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Abstract

Recent studies show that particle tracking together with moving least-square (MLS)

method is capable to interpolate displacement field and to determine strain and

stress fields from discrete displacement measurements in soft materials. The goal

of this study is to evaluate of the numerical accuracy of MLS in determining the dis-

placement, strain and stress fields in soft materials. Using an indentation example

as the benchmark, we extracted the discrete displacements data from a finite ele-

ment model and used it as the input to MLS. We assessed the accuracy of MLS by

comparing displacement, strain and stress fields from MLS with the corresponding

results from finite element analysis (FEA). For the indentation model, we also fin-

ished a parametric study and had some understanding towards how the parameters

affect the accuracy of MLS. Based on the guideline about the effect of parameters,

we applied the MLS method to two other cases with stress concentration: a plate

with a circular cavity subjected to large uni-axial stretch and a plane stress crack

under large Mode-I loading. The results demonstrated the capability of MLS to

measure large deformation and stress concentration within soft materials.

ii



Acknowledgments

I wish to express my sincere thanks to my supervisor, Dr. Rong Long, for providing

me with the leadership, advice and funding for the research. When I need guide for

a question, you always give me fast and correct feedback, which make me opti-

mistic to the research.

I am also grateful to my co-supervisor, Dr. Tian Tang. Thank you for your

tutelag, patience and high-standard. Your instructions about academic writing is so

important to me that I could not finish the thesis without your help.

I also place on record, my sense of gratitude to the other graduate students in my

office including Cuiying Jian, Luxia Yu, Bingjie Wu and Tamran Lengyel. I also

want to thank my friends like Wuhua Zhang, Shuai Zhou, Xu Zhang and Bang Liu.

Thank you for the help and encouragement. It is a memorable experience in my life!

Finally, to my dear parents, thank you very much for the support. I love you!

iii



Table of Contents

1 Introduction 1

1.1 Photomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Interferometric techniques . . . . . . . . . . . . . . . . . . . 3

1.1.2 Non-interferometric techniques . . . . . . . . . . . . . . . . 6

1.2 Application to soft material measurement . . . . . . . . . . . . . . . 9

1.3 Particle tracking method for full-field measurement in soft materials 10

1.4 Objectives of this project . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Introduction to the moving least-square method 13

2.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Displacement, strain and stress fields . . . . . . . . . . . . . . . . . . 17

2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Models and method 28

3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Dimensions and boundary conditions . . . . . . . . . . . . . 31

3.2.2 Material properties . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Expressions of strain and stress components . . . . . . . . . . . . . . 35

3.4 Evaluation of the accuracy of MLS interpolation . . . . . . . . . . . 39

4 Results for the indentation example and parametric study 44

4.1 Displacement field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4.2 Strain field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Stress field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Effect of weight function . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Application cases with stress concentration 62

5.1 Plate with a hole under tension . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Displacement and strain fields . . . . . . . . . . . . . . . . . 63

5.1.2 Stress field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Two-dimensional crack . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Displacement and strain fields . . . . . . . . . . . . . . . . . 67

5.2.2 Stress field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions and future work 72

v



List of Tables

3.1 Finite element simulation details. . . . . . . . . . . . . . . . . . . . . 31

3.2 Parameters used in MLS interpolation and zone of interest for each

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Normalized nearest neighbour distance γ corresponding to the total

number of data points. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Figures

1.1 Schematic of Moire pattern formed by geometric interference of

line gratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Schematic diagram to demonstrate the weight of data points. In

domain Ω (the purple square), A is a point whose displacement

we are interested in. B1, B2 and B3 are the data points near A.

The yellow circle Ωb centered at X differentiates the weight of data

points. Only data points inside Ωb contribute to the interpolation. . . 15

2.2 Plots of conical, exponential and quartic spline weight functions.

Horizontal axis represents d/rc and the vertical axis is the value of

weight function. The solid line is the conical function. The dashed

one is the exponential function and the dotted line is the quartic

spline function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



3.1 Schematics of models studied in this work. (a) cross-section of a

rigid sphere indenting a layer of gel. Shape after deformation is ap-

proximated by the dashed lines. (b) a plate with a hole is stretched

in the horizontal direction by the applied displacement u1. (c) an

edge crack opened in the vertical direction by the constant displace-

ment u2. The red shaded regions in all subfigures are the areas of

interest, i.e., Ω in Fig. 2.1Schematic diagram to demonstrate the

weight of data points. In domain Ω (the purple square), A is a point

whose displacement we are interested in. B1, B2 and B3 are the

data points near A. The yellow circle Ωb centered at X differenti-

ates the weight of data points. Only data points inside Ωb contribute

to the interpolation.figure.caption.9. . . . . . . . . . . . . . . . . . . 29

3.2 The indenting force versus indentation depth. The solid line is plot-

ted when Nlgoem switch is turned off. The dotted line is plotted

when Nlgoem switch is turned on. . . . . . . . . . . . . . . . . . . . 34

3.3 Cylinderical coordinates and Cartesian coordinates. . . . . . . . . . 36

3.4 Schematics of zone of interest in different forms. (a) Zone of in-

terest itself shaded by red lines. (b) Zone of interest divided into

grids. The black circles are gird points. (c) Zone of interest con-

taining grid points and data points inside. Data points are marked

by stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Displacement fields for the zone of interest from FEA and MLS.

(a) and (b): contour plots of the continuous displacement field u1.

(c) and (d): contour plots of the continuous displacement field u2.

η̃ is the median of relative errors defined in Eq. 3.13Evaluation of

the accuracy of MLS interpolationequation.3.4.13. Horizontal and

vertical axes areX! andX2 coordinates, which indicate the position

of zone of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

viii



4.2 Evaluation of MLS approximating u2 (displacement in X2 direc-

tion). (a), (b) and (c) are the plots of η̃ versus γ using different in-

terpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic

basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation. . . . . . . . . . . . . . . . 47

4.3 Evaluation of MLS approximating u2 (displacement in X2 direc-

tion). η̃ versus cut-off radius rc when γ = 0.0198, namely 800 data

points. The legend represents the interpolation basis used for each

MLS trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Strain fields of zone of interest from FEA and MLS. (a): contour

plots of strain field ε22 from MLS. The strain is calculated from

Green strain formula. (b): contour plots of strain field E22 from

MLS. The strain is calculated from true strain formula. (c): contour

plots of strain field E22 from FEA. The strain output in ABAQUS

is logarithmic strain, namely true strain. η̃ is the median of rela-

tive errors defined in Eq. 3.13Evaluation of the accuracy of MLS

interpolationequation.3.4.13. . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Strain fields of zone of interest from FEA and MLS. (a), (c) and (e):

contour plots of strain fields E11, E12 and E22 from FEA. (b), (d)

and (f): contour plots of strain fields E11, E12 and E22 from MLS.

η̃ is the median of relative errors defined in Eq. 3.13Evaluation of

the accuracy of MLS interpolationequation.3.4.13. . . . . . . . . . . 51

4.6 Evaluation of MLS approximating E22. (a), (b) and (c) are the plots

of η̃ versus γ using different interpolation basis. (a): Linear basis.

(b): Quadratic basis. (c): Cubic basis. (a), (b) and (c) have the

same legend meaning the employed cut-off radius for each MLS

interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Plots η̃ with cut-off radius rc at γ = 0.0198, namely 800 data points.

The legend represents the interpolation basis used for each MLS trial. 53

ix



4.8 Stress fields for zone of interest from FEA and MLS. (a), (c) and

(e): contour plots of σ11, σ12 and σ22 from FEA. (b), (d) and (f):

contour plots of σ11, σ12 and σ22 from MLS. . . . . . . . . . . . . . . 55

4.9 Plots η̃ versus cut-off radius rc at γ = 0.0164, namely 1200 data

points. The legend represents the stress components. . . . . . . . . . 56

4.10 Contour of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Continuous deformation fields of zone of interest from FEA and

MLS. (a),(c) and (e): contour plots of the continuous displacement

field u2 from FEA, MLS (conical weight function) and MLS (expo-

nential weight function). (b),(d) and (f): contour plots of the con-

tinuous strain field E12 from FEA, MLS (conical weight function)

and MLS (exponential weight function). . . . . . . . . . . . . . . . 58

5.1 Evaluation of MLS approximating u1 and E11. Plots η̃ with cut-off

radius rc at 800 data points with cubic basis. . . . . . . . . . . . . . 63

5.2 Displacement and strain fields for zone of interest from FEA and

MLS. (a) and (c) : contour plots of u1 and E11 from FEA. (b) and

(d): contour plots of u1 and E11 from MLS. . . . . . . . . . . . . . . 64

5.3 Stress fields for zone of interest from FEA and MLS. (a): con-

tour plots of σ11 from FEA. (b): contour plots of σ11 from MLS

in method B. (c): contour plots of σ11 from MLS in method A. (d):

contour plots of σ11 from MLS in method A with data points. . . . . 66

5.4 Evaluation of MLS approximating u2 and E22. Plots η̃ with cut-off

radius rc at 800 data points with cubic basis. . . . . . . . . . . . . . 67

5.5 Displacement and strain fields for zone of interest from FEA and

MLS. (a) and (c) : contour plots of u2 and E22 from FEA. (b) and

(d): contour plots of u2 and E22 from MLS. . . . . . . . . . . . . . . 68

5.6 Stress fields for zone of interest from FEA and MLS. (a): contour

plot of σ22 from FEA. (b): contour plot of σ22 from MLS in method

B. (c): contour plot of the relative error η for stress component σ22. 69

x



5.7 Pie chart of relative errors η. . . . . . . . . . . . . . . . . . . . . . . . 70

A1 Displacement and strain fields for zone of interest from FEA and

MLS. (a) and (c) : contour plots of u1 and E11 from FEA. (b) and

(d): contour plots of u1 and E11 from MLS. . . . . . . . . . . . . . . 74

A2 Stress fields for zone of interest from FEA and MLS. (a): con-

tour plots of σ11 from FEA. (b): contour plots of σ11 from MLS

in method B. (c) contour plots of σ11 from MLS in method B with

data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B1 Displacement and strain fields for zone of interest from FEA and

MLS. (a) and (c) : contour plots of u2 and E22 from FEA. (b) and

(d): contour plots of u2 and E22 from MLS. . . . . . . . . . . . . . . 76

B2 Stress fields for zone of interest from FEA and MLS. (a): contour

plot of σ22 from FEA. (b): contour plot of σ22 from MLS in method

B. (c): contour plot of the relative error η for stress component σ22. 77

xi



List of Symbols

∆ Difference in optical path

C Stress-optic coefficient

H The thickness of material sample

λ̃ The wavelength

σ1 Principal stress in the first direction

σ2 Principal stress in the second direction

ε33 Normal strain in X3 direction

µ Shear modulus

E Young’s modulus

P Pitch of grating

φ Cross-correlation function

f(X) Grayscale light intensity of a reference image

u(X) Displacement field in the undeformed configuration

g(X + u) Grayscale light intensity of the image after deformation

Ω Domain in Fig. 2.1Schematic diagram to demonstrate the weight of data points. In domain Ω (the purple square), A is a point whose displacement we are interested in. B1, B2 and B3 are the data points near A. The yellow circle Ωb centered at X differentiates the weight of data points. Only data points inside Ωb contribute to the interpolation.figure.caption.9

A Interpolation point in Fig. 2.1Schematic diagram to demonstrate the weight of data points. In domain Ω (the purple square), A is a point whose displacement we are interested in. B1, B2 and B3 are the data points near A. The yellow circle Ωb centered at X differentiates the weight of data points. Only data points inside Ωb contribute to the interpolation.figure.caption.9

v(X) Unknown function value of interpolation point

X Position vector in undeformed configuration

BI Data points

n Number of data points

bI Cartesian coordinates of data points

wI Exact function value of data points
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Chapter 1

Introduction

1.1 Photomechanics

Experimental measurement of displacement, strain and stress is an essential step to-

wards understanding the mechanical behaviors of various materials, especially for

materials under complex loading conditions. There exist some traditional tools such

as strain gauges which can provide very accurate measurement at discrete points of

a sample. However, strain gauges still have limitations. First, a strain gage can only

measure normal strain component along its direction. If multiple strain components

need to be measured, we should use a rosette with three strain gages along different

directions. Second, a strain gage can only give local measurement. Once the mea-

sured objective is a spatially varying strain field, multiple strain gages are required.

Third, when we are using a strain gage, it needs to be attached to the surface of a

sample. To avoid disturbing the deformation of the sample, the strain gage has to

be relatively small and thin as compared to the sample. This makes it difficult to

the application of measuring small-scale (millimeter size) samples. Therefore, re-

searchers have been devoted to developing efficient non-contact techniques capable

of full-field measurements of material deformation. Photomechanics emerged as a

class of techniques that utilizes optical methods to achieve this goal. After several

decades of development, it has grown into two categories: interferometric and non-

interferometric techniques [1]. Next we will provide brief introduction of several
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examples for both techniques. A complete review of photomechanics can be found

in [2] and [3].

Examples of the interferometric approaches include photoelasticity and moire

method. Most measurement results are shown in fringe patterns that originate from

interference of light or simple geometric patterns. The interferometric method can

provide a direct visualization of strain or stress fields in a non-contact manner. It

has been widely applied in optical fiber pressure sensor [4], the measurement of

refractive index [5], etc.

For non-interferometric techniques, representative methods include grid meth-

ods [6], synchrotron radiation computed tomography [7] and digital image corre-

lation (DIC). Among these methods, the digital image correlation method is es-

pecially relevant to this thesis. Unlike generating fringe patterns on the sample,

it focuses on the digital images of the sample before and after mechanical defor-

mation. These images record gray-scale light intensity information pixel by pixel

across the imaging window on the specimen surface. By comparing the light in-

tensity pattern of two images before and after deformation, locations of the pixel

corresponding to the same material point in the specimen before and after defor-

mation can be determined, and so is displacement of the pixel. This method can

help generate a two-dimensional displacement field on the surface of the sample.

The DIC method was further extended to three dimension (measurement of the out

of plane displacement component), which is known as digital volume correlation

(DVC). DVC is capable of full 3D measurement and we are going to discuss it in

details later.

To motivate the work in this thesis, a number of representative optical methods

for measuring deformation and stress fields are introduced in further details below.
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1.1.1 Interferometric techniques

Photoelasticity [8][9][10], based on the optical property of birefringence, is an ex-

perimental approach to conduct the stress measurement inside a material. Birefrin-

gence refers to the phenomenon that when a ray of light passes through a birefrin-

gent material, it will split into two rays experiencing different refractive indices.

Some materials such as optical fibers [11] and ordinary cellophane (a kind of plas-

tics) [12] exhibit birefringence effect when they are subjected to mechanical stress.

Therefore there is a possibility to relate birefringence and stress.

The stress-induced birefringence is the underlying mechanism for conducting

photoelasticity experiments. First, a ray of polarized light was applied to the surface

of a thin sample which is loaded in plane stress state. Then the light will split

into two rays along the two principal stress directions. Since the rays of lights

after split experience different refractive indices, they possess different propagation

speed inside the sample, leading to a difference in optical path ∆. The magnitude

of ∆ can be determined using the stress-optic law [13].

∆ = C
2πH

λ̃
(σ1 − σ2) (1.1)

where C is the stress-optic coefficient (material constant), H is the thickness of ma-

terial sample, λ̃ is the wavelength, σ1 and σ2 are the two principal stresses. The dif-

ference in optical path ∆ leads to optical interference of the two splitted light waves

and then fringe patterns known as isochromatics is formed. The fringe patterns can

be named by its order which is equal to
∆

2π
. Isochromatics are the contour lines

where the difference of the two principal stresses σ1 and σ2 are the same. However,

isochromatics alone is insufficient to determine the values of both principal stresses

σ1 and σ2. Isoclinics, the lines where the points share the same direction of principal

stress, is another contour required to measure the principal stresses. Isoclinics usu-

ally appear together with isochromatics. It can be separated from isochromatics by

several methods including center fringe method, the phase-shift method, etc [14].
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Once directions of the two principle stresses (σ1, σ2) and the difference between

them are obtained, the principal stresses can be computed using elasticity theories

[15]. However, the quality of isoclinics was not very good since it is hard to ob-

tain isoclinics without the interference from isochromatics [14]. In 1990, Brown

and Sullivan [16] proposed a polarization-stepping method to record isoclinics us-

ing polarized light. To reduce the noise from isochromatics, they minimized the

applied load to make sure the orders of resulted fringes are less than or equal to

0.5 [9]. In 1999, Petrucci [14] improved Brown’s and Sullivan’s experiment [16]

by using white light instead of polarized light and succeeded in decreasing the in-

teraction from isochromatics and obtaining accurate measurements of isoclinics [9].

Besides isoclinics, isopachics is another quantity that was used to measure prin-

cipal stresses together with isochromatics. Isopachics is the contour lines where the

points have the same out-of-plane normal strain ε33 . According to Hooke’s law, ε33

is proportional to the sum of two principal stresses in plane stress state [17],

ε33 = − µ
E

(σ1 + σ2) (1.2)

where µ is the shear modulus and E is the Young’s modulus. The application of

isopachics also suffers from a limitation: it requires two samples with the same

mechanical properties and under the same stress state, one with birefringence and

one without, so that both the isochromatics (or σ1 − σ2) and isopachis (or ε33)

can be measured [17]. The sample with no birefringence is required to measure

isopachics without being affected by the isochromatics. There is another technique

using holography [18] to obtain isopachics and isochromatics at one time by double

exposure. However, the fringes obtained from holography are very complicated to

analyze [17].

Moire method is another optical technique using interference to measure de-

formation. The term moire is derived from French, referring to the rippled pattern
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formed when two pieces of silk fabric covered each other. In experimental me-

chanics, moire pattern refers to the fringes formed by superimposing two gratings

together. Moire pattern can be formed in two ways: geometric interference and

moire interferometry. Their underlying principles are different. We first introduce

the basic principle of geometric interference. Line grating, consisting of parallel

equidistant dark lines and bright lines, is one of the most common gratings to con-

duct geometric interference. The reference grating shown in Fig. 1.1Schematic

of Moire pattern formed by geometric interference of line gratings.figure.caption.8

represents the typical structure of a line grating. An important property of grating

is the pitch P , which is the distance between neighbouring dark lines. The pitch

P characterizes the density of lines. When two identical line gratings are overlaid

completely, they appear as a single grating. However, if one grating referred to as

the specimen grating is attached to a sample, the specimen grating would deform

together with the sample when it is subjected mechanical loading (e.g. under com-

pression in Fig. 1.1Schematic of Moire pattern formed by geometric interference

of line gratings.figure.caption.8). As a result, the pitch of the specimen grating

changes, it no longer coincides with the other grating named as the reference grat-

ing which is not attached to the sample and thus is undeformed. The dark lines of

specimen grating will cover the bright lines of reference grating and then form dark

fringes. The superposition of bright lines from the two gratings will become bright

fringes. The bright and dark fringes formed in this way are moire pattern. The

position and spacing of moire pattern reflect the deformation of the sample, so the

displacement and strain of the sample can be determined by measuring the moire

pattern.

Geometric interference is often applied to gratings with low densities to gen-

erate moire pattern which can be seen by naked eyes [19]. However, if grating

of higher density is utilized, the mechanism is different since diffraction of light

becomes dominant, rather than the simple geometric interferometry. Therefore, co-

herent light is needed to observe moire pattern [19]. This technique is known as
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reference

specimen

superposition

dark line
bright line

bright fringe dark fringe

P

Fig. 1.1. Schematic of Moire pattern formed by geometric interference of line gratings.

the moire interferometry. Moire interferometry has been utilized in a lot of fields

like the measurements of refractive index and refractive index gradient [5], deter-

mination of residual stress [20][21] and dental materials [22]. The details of moire

interferometry will not be presented here but can be found in the paper of Nicoletto

et al.[20] as well as Post and Baracat [23].

1.1.2 Non-interferometric techniques

As is mentioned in Section 1.1Photomechanicssection.1.1, DIC is a widely used

non-interferometric method and is closely related to the work in this thesis. Here

we will briefly review the operating mechanism of the DIC method.

DIC was first developed by researchers at the University of South Carolina in

1980s [1][24][25]. Based on digital image analysis and numerical computation, it

is typically used to measure displacement in solid materials undergoing mechanical

deformation. The basic principle is to match the pixels representing the same mate-

rial point between two images before and after deformation. The matching can be
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achieved by maximizing a cross-correlation function defined in the following:

φ =

∫ ∫
f(X)g(X + u)dX (1.3)

where f(X) is the grayscale light intensity of a reference image, u(X) is the in-

plane displacement field and g(X + u) represents the grayscale light intensity of the

image after deformation. To conduct displacement measurement using DIC, first

the specimen needs to be prepared with a carrier of deformation information, which

can be a speckle pattern on the surface. The speckle pattern comes either from

the naturally occurring properties such as the texture of the specimen material, or

artificially introduced, i.e. random paint pattern. There is a similar methodology

which has been applied in experimental fluid mechanics. It is known as particle

image velocity (PIV). It is utilized to measure the velocity of fluid by tracing the

particles seeded within the fluid [1]. Details concerning this method can be found

in [26][27][28].

DIC has several advantages that makes it appealing. First, a white light is

enough for illumination in DIC, rather than a laser source for moire interferom-

etry [1]. Second, due to the use of advanced optical instruments such as laser

scanning confocal microscope (LSCM) [29][30], scanning tunnelling microscope

(STM)[31] and scanning electron microscopy (SEM) [32][33], the sensitivity and

accuracy of DIC have been improved over recent years [1]. Besides, there are vari-

ous algorithms such as coarse-fine search algorithm [34] and spatial-gradient-based

algorithm [35] developed to improve the accuracy.

In 1993, Luo et al. [36] first proposed three-dimensional digital image cor-

relation (3DDIC), a combination of the DIC technique and a stereo pair of CCD

cameras, to achieve full-field 3D surface measurement. From that, there is a large

growth in the development of 3DDIC and it has a wide range of applications in

aerospace [37], biomechanics [38] and experimental solid mechanics [39]. How-
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ever, 3DDIC is still a surface based method restricted to visible surfaces of the

specimen. In certain applications, it is important to develop a technique which can

achieve three dimensional displacement measurements in bulk materials. Motivated

by this goal, the first generation of digital volume correlation (DVC) was developed

in 1999 as a solution to trace the displacement and strain fields inside trabecular

bone tissue [40]. While DIC is to track the displacements of areal pixels which are

small regions of speckle or material texture, DVC extends areal pixel to volumetric

voxel. The implementation of DVC relies on another technology: high-resolution

X-ray computed tomography, or X-ray CT. X-ray CT uses computer processed X-

ray to take tomographic images of specific areas of a scanned specimen. It allows

the researchers to observe the inside of the specimen without cutting it. X-ray CT

also broadens the measurement scale of DVC because of its high resolution, which

enables to image sample owning complex structure [41].

Subsequent refinements towards DVC relies on the improvements of correlation

algorithms [41]. Different from tracking displacement like DIC, rotational degree

of freedom of the voxel element was introduced by Smith et al. [42], which de-

creases the error in the consideration of rigid body rotation. Franck et al. [29]

accounted for the stretch of the voxel element in their correlation algorithms. The

improvements did help enhance the accuracy of DVC, but it also increases the com-

plexity of the algorithms and the time required for computation.
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1.2 Application to soft material measurement

Soft material has become interest of many scientists and engineers due to its attrac-

tive features like bio-compatibility, large deformability and stimuli-responsiveness.

The application of soft material covers a lot of fields including soft robotics [43],

soft actuator [44], tissue engineering [45] and biomedical implants [46]. Probing

the mechanical property of soft material is very active now since it is closely related

to the deep understanding and technical application of soft materials.

For traditional engineering materials (e.g. metal and ceramics), their defor-

mation can be described by the linear elasticity. However, linear elasticity theory

cannot be applied to soft materials since it can undergo large nonlinear deforma-

tion. Therefore, it motivates a lot of researches trying to propose more complicated

models accounting for the geometrical and material nonlinearity of soft materials

[47]. The question is that development of these theoretical models relies on the

advancement of fundamental understanding of soft material mechanics which re-

quires significant experimental data. This is especially true for material samples

with complex geometry and loading conditions. Typical cases include the measure-

ment of cell traction on the substrate [48][49][50] and the fracture of soft materials

[51].

Since it is not possible to paint speckle patterns in the interior of a specimen

in the experiments, DVC usually employs specimen which has naturally occurring

material texture [52]. For soft elastomers and gels, however, one can introduce arti-

ficial volumetric patterns by embedding fluorescent particles in the samples during

the synthesis process. For the instrument of imaging, since most soft materials are

transparent, images can be taken using a fluorescent microscope instead of X-ray

CT. In 2007, Franck et al. [29] developed a method to measure the nonlinear defor-

mation of soft materials based on DVC. The innovations of their method are in the

following aspects. One is that for the first time, they induced artificial volumetric
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patterns by incorporating fluorescent particles in soft materials which typically do

not possess natural volumetric patterns. Secondly, the voxel was not treated as a

rigid body; the deformation of each voxel, potentially caused by large bulk defor-

mation, was taken into account in the correlation algorithm. Despite its originality,

Franck et al.’s [29] method still has several limitations. First, rotations and shear de-

formation of the voxel elements were neglected in the correlation algorithm. Only

stretching deformation for the voxel elements were considered. This assumption

may be satisfied in general and may reduce the accuracy of measurements. Sec-

ond, to improve the spatial resolution of the measured field, the size of the voxel

elements needs to be sufficiently small. However, the size of voxels was limited by

the spacing of the fluorescence particles, i.e., a voxel should at least include two to

three fluorescence particles to show a unique volumetric pattern. Third, to obtain

the strain field, or the gradient of the displacement field, complicated algorithms

are needed to to conduct smoothing or filtering procedures. Otherwise, the mea-

sured strain fields may be non-smooth, which limits the application of this method

for problems involving non-uniform deformation especially those with severe stress

concentration.

1.3 Particle tracking method for full-field measure-

ment in soft materials

Recently Hall et al. [53] developed a new method to map three-dimensional strain

and stress fields within a soft hydrogel. Their method is based on tracking the

displacement of fluorescent beads embedded in the hydrogels. Unlike the DVC

method where voxel elements containing several fluorescent particles are tracked,

here individual particles are tracked which is expected to lead to a higher spatial

resolution for the measured field. However, the difficulty lies in how to interpolate

the displacements measured at a set of randomly distributed particles and obtain a
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continuous displacement field and its gradient. This issue was nicely addressed by

a numerical interpolation technique known as moving least square (MLS). In 1994,

a element-free galerkin method was proposed by Belytschko et al. [54] as an al-

ternative for finite element method. A core component of the element-free galerkin

method was based on the moving least-square (MLS) method, which provides shape

functions for interpolating the displacement field from randomly distributed nodes.

Originally the MLS method was developed in computer graphics, e.g., for the re-

generation of a surface based on the coordinates of discrete point on the surface

[55][56]. The MLS method was also used for computing strain from displacements

at some arbitrary points [57]. The advantages of this technique include: 1), it is not

restricted to the measurement of linear elastic deformation or small deformation, but

can be extended to nonlinearities of soft material; 2), the MLS can generate con-

tinuous derivatives of any order and then guarantee the smoothness of strain fields.

Therefore, particle tracking together with MLS interpolation method is expected to

greatly facilitate the experimental study of large and nonlinear deformation within

soft materials.

1.4 Objectives of this project

The focus of this thesis is to assess the numerical accuracy of MLS in determin-

ing the continuous displacement, strain and stress fields from discrete displacement

measurements in soft materials. First, we use FEA to simulate some representative

cases of large deformation in soft materials. Then we will extract the displacement

of a set of randomly selected nodes and use it as the input data for MLS interpo-

lation. After we obtain the continuous displacement, strain and stress fields from

MLS interpolation, we compare them with the corresponding results from FEA to

assess the accuracy. In addition, the implements of MLS method also require us to

specify a number of parameters which will be detailed in Chapter 2Introduction to

the moving least-square methodchapter.2. We considered the effects of parameters
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on the accuracy of MLS method and the optimized choice of parameters. Further-

more, we extended the MLS-based data processing method in Hall et al. [53], so

that it is capable of solve large deformation problems with geometrical nonlinearity.

We also studied the potential of applying the particle tracking and MLS method for

loading scenarios with severe stress concentration.

The thesis is arranged as follows. The moving least-square method is illustrated

in details in Chapter 2Introduction to the moving least-square methodchapter.2. In

Chapter 3Models and methodchapter.3, the models are specifically introduced and

the criterion for evaluating the accuracy of MLS is proposed. The results for the

models are given in Chapter 4Results for the indentation example and parametric

studychapter.4 and 5Application cases with stress concentrationchapter.5. Chapter

6Conclusions and future workchapter.6 is concerning the conclusions and future

work.
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Chapter 2

Introduction to the moving

least-square method

2.1 Basic principle

The moving least-square (MLS) method is an interpolation method to construct a

function through a set of unorganized data points. The detailed process is reviewed

in this section. Suppose in a domain Ω, there is a point A whose function value

v(X) is required to be determined (see Fig. 2.1Schematic diagram to demonstrate

the weight of data points. In domain Ω (the purple square), A is a point whose

displacement we are interested in. B1, B2 and B3 are the data points near A. The

yellow circle Ωb centered at X differentiates the weight of data points. Only data

points inside Ωb contribute to the interpolation.figure.caption.9). Here X denotes

the position vector of A, i.e., XT = [X1, X2, X3]. There are also n data points

BI(I = 1, 2, 3, ..., n) randomly distributed in Ω (the data points are the fluorescent

beads with experimentally measured displacements mentioned in Section 1.3Parti-

cle tracking method for full-field measurement in soft materialssection.1.3) . Each

has a position vector of bI(I = 1, 2, 3, ..., n). Besides, their exact function values

are given by wI≡v(bI)(I = 1, 2, 3, ..., n). The interpolated function value ṽ(X)

can be found by introducing a interpolation basis PT (X) and the corresponding
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coefficients a(X) as follows [54]:

ṽ(X) = PT (X)a(X) (2.1)

where PT (X) is composed of polynomials and a(X) = [a0(X), a1(X), a2(X), ...]T

are the unknown coefficients. For example, in a three dimensional domain, if a

linear basis is used, PT (X) = [1, X1, X2, X3] and ṽ(X) = a0(X) + a1(X)X1 +

a2(X)X2 + a3(X)X3. It should be noted that the coefficient a(X) is dependent on

the position of the interpolation point (e.g. point A in Fig. 2.1Schematic diagram to

demonstrate the weight of data points. In domain Ω (the purple square), A is a point

whose displacement we are interested in. B1, B2 and B3 are the data points near A.

The yellow circle Ωb centered at X differentiates the weight of data points. Only

data points inside Ωb contribute to the interpolation.figure.caption.9), not a constant

for traditional polynomial interpolation. Therefore, the interpolation function ṽ(X)

is able to accommodate complicated function that does not resemble polynomial

functions.

The position-dependent coefficients a(X) can be determined by minimizing a

weighted least-square error function L which is defined as

L =
n∑
I=1

f(X− bI)[PT (bI)a(X)− wI ]2 (2.2)

where f(X − bI) is a weight function that decays as the distance between the data

point at bI and the interpolation point at X, or |X − bI |, increases. This decaying

characteristics of the weight function f(X − bI) is consistent with the position-

dependent attribute of a(X). That is, data points closer to point A contribute more

to the weighted least-square error function L. Typically to simplify the calcula-

tion, a cut-off radius rc is introduced to exclude the data points beyond rc; in other

words, the weight function is zero for those data points outside the cut-off radius

rc. Fig. 2.1Schematic diagram to demonstrate the weight of data points. In do-
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rc

ΩΩb

A

B1

B2

B3

Fig. 2.1. Schematic diagram to demonstrate the weight of data points. In domain Ω (the purple
square), A is a point whose displacement we are interested in. B1, B2 and B3 are the data points
nearA. The yellow circle Ωb centered atX differentiates the weight of data points. Only data points
inside Ωb contribute to the interpolation.

main Ω (the purple square), A is a point whose displacement we are interested in.

B1, B2 and B3 are the data points near A. The yellow circle Ωb centered at X dif-

ferentiates the weight of data points. Only data points inside Ωb contribute to the

interpolation.figure.caption.9 can help us better understand how weight function

f(X− bI) works. B1, B2 and B3 are representative data points around the interpo-

lation pointA. A circular domain Ωb centered atA with the cut-off radius rc defines

a region where only data points inside it have non-zero weight and can contribute

to the weighted least-square error function L. Since B1 and B2 are inside Ωb, their

contribution is not zero. The weight of B2 is smaller than that of B1 because B1 is

closer to A. However, point B3 is outside the domain Ωb, thus its weight is zero.

To find the minimum of L, we set the first-order derivative of L with respect to

a(X) to be zero, i.e.,

2
n∑
I=1

f(X− bI)[PT (bI)a(X)− wI ]P(bI) = 0 (2.3)

Eq. 2.3Basic principleequation.2.1.3 is an linear equation for a(X) and the solution
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is listed below [54]:

a(X) = A−1(X)B(X)w (2.4)

where

A(X) =
n∑
I=1

f(X− bI)P(bI)PT (bI) (2.5a)

B(X) = [f(X− b1)P(b1), ..., f(X− bn)P(bn)] (2.5b)

wT = [w1, w2, ..., wn] (2.5c)

where f(X− bI) is the weight function, bI(I = 1, 2, 3, ..., n) is the position vector

of data points and wI(I = 1, 2, 3, ..., n) is the exact function value of data points.

Therefore, the interpolated function value ṽ(X) can be expressed as

ṽ(X) = PT (X)a(X) = PT (X)A−1(X)B(X)w (2.6)

Due to the need of calculating strain and stress fields (detailed in the next section),

we have to get the first-order derivative and Laplacian of ṽ(X):

∂ṽ

∂Xj

=

[
∂PT

∂Xj

A−1B− PTA−1
∂AT

∂Xj

A−1B + PTA−1
∂B
∂Xj

]
w (2.7)

∇2
X ṽ = [(∇2

XPT )A−1B− PTA−1(∇2
XA)A−1B + PTA−1(∇2

XB) (2.8)

+
3∑
j=1

2
∂PT

∂Xj

(−A−1)
∂A
∂Xj

B + A−1
∂B
∂Xj)

+
3∑
j=1

2PT (A−1
∂A
∂Xj

A−1
∂A
∂Xj

A−1B

− A−1
∂A
∂Xj

A−1
∂B
∂Xj

)]w

where the subscript j could be 1, 2 or 3, representing Cartesian coordinates X1, X2

and X3, respectively.

In all, MLS is an interpolation method allowing the coefficients a(X) to be
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position-dependent. Without the position-dependent coefficients a(X), the deriva-

tive of the interpolation function may be very inaccurate if low order polynomial

basis functions are used (e.g. linear polynomial basis). The position-dependent

coefficient together with the weight function in the weighted least-square error L

ensure that MLS can build an interpolation function continuous up to any order.

In this way, for any arbitrary point in Ω, we can calculate its interpolated function

value ṽ(X) from the given data points. Repeating this process for every point in Ω,

a continuous field can be established.

2.2 Displacement, strain and stress fields

The displacement of a material point in a solid is defined as:

u(X) = x− X (2.9)

where X and x are the position vectors of the material point in undeformed and

deformed configurations and u is the displacement vector, i.e. uT = [u1, u2, u3]. If

the MLS method is applied to each of the three displacement components, an in-

terpolated displacement field can be constructed from the given displacement mea-

surements at a set of data points.

For infinitesimal deformation, the strain field can be calculated from displace-

ment field using the definition of the Green strain tensor in linear elasticity.

ε =
∇Xu + (∇Xu)T

2
(2.10a)

or εij =
1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

) (2.10b)

where the subscripts i and j can be 1 ,2 or 3. In this case, once the displacement

field is determined by MLS, the components of Green strain tensor can be com-
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puted using Eq. 2.7Basic principleequation.2.1.7 and Eq. 2.10Displacement, strain

and stress fieldsequation.2.2.10b.

In linear elasticity, for isotropic materials the stress tensor can be determined

from the strain tensor using the Hooke’s law:

σ = λεbI + 2µε (2.11a)

or σij = λεbδij + 2µεij (2.11b)

where λ is the Lame’s constant, εb = ε11 + ε22 + ε33 is the bulk strain, I is the

unit tensor, µ is the shear modulus and ε is the Green strain tensor. The Lames’s

constant λ can be calculated from

λ =
Eυ

(1 + υ)(1− 2υ)
(2.12)

where E is the Young’s modulus and υ is the Poission’s ratio. A difficulty arises

if the material is nearly incompressible which is the case for most soft elastomers

and gels. In this case, the Poission’s ratio is close to 1
2
. As a result, the value of λ ap-

proaches infinity as shown in Eq. 2.12Displacement, strain and stress fieldsequation.2.2.12,

and the bulk strain εb approaches zero. This makes the first term on the right hand

side of Eq. 2.11Displacement, strain and stress fieldsequation.2.2.11b indetermi-

nate. Hall et al. [53] proposed a solution by replacing λεb in Eq. 2.11Displacement,

strain and stress fieldsequation.2.2.11b with −p̃ where p̃ is referred to an unknown

hydrostatic pressure and is a field variable. Then the stress component becomes

σij = −p̃δij + 2µεij (2.13)

where δij is Kronecker delta. Since σij has to satisfy the equilibrium equation which
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is in the following form if body forces are neglected:

3∑
j=1

∂σij
∂xj

= 0 (2.14)

where xj is in deformed configuration. p̃ can be determined by substituting Eq.

2.13Displacement, strain and stress fieldsequation.2.2.13 to Eq. 2.14Displacement,

strain and stress fieldsequation.2.2.14, which gives us

3∑
j=1

∂p̃

∂xj
δij =

3∑
j=1

2µ
∂εij
∂xj

(2.15a)

∂p̃

∂xi
= 2µ

∂εij
∂xj

(2.15b)

It is more convenient to integrate in undeformed configuration than in deformed

configuration (the reason will be presented later). In linear elasticity, the defor-

mation is infinitesimal, and thus the undeformed and deformed configuration are

in distinguishable. Therefore,
∂p̃

∂xi
can be replaced by

∂p̃

∂Xi

. If we recall Eq.

2.10Displacement, strain and stress fieldsequation.2.2.10b and substitute it into Eq.

2.15Displacement, strain and stress fieldsequation.2.2.15b, we obtain

∂p̃

∂Xi

= 2µ
∂εij
∂Xj

= µ(
∂2ui

∂Xj∂Xj

+
∂2ui
∂XiXj

)

= µ∇2
Xuj + µ

∂εb
∂xi

(2.16)

Take the integral of Eq. 2.16Displacement, strain and stress fieldsequation.2.2.16

from a reference point X0 to X, we have

p̃(X)− p̃(X0) = µ

∫ X

X0

(∇2
Xu) · ds + µ[εb(X)− εb(X0)]. (2.17)

where ∇2
Xu is obtained by applying Eq. 2.8Basic principleequation.2.1.8 to the

three displacement components. In order to find the unknown hydrostatic pressure
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field p̃(X), one can always choose a point where one of the normal stress compo-

nents (σ11, σ22 and σ33) is known at the reference point X0 in Eq. 2.17Displace-

ment, strain and stress fieldsequation.2.2.17. This is because p̃(X0) can be calcu-

lated from the known normal stress component at X0 and the strain components.

Usually, the known normal stress component comes from the traction boundary

conditions. For example, if σ22(X0) = 0, recall Eq. 2.13Displacement, strain and

stress fieldsequation.2.2.13, we can find that p̃(X0) = 2µε22. After the pressure

field is obtained, stress field can then be computed using Eq. 2.13Displacement,

strain and stress fieldsequation.2.2.13.

It should be noted that Hall et al. [53] are the first to propose this approach to

determine hydrostatic pressure. However, their derivations are based on the assump-

tion of infinitesimal deformation where linear elasticity applies. If the deformation

is large which is typically the case for soft materials, linear elasticity theory is no

longer applicable and nonlinear formulation is required. Therefore, the formulation

for nonlinear deformation will be developed in the following part. For finite strain

deformation, a measure of the deformation is the true strain tensor:

E = ln V (2.18)

where E is the true strain tensor and V is the left stretch tensor. The left stretch

tensor V is obtained from

V = B
1
2 = (FFT )

1
2 (2.19)

where B is the left Cauchy Green deformation tensor and F is the deformation

gradient tensor and can be calculated from

F = ∇Xu + I (2.20a)

or Fij = δij +
∂ui
∂Xj

(2.20b)
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So

Bij = FikFjk = (δik +
∂ui
∂Xk

)(δjk +
∂uj
∂Xk

) (2.20c)

where I is unit tensor and δij is Kronecker delta.
∂ui
∂Xj

can be obtained using Eq.

2.7Basic principleequation.2.1.7.

The stress-strain relations of soft elastic materials under large deformation can

be described by hyperelastic material models. Neo-Hookean material, proposed by

Treloar [58][59], is the simplest and one of most widely used hyperelastic mate-

rial models. It is based on considering the Helmholtz free energy of a molecular

network with Gaussian chain length distribution (details can be found in Bonora et

al.’s book [60]). However, most soft materials undergo isochoric deformation and

therefore are modelled as incompressible materials. This makes the calculation of

stresses challenging. Take the incompressible neo-Hookean material as an example,

and its strain energy density is

W =
µ

2
(I1 − 3) (2.21)

where µ is the shear modulus and I1 is the first invariant of the left Cauchy Green

deformation tensor B. For finite deformation, there are several different stress mea-

sures such as Piola-Kirchhoff stress tensor, Second Piola-Kirchhoff stress tensor

and Cauchy stress tensor. They represent stress relative to different configurations.

Among them, we choose the Cauchy stress tensor which describes the true stress

in the deformed configuration (relating force in deformed configuration to areas in

the deformed configuration) to measure the finite stress here. The Cauchy stress for

incompressible neo-Hookean material is

σ = −pI + µB (2.22)

where p is a Lagrange multiplier to enforce the incompressibility constraint J =

detF = 1.The term p is unknown and cannot be determined from the deformation
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gradient F. Even if the material is not exactly but close to incompressible, signif-

icant numerical errors may arise in the Cauchy stress. For example, consider the

following compressible neo-Hookean material model [61][62],

W =
µ

2
(I1 − 3) +

µ

2β
(J−2β − 3) (2.23)

where J = detF and β is related to the Poisson’s ratio υ through β = υ
1−2υ . In this

case, the Cauchy stress tensor is

σ = −µJ−2β−1I +
µ

J
B (2.24)

If the material is nearly incompressible, namely that the Poisson’s ratio approaches
1
2
, J remains close to 1 and β → ∞. This may lead to numerical difficulties when

evaluating the term J−2β−1 in Eq. 2.24Displacement, strain and stress fieldsequation.2.2.24.

This problem was also noted in Hall et al.[53] for linear elasticity theory where a

large bulk modulus is multiplied by a small bulk strain.

To circumvent the numerical difficulty in determining stress, we first combine

the Cauchy stress expression for incompressible and compressible neo-Hookean

material, as listed in Eq. 2.22Displacement, strain and stress fieldsequation.2.2.22

and Eq. 2.24Displacement, strain and stress fieldsequation.2.2.24, respectively, into

the following general expression:

σ = −pI +
µ

J
B (2.25)

For the incompressible model, J = 1 and Eq. 2.25Displacement, strain and stress

fieldsequation.2.2.25 reduces to Eq. 2.22Displacement, strain and stress fieldsequation.2.2.22.

For the compressible model, the term p can be calculated using p = µJ−2β−1,

but this is not practically feasible if the Poisson’s ratio approaches 1
2
. Using Eq.

2.25Displacement, strain and stress fieldsequation.2.2.25, we can calculate the first
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Piola-Kirchhoff stress tensor S which is

S = JσF−T = −JpF−T + µF (2.26)

We assume no body forces in the material and no inertial effects. This means S

must satisfy the equilibrium equation ∇X · S = 0, which, together with the Piola

identity that∇X · (JF−T ) = 0 [61], leads to an equation for the gradient of p in the

undeformed configuration:

∇Xp =
µ

J
FT (∇2

Xu) (2.27a)

Or
∂p

∂Xk

=
3∑

m=1

µ

J

∂2ui
∂Xm∂Xm

Fik (2.27b)

Integrating Eq. 2.27Displacement, strain and stress fieldsequation.2.2.27(a) from a

reference point X0 to the interpolation point X, we obtain

p(X)− p(X0) = µ

∫ X

X0

1

J
(∇2

Xu) · (Fds). (2.28)

Similarly like Eq. 2.17Displacement, strain and stress fieldsequation.2.2.17, X0 is

chosen to be a point where one of normal stresses is known. The reason why we

choose to perform the integration in undeformed configuration is that we need to

take another step to find positions of interpolation points in the deformed config-

uration. Besides, all the derivations of MLS are based on undeformed configura-

tion. If we have to integrate in the deformed configuration, we need to modify

the interpolation function Eq. 2.6Basic principleequation.2.1.6 on the deformed

configuration and then we can get the corresponding first and second-order deriva-

tives of displacement. The integral in Eq. 2.28Displacement, strain and stress

fieldsequation.2.2.28 should be independent of integration path since p is uniquely

defined at each point X. Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28

provides a method to determine the hydrostatic term p for the incompressible neo-

Hookean material. It is also valid for the compressible neo-Hookean material, and
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is useful for cases with β → ∞ or υ → 1
2

. For other incompressible material

models, Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28 will need to

be modified but the same derivation process illustrated above can be followed.

Next we are going to show how Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28

reduces to the linear elastic formula presented in Hall et al. [53]. For infinitesimal

deformation, the left Cauchy Green deformation tensor B is approximately

B = FFT = (∇Xu + I)((∇Xu)T + I) ≈ ∇Xu + (∇Xu)T + I ≡ 2ε+ I (2.29)

where ε is the linear strain tensor. Besides, in this case,

J ≈ 1− εb (2.30)

where εb is the bulk strain. Substituting Eq. 2.29Displacement, strain and stress

fieldsequation.2.2.29 and Eq. 2.30Displacement, strain and stress fieldsequation.2.2.30

into Eq. 2.25Displacement, strain and stress fieldsequation.2.2.25 and keeping only

the first-order terms, we have

σ = −(p− µ+ µεb)I + 2µε (2.31)

Comparing Eq. 2.31Displacement, strain and stress fieldsequation.2.2.31 with the

linear elasticity expression in Hall et al. [53], i.e.,

σ = −p̃I + 2µε (2.32)

it can be seen that the p in Eq. 2.25Displacement, strain and stress fieldsequation.2.2.25

is not the same as the hydrostatic pressure p̃ in the linear stress-strain relation Eq.

2.32Displacement, strain and stress fieldsequation.2.2.32. The p and p̃ are related

through

p̃ = p− µ+ µεb. (2.33)
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With infinitesimal deformation, Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28

reduces to

p(X)− p(X0) ≈ µ

∫ X

X0

(∇2
Xu) · ds. (2.34)

Expressed in terms of p̃, Eq. 2.34Displacement, strain and stress fieldsequation.2.2.34

becomes

p̃(X)− p̃(X0) ≈ µ

∫ X

X0

(∇2
Xu) · ds + µ[εb(X)− εb(X0)] (2.35)

which is exactly the same as Eq. 2.17Displacement, strain and stress fieldsequation.2.2.17

in Hall et al. [53].

2.3 Parameters

As described in Section 2.1Basic principlesection.2.1, there are four important pa-

rameters in the MLS method that can influence the interpolated displacement field.

Here we briefly outline these parameters and their effects. Further discussions on

these parameters will be made in Chapter 4Results for the indentation example and

parametric studychapter.4.

The first parameter is the cut-off radius rc. It defines the size of local domain

Ωb and therefore determines how many data points are used for interpolation. If

the distance between a data point and the interpolation point (e.g. point A in

Fig. 2.1Schematic diagram to demonstrate the weight of data points. In domain

Ω (the purple square), A is a point whose displacement we are interested in. B1,

B2 and B3 are the data points near A. The yellow circle Ωb centered at X dif-

ferentiates the weight of data points. Only data points inside Ωb contribute to the

interpolation.figure.caption.9) is larger than rc, this data point has zero weight in

the interpolation. To minimize the numerical errors of interpolation, the cut-off

radius rc should not be too large or too small. An excessively large rc may bring

in data points that are far away from the interpolation point. A small rc may lead

to a Ωb that is too small without enough data points in it to accurately determine
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a(X). In the extreme case where there are no data points inside Ωb, all the elements

of A(X) in Eq. 2.5Basic principleequation.2.1.5a are zero, so A−1(X) becomes

non-invertible and ṽ(X) can not be determined. Besides, it should be noted that the

number of data points inside Ωb should be larger than the length of the coefficients

a(X). Otherwise there will be multiple solutions for a(X).

Secondly, the total number of data points n determines the density of data points

inside Ωb. If n is too small, the data points included in Ωb may not be sufficient to

yield accurate results for a(X) and can also affect the smoothness of the interpola-

tion fields. In Chapter 3Models and methodchapter.3, a quantity will be proposed

to define the density of data points.

Thirdly, the weight function f(X − bI) determines how much every data point

contributes to the weighted least-square error function L and influences the inter-

polation. Belytschko et al. [54] and Liu [63] provided various kinds of weight

functions. Below are three frequently used weight functions,

Exponential:

f(X− bI) =


exp(1− d2/r2c )− 1

e− 1
d ≤ rc

0 d > rc

(2.36a)

Conical:

f(X− bI) =


1− (

d

rc
)2 d ≤ rc

0 d > rc

(2.36b)
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Quartic spline:

f(X− bI) =


1− 6(

d

rc
)2 + 8(

d

rc
)3 − 3(

d

rc
)4 d ≤ rc

0 d > rc

(2.36c)

where d equals |X − bI |, the distance between a data point and the interpolation

point, and rc is cut-off radius. These weight functions share a common feature:

they start at 1 and gradually decrease to 0 when d increases from 0 to rc. For

d > rc, they are all zero. What will happen if a data point is located at the boundary

of the yellow circle Ωb in Fig. 2.1Schematic diagram to demonstrate the weight

of data points. In domain Ω (the purple square), A is a point whose displacement

we are interested in. B1, B2 and B3 are the data points near A. The yellow circle

Ωb centered at X differentiates the weight of data points. Only data points inside

Ωb contribute to the interpolation.figure.caption.9, namely at d = rc? First, since

the data points are randomly distributed, it is a very rare event that a data point

happens to be located at the boundary of the circular region Ωb. It should be noted

that the exponential and conical weight functions are not differentiable at d = rc,

since the derivatives using the branches on the left and right of d = rc are different.

In our numerical program, we used the branch of the weight function at d ≤ rc to

define the derivative of the weight function for data points located at d = rc. In

principle this may cause discontinuity in the spatial derivatives of the interpolation

function as a certain data point enters or leaves the circular region Ωb when Ωb is re-

located for different interpolation points. However, in practice, we did not observe

any significant effects due to such discontinuity in our MLS results (e.g. see the

indentation results in Chapter 4Results for the indentation example and parametric

studychapter.4).

What’s more, from Eq. 2.4Basic principleequation.2.1.4 and Eq. 2.5Basic

principleequation.2.1.5, one can see that the solution of coefficients a(X) is not
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affected by the absolute value of the weight function, but rather by its relative dis-

tribution. These three weight functions are plotted in Fig. 2.2Plots of conical, expo-

nential and quartic spline weight functions. Horizontal axis represents d/rc and the

vertical axis is the value of weight function. The solid line is the conical function.

The dashed one is the exponential function and the dotted line is the quartic spline

function. figure.caption.10. It is seen that conical weight function shows the slow-

est decay among these three functions. If the density of the available data points

is relatively low, the exponential and quartic spline weight functions may lead to a

scenario where only a few data points close to the interpolation point contribute to

the weighted least-square error function L. In this case, the conical function may

yield better results by effectively taking more data points into account for L. On the

contrary, if the density of data points is high, the conical function may not perform

as well as the other two. In practice, lower data points density can lead to simpler

experimental procedures and reduce computational cost. Due to these advantages,

we will focus on the conical weight function. Besides, we also compare the effect

of conical weight function with exponential weight function. The quartic spline

weight function, although not implemented in this study, has been shown to yield

accurate results for crack growth problems when used in the mesh free method [64].

We expect that this is also a promising weight function for our application and the

testing of its performance is a subject of future study.

Finally, we are going to discuss the interpolation basis PT (X). Here we consider

three typical types of polynomial basis functions shown below:

linear: PT (X) = [1, X1, X2, X3]

quadratic: PT (X) = [1, X1, X2, X3, X1X2, X2X3, X1X3, X
2
1 , X

2
2 , X

2
3 ]

cubic: PT (X) = [1, X1, X2, X3, X1X2, X2X3, X1X3, X
2
1 , X

2
2 , X

2
3 ,

X1X2X3, X
2
1X2, X

2
1X3, X

2
2X1, X

2
2X3, X

2
3X1, X

2
3X2,

X3
1 , X

3
2 , X

3
3 ]
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Fig. 2.2. Plots of conical, exponential and quartic spline weight functions. Horizontal axis repre-
sents d/rc and the vertical axis is the value of weight function. The solid line is the conical function.
The dashed one is the exponential function and the dotted line is the quartic spline function.

According to Eq. 2.6Basic principleequation.2.1.6, if interpolation basis PT (X)

is a 1 × m vector, it requires the coefficient a(X) to be a m × 1 vector. This

means that if the cubic basis is used, the computational cost is higher and more data

points are needed in the local influential zone Ωb as compared to the other two basis

functions. However, it is also expected that cubic basis can result in a more accurate

and smooth field ṽ(X) after interpolation.
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Chapter 3

Models and method

3.1 Models

To investigate the accuracy of MLS in constructing continuous fields and the ef-

fects of the four parameters, three examples are introduced, including an indenta-

tion model with a rigid spherical indenter on a soft elastic layer, a plane stress plate

with a circular hole under uni-axial tension, and a plane stress crack under symmet-

ric (Mode I) loading.

Fig. 3.1afigure.caption.11 shows the cross-section of the indentation model: a

rigid spherical indenter with radius R on a soft gel layer. Axisymmetry of inden-

tation model allows us to consider a cross-section of the gel layer which is shown

as a h × w rectangle, where h is the thickness and w is the width. The indenter-

gel interface is assumed to be frictionless. A vertical downward displacement of δ

(indentation depth) is applied to the indenter, causing the gel to deform. The width

w of the gel is assumed to be much larger than its height h and the indenter radius

R so that the gel can be regarded as infinitely wide, i.e., deformation of the gel

is not affected by the lateral boundary. The dashed lines illustrates the deformed

configuration of gel upon indentation. The small rectangle filled by red lines (it is

in the undeformed configuration) is where the displacement, strain and stress fields

are computed, namely Ω in Fig. 2.1Schematic diagram to demonstrate the weight
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R
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X1
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u1u1

(b)
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Fig. 3.1. Schematics of models studied in this work. (a) cross-section of a rigid sphere indenting
a layer of gel. Shape after deformation is approximated by the dashed lines. (b) a plate with a hole
is stretched in the horizontal direction by the applied displacement u1. (c) an edge crack opened in
the vertical direction by the constant displacement u2. The red shaded regions in all subfigures are
the areas of interest, i.e., Ω in Fig. 2.1Schematic diagram to demonstrate the weight of data points.
In domain Ω (the purple square), A is a point whose displacement we are interested in. B1, B2 and
B3 are the data points near A. The yellow circle Ωb centered at X differentiates the weight of data
points. Only data points inside Ωb contribute to the interpolation.figure.caption.9.
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of data points. In domain Ω (the purple square), A is a point whose displacement

we are interested in. B1, B2 and B3 are the data points near A. The yellow circle

Ωb centered at X differentiates the weight of data points. Only data points inside

Ωb contribute to the interpolation.figure.caption.9.

The indentation model is the benchmark problem to assess the accuracy of MLS

and the effects of the four parameters. This is because that the indentation exam-

ple has been experimentally implemented in Hall et al. [53] to demonstrate the

particle-tracking based method (with MLS interpolation) for full-field mapping of

the displacement, strain and stress. Using this model as the benchmark has two

advantages here:1) the axis-symmetric geometry is suitable for testing the 3D capa-

bility of MLS method instead of using a 3D FEA model which is computationally

expensive; 2) the non-uniform deformation due to indentation can help test if MLS

method yields smooth strain and stress fields.

After the optimized set of parameters is obtained from the indentation model,

we can apply it into two additional examples with severe stress concentration. The

purpose is to evaluate the possibility of using particle tracking based method (with

MLS interpolation) to experimentally measure the deformation and stress fields in

cases with defects such as cavity and crack.

Fig. 3.1bfigure.caption.11 and Fig. 3.1cfigure.caption.11 show the two models

with defects. A circular hole with radius r1 is located at the center of a thin plate (see

Fig. 3.1bfigure.caption.11). The dimensions of the plate is l1 × h1, where l1 is the

length and h1 is the height. A horizontal displacement u1 is applied at the left and

right edges of the plate, so that the plate is under uni-axial stretch. The dashed lines

illustrate the deformed configuration of the plate. Our zone of interest is the red an-

nular region where the stress concentration is located. In Fig. 3.1cfigure.caption.11,

an edge crack of length q/2 is located in the middle of a l2×h2 plate (l2 is the length

and h2 is the height). A vertical displacement u2 is applied on both the top and bot-
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tom boundaries of the plate to open the crack. The red rectangle surrounding the

crack tip will experience extremely large local stress, which is our zone of interest.

3.2 Simulation details

3.2.1 Dimensions and boundary conditions

The deformation of three models were simulated using a commercial finite element

software ABAQUS (version 6.13, Dassault Systemes Simulia Corp., Providence,

RI). Table. 3.1Finite element simulation details.table.caption.12 summarizes details

regarding dimensions of the finite element models, boundary conditions and applied

loadings.

For the indentation model shown in Fig. 3.1afigure.caption.11, the gel layer is

modelled as a deformable body and meshed by axisymmetry elements CAX4RH.

The height of the gel is h and the length of it is 40h. Because of the axisymmetry,

boundary O1C1 (see Table. 3.1Finite element simulation details.table.caption.12)

is fixed in r direction. The bottom O1A1 is fixed in all directions. The indenter is

modelled as a rigid object. An indentation depth δ = 0.2532h is assigned on the

indenter, forcing the gel to deform. The value of 0.2532h is consistent with the

work of Hall et al. [53]. To study the effects of large deformation on the inden-

tation model, we run two simulation jobs in ABAQUS by applying a test loading

δ = 0.5h. The difference of the two jobs lies in the switch of Nlgeom accounting

for the geometrical nonlinearity. The details of why we did three loadings will be

further illustrated in the next section.

For the second case shown in Fig. 3.1bfigure.caption.11, a quarter of the plate

is modelled and meshed by CPS4 elements. The length of the plate is 80 and the

height is 40. The radius of the hole is 2. Finer mesh is used around the hole where

the zone of interest is located. Because of symmetry, the left boundary O2D2 can-
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TABLE 3.1
FINITE ELEMENT SIMULATION DETAILS.

w/2

R

δ

h

r

z

O1 A1

B1C1

h = 1 R = 4.366h w/2 = 20h
CAX4RH elements
test loading 1:
δ = 0.5h (Nlgeom: off)
test loading 2:
δ = 0.5h (Nlgeom: on)
loading 3:
δ = 0.2532h (Nlgeom: on)
Axisymmetric problem

l1/2

h1/2

X1

X2

r1

u1
O2

A2 B2

C2D2

l1/2 = 40 h1/2 = 20 r1 = 2
CPS4 elements
loading 1:
u1= 20 (Nlgeom: on)
loading 2:
u1= 40 (Nlgeom: on)
Plane stress problem

l2

h2/2

X1

X2

u2

O3 A3 B3

C3D3

l2 = 20 h2/2 = 10 q = 0.02
CPS4 elements
loading 1:
u2= 5 (Nlgeom: on)
loading 2:
u2= 10 (Nlgeom: on)
Plane stress problem

not move in X1 direction and the bottom boundary A2B2 is fixed in X2 direction.

Constant displacement u1 is added to the right side B2C2. There are two options

about u1: u1 = 20 and u1 = 40.

For the last model shown in Fig. 3.1cfigure.caption.11, we took advantage of

symmetry and modelled the top half of the plate in ABAQUS. The length of the

plate is 20 and the height is 20. The mesh element type is CPS4. The bound-

ary O3A3 is traction free and the boundary A3B3 is fixed in X2 direction (see Table.

3.1Finite element simulation details.table.caption.12). A displacement u2 is applied

on the top D3C3, forcing the crack to open. The mesh size decreases as the crack

tip A3 is approached to resolve the highly concentrated deformation and stress. The
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largest elements size away from the crack tip is 0.5 and the smallest one close to

the crack tip is 0.0006.

3.2.2 Material properties

We adopted the incompressible neo-Hookean material model, one of the simplest

hyper-elastic material models, for the three cases described in Section 3.2Simula-

tion detailssection.3.2.1. This is because the loadings we applied can cause very

large deformation. For example, in the plane stress crack problem (see the third

row of Table. 3.1Finite element simulation details.table.caption.12), the total ap-

plied displacement 2u2 (on both top and bottom edges) is as large as 100% of the

height q. Similar range of large loadings are also used in the circular hole problem

(see the second row of Table. 3.1Finite element simulation details.table.caption.12).

In addition, the geometrical nonlinearity is accommodated by turning the switch of

“Nlgeom” in ABAQUS.

We normalize the shear modulus µ by the Young’s modulus E:

µ∗ =
µ

E
=

1

2(1 + υ)
(3.1)

where µ is shear modulus, E is Young’s modulus and υ is the Poisson’s ratio. For

incompressible material, υ is equal to 0.5. Therefore,

µ∗ =
1

3
(3.2a)

C∗1 =
µ∗

2
=

1

6
(3.2b)

where C∗1 is the normalized form of material constant C1 = µ
2
.

For the indentation model, we used an indentation depth of δ = 0.2532h. This

is the same as the indentation depth used by Hall et. al [53] in their experiments
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Fig. 3.2. The indenting force versus indentation depth. The solid line is plotted when Nlgoem
switch is turned off. The dotted line is plotted when Nlgoem switch is turned on.

to demonstrate the particle-tracking based full-field mapping of deformation and

stress. Note that Hall et al.[53] adopted linear elastic theory to calculate strain and

stress fields due to indentation. However, given δ = 0.2532h is about 25% of the

gel thickness h, it is not immediately clear how strong the large deformation ef-

fects are. Therefore, we conducted two different FEA simulations to explore the

effects of large deformation in our indentation model. In one simulation, we use a

linear elastic material model with the Young’s modulus E and the Poisson’s ratio

υ = 0.5 (incompressible) and turned the geometrical nonlinearity switch “Nlgeom”

off, while in the other simulation, we use an incompressible neo-Hookean model

with the same Young’s modulus and turned “Nlgeom” switch on. In both simula-

tions, we gradually increase the indentation depth δ from 0 to 0.5h, and extract the

indenting force as a function of the indentation depth δ. By comparing the force-

indentation depth curves from these two simulations, we are able to see at which

point the large deformation effects become clear. Fig. 3.2The indenting force ver-

sus indentation depth. The solid line is plotted when Nlgoem switch is turned off.

The dotted line is plotted when Nlgoem switch is turned on.figure.caption.13 plots

the force-indentation depth results from the two simulations. The horizontal axis
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is the normalized indentation depth δ/h, and the vertical axis is indenting force.

The force is negative because it is compressive. It is seen that the solid line (linear

elasticity) and the dotted line (large deformation formulation) begin to deviate from

each other when indentation depth δ reaches approximately 0.18h. When indenta-

tion depth δ = 0.2532h, the large deformation formulation results in an indenting

force almost 25% larger than the linear elasticity result. From this comparison, we

conclude that at δ = 0.2532h, the large deformation effect is not negligible, and

neo-Hookean material together with geometrical nonlinearity should be used.

After the jobs in ABAQUS are completed, the nodal displacements in the zone

of interest will be extracted as the input for the MLS interpolation to get displace-

ment and strain fields. For the calculation of stress fields, the same neo-Hookean

material model will be used to be consistent with the FEA model. Then all the dis-

placement, strain and stress fields given be MLS will be compared with those from

FEA to assess the accuracy of MLS.

It needs to be pointed out that there are many other hyper-elastic material models

(e.g. Arruda Boyce model, Gent model and Ogden model [65]) available. To deter-

mine which model to be used in experiments, one needs to conduct additional me-

chanical testings (e.g. uni-axial tension or compression and bi-axial tension tests).

Here since our focus is to study the accuracy of MLS interpolation method, we have

chosen a simplest material model (neo-Hookean) but the formulation can be easily

extended to other more sophisticated hyper-elastic models.

3.3 Expressions of strain and stress components

In Section 2.2Displacement, strain and stress fieldssection.2.2, we present the gen-

eral equations of true strain and Cauchy stress in Cartesian coordinates. In this

section, we will list the specific calculations of the strain and stress using the dis-
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placement interpolated from MLS.

The indentation model shown in Fig. 3.1afigure.caption.11 is axisymmetric.

The displacement extracted from the FEA results is in terms of cylindrical coordi-

nates r, θ and z (see Fig. 3.3Cylinderical coordinates and Cartesian coordinates.figure.caption.14).

Here we show how to adapt the three-dimensional formulation presented in Section

2.2Displacement, strain and stress fieldssection.2.2, which is in Cartesian coordi-

nates, to cylindrical coordinates. The displacement vector in cylindrical coordinates

X1

X3

X2

r plane

z plane

θ plane

θ

r

z

Fig. 3.3. Cylinderical coordinates and Cartesian coordinates.

is:

uT = [ur, uθ, uz] (3.3)

where ur, uθ and uz are the displacements in r, θ and z directions. Due to ax-

isymmetry, uθ is zero everywhere and ur, uz are independent of coordinate θ. The

components of deformation gradient F in cylindrical coordinates can be expressed
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as [66]:

F =


Frr Frθ Frz

Fθr Fθθ Fθz

Fzr Fzθ Fzz

 =



1 +
∂ur
∂r

1

r

∂ur
∂θ
− uθ

r

∂ur
∂z

∂uθ
∂r

1 +
1

r

∂uθ
∂θ

+
ur
r

∂uθ
∂z

∂uz
∂r

1

r

∂uz
∂θ

∂uz
∂z



=


1 +

∂ur
∂r

0
∂ur
∂z

0 1 +
ur
r

0

∂uz
∂r

0 1 +
∂uz
∂z



(3.4)

The axisymmetry also allows us to just consider any cross-section of the gel

spanned by the r and z axes instead of a full 3D domain. This is also how the FEA

results are presented. For convenience, we consider a cross-section and treat the r

and z axes, which are orthogonal, as two in-plane Cartesian axes. In other words,

we name the r coordinate asX1, the z axe asX2 and the θ direction as theX3 direc-

tion (see Fig. 3.3Cylinderical coordinates and Cartesian coordinates.figure.caption.14).

In this way, components of the deformation gradient can be rearranged into the fol-

39



lowing form:

F =


F11 F12 0

F21 F22 0

0 0 F33

 =


1 +

∂ur
∂r

∂ur
∂z

0

∂uz
∂r

1 +
∂uz
∂z

0

0 0 1 +
ur
r



=


1 +

∂u1
∂X1

∂u1
∂X2

0

∂u2
∂X1

1 +
∂u2
∂X2

0

0 0 1 +
u1
X1



(3.5)

It is noteworthy that the in-plane components of deformation gradient F have no dif-

ference from those of a plane-stress or plane-strain problem. However, the out-of-

plane component F33 is not zero even though the displacement component u3 = 0

(uθ in cylindrical coordinates). This is because of the axisymmetric geometry.

Given the transformation of F from cylindrical coordinates to Cartesian coordinates,

one can easily compute the strain from Eq. 2.18Displacement, strain and stress

fieldsequation.2.2.18 and Eq. 2.19Displacement, strain and stress fieldsequation.2.2.19.

As to the expressions for stress, according to Eq. 2.25Displacement, strain and

stress fieldsequation.2.2.25, it can be shown as

σ11 = −p+
µ

J
B11 (3.6a)

σ12 =
µ

J
B12 (3.6b)

σ22 = −p+
µ

J
B22 (3.6c)

While the components of left Cauchy Green deformation tensor B can be computed

from Eq. 2.20cDisplacement, strain and stress fieldsequation.2.2.3, the key to cal-

culate stress is to determine the hydrostatic pressure p in Eq. 3.6Expressions of
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strain and stress componentsequation.3.3.6a and Eq.3.6Expressions of strain and

stress componentsequation.3.3.6c. Refer Eq. 2.28Displacement, strain and stress

fieldsequation.2.2.28, the hydrostatic pressure of an interpolation point is related to

the integration of
1

J
(∇2

Xu) · (Fds). For the axisymmetric indentation model, we

have

∇2
Xu =

(
∂2ur
∂r2

+
1

r

∂ur
∂r

+
∂2ur
∂z2

− ur
r2

)
er +

(
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

)
ez (3.7)

where er and ez are basis vectors for the cylindrical coordinates. Based on the ax-

isymmetry, the integral in Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28

is done in the r − z plane, namely

ds = (ds)rer + (ds)zez (3.8)

Therefore,

Fds = (Frr(ds)r + Frz(ds)z)er + (Fzr(ds)r + Fzz(ds)z)ez (3.9)

As a result, the integral term becomes

1

J
(∇2u) · (Fds) =

1

J
[Frr(

∂2ur
∂r2

+
1

r

∂ur
∂r

+
∂2ur
∂z2

− ur
r2

)(ds)r

+Fzr(
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

)(ds)r

+Frz(
∂2ur
∂r2

+
1

r

∂ur
∂r

+
∂2ur
∂z2

− ur
r2

)(ds)z

+Fzz(
∂2uz
∂r2

+
1

r

∂uz
∂r

+
∂2uz
∂z2

)(ds)z] (3.10)

The rest is to change r → 1, θ → 3 and z → 2. Then we have the equation of

calculating Cauchy stress from cylindrical coordinates to Cartesian coordinates.

For the other two models, i.e., thin plate with a hole and Mode-I crack, plane

stress condition is assumed. Let X3 be the out of the plane axis. The plane stress
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condition means that the stress components σ13, σ23 and σ33 all banish. The in-

plane components of strain and stress can be calculated following Section 2.2Dis-

placement, strain and stress fieldssection.2.2 since the two models are in Cartesian

coordinates.

3.4 Evaluation of the accuracy of MLS interpolation

Given the displacement, strain and stress fields from MLS and FEA, the next is to

assess the accuracy of MLS. Therefore, in this section, we are going to define quan-

titative measurements of the accuracy of MLS.

(a) (b) (c)

Fig. 3.4. Schematics of zone of interest in different forms. (a) Zone of interest itself shaded by red
lines. (b) Zone of interest divided into grids. The black circles are gird points. (c) Zone of interest
containing grid points and data points inside. Data points are marked by stars.

As shown in Table. 3.1Finite element simulation details.table.caption.12, a zone

of interest is selected for each model. Take the zone of interest of indentation model

as an example. Its schematic is shaded in red in Fig. 3.4afigure.caption.15. We di-

vided the zone of interest into grids (see Fig. 3.4bfigure.caption.15) and named the

intersections as grid points. It should be pointed out that the zone of interest is

presented in the undeformed configuration. This is because when the material un-

dergoes large deformation, the deformed shape of the zone of interest may become

highly distorted, especially for the plane stress crack example (see Chapter 5Appli-

cation cases with stress concentrationchapter.5). If the zone of interest is presented

in the deformed configuration, it may be difficult to visualize the stress field in the

deformed zone of interest.
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As described earlier, we extract displacements at a set of data points from

the FEA results and use these data points as the input for the MLS interpola-

tion to compute the displacement, strain and stress at each of the grid point. A

schematic of the grid point (black dots) and the data points (stars) is shown in Fig.

3.4cfigure.caption.15. The results from MLS interpolation are then compared with

those from the FEA model so that the accuracy of MLS can be evaluated. We em-

phasize that in experiments (e.g. see Hall et al. [53]), the displacements of data

points were obtained by tracking fluorescent beads embedded in the material. Here

our focus is to evaluate the accuracy of MLS interpolation, and thus we pick the

data points directly from the FEA model. To simulate the random distribution of

the data points in experiments, we use a random number generator in MATLAB

program (MATLAB, The MathWorks, Natick, MA) to generate a list of nodes in-

side the zone of interest and use these as our data points.

The next question is how to quantitatively evaluate the overall accuracy of the

MLS method. We compare the MLS and FEA results at each of the grid point, and

the overall accuracy of the MLS method is reflected as some collective measure

of the relative errors at each grid point. One natural choice is the average of the

relative errors at all the grid points. Take the displacement field as an example, the

average relative error is defined as:

ηave =

N∑
i=1

ηi

N
(3.11)

where

ηi = |ui − umls,i
ui

| × 100%, (3.12)

N represents the total number of grid points in zone of interest, ui means the exact

displacement (from FEA) of the ith grid point, umls,i is the interpolated displace-

ment (from MLS) of the ith grid point and ηi refers to the relative error between
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them. Similar ηi can be defined for calculating the relative error of strain and stress

components. However, the average relative error may not faithfully reflect the over-

all accuracy of MLS since it can be easily distorted by a few grid points with ex-

tremely large relative errors ηi, such as when ui is close to zero. Therefore we use

an alternative measure, i.e., the median of the relative errors at all the grid points:

η̃ = Median of {η1, η2, ..., ηN} (3.13)

where ηi(i = 1, 2, ..., N) is defined in Eq. 3.12Evaluation of the accuracy of MLS

interpolationequation.3.4.12 and median is the number separating the higher half of

ηi(i = 1, 2, ..., N).

TABLE 3.2
PARAMETERS USED IN MLS INTERPOLATION AND ZONE OF INTEREST FOR EACH MODEL.

models
number of
data points

interpolation basis cut-off radius weight function zone of interest

indentation

180
300
500
600
800
1000
2000

linear
quadratic

cubic

0.2
0.3
0.4
0.5
0.6
0.7

conical
exponential for
several groups 0.2 1 2 2.65

0.2
0.8

tension
200
800

cubic 0.7 conical

0 1 2 3 4
0
1
2
3
4

crack
200
800

cubic 0.005 conical

−1 0 1

·10−2

0

1
·10−2

To explore how the four parameters listed in Section 2.3Parameterssection.2.3

affect the accuracy of the MLS interpolation results, we conducted a parametric

study by varying these parameters and comparing the resulting median relative er-

ror η̃. Table. 3.2Parameters used in MLS interpolation and zone of interest for

each model.table.caption.16 list the specific parameters used in MLS interpolation
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for three models. In the second row of Table. 3.2Parameters used in MLS inter-

polation and zone of interest for each model.table.caption.16, it is indicated that

for the indentation model, we considered seven values for total number of data

points, three kinds of interpolation bases and six types of cut-off radius. Therefore,

we have 7 × 3 × 6 = 126 different combinations of MLS parameters when the

choice of conical weight function is fixed (in section. 2.3Parameterssection.2.3

it is mentioned that conical weight function is the main weight function used).

Through computing the median η̃ in Eq. 3.13Evaluation of the accuracy of MLS

interpolationequation.3.4.13 of each combination of parameters, we were able to

see how η̃ can be influenced by each parameter (total number of data points, in-

terpolation basis and cut-off radius). Besides that, we selected the combination of

1200 data points, cubic basis and cut-off radius rc = 0.4 with exponential weight

function to see the effect of weight function. It should be noted that the cut-off

radius rc are of different magnitude among the three models (see the forth column

of Table .3.2Parameters used in MLS interpolation and zone of interest for each

model.table.caption.16). This is because the size of zone of interest are quite dif-

ferent (see the sixth column of Table .3.2Parameters used in MLS interpolation and

zone of interest for each model.table.caption.16).

Finally, we propose a normalized nearest neighbour distance as an alternative

measure of the number of data points as follows:

γ =
dave√
S

=

n∑
i=1

min {|bi − bj(j=1,2,3...n;j 6=i)|}

n
√
S

(3.14)

where n is the total number of data points, bi and bj represent the position vectors

of the ith and jth data point, |bi−bj| is the distance between them and S is the area

of zone of interest. For a certain grid point at bi, min {|bi−bj(j=1,2,3...n;j 6=i)|} is the

minimum distance between this data point and other data points located in the zone
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of interest. A set owning n elements can be formed by documenting min {|bi−bj|}.
γ is obtained by taking the average of the set and then divided by

√
S. Then γ be-

comes a dimensionless parameter which is not supported by using the total number

of data points. Another advantage of γ to the number of data points is that γ can

easily be extended to 3D domain, but the number of data points for 2D or 3D do-

mains cannot be directly compared (a sphere usually include more data points than

a circle with the same radius). Table. 3.3Normalized nearest neighbour distance γ

corresponding to the total number of data points.table.caption.17 lists the normal-

ized nearest neighbour distance corresponding to the total number of data points for

the indentation model.

TABLE 3.3
NORMALIZED NEAREST NEIGHBOUR DISTANCE γ CORRESPONDING TO THE

TOTAL NUMBER OF DATA POINTS.

n 180 300 500 600 800 1000 1200 2000

dave 0.0479 0.038 0.0292 0.0272 0.024 0.0216 0.0199 0.0165

γ 0.0395 0.0313 0.0241 0.0224 0.0198 0.0178 0.0164 0.0136

For the two plane stress examples shown in Fig. 3.1bfigure.caption.11 and

3.1cfigure.caption.11, we did not perform an extensive parametric study as that

for the indentation example. Instead, the parameters for MLS interpolation were

selected based on the understandings learned from the indentation example. These

parameters are shown in Table 3.2Parameters used in MLS interpolation and zone

of interest for each model.table.caption.16. Our goal for these two examples is to

see if the MLS method can accurately recover the strain and stress fields when there

is severe stress concentration.
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Chapter 4

Results for the indentation example

and parametric study

The results of the indentation model and parametric study are included in this chap-

ter. Specifically, in Section 4.1Displacement fieldsection.4.1, 4.2Strain fieldsection.4.2

and 4.3Stress fieldsection.4.3 we are going to present the displacement, strain and

stress fields from MLS and discuss the effects of the normalized nearest neighbour

distance, interpolation basis and cut-off radius. The effect of weight functions is il-

lustrated in Section 4.4Effect of weight functionsection.4.4. Section 4.5Conclusionssection.4.5

summarizes the qualitative guideline regarding the selection of parameters for the

MLS method.

4.1 Displacement field

Examples of the displacement fields u1 and u2 calculated from the MLS inter-

polation are shown in Fig. 4.1Displacement fields for the zone of interest from

FEA and MLS. (a) and (b): contour plots of the continuous displacement field

u1. (c) and (d): contour plots of the continuous displacement field u2. η̃ is the

median of relative errors defined in Eq. 3.13Evaluation of the accuracy of MLS

interpolationequation.3.4.13. Horizontal and vertical axes are X! and X2 coordi-
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Fig. 4.1. Displacement fields for the zone of interest from FEA and MLS. (a) and (b): contour plots
of the continuous displacement field u1. (c) and (d): contour plots of the continuous displacement
field u2. η̃ is the median of relative errors defined in Eq. 3.13Evaluation of the accuracy of MLS
interpolationequation.3.4.13. Horizontal and vertical axes areX! andX2 coordinates, which indicate
the position of zone of interest.
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nates, which indicate the position of zone of interest.figure.caption.18b and 4.1Dis-

placement fields for the zone of interest from FEA and MLS. (a) and (b): contour

plots of the continuous displacement field u1. (c) and (d): contour plots of the

continuous displacement field u2. η̃ is the median of relative errors defined in Eq.

3.13Evaluation of the accuracy of MLS interpolationequation.3.4.13. Horizontal

and vertical axes are X! and X2 coordinates, which indicate the position of zone of

interest.figure.caption.18d, respectively. The parameters used are 800 data points

(γ = 0.0198), cubic interpolation basis, cut-off radius rc = 0.4 and conical weight

function. Fig. 4.1afigure.caption.18 and Fig. 4.1cfigure.caption.18 plots the corre-

sponding displacement fields from FEA results. As previously discussed, we use

the FEA displacement fields as the reference to calculate numerical errors of the

MLS method. For representative results in Fig. 4.1Displacement fields for the zone

of interest from FEA and MLS. (a) and (b): contour plots of the continuous dis-

placement field u1. (c) and (d): contour plots of the continuous displacement field

u2. η̃ is the median of relative errors defined in Eq. 3.13Evaluation of the accu-

racy of MLS interpolationequation.3.4.13. Horizontal and vertical axes are X! and

X2 coordinates, which indicate the position of zone of interest.figure.caption.18,

the median relative error η̃ are found to be 0.072%and 0.126% for u1 and u2, re-

spectively, which demonstrates that the MLS method is capable of very accurately

reproducing a continuous displacement field from the given data points.

To explore how the MLS interpolation results are affected by the parameters dis-

cussed in Section 2.3Parameterssection.2.3, we calculated the median relative error

η̃ for every combinations of the parameters listed in Table. 3.2Parameters used in

MLS interpolation and zone of interest for each model.table.caption.16 except the

weight function. We have used the conical weight function for all the results pre-

sented here. The effect of using different weight functions is briefly discussed in

Section 4.4Effect of weight functionsection.4.4. Fig. 4.2Evaluation of MLS ap-

proximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃

versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic ba-
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sis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation.figure.caption.19 plots the median rela-

tive errors η̃ for the displacement component u2 with different MLS parameters.

We choose u2 because it was found to exhibit the larger relative error as com-

pared to that of u1. Specifically, Fig. 4.2Evaluation of MLS approximating u2

(displacement in X2 direction). (a), (b) and (c) are the plots of η̃ versus γ using

different interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic ba-

sis. (a), (b) and (c) have the same legend meaning the employed cut-off radius for

each MLS interpolation.figure.caption.19a, 4.2Evaluation of MLS approximating

u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃ versus γ using

different interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic

basis. (a), (b) and (c) have the same legend meaning the employed cut-off radius

for each MLS interpolation.figure.caption.19b and 4.2Evaluation of MLS approxi-

mating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃ versus

γ using different interpolation basis. (a): Linear basis. (b): Quadratic basis. (c):

Cubic basis. (a), (b) and (c) have the same legend meaning the employed cut-off

radius for each MLS interpolation.figure.caption.19c show the results for linear ba-

sis, quadratic basis and cubic basis, respectively. In each of these plots, the median

error η̃ is shown as a function of the normalized nearest neighbour distance γ be-

tween data points, and each curve represents a cut-off radius rc.

It is seen that all three subfigures in Fig. 4.2Evaluation of MLS approximating

u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃ versus γ using

different interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic

basis. (a), (b) and (c) have the same legend meaning the employed cut-off radius

for each MLS interpolation.figure.caption.19 showed similar dependence of η̃ on

γ for rc = 0.2 to 0.5. As γ decreases, which indicates denser distribution of data

points, the median error η̃ is gradually reduced until γ = 0.0198. After that η̃ ap-

pears to converge for sufficiently small γ. This result implies that denser data points

in general can improve the accuracy of MLS until a plateau is reached. However,
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Fig. 4.2. Evaluation of MLS approximating u2 (displacement in X2 direction). (a), (b) and (c) are
the plots of η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic basis.
(c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed cut-off radius for each
MLS interpolation.
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it should be emphasized that the effect of γ is relatively weak as compared to that

of the cut-off radius rc and the interpolation basis. For example, for the case of

rc = 0.5 and cubic basis, the median error η̃ is reduced from 0.37% to 0.22% as γ

is decreased from 0.0395 to 0.0136.

It is interesting to note that for the two cases of rc = 0.6 and rc = 0.7, the

median error η̃ may increase with smaller γ (see Fig. 4.2Evaluation of MLS ap-

proximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃

versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic basis.

(c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed cut-

off radius for each MLS interpolation.figure.caption.19a and Fig. 4.2Evaluation of

MLS approximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots

of η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic

basis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation.figure.caption.19c). This is opposite to

the general trend observed for other cases. For example, for rc = 0.7 with linear

and cubic basis, the minimum of η̃ occurs at γ = 0.0395 which is the case with the

least data points. This is because with larger cut-off radius rc, more data points are

included in the MLS interpolation due to larger region Ωb (see Fig. 2.1Schematic

diagram to demonstrate the weight of data points. In domain Ω (the purple square),

A is a point whose displacement we are interested in. B1, B2 and B3 are the data

points near A. The yellow circle Ωb centered at X differentiates the weight of data

points. Only data points inside Ωb contribute to the interpolation.figure.caption.9).

If the density of data points is also high, the large number of data points may distort

the interpolation formulation as shown in Section 2.1Basic principlesection.2.1, and

thus reduce the accuracy.

As for the interpolation basis, a comparison of Fig. 4.2Evaluation of MLS ap-

proximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of η̃

versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic ba-
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sis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation.figure.caption.19a, 4.2Evaluation of MLS

approximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of

η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic ba-

sis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation.figure.caption.19b and 4.2Evaluation of

MLS approximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots

of η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic

basis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed

cut-off radius for each MLS interpolation.figure.caption.19c shows that for linear,

quadratic and cubic bases, the median error η̃ falls in the range of 1% to 9%, 0.1%

to 3.5% and 0.1% to 1.1%, respectively. This means that the cubic basis leads to

more accurate interpolation results, which is consistent with our expectation.
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Fig. 4.3. Evaluation of MLS approximating u2 (displacement in X2 direction). η̃ versus cut-off
radius rc when γ = 0.0198, namely 800 data points. The legend represents the interpolation basis
used for each MLS trial.

Finally, we consider the effect of the cut-off radius rc, which appears to have a

significant impact on the median error η̃ as shown in Fig. 4.2Evaluation of MLS

approximating u2 (displacement in X2 direction). (a), (b) and (c) are the plots of

η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic ba-

sis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed
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cut-off radius for each MLS interpolation.figure.caption.19. Since the median er-

ror η̃ converges when γ decreases to 0.0198, we choose γ = 0.0198 and collected

the data of η̃ obtained from different interpolation bases and cut-off radius. Fig.

4.3Evaluation of MLS approximating u2 (displacement in X2 direction). η̃ versus

cut-off radius rc when γ = 0.0198, namely 800 data points. The legend represents

the interpolation basis used for each MLS trial.figure.caption.20 plots η̃ versus cut-

off radius rc at γ = 0.0198. The three curves represent the results using linear,

quadratic and cubic basis, respectively. Fig. 4.3Evaluation of MLS approximating

u2 (displacement in X2 direction). η̃ versus cut-off radius rc when γ = 0.0198,

namely 800 data points. The legend represents the interpolation basis used for each

MLS trial.figure.caption.20 shows that the median error η̃ is significantly reduced

when rc decreases from 0.7 to 0.2. In addition, with a proper choice of the cut-off

radius rc (e.g. rc < 0.5), the linear basis is sufficient to keep the median error η̃

below 5%. The advantage of using linear basis is the reduced computational cost

for interpolation. If higher accuracy is required, quadratic or cubic basis should be

used.

4.2 Strain field

Here we consider the accuracy of strain fields computed using MLS method. It

was discussed in Section 3.2.2Material propertiessubsection.3.2.2 that for the in-

dentation depth (δ = 0.2532h) we used in the FEA model, effect of large defor-

mation is not negligible. In case of large deformation, there are multiple mea-

sures of strain, e.g. the Green strain (see Eq. 2.10Displacement, strain and stress

fieldsequation.2.2.10) and true strain (see Eq. 2.18Displacement, strain and stress

fieldsequation.2.2.18). Since the strain output from FEA is true strain, we decide

to calculate true strain from MLS to evaluate its accuracy. Besides, to highlight

the difference between strain measures, we calculate the Green strain and true

strain using the displacement field interpolated from MLS method and following
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Fig. 4.4. Strain fields of zone of interest from FEA and MLS. (a): contour plots of strain field ε22
from MLS. The strain is calculated from Green strain formula. (b): contour plots of strain field E22

from MLS. The strain is calculated from true strain formula. (c): contour plots of strain field E22

from FEA. The strain output in ABAQUS is logarithmic strain, namely true strain. η̃ is the median of
relative errors defined in Eq. 3.13Evaluation of the accuracy of MLS interpolationequation.3.4.13.
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Eq. 2.10Displacement, strain and stress fieldsequation.2.2.10a and Eq. 2.18Dis-

placement, strain and stress fieldsequation.2.2.18, respectively. The parameters for

MLS method are the same for computing Green strain and true strain: γ = 0.0164

(1200 data points), cubic basis and rc = 0.4. Fig. 4.4afigure.caption.21 and

Fig. 4.4bfigure.caption.21 are respectively the contour plots of the Green strain

component ε22 and the true strain component E22 evaluated from MLS. Com-

pared with the true strain field E22 obtained from FEA results as shown in Fig.

4.4cfigure.caption.21, it is obvious that the strain field shown in Fig. 4.4bfigure.caption.21

resembles more with the FEA result. Specifically, the median error η̃ for the field

in Fig. 4.4bfigure.caption.21 is 0.37%, much smaller than that η̃ = 10.51% for Fig.

4.4afigure.caption.21. Therefore, in the following we use true strain (Eq. 2.18Dis-

placement, strain and stress fieldsequation.2.2.18) in the comparison between MLS

and FEA results.

An example of the true strain components E11, E12 and E22 computed from

MLS method together with the corresponding FEA results are present in Fig. 4.5Strain

fields of zone of interest from FEA and MLS. (a), (c) and (e): contour plots of strain

fieldsE11, E12 andE22 from FEA. (b), (d) and (f): contour plots of strain fieldsE11,

E12 and E22 from MLS. η̃ is the median of relative errors defined in Eq. 3.13Eval-

uation of the accuracy of MLS interpolationequation.3.4.13.figure.caption.22. The

parameters used for MLS have been listed in the previous paragraph. From the

comparison, it is clear that the MLS method can also accurately reproduce the strain

fields. The median error η̃ is below 0.5% for all three strain components. This is

remarkable given the fact that the strain fields is calculated from the gradient of the

interpolated displacement field.
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Fig. 4.5. Strain fields of zone of interest from FEA and MLS. (a), (c) and (e): contour plots of
strain fields E11, E12 and E22 from FEA. (b), (d) and (f): contour plots of strain fields E11, E12 and
E22 from MLS. η̃ is the median of relative errors defined in Eq. 3.13Evaluation of the accuracy of
MLS interpolationequation.3.4.13.
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To further evaluate the effects of MLS parameters on the accuracy of the com-

puted strain fields, we calculated the median error η̃ of every combinations of

parameters listed in Table. 3.2Parameters used in MLS interpolation and zone

of interest for each model.table.caption.16. Here we use the strain component

E22 for the evaluation of η̃. Overall the η̃ for strain in Fig. 4.6Evaluation of

MLS approximating E22. (a), (b) and (c) are the plots of η̃ versus γ using dif-

ferent interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic

basis. (a), (b) and (c) have the same legend meaning the employed cut-off ra-

dius for each MLS interpolation.figure.caption.23 are larger than those for dis-

placement shown in Fig. 4.2Evaluation of MLS approximating u2 (displacement

in X2 direction). (a), (b) and (c) are the plots of η̃ versus γ using different in-

terpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic basis. (a),

(b) and (c) have the same legend meaning the employed cut-off radius for each

MLS interpolation.figure.caption.19. This is expected since the strain is evaluated

based on the gradient of the interpolated displacement (see Eq. 2.18Displacement,

strain and stress fieldsequation.2.2.18 and Eq. 2.19Displacement, strain and stress

fieldsequation.2.2.19). In addition, the dependence of η̃ on γ follows the same

trend as that for the displacement which is discussed in Section 4.1Displacement

fieldsection.4.1. As for the interpolation basis, similar to the displacement result,

the cubic basis still gives the most accurate results.

Fig. 4.6Evaluation of MLS approximating E22. (a), (b) and (c) are the plots of η̃

versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic basis.

(c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed cut-

off radius for each MLS interpolation.figure.caption.23 also reveals that η̃ decreases

with smaller cut-off radius rc, except for a special case where γ = 0.0395, rc = 0.2

in Fig. 4.6cfigure.caption.23. For the special case, the median error η̃ is the largest

one in Fig. 4.6Evaluation of MLS approximating E22. (a), (b) and (c) are the plots

of η̃ versus γ using different interpolation basis. (a): Linear basis. (b): Quadratic

basis. (c): Cubic basis. (a), (b) and (c) have the same legend meaning the employed
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Fig. 4.6. Evaluation of MLS approximating E22. (a), (b) and (c) are the plots of η̃ versus γ using
different interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic basis. (a), (b) and (c)
have the same legend meaning the employed cut-off radius for each MLS interpolation.
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cut-off radius for each MLS interpolation.figure.caption.23c, even higher than most

η̃ in Fig. 4.6bfigure.caption.23 where quadratic basis was used. This special case

clearly does not follow the general trend observed for the dependence of η̃ on rc

and interpolation basis. To understand this phenomenon, we note that in this case γ

is 0.0395 and there are only 180 data points in the interpolation domain. it is very

possible that most data points are excluded by cut-off radius (rc = 0.2). Since the

cut-off radius rc = 0.2 is small, it is very possible that there are not enough data

points left in the zone Ωb (see Fig. 2.1Schematic diagram to demonstrate the weight

of data points. In domain Ω (the purple square), A is a point whose displacement

we are interested in. B1, B2 and B3 are the data points near A. The yellow circle

Ωb centered at X differentiates the weight of data points. Only data points inside

Ωb contribute to the interpolation.figure.caption.9) to accurately determine the co-

efficients a(X) for the interpolation function. This only occurred for the cubic basis

because the length of the coefficient array a(X) is longer than those for linear and

quadratic basis so that more data points are required to determiner the coefficients

for cubic basis. Similar effect can be observed in the displacement data (see Fig.

4.2Evaluation of MLS approximating u2 (displacement in X2 direction). (a), (b)

and (c) are the plots of η̃ versus γ using different interpolation basis. (a): Linear

basis. (b): Quadratic basis. (c): Cubic basis. (a), (b) and (c) have the same legend

meaning the employed cut-off radius for each MLS interpolation.figure.caption.19),

but it is more dramatic here.

Again, we plot η̃ against rc with γ fixed at 0.0198. The results are shown in

Fig. 4.7Plots η̃ with cut-off radius rc at γ = 0.0198, namely 800 data points. The

legend represents the interpolation basis used for each MLS trial.figure.caption.24,

and are very similar to the results in Fig. 4.3Evaluation of MLS approximating

u2 (displacement in X2 direction). η̃ versus cut-off radius rc when γ = 0.0198,

namely 800 data points. The legend represents the interpolation basis used for each

MLS trial.figure.caption.20: the median error η̃ is significantly reduced for as rc

decreases from 0.7 to 0.2, and the cubic basis performs much better than the linear
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Fig. 4.7. Plots η̃ with cut-off radius rc at γ = 0.0198, namely 800 data points. The legend
represents the interpolation basis used for each MLS trial.

and quadratic basis. If linear basis is used, the median error ranges from 3% to 14%.

This means to obtain an curate strain field (e.g. median error η̃ < 5%), quadratic

and cubic basis should be used for this case.

4.3 Stress field

As discussed in Section 2.2Displacement, strain and stress fieldssection.2.2, a dif-

ficulty in calculating the stress field for soft materials, most of which are incom-

pressible, is that there is a hydrostatic pressure term that cannot be determined

from the strain or deformation gradient. This problem can be settled, as proposed

by Hall et al. [53], by solving it from the equilibrium equation. This results in

an integral for the pressure p stated in Eq. 2.28Displacement, strain and stress

fieldsequation.2.2.28, which requires the evaluation of the second-order derivative

of the displacement (see the laplacian operator in Eq. 2.28Displacement, strain

and stress fieldsequation.2.2.28). This places a very stringent requirement for the

smoothness and accuracy of the interpolated displacement field. Based on the dis-

placement and strain fields in Section 4.1Displacement fieldsection.4.1 and 4.2Strain

fieldsection.4.2, we expect that the pressure term p can not be accurately calculated

unless we use cubic basis with a high density of data points. As a result, here for
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the stress field we will only use cubic basis with γ = 0.0164 (1200 data points).

Fig. 4.8Stress fields for zone of interest from FEA and MLS. (a), (c) and (e):

contour plots of σ11, σ12 and σ22 from FEA. (b), (d) and (f): contour plots of σ11,

σ12 and σ22 from MLS.figure.caption.25 shows contour plots of the three in-plane

Cauchy stress components σ11, σ12 and σ22 determined from MLS method and

the corresponding FEA results. The parameters used for MLS interpolation are

γ = 0.0164 (1200 data points), cubic basis and rc = 0.4. Despite the stringent re-

quirement of calculating the second-order derivative of the displacement, the MLS

method still provides accurate results for all three stress components. The median

errors η̃ for σ11, σ12 and σ22 are 1.5%, 0.42% and 3.04%, respectively. Note that

the error for the shear stress component σ12 is much smaller than that of the two

normal components. This is because σ12 can be directly calculated from the strain

field (see Eq. 3.6Expressions of strain and stress componentsequation.3.3.6b) and

does not need to hydrostatic pressure term p.

To explore the effect of cut-off radius, in Fig. 4.9Plots η̃ versus cut-off ra-

dius rc at γ = 0.0164, namely 1200 data points. The legend represents the stress

components.figure.caption.26 we plot the median error η̃ versus rc using γ = 0.0164

(1200 data points) and cubic interpolation basis. The three curves represent differ-

ent stress components. It is seen that for σ12 the values of η̃ are insensitive to rc and

are all below 5%. The median errors η̃ for σ11 and σ22 are much larger than that of

σ12 at the same rc, and can be as high as 20% to 30% for small rc. As discussed

above, σ12 can be directly calculated using J and B12, which are determinant of

the deformation gradient and a component of left Cauchy green tensor B, respec-

tively. The left Cauchy Green deformation tensor B represents true strain (see Eq.

2.18Displacement, strain and stress fieldsequation.2.2.18 and Eq. 2.19Displace-

ment, strain and stress fieldsequation.2.2.19) and can be evaluated accurately by

the MLS method (see Fig. 4.6Evaluation of MLS approximating E22. (a), (b) and

(c) are the plots of η̃ versus γ using different interpolation basis. (a): Linear basis.
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Fig. 4.8. Stress fields for zone of interest from FEA and MLS. (a), (c) and (e): contour plots of σ11,
σ12 and σ22 from FEA. (b), (d) and (f): contour plots of σ11, σ12 and σ22 from MLS.
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(b): Quadratic basis. (c): Cubic basis. (a), (b) and (c) have the same legend mean-

ing the employed cut-off radius for each MLS interpolation.figure.caption.23). The

determinant J should be exactly 1 since we used the incompressible neo-Hookean

model in the FEA calculation. Due to numerical errors, the J recovered from MLS

method is not 1 but very close to 1 (within 2%), as shown in the contour plot of J

in Fig. 4.10Contour of J .figure.caption.27. Since it involves integrating and Lapla-

cian operator (Eq. 2.28Displacement, strain and stress fieldsequation.2.2.28), it can

be concluded that the errors in σ11 and σ22 mainly come from the calculation of the

hydrostatic pressure term p.
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Fig. 4.9. Plots η̃ versus cut-off radius rc at γ = 0.0164, namely 1200 data points. The legend
represents the stress components.
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Fig. 4.10. Contour of J .
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It should be pointed out that in Fig. 4.9Plots η̃ versus cut-off radius rc at γ =

0.0164, namely 1200 data points. The legend represents the stress components.figure.caption.26

the median error η̃ for σ11 and σ22 are quite large (20% to 30%) at rc = 0.3. This

is because for this relatively small cut-off radius, there may not be enough data

points included to accurately calculate the second-order derivative of the displace-

ment field and thus the hydrostatic pressure term p. In fact, we found that for a

even smaller cut-off radius rc = 0.2, the second-order derivative of displacement

cannot be determined at all due to the lack of data points. This is in contrast to

the displacement and strain results where rc = 0.2 usually gives the most accurate

results at given γ and interpolation basis.
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4.4 Effect of weight function
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Fig. 4.11. Continuous deformation fields of zone of interest from FEA and MLS. (a),(c) and (e):
contour plots of the continuous displacement field u2 from FEA, MLS (conical weight function) and
MLS (exponential weight function). (b),(d) and (f): contour plots of the continuous strain field E12

from FEA, MLS (conical weight function) and MLS (exponential weight function).

For all the results shown above, we have only used the conical weight func-
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tion for MLS interpolation. Here we briefly discuss the effect of weight function

by comparing the results with conical and exponential weight function (see Eq.

2.36Parametersequation.2.3.36). Fig. 4.11Continuous deformation fields of zone

of interest from FEA and MLS. (a),(c) and (e): contour plots of the continuous dis-

placement field u2 from FEA, MLS (conical weight function) and MLS (exponen-

tial weight function). (b),(d) and (f): contour plots of the continuous strain field E12

from FEA, MLS (conical weight function) and MLS (exponential weight function).

figure.caption.28 shows the contour plots of displacement component u2 and the

true strain component E12 obtained from FEA results as well as MLS method using

conical and exponential weight functions. The other parameters used in MLS are

γ = 0.0198 (800 data points), cubic interpolation basis and cut-off radius rc = 0.4.

The three displacement contour plots are shown in Fig. 4.11Continuous defor-

mation fields of zone of interest from FEA and MLS. (a),(c) and (e): contour plots

of the continuous displacement field u2 from FEA, MLS (conical weight function)

and MLS (exponential weight function). (b),(d) and (f): contour plots of the con-

tinuous strain field E12 from FEA, MLS (conical weight function) and MLS (ex-

ponential weight function). figure.caption.28a, 4.11Continuous deformation fields

of zone of interest from FEA and MLS. (a),(c) and (e): contour plots of the con-

tinuous displacement field u2 from FEA, MLS (conical weight function) and MLS

(exponential weight function). (b),(d) and (f): contour plots of the continuous strain

field E12 from FEA, MLS (conical weight function) and MLS (exponential weight

function). figure.caption.28c and 4.11Continuous deformation fields of zone of in-

terest from FEA and MLS. (a),(c) and (e): contour plots of the continuous displace-

ment field u2 from FEA, MLS (conical weight function) and MLS (exponential

weight function). (b),(d) and (f): contour plots of the continuous strain field E12

from FEA, MLS (conical weight function) and MLS (exponential weight function).

figure.caption.28d. The median error η̃ was found to be 0.126% and 0.118% for

conical and exponential weight function, respectively. For the strain component

E12, the three contour plots are also very close to each other. The median error for
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conical and exponential weight functions are almost the same: 0.437% and 0.379%,

respectively. These results indicate that the MLS interpolation may not be sensitive

to the detailed form of the weight function as long as it is a decaying function with

the distance from the interpolation point. Of course, a more parametric study is

needed for a conclusive understanding of the effect of the weight function, which is

a subject of future work.

4.5 Conclusions

In this chapter, we used the indentation model as an example to explore the effect of

parameters on the accuracy of MLS interpolation of displacement, strain and stress

fields. Results presented in this chapter lead to the following qualitative guideline

regarding the selection of parameters for the MLS method.

1. Cubic interpolation basis provides the most accurate measurement among

the three interpolation bases. Specifically, for displacement field, linear basis with

a proper cut-off radius can yield reasonably accurate results with median relative

error η̃ below 5%, However, for strain and stress where the first and second-order

derivatives of displacement are required, cubic basis is necessary to ensure the ac-

curacy and smoothness of the interpolated field. Based on this observation, it is

expected that higher order polynomial basis (e.g. forth order) can further improve

the interpolation accuracy, especially for strain and stress fields, but this would also

greatly increase the complexity of the interpolation scheme and computational cost.

2. The median error η̃ tends to reduce as the data points become denser and con-

verge when the density of data points reaches a critical value. For the indentation

example, the median relative error converges when γ = 0.0198 for displacement.

Although this critical value is calculated for a special case, it can still be used to

obtain a rough estimate on the density of data points for general applications. It
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should be noted that for the computation of stress fields, a higher density is needed

for the calculation of the second-order derivative of the displacement field.

3. The cut-off radius rc is an important parameter that can significantly affect

the accuracy of the MLS interpolated results. In general, rc can neither be too large

nor too small for optimized performance of the MLS method. An overly large rc

leads to the inclusion of data points far away from the interpolation point, which

weakens the “local interpolation" characteristics of the MLS method and can reduce

the accuracy as shown in Fig. 4.2Evaluation of MLS approximating u2 (displace-

ment in X2 direction). (a), (b) and (c) are the plots of η̃ versus γ using different

interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic basis. (a),

(b) and (c) have the same legend meaning the employed cut-off radius for each

MLS interpolation.figure.caption.19 (displacement u2) and Fig. 4.6Evaluation of

MLS approximating E22. (a), (b) and (c) are the plots of η̃ versus γ using differ-

ent interpolation basis. (a): Linear basis. (b): Quadratic basis. (c): Cubic basis.

(a), (b) and (c) have the same legend meaning the employed cut-off radius for each

MLS interpolation.figure.caption.23 (strain E22). An overly small rc may result

in insufficient data points which can reduce the accuracy as well, especially for

the stress fields where the second-order derivative of displacement is needed. We

expect that the optimal rc for displacement and strain can also apply to different

material constitutive models since the MLS interpolation scheme and the strain in

Eq. 2.18Displacement, strain and stress fieldsequation.2.2.18 are independent of

the material model. However, for the stress, the optimal rc may depend on the ma-

terial model which affects the constitutive equations for stress. Besides, selection of

a proper rc also depends on the density of data points. If the data points are densely

distributed, a smaller rc should be used and vice versa. The principle is to include

a certain number of data points that is not too large or too small.

4. The main source of error for computing stress comes from the hydrostatic

pressure term p which requires the second-order derivative of the displacement.
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For this reason, the median error η̃ for shear stress, which does not include p, is

much smaller than those for the normal stress components. This difficulty is only

present if the material is incompressible or nearly incompressible, and is likely to

be a major challenge for soft elastomers and gels which are mostly incompressible.

5. From the two examples shown in Section. 4.4Effect of weight functionsection.4.4,

we found that the displacement and strain results are not sensitive to the weight

functions. This remains to be confirmed with more extensive parametric studies.
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Chapter 5

Application cases with stress

concentration

In Chapter 4Results for the indentation example and parametric studychapter.4, we

used the indentation model to evaluate the accuracy of the MLS method in mapping

the displacement, strain and stress fields and studied the effects of parameters. The

results show that the MLS method is capable of accurately mapping the continuous

deformation and stress fields from a set of discrete data points if proper parameters

are used. These parameters include density of data points (described by the normal-

ized nearest neighbour distance γ), cut-off radius rc and the interpolation basis. In

this chapter, we explore the performance of the MLS method for cases with defects

leading to severe stress concentration. To select appropriate parameters for these

models, we use results of the parametric study in Chapter 4Results for the inden-

tation example and parametric studychapter.4. First, for interpolation basis, cubic

basis will be utilized since it was shown to give the most accurate results, especially

for strain and stress fields. Second, for data points, in the previous chapter we found

that the median relative error η̃ converged when the normalized nearest neighbour

distance γ is about 0.0198. This value corresponded to a total number of 800 data

points for the indention model. Based on this result, we will used the same number

of data points (800) for the two cases considered in this chapter. However, we note

that the resulting γ may not be exactly 0.0198 (but still is close to this value) since

71



the data points are randomly selected from nodes of the FEA results. Third, for the

cut-off radius rc, we found that it should neither be too large nor too small. The

optimal choice of rc depends on what quantity, e.g. displacement or stress, is to be

calculated. Here we will try different values of rc for the two new models studied

in this chapter. Specifically, rc for the tension model ranges from 0.6 to 1 while rc

for the crack model covers [0.003, 0.008]. Since the zone of interest of the crack

model is much smaller than that of the tension model, rc used for the former is

much less than that of the latter. As to the weight function, we will take the conical

weight function like what we did in Chapter 4Results for the indentation example

and parametric studychapter.4.

5.1 Plate with a hole under tension

5.1.1 Displacement and strain fields

0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

rc

η̃
(%

)

u1
E11

Fig. 5.1. Evaluation of MLS approximating u1 and E11. Plots η̃ with cut-off radius rc at 800 data
points with cubic basis.

A plate with a circular hole is under uni-axial tension as shown in Fig. 3.1bfigure.caption.11.

For this model, we applied two different displacements on the plate: u1 = 20 and

u1 = 40 (see Table. 3.1Finite element simulation details.table.caption.12). Here we

present only the results of u1 = 20 and those for u1 = 40 are included in Appendix
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A. As described above, we varied the cut-off radius rc from 0.6 to 1. The median

relative error η̃ for the displacement component u1 and strain component E11 are

plotted versus rc in Fig. 5.1Evaluation of MLS approximating u1 and E11. Plots

η̃ with cut-off radius rc at 800 data points with cubic basis.figure.caption.29. The

specific displacement and strain components (u1 and E11) are selected here because

the plate is loaded under uni-axial tension along the X1 direction. For u1, a clear

increasing trend of η̃ is shown with increasing rc. The smallest η̃ for u1 is reached

at rc = 0.6. For E11, it appears that rc = 0.7 yields the lowest η̃.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

 

0

0.301

0.602

0.903

1.204

1.505

1.806

2.107

2.408

2.709

FEA u1

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

 

0

0.301

0.602

0.903

1.204

1.505

1.806

2.107

2.408

2.709

MLS u1

η̃ = 0.016%

(b)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

 

0.014434

0.099435

0.18443

0.26943

0.35443

0.43943

0.52443

0.60943

0.69443

0.77943

FEA E11

(c)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

 

0.014434

0.099435

0.18443

0.26943

0.35443

0.43943

0.52443

0.60943

0.69443

0.77943

MLS E11

η̃ = 0.18%

(d)

Fig. 5.2. Displacement and strain fields for zone of interest from FEA and MLS. (a) and (c) :
contour plots of u1 and E11 from FEA. (b) and (d): contour plots of u1 and E11 from MLS.

Based on the results in Fig. 5.1Evaluation of MLS approximating u1 and E11.

Plots η̃ with cut-off radius rc at 800 data points with cubic basis.figure.caption.29,

we choose rc = 0.7 and present the contour plots of the displacement component
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u1 and strain component E11 in Fig. 5.2Displacement and strain fields for zone of

interest from FEA and MLS. (a) and (c) : contour plots of u1 andE11 from FEA. (b)

and (d): contour plots of u1 and E11 from MLS.figure.caption.30b and Fig. 5.2Dis-

placement and strain fields for zone of interest from FEA and MLS. (a) and (c) :

contour plots of u1 andE11 from FEA. (b) and (d): contour plots of u1 andE11 from

MLS.figure.caption.30d. Fig. 5.2afigure.caption.30 and Fig. 5.2cfigure.caption.30

are plotted using corresponding FEA results. Overall, we can see that the displace-

ment and stress fields reproduced from the MLS method are very close to the FEA

results. The median relative error η̃ was found to be 0.016% and 0.18% for the

displacement and strain fields, respectively. Note that, severe discrepancy between

the FEA and MLS results in E11 is observed in a small area near the top corner

of the zone of interest (marked by the red circle in Fig. 5.2dfigure.caption.30).

This is attributed to the low density of data points in this region (see Fig. 5.3Stress

fields for zone of interest from FEA and MLS. (a): contour plots of σ11 from FEA.

(b): contour plots of σ11 from MLS in method B. (c): contour plots of σ11 from

MLS in method A. (d): contour plots of σ11 from MLS in method A with data

points.figure.caption.31d for distribution of the data points).

5.1.2 Stress field

In the indentation model discussed in Chapter 4Results for the indentation example

and parametric studychapter.4, we calculated the hydrostatic pressure term p by in-

tegrating the second-order derivatives of the displacements (see Eq. 2.28Displace-

ment, strain and stress fieldsequation.2.2.28). However, in this model, plane stress

condition is assumed, which implies that the out-of-plane normal stress component

σ33 is identically zero in the entire zone of interest. As a result, the hydrostatic

pressure term p can be alternatively calculated by setting σ33 = 0 in Eq. 2.25Dis-

placement, strain and stress fieldsequation.2.2.25. This method does not require the

computation of second-order derivatives of displacement, and thus is expected to

give more accurate results for the stress field. To demonstrate this point, here we at-
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tempt both methods of calculating the hydrostatic pressure term p: 1) following Eq.

2.28Displacement, strain and stress fieldsequation.2.2.28 to integrate the second-

order derivatives of displacement (Method A); 2) directly calculating p by setting

σ33 = 0 in Eq. 2.25Displacement, strain and stress fieldsequation.2.2.25 (Method

B).
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Fig. 5.3. Stress fields for zone of interest from FEA and MLS. (a): contour plots of σ11 from FEA.
(b): contour plots of σ11 from MLS in method B. (c): contour plots of σ11 from MLS in method A.
(d): contour plots of σ11 from MLS in method A with data points.

Fig. 5.3Stress fields for zone of interest from FEA and MLS. (a): contour plots

of σ11 from FEA. (b): contour plots of σ11 from MLS in method B. (c): contour

plots of σ11 from MLS in method A. (d): contour plots of σ11 from MLS in method

A with data points.figure.caption.31 shows the contour plots of σ11 obtained from

multiple sources of data. The benchmark field obtained from FEA results is shown
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in Fig. 5.3afigure.caption.31. The stress fields reproduced by the MLS method with

rc = 0.7, using Method A and Method B for the hydrostatic pressure term p, are

shown in Fig. 5.3Stress fields for zone of interest from FEA and MLS. (a): con-

tour plots of σ11 from FEA. (b): contour plots of σ11 from MLS in method B. (c):

contour plots of σ11 from MLS in method A. (d): contour plots of σ11 from MLS in

method A with data points.figure.caption.31c and 5.3Stress fields for zone of inter-

est from FEA and MLS. (a): contour plots of σ11 from FEA. (b): contour plots of

σ11 from MLS in method B. (c): contour plots of σ11 from MLS in method A. (d):

contour plots of σ11 from MLS in method A with data points.figure.caption.31b,

respectively. The median relative error η̃ is found to be 0.28% when Method B is

used, which is much smaller than that (η̃ = 32.87%) of Method A. Clearly, Method

B gives more accurate results for the stress field by removing the need of calculating

the second-order derivative of the displacement field. However, Method B is only

valid under plane stress condition. For general three-dimensional deformation, we

still need to use Method A for calculating the stress field. It should be noted that

the large errors for the results given by Method A mainly occurred in the region

surrounding the outer arc. We believe this is due to the lack of data points in this

region, which is confirmed in Fig. 5.3dfigure.caption.31 where the distribution of

data points is plotted. Denser data points are needed in this region for calculating

the second-order derivative of displacement in Method A.

5.2 Two-dimensional crack

5.2.1 Displacement and strain fields

The third model is a two-dimensional edge crack as shown in Fig. 3.1cfigure.caption.11.

The stress concentration here is more severe than that of the second model shown

in Fig. 3.1bfigure.caption.11. This model is also under the assumption of plane

stress (see Table. 3.1Finite element simulation details.table.caption.12). Similar
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to the previous model, we used two displacement loadings, u2 = 5 and u2 = 10.

The results for u2 = 5 are presented here while those for u2 = 10 are included in
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η̃
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)

u22
E22

Fig. 5.4. Evaluation of MLS approximating u2 and E22. Plots η̃ with cut-off radius rc at 800 data
points with cubic basis.

Appendix B. We tried a number of cut-off radius rc ranging form 0.003 to 0.008.

The median relative error η̃ for the displacement component u2 and strain com-

ponent E22 for different rc are shown in Fig. 5.4Evaluation of MLS approxi-

mating u2 and E22. Plots η̃ with cut-off radius rc at 800 data points with cubic

basis.figure.caption.32. Since the crack is opening along X2 direction, we choose

to present the results of displacement component u2 and strain component E22. We

can see that at rc = 0.005 η̃ reaches minimum for E22. For u2, η̃ converges when

rc is below 0.005. Therefore, we will use rc = 0.005 and show the contour plots of

displacement u2 and true strain E22 in the following.

The contour plots of u2 and E22 reproduced using the MLS method are shown

in Fig. 5.5bfigure.caption.33 and 5.5dfigure.caption.33, while the corresponding re-

sults obtained from FEA are shown in Fig. 5.5afigure.caption.33 and 5.5cfigure.caption.33.

The displacement fields illustrated in Fig. 5.5afigure.caption.33 (FEA) and Fig.

5.5bfigure.caption.33 (MLS) are almost identical to each other, except the region

directly ahead of the crack tip where X1 > 0 and X2 = 0. For strain E22, the field

given by the MLS method faithfully reproduced the rapid decay of strain when mov-

ing away from the crack tip. Overall, the displacement and strain fields reproduced
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Fig. 5.5. Displacement and strain fields for zone of interest from FEA and MLS. (a) and (c) :
contour plots of u2 and E22 from FEA. (b) and (d): contour plots of u2 and E22 from MLS.
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using the MLS method agree well with the benchmark FEA results. The median

relative errors for the displacement u2 and strain E22 are 0.048% and 0.131%, re-

spectively.

5.2.2 Stress field

In Section 5.1.2Stress fieldsubsection.5.1.2, we have demonstrated the advantage of

directly computing the hydrostatic pressure term p in plane stress cases by setting

σ33 = 0 in Eq. 2.25Displacement, strain and stress fieldsequation.2.2.25. This

method will be adopted here for calculating the stress field in the crack tip region.
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Fig. 5.6. Stress fields for zone of interest from FEA and MLS. (a): contour plot of σ22 from FEA.
(b): contour plot of σ22 from MLS in method B. (c): contour plot of the relative error η for stress
component σ22.
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The contours of σ22 obtained from FEA results and calculated using MLS method

are present in Fig. 5.6Stress fields for zone of interest from FEA and MLS. (a):

contour plot of σ22 from FEA. (b): contour plot of σ22 from MLS in method B. (c):

contour plot of the relative error η for stress component σ22. figure.caption.34a and

Fig. 5.6Stress fields for zone of interest from FEA and MLS. (a): contour plot of

σ22 from FEA. (b): contour plot of σ22 from MLS in method B. (c): contour plot

of the relative error η for stress component σ22. figure.caption.34b. A severe stress

concentration can be observed near the crack tip, which makes it difficult to reduce

the relative error of the stress field. It can be seen that in Fig. 5.6Stress fields for

zone of interest from FEA and MLS. (a): contour plot of σ22 from FEA. (b): con-

tour plot of σ22 from MLS in method B. (c): contour plot of the relative error η for

stress component σ22. figure.caption.34c that large relative errors (larger than 20%)

mostly occur very close to the crack tip. The relative error is dramatically reduced

below 7% away from the crack tip, and the median relative error η̃ was found to

be 0.71%. What’s more, from the pie chart shown in Fig. 5.7Pie chart of relative

errors η.figure.caption.35, we can find that over 85% of relative error η are below

5%. This also supports that the MLS method finished a good mapping of σ22.
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Fig. 5.7. Pie chart of relative errors η.

5.3 Conclusions

In this chapter we studied two models with defects (hole and the crack) which lead

to stress concentration. Both models are subjected to large deformation. The re-

sults in Section 5.1Plate with a hole under tensionsection.5.1 and Section 5.2Two-

dimensional cracksection.5.2 demonstrated that MLS was able to achieve accurate

full-field measurement of large deformation and stress concentration when proper

parameters were chosen. This chapter mainly discuss how the choice of rc influ-

ences the results. And the optimized values of rc are 0.7 and 0.005 for the two

models.

For these two models, plane stress condition was assumed which greatly sim-

plified the calculation of stress field since the hydrostatic pressure term p can be

directly determined from the zero out-of-plane normal stress. This method was also

shown to give much more accurate stress field than the method where hydrostatic
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pressure term p is calculated by integrating the second-order derivative of displace-

ment field. It is noteworthy that this method is only valid for plane stress prob-

lems. As to general three-dimensional case, the hydrostatic pressure p still needs to

be calculated from the second-order derivative of displacement field following Eq.

2.28Displacement, strain and stress fieldsequation.2.2.28.
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Chapter 6

Conclusions and future work

In summary, the goal of this thesis is to understand 1), the accuracy of MLS in

mapping deformation and stress fields within soft material; 2) how the parameters

of MLS affect the interpolation results; 3) the capability of MLS in measuring cases

with large deformation and stress concentration. The first two goals were achieved

by examining an indentation model discussed in Chapter 4Results for the indenta-

tion example and parametric studychapter.4. Different combinations of parameters

were used to calculate the displacement, strain and stress fields inside the soft gel

under indentation. By comparing the results from MLS with the benchmark FEA,

we obtained the following general qualitative understandings on the effect of pa-

rameters. The first one is that cubic interpolation basis acts the best comparing

with other two bases used in this work. Next, the interpolation results converge

with a sufficiently dense distribution of data points. Thirdly, the cut-off radius can

never be too large or too small and in general there exists an optimal cut-off radius

to minimize the numerical errors. Finally, the errors of mapping stress fields for

incompressible materials, which is the case for most soft elastomers and gels, are

mainly from calculating the hydrostatic pressure term p.

Based on the findings from the indentation model, we apply MLS to full-field

measurement of two other models with defects and stress concentration. The mea-

sured displacement, strain and stress fields agreed well with those from FEA. These
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two examples demonstrated the capability of MLS to measure nonlinear deforma-

tion, especially for cases with high spatial gradients for deformation and stress

fields.

Overall our study shows that MLS is a promising method to make full-field

measurement within soft material exhibiting large deformation and stress concen-

tration. Looking forward, it can be further improved in the following aspects. First,

to reduce the errors for mapping stress fields, the method of calculating the hydro-

static pressure p can be improved. As shown in Eq. 2.28Displacement, strain and

stress fieldsequation.2.2.28, p is determined by integrating the second-order deriva-

tive of displacement from a point where any one of the normal stress components

is given. In principle, the result of p should be independent of the integration path

selected, but in reality different integration paths may cause different degree of nu-

merical errors. In this work, we only choose one integration path, but it is also

possible to use a large number of integration paths and perform statistical analysis

to minimize the error in the hydrostatic pressure p. Besides, since we only choose

the data points inside the zone of interest, it is possible that there are insufficient

data points near the boundary (see Fig. 3.4cfigure.caption.15). In Chapter 4Results

for the indentation example and parametric studychapter.4 and 5Application cases

with stress concentrationchapter.5, we have mentioned that insufficient data points

may lead to large errors (see Fig. 4.6cfigure.caption.23) and non-smoothness in the

interpolated fields (see Fig. 5.3dfigure.caption.31). To avoid this situation, we do

not need to choose data points inside the zone of interest but can select a few more

data points outside the zone of interest.
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Appendix A: Plate under tension

(loading 2)
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Fig. A1. Displacement and strain fields for zone of interest from FEA and MLS. (a) and (c) :
contour plots of u1 and E11 from FEA. (b) and (d): contour plots of u1 and E11 from MLS.
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Fig. A2. Stress fields for zone of interest from FEA and MLS. (a): contour plots of σ11 from FEA.
(b): contour plots of σ11 from MLS in method B. (c) contour plots of σ11 from MLS in method B
with data points.
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Appendix B: Two-dimensional crack

(loading 2)
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Fig. B1. Displacement and strain fields for zone of interest from FEA and MLS. (a) and (c) :
contour plots of u2 and E22 from FEA. (b) and (d): contour plots of u2 and E22 from MLS.
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Fig. B2. Stress fields for zone of interest from FEA and MLS. (a): contour plot of σ22 from FEA.
(b): contour plot of σ22 from MLS in method B. (c): contour plot of the relative error η for stress
component σ22.
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