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Abstract

While it is very difficult to diagnose/prognosis psychiatric disorders reliably,

especially in early course, such early diagnosis/prognosis is critical for produc-

ing an effective treatment. This necessity has motivated many researchers to

apply machine learning approaches to high-dimensional neuro-imaging data,

to produce models that can produce accurate diagnoses, and prognoses. The

machine learning problems are more challenging in the psychiatric field due to

their small sample sizes and large feature sets. These challenges motivated us

to explore various novel ways of applying machine learning methods to produce

models that can predict the diagnosis and prognosis of psychiatric disorders.

We considered the following 3 tasks: (1) We built a classifier that can distin-

guish healthy subjects versus Obsessive-Compulsive Disorder (OCD) patients.

In the learning pipeline, we incorporated prior neurobiological knowledge by

using pre-defined brain atlases for feature extraction. The best model (ensem-

ble logistic regression) achieved 80.3% accuracy. We also demonstrated a way

to transfer information across psychiatric diagnoses, e.g., schizophrenia (SCZ)

to OCD. (2) We next explored ways to apply a machine-learned schizophrenia

diagnostic model to identify first degree relatives (FDRs) with high schizotypy

scores. Our empirical results found that FDRs of SCZ patients who were clas-

sified as schizophrenia by a diagnosis model, which was learned using only SCZ

patients and healthy subjects, had significantly higher ‘schizotypal personality

scores’ than those who were not classified as schizophrenia. (3) We addressed

the challenges of building a prognostic model for SCZ patients. Here, we dealt
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with two types of SCZ patients based on their treatment: antipsychotic med-

ication versus transcranial direct current stimulation (tDCS) treatment. Our

success is limited – achieved 63.77% accuracy from the deep transfer learning

model – in predicting treatment response for SCZ patients with antipsychotic

treatment. On the other side, our proposed prior neurological knowledge (se-

lected brain regions) based method for SCZ patients with tDCS-treatment was

able to provide 77.5% accuracy for predicting the treatment response.
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Preface

Most parts of chapter 3 are taken from our submission “Prediction of Obsessive

Compulsive Disorder: Importance of neurobiology-aided feature design and

cross-diagnosis transfer learning,” which is under review by Nature Scientific

Reports journal. Chapter 4 is also taken from our submission “Extending

Schizophrenia diagnostic model to predict Schizotypy in first degree relatives”,

which is under review by Nature Schizophrenia journal. We plan to publish

some parts of Section 5.2.

Initial raw data were collected from National Institute of Mental Health

Neurosciences (NIMHANS), India. Data preprocessing in Chapter 3 (Sec-

tion 3.3.1) and Chapter 4 (Section 4.2) were performed by NIMHANS research

group. Figures 3.6 and 3.7 in Chapter 3, and Figure 4.1 in Chapter 4 were

generated and analyzed by Dr. Sunil Kalmady Vasu.

In Section 5.3.2 (Data Preprocessing), I preprocessed around 40% of the

fMRI data, and the rest were pre-processed by NIMHANS research group.

Moreover, 4D fMRI data preprocessing in Chapter 5 (Section 5.2.2) was done

by NIMHANS research group. Anushree Bose (from NIMHANS research

group) and I did the literature review to make Table B.2 in Appendix B.

The rest of the works in this dissertation are my original work, under the

supervision of Prof. Russell Greiner and Dr. Sunil Kalmady Vasu.
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For AI to add the most value and for patients and physicians to embrace it,

it needs to support, not supplant, the patient-physician relationship . . . AI

will be most effective when it enhances physicians’ ability to focus their full

attention on the patient by shifting the physicians’ responsibilities away from

transactional tasks toward personalized care that lies at the heart of human

healing.

– Steven Lin, Clinical assistant professor of medicine, Stanford University,

2019.

AI is only as good as the humans programming it and the system in which it

operates. If we are not careful, AI could not make healthcare better, but

instead unintentionally exacerbate many of the worst aspects of our current

healthcare system.

– Bob Kocher, Adjunct professor, Stanford University School of Medicine,

and Zeke Emanuel, chair of the Department of Medical Ethics and Health

Policy, University of Pennsylvania, 2019.
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Chapter 1

Introduction

Psychiatric disorders are challenging to diagnosis and treat, due to heterogene-

ity in the clinical presentation [114], the comorbidity with other psychiatric

disorders [150], and the fact that they do not have a precise and reliable set of

diagnostic or prognosis features. Moreover, psychiatric symptoms can be hard

to elucidate, because the manifestations of psychiatric disorders are often not

tangible measurements like body weight or blood sugar level, which makes the

diagnosis and treatment even harder. These problems are worse by the weak

correspondence between the clinical symptoms and objective measurements

like functional magnetic resonance imaging (fMRI), structural MRI (sMRI),

and Diffusion MRI (DTI), genetic testing, etc.

In attempts towards evidence-based psychiatry, there has been a surge of

fMRI studies of the brain of individuals with various psychiatric conditions

in the past couple of decades [39]. Until recently, the goal of such studies

was to find ‘biomarkers’ – features that were, individually, associated with

the diagnosis at the group level (e.g., healthy controls versus patients) – using

mass univariate or multivariate analyses in a ‘hypothesis testing’ approach,

where a data generating model is assumed (e.g., generalized linear model), and

hence fitted coefficients are interpreted as ‘effect’ on outcome (e.g., presence

of OCD) [39], [102]. Generally, these models are validated by some measure

of goodness of fit or by examination of residuals [156].

On the other hand, machine learning studies, such as ours, tries to build an

effective prediction model (e.g., determine a particular subject has a mental

1



disorder or not) that does not assume a data generating model, and then

use the statistically rigorous validation approach of estimating the prediction

accuracy of the learned model based on its performance in labeling instances in

a dataset of unlabeled cases (using cross-validation). However, the association

fMRI studies in psychiatry are often based only on the training sample (i.e.,

without considering its generalizability) [16], and it is not surprising that those

studies show poor replication in terms of implicated brain regions (this is

over and above the other challenges in psychiatric studies such as clinical

heterogeneity, etc.) [32].

This dissertation focuses on learning evidence-based prediction models.

Many researchers now consider ways to learn a model (predictive study) based

on the historical account of experiences and outcomes of patients [116]. The

general framework used in this thesis for training and testing a machine learn-

ing method is given in Figure 1.1, where the classifier is trained using histor-

ical data (e.g., neuroimaging and clinical data) with target class labels that

are based on diagnosis or prognosis labels. Finally, the learned classifier is

tested on a novel subject. Many recent studies have demonstrated that fMRI

of the brain has sufficient information to generate models that can discrim-

inate healthy controls (HC) from patients with various psychiatric illnesses,

such as autism [58], schizophrenia (SCZ) [10], [25], [78], [134], depression [40],

and Obsessive-Compulsive Disorder (OCD) [17], [54], [132], [137], [145], [162].

Figure 1.1: General framework used in this dissertation for machine learning
and prediction in diagnosis/prognosis.

Inspired by the existing ML methods and the success of earlier studies,
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we built different ML models for the diagnosis and prognosis of psychiatric

disorders using fMRI data mainly. Some studies also incorporated other neu-

roimaging and clinical features with fMRI features to investigate the effect of

those features.

1.1 Contribution

This dissertation makes the following specific contributions:

1. Empirically, we obtained 80.3% accuracy in predicting OCD against HC

using fMRI data. The features of this model extracted from fMRI data

are engineered by incorporating prior neurobiological knowledge of brain

functioning – here, based on using just some specified pre-defined sets of

brain regions. We used several ablation studies to show that by adding

more domain knowledge in each step, that feature design based on prior

neurobiological knowledge (parcellations) leads to better performance

than agnostic and automated feature design (neural nets).

2. To examine the benefit of the transfer learning across psychiatric diag-

noses (SCZ to OCD), we first learned a model to distinguish SCZ patients

from HC. Then, we learned a model for distinguishing OCD from HC

using only those features set that were selected in the learned model

of SCZ versus HC prediction. We found that the selection of the fea-

ture sets can be transferred from SCZ to OCD prediction model without

significant loss in prediction performance.

3. Recent studies have demonstrated that first degree relatives (FDRs) of

patients with SCZ are more likely to exhibit intermediate phenotypes

of schizophrenia (called ‘endophenotypes’) than the general population,

even when they do not (or do not yet) present with a full set of clinical

symptoms [46]. These characteristics of FDRs motivated us to inves-

tigate how such populations would be classified by a machine-learned

model that is capable of distinguishing SCZ from HC based on resting-

brain fMRI activation patterns. We observed that FDRs who were

3



(mis)classified as SCZ patients had significantly higher ‘schizotypal per-

sonality scores’ than those who were not classified as SCZ patients.

4. It empirically shows that maybe just often incorporating prior neuro-

logical knowledge helps to improve model performance. We were able

to achieve 63.77% accuracy in predicting the antipsychotic treatments

response using a deep transfer learning method, and 77.5% accuracy in

predicting the transcranial direct-current stimulation (tDCS) treatments

response using the feature concatenation method based on raw features

– instead of average features – from some specified regions that were

selected based on prior knowledge.

1.2 Dissertation Layout

The rest of this dissertation is organized as follows. Chapter 2 provides the

necessary background for working with neuroimaging data, and outlines the

preprocessing of raw fMRI, sMRI, and DTI data. Chapter 3 describes the

methods, and methods’ results for predicting the diagnosis of OCD1. Chap-

ter 4 shows the analysis of schizotypal personality disorder for first degree

relatives (FDRs) of SCZ patients2. Chapter 5 describes the different machine

learning models for predicting the prognosis of two types of Schizophrenia pa-

tients based on the received treatment (Antipsychotic-treatment based, and

Transcranial direct current stimulation (tDCS)-treatment based), and provides

the results of each model. Finally, Chapter 6 presents the conclusion.

This dissertation contains two appendices at the end. Appendix A and

Appendix B provides some additional information and experimental results of

Chapter 3 and Chapter 5, respectively.

1Most parts of this chapter are taken from our submitted journal article “Prediction of
Obsessive Compulsive Disorder: Importance of neurobiology-aided feature design and cross-
diagnosis transfer learning”, which is under review by Nature Scientific Reports journal.

2This chapter is taken from our submitted article “Extending Schizophrenia diagnostic
model to predict Schizotypy in first degree relatives”, which is under review by Nature
Schizophrenia journal.
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Chapter 2

Background Material

This chapter presents the background material necessary to understand the

dissertation. Section 2.1 describes the basics of magnetic resonance imaging.

Different types of MRI preprocessing pipelines are given in Section 2.2. Sec-

tion 2.3 gives a brief description of the treatment response measurements.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that

uses a powerful magnetic field and radio waves to build images of the body’s

organs, tissues, and structures. Clinicians use this to diagnose (i.e., figure out

the current stage of cancer) and treat medical conditions. There are different

types of MRI imaging techniques – each serving its own purpose. Section 2.1.1

- 2.1.3 give the basics of the three most common magnetic resonance imaging

techniques: structural MRI, functional MRI, and diffusion tension imaging.

2.1.1 Structural Magnetic Resonance Imaging

Structural magnetic resonance imaging (sMRI) is an MRI technique that

measures the local differences in water molecules, which helps to determine

the shapes of specific physiological parts of the brain and the brain’s sub-

regions sizes. By using this technique, we can distinguish between normal

(i.e., blood vessels, non-cancerous tissues) and abnormal (i.e., tumor), and

between grey matter and white matter [152]. Here, sMRI gives informa-

tion about the anatomy and pathology of the brain. Moreover, sMRI can
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also be used as reference images for other imaging techniques when perform-

ing the data preprocessing steps (i.e., co-registration, normalization) [95]. In

sMRI, brain structure is computed as 3d structure of voxels (i.e., one at each

1mm × 1mm × 1mm subregion) whose value is proportional to the intensity

of that location, which corresponds to cerebrospinal fluid, gray matter, and

white matter. Each voxel represents a 3-D volume of the particular block of

the brain under the given slice thickness.

Figure 2.1: Sample of T1-weighted sMRI scan (Dark, light, gray, and bright
colors denote cerebrospinal fluid, white matter, cortex, and fat, respectively.).

Figure 2.2: Task-based versus resting-state fMRI experiments.
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2.1.2 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a non-invasive process for

understanding brain functions. fMRI scans capture the neural activity by

measuring the changes of the oxygenated and deoxygenated hemoglobin con-

centration in the blood at certain locations in the brain, which known as the

BOLD signal [75]. When a region of the brain is active, it requires oxygen.

With the increase of neural activity, the demand for oxygen is increased. The

blood that carries the oxygen fulfills this demand. For achieving the proper

temporal resolution (collecting time series of brain information rapidly), fMRI

has low spatial resolution (i.e., 3mm× 3mm× 3mm) compared to sMRI (i.e.,

1mm × 1mm × 1mm). That is why we need sMRI scanning data with fMRI

data of the brain.

Figure 2.3: Brain activity fluctuation observed using fMRI experiment [153].

There are two types of fMRI experiments: task-based and resting-state

(shown in Figure 2.2). In the task-based fMRI, the subject is performing

some specific tasks – perhaps looking at the specific point, reading a book,

finger tapping, seeing video clip, etc, but in the resting state process, the

fMRI scan records the brain of subjects while he/she is not performing any

task. Figure 2.3 shows a fMRI experiment in which the subject opens/ closes

his/her eyes every 30 seconds – the results show that when the subject opens
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eyes (means task performed) for 30 seconds, the signal of some brain regions

is high compared to when the eyes are closed.

2.1.3 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) data is collected for measuring the structural

connectivity [130]. This technique helps to understand the white matter struc-

ture by measuring the water molecules diffusion in each voxel for all directions.

If we drop ink into a cup of water, water freely diffuses as there are no

constraints, and the shape of the diffusion becomes a sphere. The center of

the sphere does not move because there is no flow. This type of diffusion is

called isotropic (shown in Figure 2.5). On the other hand, when there are

constraints, the shape of the ink becomes oval in 2D space or ellipsoid in 3D

space. This is called an anisotropic diffusion (shown in Figure 2.5).

In the biological tissues, water diffusion follows the actual path of white

matter fibers, leading to “anisotropic diffusion” [29]. As the water diffusion in

the brain is not uniform, the underlying tissue orientation can be computed us-

ing the diffusion amplitude and direction. The model tensor can be calculated

from the amount of diffusion of the water and the direction of the diffusion.

Based on the estimated tensors, we can find the structural connectivity (refer

to Figure 2.4) by following the longest axis of the diffusion ellipsoid [57].

Figure 2.4: Reconstructed white matter fibres of the whole brain [154].
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(a) (b)

Figure 2.5: Types of diffusion: (a) Comparison between isotropic and
anisotropic diffusion [89], (b) Example of three diffusion tensors to show the
difference in tensor anisotropy and orientation [96].

2.2 Image Preprocessing Pipeline

2.2.1 fMRI Preprocessing Pipeline

The SPM-based Matlab toolbox DPARSFA (Data Processing Assistant for

Resting-State fMRI – Advanced Version) [159] is used for fMRI data prepro-

cessing and feature extraction. The general pipeline is depicted in Figure 2.6.

The steps are explained briefly below:

Slice Timing Correction

The fMRI data collection process does not acquire the slices (shown in Fig-

ure 2.7) in a volume at a single time. There are different processes for acquiring

the data: interleaved, ascending order, and descending order. For handling the

time differences between the slice data collection, we need to apply the slice

timing correction method, so that we can model that the resultant volume –

all slices of the brain – as if they were acquired at a single time.
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Figure 2.6: Pipeline of fMRI preprocessing and feature extraction.

Figure 2.7: Axial slices of a brain volume for a particular time point.

Co-Registration and Segmentation

This co-registration process first superimposes the functional images on the

structural image. This step is followed by segmentation, where the brain is di-

vided into different tissue types (grey matter, white matter, and cerebrospinal

fluid) using a standard template.

Realignment and Head Motion Correction

During the time of data acquisition, the subject’s head position may move

slightly with time. So, in the resultant outcomes of the experiment, the lo-

cation of the functional images varies from time to time, and these unwanted

10



variations in the signal lead to poor data quality. The realignment and head

motion correction method ensures that all the time series volumes are placed

in the same location.

Nuisance Covariate regression

This regression is performed to remove mean global signals from cerebrospinal

fluid segments (CFS) and white matter signal, and also, denoise signals those

were induced as a result of head motion. It is done by using SPM’s new

segmentation method [37].

Normalization

As the subjects’ brains have different shapes and sizes, for making the com-

parison between the subjects, we need to normalize the fMRI images. Here,

we can transform all the images to one standard space/template (e.g., Mon-

treal Neurological Institute (MNI)1, Statistical Parametric Mapping (SPM)2

template, etc.), which involves computing a transformation matrix from the

original image to the template. Here, we map each normalized fMRI image

to MNI space (it is a common coordinate space that is defined by Montreal

Neurological Institute using a large series MRI of healthy individuals [85])

resampled to 3× 3× 3mm3.

Smoothing

A 3D Gaussian kernel with a 4mm width is used on all datasets for smooth-

ing purposes. This minimizes noise and effects due to residual differences in

functional and gyral anatomy during inter-subject averaging [159].

Bandpass Filtering

We band-pass filtered (0.01–0.08 Hz) the normalized smoothed images with

respect to temporal data, which helps to reject frequencies that are outside

the range of 0.01–0.08 Hz frequency.

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
2https://www.fil.ion.ucl.ac.uk/spm/
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Extracting ALFF and fALFF

ALFF and fALFF are the measurements of the regional spontaneous neuronal

activity. These measurements help to quantify the difference in neuronal ac-

tivity between subjects and between conditions. That is why we explored the

possible use of these two measurements in the classification framework.

ALFF (Amplitude of Low Frequency of Fluctuations) was calculated as to-

tal power within the frequency range between 0.01 and 0.08Hz to estimate the

strength of low-frequency oscillations [164], whereas fALFF (Fractional ALFF)

was calculated as the power within the low-frequency range (0.01–0.08Hz) di-

vided by the total power within the whole frequency range [171]. Computed

powers for two measures (ALFF and fALFF) are transformed into Z-scores for

each subject. Finally, for each subject, it gives a 3D false image, where the

value at (x, y, z) is the intensity of low-frequency oscillations (LFO) for ALFF,

and the relative contribution of specific LFO to the whole frequency range for

fALFF [7].

Extracting ReHo (Regional Homogeneity)

ReHo is a voxel-based analysis of the brain, which measures the regional syn-

chronization of neural activities. It computes Kendall’s coefficient concordance

(KCC) to determine the similarity between the time series of the given voxel

and its nearest neighbors [65], [165]. The computed similarity values are stan-

dardized using Z-scores [112]. Finally, it gives a 3D image for each subject.

We can use this data along with the other features in the classification frame-

work as it helps to find the difference in regional homogeneity between healthy

subjects and patients.

2.2.2 sMRI Preprocessing Pipeline

We used SPM’s CAT12 toolbox3 that is widely used for the structural MRI

data preprocessing. The general preprocessing pipeline involved four steps:

3http://www.neuro.uni-jena.de/cat/
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1. Normalization: First, normalize sMRI images to one standard space/

template (e.g., MNI, SPM template, etc.).

2. Segmentation: Segment the brain into three parts: gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF). So, each voxel of the

brain must be a member of one of these parts [109].

3. Modulation: Modulation tries to maintain the same amount of GM

volume in the original image and the segmented GM image [86]. In or-

der to do it, the rate of contraction that has occurred during the spatial

normalization step is used for scaling the voxel concentration of GM

volume. The value of Jacobian determinant provides a measure of the

volume changes, and it is calculated from the deformation field generated

from the spatial normalization step [101]. Then, these values are multi-

plied with the voxel values of GM volume for computing the modulated

GM images (shown in Figure 2.8).

Figure 2.8: Correction of GM volume changes during spatial normalization us-
ing Jacobian determinant (yellow = compressed regions, and blue = expanded
regions.) [86].

4. Spatial smoothing: The 8mm full width half maximum (FWHM) 3D

Gaussian kernel is used for smoothing purposes.
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The sample outputs from the sMRI preprocessing pipeline are given in

Figure 2.9.

(a) (b)

(c)

Figure 2.9: Sample outputs of sMRI preprocessing: a) original sMRI image,
b) segmented gray matter image after normalization, segmentation and mod-
ulation steps, and (c) smoothed image.

2.2.3 DTI Preprocessing Pipeline

DTI Preprocessing and Feature Extraction

We used the Enigma Group’s DTI preprocessing protocols followed by their

given templates for DTI preprocessing, and feature extraction [33]. Our in-

house python code, which is written using Nipype’s FSL interfaces [92], is used

for performing the preprocessing steps. The general preprocessing pipeline
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involved the following steps:

1. Convert 3-dimensional image to 4-dimensional image: There are

360 samples in our dataset, It contained 65 three-dimensional images as

DTI data for each subject. Initially, we combined all 3D images to make

it a 4D DTI image for each subject.

2. Re-orient the images to standard space: Re-orient the 4D images

to standard space (e.g., MNI152 template) using the FSL reorientation

module.

3. Correct eddy current and head motion: Diffusion images are dis-

torted based on eddy currents and the motion of the head. Due to

the eddy currents, images contain some artifacts (shown in Figure 2.10)

like the shear, enhanced background, loss of image intensity, tracking

the wrong fiber, etc [146]. These distortions vary with different gra-

dient directions. We have used FSL’s eddy current correction method

for correcting these distortions, and along with distortions correction,

head motion is removed by using the affine co-registration to a reference

volume of this specific subject [146].

Figure 2.10: Examples of distortion resulting from eddy current: contraction
(top right), shift (bottom left), and shear [139].
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4. Brain extraction: Removing the non-brain tissues and the skull from

the data called the “brain extraction”. We have applied the brain extrac-

tion tool (BET) from FSL that identifies the brain tissue before fitting

the tensor modeling. The output of this tool is the binary mask that

distinguishes the brain versus non-brain at each voxel [43].

5. Tensor model fit: For calculating the tensor model, we need the gra-

dient information of DTI images. There are four ways to measure the

critical features of diffusion tensor, viz., mean diffusivity (MD), axial

diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA).

Measurement of these measures depends on the three eigenvalues (i.e.,

λ1,λ2, and λ3 denote the length of the axis in the tensor) of the tensor.

AD is equal to the λ1, which is the largest eigenvalue, RD is the aver-

age of the other eigenvalues ((λ2 + λ3)/2), and MD is the average of all

eigenvalues, which is considered as a total amount of diffusion in a voxel.

FA quantifies the amount of anisotropic diffusion within a voxel, which

is the most common measurement of the DTI studies.

FA =

√︂
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√︁

λ1
2 + λ2

2 + λ3
2

The range of the FA values is 0 to 1 (refers to Figure 2.11). If the value

is 0, the diffusion of the water molecules is isotropic, meaning diffusion

is equal in all directions. If the value is 1, all the molecules are diffused

along one direction [141].

6. Skeletonized image generation: For generating the skeletonized im-

ages, I have used FSL’s TBSS method [129] and Enigma template [34].

The standard TBSS procedure is as follows:

a) Firstly, it erodes images slightly and adds zero to the end slices

for removing outliers, which are generated from the tensor fitting

process.
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Figure 2.11: Fractional Anisotropy (FA) map – white color (value = 1) denotes
anisotropy is high in white matter but black color (value = 0) denotes low in
ventricles [31].

b) Secondly, it applies the non-linear registration using Enigma tem-

plate

c) Thirdly, it makes registration of the images linearly – images are

generated from the previous step – to the standard MNI space.

d) Finally, it generates the skeletonized images [140].

We need to follow these above steps to generate the skeletonized images

from FA, MD, AD, RD images. Output results for a single subject

(Overlay FA, MD, AD, RD images over MNI152 T1 1mm template4)

are given in Figure 2.12.

2.3 Treatment Response Measurements

2.3.1 Y-BOCS O and Y-BOCS C

We have used Yale–Brown Obsessive Compulsive Scale (Y-BOCS) [77], which

consists of 10 questions [158], for measuring the symptom severity of Obsessive-

Compulsive Disorder (OCD) that is characterized by intrusive recurrent thoughts

(obsessions) and repetitive behaviours (compulsions). Y-BOCS has 10 core

questions: 5 questions (time duration, interference, distress, resistance, and

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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(a) FA image (b) MD image

(c) AD image (d) RD image

Figure 2.12: Overlay FA, MD, AD, RD images over MNI152 T1 1mm tem-
plate.

control of obsessions) for rating obsession (Y-BOCS O) and 5 questions –

same as Y-BOCS O rating items– for rating compulsion (Y-BOCS C). The

ratings of these questions are assigned by clinicians. Each question takes a

rating from 0 to 4, where 0 denotes no symptoms, and 4 denotes severe symp-

toms. Summation of the 5 items of obsession gives total values of Y-BOCS O,

and similarly, the total of the 5 items of compulsion gives total Y-BOCS C

values. Based on these Y-BOCS O and Y-BOCS C scores, we categorized the

patients into least versus most severe (described in Section 3.7.4).
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2.3.2 Clinical Global Impression (CGI)

Clinical Global Impression (CGI) [53] is widely used for quantifying symptom

severity, the treatment response, and the efficacy of the given treatment to the

mental disorder patients. Experienced clinicians assign the rating (completely

based on the clinician’s subjective assessment) using this CGI scale to quan-

tify the severity of the patient’s illness at the assessment time, considering the

particular population with clinicians’ total clinical experience. CGI severity

of illness (CGI S) range is 1 (normal) to 7 (among the most extremely ill pa-

tients). We have used the baseline and follow-up CGI S scores for defining the

treatment response (Responder or Non-Responder) of schizophrenia patients

(described in Section 5.3.1), and used the baseline CGI S scores for incorpo-

rating the transfer learning concept in the deep learning models (described in

Section 5.2.3).

2.3.3 SAPS and SANS

SAPS (Scale for the Assessment of Positive Symptom) and SANS (Scale for the

Assessment of Negative Symptoms) are used to measure the positive/ negative

symptoms of schizophrenia [68]. SAPS has 34 sub-items for which clinicians

assign severity levels ranging from 0 (None) to 5 (Severe). These 34 sub-items

fall under 4 groups: hallucinations, delusions, bizarre behavior, and positive

formal thought disorder. SANS consists of 25 sub-items, which fall under 5

groups: affective flattening or blunting, alogia, avolition-apathy, anhedonia-

asiciality, and attention. We defined the treatment response (Responder or

Non-Responder) of the patients using baseline and follow-up SAPS and SANS

scores, described in Section 5.3.1.

2.3.4 Auditory Hallucination (PsyAH)

Psychotic Symptom Rating Scales (PSYRATS) is widely used to measure the

severity level of delusions and hallucinations in schizophrenia patients [157].

Psychotic Symptom Rating Scales- Auditory Hallucination (PsyAH) includes

frequency, duration, location, loudness, belief about the origin, amount of
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negative content, degree of negative content, amount of distress, intensity of

distress, disruption to life, controllability of Auditory Hallucination. Each sub-

item of PsyAH takes rating from 0 (no symptoms) to 4 (severe symptoms) [50],

and the ratings are assigned by clinicians. So, the total score range for PsyAH

is 0 to 44. We have used the baseline and follow-up PsyAH scores for defining

treatment response (Responder or Non-Responder), described in Section 5.3.1.
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Chapter 3

Obsessive-Compulsive Disorder
Diagnosis Prediction and
Cross-Diagnosis Transfer
Learning

3.1 Introduction

Obsessive-Compulsive Disorder (OCD) is a debilitating condition – the fourth-

most common psychiatric illness, which affects millions of people worldwide [115].

Evidence shows that a reliable diagnosis of the condition is crucial for timely

intervention and improvement in patients’ overall quality of life [61]. However,

due to heterogeneity in the clinical presentation [114] and comorbidity with

other psychiatric disorders [150], including bipolar disorder [6] and schizophre-

nia [120], precise diagnosis continues to be a challenge.

In the last few years, there has been an increased use of machine learn-

ing methods in psychiatric applications, often to produce models that predict

the diagnosis of novel subjects [116]. Many studies have demonstrated that

functional Magnetic Resonance Imaging (fMRI) of the brain has sufficient

information to generate models that can discriminate healthy controls from

patients with various psychiatric illnesses, such as autism [58], schizophre-

nia [25], depression [40] as well as OCD [17], [48], [54], [122], [125], [137], [162]

(see list of OCD studies in Table 3.1). However, most of these studies were

conducted on small datasets, that used fewer than one hundred subjects for
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both learning and cross-validation of the learned model [17], [48], [122], [125].

Limited samples can severely limit the generalizability of such models, and

in fact, many have noted that small sample sizes can lead to overestimated

measures of performance [121]. Studies on larger sample size (greater than

one hundred) have reported OCD prediction performance ranging from 72 to

79% [54], [137], [162].

While it is important to have sufficient information to learn a generalizable

model, it is challenging to conduct studies that sample thousands of psychiatric

patients due to pragmatic reasons – such as subjects recruitment challenges,

hard to get patients consent for information sharing, etc. Therefore, it is

critical to extract as much relevant information possible from limited data at

hand, to build a generalizable model – and in particular, to reduce the chance

of overfitting. Kalmady et al. [63] explored a way to design features – each a

combination of one of several regional connectivity-based measures, and one

of the various different parcellation maps (each incorporating a unique source

of prior neurobiological knowledge) – then learn a classifier based on these

features. They found this framework, called EMPaSchiz (read as ‘Emphasis’;

standing for ‘Ensemble algorithm with Multiple Parcellations for Schizophre-

nia prediction’), could effectively discriminate drug-naive schizophrenia pa-

tients from healthy controls [63]. To date, however, this approach has not

been explored to distinguish OCD patients from healthy controls; none of the

earlier machine learning studies in OCD [17], [48], [54], [122], [125], [137], [162]

have combined the regional and connectivity features, nor have any employed

an ensemble approach to jointly learn from multiple parcellations. Moreover,

no one has explored whether such knowledge-driven methods can provide per-

formance that is comparable to today’s standard machine learning approach

of applying neural networks, which are generally known to provide ‘state of

the art’ results [123], albeit being less transparent than simpler models [23]

such as EMPaSchiz.

Today, psychiatric disorders are classified based on a consensus about clus-

ters of symptoms that the patients experience currently or in the past. Clas-

sificatory systems, such as the Diagnostic and Statistical Manual of Mental
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Disorders (DSM), have provided clinicians worldwide with a standard frame-

work to identify, treat, and manage these conditions [5]. However, while most

scholars are convinced that pathology underlying symptoms of psychiatric ill-

nesses is attributable to features of neural pathways and their interfacing axes,

most clinical decisions in psychiatric practice are based neither on the etiologi-

cal mechanisms [91] nor on dynamic aspects of brain structure or function [59].

In fact, decades of research towards the understanding of neuropathology un-

derlying these illnesses have shown only weak and unclear correspondence

between brain measures and clinical categorization [24]. Interestingly, many

brain regions and networks that are implicated in one psychiatric disorder

seem to be implicated in other disorders (or at least share a common sub-

set) [44]. This observation can be potentially leveraged when learning models

by transferring knowledge gained with a dataset of one condition, to help di-

agnose another condition, where features that are relevant for predicting one

psychiatric disorder can be used to predict another – this is considered a type

of ‘transfer learning’ [21].

In addition to generalizability, it is critical that machine learning models

in healthcare demonstrate robustness and trustworthiness [52]. Hence, it is

valuable to build models that can provide interpretability in terms of providing

(a) auxiliary arguments in favor of model’s correctness, (b) transparency with

the usage of features explainable by domain experts such as psychiatrists, and

(c) reproducibility to ensure the model can be trusted in high-stakes situations

such as medical diagnosis.

In this study, we apply the EMPaSchiz learning approach to an OCD-vs-

Control dataset, to produce a model that can diagnose OCD, and show empir-

ically that this use of EMPaSchiz demonstrates some of the points mentioned

above. We believe that these factors are relevant to the future of neuroimage-

based machine learning methods for psychiatric diagnosis, and medical diag-

nosis in general. This research mainly explores the following questions:

1. Can EMPaSchiz approach produce models that can predict OCD accu-

rately, in a way that is interpretable?
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2. Can customized feature design, based on prior neurobiological knowl-

edge (parcellations) produce models that are comparable to knowledge-

agnostic automated methods (neural nets)?

3. Can we transfer information obtained by learning models for schizophre-

nia diagnosis, to OCD diagnosis, by using the high-level features selected

from the model learned for predicting schizophrenia, for the task of pre-

dicting OCD?

3.2 Dataset

3.2.1 Samples

Our study sample contained 188 patients attending the OCD Clinic of the

National Institute of Mental Health & Neurosciences (NIMHANS, India), who

fulfilled DSM-IV criteria for OCD. The diagnosis of OCD was established us-

ing the Mini International Neuropsychiatric Interview (MINI) Plus [124], which

was confirmed by another psychiatrist through an independent clinical inter-

view. Symptoms were measured using the Yale-Brown obsessive-compulsive

scale (Y-BOCS) [45]. Healthy Controls (HC) were recruited from among the

consenting healthy volunteers from the same locale to match for age and sex.

We used 200 age- and sex-matched HC, who were screened to rule out any

psychiatric diagnosis using the MINI. Table 3.2 provides details of the demo-

graphic and clinical profiles of subjects who qualified to be included in the

study.

In addition to OCD and HC, we also used a dataset of drug-naive schizophre-

nia patients for transfer learning analyses in this study. This cohort has been

analyzed in the Kalmady et al. study [63], and basic demographic information

of these subjects is provided in Table 3.3. They obtained written informed

consent after providing a complete description of the study to all the subjects.

The NIMHANS ethics committee reviewed and approved the original research

protocol. The Research Ethics Board at the University of Alberta, Edmonton

approved the secondary analysis of de-identified, preprocessed data.
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Table 3.1: Description of studies that provided machine learning model for
predicting OCD.
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Characteristic OCD HC Stat p

N 175 175
Sex [M:F] 97:78 105:70 0.57b 0.449
Age 28.66± 6.11 27.93± 4.68 1.26a 0.207
Total Intracranial 1380.16± 142.65 1428.79± 150.26 3.09a 0.002
-Volume (TICV, mL)
Age at onset 21.36± 7.45
YBOCS-Compulsion 12.55± 4.25
YBOCS-Obsession 13.43± 2.92
YBOCS-Total 25.97± 6.45

a Independent Sample Test [t]
b Chi-Square test [χ2]
N = 152 for Age at onset, YBOCS-Compulsion, YBOCS-Obsession, YBOCS-Total

Table 3.2: Clinical and Demographic profile of OCD and HC subjects.

Characteristic Schizophrenia HC Stat p

N 81 93
Sex [M:F] 53:28 60:33 0.001b 0.97
Age 30.72± 6.16 29.41± 5.71 1.45a 0.15
Total Intracranial 1400± 135 1480± 144 3.76a <0.001
-Volume (TICV, mL)
Age at onset (N=152) 26.6± 6.17

a Independent Sample Test [t]
b Chi-Square test [χ2]

Table 3.3: Demographic and clinical profile of SCZ and HC subjects (previ-
ously published in [63]).

3.2.2 Samples Acquisition

Magnetic Resonance Imaging (MRI) was done in a 3.0 Tesla scanner (Mag-

netom Skyra, Siemens). Resting-State Functional MRI: BOLD (Blood Oxy-

gen Level Dependent) sensitive echo-planar imaging was obtained using a 32-

channel coil for a duration of 5 minutes 14 seconds, yielding 153 dynamic scans.

The scan parameters were: TR= 2000 msec; TE = 30 msec; flip angle = 78

degrees; Slice thickness = 3 mm; Slice order: Descending; Slice number = 37;

Gap = 25%; Matrix = 64×64×64mm3, FOV = 192×192, voxel size = 3.0 mm

isotropic. Subjects were asked to keep their eyes open during the scan. For
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intra-subject co-registration, structural MRI: T1-weighted three-dimensional

high-resolution MRI was performed (TR = 8.1 msec, TE = 3.7 msec, nutation

angle = 8 degree, FOV = 256 mm, slice thickness = 1 mm without inter-slice

gap, NEX = 1, matrix = 256× 256) yielding 165 sagittal slices.

3.3 Data Preprocessing and Feature Extrac-

tion

3.3.1 Data Preprocessing

Preprocessed fMRI data are collected from National Institute of Mental Health

Neurosciences (NIMHANS), India, which was preprocessed with DPARSFA

(Data Processing Assistant for Resting-State fMRI—Advanced Version) [159],

which is an SPM based Matlab toolbox. Initially, they visually inspected the

acquired images for artefacts such as incomplete brain coverage or ghosting.

After that, they discarded the first ten volumes of each functional time-series

before reaching steady magnetization and to allow the participants to adapt

to the scanning noise. Then, they followed the fMRI preprocessing pipeline,

which is described in Section 2.2.1.

We excluded images for 8 patients and 7 controls from the study based on

excessive head movement (translational > 2.0 mm and/or rotational > 2◦) [22]

in order to avoid class differences in head motion. In addition, 5 patients and

18 controls were excluded due to incomplete imaging or clinical data. This

yielded a total of 350 subjects: 175 controls and 175 patients.

3.3.2 Feature Extraction

For building a good machine learning model for fMRI, we extracted the neu-

robiologically relevant features of fMRI. Here, we used 14 different brain

parcellations schemes that each extracts information from its predefined at-

las or set of regions of interests (ROIs). These schemes varied widely in

principle: (a) pre-defined ontology of brain structures such as post-mortem

cytoarchitecture [147], [168], sulco-gyral anatomy [28], [138], or (b) data-

driven modelling of the functional features from resting-state [18], [104], [149]
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or task-based fMRI [128], or (c) meta-analyses [30], using analytical tech-

niques such as hierarchical clustering [11], or independent components analy-

sis [81]. In particular, our brain parcellation schemes are power [104], dosen-

bach [30], yeo [142], aal [147], basc multiscale 122, basc multiscale 197, basc

multiscale 325, basc multiscale 444 [11], destrieux [28], harvard cort 251,

harvard sub 25, smith20, smith70 [128], and msdl [149]. From the fMRI data,

using these 14 parcellations, we have extracted two types of fMRI features:

Regional-based and connectivity-based features using nilearn python pack-

age [2].

Regional Based fMRI features

We used ReHo, ALFF, fALFF measures (described in Section 2.2.1) for ex-

tracting the regional fMRI features. Furthermore, a nuisance regression was

applied to the features to remove the effect of some confounding variables (age,

sex, total intracranial volume, and framewise displacement).

Connectivity-Based fMRI features

We computed functional connectivity between each pair of regional bold signals

– averaging the bold signals per region – for each parcellation. We, therefore,

used three statistical measures: the inter-regional Pearson correlation (FC-

corr), partial correlation (FC-part), and precision (FC-prec) for extracting the

connectivity-based fMRI features. For each measure, we considered the lower

triangular part of the symmetric matrix and then flattened that to get a feature

vector.

3.4 Methods for OCD’s Diagnosis Prediction

3.4.1 EMPaSchiz Framework

We used EMPaSchiz (shown in Figure 3.1) to learn a model to predict the di-

agnosis of OCD. The detailed description of the EMPaSchiz system is provided

in the original paper [63]. Briefly, EMPaSchiz extracts 6 resting-state brain

1http://www.cma.mgh.harvard.edu/fsl_atlas.html
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Figure 3.1: EMPaSchiz framework [63].

fMRI features, including 3 regional-based features (ALFF, fALFF, ReHo)

and 3 connectivity-based features (FC-corr, FC-part, FC-prec). EMPaSchiz

projected each feature extraction onto 14 different parcellations schemes (de-

scribed in Section 3.3.2). EMPaSchiz first learns 84 (14 parcellation schemes

× (3 + 3) feature types) single-source models (SSMs), each applying L2-

regularized logistic regression to learn a classifier, for one [feature-type, parcel-

lation] description of the data. It then applies L2-regularized logistic regression

to the 84 prediction probabilities produced by each of these learned models,

over the training set, to learn a final ensemble system. At performance time,

given a new instance, the learned system will first produce the 84 descriptions

of that new instance, then run those 84 SSMs to produce 84 responses, then

feed those values into the final learned function, to output the final OCD-vs-

HC label.

In Figure 3.1, F1,.., F6 denotes 6 feature types, and, Pj denotes the j-th

parcellation, where j = 1, 2, ..., 14. Feature sets are shown as FSi,j (e.g.,

FS1,1 to FS1,14 each correspond to F1 feature set), the logistic parameters

θi,j denotes the SSMs, and Pi,j denotes the output of the corresponding SSM,

where i denotes the i-th feature type, and j denotes the j-th parcellation.

Also, LR θ∗,∗ denotes the final ensemble model, which outputs probability

values (P∗,∗). We used 0.5 as a threshold for determining the final class label
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– i.e., return class OCD if and only if the predicted probability was > 0.5.

3.4.2 Neural Network

To examine the importance of incorporating prior neuroanatomical and neu-

rofunctional knowledge in the form of feature design and brain parcellations,

we compared the performance of EMPaSchiz with today’s standard approach,

of using Neural Network (NN). Recent projects [41], [56], [71], [83], [93], [119],

[136], [143], [144], [148], [160], [161], [163], [167], [170] using NN models on

fMRI data for various psychiatric and neurological tasks have used several

consecutive convolutions and max-pooling layers (where the specific network

architecture is not fixed, but can depend on the specific task) – which is implic-

itly extracting high-level features. Most of these studies [41], [83], [119], [136],

[143], [144], [148], [161] ran 2D convolutions on the 3D or 2D data that are

generated from the original fMRI data, but a few studies [71], [93], [167], [170]

show that applying 3D convolution on fMRI data (here, entire brains rather

than slices) is more effective than using 2D convolution to produce accurate

predictors.

We performed this analysis with three levels, adding more domain knowl-

edge in each step (see Figure 3.2):

NN-1: Neural Network using pre-processed fMRI images without
manual feature design

Here, we input 4-dimensional fMRI images that are completely pre-processed,

and let the first neural net learner, NN-1, automatically learn relevant features

from the data. The learned NN-1 model takes a fixed input size of 143× 61×

73 × 61, for each subject, where 143 is the time dimension, and the other

three dimensions represent the 3D brain volume. This model consists of two

3D convolution layers with one max-pooling layer, three layers of Long Short-

Term Memory (LSTM), and two fully-connected layers.
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Figure 3.2: The architecture of OCD classification using NN-1, NN-2 and
NN-3.
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NN-2: Neural Network using designed features, but without parcellation-
based aggregation)

Here, we extracted the three different features types (ALFF, fALFF, and ReHo

features) using EMPaSchiz framework, but did not aggregate the features

based on the brain parcellations. Instead, NN-2 uses a convolutional neural

network to predict the OCD label for each of the three feature types individu-

ally. The learned NN-2 model takes a fixed input size of 61×73×61. It consists

of two convolution layers with one max-pooling layer and two fully-connected

layers.

NN-3: Neural Network using designed features and brain parcella-
tions

Here, we used the feature extractions and parcellation schemes similar to that

of EMPaSchiz, however instead of learning with the simplistic logistic regres-

sion framework, NN-3 instead uses a more complex NN method for the final

step. The key difference is that, while NNs can update the weights in lower lay-

ers using backpropagation, EMPaSchiz cannot. For each subject, the learned

NN-3 model takes a concatenated feature vector of 84 feature vectors derived

from EMPaSchiz framework, and consists of four fully-connected layers of di-

mensions, of sizes: 1000, 100, 40 and 2.

Figure 3.2 shows the architectures of these 3 NN models. (A) NN-1: Two

convolution layers with 4 parameters depicted in order – kernel size, padding,

input channel numbers, and the number of filters. This is followed by max-

pooling layer with 2 parameters – kernel size and stride. Then, the linearized

output of the max-pooling layer before the LSTM layer has 2 parameters –

the number of layers and the number of units in each layer. (B) NN-2: Model

parameters are depicted in a format similar to NN-1. After max pooling, two

fully connected layers with 1 parameter – the number of units. (C) NN-3: Four

fully connected layers with 1 parameter – the number of units. For all of the

methods, the final output layer has two nodes – OCD versus HC. (For each

test subject, the learned system will return the argmax of the values computed

here.)
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For each NN model, we used Relu as an activation function for each layer

and cross-entropy as a loss function. To reduce the risk of overfitting, 50% of

layers were dropped out during the training time. We used a maximum of 1000

epochs to train our models, with early-stopping criteria for 100 epochs – i.e.,

we calculated the validation error after each training epoch, and if the error

was found to be not decreasing for a span of 100 epochs, then the training

state was reverted back by 100 epochs. Models were implemented in PyTorch

(v1.0.1) [99], and trained on a computer with Intel(R) Xeon(R) CPU E5-1660,

16GB RAM and a 12GB NVIDIA TITAN Xp GPU, and we chose a simplis-

tic version of VGG-16 [126] as the full architecture was extremely memory

constraining, as it involved training on hundreds of 3 and 4-dimensional ten-

sors [127].

3.5 Cross-Diagnosis transfer learning

As mentioned above, Kalmady et al. [63] used EMPaSchiz to distinguish

Schizophrenia patients from Healthy Controls; we considered a version that se-

lected, and used, only a subset of SSMs (This reduced some overfitting). Here,

we ask whether these SSMs (that were sufficient for Schizophrenia diagnosis)

are sufficient for diagnosing another psychiatric disorder, OCD. In particular,

we limited the single-source models (SSMs) of EMPaSchiz – the version of

EMPaSchiz that was trying to learn model for distinguishing OCD from HC

– to only the ones that were selected in the learned model of schizophrenia

prediction. That earlier model [63] was based on 81 schizophrenia patients

and 93 HC. Our OCD dataset was also collected from the same site, which

initially included 175 OCD and 175 HC. In order to avoid any bias raising due

to overlapping subjects in the HC group, we specifically excluded the controls

who were included in the schizophrenia study, leaving 88 HC. The EMPaSchiz

learner, on 81 schizophrenia patients and 93 HC (results for schizophrenia pre-

diction model is available elsewhere [63]), used L1-regularization techniques at

the final layer; this selected only 10 of the 84 SSMs; we then ran that learner

with L2-regularization, using only those selected 10 SSMs to learn an OCD
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prediction model, based on a dataset of 175 OCD patients and 88 controls, dis-

joint from the HC used for producing the Schizophrenia model (SCZ to OCD

transfer model). We also present the results of the transfer model that includes

all the healthy controls (SCZ to OCD CommonHC); the sample distributions

of these analyses are provided in Table 3.4.

Model
Learning Prediction

Patients HC Patients HC

SCZ to OCD 81 (SCZ) 93 175 (OCD) 88
SCZ to OCD CommonHC 81 (SCZ) 181 175 (OCD) 181

Table 3.4: Sample distribution in Transfer learning model.

3.6 Evaluation Phase

We evaluated the learned models in 5 shuffled iterations of a 5-fold balanced

cross-validation approach (80% training set, 20% test set; for a total of 25

train-test splits), estimating the model’s generalization performance on the

held-out fold, in terms of:

1. Accuracy: Fraction of correct predictions (of OCD versus HC) made by

the learned model.

2. Precision: The number of correct predictions of OCD = trues divided

by the total number of predictions of Class = OCDs.

3. Sensitivity: The number of correct predictions of OCD = trues divided

by the total number of OCDs.

4. Specificity: The number of correct predictions of Class = Controls di-

vided by the total number of Controls.

For each variant, we report the mean and standard errors for these metrics

overall 25 train-test splits. Also, we report the mean and standard errors for

elements of confusion matrices for the 5 iterations.
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3.7 Results

3.7.1 OCD Prediction

EMPaSchiz algorithm was able to predict OCD with 80.3% accuracy using

the 5 times 5-fold cross-validation. The model was 82.7% sensitive, 79.2%

precise and 77.8% specific. Table 3.5 shows the results for the performance

of EMPaSchiz algorithm and also for sub-models that stack SSMs only from

specific feature extractions. EMPaSchiz’s performance was significantly better

than any of those subset-stacked models (compared to the best subset-stacked

model: stacked-FC-prec at 77.9%, t-test, p = 0.018). Figure 3.3 shows a

comparative profile of accuracies for various SSM predictors, parcellation-wise

stacked models, and EMPaSchiz.

Figure 3.3: Comparison of 5 x 5-fold cross-validation prediction accuracies for
single-source models and EMPaSchiz. (The error-bar corresponds to standard
error of mean).

3.7.2 Comparison of EMPaSchiz to Neural Networks
methods

We compared the performance of EMPaSchiz model to NN techniques that do

not use their feature types and/or feature compression (parcellations) methods.

Results (refer to Figure 3.4) show that EMPaSchiz model outperforms these
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Table 3.5: EMPaSchiz performance on OCD prediction.
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NN-1 methods (paired t-test, p < 0.001), NN-2 methods for each feature type

(ALFF: t-test, p = 0.011 , fALFF: paired-t-test, p < 0.001, ReHo: paired

t-test, p = 0.005 ) and NN-3 (paired t-test, p < 0.001). Table 3.6 presents the

5× 5-fold cross-validation prediction performance of the different NN models.

Figure 3.4: Comparison of performance across EMPaSchiz and Neural Network
methods.

3.7.3 Transfer learning: feature selection based on Schizophre-
nia model

To deal with the Schizophrenia task, EMPaSciz’s L1-regularization selected

only 10 out of 84 SSMs; our SCZ to OCD transfer model used only these

SSMs when dealing with the OCD task. This included only two feature

types - Functional Connectivity Pearson Correlation and Precision. Only 9

of the 14 parcellations included aal, dosenbach, harvard cort 25, msdl, power,

basc multiscale 122, basc multiscale 197, basc multiscale 325, basc multiscale

444. More information is provided in Table 3.12. Note only 10 of the 9×2=18

possible SSMs were used in learning the OCD diagnosis model.

When we restricted our OCD learning model to ensemble only these 10
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Model Name Feature type Parcellation type

SCZ to OCD FC- Pearson Correlation basc multiscale 122,
basc multiscale 197,
basc multiscale 325,
basc multiscale 444.

FC- Precision aal, basc multiscale 325,
dosenbach,
harvard cort 25,
msdl, power.

SCZ to OCD
CommonHC

FC- Pearson Correlation basc multiscale 197,
basc multiscale 325,
basc multiscale 444,
dosenbach, power

FC- Precision aal,basc multiscale 122,
basc multiscale 197,
basc multiscale 325,
basc multiscale 444,
dosenbach, harvard cort 25,
smith70

FC = Functional Connectivity

Table 3.12: Selected models for transfer learning from SCZ to OCD diagnosis
prediction.

SSMs, the accuracy of OCD model was 93.1% (Table 3.7; note, however,

we expect higher baseline performance 66.5% due to class imbalance: OCD

175, HC 88). Interestingly, we found that this SCZ to OCD model pro-

vided performance that is comparable to original EMPaSchiz that is re-trained

on this dataset (accuracy: 91.8%) within statistical significance margin (2-

sided t-test, p = 0.15) in OCD prediction. Table 3.8 provides results for

SCZ to OCD CommonHC transfer model. Also, for the sake of completion,

the results (selected models and model performance) for transfer learning mod-

els from OCD to schizophrenia are also provided (Tables 3.13, 3.9). All of the

above results are obtained from the deterministic training process. The results

for the stochastic process during training are given in Appendix A.4.
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Model Name Feature type Parcellation type

OCD to SCZ RF- ALFF basc multiscale 444

FC- Pearson Correlation basc multiscale 197,
basc multiscale 325,
basc multiscale 444,
power, dosenbach,
harvard cort 25, smith70.

FC- Precision aal,basc multiscale 122,
basc multiscale 197,
basc multiscale 325,
basc multiscale 444,
destrieux,dosenbach,
harvard cort 25,
msdl, power, smith70.

OCD to SCZ
CommonHC

RF- ReHo basc multiscale 444.

FC- Pearson Correlation basc multiscale 197,
basc multiscale 444,
dosenbach, smith70.

FC- Precision basc multiscale 444, power.

RF = Regional Feature, FC = Functional Connectivity

Table 3.13: Selected models for transfer learning from OCD to SCZ diagnosis
prediction.

3.7.4 Symptom Severity Prediction

OCD patients in our sample ranged widely in their symptom severity, which

was measured using Y-BOCS scale for obsessions (integer values from 0 to

20) and compulsions (integer values from 0 to 20). For each, we used the

first and last quartile of these scales to categorize the least, versus the most

severely, symptomatic patients. We then used EMPaSchiz in leave-one-out

cross-validation setup to predict the high-symptomatic patients against low-

symptomatic ones (majority class baseline accuracy were close to 50%). We

used leave-one-out cross-validation (rather than 5-fold) to deal with a low num-

ber of subjects that were available for this analysis. Prediction accuracy was
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58.6% for obsessions and 64.1% for compulsions of OCD psychopathology. In

view of subpar performance, we compared this performance to the model that

focused on features derived only from the brain regions that are consistently

implicated in OCD by meta-analysis of functional and structural neuroimaging

studies [26], [84], [107], which included areas from the cortico-striato-thalamo-

cortical (CSTC) circuit, namely, the orbitofrontal cortex, the anterior cingulate

cortex, prefrontal cortex and the ventral striatum (specific regions are listed

in Table 3.14 and Figure 3.5). Prediction accuracy with CSTC was 58.6% for

obsessions and 52.6% for compulsions. Details are provided in Tables 3.10 and

3.11.

Figure 3.5: Regions selected for cortico-striato-thalamo-cortical (CSTC) cir-
cuit using AAL and Harvard-Oxford subcortical atlas.
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Atlas Regions of Interest Labels

AAL Prefrontal Cortex Frontal Sup L,Frontal Sup R,
Frontal Mid L, Frontal Mid R,
Frontal Inf Oper L, Frontal Inf Oper R,
Frontal Inf Tri L, Frontal Inf Tri R,
Frontal Sup Medial L, Frontal Sup Medial R

Orbitofrontal Cortex Frontal Sup Orb L, Frontal Sup Orb R,
Frontal Mid Orb L, Frontal Mid Orb R,
Frontal Inf Orb L, Frontal Inf Orb R,
Frontal Med Orb L, Frontal Med Orb R

Anterior cingulate cortex Cingulum Ant L, Cingulum Ant R

Harvard-Oxford
subcortical atlas

Striatum Left Thalamus, Right Thalamus,
Left Putamen, Right Putamen,
Left Caudate, Right Caudate,
Left Pallidum, Right Pallidum,
Left Accumbens, Right Accumbens

Table 3.14: Brain regions selected for the cortico-striato-thalamo-cortical
(CSTC) circuit.

3.7.5 Ante-hoc Model Interpretability

To delineate key pathological alterations in OCD, we estimated the reliability

of a regional feature’s importance for diagnostic prediction, by sorting features

by their respective mean logistic regression weight divided by the standard er-

ror for each feature in a particular learned SSM generated during 25 folds of

cross-validation. The idea of this approach was taken from an earlier neu-

roimaging study [63].

Figure 3.6 (respectively Figure 3.7) highlights some of the top-most ( >

98 or 99th percentile) reliable features using representative atlases for regional

resting state measures (respective connectivity). However, since our ensemble

model is composed of 84 SSMs, these depictions should be considered just rep-

resentative in nature, and cannot be claimed as the ‘only’ important features

for OCD prediction.

Figure 3.6 panels show the top 98th percentile of top regional features
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overlaid on glass brain: (A) Lower ALFF in L anterior cingulate, L rectus

and R paracentral lobule (destrieux); (B) Higher fALFF in bilateral infe-

rior parietal lobule and lower fALFF in L middle frontal gyrus, R insula

and L paracentral lobule (basc multiscale 197); (C) Higher ReHo in L mid-

dle frontal gyrus and lower ReHo in bilateral putamen, L middle temporal

gyrus (basc multiscale 122).

Figure 3.7 shows representative alterations in OCD as compared to HC

that are suggested by the top most reliable features. Network edges show el-

evated (red) and suppressed (blue) changes in functional connectivity. Panels

show the top 99th percentile of top functional connectivity features using the

Dosenbach and msdl atlases. Within the Dosenbach atlas, we found decreased

functional connectivity between the following pairs of regions: R anterior pre-

frontal cortex and L angular gyrus, R occipital gyrus and L posterior occipital

gyrus, R frontal gyrus and both R intraparietal sulcus and R superior pari-

etal lobule. Increased functional connectivity between the pairs of regions:

interhemispheric occipital gyri, R dorsal anterior cingulate cortex and R pari-

etal, L basal ganglia and L posterior parietal cortex. These differences suggest

aberrations in fronto-parietal, cingulo-opercular, occipital and sensorimotor

networks. Further, with the msdl atlas, we found decreased functional connec-

tivity between regions: L superior frontal sulcus and L as well as medial default

mode network (DMN), and R temporo-parietal junction and R parietal cortex.

Increased functional connectivity between L inferior parietal sulcus and bilat-

eral lateral occipital cortex as well as L visual cortex, R anterior insula and

motor cortex, L insula and L auditory cortex. These alterations might imply

aberrations in several distributed networks such as DMN, language, attention,

visual, auditory, motor as well as salience networks.
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Figure 3.6: Key pathological alterations in OCD suggested by top-most reli-
able features – elevated (red/orange) and suppressed (blue/purple) changes in
regional activity.
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Figure 3.7: Key pathological alterations in OCD suggested by top-most reliable
features – network edges show elevated (red) and suppressed (blue) changes
in functional connectivity.

3.8 Other Experiments

We performed different experiments on OCD dataset, but unfortunately, we

were unable to achieve the desired level of performance from these experiments.

The brief descriptions of these experiments are given below, and the details of

these experiments are given in Appendix A (Sections A.1 to A.3).
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• OCD Diagnosis Prediction: For OCD diagnosis prediction, we added

sMRI and DTI features in EMPaSchiz framework with fMRI features.

We also used the neural network version of EMPaSchiz model.

• Multi-class Classification Model: We tried to build a multi-class

classification model that could differentiate between healthy subject,

SCZ, and first-degree relatives (FDRs) of SCZ, or healthy subject, SCZ,

and OCD.

• Symptom Severity Prediction: We used different scales for mea-

suring the severity, and based on each scale, we tried to learn a model

using EMPaSchiz framework or Deep Probabilistic Canonical Correla-

tion, which could distinguish between the least versus the most severely,

symptomatic patients. We also aimed to learn a model that could distin-

guish OCD patients between washers and checkers. Moreover, we tried

a multi-task regression model to predict symptom severity values.

3.9 Discussion

From the study observations, we conclude that our EMPaSchiz algorithm can

predict OCD with 80.3% accuracy, which outperforms base models that uses

any individual feature type or parcellation scheme. In this case, feature de-

sign based on prior neurobiological knowledge (parcellations) leads to better

performance than agnostic and automated feature design (neural nets). Se-

lection of single-source feature sets can be transferred from Schizophrenia to

OCD prediction model without significant loss in prediction performance. EM-

PaSchiz provides a generalizable yet fairly interpretable linear model that uses

human-expert understandable features and model structure.

As many psychiatric disorders usually manifest with a myriad of overlap-

ping symptoms, reliable clinical diagnosis is a challenging task [1]. Here, we

demonstrate a computational framework that (1) builds on prior neurobiolog-

ical information that is derived from numerous neuroanatomical and neuro-

physiological studies, and (2) provides a diagnostic performance that matches
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the trained psychiatrists about 8 out of 10 times. Earlier studies have shown

that diagnostic tools such as DSM / ICD is not always reliable, and psychi-

atrists do not always agree on the diagnosis, with reported joint rater agree-

ment as low as 0.2 to 0.4 (intraclass kappa) in some circumstances [110], [111].

Given this, one might argue that a machine with predictive accuracy of 80%

in OCD diagnosis is ‘close enough’ for human-like performance, and hence the

technology is worth exploring further with even bigger datasets and more so-

phisticated algorithms. However, this is not an apples-to-apples comparison,

since clinician decisions are based on a consensus about clusters of clinical

symptomatology, while machine learning models are based on fMRI images –

which clinicians are not able to discriminate visually. However, it is desirable

to base a clinical diagnosis on objective laboratory measurements (such as an

fMRI image), as it strengthens the reproducibility of the disease entities [24].

Unfortunately, this is difficult here, given the earlier evidence of that such

brain-derived measurements (like sMRI, fMRI) only weakly correspond with

clinical classifications of psychiatric conditions [59].

With cross-validated prediction performance of 80.3%, EMPaSchiz ranks

highest among all earlier OCD prediction studies, either using fMRI or other

any neuroimaging modalities, with sample size greater than one-hundred sub-

jects [54], [98], [132], [137], [162]. None of the earlier fMRI-based OCD pre-

diction studies have combined the regional and connectivity features, nor have

any employed an ensemble approach such as ours to jointly learn from multiple

parcellations. Most used a single feature type (such as ALFF, fALFF, ReHo or

Pearson Correlation-based functional connectivity [17], [48], [54], [125], [137],

[162]), and only one of the pre-defined atlases (e.g. BrainVISA Sulci Atlas,

Anatomical Automatic labeling atlas, Harvard-Oxford atlas) [122], [137]. A

few other studies tried different approaches to handle the OCD diagnosis pre-

diction problem (See Table 3.1 for details specific to each study).

While high performance on diagnostic prediction is encouraging, note that

discriminating OCD patients from normal individuals is perhaps an easy task

for trained psychiatrists, especially compared to identifying subtypes based on

symptom dimensions or severity. Our experiments with learning models for
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identifying severe cases were only mildly successful. Further, our experiments

that used only on the CSTC brain regions (which are most commonly impli-

cated in OCD literature [26], [84], [107]) showed performance that is inferior

to EMPaSchiz’s (which considered all brain regions from the 14 parcellations).

Collectively, these results suggest that fMRI data might not have enough in-

formation to perform more complicated psychiatric decisions, at least within

the scope of our training size and algorithms.

Our study faces the general limitation of most machine learning studies in

psychiatry: the ground truth itself might be ill-defined, in terms of validity

of current psychiatric classifications as unitary disease constructs. Further, a

challenge in clinical practice is differentiating OCD from other disorders. Also,

our data was collected using single MRI scanner and from individuals of fairly

homogeneous ethnicity. We do not know whether it will perform similarly in

multi-centric data collected across mixed population groups and comorbidities

as well.

Machine learned models produce more accurate predictions as the size of

the training dataset increases, hence it is critical to have a sufficient sample

size [35]. Our study used 350 subjects (175 OCD + 175 HC), which is the

largest OCD report dataset that has been employed in machine learning until

now (the previously largest sample size is 204 (102 OCD + 100 HC), which

reported prediction performance of 76.6% [132]). Our study provides two

other novel observations. First, it shows that a simple linear model with

neurobiology-informed features outperforms complex neural network models,

even though those models can automatically design new features that can

potentially exploit non-linear interactions. Hence, the EMPaSchiz model is

more accurate. Secondly, we demonstrate cross-diagnostic transfer learning in

psychiatry applications. We show this can considerably reduce the complexity

of data processing, in terms of feature engineering, by pre-training the model

with subjects affected by a different psychiatric condition – schizophrenia in

our case – and still retain the earlier performance accuracy. We hypothesize

that such transfer learning works in this context because the underlying brain

abnormalities are common across multiple psychiatric disorders [44].
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Chapter 4

Analysis of Schizotypy in
First-degree Relatives of
Schizophrenia

4.1 Introduction

Genetic inheritance plays a strong role in the etiology of schizophrenia, repre-

senting approximately 80% of the liability for the illness, based on numerous

twin and adoption studies [78], [80], [134]. Recent studies demonstrated that

first degree relatives (FDRs) of patients with schizophrenia are more likely to

exhibit associated intermediate phenotypes or ‘endophenotypes’, than the gen-

eral population, even when they do not (or do not yet) present with a full set

of clinical symptoms [46]. Numerous endophenotypes have been proposed in

schizophrenia, including brain structural or functional patterns, sensory pro-

cessing measures, neuromotor and neuropsychological measures, minor phys-

ical anomalies [4], [47]. In this context, it is interesting to investigate how

such populations would be classified by a machine-learned model that is capa-

ble of distinguishing schizophrenia (SCZ) patient from healthy control (HC)

based on resting-brain activation patterns. This study examines whether a

schizophrenia diagnosis model, learned using schizophrenia and normal fMRI

datasets, can identify higher schizotypal scores in first degree relatives without

schizophrenia.

Schizophrenia spectrum disorders (SSD) present a challenge in categoriz-

ing disease phenotypes, due to a wide range of overlapping symptoms and a
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heterogeneous illness course at the individual level. Schizotypal personality

traits, aka schizotypy, which resemble the signs and symptoms of schizophre-

nia in the general population, provide a spectral rather than categorical view,

due to a continuous range of traits and symptoms [27]. In recent years, there is

increased interest in learning models from functional neuroimaging to predict

schizotypy – with unfortunately limited generalizability due to small training

samples and lack of independent validation (for review, see [76] ).

The current study explores an alternative approach for diagnostic predic-

tion with unaffected FDR subjects by applying the machine-learned model that

EMPaSchiz [63] developed, when it was run on an independent resting-state

fMRI dataset of 81 antipsychotic-naive schizophrenia patients and 93 healthy

controls (the basic demographic information of these subjects is provided in

Table 3.3, and in this chapter, we named this dataset as “SCZ HC” dataset).

Given strong evidence for familial aggregation of schizotypy in schizophrenia

spectrum disorders [131], we hypothesize that FDR subjects that this model

(mis)predicted have ‘schizophrenia’ status will have significantly higher schizo-

typal scores, versus those who are predicted as non-schizophrenia status by

machine learning.

4.2 Dataset and Preprocessing

The process of sample acquisition for FDR dataset is the same as Section 3.2.2.

This study examined 57 FDRs (M:F = 42:15) based on the following inclu-

sion and exclusion criteria. We included siblings or children of schizophrenia

patients, without any axis-1 disorder as evaluated by the Mini International

Neuropsychiatric Interview (MINI) Plus [124]. Probands of these FDRs were

patients attending the clinical services of the National Institute of Mental

Health & Neurosciences (NIMHANS), India, who fulfilled DSM-IV criteria for

schizophrenia. The Structured Interview for Psychosis-risk Syndromes (SIPS)

scale [79] was administered to ascertain that FDRs were unaffected by active

psychosis. SIPS impression for these subjects was ‘Genetic Risk and Deteri-

oration Psychosis-Risk Syndrome’. NIMHANS research group recruited only
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right-handed subjects to avoid potential confounds of differential handedness.

No study subjects had contraindications to MRI or medical illness that could

significantly influence brain structure / function, such as seizure disorder, cere-

bral palsy, or history suggestive of delayed developmental milestones. There

was no history suggestive of DSM-IV psychoactive substance dependence or

of head injury associated with loss of consciousness longer than 10 min. No

subjects had abnormal movements as assessed by the Abnormal Involuntary

Movements Scale. Pregnant or postpartum females were not included. The

age range was 17 to 38 years (27.2 ± 5.25 years). A 22-item self-reported

screening measure of schizotypal personality traits - “Schizotypal Personality

Questionnaire – Brief” (SPQ-B) [108] – was used to assess the schizotypal

personality score for each subject. The catchment area for the subject re-

cruitment involved the southern states of India. NIMHANS research group

obtained informed written consent after providing a complete description of

the study to all the subjects. The NIMHANS ethics committee reviewed and

approved the original research protocol. The Research Ethics Board at the

University of Alberta, Edmonton approved the secondary analysis of archived

data.

Initially, they (NIMHANS research group) visually inspected the acquired

images for artefacts such as incomplete brain coverage or ghosting, and no

subject was removed from this step. After that, they discarded the first ten

volumes of each functional time-series before reaching steady magnetization

and to allow the participants to adapt to the scanning noise. Then, they

followed the fMRI preprocessing pipeline that is described in Section 2.2.1.

4.3 Methods

Initially, we did the feature extraction for each dataset (FDR and SCZ HC

datasets) by following the procedure that is described in Section 3.3.2. After

that, we trained EMPaSchiz model (briefly described in Section 3.4.1) [63]

on SCZ HC dataset (81 SCZs + 93 HCs). Then, we applied the learned

EMPaSchiz model to classify each FDR either as schizophrenia patient or
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healthy individual, and examined if there is a class difference, between the

patients and healthy individuals, in distribution of SPQ-B [108] scores. Note

that none of the FDR subjects in this study were in the training set used to

produce the EMPaSchiz model (as a schizophrenia patient or healthy control).

 

 

Figure 4.1: Relationship between schizophrenia prediction and SPQ-B score.
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4.4 Results

This model classified 14 out of 57 FDR subjects as schizophrenia (FDR-SCZ),

while the remaining 43 were classified as healthy controls (FDR-HC), based on

the default threshold level of schizophrenia prediction probability > 0.5. We

found that the FDR-SCZ group had a significantly higher total SPQ-B score”

than that of FDR-HC (t =2.67, p = 0.01, Figure 4.1a); similarly, there was a

significant positive correlation between probability of schizophrenia class and

total SPQ-B score (Pearson’s r = 0.28, p = 0.03, Figure 4.1b). FDR-SCZ and

FDR-HC groups did not differ significantly on age (t = 1.02, p = 0.31) or sex

distribution (χ2 = 0.32, p = 0.57).

To understand the effect of this machine classification further in relation

to the latent structure of the SPQ-B questionnaire, we conducted a principal

component analysis (PCA) of the 22 SPQ items. Figure 4.1c shows the biplot

of two components of PCA (PC1 and PC2) along with the loadings of indi-

vidual items as numbered arrows and the ellipses corresponding to FDR-SCZ

or FDR-HC groups. In general, we observed that FDR-SCZ tended to show

higher scores on PC1 comprising of items such as ‘unable to get close to people’

(item-18), ‘people find me aloof and distant’ (item-1), ‘often pick up hidden

threats’ (item-9) and ‘tend to keep my feelings to myself’ (item-22).

4.5 Discussion

Schizotypy is considered as a marker of vulnerability for schizophrenia that

runs within families [131]. Furthermore, it provides a useful framework to

investigate the aetiological factors of schizophrenia spectrum disorders [10].

This study, for the first time, demonstrates a cross-application of a machine-

learned schizophrenia diagnostic model in identifying subjects with high levels

of schizotypy. However, whether similar prediction performance holds for a

larger population without familial association remains to be explored. Further

application of this approach holds significant promise for exploring related and

comorbid symptom clusters in psychiatry.
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Chapter 5

Schizophrenia Prognosis
Prediction

5.1 Introduction

Schizophrenia is a devastating psychiatric disorder, including cognitive impair-

ments, delusions, lack of motivation, hallucinations, and disabling [155]. The

heterogeneous property of this disorder comes from the environmental fac-

tors and overlapping between the underlying biology of diseases. Early-onset

Schizophrenia becomes a large burden due to its chronic behavior as well as

the long-term poor treatment outcomes [155].

The primary treatment of this disease is antipsychotic drugs, and this kind

of treatment contributes to the brain changes during the schizophrenia pro-

gression [38], [151]. However, the treatment is partially effective in many

cases [42]. Some characteristics of Schizophrenia patients are resistant to an-

tipsychotic medication treatment – in particular, hallucinations [88], [103],

insight [15], cognitive deficits [94], [97] and others [3], [82]. But, recent studies

reported that these antipsychotic treatment-resistant patients show significant

improvement in their condition when treated with the transcranial Direct Cur-

rent Stimulation (tDCS) treatment [14], [64], [70].

Treatment goals for schizophrenia include identifying the illness as early

as possible, effectively treating core symptoms, and maintaining clinical im-

provement to prevent relapses [100]. The heterogeneous properties among

the patients make the goal more challenging. There is inter-patient variabil-
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ity in responses to the same treatment, and this also applies to debilitating

side-effects that often lead to poor treatment compliance [87]. It follows that

there is a pressing need to develop a personalized medicine system in the psy-

chotic research field. We believe this could be greatly beneficial, as it can

help clinicians to make important clinical decisions correctly – such as ‘what

drug/medication to prescribe’.

To advance the personalized treatment, researchers are working on build-

ing evidence-based approaches using various MRI modalities and clinical infor-

mation. High-resolution structural imaging provides anatomical information

pertaining to gray and white matter volumes, while resting state functional

MRI provides indicators of spontaneous neuronal oscillations and diffusion ten-

sor imaging provides fractional anisotropy that reflects on integrity of white

matter tracts of the brain. Most researchers have tried to find a correlation

between these neuroimaging biomarkers and the treatment response.

In a study on 107 first-episode schizophrenia patients and 20 healthy con-

trols, Lieberman et al. [72] studied the relationship between ventricular volume

and at least 12 months of clinical outcomes of antipsychotic treatment using

structural MRI (sMRI) data. Despite any significant reduction in cortical and

hippocampal volumes during the treatment, they found that patients with

poor treatment outcomes showed ventricular volume enlargement. However,

control subjects and patients with better treatment outcomes did not show

this property. Ho et al. [51] also found similar findings using 73 schizophrenic

patients and 23 controls. In addition to these, different studies showed the

relationship between the treatment outcomes and the different areas of sMRI.

For patients who responded better to treatment, frontal and limbic grey mat-

ter show higher densities [60], parahippocampal cortex has a larger volume,

and there is a positive relationship between the changes of temporal grey

matter volumes and the better outcomes [12], [13]. On the other hand, for

patients with poorer treatment responses, grey volumes in the middle frontal

gyrus and the temporal cortex are reduced [105], frontal cortical asymmetry

shows abnormal patterns compared to healthy controls, and better responded

patients [135].
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Along with the use of sMRI, few research projects studied the changes in

DTI measures concerning the treatment outcomes. Luck et al. [73] found the

reduction in fractional anisotropy (FA) in the superior longitudinal and unci-

nate fasciculi for the poorer responded patients, and Zeng et al. [166] found

that patients with better treatment outcomes show the FA increase in supe-

rior longitudinal fasciculus. Several studies also focused on using functional

MRI to investigate brain activation changes during the treatment. Fahim et

al. [36] found the significant activation increase in the dorsolateral prefrontal

cortex, anterior cingulate cortex, and striatum, and similarly, Kumari et al. [69]

found that high dorsolatral prefrontal activity for the responded patients using

task-based fMRI data. In a study on 24 first-episode schizophrenia patients,

Sarpal et al. [118] and Kragulijac et al. [66] found functional connectivity in-

crease in the striatum, prefrontral regions and hippocampus, and Sambataro

et al. [117] observed increase connectivity in Default mode network for the

successful treatment.

While a greater number of research works have focused on doing association

studies, there are a few numbers of studies that tried to build a machine-learned

model that can predict the treatment response. Cao et al. [20] produced a

treatment response method on 43 drug-naive first-episode schizophrenia pa-

tients, that achieved 82.5% accuracy in predicting the antipsychotic treatment

response. They computed mutual information and functional connectivity

correlation between bilateral superior temporal cortex and all of the cortical

regions, and then passed these extracted features to support vector machine.

Inspired by all of these previous works, we tried to build a model to pre-

dict the treatment response for two types of treatments (tDCS treatment, and

antipsychotic medication). In Section 5.2, we tried convolutional neural net-

work (CNN) based different deep learning methods, and neuroanatomical and

neurofunctional knowledge based different methods for the tDCS treatment

response prediction. We found that prior neurobiological knowledge based

method gives better performance compared to other methods. We achieved

77.5% accuracy from the prior neurobiological knowledge based method. In

Section 5.3, for the antipsychotic treatment response prediction, we also used
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similar CNN based deep learning methods. We have used 3 fMRI datasets

(CGI, SAPS/SANS, and Hallucination datasets) along with the clinical infor-

mation. We achieved around 64% accuracy on SANS dataset to predict the

treatment response, but unfortunately, we were unable to achieve significant

results for other datasets.

5.2 tDCS Schizophrenia Treatment Response

Prediction

5.2.1 Dataset

We used a dataset from National Institute of Mental Health Neu-rosciences

(NIMHANS), India, which includes fMRI and clinical data – including baseline

and follow-up PSYRATS Auditory Hallucination (PsyAH) scores. We have a

total 34 patients in this dataset with baseline (BL) and follow-up (FU) PsyAH

scores, taken (respectively) at the time of tDCS administration, and 5 days

afterwards. We used the percentage of improvement (PI) in terms of PsyAH

scores for categorizing the least, versus the most, improvement patients us-

ing PI PsyAH= BL PsyAH- FU PsyAH
BL PsyAH

, where BL PsyAH denotes baseline PsyAH

scores and FU PsyAH denotes follow-up PsyAH scores. After that, we de-

fined tDCS responders as PI PsyAH ≥ 0.25, otherwise non-responders. Our

dataset had an even split of 17 responders and 17 non-responders by this crite-

ria, thereby yielding a chance-level prediction performance of 50%. The basic

demographic information of these subjects is provided in Table 5.1.

Characteristic Responded Not Responded Stat p

N 17 17
Sex [M:F] 7:10 12:5 1.90b 0.16
Age 30.06± 7.89 32.23± 7.47 0.80a 0.42

a Independent Sample Test [t]
b Chi-Square test [χ2]

Table 5.1: Demographic profile of tDCS-SCZ subjects.
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5.2.2 Data Preprocessing and Feature Extraction

Data Preprocessing

Clinical Features We have 95 clinical features, some (e.g., features like

weight, height, and weight circumference) of which were missing completely at

random manner because the missing values have no relationship with either

observed or missing values. That is why we used Multivariate Imputation by

Chained Equation (MICE) that assumes data are missing at random [19] to

impute the missing values.

fMRI data Preprocessed 4D fMRI data were provided by NIMHANS

research group, India. They followed the fMRI preprocessing pipeline, which

is described in Section 2.2.1.

Feature Extraction: Seed-based Functional Connectivity Features

Features were extracted using seed-based functional connectivity with two seed

regions: left temporoparietal junction (LTPJ) and right dorsolateral prefrontal

cortex in the fronto-parietal network (RDLPFC). We used a 15 mm radius

sphere around MNI coordinates (-50, -34, 20) and (43, 21, 38) for LTPJ and

RDLPFC, respectively [8], [144]. Then, we computed the Pearson Correlation

(PC) between the mean time series of seed points with individual time series

from all other voxels in the brain using PC(vi, vj) =
∑︁

(vi−vi)(vj−vj)√∑︁
(vi−vi)2

∑︁
(vj−vj)2

, where

vi denotes the mean time series of i-th seed point, vj denotes the time series of

j-th voxel in the brain, and vk denotes the mean of all the time points values

of k-th voxel in the brain. The correlation values were then normalized using

Fisher Z-transformation formula [90]. This procedure yielded a scalar feature

value per voxel of the brain, generating a 3D feature matrix of size 91 x 109 x

91 for each seed-point.
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5.2.3 Methods

Selected Regions of Brain based Method (SRM)

We extracted raw feature values from voxels (not average of all the voxels

in a region) belonging to the apriori selected regions of the brain based on

their neurobiological basis in pathogenesis of auditory hallucinations [62], [67],

[113], [169], using Harvard cortical and subcortical atlases 1. These regions

are listed in Appendix B - Table B.2 along with references. We concatenated

all the extracted raw features to yield a single vector for each subject. These

vectors were passed to the learner model – L1-regularized logistic regression

model (with fixed regularized value, C = 1).

Deep Learning Methods

As all the extracted features from the 4D fMRI data are three dimensional,

we used a 3D convolutional deep neural network. The general framework of

this neural network is depicted in Figure 5.1, where Panel A shows the main

classification model (we took the idea of this 3D CNN classification model

from the VGG-16 model [126], which was proposed for 2D data), and Panel

B shows the architectures of how we added the clinical features to the main

classification model.

We also tried transfer learning with convolutional neural network (CNN).

The details of the deep learning models with and without transfer learning are

described below:

Without Transfer Learning Our extracted LTPJ and RDLPFC seed-

based Pearson Correlation (PC) features are two 3 dimensional matrices. We

considered these two feature types as 2 input channels of the CNN model.

We used a 3D CNN model architecture, which is shown in Figure 5.1 (Panel

A), for categorizing the level of treatment response. For this model, it takes

a fixed input size of 2 × 91 × 109 × 91, here the first number denotes the

number of input channels (= 2 channels), and other ones denote the size of

1http://www.cma.mgh.harvard.edu/fsl_atlas.html
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the 3-dimensional feature matrix (= 91× 109× 91).

Figure 5.1: Neural network models for prognosis prediction: each convolution
layer with 4 parameters depicted in order – kernel size, padding, input channel
numbers and the number of filters. This is followed by max-pooling layer with
2 parameters – kernel size and stride. After the feature extraction step, each
fully connected layer with 1 parameter – the number of units.

Transfer Learning Convolutional neural networks (CNNs) have become

a state-of-the-art method for solving various prediction tasks in computer vi-

sion. However, CNNs are not efficient in performance in terms of accuracy

when trained on smaller datasets. These kinds of situations are prevalent in

clinical problems; for example, in our case, we have data from 34 tDCS pa-
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tients for training and evaluating the model. So, we made use of the transfer

learning method. In our case, we pretrained our CNNs with a different dataset,

and then subsequently continued to train on our target dataset of 34 tDCS

subjects. We anticipate this would done in order to get better representa-

tion of fMRI features in lower layers of CNN, which then would yield better

initialization of model parameters for training on the target task.

For pretraining, we used different datasets of resting state fMRI images

from several cohorts, including – healthy controls, obsessive compulsive dis-

order (OCD) and schizophrenia (SCZ), unaffected first degree relatives of

schizophrenia patients (FDR-SCZ). We used the Clinical global impression

score (CGI) of subjects taken at the time of fMRI acquisition as the label for

the pretraining task. 186 healthy controls and 62 FDR-SCZ with CGI score

= 0 were assigned the label of 0, whereas 44 SCZ and 149 OCD patients who

were at least moderately ill (CGI score > 3) were assigned the label of 1. This

yielded a total of 442 instances: 248 and 193 for classes 0 and 1, respectively

(shown in Table 5.2). We oversampled instances manually in the minority class

based on sex, age to balance the classes (here, two classes are not significantly

different in terms of sex and age), and finally, this process gave 496 samples

for pretraining. We chose CGI as a label for the pretraining task in order to

capture the global changes in fMRI signals that are associated with psychiatric

illnesses in general. Imaging and clinical assessments for these cohorts as well

as the study subjects were conducted in the same medical center (NIMHANS).

Note that this pretraining process did not use any subjects from the target

dataset.

Our CNN architecture is depicted in Figure 5.1 (Panel A). After pretraining

with 496 instances, we froze the first four layers of the feature extraction,

replaced the decision layers, and then continued to train on the target dataset

and target label. We report results for our CNN models - both with and

without pretraining.

All the models were implemented in PyTorch (v1.0.1) [99], and trained on

a computer with Intel(R) Xeon(R) Platinum 8168 CPU, 32GB RAM and a

32GB Tesla V100-SXM2 GPU.
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Pretraining (N) Label 0: CGI = 0 Label 1: CGI >3

Healthy Controls (186) 186 0
FDR - Schizophrenia (62) 62 0
OCD (149) 0 149
SCZ (44) 0 44

Total 248 193

Table 5.2: Sample distribution in transfer learning model for predicting tDCS
treatment response.

5.2.4 Results

We evaluated the learned models in 5 shuffled iterations of a 10-fold balanced

(with respect to class label) cross-validation approach (90% training set, 10%

test set; for a total of 50 train-test splits), estimating the model’s generalization

performance on the held-out fold, in terms of accuracy. We also computed

precision, sensitivity, and specificity. For each variant, we report the mean

and standard errors for these metrics over all 50 train-test splits. Also, we

report the mean and standard errors for elements of confusion matrices for the

5 iterations.

Table 5.3 presents the 5× 10–fold cross-validation prediction performance

of the different models. We achieved highest performance – 77.5% accuracy –

using selected regions based method. But, without (respectively, with) transfer

learning based methods provide 57.2% (respectively, 66.2%) accuracies, and

the results show that transfer learning helps to improve the deep learning

model performance significantly.

We also added the clinical features with each of the models, but unfortu-

nately, we were unable to get any extra benefit from the additional features.

Finally, for our best-performed model (selected regions based method),

we used SHAP values [74] to estimate the relative importance of features

contributed by individual brain regions. Figure 5.2 lists important regions

identified using top-1000 SHAP values. For finding these regions, we initially

selected the 1000 voxels corresponding to top SHAP values. We then computed

the percentage contribution of each region – how many voxels from the selected
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1000 voxels belong to each region.

Figure 5.2: Percentage contributions of brain regions based on voxels with top
1000 SHAP values.

5.2.5 Other Experiments

To learn a classifier that could produce the prognosis prediction, we also tried

different methods based on average and individual voxels features of each pre-

defined region (here, average voxels features mean averaging all the voxels

per region, whereas individual voxels features mean considering all the raw

voxels features of each region). We used different ensembling methods (like

meta-classifier using logistic regression or majority voting). Moreover, we im-

plemented adaptive thresholding and feature concatenation methods. The

details of these methods are given in Appendix B.1. In place of the Pearson

correlation in SRM, we also used different measures: partial correlation, skew-

ness, variance, and Kurtosis. From all of these experiments, we were unable

to achieve significant improvement compared to SRM.

5.2.6 Discussion

In this part, our goal is to learn a classification framework that can accu-

rately distinguish tDCS-SCZ patients with high treatment response from low

treatment response. Along with the deep learning methods, we tried some

prior neurobiological knowledge based methods. The empirical results show
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that adding prior knowledge helped to improve the model performance for

predicting the tDCS treatment response.

5.3 Antipsychotic Schizophrenia Treatment Re-

sponse Prediction

5.3.1 Dataset

We have collected a dataset from National Institute of Mental Health & Neu-

rosciences (NIMHANS), India, that includes fMRI and clinical data, including

some baseline and some follow-up severity scores: CGI, SAPS/SANS, Halluci-

nation. Based on the availability of these scores, we have divided the dataset

into three sub-groups.

CGI Dataset

We have 99 patients in this dataset with baseline (BL) and follow-up (FU) CGI

scores. These follow-up scores are collected between 2 to 4 months from the

first visit. We have used two types of values – the percentage of improvement

(PI CGI) and the follow-score – for categorizing the least, versus the most

improvement patients using the following ways.

1. Percentage of improvement: We computed the percentage of improve-

ment by using PI CGI= BL CGI-FU CGI
BL CGI

, where BL CGI denotes baseline

CGI score and FU CGI denotes the follow-up CGI score. After that, we

used 40% as a threshold for categorization.

2. Follow-up CGI scores: We used FU CGI = 3 value as a threshold value

for sub-grouping the patients. If patients have FU CGI scores less than

3, then they will be in “class 0”, otherwise in “class 1”.

SAPS/SANS Dataset

For 53 patients, we have the baseline and the follow-up SAPS/SANS scores.

Total scores for the SANS range from 0 to 125 and 0 to 170 for the SAPS.
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Here, we followed the below procedure for categorizing the least, versus the

most, improved patients.

1. Percentage of improvement: We computed the percentage of improve-

ment by using PI = BL-FU
BL

, where BL denotes baseline SAPS/SANS score

and FU denotes follow-up SAPS/SANS score. After that, we used 40%

and 90% as thresholds for SAPS, SANS, respectively for categorization.

2. Follow-up SAPS/SANS scores:

(a) Based on SAPS Scores: We used SAPS follow-up (FU) scores 0

as a threshold for sub-grouping the patients. If patients have FU

scores equal to 0 (full improvement), then they will be in “class 0”,

otherwise in “class 1”.

(b) Based on SANS Scores: We used SANS follow-up (FU) scores 18 –

which is a median SANS follow-up score– as a threshold. If patients

have FU scores less than this threshold, then they will be in “class

0”, otherwise in “class 1”.

Hallucination Dataset

This dataset contains baseline and follow-up hallucination scores for 47 pa-

tients. We computed the percentage of improvement using these scores. We

considered 100% improvement – which means the percentage of improvement

(PI) score is equal to 1 – as “class 1”, and other ones are “class 0”.

5.3.2 Data Preprocessing and Feature Extraction

Data Preprocessing

Clinical Features We have 495 clinical features, some of which were

missing. To handle missing values for learning algorithms like logistic regres-

sion, which cannot handle missing variables inherently, we used Multivariate

Imputation by Chained Equation (MICE) that assumes data are missing at

random [19] to impute the missing values.
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fMRI Data We preprocesssed around 40% of the fMRI data using DPARSFA

(Data Processing Assistant for Resting-State fMRI—Advanced Version) [159],

which is an SPM-based Matlab toolbox. We collected the rest of the pre-

processed fMRI data from the National Institute of Mental Health Neuro-

sciences (NIMHANS), India. Initially, we discarded the first ten volumes of

each functional time-series before reaching steady magnetization and to allow

the participants to adapt to the scanning noise. Finally, we followed the fMRI

preprocessing pipeline, which is described in Section 2.2.1.

Feature Extraction

Regional based fMRI features We followed the fMRI preprocessing

pipeline, which is described in Section 2.2.1, for extracting the ALFF, fALFF,

Reho features. Here, each type of feature is a 3-dimensional matrix with a size

of 61× 73× 61.

Seed-based Functional Connectivity features We used the seed-

based feature extraction procedure (described in Section 5.2.2) for computing

the functional connectivity matrix from the 4D fMRI data. Here, we also used

LTPJ and RDLPFC as two seed points. From the feature extraction process,

we got a 3-dimensional matrix with a size of 61× 73× 61 for each seed-point.

5.3.3 Methods

Without Transfer learning

We have five extracted different feature types (ALFF, fALFF, ReHo, and LTPJ

and RDLPFC seed based). As each of the extracted features are 3-dimensional,

we chose to use the similar 3D convolutional neural network (CNN) – that is

used for tDCS SCZ prognosis prediction (shown in Figure 5.1 (Panel A)) – to

predict the least, versus the most improvement patients for each feature type

and each of the treatment response condition, described in Section 5.3.1.

a Seed based model: We considered the two seed points (LTPJ and

RDLPFC) based feature matrices as two input channels of the CNN
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model (shown in Figure 5.1 - Panel A). So, the model takes a fixed input

size of 2 × 61 × 73 × 61, here the first number denotes the number of

input channels (= 2 channels), and other ones denote the size of the

3-dimensional feature matrix (= 61× 73× 61).

b Other Feature types: For each of the other features (ALFF, fALFF,

and ReHo), we built different CNN models separately (shown in Fig-

ure 5.1 - Panel A). Each model takes a fixed input size of 1×61×73×61,

here the number of channels = 1, and the size of feature matrix =

61× 73× 61.

With Transfer Learning

For building a prognosis model for antipsychotic SCZ patients, we also used

the similar transfer learning technique that is similar to the one described

in Section 5.2.3. In addition to our current experimental datasets (described

in Section 5.3.1), we have additional 473 fMRI samples that include healthy

controls, first degree relative of Schizophrenia, OCD, tDCS SCZ (these SCZ

subjects received transcranial direct current stimulation (tDCS)) and tDCS

OCD (these OCD subjects received tDCS) patients with baseline CGI scores.

Subject with CGI score = 0 were assigned the label of 0, whereas subject

with CGI score > 3 were assigned the label of 1. The sample distributions of

these analyses are provided in Table 5.4. We did the oversampling manually

on ‘Label 1’ based on sex, age to balance the classes, and finally, this process

gave 496 samples (in which the number of distinct instances are 473) for our

pretraining purposes.

In the first step, we trained a CNN architecture (shown in Figure 5.1 Panel

A) on 496 samples, and we used this for transfer learning. Then, we froze the

first five layers of the feature extraction part, removed the decision layers,

and added new decision layers. Finally, the weights of the unfrozen layers

are fine-tuned/trained with each of our experimental datasets (described in

Section 5.3.1).
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Pretraining (N) Label 0: CGI = 0 Label 1: CGI >3

Healthy Controls (186) 186 0
FDR - Schizophrenia (62) 62 0
OCD (149) 0 149
tDCS- SCZ (33) 0 33
tDCS - OCD (20) 0 20

Total 248 202

Table 5.4: Sample distribution in transfer learning model for predicting the
antipsychotic treatment response.

Stacking CNN Models

We used a stacking CNNs based model that includes a separate CNN architec-

ture for each feature type to do the feature extraction. The feature extraction

used in this model is similar to the feature extractor of Figure 5.1. The ex-

tracted features from each CNN model are concatenated, and then passed to

hidden layers. For training the model, we used Relu as an activation function

for each layer, cross-entropy as a loss function, and 50% dropout in the hidden

layers. The general architecture of the stacking CNN model is depicted in

Figure 5.3.

Figure 5.3: Stacked neural network models for prognosis prediction.

Densely Connected Convolutional Networks (Densenet)

We used one of the most popular deep learning methods, Densenet, which

was originally proposed for 2D data [55]. For our experiment, we used 3D
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convolutions in place of 2D convolutions in Densenet to adapt the model for

3D fMRI data. This model takes an input with a fixed size of 2×61×73×61,

where first channel corresponds to 3D LTPJ features, and the second channel

corresponds to 3D RDLPFC features.

Combining Clinical Features with fMRI Data

We combined clinical features with the fMRI data to get a better and stable

neural network model. To do this, we considered two different ways to combine

the data modalities.

1. Option 1: We concatenated clinical features with extracted features

of CNN in the linear layer (shown in Figure 5.1 Panel B (ii)). Here,

we used two sets of clinical features for building two different models.

The first set of features are ’Accumulative drug record’, ’Binned time

leave medication’, ’Final days record’, and ’Time leave medication’, which

may be highly predictive factors for classification according to our prior

knowledge. The second set of features includes all other 491 features.

2. Option 2: We used a separate fully connected neural network (FNN)

(shown in Figure 5.1 Panel B (iii)) that takes all 495 clinical features as

input. Then, we combined both linear layers of CNN model and FNN

model, and finally, we passed concatenated features into another fully

connected neural network.

5.3.4 Results

We used the classification frameworks, which are described in Section 5.3.3,

to classify patients into low improvement versus high improvement based on

different clinical baseline and follow-up scores. The 5×10-fold cross-validation

classification results for SANS dataset are shown in Tables 5.5, which shows

that the performance of all of the methods, except the transfer learning, was

around the baseline for the SANS scores based treatment response prediction.
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Model Name
Class Labels based on

Percentage of Improvement
(Baseline: 50.94%)

Follow-up SANs Score
(Baseline: 50.94%)

3D CNN Model using
LTPJ and RDLPFC

53.96± 1.37 54.33± 2.58

Densenet Model using
LTPJ and RDLPFC

58.49± 1.41 56.60± 1.41

3D CNN Model
using ALFF

59.25± 1.47 59.24± 1.14

3D CNN Model
using fALFF

52.84± 1.84 51.32± 2.09

3D CNN Model
using ReHo

52.46± 1.45 50.94± 0.92

Stacked 3D CNN Model
Using LTPJ, RDLPFC
and ReHo

56.60± 1.68 56.98± 1.64

Transfer Learning using
LTPJ and RDLPFC

63.77± 1.45 59.57± 0.98

Table 5.5: Treatment response prediction results based on baseline and follow-
up SANS scores: average (standard errors)- 5× 10-fold CV.

Here, transfer learning method gave 63.77% and 59.57% accuracies for the per-

centage of improvement based model and follow-up SANs score based model,

respectively.

However, for the other two clinical scores (SAPS and CGI Severity), none

of the methods were able to provide significant performance above from the

baseline. Results for these two datasets are provided in Appendix B (Ta-

bles B.4, and B.5). We tried all of these methods on Hallucination dataset,

whose baseline is 63.82%. None of the methods were able to reach significantly

better performance.

With the hope of building a more accurate model, we added the clinical

features to each model. However, these additional features did not improve

model performance.
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5.3.5 Discussion

In this study, we tried to build a classification framework that can accu-

rately distinguish patients with high treatment response from low treatment

response. Here, we built different CNN models using different combinations

of the different feature types (LTPJ, RDLPFC, ALFF, fALFF, and ReHo).

The transfer learning method helps to improve performance on SANS dataset,

which justifies future research into the transfer learning method, where we

have only access to the limited amount of target dataset. For SAPS and

CGIs datasets, the transfer learning models were unable to provide significant

improvement compared to other methods. Maybe the reasons behind these

unsuccessful experiments are the smaller number of subjects compared to the

high-dimensional fMRI features, and the lack of information of the patients’

medication history – Did the patients actually follow the clinicians’ prescribed

medication or not– which might affect their improvement process.

We did not try to use standard classification models (e.g., logistic regres-

sion, linear SVM, xgboost), because these types of models were already ex-

plored in Ghoreishiamiri’s thesis [43]. Unfortunately, Ghoreishiamiri did not

able to get any significant performance from this dataset.
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Chapter 6

Conclusion

Machine learning applications using neuroimaging are becoming increasingly

common in psychiatric research, as it provides a multi-dimensional, data-

driven approach that captures the level of complexity necessary for aiding

diagnosis, and prognosis in an objective manner. But, as many psychiatric

disorders usually manifest with a myriad of overlapping symptoms, reliable

clinical diagnosis/ prognosis is a challenging task. The challenges are also am-

plified by the smaller number of neuroimaging samples with high dimensional

features. So, we should be careful in terms of model architecture selection to

avoid overfitting. Briefly, in this dissertation, we empirically show that (a) in-

corporating prior knowledge in the training process produces models that help

to improve the performance in OCD diagnosis and SCZ prognosis prediction;

(b) transfer learning across psychiatric diagnoses (SCZ to OCD) improved the

OCD diagnosis prediction with fewer sets; (c) a cross-application of a machine-

learned SCZ diagnostic model could help to identify FDR subjects with high

levels of schizotypy.

In the first study, our objective was to build a classifier that could distin-

guish healthy control versus OCD patients. Here, we used both models that

incorporate prior neurobiological knowledge (parcellations) and knowledge-

agnostic (neural networks) models. The “prior neurobiological knowledge

based” model gave 80.3% accuracy, whereas the best accuracy obtained from

neural network based models is 76.7%. In this experiment, it shows that a

simple linear model with neurobiology knowledge based features outperforms
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complex neural network models, even though neural network models can do

the feature extraction automatically. We also showed that it is possible to

transfer learning across psychiatric diagnoses (SCZ to OCD). Despite these

successful stories, we were not successful in identifying subtypes based on

symptom dimensions or severity. From the experimental results, we anticipate

that fMRI data might not have enough information to perform more compli-

cated psychiatric decisions, at least within the scope of our training size and

algorithms.

In our second study, we attempted to build a cross-application of a ma-

chine learned schizophrenia diagnostic model in identifying FDR subjects with

high schizotypy scores. Results show that FDR subjects who were classified as

schizophrenia patients by our model learned to distinguish schizophrenia from

healthy control using schizophrenia dataset had significantly higher ‘schizoty-

pal personality scores’ than those who were not classified. However, whether

similar prediction performance holds for a larger population without familial

association remains to be explored.

In the last study of this dissertation, we aimed to build two prognosis

models for two types of treatment (antipsychotic medication, and tDCS treat-

ment) of SCZ patients. For antipsychotic SCZ patients, we found mild suc-

cess (63.77% accuracy) from the deep transfer learning model to predict the

treatment response. However, we achieved 77.5% accuracy using the prior

knowledge based model for tDCS SCZ patients. One of the interesting find-

ings from the tDCS prognosis experiments is that: at least with this training

set and learning algorithms, raw ROI features gave comparable performance

compared to average ROI features, when we incorporated more specific prior

neurological knowledge (regions – that are implicated during the disorder and

it’s treatment) in the learning models.

From our diagnosis and prognosis works, we empirically showed that any

type of prior knowledge incorporation in the model helps to improve the model

performance. Briefly, in the neural network, we have added prior knowledge

through transfer learning ideas, whereas in other methods, we used the prede-

fined brain atlases, and additionally, we handpicked few regions, which have
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been identified to be relevant to the particular disorder, from the literature.

We believe that our research works could be greatly beneficial, as the clinicians

can use our diagnosis model to help doctors make important clinical decisions

– such as ‘what treatment to prescribe’. Also, this drives a practice of medicine

that is truly ‘evidence based’, which is particularly crucial for psychiatry.
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F. Durand, O. Bolloré, R. Benadhira, C. Isaac, S. Braha-Zeitoun, V.
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Appendix A

Obsessive-Compulsive Disorder

A.1 OCD Diagnosis Prediction

A.1.1 Adding sMRI and DTI features in EMPaSchiz
framework

Initially, we did sMRI and DTI preprocessing by using the preprocessing

pipelines described in Sections 2.2.2 and 2.2.3. Then, we considered the above

extracted sMRI and DTI data as additional features of the EMPaSchiz frame-

work. sMRI features were parcellated using the same 14 parcellations, which

were used in the EMPaSchiz framework [63]. For extracting DTI features,

we took two procedures: (1) we used JHU atlas (ICBM-DTI-81 white-matter

labels atlas) [9] for extracting the mean ROI values, according to Engima’s

protocol; (2) we used Neuromorphometics, LPBA40, and Hammers, cobra at-

lases with a computational anatomy toolbox, CAT121 for extracting the ROI

(region-of-interest) based features.

Unfortunately, we could not get any significant improvement in predicting

OCD versus HC after combining these two types of features to other 6 types of

features (ALFF, fALFF, ReHo, FC-Precision, FC-correlation, and FC-partial

correlation) in EMPaSchiz framework. We got 80.1% (respectively, 79.5%

and 79.0%) accuracy for the combined features of fMRI and JHU-based DTI

(respectively, the combined features of fMRI and CAT12-based DTI, and the

combined features of sMRI and fMRI) features.

1http://www.neuro.uni-jena.de/cat/
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A.1.2 Implement EMPaSchiz Framework using Neural
Network Structure

EMPaSchiz uses two levels of learning to produce the final classification model.

At the first label, it trains 84 different logistic regression classifiers with L2-

regularization. In the second level, it trains a single logistic regression classifier

with L2-regularization from the previously trained 84 classifiers to predict

OCD versus HC. So, EMPaSchiz’s 2nd level model is trained on the output of

the first level 84 models, and it, unlike neural networks, does not able to back

propagate the 2nd level model’s error to the first level 84 models. That is why

initial 84 models are not able to adjust themselves based on the second level

outputs.

As a result, initially, we assumed that if we were able to learn the final

model in a single level using neural network structure, we could be able to back

propagate the loss/error to the initial input. So, we might be able to produce

a better classification model. However, the accuracy of this model was 79.2%,

whereas EMPaSchiz gave 80.3% accuracy in terms of distinguishing between

OCD and HC. So, we were not able to get any advantage of using a single

level learning method over the two levels learning structure. The architecture

of this stacked neural network (= single level learning method) is shown in

Figure A.1.

Figure A.1: EMPaSchiz framework implemented in a structure of neural net-
work.
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A.2 Multi-Class Classification Model

We have a dataset of first degree relatives (FDRs) of schizophrenia patients

along with the schizophrenia (SCZ), and healthy control (HC) samples. The

details of the FDR subjects are given in Section 4.2. We tried to build a

3-way classification among SCZ, FDR, and HC. As the number of subjects

in HCs is more than double compared to SCZ and FDR subjects, we used

the undersampling method inside the EMPaSchiz framework. A multinomial

logistic regression classifier was used in EMPaSchiz framework to handle the

multi-class classification problem. We used 5 shuffled iterations of 10-fold

cross-validation (balanced based on class labels) for evaluating the model,

and the model was evaluated in terms of the following metrics: Accuracy,

Precision, and Sensitivity. For each metric, we have reported the mean and

standard errors overall 50 train-test splits. The classification results are shown

in Table A.1. Here, the overall model accuracy is around 69%, but as it

is observable in the results, model performance on predicting FDR is not

significant – precision and sensitivity for FDR prediction are less than 50%.

Furthermore, under-sampling, over-sampling, and assigning class weights did

not help to improve model performance.

Prediction Class

True Class

HC SCZ FDR Sensitivity
HC (191) 140.4 (0.82) 18.4 (0.82) 32.2 (0.52) 73.54 (0.44)
SCZ (81) 6.6 (0.77) 64.0 (0.63) 10.4 (0.45) 78.86 (0.78)
FDR (72) 21.4 (0.66) 16.6 (0.35) 34.0 (0.69) 47.04 (0.91)
Precision 84.12 (0.41) 65.87 (0.15) 46.33 (1.12) Overall Accuracy

69.28 (0.14)

Table A.1: EMPaSchiz performance on HC versus SCZ versus FDR.

Similarly, we attempted to learn another 3-way classification model for

classifying among OCD, SCZ, and HC. The results are given in Table A.2.

The overall model accuracy was around 68%, but the sensitivity score for SCZ

class is 24.21% (too low). Here, most of the SCZ patients were classified as

OCD patients.
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Prediction Class

True Class

HC OCD SCZ Sensitivity
HC (191) 146.4 (0.92) 44.0 (0.63) 0.6 (0.35) 76.63 (1.37)
OCD (184) 35.6 (0.66) 144.6 (0.82) 3.8 (0.52) 78.56 (1.51)
SCZ (81) 11.8 (1.24) 49.6 (1.21) 19.6 (0.87) 24.21 (1.85)
Precision 75.76 (0.76) 60.78 (0.71) 84.86 (3.21) Overall Accuracy

68.11 (0.13)

Table A.2: EMPaSchiz performance on HC versus OCD versus SCZ.

A.3 Symptom Severity Prediction

A.3.1 DY-BOCS based Severity Prediction

The researcher used Dimensional Yale–Brown Obsessive–Compulsive Scale

(DY-BOCS) for accessing the presence and severity of OCD. We have 35 DY-

BOCS sub-items in our OCD sample. We then applied the PCA to get the 35

PCA components, and we used the first 5 PCA components to compute the

class labels. We used the first and last quartile of each component to categorize

the least versus the most severely, symptomatic patients. So, finally, we had

five sets of class levels. For each set of class levels, we trained 84 single source

models (SSMs) (described in Section 3.4.1) and EMPaSchiz model (ensemble

of 84 single source models).

We found that for the 5-th PCA component based class levels, some of the

single source models gave accuaries in the range 60% to 68%, but EMPaSchiz

gave 55% accuracy where the baseline accuracy is 50%. For other PCA com-

ponents based class levels, SSMs performance is around 60% accuracy, and we

got around 55% accuracy from EMPaSchiz. We found that identifying severe

cases was not an easy task – we got mild success here.

A.3.2 Distinguish Washers versus Checkers

The most common behaviours in OCD patients are washing and checking [133].

Sometimes one patient may have both of these. But, in most cases [133], one

type of behaviour predominates, and it helps to identify that OCD subject as a

washer or checker. That is why, we tried EMPaSchiz model to classify washer
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versus checker. Unfortunately, the model was not able to perform significantly

better than the baseline F1-score.

A.3.3 Other Severity Measurements based Symptoms’
Severity Prediction

Along with the obsessions and compulsion severity measurements of the OCD

discussed in Section 3.7.4, there are few other scales for measuring OCD sever-

ity. Here is the list of severity measurements which ones we analyzed: Age

at onset; Ill duration; Global Assessment of Functioning; Clinical Global Im-

pression - Severity (CGI S); current and lifetime obsession on contamination,

aggressive, sexual, blasphemous, hoarding, pathological doubt, symmetrical,

and miscellaneous; current and lifetime compulsions on washing, checking,

repeating, arranging, hoarding, cognitive, miscellaneous. For each, we used

the first and last quartile of these scales to categorize the least versus the

most severely, symptomatic patients. Using EMPaSchiz with leave-one-out

cross-validation gave accuracies around the baseline–not significantly above

the baseline– for each case.

We also did the sub-group symptoms severity analysis. In our OCD sam-

ple, there are three sub-groups: Drug Naive (never taken a particular drug

before), Drug-Free (not taken particular drugs for a certain period), On Treat-

ment (currently taking the treatment). We used the above-mentioned severity

measurements for each sub-group to predict the severity, but we were not able

to reach a significant performance in terms of accuracy.

A.3.4 Multi-task Symptom Severity Prediction

One of the clinically important questions is to predict the current severity

scores of (1) 2 subcategories of YBOCS (obsession and compulsion scores), (2)

8 subcategories of DYBOCS (Total score Contamination, Total score Hoard-

ing and Collecting, Total score Symmetry, Ordering, Counting, and Arrang-

ing, Total score Aggression and related compulsion, Total score Sexual and

Religious, Total score Miscellaneous, Total Score Pathological Doubt, Total

score All Obsessions and Compulsions) from the current fMRI data (before
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any treatment). For this experiment, we used two multitask neural network

models (shown in Figures A.2, A.3). Architecture 1 (shown in Figure A.2) has

initial few layers for reducing the dimension of each feature type, whereas ar-

chitecture 2 (shown in Figure A.3) combines all the feature types into a single

concatenated features vector. After that, for each model, there is a hidden

layer that is shared among all the tasks, which helps the training process by

simultaneously optimizing each task. As all the tasks are related to each other,

learned information from one task can improve the results of other tasks. In

this experiment, we used a subset of the original OCD dataset for which we had

the YBOCS sub-items’ scores and the DYBOCS sub-items’ scores (N=136).

We tried a different set of parameters for these two architectures, but we failed

to get significant performance for each task in terms of F1-scores and mean

squared errors.

A.3.5 Symptom Severity Prediction using Deep Prob-
abilistic Canonical Correlation Analysis

Gundersen et al. [49] proposed DPCCA (Deep Probabilistic Canonical Cor-

relation Analysis) to learn the shared latent structure of joint medical image

and the gene expression data, and they showed that this learned model helps

to obtain image features which are the highly predictive signature of gene ex-

pression data. This inspired us to use DPCCA to learn joint fMRI data and

clinical features. The detailed description of the DPCCA system is provided in

the original paper [49]. Figure A.4 shows the general architecture of DPCCA.

In our case, DPCCA consists of PCCA (Probabilistic Canonical Correlation

Analysis), fMRI encoder and decoder, and clinical data encoder and decoder.

To learn the shared model, we used 3D convolution-based DCGAN [106] neural

network for fMRI data and a fully connected neural network for clinical data

in DPCCA framework. In the DPCCA framework, PCCA forces the learning

system to learn a model that maximally explains variation in the clinical data.

We have the following features for doing the experiments:

1. fMRI based features: We used 3 types of fMRI features (ALFF, fALFF,
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Figure A.4: General framework of DPCCA.

Reho), individually.

2. Clinical Features: All of the clinical features are on DYBOCS scale.

(a) 35 sub-measurements from DYBOCS scale (provided in Appendix A,

Table A.7)

(b) Derived 35 PCA components from all the measures of DYBOCS

scale (follows the same procedure which is used in Section A.3)

(c) 7 sub-total measurements from DYBOCS scale: Those were Total

score Contamination, Total score Hoarding and Collecting, Total

score Symmetry, Ordering, Counting, and Arranging, Total score

Aggression and related compulsion, Total score Sexual and Reli-

gious, Total score Miscellaneous, Total Score Pathological Doubt.

(d) 6 Obsession and compulsion related sub-measurements: Those were

Time score, Distress score, Interface score, Impairment score, Re-

sistance score, Control score.

We used these types of clinical features because those were related to

our main performance task (output label).

We combined each type of fMRI feature with each type of clinical feature to

classify the symptom severity (using two Y-BOCS measurements: obsessions

or compulsions score). So, we trained 12 (3 types of fMRI features × 4 types

of clinical features) different models for each measurement. The procedure of

computing the class labels for these tasks is given in Section 3.7.4. After doing
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all of these steps, we were not able to reach any significant results compared

to the performance of EMPaSchiz (EMPaSchiz results on these tasks are given

in Table 3.10).

A.4 Transfer learning using stochastic train-

ing process

For Schizophrenia dataset as inputs, EMPaSchiz’s L1-regularization selected

a different set of SSMs during 5 iterations. Figure A.5 (a) shows the number of

times SSMs selected out of 5 times, for example, FC prec with basc multiscale 444

is selected for 4 times. Then, we built five different SCZ to OCD transfer mod-

els using a different set of SSMs. A different set of SSMs were obtained by

considering how many times a particular SSM were selected during the 5 times

runs. For example, FC Corr with basc multiscale 197, FC prec with power,

and FC prec with dosenbach were selected more than 4 times. So, we used

these three SSMs for building EMPaSchiz-3 model, where 3 denotes the num-

ber of SSMs.

For the first row in Table A.3, ”Number of selected SSMs” column shows

that 3 SSMs were selected more than 4 times (number of times selected is given

in ”Number of times SSM selected” column), and EMPaSchiz-t denotes EM-

PaSchiz framework used only t number of SSMs for building the final ensemble

prediction model.

We also did the same things for SCZ to OCD CommonHC, OCD to SCZ,

and OCD to SCZ CommonHC. The number of times SSMs selected for SCZ to OCD

CommonHC, OCD to SCZ, and OCD to SCZ CommonHC are given in Fig-

ure A.5 (c, b, d), respectively. The results for these experiments are given in

Tables A.4, A.5, A.6.

A.5 35 Measures under DYBOCS scale for OCD

Subjects

The list of 35 measures under DYBOCS scale are given in Table A.7
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(a) (b)

(c) (d)

Figure A.5: Number of times SSMs selected for a) SCZ to OCD,
b) OCD to SCZ, c) SCZ to OCD CommonHC, and d)
OCD to SCZ CommonHC transfer learning.
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(a) (b)

(c) (d)

Figure A.6: Comparison across EMPaSchiz and Feature selection based
EMPaSchiz using 5 fold cross-validation - 5 shuffled iterations : a)
SCZ to OCD, b) OCD to SCZ, c) SCZ to OCD CommonHC, and d)
OCD to SCZ CommonHC transfer learning model (X axis denotes the number
of selected models out of 5 iterations).
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Feature Category Features Name

Contamination Time score
Distress score
Interface score
Resictance score
Control score

Hoarding and Collecting Time score
Distress score
Interface score
Resistance score
Control score

Symmetry,Ordering,Counting,
and Arranging

Time score
Distress score
Interface score
Resistance score
Control score

Aggression & related compulsion Time score
Distress score
Interface score
Resistance score
Control score

Sexual and Religious Time score
Distress score
Interface score
Resistance score
Control score

Miscellaneous Time score
Distress score
Interface score
Resistance score
Control score

Pathological Doubt DYBOC Time Score
Distress Score
Interface score
Resistance Score
Pathological Control Score

Table A.7: 35 Measures under DYBOCS scale.
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Appendix B

Schizophrenia Prognosis
Prediction

B.1 Treatment response prediction on tDCS

Schizophrenia Patients

B.1.1 Average Voxels Features based Methods

Initially, we projected the extracted LTPJ and RDLPFC based pearson cor-

relation features onto 14 different parcellations schemes (mentioned in Sec-

tion 3.3.2), and extracted average voxels features per region. It yielded 28 (2

feature types × 14 parcellations) feature sets. In Figure B.1, F1 and F2 denote

the LTPJ, and RDLPFC seed-based pearson correlation features, respectively.

And, Pj denotes the j-th parcellation, where j = 1, 2, ..., 14. Feature sets are

shown as FiPj (i.e. F1P1 to F2P14 each correspond to specific feature set),

where i denotes the feature type, and j denotes the parcellation.

We applied PCA on each feature set separately to reduce the feature di-

mensionality. Here, we used all the PCA components –i.e., the number of PCA

components is equal to the smaller values between the number of samples and

the number of original features. After that, for each reduced feature set, we

trained a different L2-logistic regression to predict the treatment response; we

consider these 28 classifiers as 28 single source models (SSMs). We tried the

below three different procedures for building an ensemble model from these

single source models.

(a) Using Meta-Classifier:
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Figure B.1: Average voxels features based ensemble model.

(i) Logistic Regression: We took outputs (predicted probabilities)

of 28 SSMs’ predictions on the training set. After that, we passed

these classes probabilities to a classifier, L2-logistic regression, to

train the final ensemble model.

(ii) Using Majority Voting: Instead of taking the classes proba-

bilities from 28 single source models’ prediction on each training/

testing sample, we considered the predicted class labels (here we

used 0.5 as threshold computing the class labels), and then applied

the majority voting to determine the final class label.

(b) Adaptive Thresholding: At first, we computed the average of 28

SSMs’ predicted probabilities on the training set, and then the method

selected a threshold value by optimizing the objective function. Here,

the objective function is to maximize the training accuracy by trying

different threshold values on the above computed average probabilities.

During the performance time on the test set, the model used the selected

threshold on the mean outputs (or probabilities) of 28 single source mod-

els’ predictions to compute the class label.

B.1.2 Individual Voxels Features based Methods

Similar to previous described “average voxels features” based method, we

firstly projected extracted LTPJ and RDLPFC based pearson correlation fea-
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tures onto 11 different parcellations schemes (power [104], dosenbach [30],

yeo [142], aal [147], basc multiscale 122, basc multiscale 197, basc multiscale 325,

basc multiscale 444 [11], destrieux [28], harvard cort 25, and harvard sub 251).

Instead of extracting average voxels signals, we extracted raw signal from each

voxel per region – regions are predefined by each parcellation – for each par-

cellation (the number of regions of each parcellation is shown in Table B.1)

and each feature type.

For each region, we have an individual feature set that contains all the

voxels features of that particular region. It yielded 232 (2 feature types × 116

regions) feature sets for aal, and similarly for other parcellations. So, in total,

we have 3822 (2 × 116 + 2 × 264 + 2 × 122 + 2 × 197 + 2 × 325 + 2 × 444 +

2 × 17 + 2 × 22 + 2 × 96 + 2 × 148 + 2 × 160) feature sets. As we have two

types of features for each region, we concatenated these two feature types for

each region. As a result, there were 1911 ( 3822 feature sets / 2 feature types)

feature sets for building an ensemble classification model.

Parcellation Number of Regions

aal 116
power 264
basc multiscale 122 122
basc multiscale 197 197
basc multiscale 325 325
basc multiscale 444 444
yeo 17
harvard sub 25 22
harvard cort 25 96
destrieux 148
dosenbach 160

Table B.1: Number of regions in each parcellation scheme.

From these 1911 feature sets, we trained 1911 different logistic regression

classifiers (we considered each classifier as a single source model) to predict

the treatment response. We tried ensemble procedures (meta-classifiers, and

adaptive thresholding methods), which also are used for “average voxels fea-

1http://www.cma.mgh.harvard.edu/fsl_atlas.html
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tures” based methods, for building an ensemble model from these single source

models. The model structure is shown in Figure B.2.

Figure B.2: Individual voxels features based ensemble model.

B.1.3 Feature Concatenation

a) Multiple Parcellations based Methods (MPM):

i) Average Voxels Features based Method Feature extractor of

the “average voxels features” based method (shown in Figure B.1)

provides 28 feature sets. Then, we simply concatenated all of these

28 feature sets and built a L2-logistic regression model for predicting

the treatment response.
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ii) Individual Voxels Features based Method Similarly, we got

3822 feature sets from the feature extractor of the “individual voxels

features” based method (shown in Figure B.2). Due to the huge

amount of features, we built a classification model using Logistic

regression with L1-regularization, where L1-regularization helps to

achieve sparsity.

b) Selected Regions based Method (SRM): Instead of considering all

of the brain regions based on different parcellations, we considered few

regions, those are implicated during Schizophrenia Auditory hallucina-

tion and it’s treatment according to the previous works [62], [67], [113],

[169]. We used 2 atlases (harvard sub 25, harvard cort 25) for extracting

these regional features. List of selected regions is provided in Table B.2.

i) Average Voxels Features based Method We extracted the av-

erage voxels features (described in “Average Voxels Features” based

Methods section) from each of the selected regions. After that, we

concatenated all the features, and learnt a L2-regularized logistic

regression.

Figure B.3: Comparison of performance across different methods for tDCS-
SCZ treatment response.
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B.1.4 Discussion

From these analysis, we found that we were able to achieve 72% and 71%

accuracies using the predefined set of atlases as prior knowledge for the aver-

age voxels and individual voxels features based methods, respectively. These

results inspired us to add more knowledge in our learning model in terms of

selecting a set of regions (refer to Table B.2) based on apriori knowledge.

Selected regions based methods (SRMs) gave 71.0% and 77.5% accuracies

using average voxels and individual voxels features, respectively (refer to Fig-

ure B.3). When we used the average voxels features of those selected regions,

we were unable to achieve significant performance. It indicates that we might

lose some information through the process of averaging the voxel of those

regions.

B.2 Treatment response prediction on Antipsy-

chotic Schizophrenia Patients

For two datasets (SAPS and CGI dataset), none of deep learning methods

were able to provide significant better performance above from the baseline.

Results for these two datasets are provided in Tables B.4, and B.5.
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SL No. Brain Area Reference

1. Left Superior Temporal Gyrus, anterior division
Zmigrod et al. 2016 [169],
Kühn and Gallinat 2012 [67],
Jardri et al. 2011 [62]

2. Left Superior Temporal Gyrus, posterior division
3. Right Superior Temporal Gyrus, anterior division

Zmigrod et al. 2016 [169]
4. Right Superior Temporal Gyrus, posterior division

5. Left Insula Cortex
Zmigrod et al. 2016 [169],
Rollins et al. 2019 [113],
Jardri et al. 2011 [62]

6. Right Insula Cortex Zmigrod et al. 2016 [169]
7. Right Inferior Frontal Gyrus, pars triangularis Zmigrod et al. 2016 [169],

Rollins et al. 2019 [113]8. Right Inferior Frontal Gyrus, pars opercularis
9. Left Precentral Gyrus Jardri et al. 2011 [62]
10. Right Precentral Gyrus Zmigrod et al. 2016 [169]
11. Left Postcentral Gyrus

Kühn and Gallinat 2012 [67]
12. Right Postcentral Gyrus

13. Left Cingulate Gyrus, anterior division
Kühn and Gallinat 2012,
Rollins et al. 2019 [113],
Jardri et al. 2011 [62]

14. Left Middle Temporal Gyrus, anterior division Kühn and Gallinat 2012 [67],
Rollins et al. 2019 [113],
Zmigrod et al. 2016 [169]

15. Left Middle Temporal Gyrus, posterior division
16. Left Middle Temporal Gyrus, temporooccipital part
17. ’Left Inferior Frontal Gyrus, pars triangularis’

Kühn and Gallinat 2012 [67]18. Left Inferior Frontal Gyrus, pars opercularis
19. Left Parietal Operculum Cortex
20. Right Supramarginal Gyrus, anterior division

Rollins et al. 2019 [113]
21. Right Supramarginal Gyrus, posterior division
22. Left Supramarginal Gyrus, anterior division

Jardri et al. 2011 [62]

23. Left Supramarginal Gyrus, posterior division
24. Left Hippocampus
25. Right Hippocampus
26. Left Parahippocampal Gyrus, anterior division
27. Right Parahippocampal Gyrus, anterior division
28. Left Parahippocampal Gyrus, posterior division
29. Right Parahippocampal Gyrus, posterior division

Table B.2: Regions selected based on prior research works.
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Model Name
Class Labels based on

Percentage of Improvement
(Baseline: 50.94%)

Follow-up SAPs Score
(Baseline: 54.71%)

3D CNN Model using
LTPJ and RDLPFC

52.83± 2.44 52.45± 1.2

Densenet Model using
LTPJ and RDLPFC

50.56± 1.47 50.19± 3.13

3D CNN Model
using ALFF

51.33± 1.72 50.18± 0.86

3D CNN Model
using fALFF

55.47± 2.48 50.94± 0.80

3D CNN Model
using ReHo

52.83± 0.92 53.20± 0.98

Stacked 3D CNN Model
Using LTPJ, RDLPFC
and ReHo

54.34± 1.24 52.08± 2.75

Transfer Learning using
LTPJ and RDLPFC

54.72± 1.84 55.47± 0.67

Table B.4: Treatment response prediction results based on baseline and follow-
up SAPS scores: average (standard errors)- 5× 10-fold CV.

Model Name
Class Labels based on

Percentage of Improvement
(Baseline: 57.57%)

Follow-up CGIs Score
(Baseline: 50.51%)

3D CNN Model using
LTPJ and RDLPFC

55.75± 0.66 51.0± 1.24

Densenet Model using
LTPJ and RDLPFC

54.31± 1.06 51.41± 0.58

3D CNN Model
using ALFF

55.96± 1.19 51.77± 0.32

3D CNN Model
using fALFF

53.53± 0.57 52.42± 0.38

3D CNN Model
using ReHo

55.55± 0.49 50.41± 0.54

Stacked 3D CNN Model
Using LTPJ, RDLPFC
and ReHo

55.53± 1.08 51.18± 0.86

Transfer Learning using
LTPJ and RDLPFC

56.16± 1.04 53.34± 1.49

Table B.5: Treatment response prediction results based on baseline and follow-
up CGI scores: average (standard errors)- 5× 10-fold CV.
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