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Abstract 

Discontinuities are one of the most prominent features of the Earth’s upper crust, these are 

the result of the action of different geological, mechanical, thermal and chemical activities over 

millions of years. The term rock mass was created to describe the in situ medium containing intact 

rock material and rock structures such as joints, faults, fractures, veins, bedding planes and folds. 

Traditionally, rock masses are considered as a continuous, homogeneous, isotropic and linear 

elastic material in engineering practice. However, they commonly occur as discontinuous, 

inhomogeneous, anisotropic and non-elastic materials in nature. Although it is well known that 

discontinuity networks influence the flow and geomechanical behaviour of fractured reservoirs, 

their effect and impact on deformability and permeability properties are not usually taken into 

account in complex reservoir simulations. Therefore, the determination of hydraulic and 

geomechanical properties is of great importance in characterization of rock mass formations. 

Inclusion of fracture patterns described by discrete fracture networks (DFN) in coupled reservoir 

geomechanical simulations is necessary to capture the influence of discontinuities in the reservoir 

life cycle operations. 

A coupling methodology is presented here to include the hydro-mechanical behavior of 

fracture networks in coupled reservoir geomechanical simulations whereby several commercial 

simulators are involved and linked together following an explicit sequential coupling scheme built 

into a coupling simulation platform developed by the reservoir geomechanics research group 

(RGRG) at the University of Alberta. A porosity correction strategy based on the fixed stress split 

method has been implemented in the sequential scheme. The generalized tensorial form of the Biot 

effective stress coefficient, disregarded in most numerical coupling methods, is rigorously 

included in the thermo-poromechanical coupling formulation. The small and large scale structural 
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features present in the reservoir such as joints and major faults are represented by a DFN. The 

complex fluid flow processes are captured by the reservoir flow simulator, CMG – STARS. A 

continuum geomechanical simulator, Itasca – FLAC3D, is used to calculate deformation changes 

due to new stresses induced by changes in temperature and pore pressure in the reservoir at each 

simulation stage. A virtual rock mass numerical laboratory, VRM lab, is developed by means of a 

discontinuum geomechanical simulator, Itasca – 3DEC, to determine through a numerical 

homogenization process the hydraulic and mechanical equivalent anisotropic properties for the 

characterization of the equivalent continuum representative of the fractured rock formation. 

During the numerical simulation, the equivalent permeability, anisotropic elastic parameters as 

well as the Biot effective stress coefficient tensor can be updated at specific simulation stages in 

all the fractured reservoir discretization regions or only in those where the change in the effective 

stress field reaches a certain tolerance to account for effect of pore pressure changes developed 

during the activities of the reservoir production operations. The explicit sequential coupling 

scheme implemented in the RGRG coupling platform and the mechanical and hydraulic modules 

of the VRM lab have been compared and successfully verified against analytical solutions. This 

research shows the importance of conducting reliable equivalent characterizations of fractured 

media and properly modelling the effect of material anisotropy in thermo-poromechanical coupled 

simulations, which is required to correctly model stress-sensitive reservoirs involving anisotropic 

porous formations. The methodology presented here has the goal of providing some insights in the 

influence of geomechanics in the overall behaviour and management of fractured porous 

formations sensitive to stress changes. 
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1 Introduction 

Most rock masses of the Earth’s upper crust have undergone multiple geological processes 

involving significant mechanical, thermal and chemical activities over millions of years (Hudson 

et al. 1997). Different scales of geological structures and discontinuities such as folds, veins, 

bedding planes, faults and joints originate mainly from these geological processes. The presence 

of discontinuities is therefore one of the most prominent features of the rock masses (Peng et al. 

2007). Rock masses generally occur in nature as systems of rock materials containing or being 

separated in discrete bodies by rock structures, where the term rock material refers to the intact 

rock between discontinuities, and the rock structure describes the nature and distribution of the 

structural features (Brady et al. 2004). 

It is well known that heterogeneities and discontinuities induce anisotropic deformability 

in rock masses. However, these are commonly considered as continuum homogeneous isotropic 

and linear-elastic materials in engineering analyses. This assumption may introduce significant 

errors in estimating the deformation and stress distribution of anisotropic rock masses in which the 

medium should be treated as discontinuum inhomogeneous anisotropic and non-elastic (Barla 

1974; Hudson et al. 1997). In addition, discontinuities generally affect the permeability and fluid 

flow behaviour of fractured porous formations. Thus, natural fractures commonly present in 

hydrocarbon reservoirs, especially in unconventional resources, may have a significant impact on 

the formation performance. Consequently, an efficient reservoir management should assume all 

formations as fractured unless any other assumption or treatment is proven more appropriate (Narr 

et al. 2006; Liu et al. 2012). 

Although discontinuities generally influence the geomechanical and hydraulic behaviour 

of fractured reservoirs, including explicitly all the structural features in reservoir geomechanical 

coupled simulations is either inefficient or unfeasible in terms of practical computational time and 

memory requirements. In these cases, it is necessary to reduce the number of fractures, 
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incorporating only the critical ones with respect to the fractured formation response and 

disregarding all the rest (Hart 1993; Itasca 2016). To overcome this issue, the discontinuum 

fractured rock mass is often replaced by an equivalent continuum material able to capture the effect 

of all the fractures in the in situ media. In general, the equivalent continuum properties are 

estimated using homogenization and upscaling techniques based on empirical, analytical or 

numerical methods. Among them, the numerical approach has the advantage of accounting for the 

nonlinear behaviour and interaction effect of complex fracture patterns. It is worth noting that 

despite this capability, the numerical methods have been traditionally used in two-dimensional 

analyses, being recently used more often in three-dimensional cases. 

The inclusion of fracture patterns in reservoir geomechanical simulations may help in a 

better understanding of the overall reservoir performance. Nevertheless, the characterization of 

extensive fractured porous formations is still not a simple task. The difficulty arises from the 

impossibility of performing large scale field tests (Lorig et al. 2010). Thus, a reservoir 

geomechanical coupling methodology including a numerical homogenization tool for three 

dimensional fractured porous media is proposed here, with the aim of capturing the effect of 

complex fracture networks present in natural and engineered fractured reservoirs through hydraulic 

and mechanical equivalent parameters determined for the equivalent continuum representation of 

the fractured porous formation. 

1.1 Background 

The operations developed during the production of a reservoir usually involve deformation, 

fluid flow and thermal processes which are coupled together; that is, one process affects the 

initiation and progress of another (Tsang 1991). The degree of coupling interaction will depend on 

the features and nature of the rock mass, being more significant in those reservoirs sensitive to 

stress changes. In order to capture the thermo-hydro-mechanical physical interaction and with the 

progressive enhancement of computational capabilities, several numerical simulation techniques 

have been developed and applied to coupled problems such as, oil and gas production, geothermal 
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energy, geological nuclear waste disposal and carbon sequestration (Jing & Hudson 2002; Rutqvist 

2017). 

The hydro-mechanical coupling comprises two main components: volume coupling which 

considers changes in pore volume due to changes in stress; and coupling through flow properties 

which accounts for changes in permeability induced by stress changes (Settari et al. 1998). 

Analogous, the phenomena involved in coupling fluid flow and geomechanics can be divided in 

direct (Wang 2000) and indirect (Rutqvist et al. 2003) hydro-mechanical couplings.  The direct 

hydro-mechanical couplings occur through deformation and pore-fluid interactions, such as, fluid 

pressure changes induced by changes in stress; or changes in the volume of the porous medium 

due to changes in fluid pressure. The indirect hydro-mechanical couplings involve changes in 

hydraulic and mechanical material properties due to changes in stress and fluid pressure, 

respectively. In general, while the direct couplings are significant in soft and low-permeability 

rocks and soils, the indirect couplings are more important in fractured rock masses (Rutqvist et al. 

2003). Tsang (1991) presented an overview of the different types of coupled processes that may 

occur in rock fractures. 

Discontinuities may be explicitly included in coupled hydro-mechanical numerical models 

(e.g. Noorishad et al. 1982; Karimi-Fard et al. 2004; Zandarin 2010; Jin et al. 2017), however this 

approach is more suitable for local or small scale numerical analyses containing a low number 

fractures. On the other hand, the equivalent continuum representation of the fractured porous 

formation is often the most practical approach for large scale coupled simulations (Rutqvist et al. 

2003); thus, it is not necessary to deal with large computational times and to generate complex 

meshes to include fracture intersections. During the past decades several homogenization and 

upscaling procedures have been proposed to evaluate the equivalent properties for the hydraulic 

and mechanical continuum characterization of rock masses. 

Salamon (1968) derived the overall elastic moduli of a homogeneous equivalent continuum 

representative of a stratified rock mass, consisting of homogeneous, transversely isotropic strata 
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with random thickness and elastic properties. Following the same approach, Gerrard (1982) 

calculated the equivalent properties of a system consisting of homogeneous orthorhombic strata. 

Fossum (1985) obtained the effective isotropic elastic properties for a rock mass containing a 

system of randomly oriented persistent fractures. Amadei and Goodman (1983) introduced the 

concept of an equivalent orthotropic continuum for a body containing three orthogonal joint sets. 

Additionally, closed-form solutions for rock masses with two (Yoshinaka & Yamabe 1986) and 

three (Huang et al. 1995) intersecting non-orthogonal fully persistent joint sets were derived. Moon 

(1987) extended the elastic theory of two-material composites to estimate the overall elastic 

properties of well-jointed rock masses by the sequential addition of joints to an updated rock mass 

properties matrix until the complete inclusion of all the joints (Pariseau & Moon 1988). Based on 

the effective medium theory, Oda (1982) introduced a symmetric crack tensor accounting for 

geometrical parameters of the rock structure to estimate the equivalent permeability tensor (Oda 

1985), and compliance matrix of the rock mass (Oda 1986). Stietel et al. (1996) used the Oda’s 

work to derive the equivalent hydraulic and mechanical properties of a two-dimensional fractured 

system. The validity of the formulation was assessed by performing numerical tests with the UDEC 

code, developed for two-dimensional numerical analyses of discontinuum media (Itasca 2000). 

Cui et al. (2016) provided an analytical solution for the equivalent elastic compliance tensor of a 

rock mass with multiple persistent joint sets introducing a joint deformation tensor, which consists 

in a modified version of the Oda’s crack tensor. They used the three-dimension distinct element 

code, 3DEC (Itasca 2016) to show the validity of the proposed solution. Later, Jiang et al. (2017) 

extended the previous work to include non-persistent joints sets. 

Even though the previous analytical approaches are well suited for simple and regular 

fracture geometries, it is worth noting that they generally neglect the nonlinear behaviour and the 

effect of fracture interactions. To overcome these limitations, several researchers have used 

numerical methods to determine the equivalent continuum characterization and the representative 

elementary volume (REV) of a rock mass; where the REV can be defined as the minimum volume 

beyond which, all equivalent constitutive properties remain largely constant with increasing the 
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sampling volume (Bear 1972; Long et al. 1982; Mas Ivars et al. 2001; Min et al. 2004a). Long et 

al. (1982) developed a numerical finite element code to determine the equivalent permeability 

tensor and the REV of two-dimensional samples with random fracture networks. Their samples 

were assigned boundary conditions to induce a linear gradient in the flow region with two constant 

heads. They measured the hydraulic conductivity in models at different scales with several flow 

orientations, assuming the rock material as impervious and the validity of the cubic law. Long et 

al. (1982) concluded that the equivalent permeability of a fractured system can be properly 

determined as long as the mass balance is constant and the anisotropic permeability tensor 

describes and ellipse. On the other hand, Pouya and Fouché (2009) argued that the permeability 

tensor of a discontinuous heterogeneous material is symmetric and definite positive, in other 

words, it represents an ellipsoid; and consequently, in the cases in which Long et al. (1982) could 

not find an ellipse, the reason is simply because the REV was not met (Pouya & Fouché 2009). 

Mas Ivars et al. (2001) developed a methodology based on the distinct element method 

(DEM) (Cundall 1971) to estimate the 2D equivalent elastic parameters of a rock mass containing 

fully persistent joint sets with UDEC. This method was extended to determine the possible 

existence of a REV, the equivalent mechanical properties (Min et al. 2003) and the permeability 

tensor following the Long’s procedure (Min et al. 2004a) of fractured rock masses including a 

discrete fracture network (DFN). The simulations it these DFN-DEM methodology consisted in 

modelling the fractured rock mass, assuming the rock material as elastic with several realizations 

of stochastic DFN models at different scales and orientations. Min et al. (2004b) investigated the 

effect of nonlinear normal deformation and shear dilation of fractures in the stress-dependent 

permeability of rock masses under several load conditions. They observed channeling effects of 

fluid flow in fractures with high mobilization of shear dilation. Thoraval et al. (2004) conducted a 

similar study using three-dimensional samples with 3DEC and a fracture network generator. Min 

et al. (2012) compared the equivalent mechanical properties of 2D and 3D models using UDEC 

and 3DEC respectively. It was found that while the Young’s modulus is overestimated in the two-

dimensional analysis, the Poisson’s ratio depends on the orientation of the UDEC cross-section —
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built by cutting through the 3DEC model— in which the fractures are assumed infinite and 

perpendicular to the model plane. Mas Ivars et al. (2011) used the synthetic rock mass (SRM) 

method (Pierce et al. 2007) to estimate the strength and deformation characteristics of fractured 

rock masses in mine scale analyses. The SRM simulates the rock mass as an assembly of bonded 

spheres with and embedded DFN, allowing for block breakage, observation of deformation, 

fragmentation and fracture propagation.  

Bagheri (2006) developed a dual porosity reservoir simulator iteratively coupled with a 

geomechanical module to account for the stress influence on the fluid flow and fracture 

permeability tensor of deformable fractured reservoirs. They used an empirical constitutive model 

for joints (Bandis et al. 1983) and the analytical formulation by Huang et al. (1995) to estimate the 

equivalent continuum properties. Gu and Chalaturnyk (2010) presented a reservoir-geomechanical 

coupled simulation with the application of analytical permeability and porosity models in coalbed 

methane recovery processes. In their study, the coal matrix and orthogonal cleats are simulated 

with an equivalent continuum elastic medium model capturing the anisotropy in the permeability 

and mechanical parameters. Based in the concept of multiple interacting continua (Pruess & 

Narasimhan 1985), Rutqvist et al. (2013) presented a linked multicontinuum and crack tensor 

approach (Oda, 1986) to calculate the upscaled effective properties, such as permeability and 

elastic tensors for coupling geomechanics, fluid flow, and solute transport in fractured rock 

simulations. 

Deisman et al. (2009) introduced a simulation approach to account for geomechanical 

effects in fractured reservoirs sensitive to stress changes. Their envisioned coupling scheme links 

four numerical simulators: a reservoir simulator to represent complex flow processes; a continuum 

geomechanical simulator to determine the deformation and change in effective stress due to 

changes in reservoir temperature, pore pressures and fluid volumes; a discontinuum simulator 

based on the SRM approach to capture changes in apertures, fracture propagation and acoustic 

emission; and a DFN simulator to generate the rock mass structure and to estimate the equivalent 

permeability and porosity from fracture apertures and new induced fracture generation. They 
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proposed to estimate the new mechanical and flow properties when a certain change in effective 

stress is reached. Thus, new equivalent continuum properties can be updated and fed into their 

respective simulators; and the models are sequentially cycled again. This previous work has 

motivated the study proposed here. 

1.2 Problem Statement 

The hydro-mechanical behaviour of discontinuities may have an important effect in the 

fluid flow and deformability response of fractured porous formations; however, in general, their 

influence is not taken into account in conventional reservoir geomechanical coupled simulations. 

That is mainly because the explicit inclusion of all the structural features present in highly fractured 

reservoirs in hydro-mechanical coupled numerical simulations usually results in high demanding 

computational power, large memory requirements and prohibitive simulation times. These issues 

are common in numerical codes for modelling large discontinuum media with explicit fractures. 

In addition, the empirical and analytical homogenization or upscaling techniques available 

to estimate the equivalent continuum properties of rock masses generally disregard the effect of 

fracture interactions and nonlinear fracture deformations. Also, they are usually restricted to 

fractures with particular shapes and geometry. Therefore, a methodology capable of determining 

the hydro-mechanical equivalent continuum properties of a fractured porous formation through 

numerical homogenization must be developed with the aim of including the influence of fractures 

represented by a DFN in large reservoir geomechanical coupled simulations. 

1.3 Hypothesis and objectives 

The geomechanical and fluid flow behaviour of fractured porous formations where the 

structural features are represented by a discrete fracture network can be captured with acceptable 

accuracy through an equivalent continuum representative of the rock mass, input for large reservoir 

geomechanical coupled simulations. The permeability and anisotropic deformability equivalent 
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parameters can be determined by direct measurement on numerical specimens including the rock 

structure tested in a virtual rock mass (VRM) numerical laboratory. 

This research has the main objective of developing a methodology to include the hydraulic 

and mechanical effects of discrete fracture networks in reservoir geomechanical coupled 

simulations, taking into account the inherent capabilities (limitations and advantages) of the 

involved commercial software. The coupling strategy and methodology are based on the 

envisioned approach presented by Deisman et al. (2009) where several simulators are linked 

together following an explicit iterative sequential coupling scheme. The coupling approach 

involves a reservoir flow simulator and two geomechanical simulators, one for large scale 

continuum simulations and the other for small and meso-scale discontinuum media. The reservoir 

flow simulator is used to obtain changes in temperature and pore pressure developed during the 

complex fluid flow processes. The continuum geomechanical simulator is necessary to determine 

deformations induced by changes in temperature and pore pressure in the reservoir at each 

simulation stage. The discontinuum geomechanical simulator is used as a virtual rock mass 

numerical laboratory (VRM lab) to determine the hydraulic and mechanical equivalent continuum 

properties representative of the discontinuum material at the desired scale. 

1.4 Proposed Methodology 

The methodology to capture the hydraulic and mechanical effect of discrete fracture 

networks in reservoir geomechanical coupled simulations involves numerical modelling 

techniques including a flow simulator coupled with a continuum geomechanical simulator; and the 

development of a numerical virtual rock mass laboratory to determine the equivalent properties 

for the hydro-mechanical continuum characterization of the fractured porous formation. 

The Itasca’s code FLAC3D (Itasca 2013) is proposed as continuum geomechanical 

simulator. The commercial code, STARS (CMG 2018) is proposed as reservoir flow simulator. 

The VRM laboratory is developed in 3DEC (Itasca 2016) with the capability of performing 
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mechanical and fluid flow numerical tests to determine the hydro-mechanical equivalent 

continuum parameters of the discretization regions of the fractured reservoir. These homogenized 

permeability and anisotropic elastic parameters may be updated at specific coupling simulation 

stages in those fractured regions where the change in the effective stress field reaches a certain 

tolerance. 

1.5 Organization of the thesis 

The thesis has been structured such that each chapter can be read as a stand-alone paper; 

however, all of them are fundamental to understand this research. The thesis consists of five 

chapters: 

 The first chapter presents a brief introduction covering the background and problem 

statement, a summary of the hypothesis and research objectives, as well as the 

proposed methodology in this study. The outline of the thesis is also included 

herein. 

 The second chapter presents an explicit sequential coupling scheme for accurately 

modelling the thermo-poromechanical behaviour of anisotropic porous formations 

in complex reservoir geomechanical simulations. The validation of the coupling 

scheme against analytical solutions is also presented. 

 The third chapter introduces the mechanical module of the virtual rock mass 

numerical laboratory, VRM lab, for determining the equivalent orthotropic 

continuum parameters of a fractured porous formation through a numerical 

homogenization procedure. The VRM mechanical lab is verified in this chapter 

against the analytical Oda’s crack tensor approach. 

 The fourth chapter presents a coupling strategy and methodology proposed for the 

inclusion of the hydro-mechanical behavior of discrete fracture networks in 
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reservoir geomechanical simulations of fractured porous formations through 

numerical homogenization of rock mass discontinuum regions using the VRM 

laboratory. Additionally, the VRM hydraulic lab developed to determine the full 

equivalent permeability tensor of fractured regions is also introduced and verified 

in this chapter. 

 The last chapter provides the summary and conclusions of this study, and 

recommendations for future research.  
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2 Sequential coupling of reservoir and geomechanical 

simulators for anisotropic porous media with Biot 

coefficient tensor 

2.1 Summary 

A sequentially coupled method is introduced for modelling the thermo-poromechanical 

behaviour of anisotropic porous media in complex reservoir geomechanical simulations. The 

method is implemented in a numerical coupling platform whereby the reservoir (CMG – STARS) 

and geomechanical (Itasca – FLAC3D) simulators are sequentially coupled. The porosity correction 

coupling strategy is based on the fixed stress split method, given that this scheme enjoys excellent 

stability and convergence properties. The formulation rigorously includes the generalized tensorial 

form of the Biot effective stress coefficient, neglected in most numerical coupling techniques. The 

capabilities of the coupling method to accurately simulate the interactions between thermal, fluid 

flow and mechanical processes developed in anisotropic media are verified against analytical 

solutions of the one-dimensional consolidation problem for isotropic and anisotropic materials, the 

thermal consolidation and the Mandel’s problem for transversely isotropic porous media. 

Additionally, the anisotropic effect of the Biot tensor and the symmetry plane orientation has been 

studied. The results demonstrate the importance of correctly modelling the effect of material 

anisotropy in thermo-poromechanical coupled simulations. This study shows that the methodology 

presented here is required to correctly model stress-sensitive reservoirs involving anisotropic 

porous formations. 

2.2 Introduction 

Understanding the behaviour of a porous medium filled with a fluid has been of great 

importance in many areas of engineering (de Boer 2000). Based on experimental observations, 

Terzaghi (1923, 1925) proposed a one-dimensional consolidation theory capable of describing the 

progressive settlement of fully saturated soils, when a uniform distributed surcharge is suddenly 
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applied. This theory was developed for deformational analyses of laterally constrained soil bodies, 

under the assumptions of incompressible fluid and solid constituents. Making use of the 

generalized Hooke’s law, Biot (1941) derived a linear theory of isotropic poroelasticity consistent 

with the coupled interaction between the mechanical and fluid flow processes that take place 

during the three-dimensional consolidation of saturated porous solids. Biot reformulated these 

poroelastic equations for anisotropic elastic and viscoelastic materials (Biot 1955, 1956a), 

thermoelasticity (Biot 1956b), propagation of stress waves (Biot 1962) and nonlinear elasticity 

cases (Biot 1973). Gassmann (1951) studied the hydro-mechanical coupling problem from a 

micromechanical perspective through an ideal porous medium model (Cheng 2016), in which the 

solid phase is assumed microscopically homogeneous and isotropic, while the porous material can 

be anisotropic and heterogeneous at the macroscopic scale. Later, Biot and Willis (1957) 

introduced a more general model by removing these previous micromechanical conditions (Cheng 

2016), and they included a physical interpretation of the poroelastic coefficients, as well as the 

suggested methods for their measurement. Following these pioneering works, different researchers 

contributed to clarifying the physical meaning of the poroelastic constitutive parameters, 

introducing alternative formulations (e.g., Geertsma 1957; Verruijt 1969; Nur & Byerlee 1971; 

Rice & Cleary 1976; Zimmerman et al. 1986). This early theoretical framework settled the 

foundation for a large variety of emergent engineering applications (Cheng 1997; Castelletto et al. 

2015). Detournay and Cheng (1993) provided a comprehensive review of the development of the 

classic poroelasticity theory. A significant contribution to the study of the influence of pore fluids 

on the mechanical behaviour of porous materials was made by Coussy (1995), who developed a 

theory based on the fundamental principles of mechanics and thermodynamics of open continua. 

This poromechanics theory was subsequently extended to cover unsaturated thermoporoelastic, 

poroplastic, chemoelastic processes and other phenomena related to the physical chemistry and 

mechanics of porous media (Coussy 2004, 2010). Although traditional problem-solving usually 

relies on analytical solutions, most are not suitable enough for analyzing complex problems in 

engineering practice (Cheng 2016). Furthermore, the progressive enhancement of computational 

capabilities has contributed to the application of the theory of poromechanics in multiple numerical 
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modelling techniques. Many of these numerical methods have been successfully applied to a 

diverse range of geoengineering fields such as oil and gas production, geothermal energy, 

geological nuclear waste disposal and carbon sequestration, among others (Jing & Hudson 2002; 

Rutqvist 2017). 

The strategies to couple flow and mechanics in numerical simulations are commonly 

divided into fully and sequentially coupled methods (Kim 2018a). The fully coupled, or 

monolithic, formulation solves the governing equations simultaneously at each time step in a 

unified flow-mechanical simulator, adopting, in general, an implicit coupling scheme. This 

algorithm ensures the unconditional stability and convergence of the solution provided that the 

coupled problem is mathematically well-posed. However, the scheme entails a high computational 

cost associated with the software development and demanding memory requirements for solving 

large systems of equations (Kim et al. 2012), making the sequential approach more appealing for 

large scale simulations. The sequentially coupled method splits the governing equations into 

subsystems to be solved in separate software modules, in which the information is exchanged 

following a staggered solution procedure (Felippa & Park 1980). This method has the advantage 

of being able to incorporate robust commercial codes in the sequential coupling scheme. Typically, 

two verified numerical simulators are linked together through an interface, one for solving the 

complex thermal and fluid flow processes and another for dealing with the geomechanical response 

of the system. The modular attribute of this approach allows for using separate numerical domains 

with different grid sizes and spatial discretization at each simulator (Tran et al. 2009). The 

sequential coupling schemes can be classified in explicitly and implicitly coupled solutions (Gu & 

Chalaturnyk 2005; Deisman et al. 2009). In the explicit sequentially coupled approach, the flow 

and mechanical coupling parameters are updated and transferred between simulators, once at the 

end of each time step or simulation stage, that is, after a certain simulation time interval (Zandi et 

al. 2010). On the other hand, the implicit sequential coupling method entails the iteration of the 

coupling variables at every time step until a convergence criterion is satisfied. The sequential 

scheme is expected to produce the same results as the fully coupled solution, as long as the 
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convergence tolerance is tight enough (Dean et al. 2006; Kim et al. 2011). However, contrary to 

the fully coupled approach, the unconditional stability and convergence of the solution are not 

always guaranteed. Kim (2010) studied the numerical stability and convergence of four implicit 

sequential coupling strategies for splitting the equations of poromechanics in oil reservoir 

simulations. These split methods can be divided into fixed-strain and fixed-stress when the flow 

sub-problem is solved first, followed by the mechanical solution and, in drained and undrained 

splits, when the flow solution is calculated after the mechanical solution. It was found that only 

the fixed-stress and undrained methods have unconditional numerical stability; however, the fixed-

stress split is recommended over the undrained scheme because it provides a faster convergence 

rate (Kim et al. 2011). A more rigorous analysis of the stability and convergence of the undrained 

and fixed-stress split methods was conducted by Mikelić and Wheeler (2013). Further studies have 

shown the convergence of the fixed-stress method for multirate iterative coupling schemes 

(Almani et al. 2016), multiscale iterative coupling schemes (Dana et al. 2018) and heterogeneous 

problems (Both et al. 2017). The fixed-stress split strategy has become a popular sequential 

coupling scheme, being recently extended and used in several coupling problems (e.g., Kim et al. 

2013; Kim 2018a, 2018b; Gaspar & Rodrigo 2018; Borregales et al. 2019; Delgado et al. 2019). 

In conventional reservoir simulations, the effect of geomechanical deformations is usually 

taken into account through a pore compressibility factor (Gutierrez & Lewis 1998; Mainguy & 

Longuemare 2002). This approach does not simulate the complex mechanical behaviour that 

occurs during oil production activities in stress sensitive reservoirs. Therefore, Settari and Mourits 

(1994, 1998) proposed a sequential coupling scheme, where the thermal and fluid flow equations 

are solved first in the reservoir simulator while keeping the mean total stress constant (fixed); then, 

new temperatures and pore pressures are updated in the geomechanical simulator to determine the 

resultant strain field. The predicted reservoir porosity is corrected with the calculated porosity in 

the geomechanical solution, and the thermal and pore compressibility parameters are updated for 

the next simulation step. This method was found to be very robust; in fact, it essentially follows 

the same algorithm as the fixed-stress split scheme. On a similar basis, Tran et al. (2004) presented 
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a more rigorous formulation to determine and update the reservoir porosity as a function of the 

mean total stress, pore pressure and temperature. Mainguy and Longuemare (2002) studied other 

sequential strategies where the porosity correction is estimated not only in terms of the mean total 

stress but also as a function of the pore volume and volumetric strain. They concluded that the 

pore compressibility can be used as a parameter to improve the stability and convergence of 

sequentially coupled schemes (Mainguy & Longuemare 2002; Kim et al. 2011). Later, several 

authors have implemented the fixed-stress split method by employing a porosity correction 

strategy to model thermo-poromechanical processes in sequentially coupled simulations, given 

that this approach revealed excellent stability and convergence properties (Kim et al. 2012, 2015; 

Blanco-Martín et al. 2017; Garipov et al. 2018; Sangnimnuan et al. 2018). 

The rock formation is usually treated as isotropic in the coupled solution of reservoir 

geomechanical simulations. In some cases, when the anisotropy becomes significant, a stress-

strain constitutive relation for anisotropic materials is included in the coupling formulation. 

However, even though the porous material is assumed anisotropic, the Biot effective stress 

coefficient is still considered a scalar in the equations of poroelasticity. Several studies have 

revisited Biot’s anisotropic poroelastic equations (Biot 1955) in the framework of 

micromechanics, showing that the generalized anisotropic form of the Biot coefficient is a second-

order tensor (Carroll 1979; Thompson & Willis 1991; Cheng 1997; Gao et al. 2017). Moreover, 

the behaviour of fluid-filled anisotropic porous media through analytical and fully coupled 

solutions have been studied, revealing that neglecting the effect of anisotropy may yield erroneous 

or misleading results (Abousleiman et al. 1996; Cui et al. 1996a; Cui et al. 1996b; Hoang & 

Abousleiman 2012; Cheng 2016; Giot et al. 2018). Recently, the fixed-stress split method was 

proved to be numerically convergent for the case of anisotropic poroelasticity with Biot effective 

stress tensor (Dana & Wheeler 2018). Thus, a sequentially coupled method is developed here with 

the purpose of rigorously including the Biot effective stress coefficient tensor (Biot tensor in the 

following) in a porosity correction strategy, based on the fixed-stress split scheme, for modelling 

thermo-poroelastic coupled processes in complex reservoir geomechanical simulations. 
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2.3 Coupling Methodology 

The sequential coupling method presented here involves two commercial codes, STARS 

and FLAC3D, which are required for modelling the complex thermal and fluid flow processes, and 

mechanical deformations occurring during reservoir operations. STARS is a steam, thermal, and 

advanced processes reservoir simulator developed by Computer Modelling Group Ltd. (CMG), 

which has been widely used over the last decades, becoming a standard multi-phase and multi-

component simulator in the oil and gas industry. This software has been designed to simulate 

simple and highly complex thermal recovery processes, injection of gases, polymers and other 

chemical additives, advanced well completions, and electrical heating, among other capabilities 

(Goulet et al. 2009; CMG 2018). The fast lagrangian analysis of continua in three-dimensions, 

FLAC3D, is a geomechanical modelling software developed by Itasca Consulting Group Inc., 

which has been extensively used in many geoengineering applications and intended for the 

mechanical analysis of three-dimensional problems. It follows an explicit finite volume 

formulation that makes it a robust numerical tool for simulating the nonlinearity and complex 

plastic behaviour, and even the total collapse of soils and rock formations. The FLAC3D 

documentation includes several verification problems where the code has been validated and 

compared against analytical solutions (Itasca 2013). Here, the proposed sequential scheme has 

been built into a coupling platform developed by the reservoir geomechanics research group 

(RGRG) at the University of Alberta. The main purpose of the RGRG coupled simulation platform 

is to serve as the interface for linking both simulators together. That is, it generates the numerical 

grids for the flow and mechanical models, populates the simulators, as well as managing the 

exchange and storage of coupling parameters throughout the sequential simulation process. 

One of the important factors to take into account when coupling commercial simulators is 

accessibility to the internal variables of each software. The geomechanical code, FLAC3D, has 

embedded a useful programming language, FISH, which allows the user to define subroutines to 

access and manipulate almost all the internal data through predefined intrinsic functions (Itasca 

2013). On the other hand, STARS provides access to many simulation parameters; however, due 



17 

 

to consistency purposes, the manipulation of the internal variables is limited to the recurrent input 

data available in the code. In particular, STARS allows the user to input a new reference porosity, 

volumetric thermal expansion coefficient, and pore space compressibility of the formation, in a 

porosity function, to take into account the effect of mechanical deformations during the thermal 

and fluid flow simulation (CMG 2018). This porosity function and subroutines coded in FISH are 

used to sequentially couple STARS and FLAC3D through the RGRG coupling platform. 

2.3.1 Thermo-Poromechanical Constitutive Relations  

The porous medium is considered as an open thermodynamic system composed of a 

deformable skeleton and an interstitial fluid, representing two superimposed continua. The 

skeleton is assumed anisotropic having the interconnected porous space within the solid matrix 

saturated by a single phase fluid. All deformations are assumed small in such a way that the 

infinitesimal strain theory applies. Compressive stresses and strains are considered negative. The 

coupling formulation is based on the thermoporoelastic theory presented in Coussy (1995, 2004, 

2010). Following Coussy’s formalism, the constitutive equations of anisotropic 

thermoporoelasticity for the porous material are written in the incremental form as: 

 ij ijkl kl ij ijkl kldσ C dε b dp C α dT     (2.1) 
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where ijσ  is the total stress tensor; klε  is the strain tensor; p is the pore pressure; T is the 

temperature; fm  is the current Lagrangian fluid mass content per unit of initial volume; fρ  is 

the fluid mass density; ijklC  is the drained elastic stiffness tensor of the skeleton; ijb  is the Biot 

tensor; klα  is the linear thermal expansion coefficient tensor of the skeleton; M is the Biot modulus 

of the porous material, and; mα  is the linear thermal expansion related to the fluid-solid mixture. 

The inverse of the Biot modulus represents the constrained specific storage coefficient (at constant 

strain). The relationship between the change in fluid mass content and the fluid mass density, that 

is, the term at the left-hand side of Eq. (2.2) corresponds to the increment of fluid content ζ  in 
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the classic poroelastic formulations (Wang 2000). The thermoporoelastic tangent properties in Eqs 

(2.1) and (2.2) have the following general forms (Thompson & Willis 1991; Cheng 1997; Hoang 

& Abousleiman 2012; Gao et al. 2017), 

 
s

ij ij ijkl klmn mnb δ C S δ    (2.3) 

  1 s s s
ijmn mnll ijkk ijkk iikk fC S S S S C

M
       (2.4) 

 m fα α α     (2.5) 

where ijδ  is the Kronecker delta; ijklS  is the drained elastic compliance tensor of the skeleton, (or 

in case of having the superscript s, of the solid matrix);   is the Lagrangian porosity defined as 

the ratio of the current pore volume to the initial volume; fC  is the fluid compressibility; α  and 

fα  are the linear thermal expansion coefficients related to the porosity and fluid respectively. The 

Einstein summation convention applies; thus, tensor contraction is implied over repeated indices. 

The drained elastic tensors in the previous equations enjoy full symmetry conditions (minor and 

major). That is, the symmetry of the stress and strain tensors results in the minor symmetry of the 

stiffness (or compliance) tensor of the skeleton: ijkl jikl jilk ijlkC C C C   . The major symmetry 

condition, ijkl klijC C , comes from the conservation of the elastic strain energy density (Ting 

1996). The compliance (or stiffness) tensor of the solid matrix, 
s
ijklS , satisfies the same minor and 

major symmetries as long as the matrix of the skeleton is homogeneous. However, in those cases 

where the solid matrix is inhomogeneous, the major symmetry is not always guaranteed even 

though the minor symmetry is met (Thompson & Willis 1991; Gao et al. 2017). Here, the 

compliance (or stiffness) tensor of the solid phase has been assumed to satisfy the major symmetry 

condition. 

Solving for the strain tensor term in the Eq. (2.1) gives, 

 ij ijkl kl ijkl kl ijdε S dσ S b dp α dT     (2.6) 
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The substitution of Eq. (2.6) in the Eq. (2.2) leads to the equivalent form of the variation 

of fluid content in terms of the total stress, pore pressure and temperature, 

  
1

3
f

ij ijkl kl ij ijkl kl ij ij m
f

dm
b S dσ b S b dp b α α dT

ρ M

 
     

 
  (2.7) 

Substituting Eqs. (2.3), (2.4) and (2.5) in the two terms related to the pore pressure and 

temperature of Eq. (2.7) and simplifying results in the constitutive equation of the change in fluid 

content, in which the corresponding terms of the fluid-solid mixture are shown separately, 

     1 3 3
f s

ij ijkl kl iikk iikk f ij ij f
f

dm
b S dσ S S C dp b α α α dT

ρ
            (2.8) 

Now, the increment of fluid content related to the saturating fluid can be obtained by 

differentiating the equation of the current fluid mass content, f fm ρ  , and dividing by the fluid 

mass density, as follows: 

 
f f

f f

dm dρ
d

ρ ρ
     (2.9) 

The constitutive equation of the saturating fluid is written as (Coussy 2004): 

 3
f

f f
f

dρ
C dp α dT

ρ
    (2.10) 

Substituting Eq. (2.9) in Eq. (2.10) yields: 

 3
f

f f
f

dm
d C dp α dT

ρ
       (2.11) 

Finally, combining Eqs. (2.8) and (2.11), and substituting the compliance tensor of the 

solid matrix for terms with the compliance tensor of the skeleton, results in: 

     1 3ij ijkl kl iikl kl iikk ij ijd b S dσ S b S dp b α α dT           (2.12) 
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This last constitutive equation shows the general form of the change in Lagrangian porosity 

related to the anisotropic skeleton, regardless of the saturating pore fluid, that must be included in 

the sequentially coupled simulation scheme to account rigorously for the effect of mechanical 

deformations. 

2.3.2 Porosity Correction Parameters 

The porosity in the STARS simulator corresponds to the reservoir porosity, which is a 

Lagrangian parameter defined as the current pore volume divided by the initial bulk volume. It can 

be corrected to include the effect of geomechanics during the reservoir simulation, through the 

following porosity function defined in terms of pressure and temperature as (CMG 2018), 

      r r p r r T rc p p c T T          (2.13) 

where pc  is the pore compressibility; Tc  is the volumetric thermal expansion coefficient, and the 

subscript, r, indicates the reference value corresponding to the last simulation step at which the 

porosity function was updated. These parameters are assumed to behave linearly during the flow 

simulation step. 

 The general form of the porosity variation related to the porous skeleton, Eq. (2.12) can 

be linearized by assuming the thermoporoelastic tangent properties constant during the simulation 

time interval  1,n nt t  . Comparing this linearized form with the expressions of Eq. (2.13) in the 

same interval gives the following coupling parameters related to the change in porosity caused by 

changes in stress, pore pressure and temperature: 

 1Δ Δ
nn ij ijkl klb S σ    (2.14) 

   
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

  (2.15) 

  
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T ij ij
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c α b α
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  (2.16) 
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where 1Δ n  is the porosity change due to the increment of the total stress tensors determined 

from the geomechanical simulations at the two previous consecutive steps, nt  and 1nt  , (i.e., 

1
Δ n n nkl kl klσ σ σ


  ). Analogous expressions of this porosity correction have been presented in 

Settari and Mourits (1994, 1998); and Kim et al. (2012) where the Biot coefficient of the porous 

material is considered a scalar. 

The FLAC3D code operates by default in small-strain mode, in which the coordinates of the 

nodes are not updated with the computed displacements during the simulation process. In the 

general calculation sequence embodied in FLAC3D, the stresses are determined from strain rates, 

which in turn are derived from current nodal velocities. In other words, the displacements are not 

involved in the numerical solution procedure; however, they are calculated to derive a strain 

increment tensor based on the model geometry at the time of measurement (Itasca 2013). Since 

the current volume of the model in the small-strain mode is equal to its initial volume, the strain 

increment corresponds to a Lagrangian parameter, which is compatible with the definition of the 

reservoir porosity in STARS. Therefore, it is convenient to express the change in porosity in terms 

of changes in strain, pore pressure and temperature. Substituting Eq. (2.1) in Eq. (2.14) yields, 

 1Δ Δ Δ Δ
nn ij ij ij ijkl kl n ij ij nb ε b S b p b α T      (2.17) 

where the strain increment is computed in the geomechanical module, and the variations in pore 

pressures and temperatures are calculated in the reservoir simulator; all of them are determined 

from the two previous consecutive simulation steps, as in the aforementioned total stress change: 

1
Δ n n nij ij ijε ε ε


  ; 1Δ n n np p p   ; and 1Δ n n nT T T    (Kim et al. 2012). 

2.3.3 Implementation of the Sequential Scheme  

The flow and geomechanical coupling scheme between STARS and FLAC3D has been 

developed based on the fixed-stress split sequential method (Kim 2011). Thus, in the modelling 

sequence, the main coupling cycle (Figure 2.1) begins with the solution of the thermal and fluid 

flow sub-problem by STARS, in which the total stress is assumed constant (fixed) during the 
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simulation. After convergence of the flow problem, the RGRG coupling platform pauses the 

STARS simulation, and stores pore pressures and temperatures obtained in the reservoir model. 

Then, the effect of the change in pressure and temperature is included in the geomechanical 

simulation through a total stress tensor increment calculated as, 

  
,

Δ Δ Δ
p T

s
ij ij ijkl klmn mn n ijkl kl nσ δ C S δ p C α T      (2.18) 

where the term in brackets corresponds to the Biot tensor (Eq. (2.3)). This equation shows that the 

change in pore pressure and temperature may induce shear stresses due to the anisotropy of the 

porous material; in fact, the stress change is not hydrostatic for anisotropic materials (Carroll 1979; 

Dana & Wheeler 2018). Before running the mechanical simulation, the stress increments are 

determined by the RGRG platform (Eq. (2.18)) and added to the stress components in the FLAC3D 

zones. This approach is based on the logic associated with the automatic total stress update, config 

ats, and zone-based features available in FLAC and FLAC3D respectively (Itasca 2011, 2017); 

whereby the total stresses in the model are updated to account for the effect of pore pressure 

changes imported from an external source. Blanco-Martín et al. (2017) adopted a similar stress 

correction approach for isotropic materials. Once the total stress tensors are updated in the 

elements of the FLAC3D model, the mechanical sub-problem is solved under the assumption of 

drained conditions. Then, after reaching the mechanical equilibrium state, the RGRG platform 

pauses the FLAC3D simulator, and the resulting stress and strain increment tensors are stored. The 

next task consists of determining the pore compressibility, volumetric thermal expansion 

coefficient and porosity change from Eqs. (2.15), (2.16) and (2.17), respectively. At this point, the 

platform updates the porosity function in STARS with these new correction parameters, and it is 

ready to start a new coupling cycle again. 

In the simulation procedure conducted by the RGRG platform, the reservoir and 

geomechanical modules are sequentially coupled in an explicit manner. Hence, following the main 

coupling cycle, STARS computes the changes in temperature and pore pressure during a 

simulation time interval; then, new stress increments are added in FLAC3D to calculate the resultant 
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mechanical deformation induced in the reservoir; and finally, the new coupling parameters are 

determined and updated in the porosity function. At the end of this simulation stage, several 

coupling cycles, 
un , involving STARS and FLAC3D, are iterated by setting a simulation time short 

enough to prevent the fluid transport at each of them. These short time steps are motivated by the 

consideration that the change in stresses can be treated as instantaneous compared to the pressure 

diffusion processes occurring in the reservoir. This way, geomechanical effects are included in the 

simulation, while the fluid mass is conserved after the porosity correction in the short-time cycles. 

The procedure continues with the computation of another reservoir simulation time interval, 

followed by the number of short-time iterations, 
un , defined by the user (Figure 2.2). This 

procedure is repeated until the last reservoir geomechanical simulation stage is computed. 

 

 

Figure 2.1—Main coupling cycle between STARS and FLAC3D controlled by the reservoir 

geomechanics research group (RGRG) coupling platform. 
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During each simulation cycle, the coupling parameters are assumed to behave linearly; 

however, the incremental form of the constitutive equations allows for choosing suitable time 

intervals to incrementally simulate the nonlinear response of the system (Thompson & Willis 

1991). For the cases with strongly coupled nonlinear processes, the simulation time interval must 

be short, and the number of short-time iterations large enough, to induce changes in pore pressure, 

porosity and deformations within an acceptable tolerance, analogous to the convergence criteria 

used in the implicit sequentially coupled methods. 

 

Figure 2.2—Flow diagram for the sequential coupling scheme, showing the number of 

simulation stages, n , and the short-time iterations, un , defined by the user. 

2.4 Numerical Results 

2.4.1 Terzaghi’s Problem 

The first case to be analyzed is the classic one-dimensional (1D) consolidation problem 

(Terzaghi 1923, 1925). This problem has been widely used as a benchmark for testing the validity 

of numerical coupling methods (Cui et al. 1996a; Kim et al. 2012, 2015; Blanco-Martín et al. 

2017). It consists of a 1D column of a fully saturated material, in which an external axial load is 

suddenly applied on its top boundary. The lateral displacements are constrained to zero and the 

bottom boundary is fixed in all directions. Only the vertical displacements are freed, allowing the 
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material to consolidate along the column. The fluid is allowed to flow out through the top boundary 

while the rest of the boundaries remain impermeable. Figure 2.3 shows the schematic of the classic 

1D consolidation problem.  

  

Figure 2.3—Geometry and boundary conditions scheme for the 1D consolidation problem. 

2.4.1.1 Isotropic Consolidation 

In this case, the column has been modelled with a height, H = 31 m, and a square cross-

section of width, W = 1 m. The material is set as isotropic, homogeneous and saturated by a 

compressible single phase fluid. The solid matrix is set incompressible with respect to the skeleton; 

therefore, the Biot tensor contracts to the scalar value of one. The temperature is assumed constant 

and the effect of gravity is neglected. The material and fluid input parameters are summarized in 

Table 2.1. This problem has also been analyzed in Blanco-Martín et al. (2017). The column is 

discretized in the reservoir and geomechanical simulators in 31 cubic elements of 1 m edge length 

(Figure 2.4). The model is at equilibrium with an initial pore pressure of 10 MPa and the 

compressive total stress field also of 10 MPa. In STARS, the boundaries of the model are 

unconstrained by default. Thus, to account for the constrained boundary conditions and to improve 

the convergence of the problem (Kim et al. 2011; Castelletto et al. 2015), the drained compliance 
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in the porosity correction parameters is replaced by the compliance under oedometric conditions, 

oedoC . For isotropic materials, 
oedoC  is defined as the inverse of the oedometric bulk modulus of 

the skeleton: 4 3oedoK K G  0.634 GPa. Additionally, a producer well with bottomhole 

pressure of 10 MPa is perforated at the top boundary to allow for the fluid drainage (CMG 2018). 

Figure 2.4 shows the detail of the producer well drilled at the surface of the model. 

Table 2.1—Material and fluid properties for the isotropic 1D consolidation problem. 

Property Value 

Young’s modulus E , (GPa) 0.6 

Poisson’s ratio ν , (-) 0.15 

Bulk modulus* K , (GPa) 0.286 

Shear modulus* G , (GPa) 0.261 

Oedometric compliance 
oedoC , (1/GPa) 1.578 

Biot’s coefficient b , (-) 1 

Biot’s modulus M , (GPa) 4.706 

Porosity  , (%) 42.5 

Fluid compressibility fC , (1/GPa) 0.5 

Fluid viscosity μ , (Pa∙s) 0.001 

Permeability k , (m2) 6.51 ∙ 10–15 

* Bulk and shear modulus are calculated from Young’s modulus and 

Poisson’s ratio as:   3 1 2K E ν   and   2 1G E ν   respectively. 

 

At the beginning of the simulation, a constant load of 10 MPa is applied on the top 

boundary of the FLAC3D model while keeping the producer well closed in STARS. After the 

instantaneous undrained pressure rise, the producer is opened (i.e. allowed to flow), and the 

material consolidates gradually as the fluid flows out of the column. The simulation is divided into 

several time intervals until 100 days, with two short-time iterations ( un = 2) at the end of each 

simulation stage. Figure 2.5a shows the evolution of the pore pressure obtained from the analytical 

solution and the coupled simulation results of four monitoring points installed at different depths 
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along the column (X-axis). The analytical and numerical results of the surface settlement are 

compared in Figure 2.5b. Both plots show that the numerical results are in close agreement with 

the analytical solution. The slight pressure mismatch between the numerical and analytical 

solutions observed at the first time stage (0.0025 days) and monitoring point at 0.5 m depth (Figure 

2.5a) has been attributed to the local effect of perforating the producer well at the same element of 

the model (x = 0.5 m) where the pressure is measured (Figure 2.4). 

 

Figure 2.4—Geometry of the 1D consolidation model showing the discretization elements, the 

producer well drilled at the surface and the pressure monitoring points at the center of four 

elements at different depths (x). The figure in the circle shows the detail of the first element of 

the model at the top of the column including the first monitoring point and the producer well 

excavated at the surface to simulate the flow boundary condition. 
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Figure 2.5—Comparison of analytical and numerical results for the isotropic (Iso) case: a) pore 

pressure measurements at monitoring points; b) settlement at the surface (x = 0 m). 

2.4.1.2 Anisotropic Consolidation 

The effect of anisotropy on the 1D consolidation problem was studied by Cui et al. (1996a). 

They extended the analytical solution of the Terzaghi’s consolidation problem to account for 

material anisotropy. Following this previous work (Cui et al. 1996a), a 1D consolidation problem 

with a transversely isotropic porous medium has been analyzed. In this example, the model 

geometry, initial conditions and input parameters are the same as the isotropic case. Material 

anisotropy was induced by setting Poisson’s ratio in the plane of isotropy, ν , to 0.15 and in the 

normal direction, ν , to 0.35. The Young’s modulus is set equal in all directions, E = E= 0.6 GPa. 

The shear modulus in the symmetry plane orientation, G, is calculated to 0.261 GPa (Table 2.1). 

The independent shear modulus in the normal direction, G , has been estimated to 0.222 GPa 
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using the approximate formula in the Appendix A (Eq. (A-9)). The plane of isotropy is identified 

with the horizontal plane (Y-Z), to represent the regular structural features of a standard 

depositional scenario. Then, the elastic parameters correspond with: x y zE E E E   ; yzν ν ; 

xy xzν ν ν  ; yzG G ; xy xzG G G  . The solid phase is considered incompressible; therefore, 

the Biot tensor is equal to the identity matrix. In addition, the oedometric compliance along the 

column (X-axis) is calculated equal to 1.186 GPa–1 (Appendix A). The simulation is conducted 

following the same procedure as in the previous case. The pore pressure and surface settlement 

determined with the analytical solution (Cui et al. 1996a) are in excellent agreement with the 

results of the numerical simulation (Figure 2.6). 

 

Figure 2.6—Comparison of analytical solution (Cui et al. 1996a) and numerical results for the 

transversely isotropic (TI) case: a) pore pressure measurements at four monitoring points (0.5, 

5.5, 10.5 and 30.5 m depth); b) settlement at the surface (x = 0 m), including the previous results 

of the isotropic (Iso) settlement. 
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2.4.1.3 Thermal Consolidation 

The following case illustrates the thermo-poroelastic behaviour of a saturated porous 

medium in the condition of 1D deformation. Selvadurai and Suvorov (2016) proposed an analytical 

solution to account for the mechanical, hydraulic and thermal effects in the 1D consolidation case. 

The same geometry and initial conditions have been used to compare to the previous isotropic and 

anisotropic cases. The Biot tensor coefficients have been set to the scalar value of 0.75 to include 

the effect of a compressible and isotropic solid matrix in the simulation. The column is assumed 

fully saturated with water. The permeability value has been decreased four orders of magnitude to 

induce the dissipation of pore pressure and temperature at the same time interval; this way, the 

coupling degree of the thermo-poromechanical process developed during the simulation is 

emphasized. The overall volumetric heat capacity, pc , and thermal conductivity, ck , of the porous 

medium are calculated to 2912 kJ/(m3∙°C) and 3.15 W/(m∙°C), respectively, through the 

approximations:  1p f f s sc ρ c ρ c      and;  1c cf csk k k      (Selvadurai & Suvorov 

2016). For isotropic materials under drained conditions, the linear thermal expansion of the porous 

skeleton, α , and the solid matrix, sα , are equivalent (Coussy 2004). Moreover, the linear thermal 

expansion coefficient is related to porosity as,  sα α b   . Therefore, Eq. (2.16) can be 

simplified to: 
1

3
nT sc α

  . Table 2.2 summarizes the material and fluid parameters for the thermal 

consolidation problem. 

Initially, the model is at equilibrium with a pore pressure of 10 MPa and a temperature of 

25°C. The lateral and bottom boundaries are thermally insulated, limiting the thermal exchange 

through the top surface only. Three wells, an injector, a producer, and a heater (CMG 2018), have 

been perforated at the top boundary of the STARS model, to simulate the boundary conditions of 

pore pressure and temperature of the surface. These wells have been drilled at the same surface 

element and location as the producer well of the two previous cases as depicted in Figure 2.4. The 

injector and producer are both set to operate with a bottomhole pressure of 10 MPa, and the initial 

temperature of the heater is 25°C. 
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Table 2.2—Material and fluid properties for the thermal consolidation case. 

Property Value 

Young’s modulus E , (GPa) 0.6 

Poisson’s ratio ν , (-) 0.15 

Biot’s coefficient b , (-) 0.75 

Porosity , (%) 42.5 

Fluid compressibility fC , (1/GPa) 0.5 

Fluid viscosity μ , (Pa∙s) 0.001 

Permeability k , (m2) 6.51 ∙ 10–19 

Solid density sρ , (kg/m3) 2700 

Fluid density fρ , (kg/m3) 997 

Linear thermal expansion solid sα , (1/°C) 0.83 ∙ 10–5 

Linear thermal expansion fluid fα , (1/°C) 6.90 ∙ 10–5 

Specific heat capacity solid sc , (J/(kg∙°C)) 735 

Specific heat capacity fluid fc , (J/(kg∙°C)) 4180 

Thermal conductivity solid csk , (W/(m∙°C)) 5 

Thermal conductivity fluid cfk , (W/(m∙°C)) 0.64 

 

The simulation starts with the three wells closed. Then, the heater is set to 75°C to create 

a temperature increment of 50°C. This sudden change in temperature induces thermal stresses, 

causing an undrained pore pressure increase along the column, and heaving of the top boundary. 

Once the temperature reaches the constant value of 75°C in the entire model, the injector and 

producer wells are opened and, the temperature of the heater is reduced to its initial value of 25°C 

to permit the progressive dissipation of pore pressure and temperature through the surface. The 

temperature and pore pressure evolution obtained from the analytical solution (Selvadurai & 

Suvorov 2016) and the numerical simulation are compared in Figure 2.7a and Figure 2.7b. 
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Figure 2.7—Comparison of analytical solution (Selvadurai & Suvorov 2016) and numerical 

results for the thermal consolidation case: a) temperature and b) pore pressure measurements at 

four monitoring points (0.5, 5.5, 10.5 and 30.5 meters depth); c) heaving at the top surface (x = 0 

m). 

 



33 

 

The time-dependant response of the vertical displacement at the top surface is shown in 

Figure 2.7c. The results of the numerical simulation and the analytical solution are in good 

agreement; however, there are some differences in the temperature and pressure measurements 

observed at the early stages in the top monitoring point (x = 0.5m, in Figure 2.7). This local 

discrepancy comes from the installation of the measurement point at the same top element of the 

model where the three wells are perforated and does not exist for any other monitoring locations 

in the model. 

2.4.2 Mandel’s Problem 

The Mandel’s problem (Mandel 1953) has been frequently used as a benchmark to verify 

and validate numerical solutions of coupled poromechanical codes (Cui et al. 1996b; Kim et al. 

2011; Castelletto et al. 2015; Blanco-Martín et al. 2017; Garipov et al. 2018; Borregales et al. 

2019). This problem involves a layer of infinitely long material with rectangular cross-section, 

compressed between two rigid, impermeable and frictionless platens, loaded with a constant force. 

 

Figure 2.8—Schematic of the geometry and boundary conditions for Mandel’s problem. 
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The layer is analyzed as a two-dimensional (2D) section under plane strain conditions, where the 

saturating fluid is allowed to flow out of the specimen through the lateral boundaries (Figure 2.8). 

In the classic problem, the porous material is considered isotropic with incompressible fluid and 

solid constituents; hence, the analytical solution has been extended to the fully poroelastic case 

(Cheng & Detournay 1988) and revisited to include transversely isotropic porous media 

(Abousleiman et al. 1996). This last solution is used here to verify the capability of the proposed 

numerical coupling scheme to simulate the poromechanical response of anisotropic materials. 

For the following cases, a layer of square cross-section with dimensions 2a = 0.2 m × 2b = 

0.2 m has been analyzed. The porous medium is considered homogeneous, transversely isotropic 

and saturated by a compressible fluid. The temperature is assumed constant, and the effect of 

gravity is neglected. Similar to the case analyzed in Abousleiman et al. (1996), the anisotropic 

material properties have been derived from the experimental data for the Trafalgar shale reported 

in Aoki et al. (1993). In this material, the solid phase is considered to be microscopically 

homogeneous and isotropic. Accordingly, the specimen has been modelled as an ideal porous 

medium (Gassmann 1951; Cheng 2016), in which the anisotropy arises at the macroscopic scale 

from the presence of structural features. These micromechanical assumptions allow to simplify the 

Biot tensor and Biot modulus, Eqs. (2.3) and (2.4), as (Cheng 1997):  

 
1

3
ij ij ijkl kl

s

b δ C δ
K

    (2.19) 
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   
   (2.20) 

where sK  is the bulk modulus of the solid matrix. The elastic constants in the plane of isotropy 

are calculated as: E = 20.6 GPa, ν = 0.189 and G = 8.66 GPa, and in the direction normal to the 

symmetry plane are: E= 17.3 GPa, ν = 0.246 and G= 7.23 GPa. The bulk modulus of the solid 

constituent is, sK = 48.2 GPa, and the Biot modulus is, M = 15.8 GPa. The calculated Biot tensor 

coefficient in the plane of isotropy is, b = 0.733 and in the normal direction, b= 0.749. The porosity 
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Figure 2.9—Domain discretization in 20 × 1 × 20 cubic elements of edge 0.01 m, for Mandel’s 

problem simulations. Servo-control mechanism installed at the gridpoints of top and bottom 

boundaries; producer wells drilled at the lateral boundaries and; monitoring point at coordinates 

(x, z) = (0.005, 0.005) m. 

is set to 11.5 %. The fluid compressibility is, 
fC = 0.435 GPa–1, and viscosity is, μ = 0.001 Pa∙s. 

The permeability is set equal in all directions, k = 9.87 ∙ 10–20 m2, to evaluate the material behaviour 

due only to mechanical anisotropy. The model domain is discretized in a three dimensional (3D) 

grid of 20 × 1 × 20 cubic elements (in the x, y and z directions), each with a 0.01 m edge length. 

All the elements located at the lateral boundaries of the STARS model are perforated with producer 

wells to allow for the fluid drainage. The rigid platens are simulated in the FLAC3D model 

employing a numerical servo-control mechanism, whereby the vertical velocities of the gridpoints 

at the top and bottom boundaries of the mechanical grid are adjusted to maintain the specified load 

(Figure 2.9). This servomechanism has been coded in FISH and is based on the servo algorithm 

implemented in the particle flow code, PFC, developed by Itasca Consulting Group Inc., (Itasca 

2008). The displacement in the out-of-plane direction (Y-axis) is constrained to zero to impose the 

plane strain condition. 
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The model is initially at equilibrium, free of total stresses with a pore pressure of 1 MPa. 

The producer wells are set to operate with a bottomhole pressure also of 1 MPa and initially closed. 

At the beginning of the first simulation stage, the servo-control is set to apply a constant force, F 

= 106 N per meter of layer in the out-of-plane direction, at the top and bottom boundaries. This 

suddenly applied force gives an average initial compressive stress of 10 MPa, which causes an 

instantaneous undrained pore pressure response. Then, the producer wells are opened to allow for 

the progressive dissipation of pore pressure as the fluid flows out of the layer. The simulation is 

conducted in several stages with two short-time iterations ( un = 2) at the end of each time interval. 

Following this procedure, a model with the isotropic plane in the horizontal direction (X-Y) has 

been analyzed. In this simulation (Case 1), the elastic parameters are defined by, x yE E E  ; 

zE E ; xy yxν ν ν  ; zx zyν ν ν  ; xyG G ; yz zxG G G   (note that zx zy xz yzν ν ν ν   

0.293). The Biot tensor coefficients correspond with, x yb b b  ; and zb b . Figure 2.10 shows 

the orientation of the symmetry plane for Case 1, including the drained compliance matrix of the 

skeleton (Appendix A) and the Biot tensor in column form. The analytical and numerical results 

of the pore pressure are measured at the monitoring point (x = 0.005 m, z = 0.005 m), the vertical 

displacement along the top boundary (x, z = 0.1 m), and the horizontal displacement of the right 

boundary (x = 0.1 m, z) (Figure 2.11). Two further scenarios have been simulated, in which the 

solid phase has been assumed incompressible in one case, sK  , and with a stiffness half of 

sK in the other case, 
50%
sK = 24.1 GPa. For the incompressible solid scenario (Case 2), the Biot 

modulus and Biot tensor coefficients are calculated to: M = 20.0 GPa and x y zb b b   1; also, 

the drained compliance under plane strain conditions (Appendix A) is used to improve the solution 

convergence. In the case with 50% of the bulk modulus of the solid matrix, 
50%
sK  (Case 3), the 

Biot parameters are M = 15.4 GPa, x yb b  0.468 and zb 0.499. The remaining modelling 

parameters are equal to Case 1. The numerical and analytical solutions are also included in Figure 

2.11. The simulation results are in perfect agreement with the analytical solution in Abousleiman 

et al. (1996). 
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Figure 2.10—Isotropic plane orientation for Cases 1, 4 and 5 of the Mandel’s problem; (Cases 2 

and 3 have the same symmetry plane orientation as Case 1, but different Biot parameters). Each 

case includes the drained compliance matrix of the skeleton and the Biot tensor (where the 

superscript T denotes matrix transposition), both defined in the coordinate system (X, Y, Z). 
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Figure 2.11—Comparison of numerical results and analytical solutions (Abousleiman et al. 

1996) for Mandel’s problem simulations with sK  48.2 GPa (Case 1); sK  (Case 2); and 
50%
sK  24.1 GPa (Case 3). The horizontal plane (X-Y) is set as the plane of isotropy. The plots 

show: a) pore pressure measurement at monitoring point (0.005 m, 0.005 m); b) vertical 

displacements along the top boundary (x, z=0.1 m); and c) horizontal displacements of the right 

boundary (x=0.1 m, z). 
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Figure 2.12—Numerical results and analytical solution (Abousleiman et al. 1996) for Mandel’s 

problem with different isotropic plane orientations: horizontal plane (X-Y) for Case 1; vertical 

plane (Y-Z) for Case 4 and; at 45° with the horizontal for Case 5 (see Figure 2.10). The Case 5 

cannot be solved with the analytical solution used here; therefore, only the numerical solution is 

included. The plots show: a) pore pressure measurement at monitoring point (0.005 m, 0.005 m) 

and; b) vertical displacements along the top boundary (x, z=0.1 m). 

 

Two additional cases have been analyzed to assess the influence of the symmetry plane 

orientation on the poromechanical response of the specimen. Both simulations are modelled the 

same as Case 1, except for the isotropic plane direction. Since these cases represent 2D problems 

under plane strain conditions, the out-of-plane direction of the model must be a principal direction 

of material symmetry (Zienkiewicz et al. 2005); thus, the isotropic plane has been oriented 

containing the Y-axis in both cases. For the first extra model (Case 4), the plane of isotropy is 
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oriented in the vertical direction (Y-Z), giving the following elastic parameters, y zE E E  ; 

xE E ; yz zyν ν ν  ; xy xzν ν ν  ; yzG G ; zx xyG G G  ; y zb b b  ; and 
xb b . In the 

second extra model (Case 5), the specimen is rotated anticlockwise around the Y-axis until the 

isotropic plane forms an angle of 45° with the horizontal plane. Analogous to Case 1, the 

orientation of the symmetry plane for Case 4 and Case 5, as well as the drained compliance matrix 

and Biot tensor, are included in Figure 2.10. The evolution of the pore pressure at the monitoring 

point and the vertical displacement of the top boundary is illustrated in Figure 2.12. 

The results of the numerical simulations are in excellent agreement with the analytical 

solution (only available for Case 1 and Case 4). The horizontal displacements have not been 

included in the results, since the lateral boundaries of the specimen in the Case 5 do not remain 

vertical during the simulation (i.e., the layer deforms in a rhombohedral shape). 

2.5 Discussion 

The verification cases have shown that there is a good match between the results of the 

analytical solutions and the numerical simulations conducted with the RGRG coupling platform, 

following the proposed sequentially coupled scheme. The effect of inducing mechanical 

anisotropy by changing the Poisson’s ratio in the 1D consolidation problem can be identified, 

comparing Figure 2.5 with Figure 2.6. It was observed that the initial pore pressure rise is slightly 

lower in the anisotropic simulation than in the isotropic model; nevertheless, both solutions 

monotonically converge to the same value once the pressure increment was fully dissipated. In 

addition, the final settlement of the surface is substantially smaller in the anisotropic case. This 

poromechanical response is due to the lower oedometric compliance of the transversely isotropic 

material compared with the corresponding value of the isotropic column. The thermo-poroelastic 

behaviour developed in the thermal consolidation problem is illustrated in Figure 2.7. In this case, 

the temperature increment monotonically decreases along the column from 75°C until reaching 

the initial value of 25°C again. As the temperature dissipates, the excess of pore pressure 

eventually drops below the initial condition of 10 MPa to finally converge to that value. A similar 
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trend was observed in the vertical displacement of the surface, where the initial heaving due to the 

thermal expansion of the column is followed by a slight surface settlement, just before the model 

returns to the initial state of zero displacement. This analysis shows the capability of the coupling 

method to simulate the interaction between thermo-poromechanical coupled processes. 

The influence of the solid phase stiffness on the poroelastic behaviour of the Mandel’s 

problem, modelled with a transversely isotropic layer, is depicted in Figure 2.11. There, the pore 

pressure evolution measured at the monitoring point follows the conventional non-monotonic 

response known as the Mandel-Cryer effect (Schiffman et al. 1969; Detournay & Cheng 1993; 

Abousleiman et al. 1996; Cheng 2016), in which the initial excess of pore pressure at the center of 

the layer continues to increase before it begins to decline. This phenomenon, characteristic of the 

Mandel’s problem, has been properly captured in the analyzed cases. The results of the simulations 

have revealed that the initial pore pressure increment is higher in the specimen with the 

incompressible solid (Case 2) and lower in the model with 50% bulk modulus of the solid matrix 

(Case 3), compared with the solution of the Case 1. Also, the initial vertical displacement at the 

top boundary of the model is smaller in Case 2 and larger in Case 3. Conversely, the initial lateral 

expansion, or horizontal displacement, measured at the right boundary has been found larger in 

Case 2 and smaller in Case 3. Although these cases show different initial undrained behaviours, 

the three solutions converge to the same results corresponding to the final drained state of the 

model. Moreover, during the transition from undrained to the drained response, the layer continues 

to consolidate even more in the vertical direction while it is laterally contracting as time evolves. 

It can be seen in the input properties for these simulations that the values of the Biot modulus and 

Biot tensor coefficients corresponding to the anisotropic porous material increase with the stiffness 

of the solid matrix. Consequently, increasing the Biot parameters leads to an initial undrained 

response with higher pore pressure rise, smaller vertical consolidation and larger horizontal 

expansion of the model. 

The results of the Mandel’s problem for each of the three proposed symmetry plane 

orientations are shown in Figure 2.12. As expected, the characteristic non-monotonic pore pressure 
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response at the center of the specimen can be observed in the three cases. The simulation with the 

horizontal plane defined as the plane of isotropy, Case 1, shows the highest excess of pore pressure, 

followed by the model with the symmetry plane oriented at 45° with the horizontal, Case 5, 

whereas the lowest value is obtained in the model with the isotropic plane oriented in the vertical 

direction, Case 4. It can be seen that the pore pressure response for Case 5 is equidistant from the 

other two solutions. As time progresses, these three different initial pore pressure increments 

converge to the same final value of 1 MPa, which corresponds to the initial pressure condition at 

the equilibrium state. Additionally, the vertical displacement measurements show the largest 

consolidation of the anisotropic layer in Case 1, and the smallest one in Case 4. The vertical 

displacement at the top boundary in Case 5 lies between the two previous solutions, but this time, 

it is closer to Case 1. Contrarily to the pore pressure response, the vertical consolidation of the 

specimen reaches different final values at the end of each simulation. This poroelastic behaviour 

arises from the change of material compliance in the vertical direction induced by rotating the 

specimen around the Y-axis (Figure 2.10). Since the platens are rigid, the vertical displacements 

are uniform along the horizontal direction of the model. Moreover, the lateral boundaries stay 

perpendicular to the platens during the simulation of Case 1 and Case 4; however, they do not 

remain vertical for Case 5 due to the inclined orientation of the symmetry plane, causing the 

rhombohedral deformation shape of the cross-section. For this reason, the horizontal displacements 

have not been compared in this analysis. Also, the analytical solution presented in Abousleiman et 

al. (1996) is intended to solve problems where the principal directions of material symmetry are 

aligned with the coordinate system of the model, such as in Case 1 and Case 4. Thus, only the 

numerical results corresponding to the pore pressure and vertical displacements are shown for Case 

5. These cases illustrate the significant effect of the material symmetry orientation on the fluid 

flow and mechanical coupled simulations. 

In this study, the change in permeability has not been included in the main coupling cycle; 

however, it can be updated during the simulation process through analytical or empirical 

relationships in those cases where the permeability is sensitive to geomechanical effects (Touhidi-
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Baghini 1998; Li & Chalaturnyk 2006; Ben Abdallah et al. 2014). Also, the heat generation effect 

related to the geomechanical deformation is considered negligible in the coupling process. That is, 

the temperature change induced by the strain increment is not taken into account in the heat flow 

simulation, implying a one-way coupling scheme between heat transport and geomechanics (Kim 

et al. 2012; Kim 2018b). This assumption is suitable for many applications since the temperature 

field is not significantly affected by mechanical changes in most materials (Wang 2000; Cheng 

2016). Nonetheless, the method should be used with caution in those problems where frictional 

processes leading to large heat generation effects may occur. The analytical and numerical 

examples presented here demonstrate the capability of the proposed coupling method to accurately 

solve thermo-poromechanical coupled problems involving anisotropic porous materials with the 

Biot effective stress coefficient defined in tensorial form. Although the formulation has been 

implemented in the RGRG coupling platform to sequentially couple STARS with FLAC3D, this 

methodology can also be used to couple similar reservoir and geomechanical commercial 

simulators. 

2.6 Conclusions 

A sequentially coupled method has been developed to accurately model the thermo-

poromechanical behaviour of anisotropic porous formations in complex reservoir geomechanical 

simulations. The sequential scheme has been implemented in a numerical platform developed by 

the reservoir geomechanics research group of the University of Alberta, in which the reservoir 

simulator STARS is coupled with the geomechanical code FLAC3D through a porosity correction 

strategy based on the fixed stress split method. The generalized tensorial form of the Biot effective 

stress coefficient has been rigorously included in the thermo-poromechanical coupling 

formulation. The methodology presented here has been verified against the analytical solutions 

corresponding to the 1D consolidation of isotropic and anisotropic materials, to the thermal 

consolidation, as well as to the Mandel’s problem for transversely isotropic porous media.  
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Several numerical simulations of the Mandel’s problem have been conducted to evaluate 

the effect of the Biot elastic parameters and the orientation of the symmetry plane on the 

poromechanical behaviour of transversely isotropic materials. These models show that the excess 

pore pressure increases with increasing the Biot modulus and Biot tensor, whereas the undrained 

vertical consolidation of the specimen decreases. Regarding the isotropic plane orientation, the 

simulations with higher material compliance in the vertical direction result in higher undrained 

pore pressure responses and larger vertical consolidations. In particular, depending on the 

orientation of material symmetry, these vertical consolidations converge to different final drained 

values at the end of each simulation. These results demonstrate the importance of correctly 

modelling the effect of material anisotropy in thermo-poromechanical coupled simulations. 

Finally, the modular characteristic of the sequential coupling scheme allows easy inclusion of 

different simulators within the RGRG coupling platform, or even implement this formulation in 

another numerical interface developed to couple similar commercial codes for modelling thermo-

poroelastic coupled processes in reservoir geomechanical simulations of anisotropic porous 

formations. 
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3 Virtual rock mass numerical laboratory for the anisotropic 

mechanical characterization of fractured rock formations 

3.1 Summary 

The mechanical characterization for large scale numerical simulations of rock masses 

containing complex fracture patterns with different geometrical and geomechanical parameters is 

not a simple task. In these cases, the fractured rock formation is often represented by an equivalent 

continuum that includes implicitly the average mechanical effect of all the fractures. The 

equivalent elastic properties are determined through homogenization or upscaling processes using 

analytical or numerical methods. However, the closed-form solutions usually neglect the fracture 

interaction effects, whereas the numerical solutions rely on the existence of a representative 

elementary volume (REV) which is not always granted, especially in rock masses with fractures 

of very different size. In this study, a numerical homogenization methodology is proposed for the 

anisotropic mechanical characterization of fractured rock formations with an embedded DFN, 

discretized in regions at the required scale for the purpose of the engineering analysis, 

independently of the REV size. The homogenization process of the discretization regions for the 

equivalent continuum model is managed by a virtual rock mass (VRM) numerical laboratory 

implemented in the three-dimensional distinct element code 3DEC. These homogenized regions 

are represented by an elastic material with orthotropic symmetry. The comparison of the VRM 

laboratory with the analytical Oda’s crack tensor approach verifies the validity of this 

methodology. The results demonstrate that the VRM lab is able to capture with a great deal of 

fidelity the small-scale variability of the deformational response of the fractured rock formation. 

3.2 Introduction 

Rock mass formations generally occur in nature as complex systems of rock bodies 

containing and being delimited by discontinuities at different scales such as faults, veins, bedding 

planes, fractures, fissures and joints. The presence of discontinuities in the rock formation is the 
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main cause of the scale dependent mechanical behaviour characteristic of fractured rock masses. 

Although the mechanical characterization is an essential step in the analysis of rock engineering 

problems, the determination of accurate mechanical properties is not a simple task since 

discontinuities often form complicated fracture patterns with different geometrical and 

geomechanical parameters. The rock mass deformation modulus may be directly estimated 

through experimental in situ measurements from large-scale tests conducted in the field. However, 

these tests are usually expensive, time consuming and sometimes difficult to interpret (Bieniawski 

1978; Hoek & Diederichs 2006). Empirical equations have been suggested by numerous authors 

as indirect methods for estimating the deformation modulus of rock masses (Kulatilake et al. 

1993). The proposed equations are based on empirical correlations between the deformation 

modulus and rock mass classification schemes such as the rock mass rating (RMR) and the 

geological strength index (GSI) among others (Hoek & Diederichs 2006; Hoek & Brown 2019). 

The applicability of these correlations is limited to rock formations where the discontinuities are 

randomly oriented and their number is sufficiently large (Hoek & Brown 2019). In these cases, the 

rock mass can be assumed to behave as a homogeneous and isotropic material. However, this 

assumption may not be valid for rock formations containing systematic patterns of well-defined 

joint sets that frequently induce a clear anisotropic mechanical response in the rock mass. 

An alternative method to estimate indirectly the rock mass deformation is by means of 

analytical expressions. Essentially, these equations determine the overall elastic properties of the 

fractured system, from the summation of the deformation responses of discontinuities and the 

intact rock. The intact rock and fracture properties are commonly obtained from separate 

laboratory tests on small size samples. In the analytical methods, the fractured rock mass is 

traditionally replaced by an equivalent continuum with properties determined through 

homogenization or upscaling techniques. In the homogenization processes, the equivalent 

properties are averaged over the volume of a particular size region, whereas, in the upscaling 

procedures, they are averaged at the representative elementary volume (REV) scale (Jing & 

Stephansson 2007). The REV can be defined as the minimum volume beyond which all the 
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equivalent parameters of interest remain virtually constant with increasing the region size 

(Salamon 1968; Bear 1972; Long et al. 1982; Oda 1988; Mas Ivars et al. 2001). During the past 

decades, several analytical solutions have been presented for determining the equivalent 

continuum properties of stratified rock formations (Salamon 1968; Gerrard 1982) and, rock masses 

containing systematic and persistent joint sets (Duncan & Goodman 1968; Amadei & Goodman 

1983; Fossum 1985; Yoshinaka & Yamabe 1986; and Huang et al. 1995). Oda (1986, 1993) 

proposed a symmetric crack tensor to determine the equivalent elastic compliance tensor of 

fractured rock systems with non-persistent and randomly oriented joints. Analogous formulations 

have also been provided in the framework of geophysics (Sayers & Kachanov 1995; Schoenberg 

& Sayers 1995). Recently, a modified version of the Oda’s crack tensor has been proposed by Cui 

et al. (2016) for rock masses with multiple persistent joint sets and extended to include non-

persistent joints by Jiang et al. (2017). All of these solutions neglect the effect of fracture 

interactions that may be important in rock formations with multiple intersecting joints of finite 

size. Therefore, the analytical methods are more suited for rock masses containing simple and 

regular fracture geometries where the non-interaction approximation is assumed valid. 

The use of numerical techniques in determining the equivalent mechanical properties of 

fractured rock formations has grown considerably over the years along with the improvement of 

computational capabilities. Contrary to the analytical solutions, the numerical methods are able to 

capture the fracture interaction effect and nonlinear deformation of the intact rock and joints. 

Although the finite element method (FEM) has been used for studying the mechanical behaviour 

of fractured media (Duncan & Goodman 1968; Kulatilake 1985; Pouya & Ghoreychi 2001; 

Chalhoub & Pouya 2008; Yang et al. 2014; Wu et al. 2019), the discrete element method (DEM), 

initially presented by Cundall (1971) for systems of polygonal blocks and assemblies of circular 

particles (Lemos 2018), has become a popular method for modelling discontinuum materials. The 

main advantage of the DEM is the capability to represent multiple intersecting discontinuities 

explicitly, allowing for large displacements and the total separation of discrete bodies while new 

contacts are created as the calculation progresses (Cundall & Hart 1992). Using an early version 
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of three-dimensional distinct element code 3DEC (Itasca 2016), Kulatilake et al. (1993) studied 

the REV size of a rock mass with non-persistent joint sets, including the relationship between the 

mechanical parameters and the Oda’s crack tensor. Kulatilake et al. (1993) also proposed an 

orthotropic constitutive model that was later applied in a dam project to represent the equivalent 

elastic behaviour of the jointed rock mass (Wu & Kulatilake 2012). Min and Jing (2003) conducted 

a series of numerical simulations of fractured rock masses containing different realizations of 

discrete fracture networks (DFN), using the two-dimensional distinct element code UDEC (Itasca 

2000), to determine the REV size and elastic properties of the equivalent continuum. Thoraval and 

Renaud (2004) proposed an upscaling approach to compute the equivalent stiffness matrix using 

3DEC. Mas Ivars et al. (2011) presented the synthetic rock mass (SRM) approach for the three-

dimensional mechanical characterization of fractured rock masses. The SRM method uses the 

particle flow code PFC3D (Itasca 2008) to simulate the rock mass as an assembly of bonded 

spherical particles with an embedded DFN, allowing for the development of block deformations, 

fracture propagation and fragmentation processes. Later studies have used UDEC to investigate 

the effect of the fracture intensity (Khani et al. 2013a) and, the deformability and strength of 

fractured rock masses (Khani et al. 2013b; Noorian Bidgoli et al. 2013; Noorian Bidgoli & Jing 

2014; Alshkane et al. 2017). Similarly, the DFN–DEM approach (Min & Jing 2003) has been used 

together with 3DEC to numerically estimate the corresponding deformability and strength 

parameters at the REV scale of three-dimensional fractured media (Laghaei et al. 2018; Mahboubi 

Niazmandi & Binesh 2020). These studies essentially rely on the existence of the REV to upscale 

the mechanical properties of the fractured rock. However, the REV may not exist in rock 

formations containing joint sets and fractures of very different size (Jing & Stephansson 2007). In 

these cases, a homogenization process may be more appropriate for determining the equivalent 

parameters at specific regions of the rock mass. 

An analytical approach for estimating the continuum properties of a jointed rock mass 

independently of the REV scale was proposed by Pariseau (1993, 1995). In this non-representative 

volume element (NRVE) approach, the equivalent parameters are determined for every 
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discretization element of the continuum model representative of the fractured rock. Thus, the 

problem of smearing out the equivalent continuum properties over the model elements is prevented 

in those cases where the REV is larger than the smallest discretization zone (Pariseau 1993). Stietel 

et al. (1996) presented a homogenization procedure based on the Oda’s crack tensor theory for the 

analysis of two-dimensional problems. Similarly, Rutqvist et al. (2013) also used the crack tensor 

approach to analytically derive the block-scale properties for all the equivalent continuum 

elements of a two-dimensional fractured system. These homogenization techniques are useful tools 

for estimating the equivalent properties of every element of the continuum model that represents 

the fractured formation. However, they are based on analytical solutions and, therefore, the 

interactions between fractures are not taken into account. In this study, a numerical 

homogenization approach is proposed for the anisotropic mechanical characterization of fractured 

rock formations with an embedded DFN. A virtual rock mass (VRM) laboratory is presented here 

to conduct numerical simulations using 3DEC for determining the equivalent elastic compliance 

tensor of specific fractured regions. That way, a fractured rock formation discretized in regions of 

different dimensions can be fully characterized and represented by an anisotropic continuum 

model that accounts for the fracture interaction effect. 

3.3 Numerical homogenization methodology 

The explicit inclusion of most of the existing discontinuities in large scale numerical 

simulations of fractured media is generally unfeasible in terms of computational time and model 

size. In these cases, the original discontinuum model may be replaced by an equivalent continuum 

that includes implicitly the average effect of the fractures contained in the rock formation. Usually, 

the equivalent continuum properties are averaged at the REV scale through upscaling processes. 

However, depending on the purpose of the engineering analysis, the discretization of the 

continuum model may include elements of different dimensions that should be equal or larger than 

the REV; otherwise, the scale dependent variability of the model may not be properly represented 

at smaller scales. In the homogenization methodology presented here, the anisotropic continuum 

parameters of the discretization elements are determined, independently of the REV scale, through 
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numerical simulations of their corresponding discontinuum models. These simulations are 

conducted in 3DEC and managed by the VRM laboratory during the homogenization process. 

3.3.1 Anisotropic constitutive model for continuum materials 

The definition of a constitutive model is an essential requirement in the mechanical 

characterization of continuum materials. Following the generalized Hooke’s law, the stress-strain 

relationship of an anisotropic material can be expressed in tensor form as (Jayne & Suddarth 1966): 

 ij ijkl klε S σ   (3.1) 

where ijε , klσ  and ijklS  are the strain, stress and compliance tensors, respectively, with each of 

the indices (i, j, k, l) ranging over the Cartesian coordinates of the three-dimensional space. In this 

study, the tensor contraction is implied over repeated indices only in those equations expressed in 

tensor form. The fourth-order elastic compliance tensor enjoys the full symmetry conditions 

ijkl jikl jilk ijlkS S S S    and ijkl klijS S  that come from enforcing the symmetry of the stress and 

strain tensors as well as the conservation of the complementary strain-energy density (Ting 1996; 

Nemeth 2011). As a result, the number of independent components of the compliance tensor is 

reduced to 21 elastic coefficients that are usually represented in matrix form using the Voigt 

notation. Thus, the Eq. (3.1) can be written in contracted form as (Min & Jing 2003; Jaeger et al. 

2007): 
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  (3.2) 

where iiε  are the normal components of the strain tensor, ijγ  are the engineering shear strains 

defined as twice the shear components of the strain tensor (i.e., 2ij ij ji ijγ ε ε ε   ) and, the ijσ  and 

ijτ  are the normal and shear components of the stress tensor. In Voigt notation, the subscripts (1, 
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2, 3, 4, 5, 6) represent the component directions (xx, yy, zz, yz, xz, xy), respectively. Furthermore, 

the relationships between the coefficients of the compliance matrix and the tensor components 

satisfy that the presence of a subscript with the value 4, 5 or 6 in any matrix coefficient requires 

the multiplication of its corresponding tensor component by 2, (e.g., 
33 zzzzS S  ; 

36 632 2zzxy xyzzS S S S    ; 66 4 xyxyS S ). It is important to note that the engineering shear strains 

are not components of the strain tensor; however, their definition in Eq. (3.2) makes the elastic 

compliance matrix symmetric (Ting 1996). 

3.3.2 Virtual rock mass laboratory 

In order to determine all the coefficients of the compliance matrix, at least six independent 

tests have to be conducted on the target specimen. The first column of the compliance matrix can 

be obtained from a compression test in the x-direction where only the component xxσ  of the stress 

tensor is increased while the rest of the components remain constant (i.e., 

 Δ Δ ,0,0,0,0,0
T

ij xxσ σ  where superscript T denotes transposition). In this test, the coefficients 

of the first column are calculated from the resultant strain measurements divided by the stress 

increment applied in the x-direction. Similarly, the second and third columns are obtained from 

compression tests in the y- and z-directions. To determine the fourth column, a pure shear test can 

be conducted in the yz-plane by increasing only the shear component yzτ  of the stress tensor. Then, 

the coefficients are calculated from the relations between the applied shear stress increment and 

the measured strains. The last two columns can be obtained by performing pure shear tests in the 

xz- and xy-planes, respectively. Thus, the columns of the compliance matrix (Eq. (3.2)) can all be 

determined through compression and pure shear tests by applying the corresponding stress 

increments in the axial and shear directions of the coordinate system and measuring the resultant 

strains (Figure 3.1). 
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Figure 3.1—Compression and pure shear tests carried out with the VRM mechanical lab 

developed for 3DEC to determine the compliance matrix. The arrows show the directions of the 

loads corresponding to the stress increments applied as boundary conditions in each numerical 

test. 

 

The VRM mechanical laboratory has been coded using the programing language FISH 

embedded in 3DEC, which allows for the definition of subroutines and functions for implementing 

new user-defined features and controlling the numerical simulation process (Itasca 2016). The 

main task of the VRM lab is to mount target fractured regions in 3DEC and automatically conduct 

the six numerical tests necessary for determining the equivalent compliance matrix. In the 

homogenization process, once the virtual discontinuum region is mounted, the current in situ stress 

field is installed and the simulation is brought to equilibrium. Then, the compression and pure 

shear tests are conducted by imposing the corresponding stress boundary conditions for each 

numerical test as depicted in Figure 3.1. During these numerical simulations, the stresses and 

strains are monitored at the boundaries of the model. After the compliance matrix is calculated, 
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the principal directions of material symmetry and the corresponding equivalent elastic parameters 

are also determined, assuming that the fractured region can be represented by an orthotropic 

continuum material. The process is repeated over the remaining target regions representing the 

fractured formation and all the orthotropic elastic parameters input for the equivalent continuum 

model are finally stored. 

3.3.3 Measurements of stress and strain tensors 

The quality of the stress and strain measurements within the VRM mechanical laboratory 

is crucial for determining an accurate equivalent compliance matrix. Conventionally, the stresses 

and displacements are measured at selected monitoring points equally distributed over the whole 

model domain in two-dimensional analyses (Min & Jing 2003; Noorian Bidgoli et al. 2013) or, on 

the boundary faces of the model for three-dimensional simulations (Kulatilake 1993; Wu & 

Kulatilake 2012; Cui et al. 2016; Laghaei et al. 2018; Mahboubi Niazmandi & Binesh 2020). The 

average values of the stresses and displacements measured at the monitoring points are considered 

as representative mean values of the mechanical behaviour of the model. These mean values are 

used for calculating the average stress and strain tensors which are required to determine the elastic 

compliance matrix. An important feature of the UDEC and 3DEC numerical codes is that the data 

queried at a monitoring point correspond to the values of the nearest object to that specified 

location (Itasca 2016). Thus, the stresses and displacements are actually measured at the zone and 

the gridpoint closest to the specific coordinates of the monitoring point. However, in the VRM lab, 

instead of measuring at monitoring point locations, the measurements are directly conducted over 

the zone faces and the gridpoints located at the boundary of the model domain (Figure 3.2). In 

addition, in order to increase the speed and efficiency of the measuring process, the memory 

addresses of the gridpoints and zone faces at the model boundary are stored in several linked-lists, 

similarly to the internal data structure of 3DEC. 
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Figure 3.2—Gridpoints and zone faces at the boundary of the discontinuum model. Details of 

one gridpoint and a zone face showing the position, force, normal and displacement vectors used 

in the calculation of the stress and strain tensors. 

 

The stress and strain tensors calculated in the VRM lab are based on the homogenization 

procedure proposed by Wellmann et al. (2008) for DEM models of granular materials, and the 

surface averaging-based approach for composites presented in Kushch (2013). The average stress 

tensor is then expressed in discrete form as: 

  
1

1
Ngp

gp gp c
ij i j j

gp

σ f x x
V 

    (3.3) 

where V is the volume of the model, Ngp is the total number of gridpoints at the model boundary, 

gp
if is the force vector at the gridpoint gp, 

gp
jx  is the position vector of the gridpoint and, 

c
jx  is the 

position vector of the center of the model acting as a reference point. The strain tensor is calculated 

from measurements at the zone faces located on the model boundary by the following definition: 
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where Nzf is the total number of zone faces at the model boundary, zfA  is the area of the zone face 

zf, zf
jn  is the outward normal vector to the zone face and, zf

iu  is the average of the displacement 

vectors of the three gridpoints at the zone face given by  1 2 31
3

zf gp gp gp
i i i iu u u u   , as shown in 

Figure 3.2. The subscripts i, j represent the vector components in the directions (x, y, z). 

The stress and strain tensors in Eqs. (3.3) and (3.4) are derived under the assumption of 

small deformations, according to the infinitesimal strain theory. These surface averaging-based 

expressions have the main advantage of being suitable for the numerical homogenization of 

materials with imperfect interfaces, such as fractures and joints sets, in contrast to the conventional 

volume-averaging definitions based on the classic mean stress and strain theorems, which are more 

convenient for materials with perfectly bonded mechanical contacts (Kushch 2013). 

3.3.4 Principal directions of anisotropy 

The elastic compliance matrix calculated during the homogenization process usually has 

all of the coefficients with values different than zero. To reduce the number of anisotropic 

parameters input for the equivalent continuum model, the fractured region is assumed to behave 

as a continuum material with orthotropic symmetry. Thus, the resultant compliance matrix can be 

transformed to the principal axes of symmetry giving the following simplified form of the stress-

strain constitutive relationship (Rand & Rovenski 2005): 
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where iiE , ijν  and ijG  are the Young’s modulus, Poisson’s ratio and shear modulus of the equivalent 

orthotropic material. The subscripts (1, 2, 3) represent the principal directions of material 

symmetry which correspond to the orientation of the local coordinate system {xꞌ, yꞌ, zꞌ}. Here, the 

matrix coefficients with zero values are referred to the non-orthotropic components of the 

compliance tensor, whereas the remaining coefficients correspond to the orthotropic components. 

The assumption of orthotropic symmetry allows for the characterization of the fractured 

rock through nine independent elastic parameters derived from the orthotropic coefficients shown 

in Eq. (3.5) and, three principal directions representing the orthogonal planes of symmetry. The 

approach used herein to identify the symmetry planes involves the solution of the eigenvalue 

problem for each of the two second-rank tensors, ijkkS  and ikjkS , defined as the hydrostatic 

pressure modulus and the Reuss tensor, respectively (Cowin & Mehrabadi 1987; Cowin 1989; 

Ting 1996; Sevostianov & Kachanov 2008). These tensor contractions are defined in terms of the 

compliance matrix coefficients as (Cowin 1989): 
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  (3.7) 

Provided that the orthotropic symmetry holds, the eigenvectors calculated for both 

compliance contractions coincide and represent the normal vectors to the symmetry planes. Also, 

they define the rows of the transformation matrix whereby the compliance tensor can be rotated 

from the coordinate axes of the model to the local coordinate system that represents the principal 

directions of anisotropy. Adopting the convention used in 3DEC, the orientation of the orthogonal 

planes of symmetry can be defined with a dip-direction, dip and rotation angles which are 

estimated from the coordinate transformation matrix (see Appendix B). Once the symmetry planes 
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are identified, the compliance matrix can be rotated to the principal directions in the form of Eq. 

(3.5), following the matrix transformation operations shown in the Appendix C (Ting 1987; Tinder 

2008). Thus, the nine orthotropic elastic parameters are finally determined from the compliance 

matrix coefficients corresponding to the principal directions. 

Although the orthotropic behaviour is a reasonable assumption for fractured rocks, the 

compliance matrices obtained with the VRM lab may slightly differ from the exact orthotropic 

form. Therefore, the equivalent elastic parameters and principal directions determined during the 

homogenization process are considered here as the closest approximation to the perfect orthotropic 

symmetry. According to Sevostianov and Kachanov (2008), the approximation error can be 

estimated using the Euclidean norm through the following expression: 
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δ
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where 
ijklS  is the compliance tensor rotated to the principal directions of symmetry and, ijklS   is 

the previous rotated tensor in which the non-orthotropic components are set to zero while the 

orthotropic components are kept the same. Hence, the error δ  essentially depends on the non-

orthotropic terms that remain different than zero after the rotational transformation of the 

compliance to the principal axes. In the case that the error of the orthotropic approximation is 

considerably large, the equivalent material should be characterized by a triclinic constitutive model 

with the 21 independent coefficients of the general anisotropic compliance matrix. 

3.4 Numerical results 

3.4.1 Verification of the methodology 

To verify the proposed methodology, the elastic compliance matrix of a simple case has 

been determined through the numerical homogenization procedure of the VRM laboratory, and 

also analytically using the Oda’s crack tensor approach (Oda 1986). In addition, the displacement 
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fields of the equivalent orthotropic continuum have been compared with the deformational 

behaviour of the underlying full discontinuum model. 

3.4.1.1 Oda’s crack tensor approach 

In the Oda’s theory, the compliance tensor of a fractured rock mass with circular joints is 

defined as the summation of the compliances of the fractures and the intact rock. For an isotropic 

material, the elastic compliance tensor can be expressed as: 

 
 1 ik jl ij klr

ijkl

ν δ δ νδ δ
S

E

 
   (3.9) 

where E and ν  are the Young’s modulus and Poisson’s ratio of the intact rock and, 
ijδ  is the 

Kronecker delta. Assuming the mechanical behaviour of every fracture is fully characterized with 

a normal stiffness nk  and a shear stiffness sk  (Goodman et al. 1968), the elastic compliance tensor 

corresponding to the fractures can be formulated as (Oda 1993; Rutqvist et al. 2013): 
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where Nf is the total number of circular fractures, D is the fracture diameter. 
ijF  and 

ijklF  are the 

second- and fourth-rank crack tensors which are defined for a single fracture as (Oda 1993): 

 ij i j

A
F Dn n

V
   (3.11) 

 ijkl i j k l

A
F Dn n n n

V
   (3.12) 

where A is the fracture area, V is the total volume of the fractured region and, in  is the i-component 

of the normal vector to the fracture plane, with indices (i, j, k, l) ranging over the coordinate axes 

{x, y, z}. Substituting the expressions of the crack tensors in the Eq. (3.10), the fracture diameters 

vanish and the fracture compliance tensor results in: 
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where the term between brackets is evaluated for every fracture of the discontinuum model during 

the summation. For a particular rock mass containing a single joint set having the fractures defined 

with the same orientation and mechanical properties, the fracture compliance tensor in Eq. (3.13) 

directly depends on the relation between the total sum of joint areas and the total volume of the 

fractured region. This relationship coincides with the fracture intensity measure P32 defined in 

Dershowitz and Herda (1992) and it is traditionally replaced by the joint spacing in the classic 

closed-from solutions (e.g. Amadei & Goodman 1983). The total elastic compliance tensor of the 

equivalent continuum representing the fractured rock mass is finally given by: 

 
r f

ijkl ijkl ijklS S S    (3.14) 

where the total compliance tensor 
ijklS  can also be expressed in matrix form as the sum of the 

compliance matrices corresponding to the fractures and the intact rock as shown in Appendix D. 

3.4.1.2 Comparison of analytical and numerical compliance matrices 

The verification case analyzed here consists of a cubic block model, with an edge length L 

of one meter, of an isotropic material with three non-orthogonal joint sets cutting through the entire 

model domain (Figure 3.3). The mechanical properties of the intact rock and fractures used in this 

case correspond to the shale formation reported in Rangriz Shokri et al. (2019). The input 

parameters for the intact material and joint sets of the model are summarized in Table 3.1. The 

principal stresses of the in situ stress field have been installed in the model with the values of 

1 66.32σ   MPa, 2 47.75σ   MPa, 3 34.48σ   MPa and with the principal directions aligned 

with the coordinate axes. The stress increment used in each of the six tests conducted with the 

VRM lab is set to 6.63 MPa, which corresponds to the 10% of the maximum principal stress. As 

shown in Figure 3.3, the compliance matrix determined analytically using the Oda’s approach is 

essentially equal to the matrix resultant from the numerical tests conducted with the VRM lab. 
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These results verify the capability of the VRM laboratory to accurately determine the elastic 

compliance coefficients for the equivalent continuum representative of the jointed rock model. 

Table 3.1—Input parameters of the intact rock and joint sets for the verification case. 

Parameter Value 

Young’s modulus E , (GPa) 26 

Poisson’s ratio ν , (-) 0.2 

Normal stiffness (for all joint sets) nk  , (GPa/m) 18 

Shear stiffness (for all joint sets) 0.42s nk k  , (GPa/m) 7.56 

Fracture spacing (for all joint sets) , (m) 0.2 

Dip/Dip-direction for joint set 1 , (°) 60/60 

Dip/Dip-direction for joint set 2 , (°) 80/210 

Dip/Dip-direction for joint set 3 , (°) 15/130 

 

The additional compliance matrix in the Figure 3.3 has been calculated following the 

conventional method used in previous studies, in which the equivalent stress and strain tensors are 

computed from the averaged stresses and displacements on the boundary faces of the model. This 

matrix is included here to compare the conventional measurement strategy for estimating the 

elastic properties of the discontinuum model with the method implemented in the VRM lab. It is 

observed that the compliance matrix determined with the conventional method is similar to the 

analytical solution; however, even though the differences between both matrices can be neglected 

in this particular case, they are significantly larger than the discrepancies between the analytical 

and VRM lab results. Furthermore, the 36 compliance coefficients calculated with the VRM lab 

result in a symmetric matrix, whereas the compliance matrix calculated with the conventional 

method deviates from the perfect symmetric form. Therefore, the measuring process implemented 

in the VRM lab is expected to provide reliable estimations of the compliance matrix and, hence, 

the equivalent orthotropic parameters, for complex models of fractured rock formations. 
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Figure 3.3—Geometry of the verification model with the three non-orthogonal joint sets (top-left 

figure) and the compliance matrices S calculated in the verification case by means of: the Oda’s 

approach (top-right figure), the VRM laboratory (bottom-right figure) and, the conventional 

measurement method used in previous studies (bottom-left figure). 

3.4.1.3 Equivalent continuum parameters 

Typically, the anisotropic elastic properties for the equivalent continuum are determined 

through the compliance matrix coefficients measured in the coordinate system of the discontinuum 

model {x, y, z}, as shown in the following expressions: 
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where only three Poisson’s ratios defined in Eq. (3.17) or Eq. (3.18) are necessary to complete the 

nine elastic parameters required for the mechanical characterization of the equivalent orthotropic 

material. That way, the coordinate axes of the model are assumed as the principal directions of 

material symmetry and, therefore, the non-orthotropic coefficients of the compliance matrix are 

neglected in the calculation of the anisotropic parameters. On the other hand, in the VRM lab, the 

compliance matrix is rotated to the principal directions of orthotropic symmetry to minimize the 

non-orthotropic coefficients before determining the equivalent continuum parameters. Thus, the 

equivalent properties can be calculated by substituting the rotated compliance matrix S   in Eqs. 

(3.15), (3.16), (3.17) and (3.18), e.g. 111x xE S   , 21 11x yν S S     , 441y zG S   , where the 

orientation of the local coordinate system {x’, y’, z’} represents the principal directions of material 

symmetry. 

 

Figure 3.4—Compliance matrix and equivalent orthotropic parameters measured in the 

coordinate axes of the model {x, y, z} (left figure) and; rotated to the principal directions of 

orthotropic symmetry {xꞌ, yꞌ, zꞌ} (right figure). These results have been obtained in the 

verification case by the VRM lab. Note that three Poisson’s ratios are enough for the 

characterization of the orthotropic continuum material. 
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Figure 3.4 shows the compliance matrices and the equivalent orthotropic parameters 

determined with the VRM lab in the verification case. These results have been obtained in the 

orientation of the coordinate axes and, also, in the principal directions of material symmetry. It can 

be seen that the non-orthotropic coefficients have been considerably reduced in the rotated 

compliance matrix; however, some values are still different than zero implying a slight deviation 

from the perfect orthotropic form. This discrepancy is expected since the systematic joint sets in 

the verification case are fully persistent and non-orthogonal. The orthotropic approximation error 

defined in Eq. (3.8) has been calculated for the matrix oriented in the principal directions, resulting 

in 0.092δ  ; whereas, for the compliance matrix measured in the coordinate axes of the model, 

the calculated error is equal to 0.378δ  , which is a substantially larger value. Consequently, the 

equivalent elastic parameters determined from the rotated compliance matrix are closer to the exact 

orthotropic form. 

To illustrate the influence of the non-orthogonal components of the compliance matrix in 

the behaviour of the equivalent orthotropic material, two continuum models have been tested in 

the VRM lab (Figure 3.5). The two sets of equivalent orthotropic parameters input for each 

continuum model can be found in Figure 3.4. As shown in Figure 3.5, the displacement field of 

the continuum model with the input parameters determined in the principal directions of symmetry 

corresponds very well with the deformational behaviour of the discontinuum model in the six 

numerical tests conducted with the VRM lab. In contrast, the continuum case modelled with the 

equivalent elastic parameters measured in the coordinate axes shows displacement fields 

considerably different in comparison with the discontinuum simulation. These differences are 

found more evident in the pure shear tests. Thus, assuming the principal directions of material 

symmetry coincide with the coordinate axes of the model may yield in misleading elastic 

orthotropic parameters input for the equivalent continuum model. 
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Figure 3.5—Displacement magnitudes for each of the six numerical tests conducted with the 

VRM laboratory in the verification case for: the discontinuum model (middle figure) and, the 

continuum models with the equivalent orthotropic parameters corresponding to the principal 

directions of symmetry (top figure) and the coordinate axes orientation (bottom figure). 

3.4.2 Fracture rock formation with an embedded DFN. 

The mechanical characterization of a fractured rock mass is frequently conducted through 

homogenization or upscaling procedures. In general, these homogenization techniques are often 

based on analytical methods to calculate the equivalent continuum properties; however, the close-

form solutions usually disregard the fracture interaction effect in the overall behaviour of the 

fractured rock. In the upscaling schemes, the equivalent elastic parameters are averaged at the REV 

size; although, the variability of the fractured rock model may not be properly captured at smaller 

scales. To study the effect of fracture interactions and the REV scale, a fractured rock formation 

with an embedded DFN is analyzed here using the Oda’s crack tensor approach and compared 

with the VRM laboratory results. 
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3.4.2.1 Discontinuum model generation. 

The fractured rock is modelled by a cubic block of 20×20×20 m3 of the same formation 

used in the verification case (Figure 3.6). In this model, the fractures embedded into the rock mass 

have been generated using the DFN module included in the 3DEC code (Itasca 2016). The DFN 

model contains three joint sets of circular fractures oriented with the dip and dip-direction angles 

following a Gaussian distribution and, with their locations uniformly distributed over the model 

domain. The fracture size is assumed to follow a power law distribution with a scaling exponent 

of 4 and the minimum and maximum diameters of 2 m and 40 m, respectively. Table 3.2 

summarizes the parameters used for the DFN generation in 3DEC. 

 

Table 3.2—Input parameters for the DFN generation. 

DFN Orientation (Gaussian distribution) Fracture size (power law distribution) 

Joint set Dip angle (°) 

(Mean, SD) 

Dip-direction (°) 

(Mean, SD) 

Scaling 

exponent α 

Fracture diameter (m) 

(Minimum - Maximum) 

J1 (60, 5) (60, 10) 4 (2 - 20) 

J2 (80, 5) (210, 10) 4 (2 - 20) 

J3 (15, 5) (130, 10) 4 (2 - 40) 

 

For the DFN realization, the joint sets are generated in a box of 40×40×40 m3 encasing the 

whole model domain to ensure that the larger fractures are still created even if their centers fall 

outside the model extent (Min & Jing 2003, Itasca 2016). The discontinuum model has been 

populated with a total number of 1500 circular fractures from which 600 belong to the joint set J1, 

other 600 to the joint set J2 and the remaining 300 to the joint set J3 (Figure 3.6). The mechanical 

properties of the fractures ( nk  and sk ) and the intact rock (E and ν ) as well as the in situ stress 

field are assigned the same values of the verification case (Table 3.1). 



66 

 

 

Figure 3.6—Geometry of the fractured rock model (edge length L = 20 m) and DFN joint sets 

used for the study of the REV scale and fracture interaction effects. 

To create a fracture of finite size in 3DEC, the joint plane must cut through all the blocks 

containing the fracture. This condition is required to prevent the generation of block geometries 

with partial cuts, ensuring that the model is only formed by convex polyhedral blocks (Itasca 

2016). The contact surfaces between adjacent blocks represent the discontinuities of the model. 

During the mesh generation process, each contact is automatically discretized into sub-contacts 

which can be assigned different constitutive models and mechanical properties. Thus, the circular 

fractures of the DFN can be represented in the model by the sub-contacts lying inside of the 

fracture area, whereas the sub-contacts lying outside of the circular fracture define the area of a 

fictitious joint (Figure 3.7). The fracture stiffnesses (Table 3.1) can be directly assigned to the sub-

contacts representing the actual fractures. On the other hand, the input parameters of the fictitious 

joints should be such that their contribution to the overall deformability of the fractured rock model 

is negligible. 
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Figure 3.7—Contact surface discretization into sub-contacts representing a DFN circular fracture 

(spherical nodes) and the fictitious joint area (cubical nodes outside the circle). Different 

constitutive models and mechanical properties can be assigned at any sub-contact (after Itasca 

(2016)). 

3.4.2.2 Elastic parameters for the fictitious joints. 

According to Kulatilake et al. (1992), the elastic parameters for the fictitious joints can be 

chosen by satisfying the following conditions. First, the ratio between the shear modulus of the 

intact material and the shear stiffness of the fictitious joint sG k  must be between 0.008 and 0.012 

m. Second, the ratio between the normal and shear stiffnesses of the fictitious joint n sk k  must be 

between 2 and 3; where the most appropriate value in this range may correspond to the ratio 

between the Young’s modulus and the shear modulus E G  of the intact material. These conditions 

are suggested for fictitious joints simulated with a plastic constitutive model with the same strength 

parameters as the intact rock. Furthermore, the fictitious joint stiffnesses are chosen independently 

of the total number of fractures which may have a significant impact in the deformability of the 

discontinuum model. 
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An alternative method based on the Oda’s crack tensor theory is introduced here to 

determine the normal and shear stiffnesses for fictitious joints defined with an elastic constitutive 

model. Assuming that both stiffnesses are equal (i.e., 
Fict Fict Fict
n sk k k  ) and all the fictitious 

joints share the same values, the compliance tensor as defined in Eq. (3.13) can be simplified to: 

  
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where 
Fict
ijklS , FictA  and Fictk  are the compliance tensor, the area and, the stiffness of the fictitious 

joints. Ideally, the fictitious joint stiffness should tend to infinity, so the total deformability of the 

numerical model is only due to the behaviour of the intact material. On the other hand, the timestep 

of the numerical cycles in 3DEC decreases with increasing the stiffness of the system. Thus, the 

stiffness Fictk  must be small enough to have reasonable computational times and, large enough 

such that the fictitious joints contribution to the overall deformability of the model becomes 

insignificant. Here, the stiffness of the fictitious joints is calculated by setting the largest values of 

the compliance matrix coefficients in Eq. (3.19) equal to a proportional value of their counterpart 

compliances corresponding to the intact rock. In general, the largest values in a compliance matrix 

coincide with the diagonal coefficients. Then, assuming the intact rock is isotropic, the diagonal 

coefficients of the compliance matrix of the fictitious joints are given by: 
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where Fictλ  is the proportionality factor of the compliances of the intact material and, the subscripts 

correspond to II = (11, 22, 33) and JJ = (44, 55, 66). Substituting the compliance matrix 

coefficients of the fictitious joints in Eq. (3.20) with those determined from Eq. (3.19) and 

rearranging, gives six alternative stiffnesses from which the maximum value is chosen as the 

fictitious joint stiffness; that is: 
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where the index i ranges over the coordinate axes {x, y, z}. This method allows for limiting the 

deformation measurement error to a specific value proportional to the intact rock. For each 

discontinuum model analyzed here, the fictitious joint stiffness Fictk  is calculated by setting a 

proportionality factor of 0.001Fictλ  , whereby the compliance measurement error is expected to 

be reduced to approximately 0.1% of the intact rock deformation. 

3.4.2.3 Fracture interaction effect and REV scale. 

The REV scale is studied through the homogenization of a series of cubic blocks carved 

from the center of the large fractured rock model of 20×20×20 m3 volume (L20). The sequence of 

cubic models under study begins with a unit block, i.e. L = 1 m (L1), followed by nine cubic blocks 

with edge lengths increasing at intervals of 2 meters, from L=2 m (L2) to L=18 m (L18). The large 

block model L20 is also included in the analysis (Figure 3.8). Analogous to the verification case, 

the compliance matrices are determined with the VRM lab and calculated analytically using the 

Oda’s crack tensor approach for each cubic model. Additionally, the compliance matrices rotated 

to the principal directions of orthotropic symmetry are also included. 

For simplicity, Figure 3.9 and Figure 3.10 only show the compliance matrices of the cubic 

blocks L2, L12 and L20 measured in the coordinate axes of the model and rotated to the principal 

directions. It can be seen that all of the compliance matrices resultant from the VRM lab are 

virtually symmetric, even in the particular case of the small cubic model L2, which is partially cut 

by a few circular fractures (Figure 3.8). Moreover, in contrast with the verification case, the 

analytical results are different from the numerical solutions, since the joint sets of the DFN consist 

of non-persistent fractures and the analytical solution neglects the fracture interaction effects. 

To determine the REV size, the equivalent orthotropic parameters are calculated 

numerically with the VRM lab and analytically by means of the Oda’s crack tensor approach for 

each cubic model. These parameters are determined from the compliance matrices measured in the 

coordinate axes of the model {x, y, z} (Figure 3.11), and also in the principal directions of 

orthotropic symmetry {xꞌ, yꞌ, zꞌ} (Figure 3.12). The equivalent Young’s moduli and shear moduli 
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are normalized with the elastic parameters, E and G, of the intact material. As shown in Figure 

3.11 and Figure 3.12, the variation of the equivalent elastic parameters is reduced with increasing 

the edge length of the cubic model. Furthermore, the orthotropic parameters are almost constant 

for the cubic models from L12 to L20. Thus, based on these results, the cubic model with the edge 

length of L = 12 m can be chosen as the REV for this analysis. 

 

Figure 3.8—Sequence of cubic blocks with different edge lengths L tested to study the effect of 

fracture interactions and the REV scale. These cubes are carved from the center of the large 

block L=20 m (L20) by setting the edge length at intervals of 2 meters starting from L=2 m (L2) 

to L=18 m (L18). An extra block with L=1 m (L1) and the large block L20 have also been 

included in the analysis. 

 

The comparison of the numerical and analytical results of the elastic parameters depicted 

in Figure 3.11 clearly shows the effect of fracture interactions. It is observed that the Young’s 

moduli and shear moduli determined at the REV scale with the VRM lab for this particular case 

are around 17% stiffer than the analytical values calculated using the Oda’s theory. Additionally, 

the six different Poisson’s ratios measured with the VRM lab are less scattered compared to the 

analytical results. The stiffer mechanical response of the numerical solution can be attributed to 
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the different stress distribution over the circular fractures, where the stresses are generally low at 

the central areas while they are highly concentrated at the fracture tips. Hence, the fracture 

deformation is usually smaller at the center compared to the analytical solution, which assumes a 

uniform stress distribution on the fracture surfaces. Thus, the numerical response can be expected 

to be stiffer for the same far-field stress increment applied to the fractured model. This behaviour 

of stress shielding and amplification has also been observed by Grechka and Kachanov (2006) in 

the numerical homogenization of a fractured material with penny-shaped cracks. 

In general, the degree of anisotropy of the fractured rock is commonly assessed through 

relationships between the equivalent elastic stiffnesses determined in the directions of the 

coordinate axes of the model (e.g. the ratio 
yy xxE E ). As shown in Figure 3.11a, the normalized 

Young’s moduli obtained with the VRM lab at the REV scale are virtually the same in the three 

coordinate axes. On the other hand, the normalized shear moduli and Poisson’s ratios, in Figure 

3.11b and Figure 3.11c, show slightly different results in several directions; nevertheless, the 

scatter at the REV scale is small enough, so it may be considered negligible. The analytical 

solutions in Figure 3.11 show analogous results. These observations suggest that the REV of the 

fractured rock essentially behaves as an isotropic material. However, the three joint sets generated 

with the DFN model have well-defined orientations, suggesting an anisotropic material response 

instead of the observed isotropic behaviour. In fact, taking a close look at Figure 3.12, the 

equivalent elastic parameters determined in the principal directions reveal the actual anisotropic 

nature of the fractured rock, where the ratio of x xE    to z zE    at the REV size is about 1.73 and 2.06 

for the numerical (Figure 3.12a) and analytical results (Figure 3.12d), respectively. The misleading 

isotropic mechanical response observed in Figure 3.11 comes from neglecting the non-orthotropic 

coefficients of the compliance matrix in the calculation of the elastic properties. However, this is 

not the case for the homogenization procedure conducted with the VRM lab, where the equivalent 

orthotropic parameters are determined from the compliance matrix rotated to the principal 

directions in which the non-orthotropic coefficients are minimized. Therefore, it is clear that the 

principal directions of symmetry and the non-orthotropic compliance coefficients play an 
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important role in estimating reliable equivalent continuum parameters to capture the actual 

anisotropic behaviour of the fractured rock. 

 

Figure 3.9—Compliance matrices corresponding to the cubic blocks L2, L12 and L20 obtained 

with the VRM lab (left figure) and calculated analytically by means of the Oda’s crack tensor 

approach (right figure). 

 

The principal directions of orthotropic symmetry obtained for the cubic models in the REV 

study have been projected and represented on the Schmidt net (Figure 3.13). The numerical and 

analytical results are depicted in Figure 3.13a and Figure 3.13b, respectively. Both solutions show 

similar evolutions of the principal directions. As expected, the change in orientation of the 

principal axes decreases with increasing the cubic model size. In addition, the small values of the 

approximation error δ for the VRM lab results show a very good correspondence with the 

orthotropic symmetry (Figure 3.10). These errors are slightly larger for the analytical solution. 
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Figure 3.13 shows that the principal directions remain constant with the same orientation at the 

L18 and L20 models, where the poles representing the symmetry planes overlap each other. 

Therefore, to account for the change in orientation of the principal axes of orthotropic symmetry, 

the previous REV scale should be revisited and finally stablished at the cubic model with L = 18 

m edge length.  

 

Figure 3.10—Compliance matrices rotated to the principal directions of orthotropic symmetry 

corresponding to the cubic blocks L2, L12 and L20. These matrices have been determined 

numerically with the VRM lab (left figure) and calculated analytically by means of the Oda’s 

crack tensor approach (right figure). The rotational transformation angles (dd, dip, rot) have been 

included, as well as the orthotropic approximation errors (δ). 
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Figure 3.11—Equivalent orthotropic parameters measured in the coordinate axes of the model 

{x, y, z} with the VRM lab (left figures a), b) and c)) and calculated analytically by the Oda’s 

crack tensor approach (right figures d), e) and f)), corresponding to the cubic models of the REV 

study. The Young’s moduli (in a) and d)) and the shear moduli (in b) and e)) are normalized with 

the elastic parameters, E and G, of the intact material. 
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Figure 3.12—Equivalent orthotropic parameters determined in the principal directions of 

orthotropic symmetry {xꞌ, yꞌ, zꞌ} with the VRM lab (left figures a), b) and c)) and analytically by 

the Oda’s crack tensor approach (right figures d), e) and f)), corresponding to the cubic models 

of the REV study. The Young’s moduli (in a) and d)) and the shear moduli (in b) and e)) are 

normalized with the elastic parameters, E and G, of the intact material. 
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Figure 3.13—Projection on the Schmidt net of the principal directions of orthotropic symmetry 

determined for the cubic models of the REV study. These results correspond to: a) the VRM lab 

and, b) the analytical solution using the Oda’s crack tensor approach. The arrows show the 

evolution of the principal directions of the cubic models from L1 to L20. 

3.4.2.4 Numerical homogenization at different scales. 

Although the VRM laboratory can be used to find the equivalent orthotropic parameters at 

the REV scale, its main objective is the numerical homogenization of a large fractured model, 

discretized in regions at the most suitable scale for the engineering purpose of the numerical 

simulation. To demonstrate the capabilities of the VRM lab for this case, the cubic model L20 is 

homogenized in two equivalent continuum models with discretization regions below the REV 

scale. In the first homogenization proposed, the large discontinuum model L20 is cut in 5×5×5 

blocks of 4 m edge length, giving a total of 125 fractured cubic regions, each of which is tested in 

VRM lab to determine their orthotropic parameters. For the second continuum model, the block 

L20 is cut in a finer discretization of 10×10×10 cubes of 2 m edge length, which are homogenized 

with the VRM lab, resulting in 1000 sets of equivalent orthotropic parameters, one for each region. 

Once the homogenization process is complete, both equivalent continuum models are additionally 

tested, as a whole, in the VRM lab to compare their mechanical deformation behaviour with the 

large discontinuum model as well as with the continuum model assigned the input equivalent 

elastic parameters of the L20 model.  
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Figure 3.14—Displacement magnitudes for each of the six numerical tests conducted with the 

VRM laboratory for the discontinuum cubic model L20, and three equivalent continuum models 

with the orthotropic parameters corresponding to the homogenization of: 1 region of L = 20 m, 

125 regions of L = 4 m and 1000 regions of L = 2 m. 

 

As shown in Figure 3.14, the equivalent continuum model discretized in 1000 orthotropic 

regions of 2 m edge length (L2) captures with a great deal of fidelity, the small-scale variability of 

the displacement fields observed in the large discontinuum model. Moreover, the homogenization 

of the coarser discretization corresponding to the equivalent continuum with 125 regions still 

shows some details of the displacement field variability of the discontinuum simulation. However, 
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this variability is obviously lost in the continuum model that is simulated as one large 

homogeneous region with the equivalent orthotropic parameters representative of the large 

discontinuum block L20. These results show the versatility of the VRM lab to characterize 

fractured rock formations at specific scales that may be required in different engineering analyses. 

3.5 Discussion and conclusion 

In general, the numerical modelling of discontinuum media at large scale is 

computationally expensive, since large numbers of discrete blocks and explicit fractures result in 

impractical simulation times and large memory sizes. Traditionally, to speed up the numerical 

simulation and relaxing the memory requirements, the number of explicit fractures is reduced by 

modelling only the most relevant ones for the purpose of the engineering analysis. Also, the 

fractured rock formation is often represented as an equivalent continuum which includes implicitly 

the mechanical behaviour of all the fractures. The mechanical characterization of this equivalent 

continuum model is usually conducted through analytical solutions or numerical methods.  

The closed-form solution based on the Oda’s crack tensor theory is a common analytical 

method for estimating the equivalent elastic parameters of fractured rocks. In this study, the Oda’s 

approach shows very accurate results corresponding to the elastic compliance matrix and 

equivalent orthotropic parameters determined for verification case, which consists of an isotropic 

material containing three non-orthogonal and fully persistent joint sets. However, for the case with 

the embedded DFN of finite circular fractures with different sizes and orientations, the analytical 

results differ from the numerical solution which provides stiffer Young’s moduli and shear moduli. 

This difference essentially comes from the effect of fracture interactions that is neglected in the 

analytical solution. Thus, the Oda’s crack tensor approach can be used with confidence in fractured 

rocks containing joint sets of infinite size with linear elastic behaviour, where the non-interaction 

approximation is assumed valid. 
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To account for fracture interaction effects and the nonlinear elastic behaviour of the 

fractures, the equivalent continuum properties must be determined by numerical methods. Usually, 

these equivalent elastic parameters are estimated at the REV scale. However, the existence of the 

REV is not always granted, especially in fractured rock formations with joint sets and fractures of 

very different size. Depending on the objective of the numerical analysis, the discretization of the 

equivalent continuum may include elements with sizes below the REV scale. Therefore, a 

numerical homogenization methodology is proposed here, for determining the equivalent 

continuum parameters of the fractured rock formation discretized in regions of certain size, 

independently of the REV scale. The homogenization process of the fractured regions for the 

equivalent continuum model is managed by a VRM numerical laboratory implemented in 3DEC. 

It is assumed that the fractured regions can be represented by an equivalent continuum material 

with orthotropic symmetry. In those cases where the error of the orthotropic approximation is 

large, the equivalent material must be characterized by a triclinic constitutive model with 21 

independent coefficients. The methodology has been validated by the comparison of the analytical 

results of a simple verification case using the Oda’s crack tensor approach with the numerical 

solution of the VRM lab. In addition, the measuring procedure used in the VRM lab for estimating 

the equivalent compliance matrix is compared with the conventional measurement technique used 

in previous studies. Contrary to the conventional method, the compliance matrix determined with 

the VRM lab is symmetric and virtually the same as the analytical solution.  

The REV study conducted on the fractured rock formation with the embedded DFN has 

shown that assuming the principal directions of material symmetry coincide with the coordinate 

axes of the model or, in other words, disregarding the non-orthotropic coefficients of the 

compliance matrix in the calculation of the equivalent orthotropic parameters may yield 

misleading results. In this study, the similarities between the elastic moduli determined in the 

directions of the coordinate axes suggest the isotropic behaviour of the fractured rock; however, 

the equivalent orthotropic parameters calculated in the principal directions reveal the inherent 

anisotropic mechanical behaviour of the fractured material. Thus, the non-orthotropic compliance 
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coefficients and the principal directions of material symmetry must be taken into account in the 

mechanical characterization of fractured rock masses.  

Traditionally, the REV scale is chosen as the model size beyond which the equivalent 

elastic properties remain virtually constant. However, the projection on the Schmidt net of the 

principal axes of orthotropic symmetry suggests that the change in orientation of the principal 

directions should also be considered to choose the REV size. Moreover, even though the analytical 

elastic parameters are more compliant than the numerical results, the REV study has confirmed 

that the Oda’s crack tensor approach is an excellent method to estimate the REV scale. 

The numerical homogenization of the large cubic model L20 analyzed in the REV study 

shows that only the equivalent continuum models discretized in 125 and 1000 orthotropic regions 

are able to capture the small-scale variability of the deformational response of the discontinuum 

model. Therefore, the VRM lab can be used with confidence to characterize the fractured rock 

formation at the specific scale that satisfy the requirements of the engineering analysis. 

In this study, all the discontinuum models and regions homogenized with the VRM lab are 

cubic blocks. However, the VRM lab is developed to determine the equivalent orthotropic 

parameters of any rectangular parallelepiped representing a specific region of the fractured rock. 

Thus, the discretization of the equivalent continuum representative of the fractured material may 

comprise small regions in the important areas of the model and large regions in the outer domain. 

Also, all the fractures here are modelled as linear elastic; however, due to the numerical nature of 

the VRM laboratory, a nonlinear elastic constitutive model can be assigned to the fractures to 

capture the stress-dependent mechanical response of the fractured rock formation. 
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4 Modelling the anisotropic hydro-mechanical behaviour of 

discrete fracture networks in coupled reservoir 

geomechanical simulations 

4.1 Summary 

A coupling methodology has been proposed for the inclusion of the hydro-mechanical 

behavior of discrete fracture networks in reservoir geomechanical simulations of fractured porous 

formations through hydraulic and mechanical equivalent continuum parameters determined by the 

numerical homogenization of rock mass discretization regions using a VRM laboratory. The VRM 

hydraulic laboratory has been developed for the calculation of the full equivalent permeability 

tensor of discontinuum media with embedded DFN fractures of any shape and geometry and it has 

been verified against the analytical Oda’s crack tensor approach. Also, a nonlinear elastic joint 

constitutive model has been implemented in the VRM lab to simulate fracture deformation 

behaviors closer to experimental observations. An initial mechanical analysis and hydro-

mechanical coupled simulations have been studied. The results show that the equivalent continuum 

model with the VRM laboratory equivalent orthotropic parameters fairly captures the anisotropic 

deformation behavior of the explicitly fractured rock mass. Moreover, assuming the model axes 

as principal directions of material symmetry in the homogenization process results in misleading 

deformation orientations and behaviors of the fractured formation. The DFN fractures included in 

the coupled simulations have shown a mild impact on the deformability of the rock mass; however, 

they still show a significant effect on the equivalent permeability parameters obtained through the 

hydraulic homogenization process. Modelling the fractures as nonlinear elastic results in higher 

equivalent permeability and consequently leads to a faster build-up in pore pressure in the 

reservoir. The update of equivalent continuum parameters as well as the plastic fracture 

deformations slightly improve the permeability and pore pressure development throughout the 

rock formation. 
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4.2 Introduction 

Natural reservoirs are often significantly fractured due to the action of different geological 

processes involving mechanical, thermal and chemical activities over millions of years. The 

presence of geological structures and discontinuities at different scales such as folds, veins, 

bedding planes, faults, fissures and joints generally affect the geomechanical and fluid flow 

behaviour of fractured porous formations, which, in turn, may have a significant impact on the 

formation performance. Consequently, an efficient reservoir management should assume all 

formations as fractured, unless any other treatment or assumption is proven more appropriate (Narr 

et al. 2006; Liu & Martinez 2012). 

Discontinuities are commonly represented as implicit or explicit structural features in 

reservoir numerical simulations. Among the different modelling approaches, the discrete fracture 

model (DFM) is a conventional method to simulate complex fluid flow through porous media with 

explicit fractures (Karimi-Fard et al. 2004). In general, the DFM provides realistic representations 

of fractured reservoirs (Moinfar et al. 2014; Fumagalli et al. 2017; Rueda et al. 2021). However, 

modelling thousands of fractures with complex geometries and different orientations is impractical 

in terms of computational efficiency, since most of DFMs rely on unstructured meshes for the 

explicit representation of fractures (Moinfar et al. 2014; Berre et al. 2019; Olorode et al. 2020). To 

reduce the computational cost, the embedded discrete fracture model (EDFM) (Li & Lee 2008; 

Moinfar et al. 2014) follows the approach of discretizing the porous matrix in a structured grid, 

whereas the fractures are represented in the computational domain through additional 

discretization cells. In the EDFM, the fluid transfer is modeled proportional to the pressure 

difference between fracture and matrix cells with a transport index that accounts for the fracture 

geometry (Xu et al. 2016; Berre et al. 2019). Thus, the EDFM is able to handle complex fracture 

networks more efficiently, at the cost of evaluating transfer functions between the separate fracture 

and matrix domains. The equivalent continuum models (ECM) are traditionally used for the 

implicit representation of well-connected fracture networks and systematic joint sets in reservoir 

simulations. In the simplest ECM approach, the fractured formation is modeled through a single 
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porous medium with equivalent hydraulic properties that account implicitly for the effect of 

fractures on the fluid flow process. Thus, the single-continuum approach is very attractive in terms 

of computational efficiency and simplicity (Berre et al. 2019). On the other hand, multi-continuum 

models simulate the fractured reservoir as the superposition of several porous media representing 

different physical domains of the matrix and pore space. Analogous to the EDFMs, the flow 

exchange between continuum domains is modelled through transfer functions. However, the 

influence of fracture geometry is lost, since ECMs generally assume fractures as fully-persistent 

joint sets aligned with the coordinate system of the discretization grid. In reservoir engineering, 

the dual porosity model (Barenblatt et al. 1960; Warren & Root 1963) is the conventional dual-

continuum model for the simulation of fractured formations, where the fluid flow is mainly 

controlled by regular systems of interconnected fractures (Rutqvist et al. 2013). Another relevant 

multi-continuum model is the multiple interacting continua (MINC) (Pruess & Narasimhan 1985), 

which was developed to improve the simulation of transient effects in tight formations with low 

fluid transfer rate between matrix and fractures (Berre et al. 2019; Olorode et al. 2020). Most of 

these methods were mainly developed for solving the fluid flow problem in fractured reservoir 

simulations, disregarding geomechanical deformations during the numerical solution.  

The importance of coupling geomechanical processes with flow simulations in fractured 

porous media has received great attention in reservoir engineering during the past decades. This 

problem has been traditionally of interest for geoengineering applications in geothermal energy, 

oil and gas extraction, nuclear waste management and geologic carbon sequestration (Rutqvist & 

Stephansson 2003; Rutqvist et al. 2013). Along with the growth of computational capabilities, 

different numerical strategies and coupling methods have been proposed to account for the impact 

of geomechanical deformations in reservoir simulations. The fully coupled or monolithic approach 

has been traditionally used to model fractured porous media with explicit (Noorishad et al. 1982) 

or implicit fracture representations (Bai et al. 1993). Nevertheless, although fully coupled 

formulations have been recently proposed (Garipov et al. 2016; Rueda et al. 2021), the sequential 

coupling approach has been mostly used to couple geomechanics with reservoir simulators, since 
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it allows for the solution of the flow and mechanical sub-problems in separate numerical modules 

(Kim et al. 2012; Garipov & Hui 2019). Thus, different robust commercial codes can be easily 

incorporated in a sequential scheme (Settari & Mourits 1998) to satisfy the particular requirements 

of the reservoir analysis. 

Rutqvist et al. (2002) developed the TOUGH-FLAC simulator by the sequential coupling 

of two widely used numerical codes: the multi-phase, multi-component flow simulator, TOUGH2 

(Pruess 1991) and the commercial geomechanical modelling software, FLAC3D (Itasca 1997). In 

their study, the changes in hydraulic properties of the rock mass were modelled through nonlinear 

empirical relationships dependent on the effective stress (Rutqvist et al. 2002). Gu and Chalaturnyk 

(2005, 2010) explicitly coupled the commercial code GEM, developed by Computer Modelling 

Group Ltd. (CMG 2002), with FLAC3D for the simulation of methane recovery processes in 

coalbeds. The coal matrix and orthogonal cleats were modelled as an equivalent continuum elastic 

medium, with the principal directions of permeability and mechanical anisotropy aligned with the 

model grid. The porosity and permeability changes induced by the mechanical deformation of 

cleats were modelled using nonlinear analytical expressions. Bagheri (2006) developed a coupled 

geomechanical reservoir simulator to include the effect of fracture deformations in a dual porosity 

model. They used an empirical nonlinear elastic constitutive model for joints (Bandis et al. 1983) 

and an analytical formulation (Huang et al. 1995) to estimate the equivalent properties for the dual-

continuum model. The formulation also includes a multi-point flux approximation technique 

(Aavatsmark 2002) to handle full permeability tensors. However, the coupled simulations are 

limited to fractured reservoirs with fully persistent joint sets with arbitrary orientation, where the 

fracture shear deformations are not taken into account. Rutqvist et al. (2013) implemented a linked 

multicontinuum and crack tensor approach (Oda 1986) in the TOUGH-FLAC simulator. This 

approach uses the MINC for simulating complex fluid flow and solute transport in the fractured 

rock, where the fractures are represented by a discrete fracture network (DFN). On a similar basis, 

Gan and Elsworth (2016) implemented the Oda’s crack tensor approach in a coupled continuum 

simulator (introduced by Taron et al. 2009) for dual-porosity model simulations. Rueda et al. 
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(2021) recently presented a fully coupled hydromechanical formulation for dual-continuum 

models of fractured porous media with fully persistent joint sets, where the joint closure is also 

simulated with an empirical nonlinear elastic model and the equivalent continuum properties are 

analytically estimated. 

The previous coupled reservoir-geomechanical simulators essentially rely on analytical 

methods to estimate and update the mechanical and hydraulic parameters of the equivalent 

continuum representative of the fractured porous formation. However, the analytical formulations, 

such as the Oda’s crack tensor approach and other effective medium theories, are not able to 

accurately capture the effects of complex fracture interactions and fracture connectivity (Min et al. 

2004b), often leading to the overestimation of the elastic compliance (see Chapter 3.4.2.3) and 

permeability properties. To avoid this limitation, several studies have proposed the determination 

of equivalent continuum properties from numerical simulations, using discrete element codes, 

UDEC (Itasca 2004) or 3DEC (Itasca 2016), and discrete fracture models as an alternative to the 

traditional analytical methods (Long et al. 1982; Min et al. 2003, 2004a, 2004b; Thoraval & 

Renaud 2004; Pouya & Fouché 2009; Lang et al. 2014; Chen et al. 2015, 2018). 

In this study, a reservoir geomechanical coupling methodology has been developed to 

implicitly include the hydro-mechanical effect of fracture deformations in the numerical modelling 

of fractured porous formations where the fractures are represented by a DFN. In this methodology, 

the commercial codes STARS and FLAC3D are sequentially coupled through a porosity correction 

strategy based on the fixed stress split method (see Chapter 2). The fractured formation is 

represented by a structured grid of discontinuum regions modelled as equivalent porous media, 

where the mechanical and hydraulic equivalent continuum properties are numerically determined, 

accounting for the influence of the current effective stress field, with a virtual rock mass (VRM) 

laboratory implemented in the commercial three-dimensional distinct element code 3DEC. That 

way, the hydro-mechanical effects induced by fracture deformations can be implicitly included in 

the numerical simulation. The VRM numerical laboratory is also linked to the sequential coupling 

scheme. Thus, the equivalent continuum properties may be updated during the sequential coupled 
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simulation by triggering the VRM lab at specific simulation stages, depending on changes in the 

effective stress field computed in the continuum geomechanical simulator. The coupled simulation 

scheme presented here is based on the envisioned reservoir geomechanics coupling approach 

proposed by Deisman et al. (2009) where several numerical simulators are linked together to model 

the complex processes found in fractured reservoirs. 

4.3 Numerical characterization of the fractured formation 

Ideally, the hydro-mechanical characterization of a fractured formation should be 

conducted through laboratory and in situ testing campaigns to capture the scale effect arising from 

the presence of structural features. However, performing in situ tests at large scale directly in the 

field is generally not possible (Lorig et al., 2010). On the other hand, the conventional analytical 

methods usually disregard the fracture connectivity and interaction effects. These shortcomings 

can be avoided by estimating the equivalent anisotropic continuum properties using numerical 

modelling techniques. In line with that approach, a VRM numerical laboratory is used here to 

determine the equivalent elastic compliance and permeability tensors of target regions, 

representing the discretization of the fractured porous formation, through numerical tests 

conducted in the 3DEC code. In the VRM laboratory, a nonlinear elastic joint constitutive model 

is implemented to simulate the mechanical closure of the DFN fractures. The Mohr Coulomb-slip 

constitutive model can also be assigned to the fractures to include the effect of plastic deformations 

in the computation of the equivalent permeability tensors. 

4.3.1 Nonlinear elastic joint constitutive model implemented in VRM laboratory 

Empirical observations usually show that the deformation of a fracture under a normal 

compressive stress is nonlinear (Goodman 1976). To account for this nonlinearity, Bandis et al. 

(1983) proposed a widely used hyperbolic empirical model to represent the relationship between 

the stress and fracture closure observed in laboratory experiments. Later, Malama and Kulatilake 

(2003) found that a generalized negative exponential function can be used to provide a better fit to 

experimental data. Based on this previous work, Kulatilake et al. (2016) introduced a simple 
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method to estimate in laboratory the normal and shear stiffnesses of joints through direct shear and 

uniaxial compression tests. They proposed the following exponential function to describe the 

nonlinear closure of a joint under compression: 

 JBu
σ Ae   (4.1) 

where σ  is the normal compressive stress, Ju  is the joint closure, A and B are empirical constants 

determined from the experimental data. The constant A can be defined as the seating load at zero 

joint closure, corresponding to the initial condition or reference for measuring the normal 

displacement during the compression test (Goodman 1976). Using the definition of joint normal 

stiffness nk , as the rate of change of normal stress with respect to the normal displacement 

(Goodman 1970), and differentiating Eq. (4.1) with respect to σ  gives:  

 nk Bσ   (4.2) 

This simple linear relationship between the joint normal stiffness and the compressive 

stress, introduced by Kulatilake et al. (2016), can be implemented in numerical methods to 

simulate the nonlinear behavior of joints. Following that approach, Mehranpour and Kulatilake 

(2017) applied this relationship in the particle flow code PFC (Itasca 2016) to update the normal 

stiffness at joint contacts between particles during the numerical simulation. They also proposed 

the use of a user-defined minimum joint normal stiffness 
min
nk  to avoid very low stiffnesses with 

values close to zero, which may result in large particle overlaps leading to numerical instabilities 

during the PFC simulations. Similarly, this empirical constitutive model proposed by Kulatilake 

et al. (2016) has been implemented, here, in the VRM numerical laboratory (see Chapter 3), to 

include the nonlinear normal deformation of the joints during the 3DEC simulations. That way, 

the joint normal stiffness is updated according to the relationship in Eq. (4.2) at each of the joint 

sub-contacts representing the circular fractures of the DFN (Figure 3.7). 

In the VRM lab, the minimum joint normal stiffness 
min
nk  is assumed the same as the 

normal stiffness of an open crack embedded in an infinite elastic medium, which can be determined 
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from the expression of the average normal displacement induced by a uniform normal traction 

acting on the open crack (e.g., Rice 1979). According to Sevostianov and Kachanov (2013), the 

normal compliance of an open circular crack is given by: 
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   (4.3) 

where r is the radius, E and ν  are the Young’s modulus and Poisson’s ratio of the infinite elastic 

material. Thus, the minimum joint normal stiffness is estimated here as the inverse of the crack 

normal compliance, that is: 
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For simplicity, the elastic parameters of the intact rock are set as input for Eq. (4.4). 

However, assigning the elastic parameters of the rock mass surrounding the joint instead may be 

required in those cases where the density of joints is significant. 

The minimum normal stiffness controls the elastic behavior of the joints under very low 

compressive normal stresses as well as in the tensile stress regime, preventing unrealistic low 

values of normal stiffness that may lead to numerical instabilities due to the excessive overlap 

between discretization blocks in the 3DEC simulation. In addition, a maximum limit to the normal 

stiffness 
max
nk  has also been included in the VRM lab, to prevent large stiffness values that will 

result in very small numerical timesteps, which usually leads to large computational times. The 

maximum joint normal stiffness is calculated here by substituting the area of the fictitious joints 

in Eq. (3.21) with the whole area of the fracture plane in 3DEC, 
totA , which includes the fictious 

and actual joint areas: 

  max 2 2max ; 1
Nf Nf

tot tot
n i i

E G
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λV λV
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where λ  is a proportionality factor that corresponds to Fictλ  in Eq. (3.21), V is the total volume of 

the fractured region, G is the shear modulus of the intact material, Nf is the total number of 

fractures, and in  is the i-component of the normal vector to the fracture plane with the index i 

ranging over the coordinate axes {x, y, z}. Additionally, the maximum normal stiffness obtained 

for the nonlinear behaviour (Eq. (4.5)) is also assigned to the sub-contacts representing the 

fictitious joint area outside the circular fracture (Figure 3.7). 

4.3.1.1 Verification of the nonlinear elastic joint constitutive model 

A simple case of a block containing a horizontal joint has been modelled to illustrate and 

verify the nonlinear model implemented in the VRM numerical lab. The model consists of a cubic 

block with size 15×15×15 m3 containing a horizontal circular fracture with a radius of 6.75 m. The 

intact rock represents a shale with a Young’s modulus and Poisson’s ratio of 26 GPa and 0.2 

respectively. Substituting the previous data in Eq. (4.4) gives the minimum normal stiffness min
nk  

of 2.4 GPa/m. The joint shear stiffness is set to sk  7.56 GPa/m. Kulatilake et al. (2016) conducted 

laboratory experiments to determine the parameter B of different rock types. They estimated the 

mean value of B 18.9 (units of 1/mm) for the particular group of shale samples. The same value 

is used here as input for this case. Additionally, the seating load of the sample is assumed to 1 atm, 

i.e., A 101325 Pa. A compressive stress of 40 MPa is applied in the vertical direction at the top 

and bottom boundaries of the model. The maximum normal stiffness is calculated in this case by 

assigning a proportionality factor of λ  0.001 (see Chapter 3.4.2.2), which results in a value of 

max
nk  1733 GPa/m. The normal compressive stress and joint closure have been monitored at the 

center of the fracture during the numerical simulation conducted in 3DEC through the VRM lab. 

The numerical results show very good agreement with the exponential function obtained by 

substituting the input data in Eq. (4.2) (Figure 4.1).  

4.3.2 Determination of the equivalent mechanical parameters 

The VRM laboratory includes a mechanical module that has been developed to determine 

the equivalent elastic compliance matrix of specific fractured regions of the porous formation (see  
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Figure 4.1—Verification case of the nonlinear joint constitutive model implemented in VRM lab. 

Comparison of the exponential function (solid line) and the numerical solution (open circles) 

measured at the center of the fracture in the 3DEC simulation. A detail of the 3DEC model is 

also included, showing the block containing the circular fracture with the fictitious and joint sub-

contacts. The vertical compressive stress and joint closure are plotted as positive.  

Chapter 3). That matrix is later used to calculate the orthotropic elastic properties for the equivalent 

continuum. To obtain the compliance matrix, the VRM lab mounts the target fractured region in 

3DEC and conducts six independent numerical tests, compression and shear (Figure 3.1). During 

these tests, the joint normal stiffness at each sub-contact is set constant. However, before 

conducting those six tests, the current effective stress field is installed in the 3DEC model with the 

nonlinear elastic joint constitutive model active and the simulation is run to equilibrium. Therefore, 

the joint normal stiffness is updated only during the installation of the current effective stresses in 
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the model, following the relationship in Eq. (4.2), to account for the effect of the nonlinear elastic 

behavior of the joints. Once the stress field is successfully installed and the required initial 

equilibrium is reached, the last values of the updated normal stiffnesses are fixed and kept constant 

in the subsequent six numerical tests. 

4.3.3 Determination of the anisotropic equivalent permeability tensor 

The permeability of a fractured formation can be evaluated using analytical or numerical 

methods. Among the analytical methods, the Oda’s crack tensor approach (Oda 1985, 1986) has 

been widely used to estimate the effective permeability tensor of fractured media, by relying only 

on the geometrical properties of the fractures. Nevertheless, the Oda’s crack tensor theory is not 

suited to accurately take into account the connectivity and interactions of complex fracture 

networks (Barla et al. 2000; Min et al. 2004b). As an alternative to the analytical approach, several 

studies have proposed the use of numerical methods to determine the equivalent permeability 

tensor of rock formations with complex systems of fractures. 

Long et al. (1982) used a finite element numerical code to estimate the equivalent 

permeability tensor and the representative elementary volume (REV) size of two-dimensional (2D) 

models populated with random fracture networks. In their numerical tests, a linear pressure 

gradient is imposed in the model by applying two constant pressure heads at the boundaries normal 

to the gradient and a linearly varying pressure at the boundaries parallel to the gradient. The matrix 

is modelled impermeable and the cubic law (Snow 1969) is assumed valid. Additionally, the 

mechanical deformation effect is disregarded in the numerical analysis. The permeability tensor is 

estimated using the Darcy’s law with the measurements of the steady-state flow rate in two 

numerical simulations; one with a horizontal pressure gradient and the other one with a vertical 

gradient. Following a similar approach, Min et al. (2004a) used the two-dimensional distinct 

element code UDEC (Itasca 2000) to find the REV size and calculate the anisotropic permeability 

tensor of rock masses with multiple realizations of discrete fracture networks (DFN), which were 

modelled with constant hydraulic apertures. At the same time, they also studied the effect of the 
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nonlinear normal deformation and shear dilation of fractures in the stress-dependent permeability 

of rock masses under several load conditions (Min et al. 2004b). In their study, they found 

significant channeling effects of the fluid flow in fractures with high mobilization of shear dilation. 

Similarly, Thoraval et al. (2003) used the 3DEC code to determine the equivalent permeability of 

three-dimensional (3D) fractured rocks at different scales. Later, Baghbanan and Jing (2008) 

studied the influence of the correlation of fracture aperture with the trace length on the permeability 

and fluid flow in 2D simulations using the UDEC code. 

Pouya and Fouché (2009) presented a double definition of the equivalent permeability for 

heterogeneous media, involving two symmetric and positive definite tensors that result from 

applying the boundary conditions of constant flux or linear pressure gradient in numerical models. 

They also introduced a method to estimate the equivalent permeability tensor of a 3D fractured 

medium, from 2D permeability tensors measured in several cross-sections of the rock mass cut in 

different orientations. Subsequently, Lang et al. (2014) proposed an averaging method to 

determine the full equivalent permeability tensor from the volume-averaged values of flux and 

pressure gradient computed in 3D finite element simulations, where the matrix is modelled as 

permeable and the mechanical deformations are neglected. In their study, they compared the 

permeability tensor estimated in a 3D model with the results of several cross-sections, showing 

that the equivalent permeability measured in the 2D simulations underestimate the permeability 

computed in the 3D simulation. Chen et al. (2015), developed a multiple boundary upscaling 

method for the estimation of the equivalent permeability of 2D fractured porous media using 

discrete fracture models. In the numerical simulations, a linear pressure gradient is imposed in the 

2D model and the vector components of the flow rate are measured at the boundaries to calculate 

the permeability tensor. Also, the mechanical deformations are disregarded and the matrix is 

assumed permeable. In their method, instead of measuring only the flow rate in the normal 

direction to the model boundaries, all the components of the flow rate vectors measured at multiple 

boundaries are taken into consideration to compute the total flow rate through the volumetric 

domain. They showed that the multiple boundary method gives better estimates of the equivalent 
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permeability tensor than the methods based on the classic flow rate measurement (e.g., Long et al 

1982 among others). Chen et al. (2018) extended the multiple boundary method for 3D models 

with fractured networks. However, this last method is limited to fractures that are parallel, at least, 

to one axis of the model; otherwise the equivalent permeability may be overestimated by a factor 

of two (Chen et al. 2018). This issue does not exist in 2D models, since all fractures are assumed 

parallel to the model axis in the out-of-plane direction. 

These studies have shown the capability of different modelling techniques to numerically 

determine the equivalent permeability of fractured media. Thus, according to the numerical 

approach, a module has been developed in the VRM lab for the hydraulic characterization of 

fractured porous formations with an embedded DFN; and, this way, including the effect of 

mechanical deformations and fracture interactions in the estimation of the equivalent permeability 

tensor.  

4.3.3.1 Virtual rock mass hydraulic laboratory 

The hydraulic module of the VRM laboratory has been developed to conduct fluid flow 

simulations on target regions of the fractured formation with the 3DEC code. This module has 

been coded using the FISH scripting language embedded in the Itasca software (Itasca 2016). The 

equivalent permeability tensor of the fractured region is determined by measuring the flow rate at 

the boundary of the model after reaching the steady-state solution in three independent numerical 

experiments. Similarly to Long et al. (1982), each of these tests is modelled with a linear pressure 

gradient applied at the boundary conditions in the direction of one of the three coordinate axes of 

the model (Figure 4.2). In these simulations, the matrix is assumed deformable and impermeable 

to reduce the computational time. Thus, the fluid is allowed to flow only through the fractures, 

which are represented in 3DEC with a parallel plate model obeying the cubic law (Itasca 2016).  

The mechanical deformations are disregarded during the numerical solution of each of the 

three steady-state flow problems. However, the deformation of fractures and matrix is taken into 

account during the installation of the current effective stress field, in the process of reaching the 
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required initial equilibrium state in the jointed region before running the flow tests. During the 

effective stress field installation, the change in hydraulic aperture in the fractures is assumed herein 

the same as the fracture closure, which follows the nonlinear elastic joint constitutive model 

implemented in the VRM lab. In addition, the hydraulic aperture is bound by a residual value resa  

and a maximum aperture maxa  for computational efficiency during the simulation (Figure 4.3). 

 

 

Figure 4.2—Steady-state flow tests under three different linear pressure gradients conducted with 

the VRM hydraulic lab developed for 3DEC to determine the equivalent permeability tensor 

(where the light blue volumes represent fluid pressure with a linear pressure drop p ). 

Assuming the validity of the Darcy’s law, the equivalent permeability tensor can be 

determined using the generalized expression for anisotropic porous media (Bear 1972): 

 
ij

i
j

k p
q

μ x


 


  (4.6) 

where iq  is the specific discharge, μ  is the dynamic viscosity, jp x  is the pressure gradient, and 

ijk  is the permeability tensor, with indices (i, j) ranging over the Cartesian coordinates of the 3D 

space {x, y, z}. Here, the summation is implied over repeated indices. 

In the VRM hydraulic lab, each of the three steady-state flow tests is conducted to 

determine one column of the permeability tensor, analogous to the compliance matrix determined 
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with the mechanical module (see Chapter 3.3.2). Thus, for a rectangular parallelepiped with 

dimensions xL × yL × zL  m3 representing a specific region of the fractured rock, the equivalent 

permeability tensor can be calculated by the following expression of the Eq. (4.6) in matrix form: 
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  (4.7) 

where p  is the linear pressure drop applied in the numerical model, and the specific discharges 

iq  are the required unknowns to be measured in the three flow simulations. 

 

Figure 4.3—Hydraulic aperture behaviour of a joint under a normal effective stress, compressive 

or tensile, following the nonlinear joint constitutive model implemented in VRM lab with the 

residual resa  and maximum maxa  bounds. The 0a  corresponds to the initial hydraulic aperture 

under the seating load A. 
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The total equivalent permeability of the fractured target region is determined following the 

approach presented in Oda (1985), where the permeability tensor of the intact rock matrix is added 

to the permeability tensor induced by the network of fractures (Eq. (4.7), provided that the total 

volume of the fractures is negligible with respect to the volume of the region. 

4.3.3.2 Measurement of specific discharges in the 3DEC model 

To determine the specific discharges over the target discontinuum region after solving the 

steady-state flow problem, the VRM hydraulic lab integrates the flow rate measurements at the 

center of the joint trace segments (jts) located at the boundary of the model (Figure 4.4). Similar 

to the mechanical module of the VRM lab and with the aim of improving the speed and efficiency 

of the measuring process, several linked-list are created to store the memory addresses of the flow 

knots located at the model boundary and their associated flow plane zones (fpz). The flow knots 

correspond to the discretization nodes of the flow elements (i.e., flow plane zones) of the 3DEC 

model (Itasca 2016). The location of the centers of the joint trace segments and their trace length 

defined by the flow knots at the boundary are also stored in the linked-lists. 

The method implemented in the VRM hydraulic laboratory to determine the specific 

discharges through the discontinuum model in 3DEC is based on the definition of the mean flux 

(measured at the region frontier) presented in Pouya and Fouché (2009) and the surface averaging-

based approach presented in Kushch (2013) for the homogenization of the thermal conductivity in 

composites. According to these two previous studies, the mean flux determined from the flow rate 

values at the boundary Ω  of the target domain Ω  can be expressed as: 

   
Ω

1
dS

V 
 q q n x   (4.8) 

where q  is the mean flux vector, V is the volume of the target domain Ω , q  is the flow rate 

vector through the element area dS associated to one point of the boundary Ω , n  is the unit 

normal vector to the boundary element dS, and x  is the position vector for each of the boundary 

points. 
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Integrating the Eq. (4.8) over the areas, jtsA , associated to the joint trace segments at the 

boundary of the 3DEC model gives the expression, in discrete form, to determine the surface-

averaged specific discharges 
iq  as follows: 

   
1

1
Njts

jts jts jts c jts
i i ik k

jts

q q n x x A
V 

    (4.9) 

where V is the volume of the model, Njts is the total number of joint trace segments at the model 

boundary, jts
kq  and jts

kn are the k-components of the flow rate and unit normal vectors, respectively, 

corresponding to the joint trace segment jts, jts
ix  is the i-component of the position vector of the 

trace segment center, c
ix  is the i-component of the position vector of the center of the model acting 

as a reference point and, jtsA  is the cross-sectional area associated to the joint trace segment that 

is defined by the intersection of the model boundary with the volume represented by the flow plane 

zone and its hydraulic aperture. Assuming a parallelepided region oriented in the cartesian 

coordinates, it is calculated by: 
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  (4.10) 

where jtsl  is the joint trace segment length, fpza  is the current hydraulic aperture of the flow plane 

zone fpz and, fpz
in  is the i-component of the unit normal vector to the flow plane zone (Figure 

4.4). The subscripts (i, k) represent the vector components in the directions {x, y, z}. Note that the 

summation is implied over the repeated k-index in the Eq. (4.9). On the other hand, the whole 

expression of the area jtsA in Eq. (4.10) is deliberately not included in the Eq. (4.9) to avoid the 

otherwise implied summation over the i-index. Once the specific discharges are measured in the 

three steady-state flow tests according to the Eq. (4.9), they can be substituted in the Eq. (4.7) to 

finally determine the full equivalent permeability tensor of the target fractured region. 

The main advantage of the surface averaging-based measurement of the specific discharge 

presented here, over the conventional volume averaging method, is that the former is valid for 
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materials with imperfect interfaces while the later requires perfect contacts between the 

constituents of the discontinuum material (Kushch 2013). 

 

Figure 4.4—Flow knots and flow plane zones (fpz) corresponding to the discretization of the 

flow model in 3DEC. Details of one flow plane zone and the corresponding joint trace segment 

(jts) at the boundary of the model showing the unit normal vector ( fpz
n ) to the flow plane zone, 

the position vector of the joint trace segment center ( jts
x ), the unit normal ( jts

n ) vector to the 

boundary and the flow rate vector ( jts
q ) used in the computation of the specific discharges for 

calculating the equivalent permeability tensor. 

4.3.3.3 Verification of the VRM hydraulic laboratory 

To verify the proposed methodology for measuring the equivalent permeability tensor 

implemented in the VRM hydraulic lab, the numerical solutions of several cases of a block 

containing a single fracture with different orientations (Figure 4.5) have been compared with the 

analytical results obtained using the Oda’s crack tensor approach (Oda 1985, 1986). 

In the Oda’s theory, the fractured formation is considered as an intact rock matrix with an 

embedded network of circular joints. The permeability tensor due to the presence of the system of 

fractures is calculated by means of a crack tensor, which takes only into account the geometrical 
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features of the discontinuities (Oda 1985). Thus, the expression to calculate the permeability tensor 

can be formulated as (Oda 1985; Rutqvist et al. 2013): 

  
1

12

Nf

ij kk ij ijk P δ P    (4.11) 

where Nf is the total number of circular fractures, ijδ  is the Kronecker delta and, ijP  is the second-

order crack tensor, which is defined for a single fracture as: 
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where V is the total volume of the fractured region, A is the fracture area, a is the hydraulic aperture, 

and, in  is the i-component of the normal vector to the fracture plane, with indices (i, j) ranging 

over the coordinate axes {x, y, z}. Substituting Eq. (4.12) into Eq. (4.11) and representing the 

tensors in matrix form gives the following expression for the equivalent permeability: 
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where the summation terms are evaluated for every fracture of the discontinuum model. The Eq. 

(4.13) clearly shows the symmetry of the permeability tensor determined through the Oda’s crack 

tensor approach. 

The verification cases studied here consist of a cubic block of dimension 1×1×1 m3 cut 

through its center by one fully persistent fracture, which is rotated at several intervals a total of 

180° around the horizontal. Eight cases have been modeled with the following dip and dip direction 

angles (i.e., dip/dip-dir.): 0/120, 30/120, 45/120, 60/120, 90/300, 60/300, 45/300 and 30/300 

(Figure 4.5). This way, the fracture plane will be totally oblique to the axes of the model in the six 

verification cases where the dip angle is different than 0° or 90°. The hydraulic aperture is assumed 

constant with a value of 1 mm in the simulations and the dynamic viscosity is set to 0.001 Pa∙s. A 



100 

 

linear pressure drop of p =105 Pa is applied at the model boundary in each of the numerical 

steady-state flow tests (Figure 4.2). 

 

Figure 4.5—Verification cases of the methodology for measuring the equivalent permeability 

tensor implemented in the VRM hydraulic lab, showing the different dip and dip-direction angles 

of the fracture in each of the eight analyzed cases. 

As shown in Figure 4.6, the normal components ( xxk , yyk , zzk ) and the shear components 

( xyk , xzk , yzk ) of the equivalent permeability tensor determined analytically using the Oda’s crack 

tensor approach for the eight verification cases are equal to the corresponding numerical results of 

the tests conducted with the VRM hydraulic lab, demonstrating its capability to accurately 

determine the equivalent permeability tensor of the fractured region. 

The measurement methodology implemented in the hydraulic module of the VRM lab 

takes into account the vector components of the flow rate measured at all the boundary faces of 

the model, analogous to the multiple boundary method proposed by Chen et al. (2018). However, 

contrary to this last method which is limited to certain fracture orientations, VRM hydraulic lab is 

able to accurately compute the equivalent permeability tensor of 3D discontinuum models with 
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fractures totally oblique to the model coordinate system, as it is shown in the results of the 

verification cases with fracture dip angles different than 0° and 90° (Figure 4.6). 

 

Figure 4.6—Comparison of the components of the equivalent permeability tensor determined 

numerically with the VRM hydraulic lab (in circles) and analytically through the Oda’s crack 

tensor approach (normal components iik  in solid line and shear components ijk  in dotted line), 

for each of the verification cases. 

4.3.4 Plastic behavior of DFN joints 

To include the effect of the plastic deformation of fractures in the computation of the 

equivalent permeability tensor, the joints in the VRM hydraulic lab are modelled with the Mohr 
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Coulomb-slip joint constitutive model (MC) implemented and embedded in the 3DEC code (Itasca 

2016). As in the case of the nonlinear elastic behavior of the joints, the plastic deformations of the 

discontinuities are taken into account during the installation of the current effective stress field in 

the model, to establish the required initial equilibrium state before running the three flow 

simulations. In this process, the 3DEC model is generated with the addition of a buffer that is 

enclosing the target region, where both, buffer and region, are modelled with the same mechanical 

properties. Based on the observations presented in Gao and Lei (2018), the buffer is modelled with 

a thickness no less of 20% of the length of the model to minimize the influence of the applied 

boundary conditions on the stress field dispersion in the fractured region (Figure 4.7). 

 

Figure 4.7—Buffer enclosing the target region generated in the VRM hydraulic lab. The buffer 

thickness in this case corresponds to the 20% of the model length (i.e., ΔLi = 0.2Li). 

 

After the model generation, the effective stress field is installed in the 3DEC model with 

the joints modelled as nonlinear elastic by setting their strength properties to large values. Once 
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the initial elastic equilibrium state is reached, the boundary faces of the model are fixed, the actual 

strength parameters of the Mohr Coulomb-slip constitutive model are assigned to the joints and 

the numerical model is run again until equilibrium. This procedure is necessary to avoid possible 

numerical simulation instabilities during the effective stress installation, in those cases where the 

3DEC numerical model is totally cut through a large joint that may be at failure mode, developing 

a deformation state of continuous plastic flow. Once the equilibrium state is achieved with the 

plastic constitutive model assigned to the joints, the buffer is deleted and the three numerical flow 

simulations are finally conducted to compute the equivalent permeability of the fractured region. 

4.4 Coupling strategy and methodology 

The coupling of the complex flow and mechanical processes induced during the reservoir 

operations is conducted through a numerical platform developed at the University of Alberta by 

the reservoir geomechanics research group (RGRG). In this coupling platform, two widely used 

commercial software, STARS and FLAC3D, are linked together following an explicit sequential 

coupled scheme. The reservoir simulator STARS developed by Computer Modelling Group Ltd. 

(CMG 2018) is used to capture the complex thermal and fluid flow processes. The reservoir 

deformations and effective stress changes are computed with the continuum geomechanical 

simulator FLAC3D developed by Itasca Consulting Group Inc. (Itasca 2013). Both simulators are 

sequentially coupled through a porosity correction strategy based on the fixed stress split method, 

where the thermo-poromechanical formulation accounts for the generalized Biot effective stress 

coefficient in tensorial form (see Chapter 2). Analogous to the envisioned reservoir geomechanical 

coupling approach proposed by Deisman et al. (2009) for simulations of fractured reservoirs 

sensitive to stress changes, where several numerical simulators are linked together, the VRM 

laboratory is also linked to the explicit sequential coupled scheme built into the RGRG platform 

to implicitly include the hydro-mechanical behaviour induced by the presence of fractures in the 

numerical simulation (Figure 4.8). Thus, the target discontinuum regions representing the 

discretization of the fractured porous formation are modelled as equivalent porous media with 
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anisotropic continuum properties determined through the mechanical and hydraulic modules of the 

VRM laboratory. 

 

Figure 4.8—Diagram of the sequential coupling scheme between STARS and FLAC3D 

controlled by the RGRG coupling platform, including the hydraulic and mechanical modules of 

the VRM laboratory. The coupling cycle starts with the flow simulator, according to the fixed 

stress split method. (Note that this figure corresponds to an expanded version of Figure 2.1).   

 

The coupling process begins with the generation of the numerical grids for the flow and 

mechanical models by the RGRG coupling platform, which also populates the simulators with the 

input data and controls the exchange, update and storage of coupling parameters throughout the 

sequential simulation. Both numerical grids, that represent the discretization regions of the 

fractured reservoir, are compatible with each other and structured as in a box of sugar cubes. After 

the structured numerical grids are created, the initial mechanical problem is solved in FLAC3D to 

establish the initial equilibrium state and determining the resultant effective stress field for each 

reservoir region. Then, the mechanical and hydraulic modules of the VRM laboratory are executed 
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to compute the equivalent continuum parameters under the current effective stresses for each 

region partially or totally cut by fractures, corresponding to a DFN previously generated with the 

3DEC code (or imported into the VRM lab from another DFN alternative source). Thus, the 

equivalent anisotropic permeability and orthotropic parameters calculated in the VRM lab are 

ready to be updated in the reservoir simulator STARS and also in the continuum geomechanical 

simulator FLAC3D, respectively. In addition, the Biot effective stress coefficient tensor can also be 

updated using the new elastic parameters. Once the mechanical and hydraulic equivalent 

continuum parameters are updated in the numerical simulators, the sequential coupling scheme is 

started through the RGRG coupling platform and carried out until the last reservoir simulation 

stage is reached (according to the procedure introduced in Chapter 2). During the coupled reservoir 

geomechanical simulation, the equivalent anisotropic parameters can be updated at specific 

simulation stages in all the fractured reservoir regions or only in those where the change in the 

effective stress field reaches a certain tolerance. 

The coupling strategy and methodology implemented in the RGRG coupling platform is 

described in the following steps: 

1. Generation of numerical grids for flow and mechanical simulators by the RGRG coupling 

platform, which also populates both models with the required input data. Run the 

geomechanical simulator until equilibrium to establish the initial effective stress field. 

2. The equivalent continuum parameters of the discretization regions representative of the 

fractured reservoir are computed using the mechanical and hydraulic modules of the VRM 

numerical laboratory. The current effective stress field is installed during the required 

initial equilibrium of the VRM lab models to account for the nonlinear behavior of the DFN 

fractures. 

3. The equivalent permeability and orthotropic parameters are updated in the reservoir 

simulator STARS and in the continuum geomechanical simulator FLAC3D. The orthotropic 
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parameters are used to update the Biot effective stress coefficient tensor as required. The 

RGRG coupling platform starts the sequential coupling scheme (see Chapter 2). 

4. The thermal and fluid flow problem is solved by STARS. The changes in pore pressure and 

temperature obtained in the reservoir model are stored in the RGRG platform. The stress 

increment induced by these changes is calculated and added to the stress in the FLAC3D 

model. 

5. The mechanical problem is solved by FLAC3D and the resulting stress and strain increment 

tensors are stored. The pore compressibility, volumetric thermal expansion coefficient and 

porosity change corresponding to the correction parameters of the porosity function in the 

STARS model are calculated and updated through the RGRG platform. 

6. The VRM lab can be run at specific simulation stages to compute the equivalent 

permeability and orthotropic parameters of all reservoir regions or at those regions where 

the change in the mean effective stress (i.e., 3kkσ ) becomes greater than a user defined 

effective stress tolerance. These new parameters are updated in their corresponding 

simulators. The sequential scheme is resumed from step 3 and a new coupling cycle is 

started again. 

The previous coupling sequence from step 3 to step 6 is repeated until the last reservoir 

geomechanical simulation stage is computed. 

4.5 Numerical cases and results 

4.5.1 Initial mechanical analysis 

A mechanical analysis is conducted to assess the capability of the proposed methodology 

implemented in the RGRG coupling platform for modelling and capturing the deformation 

behavior of a fractured rock mass through equivalent continuum orthotropic parameters. 
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4.5.1.1 Model geometry, conditions and parameters 

The numerical case presented here studies the deformation of a hypothetical fractured 

caprock due to the change in pore pressure induced by a steam chamber developed in a fictitious 

reservoir. The dimensions of the model are 200 m long, 25 m wide and 40 m height in the x, y and 

z directions, respectively. The model domain is discretized in cubes of 5 m side, resulting in a grid 

of 40×5×8 cubic regions. The six intermediate layers from the total eight of the discretization are 

used for modelling the caprock, which is represented as a constant horizontal layer of 30 m height 

with the upper and lower limits at -150 m and -180 m depths (Figure 4.9). For simplicity, a non-

uniform change in pore pressure is directly assigned to the bottom layer to simulate the impact of  

 

Figure 4.9—Model geometry and joint sets used for the initial mechanical case. 
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the steam chamber on the deformation behavior of the caprock. A density of 64200 kg/m3 is 

assigned to the 5 meters height top layer of the model discretization to simulate the equivalent 

gravitational load corresponding to 150 m height of overburden with density 2140 kg/m3. This last 

density is assigned to the bottom and caprock layers. The gravity is set to 9.81 m/s2. The initial 

vertical stresses result from the gravitational loads following a 21 kPa/m gradient. The initial 

horizontal stresses and their increase with depth are set in the model with the gradients of 24 kPa/m 

for the stresses in the x-direction and 29 kPa/m for those in the y-direction. The initial stresses 

oriented in the coordinate axes of the model are assumed as principal stresses. The displacements 

of the vertical boundaries are only constrained in their normal directions (i.e., roller boundaries). 

Moreover, the displacements are fixed in all directions in the bottom boundary, while the top 

boundary is totally unconstrained. 

In the model, the caprock is considered fractured by a DFN, consisting of three fully 

persistent joint sets as shown in Figure 4.9. The intact material is modelled as isotropic and linear 

elastic with Poisson’s ratio of 0.35 and Young’s modulus of 500 MPa. Table 4.1 shows the 

assumed geometry, orientation and mechanical parameters corresponding to each of the three joint 

sets, which are assigned a linear elastic joint constitutive model. To simulate the impact of the 

changes in pore pressure developed in the steam chamber, the stresses in the bottom layer are 

increased after reaching the initial equilibrium by adding pressure increments up to 10 MPa, 

following a non-uniform load profile in the x-direction (Figure 4.10). 

Table 4.1—Input parameters of the joint sets for the initial mechanical case. 

Parameter J1 J2 J3 

Dip angle , (°) 25 70 50 

Dip-direction , (°) 260 100 110 

Normal stiffness nk  , (MPa/m) 100 50 50 

Shear stiffness sk  , (MPa/m) 10 20 20 

Fracture spacing , (m) 5 10 25 
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Figure 4.10—Pressure increments applied at the bottom layer to simulate the impact of the pore 

pressure changes developed in the steam chamber, following a non-uniform load profile in the x-

direction. Note that the pressure increments are applied uniformly along the y-direction (see the 

model in perspective view at the top-left corner). 

4.5.1.2 Equivalent continuum and discontinuum scenarios  

To evaluate the presented methodology, three simulation scenarios are considered. A 

discontinuum model with explicit joint sets is analyzed first using the 3DEC code. The obtained 

results are compared with a continuum FLAC3D simulation, which is assigned the equivalent 

orthotropic parameters determined for each cubic fractured region of the model discretization 

using the VRM laboratory. During the homogenization process, the orientations of the orthogonal 

planes of symmetry are determined and the equivalent orthotropic parameters are calculated from 

the compliance matrix rotated to the principal directions of material symmetry. That way, the 

influence of the non-orthogonal components of the compliance matrix (i.e., the off-diagonal matrix 

coefficients, excluding those in the top-left 3×3 submatrix which involve the Poisson’s ratios) is 

taken into account (see Chapter 3.4.1.3). On the other hand, it is customary to calculate the 

equivalent continuum parameters from the compliance matrix directly obtained in the coordinate 

axes of the model or, in the case of analytical homogenization methods, in the Cartesian coordinate 

system, where the contribution of the non-orthogonal components is totally neglected. Thus, to 
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assess the impact of the non-orthogonal components on the deformation behavior of the caprock, 

another FLAC3D continuum model is analyzed, assuming the principal directions of anisotropy 

oriented in the model axes direction, with the equivalent parameters determined from the 

compliance matrix directly measured in the coordinate system of the model. 

4.5.1.3 Numerical analysis results 

The vertical displacement fields developed in the caprock obtained in the simulations of 

the three analyzed scenarios, discontinuum and continuum models, are plotted in Figure 4.11. As 

expected, the deformation behavior of the caprock observed in the 3DEC discontinuum model is 

clearly anisotropic due to the influence of the three explicit joints sets. This behaviour is also 

captured in the FLAC3D continuum model with equivalent orthotropic parameters determined after  

 

 

Figure 4.11—Vertical displacement fields developed in the caprock corresponding to the three 

analyzed simulation scenarios, the 3DEC discontinuum model and the two FLAC3D continuum 

models, one with the VRM laboratory equivalent orthotropic parameters and the other with the 

parameters determined from the non-rotated matrix assuming the model axes as principal 

directions of material symmetry. Note that the displacement contours are plotted in 1 mm 

increments and the perspective views show magnified deformations. 
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the homogenization process using the VRM laboratory. Conversely, the anisotropic deformation 

is not observed in the continuum model with the orthotropic parameters calculated directly from 

the non-rotated compliance matrix, neglecting the non-orthogonal components. Furthermore, the 

displacement orientation and magnitudes are in good agreement between the discontinuum 

simulation and the continuum model with VRM laboratory equivalent parameters, where the 

largest discrepancies in the observed displacement magnitudes are lower than 4% (i.e., smaller 

than 2 mm difference in 50 mm magnitudes). However, only the vertical displacement magnitude 

is fairly captured just over the steam chamber at the bottom of the continuum model that assumes 

the model axes as principal directions of material symmetry, disregarding the non-orthogonal 

components of the compliance matrix. 

4.5.2 Hydro-Mechanical coupled analysis of a fractured formation with a DFN 

A fractured rock formation with an embedded DFN is analyzed here, using the proposed 

coupling methodology, to study the effect of the hydro-mechanical behavior of fractures implicitly 

included in reservoir geomechanical coupled simulations. 

4.5.2.1 Geometry and properties for the flow and geomechanical models 

The modelled reservoir formation consists in a volume of 200×100×100 m3 (in the 

coordinate directions x, y and z) which is discretized for the flow simulator in a grid of 20×10×10 

cubic elements. For the geomechanical simulator, the formation is extended by the addition of a 

top layer of zones of 10 m height, an overburden of 50 m, an underburden of 50 m and sideburdens 

of 50 m each, giving a model of 300×200×210 m3 discretized in 30×20×21 cubic elements or zones 

(of 10 m3 each). Disregarding the top layer of zones in the geomechanical grid, both models are 

centered at the origin in the horizontal directions and at a depth of -2600 m in the vertical direction 

(Figure 4.12). The parameters of the fluid and intact material used in the coupled simulations are 

summarized in Table 4.2. The properties for the mechanical and flow models are based on the 

reservoir formation reported in Rangriz Shokri et al. (2019). 
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Figure 4.12—Model domain implemented in the RGRG platform for the numerical grid 

generation of the rock formation in the geomechanical and the reservoir simulators. The right 

side of the picture shows the dimensions of the top layer, overburden, underburden and 

sideburdens of the geomechanical model enclosing the reservoir model.  

4.5.2.2 Initial and boundary conditions 

All the reservoir boundaries are set to impermeable in the flow simulator. The vertical 

boundaries of the geomechanical model are fixed in their normal direction (i.e., roller boundaries) 

and the bottom boundary is totally fixed in all directions; conversely, the top boundary is free to 

move in any direction. The gravitational loads are included in the simulations by setting a gravity 

of 9.81 m/s2. In the geomechanical grid, the zones of the top layer just above depth -2500 m are 

set with a density of 650000 kg/m3 to simulate the equivalent load of an overburden of 2500 m 

height and density 2600 kg/m3 on the level -2500 m. The initial in situ stress field has been installed 

in the model assuming the principal stresses aligned with the coordinate axes, where the maximum, 

intermediate and minimum stresses are oriented in the Z, X and Y axes, respectively. In the model, 

the principal stresses increase with depth due to the gravitational gradient. The vertical stresses 

result from the load of the top layer of high density zones and the gravitational load of the 
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remaining zones, which are modeled with a bulk density of 2552 kg/m3 (see Table 4.2). The ratio 

between the maximum horizontal to vertical stress is set to 0.72 (in the x-direction), while the 

minimum horizontal to vertical stress ratio is set to 0.52 (in the y-direction). Thus, the stresses at 

the center of the model, at -2600 m depth, result in 66.3z vσ σ   MPa, 47.7x Hσ σ   MPa, 

34.5y hσ σ   MPa. Additionally, the initial pore pressure increases gradually with depth in the 

model, following the pressure gradient of 9.81 kPa/m. The pore pressure calculated at the center 

of the model is 25.5p   MPa, assuming fully saturated conditions. 

Table 4.2—Intact material and fluid properties. 

Property Value 

Young’s modulus E , (GPa) 26 

Poisson’s ratio ν , (-) 0.2 

Porosity , (%) 3 

Biot’s coefficient b , (-) 0.75 

Fluid bulk modulus fK , (GPa) 2.3 

Fluid viscosity μ , (Pa∙s) 0.001 

Permeability k , (m2) 1.974 ∙ 10–18 

Solid density sρ , (kg/m3) 2600 

Fluid density fρ , (kg/m3) 1000 

Bulk density * 
bρ , (kg/m3) 2552 

* The bulk density is calculated as:  1b s fρ ρ ρ     

4.5.2.3 Embedded fracture network in the rock formation 

The system of fractures embedded in the rock formation is modeled using the DFN module 

of the 3DEC code (Itasca 2016). The fractures are considered as circular structural features and 

arranged in three joint sets. In the DFN model, the circular fractures of the joint sets are assumed 

uniformly distributed over the model domain. They are oriented with the dip and dip-direction 

angles following a Gaussian distribution. A power law distribution with a scaling exponent of 4 is 

used for modelling the fracture size. The minimum and maximum fracture diameters in the model 

are 5 m and 150 m, respectively. The fractures are generated so that the reservoir volume domain 
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contains a total of 1800 embedded fractures, where 700 fractures correspond to joint set J1, 600 

fractures to joint set J2 and 500 to joint set J3 (Figure 4.13). After fracture generation, the average 

diameter length considering all fractures resulted in 13.5 m. A summary of the parameters used 

for the DFN generation in 3DEC is shown in Table 4.3. 

 

Figure 4.13—Generation of the circular fractures embedded in the reservoir volume domain and 

single plots of the three DFN joint sets. 

 

Table 4.3—Input parameters for the generation in the 3DEC DFN module of the joint sets 

embedded in the rock formation. 

DFN Orientation (Gaussian distribution) Fracture size (power law distribution) 

Joint 

set 

Number 

of joints 

Dip angle (°) 

(Mean, SD) 

Dip-direction (°) 

(Mean, SD) 

Scaling 

exponent α 

Fracture diameter (m) 

(Minimum - Maximum) 

J1 700 (60, 5) (60, 10) 4 (5 - 50) 

J2 600 (80, 5) (210, 10) 4 (10 - 100) 

J3 500 (15, 5) (130, 10) 4 (15 - 150) 
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4.5.2.4 Analyzed coupled cases 

Based on the analyses presented in Rangriz Shokri et al. (2019), for the numerical cases 

investigated here, a fluid injection is simulated close to the center of the reservoir flow model. The 

injection point of the horizontal well is located at the zone with centroid coordinates at x = -5 m, 

y = -5 m and z = -2605 m depth (Figure 4.14). A bottomhole pressure of 38.5 MPa is assigned to 

the injector well of 10 cm diameter, leaving a pore pressure increment of 13 MPa between the 

injection point and the fractured formation. The injector well is kept opened during the whole flow 

simulation. 

 

Figure 4.14—Geomechanical and reservoir domains showing the injection well perforated in the 

flow model and the injection point location with the coordinate units given in meters. 

 

To analyze several simulation scenarios, different parameters have been assigned to the 

joint constitutive model of the fractures during the homogenization process in the mechanical and 

flow modules of the VRM lab. The first simulation case (Case 1) assumes the fracture mechanical 
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behavior as linear elastic (LE) with a constant joint shear stiffness of sk  7.56 GPa/m and normal 

stiffness of nk 18 GPa/m, where the minimum normal stiffness governing the normal 

deformability behavior of fractures under tensile stresses are determined through Eq. (4.4). A 

proportionality factor of λ  0.001 is used in Eq. (4.5) to determine the maximum normal 

stiffnesses. For simplicity, the average fracture radius length of the DFN fractures is used to 

calculate the minimum normal stiffness 
min
nk for all the fractures. Using the intact rock elastic 

parameters in Table 4.2 and the average radius of 6.75 m (from the measured average diameter 

length of 13.5 m) results in a 
min
nk  of 2.4 GPa/m. For modelling the fluid flow through the fractures, 

the change in mechanical aperture is considered the same as the change in hydraulic aperture. The 

initial hydraulic aperture 0a  is set to 0.4 mm in all the DFN fractures and the seating load A at zero 

joint closure is set to 101325 Pa (that is, 1 atm). The hydraulic aperture bounds for computational 

efficiency during the simulation (Figure 4.3), i.e., the residual value resa  and a maximum aperture 

maxa  are set to 0.1 mm and 3 mm, respectively.  

For the second simulation case (Case 2), a nonlinear elastic (NonLE) joint constitutive 

model is assigned to the normal deformation behavior of the fractures under effective compressive 

stresses. Setting the B parameter in Eq. (4.2) to 18.9 (1/mm) gives the following linear relationship 

18.9nk σ  between the joint normal stiffness and the effective compressive stress, and 

consequently the exponential expression 
18.9

0.101325 Ju
σ e   that describes the nonlinear joint 

closure under compression (Eq. (4.1)). Note that the stresses in the previous expressions 

correspond to effective stresses, since the RGRG platform sends the effective stresses determined 

in the geomechanical simulator (FLAC3D) as input for the VRM lab. The rest of the mechanical 

and fluid flow parameters are the same as in the previous LE Case 1. Figure 4.15 shows the joint 

constitutive models assigned to both simulation cases and the initial hydraulic aperture at zero 

closure under 1 atm normal load. Observe that since the maximum bound is 3 mm, only the residual 

hydraulic aperture limit is shown in the plot due to the scale of the joint closure axis. 

A third case (Case 3) is modelled with the same parameters as the previous NonLE Case 

2; however, in this case the mechanical and flow parameters are updated during the simulation. 
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Additionally, to assess the effect of the plastic deformation of the DFN fracture, two extra cases, 

4 and 5, have been analyzed. These cases are modelled with the same parameters and properties 

as the second and third cases, respectively; however, the Mohr Coulomb-slip joint model (MC) 

available in 3DEC is assigned to the DFN joints. The plastic parameters of the MC joint 

constitutive model are summarized in Table 4.4 (see Itasca 2016 for details of the MC joint model). 

The residual properties are assumed the same as the initial input properties. 

 

 

Figure 4.15—Joint constitutive models for the normal deformation behavior of fractures in the 

first (LE) and second (NonLE) simulation cases. The minimum joint stiffness of 2.4 GPa/m is 

the considered the same in both cases. The initial 0a  and residual resa  hydraulic apertures are 

shown at 0.0 mm and 0.3 mm joint closure, respectively. Note that the maximum hydraulic 

aperture maxa = 3 mm is omited since it is out of scale with respect to the joint closure axis. 
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Table 4.4—Plastic parameters for the Mohr Coulomb-slip joint model (MC) assigned to all the 

DFN joints in the Case 4 and Case 5. 

Joint parameter Value 

Friction angle** φ , (°) 25 

Cohesion c , (MPa) 0.5 

Tensile strength tσ , (MPa)  0.1 

Dilation angle ψ , (°) 5 

Zdilation * ucs , (mm) 3 

*   Maximum shear displacement limit (Zdilation) after which the 

dilation angle is set to zero (Itasca 2016). 

** Corresponds to the peak friction angle. 

 

4.5.2.5 Simulation results 

The development of pore pressure changes during the simulation at the injection point is 

shown in Figure 4.16 for the cases: linear elastic (LE), nonlinear elastic (NonLE) and nonlinear 

elastic with updated parameters (NonLE Updated). The results corresponding to Case 4 and Case 

5 are not explicitly plotted in the previous figure, since they show virtually the same results of 

Case 2 (NonLE) and Case 3 (NonLE Updated) respectively. The equivalent hydro-mechanical 

continuum parameters are updated in the Case 3 for all the discretization fractured regions at the 

simulation stages of 40 and 200 hours of fluid injection. For the Case 1, the results show an earlier 

build-up in pore pressure at the injection point during the initial stages of the simulation; however, 

the final bottomhole pressure of 38.5 MPa is reached roughly 200 hours later than the other cases. 

The cases 2 and 3 show the same results at the initial stages, while the pore pressure is developed 

slightly earlier at the stages were the parameters are updated in Case 3 compared to Case 2. Figure 

4.17 shows the cross-sectional views of the XZ-plane cutting through the injection point 

representing the pore pressure development after 10 hours for the cases 1, 2 and 4 (cases 3 and 5 

are excluded, since the first parameters update is conducted in the simulations after 40 h of fluid 

injection). It can be seen that the build-up in pore pressure in the Case 1 is developed through the 

reservoir later than in the other cases. In addition, the Case 4 result is the same as the Case 2, 
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showing that the reservoir behaves as elastic at this simulation stage. The cross-sectional views of 

the build-up in pore pressure after 100 hours of fluid injection are presented for all the cases in 

Figure 4.18. There, the pore pressure is developed earlier in Case 3, following the Case 2 and later 

in the Case 1, which is in agreement with the results in Figure 4.16. Moreover, the cases 4 and 5 

show a pore pressure build-up slightly earlier than case 2 and 3 respectively. 

The displacements measured at three points located at coordinates (50,0,-2600), (0,50,-

2600), (0,0,-2550), that is, at +50 m from the model center (0,0,-2600) in the x, y and z directions 

are shown in Figure 4.19, Figure 4.20 and Figure 4.21. In those figures, the vertical displacements 

(roughly 20 mm) are larger than the horizontal displacements. Also, the displacements in the x-

direction (about 2.3 mm) are smaller than those in the y-direction (approximately 7.5 mm). 

Moreover, the horizontal displacements in the Case 1 are slightly larger than in cases 2 and 3. 

However, the vertical displacements are considerably larger in the Case 1 than in the other cases. 

 

Figure 4.16—Evolution of the pore pressure measurements at the injection point (-5,-5,-2605) 

during the simulation for the linear elastic (LE) Case 1, the nonlinear elastic (NonLE) Case 2 and 

the nonlinear elastic with updated parameters (NonLE Updated) Case 3. 
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Figure 4.17—Cross-sectional views at XZ-plane of the pore pressure changes developed after 10 

hours of fluid injection in Case 1, Case 2 and Case 4. 

 

Figure 4.18—Cross-sectional views at XZ-plane of the pore pressure changes developed after 

100 hours of fluid injection in all the analyzed cases. 
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To study the influence of the orientation of the principal directions of material symmetry 

on the deformation behavior of the fractured formation, several cross-sectional views of the 

reservoir displacement fields resulting after 2000 hours of fluid injection are shown in Figure 4.22, 

Figure 4.23 and Figure 4.24. The anisotropic deformation is clearly not aligned with the model 

coordinates in the displacement field in the x-direction of the Case 1 (Figure 4.22), but less evident 

in the y-direction (Figure 4.23) and vertical displacements (Figure 4.24). On the other hand, the 

displacements field in cases 2 and 3 are virtually oriented in the coordinate system of the model. 

 

 

Figure 4.19—Evolution of horizontal displacements in the x-direction at the point located at 

coordinates (50,0,-2600), i.e., at x=50m from the model center, for Case 1 (LE), Case 2 (NonLE) 

and Case 3 (NonLE Updated). 
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Figure 4.20—Evolution of horizontal displacements in the y-direction at the point located at 

coordinates (0,50,-2600), i.e., at y=50m from the model center, for Case 1 (LE), Case 2 (NonLE) 

and Case 3 (NonLE Updated). 

 

Figure 4.21—Evolution of vertical displacements (z-direction) at the point located at coordinates 

(0,0,-2550), i.e., at 50m in the z-direction from the model center, for Case 1 (LE), Case 2 

(NonLE) and Case 3 (NonLE Updated). 



123 

 

 

Figure 4.22—Cross-sectional views of the horizontal displacement fields in the x-direction 

developed after 2000 hours of fluid injection in Case 1, Case 2 and Case 3. 
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Figure 4.23—Cross-sectional views of the horizontal displacement fields in the y-direction 

developed after 2000 hours of fluid injection in Case 1, Case 2 and Case 3. 
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Figure 4.24—Cross-sectional views of the vertical displacement fields developed after 2000 

hours of fluid injection in Case 1, Case 2 and Case 3. 
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4.6 Discussion and limitations 

The influence of the three joint sets in the deformability of the rock mass in the initial 

mechanical analysis is revealed in the notable anisotropic behavior observed during the 3DEC 

discontinuum simulation. Moreover, the orientation of the resultant anisotropic deformation is not 

aligned with the coordinate system of the model, even though the displacements are constrained 

in the normal direction to the vertical boundaries. The results of the displacement fields obtained 

in the FLAC3D continuum model with the VRM laboratory equivalent orthotropic parameters fairly 

capture the displacement magnitudes and clearly reflect the anisotropic deformation of the 3DEC 

model. Furthermore, the vertical displacement fields observed in the three analyzed scenarios 

(Figure 4.11) also show that disregarding the non-orthogonal components of the compliance matrix 

—as customary— by assuming the model axes as principal directions of material symmetry, 

results in misleading deformation orientations and behaviors of the fractured rock formation. These 

results show the capability of the proposed methodology implemented in the RGRG coupling 

platform for modelling and capturing the deformation behavior of a fractured rock mass through 

equivalent continuum orthotropic parameters. 

The evolution of displacements obtained at the three measurement points in the hydro-

mechanical coupled cases (Figure 4.19, Figure 4.20 and Figure 4.21) shows that the smallest 

deformations are oriented in the x-direction, followed by those in the y-direction, whereas the 

largest deformations are found in the z-direction. The observed large vertical displacements are 

due to the presence of the large-size sub-horizontal fractures corresponding to the joint set J3 

(Figure 4.13; Table 4.3); while, the intermediate-size circular fractures of the sub-vertical joint set 

J2 are responsible of the moderate y-displacements, since their joint plane orientations are closer 

to the ZX-plane. The low-size inclined fractures of the joint set J1 are oriented in a way that their 

contribution to the deformability mainly affects the vertical and x-displacements. Consequently, 

the overall deformation response of the equivalent orthotropic discretization regions in the 

geomechanical simulator is more compliant in the vertical direction and stiffer in the x-direction. 
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The effect of the non-linear fracture deformability is also observed in the displacement 

evolutions, where the linear elastic Case 1 shows the largest displacements after 2000 hours of 

fluid injection compared to the other cases that present virtually the same final displacements. This 

behavior is due to the constant normal stiffness of 18 GPa/m assigned to the fractures during the 

determination of the equivalent continuum parameters with the VRM laboratory for the LE Case 

1. Furthermore, the joint normal stiffnesses assigned to the fractures in the nonlinear cases are 

significantly stiffer, since, according to Figure 4.15, the effective stress fields input to the VRM 

lab result in effective normal compressive stress levels (acting on the fractures) lying on the steeper 

side of the exponential curve. Note that the effective normal stress level required to obtain the 

normal stiffness of 18 GPa/m (as in the Case 1) in the nonlinear exponential function used in the 

cases 2 and 3 is roughly about 1 MPa; while the minimum principal effective stress at initial 

conditions and model center is considerably much larger (approximately 15 MPa, accounting for 

the initial stress field, pore pressure and Biot effective stress coefficient). In addition, since the 

pore pressure increases during the simulation, the effective stresses decrease, leading to joint 

normal stiffnesses during the parameters updated in the NonLE Updated Case 3 slightly lower than 

those in the NonLE Case 2. These differences in joint normal stiffnesses imply equivalent 

continuum parameters more compliant in the Case 1 and stiffer in the cases 2 and 3. Also, the 

deformability parameters of the equivalent continuum regions are found closer to the intact rock 

properties, since the number and size of DFN fractures included in the simulations have a mild 

influence in the rock mass deformation. Thus, the fracture influence on the update of the Biot’s 

effective stress coefficient tensor is found negligible. As consequence of the stiffness differences 

between the linear elastic and nonlinear elastic cases, the cross-sectional views of the reservoir 

displacement fields resulting after 2000 hours of fluid injection (Figure 4.22, Figure 4.23 and 

Figure 4.24) show a clear anisotropic deformation behavior which is oriented in the coordinate 

system of the model for the stiffer Case 2 and Case 3, while it is not aligned with the model axes 

for the more compliant Case 1.  
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The different deformability behaviors of the DFN fractures have an important influence in 

the equivalent permeability parameters and therefore in the pore pressure development throughout 

the reservoir in the analyzed cases. In general, large joint normal stiffnesses prevent significant 

joint closures, and at the same time avoid large changes in hydraulic apertures. In the Case 1, the 

DFN fractures are virtually closed under the initial effective stress field; and thus, all of them reach 

the residual hydraulic aperture limit of 0.1 mm (Figure 4.15). On the other hand, the hydraulic 

apertures of the fractures in the nonlinear elastic cases have values close but different to the 

residual aperture due to the high joint normal stiffnesses resultant from the effective stress field. 

The hydraulic apertures in the nonlinear cases with the updated parameters are slightly larger than 

the apertures in the other nonlinear cases, since the fractures are slightly more compliant during 

the parameters update due to the decrease of effective stresses (as already discussed above). The 

different changes in hydraulic aperture in the studied cases lead to lower equivalent permeability 

parameters determined in the VRM lab for the Case 1 and larger permeability parameters in the 

nonlinear elastic cases, where those cases with the permeability update show the largest values. 

The effect of different equivalent permeability parameters can be observed in Figure 4.16, 

where the pore pressure at the injection point is developed slightly earlier in the NonLE Updated 

Case 3 than in the NonLE Case 2, followed by a significantly later build-up in pore pressure in the 

least permeable Case 1. Also, in agreement with the permeability parameters determined for the 

analyzed cases using the VRM laboratory, the cross-sectional views of the pore pressure build up 

throughout the reservoir (Figure 4.18) show a later pore pressure development in the Case 1, 

followed by the Case 2 and an earlier development in the Case 3. Additionally, the pore pressure 

build-up is slightly earlier in the Case 4 than in the Case 2. Similarly, the same observation applies 

for the Case 5 and Case 3. This response is explained by the fracture plastic deformation observed 

only in a small number of fractured regions during the hydraulic homogenization process 

conducted using the VRM lab. The small number of discretization regions with fractures at failure 

regime is due to the DFN fractures planes which are not critically oriented with respect to the 

effective stress field. The critical fracture orientation corresponds to the plane with zero (or 180 
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degrees) dip direction and 32.5 degrees dip angle for the initial effective stress field and the 

parameters of the Mohr Coulomb-slip joint model (Table 4.4). However, as the pore pressure 

evolves throughout the model the effective stresses decrease, increasing the number of fractures at 

failure regime during the permeability update in the Case 5. This is observed in the Figure 4.18 

comparing the differences in pore pressure development between cases 5 and 3. The cases studied 

here show that even though the DFN fractures have a lower impact on the deformability of the 

rock mass, compared to the initial mechanical analysis, they can have an important effect on the 

equivalent permeability parameters and thus a significant impact in the hydraulic behavior of the 

fractured rock formation. 

Although the hydraulic module of the VRM lab determines the full permeability tensor 

during the hydraulic homogenization process, the coupling methodology presented here disregards 

the off-diagonal components of the permeability tensor, since the flow simulator only allows to 

input the permeability components in the directions of the coordinate system of the model. The 

impact of this limitation on the hydraulic behavior of a fractured formation was observed by 

Rutqvist et al. (2013) during the analysis of a continuum model with homogenized parameters 

using the analytical Oda’s crack tensor approach. They compared the continuum model results 

with alternative DFN model simulations and found that the flow rate measured in their continuum 

model was about 70% of the DFN model results when the homogenized regions contain few 

fractures; nevertheless, this discrepancy decreases with the increase in number of fractures. To 

overcome this limitation, the multi-point flux approximation technique (Aavatsmark 2002) can be 

implemented in the RGRG coupling platform. 

The mechanical module of the VRM lab implemented in the coupling methodology 

presented here is developed for the homogenization of discontinuum regions assuming the intact 

rock and fractures are elastic, while the capability to include the effect of plastic fracture 

deformations is only implemented in the VRM lab hydraulic module. Thus, the continuum 

geomechanical simulator is limited to model the fractured formation through an equivalent 

orthotropic elastic material. This limitation is due to the challenging and time-consuming process 
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of determining the plastic failure characteristics such as defining a suitable anisotropic yield 

envelope and plastic potential in compression and tensile regimes for each discontinuum 

discretization region. 

4.7 Summary and conclusion 

A coupling strategy and methodology have been presented here for the inclusion of the 

hydro-mechanical behavior of discrete fracture networks in reservoir geomechanical simulations 

of fractured porous formations through numerical homogenization of rock mass discontinuum 

regions using a VRM laboratory. A nonlinear elastic joint constitutive model has been 

implemented in the VRM lab to simulate a deformation behavior of the DFN fractures closer to 

experimental observations and it has been verified against the analytical solution. The VRM 

hydraulic lab has been introduced and validated here against the analytical Oda’s crack tensor 

approach, showing its ability for accurately determining the full equivalent permeability tensor of 

discontinuum models with embedded DFN fractures totally oblique to the coordinate system of 

the model. 

A mechanical analysis has been conducted to assess the capability of the proposed 

methodology for modelling and capturing the deformation behavior of a fractured rock mass 

through equivalent continuum orthotropic parameters. The results show that the geomechanical 

continuum model with the VRM laboratory equivalent orthotropic parameters fairly captures the 

anisotropic deformation response of the fractured rock mass. Moreover, assuming the model axes 

as principal directions of material symmetry and therefore disregarding the non-orthogonal 

components of the compliance matrix, results in misleading deformation orientations and 

behaviors of the fractured formation. 

The importance of modelling the DFN fractures as nonlinear elastic has been observed in 

the hydro-mechanical coupled simulations. The analyzed cases show that assigning a linear elastic 

constitutive model to the fractures results in larger mechanical joint closures and smaller hydraulic 
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apertures, since the fractures are assigned joint normal stiffnesses lower than those obtained in the 

nonlinear cases that take into account the impact of the effective confinement on the fracture 

normal deformation behavior. Therefore, modelling fractures as nonlinear elastic results in higher 

equivalent permeability parameters obtained through the hydraulic homogenization process and 

consequently leads to a faster build-up in pore pressure in the reservoir model. The update of 

equivalent continuum parameters as well as the plastic fracture deformations slightly improve the 

permeability and pore pressure development throughout the rock formation. Additionally, the DFN 

fractures included in the coupled simulations show a lower impact on the deformability of the rock 

mass compared to the initial mechanical analysis. As consequence, the fracture influence on the 

update of the Biot’s effective stress coefficient tensor has been found negligible in these cases. 

Besides, the fractured reservoir shows a clear anisotropic deformation, which is oriented in the 

coordinate system of the model in the nonlinear cases while is not aligned with the model axes in 

the linear elastic case. 

The reservoir geomechanical coupling methodology presented here involves a VRM 

laboratory for the numerical characterization of the mechanical and hydraulic equivalent 

continuum properties of fractured porous media. The VRM lab has been proposed as a numerical 

alternative to the traditional homogenization or upscaling processes using analytical methods, such 

as the Oda’s crack tensor approach, which usually disregard the effect of fracture interactions and 

nonlinear fracture deformations. Finally, the VRM lab is capable of determining the equivalent 

continuum parameters of a fractured region including not only circular joints, but also fractures of 

any geometry and shape. 
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5 Conclusions 

5.1 Summary 

An explicit sequential coupling scheme has been presented for accurately modelling the 

thermo-poromechanical behaviour of anisotropic porous formations in complex reservoir 

geomechanical simulations. The scheme has been implemented in a numerical coupling platform 

developed at the University of Alberta by the reservoir geomechanics research group, RGRG. In 

this coupling platform two widely used commercial software, the reservoir simulator CMG – 

STARS and the continuum geomechanical simulator Itasca – FLAC3D, are coupled together 

through a porosity correction strategy based on the fixed stress split method, which enjoys 

excellent stability and convergence properties. The generalized tensorial form of the Biot effective 

stress coefficient, disregarded in most numerical coupling methods, is rigorously included in the 

thermo-poromechanical coupling formulation. The explicit sequential coupling scheme 

implemented in the RGRG coupling platform has been successfully verified against analytical 

solutions of the mechanical and thermal consolidation problems for isotropic and anisotropic 

materials, as well as the Mandel’s problem for transversely isotropic porous media, where the 

anisotropic effect of the Biot tensor and the symmetry plane orientation has been assessed. 

The explicit inclusion in large reservoir geomechanical coupled simulations of all the 

structural features present in a fractured porous media usually leads to prohibitive simulation 

times, high demanding computational power and large memory requirements. To overcome these 

limitations, the fractured rock is often replaced by an equivalent continuum that implicitly includes 

the hydraulic and mechanical behaviour of the fracture network. Traditionally, upscaling or 

homogenization procedures based on analytical methods are used for the hydro-mechanical 

characterization of the equivalent continuum model; however the analytical approach usually 

disregards the effect of fracture interactions and nonlinear fracture deformations, as well as it is 

generally restricted to fractures of particular shape and geometry. Also, the analytical 

characterization usually relies on the existence of a representative elementary volume, REV, which 
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is not always granted particularly in rock formations with large disparity of fracture sizes. 

Therefore, a virtual rock mass numerical laboratory, VRM lab, has been presented here to 

determine the hydro-mechanical equivalent continuum parameters of the discontinuum regions 

corresponding to a suitable discretization of the fractured rock formation for the purpose of the 

engineering analysis, independently of the REV scale. 

The VRM lab has been developed for the numerical homogenization process of all the 

discretization fractured regions using the commercial discontinuum geomechanical simulator 

Itasca – 3DEC. A mechanical module as well as a hydraulic module have been included in the 

VRM lab. The VRM mechanical laboratory is able to determine numerically the equivalent 

orthotropic parameters of any rectangular parallelepiped representing a specific region of the 

fractured rock, assuming the fractured regions can be represented by an equivalent continuum 

material with orthotropic symmetry. On the other hand, the VRM hydraulic laboratory is 

developed to determine the full equivalent permeability tensor of fractured regions, even with 

embedded fractures totally oblique to the coordinate system of the discontinuum model. Besides 

the linear elastic model, the fractures in the VRM lab can be assigned a nonlinear elastic joint 

constitutive model that has been added to the VRM lab for simulating fracture deformation 

behaviors closer to experimental observations. This nonlinear elastic constitutive model has been 

verified against the analytical solution. To account for nonlinear fracture deformations in the 

homogenization process conducted in the VRM lab, the fractured regions are tested after the 

effective in situ stress field is installed in the numerical discontinuum model. Additionally, plastic 

fracture deformations are only accounted for the equivalent permeability in the VRM hydraulic 

lab. Both modules of the VRM lab, the mechanical and hydraulic, have been successfully validated 

against the analytical Oda’s crack tensor approach. During the development of the VRM lab, 

special attention has been given to the accuracy of the measurements. 

To implicitly include the hydro-mechanical behaviour induced by the presence of discrete 

fracture networks in coupled reservoir geomechanical simulations of fractured porous formations, 

the VRM laboratory has been added to the explicit sequential coupling scheme implemented in the 
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RGRG coupling platform. Thus, the discontinuum regions representing the discretization of the 

fractured formation are modelled as equivalent porous media with anisotropic continuum 

properties determined through the mechanical and hydraulic modules of the VRM laboratory. In 

this reservoir geomechanical coupling strategy and methodology, the equivalent permeability, 

anisotropic elastic parameters as well as the Biot effective stress coefficient tensor can be updated 

at specific simulation stages in all the fractured reservoir regions or only in those where the change 

in the effective stress field reaches a certain tolerance. 

5.2 Concluding remarks 

The following conclusions may be drawn from this study: 

 The explicit sequential coupling scheme implemented in the RGRG coupling 

platform has been successfully verified against analytical solutions. The 

mechanical consolidation cases show substantially smaller surface settlement in the 

anisotropic case compared to the isotropic case. The capability of the coupling 

method to simulate the interaction between thermo-poromechanical coupled 

processes has been shown in the thermal consolidation case. 

 The numerical simulations of the Mandel’s problem with a transversely isotropic 

material show that by increasing the Biot’s elastic parameters, that is Biot modulus 

and Biot tensor coefficients, the excess pore pressure increases whereas the 

undrained vertical consolidation of the anisotropic porous formation decreases. 

Also, changing the isotropic plane orientation entails different undrained pore 

pressure responses and final drained vertical consolidations. 

 The previous observations demonstrate the importance of properly modelling the 

effect of material anisotropy in thermo-poromechanical coupled simulations. 

Moreover, the methodology presented here is required to correctly model stress-

sensitive reservoirs involving anisotropic porous formations. 
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 The mechanical and hydraulic modules of the VRM lab have been successfully 

validated against the analytical Oda’s crack tensor approach. It has been found that 

the Oda’s method can be used with confidence in fractured rocks with embedded 

fully persistent joint sets with linear elastic behaviour, where the non-interaction 

approximation is assumed valid. However, the Oda’s crack tensor approach 

generally overestimates the equivalent elastic compliance of fractured formations 

with intersecting finite circular fractures with different sizes and orientations. 

 The measuring procedure implemented in the VRM mechanical lab for determining 

the equivalent compliance matrix gives more accurate results than the traditional 

measurement techniques used in previous studies which usually yield non-

symmetric compliance matrix.  

 The VRM mechanical lab is able to capture with a great deal of fidelity the small-

scale variability of the deformational response of fractured rock formations with a 

fine-scale discretization. 

 The VRM hydraulic laboratory has the capability to determine the full equivalent 

permeability tensor of fractured regions, even with embedded fractures totally 

oblique to the coordinate system of the discontinuum model. 

 Additionally, the VRM lab is not restricted to the homogenization of fractured 

regions but it could also be used to determine the REV scale and upscaling the 

equivalent continuum properties of the fractured porous formation.   

 Disregarding the non-orthotropic coefficients of the compliance matrix in the 

calculation of the equivalent orthotropic parameters by assuming the model axes as 

principal directions of material symmetry usually yield misleading results. 

Moreover, neglecting the non-orthotropic coefficients may lead to similar elastic 

moduli suggesting the isotropic behaviour of the fractured rock, while the real 
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mechanical behaviour may be anisotropic. Thus, the non-orthotropic compliance 

coefficients and the principal directions of material symmetry must be taken into 

account in the mechanical characterization of fractured rock masses. 

 A coupling strategy and methodology have been presented here for the inclusion of 

the hydro-mechanical behavior of discrete fracture networks in reservoir 

geomechanical simulations of fractured porous formations through hydraulic and 

mechanical equivalent continuum parameters determined by the numerical 

homogenization of rock mass discontinuum regions using a VRM laboratory. The 

capability of the proposed methodology implemented in the RGRG coupling 

platform for modelling and capturing the deformation behavior of a fractured rock 

mass through equivalent continuum orthotropic parameters has been demonstrated 

in the initial mechanical analysis. 

 The conducted hydro-mechanical coupled simulations show that modelling 

fractures as nonlinear elastic results in higher equivalent permeability parameters 

and pore pressure build-up, since linear elastic fractures are usually more compliant 

allowing large joint closures and giving smaller hydraulic apertures. Also, updating 

the equivalent continuum parameters as well as the plastic fracture deformations 

slightly improve the permeability and pore pressure development throughout the 

rock formation. 

 The fractured reservoir shows a clear anisotropic deformation, which is oriented in 

the coordinate system of the model in the nonlinear cases while is not aligned with 

the model axes in the linear elastic case. In addition, the fracture influence on the 

update of the Biot’s effective stress coefficient tensor has been found negligible in 

the coupled simulations since the fractures show a lower impact on the 

deformability of the rock mass. 
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 Due to the challenging and time-consuming process of determining the plastic 

failure characteristics such as defining a suitable anisotropic yield envelope and 

plastic potential in compression and tensile regimes for each discontinuum 

discretization region, the continuum geomechanical simulator has been restricted 

to model the fractured formation through an equivalent orthotropic elastic material. 

 The full analytical compliance matrix based on the Oda’s theory has been presented 

in Appendix D. 

5.3 Recommendations for future research 

As previously mentioned above, in the reservoir geomechanical coupling methodology 

presented here the continuum geomechanical simulator is limited to model the fractured formation 

through an equivalent orthotropic elastic material. Therefore, further research would be necessary 

to improve the presented coupling scheme by including a fully anisotropic failure criteria to 

capture the plastic behavior in compression and tensile regimes of the fractured rock formation. 

In this study, the hydraulic behavior of the fractured rock is represented by an equivalent 

continuum media; however, since the VRM hydraulic lab assumes the intact rock material as 

impervious, the resultant measured permeability is only due to the discrete fracture network. 

Therefore, the dual porosity model could be implemented in the sequential scheme of the RGRG 

coupling platform. 

A thermal module could be implemented in the VRM laboratory for numerically 

determining the thermal expansion coefficient tensor of fractured regions to include the thermal 

effect of discrete fracture networks in reservoir geomechanical simulations. 

The VRM laboratory can be combine with machine learning techniques to improve the 

efficiency of the homogenization process for prediction of the hydro-mechanical equivalent 

parameters of fractured porous formations.  
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Appendix A – Plane strain and oedometric conditions for 

anisotropic materials. 

This section shows the reduced form of the compliance matrix and thermal expansion 

tensor for anisotropic materials under plane strain and oedometric conditions. 

Orthotropic Materials: 

An orthotropic material has three orthogonal planes of symmetry, and it is fully defined by 

nine independent material constitutive constants. Adopting the Voigt’s notation, the fourth order 

compliance tensor, ijklS , is usually represented in the following matrix form (Lekhnitskii 1981; 

Ting 1996): 

 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0
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0 0 0 0 0
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 
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 
 
  
 

  (A-1) 

where the coordinate system (1, 2, 3) defines the principal directions of material symmetry. The 

elastic compliance matrix must be symmetric, then: 12 21S S ; 13 31S S ; and 23 32S S . It is 

commonly expressed in terms of Young’s modulus, Poisson’s ratio and shear modulus as: 

 

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

x yx y zx z

xy x y zy z

xz x yz y z

IJ

yz

zx

xy

E ν E ν E

ν E E ν E

ν E ν E E
S

G

G

G

  
 
  
  
 
 
 
 
 
 

  (A-2) 
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where the coordinate axes X, Y and Z are aligned with the principal directions. The shear 

compliances have been defined considering that the shear strain components in the stress-strain 

constitutive formulation correspond to the shear engineering strains: 2yz yz zy yzγ ε ε ε   ; 

2zx zx xz zxγ ε ε ε   ; and 2xy xy yx xyγ ε ε ε    (Lekhnitskii 1981). It should be noted that the six 

Poisson’s ratios are all different, i.e., ij jiν ν , in materials with orthotropic symmetry. 

For unconstrained cases, the expression of the stress-strain relationship in contracted 

notation including thermal effects is: ΔI IJ J Iε S σ α T  ; where the strains, stresses and linear 

thermal expansion are written in column form:  1 2 3 4 5 6, , , , ,
T

Iε ε ε ε γ γ γ ; 

 1 2 3 4 5 6, , , , ,
T

Jσ σ σ σ σ σ σ ; and  1 2 3, , ,0,0,0
T

Iα α α α ; with I and J {1,2,3,4,5,6} representing 

the compliance tensor indices, ij and kl {11,22,33,23,31,12}. 

For two-dimensional models representing the cross-section of an infinitely long body, the 

constitutive equation can be reduced by assuming plane deformations. In these problems, the 

normal direction to the cross-section must be a principal direction of material symmetry 

(Zienkiewicz et al. 2005). Thus, assuming axis 1 to be the out-of-plane direction of the model, the 

stress-strain relation in plane strain conditions ( 1 5 6 0ε γ γ   ), including thermal effects is: 

 

22 23 22 2

3 332 33 3

4 444

0

0 Δ

00 0

ps ps ps

ps ps ps

ps

S S αε σ

ε S S σ α T

γ σS

      
      

       
               

  (A-3) 

where the 
ps
IJS  and 

ps
Iα  are the reduced compliance and thermal expansion coefficients in plane 

strain conditions: 

31 1321 12
22 3322 33

11 11

;ps ps S SS S
S S S S

S S
     

21 13
23 4423 32 44

11

;ps ps psS S
S S S S S

S
     
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31 121 1
2 32 3

11 11

;ps ps S αS α
α α α α

S S
     

or in index notation: 

 
1 1 1 1

11 11

;
I J Ips ps

IJ IIJ I

S S S α
S S α α

S S
      (A-4) 

Analogous reduced stress-strain expressions for the out-of-plane in the direction of axis 2 

and 3 can be obtained through index permutation. 

For one-dimensional problems, the system of coordinates must be aligned with the 

principal directions of material symmetry. Then, the stress-strain law with thermal effects for the 

oedometric condition along the coordinate axes 1, 2 and 3 have the following expressions: 

 

11 12 13 1 12 13

21 22 23 2 22 23

31 32 33 3 32 33
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Δ
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11 12 13 11 1 13

21 22 23 21 2 23

31 32 33 31 3 33
2 2

11 13 11 13

31 33 31 33

Δ

S S S S α S

S S S S α S

S S S S α S
ε σ T

S S S S

S S S S

    (A-6) 
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3 3
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21 22 21 22

Δ

S S S S S α

S S S S S α

S S S S S α
ε σ T

S S S S

S S S S

    (A-7) 

where the terms associated with the stress and temperature are the compliance and thermal 

expansion coefficients in oedometric conditions, respectively. 
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Transversely Isotropic Materials: 

A transversely isotropic material is characterized by five independent material constitutive 

constants and a plane of isotropy. Similarly to the orthotropic case, the elastic compliance matrix 

can be expressed in terms of elastic coefficients in the principal directions. Setting the normal to 

the plane of isotropy in the direction of axis 1: 

 

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

IJ

E ν E ν E

ν E E ν E

ν E ν E E
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   

  
 
 
   

  (A-8) 

where E , ν and G  are Young’s modulus, Poisson’s ratio and shear modulus involving the normal 

direction (axis 1) to the symmetry plane; E , ν and G  are the elastic constants in the plane of 

isotropy (2-3 in this case), with  2 2G E ν  . The shear modulus G  is an independent elastic 

parameter that should be determined through experimental tests; however, it can be estimated with 

the approximate formula (Lekhnitskii 1981): 

 
 1 2

EE
G

E ν E


 

  
  (A-9) 

The reduced strain-stress laws, including thermal effects for plane strain and oedometric 

conditions (2D and 1D problems), can be obtained by substituting the transversely isotropic 

compliance matrix in the previous orthotropic formulation. 
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Appendix B – Orthogonal planes of symmetry 

The principal axes of anisotropy are prescribed in 3DEC by the dip-direction, dip and 

rotation angles that define the orientation of the three orthogonal planes of symmetry for the 

orthotropic elastic model (Itasca, 2016). Analogous to the Roe convention (Roe, 1965), the 

transformation matrix can be obtained through successive rotational transformations of the 

coordinate system until reaching the local orientation of the principal directions of symmetry. 

These sequence starts with the rotation of the dip-direction angle around the z-axis followed by 

the dip angle around the new rotated x-axis and finishing with the rotation angle around the final 

z-axis. Then, the coordinate transformation matrix is calculated by the expression: 

 

cos sin 0 1 0 0 cos sin 0

sin cos 0 0 cos sin sin cos 0

0 0 1 0 sin cos 0 0 1

ij

rot rot dd dd

a rot rot dip dip dd dd

dip dip

    
   

    
   
   

  (B-1) 

which results in:  

cos cos sin cos sin sin cos cos cos sin sin sin

cos sin sin cos cos sin sin cos cos cos sin cos

sin sin cos sin cos

ij

dd rot dd dip rot dd rot dd dip rot dip rot

a dd rot dd dip rot dd rot dd dip rot dip rot

dd dip dd dip dip

   
 

     
 
 

 (B-2) 

where dd, dip and rot are the dip-direction, dip and rotation angles, respectively, according to the 

3DEC convention. Next, the transformation matrix resultant from the eigenvalue problem of the 

compliance contractions, Eqs. (3.6) and (3.7), can be defined as: 

 
11 12 13

21 22 23

31 32 33

ij

a a a

a a a a

a a a

 
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  
 
 

  (B-3) 

where the term 
ija  corresponds to the j-component of the i-eigenvector. Then, the three angles can 

be determined with the following equations derived from the comparison of both expressions of 

the transformation matrix: 

      33 31 32 13 23arccos ; arctan2 , ; arctan2 ,dip a dd a a rot a a      (B-4) 
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In the particular case of dip = 0, the angle rot can be set to 0 and the dd can be calculated as: 

  12 22arctan2 ,dd a a    (B-5) 

The function  arctan2 ,y x  it is usually known as the 2-argument arctangent (or atan2) in 

programing languages. It is equivalent to  arctan y x  where the argument x may be zero and the 

signs of the two arguments  ,y x  are used to define the correct quadrant of the resultant angle, 

(e.g.  arctan2 1,1 4π  and  arctan2 1, 1 3 4π    ). 
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Appendix C – Compliance matrix transformation 

The rotational transformation of the compliance matrix from the global coordinate axes {x, 

y, z} of the model to the local system {x’, y’, z’} of the principal directions of anisotropy is 

expressed as (Ting, 1987): 

 
1TS Q SQ     (C-1) 

consequently, 

 
TS Q S Q   (C-2) 

where S is the compliance matrix in the global coordinate system as shown in Eq. (3.2), Sꞌ is the 

transformed compliance matrix rotated to the principal directions of symmetry as in Eq. (3.5) and, 

Q is the quadratic form of the coordinate transformation matrix 
ija . The superscript –T denotes 

transposition of the inverse matrix. The quadratic transformation matrix is defined as (Ting, 1987; 

Tinder, 2008): 
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with the corresponding inverse matrix expressed as: 
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where 
ija  are the coefficients of the coordinate transformation matrix from the global coordinate 

system to local principal axes of anisotropy. 
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Appendix D – Analytical compliance matrix based on the 

Oda’s theory 

The total elastic compliance tensor ijklS  derived in Eq. (3.14) using the Oda’s crack tensor 

approach can be expressed in matrix form through the summation of the symmetric compliance 

matrices from the intact rock and the fractures. The definition of the compliance matrix for the 

isotropic intact rock is:  
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where  

 
 

11 12 44

2 11
; ;r r r νν

S S S
E E E


     

are the matrix coefficients in terms of the elastic parameters of the intact material. On the other 

hand, the symmetric compliance matrix corresponding to the fractures can be defined as: 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

5515 25 35 45 56

16 26 36 46 56 66

f f f f f f

f f f f f f

f f f f f f
f

IJ f f f f f f

f f f f f f

f f f f f f

S S S S S S

S S S S S S

S S S S S S
S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 
 

  
 
 
 
 
 

  (D-2) 
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where the 21 matrix coefficients are determined from the tensor components defined in Eq. (3.13) 

as follows:  
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V k k k

  
     

  

  
     

  

  
     

  







  (D-6) 
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3
26

3
34

3
35

2 1 1 1
2

2

2 1 1 1
2

2

2 1 1 1
2

2

Nf
f f

yyxy x y x y
n s s

Nf
f f

zzyz y z y z
n s s

Nf
f f

zzxz x z x z
n s s

S S An n An n
V k k k

S S An n An n
V k k k

S S An n An n
V k k k

  
     

  

  
     

  

  
     

  







  (D-7) 

 

 

 

 

2 2 2 2
44

2 2 2 2
55

2 2 2 2
66

4 1 1 1
4

4

4 1 1 1
4

4

4 1 1 1
4

4

Nf
f f

yzyz y z y z
n s s

Nf
f f

xzxz x z x z
n s s

Nf
f f

xyxy x y x y
n s s

S S An n A n n
V k k k

S S An n A n n
V k k k

S S An n A n n
V k k k

  
      

  

  
      

  

  
      

  







  (D-8) 

 

2
45

2
46

2
56

4 1 1 1
4

4

4 1 1 1
4

4

4 1 1 1
4

4

Nf
f f

yzxz x y z x y
n s s

Nf
f f

yzxy x y z x z
n s s

Nf
f f

xzxy x y z y z
n s s

S S An n n An n
V k k k

S S An n n An n
V k k k

S S An n n An n
V k k k

  
     

  

  
     

  

  
     

  







  (D-9) 

where the terms between brackets are evaluated for every fracture with their particular parameters 

during the summation. The xn , yn  and zn  are the components of the normal vector to the fracture 

plane. Traditionally, these components are defined in terms of the direction cosines of the angles 

α, β, γ between the normal vector and the coordinate axes {x, y, z} as: 

 1 2 3cos ; cos ; cosx y zn n α n n β n n γ        (D-10) 

By adding the compliance matrices of the intact rock and fractures defined in Eqs. (D-1) 

and (D-2) and, also substituting the components of the normal vectors with the direction cosines, 

the total elastic compliance matrix S can be expressed in the following block matrix form: 
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3 3 3 3

3 3 3 3
T

A B
S

B C

 

 

 
  
 
 

  (D-11) 

where 3 3
TB   is the transpose of 3 3B  and, 3 3A   and 3 3C   are both symmetric. These blocks or 

submatrices are given by:  

2 2
2 2 2 2 2

2 2
2 2 2

3 3

1 1 cos sin 1 1 1 1 1 1
cos cos cos cos cos

1 1 1 1 1 cos sin
cos cos cos

Nf Nf Nf

n s n s n s

Nf

n s n s

α α ν ν
A α A α β A α γ

E V k k E V k k E V k k

ν β β
A A α β A

E V k k E V k k


           
               

           

    
         

    

  

 2 2

2 2
2 2 2 2 2

1 1 1
cos cos

1 1 1 1 1 1 1 1 cos sin
cos cos cos cos cos

Nf Nf

n s

Nf Nf Nf

n s n s n s

ν
β A β γ

E V k k

ν ν γ γ
A α γ A β γ A γ

E V k k E V k k E V k k

 
 
 
 

     
      

      
 

                                       

 

  

 

   

 

2 2
2

2

3 3

cos 2 cos 22 1 1 2 cos 2 cos
cos cos cos cos cos cos cos

2 2

cos 22 cos 2 1 1
cos cos cos

2

Nf Nf Nf

n s n s n s

Nf

n s n s

α αα α
A α β γ A α γ A α β

V k k V k k V k k

ββ
B A β γ A

V k k V k k


         
              

             

    
       

     

  


 

   

2
2

2 2
2

cos 22 cos
cos cos cos cos

2

cos 2 cos 22 cos 2 cos 2 1 1
cos cos cos cos cos cos cos

2 2

Nf Nf

n s

Nf Nf Nf

n s n s n s

ββ
α β γ A α β

V k k

γ γγ γ
A β γ A α γ A α β γ

V k k V k k V k k






    
     

     

          
              

             

 

  






 
 
 
 
 
 



     

 

2 2
2 2 2

2

3 3

2 1 1 2cos 2 1 2cos 24 1 1 1 4 cos 4 cos
cos cos sin cos cos cos cos

4 4 4

1 2cos 24 cos
cos cos

4

Nf Nf Nf

n s s n s n s

n s

ν γ βγ β
A β γ A α A α β A α γ

E V k k k V k k V k k

γγ
C A α β

V k k


           
                

             

  
    

  

  

   

   

2
2 2 2

2 2

2 1 1 2cos 24 1 1 1 4 cos
cos cos sin cos cos

4 4

1 2cos 2 1 2cos 24 cos 4 cos
cos cos cos cos

4 4

Nf Nf Nf

n s s n s

Nf

n s n s

ν αα
A α γ A β A β γ

E V k k k V k k

β αβ α
A α γ A β γ

V k k V k k

      
         

        

       
          

         

  


  2 2 22 1 4 1 1 1

cos cos sin
4

Nf Nf

n s s

ν
A α β A γ

E V k k k

 
 
 
 
 
 
 
 

         
   

 

 

For the particular case of an isotropic intact rock with three orthogonal joint sets oriented 

in the coordinate axes, the analytical compliance matrix defined above is reduced to the analytical 

solution presented in Amadei and Goodman (1983) by replacing the relation between fracture area 

and total volume with the fracture spacing of each joint set. 


