] making the unobserved samples missing not at random

(MNAR) and resulting in the observed data distribution P a skewed version of the

ideal unbiased distribution P ∗. This means the observed training set S is also biased

leading to biased representations of users and items as well as poor recommendation

performance.

Biased History Records. In sequential recommendation, the interaction histo-

ries of users and items are often encoded as their features (or latent representations)

for recommendation at the current time. However, the historical interactions are

also full of biases. For example, as shown in Figure 6.1, with selection bias, some

users may tend to share their positive feedback (high rating scores) rather than neg-

ative ones (low rating scores) resulting in unbalanced history records for both users

and items. This unbalanced history records would lead to biased user representation

where users’ disfavour features are overwhelmed by the preference features result-

ing in poor accuracy when predicting users’ rating on their disliked items. This is a

common issue in sequence recommendation, but it has been neglected by previous

unbiased sequential models such, e.g., USR [27] and DEPS [28].

6.2.3.2 Potential Outcome Framework.

The Potential Outcome Framework (POF) [152] is a powerful and effective tool to

uncover the underlying causality from MNAR observational datasets. Specifically,
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we leverage the POF for unbiased sequential recommendation by configuring the

following key components of the POF, they are:

• Unit. It is the basic studied objective. Here, we define a user-item-time triple

(u, t, v) as the study unit.

• Treatment. It denotes an action imposed on the unit which is defined as the

observational variable O ∈ {0, 1}.

• Potential outcome. This is the result of applying the treatment on the unit

which is the rating score r in our problem setting.

• Covariates. They are random variables that the treatment is known to have

no effect on them. Generally, they are attributes or pre-treatment variables of

the unit or environment. In sequential recommendations, the Covariates are

user and item features including their IDs and historical interaction records.

Under the POF framework, the unbiased sequence recommendation problem is

transformed into estimating the potential outcome of each unit when it is assigned

with the treatment (O = 1). That is, Y(u,v,t)(O = 1|feattu, feattv) where feattv is the

feature/covariates of item v at timestamp t.

As is shown in the causal graph in Figure 6.1, we note that in the sequential

recommendation scenario, the observational variable O (treatment) is dependent

both on the user-item features (exposure bias) and the rating score (selection bias).

6.2.3.3 Propensity Score

The ideal randomized experiments, as illustrated by the straight line in Figure 6.2,

assume that the observational probability is independent of the covariates. Nonethe-

less, in real scenarios, the observational probability of an interaction is often depen-

dent on its covariates, leading to the issue of missing not at random. To address this

problem, a commonly used method is to approximate the randomized experiment

by re-weighting the observed distribution via the propensity score.
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Figure 6.2. Example on how to achieve unbiased estimation from biased observed

data via PS re-weighting.

The propensity score is defined to be a function of the covariates as

P (u, v, t, r) := P (O = 1|u, v, t, r), (6.4)

That is, p(u, v, t, r) denotes the probability unit (u, v, t) will be associated with O =

1 (be observed) conditioned on the given covariates (u, v, t, r). With the propensity

score, we formulate the unbiased loss function for an unbiased estimation of the

potential outcome from observational data.

Lunbias =
1

|S|
∑

O=1

P ∗(O = 1; u, v, t, r)

P (O = 1; u, v, t, r)
||r − r̂||2,

∝ 1

|S|
∑

O=1

1

p(u, v, t, r)
||r − r̂||2,

(6.5)

where S is the observed dataset.

Re-weighting the observed distribution to approximate the ideal unbiased dis-

tribution (distribution of randomized experiment) through IPS [86], [87] has been

a widely used and efficient method for tackling various biases in traditional rec-

ommendations. USR [27] and DEPS [28] extend this IPS method into sequential

recommendation scenarios, using user behaviour histories to predict the IPS. How-

ever, they train the IPS module based on biased observed data, making it unreliable.

Furthermore, they ignore that user history is already generated in a biased envi-

ronment; thus it is difficult to extract unbiased user preferences from biased input
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Figure 6.3. The architecture of a k-layer (k = 1) PS-DGT model. An example of

predicting the rating of user u1 on item v1 at timestamp t5 is illustrated.

features (interaction histories).

6.3 Methodology

In this section, we first introduce the model architecture of the proposed unbiased

sequential recommendation model PS-DGT. Then, we will discuss the estimation

of the propensity score and how it can be used to help reduce various biases.

6.3.1 Disentangled Graph Transformer

Shown in Figure 6.3, the interactions between users and items are represented as

a temporal heterogeneous graph where an edge e = (u, i, t, r) denotes that user

u rates item i with r at timestamp t. An example is given on how we extract the

disentangled latent representations of a user-item pair to predict the user’s rating

on the item at a given timestamp. To be specific, given user u1 and item v1 at

timestamp t5, we first extract the disentangled temporal representations for both

u1 and v1 through a temporal graph neural network. Two latent embeddings are

extracted to represent the user’s preference and disfavour patterns which indicate

what the user likes and dislikes. For example, historical neighbours with rating

score r ≥ 4, {(v2; t4, r = 5), (v3; t2, r = 5), (v4; t3, r = 1), (v5; t1, r = 4)} for u1,

are selected to model the preference of a user and neighbours with a rating score
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r ≤ 3, {(v4; t3, r = 1)} for u1, are selected to model the disfavour embedding of

a user. Then, the two embeddings of the user are concatenated to form the final

disentangled representation. Representations of a user-item pair are concatenated

and fed into an MLP module to predict the user’s rating on the item at the given

timestamp.

6.3.1.1 Learning Preference Embedding

For user u ∈ U with its historical neighbors with positive feedback {vi, ti, ri}ti<t, ri ≥
3 at timestamp t. We create two trainable embedding matrices V+ ⊂ R

N×d and

U+ ⊂ R
M×d to represent the preference features of users and items. Note that,

d represents the number of dimensions in the latent space and N and M are the

number of users and items, respectively. Both the user and its neighbours (items)

are converted into latent embeddings by looking up the embedding tables U+ and

V+,

h+
u,t,0 = h+

u,0 = U(u),

{h+
vi,t,0
}ti<t = {V(vi))}ti<t,

(6.6)

where h+
u,t,0 and h+

vi,r,0
denote the preference features of user u and item vi at times-

tamp t. Note that we use bold font to represent vector variables.

Heterogeneous Attention We adopt the dot-product attention layer to weigh the

contribution of the features from the neighbours in the local aggregation of the

GNN, the attention score is calculated as:

q = WQh+
u,t,0,

k = {WKh+
vi,t,0
⊕ Φ(t− ti)⊕Θ(ri)}ti<t,

v = {W Vh+
vi,t,0
⊕ Φ(t− ti)⊕Θ(ri)}ti<t,

attn = softmax(
qkT

√
d
),

(6.7)

where WQ, WK , and W V are the transformation parameters for the Query, Key,

and Value terms of the dot-product attention. d is the dimension of the hidden rep-
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resentations. Φ(·) is the time encode function which maps time intervals, t− ti, into

real-valued vectors of the size of d and Θ(·) is the rating embedding function that

maps the rating values into vectors. ⊕ denotes the element-wise addition operation.

History calibration via Inverse Propensity Weight (IPW). As introduced in Sec

6.2.3, the historical neighbours of the node in the temporal graph are unbalanced

due to selection bias. Therefore, we further leverage the inverse propensity score to

reweigh each neighbour for an unbiased node representation. To be specific,

IPW = softmax({ 1

p(u, vi, ti, ri)
}ti<t), (6.8)

where p(u, vi, ti, ri) is the propensity score defined in (6.4). The estimation module

of the propensity score is introduced in the next subsection.

Therefore, the preference embedding of user u as a single PS-DGT layer is

computed as:

h+
u,t,1 = ((1− α) ∗ attn + α ∗ IPW ) ∗ v + h+

u,t,0, (6.9)

where α ∈ (0, 1) is a hyper-parameter that controls the ratio of the context-based

attention score attn and IPW . h+
u,t,1 is the output of the first PS-DGT layer. Gen-

erally, we can stack multiple (k) PS-DGT layers and the output of the last layer is

denoted as h+
u,t which is the final preference embeddings of user u at timestamp t.

6.3.1.2 Learning disfavor Embedding

Similarly, we create another two trainable embedding matrices V− ⊂ R
N×d and

U− ⊂ R
M×d to represent the disfavour features of users and items. Following

the same procedure, the disfavour embedding of user u is extracted as h−
u,t after k

PS-DGT layers. Note that, all parameters and functions are shared when learning

preference and disfavour embeddings, except for the embedding tables.

The final user representation is then the concatenation of its preference em-

bedding and disfavour embedding. That is, hu,t = h+
u,t ⌢ h−

u,t where ⌢ is the
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concatenation operation.

The same procedure is conducted for items to get the disentangled item repre-

sentation hv,t. Finally, we build an MLP module for the rating prediction task based

on the extracted representations of the user and item. Specifically, we have

r̂tu,v = FCLr(MLP(hu,t ⌢ hv,t)), (6.10)

where r̂tu,v is the predicted rating for the triple (u, v, t).

As depicted in Figure 6.3, we employ the same graph neural network (with

shared weights/activations) when extracting preference and disfavour embeddings.

This is because the PS-DiGAN layer is used to extract patterns from temporal neigh-

bours of nodes, thus making extracting preference and disfavour embeddings two

similar tasks. Furthermore, if we are to train separate layers for disfavored em-

beddings, we will be confronted with the challenge of inadequate training samples

caused by selection bias; therefore, we use the same layers for modelling both em-

beddings.

Through the disentangled representations, we separately model users’ prefer-

ences and disfavour features, effectively preventing the disfavour features from be-

ing overwhelmed by the preference features due to lack of low score ratings, which

in turn greatly mitigate the selection bias introduced in Sec. 6.2.3. Furthermore,

with the help of the IPS, we are able to reweigh the neighbour’s importance in the

local aggregation of GNN for unbiased representation.

6.3.2 Estimation of Propensity Score

As introduced in Sec 6.2.3, with the propensity score, we can have an unbiased

estimation of the potential outcome from the biased observational dataset. However,

the propensity score is a complex mixture of different biases such as the exposure

mechanism and selection bias.

To this end, for an interaction (u, v, t, r), we first factorize the interaction prob-

ability, introduced in (6.3), into user rating propensity P (Ou,r), item rating propen-
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sity P (Ov,r), and user item correlation P (Ru,v,t = r):

P (u, v, t, r) = P (Ou,v,t,r = 1) = P (O = 1|Ru,v,t = r)

= P (Ou,r = 1)P (Ov,r = 1)P (Ru,v,t = r)

∝ Nu,rNv,rP (Ru,t,i = r),

(6.11)

where P (Ou,r) and P (Ou,r) are the probabilities of user u giving the rating r and

item v be rated with r. P (Ru,v,t = r) is the probability of u giving a rating r to item

v at time t. Nu,r denotes the number of observed samples where u gives a rating r,

similarly, Nv,r is the number of times when v is given a rating r.

Nu,r and Nv,r are easily acquired prior knowledge of users and items. Therefore,

we focus on estimating the rating probability of a user on an item at a given time.

Specifically, we build another fully connected layer FCLp which takes the output

of the MLP module, introduced in (6.10), as input to predict the rating probability.

That is,

P ′(Ru,v,t = r) = FCLp(MLP(hu,t ⌢ hv,t)), (6.12)

Then, the loss of the probability prediction is formulated as:

LPS = −
∑

r∈{0,1,2,3,4,5}

y(r)log(P ′(Ru,v,t = r)), (6.13)

where y(r) ∈ 0, 1,
∑

r y
(r) = 1 is the true rating. r = 0 indicates that the corre-

sponding sample is unobserved, i.e., the negative sampled training unit.

Finally, we incorporate the priors of the users and items and apply softmax to

get the final propensity score.

p = softmax({Nu,rNv,rP
′(Ru,t,i = r)}(u,v,r,t)∈S), (6.14)

where S is the observed set. Moreover, to avoid high variance caused by small PS,

we further apply a clip operation on the PS score smaller than a given threshold

93



Algorithm 3: Training of the PS-DGT

Input: User set U , and item sets: V ;

Interaction set: (u, v, t, r) ∈ S;

Latent embedding size: d > 0.

Stage 1:

Optimize the DGT model with the original loss (6.2).

Stage 2:

Fix the parameters of the DGT and MLP modules.

Optimize the parameters of the FCLp layer with the cross-entropy loss

(6.13).

Update the PS lookup table with the clipped PS score (6.15).

Stage 3:

Fine-tune the PS-DGT loss with the unbiased loss (6.5).

β ∈ (0, 1), i.e.,

pclip(u, v, t, r) = max(p(u, v, t, r), β). (6.15)

6.3.3 Training Strategy

We propose a three-phase training algorithm shown in Algorithm 3 to optimize the

parameters of DGT and the PS module.

In the first phase, for stable training, we pre-train the DGT model without the

PS module through the mean square error loss (6.2). Through the pre-training pro-

cess, DGT produces a well-embedded history of users and items as their features,

producing a boost-start for the following PS module. In the second phase, we fix

the parameters of the DGT as well as the MLP module and optimize the FCLp to

accurately predict the rating probability. Along with the prior knowledge of users

and items, we update the PS lookup table for the unbias sequential recommendation

in the next step. Finally, we incorporate the propensity score in the local aggrega-

tion procedure of the DGT to form the final PD-DGT model. Then, the PS-DGT

is tuned on the observed set with unbias loss defined in (6.5). Note that, in the

fine-tuning, the PS lookup table is updated per epoch.
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Table 6.1. Statistics of the Datasets.

Dataset #Users #Items #Interactions Sparsity(%) Avg.Int

CD 26,193 63,592 774,591 99.95 29.57

Music 7471 32,905 151,858 99.94 20.33

Beauty 5925 5,398 48,859 99.85 8.246

Movie 40,593 49,848 1,168,233 99.94 28.78

Sport 93,233 195,398 1,521,104 99.99 16.32

6.4 Experiments

We performed in-depth experiments on five publicly available datasets and com-

pared the performance of our approaches to state-of-the-art, unbiased sequential

recommendation methods.

We adopt five publicly available Amazon datasets [133] to evaluate the proposed

model and all the baseline methods. Table 6.1 summarizes the detailed statistics of

the five datasets where ªAvg.Intº denotes the average number of interactions of

users. Following common practices in sequential recommendation [16], [34], users

and items with less than five interactions are filtered out. Moreover, for a given

user, the second to last item in the behaviour sequence is selected as the validation

item, and the last item is used for testing, while the remaining items are used for

training. Figure 6.4 illustrates the sample distributions of our experimental datasets,

revealing a notable discrepancy in the amount of data obtained from different rating

levels across all datasets. This selection bias, caused by users’ tendency to express

their positive feedback rather than dislikes, could lead to a decrease in performance

when predicting ratings.

6.4.1 Experimental Setup

Our experiments aim at answering the following research questions:
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Figure 6.4. Sample distributions of the five Amazon datasets.

• RQ1. How does our method perform compare to state-of-the-art baselines in

terms of both traditional and debias metrics?

• RQ2. How do the sub-modules help the model succeed in alleviating the bias

issue in the sequential recommendation?

• RQ3. How do hyperparameters affect model performance?

Similar to existing rating prediction work, we use mean squared error (MSE) and

mean absolute error (MAE) as standard evaluation metrics on the biased observed

set. To assess a model’s performance on an unbiased set, prior studies usually re-

sample the test data; however, this step is unnecessary in the explicit feedback sce-

nario. Specifically, we utilize macro-MSE and macro-MAE as bias-free evaluation

metrics, which are defined as follows:

Macro-Metric :=
1

|R|
∑

r∈R

1

Sr

∑

(u,v,t,r)∈Sr

Metric(r̂, r), (6.16)

where Metric represents MSE or MAE, R = {1, 2, 3, 4, 5} and Sr is the test set

where all interactions are with the rating r.

To showcase the efficacy of the proposed approach, we conducted comparative

studies with a variety of baseline methods, including traditional models, sequen-

tial recommenders and unbiased sequential methods. Specifically, the following

methods were evaluated and compared:
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• MF: The classical matrix factorization method for explicit feedback recom-

mendation.

• NMF [12]: The neural matrix factorization model, which adopts multiple

fully connected layers to predict the ratings based on user and item embed-

dings.

• SAS [16]: It adopts unidirectional self-attention to model user preference

from its interaction history.

• SAS_rate [16]: We integrate rating embeddings into the original SAS model

for better performance in our setting.

• LightGCN [23]: It simplifies the Graph Convolution Network (GCN) model

for better performance in the recommendation task.

• USR [27]: The first unbiased sequential recommendation method.

• DEPS [28]: The state-of-the-art model for unbiased sequential recommenda-

tion.

To ensure reliable results, all experiments were conducted three times and the mean

values of all metrics were reported.

6.4.2 Implementation Details

Environment. We implement our method using PyTorch with python 3.6 and train

the model on Tesla P40 GPU with a memory size of 22.38 GiB and a 1.53 GHz

memory clock rate.

Model implementation. For a fair comparison, we use a single PS-DGT layer

in our model, and a maximum number of 50 temporal neighbours are sampled for

message passing and local aggregation. We use 2 attention heads for all the attention

layers in the PS-DGT layer. The dimensionality of the final user or item embedding

is set to d = 64, which means the size of the preference embedding and disfavour

embedding is 32 = d/2. To avoid over-fitting, we adopt a drop rate of 0.1 in the
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aggregation of each GNN layer. Moreover, we use early-stop to select the best

model. Specifically, we stop training when the validation loss does not decrease for

5 consecutive epochs and the maximum training epochs is 50. Additionally, we use

grid search to find the optimal clip rate β, introduced in (6.15). The search range

and results are given in Sec. 6.4.5. The IPS weighting parameter α is set to 0.1 on

the ªMusicº and ªCDº datasets and is set to 0.02 on the rest of the datasets after

searching in the range of [0.01, 0.5]. Adam optimizer with a learning rate of 1×10−3

is used in the first two training phases introduced in Algorithm 3. In the final fine-

tuning step, the learning rate is set to 1 × 10−4. We adopt a trainable embedding

table for all the five rating scores Θ(·). a function that maps a scalar to a real-valued

vector is used for time encoding the Φ(·). To reduce computational complexity,

as opposed to applying the softmax operation to the entire dataset (as specified

in equation (6.14)), we opted to apply the softmax to 1024 training samples per

training batch.

The MLP module in Figure 6.3 consists of hidden layers with the size of [2 ∗
d, 64, 32], where d is the dimension of the user and item embedding. For a fair

comparison, all evaluated methods, except for the MF model, are with the same

MLP module as the output layers for the rating prediction task. Moreover, they all

use the same dimensionality (64) for the latent user and item representations. All

models were trained through the mean square error with the Adam optimizer. For

sequential recommendation baselines, the maximum sequence length is also set to

50.

6.4.3 Main Results

Table 2 summarizes the results of the proposed models (DGT and PS-DGT) and

all the baselines on the five datasets. The proposed DGT method significantly out-

performs all baselines including the state-of-the-art unbiased sequential recommen-

dation methods, i.e., USR and DEPS, across all five datasets with both the biased

metrics and unbiased metrics which is remarkable (RQ1.). Generally speaking, in

order to remove bias and achieve good performance in unbiased evaluation, a model
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Table 6.2. Performance comparisons on the five amazon datasets between the pro-

posed models (DGT and PS-DGT) and the baseline methods. All numbers are in

percentile (%). ªm-MSE/MAEº denotes ªMacro-MSE/MAEº.

Datasets Metric
Traditional Baselines

MF NMF SAS SAS_rate LightGCN

Sport

MSE 6.36 4.57 5.07 4.38 5.51

MAE 13.73 14.41 16.29 14.26 14.71

m-MSE 22.47 14.6 16.25 14.1 15.17

m-MAE 38.45 30.53 33.04 29.95 30.67

Movie

MSE 8.63 4.64 5.91 4.86 5.01

MAE 17.27 15.34 18.15 15.77 15.29

m-MSE 20.66 9.04 12.18 9.96 9.04

m-MAE 36.52 23.26 28.03 24.69 22.84

CD

MSE 6.6 4.13 5.03 4.35 4.43

MAE 14.26 14.27 16.46 14.54 14.35

m-MSE 20.49 10.81 13.55 11.91 10.12

m-MAE 36.43 25.82 29.78 27.27 24.41

Music

MSE 4.61 1.49 2.08 1.4 1.74

MAE 12.38 6.4 9.68 6.35 6.55

m-MSE 14.11 12.74 18.77 12.51 12.53

m-MAE 29.54 27.18 35.65 27.07 27.09

Beauty

MSE 15.81 4.79 5.2 4.09 5.0

MAE 27.3 14.21 17.25 14.01 13.96

m-MSE 15.59 11.74 14.89 10.59 12.32

m-MAE 30.34 26.06 31.43 25.03 26.83

usually sacrifices part of its performance on the observed biased test set. That is,

there is a trade-off between the performance of the traditional metric and the unbias

metrics. This is why the DEPS model would outperform traditional baselines on the

unbiased evaluation metrics Macro-MSE/MAE yet fails to outperform traditional

methods on normal metrics, MAE and MSE. Moreover, without explicitly taking

the selection bias into account, USR and DEPS are outperformed by the modified

SAS_rate model. Nevertheless, our DGT can achieve the best performance under

both the traditional metrics and the unbiased metrics, which is outstanding. The

results of DGT demonstrate its effectiveness in mitigating selection bias, which can

be attributed to its disentangled representation. The success of DGT is significant

and remarkable, making it a promising approach for dealing with selection bias in
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Table 6.3. Performance comparisons on the five amazon datasets between the pro-

posed models (DGT and PS-DGT) and the baseline methods. All numbers are in

percentile (%). ªm-MSE/MAEº denotes ªMacro-MSE/MAEº.

Datasets Metric
Unbias Baselines Proposed

USR DEPS DGT PS-DGT

Sport

MSE 6.37 4.39 4.22 4.38

MAE 17.39 14.01 13.51 15.16

m-MSE 15.63 14.78 13.4 11.52

m-MAE 31.99 30.77 28.42 26.32

Movie

MSE 5.06 4.56 4.51 4.67

MAE 15.85 16.09 15.16 16.42

m-MSE 9.45 8.34 8.52 7.58

m-MAE 24.04 22.66 22.29 21.19

CD

MSE 4.92 4.01 3.76 3.88

MAE 14.8 13.9 13.54 14.27

m-MSE 11.37 10.53 9.44 8.41

m-MAE 26.5 25.26 23.42 21.98

Music

MSE 6.71 1.45 1.3 1.33

MAE 14.14 6.25 5.61 6.39

m-MSE 18.85 12.39 11.13 10.18

m-MAE 35.27 26.33 23.92 22.73

Beauty

MSE 6.98 4.72 3.8 3.74

MAE 16.99 13.99 13.19 13.78

m-MSE 11.31 11.57 9.4 8.32

m-MAE 25.68 25.41 22.85 21.41

recommendation systems.

Furthermore, we incorporate the PS module into the DGT model to further im-

prove the performance of the performance under the unbiased evaluation metrics

with a little sacrifice of performance on the normal metrics which is reasonable due

to the trade-off as mentioned above. Specifically, with the help of the PS module in

both reweighing the observed samples and calibrating interaction history, the PS-

DGT further boost the performance on unbiased metrics. Moreover, PS-DGT still

achieved competitive results and outperformed most of the baselines on traditional

metrics.

The plot in Figure 6.5 provides an in-depth view of how the model performs

under different ratings. The prediction error decreases as the rating score increase
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Figure 6.5. Model performance on test sets with different rating scores.

which is reasonable and correspond to the data distribution in Figure 6.4. Moreover,

we can see that our DGT method achieved the best performance the most of time in

different rating levels and metrics.

6.4.4 Ablation Study

In answering RQ2., we further conduct ablation studies where variants of the pro-

posed method are evaluated on the five datasets to demonstrate the effectiveness

of each proposed module and feature. We gradually remove different sub-modules
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or features from the PS-DGT model and show how the results are affected. To be

specific, the following variants are evaluated:

• PS-DGT: The full proposed unbias sequential recommendation model.

• -PS-loss: In which we use the simple MSE loss (6.2) to train our model

instead of the unbias loss function (6.5).

• -PS-attn: We further drop out the propensity score in the local aggregation

of a GNN layer. This is the DGT model.

• -Disentangle: In this variant, we further remove the disentangled representa-

tion module in DGT and extract a single user or item embedding from all its

temporal neighbours (with a maximum number of 50).

We have observed a significant improvement in the performance of the -PS-attn

compared to the -Disentangle model when evaluated on unbiased metrics, without

compromising on the performance of standard metrics. This demonstrates the effec-

tiveness of the disentangled representation in both alleviating selection bias and for

accurate overall user representation. Additionally, inducing the PS module in either

the DGT layer (-PS-loss) or the optimization objective (PS-DGT) further boost the

performance in terms of the unbiased metrics while leading to a small degradation

in normal metrics due to the trade-off between them as mentioned before. Never-

theless, our final model is able to achieve decent performance in terms of standard

metrics and significantly outperforms all baselines as shown in Table 6.2 and 6.3.

6.4.5 Influence of the Hyper-parameters

In this subsection, we conduct experiments to study the influence of the hyper-

parameters introduced in the model design (RQ3.).

Clip rate β. We know that a small propensity score would lead to high variance

in the model training. The clip rate is used to control the trade-off between the bias

and variance in the model training. To study its effect on model performance, we

tune it in the range of {0.02, 0.04, 0.06, 0.08, 0.1}. The results are given in Figure
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Table 6.4. Results (in %) of ablation studies on the five datasets.

Models Metric Sport Movie CD Music Beauty

PS-DGT

MSE 4.38 4.67 3.88 1.33 3.74

MAE 15.16 16.42 14.27 6.39 13.78

Macro-MSE 11.52 7.58 8.41 10.18 8.32

Macro-MAE 26.32 21.19 21.98 22.73 21.41

-PS-loss

MSE 4.28 4.55 3.79 1.3 3.81

MAE 13.59 15.08 13.44 5.54 13.07

Macro-MSE 13.17 8.58 9.39 11.07 9.52

Macro-MAE 28.04 22.27 23.16 23.81 22.93

-PS-attn

MSE 4.22 4.51 3.76 1.3 3.8

MAE 13.51 15.16 13.54 5.61 13.19

Macro-MSE 13.4 8.52 9.44 11.13 9.4

Macro-MAE 28.42 22.29 23.41 23.92 22.85

-Disentangle

MSE 4.16 4.42 3.8 1.29 3.99

MAE 13.89 15.43 13.85 5.52 13.52

Macro-MSE 13.5 8.6 9.72 11.61 10.13

Macro-MAE 28.95 22.58 24.21 24.52 23.89

6.6. We can see that a smaller clip rate indicates a greater degree of debiasing

resulting in a smaller macro-MSE and increased MSE, which is reasonable and in

line with previous methods. In our primary experiments, we set the clip rate of

the proposed DGT and PS-DGT models to 0.06 across all five datasets for optimal

performance with respect to both traditional and unbiased metrics.

Embedding size d. We then explored the effect of embedding size on model

performance, varying it between {16, 32, 64, 128} in the DGT model. The results

are displayed in Figure 6.7; as expected from previous studies, larger embeddings

generally produced better results (lower error values), though with a relatively small

improvement. To prevent unnecessarily high model complexity and ensure good

performance, we opted to use an embedding size of 64 for all evaluated models.

Number of GNN layers. Finally, we analyze the influence of the number of

GNN layers in our DGT model. In GNN-based recommender systems, it is typi-

cally seen that the number of GNN layers used is k ∈ {1, 2}. From Table 6.5, we

observe that with a deeper GNN architecture, DGT enhances performance on both
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Figure 6.6. Tune on the clip rate β.
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Figure 6.7. The influence of dimensionality d of the user/item representation on the

DGT model. ªm-MSE/MAEº denotes the bias-free metrics ªMacro-MSE/MAEº.

standard and unbiased metrics (i.e., MSE/MAE and Macro-MSE/MAE). However,

for fairness in comparison to traditional sequential recommendation approaches

which only have access to first-order neighbours of users/items, we utilize only one

GNN layer in the proposed DGT model. Despite this limitation; we still achieve

104



Table 6.5. Results (in %) of ablation studies on the five datasets.

Models Metric Sport Movie CD Music Beauty

DGT-L1

MSE 4.22 4.51 3.76 1.3 3.8

MAE 13.51 15.16 13.54 5.61 13.19

Macro-MSE 13.4 8.52 9.44 11.13 9.4

Macro-MAE 28.42 22.29 23.42 23.92 22.85

DGT-L2

MSE 3.97 4.34 3.56 1.23 3.47

MAE 13.24 14.93 13.04 5.35 12.11

Macro-MSE 12.6 8.19 9.39 10.94 8.99

Macro-MAE 27.34 21.87 23.23 23.35 21.85

the highest performance among all state-of-the-art methods.

6.5 Conclusion

In this chapter, we propose the DGT and PS-DGT models for unbiased explicit

feedback-based sequential recommendations. We extract disentangled embeddings

of users and items from a temporal graph neural network to represent their prefer-

ences and dislikes. Such disentangled representation effectively avoids the dislike

feature being overwhelmed by the preference features in their interaction records

due to selection bias. Moreover, we decompose the propensity score into a user-

rating propensity, item-rating propensity and user-item correlation and incorporate

prior knowledge of user- and item-rating distribution for accurate estimation of the

propensity score (PS). The PS is employed as weights in the loss functions and

prior knowledge in sequential modelling to combat the bias in the user (and item)

history. Extensive experiments on five real-world datasets demonstrate the superi-

ority of and the effectiveness of the proposed methods.
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Chapter 7

Conclusions and Future Directions

This chapter summarizes the main contributions of this dissertation and discusses

possible future directions.

7.1 Conclusion

Firstly, we discussed a recently popular method for mitigating data sparsity issues

in effective recommendation systems in Chapters 3 and 4, namely cross-domain

recommendation. Specifically, In Chapter 3, we presented RecGURU, an adversar-

ial learning-based cross-domain sequence recommendation model. Our approach is

different from traditional methods which transfer knowledge or data from source to

target domains. Instead, it extracts user representations from the target domain and

fuses knowledge (user representation distribution) from the source domain through

adversarial learning in order to generate global user representations. The global

user representations are then applied to the target domain for boosted recommenda-

tions. This way, our model is applicable to non-overlapping users for cross-domain

recommendations and increases its applicability in real-world systems where there

are usually few overlapping users. We performed extensive experiments on public

datasets and Tencent business data to validate the reliability and effectiveness of

our model. In Chapter 4, we propose the CAT-ART model to extend the dual-target

cross-domain recommendation (DTCDR) to multi-target cross-domain recommen-
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dation (MTCDR) scenarios and achieve both One for All (OFA) and All for One

(AFO) objectives. In the One for All objective, All domain-specific representa-

tions of a user are used for extracting One single global user representation. To do

this, we propose a contrastive autoencoder (CAT) module which takes the user’s

pre-trained representations in all participant domains as input and outputs global

user representations. With the contrastive autoencoder, we can extract unbiased

representations of users without sharing original data. Additionally, in the All for

One objective, all available features are used for recommendations in one target

domain. For this purpose, an attention-based representation transfer (ART) unit

is built into each target domain to incorporate domain-specific user representation

from all source domains, thus avoiding negative transfer problems. We collected

data from 5 domains in Tencent’s real business scenarios including Article, App in-

stallation, App Usage, Long video watching and short video watching; experiments

have been conducted to verify the effectiveness of the model design.

We further investigate the potential of deploying Graph Neural Networks (GNNs)

for improved recommendations. In particular, sequential recommendation prob-

lems can be represented as an edge prediction task in a dynamic heterogeneous

graph. Thus, Chapter 5 proposes CTRL, a dynamic heterogeneous graph represen-

tation learning model. CTRL employs an edge-based Hawks process to consider

temporal influences of historical events on current node representations and take

node centrality and semantic correlations into account in the local aggregation of

each GNN layer. During training, apart from edge prediction, event (subgraph) pre-

diction tasks are included to capture evolutionary patterns of higher-order topology

structures. Experiments on three public datasets validate the effectiveness of CTRL.

In Chapter 6, we discussed the bias problem and presented debiasing techniques

for recommendation systems. We proposed a Disentangled Graph Transformer

(DGT) to tackle this issue in sequence recommendations based on explicit user

feedback. Our model modelled user preferences and dislikes separately, avoiding

data imbalance problems between the two. Moreover, we decomposed the interac-

tion propensity score into three components, i.e., user-rating propensity, item-rating
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propensity, and user-item correlation propensity, and applied prior knowledge of

user/item rating distributions to estimate the score accurately. Additionally, instead

of reweighing the loss for each training sample, the PS was also incorporated into

GNN layers to calibrate biased historical interaction records for unbiased user rep-

resentations. Finally, experiments on five public datasets revealed our method’s

superiority over other state-of-the-art solutions in traditional and unbiased evalua-

tion metrics.

7.2 Future Directions

This thesis mainly focuses on collaborative filtering-based methods for various rec-

ommendation scenarios. However, side information about the users and items is

also helpful for accurate user modelling and recommendations. Therefore, one

promising direction is to further integrate side information into the current model

for handling the data sparsity issue in a single domain. Moreover, side information

is also semantically interoperable among different domains, therefore it can also be

used as a bridge to fill the gap in various domains for cross-domain recommenda-

tions on non-overlapped users.

Unbiased evaluation of recommendation systems is crucial for mitigating vari-

ous biases in recommendation systems. Current evaluation methods either rely on

a significant amount of unbiased data, which negatively affects user experience,

or resample biased data, which is often unreliable. New evaluators using large-

scale biased data and small-size unbiased data are worth exploring. Additionally,

more theoretical studies are needed to analyze the proposed evaluator’s expecta-

tions, bounds, and confidence.

Furthermore, explainable recommendations are becoming increasingly impor-

tant as they improve transparency, persuasiveness, effectiveness, trustworthiness,

and satisfaction. Explainable recommendation and debiasing are related since they

both address why an algorithm recommends certain items. A causal graph can be

promising in addressing bias and providing explanations from strong causal paths.
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To design a better causal graph capable of reasoning, debiasing, and explanation,

we need to take the next step. We believe that a causal model will take recommen-

dation research to a new frontier.
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