By

Fahreen Rayani

A thesis submitted to the Faculty of Graduate Studies and Resoarch in partial fifillment of the requirements for the degree Master of Arts

Faculty of Physical Education and Recreation

Edmonton, Alberta

Spring 2004

Library and	Bibliothèque et Archives Canada
Archives Canada	
Published Heritage Branch	Direction du Patrimoine de l'édition
395 Wellington Street Ottawa ON K1A 0N4 Canada	395, rue Wellington Ottawa ON K1A 0N4
Canada	

Your file Votre référence
ISBN: 0-612-96420-5
Our file Notre référence
ISBN: $0-612-96420-5$

The author has granted a nonexclusive license allowing the Library and Archives Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou aturement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

This case study had two purposes: (1) to extend the IZOF model to inciude various psychological constructs (i.e., anxiey, confidence, concentration, motivation, recoverystress, and mood states) wilizing a multidimensional approach to describe the phenomena; and (2) to develop an athete-generated checklist to identify and establish an athlete's personal psychological performance profile. The participant in this study was an elite competive female swimmer (17 yrs. old) who completed ten self-report measures (SAS, CASS, SMS, RESTQ-Sport, CSCI, CSAl-2, POMS, MSRS, AGI, MRF) on 16 separate occasions throughout 2 macro cycles of her competitive swim season (September 2002-March 2003). Two interviews were conducted during this time; one at the begiming of the season to create a specific athiete-generated checklist and one at the end of the season to tease out the swimmer's personal reflections regarding her performance process and outcome throughout her season. An individual and unique performance profile of the swimmer was generated which included anxiety, confidence, concentration, motivation, recovery-stress, and mood states related to perfomance outcome. Results indicate that this athlete required low levels of cognitive anxiety, low to moderately-high levels of somatic anxicty, moderate to high levels of confidence, and high levels of concentration and motivation in the pre performance setting in order to increase the probability of a successful shon couse swimming performance. In addition to this athete's profile, factors such as type and importance of swim meet, as well as, various social and environmental factors affected her overall perfomances across the season. This type of research has the potential to open doors to performance refinement through montoring and profiling psychological states, thus allowing for athetes to

engage in selfregulation and ultuately increase the likelihood of perfomance consistency and control.

Acknowledgements

I would tike to thank the coaching staff and the athletes at the local swim club for their time and wilingness to be apart of this research. To Lisa Rogerson for her time and exceptionally heipful and informative comments, Karim Rayani for all his time and patience, and Dr. Brian Nielson and Dr. Graham Fishbume for their support and direction. As well, my deep appreciation goes to Dr. John Hogg, my mentor, for providing me with this opportunity and offering me his unconditional guidance, wisdom, and support.
List of Tables
List of Figures
List of Abbreviations
Chapter 1
Chapter 2: Review of Literature 10
Anxiety 10
Anxicty Research in Sport 11
Anxiety Rescarch in Swimming 12
Confidence 15
Confidence Rescarch in Sport 16
Confidence Research in Swimming 17
Concentration 19
Concentration Research in Sport 20
Concentration Research in Swimming 21
Motvation 23
Motivation Research in Sport 24
Motivation Research in Swimming 25
Recovery 28
Mood States 31
Mood States Research in Sport 33
Mood States Research in Swimming 33
Chapter 3: Method 37
Case Sudy Design 37
Participant 38
Instrumentation 38
Trait Measures 39
State Measures 40
Procedure 43
Interviews 45
Interview Guide 45
Pre Season Interview 46
Post Season Interview 47
Conversational Interview 48
Debriefing 49
Data Analyais 49
Constant Comparative Method 51
Profiles 53
Chapter 4: Data Analysis 56
The Sport Anviety Scale (SAS) 56
The Causes of Anxiety in Spon Scale (CASS) 56
The Carolina Sport Confidence Inventory (CSCI) 59
The Sport Motivation Scale (SMS) 60
The Recovery-Stress Questionnaire (RESTO-Sport) 61
Cognitive Anxiety 65
CSAL-2 65
MRF 66
AGI 68
Somatic Anxiety 69
CSAI-2 69
MRF 71
Confidence 72
CSAI-2 72
MRE 74
AGI 75
Concentration 77
AGI 77
Motivation 78
AGI 78
Mood States 80
Pre/Post Vigor 81
Pre/Post Tension 82
PrePost Anger 84
Pre/Post Contusion 86
Pre/Post Fatigue 88
Pre/Post Depression 91
Pre/Post Confidence 92
Post Performance 94
MSRS 94
Qualitative Analysis 97
Chapler 5: Discussion 102
Anxiety 108
Confidence 110
Concentration 111
Motivation 113
Mood States 114
Post Performance 115
Summary 116
Chapter 6: Recommendations and Future Directions 117
Pronile 118
Recommendations for Athlete A 119
Recommendations for Coach 121
Implications 122
Strengths and Weaknesses 123
Fuure Drections 125
References 127
Appendices 143
Appendix A Sport Anxiety Scale 144
Appendix B Causes of Anxiety in Sport Scale 145
Appendix C Carolina Sport Confidence Inventory 147
Appendix D Sport Motivation Scale 149
Appendix E Competitive State Anxiety Inventory-2 150
Appendix F Mental Readiness Form 151
Appendix G The Rest and Recovery Questionnaire 152
Appendix H Pronite of Mood States 159
Appendio I Mental States of Readiness and Satisfaction 161
Appendix. Athete-Generated Instrument 162
Appendix K Infomation Letter and Consent Fom 163
Appendix L Questionnaire Schedule 165
Appendix M Pre Season Interview Guide 166
Appendix N Posi Season Interview Guide 167
Appendix O Five Core Debriefing Questions 168
Appendix P Sport Anxiety Scale (SAS) 169
Appendix Q Causes of Anxiety in Sport Scale (H1 and ${ }^{4} 2$) 170
Appendix \mathbb{R} Carolina Spor Confidence Inventory (CSC) 172
Appendix S Sport Motivation Scale (SMS) 173
Appendix T Rest and Recovery Graphs 174
Appendix U Cognitive Anxiety (CSAI-2) vs. Competitions 178
Appendix V Cognitive Anxiety (MRF) vs. Competitions 179
Appendix W Anciety/Cerainty (AGI) vs. Competitions 180
Appendix X Somatic Anxiety (CSAI-2) ws. Competitions 181
Appendix Y Somatic Anxiey (MRF) vs. Competitions 182
Appendix $Z \quad S e l f . C o n f i d e n c e(C S A I-2)$ vs Competitions 183
Appendix AA Self-Confidence (MRF) vs. Competitions 184
Appendix BB Confidence/Proud (AGI) vs. Competitions 185
Appendix CC Concentration/Focused/Readiness (AGI) vs. Competitions 186
Appendix DD Motivation/Driven (AGI) vs. Competitions 187
Appendix EE PrePost Vigor (POMS) vs. Conpetitions 188
Appendix FF Pre/Post Tension (POMS) vs. Competitions 189
Appendix GO Pre/Post Anger (PONS) vs. Competions 190
Appendix HH PrePost Confusion (POMS) ws. Competitions 191
Appendix II PrePost Fatigue (POMS) vs. Competitions 192
Appendix JJ Pre/Post Depression (POMS) vs. Competitions 193
Appendix KK Pre/Post Confidence (POMS) vs. Competitions 194
Appendix LL Readiness and Assessment (MSRS) vs. Competitions195

List of Tabies

Table 1 Short Course and Long Course Competition Outcome Raaking 54
Table 2 Summary of Subscale Scores across the Season for the Sport Anxiety Scale 56
Table 3 Summary of Subscale Scores for the First Measure of the Causes of Anwiety in Spore Scale (10/1602) 58
Table 4 Summary of Subscale Scores for the Second Measure of the Causes of Anxiety in Sport Scale ($03 / 24 / 03$) 59
Table 5 Summary of Subscale Scores across the Season for the Carolina Sport Confidence Invemtory 60
Table 6 Summary of Subscale Scores across the Season for the Sport Motivation Scale 61
Table 7 Summary of the Subscale Scores across the Season for the RESTQ-Sport 62
Table 8 Summary of Cognitive Anxiety Subscale Scores (CSAI-2) across the Season 65
Table 9 Summary of Cogntive Anviety Subscale Scores (MRF) across the Season 67
Table 10 Summary of Anxiety/Certainty Subscale Scores (AGI) across the Season 68
Table 11 Summary of Somatic Anxicty Subscale Scores (CSAI-2) across the Season 70
Table 12 Summary of Somatic Anxiety Subscale Scores (MRF) across the Season: 71
Table 13 Summary of Self-Confidence Subscale Scores (CSAR-2) across the Season 73
Table 14 Summary of SelfConfidence Subscale Scores (MRF) across the Season 74
Table 15 Summary of ConfidenceProud Subscale Scores (AOI) across the Season 76
Table 16 Surmary of Concentration/Tocused/Readiness Subscale Scores (AGI) across the Season 77
Table 17 Summary of Motivation/Driven Subscale Scores (AGI) across the Season 79
Table 18 Summary of Importance and Competence Scores (Pre POMS) across the Season 80
Table 19 Summary of Pre/Post Vigor (POMS) across the Season 81
Table 20 Summary of Pre/Pos Tension (POMS) across the Season 83
Table 21 Summary of Pre/Post Anger (POMS) across the Season 85
Table 22 Summary of Pre/Post Confusion (POMS) across the Season 87
Table 23 Summary of Pre/Post Fatigue (POMS) across the Season 89
Table 24 Summary of Pre/Post Depression (POMS) across the Season 91
Table 25 Summary of Pre/Post Confidence (POMS) across the Season 93
Table 26 Summary of Readiness and Assessment Scores (MSRS) across the Season 94
Table 27 Summary of Coach and Athete A's Post Perfomance Ratings across the Season 96

List of Figures

Figure 1 Best versus Worst Short Course Performance Profile for Athlete A18

List of Abbreviations
AGU Athlete-Generated Instument
CASS Causes of Anxiety in Spor Scale
CSAI-2 Competitive State Anxiety Inventory-2
CSCl Carolina Sport Confidence Inventory
IZOF Individual Zones of Optimal Functioning
ME Magnitude Estimation
MRF Mental Readiness Form
MSRS Mental States of Readiness and Satisfaction
NCAA National Collegiate Athletic Association
POMS Profile of Mood States
PSTP Psychological Skills Training Program
RESTQ Restand Recover Questionnaine
SAS Sport Anxiety Scale
SMS Sport Motivation Scale
SNC Swimming Natation Canada
STAI State Anxiety Inventory
ZOF Zones of Optimal Functioning

CHAPTER 1

There gre intriguing questions that constantly arise related to each athlete"s ideal performance state. For example: (1) What makes an athiete persist and keep performing consistenty well at the highest possible level and under a variety of dificult and ever changing conditions? (2) Is there something about the athlete's psychological make-up (personality, mutitude, compettive hardiness, mental toughness, etc.) that makes the consistent and controlled performer better? (3) Is the clite athicte able to hamess his/her mental and emotional resources more effectively to ensure optimal levels of motivation or activation? Obviously an in depth and detailed case study focusing on the techmical, tactical, physical, and especially the mental and emotional aspects of an athlete's peffornance over time would yield critical information that would guide both program planing and effective coping responses.

Hogg (199% a, 2000) has presented a model of mental preparation that addresses the teaching of basic mental skills, the creation of ideal perfomance states, and the hamessing of the sport-related emotions. This model, as yet untested, adopts a cognitivebehavioral, systematic, and interactive approach in the presentation of its content. Much of the focus of existing mental preparation programs is on the conceptual understanding of major psychological constructs (anxiety, confidence, concentation, and motivation), and on the teaching and imegration of these skills into the trainung and competive enviroments (Mahoney, Gabriel, 8 Pcrins, 1987). However, the remaining three components of the systematized model - namely, monitoring, evaluating, and refining performance - are relatively untouched.

The importance of individually monitoring within a competitive sporting environment not only affects how individual athetes set perfomance expectations, but also how confident they feel in their probability of success. Thus, monitoring increases both self-awareness and confidence, as well as, the performance of a given task no mater the complexity (Behncke, 2002; Kim, 1999; Kim \& Cho, 1996).

Possibly, there is an advantage to monitoring those psychological aspects of performance that have the influencing powers to facilitate or debilitate the athletes" efforts. To be able to do this repeatedly over time and within a relevant theoretical framework is likely more beneficial than a random approach. Any framework must be comprehensive and sufficiently refined to be easily and directly applicable to the selected sport in the broadest of contexts. There are several existing models that attempt to examine the performance-activation relationship that have received attention in the sport psychology literature. Most recently both catastrophe theory (Hardy, 1990, 1996) and reversal theory (ker, 1985 , 1997) although complicated show promise. However, Hanin's (1995) Individual Zones of Optimal Functioning model (LOF) has proved to be of particular interest to the sport practitioner. This model is derived from Hanin's social psychological perspective of the anxicty-perfomance relationship that encourages the use of repeated neasures to profile an athete's perfomance preferetces in striving toward ideal perormance states and enhancing the ukelihood of performance consistenoy and control. "The $120 F$ model serves as a framework for qualitative and quantitative analysis of the structure and function of emotional cxperiences related to a successful or poor performance" (Hanin, 2000, p. 65). The critical tenet of this model posits that athletes have an optimal zone or range of emotional states that possibly facilitate or
debilitate their performance levels. It is assumed that this zone or bandwith is highly individualized and that each athlete has a unique optimal intensity level (low, moderate, or high). Perfomance success then relates to whether the emotional state is near 10 , within, or ouside this zone. Advantages of the ROF model are clear: it is intuitively appealing, practical, a diagnostic tool, easily manageable, operated by the athlete, and relatively precise in indicating and predicting optimum performance states.

The attractiveness of the IZOF model lies in its mulidimensional approach to describing performance related psychobiosocial states. Utiizing this famework makes it possible to not only achicve a more complete picture of the perfomance phenomena, but it also takes into account factors that affect the individual performance process as well as the outcome. The model encompasses five basic dimensions: form, intensity, content, time, and context (Hanin, 2000).

The form dimension describes how a phenomenon is manifested, that is, the way a phenomenon presents itself in the competitive sporting environment. The conceptualization of the psychobiosocial state originates within this dimension. The model suggests seven basic foms of the peromance state which include: cognitive, affective, motivational, bodily-somatic, motor-behavioral, perfomance, and communicative aspects. The cognitive, affective, and motivational forms illustrate the psychological aspect of perfomance; the bodily-somatic mad motorbehavioral forms illustrate the biological or psychophysiological aspects of pertomance; and the perfornance and communicative forms represent the observable social interactions with the enviromment. Common and typical forms of cognitive and somatic anxiety displayed in the competitive swimming environment although unique to each swimmer, usually are
found in the forms of self-doubt, negative self-talk, feelings of queasiness ("butterties"), and increased heart rate.

The content dimension is the informational dimension where the performance state may be described as positive-negative, optimal-non optimal, facilitative-debilitative, or task relevant-irrelevant through qualitative methods. As the LZOF model emphasizes an individualized approach, within the sport of swimming, a particular swimmer may perceive his/her somatic anxiety symptoms prior to perfomance as negative and debilitative to perfomance, whereas, another swimmer may perceive hisher somatic anxiety symptoms as positive and facilitative to performance.

The intensity dimension is the quantiative aspect of the psychobiosocial state where the IZOF model ultimately generates a profile with the expectation of performance outcome resulting from the zones created using the content and intensity of the performance state. Specifically, the probability that an athete will have a successful performance is higher when the current intensity of the psychological state of an athlete is closer to the optimal zone that has already been developed. On the other hand, the farther away the psychological state is from the optimal zone, the higher the probability of a less desirable outcome (Ham, 2000). For example, in the competitive swimming environment, one swimmer may require moderate levels of somatic anxiety prior to perfomance in order to increase the probability of a successful pertomance, while another swimmer may require low levels of somatic anxiety to achieve a successful periormance.

The time dimension describes the psychological state in the pre, during, and post performance setings. This dimension takes into account the type of task in terms of short
or long duration as well as single or repeated performances. Within the sport of swimming, events vary in terms of length and duration (e.g. $50 \mathrm{~m}, 100 \mathrm{~m}, 200 \mathrm{~m}, 400 \mathrm{~m}$ freestyle) and the number of times the event is swum on a particular race day (e.g., qualifying during a heat swim for a final swim). As such, psychological states prior to, during, and post performance can defintely differ in regards to intensity and form and may ultimately impact performance outcone. Further, individual differences must be factored into this dimension.

The fith and last dimension of context involves responses to environmental factors and takes into account situational hactors such as practicefraining versus competition. For example, a competitive swimmer may find his/her anxiety levels quite low across practice/training environments whereas across competitions, find anxiety as a factor affecting performance positively or negatively. Perhaps this may be due to the uncertainty of the situation as well as uncertainty of performance outcome. In the sport of swimming, context plays a significant role because swim meets can be categorized into major competitions (e.g, nationals, Pan Ams, Commonwealth, Olympics) and minor competitions (e.g., provincial, club). According to the type of competition, an athlete's responses to the environment can vary from one extreme to the other.

The application of the individual zones of optimal functioning model (ZOF), Which is an extension of the earler $Z O F$ model (Hanin, 1978), has been cffectively used to study the anxietyoperiomance relationship (Annesi, 1997, 1998; Davis ${ }_{3}$ Cox, 2002; Krane, 1993), mood states (Prapavessis \& Grove, 1991), and more recently positive and negative affect (Hanin \& Syvia, 1995, 1996).

Further support for the $\mathbb{Z O F}$ model in the spor psychology literature has been found in many other sporting enviromments with varying degrees of significance; for example women's soccer (Krane, 1993) and field hockey (Annesi, 1997) men's soccer (Hamin, 1995; Hamin \& Syria, 1996; Robazza, Bartoli, Nocini, Moser, \& Arslan, 2000), volleyball (Robazza et al. 2000), basketball and football (Russell, 2000), and ice hockey (Hanin \& Sytia, 1995). Within individual sports, the LZOF model has been applied to clay target shooters (Prapavessis \& Grove, 1991), track and fied (Harger \& Ragin, 1994), and rifleshooting (Kontinen \& Lyytinen, 1993).

The recent movement to repeated measures of multiple emotional states and their effect on perfomance is strongly supported by Hamin's (1995) model which asserts that state prior to competition could enable a customized mental training intervention to be created and applied. This in tum might allow the athlete to move more readily into hisher zone of optimal functioning and facilitate peak periomance on a more consistent basis.

Purnose

The current study had four purposes:

1. To extend the application of the IZOF model to include various psychological construcis (i.e, anxiety, confidence, concentration, motivation, recovery-stress, and mood states) and utilize a multidimensional appoach to describe these phenomena an elite swimmer was monitored over a sis month competitive season using repeated measures. Through the use of existing psychometric measures namely, Competitive State Anxicty Inventory-2 (Martens, Burton, Vealey, Bump, \& Smith, 1990); Sport Anxioty Scale (Smith, Smoll, \& Schuta, 1990); Causes of Anxiety in Spott Scale (Marchant, Anderson, Karnilowicz, Stoove, 1997), Mental Readiness Fom (Muphy, Greenspaz,
performance equation. The equation used was socer performance $=$ successful passes loss of possession - fouls + gain of possession +2 (shots on goal) + shots of goal $=$ attempted heads + successful heads + assists + goals +10 . The higher the score, the beter the performance was judged to be.

Researchers consistenty agree that the emotions of elite and non-elite athetes are not limited to anxiety, anger, or depression (Crocker, 1992; Gould \& Tuff, 1996; Hady, 1996; Prapavessis \& Grove, 1991) and that the LZOF model has the potential to measure many other emotions and psychological constructs related to performance. The IZOF model can focus on various emotions in pre, during, and post perfomance conditions. Although the research has tended to focus on pre-competition anxiety states in the first instance (Annesi, 1997, 1998; Davis \& Cox, 2002; Krane, 1993; Raglin, Morgan, \& Wise, 1990), there are significant others (confidence, concentration, and motivation) that are just as critical as anxiety that need to be regularly monitored (Hanin, 2000; Taylor, 1995).

This study attempted to extend the LZOF principles to generate a more complete psychological profile of an elite competive swimmer. A profile was created consisting of the following major psychological constructs: anxicty, confidence, concentration, motivation, recovery-stress, and mood states. Im order to generate the individual pronile, an elite swimmer was monitored over a sis month comperive season using repeated measures. Through the use of existing psychometric measures namely, Competitive State Anxiety Inventory-2 (Martens, Buton, Vealey, Bump, \& Smith, 1990); Sport Anxiety Scale (Sminh, Smoll, \& Schut, 1990); Causes of Anxiety in Spot Scale (Marchant, Anderson, Kamilowicz, Stoove, 1997); Mental Readiness Form (Murphy, Greenspan,

Jowdy, \& Tammen, 1989); Carolina Sport Confidence Inventory (Manzo, Silva, \& Mink, 2001); Spon Motivation Scale (Pelletier, Fortier, Vallerand, Tuson, Briere, \& Blais, 1995); Rest and Recovery Questionnaire for Athletes (Kelmama \& Kallus, 2001); Profile of Mood States (Grove \& Prapavessis, 1992); Mental States of Readiness and Satisfaction Form (Hogg, 2002), athete-generated measures, and interview procedures, it was possible to establish the athlete's ideal levels of activation for each psychological construct identified as well as accounting for envirommental and social factors that would be conducive for a successful performance.

Identifying a comprehensive individual profile was necessary and helpful to ensure consistent peak performance. For example, knowing the athlete's psychological instance (Annesi, 1997, 1998; Davis \& Cox, 2002; Krane, 1993; Raglin, Morgan, \& Wise, 1990), there are significant others (confidence, coneentration, and motivation) that are just as critical as anxiety that need to be regularly monitored (Hanin, 2000; Taylor, 1995).

This study attempted to extend the IZOF principles to generate a more complete psychological profile of an elite competitive swimmer. A profile was created consisting of the following major psychological constructs: anxicty, confidence, concentation, motivation, recovery-stress, and mood states. In order to generate the individual pronle, However, study examining spor motivation and elite Bulgarion athletes (No98, the researchers fown that title and medal holders displayed higher levels of non-self
3. To use both qualitative and quantitative approaches to understand the mentalemotional experiences of an athiets through profiling and monitoring across a competitive swim season (September 2002 - March 2003).
4. To monitor the performance process and outcome through the use of repeated measures of select psychological constructs and specific behavioral observations and dialogue actoss a competitive swim season in order to obtain knowledge regarding the athete's mental and emotional pattems and tendencies in the pre, during, and post perfomance settings.

CHAPTER 2

Review of Literature

Applied spor psychology is primarily concemed with the select psychological factors that fend to influence both the functioning and dysfunctioning of performance. Factors such as anxiety, confidence, concentration, and motivation have been recognized as critical and infuential in spor perfomance (Mahoney \& Avener, 1977; Mahoney et al., 1987, Nordell \& Sime, 1993).

The following review of literature will: (1) briefly examine each psychological construct; (2) provide a conceptual understanding of the construct including operational definitions; and (3) briefly examine each construct in the general sport and swirming specific iterature.

Anxicty

At the forefront of sport perfomance research is the multidimensional construct of competitive anxicty. The mutidimensional approach to anxiety reflects the influence of both somatic anxiety and cognitive anxiety. Somatic anxiety relates to physiological responses to the situation and can be characterized by increased heart rate, breathing rate, or feulings of uneasiness sometimes referred to as the "butterties". Cognitive anxiety relates to a mental response that can be characterized by worry, self-doubt, feelings of anticipated success, and confidence (Jones \& Swain, 1995; Jones, Swain \& Hardy, 1993; Spielberger, 1971). Jones (1995a) provides a significant review of the anxicty literature and supports the vieupoint that cognitive arxiety tends to remain relatively stable whereas somatic anxiety increases quite rapidly as the competition approaches. In addition, he identifies antecedents of competitive anxiety as those related to the athlete's
expectation of success in the sport task. For example, the perception of one's ability as well as the perception of one's opponent. Several antecedents for cogntive anxiety have also been hypothesized to be similar for the constuct of self-confidence regarding performance expectations. For example, in a study by Jones, Swain, and Cale (1991) of male ($\mathrm{N}=28$) and female ($\mathrm{N}=28$) miverity athletes, sources of anxiety and selfconfidence in female rumers were associated with personal goals and standards, while the sources in male runners were associated with interpersonal comparison and winning. The antecedents for somatic anxiety are related to responses to stimuli, for example, changing room preparation and pre-competition warn-up routines, and tend to be nonevaluative and shorter in time compared to those of cognitive anxiety.

Anxiety Research in Spor. Current literature related to the anviety-performance relationship has challenged the tradtional assumption that elevated competitive anxiety levels are debilitating toward performance and suggests that elevated competitive anxiety states can indeed facilitate successful perfomance outcomes (Hanton \& Jones, 1999a, 1999 ; Jones, 1995a; Jones \& Swain, 1995). In addition to this debilitative-facilitative dimension the motion of direction of anxiety has been addressed (Jones \& Swain, 1992; Wiggins, 1998). Direction refers to assessing how sport perfomers perceive their physical states of competitive anvicty (somatic) andior their mental states (cognitive) on a debiltative/taciltative continum (i.e., whether their states are a help or a hindrance to performance) (Hones, 1995a; Jones \&wain, 1995). This continum opens doors to further investigate the compctitive anxiety-performance relationship regarding whether or not here are positive or negative performance implications. Jones et al. (1993) propose that an increase in cognitive anxiety (up to a particular intensity level) could possibly
help and improve performance in select individuals by boosting motivation and attentional focus. On the other hand, some individuals' performance success may be decreased by irrelevant distractions.

Anxiety Research in Swimming. Support for the direction dimension of anxiety has been provided in several swimming - performance investigations. Jones, Hanton, and Swain (1994), despite finding no differences in a sample of clite versus non - elite swimmers in the intensity for both cogntive and somatic anxiety states one hour prior to an important race, the elite performers were found to view both somatic and cognitive anxiety states as more facilitating to performance. Jones and Hanton (1996) sampled elite competive swimmers ($N=91$) and found that the direction of their anxiety was a better predictor of perfomance than intensity levels of either cognitive or somatic anxiety states. Specifically, swimmers that participated in an mportant competition with positive expectations reported both cognitive and somatic anxiety as facilitative versus those swimmers that had negative expectations. Recently, Hanton and Jones (1999a) examined the acquisition of cognitive skills and strategies that enable male elite competitive swimmers $(\mathrm{N}=10)$ to interpret anxiey symptoms as facitative. The subjects reported negative experiences associated with pre-race anxiety when they were young (e.g. amount of taining, simply perfoming, letting the team down, and making mistakes), but leamed that precompetiviver nerves could have positive effects on performance. In addition, they developed and integrated refined pre-competition routines that maintained facilitative perceptions of their competive anxiety symptoms.

Both the Competive State Anxiety Inventory 2 (CSA-2) (Martens et al., 1990) and The Sport Anxiety Scale (SAS) (Smith et al., 1990) have encouraged a
multidmensional assessment of trait competitive anxiety. These instruments enable investigations of hypotheses related to competive state and trait anxicty and their effect on performance. For example, Buton (1988) studied anxiety among competive swimmers and found that cognitive wory more directiy impairs performance than somatic anxiety and provided added construct validity for the CSAL-2 instrument, which purports to measure cognitive anxicty, somatic anxiety, and confidence. Previous research applying the early $\mathbb{Z O F}$ model (Hanin, 1978) to investigate the anxietyperformance relationship frequently utilized the CSAl-2 instrument (Kane, 1993; Scallen, 1993).

A recent application of the IZOF model to the sport of swimming has been provided by Davis and Cox (2002). Using a sample of swimmers ($\mathrm{N}=21$), the researchers used repeated measures of the CSAI- $2(N=\sim 14)$ to find support tor the ZOP model as in relates to cognitive anxiety. Specifically, periomance outcomes in swimming were better when the intensity of cognitive anxiety fell within the zone of optimal functioning; Whereas poor swimming perfommances occurred when cognitive anxiety levels were outside the zone of optimal functioning.

Athough research applying the IZOF model to anxiety and swimming is scarce, carly rescarch tilizing the 207 model to study anxiety within the sport of swimming does exist. Raglin et al. (1990) tested the ZOF model (Hanin, 1978) with fenale high school swimmers ($N=15$) using thee diferent methods: The State Ankiety Inventory (STA) (Spielberger, Gorswh, Lushene, Vagg, \& Jacobs, 1983), recall of optimal pre competition anxiety states, and prediction one day prior to racing, how they would feel one hour prior to racing. Results supported the ZOF model in that for those swimmers
who expenienced successin outomes, accurately predicted their pre competition anxiety one hour prior to racing and had pre competition anxiety levels that were closer to their recall of optimal pre competition anxiety. They also revealed that prior to dificult meets versus easy meets, pre competition anxiety increased. In a similar study, Raglin, Wise, and Morgan (1990) studied the ability of female high school swimmers ($N=17$) to predict pre competition anxiety using the $20 F$ model (Hanin, 1978). In support of the previous study, the researchers found that pre competition anxiety increased prior to dificult meets, but not easy meets and a correlation was found between predicted and actual pre competition anxiety. In other words, younger athletes are also capable of predicting their anxiety levels prior to a difficult meet.

The abundance of research centered on the performance-ankiety relationship suggests that this construct is regarded as a very important factor affecting both performance process and outcome. But, the interesting debate existing in the anxicty literture is whether or not anxiety can be perceived as positive to performance or is the athlete merely aroused or activated? Do athetes need to be educated on the positive andor negative effects of anxiety on performance consistency and control and as such, does this affect the kind of responses that are elicited in the competitive environment? In addition, do athletes need to be aware of their experiences so that they can learn to cope with them through the process of monitoring?

In acknowledging the importance of monitoring anxicty states in the competitive swimming enviromment by examining the multimensionality of anxiety, the other fundamental issue lies in detemining whether or not anxiety has the potential to explain performance variability alone or does the relationship with other constructs contributing
to a complete psychological profile of an elite athete have more influential power over performance expectation in the sport setting.

Confidence

The sudy of sport confidence is drawn for the most part from selfefficacy theory (Bandura, 1977). According to Bandura (1986), perceived self-emincacy is an individual's judgment of hisher capabilities to organize and execute a course of action required to attain a desired performance. Bandura believes that efficacy expectations and one's level of selfwonfidence are derived from four sources: performance accomplishments (e.g., being successhul in a sporting event), vicarious experiences (e.g., watching others be successful in a sporting event), verbal persuasion (e.g., receiving support and encouragenent from significant others), and an awareness and appreciation of one's own physiological and possibly mental states (c.g., increased heart rate signifying one's readiness for competition). The framework for Bandura's work suggests that the four sources of efficacy information, efficacy expectations, and perfomance are not mutually exclusive. In other words, there are relationships that exist between these three factors, some stronger than others. In light of the effect on athletic performance process and outcome, the potential for monitoning these sources and expectations both physiologically and mentallyfemotionally could provide the athlete with critical knowledge in terms of selfregulation, ultimately leading to the safeguarding of perfomances. In contrast, Vealey, Hayashi, Garner-Holman, and Giacobbi (1998) studied the sources of sport confidence in 335 college athletes from a variety of individual sports (e.g., track, swimming, and gymastics) and found nine sources. These were divided into three broad categones: achievement, selfregulation, and climate. Accoring to Vealey and her
colleagues, athietes attain confidence firstly from achievement, which includes self mastery and demonstration of ability, secondly from self-regulation, which comprises of physicalmental preparation and physical presentation, and thirdy from the inmediate climate, which includes social support, coaches' leadership, vicarious experience, environmental comfort, and situational favorableness.

Confidence Research in Sport. Vealey (1986) defines sport confidence as a belief in one's abilities to successfully perform a required task. The construct is multidimensional in nature and is reflected in both trait and state sport confidence. Trait spont confidence refers to a disposition or tendency for an individual to possess a strong belief about their ability to succeed in their sport and is assessed using Vealey's Trit Sport Confidence Inventory. State sport confidence refers to the belief an individual possesses about their ability to be successful in that precise moment in time in their spor and is measured using Vealey's State Sport Confidence Inventory. Inciuded in Vealey's conceptual model is the construct of "competitive orientation", which addresses the relationship between confidence and motivation, and deals with the drive an individual possesses to accomplish goals within their particular sport.

More recntly Manzo of al. (2001) have defined sport confidence, as the internction between dispositional optimism, spor competence, and perceived control. Athietes need to exhibit a highly conident state of mind in order to perform consistently well. In ofher words, if athetes possess an optinistic perspective, they are more hikely to continue pursuing the goals they have set for thenselves. This continued persistence will likely help to improve skill development, and as such, increase athletes' belicfe that they can complete a task required by their sport (i.e, exhibit sport confidence). In addition to
increasing their motivational levels amd reducing their negative anxiety, athetes can view these competence tasks as a direct result of their specific abilities and skills. For the purposes of the present study, we will operationalize sport contidence using Manzo et al. $s(2001)$ defntion.

In order to measure the construct of sport confidence, Manzo (1995), Manzo et al. (2001), and Mink (1996) developed the Caroina Sport Confidence Inventory (CSC). The researchers adopted a dispositional perspective and identified two factors within sport confidence: sport competence and dispositional optimism. Sport competence includes both an athlete's successes and failures during their lifetme in the compctitive sport enviromment. Dispositional optimism refers to the tendency of athletes to trust that good things will happen to them more often than bad things.

Confidence Research in Swimming. Research that specifically focuses on confidence and swimming performance has been conducted in conjunction with the construct of anxiety (Hanton \& Connaughton, 2002; Psychountaki \& Zervas, 2000, Zeng, 2003). Most research has utilized the CSAl-2 instument to study the relationship between anxiety, self-confidence, and periomance (Fletcher \& Hanton, 2001; Jones $\&$ Hanton, 2001; Jones et al., 1993; Robazza \& Bortoli, 2003; Swain \& Jones, 1993; Wiggins E Brustad, 1996).

Hanton and Connaughton (2002) studicd retrospective explanations of the relationship between anxicty symptoms, selfconfidence, and perfomance in six elite and six sub ehte competitive swimmers. Using interview methods, fndings indicated that the most salient factor in interpreting the direction of anxiety was perceived control. In other words, anxiety symptoms that were perceived to be muder control were interpreted to be
facititatve to performance, whereas anxiety symptoms perceived as not ander control were deened debilitative to performance. In the case of selfoconfidence, a positive relationship was found in that an increase in self-confidence resulted in improved performance and a decrease in self-confidence resulted in decreased performance.

Wiggens and Brustad (1996) studied the perception of anxiety (ie, facilitative or debilitative) and self-confidence using the CSA-2. The research used 91 athetes from the sports of soccer, swimming, and track and field. Findings revealed that those athletes with lower scores on pre competition cognitive and somatic anxiey and higher scores on pre competition self-confidence tended to perceive their anxiety as more facilitative to performance.

In a case study examining peak performance in seven world class elite swimmers, swimming excellence was characterized by physical talent, outstanding psychological racing skills, and positive attitudes towards training. Peak perfomanoe for these swimmers was inclusive of possessing high levels of selfconfidence, controlled arousal, belief in training, strong attentional skills, and a peaceful and complete state of mind (Troup, 1991).

In the sport of swimming the value of consisterty high levels of self-confidence as a critical performance factor cannot be underestmated. The difierence between frst place and second place finishers can be as marginal as $1 / 100^{\text {th }}$ of a second. Consequenty, the need to accurately monitor an athlete's conidence states, within pre performance settings maybe vital and certainly an advantage.

Research in the area of confidence and cite swimming is minimal. As such 3 has been suggested that understanding and monitoring what trigers increased levels of self
confidence and their relationship to other psychological constructs (i.e., anxiety, motivation, concentration, recovery, and mood states) may provide insights into specific interventions necessary to help athletes increase confidence levels and thus improve performance (Vealey, et al., 1998).

Concentration

In self-paced spots, attention, concentration, and focus can be determining factors as to whether or not athletes will be successful in their performance endeavors. Attentional focus has been defined within the sporting context as the ability to attend to proper stimuli during competitive tasks (Nideffer, 1990). This refects the athetes' ability to process both intemal (e.g., thoughts or bodily sensations) and extemal (e.g., noise, officials, or media) stimuli in the competitive environment. This ability is cither instinctive or automatic, or deliberate and controlled and certainly bears considerable influence on perfomance process and outcone. Responses viewed as autonatic are those that are ingrained and somewhat involuntary, but are acquired through practice and rehearsal. In the sport of swimming an autonatic response would be the tansition from the dive to the stroke or knowing the number of strokes to the wall necessary to execute a successful turn. On the other hand, responses that are viewed as contolled are those that must be carefully and consciously considered when exercising the skill/task. The actual number of response items that can be safely considered or attended to might be restricted. A controlled perfomance response within the spor of swimming may be attempting to make a dive after a swinmer has false started. This controlled response may be much more significant for the swimmer who actually had the false stat as he/she may be much more cautious be next time around. Concentration is the ability to control relevant
thought processes by being in the here-and-now. It is a relaxed state of mind that allows the ahlete to receive and interpret infomation. Focus is the ability to control all the attentional processes and direct them towards the task while at the same time eliminating or minuming any distractions (Nideffer, 1993). The current study operationalizes concentration, focus, and attention using Nidefer's (1993) definitions.

Concentration Research in Sport. Research has shown that a concentration perfomance relationship does exist in that loss of concentration generally leads to performance decrements (Moran, 1996). Garfield and Bennet (1984) studied various aspects of exceptional perfomance among elite athletes and found that ont of a total of eight physical and mental components of perfornance, three of them were related to powers of concentration. The three components were: (a) being in the present or here-and-now; (b) experiencing a relaxed state of mind while enioying a high level of concentration; and (c) having a keen awarewess of both the internal and extemal environment and of the performance distractions these might impose.

Researchers focusing on the attentional differences between elite and non-elite athletes suggest that the direction of an athlete's concentration is a distinguishing factor between these two groups of performers (Moran, 1996). Specincally, successfil athetes are less distracted by imelevant cues and tend to adapt a more task oriented focus thereby eliminating any performance oucome distractions (Wiliams Krane, 1998).

Investigations dealing with directions of concentration, differences between successful and unsuccessful athletes, and differences between clite and non-olite athetes stems from the theoretical famework proposed by Nideficr (1976, 1992, 1993). This
model takes into account different attentional styles when studying concentration in various sporting contexts.

Nideffer's model (1976, 1992) views attentional focus along two dimensions: width (broad or narrow) and direction (intemal or external). A broad style of focus allows the athlets to perceive the enviromment and any rapid changes that occur in that environment whereas a narow style of focus allows the athlete to only focus and respond to one or two cues in the enviromment. An external focus is when athletes tend to direct atention toward an object outside of the self, whereas an internal focus is when athletes direct their attention inward toward their own thoughts and feelings.

By combining the two dimensions, four categories emerge. An extemal-brod focus allows for an athlete to assess and react to the situation (e.g., stroke rate, distance from wall, and other swimmers). An intemalbroad focus is used for analyzing and plaming strategies (c.g., stroke counts and tum speed). An extemalnarrow focus is used to focus on a minimum amount of cues in the environment (c.g. focus on pool markings only when going into a turn), whereas an intemal-narow focus is used to rapidy assess the situation and to ultmately produce the rehearsed plan (eg, focus on one cue word or trigger when going into a turn) (Nideffer, 1976,1992).

Concentration Research in Swimming. In the sport of swimming, swimmers need to employ a specific attentional style in order to focus on their race strategies, ideal emotional states and ideal perromance states, while maintaining focus in the hereandnow, and being awate of any intemal and extemal distractions. The importance of concentration and attentional styles is critical since a lack of concentration or a lack of proper use of attentional styles may lead to m increase in tension, a decrease in self
confidence, and dminished motivation (Hogg, 2000). Competitive swimming environments are subjected to exteral distractions (e.g, noise, media, other swimmers, etc.). Once swimmers have acquired the proper and appropriate attentional styies required for the various strokes and events, successful performance may ensue (Hogg, 2000; Nideffer, 1993).

Specific research in the area of swimming and concentration is extremely limited yet opportunities to study the area seem promising. The present research utilized the concentration disruption subscale of the SAS instrument (Smith et al., 1990) to identify the athlet's general concentration disposition in the sport of swinming. The lack of research conducted using this subscale has been acknowledged in the literature (Krane, 1994). Nideffer (1992) suggests that by using single subject designs more effectively, better care can be given to creating customized individual training programs with a focus towards indivichal differences around internal versus extemal distractions.

Within the sport of swimming, preparation for all eventualities is critical. As such, monitoring the types of distractions and their impact on the individual swimmer is also imperative to creating consistent performances. Dlite swimmers face high pressure situations where not only to they have to cope with internal distractions, but also subtle extenal distractions (e.g., those presented by other competitors, coaches, or media) that may have not existed at lower level competitions. Therefore, in order to safeguard performance preparations and consistency, both physical and mental, acquining proper attentional skills trageting specife situations would be helpful in the first instance. Further, the awareness through self-monitoring, of those internal or extemal distractions
that endanger performance and the ability to control them would likely improve performance.

Motwation

Motivation is a signincant periomance pactor and one that has been extensively addressed and examined in the spon psychology literature (Braathen \& Svebak, 1992; Hellandsing, 1998; Vallerand \& Losier, 1999; Vachopoulos, Karageorghis, \& Tery, 2000). A popular theoretical view of motivation and sport performance and one favored in swimming research was proposed by Deci and Ryan (1985, 1991). They posited that motivational behavior exists on a continum that includes intrinsic motivation, extrinsic motivation, and amotivation. Intrinsic motivation refers to pertormance behavions athletes engage in for their own sake and satisfaction (e.g., to leam new skills, focus on having fun) (Deci, 1975). This type of motivation stems from the need to feel competent and self-determined. Extrinsic motivation refers to a wide variety of behaviors engaged in as a means to an end rather than for their own sake (e.g., to receive rewards: medals, trophies, money) (Deci, 1975). According to Deci and Ryan (1985), there are 2 types of extrinsic motivation: self-determined and non-selfotetemined. Self-determined extrinsic motivation occurs when a behavior is valued by an individual athlete and is perceived as voluntary or intemally regulated. Non-selfodetermined cxtrinsic motivation is essentially extemally regulated and the athetes act as a consequence of those exteral infuences. Amotivation refers to behaviors that appear to be neither intinsically nor extrinsically motivated. Individuals do not perceive a reationship between their actions and the outcomes of their actions. They generally experience feeling of incompetence and lack of contol (Deci $\&$ Ryan, 1985). For the purpose of this study, intrinsic motivation,
extrinsic motivation, and amotivation will be operationalized using Deci and Ryan's (1985) defnitions.

Motvation Research in Spore. A relatively new measure of motivation in sport has been developed by Pelletier of al. (1995) called the Sport Motivation Scale (SMS). The SMS consists of 28 items representing reasons for participating in sport. The measure inciudes intrinsic motivation to know (e.g, "for the pleasure it gives me to know more about the sport"), intrinsic motivation toward accomplishment (e, g, "because I reel a lof of personal satisfaction while mastering certain difficult training techniques"), intrinsic motivation to experience stimulation (e.g., "for the pleasure I feel in living exciting experiences"), identified regulation (e.g., "because in my opinion it is one of the best ways to meet people"), introjected regulation (e.g, "because : is absolutely necessary to do sports if one wants to be in shape"), external regulation (e.g., "because it allows me to be well regarded by people that I know"), and amotivation (e.g, "I used to have good reasons for doing sports, but now I'm asking myself if I should continue doing it"). The assumption exists that intrinsic motivation and self-detemination benefit perfomance in sport. Evidently, the more intrinsically motivated and self-determined individuals are the more involved they will be in the task and as a result, produce a more successiul periomance than their comnterparts (Pelletier ed al., 1995).

However, a study examining spor motivation and elite Bulgarian athetes $(\mathrm{N}=98$, the researchers found thet title gnd medal holders displayed higher levels of non-self. determined extrinsic motivation as well as higher levels of motivation than less successful athetes. In terms of gender diferences, females were more intrinsically motivated han their male counterpaxts (Chantal, Cuay, Dobreva-Martinova, \& Vallerand,
1996). Fortier, Vallerand, Briere, and Provencher (1995) studied the relationship between competive and recreational sport structures, gender, and athete"s sport motivation in 399 athetes from badminton, basketball, volleyball, and soccer. They found that competive athletes needed less intrinsic motivation so experience stimulation and to accomplish things, they engaged in more self-regulation, and were more amotivated. Female athletes were found to be more intrinsically motivated to nccomplish things, used more selfregulation strategies, were less extrinsically motivated, and had lower levels of amotivation than male athietes.

Motivation Research in Swiwning. Pelletier, Fontier, Vallerand, and Briere (2001) completed a two year study with competitive swimmers $(\mathrm{N}=368)$ to examine which swimmers persisted and which swimmers dropped out. The subjects completed questionnaires including the Sport Motivation Scale (Pelletier et al, 1995) and also one observing their perceptions of their coach's interactive style dealing with control and autonomy support. Results from this study supported Vallerand's (1997) hierarchical model of intrinsic and extrinsic motivation. Specifically, coaches' support of autonomy was positively related to intrinsic motivation and identified regulation, but negatively related to amotivation and external regulation. On the other hand, the coaches" controling behavion were positively related to sxtemal regulation and amotivation but negatively related to intrinsic motivation and identifed regulation. Ultmately, a sporting environment that supports athlete independence as well as a positive coach-ainlete relationship enhances intrinsic motivation and the athlete's ability to value a particular behavior that allows them to participate out of choice. Persistence over the two year study was impacted by amotivation and intrinsic motivation respectively. While the cxtemal
regulation had litte impact on the first year of the study, it became increasingly negative over time while intrinsic notivation became even more impotant. Thus, swimmers tended to drop out when the social or material rewards ended (Roberts, 2001). These findings suggest that the coach who interacts with swimmers in a supportive maner will faciltate their levels of motivation in a positive direction.

Kamal (1989) examined extrinsic and intrisic motivation in swimmers ($\mathrm{N}=40$) within two age groups (10-12 and 13-15). He found that swimming peromance improved with extrinsic rewards; however he cautions that intrinsic motivation may be undermined with the overuse of material rewards. Also, the study demonstrated that due to social factors apparent at competive swim meets, improvenents in performance times occurred regardless of age. Lastly, it was demonstrated that as swimmers approached adolescence, motivation from extrinsic rewards was displaced by intrinsic motivation obtained from personal success.

Earlier research by Watson, Blankby, and Bloomfield (1984, 1985), highlighted the major participation motives of junior competitive swimmers. These were listed as: the pursut of excellence, winning and rewards, mproving skills, and friendship. On the other hand, major discontinuance motives included: wanting to do other things, no longer having fun, 100 much pressure, and boredom in training. The resutts of this research led to the belief that motives for participating and discontinuing in spont are more exteral rather than internal at the junior competive level.

Participation motives among competitive swimmers were also addressed by Gould and Hom (1984) and Brodkin and Weiss (1990). They found that competence, finess, affiliation, team aspects, competition, and fun and enjoyment contributed to
persistence in the sport. Goul, Flet, Hom, and Weiss (1982) studied the primary causes for attrition and discontinuation in competitive youth swimmers and found that interest in other activities was the major reason for swimming atrition and that gender and experience were not factors affecting their decision. Other reasons were lack of learning, seeing no skill improvement, overemphasis on competition, disile for conch, and lack of fun and cnjoyment.

Within the sport of swimming, motivation is a force that drives a swimmer to achieve a top-level performance (e.g., a personal best time). An elite swimmer must possess specific motivation levels in order to reach peak performance. These levels of motivation can also be ignited through the process of meaningful and challenging goal setting. Adherence to setting shor and long tem goals can contribute significantly to an athicte's approach toward training and competition. Furthemore, setting clear and challenging goals is imperative in every athlete's path toward self-monitoring and selfregulation (Behncke, 2002). For example, in the sport of swimming. Burton (1983) studied the effects of a goal seting training program on the performance and perceived levels of self-confidence, motivation, and state anxiety on both male and female intercollegiate swimmers. Findings of this study revealed that those swimmers who took part in the goal setting process tended to set perfomance goals and those swimmers who displayed sunticien goal setting bbility performed better than their counterparts. In addition, they also possessed positive perceptions of their performance states. Burton (1984) further supported these findings with National Sports Festival swimmers encouraging the use of goal setting as motivational tool. These findings demonstrated a
positive relationship between goal setting and performance as well as to positive perceptions of psychological states.

Motivation in swimming is particulaty important during long training spells between major competitions, during the process of goal seting, leaming new skills or improving specific stroke techniques, conditioning the body and mind, preparing for optimal perfomance, and improving the quality of performance. Although the role of a coach andlor sport psychology consultant is limited in terms of the degree to which they can influence the motivational process of an athicte, by monitoring and profiling an eltete swimmer across a season, the typical notivation-perionmance relationship can be identinied.

Recovery

The demands placed upon athletes within high competive sponing environments result in increased levels of stress, and as such, to compensate for the high levels of stress, it has been suggested that a period of recovery is necessary (Kellmann \& Kallus, 2001). This fine balance between stress and recovery is related to optimal perfommnce in terms of both ideal performance and ideal emotional states. In the comperitive environment, an athete is exposed to both psychological (e.g, pressure, doubt, slumps) and physiological (e.g., injury, bumout) stressors. The post performance recovery phase allows the athete to take a break and recover mentally and emotionally as well as physically from the intense competitive setings. Kellmann and Kallus (2001) conceptualized the recovery-stress state as the magnitude to which an individual is physically andor mentally stressed and whether the individual has the ability to utilize appropriate strategies in order to recover. The defintion also inchodes what cypes of
strategies the individual uses. Just as physiological recovery is important to athetic performance, so to is mental/emotional recovery. Hogg (2002) defines mental recovery as the, "...speedy and efficient retum to normal psychological and emotional states after intensive training and competition" (p. 182). The significance of mental recovery is vital for the sport of swimming especially when entering the taper phase of a training cycle and between races (Hogg, 2002). The taper phase is generally marked by a substantial decrease in the volume of training. Although the intensity of the training sessions remains relatively the same or is even increased, the recovery periods between the training repetitions and sessions are increased. Also, during this phase of training, technical skills are continually being refined and tactical strategies are reviewed and practiced. The fundamental goal of the taper phase is to prepare the swimmer for peak competition performance.

Another critical time for mental recovery is in the post-performance setting (Hogg, 2002). The post-performance setting is a period of time where athetes have the opporturity to evaluate and reflect upon their performance. This time period also allows the coach to engage in two-way communication with the athiete in order to examine existing periomance states as well as discuss what may need to be improved upon to guanantee uture successful performances.

The two dimensions of recovery and stress were emphasized by Kelmann and Kallus (2001) and the balance between the two is necessary for successful performance. Recovery has been characterized as a process that occurs over an extended period of time, depends on the length and curation of the stress stimulus, and is highty individual
(Kallus \& Kellnann, 1999). Stress has been regarded as a deviation in the state of optimal psychophysical balance.

A model describing the interrelationship between stress states and recovery demands has been developed with the assumption that as levels of stress increase, recovery time must also be increased (Kellmann Kallus, 2001). Moderate levels of stress give rise to the opportunity for adequate recovery, but once stress levels move beyond moderate levels, the likelihood that an athicte can cope in such a way to control precompetitive stress levels and perform optimally is minimal. This excess stress can nitimately lead to the failing adaptation syndrome, physical and mental bumout, and performance slumps. However, the model suggests that high stress levels nay not necessarily be harmful as long as the athete is able to recover to optimal performance states.

The notion that balance between stress and recovery in competitive sport can lead to optimal performance has been discussed using the IZOF model (Hanin, 2002). Taking an individual approach, the model suggests viewing the individual at a holistic level by identifying perfomance and recovery states of an individual's psychobiosocial state. This state includes three components: the mental aspect (cognitive, affective, and motivational); the biological aspects (bodily somatic and motor-behavioral); and the envirommental social interaction aspect (pertomance-operational and communicative). This stak is a framework for describing the various factors affecting athetic peromance. Therefore, an individual's subjective analysis of hisher recovery-stress state may be explored from three diferent perspectives (mental, biological, and social) ultimately providing a total and comprehensive picture of the individual's recovery-stress
state. This holistic view of the athete is based on the individual's previous performance history as well as recovery activities and the proper use of resources avalable to the athete (Hamin, 2002).

To obtain optimal recovery and achieve ideai emotional states it has been suggested that emotional monitoring and protiling of individual athetes is necessary in order to ascertain the current shatus of the recovery-stress relationship. Using selfreport measures such as the Rest and Recovery Questionnaire for sport (RESTQ-Sport) (Kellmann \& Kallus, 2001) can help to determine and establish unique perfomance profile patterns which can further help to indicate when resources should be applied to aid in the recovery process (Hanin, 2002). In order to heip athletes consistently reach ideal performance and ideal emotional states, it is necessary to evaluate the resources available to the athletes by examining the inclusion of them in preperformance routines, post perfomance routines, and techmical and wactical strategies needed to help safeguard their future perfomances. Research suggests that the most beneficial time to take the RESTQ is systematically through a phase of training such as the taper phase as a means of assessing recovery-stress relations. On the other hand, the sport of swimming is highly techncal in terms of its traning cycles and taking the RESTQ at critical points in the training cycle may also be valuable in identifying how the athlete is dealing with the fuctuations in training loads. Both physical and mental recovery will be operationalized in this study using Kelman and Kallus's (2001) as well as Hogg's (2000) definitions.

Mood States

Another important factor contributing to athetic performance is the ability to control and maintain ideal or optimal emotional feelings prior to, during, and following
performance. Enotion as defined by Lazarus (2000) is a phenomenon created by the interaction between psychophysiological reactions within the environment. The reactions occur on three levels: (1) affect or the way an individual perceves the simation (c.g., the situation may elicit felings of far, apprehension, or happiness); (2) behavion or actions (e.g., the tendency to run away or sadness may force the individual to become motionless); and (3) the physiological changes that occur as a result of the interaction (e.g., any increases in heart rate, blood pressure, and skin response). Lazarus extends his definition to include variables and processes involved in triggening and prolonging an enotion. The cognitive, motivational, and relational aspects of an emotion are critical to understanding the phenomenon. He terms this conceptualization of emotions as "relational meaning", which refers to the psychological aspect of emotions. In other words, an individual appraises the relationship and attaches personal meaning to it and ultimately this appaisal affects the well being of the individual. For example, withia the sport of swimming, at the sight of the number one ranked swimmer in the world being in the next lane of a final race, average swimmers may feel scared or frightened at the situation they are in (subjective experience), have the tendency to mun because of the fear (behavion) but remain in the race due to a strong social pressure of portraying themselves as weak, and due to the fear may have an increase in heart rate (physiological).

Mood states on the other hand are feelings that happen without a stimulus and occur in varying durations. In other words they are not permanent but rather transitory (Moris, 1989; Thayer, 1989, 1996). For example, a feeling of happiness lasting a few hours or even a few days is an illustration of a mood whereas coufidence or selfestecm is sypically enduring or more stable traits. Research focusing on mood and sport
performance has received a great deal of attention in the spore psychology literature (Goss, 1994; Prapavessis \& Grove, 1994b; Renger, 1993; Terry, 1995).

Mood States Research in Spont. Tery (1995) argues that the relationship between mood profiles and athetic perfomance produces cquivocal results. Specifically, individuals participating in elite sports tend to show more positive mood profies than individuals within the general population. However, mood profiles are unsuccessful in differentiating athietes of varying achievement levels. Terry argues that the Profile of Mood States (POMS) is an excellent psychometric measure in distinguishing between successful and lest successful athletes with similar levels of ability.

The POMS as modified by Grove and Prapavessis (1992) includes a confidence subscale that has been used to not only distinguish between successfil and unsuccessful athetes, but also to help athletes cope successfully with mood luctuations in order to consistently achieve optimal performance. Tery (1995) specifies that optimal mood profies are most likely sport-dependent and, therefore, it is critical that an individualized approach be aken. Particularly, the mood fluctuations observed in athletes should be compared to their own previous mood changes versus general group noms. The POMS instrument has also been recognized as a test hat raay be used to: monitor an athete's mindset, inctiate one-on-one discussion, improve mood states over time, monitor training load, and create individualized mental taining prograns (Tery, 1995).

Mood States Research in Swimming Raglin, Morgan, and OConnor (1991) studied changes in mood states during training in female ($\mathrm{N}=84$) and male ($\mathrm{N}=102$) college swimmers over a four-year period. Using the POMS instrument, they found that female and male swimmers demonstrate similar mood states during training. Specifically,
they were similar in depression, anger, vigor, fatigue, and confusion, but females ended to have higher levels of tension throughout the fow seasons. In accordance with changes in training volume, each of the mood states fluctuated with the exception of teasion, which remained high even when the training volume decreased.

Monitoring mood states prior to competition has been found to help distinguish between athletes with successful perfomance outcomes and athletes with less successful performance outcomes (Prapavessis, 2000). One method of examining the relationship between mood states and performance is within the framework of the LZOF model (Hazin, 2000).

The IZOF model when applied to emotions and performance helps to predict performance outcomes at different emotional intensities for individual athletes (Hanin, 2000; Prapavessis, 2000). The model has been applied to positive and negative affect (Hanin \& Syrja, 1995, 1996) and to mood states (Prapavessis \& Grove, 1991).

In competitive versus recreational swimming, Berger, Grove, Prapavessis, and Buti (1997) studied the relationship between different lengths of training sessions and mood changes. Using the shortened 40 -item version of the POMS questionaire (Grove \& Prapavessis, 1992), the researchers found that young competitive swimmers had a decrease in their total mood disturbance score from pre-practice to post practice cluring a regular length training period. Specifically, scores on the fatigue subscale increased and scores on the vigor subscale decreased. Wo mood disturbance changes were reported for shorter duration training periods. Other significant findings Irom this study were that competitive swimmers tend to place more importance on performance enhancement (i.e., the physical aspect) rather tham on the mental or emotional aspect of performance. The
researchers also found that there was no association between mood beneifts during pre competition practices and performance outcome during that competition.

Goss (1994) studied the relationship between competitive hardiness and mood disturbance in competitive varsity and club swimmers $(\mathbb{N}=253)$ during high intensity training periods. Competitive hardy swimmers were defined as those who can alter their perceptions of stress into less stressful appraisals. The researcher found a positive correlation between hardiness and age as well as a relationship between mood disturbance and age. Specifically, as age increased in the sample of swimmers, mood disturbances occurred less. A negative relationship was found between hardiness and mood disturbance in that as hardiness increased, mood disturbance decreased.

Currently, the swimming literature suggests that there is a need to monitor mood states in competitive athletes in order to determine if there is a relationship between mood disturbance levels and performance outcomes (Berger et al., 1997; Coss, 1994; Terry, 1995). For the purpose of this case study, emotions will be operationalized using Lazarus's (2000) definition and mood states will be operationalized using Moris (1989) and Thayer's $(1989,1996)$ definition.

Generating a complete psychological profile of an elite competitive swimmer through repeated measures across a season allows the IZOF model to be extended beyond the anxiety, mood states, and affect research. Anxiety, confidence, concentration, motivation, recovery, and mood states have all been recognized as important factors that may positively and negatively affect athletic performance. As such monitoring these psychological variables within an elite swimmer may possibly allow for a rigorous mental training protocol to be implemented prior to an athlete competing at a major
competiton. By following a customized psychological skills training program, the opportunity for the athlete to experience consistent peak performances within their zone of optimal functioning in a consistent manner may be enhanced. But, by monitoring these psychological construcis, the athicte may develop a greater sense of awareness of peromance consistency and control.

Therefore, the purpose of this research was to: (1) extend the application of the IZOF model to include various psychological constructs; (2) develop an athete-generated measure to identify and establish a more accurate and specific performance profile; (3) use qualitative and quantitative methods to learn about the mentallemotional experiences of an athlete across a competitive swim season; and (4) to monitor using repeated measures across a competive swim season and thereby identify any trends, pattems, and tendencies in a complete psychological profile of an elite swimmer (Butier, 1997).

CHAPTER 3

Method

Case Study Design

The present study took the form of a case study design. A case study is a comprehensive research stratesy that is designed to bring out performance details from the viewpoint of the participant by using muliple sources of data (Tellis, 1997; Yin, 1994). When applied to the field of sport psychology this approach opens doors to understanding the motives of athletes, their thinking patterns, and the attrbutes or profie of athletes which influence or change athletic behavior.

The value of case studies as a legitimate research design lies in tes capacity to allow researchers the opportunity to examine rare phenomena in small numbers, create a wealth of ideas and predictions about behoviors and processes of change, and provide strong evidence to enhance theory development and future systematic research (Smith, 1988).

In Heu of the depth of the current study (i.e, qualitative and quantitative methods, time fame and commitment, and understanding the fundamental objective of learning about the monitoring process through the eyes of the selected athete over an extended tine period, the case study design was deemed to be the most appropriate. Case studies in the sport psychology field allow for researchers to investigate a phenonenon in reallife contexts (Holt, 2003; Lloyd \& Trudel, 1999). Down the road, as is common with most research in this area, enhancing the psychological well being of the athlete and mproving performance was hoped to be the ultimate outcome of this research.

Panticipans

The central participant for this case study was an clite female swimmer referred to as Athlete A (age 17 years) belonging to a high profle swim club located in Aberra. The athete was categorized as elite within this swim club because she had achieved her national qualifying times as set by Swimming Natation Canada (SNC) the governing body of competitive swimming in Canada. According to Feltz and Ewing (1987), an elite athlete is defined as one who competes at the international and/or professional level for a minimum of two years in his/her chosen sport. Vanden Auweele, De Cuyper, Van Mele, and Rzewhicki (1993) consider an elite athete as an individual that has eligibility for competing at the national, intenational, or Olympic level. Their definition also includes those athletes that are involved in professional sports. An elite swimmer may have a competitive lifespan of anywhere betwecn eight and sixteen years, though naturally there are exceptions and extremes.

Swimmer A was purposely chosen for this study as she met the criteria necessary to complete the goals of this case study research (Schloss \& Smith, 1999). Criteria for this study included being classified as an elite athiete, achieving national standards within the sport of swinming, and being between the ages of 15 and 17 years. In addition, this athlete was highly motivated to paricipate, which is a critical quality considering the length, depth, and time commiment required to participate in the fullest sense.

Instrumentation

Athete A's enxiety, confidence, concentration, motivation, recovery, and mood states were monitored at regular intervals across a swim season (September 2002.March 2003) using the following trait and state spor-specific questionaires:

Trat Measures. The Sport Anxicty Scale (SAS: Smith et al., 1990) (See Appendix A) was used to measure Achlete A's cognitive and somatic anxicty traits, and concentration disruption. This scale comprises of twenty-one items with seven items in each of the three subscales. Spor psychology literature suggests that more research is needed to assess the validity of the SAS instrument, but the scale appears to have promise as a future research tool (Smith et al., 1990). It was given to the athlete twice throughout the data collection period; once at the beginning and again at the end of the monitoring period. This data was used to create Athete A's psychological profile.

The Causes of Anxiety in Sport Scale questionnaire (CASS: Marchant at al., 1997) (See Appendix B), modified specifically for the sport of swimming as adapted by Hogg (1997) allowed for the assessment of Athlete A's sources of anxiety, intensity, frequency, and whether items were of concem to her or not. The questionnaite was given at the begiming and at the end of the data collection period and the data was added to Athete A's pychological profile.

The Carolina Sport Confidence Inventory (CSCI: Manzo et al., 2001) (See Appendix C) was used to measure Athete A's sport confidence states. This scale comprises of thirteen tems with tems falling into two distinct subscales. Six items load onto the spot competence subscale and seven items lod onto the dispositional optimism subscale. This instrment has been found to be a valid and reliable measure to examme the construct of spor confidence (Manzo, 1995; Mazzo et al, 2001; Mink, 1996). This instument was given to Athlete A twice, at the beginning and the end of the data collecton period with the resultant data being factored into Athete A's psychological profie.

The Sport Motivation Scale (SMS: Pelletier et al, 1995) (See Appendix D) was used to measure Athete A's levels of intrinsic motivation, extrinsic motivation, and amotivation. This scale comprises of seven subscales (28 items) that measure three types of intrinsic motivation, three types of extrinsic motivation, and amotivation. This instument has been tested with competitive swimmers and viewed as a valid and reliable measure of sport motivation (Li \& Harmer, 1996 ; Pelletier et al., 1995). It was given to Athlete A twice; once at the beginning and the end of the data collection period and the data was added to Athlete A's psychological profile.

State Measures. The Competitive State Anxiety Inventory-2 (CSAI-2: Martens et al., 1990) (See Appendix E) was administered to measure Athlete A's cognitive and somatic anxiety states as well as her existing states of selfoconfidence. This scale comprises of twenty-seven items with nine items in each of the three subscales. The respondent rated her answers on a four-point likert scale ($1=$ not at all and 4 -very much so, no neutral response). This instrument has been found to have strong intemal consistency, with reliability coefficients for each subscale between .8 and .9 (Gould, Petlichkoff, \& Weimerg, 1984; Martens et al., 1990). Adequate validity of the CSAl-2 has been established (Martens et al., 1990; Buton, 1988). It was administered approximately two hours before Athete A's main competitive cvent (100 m Backstroke) with the data being aded to her psychological profile.

The Mental Readiness Fom (MRF: Murphy et al., 1989) (See Appendix F) was develoned as an altemative to the CSAL-2 wo measure competivive cogntive and somatic anxiety states. This brief instrument was completed approximately one hour before Athete A's performance in advance of her main competitive event. It took seconds to
complete and was not considered intrusive. For the purposes of this stuay, the MRE was used in comprotion with the CSAI-2. The MRF consists of three, ten-centimeter bipolar lines on which Alhiete A indicated by pimpointing on the lines exactly to what degree she fell aroused andor activated. Validity of the MRF instrument has been found with moderate correlations to the CSAl-2 (Krane, 1994). The data was added to Athete A's psychological pronile.

The Rest and Recovery (RESTQ-Sport questionaite: Kellmant \& Kallus, 2001) (See Appendix G), a recent diagnostic psychological too designed to measure the stressrecovery interaction at significant points within each phase of training (macro), was completed at least three times as determined by the coach following the hard training phase and during the taper phase (3.4 weeks prior to major/peak competition) leading up to the Junior National Short Course Championships (February, 2003). The scale comprises of 77 items that are divided into 19 subscales clustered into four different categories. These four categories are labeled general stress, gencral recovery, sportspecific stress, and sport-specific recovery. Current research as well as a pilot study investigating the sources of anxicty among elite and developmental swimmers using the RESTQ-Sport has proven is to be a reliable and valid reasurenent tool (Hogg, 1999; Kelmann Kalus, 2001). The data was added to Athlete A's psychological pofile.

The Profile of Mood States (POMS: MoNair, Lon, \& Droppelman, 1971) questionnaire as modified by Grove and Prapavessis (1992) (See Appendix H) to inolude a measure of selfocofidence in pre and post competition, was given prior to and ater Athlete A's main cvent. The scale comprises of 42 items for both the pre and post POMS. The items yield scores on seven different mood stat subscales (i.e., vigor, tension, anger,
contusion, fatigue, depression, and esteen/confidence). Grove and Prapavessis (1992), in a study of fenale netball players found initial evidence for the subscale structure, intemal consistency, and validity for their abbreviated version of the POMS. Research in the feld has also confrmed the reliability and validity of this shortened version of the POMS (Berger et al., 1997; Prapavessis \& Grove, 1994a, 1994b). The pre POMS measure was given within one hour prior to pertormanee and the post POMS measure was given within one hour after performance. In addition, it was necessary to administer a brief measurement tool to assess both Athete A's perceived competence and perceived importance relative to the upcoming race. Therefore, using the same format for tests other than the MRF and AGI, Athete A was asked to cvaluate her perception of readiness prior to her performance. This question was added to the Pre POMS questionnaire. Equally, a measure of the actual importance or perceived criticality of the race was administered at the same time. The data was added to Athlete A's psychological prohle.

The Mental States of Readiness and Satisfaction Form (MSRS: Hogg, 2002) (See Appendix 1) was given approximately one hour following Athlete A's major swimming event. The scale comprises of 16 items with scores relating to two assessment subscales, perceived performance readiness and perceived performance assessment/satisfaction. Reliability and validity for this instrument has not yet been established statistically though the MSRS has been used in several sports (e.g., swimming, soccer, basketball, volleyball, and shooting). It was administered to A thlete A in the post competition seting following her main evont to ascertain a measure of her "within race" focus as well as her perceptions of whether a readiness-satisfaction relationship was attaned. The MSRS has been developed as a selfreflective debriefing tool for the use of competive swimmers
and coaches in the post performance settug (Hogg, 2002). The data from the MSRS was added to Athlete A's psychological profile.

The Athlete Generated Instrument (AGI) (See Appendix D) measures the four major pertormance factors (anxiety, confidence, concentration, and motivation). The AGI consists of four, tencentimeter bi polar lines (similar to the MRF fomat) on which Athete A indicated by pinpointing on the lines exactly how she felt in regards to these performance factors. This brief instrument was completed approximately one hour before Athlete A's performance in advance of her main competitive event. Reliability and validity of this instrunent has not yet been established statistically as it was created solely for the purposes of this case study. The data from the AGI was added to Athete A's pychological profile.

Procedure

Athete A was chosen to participate in this study due to the researcher's previous involvement with the swim club and particularly with this swimmer. Consent to paricipate in this study was granted by Athlete A, her parents, and her Head Coach Since Athlete A was under the age of 18 years, parental consent was required by reading and siguing aur information and consent form outlinug the details of the study (See Appendix K).

The collection of data occured over a sixwonth competive swim season (September 2002March 2003), which noluded two macros or traning cycles (Bompa, 1990) (See Appendix L.). Data collection consisted of completing questionnaires and particinating in two interviews, one pre season and one post season (each lasted approximately 45 minutes). In addition to the questionaires and interviews, Athete A
also participated in debriefing sessions as well as informal conversations with the researcher after each of her performances. During the six month time frame, there were established phases of training to develop the appropriate motor skills and energy systems interspersed with a series of significant racing opportunities culminating in a major meet at the conclusion of the second macro (Junior National Shot Course Championships, Febuary 2003). The number of significant swim races, that is, where performance outcome is very important, was determined by the Head Coach and Athete A. In total there were 16 significant swims including both heat and final races. This six month period also allowed for regular weekly meetings with a SPC (sport psychology consultant), athlete observation during training and meets, interviews, and informal discussions with Athlete A as to her perceptions of progress.

Perfomance was documented by using the swimmer's objective performance or race time for her selected main event and comparing this to her lifetime best time. In addition, Athlete A , as well as her Head Coach, were asked to rate each significant race on a simple performance rating scale. Since one does not exist in the sport psychology area, Athlete A was simply asked in the post performance setting to rate all four components of her race, that is, the technical, tactical, plysical, and mental aspects of her performance. The Head Coach was also asked to rate Athete A on the same dimensions. The scale san from $0-10(0=$ poor performance and $10=$ excellent perfomance) (Hogg, 2002). All physical training data was monitored by the Head Coach who also had access to the psychological data, but only with consent of Athlete A.

Interwews

Interview Guide. Conroy, Poczwardowski, and Henschen (2001) suggest that by using nterviews, perceptions of success and tailure as well as consequences for success and failure may be identified. In addition, these perceptions and consequences may in fact be associated with motivation and emotions within the context of performance.

The interview were $45-50$ minutes in length and followed a regular training session. The first pre season interview occurred prior to the start of Athlete A's swim season and was conducted in a closed room on the pool deck. The purpose of the initial informal interview was to tease out unique key terms and phrases associated with Athlete A for each item chosen from the list of adjectives reflecting the psychological constructs under study (See Appendix M). The interview helped to create an athlete-generated instrument to cue in performance readiness states as well as to provide a pre performance checklist which was given throughout the research process. The second post season interview occurred at the conchsion of the second macro and following a sufficient time lapse that allowed for self-reflection across the season. It was also conducted in a closed room on the pool deck. The purpose of the second in-depth interview was to support and compare the data gathered using the existing psychonetric measures (See Appendix N)

The frat interview guide was created using existing psychometric measures (e.g., CSAI- 2 and POMS) whereas the second interview guide was generated from a pliot study conducted by Hogg (1999) studying sources of anxiety in elite and developmental competive swimmers.

Both interviews were conducted with a fairly open framework, allowing for focused, conversational, two-way commumication (Fettermanm, 1998; Kvale, 1996; Yin,
1994). The interviews began with a brief explanation of the research, Athete A was assured privacy and confidentiality, and permission was requested to tape-record the sessions. Rapport was established with Athlete A from previous interactions as the researcher has been involved with this particular swimmer and swim club for at least two years. Probing throughout the interviews was also camied out through nodding, encouraging, and thanking Athicte A when necessary.

Pre Season Interview. In order to generate a customized instrument and support the performance data collected, more details on Athlete A's unique perceptions and experiences regarding her existing states of anxiety, confidence, concentration, motivation, recovery, and mood states in the pre performance setting was solicited using a semi-struchured interview technique.

It has been acknowledged that athlete-generated instruments that are unique to the perfomer being monitored provide rich meaning and relevance to the profile (Fanin, 2000). In order to produce this idiosyncratic scale, Athlete A was provided with a list of itens pertaining to the psychological constructs relevant to the research (i.e, anxiety, confidence, concentration, and motivation). The list was developed using items from the aiready existing psychometric measures for each factor. Once the list had been finalized and categorized according to each performance factor, Athlete A was asked to select at least one tem from each factor (or add her own) that best characterized her psychological state prion to performance.

Following item selection, the investigator interviewed Athlete A and discussed each chosen item by asking her, "What does this word mean to you?" The purpose of this informal interview was to ascertain a better understanding of Athete A's perceptions of
her definitions of the words she chose. Also, the interview helped to further develop the questionnaire into a precise and unique measure specifc to the athiete selected for this research.

Lastly, the athiete-generated questionaire was divided into sections reflecting each psychological variable intended to be studied. As well, to rate each item the magnitude estimation (ME) method was used since the current research is a single subject design and within-or interindividual comparisons were not needed. Four, ten centimeter bipolar lines similar to the MRF scale was uilized. An even numbered scale was chosen so as to eliminate a neutral response. In other words, by having an cyen numbered scale, Athlete A was forced to be more polar or specific with her responses.

To ensure reliability of this instrunent, a review of the tape and transcribed interview was conducted simultaneously to ensure that errors were minimized and accuracy of the interview content was preserved. To ensure validity of the instrument, the athete chosen for the study was asked to review the instrument for accuracy of personal terms, phrases, and meaning conveyed.

Post Season Interview. The post season interview took on a semi-structured approach and started with general questions or topics regarding the major psychological variables that affect performance highlighted for this study. As relevant issues were identified, relationships were noted and more specific questions drawn up, aliowing both the interviewer and Athlete A the flexibility to probe for details or discuss issues. At the end of the interview, Athlete A was given time for additional comments after the tape recorder had been shut off, and given an explanation of how the information was to be used.

The design of the interview framework was sem-structured and flexible and included topics or questions for discussion. These reflected the relationship betwean select psychological constructs (e.g., anxiety, confidence) and good or poor, satisfactory or unsatisfactory performance outcone. Due to the exploratory nature of the research, open-ended questions such as "how"? and "what"? were used to acquire descriptive responses (Kvale, 1996).

In order to fulfil the purpose of a qualitative research interview the interview component of the existing investigation followed the guidelines developed and suggested by Kvale (1996). This process involved creating a safe and comforabie enviromment for Athlete A, framing the interview by briefing her at the beginning and debriefing at the end, and following ethical guidelines (i.e., informed consent, confidentiality, and consequences).

Conversational Interview. In addition to the two interviews, Athete A was also required to participate in informal conversational interviews prior to and post performance for her main event (Morse \& Richards, 2002; Patton, 2002). Informal conversational interviews are open-ended and spontaneous dialogue between the researcher and participant. In such interviews, the same person may be interviewed on varous occasions, in this case, before and atter cach performance. Note taking or tape recording of the conversation may be done if the environment has been established as trusting and comfortable. In the present study, questions prior to perfomance were consistent at most meets with few variations, for example, "what is your goal for this race?" or "how do you feel at this moment?" In the post performance debriefing setting, a set of core questions (Hogg, 2002) was asked and recorded by the researcher. Strengths
of the infonal conversational interview are: it is fexible, ackowledges individual differences, and the context may be taken into consideration in order to deepen communication. On the other hand, typical disadvantages of this type of interview style are: the interviewer effects, leading questions, biases, and the personality of the researcher (Morse \& Richards, 2002; Patton, 2002).

Debriefing

Debriening is an evaluative process carned out by coaches and athetes not only in competition, but also in training. Debriefing allows coaches and athletes to: (1) analyze curent performance with the intention to improve areas where necessary, (2) develop key insights into the athlete's internal states; and (3) share relevant and meaningful information in regards to performance process and outcome (Hogg, 2002). A debriefing protocol outined by Hogg (2002) was followed after each major event.

In addition to the MSRS, Athlete A underwent a debriefing process at the end of each performance with the investigator. Following the debriefing model outined by Hogg (2002), Athlete A had the opportunity to reflect and evaluate her performance by answering a selection of five core debriefing questions proposed by Hogg (2002) (See Appendix O).

Data Amalysis

An inductye approach to the analysis of the interview data was followed using the constant comparative method (Glaser \& Strauss, 1967). The formal analysis of the data was carried out after the transcriptions and the coding of data had been completed.

Once the intowiews had been taperecorded, the first step in the analysis process was to transcribe the interviews verbatim. Transcribing interviews allowed for a more in
depth check of the data. It was critical that no information was lost throughout this process. Factors that were addressed during the transcription process were: the nature of the material, time and money available, technical details fi.e., how long it would take and who would do it) as well as issues around reliability and validity (Kvale, 1996).

In addressing the reliability factor of the interview analysis process the following procedure was undertaken. The researcher carried out the transcription of the interview and subsequently reviewed the tape against the transcription to minimize error and retain accuracy of the interview.

In contrast to the reliability factor, the validity factor was much harder to address. This was due to the lack of objectivity in determining whether the interview investigated what it set out to study (Kvale, 1996). The focus of the study was to apply the 12OF nodel as outined by Hanin (2000) to understand how an elite swimmer's perceived levels of perfommace are related to her repeated measures of self-reported levels of anxiery, confidence, concentration, motivation, recovery, and mood states. As such, validity was reffected in the interview structure as well as the transcription of the interview. In order to strengthen the validity of the interview if was imperative that there was consistency between written text and oral statements specific to the focus of the research. That was attaned by using a member checking technique (Maykut \& Morehouse, 1994). Transcripts were given back to Athlete A to verify accuracy and confirm a fair representation of her words. Equally, a second reader was used to suppon the investigator's interpretations troughout the process.

Following the transcription process, the data was then coded. Mayiut and Morchouse (1994), stress the need for data coding during the data collection period in
order to aliminate confision and to identify the various iypes of data being collected. The coding process involved identifying the type or data, the sources of data, and the page number of the transcript. For example $1 / A A / 10$, meant interview with Athlete A, page 10.

The second step in coding of the data is called mitizing the data (Lincoln ${ }_{3}$ Guba, 1985). This procedure involved identifying chunks or units of meaning in the data. As suggested by Lincoln and Guba (1985) each unt of meaning must be able to stand by itself. In other words, any additional information is not necessary except for the main focus of the study. The process of unitizing data suggested by Maykut and Morchouse (1994) is to photocopy the transcribed data, cut apart units of meaning, and tape each unit onto separate index cards. The mitizing process is also described by Kvale (1996) as "meaning condensation" and serves to reduce and clavify large interview texts into briefer and simpler sentences.

The third step in coding data was the discovery phase. This phase was a preliminary step to searching for important and salient infornation such as meanings and pattems within the data set (Maykut $\&$ Morehouse, 1994). The discovery phase initiated categorization of the units of meaning central to the focus of inquiry.

Constant Comparative Method. Content analysis had been defined as, "a research methodology that wilizes a set of procedures to make valid inferences from (the) text. These inferences are about the sender(s) of the message, the message itself, or the audience of the message" (Weber, $1990, \mathrm{p} .9$). Content analysis describes trends, refects patters, and identifies mentions (Weber, 1990). For the current study the constant comparative method (Claser \& Strauss, 1967) was used to carry out the analysis of the data. This method combined inductive category coding with comparison across all units
of meaning obtaned. As each new meaning was selected for analysis, it was compared to all other units of meaning and subsequenty grouped (categorized and coded) with similar units of meaning. If there were no similar units of meaning, a new category was formed (Maykut \& Morchouse, 1994). This process allowed for the continuous refinement of categories. The constant comparative method of data analysis included four steps: (1) inductive category coding and comparison of units of meaning across categories; (2) refinement of categories; (3) exploration of relationships and pattems; and (4) integration of data (Glaser \& Stramss, 1967).

The first step of the constant comparative method was inductive category coding. This entailed creating provisional categories by reviewing the discovery sheet made in the coding process and combining any ideas that overlap with one another. Ulimately, the goal of this categorization was to match all the units of meaning to the provisional categories. If there was no provisional category for which a unit of meaning fit within, then a new category was created. The discovery sheet created for this research included words and phrases around psychological and performance states significant to Athlete A (e.g, confidence, preparation, physical, monitoring).

The second step was refining the categonies that have been created. The process used to refine the categories was called witing ruies of inclusion. The goal of these rules was to filter out the meaning carried in the cards. The rule serves as a basis for including or excluding data in each category. Lincoln and Guba (1985) suggest that when wring rules of inclusion it is best to use propositional statements. How these statements work was that collectively the data under each category name provides the meaning it was intended to convey. For example, a rule of inclusion used for the category of preparation
was, Athlete A reflects on improving her physical and mental preparation in order to help her distinguish between feelings of being ready and not ready prior to swim races.

The third step was exploration of relationships and pattems. This step involves analyzing the propositional statements created in the second step. The process undertaken in this step is to study propositional statements that stand alone and those that connect to two or more other propositional statements. Combining these statements into one group was called "outcome propositions" (Maykut \& Morchouse, 1994).

The final step of the constant comparative method was integration of the data in order to come to an understanding about the focus of the study. Keeping the focus of inquiry in mind at all times was imperative throughout this process especially when creating and refining the categories, finding relationships and patems within the data, and writing up the data in a simple and sensible format (Maykut \& Morehouse, 1994).

Profies. In order to simply yet accurately analyze the data gathered from the state instruments (i.e., CSAI-2, MRF, AGI, POMS, and MSRS) across the 16 data points, the scores on each subscale from all the measures were ploted across each swimming performance. Further, to minimize confusion, the data was not only separated between short course and long course performances, it was also categorized according to perfomance outcome. The shor course season was also ranked based on performance outcome from 1 to 11 (1 = hastest and $11=$ slowest). Futhermore, the data was split into the top five perfomances and the bottom five perfomances to simplify the analysis. Because there were an odd number of data points, the neutral meet (meet "E") was analyzed separatly. For the long course season, the data was anked from one to fye (1 $=$ fastest and $5=$ slowest) according to pertormance outcome as illustrated in table 1 .

Table 1
Short Course and Long Course Competition Outcome and Ranking

Label	Ranking	Competition	Outcome
A	10	Keyano Cup \#1	1:05.73
B	8	Goldfins (H)	1:05.09
C	4	Goldfins (F)	1:03.69
D	11	Keyano Cup H2	1:06.48
E	6	Nationals (H)	1:04.06
F	2	Nationals (T)	1:02.18
* G	5	US Open (H)	1:0\%.21
H	7	Keyano Cup ${ }^{\text {\% }}$	1:04.92
*	2	Pan Pacs (H)	$1: 05.27$
\%	1	Pan Pacs (F)	1:04.56
K	9	Westerns (H)	1:05.41
L	3	Westerns (F)	1:02.26
* ${ }^{\text {N }}$	4	Canada Cup (H)	$1: 07.07$
* N	3	Canada Cup (F)	1:06.60
0	5	Senior Champs (H)	1.03.80
P	1	Senior Champs (i)	1:01.80

* denotes long course meets

Upon completion of ploting subscale values on each instrument, relationships and pattems between psychological variables and perfomance outcomes were noted. Rangeshevels of each construct were detemined by dividing the overall score of each subscale by three and assigned labels of low, moderate, and high. Athlete A's overall profile was created using intensity markers of low, moderate, and high. The practical advantage in using low, moderate, and high indicators is that when athetes choose to monitor thenselves whout the use of psychometric measures, gauging themselves against low, moderate, high would be more practical than using munerical values. In adduion to using informal conversational interviews (Morse \& Kichards, 2002; Paton, 2002) and observations made during competitive periods, relationships between constructs were documented. Factors such as the type and significance of swim meet, situation criticality (i.e., the athete's perception of the importance of the sporting
situation) (Bar-Eli \& Tractinsky, 2000), and circumstances survouding the competition (e.g., sickness or injury) were taken into consideration (Hogg, 2002).

CRAPTER 4

Data Amalysis
All of the trait instruments were administered twice throughout the data collection period, once at the beginning of the first training macro (September, 2002) and once again at the end of the second training macro (March, 2003).

The Sport Anviety Scale (SAS)
In table 2, Athlete A showed moderate levels of cognitive anxiety (15/27), somatic anxiety (14/21), and concentration disruption (7/15). After the second measurement, Athlete A displayed consistent scores with moderate levels again on all three subscales. The scores for the three subscales were: cognitive anxiety (13/27), somatic anxicty (13/21), and concentration disruption (6/15) (See Appendix P).

Table 2

Summary of Subscale Scores across the Season for the Sport Anxiety Scale

	Cognitive Anxiety	Somatic Anxiety	Concentration Disruption
Measure $H 1(10 / 16 / 02)$	15	14	7
Measure $H 2(03 / 2403)$	13	13	6

Overall, Athlete A showed consistent scores between the two measurement points. Specifically, Athlete A"s tencency for tail anxiety was to have equal or slighty higher cognitive anxiety than somatic anxiety scores and moderate levels of concentration disruption.

The Causes of Arxiety in Spor Scale (CASS)

Tables 3 and 4 show that the CASS scores are broken down into ten sources of anviety that had the highest tendency of occuring (frequency), the highest level of intensity, and had caused Athlete A the greatest concem (See Appendix Q).

After the first measurement (three weeks into training), Athete A indicated factors 1 (ego threat, 15/15), 2 (perceived readiness, 12/15), 3 (skill level, $1 / 15$), 4 (perceived importance, 14/15), 6 (parental expectations, 8/10), 8 (on-going performance, 11/15), and 9 (personal expectations, 8/10) as being causes of anxiety that had the highest frequency. Moderate levels of frequency were factors 5 (social debilitation, 8/15) and 7 (reallife stressors, 9/15). Lower levels of frequency were factor 10 (perceived uncertainty, 4/10).

The factors that had the highest level of intensity were factors I (ego threat, 10/12), 2 (perceived readiness, 11/12), 4 (perceived importance, 9/12), 7 (reallife stressors, 8/12) 8 (on-going performance, 9/12) and 9 (personal expectations, 7/8). Moderate intensity levels were factors 3 (skill level, 7/12), 5 (social debilitation, 6/12), and 6 (parental expectations, $5 / 8$). Low levels of intensity were factor 10 (perceived uncertainty, 3/8).

In the last category of concen, Athlete A indicated fachors 1 (ego threat, 10/15), 2 (perceived readiness, 15/15), 3 (skill level, 10/15), 4 (perecived importance, 15/15),5 (social debiltation, 10/15), 7 (real-life stressors, 15/15), 8 (on-going pertormance, 15/15), and 9 (personal expectations, $10 / 10$) as being of most concem. Lower levels of concern were indicated on factors 6 (parental expectations, 5/10) and 10 (perceived uncertainty, 5/10).

Table 3
Summary of Subscale Scores for the First Measure of the Causes of Anxiety in Sport
Scale (10/16/02)

	$\frac{\text { Ege }}{\text { ETurat }}$	Rexdiness	Skill Level	mapmexam	Debilitation	Parentat Expestration	Stras	Primunaxie	perss Eny.	Wheertainy
Frequeny	15	12	13	38	8	8	9	1	8	4
Intensidy	10	11	7	9	6	5	8	9	7	3
Conem	10	15	10	15	10	5	15	15	10	3

After the second measurement (27 weeks into the season), Athlete A indicated factors 1 (ego threat, 12/15), 2 (perceived readiness, 13/15), 4 (perceived importance, 12/15), and 6 (parental expectations, 7/10) as having the highest tendency of occurring (frequency). Moderate levels of frequency were factors 3 (skill level, 9/15), 5 (social debilitation, 7/15), 7 (real-life stressors, 9/15), 8 (on-going performance, 10/15), 9 (personal expectations, $9 / 15$), and 10 (perceived uncertainty, 6/10).

The factors that had the highest level of intensity were factors 1 (ego threat, 10/12), 2 (perceived readiness, 12/12), 4 (perceived importance, 9/12), 6 (parental expectations, $6 / 8$), 7 (reallife stressors, $8 / 12$), 8 (on-going performance, 8/12), and 9 (personal expectations, 6/8). Moderate intensity levels were factors 3 (skill Level, 7/12),5 (social debilitation, 6/12), and 10 (perceived uncertainty, $5 / 8$).

In the last category of concem, Athlete A indicated factor 2 (perceived readiness, 15/15) as being of most concem to her. The rest of the factors: 1 (ego threat, 5/15), 3 (skill level, 0/5), 4(perceived importance, 0/5), 5(social debilitation, 0/15), 6 (parental expectations, 0/10), 7 (reallife stressors, 5/15), 8 (on-going performance, 5/15), 9
(personal expectations, 5/10), and 10 (perceived uncertainy, 5/10) were all considered low levels of concen to Athlete A.

Table 4
Summary of Subscole Scores for the Second Measure of the Causes of Anxiety in Sport
Scale (03/24/03)

	$\begin{aligned} & \text { Ege } \\ & \text { Thera* } \end{aligned}$	Readimess	煖话? Lovel	mpportace	Debineticu	 	Stuess	Pertorname	Pers. Exp.	Uneetatury
Fryuency	1.2	13	9	12	7	7	9	10	6	6
Intentaty	10	12	7	9	6	6	3	8	6	3
Concern	5	15	0	0	0	0	5	5	5	ξ

The Carolina Spon Confidence Inventory (CSC)
Table 5 illustrates that the CSCl consists of two subscales: Dispositional optimism and sport competence. By adding the scores of both these subscales, a total score of spot confidence can be calculated (See Appendix R).

Consistency between the two measures can be found especially on the dispositional optimism scale. Both scores were $24 / 28$ and indicate that Athlete A possesses an expectation that good things will happen. There was a slight increase on the spor competence scale as measure one was $17 / 24$ and measure two was 19/24. This scale measures Athlete A's belief in her skills and abilities to successfully fulfill the denands of the sport These results directy influence Athlete A's sport confidence scores as her scores increased from 41/52 to 43/52 between measure one and measure two. Rased on these results, it can be concluded that Athlete A's general levels of confidence are high within the sport of swimming.

Table 5

Summary of Subscale Scores across the Season for the Carolina Sport Confutence Inventory

	Dispositional Optimism	Sport Competence	Sport Confidence
Measure $\# 1(10 / 16 / 02)$	24	17	41
Measure $42(03 / 24 / 03)$	24	19	43

The Spor Motivation Scale (SMS)

The SMS consists of three subscales: extrinsic motivation, intringic motivation, and amotivation (See Appendix S). Table 6 shows that the subscale of extrinsic motivation had equal scores on both measures (53/84). The extrinsic motivation subscale consists of three types of extrinsic motivation. Extemal regulation (athiete is controlled by external sources), introjection (extemal sources of motivation have been internalized by the athlete), and identified regulation (athlete values the behavior and participates out of choice). Between the two measures, external regulation remained the same; introjection increased by one point, and identified regulation decreased by one point.

The subscale intrinsic motivation increased by three points between the first and second measurements ($53 / 84$ and $56 / 84$ respectively). The intrinsic motivation subscale also moludes three byes of imminsic motivation. To know (exploration and curiosity), toward accomplishment (attempting to accomplish or create something), and experience stimulation (experience stimulating sensations). Two types of intrinsic motivation increased from the frrst measure: To know ($13 / 28$ to 17/28) and toward accompishment (17/28 to 18/28), the third type, experience stimulation decreased from the first to the second measure (23/28 to 21/28).

The subscale of amotivation differed by two points between the first and second measure with scores of $4 / 28$ to $6 / 28$. Although there is a subtle diference, both scores are considered to be low 2s Athete A showed that she is both extrinsically and intrinsically motivated to compete in her sport.

Table 6
Summary of the Subscale Scores across the Season for the Spor Motivation Scale

		Extrinsic Motivation	Intrinsic Motivation	Amotivation
Measure $\# 1(10 / 16 / 02)$	53	53	4	
Measure $2(03 / 24 / 03)$	53	56	6	

The Recovery-Stress Questionnaire (RESTQ-Sport)

The ideal patern for this data would be to see lower levels of general stress and sport-specific stress, and higher levels of general recovery and sport-specific recovery closer to and at the time of performance at a major competition. Certainly, this depends heavily on the circumstances and situational events of the training period. The recoverystress data indicated the following relationships for Athlete A(See Appendix T):

The RESTQ was given to Athlete A four times over the data collection period as detemined by her coach. The first measure was given to her one week prior to a national compexition to determine whether she had mentally and physically recovered from high volume training in order to perform successfuly th the competition. The second measure Was given after she had retumed from an intemational taineng camp and competition. This was given to gauge how she mentally and physically folt after such an intense experience. The hird measure was given during ahigh volume training camp in order to monitor how the traming load affected Athete A's sport specific stress and recovery levels. The fourth measure was given at the end of her second macro cycle to assess her
recovery levels after two consecutive major competitions. Table 7 shows Athlete A's scores for all four data collection points.

Table?

Summary of the Subscale Scores across the Season for the RESTQ-Sport

	Measure ${ }^{\text {d }} 1$	Measure 42	Measure ${ }^{\text {3 }}$ 3	Measure 44
General Stress	1.25	4.50	1.25	3.00
Emotional Stress	2.00	3.75	1.50	2.75
Social Stress	1.00	3.75	2.50	3.25
Conficts/Pressure	3.25	4.00	2.75	3.50
Fatigue	3.50	3.50	2.50	2.50
Lack of Entergy	4.00	4.00	2.25	3.25
Somatic Complaints	3.00	3.50	2.25	2.75
Success	2.00	2.00	3.00	1.75
Social Relasation	4.50	1.75	4.25	2.75
Somatic Relaxation	1.50	1.50	3.00	1.75
General Wellbeing	4.50	2.00	4.00	2.75
Sleep	5.00	3.75	4.00	3.50
Disturbed Breaks	0.00	0.00	1.00	0.00
Bumoni/Emotional				
Exhaustion	2.25	1.50	1.75	3.50
Fieness/Inury	3.50	2.75	3.25	3.75
Fitness/Being in Shape				
	2.25	2.25	3.50	2.00
Bumout/Personal				
Accomplishment	2.25	1.75	3.00	2.25
Self-Efficacy	2.00	1.75	4.00	1.50
Selfregulation	2.00	1.50	2.75	2.50

In the area of general stress and general recovey over the four data collection points, Athete A's scores fluctuated. The first measure was taken prior to a national competition and indicated low to moderate levels of general stress and inconsistent levels of general recovery. Specifically, low general stress appared on the subscales of general stress (1.25), emotional stress (2.00), and social stress (1.00). Moderate levels of general stress appeared on the subscales of comflicts/pressure (3.25), fatigue (3.50), lack of energy (4.00), and somatic complaints (3.00). Basically Athlete A felt more somatic
stress versus mental or emotional stress one week prior to her first national competition of the season. In the area of general recovery, lower levels were found on the subscales of success (2.00) and somatic relaxation (1.50). On the other hand, a more positive trend was found for the subscales of social relaxation (4.50), general well being (4.50), and sleep (5.00).

The second measure was taken after a major intemational training camp and competition (19 weeks into the swim season) and indicated an increase in general stress levels with decreasing general recovery levels. In this instance, all the subscales in the general stress area were above 3.50 , which are not ideal. In the area of general recovery, most subscales were in the low to moderate levels except for the subscale of sleep, which dropped to 3.75 from 5.00 .

The third measure was taken during a training camp (21 weeks into the swim scason) and displayed an encouraging trend with general stress decreasing and general recovery increasing. Athough, the levels were mostly moderate in both the general stress (1.25-2.75) and the general recovery (3.00-4.25) areas, the movenent towards improvement was being made.

The fourth measure was taken at the end of the season 25 weeks into the swim season) after an emotional long course med. Specifically, Athlete A's general stress increased to moderate levels and her general recovery decrased from moderate to low levels.

In the area of sport-specific stress and sport-spacific recovery, again Athete A's scores fuctuated over the four data collection points. The first measure indicated moderate levels of stress especially on the subscales of burnoutlemotional exhaustion
(2.25) and finessinjury (3.50). These two subscales relate not only to emotional fatigue but also to physical fatigue and soreness. This data was supported by the pattern of somatic complaints and somatic relaxation found in the general stress and general recovery areas of the RESTQ. Sport-specific necovery indicated moderate levels across all four subscales in this category (fitnessheing in shape, 2.25 ; burnout/personal accomplishment, 2.25; selfefficacy, 2.00; selfregulation, 2.00).

The second measure indicated low to moderate levels of sport-specific stress, which is a good sign since this measure was taken after an intemational training camp and compctition. Unfortunately, Athlete A's spontspecific recovery is quite low indicating that perhaps recovering from the mental/emotional and physical stress of the camp and compctition had not yet occurred.

The third measure also shows a fuctuation in Athlete A's sport-specific stress as all three subscales increased somewhat. In this instance, the pattern would be fairly typical as this measure was taken during a high volume training camp in Hawail. Fortunately, Athlete A shows an increase in her ability to cope with this type of training as her sport-specific recovery scores have increased from low to moderate levels. This is especially true for the subscale seffefficacy (1.75 to 4.00). This may reflect her belief in her ability to successfully meet the demands of the training camp.

The fourth measure showed the opposite trend. After a very emotional long course mect, Athlete A demonstrated the biggest increase in the subscale burnout/emotional exhaustion (1.75 to 3.50) in the category of spon-specific stress. With this increase in stress, again Athete A appeared to lack the necessary coping responses as
her sport-specinc recovery decreases. This seems most evident with the subscale selfefficacy where the drop is quite significant (4.00 to 1.50).

The following analysis of state measures inchudes cognitive and somatic anxiety, confidence, concentration, motivation, mood states, and post perfomance debrifing.

Cognitive Anxiety

CSAL-2. Table 8 shows that overall, Athlete A's preperformance cognitive anxiety ranged from $3-23$ out of 27 (See Appendix U). For Athete A's short course season, her levels of cognitive anxiety were low to moderate and for her long course season they were moderate to high. This clearly indicates a distinct difference in her perceptions of shor course and long course swimming and racing.

Tables
Summary of Cognitive Anxiety Subscale Scores (CSAI-2) across the Season

Label	Ranking	Meet	Outcome	Cognitive Anxicty
A	10	Keyano Cup\#1	1:05.73	11
B	8	Goldins (H)	1:05.09	7
C	4	Coldins (F)	1:03.69	6
D	11	Keyano Cup \#2	1:06.48	7
E	6	Nationals (H)	1:04.06	20
F	2	Nationals (F)	1:02.18	11
* 6	5	US Open (H)	1:07.21	9
H	7	Keyano Cup	1:04.92	8
* 1	2	Pan Pacs (H)	$1: 05.27$	23
*	1	Pan Pacs (${ }^{\text {P }}$)	1:04.56	17
乭	9	Westerns (H)	1:05.41	5
\underline{L}	3	Westerns (F)	1:02.26	13
* ${ }^{\text {M }}$	4	Canada Cup (H)	1:07.07	16
* N	3	Canada Cup (T)	1:06.60	9
0	5	Senior Champs (H)	1:03.80	9
1	1	Senior Champs (F)	$1: 01.80$	3
* Denotes long course meets			Range	$3-23$

Athlete A's top five shon course perfomances (meets C, F, L, O, and P) indicated
a cognitive anxiety range of $3-13$ out of 27 . Athough the range is quite bigh, her top
performance where she achieved a best time (meet "P") occurred when her pre performance cognitive anxiety was the lowest (3). Athlete A's bottom five short course performances (meets A, B, D, H, and K) had a cognitive anxiety range of $5-11$ oxt of 27 . These perfomances just like her top five performances show a low-moderate range of pre performance cognitive anxiety.

Meet "E" which was ranked $6^{\text {th }}$ based on outcome displayed a pre performance cognitive mxiety score of 20/27. This level is quite high for shor course performance and is reflected not only in the importance of the meet which was a national heat race, but also in the outcome where she was more than two seconds off her best time. This disappointing result did not qualify her for the A-final, rather the B-final.

During Athlete A's long course meets $(G, I, J, M$, and N), her pre performance cognitive anxiety scores are much higher (moderate to high levels). The range for these scores was $9-23$ out of 27 . The higher cognitive anxiety scores occurred at an intemational meet (heat and final races) (meet "F" and "J") that Athlete A participated in. In contrast to her shor course season, Athete A's top two performances occurred at this intenational meet where she displayed higher levels of cognitive anxiety prior to performing.

MRP. Table 9 demonstrates that overall, Athlete A's pre perfomance cognitive anxiety ranged from 1.1.7.0 out of 10 on the MRF questionaite (See Appendix V). Across all data points, her scores are within the low to high ravge of cognitive anxiey. Her lowest cognitive anxiety scores occured during her short course season (meets "K" and "P") and her highest occurred during one short course meet ("E") and one long course meat ("F).

Table 9
Summary of Cognitive Anwiety Subscale Scores (MRF) across the Season

Label	Ranking	Meet	Outcone	Cognitive Anxiety
A	10	Keyano Cap 4	1.05 .73	2.8
B	8	Goldfins (()	1:05.09	3.9
C	4	Goldins (F)	1.03 .69	4.4
D	11	Keyano Cup \#2	1:06.48	2.3
E	6	Nationals (H)	1:04.06	7.0
F	2	Nationals (F)	1.02.18	3.0
* 0	5	US Open (H)	$1: 07.21$	2.0
H	7	Keyano Cup $\# 3$	1:04.92	2.0
4	2	PanPacs (H)	1.05 .27	7.0
*	1	Pan Pacs (F)	1:04.56	2.0
K	9	Westerns (H)	1:05.41	1.1
\underline{L}	3	Westerns (F)	1:02.26	2.0
*	4	Canada Cup (H)	$1: 07.07$	4.3
${ }^{*}$	3	Canada Cup (F)	1:06.60	1.4
0	5	Senior Champs (H)	1:03.80	2.0
P	1	Senior Champs (F)	$1: 01.80$	1.1
* Denotes long course meets			Range	$1.1-7.0$

During Athiete A's shor course season, her top five performances (neets C, F, , O , and P), indicated a low to moderate range of pre performance cognitive anxiety which was $1.1-4.4$ out of 10 . The lowest score (1.1) was at meet "p" in which she achieved a best time of the season. The highest cognitive anxiety score of 4,4 out of 10 occurred during her fourth best performance (mect "C"). During Athlete A's botom five performances of her short course season (meets $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{H}$, and K), her pre perfomance cognitive anwiety also ranged in the low to moderate levels with scores of $1.1-3.9$ out of 10.

Athlete A"' 6 " ranked perfomance (meet "E") indicated the highest score of 7.0 out of 10 on the MRF scale. This score, like the high score on the CSAl- 2 scale may be a refiection of the type of meet as both instruments were completed in the pre perfomance setting.

Athlete A's long course season (meets G, I, J, M, and N), had a much bigger range of scores of 1.47 .0 out of 10 . The highest cogntive anxiety score occured at her first performance at an international meet (heat swim) and the lowest score occured at her second pertormance (final swim) ata a national swim meet.

AGI. Table 10 shows that overall, Athlete A's pre performance levels of anxiety/certainty ranged from 6.6.9.6 out of 10 (See Appendix W). Across the season, her levels of anxiety/certainty remain within the high range regardiess of outcome or type/impontance of the swim meet.

Table 10
Summary of Anxiety/Certanty Subscale Scores (AGI) across the Season

Label	Ranking	Meet	Outcome	Anxiety/Certainty
A	10	Keyano Cup\#1	$1: 05.73$	8.0
B	8	Goldfins (H)	1:05.09	8.5
C	4	Coldins (F)	1:03.69	9.3
D	11	Keyano Cup \#2	1:06.48	7.0
E	6	Nationals (H)	1:04.06	6.6
F	2	Nationals (F)	1:02.18	9.0
${ }^{4} \mathrm{G}$	5	US Open (H)	1:07.21	9.0
H	7	Keyano Cup 43	1:04.92	9.0
*I	2	PanPacs (H)	$1: 05.27$	8.0
*	1	Pan Pacs (F)	1:04.56	8.0
K	9	Westerns (H)	1:05.41	8.6
\underline{L}	3	Westerns (F)	1:02.26	8.5
*M	4	Caneda Cup (H)	1:07.07	7.4
*N	3	Canada Cup (F)	1:06.60	8.2
0	5	Senior Champs (H)	1:03.80	9.0
P	1	Senior Champs (F)	1:01.80	9.6
Denotes long course meets			Range	$6.6-9.6$

During Athlete A's top five shor course performances (meets C, F, L, O, and P), her anxiey/certainty levels ranged from $8.5-9.6$ out of 10 . In other words, prior to these performances, her thoughts tended to be much more positive with uncertainty and doubt reduced to a minimum. On the other hand, during Athlete A's bottom five short course
performances (meets A, B, D, H, and K), although her levels of anxiety/certainty were moderate-high (7.0-9.0), the range was a littie lower than during her top pertormances; possibly this indicates, that she may have felf some uncertainty going into cach one of these performances. Her lowest score (meet "D" $=7.0$) was also her worst performance during her shot course season.

Athlete A's neutral performance (meet "E") reflected a scone of 6.6 out of 10 ; across the season, this is the lowest pre perfomance anxiety/certainty score.

Athete A's long course performances (meets G, I, J, M, and N), also indicated high scores with a range of 7.4-9.0. Again, the range is still low in comparison to her best performance scores in the short course meets. Although the lowest score of 7.4 occurred during her fourth fastest performance, the highest score of 9.0 occured during her fifth fastest performance.

Somatic Anxiey

CSAl-2. Table 11 illustrates that overall. Athlete A's pre performance somatic anxiety raged from $3-13$ out of 27 (See Appendix X). Whether short course or long course swimming and no matter the outcome of performance, Athlete A's pre performance sonatic anxicty renained in the low to moderate range.

Table 11

Summary of Somatic Anxiety Subscale Scores (CSAI-2) across the Season

Label	Ranking	Meet	Outcone	Somatic Anxiety
A	10	Keyano Cup ${ }_{\text {W }} 1$	1:05.73	7
B	8	Goldfins (H)	1:05.09	7
C	4	Goldins (F)	1:03.69	11
D	11	Keyano Cup \#2	1:06.48	6
E	6	Nationals (H)	1:04.06	12
F	2	Nationals (F)	1:02.18	13
${ }^{*} \mathrm{C}$	5	US Open (H)	1:07.21	6
H	7	Keyano Cup ${ }^{\text {S }}$	1:04.92	3
*I	2	PanPacs (H)	1:05.27	11
*	1	Pan Pacs (F)	$1: 04.56$	9
K	9	Westerns (H)	1:05.41	4
L	3	Westerns (F)	1:02.26	9
*M	4	Canada Cup (H)	$1: 07.07$	10
*N	3	Canada Cup (F)	1:06.60	5
0	5	Senior Champs (E)	$1: 03.80$	6
P	1	Senior Champs (F)	$1: 01.80$	8
* Denotes long course meets			Range	$3-13$

During Athlete A 's top five shor course performances (meets C, F, L, O, and P), her somatic anxicty ranged from $6-13$ out of 27 with her top two performances having low and moderate levels of somatic anxiety (meet " F " $=13$ and meet "p" $=8$.). In contrast, Athete A's bottom five performances (meets A, B, D, H, and \mathbb{K}), revealed a range that was lower than her top five perfomances (3-7 out of 27).

Athiete A's neutral performance (meet "E") revealed a moderate score of 12 out of 27 . Unlike meet "F"s where her score was 13 out of 27 and she achieved abest time, meet"E" did not result in a very desimble outcome.

Athlete A's long course season (meets $G, 1, T, M$, and N), indicated that her somatic anxiety ranges from $5-11$ out of 27 with the top two perfomances having somatic anxiety in the moderate range (meet "57" $=9$ and meet "Y" $=11$).

MRF. Table 12 shows that in general, Athlete A's pre pertomance somatic anxiety levels ranged from 1.1-7. out of 10 (See Appendix Y).

Table 12
Summary of Somatic Anxiety Subscale Scores (MRF) across the Season

Label	Ranking	Meet	Outcone	Somatio Anxicty
A	10	Keyano Cup ${ }^{\text {H1}}$	1:05.73	1.8
B	8	Goldins (H)	1:05.09	2.1
C	4	Goldfirs (F)	103.69	2.6
D	11	Keyano Cup \#2	1:06.48	2.0
E	6	Nationals (H)	1:04.06	7.0
F	2	Nationals (F)	1:02.18	2.0
* 6	5	US Open (H)	1:07.21	4.0
H	7	Keyamo Cup ${ }^{\text {H }}$	1:04.92	2.1
*	2	PanPacs (H)	1:05.27	7.1
4	1	Pan Pacs (F)	1:04.56	1.9
K	9	Westerns (H)	1:05.41	2.0
L	3	Westerns (F)	1:02.26	2.0
* ${ }^{\text {M }}$	4	Canada Cup (H)	1:07.07	4.0
${ }^{*}$	3	Canada Cup (F)	$1: 06.60$	1.4
0	5	Senior Champs (H)	1:03.80	3.1
P	1	Senior Champs (F)	$1: 01.80$	1.1
\% Denotes long course meets			Range	1.1-7.1

Overall, during her short course season, Athlete A's levels of somatic anxiety were within the low to slightly moderate range, whereas, during her long course season, her somatic anxiety ranged from low to high.

Throughout Athlete A's top five short course performances (meets $\mathrm{C}, \mathrm{F}, \mathrm{L}, \mathrm{O}$, and P), her pre performance somatic anxiety was low to slightly moderate with a range of 1 . 1 3.1 out of 10 . Her two best perfomances (meet "E" and "p") reflected somatic anxiety levels of 2 and 1.1 ont of 10 respectively. Athlete A's botom $\mathbf{~ W}$ ve short course performances (mects A, B, D, H, and K), showed overall low levels of sonatic anviety with a range of 1.82 .1 out of 10 . These results are quite consistent across her five worst periomances.

Athlet A 's $6^{\text {th }}$ ranked performance (meet "E") revealed a higher level of somatic anxiety of 7 out of 10 . Out of her short course perormances, meet " E " displays the highest level but does not necessarily refect the worst perfomance.

Athlete A's long course season results (meets G, I, J, M, and N), indicate a large range (1.4.7.1) from low to high levels of pre pertormance somatic anxiety. The lower levels of somatic anxisty occurred during final swims at both intemational and national swim meets ("9" and " NJ "). The moderate to high levels of somatic anxiety occurred during heat swims at again both international and nationals swim meets ("G" and " M "). The highest level of somade anxiety occurred at her frst swim (heat swim) during a very important international swim meet ("Y"), which was also her second best performance during the long course season. In addition, her top performance also occurred at the same international meet during her final swim (${ }^{4} \mathrm{~F}$), which revealed a much lower level of pre performance somatic anxiety at 1.9 out of 10 .

Confidence

CSAl-2. Table 13 shows that overall, Athlete A's pre performance self-confidence ranged from $11-23$ out of 27 (See Appendx Z), indicating she was in the moderate to high levels of confidence regardless of outcone or type of meet.

Table 13
Summary of Selfonfidence Subscale Scores (CSAL-2) across the Season

Label	Ranking	Meet	Outcome	Self-Confidence
A	10	Keyano Cup ${ }^{\text {P1 }}$	1:05.73	16
B	8	Goldins (H)	1:05.09	18
C	4	Goldfins (F)	1:03.69	17
D	11	Keyano Cup ${ }^{\text {2 }}$	1.06 .48	13
E	6	Nationals (H)	1:04.06	11
F	2	Nationals (F)	1:02.18	17
* C	5	US Open (H)	$1: 07.21$	18
H	7	Keyano Cup \#3	1:04.92	18
*	2	PanPacs (H)	1:05.27	14
* ${ }^{\text {J }}$	1	Pan Pacs (F)	1:04.56	18
K	9	Westerns (H)	1:05.41	19
L	3	Westerns (F)	$1: 02.26$	18
*	4	Canada Cup (H)	1:07.07	11
${ }^{*} \mathrm{~N}$	3	Canada Cup (F)	1:06.60	18
0	5	Senior Champs (H)	$1: 03.80$	16
P	1	Senior Champs (F)	1:01.80	23
* Denotes long course meets			Range	11-23

Specifically, during Athlete A's top five short course perfomances (meets C, F, L, O, and P), her confidence ranged from $16-23$ out of 27 . In two of those meets (F " and "p"), she achieved a best time, which are reflective in her high levels of pre performance confidence, 17 and 23 respectively. During Athlete A's bottom nive short course performances (meets A, B, D, H, and K), her selfconfidence ranged from $13-19$ out of 27. Lower levels of confidence in this instance occured at local club meets whereas slighty higher levels of confidence occured durng more important and higher level gwim meets.

During meet "E" which was Athlete A"s 6 " ranked performance, she entered a heat swim at a national level compettion with a pre perfomance confidence score of 11 out of 27.

Athlete A's long course periommees (meets G, I, J, M, and N), revealed a range of confidence of 11 -18 out of 27 . Lower levels of confidence occurred during heat swims while higher levels of confidence ocourred during final swims.

MRF. Table 14 demonstrates that overall, Athicte A's pre perfomance selfconfidence scores ranged from $6.0-10$ out of 10 on the MRF scale and across the season (See Appendix AA), her scores fit within the moderate to high range of confidence.

Table 14
Summary of Self-Confidence Subscale Scores (MRF) across the Season

Label	Ranking	Meet	Outcome	Self-Contidence
A	10	Keyano Cup ${ }^{\text {H1}}$	1:05.73	8.7
b	8	Goldinins (H)	$1: 05.09$	8.7
C	4	Goldins (F)	1:03.69	8.8
D	11	Keyano Cup H2	1:06.48	6.9
E	6	Nationals (H)	1:04.06	6.1
F	2	Nationals (F)	1:02.18	9.0
0	5	US Open (H)	1:07.21	7.0
H	7	Keyano Cup ${ }^{\text {a }}$	1:04.92	9.0
*	2	PanPacs (H)	105.27	6.0
*	1	PanPacs (F)	1:04.56	8.0
K	9	Westerns (H)	1:05.41	9.0
L	3	Westerns (F)	1:02.26	8.0
*M	4	Canada Cup (H)	1:07.07	7.5
*N	3	Canada Cup (F)	1:06.60	9.1
0	5	Semior Champs (H)	$1: 03.80$	8.0
P	1	Senior Champs (P)	1:01.80	10
* Denotes long course meets			Range	6.0-10

Athete A's top five performances during her short course season (meets $\mathrm{C}, \mathrm{F}, \mathrm{L}$, 0 , and \mathbb{P}, indicate high levels of confidence withim a range of 8 - 10 out of 10 . Her top two performances where she achieved her best times (meets "F" and "p") reflect the highest levels of confidence prior to her performances with a 9 and 10 out of 10 respectively. Duning Athete A 's botom five shon course performances (meets A, B, D, H, and K), her pre performance confidence levels are within moderately-high to high
levels of confidence with a range of $69-9.0$ out of 10 . These levels are quite consistent across these five meets with the exception of meet "B" where her confidence was quite low by comparison (6.9).

Athicte A"s neutral performance (meet "E") revealed a moderate level of confidence of 6.1 out of 10 . In comparison to her top short course performances, this is quite low and reflected in her performance outcome. However, in comparison to her bottom short course performances, this score is quite low yet the outcome is much better as it is her $6^{\text {th }}$ best periomance of her short course season.

The largest range in pre performance confidence occurred during Athlete A's long course meets (G, I, I, M, and N) where she ranged from $6.0-9.1$ out of 10 . The pattern within these data points is that during her heat swims, her confidence teads to be lower (6.0-7.5) whereas during final swims, her confidence tends to be higher (8.0-9.1).

AGl. Table 15 shows that overall, Athlete A's levels of pre performance confidence/pride ranged from 6.3-9.7 out of 10 on the athete-generated checklist (See Appendix BB) and across all the meets, Athlete A's confidence/pride levels remained high.

Table 15

Summary of Confidence/Proud Subscale Scores (AGI) across the Season

Label	Ranking	Meet	Outcome	Confidence/Proud
A	10	Keyano Cup ${ }^{\text {/ }}$	1:05.73	8.0
B	8	Goldfins (H)	1:05.09	8.8
C	4	Goldfins (F)	1:03.69	8.3
D	11	Keyano Cup ${ }^{\text {2 }}$	1:06.48	7.0
E	6	Nationals (H)	1:04.06	8.0
F	2	Nationals (F)	1:02.18	8.0
* G	5	US Open (H)	1:07.21	6.3
H	7	Keyano Cup \#3	1:04.92	9.0
*	2	PanPacs (H)	1:05.27	8.9
* J	1	Pan Pacs (F)	1:04.56	9.5
K	9	Westerns (H)	1:05.41	8.1
L	3	Westerns (F)	1:02.26	9.0
${ }^{*}$ M	4	Canada Cup (H)	1:07.07	6.4
*N	3	Canada Cup (F)	1:06.60	7.6
0	5	Senior Champs (H)	1:03.80	8.0
P	1	Semior Champs (F)	$1: 01.80$	9.7
* Denotes long course meets			Range	6.3-9.7

During Athlete A's top five short course perfomances (meets C, F, L, O, and P), her confidence/pride levels ranged from 8.0-9.7 out of 10 . The higher end of this range (i.e., 9.7) occurred where she achieved her best time of the season (meet "p"). Athiete A's bottom five shor course performances (meets A, B, D, H, and K) also had a high range of confidencepride scores of 7.0 .9 .0 out of 10 . This range is considered high based on the total score being out of 10 but in comparison to her top performances, this range is a little lower.

Meet "E"3 was a very important national swim meet and Athlete A's score of 8 out of 10 reflects her sense of pride for attending anect of this magnitude. Meet "F" is the same national meet, which reflected an equal score of 8 out of 10 .

Athlete A's long course season meets $(G, J, J, M$, and N) indicated a large range of confidence/pride levels of $6.3-9.5$ out of 10 . In support of Athlete A's definition of
confidence, it is evident that the higher levels of confidencefride (8.9 and 9.5) were felt at the intemational meet she attended where she represented her country for the first time in her swimming career.

Concentration

AGI. Table 16 shows that Athiete A's concentration/focus/readiness levels ranged from 3.0 to 9.7 across the season (See Appendix CC).

Table 16

Summary of Concentration/Focused/Readiness Subscale Scores (AGI) across the Season

Label	Ranking	Meet	Outcome	Concentration
A	10		1:05.73	5.2
B	8	Goldrins (H)	1.05 .09	6.8
C	4	Goldins (5)	$1: 03.69$	9.4
D	11	Keyano Cup\#2	1:06.48	3.0
E	6	Nationals (H)	$1: 04.06$	6.0
F	2	Nationals (F)	1:02.18	9.0
* G	5	US Open (H)	1.07 .21	7.9
H	7	Keyano Cup ${ }^{\text {3 }}$	1:04.92	7.3
* 1	2	PanPacs (H)	1:05.27	6.9
\%	1	PanPacs (F)	1:04.56	8.1
K	9	Westems (H)	1:05.41	8.1
L	3	Westerns (F)	1.02 .26	8.2
*M	4	Canada Cup (H)	1:07.07	7.0
*N	3	Canada Cup (F)	1:06.60	8.0
0	5	Senior Champs (H)	1.03 .80	7.4
P	1	Senior Champs (F)	1.01 .80	9.7
\% Denotes long course meets			Range	$3.0-9.7$

Athlete A 's top five short course performances (mect C, F, L, O and P) have a high range of 7.49 .7 out of 10 on the athete-generated checkist. Her top two performances (meets "F" and "P") exhibit scores higher in the range at 9.0 and 9.7 respectively. Athete A's bottom five performances during her shor course season (meets A, D, D, H, and K) indicate moderate to high levels of pre perfomance
concentration/focusireadiness with a wide range from $3.0-8.0$ out of 10 . The lower scores generally are exhibited at local club meets as well as less competitive provincial meets.

Meet "E" reflected a moderate level of pre perfomance concentration/focus/readiness with a score of 6 out of 10 . This score may reflect in the outcome although inconsistencies do exist as some of her poorer short course performances indicate higher levels of concentration/focus/readiness prior to competing.

During Athete A's long course season (meets G, I, J, M, and N), her concentration/focus/readiess prior to performance ranged from $6.9-8.1$ out of 10 , which is within the high range on the athlete-generated checklist. Athete A's top performance during her long course season (meet " 9 ") exhibited the highest level of concentration/focus/readiness. Although her second best performance (meet "I") showed the lowest level of pre performance concentration/focus/readiness, at 6.9 , the other meets followed Athlete A's tendency to have a positive relationship between pre performance concentration/focus/readiness and outcome.

Motwation

AGI. As shown in table 17, overall, Athlete A's pre performance motivation/drive levels range from $5.0-9.7$ out of 10 (See Appendix DD), which is within the moderate to high levels on the athlete-generated checklist.

Table 1 Th

Summary of MotivationDriven Subscale Scores (AGD) across the Season

Label	Ranking	Meet	Outcone	Motivation/Drive
A	10	Keyano Cup ${ }^{\text {+1 }}$	1:05.73	6.0
B	8	Coldins (H)	1.05 .09	7.3
C	4	Coldtins (F)	1:03.69	8.2
D	11	Keyano Cup \#2	1:06.48	5.0
E	6	Nationals (H)	1:04.06	6.0
F	2	Nationals (F)	1:02.18	9.0
${ }^{*} \mathrm{G}$	5	US Open (H)	1.07 .21	6.1
H	7	Keyano Cup ${ }^{\text {H }}$	1.04 .92	8.9
*	2	PanPacs (H)	$1: 05.27$	7.9
* J	1	Pan Pacs (F)	1:04.56	9.5
K	9	Westerns (H)	1:05.41	7.0
L	3	Westems (F)	1:02.26	9.0
*M	4	Canada Cup (H)	1:07.07	6.5
W	3	Canada Cup (F)	1:06.60	8.3
0	5	Senior Champs (H)	$1: 03.80$	7.5
P	1	Senior Champs (F)	1.01 .80	9.7
* Denotes long course meets			Range	5.0-9.7

During her top five short course performances (meet C, F, L, O, and P), her motivation/drive levels ranged between 7.5 and 9.7 . Her top two performances (meets "F" and "P") reflected high levels of drive at 9.0 and 9.7 respectively. Athlete A's bottom five performances in the shor course season (meets $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{H}$, and K) had a much larger range of 5.0889 out of 10 , indicating moderate to high levels of motivation/drive in the pre perfomance seting. The lower levels of motivation/rive ($5.0,6.0$, and 7.3) all occurred \mathfrak{m} hocal club meets or meets that Athete A deemed as less important.

Athete A's $6^{\text {th }}$ ranlect performance (med "E") being a national level competition surprisingly reflected a moderate level of pre performance motivation/drive with a score of 6 out of 10 . Consisten with Athlete A's other important mects, she displayed a lower score during her heat swim and a higher score during her final swim (meet "F" $=9$).

During Athlete A's long course season (meets $\mathrm{C}, \mathrm{I}, \mathrm{J}, \mathrm{M}$, and N), her motivation/drive levels were also moderate to high with a range of $6.1-9.5$ out of 10 . The higher scores of 8.3 and 9.5 occured prior to final swims at intemational and national level competitions, whereas, the lower levels of motivationdrive appeared during heat swims at the same intemational and national level competitions.

Mood States

In addition to monitoring each of the seven mood states (vigor, tension, anger, confusion, fatigue, depression, confidence) in the pre performance seting, Athete A was asked to indicate how imporant the upcoming performance was to her as well as how competent she felt in terms of perforning in the race. The scores were out of six for both questions as shown in table 18.

Table 18
Summary of mportance and Competence Scores (Pre POMS) across the Season

Label	Ranking	Meet	Importance (16)	Competence (6)
A	10	Keyano Cup \#1	1	3
B	8	Coldfins (H)	3	4
C	4	Goldins (F)	4	5
D	11	Keyano Cup ${ }^{2}$	1	3
E	6	Nationals (H)	5	3
F	2	Nationals (F)	5	5
${ }^{*}$	5	US Open (H)	4	5
H	7	Keyano Cup ${ }^{\text {+ }}$	3	4
*	2	Pan Pacs (H)	4	3
*	1	PanPacs (F)	5	4
K	9	Westems (H)	4	4
L	3	Westems (F)	5	5
${ }^{*}$	4	Canoda Cup (H)	4	3
N	3	Canada Cup (F)	4	5
0	5	Senior Champs (H)	3	3
P	1	Senior Champs (T)	5	5

[^0]The general results indicated that Atblete A deemed higherlevel competitions and final swims as more important than lower level competions and heat swins. In tems of competence, Athlete A demonstrated that prior to more important performances, she felt more competent.

Pre/Pos Vigor. Table 19 shows that overall, Athlete A's pre vigor scores ranged from 9.15 out of 20 and her post vigor scores ranged from 5 -15 out of 20 (See Appendix EE). The vigor subscale tends to reflect higher scores in comparison to the other subscales (except confidence) in both pre and post performance settings.

Table 19
Summary of Pre/Post Vigor (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Vigor (20)	Post Vigor (20)
A	10	Keyano Cup \#1	1.05 .73	14	12
B	8	Goldfins (H)	$1: 05.09$	15	14
C	4	Goldins (F)	$1: 03.69$	14	12
D	11	Keyano Cup \#2	1:06.48	13	11
E	6	Nationals (H)	1.04 .06	15	13
F	2	Nationals (F)	1:02.18	15	15
\% C	5	US Open (I)	1:07.21	10	10
H	7	Keyano Cup \#3	1.04 .92	15	14
*	2	PanPacs(H)	1:05.27	9	9
\% ${ }^{\text {J }}$	1	Pan Pacs (F)	1,04.56	11	5
K	9	Westems (H)	1:05.41	15	5
L	3	Westerns (F)	1:02.26	14	15
* ${ }^{\text {M }}$	4	Canada Cup (H)	1.07 .07	9	6
${ }^{*} \mathrm{~N}$	3	Canada Cup (T)	1:06.60	13	14
0	5	Senior Champs (H)	1.03 .80	10	13
P	1	Senior Champs (F)	$1: 01.80$	14	13
* Denotes long course meets			Range	$9-15$	5-15

In Athlete A's short course season, her top five performances (meets C, F, L, O and P) reflected pre vigor scores ranging from $10-15$ and her post vigor scores ranging from 12-15. Her vigor scores are quite consistent between pre and post with the highest
difference of 3 points for meet " O ". Although there is no definitive pattem, her vigor scores tend so be moderately high for both pre and post performance with her post vigor scores generally being higher than her pre vigor. Athlete A's botom five short course performances (meet $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{H}$, and K) reflect pre vigor soores ranging from $13 \mathrm{~m}, \mathrm{~s}$ and post vigor scores ranging from 5-14. These scores generally indicated that her pre vigor scores are slightly higher than her post vigor scores with the exception of meet " K " where the difference between her pre vigor and posi vigor was 10 points.

Meet "E" revealed a pre vigor score of 15 out of 20 and a post vigor score of 13 out of 20 . Like her poor perfornances where her vigor levels decreased in the post performance seting, the same occurs for her fanked performance, which may be a reflection of the outcome.

During Athlete A's long course season (meets G, I, J, M, and N), her pre vigor scores ranged from $9-13$ out of 20 and her post vigor scores ranged from $5-14$ out of 20 . Her vigor scores seem quite consistent between pre and post performance with the exception of meet "f" where her vigor dropped 6 points between pre and post pertormance. This could potentially reflect not only the importance of the meet but also the outcome as it was an anternational meet and a fral swim for Athete A.

Pre/Pos Tension In general, table 20 shows that Athete A's pre periomance tension scores ranged from $0-9$ out of 24 and her post performance tension scores ranged from 1-12 out of 24 (See Appendix FF).

Table 20
Summary of Pre/Post Tension (POMS) across the Season

Label	Ranking	Meet	Outcome	$\begin{gathered} \text { Pre Tension } \\ (24) \end{gathered}$	$\begin{gathered} \text { Post Tension } \\ (24) \\ \hline \end{gathered}$
A	10	Keyano Cup \#1	$1: 05.73$	0	2
B	8	Goldins (H)	$1: 05.09$	4	1
C	4	Goldins (T)	1:03.69	4	3
D	11	Keyano Cup ${ }^{\text {H2 }}$	1:06.48	7	7
E	6	Nationals (H)	1:04.06	9	10
F	2	Nationals (F)	1:02.18	9	4
${ }^{*} \mathrm{G}$	5	US Open (H)	1:07.21	6	5
H	7	Keyano Cup ${ }^{\text {3 }}$	1:04.92	3	4
*I	2	Pan Pacs (H)	1:05.27	6	8
*J	1	Pan Pacs (F)	1:04.56	6	9
K	9	Westerns (H)	1:05.41	8	9
L	3	Westerns (F)	1:02.26	7	4
*M	4	Canada Cup (H)	$1: 07.07$	8	12
${ }^{*} \mathrm{~N}$	3	Canada Cup (F)	1:06.60	7	7
0	5	Senior Champs (H)	1:03.80	8	3
P	1	Senior Champs (F)	1:01.80	3	3
* Denotes long course meets			Range	0.9	1.12

The pre perfomance tension scores ranged from 49 during Athiete A's top five short course performances (meets C, F, L, O, and P) and her post performance tension scores ranged from $3-4$. The highest difference between her pre and post scores was 5 points with a general tendency for the pre tension scores to be higher than the post tension scores. This pattern seems natural as Athlete A may feel more tension or pressure prior to competing. The only exception was neet "Pp" where her pre and post teasion scores were equal at 3 .

During Athiete A 's bottom five shor course performances (meet A, B, D, , and K), her pre tension scores ranged from 0-8 and her post tension scors ranged from 1-9. Specifically, meets "A, "H, and "K" had pre tension scores lower than post tension
scores, meet " B " had higher pre tension than post tension scores, and meet "D" had equal pre and post tension scores.

Meet "E" revealed a pre tension score of 9 and a post tension score of 10 . Being a national compettion, it seems natural for Athicte A to have a moderate level of pre tension. As a consequence of a poor result, Athlete A continued to display a moderate level of post tension.

Athlete A 's long course season meets ($\mathrm{C}, 1,1, M$, and N) had pre perfomance tension scores ranging from $6-8$ and posi tension performance scores ranging from $5-12$. The biggest diference was 4 points, which occured during meet "M" with pre tension being 8 and post tension being 12. Regardless of outcome, meet "M" was a very emotional meet for Athlete A as factors such as teammates leaving the club, distractions of school, and turbulent times with her significant other may have reflected in the post tension score. With the exceptions of meet "N" where pre and post tension scores were equal and meet " G " where pre tension was higher than post tension, meets "I", "J", and " M " reflected higher post tension scores than pre tension scores.

Pre/Post Anger. As shown in table 21, Athlete A's pre anger scores ranged from $0-8$ out of 24 while her post anger scores ranged from 0-17 out of 24 (See Appendix GG).

Table 21
Summary of Pre/Post Anger (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Anger (24)	Post Anger (24)
A	10	Keyano Cup \#1	1.05 .73	1	9
B	8	Goldins (H)	1:05.09	0	1
C	4	Goldins (F)	1.03 .69	3	0
D	11	Keyano Cup ${ }^{\text {2 }}$	1:06.48	5	7
E	6	Nationals (H)	1:04.06	8	15
F	2	Nationals (F)	1:02.18	7	1
*G	5	US Open (H)	1:07.21	2	17
H	7	Keyano Cup ${ }^{\text {a }} 3$	1:04.92	2	1
4	2	PanPacs (H)	1:05.27	2	13
*	1	Pan Pacs (F)	1:04.56	4	13
\mathbb{K}	9	Westerns (H)	$1: 05.41$	5	12
L	3	Westerns (F)	1:02.26	7	3
*M	4	Canada Cup (H)	1:07.07	8	19
${ }^{*} \mathrm{~N}$	3	Canada Cup (F)	1:06.60	4	7
0	5	Senior Champs (H)	1:03.80	7	4
P	1	Senior Champs (F)	1.01 .80	1	1
* Denotes long course meets			Range	0-8	0-17

Throughout Athlete A's short course season, her top five performances were meets C, F, L, O, and P. The range for her pre anger scores during her top five performances was 1.7 and the range for her post anger scores was $0-4$. The patter for her top perfomances tended to show that her pre anger scores were higher than her post anger scores. Her top five performances were generally in final swims which took place during the night portion of a swim meet. Only one meet ("O") was a heat swim. In contrast, throughout Athete A's short course season performances, her bottom five performances were meets A, B, D, H, and K. Three out of these five meets were ciub meets ("A", "D", and "H") which Athlete A deemed as less importan than the others. The range for her pre anger scores during her botom five perfornances was 0.5 and the
range for her post anger scores was 1-12. The tendency for her five worst performances was that her post anger scores tended to be higher than her pre anger scores.

Athlete A's neutral performance (meet "E") showed a pre anger score of 8 out of 24 and a post anger score of 15 out of 24. Again, the dramatic increase in anger in the post performance setting could be reflective of the disappointment she felt in the outcome of her performance as her time did not qualify her for the A-final but rather the B-final.

During Athlete A's long course season (meets $G, 1, I, M$, and N, her pre and post anger scores tended to be much more extreme. Her pre anger scores ranged from $2-8$ and her post anger scores ranged from 7 m 19 . The largest difference between her pre and post anger scores occurred during meet "G" where her pre anger was 2 and her post anger was 17. This could reflect not only the outcome of the race but also that this meet was extremely important as it was an intemational meet where Athlete A wanted to perform very well and did not.

Pre/Post Confusion. Overall table 22 shows that Athlete A's pre confusion scores ranged from $1-7$ out of 20 and her post comfusion scores ranged from $0-11$ out of 20 (See Appendix HH).

Table 22
Summary of Pre/Post Confusion (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Confusion (20)	Post Confusion (20)
A	10	Keyano Cup \#1	1:05.73	3	5
B	8	Goldins (H)	$1: 05.09$	1	2
C	4	Coldins (P)	1:03.69	2	0
D	11	Keyano Cup H2	1:06.48	4	4
E	6	Nationals (1)	1:04.06	6	9
F	2	Nationals (F)	1:02.18	6	3
* G	5	US Open (H)	1:07.21	3	9
H	7	Keyano Cup \#3	1:04.92	4	3
* 1	2	PanPacs (H)	1:05.27	3	9
\%	1	Pan Pacs (F)	1:04.56	4	8
K	9	Westerns (H)	1:05.41	5	4
L	3	Westems (F)	1:02.26	3	2
*M	4	Canada Cup (H)	1:07.07	7	11
${ }^{*} \mathrm{~N}$	3	Canada Cup (F)	1:06.60	3	5
0	5	Senior Champs (H)	1:03.80	4	2
P	1	Senior Champs (F)	$1: 01.80$	1	1
* Denotes long course meets			Range	1.7	0-11

It is evident that these scores tend to have much lower scores in comparison to the other mood states within the POMS instrument.

During Athlete A's short course season, her top five performances (meets C, F, L, O, and P) reflected pre confusion scores that ranged from 1-6 and post confusion scores that ranged from 0.3. With the exception of meet "P" which had equal pre and post confusion scores 1 , the data generally showed that her pre confusion scores were a little higher than her post confusion scores with the highest difference being 3 for meet "F". Athitete A 's botom five shor course pertormances (meets A, B, D, H, and X) reflected her pre confusion scores that ranged from $1-5$ and her post confusion scores that ranged from $2 \cdot 5$. These scores do not show a general patern as meets "A" and "B" reflected higher post confusion scores than pre contusion scores, meet "D" indicated
equal pre and post confusion scores, and meet "H" and " K " showed higher pre confusion scores than post confusion scores.

Athlete A's 6 " ranked performance (meet "E") displayed a higher post confusion score (9/20) than a pre confusion score (6/20). Looking at the context of meet "E" it does seem accurate that her confusion score increased in the post performance setting as the outcome was not what she had expected.

During Athlete A's long course season (mect G, I, I, M, and N), her pre confusion scores ranged from $3-7$ out of 20 and her post confusion scores ranged from $5-11$ out of 20. Her long course scores reflected the highest confusion scores across the season with a pattem of higher post confusion scores than pre confusion scores, which may reflect the importance of the meet as well as the performance outcome.

Pre/Post Fatigue. In general, as shown in table 23, Athiete A's pre performance fatigue scores ranged from $2-15$ out of 20 and her post performance fatigue scores ranged from 3-18 out of 20 (See Appendix I). The general tendency would be to see higher post perfomance fatigue scores, as this would reflect the amomet of effor and physical exertion put out in her performances as well as the type of training endured before the competition (i. .e, existing training phase).

Table 23
Summary of Pre/Post Fatigue (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Fatigue (20)	Post Fatigue (20)
A	10	Keyano Cup \#1	1.05 .73	12	13
B	8	Goldfins (H)	1.05 .09	7	3
C	4	Goldfins (F)	1.03 .69	2	8
D	11	Keyano Cup ${ }^{\text {a }} 2$	1.06 .48	15	18
E	6	Nationals (H)	$1: 04.06$	6	7
F	2	Nationals (F)	1.02.18	5	6
${ }^{*} \mathrm{C}$	5	US Open (H)	1:07.21	7	11
H	7	Keyano Cup \#3	1:04.92	3	7
*	2	Pan Pacs (H)	1:05.27	2	6
*	1	PanPacs (F)	1.04 .56	2	8
K	9	Westerns (H)	1.05.41	6	10
L	3	Westerns (F)	$1: 02.26$	8	5
*M	4	Canada Cup (H)	1:07.07	8	14
* N	3	Canada Cup (F)	1:06.60	8	8
0	5	Senior Champs (H)	1:03,80	9	6
P	1	Senior Champs (F)	1.01 .80	2	3
* Denotes long course meets			Range	$2-15$	$3-18$

Throughout Athlete A's top five short course performances (meets C, $\mathrm{F}, \mathrm{L}, \mathrm{O}$, and P), her pre performance fatigue scores ranged from $2-9$ and her post performance fatigue scores ranged from 3-8. Generally, Athete A's post performance fatigue scores were higher than her pre performance fatigue scores with the exceptions of meets "L" and "O" where the opposite occurred. Also, the tendency seemed to be that her pre performance hatigue scores were low to moderate, which tended to mirror her post performance fatigue scores, which were also tow to moderate.

Athlete A 's bottom five performances during her shor course season (meets A, B, D, H, and K) revealed that her pre perfomance fatigue scores ranged from $3-15$ and her post perfomance fatigue scores ranged from $3-18$. Within these results, the overall trend was for Athicte A's pre performance fatigue scores to be lower than her post perfornance
natigue scores with the exception of meet " B " where the opposite is true. In contrast to Athete A's top sive performances, her levels of fatigue tended to be much higher in both the pre and post performance settings during her bottom five performances, which could be a reflection of her perfomance outcomes as well as a reflection of her training phase that these performances occurred within. For example, meets "A" and "B" were held at the beginning of the season where training is just beginning and volume systematically increases. Meet "D" occurred just as the taper phase began, meet "H" occurred ater two consecutive weekends of high-level competition, and meet " K " occurred after a high volume training camp away from home.

Meet "E" for Athlete A showed a pre fatigue score of 6 and a post fatigue score of 7. Based on the outcome of this performance, her post fatigue score reflects the lack of efort put out in this performance as she indicated that she took for granted her ability to make an A-final (field notes, 2003). The lack of effor resulted in Athlete A qualifying for the B.final (meet "P") and not the A-final (top eight) as hoped/expected.

The general pattem of higher post performance fatigue scores seemed to be evident during Athlete A's long course performances (meets G, I, J, M, and N). Her pre fatigue scores ranged from $2-8$ and her post fatigue scores ranged from $6-14$. The only exception to the general pattern was meet " P " where both pre and post C 號gue scores were equal. Again, just as in Athlete A's top five short course performances, her post fatigue scores obviously reflected the amomt of effor put out in cach performance, as they are within the moderate to high levels of fatigue.

Pre/Post Depression: Table 24 illustrates that overall, Athete A's pre performance depression scores range from 0-6 out of 28 and her post performance depression scores range from $0-21$ out of 28 (Sce Appendix JJ).

Table 24
Summary of Pre/Post Depression (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Depression (28)	Posi Depression (28)
A	10	Keyano Cup \#1	1:05.73	0	8
B	8	Goldfins (H)	1:05.09	0	1
C	4	Goldins (F)	1:03.69	0	1
D	11	Keyano Cup +2	1:06.48	2	6
E	6	Nationals (H)	1:04.06	4	12
F	2	Nationals (F)	1:02.18	6	0
*G	5	US Open (H)	1:07.21	0	21
H	7	Keyano Cup ${ }^{\text {H }}$	1.04 .92	0	0
*	2	Pan Pacs (H)	1:05.27	3	15
\%	1	Pan Pacs (F)	1:04.56	3	17
K	9	Westems (H)	1:05.41	4	9
L	3	Westems (F)	1:02.26	1	0
* M	4	Canada Cup (H)	1:07.07	5	21
*N	3	Canada Cup (F)	1:06.60	4	6
0	5	Senior Champs (H)	1:03.80	5	0
P	1	Semior Champs (F)	1:01.80	0	0
* Denotes long course meets			Range	0.6	0-21

Athete A's top five performances during her short course season (meets C, F, L, 0, and P) revealed her pre performance depression scores to range from $0-6$ and her post perfomance depression scores to range from $0-1$. Interestingly enough, the lowest and highest pre performance depression scores occurred during her top five perfomances. Three out of her top five perfomances have indicated higher pre performance depression scores than post perfomance depression scores, which could be reflective of her satisfaction with her performances.

Athiete A 's bottom five periormances during her shor course season (meets A, B, D, H, and K) showed that her pre performance depression scores ranged from $0-4$ while her post perfomance depression scores ranged from 0-9. The general tendency was that her pre depression scores were lower than her post depression scores. This could be reflective of her dissatisfaction with her performance outcome.

Athlete A's 6" ranked performance (meet "E") showed a pre depression score of 4 and a post depression score of 12 . Again, due to the importance of the meet and the outcome of making the B-Iinal, clearly her disappointment is apparent and as such the dramatic increase in her post periomance depression score.

During Athlete A's long course season (meets G, I, J, M, and N), her pre depression scores ranged from 0.5 and her post depression scores ranged from $6-21$. These values are quite different from her short course season results, allowing for the clear distinction between short course and long course within the spot of swimming.

Pre/Post Confidence. Table 25 shows that overall, Athlete A's pre performance conidence/esteem scores ranged from 1221 out of 24 and her post perfomance confidence scores ranged from 322 out of 24 (See Appendix KK).

Toble 25
Summary of Pre/Post Confidence (POMS) across the Season

Label	Ranking	Meet	Outcome	Pre Confidence (24)	Post Confidence (24)
A	10	Keyano Cup ${ }^{\text {P1 }}$	1:05.73	18	11
B	8	Goldfins (H)	1:05.09	19	18
C	4	Goldfins (F)	1:03.69	19	20
D	11	Keyano Cup ${ }^{\text {\% }} 2$	1:06.48	12	10
E	6	Nationals (H)	1:04.06	16	9
F	2	Nationals (E)	1:02.18	17	20
* G	5	US Open ((H)	$1: 07.21$	16	3
H	7	Keyano Cup \#3	1:04.92	19	19
*	2	Pan Pacs (H)	1:05.27	17	9
*	1	Pan Pacs (F)	1:04.56	14	8
K	9	Westerns (H)	1:05.41	18	11
L	3	Westerns (F)	1:02.26	17	20
\% M	4	Canada Cup (H)	1:07.07	12	5
*N	3	Canada Cup (F)	1:06.60	16	13
0	5	Senior Champs (H)	$1: 03.80$	16	18
P	1	Senior Champs (F)	1:01.80	21	22
* Denotes long course meets			Range	12-21	3-22

During Athiete A's shor course season, her top five performances were meets C , $\mathrm{F}, \mathrm{L}, \mathrm{O}$, and P . The range for her pre confidence scores was $16-21$ and the range for her post confidence scores was $18-22$. The scores are quite consistent indicating that her pre confidence scores were lower than her posi confidence scores and generally differed by a maximum of 3 points. Athlete A 's botom hive performances during her shor course season (meets A, B, D, H, and K) showed her pre perfomance confidence scores ranged from $12-19$ and her post performance confidence scores ranged form 10-19. Generally, her pre confidence scores tended to be higher than her post confidence scores with the outcome of her perfomance clearly reficcted in her post performance confidence scores.

For meet 'E", Ahlete A 's pre performance confidence score was 16 and her post performance confidence score was 9. Based on the importance and result of this
paticular performance, her post contidence score reflected her displeasure within herself as well as her lack of assurance in her ability to perform.

During Athlete A's long course season (meets G, I, J, M, and N), her pre perfomance confidence scores ranged from $12-17$ out of 24 and her post performance confidence scores ranged fom 3 -13 out of 24 .

Post Performance

MSRS. Table 26 demonstrates that overall, Athete A"s readiness scores ranged from $35 \%-88 \%$ and her assessment scores ranged from $22 \% \% \%$ (See Appendix LL).

Table 26
Summary of Readiness and Assessment Scores (MSRS) across the Season

Label	Ranking	Meet	Outcome	Readiness Score (\%)	Assessment Score (\%)
A	10	Keyano Cup \#1	1:05.73	35	25
B	8	Goldfins (H)	1:05.09	74	59
C	4	Goldfins (F)	1:03.69	82	71
D	11	Keyano Cup \#2	1:06,48	36	32
E	6	Nationals (H)	1:04.06	36	31
F	2	Nationals (F)	1:02.18	86	73
\% C	5	US Open (H)	1:07.21	65	22
H	7	Keyano Cap \#3	$1: 04.92$	78	76
*I	2	PanPacs (H)	1:05.27	68	41
*	1	PanPacs (F)	1:04.56	75	32
K	9	Westerns (H)	1:05.41	66	34
L	3	Westerns (F)	$1: 02.26$	79	69
*M	4	Canada Cup (H)	1:07.07	49	31
W	3	Canada Cup (F)	1:06.60	69	49
0	5	Senior Champs (H)	1:03.80	60	61
P	1	Semior Champs (F)	1.01 .80	88	66
Denotes long course meets			Range	35-88	22.76

Athlete A's tendency was to have higher readiness scores than assessment scores across the meets with the exception of meet "O".

The largest diferences between Athlete A's readiness and assessment scores was during her long course season (meets $6,1,2, M$, and N). The range was $16-43$ percentage points with the higher differences occuring during heat swims a_{i} international competitions.

In addition to completing the MSRS, Athlete A as well as her coach were required to rate each performance on a scale of $0-10(0=$ poor perfomance and $10=$ excellent performance) (Hogg, 2002) as show below in table 27.

Table 27
Summary of Coach and Athlete A's Post Performance Retings across the Season

Label	Ranking	Meet		Physical	Technical	Tacticat	Mental	Overall
A	10	Kegano Cup \#	Coach	-	-	-	-	6
			Athlese A	*	-	-	\cdots	6
B	8	Goldinss (T)	Conch	"	-	-	-	6
			Athlese A	-	*	-	-	6.5
C	4	Goldins (P)	Coach	-	*	-	-	8.5
			Athere A	-	-	-	-	8
D	11	Esyano Cup ${ }^{\text {\% }}$	Coach	8	8	6.5	5	6.9
			Athlete A	5.5	6.5	7	6	6.3
E	6	Nationais (H)	Comeh	9	8.5	7	4.5	7.3
			Athete A	4	4	4	3	3.8
\%	2	Nationals (T)	Conch	9	8.5	9	9	8.9
			Athete A	8	8.5	9	9	8.6
\cdots	5	US Open(H)	Coxch	9	8.5	4	2	5.9
			Athlere A	3	3	3	5	3.5
H	7	Keyano Cup ${ }^{3}$	Conch	9	9	8.5	8.5	8.8
			Athles A	8	6	8	9	7.8
m	2	Pempecs (H)	Coach	Conch did not go to Austrulia				
			Athete A	6	7.5	5	6	6.1
$* 3$	1	Pan Pacs (F)	Couch	Coach did not go to Australia				
			Atuete A	7	7.5	7	7	7.1
K	9	Westerns (H)	Comeh	8	8	6	7	7.3
			Athere A	5	5	5	7	5.5
L	3	Westerns (F)	Coach	9	9	9	9	9
			Athlete A	7.5	8	8.5	9.5	8.4
知	4	Canda Cup (T)	Coach	9	9	6.5	2.5	6.8
			Abhete A	5	6	6	5	5.5
*	3	Cannda Cup (\%)	Cosch	9	9	7.5	6	7.9
			Atheta A	6	5	6	6.5	5.9
0	3	Semior Chamas (I)	Conch	8	7	6	8	7.3
			Athete A	7	6	7	6	6.5
p	1	Senior Champs (F)	Cowh	9	9	9	8	8.8
			Athete A	8.5	7.5	8.5	0.5	8.5

* Denotes long course meets

Each perfomance rating was divided in to the four components of perfomance which are: the technical, tactical, physical, and mental. An average score across the four components was calculated to attain an overall assessment of the performance. With the exception of meet "A" where both Athlete A and her coach's ratings were equal and meet
"B" where Athete A's rating was higher than her coach's rating, all the other swim meets reflected Athete A having a lower overall perfomance rating than her coach.

Qualitative Analysis

The analysis of data was done using the procedure created by Maykut and Morehouse (1994). Transcription of the audiotape was done verbatim, the data set was read over many times for familianity, and individual meaning mits were extracted from the transcript. The meaning units that were similar were grouped together and a single phrase that captured the essence of the units in the category was created. These phrases became the themes in which the data is presented. The meaning units under each theme were compared to verify that each meaning unit was categorized under the proper theme. This was done using the constant comparative method (Glaser \& Strauss, 1976, Lincoln \& Guba, 1985).

The data analysis identified 10 main themes summanizing Athlete A's reflections of her performance states over the 6 month data collection period. These themes include: the montoring process, anxiety, confidence, concentration, motivation, recovery, preparation, performance, technique (physical), and future plans.

Athlete A found the actual monitoring process both a positive and negative experience. The later really stemmed from the process being long, repetive, and difficult to do on her own, "Well, just repetitive basically, they were just always the same thing over and over" (Athlete A, 2003). The fomer initiated an in depth look into her thoughts and feelings in the pre and post performance setting, ".. I think thelped me realize how I was feeling mentally, I was able to like understand whether I was certain or
uncertain or how prepared I was basically" (Athlete A, 2003). In addition, it also allowed her to increase her awareness of her psychological states prior to racing.

Athlete A commented on both her cognitive and somatic anmiety states as being factors affecting her perfomances. Her perception of cognitive anxiety, under the guise of negative thoughts and self-doubt were a hindrance to her perfomances whereas, somatic anxiety in the forms of feelings of queasiness ("butterfies") and increased heart rate were perceived as facilitative to her performances. Athlete A also indicated a positive relationship between somatic anxiety and confidence, "it shows that I'm ready, and I can do it", as well as, somatic anxiety and drive," "it's a good thing because $\frac{1}{2}$ brings out the drive sort of thing".

In the area of confidence, Athlete A noted specific boosters and downers of her confidence states in relation to her levels of drive and preparation. Apparently, throughout her season, Athlete A did not identify any confidence boosters but now finds that when there is litte or no competition, absence of pressure, and zero mental blocks, her confidence increases. On the other hand, the primary reason for Athlete A possessing low confidence levels was due to "not hitting the goals I basically wanted to hit",

Another psychological thene identified in the interview was the construct of concentration. In her reflections, Athete A found her concentration and focus being affected by: specific training sets (c.g, high volume and boring sets), and specific race detail, ${ }^{66}$.. When I am sometmes in a race and something goes wrong like the tum, wight, or just something like that, then I just start to think about that specific detail and I don't really concentrate on the rest of the race..." (Athete A, 2003); and socialenviromental factors (e.g., teammate's problems or catching up on school work), "...but also at Canada

Cup, I was thinking about other people's problems more than my own swimming, so that was a distraction" (Athlete A, 2003).

In terms of Athlete A's motivation levels, she could summarize them in two words, "go fast". She repeatedly used those words which meant that she always knew that she could go faster than her actual times," know that there is so much more in me, I know that I can swim so much faster, and I just want to be able to finally get it all out and have this amazing swim". Athlete A's motivation was also both intrinsic and extrinsic in nature. Intrinsically she was driven by select emotions (e.g., anger) and possessed a strong belief in herself (e.g., self-assurance). Extrinsically she was driven by friends of equal or better ability and monetary rewards.

The theme of recovery reflects Athlete A's ability to physically and mentally relax prior to a major competition, "I love recovery, I feel like I'm just more relaxed and I swim fast when I am recovered" (Athiete A, 2003). Athlete A deemed cating, slecping, and hanging out with friends outside the swimming environment important for optimum recovery, "...just hanging out with people I don't see at the pool all the time, and just get a different atmosphere totally, just nof really thinking about swimming".

The themes of preparation, performance, and technique are interelated as both preparation and techmique had effects on Athlete A's overall performance process and outcome. Athlete A competed in two extremely critical compettions which provided her with valuabie experience as well as knowiedge in regards to her own personal preparations, "..both in my physical preparation and my mental preparation, it was kind of just like wow, it opened my eyes you know and it showed me what I was doing wrong and what I was doing right". Specific to physical preparation, another theme of technique
emerged. Athlete A differentiated between "舑额 swimming" and "slow swinming" with the technical aspect of her performances. Improving starts, tums, and finishes were critical steps necessary to help Athlete A improve on her times.

The theme of performance encompassed a variety of factors. Overall, Athete A perceived her season to be inconsistent with the types of competitions (e.g., club meets versus international meets), timing of races (e.g., moming heat races versus night final races), importance of competitions, and goal attaiment as reasons for her inconsistencies. Common perceptions and behaviors for Athlete A were: (1) night swims are more important than moming swims, "I don't usually feel ready in the moming.. it also has to do with the amosphere right, cause at night it's like okay I'm ready, everyone is watching and 1 have to swim fast...", (2) 200 m backstroke is scarier than 100 m backstroke, "... I'm not scared, well I do get scared to some extent.. I have such a mental strain, I don't know, I don't know what it is, and I want to get rid of it...", (3) chub meets are not as important, "I don's really care about club meets, it's amost a joke for me, how can you not treat it differently, I mean at an international meet you are like sumounded by all these fast people and you feel like you have to go fasi to show them who you are you know. And at the club meet it's just like you don't really care", (4) not reaching set goals is frustrating, and (5) taking performances for granted, "..I almost thought for sure I would make the final, and I took that for granted, which sometmes I tend to co, which is very brd".

The last theme that emerged from the data was the future. Athlete A views her future in swimming as heading in a positive direction; specifically moving to higher levels of competition, "... want to make the Pan Am team. . I know I n ready and I know

1 can go in there and just swim so fast and make this team" (Athlete A, 2003). By using the knowledge and tools provided from this study both physiologically as well as mentally/emotionally, Athlete A reels she can be ready to achieve consistent performances.

CHAPTER 5

Discussion

The current research addressed four different purposes. The first purpose was to extend the application of the IZOF model and anxiety by monitoring various other psychological constructs (i.e., anxiety, confidence, concentration, motivation, mood states, and recovery-stress) across a season. This was achieved by using various trait (SAS, CASS, SMS, CSCI, RESTQ-Sport) and state (CSAI-2, MRF, POMS, MSRS, AGI) instruments as well as a post season interview. Furthermore, descriptions of these constructs were made using Hanin's psychobiosocial state dimensions of form, intensity, content, context, and time.

The second purpose was to develop and use a pre periormance athlete-generated instrument (AGI) in addition to the existing psychometric instruments to create a unique and individualized profile. The AGI measured the four major performance factors (anxiety, conifdence, concentration, and motivation) using four, ten-centimeter bipolar lines on which Athlete A indicated the intensity of her psychological state at that particular time. According to Athlete A, the AGI was appealing to her because she understood the words she had chosen since they had personal meaning and she could relate them to her own experiences. On the other hand, there were words on the other questionnaires that she did not understand the meaning of and as a result had to ask the investigator a number of times to clarify the meaning. This would have important consequences such as potentially inaccurate data due to the lack of understanding and comprehension of words.

The third purpose was to become aware of the mentallemotional experiences of Athlete A through profiling and monitoring her throughout her competitive season using both qualitative and quantitative methods. 艮 was beneficial to conduct a post season interview as well as to engage in informal conversations with Athlete A as further support to the questiomaire data collected. At times it was difficult to fully understand the levels/intensities of a particular psychological construct. Clarity of these values energed after understanding the context in which the data was collected (e.g., type of competition, timing within the season, social elements). In creating a psychological profile and taking the time to discuss the personal reflections of Athete A and her performances, a better understanding and a complete picture could be described. The advantage of this is primarily in creating a psychological skills training program targeting Athlete A's weaknesses while at the same time encouraging her to continually maximize her strengths (Butler, 1997). Also, proniling Athiete A encourages a further understanding of the athete from a coach and sport psychologist perspective and more importantly promotes her own self-understanding (Butier \& Hardy, 1992).

The fourth and last purpose was to identify patterns in the mental/emotional component of Athete A's perfomances through repeated measures and observations. This of course was achieved by following Athlete A for a six-month period (September 2002 March 2003). Constructing this profile was interesting in the sense that it depicted Athete A's performances visually/pictorially. Furthermore, showing Athete A her profile has powerfu implications from an applied spor psychology perspective because it is in some ways giving the athete the "Truth". It is making the athlete become responsible and accountable for her perfomances and at the same time shedding light on
areas that are dominant as well as those that must be improved upon (Butier, 1997). In other words, the athete does not have the option of making excuses for poor perfomances when they are documented and presented to them.

In regards to the trait questionnaires, Athlete A demonstrated consistent results across all measures for both data points with the exception of the CASS questionmaire. Between the first and second measurement, the largest discrepancy occurred in the concem category. Specifically, factors 1 (ego threat), 3 (skill level), 4 (perceived importance), 3 (social debilitation), 7 (real-life stressors), 8 (on-going performance), and 9 (personal expectations) all decreased in concen from the beginning of the season to the end.

According to Athlete A during her post season interview, her concems in each of these factors decreased as the season went on because her "focus tended to narrow from parents, support systems, and uncertainty of performance, to more race specific concerns" (Athlete A, 2003). Further, the more focused in this one area she became, the less concerned she was about the other factors because they lacked importance that her raceperformance gained as the season progressed.

According to the nommative data provided by Marchant et all. (1997) for the frequency scale of the CASS questionaire, Athete A is above the nom for factors 1 (ego thrat), 2 (perceived readiness), 3 (skill level), 4 (perceived imponance), 7 (reallife stressors), and 8 (on-going periomance). Athete A is below the nom for factor 5 (social debilitation) and consistent with the norms for factors 6 (parental expectations), 9 (personal expectations), and 10 (perceived uncertainty). In other words, Athlete A has the tendency to worty more about factors affecting her swimming compared to other female
athetes who have also completed the CASS questionnaire. Specifically, she wories more about her competencies and capabilities as a swimmer, how ready she feels before a competition, her technique, the importance of the competition, stressons outside of swimming, and whether or not she is improving in her sport. The factors she wories about suppor the cognitive anxiety data from her interview where she describes her self doubis (e.g., training, school, etc.) and their effects on her performance.

In addition, the results from the SMS indicated that although Athete A is neither more extrinsically nor intrinsically motivated, she does show a non significant increase in intrinsic motivation closer to the end of the season. Perhaps this indicates her desire to make a national team since the opportunity did exist later on in the season, "..this summer's trials, because I really, really, really, really, really, really want to make the Pan Am team and I just basically have my hear set on it... I know I'm ready and I know I can go in there and just swim so fast and make this team" (Athete A, 2003).

For Athete A, anxiety, concentration, confidence, and motivation within the competitive swimming environment are fairly constant dispositions that can be measured over time with accuracy (Manzo et al., 2001; Pelletier, et al., 1995; Smith et al., 1990).

The RESTQ questionaire was given to Athete A four times throughout the data collection period. Low to moderate levels of general stress and fuctuating levels of general recovery were found after the first measure. In addition, moderate levels of sport specific stress and recovery were also documented. One week prior to a major competition, it is important for Athete A to mentally/emotionally and physically recover from high volume training in order to optimally prepare to compete at a high level competion. The data indicate that Athete A experienced somatic stress in the foms of
soreness, physical complaints, fatigue, and exhaustion one week prior to that particular competition. Furthermore, during that national competition, Athete A did complain about not feeling ready to compete, a lack of good training, and fatigue (Field notes, 2003). Ideally, for optimal performance, suficient time and adequate resources are necessary for recovery to balance increased stress levels (Kellmann \& Kallus, 2001).

The second measure taken after a long training camp (wo weeks) and a major international competition indicated a drop in the general recovery area which is contrary to a healthy, positive frend necessary for complete recovery from any type of stress. Athlete A's sport-specific stress levels decreased slighty which is a good indicator of positive recovery. Unfortunately, the sport-specific recovery category reflected a decrease in recovery levels which may possibly be a sign of Athete A's difficulty in effectively coping with sport-specific stress.

The third measure taken during a high volume training camp in Hawair displayed a positive trend with general stress decreasing, general recovery increasing, sport-specific stress increasing, and sport-specific recovery increasing. The demands of a high volume training camp are quite intense and require the athete to train up to thee times a day. Consequently, atraining camp of this magnitude is held away from home to minimize distractions (e.g., school, family, friends, daily hassles). Athlete A's data acknowledge that she is capable of handing the demands of a training camp.

The fourth measure taken after two najor competitions indicated a general and sport-specinc pattem that was contrary to a healthy recovery pattern and should be a concem for both Athlete A and her coach, in terms of coping with stress in Athlete A's general life as well as her competitive swimming life. Specifically, Athlete A's general
life showed an increase in scores for conflicts, pressure, and social stress, whereas, in her sport-specific area, her scores for bumoutemotional exhaustion increased dramatically. The context in which this neasure was taken was quite emotional for Athete A. At this paricular time, Athlete A was dealing with teammates leaving, catching up with schoolwork, and coping with issues regarding her significant other. As Athete A claimed at the end of meet " N ", "I just want to throw my head away!". She also went on to say, "... we came home and all these people all of a sudden said they were leaving... and then I had all this stum at school I had to work out... it just seemed like there were all these problems" (Athlete A, 2003).

When comparing these general life scores to those taken from the second measure of the CASS (factor 7 - reallife stressors), some discrepancies can be found. Specifically, the CASS scores were low whereas the RESTQ scores were higher. The RESTQ was given one week after the last swim meet which turned out to be when Achlete A was dealing with a lot of enotional baggage. The CASS questionnaire was given approximately a week and a half after the RESTQ was given in which Athete A had dealt with most of the issues. She had enough time to catch up on homework, deal with her significant other, and come to tems with some of her teammates/friends leaviag. Consequently, ater taking the CASS questionaire, concems she would have had mostly dissipated by that time.

In summary, with the exception of the third neasure, Athiete A seemed to have a difficult time recovering from stress not only in the spor-specific seting, but also in other sreas of her life. The pattem seemed to get worse; as her stress increased, her ability to cope and recover from this stress decreased.

The findings for the rest of the data are quite interesting as there is no distinct pattem in the results and no definte relationships which can be validated. Although a disappointing finding, it would be naive on the patt of the researcher to expect to see ideal patems and relationships emerge from the data collected. The lack of picture perfect results could be atributed to many external factors affecting this athlete which unfolded throughout this competitive period and may have strongly influenced the outcomes of her performances. For example, type of meet, perception of success, team/friendship dynamics, or simply being physically tired at that particular time during the cycle (Field notes, 2003). Inconsistent results in terms of outcome as well as scores within the data were found.

Amxiety

In terms of data collection, all state instruments were administered on average one hour prior to and one hour post performance (time dimension) and only during competitive swim meets (context dimension) where Athete A paricipated in her main event. In interpreting the anxiety data, Athete A found that cognitive anxiety, mainly in the form of self doubt, for example, feeling apprehensive and unsure (Field notes, 2003), "... well, if it's in my mind, like if it is mentally, it is bad, because I know, like I mean doubts, it's always bad, there is not a way to get around that" (Athlete A, 2003), was debilitating to her performances (Burton, 1988). Although her long course season performances were not her desired performances, cognitive anxiety levels tended to be higher prior to her top two performances out of the five she swam in. These performances occurred at her first intemational swim meet where she represented her country for the first time in her swimming career. On the other hand, during her short course season,

Athlete A's cognitive anxiety prior to racing tended to be low to moderate which was conducive for more successful performances. According to Athlete A, the word certainty/uncertainty tended to relate most to her states of cognitive anxiety, Athete A associated cerainty/uncertainty with her confidence levels and rouvd that prior to racing, she engaged in thinking about negative things. ".. I feel totally confident in myself but sonetimes I just have uncertainties, I look back on my training and I don't look at the good stuff, I look at all the bad stuft...like slacking of and missing workouts - or not training as hard as I should have" (Athicte A, 2003). In other words, being "certain" meant decreasing the negative self-dialogue she usually engaged in prior to racing. In this instance, her anxiety prior to racing seems to be more cognitive than somatic and she tends to nd a positive relationship between her feelings of certainty and perfomance. No relationship was found for the AGl questionnaire for Athete A's long course season, but she did display a positive relationship between her levels of certainty and performance outcome for her short course season.

Athete A's experience of somatic feclings (butterfies or increased hear rate) (Field notes, 2003) was perceived as facilitative to performance, "...tt's a good feeling, it shows that I'm ready, and that I can do it" (Athete A, 2003). Jones of al. (1994) and Jones and Hanton (1096) have supported the idea of somatic mwicty as faciltative bo perfornance for swimmers perceiving positive expectations. In addition, Hanton and Jones (1999a) found that male swimmers viewed their anxiety symptons as facilitative the more mature and experienced they became. Perhaps this is the case for female swimmers as well. Across the season for both shon and long course meets, low to
moderate levels of somatic anxiety approximately one hour prior to perfomance seemed to produce successful performances for Athlete A .

Although the intensities of both cagnitive and somatic anxiety necessary for optimal performances are inconsistent, the interpretation of Athete A's anxiety is quite definitive as she deems cognitive anxiety as debilitative and somatic anxiety as facilitative to performance. "...if I feel physically, like if I have butterfies, or if my heart starts pounding, it's a good thing because it brings out the drive sort of thing, and I usually have some sort of butterflies...so it's a good thing, it shows that I'm ready and that I can do it" (Athlete A, 2003).

Conhonce

Athlete A's confidence indicated no clear cut pattems or relationships to emerge from the data collected. Higher levels of confidence appeared prior to best time performances during her shor course season (Burton, 1988), during final swims in her long course season, and also at meets Athlete A deemed as important These performances allowed for Athlete A to increase her conficnce by demonstrating to others her swimming ability (e.g., coach, other swimmers, other coaches) and the cavironment favored Athiete A to perform successfully (i.e, good competition, Athlete A being favored to win) (Vealey ef al, 1998). For the CSAl-2 and MRF scales, the data shows a tendency for Athete A to possess higher levels of confidence prior to competing in order to increase the probability of a successful performance. According to Athlete A's personal instrument, confidence was described as a feeling of pride, "...tt's a reeling when you finish first or when you win, or when you have a really good performance and let's say, the coach is really proud of you and your teammates are really proud of you,
and you accomplish something so big and I just feel really proud to be a swimmer and to have spent all this time training for that one moment..." (Athlete A, 2003). Her sense of pride emerges prior to a race when she experiences a moment that acknowledges bow she has come to that point and that regardless of the anticipated outcome; she is good for just making it that far. "... I was just standing there before my race, I was like, you know what, regardless of the outcome of this race, I have made it this far and I am good for standing here at this final of the National competition and I just felt really proud" (Athicte A, 2003). In other words, she feels no real relationship between her sense of pride and performance outcome prior to her swim, but feels that there is a positive relationship in the post performance seting. For example, after a heat swim she realizes that she has made a final, "... when I made the final in the 50 meters and I was in lane eight and I was - okay I'm in lane eight, I'm swimming next to the Canadian record holder, and I felt so happy just to be there, and everyone was cheering and I was on television.. some poople will never get this feeling" (Athlete A, 2003). Also, when she has achieved something significant after a final swim, "... if afer the race I accomplished something really big, I would be like, well I'm proud of myself for being able to accomplish this at such a small compctition... if I can do it here, I can do even better at a bigger competition" (Athlete A, 2003).

Therefore, in keeping with the data, higher levels of confidence or a sense of pride energed at meets where without a doubt she knew she could perform successfully, as well as, at meets she perceived as important to her overall swimming career (e.g., international swimming events).

Concentration

The psychological construct of concentration according to Athlete A was described as a feeling of being focused and ready prior to competing, for example, focusing on the race, not worrying about other competitors, and focusing on having a good time outcome (Field notes, 2003). "...because when I mm focused, I do the opposite and I think of all the good things I have done. So Ithink of all the times that I have done really good workouts and I think of all the good accomplishments that I have had up to this point and I kind of look back on them and say to myself, if I did it then, then I can do it again now only faster and better" (Athlete A, 2003). Athlete A also described a positive relationship between her feelings of being focused and ready, and the outcome of her performance, "..I'm just ready, I'm ready for the race, I'm ready to take on the challenge, I'm ready to fight..." (Athlete A, 2003).

The data collected reflected some inconsistencies but overall indicated a positive relationship between her pre perfomance concentration/focus/readiness and performance outcome as evident in her top five shor course meets (C, F, L, O, P) as well as in meets "J" and "N". This relationship however, is dependent on the circumstances surrounding the performance. For example, during races, Athete A's focus may waiver as a result of a bad turn which causes her to overanalyze her mistake and stray away from being in the here and now, or simply thinking about "other people's problems more than Her own] swimming" (Athlete $\mathrm{A}, 2003$). For example, surrounding meets " M " and " N ", Athete A dealt with issues around teammates leaving the following season, distractions of school, and problens with her significant other. Furthermore, these instances where she loses focus has a direct impact on her performance outcome, "... the race is usually lost, it's
hard to get it back... sometimes it's because I had a bad tum so I have to go even faster to make up for that turn, so basically it just depends on the situation" (Athlete A, 2003).

Motivation

Athete A's sense of motivation was described as a driving force she felt prior to competing in a race. "... I have this drive inside of me and I want to win and I want to touch the wall and see my name first. And I want everyone to be happy and cheer for me and I want the announcer - I just have this inside me, I just want to win" (Athlete A, 2003). Athlete A admits that her drive does not always exist, "Well, Nationals of course... um all the other smaller meets, I mean they are not really, I don't really have that drive and that motivation to win" (Athlete $\mathrm{A}, 2003$). Specifically, her drive is strong at very competitive, higher level meets and minimal at smaller meets where she is quite apathetic whether she wins or loses. Triggering this driving force comes from wanting to pursue excellence, wiming and rewards (Watson et al., 1984, 1985), and having clearly defined goals that must be challenging and that have a highiy desired outcome (e.g., making a national team). "... I have just been thinking about making Pan Ams and I think that has been a really big motivation for me... I have to train hard, I have to do all this stuf, you know, flexibility, dyland, ruming, stretching because I know I am going to have to swim a lot faster that I have been to make Pan Ams..." (Athlete A, 2003). Therefore, this driving force is semingly both internal and external in nature. During the course of the season, Athlete A's motivation levels were inconsistent and varied according to the type of meet she competed in Her degree of drive can hit high levels indicating a strong desire to win and ultimately positively afecting her pertomance, but can also occur at lower levels indicating that she does not regard the meet as all that
important Perception of the ype and importance of meet is a critical ractor for Athete A's motivationdrive levels prior to pertomance.

Mood States

Depending on the specific circumstances surounding a particular swim meet (e.g, school pressure, high volume training, social factors, ecc.), Athlete A's mood states tended to fluctuate dramatically across the season. The general pattern in the pre performance setting was to have higher levels of vigor and confidence and low levels of confusion, depression, anger, fatigue, and tension. At times, Athlete A displayed moderate levels of tension and fatigue scores supporting Raglin ef al.'s (1991) data that female swimmers tend to score themselves higher on the tension component compared to other mood states. These levels may reflect extemal factors shat may have contributed to Athlete A's overall mood state. In the post performance setting, fluctuations in her mood states were apparent again with the most critical factor affecting the results being the outcome of her performance. Generally, Athlete A's post vigor scores remained stable, post confidence fluctuated depending on outcome as did her post tension, anger, confusion, fatigue, and depression scores.

The significance of the pre POMS scores are to identify Athete A's states of readiness whereas, the post POMS scores are responses to a race just completed (e.g. a heat swim) and have great imponance if another race is to follow (e.g.s a final swim). Ultimately, if this is the case, the enotional residue from the previous swin/race should be dissipated by the next race. For example, meet "E" and "F" were shot course national competition races. Meet " E " was a heat swim where her perfomance outcome was not satisfactory. Prior to this specific race, Athlete A felt "apprehensive and unsure, not too
excited to swim, and lacked belier in her abilities". Ather the race, she admitted to taking the race for granted and not feeling completely ready to compete. She did go on to explain that she would be able to get past this race and look forward to the upcoming final that night (Field notes, 2003). Prior to neet "F" which was the B-final of the same national competition, Athlete A's mind set was very positive and she felt quite determined to do well, "I'm pumped to swim this race, I'm excited and feel ready to go" (Athicte A, 2003). The outcone of this race was that she came first and achieved a best time. Athlete A's performance outcones ypically show slower times for heat swims and faster times for final swims which reflect her ability to control her moods from heats to finals, therefore, her scores on the pre and post POMS lead us to believe that she does have the ability to manage her moods so that they will not affect her subsequent performance(s) (e.g, final swims).

Post Perfomance

In the post performance setting, based on the MSRS data as well as the athlete and coach ratings, Athlete A tended to be quite critical in her evaluation of not only her performance preparations and overall performance (i.e., physical, tactical, technical, and mental), but also her perfornance outcome. Hogg (1999) suppotis this data of swimmers being overly critical in their evaluation of their overall performance when using the MSRS as their satisfaction scores tended to be lower than their readiness scores.

In particular with Athlete A, I found that in the post performance setting when she achieved a successful performance, her demennor was positive, happy, and excited. Her behaviors of cheering for her team, becoming hyper, hanging out with friends, and visiting other swimmers from different swim clubs (Field notes, 2003), were very evident
after a successhil performance. However, when an unsatisfactory porformance occurred, Athlete A's disposition was quite the opposite. She would become very quiet, stay away from her team, avoid speaking to anyone, sulk, and become very angry if anyone approached her (Field notes, 2003). When evaluating her performance in the areas of physical, technical, tactical, and mental, it was quite apparent from her body language (e.g., sitting further away from me, head was always down, spent a long time thinking), that she was not willing to give herself credit for her successes as they were never good enough. On the other hand, when her coach was assessing her performances, he had no problem giving credit where it was due and criticizing each area when it was wananted. Summary

Across the season, Athlete A competed in 11 short course swims and five long course swims (heats and finals). Based on the data collected, there seems to be a clear distinction between Athete A's perceptions of her short course and long course competitions which is evident in the differences found among the constructs studied. Athete A's shor course season comprised of a variety of meets ranging from small to large, less important to very important, and a low degree of difficulty to a high degree of difficulty. All of these factors may have contributed to her performance outcomes. On the other hand, Athlete A's long course season conyprised of very important, difficult, and highly competive national and international competitions. Her results dume the long course portion of her season could also be as a result of these factors.

Bascd on the analysis and discussion, it is apparent that the type and importance of meet, as well as, a variety of social and environmental factors contribute to the overall perfomanos of Athlete A.

CHAPTER 6

Recommendations and Future Directions
A profile of Athlete A's short course season ($\mathrm{N}=11$) was used to create her individualized perfomance profile because she achieved two best time performances. Athlete A's long course season on the other hand was not as successful. Within the sport of swimming, long course competitions are much more critical in that bigher level competitions (e.g., Pan American Games, Commonwealth Games, and Olympic Games) are all long course competitions (i.e, races are swum in a 50 m pool rather than in a 25 m pool). Therefore, it is important for Athlete A to continually improve her long course times in order to increase her chances of making the national team standard. Throughout the season (September 2002-March 2003), Athlete A competed in five long course opportunities; each significant in terms of their importance. Although Athete A did not perform poonly, she did not achicve any best time performances.

Prople

Figure 1 displays Athlete A's performance profile comparing the average of her top five short course performances to the average of her worst five short course pertomances.

Figure 1. Best w Morst Shon Course Pertormance Pronte for Ambete A

Overall, for Athlete A to achieve a best performance, she must possess low levels of pre perfomance cognitive anxiety, low to moderately-high levels of pre performance somatic anxiety, moderate to high levels of confidence, ws well as, high levels of motivation/drive, confidence/pride, anxiety/certainty, and concentration/focus. In addition, high levels of pre performance vigor and confidence, and low levels of tension,
confusion, anger, fatigue, and depression, will help to achieve a top level performance. On the other hand, low to moderate levels of pre perfomance cognitive and somatic anxiety, moderate levels of confidence and confidence/pride, moderate to high levels of motivation/drive and anxiety/certainty, low to moderately-high levels of concentrationfocus, and low to moderate levels of vigor, tension, anger, confusion, fatigue, depression, and confidence will likely result in a poor performance for Athlete A. Recommendations for Athete A

First, slower performances occurred during heat swims rather than final swims. Although this is physiologically strategic, mentally importance was not placed on heat swims. As a result, by failing to make the A-final Athlete A missed out on significant opportunities to challenge herself against the top 8 swimmers and make the podium. By taking heat swims for granted, she had to settle for competing in B-final swims (swimmer ranked 9-16). Therefore, Athlete A should use a strategy (e.g., corrective experiences) to now make is a priority to perform sufficiently well in order to qualify for the A-Inal.

Second, levels of somatic anxiety tend to be a helpful indicator of a successful perfomance as Athlete A needs to feel excited mentally and physically prior to performing. This tendency is negated when cognitive anxiety overrides somatic anxicty. In this instance, self-doubt and lack of belief in her training weigh heavily on Athete A's mind which ultimately affects her performance outcome. Fortifying unshakeable selfbelief and resilience are key ingredients of mental toughness (Jones, Hanton, \& Comaughton, 2002). As a result of buiding a strong foundation of mentai toughness prior to any perfomance, belief in self and her training program may perhaps result in
consistent performances, specifically, from heats to finals. Self-statement modification or positive self-talk, emotive imagery, and cognitive reframing may help her produce the appropriate somatic responses.

Third, is is vital for Athlete A to engage in a debriefing protocol after each performance to eliminate any mental/emotional residue prior to any subsequent periomances. Athlete A's emotional tendencies in the post perfomance setting, unless driven by anger, seemed to eat away and diminish the likelihood for performance success. By constructively asking and answering the right questions of her performance (Socratic dialogue) and creating a plan for the next performance, consistent performances may be achieved. The place of self-analysis and a didactic approach to debriefing her performance would be most beneficial in increasing awareness of her perfomance limitations.

Fourth, my observations of Athlete A lead me to believe that she thinks too far ahead. By focusing only on the end result (e.g., time outcome or making a team) she loses her sense of the process. Each performance is a stepping stone to her ultimate goal - by consistently preparing and caring about each performance (e.g., eliminate distractions, focus on positives) her goals and dreams may stant to appear closer. It is very imporant for this athete to chamel her attention towards task execution and completion.

Fifth, emotions tended to be a critical factor for Athlete A. Anger, confidence/pride, motivation/drive were desired emotions for successful performances. On the other hand, tension, uncerainty, and fatigue played prominent roles in unsuccessful performances. Athiete A's wilingness to learn how to focus in the hereandmow, minimize extemal distractions, and cope with fluctuating training,
environmental, and social hctors would be necessary to safeguard performances. Puting optimum emotions in place will ensure effective performance outcomes. Any dysfunctional cmotions will trigger ineffective coping responses.

Sixth, confidence is a critical psychological factor that affects perfomance. It is evident that Athlete A requires high levels of confidence to perform well and acquires this confidence from situations where she is favored to win, where there is "no pressure or mental blocks", and where there is a possible reward (e.g., money or recognition). Ulimately, Athlete A needs to persist in building her confidence levels so that they remain consistent regardless of the circumstances. In order to do this, it is impontant that she let go of previously poor performances through meaningful debriefing, prepares herself well physically and mentally, focuses on positive performances, celebrates successes, and sets realistic and achievable goals, or in other words, engage in the night behaviors.

Recommendations for Cach

First, to engage in productive and meaningful debriefing sessions with Athete A. Tease out critical details (i.e., strengths and weaknesses associated with the performance) of each performance in order to make subsequent performances solid and strong in cvery aspect (technical, physical, tactical, mental/emotional).

Second, as life experiences intict distractions on Athlete A's swimming performances, it is important to monitor these distractions and their impact, and help Athlete A focus with the best attentional dimension both in training and competition (Nideffer, 1993). In other words, help to create separation so that these external
distractions do not come to the forefrom at critical moments of a competition (e.g., just before a race).

Third, many doubts that Athlete A experienced were associated with trining and therefore, throughout the training process, it is important to have regular one-on-one meetings with Athlete A specific to training process and perfomance in order to increase her belief that her specific training plan is working. By including her in the process and allowing her to contribute ideas and opinions, she may feel much more confident and accountable and consequently this may eliminate any apathy.

Implications

Firstly, the LZOF model suggests that athletes have an individual zone in which their optimal performance is ilkely to occur. Utilizing psychometric measures on multiple occasions apens doors to detemine patterns and trends for a mental/enotionalperformance relationship across the season In addition to suggesting a "zone" and creating a profile, understanding the athete's mental/emotional states prior to, during, and post perfonnance is valuable across time for long term success.

Secondly, suggesting that each athlete is unique and individual (Hanim, 1995) can be validated through in-depth interviews and regularly scheduled twoway dialogue. Coaches are in a position where engaging in conversations and observing behaviors to acquire detaled insights into the thought and actions of their athletes is easily accessible on a daly basis. The opportunty exists for coaches and consultants alike to learn significant details about what makes each thete "tick" in both training and competivive environments.

Thirdly, mental training consultants are obligated to look into individual differences and create programs specific to the psychological tendercies and needs of each athlete. As well, the benefits of athletes reflecting on their past performances and seasons is an essential and vital learning tool for both the coach and athlete in order to create an cnviroment where evaluation and refinement is viable, and to acilitate the athete to the next level of perfomance. In addition, there are several cognitivebehavioral strategies that might be used effectively by both conch and athlete that need to be made specific to meet the demands of the competitive swimming environment (Mace, 1990).

Fourthy, by using existing instrumentation and creating a specific athetegenerated questionnaire or checkist, identifying which type of instrument lends itself to creating a more valuable snd precise profile of the athete could be quite informative.

Fifthy, the advantage to monitoring and eventually profiling an athlete across a season using repeated measures rests in the athetes' and coaches' ability to create and design aery individualized psychological skills training program (PSTP). According to Hogg's performance model (2000), plaming for peak performance entails: understanding, teaching, integrating, monitoring, evaluating, and refining. The current research attempted to explore the possibility of monitoring and profing perfomance across a season and by doing so, open the door to accurate perfomance assessment and subsequent refinement.

Strength and Weaknesses

Like all investigative research, the study has both strengths and limitations. Firstly, the study uses multiple and repeated measures acquired over a specific time
period (September 2002-Februry 2003) versus a single measure that obviously has limited interpretative powers related to performance outcome. This allowed for increased extemal validity across all data sources (coaches and 10 self-report measures) and a larger data set to analyze and interpret. The data collected generated a comprehensive psychological profile of the subject using Hanin's LZOF theorctical framework. The data also provided insights into the psychological variabies examined and whether or not the athlete views these as facilitative or debilitative in terms of her performance. It also provided new insights into how individual factors affect not only specific swim events, but also interactional effects among team members, and the relationship between the athlete's general life and competitive spont life.

Secondly, the interview process was advantageous in supporting the selfreport psychometric measures. The subject was encouraged to be open, honest, and comfortable in sharing het swimming experiences and their relationship to perceived anxiety, confidence, concentration, motivation, mental recovery, and mood states.

Thirdly, since previous use of the ILOF model has been limited to the construct of anxiety, it was hoped that by applying the model to other critical constructs (i.e., confidence, concentration, motivation, recovery-stress, and select mood states) a more comprehensive profile would be created. This is more likely to help the athiete achicve and maintain optimal levels of fwetioning both in training and in competition.

Fourthly, the creation of an athlete-generated instrument was mique in itself and certainly creates an oppontuity to explore the advantages associated with the use of individualized questionnaires in future research in the spot psychology field.

A limitation of the research was reflected in those typical disadvantages associated with self-report methods and interview techniques. There will always be social desirability concems related to perceived demand characteristics as well as the accuracy and honesty in expression that needs to be safeguarded. Selfreport measures are limited in themselves because they are simply subjective opinion of athlete's perceptions and their accuracy may be somewhat questionable, additionally, resulting data from this study could also be atributed to the non-use of swimming specific scales. Consequently, observations of the athlete in competitive situations in the past have been rather limited and the coach overly protective, but with the use of regular and repeated measures these limitations may have been reduced and uitimately climinated.

A second limitation of the study was the use of newly developed self-report research tools. The limitation lies in the lack of reliability and validity evidence since these instruments have never been tested for these psychometric properties before.

Future Directions

Future directions recommended from this particular research are: (1) to conduct longitudinal studies across a season or seasons using less instrumentation to generate a pertomance profle; (2) to explore the concept of individualized athlete questionnaires to accurately identify mental/emotional states; (3) to implement general coping strategies for the athete and test whether these targe her weaknesses; (4) to expand the current research by creating a PSTP program and evaluate its effectiveness in order to valicate the monitoring process; and (5) to monitor and profle athietes simultaneously in both the physiological and psychological areas in order to produce a descriptive and integrated picture of the athletes. Any of the above suggestions may be supported by a pilot study in
order for the researcher to gain experience in interproting specific and quality data generated from the monitoring process.

References

Amesi, ل. J. (1997). Threedimensional state anxiety recall: Implications for individual zone of optimal research and application. The Sport Psphologist, 11, 43-52.

Amesi, J. J. (1998). Applications of the individual zones of optimal functioning model for the mulimodal treatment of precompetitive anxiety. The Sport Psychologist, $12,300-316$.

Bar-Eli, M. \& Tractinsky, N. (2000). Criticality of game situations and decision-making in basketball: An application of performance crisis perspective. Psychology of Sport and Exerise, 1,2739.

Bandura, A. (1977). Selfefficacy: Toward a unifying theory of behaviotal change. Psychological Review, 84, 191-215.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Clifis, NJ: Prentice Hall.

Behncke, L. (2002, April). Selfregulation: A brief review. Ahletic Insight: The Online Journal of Sport Psychology, 4. Rerieved April 14, 2003, fom htr://www. athleticinsight.com/Vol4ss1/SelfRegulation htm.

Berger, B. G., Crove, R. J., Prapavessis, H., \& Butki, B. D. (1997). Relationship of swimming distance, expectancy, and perfomance to mood states of competitive athletes. Perceptul and Motor Skills, 84, 1199-1210.

Bompa, T. O. (1990). Periodisation as a key element of plaming and developing the young elite athlete: Australian Institute of Sport, Canberra, 29 November- 2 December 1990, Canberra Australian Conching Council, 1990, pp. 1-15.

Braathen, E. T., \& Svebak, S. (1992). Motivational differences among taiented teenage a
athetes: The significance of gender, type of spor and level of excellence. Scandinavian Journal of Med Sci Sports, 2, 153-159.

Brodkin, P., \& Weiss, M. R. (1990). Developmental differences in motivation for participating in competive swimming. Journal of Spor: \& Exercise Bsychology, $12,248-263$.

Burton, D. (1983). Evaluation of goal setting training on selected cognitions and performance of collegiate swimmers. Unpublished doctoral dissertation, University of Illinois, Urbana.

Burton, D. (1984). Goal setting: A secret to success. Swimming Wonld, 25-29.
Burton, D. (1988). Do anxious swimmers swim slower Reexamining the elusive anxiety-performance relationship. Journal of Sport \& Exercise Psychology, 10, 45-61.

Buter, R. J. (1997). Performance profiling: Assessing the way forward. In R. J. Butler (Ed), Sport psychology in performance (pp. 33-48). Jordan Hill, Oxford: Buterworth Hememam.

Butler, R. I., \& Hardy, L. (1992). The performance profile: Theory and application. The Sport Psychologist, 6, 253-264.

Chantal, Y., Guay, E., Dobreva-Martinova, T., \& Vallerand, R. I. (1990). Motivation and elite perfomance: An exploratory investigation with Bulgarian athletes. Intemational Jownal of Spor Psychology, 27,173-182.

Conroy, D. E., Poczwardowski, A., \& Henschen, K. P. (2001). Evaluative criteria and consequences associated with failure and success for elite athletes and performing artists. Jownal of Applied Sport Psychology, 13, 300-322.

Crocker, P. E. (1992). Managing stress by competitive athletes: Ways of coping. International Jow wal of Sport Psychology, 23, 161-175.

Davis, J. E. a Cox, R. H. (2002). Interpreting direction of anxiety within Hanin's individual zone of optimal functioning. Jowmal of Applied Sport Psychology, 14, 4352.

Deci, E. L. (1975). Intrinsic motivation. New York: Plenum Press.
Deci, E. L., \& Ryan, R. M. (1985). Intrinsic motivation and self-diermination in human behavior. New York: Plenum.

Deci, E. L., \& Ryan, R. M. (1991). A motivational approach to self: Integration in personality. In R. A. Dienstbier (Ed), Nebraska symposium on motivation 1991: Vol. 38. Perspectives on motwation: Current theory and research in motwation (pp. 237-288). Lincoln, NE: University of Nebraska Press.

Felt, D. Lu, 2 Ewing, M. E. (1987). Psychological characteristics of elite young athetes. Medicine and Science in Sports and Exercise, 19, 98-105.

Fetterman, D. M. (1998). Ehnography: Step by step ($2^{\text {nd }} \mathrm{Ed}$). Thousand Oaks, CA: Sage.
Fletcher, D., \& Hanton, S. (2001). The relationship between psychological skills usage a and competitive nuxiety responses. Psychology of Sport and Exereise, 2, 89.101.

Fortier, M. S., Vallerand, R. J., Briere, N. M., E Provencher, P. J. (1995). Competive and recreational spor struchures and gender: A test of their relationship with spont motivation. International Iownal of Spont Psychology, 26,24.39.

Gariield, C. A., \& Bemet, H. 2. (1984). Peak performance: Mental maining techniques of the world's greatest athletes. Los Angeles, CA: Wamer.

Glaser, B. O., \& Strauss, A. L. (1967). The discovery of grounded theory: Strategies for
qualitatue research. New York: Adine.
Goss, J. D. (1994). Hardiness and mood disturbances in swimmers while overtaining. Joumal of Spon \& Exercise Psychology, 16, 135-149.

Gould, D., \& Hom, T. (1984). Participation motivation in young athletes. In J. M. Silva \& R. S. Weinberg (Eds.), Psychological fourdations of sport (pp. 359-370). Champaign, IL: Human Kinetics.

Gould, D., \& Tuffy, S. (1996). Zones of optimal functioning research: A review and critique. Anxiety, Stress, and Coping, 9, 53-68.

Gould, D., Petlichkof, L., Weinberg, R. S. (1984). Antecedents of, temporal changes in, and relationships between CSAI-2 subcomponents. Joumal of Sport Psychology, 6,289-304.

Gould, D., Felta, D., Hom, T., Seiss, M. (1982). Reasons for attrition in competitive youth swimming. Joumal of Spon Behavior, 5, 155-165.

Grove, J. R., \& Prapavessis, H. (1992). Preliminary evidence for the reliability and validity of an abbreviated profile of mood states. Intemational Jourral of Sport Psychology, 3, 85-95.

Hanin, Y. L. (1978). A study in anxiety in sports. In. W. F. Strab (Ed), Sport prychology: An analysis of athete behwior (pp. 236-249). Itaca, NY: Mowvenent.

Hanin, Y. L. (1995). Individual zones of optimal functioning (IZOF) model: An idiographic approach to perfomance anxiety. In K. Henschen \& W. Straub (Eds.), Sport psychology: An analysis of athete behavior (pp. 103-119). Longmeadow, MA: Mouvement.

Hanin, Y. L. (2000). Emotions in sport Champaiga, IL: Human Kinetics.
Hanin, Y. L. (2002). Individually optimal recovery in sports: An application of the IZOF model. In M. Kellmann (Ed), Enhancing recovery: Preventing underperfornance in athletes (pp. 199-217). Champaign, IL: HumanKinetics.

Hanin, Y. L., \& Syra, P. (1995). Performance affect in junior ice hockey players: An application of the indivicual zones of optimal functioning model. The Sport Psychologist, 9, 169-187.

Hanin, Y. L. \& Syria, P. (1996). Predicted, actual and recalled affect in olympic-level soccer players: Idiographic assessments on individualized scales. Journal of Sport \& Exercise Psychology, 18, 325-335.

Hanton, S., \& Jones, G. (1999a). The acquisition and development of cognitive skills and strategies: L. Making the butterlies fly in formation. The Sport Psychologist, 13, $1-21$.

Hanton, S., \& Jones, G. (1999b). The effects of a multimodal intervention program on perfomers: II. Training the butterfies to fly in formation. The Sport Psychologist, 13,2241 .

Hanton, $\$$. \& Comnughton, D. (2002). Perceived control of anxiety and its relationship to self-confidence and performance. Research Quartery For Exercise and Sport, $73,87.97$.

Hardy, L. (1990). A catastrophe model of pertormance in sport. In J. ©. Jones, \& L. Hardy (Eds.), Sthess and performance in spont (py. 81-100). Chichester, England: Wiley

Hardy, L. (1996). Testing the predictions of the cusp catastrophe model of anxiety and
performance. The Sport Psychologist, 10, 140-156.
Harger, C. J., \& Ragin, I. S. (1994). Correspondence between actual and recalled precompetition anxiety in college track and field athletes. Joumal of Sport e Exercise Psychology, 16, 206-211.

Hellandsing, E. T. (1998). Motivational predictors of high performance and discontinuation in different types of sports among talented teenage athletes. International Journal of Spont Psychology, 29,27-44.

Hogg, J. M. (1997a). A systematized model of mental skills training for competitive swimmers 13 years and over. ASCA World Clinic Proceedings, 28, 111-122.

Hogg, 3. M. (August, 1997 b). Monitoring and evaluating the mental preparation of elite athetes. League of European Nations Conference, Seville, Spain. August 8-14, 1997.

Hogg, , M. (1999). A pilot investigation into the sources of competitive anxicty among clite and developmental swimmers using repeated measures across a macro. Unpublished paper for Canodian Swim Coaches, University of Alberta.

Hogg, J. M. (2000). Mental shills for competitive swimmers (2 $2^{\text {nd }}$ ed.). Edmonton, AB: Sport Excel.

Hogg, N. M. (2002). Debriefing: A means to increasing recovery and subsequent performance. In M. Kellmann (Ed), Enhancing recovery: Preventing waderperfornance in athletes (pp. 181-198). Champaign, IL: Human Kinetics.

Holt, N. L. (2003, March). Coping in professional sport: A case shady of an expenenced cricket player. Ahbietic Insight: The Online Joumal of Sport Psychology, 5. Retrieved April 14, 2003, from htpo/www,atheticinsight.com/VolS/ss1/Cricket

PlayerCoping.hm
Jones, G. (1995a). More than just a game: Research developments and issues in competive anxiety in sport. Brinish Journal of Psychology, 86, 449-478.

Jones, G. (1995b). Competitive anxiety in sport. In S. Biddle (Ed.), European perspectives on exercise and sport psychology (pp. 128-153). Champaign, L.: Human Kinetics.

Jones, G., \& Hanton, S. (1996). Interpretation of competitive anxiety symphoms and goal attinment expectancies. Joumal of Sport \& Exercise Psychology, 18, 144-157.

Jones, G., \& Hanton, S. (2001). Pre competitive feeling states and directional anxiety interpretations. Iownal of Sport Sciences, $19,385-395$.

Jones, ©, Hanton, S., \& Connaughton, D. (2002). What is this thing called mental toughness? An investigation of elite sport performers. Ioumal of Applied Sport Psychology, 14, 205-218.

Jones, G., Hanton, S., \& Swain, A. B. J. (1994). Intensity and interpretations of anxiety symptoms in elite and non-elite sport perfomers. Personality and individual Differences, 17, 657-663.

Jones, O, \& Swain, A. B. . (1992). Intensity and direction dimensions of competitive state anxiety and relationships with competitiveness. Perceptal and Motor Skills, $74,46 \%-4 \% 2$.

Jones, G, \& Swain, A. B. J. (1995). Predispositions to experience debilitative and facilitative anxiety in elite and nonelite performers. The Sport Psychologist, 9, $201-211$.

Jones, G., Swain, A. B. J., \& Cale, A. (1991). Gender diferences in precompetition
temporal patterning and antecedents of anxiety and selfoconfidence. Joumal of Spont Exercise Psychology, 13, 1-15.

Jones, G., Swain, A. B. J., \& Hardy, L. (1993). Intensity and direction dimensions of competitive state anxiety and relationships with perfomance. Jowral of Spont Sciences, 11,525-532.

Kallus, K. W., \&elmam, M. (1999). Bumout in athetes and coaches. In Y. L. Hanin (Ed.), Emotions in sport (pp. 209-230). Champaign, IL: Human Kinetics.

Kamal, F. A. (1989). Extrinsic and intrinsic motivation of swimmers. Intemational Jounal of Physical Education, 26,2632 .

Kellmann, M., Kallus, K. W. (2001). Recovery-Stress questionnaire for athetes: User monual. Champaign, IL: Hunan Kinetics.

Kerr, J. (1985). A new perspective for sports psychology. In M. J. Apter, D. Fontana, \& S S. Murgatroyd (Eds.). Reversal theory: Applications and developnens (pp. 89 . 102). University College: Cardiff Press.

Kerr, I. (1997). Motwation and enotion in sport: Reversal theory. East Sussex, UK: Psychology Press.

Kim, M. S. (1999). Self-monitoring, and individual expectation of performancenoms in sport teams. Perceptual and Moton Skills, 89, 1129-1132.

Kim, M. S., \& Cho, I. C. (1996). Self-montoning and perception of performance noms in sport teams. Perceptual and Motor Shills, 83, 129-130.

Konttinen, N., \& Lytinen, H. (1993). Individual variability in brain slow wave profiles in skilled sharpshooters during aiming period in rifleshooting. Jownal of Sport \& Exercise Psychology, 15,275-289.

Krane, V. (1993). A practical application of the anxiety-athletic performance relationship: The zone of optimal functioning hypothesis. The Spow Psychologist, $7,113-126$.

Krane, V. (1994). The mental readiness form as a measure of competitive state anxiety. The Sport Psychologist, $8,189202$.

Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing. Thousand Oaks, CA: Sage.

Lazans, R. S. (2000). How emotions influence performance in competitive sports. The Sport Psychologist, 14, 229-252.
Li, F, \& Harmer, P. (1996). Testing the simplex assumption underlying the sport motivation scale: A structural equation modeling analysis. Research Quarterly for Exercise and Sport, 67, 396-405.

Lincoln, Y. S., \& Guba, E. (1985). Naturaistic inquiry. Beverly Hills, CA: Sage.
Lloyd, R.J., Trudel, P. (1999). Verbal interactions between an eminent mental training consultant and clite level athletes: A case study. The Sport Psychologist, 13,418443.

Mace, R. D. (1990). Cognitive behavioral interveations in sport. In G. Jones \& L. Hardy (Eds.), Sress and performance ik spont (po.203-230). Chichester, UK: Wiley.

Mahoney, M. J., Byener, M. (1977). Psychology of the elite athlete: An exploratory study. Cognitive Therapy and Research, 1, 17-36.

Mahoney, M. J., Gabriel, T. J., \& Perkins, T. (1987). Psychological skills and exceptional athletic perfomance. The Spon Psychologist, 1, 181.199.

Manzo, L. G. (1995). Psychometric assessment of the Carolna Sport Confudence

Inventory. Microform Publications, International mstitute for Sport and Human Petormance, University of Oregon.

Manzo, L. G., Silva, J. M., \& Mink, R. (2001). The Carolina spor confidence inventory. Jowrnal of Applied Sport Psychology, 13, 260-274.

Marchant, D. Anderson, M., Kamilowicz, W., S Stoove, M. (1997). Developnent of the causes of anxiety in sport scale (CASS). Joumal of Sport \& Exercise Psychology, 9, (Suppl. 126).

Martens, R., Burton, D., Vealey, R. S., Bump, L., \& Smith, D. E. (1990). Development and validation of the competitive state anxiety inventoy- $2(\mathrm{CSAl}-2)$. In R, Martens, R. S., Vealey, \& D., Burton (Eds.), Competitive anxiety in sport (pp. 117-213). Champaign, L: Human Kinetics.

MayKut P., \& Morchouse, R. (1994). Beginning qualitatwe research: A philosophic and practical guide. Bristol, PA: Famer Press.

McNair, D. M., Lorr, M, \& Droppleman, L. F. (1971). Edits marual for the profile of mood states. San Diego, CA: Educational and Industrial Testing Service.

Mink, R. S. (1996). A confimatory factor analysis of the Carolina Sport Confidence Inventory Microform Publications, Intemational Institute for Sport and Human Performance. University of Oregon.

Moram, A. (1996). The psychology of concentration in sport perpomance: A cognitive approach. East Sussex, England: Psychology Press.

Moris, W. N. (1989). Mood: The frane of mind. New York: Springer-Verlag.
 Thousand Oaks, CA: Sage * chapter 5: making data (pp. 87-110)

Murphy, S., Greenspan, M., Jowdy, D., Tammen, V. (1989, October). Development of a brief rating instrument of competive anxiey: Comparison with the CSAI-2. Paper presented at the meeting of the Association for the Advancement of Applied Sport Psychology, Seatte, WA.

Nideffer, R. M. (1976). Test of attentional and interpersonal style. Jowmal of Personality and Social Psychology, 34, 394-404.

Nidefier, R. M. (1990). Use of the Test of Attentional and Interpersonal Style (TAIS) in sport. The Sport Psychologist, 4, 285-300.

Nidefer, R. M. (1992). Psyched to wire Champaign, LL. Leisure Press.
Nideffer, R. M. (1993). Attention control training. In R. N. Singer, M. Murphey, \& L. K, Tennant (Eds.). Handbook of research on sport psychology (pp. 542-556). New York: MacMillan.

Nordell, K. E. \& Sime, W. (1993). Competitive trait anxiety, state anxiety, and perceptions of anxiety: Interrelationships in practice and in competition. Joumal of Swimming Research, 9, 19-24.

Patton, M Q. (2002). Qualitative research and evahation mothods ($3^{\text {red }} \mathrm{ed}$). Thousand Oaks, CA: Sage.

Pelletier, L. G., Fortier, M. S., Vallerand, R. J., Tuson, K. M., Briere, N. M., \& Blais, M. R. (1995). Toward a new measure of intrinsic motivation, extrixsic motivation, and amotivation in sports: The sport motivation scale (SMS). Journal of Spon \& Exercise Psychology, 17,35-53.

Pelletier, L. G., Fortier, M. S., Vallerand, R. J., 㚅 Brere, N. M. (2001). Perceived autonomy suppor, motivation, and persistence in physical activity: A longiudinal
investigation. Manuscript Submitted for Publication.
Prapavessis, H. (2000). The POMS and sport perfomance: A review. Journol of Applied Sport Psychology, 12, 3448.

Prapavessis, H., \& Grove, J. R. (1991). Precompetitive emotions and shooting performance: The mental health and zone of optimal function models. The Sport Psychologist, 5,223-234.

Prapavessis, H. \& Grove, I. R. (1994a). Personality variables as antecedents of precompetitive mood states. Intemational Joumal of Sport Psychology, 25, 81m 99.

Prapavessis, H., \& Grove, I. R. (1994b). Personality variables as antecedents of precompetive mood state temporal patterning. International Joumal of Sport Psychology, 22, 347-265.

Psychountaki, M., \& Zervas, X. (2000). Competitive wories, sport confidence, and performance ratings for young swimmers. Perceptual and hotor Skills, 91, 87-94.

Raglin, J. S., Morgan, W. P., \& Wise, K. J. (1990). Pre-competition anxiety and periormance in female high school swimmers: A test of optimal function theory. Inemational Journal of Sports Medicine, 11, 171-175.

Raglin, J. S., Wise, K. J., 8 Morgan, M. P. (1990). Predicted and actual pre-competition anxiety in high school ginl swimmers, Jomal of Swinning Research, $6,5 \mathrm{~m}$.

Raglin, J. S., Morgan, W. P., \& OComor, P. J. (1991). Changes in mood states during training in female and male college swimmers. International Jownal of Sports Medicine, 12,585-589.

Renger, R (1993). A review of the profile of mood states (POMS) in the prediction of
athletic success. Journal of Applies Spor Psychology, 5,78-84.
Robazza, C., \& Bortoli, L. (2003). Intensity, idiosyncratic content and functional impact of performance-related emotions in athietes. Journal of Spor Sciences, 21,171 189.

Robazza, C., Bortoli, L., Nocini, F., Moser, G., \& Arslan, C. (2000). Nomative and idiosyncratic measures of positive and negative affect in sport. Psychology of Sport e Exercise, 1, 103-116.

Roberts, G. C. (2001). Advances in motivation in sport and exercise. Champaign, IL: Human Kinetics.

Russell, W. D. (2000). A laboratory investigation of positive and negative affect within individual zones of optimal functioning theory. Joumal of Sport Behavior, 23, 164-180.

Scallen, S. (1993). Collegiate swimmers and the zone of optimal functioning theory. Jownal of Sport \& Exercise Psychology, Suppl. NASPSPA Conference Abstracis, $15, \$ 68$.

Schloss, P. J., \& Smith, M. A. (1999). Conducting research. Upper Saddle River, NJ: Merril.

Snith, R. E. (1988). The logic and design of case study research. The Sport Psychologist, 2, 1-12.

Smith, R. E., Smoll, F. L., \& Schutz, R. W. (1990). Measurement and correlates of sporspecific cognitive and somatic trait anxiety: The sport anxiety scale. Anxiety Research, 2,263-280.

Spielberger, C. D. (1971). Notes and comments on trait-state anxiety and motor behavior.

Jowrwal of Moror Behrwior, 3,265-279.
Spielberger, C. D., Gorsuch, R. L., Lushene, R.E., Vagg, P. R., \&acobs, G. A. (1983). Manual for the state-trait anxiety inventory: STAI (Form Y). Palo Alto, CA: Consulting Psychologists Press.

Swain, A. B. J., \& Jones, G. (1993). Intensity and frequency dimensions of competitive state anxiety. Jownal of Sport Sciencer, 11, 533-542.

Taylor, J. (1995). A conceptual model for integrating athlete's needs and sport demands in the development of competitive mental preparation strategies. The Sport Psychologist, 9, 339-357.

Tellis, W. (1997, July). Introduction to case study [68 paragraphs]. The Qualitative Report [on-line serial], 3 (2). Available: http:/www.nova.edu/sss/QR/QR3/tellis h.hml.

Tery, P. (1995). The efficacy of mood state profiling with elite perfomers: A review and synthesis. The Sport Psychologist, 9, 309-324.

Thayer, R. E. (1989). Biopsychology of mood and orousal. New York: Oxford University Press.
 New York: Oxford University Press.

Troup, J. D. (Ed.) Intemational Center for Aquatic Research Annwal, Sudies by the Intemational Center for Aquatic Research, 1990-1991, Colorado Springs. United States Swimming Press, 1991, (pp. 163-169).

Vallerand, R. J. (1997). Toward and herarchical model of intrinsic and extrinsic motivation. In M. P. Zama (Ed.), Advances in expermental social prychology
(pp. 271-360). New York: Academic Press.
Vallerand, R. J., \& Losier, G. R. (1999). An integrative analysis of intrinsic and extrinsic motivation in sport Jourzal of Applied Sport Psychology, 11, 142-169.

Vanden Auweele, Y. V., De Cuyper, B., Van Mele, V., \& Rzewhicki, R. (1993). Elite perfomance and personality: From description and prediction to diagnosis and intervention. In R. N. Singer, M. Murphy, \&K. L. Tennant (Eds.), Handbook of research on sport psychology (pp. 257-289). New York: MacMillan.

Vealey, R. (1986). Conceptualization of sport confidence and competitive orientation: Preliminary investigation and instrument development. Jowraal of Sport Psychology,8,221-246.

Vealey, R, Hayashi, S. W., Gamer-Homan, M., \& Giacobbi, P. (1998). Sources of sport confidence: Conceptualization and instrument development. Joumal of Sport 8 Exercise Psychology, 20,54-80.

Vlachopoulos, S. P., Karageorghis, C. I., \& Terry, P. C. (2000). Motivation profiles in sport: A self-determination theory perspective. Research Quarterly for Exercise and Spor:, $11,387-397$.

Watson, G. G., Blanksby, B. A., Bloonfield, J. (1984). Reward systems in chidren's spor: Perceptions of elite junior swimmers. Journal of Human Movemen Stwaies, $10,123-156$.

Watson, G. G., Blanksby, B. A., \& Bloonfield, 1. (1985). Competing to swim or swimming to compete: Some motivational problems in junior swimming. Australian Journal of Science and Medicine in Spont, 17,24-26.

Weber, R. P. (1990). Basic content analysis. Beverly Hills, CA: Sage.

Wiggins, M. S. (1998). Anxiety, imensity and direction: Properformance temporal pattems and expectations in athetes, Journol of Applied Spor Psychology, 10, $201-211$.

Wiggens, M. S., \& Brustad, R. J. (1996). Perception of anxiety and expectations of performance. Perceptual and Motor Skills, 83, 1071-1074.

Williams, I. M., \& Krane, V. (1998). Psychological characteristics of peak performance.
In J. M. Williams (Ed), Applied sport psychology: Personal growth to peak performance (pp. 158-170). Momtain View, CA: Mayfield.

Yin, R. K. (1994). Case study research (2 ${ }^{\text {nd }}$ ed.). Thousand Oaks, CA: Sage.
Zeng, H. Z. (2003). The difference between anxiety and self-conidence between team and individual sports college varsity athletes. International Sports Journal, 7, 2834.

Appendices

Appendix A

Appendix B

Finameatay		3ambe ${ }^{2}$		Whax－	
		素sway			
Cumamede					

笪

17

123考罗	123 等

27．Thatatay

3．

Mahes \＆

Appendix C

		5omat Trman触数				 Pe	
8	Es	R	Thet In tix Wh wask 	醏	 	m	T）
2	5	5	 	8	 	5	5
3	W2	S	Thatromal Welek	\％	 	D	513
d	Tis	E	 	\％	（6） 	5	Tis
3	5	Eib	 	${ }^{\text {W }}$	ge 	5	5
5	mammen	Pa	 	\％	 samber wividis．	ns	5
7	5	（m）	What 	\％	 	5	5
S	ms	23	 	σ^{*}	 	FII	1m

		朝					$\begin{aligned} & \text { Wexy } \\ & \text { Time } \end{aligned}$
9	\square	T	1 mw 	\％	1．Mrwaty 2	\square	0
蝙	5	5	Tumaly erumermetuix 	\％	14nd whitus	5	\square
1	E	\square	 	\％	 	$\underline{0}$	D
瞵	D	T	 	4	 	\square	\square
嘘	5	\square	 豆酸解	T	 	0	D

Apperdix D

 5mckime

3 3 4 $3^{3} 5$

$\begin{array}{llllll}1 & 3 & 3 & 5 & 6 & 7 \\ 2 & 3 & 3 & 4 & 7\end{array}$

4 23 3

1.3.

323436

253567

12 24 5 \%

 anserif

Appendix E

	7			
		\%	3	3
	0	$\$$	\bigcirc	0
	\%	0	0	0
荈	6	0	0	9
	0	\%	0	0
	D	0	8	0
	d	0	0	0
	9	0	0	0
	\%	2	0	∞
	5	0	a	ω
	\%	0	0	\bigcirc
	D	0	0	0
12. Thatersmax	\$	\bigcirc	c	0
	1	c	5	0
	0	0	6	0
	0	0	0	\%
	\square	0	\%	O
	p	0	0	0
	9	0	0	\bigcirc
99. T7.	0	0	0	0
	\%	9	0	0
	0	b	0	0
	\%	\%	0	*
	\%	b	0	\%
	9	0	0	6
	0	\%	0	0
	${ }^{4}$	8	0	Q
	0	0	0	0

Appendix 6

ECSTM Sart

 turuy pratice

Nomblis

,	$\stackrel{1}{ }$	2	S	4	5	0
5exper		wammema	5umat		way tila	

 , wnoli tuy

		Tratabu Pame	Comememb
1			
2			
5			
4			
3			
\%			
8			
${ }_{3}$			
\%			
橉			

1...I watchea TV

0	1	2
never	sellom	sonetimes

3
oten
4
more onen
5
very ohten

6
always

3	4
onen	

5
very onear 6 always
3
onten
4
more oftear

5	6
very oten	dways
5	6
very often	always

3	4	5	6
often	more often	very often	always
3	4	5	6
often more often very ofen	abways		

3	4	5	6
ofen	moreoten	very ofen	always
3	4	5	6
ofen more oten	very ohen	always	

3	4
onten	mone one

5 very onen always 5 very ofen always
56 very otuen suways 5 very ofen atwas

5 very ofen always
14. ... Ihad agood time with frienas

0	1	2	3	4	5	6
never	seldom	sometimes	ofter	more onth	veryonten	abwys

15. ... Thad a headmehe

0	1	2
never	seldon	sometimes

3
4
more ofen
5

6
onen more ofen very ofen aways
16. ... I was nined fom work

0	1	2
never	seltom	sometimes

often

- 4 more often 5 6 always

17. ... I was successnul in what I did

0	1	2
never	seldom	sometimes

3
often
more ofen
5
very onen

6 always
18. ... couldn' switeh my mind of

0	1	2
never	seldom	sometimes

3	4
ohen more ofen	

5
very often

6 alweys
19. .. reblasleep satisfied and relazed

0	1	2
never	seldon	someimes

3
often
4
5
very ofte 6 always
20. ... Telt uncomfortable

0	1	2
never seldon sonerimes		

3
Onten
4
5
very ofte

6 always
21. ... was anoyed by ohers

0	1	2
never	seldom	somatumes

3
onten
4 more often 5
wery onte 6 always 22. ... Ifelt down

0	1	2
never	seldom	sometimes

3
often
4
more often
5
very ofen 6 always
23. ... I visited some close fiends

0	1	2
never	seldom	sometimes

3	4	5	6
often	more ofen wery often	slways	

24. ... 点 fell depressed

0	1	2
never	seldom	sometmes

3
often
4
more onan 5
very offen 6 always
25. ... I was dead tred atter work

0	1	2
nevver	seliom	soxuctines

3	4
onten	more often

very otten 6 2 ${ }^{2}$ waye 26. .. wher people got on my herves

0	1	2	3	4	5	6
mever	seldom	sonetimes	often	more often	very oten	mamys

27. ... Thad a satimfing sieep

0	1	2
never	selion	somedmes

3
often
more oten
5
6
never seldom somedmes
28. ... I fel axwions or inhibited

0	1	2	3	4	5	6
never seldom	somethes	often	more often	very ofen	abwask	

29. ... 草elt physicaly fit

0	1	2	3	4	5	6
never soldom	sometmes	ofenin	more ohen	very oten	ahway	

30. ... I was fed up with everything

0	1	2	3	4	5	6
never	geldom	sometimes	offen	more ofen	vey ofter	always

31. ... I was lethargic

0	1	2	3	4	5	6
never	seldom sometmes	onen	more ohen	very ohen	always	

32. .. I fal I had to pertorm well in from of ohers

0	1	2	3
never	seidon	sonetimes	onten

4
more onten 5 very often always
33. .. 1 had fin

0	1	2	3
never	seldom	sometimes	ofen

mare often
5

5 very often

6 glways
34. ... I was in agood mood

0	1	2
never	seldom	sometimes

3
often
4
5
very ofen

6
always
35. ... I was overtied

0	1	2
never	seldom	sonetimes

3
Ofen
$\frac{4}{4}$
5
very often

6 abways
36. ... In mpt restiessly

0	1	2
never	seidom	sonetimes

3
ohen
A
more otten 5
very often 6 always
37. ... 童was moyed

0	1	2
never seidom	sonetimes	

3
ofen
4

5 very ofe aways 38. ... Ifelh if if could get everything done

0	1	2
never sebiton	sometimes	

3
4
more ohen

5 very ohem always

40. .. I put off mating decisions

0	1	2
never seidom	somerirnes	

3
flen 4 s very often6 aways 41. .. I made impontan decisions
never seldom somelmes often more often vary ofle always
42. ... I felt physionily exhausted

0	1
never seldom	

2
sometimes
3 often
4

4 more ofter
5 5 very often always
5
very ofen

6 always
44. ... I felt under preswate

0	1	2
never	seldom	sometimes

often
4
more often
5
wery often

6 always
45. ... everyhing was too mukh for me

0	1	2
never	seldon	sometimes

3
atten
4
more often

5	6
very often	aiways

5	6
very often	always

5	6
very ofen	always

$\$$	6
very ofen zlways	

5	6
very ohen	always

5	6
very ofen	atways

5	6
very otten	always

5	6
very onen	diways

53. .. I recovered well physiculty

0	1	2	3	4
never seldom	sonetmes	often	more ohen	

54. ... I folt burned out by my sport

0	1	2
never sedom	sometmes	

34 often more often very ofen 6 atways
53. ... I accomplished maxy worthwhle things in my spont

0	1	2	3

never seldom sonetimes
56. .. I preparcd myself mentally for perfomance

0	1	2	3	4	5	6
never sebom	sonetimes	ofer	more ofen	very oten	always	

57. ... my muscles fele sitif or tense during perfomance

0	1	2	3	4	5
never	seldom sonetmes	often	more often	very often	

58. ... Ihed the impression there were too few breaks

0	1	2	3	4
never	seldom	sometimes	often more often	

59. ... 1 was convinced that 1 could echicve my perormance at any time

0	1	2	3	4
never seldom	sometimes	often	more othen	

60. .. I deall very tefectively with ny teammates" problens

0	1	2	3	4
never	seldonn sometimes	often more often		

61. ... I was in a good condition physically

0	1	2	3	A
never	seldom	sometines	often	more ofen

62. ... I pushed myself during performance

0	1	2	3
never sedom	sometmes	ofen	

63. .. I fel emotionally draned from perfomame

0	1	2	3
never	seldom	sometmes	otten

64. ... Ihad nuscle pin after performance

0	1	2	3
never	seldwn	sometimes	often

65. .. I was convinced that I pertormed well

0	1	2	3
never scldom	sometimes	often	

66. .. too much was demanded of me during the breaks

0	1	2	3
never seldon	sometmes	oten	

3
never selcom sometmes onen
68. ... Ifelt that wanted to grat my sport

0	1	2
never seldom	sometines	

3 4 ohen more onen 69. ... Melt very energetic

0	1	2	3
never seldom	somermes	ofen	

苦 more otten
 wery ofen always

5 wery ofen always always very ofen

5 more often very onten always6 4 more often

合 more often very ohen

5 6
always
5 very ofen 5 very ofen

5 very ofen 5 very ofen

5 very often slways

4 more ofer

4 more otem

70. .. I easily understood how my teammates felt about things

0	1	2	3	4	5	6
never	seldon	sometimes	ohen	more onen	very olen	shays

71. ... I was convinced that I had truined well

0	1	2	3	4	5	6
never	seldom	somermes	oten	more otea	very oftea	always

72. .. the breaks were not at the right times

0	1	2	3	4	5	6
never seldom	sometmes	oten more oten	very often	aways		

73. ..I Iet vinerable to infuries

0	1	2	3	4	5	6
never	seldom	sometimes	often	more ofen	yery onter	abwas

74. ... I set deñnite goals for myself during performance

0	1	2	3	4	5	6
never	seldom	sometimes	ofen	more ofen	very ofen	always

75. ... my body felt strong

0	1	2	3	4	5	6
never	seldom	sometmes	onen	more often	very olen	blways

76. ... I felt furtrated by my sport

0	1	2	3	4	5	6
never	seldom	sometmes	othen	more often	very oten	ghways

77. ... Idealt with emotional problens in my spont very camly

0	1	2	3	4	5	6
never	seldom	sometimes	often	more oten	very often	always

Thank you vary mueh!

Appendix 1

Appendix

4 4

Itannuta

Cuntutis

comentratu

Appendix K

Thishant imelves

金要
 vuin hum

 4\％2．Wis

苓 y

Comsent mant

Appendix L

Appendix M

Pre Season Interview Guide

From the following list of words, please select at least one item fom each factor (or add your own) that best characterizes your psychological state prior to performance.

Anxiety

nervous, tense, concemed, woried, tight, stressed, upset, frustrated, uncertain, jutery, pressure, scared inhibited, pounding heart, butterfies, stomach ache, choke

Motivationa

satisfied, activated, impulse, induced, inspired, provoked, agitated, excited, aroused, mobilized, tempted, enticed, driven

Conimence

proud, satisfied, challenged, comfortable, assured, poised, certain, hopeful, secure

Concentration

wander, distracted, unfocused, lack of attention, centered

Recovery-Streas

sleep, laugh, bad nood, good spinits, urresolved problens, ease, successful, uncomfortable, annoyed, burned-owt, injured, sore, tired, fun, restess, leck of rest, stiff, tense, drained, cnergetic, frustrated, strong

Mood stakes

angry, unhappy, proud, lively, confused, sach, on edge, grouchy, ashamed, hopeless, uneasy, tired, compotent, amoyed, discouraged, reseatul, nervous, miscrable, confident, bitter, exhausted, anxious, helpless weary, satisfied, furious, bewildered, worthless, forgeful, uncertain, vigorous, embarrassed, finustrated

- Once the words have been chosen the interview will be conducted by asking the participant for esch tera they have chosen; What does this word neam to you?

Appendix N

Post Saxon interview Guide

1. Now that you have completed the quastionaire portion of the study, what did you think of the process?

- Good things and bad things
- Did you find that it was dificult to complete the foms at comperition?
- Did it interfere ar all with your preparations?
- What did you like or not like about filling out the questionmaires?

2. When you reflect on the past seven months, is there anything that you leamed about yourself?
3. Looking back on your pertormances, what was the diference between your best and your worst performance?
4. Do you think that your perfomances were consistent and in control or inconsistent?
5. If there is anything you could change over the past seven months, what would it be?
6. Overall, were you satisfied witi your performances? If yes, what was good about them and 1 等, what would you like to improve?
7. What emotions do you have when you are ready to perform versus not ready to perform?
8. What is the intensity of these emotions? What do you think is the optimal level necessary for you to perform your bes?
9. Did you ever feel bumed out (emotionally and/or physically) throughout the past seven months?
10. Did you suffer from any injuries?
11. Did you feel that you could not handle the pressure of swimming (emotionally andior physically)?
12. What were some ways that you recovered from the high wolume training?
13. What ree some things you like to do during your recovery periods?
14. How does recovery affect your performance?
15. How would you describe your levels of confidence in the past seven months? What were some things that boosted your conidence? What were some things that decreased your confidence?
16. How would you describe your motivation levels the past seven months? What were some things that increased your motivation? What were some things that decreased your motivation?
17. How do you perceive your anxiey? Do you thal thelps or limits your performance? What are some things fhat increase your ankiety? What are some things that decrease your periomance?
18. Did you ever find your mind wandernug during traning? What may have caused you to lose your focus?
19. Did you ever fin your mind wandering during compctition? What may have caused you to lose your focus?
20. During a race, is there anything that causes you to lose concentraton? How does this affect the outcome of your race? Are you able to recover?

Appendix 0

Five Core Debrieing Questions

1. What happened exactly? ... for you? ... for the team?
2. What is the impact of your performance on you? ... on the team?
3. How did your performance make yon fel?
4. What did you lean- - technically, physically, tactically, and mentally?
5. What are you encouraged to repeat or do differently for the next game/competition? (Hoge, 2002)

Appendix P

Appendix Q

Appendix R

Appendix S

Appendix T Rest and Recovery Gaphs

Appendix U

Appendix V

Appendix W

Appendix K

Appendix Y

Appendix Z

Appendin AA

Solviconewnm

Appendix BB

Senno

Appendix CC

Appendix DD

Appendix EE

Appendix FE

Appendiu OG

Appendix HH

Apperdix II

Appendix J

Prepost Deprosion fPows ta, Compentions

Appendix KK

Appendix LL

[^0]: * Denotes long course meets

