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Abstract

Flow is a psychological state that provides a person with enjoyment when their

skills and the challenges of their activity match. Thus flow encourages people to

persist at and return to just manageable challenges; thereby fostering the growth of

skills over time. It seems natural to assume that flow is an evolutionary adaption

because there may be an advantage from using each individual’s survival skills to

the fullest in a hostile environment. This work introduces a method for metacontrol

in artificial intelligence based on the concept flow. We propose that if an artificial

intelligent agent is guided to move through tasks in a way that balances their skills

with the complexity of the task this may improve its performance. To this end we

define a measure of flow that allows agents to seek the state closest to flow. This

measure is based on the reciprocal of the absolute difference between an agent’s

skills and the complexity of the task. The complexity is learned through observing,

at each point, the minimum skills required to complete the task. We first illustrate

our approach using a simple model of a multi-level environment and then compare

our approach to a scripted and random metacontrols in the video game of Angband.

The results indicate that a flow-seeking metacontrol can show improvement over a

random metacontrol but the scripted metacontrol performs better overall.
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Chapter 1

Introduction

Traditionally within artificial intelligence (AI) decision-making is modelled with an

action-perception loop similar to that shown in Figure 1.1. An AI agent observes

the state of the environment and selects an action that allows it to achieve its goal.

Then it perceives the result of that action and the cycle continues.

Figure 1.1: The action-perception loop model of a decision-making process.

Nevertheless, significant research exists on the idea that intelligence may

also require agents to think about their own thinking [2, 9]. Metacontrol (or

metareasoning) is the monitoring and control of the decision-making cycle. It

represents a higher layer of control, that perceives and acts on the whole decision-

making process rather than just the environment (Figure 1.2). The subject of this

thesis is a method for metacontrol in artificial intelligence based on flow.

Metacontrol

Control

Monitoring

Environment Agent

Perception

Action

Figure 1.2: The metacontrol of a decision-making process.

Csikszentmihalyi [10] defined flow as the subjective state that people report

when they are so immersed in an activity that they lose awareness of time, worries,
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and even their sense of self. A key characteristic of Csikszentmihalyi’s model of

flow is the concept of matching skills and difficulty. He identified three regions of

experience: boredom, if an activity is too easy; anxiety, if the difficulty exceeds

skills; and the flow state, where skill and difficulty are matched.

The state of flow is autotelic: it provides a person with enjoyment that comes not

from outside rewards but from just being in this state. These experiential rewards

encourage a person to persist at and return to just manageable challenges; thereby

fostering the growth of skills over time. This is supported by studies that associate

flow with commitment and achievement during the high school years [8, 29, 32].

Thus seeking flow becomes a form of metacontrol guiding people towards optimal

use of their skills; where they are neither underqualified nor overqualified.

1.1 A Motivating Example

To illustrate consider the role-playing game of Angband [11]. Angband is a dungeon

exploration game divided into a 100 levels. Figure 1.3 shows a snapshot of a typical

level. The player starts on level 0 and each successive level is guarded by more

formidable monsters. She must defeat the monsters to clear each level but as she

does, she gains new skills and becomes a better fighter. The object of the game is

to reach the 100th level and defeat Morgoth, the Lord of Darkness. However, if the

player dies before that he must start again from the beginning.

Figure 1.3: A screen-shot from Angband.
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Figure 1.4: The state of flow in Angband.

Figure 1.4 demonstrates the dynamics of flow in Angband. When the dungeon

level is high while at the same time the skills of the player are low, the player may

feel anxiety or frustration. On the other hand, when the level is low while the skills

are high; the player may become bored. Between the boredom and frustration lies

the state of flow where level and skills are commensurate.

If we define metacontrol in Angband to be the monitoring of decision-making on

each level and control of level progression, then seeking flow is one such metacontrol.

Seeking flow causes players to make certain decisions that are based not only on the

current game state but on their state and their performance in the game. If they

are having trouble with the monsters they may become anxious and slow down

their level progression or return to a previous level; but if the monsters present no

challenge boredom makes them progress faster through the levels. At the same time

flow offers intrinsic rewards when the progression is just right.

The game of Angband is an example of an environment where we speculate that

seeking flow can be beneficial. When the player dies, the score given is based on

experience points. Experience points are gained for each monster killed and are

higher the greater a challenge the monster is expected to be for the character.

Thus, the faster a player progresses through the levels the more experience points

they will gain per kill, but the risk of dying also increases if the player has not

gained sufficient skills. Flow will guide the player to take on the most challenging

monster their skills can manage; thus accumulating the most experience points they

can without increasing the risk of death through lack of qualification.
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For an AI agent playing Angband it may be useful to introduce a similar flow-

seeking metacontrol. This could help balance the decision-making between the two

disparate goals of avoiding death and collecting experience points. The goal of

avoiding death is best achieved by maintaining a progress slow enough that the

player remains continuously overqualified. However, this results in few experience

points scored. On the other hand, the most experience points are collected by

advancing levels fast to take on high-level monsters but then the probability of dying

is high. A flow-seeking metacontrol balances the two goals as the agent considers

its own performance in the game and stays at a level it has the skills to survive but

is not overqualified for.

1.2 Thesis Contributions

This thesis contains two main contributions. Our first contribution is a method for

metacontrol in level-based environments based on flow. Chapter 2 provides a formal

description of level-based environments and the problem of metacontrol within them

and Chapter 3 reviews related methods of metacontrol applicable to the problem.

Informally, a level-based environment is one where the problem of navigating from

an initial state to a goal state requires traversing a set of levels of varying complexity.

Our proposed method controls level progression by matching the skills of the agent

to the perceived complexity of the level. To do so in we introduce a mathematical

model quantifying degree of flow and propose an algorithm for metacontrol that

focuses on maximizing this degree of flow (Chapter 4).

We propose that this flow-seeking metacontrol improves performance in level-

based environments. To this end the second contribution of this thesis is an empirical

study in Angband (Chapter 5) to compare our method to other metacontrols that are

unaware of flow: a random policy and an established scripted player for Angband.

Chapter 6 discusses the strengths and shortcomings of our method along with

directions for future work.
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Chapter 2

Problem Definition

This work considers sequential decision-making process in an environment that

decomposes into levels of varying difficulty. In particular, we focus on one part

of the problem: controlling level progression of the agent. This chapter offers

a mathematical formulation of the level-based environment and the metacontrol

problem this thesis aims to explore.

2.1 Level-based Environments

We frame the problem in the traditional agent-environment interface where the

decision maker is called the agent and everything outside the agent is called the

environment.

We consider an agent performing sequential decision-making in a stochastic

environment with a given start state and goal state. We can model this as a

stochastic decision-making process, defined by a tuple ⟨S,A,P,S†, s0⟩. Here S is a

finite set of states; A is a finite set of actions; P(s′|s, a) : S × A × S → [0, 1] is a

transition probability function that gives the probability of moving from state s to

state s′ by executing action a; S† is a set of absorbing terminal states that includes

the goal state, sg; and s0 is the start state.

At first the environment is in state s0 ∈ S. At each time t the agent selects an

action, at ∈ A, and the environment transitions from the current state, st, to a new

state, st+1. The objective of the agent is to navigate from the initial state, s0, to a

goal state sg, in as few steps as possible. Reaching any other state in S† constitutes

a failure.
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Algorithm 1 gives the pseudo-code of Bulitko’s algorithm when operating under

this two-part policy we have outlined. The initial state must be on level 0. At

every time step t the agent performs two actions. First, the agent observes the

current state st, performs an action, a′
t, selected by its metacontrol policy, and the

environment transitions to a new state s′ with probability P (s′|st, a′
t). In the second

step, now observing state s′, the agent performs an action at, selected by the ground

policy and transitions to a state st+1 with probability P (st+1|s′, at). The process

ends when the agent either completes the task by reaching the goal sg ∈ LN or dies

(transitions to the death state sd).

Algorithm 1 Agent Operation

Input: A stochastic decision-making process ⟨S,A,P,S†, s0⟩, ground policy π̃, and
metacontrol policy π

Output: trajectory (s0, s1, . . . , sT ), sT ∈ S†

t← 0
st ← s0

while st /∈ S† do
a′

t ← π(st) ▷ Metacontrol action

s′ P(s′|st,a′

t)←−−−−−−− st ▷ State transition
at ← π̃(s′) ▷ Control action

st+1
P(st+1|s′,at)←−−−−−−−− s′ ▷ State transition

t← t + 1

For a fixed ground policy, π̃, we think of the metacontrol as a stochastic control

process ⟨S, A, P,S†, s0⟩ where P (s′|s, a) =
∑

s̃ P(s′|s̃, a)P(s̃|s, π̃(s)). In this work we

focus on this metacontrol process and the problem of finding the best metacontrol

policy given a fixed ground policy.

2.1.1 Measures of Performance

The objective in this level-based environment is twofold: reaching the final level as

quickly and as reliably as possible. We measure the quality of a metacontrol policy,

π, by: the expected time that agents controlled by π take to reach the goal, sg; and

their failure rate or the probability of failing to reach the goal. We can say that

one metacontrol policy dominates another if it is better on both measures: faster

and less likely to result in the agent’s death before reaching the goal. However,

these measures scores have different scales and trading off one for the other may be

application-specific.
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Reinforcement learning offers a way to introduce a trade-off between these two

measures: at each time step t = 1, 2, ... we assume the agent receives a real-valued

reward, rt, for taking action at in state st. We say the optimal metacontrol policy

is one that maximizes the value function, V π, defined for any state as

V π(s) = Eπ

[
T −1∑

t′=t

rt′ |st = s

]
.

Here T is the time point when the agent enters a terminal state sT ∈ S†. The

function, V π(s), defines for any state s the expected lifetime return starting from s

and following policy π. Then it is possible to measure the performance of different

policies by sampling their lifetime return: V π(s0).

We will make the following assumptions about the rewards in the environments:

if two policies are equally reliable the one with lower expected time to reach the

goal will have higher expected return, and conversely if two policies are equally fast

the more reliable one will have higher expected return. With these assumptions

we know that if one metacontrol dominates another then it will also have a higher

lifetime return.
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Chapter 3

Related Work

In this chapter we explore existing methods of metacontrol that can be applied to

the level-based environment.

3.1 Markov Metacontrol Processes

One way to approach the problem is to assume the metacontrol process is a Markov

Decision Process (MDP). An MDP is a stochastic decision-making process where on

every time step, t, the agent receives a scalar reward rt with expected value R(st, at)

and the transition probabilities satisfy the Markov property: The next state depends

on the current state and the action taken but is conditionally independent of all

previous states and actions, P (s′|s0, a0, ..., st, at) = P (s′|st, at).

As in Section 2.1.1 we say that the optimal metacontrol policy, π∗, is one that

maximizes the value function, V π, over all metacontrol policies, π. For an MDP the

value function V π can be expressed recursively using the Bellman equation:

V π(st) =
∑

s′

P (s′|st, π(st))
(
R(st, π(st)) + V π(s′)

)
. (3.1)

This equation has a unique solution [3]: the optimal value function, V ∗, that satisfies

the Bellman optimality equation:

V ∗(st) = max
a∈A

[
R(st, a) +

∑

s′

P (s′|st, a)V ∗(st+1).

]
(3.2)

Stochastic Shortest Path MDPs

A metacontrol such as the one described in the previous chapter is looking for the

shortest path for the ground policy through the levels of the environment. Assuming
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there exists a proper policy, one that reaches a goal state from any state s with

probability 1, this is a stochastic shortest path problem (SSP) [4].

Value iteration [3] forms the basis for most SSP algorithms. Value iteration

starts by initializing state values with an arbitrary value function, V0, then executes

full sweeps of the state space updating every state using the Bellman optimality

equation (Equation 3.2):

Vn(st) = max
a∈A

∑

st+1

P (st+1|st, a) (R(st, a) + Vn−1(st+1)) (3.3)

where n = 1, 2, ... is the iteration number. This update is called a Bellman update.

Because value iteration includes a full sweep of the state space it can be slow and

lack memory for solving even small SSPs.

This strategy is impractical in practice since the state spaces are usually large.

However, under the assumptions that one is interested only in a policy originating

in a known start state, s0, more efficient algorithms exist. The Find-and-Revise

algorithms [5] must start with an admissible value function V0, (i.e., one that satisfies

V0 ≥ V ∗ for all s ∈ S). At each iteration, a Find-and-Revise algorithm builds the

greedy graph of the current value function: the graph of all states reachable from

s0 using some policy π greedy with respect to the current value function. It then

searches this graph for a state that is inconsistent with the Bellman optimality

equation and updates the value of that state with a Bellman update.

Although the SSP model is fairly general, for some metacontrol problems there

is no proper policy. The existence of a death state, sd, such as in our environment,

means no policy can guarantee reaching the goal from all states. Then the problem

includes maximizing the probability of reaching the goal. Kolobov et al. [24] have

developed an extension of the Find-and-Revise framework to handle more general

SSPs that do not have a proper policy. Algorithms in the new framework add to

each iteration a step for eliminating traps. Traps are strongly connected component

of the greedy graph, GV , with no outgoing edges and no goal states. In short, they

are states from which no policy, greedy with respect to the current value function,

can reach the goal. Each trap is eliminated by decreasing the value of all states in

the trap in such a way that the value function is still admissible.

The drawback of using the algorithms presented above for metacontrol processes

is that they require an estimate of transition probabilities in the metacontrol

environment. This may not always exist especially since transitions in the
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metacontrol process are dependent both on what state will result when a given

action is taken (a transition probability distribution) and on what action the ground

policy selects (an intra-level action probability distribution).

Reinforcement Learning

Reinforcement learning uses value iteration to find the optimal value function for

an MDP. Suppose that at time t the agent has a policy π and an estimate Vt of the

state-value function based for this policy. The agent executes its next action, at,

chosen by the policy π. This induces in the environment a state transition st → st+1

with associated reward rt. If the estimate, Vt does not accurately represent V ∗, the

two sides of the Bellman optimality equation may not be equal and the difference is

called the temporal difference error:

δTD

t = rt + Vt(st+1)− Vt(st). (3.4)

Most temporal difference learning algorithms are based on continually updating the

value function estimate based on the error found at each step:

Vt+1(st)← Vt(st) + αδTD

t (3.5)

where α ∈ [0, 1] is the step-size parameter.

Reinforcement learning has been used for metacontrol in MDPs in Hierarchical

Reinforcement Learning (HRL) [12, 17, 22, 40, 34, 43]. The goal of HRL is to combat

the high dimensionality of the state space in complex environments by breaking the

process down into activities: policies on a subset of the state space. This requires

a generalization of the MDP called the semi-Markov decision process [20]. In semi-

MDPs there is no longer a single time step between actions instead the system is

treated as remaining in each state for a random waiting time before transitioning

to the next state.

In the option framework of Sutton, Precup, and Singh [44] each activity is defined

as an option composed of a policy and a termination condition. At each point the

agent selects an option and operation proceeds according to the policy of that option

until it terminates and a new option is selected. The option policies are generally

provided or learned a priori by treating each activity as a separate reinforcement

learning problem.

Similarly, Diettrich’s MAXQ method [13] describes each activity as a separate

semi-MDP by defining for each one a local reward function. These local reward
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functions are only used during learning to develop a locally optimal policy for each

activity. The value function of the initial problem decomposes into a sum of value

functions for each activity which form the basis of the learning algorithm. The

algorithm learns the hierarchical policy by jointly learning a locally optimal policy

for each activity. However, this method rests on the ability to construct good local

reward functions. If the local reward function does not accurately reflect global goals

the resulting hierarchical policy may be sub-optimal because the optimal policy

requires a locally sub-optimal policy for some activity.

The Hierarchy of Abstract Machines method of Parr and Russell [33] defines each

activity as a stochastic finite-state machine where certain state transitions can cause

actions to be taken in the environment. Each machine has specified choice states:

non-deterministic states where actions are determined by a learned policy. This

allows the programmer to partially specify the activity and constrain the permitted

actions without giving a full definition of the policy.

One of the drawbacks of reinforcement learning is that it requires the design of

a reward signal. A single scalar must impart to the agent enough information for it

to learn to predict how the environment will respond to its actions. In a complex

environment it may be difficult to design a reward function that can express and

balance all goals and desired behaviours.

On extended sequential decision making processes the rewards may also be sparse

or delayed. Consider, for example, an agent doing path-finding on a 1000 × 1000

map. If the goal state is a single cell on the map and the agent receives a reward

of −1 for each step until it reached the goal. It may take a long time for random

exploration to even discover the target and to learn which of the moves a long the

way were correct requires averaging over many visits.

Another drawback of both reinforcement learning and SSP is that to guarantee

convergence to an optimal policy requires that the environment of the metacontrol

be an MDP (or at least a semi-MDP). This will not be the case, for example, when

information relevant to identifying the state of the environment is missing from

immediate observation (partially observable MDPs). Partially observable MDPs are

often computationally intractable to solve exactly and performance of reinforcement

learning algorithms based on temporal difference learning can be unreliable in this

setting [48]. Other algorithms have been developed [26, 19, 36, 37] but they will

yield only an approximate solution.

13



3.2 Metacontrol through Intrinsic Rewards

Researchers have also experimented with using intrinsic rewards for metacontrol.

This may be viewed as a metacontrol that, rather than having access to inter-level

actions as we define them, augments the reward stream of the environment with

additional rewards that we call intrinsic rewards. For example, in a level-based

environment the metacontrol might encourage an agent to explore a particular level

by giving high intrinsic rewards within that level. As such they are not directly

comparable to an inter-level action-based metacontrol but they do, nonetheless,

serve a similar role of monitoring and guiding a ground policy.

The concept of curiosity in AI agents, later to become the formal theory of

creativity, fun, and intrinsic motivation, was first suggested by Schmidhuber [39]. It

is based on the concept of rewarding actions that improve the agents model of the

environment. In this approach the agent has a model: a predictor trained to predict

future states of environment from previously observed state-action pairs (i.e., an

estimate of the transition probabilities of the environment). The metacontrol then

generates curiosity rewards based on a measure of the mismatch between predictions

of the model and reality. In our level-based environment this type of metacontrol

encourages the agent to explore levels where the model makes bad predictions, which

in turn is expected to improve the model.

Initially the curiosity rewards were directly proportional to the predictor

error [39]. This would the agent to levels where prediction error is high and the

model needs improvement. A drawback of this approach is that the agent will also

have incentive to seek out levels where the environment is less predictable (i.e., the

predictor error is high even with the best model).

In his follow-up work [38] Schmidhuber instead based rewards on the change in

the predictor error with time. Then there is no incentive to seek out levels where

the predictor error remains statically high. However, levels where the predictor is

improving (reduction in predictor error) are intrinsically rewarding.

Later work by Storck et al. [41] similarly introduced rewards based on infor-

mation gain: the difference between the model’s estimated transition probability

distribution before and after a state transition is observed.

Bulitko and Brown [7] introduced similar intrinsic rewards to reinforcement

learning agents through a mathematical model of flow. In their framework, flow
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was an intrinsic reward, much like Schmidhuber’s curiosity reward. However, their

agents kept two separate value functions for expected external return and flow return

and attempted to maximize a linear combination of the two. They defined for every

state s ∈ S a scalar representing the environmental complexity, c(s), whose range

matched an innate ability, a, of each agent. The flow reward of each state s ∈ S

they then defined as

f(s) =
1

|c(s)− a|+ ϵ

where ϵ > 0 is a real-valued constant that ensures that flow rewards are finite.

A potential drawback of using intrinsic rewards for metacontrol is that it is tied

to a reward-based ground policy, such as a reinforcement learning algorithm, and

thus requires such a ground policy to be applicable to the environment. This may

not always be the case as discussed in the previous section.

Another drawback is that if intrinsic and environment rewards are not balanced

the agent may be less concerned with actually solving the problem (e.g., collecting

the “real” rewards from the environment) than it is with collecting these intrinsic

rewards which may, consequently, reduce its lifetime return.

3.3 Dynamic Difficulty Adjustment

Our approach is similar to methods employed for dynamic difficulty adjustment:

the process of automatically changing aspects of a video game, as it is played, to

avoid the player becoming bored or frustrated with the game (i.e., to keep them

in flow). Dynamic difficulty adjustment algorithms observe the behaviour of the

player and modify the game content or dynamics to improve the experience. In a

sense it is a metacontrol where the agent is a human player. In this case, since the

metacontrol has no influence over the agent (the player), it can only control the

agent-environment interaction by modifying the environment (the game).

There are two general approaches to dynamic difficulty adjustment: one is to

model expected player skills based on the player’s behaviour and adjust difficulty

to match and the other is to first learn to predict experiences of fun, challenge, or

frustration from player input and then use the predictor to direct content.

Numerous approaches exist that modify game complexity based on in-game

behaviour. Hunicke and Chapman [21] used probabilistic methods to predict

inventory shortfalls (e.g., lack of specific weapons or ammunition) by observing
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trends in damage taken and inventory expenditure in a first-person shooter game.

When shortfall is predicted a handcrafted policy prescribes adjustment actions

based on the health of the player and his inventory. The Interactive Storytelling

Architecture for Training [27] models players using a vector of competence levels

for different skills. The approach individualizes training by finding the best match

between characteristics of available training scenarios and the current state of the

skill vector. Lankveld et al. [25] adjust difficulty in a role-playing game based on

incongruity. Incongruity is defined as the difference between the game complexity

and the complexity of the player’s mental model of the game, and estimated using the

player’s health over progress made. The game then controls difficulty by modifying

the set of presented enemies to enforce a given level of incongruity.

Approaches based on in-game behaviour lead to platform-specific solutions with

explicit rules for how to adjust content to match predicted skills. Other approaches

enable more general models by learning to predict directly how content influences

player experience. Pedersen et al. [35] train a neural network to predict player

self-reported experiences of fun, challenge, and frustration based on measures of

player behaviour and in-game content. Yannakakis, Lund, and Hallam [49] use

evolving neural networks to predict player self-reported interest based on using

certain game features. Zook and Riedl [50] use tensor factorization to correlate

time-varying measures of performance in adventure role-playing games to player-

reported difficulty. This enables forecasts of players’ skill mastery not just in the

current state but forward in time. One drawback of using player experience is that

it requires data from experiments with human subjects which can be difficult and

expensive to collect.
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Chapter 4

Flow-seeking Metacontrol

In this chapter we propose a method of using flow to define a metacontrol policy

for AI agents in a level-based environment. As described in the introduction, flow

in humans appears to emerge only when there is a match between skills and the

complexity of the task at hand. By defining a degree of flow as a measure of the

match between the skills of an agent and the level complexity, we propose a simple

metacontrol policy that seeks a state of flow. The policy uses this measure to

compare states and evaluate which one is closest to the state of flow.

In this chapter we first define skills, complexity, and degree of flow and then

present our algorithm along with an illustrative example.

4.1 Agent’s Skills

The goal of our metacontrol is to steer the agent to the right level for its abilities.

As such, the metacontrol must observe certain properties of both the agent and the

environment to determine the next action. These properties we will now refer to as

the skills of the agent.

We assume that there exists a representation, σ̄ : S → R
d, of any state as a

finite set of skills, quantified by real numbers, so that we can represent the agent’s

skills in any state s as a d-component vector σ̄(s) ∈ R
d. For convenience we will use

the notation σ̄t = σ̄(st) for the skills of an agent at time t.

For example, in Angband the agent’s skill may be represented by the character’s

armour class (AC) and hit points (HP). Then the current skills of the agent in

Figure 4.1 are σ̄t = (10, 20).
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The complexity profile of a level-based environment for a threshold ρ is the

mapping c̄ρ : {0, ..., N} → R
d giving the complexity of each level.

Here we assume that the skills of agents are defined in such a way that a higher

value of each skill corresponds to a greater probability of reaching the goal. We

further assume that this probability is independent of the value of other skills (see

discussion in Section 6.2).

For example, one of the agent’s skills in Angband is armour class. Let us assume

that the probability of reaching the goal decays exponentially with armour class on

level l = 1, with rate parameter λ = 1/100. Then the probability of reaching the

goal with armour class less than some value σ is given by pAC,1(σ) = 1 − e−σ/100.

Using a threshold of ρ = 5%, we find the armour class complexity of level 1 to be

c5%
AC

(1) = − ln(1− ρ)/λ ≃ 5.

4.2.1 Mining Level Complexity

One way to determine the complexity is to use a population of probe agents (with

some metacontrol policy, π, and ground policy, π̃) and estimate the probability used

to define the complexity from sample proportions in these probe agents.

For a given population of n probe agents, let σ̄i
l be the skills of agent i upon

entering level l. Let us also define p̂i
k,l to be the fraction of probe agents with higher

skill at level l that eventually reached the goal. Then for each k we estimate the

complexity of level l for threshold ρ as

ĉρ
k(l) = min

i

{
σi

k,l : p̂i
k,l ≥ ρ

}
. (4.3)

Algorithm 2 provides pseudo-code for this method.

Consider an agent in Angband with the two skills of rumour class and hit points

as before. The goal state is on level l = 1 and there are two possible inter-level

actions possible: to stay or to descend. We would like to estimate the complexity

with a threshold of ρ = 5%, using n = 3 probe agents.

The first probe agent trial, i = 1, begins on line 5 and lines 6-9 initialize

parameters for the trial. The probe agent begins operation on line 10, with the

metacontrol choosing to stay (line 14) until time t = 386 when the metacontrol

chooses to descend. In the next iteration of the loop (line 10) the condition on line

11 becomes true (l387 = 1 > 0) and on line 12 σ̄1
1 is set to σ387 = (10, 17) then l gets
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Algorithm 2 Complexity Mining

Input: A metacontrol process ⟨S, A, P,S†, s0⟩ with N levels,
1: a probe agent policy π,
2: a skill representation σ̄,
3: a threshold ρ,
4: and a number of probe agents n.

Output: complexity profile: c̄(l) for all levels 1 ≤ l ≤ N .
5: for i = 1, 2, ..., n do
6: ei ← 0 ▷ ei = 1 if probe i was successful in reaching the goal, 0 otherwise
7: t← 0
8: st ← s0

9: l← 0 ▷ l is the maximum level recorded for probe i
10: while st /∈ S† do
11: if lt > l then ▷ If this is the first time probe i visits level l
12: σ̄i

l ← σ̄(st) ▷ σ̄i
l are the skills of probe i upon entry to l.

13: l← l + 1 ▷ Maximum level increased

14: at ← π(st) ▷ Metacontrol acts

15: st+1
P (st+1|st,at)←−−−−−−−− st ▷ State transition

16: t← t + 1

17: if st = sg then
18: ei ← 1 ▷ Probe i was successful

19: for all i, k, l do ▷ Find the fraction of successful probes with less skill on level l.

20: pi
k,l ←

# {j: σ
j

k,l
≤σi

k,l and ej=1}

# {j: ej=1}

21: for all k, l do ▷ Find the minimum skills with fraction pi
k,l over the threshold.

22: ck(l)← mini

{
σi

k,l : pi
k,l > ρ

}

incremented and agent operation continues until t = 410 when they reach the goal

sg. Then the condition on line 17 is true so e1 = 1.

This for-loop (line 5) continues for n = 3 probe agents, with probe agent 2

surviving to the goal (e2 = 1) with skills σ2
1 = (8, 20) on level 1 and probe agent 3

failing to reach the goal (e3 = 0) with σ3
1 = (5, 16).

Then for n = 1, 2, 3 probe agents, k = 1, 2 skills and level l = 1 line 20 finds the

fraction of successful probes with skill k less than probe i on level l: p1
1,1 = 2/2 = 1,

p1
2,1 = 1/2, p2

1,1 = 1/2, p2
2,1 = 2/2 = 1, and p3

1,1 = p3
2,1 = 0. Finally, for k = 1, 2 and

l = 1 in line 22 we find the complexity of each skill: c1(1) = min{8, 10} = 8 and

c2(2) = min{17, 20} = 17.

We think of these probe agents as testing the limits of what an agent can

accomplish with a given skill. The accuracy of the estimate (i.e., how closely

the estimated complexity in Equation 4.3 matches the actual complexity given by

Equation 4.2) depends on how the collected data of the probe agents is distributed

in the space of possible skills. For example, cautious probe agents (that attempt
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to maintain overqualification to avoid failure) may yield deceptively high estimates

of the minimum: on some dimensions the actual complexity may be lower than the

probe agents revealed simply because none of the probe agents dared proceed with

less skill.

The accuracy of the estimate also depends on how well the probe agent sample

represent the population of agents for which the complexity is mined. If the probe

agent policy is different from the flow-seeking agents, the probability of reaching

the goal with a given skill may also be significantly different thus making the mined

complexity inaccurate.

4.3 Degree of Flow

We are now ready to define, for a given agent, the degree of flow the agent is

experiencing. The model we use in this work is an extension of previous work by

Bulitko and Brown [7] and Bulitko [6]. Formally, the degree of flow experienced by

an agent is at time t on level l is given by

F (σ̄t, c̄(l)) =
1

||σ̄(st)− c̄(l)||+ ϵ

where ϵ > 0 is a real-valued constant that bounds the flow and || · || is the Euclidean

distance: ||p̄− q̄|| =
√∑d

i=1(pi − qi)2 for all p, q ∈ R
d. The degree of flow, F , takes

on a maximum of 1/ϵ when the skills of the agent, σ̄t, and the complexity of the

level, c̄(l) are equal (i.e., in the state closest to flow).

4.4 A Flow-Seeking Metacontrol Policy

Our flow-seeking metacontrol policy proceeds in two stages. In the first stage, using

a basic form of metacontrol, we mine the level complexity for each level, c̄(l) as

described in Section 4.2.1. From this we can construct a flow-seeking metacontrol

policy that operates according to Algorithm 3.

At each time point, t, the agent observes the skill representation of the

current state σ̄t and takes the inter-level action that maximizes the degree of flow

experienced on the intended level

a = argmax
a′∈A

F (σ̄t, c̄(la′)) .
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Here la′ is the intended level of the inter-level action, a′. We will use F (a′) =

F (σ̄t, c̄(la′)) as short-hand notation for the decree of flow expected on the intended

level of inter-level action a′.

For example, consider an agent in Angband with two skills: armour class and

hit points, σ̄t = (10, 20). The agent is on level 1 and has two available inter-level

actions: stay on level 1 (a1) or go to level 2 (a2). The complexity of level 1 is

c̄(1) = (5, 20) while the complexity of level 2 is c̄(2) = (8, 24).

Then if ϵ = 1 for a1 we have F (a1) = 1
||(10,20)−(5,20)||+1 = 1/6 while for a2 we

have F (a2) = 1
||(8,24)−(5,20)||+1 = 1/4. So the metacontrol will select a2 and go to

level 2.

Algorithm 3 Flow-seeking metacontrol

Input: A metacontrol process ⟨S, A, P,S†, s0⟩ with N levels,
a skill representation σ̄,
a complexity profile c̄(l) for all levels 1 ≤ l ≤ N ,
and a constant ϵ > 0.
t← 0
st ← s0

while st /∈ S† do ▷ While state is not terminal
for all a′ ∈ A do

F (a′)← 1
||σ̄t−c̄(la′ )||+ϵ

▷ Compute degree of flow for each inter-level action

at ← argmaxa′∈A F (a′) ▷ Take the action with the highest degree of flow

st+1
P (st+1|st,at)←−−−−−−−− st ▷ State transition for metacontrol (includes

the action of the ground policy)
t← t + 1

4.5 An Illustrative Example

Bulitko [6] devised a simple environment to test the method we have described.

Here we will use his environment to help visualize flow-seeking as a metacontrol and

discuss our conclusions about the results in this environment.

4.5.1 The Environment

The environment was designed to focus only on metacontrol. It has N + 1 disjoint

levels where each level, 0 ≤ l ≤ N , has only one state, sl (i.e., Ll = {sl} for all

0 ≤ l ≤ N). The initial level s0 is our start state and the final level is our goal

state, sg = sN . Thus, the state space is composed of N + 1 states and the death

state, S =
∪

l Ll ∪ sd. Each state has N + 1 inter-level actions a that take the agent
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to level la. Figure 4.2 depicts such an environment with 3 levels. For simplicity,

the death state is not depicted but every action leads to the death state, sd, with a

certain probability.

Figure 4.2: State diagram for a 3-level environment. All actions can also lead to the
death state (not depicted).

In this environment, an agent’s skill is defined by their age, σt = t, the number

of turns it has lived. For each level, 0 ≤ l ≤ N , there is a minimum age requirement

(or complexity), c(l) ∈ R. On each turn, t, the probability of dying is proportional

to the deviation between its age, t, and the age requirement, c(lt):

∀a ∈ A : P(sd|slt , a) =

{
p† if c(l) ≤ t
min{1, p† + tanh (c(lt)− t)} if c(l) > t

(4.4)

where p† ∈ [0, 1] is the ambient probability of death in the environment; regardless of

level or age. If skill exceeds the requirement for the current level then ambient death

becomes the only cause of death in the environment. However, if an agent is younger

than the required age for the current level, the probability of dying increases pro-

portionally to the deviation from the required skill. This is illustrated in Figure 4.3.

At each time step, t, the agent selects an action at that causes the environment

to transition from state st to state st+1 and the agent receives a reward rt. The

reward is given by

rt =





l(st) : st+1 /∈ S† = {sd, sg}
−∑t−1

t′=0 rt′ : st+1 = sd

(Tmax − t) ·N : st+1 = sg

(4.5)

where Tmax is the maximum time given to reach the goal.
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This environment was designed to reward agents for maintaining a match

between the agent’s skills and the level complexity. Agents are rewarded more

for taking on more complex levels but if they are underqualified their probability of

dying increases fast.

4.5.2 Empirical Study

Bulitko [6] considered two environments with different complexities: a quadratic

complexity, c(l) = l2, 0 ≤ l ≤ 40; and a square root complexity c(l) =
√

l, 0 ≤
l ≤ 200. In his initial experiment he assumed the levels were continuous. We

reproduced Bulitko’s study with the modification of assuming discrete levels to

adapt the environments to our problem definition.

In these environments he compared two types of metacontrol: a flow-seeking

policy and a simple baseline. The baseline policy maintained a constant progression

rate, α ∈ R+, through the levels. At each turn, t, of its lifetime, a baseline agent with

progression rate α will be on level lt = min {⌊α · t⌋, N} (in Bulitko’s experiment [6]

he allowed agents to be on level lt = α · t since levels were continuous). For example,

if a baseline agent with α = 0.5 has survived to turn t = 11, it will be on level

l11 = ⌊0.5 · 11⌋ = 5.

Mining Level Complexity

In this environment, an agent’s skill is defined by their age, σt = t. Correspondingly,

complexity of each level, l, is the age requirement of that level, c(l). To mine level

complexity Bulitko [6] used a method similar to the one described in Section 4.2

whereby the complexity is learned through observation of probe agents.

Each probe agent is given a fixed progression rate α > 0 and two flip points,

0 < f1 < f2 < N . All probe agents follow the behaviour of a baseline agent parame-

terized by some α until they reach the level given by their first flip point, f1. At that

point they will randomly decide to either slow down or speed up. If they speed up,

their new progression rate, α′, will be uniformly drawn from the range (0, N − f).

If they slow down, α′ is uniformly drawn from the range (0, α). In either case, they

maintain the new progression rate until they reach the second flip point, f2, where

they slow down by choosing a new progression rate uniformly drawn from (0, α′).

For each level 0 < l < N the estimated complexity was the shortest time taken

to reach level l such that the fraction of faster probe agent that survived to the goal
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is less than a given threshold ρ. Therefore, for each level the fastest ρ percent of

surviving probe agents were removed before taking the minimum.

For each environment we considered 8000 probe agents with initial progression

rate α in the range [0.001, 1] and threshold ρ = 0.1%. For the quadratic complexity

the ambient death probability was p† = 0.01% but for the square root complexity

we used p† = 0.1%. The complexity we mined was close to the actual complexity in

both environments (Figure 4.5).
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Figure 4.5: Actual and mined complexity for the environment. In (a) the actual
complexity is quadratic, c(l) = l2, and in (b) the actual complexity is a square root,
c(l) =

√
l.

Experiment using a square root complexity

In this experiment we used a square root complexity, c(l) =
√

l, 0 ≤ l ≤ 200, and

an ambient probability of dying p† = 0.1%. Flow-seeking agents were compared to

baseline agents with 50 different progression rates, α, equally spaced in the range

from 0.5 to 3. A 1000 trials were run for each α and a 1000 trials were also run

for the flow agents. The mean return (± standard error of the mean) of the flow-

seeking metacontrol (7.72×104±0.33×104) was higher than that of the best baseline

policy (5.04× 104 ± 0.76× 104) which the had progression rate α = 1.15. The flow-

seeking metacontrol was also faster and more reliable than the baseline policy for

all progression rates considered (Figure 4.6a).

26



(a) (b)

.....
0
.

20
.

40
.

60
.

80
.0 .

100

.

200

.

300

.

400

.

Failure rate (%)

.

T
im

e
to

re
a
ch

L
=

2
0
0

.

. ..Baseline

. ..Flow

.....
15
.

20
.

25
.

30
.1.5 .

2

.

2.5

.

3

.

3.5

.

4

.

·103

.

Failure Rate (%)

.

T
im

e
to

re
a
ch

L
=

4
0

.

. ..Baseline

. ..Flow-based

Figure 4.6: Average time to reach the goal and failure rates of different metacontrol
policies. In (a) complexity is quadratic and policies considered were flow-seeking
and 50 different baseline policies with progression rates equally spaced in the range
from 0.01 to 0.028. (b) uses square root complexity and 50 baseline progression
rates equally spaced in the range from 0.2 to 2.5.

Experiment using a quadratic complexity

In this experiment we used a quadratic complexity, c(l) = l2, 0 ≤ l ≤ 40, and an

ambient probability of dying p† = 0.01%. Again we ran a 1000 trials each of 50

different progression rates, equally spaced in the range from 0.01 to 0.028, and a

1000 trials were also run for the flow agents. The mean return (± standard error of

the mean) of the flow-seeking metacontrol (11.75×104±0.15×104) was higher than

that of the best baseline policy (10.86× 104± 0.14× 104) which the had progression

rate α = 0.024. There was no difference in speed or reliability between the best

baseline policy and the flow-seeking policy (Figure 4.6b).

4.5.3 Discussion

This experiment illustrates the application of the flow-seeking metacontrol policy

and the type of environment where it performs well. It also highlights a notable

difference between the two-dimensional performance measure of speed and reliability

and the reward-based performance measure. As Figure 4.6b shows in the quadratic

complexity environment there is no difference between the best baseline agent and
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the flow-seeking agents in speed or reliability, but there is still a significant difference

in lifetime return.

This difference is due to the reward structure favouring agents spending time on

higher levels - taking on the highest possibly complexity that they can survive. The

flow-seeking agents collect close to the maximum possible return by progressing

fast through the lower levels and then slowing down at higher levels. The fixed

progression rate of the baseline forces agents to move slower at the lower levels (or

they would move too fast through the higher levels). This decreases their return as

they spend less time of their time at the high levels.

As an example, Figure 4.7 shows level progression of a single run of the flow-

seeking and best baseline policy. The flow-seeking agent spent approximately 500

turns reaching level 20 while it took the baseline agent approximately 800 turns.

The difference of approximately 300 turns the flow-seeking agent spends on the last

20 levels instead, which translates into higher return.

A reward structure where reward increases with challenge is common in level-

based environments such as video games. Under those circumstances seeking flow

may increase the return as the example above illustrates.
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Chapter 5

Empirical Study in Angband

This chapter provides an empirical evaluation of the flow-seeking algorithm in the

Angband role-playing game. Section 5.1 describes the Angband test bed and the

existing automatic player used for the ground policy and as a baseline for the

metacontrol. Our methods for defining skills and mining the level complexity

in Angband are described in Section 5.2. Section 5.3 describes the results of an

experiment comparing flow-seeking metacontrol to the baseline automatic player

and to a uniformly random metacontrol policy.

5.1 The Angband Environment

The metacontrol problem we consider in our empirical study is that of level

progression in the game of Angband. Angband is an open-source role-playing game

originally developed by Cutler and Astrand in 1990 by building on another game,

UMoria 5.2.1. Since then many have been involved in its development; most

notably by Swiger, Harrison and Ruehlmann who did extensive work maintaining

and expanding the code to get it to the current version.

The game begins in town with shops that allow the player to purchase supplies.

On the outskirts of the town lies the entrance to the dungeon of Angband. The

dungeon is a cave composed of multiple levels; each level has approximately 50

rectangular rooms connected by tunnels. The player assumes the character of an

adventurer that roams the dungeon searching for gold and fighting the monsters

within each level. In the dungeon the character also picks up equipment and magical

items such as weapon or scrolls and these help them gain an advantage in combat.

Staircases exist on each level to allow the player to move both up and down within

the dungeon. Note that in Angband dungeon levels are numbered from shallowest
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to deepest: the town is 0 and the deepest dungeon level is 100. Thus moving to a

shallower dungeon level means going to a lower level number, and conversely moving

to a deeper dungeon level means going to a higher level number.

Figure 5.1 shows a partial visualization of the game state in Angband. The player

is represented by the ‘@’ sign and monsters are generally represented by letters of

the alphabet (e.g., the ‘o’ is a black orc). The ‘<’ above the player is an up staircase

allowing the player to move to a new dungeon at a shallower dungeon level.

Figure 5.1: A partial visualization of the game state in Angband.

5.1.1 The Character and Agent Skills

The player controls a character exploring in the dungeon of Angband. This character

has three primary attributes chosen by the player: sex, race, and class. The sex is

purely for flavour, but the race and class have an effect on fighting ability. There

are eleven different races and six classes.

Each character has six primary statistics: strength (STR), intelligence (INT),

wisdom (WIS), dexterity (DEX), constitution (CON), and charisma (CHR) in

addition to hit points (HP) and armour class (AC). These are displayed on the

left-hand side of the screen in Figure 5.1. Characters also have other abilities such

as speed, magic devices, stealth, searching ability, fighting skill, and shooting skill.

All these abilities can be modified by magic, equipment, race, and class (see the

player’s guide to Angband [1] for a more detailed description). Survival in the
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dungeon depends on all of these abilities as well as various supplies and equipment

the character carries (e.g., weapons, armour, food, potions, and scrolls).

In Chapter 4 we defined skills, ā, as a mapping from the state space to a d-

dimensional real-valued vectors. Each of the d components is a feature of the game

and agent state known as a skill. There are two types of skills to consider in Angband:

as the character kills monsters in combat she accumulates experience and abilities

but in addition the player is learning new skills (e.g., how to tackle certain monsters,

what objects are important).

In this work we assume that we can base metacontrol decisions in Angband only

on the abilities of the characters. Generally, the skills of the player, not just the

character they are playing, may be relevant. For example, for human players the

amount of experience of playing the game may be a necessary skill to consider.

However, we will consider only agents with a fixed, rule-based ground policy and

as such the player skills are static and the only variation in the difficulty the agent

faces comes from the abilities of their character.

5.1.2 Scoring

The object of the game is for the character to reach the 100th level and defeat

Morgoth, the Lord of Darkness. As the player guides the character deeper into the

dungeon, the monsters become more formidable. By our definition, the complexity

of level is the minimum skills needed to reach the goal from that level with a certain

probability. As the monster become more formidable it requires greater skills for

the character to defeat them thus the level complexity is expected to increase the

higher the level is (the deeper into the dungeon).

For each kill the character gains experience points and the skills related to

character’s statistics increase. If the player dies before achieving the goal, scoring

is based on the experience points accumulated. We used this score as the reward

function for evaluating performance of agents in Angband.

The experience points gained per kill are equal to the monster level (a measure of

the difficulty of the monster) divided by character level (a measure of the experience

points accumulated). Thus, in contrast to the degree of flow, score per kill will

increase with increasing difficulty even when there is a mismatch between the

skill and the complexity. However, since the likelihood of dying increases the less

experienced the character is compared to the monster level, it is our hypothesis that

31



the expected lifetime experience should be at a maximum for flow-seeking agents -

agents that are attempting to match skills and difficulty.

5.1.3 The Borg

The APW Borg (or simply the borg) is an open-source automatic player for Angband

battle simulator developed by White [47]. It uses rule-based logic to make intelligent

decisions about inventory and equipment management, combat, level progression

and exploration, and other aspects of Angband.

The principle of the Borg was to play the game as if it were human (i.e., it reads

data displayed on screen and acts on that observation; treating the game as a black

box). As a result, the operation is slow and play-outs can only be performed starting

from the beginning of the game. However, it is the best automatic player that

exists for Angband, capable even of winning the game under certain conditions [46]

although not frequently, as evidenced by Figure 5.2 showing the fraction of surviving

agents as a function of level from an initial population of 1532.

In our experiments we used the borg as the ground policy. Its level progression

module serves as a competing method for metacontrol. To do this we modified the

APW Borg to separate the metacontrol from the control and allow replacement of

the metacontrol with different policies. In addition, although the logical choice for

the goal state is the defeat of Morgoth on level 100 (the actual goal of the game),

given the performance of the borg in initial experiments we chose a more conservative

goal of reaching level 30. Even then only approximately 10% of borg agents could

achieve it.

.....
0
.

10
.

20
.

30
.

40
.

50
.

60
.

70
.

80
.

90
.

100
.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

Figure 5.2: Fraction of surviving borg agents as a function of level. Initial population
was 1532 but by level 10 less than 50% of them remain and by level 30 the fraction
is close to 10%.
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5.1.4 Inter-Level Actions

Changing of levels in Angband happens for a number of reasons. The player may

be forced to leave the level, for example if they fall through a trap door or are

magically teleported to another level. The player may also choose to leave to return

to town and restock on supplies or to escape from immediate danger. Finally, they

may choose to descend because they have completed the current dungeon level and

consider themselves prepared for the next level. In this work we considered only

the last one to be an inter-level action. The other actions, although they can result

in a change of level, are part of ground-level activities (e.g., exploring a dungeon,

fighting a monster, restocking supplies) and as such were controlled by the borg.

Choosing to descend to the next level can only be done when the character is

standing on a down staircase. However, for a metacontrol to be effective, it requires

the ability to take inter-level actions from any state. If it could only descend when

the ground policy decides to navigate to a staircase, then it would be the ground

policy that is deciding when to descend. Thus, we considered abstracted inter-level

actions, which instead of changing levels induce the ground policy to search for a

staircase. Essentially, the metacontrol has two available actions: go deeper or stay;

but neither will result in an immediate change in the game state. Instead, they result

in a change in the ground policy state; giving it the goal of seeking a staircase.

Going to shallower levels was not a part of possible inter-level actions because

the borg is implemented to only consider moving to a shallower level as part of the

aforementioned ground-level activities. As such, it proved difficult to integrate a

metacontrol that goes up with the borg and it might also be considered biasing the

experiment towards competing metacontrols.

5.2 Flow-Seeking Metacontrol Initialization

The flow-seeking metacontrol requires a skill representation and corresponding

complexity for each level to calculate the degree of flow. In this section we discuss

how these were set up for Angband.

5.2.1 Skill Selection

In this section we explore different feature selection methods used for determining

skills in Angband.
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The borg, extracts and operates on 202 features that form its complete

observation of all the supplies and abilities of the character. However, not all

of these features appear equally relevant to a metacontrol policy. In this work

we considered two skill sets drawn from these features: the 20 features used by

the borg metacontrol and a subset selected using correlation feature selection [15].

Correlation feature selection looks to maximize the mean correlation between each

feature and a given value, while minimizing the mean pairwise correlation between

features of the subset.

In choosing skills we are seeking features that will give the best metacontrol.

Our measures of performance are the expected time and failure rate of the agents.

However, we expected our complexity mining scheme would ensure that the flow-

seeking metacontrol minimizes expected time. Complexity is estimated as a

minimum of skills needed to survive to the goal and the flow-seeking metacontrol

will descend as soon as its skills develop to match the complexity of the next level.

This means in the absence of complexity the flow-seeking metacontrol is descending

as fast as possible. What we desire is a complexity that balances this with our other

goal of surviving all the way to the final level. As a result, we chose to look for the

features that are correlated with survival to the goal.

We used borg performance data from 3000 runs. The data consisted of all 202

borg features upon entry to each level; classified by survival to the goal. This data

was passed to Weka’s [16] CfsSubsetEval class with default options and yielded a

subset of 26 features. The two methods described yielded two different skill sets

(Table 5.1) to use with our flow-seeking metacontrol.

5.2.2 Mining Level Complexity in Angband

We defined level complexity c̄(l) at level l as the minimum skill below which agents

survive to the goal, Lmax = 30, with low probability. To estimate the complexity of

each level we first run probe agents and observe their performance.

In Angband these probe agents are regular borg agents with some added

randomization. Each probe agent uses the borg metacontrol policy until it crosses

a given flip point 0 ≤ l′ ≤ Lmax. After the flip point, the metacontrol will always

choose to descend. The pseudo-code of the probe agent metacontrol is given in

Algorithm 4.
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Table 5.1: Skill sets used by the flow-seeking metacontrol. Values in bold are in
both skill sets.

CFS Skill Set Borg Skill Set

Amount of Potions of Healing Amount of Food
Base Intelligence Amount of Fuel

Base Wisdom Speed
Base Dexterity Access to Resistance to Fire
Base Charisma Access to Resistance to Cold

Base Constitution Access to Resistance to Electricity
Strength (with Augmentations) Hit Points

Constitution (with Augmentations) Character Level
Charisma (with Augmentations) Amount of Potions of Healing

Self-Illuminating Access to Resistance to Acid
Speed Access to Resistance to Chaos

Resistance to Acid Access to Resistance to Disenchantment
Resistance to Poison Access to Resistance to Drain Life

Resistance to Fear Access to Resistance to Paralysis
Resistance to Nexus Amount of Potions of Cure Critical Wounds

Access to Resistance to Cold Extrasensory Perception
Access to Resistance to Poison Self-Illuminating

Access to Resistance to Fear Light Radius
Access to Resistance to Light Amount of Scrolls of Teleportation

Damage per Hit Amount of Teleportation Effects
Weapon’s Damage per Hit
Weapon’s Damage by Cold

Amount of Scrolls of Phase Door
Amount of Scrolls Teleport Other

Amount of Potions of Resistance to Cold
Amount of Attack Rods

We ran 833 probe agents. As described in Section 4.2.1, at the end of all the

probes we filter out all data from probe agents that did not reach Lmax. For each

level l ∈ {1, . . . , Lmax} and each component k of the skills we then remove the

bottom ρ = 10% and take the per-component minimum.

Algorithm 4 Probe Agent Metacontrol

Input: The borg metacontrol policy π, a state s, and a flip point l′

Output: An inter-level action a
if s /∈ S† then

a← π(st) ▷ Borg metacontrol action
if l(s) > l′ then ▷ If current level is higher than flip point

a← al(s)+1 ▷ Choose to go to next level
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5.3 Experiment

To investigate if flow-seeking metacontrol improves performance in Angband we

collected performance data for two different flow-seeking policies, which we call

FlowDesigned and FlowAuto. These flow-seeking policies were compared to the

borg metacontrol and a random metacontrol. The details of the four metacontrols

are given in Table 5.2.

We ran 750 trials for each of the four metacontrols considered. All four agent

types used the same ground policy used by the borg. Each trial consisted of an

agent starting from the initial state of the game and proceeding until they died or

reached the goal, Lmax = 30. Controllable initial character statistics were set to be

the same for all agents (Table 5.3).

The performance measures used to compare metacontrols consisted of average

turns taken to reach the goal, failure rate, and mean score. For all means the

measure of dispersion used was the 95% t-based confidence interval.

Comparison of failure rates was done using a chi-squared test with Marascuillo

post-hoc test [28]. For comparing mean score and average turns among different

metacontrols we used a permutation F -test with Holm-Bonferroni corrected post-

hoc [18] using 5000 permutations chosen at random without repetition. For all

statistical tests the significance level was chosen a priori to be α = 5%.

Table 5.2: Description of the four metacontrols considered in our experiment.

Name Description

FlowDesigned Flow-seeking metacontrol with a designed skill set
from the features used by the borg.

FlowAuto Flow-seeking metacontrol with an automatically
selected skill set using correlation feature selection.

Borg The borg metacontrol.
Random Metacontrol that on each turn picks from the available

inter-level actions with equal probability.

Table 5.3: Summary of controllable initial character statistics for all agents. Values
of all other abilities are initialized by the game engine.

Sex Race Class STR INT WIS DEX CON CHR

Female Dwarf Warrior 17 10 10 18 10 10
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5.3.1 Results

Metacontrol had a significant effect on both average time to reach the goal

(permutation F -test, p < 0.0002) and failure rate (chi-squared test, χ2 = 15.15,p =

0.0017) as shown in Figure 5.3.

FlowDesigned agents were the fastest to reach the goal followed by random

and borg agents (with no significant difference) and the slowest were the FlowAuto

(HolmBonferroni post-hoc permutation test). FlowDesigned and random agents had

similar failure rates while the failure rates of borg and FlowAuto agents were lower

than FlowDesigned by approximately 5% (Marascuillo post-hoc test; p < 0.05).

Metacontrol also had a significant effect on the score (permutation F -test, p =

0.012) as shown in Figure 5.4. The average score of borg agents was significantly

higher than the average score of random and FlowDesigned agents. In addition,

the average score of the FlowAuto agents was also significantly higher than that of

FlowDesigned agents (Holm-Bonferroni corrected post-hoc; p < 0.05).
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5.3.2 Follow-up Experiments

Surviving FlowAuto agents took almost 20 million turns longer to reach the goal

compared to agents using other metacontrols. This may have been because they

spent an average of 8.4 ± 2.5 million turns on level 7 compared to a grand mean

of 0.5 ± 0.3 million turns per level (for FlowAuto agents). By contrast the average

turns per level 7 for borg agents is 0.66± 0.08 million turns.

This unusually long stay at level 7 coincided with a decrease in mined complexity

for character strength (STR) from 18 at level 7 to 17 at level 8 (Figure 5.5). We tried

removing this dip in complexity by modifying the complexity of levels before level

8. In a 300 trial experiment the resulting metacontrol, FlowAuto*, was no different

from the FlowDesigned metacontrol on any measure (Table 5.4; 300 trials).

On the other hand, “pinning” the random metacontrol to level 7 for 5 million

turns (i.e., preventing the metacontrol from descending to level 8 until at least 5

million turns after first entering level 7) decreases failure rate by 8% although the

difference in score is not significant (Table 5.5; 300 trials).
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Table 5.4: Mean turns to reach the goal, failure rate, and score of the FlowAuto*
and FlowDesigned metacontrols with 95% confidence intervals.

Mean turns Failure rate Score
[millions] [%] [thousands]

FlowAuto* 6.14± 0.16 92.2± 3.0 61± 28
FlowDesigned 6.33± 0.20 90.7± 2.6 79± 21

absolute difference 0.18 1.5 18

Table 5.5: Mean turns to reach the goal, failure rate, and score of the random and
pinned random metacontrols with 95% confidence intervals.

Mean time Failure rate Score
[millions] [%] [thousands]

pinned random 13.02± 0.35 82.0± 4.3 140± 40
random 7.97± 0.47 90.0± 3.4 88± 30

absolute difference 5.05 8 52
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5.3.3 Discussion

The results indicate that a flow-seeking metacontrol can have an effect on per-

formance and show improvement over a random metacontrol. The FlowDesigned

metacontrol was faster but no less reliable than random and the FlowAuto

metacontrol was more reliable and higher scoring, although slower. However, the

existing borg metacontrol seems the best overall, it is more reliable and higher

scoring than FlowDesigned and faster but no less reliable than FlowAuto.

The FlowAuto agents showed the most improvement over the random metacontrol

but there is reason to suspect that this improvement is due merely to a decrease in

the mined complexity of a single skill (STR) from level 7 to level 8. We speculate

that this decrease does not represent the actual complexity profile in Angband since

initial values of all skills were fixed. It is therefore possible that our mining process

fails to accurately find the minimum skill required if the initial values set are higher

than the actual complexity of those levels. Once effects that decrease the skills

(e.g., attacks that drain statistics or destroy equipment) come into play the mined

complexity will dip if the actual complexity is lower than what the agent initially

had.

In fact, as the flow-seeking agents proved to be sensitive to the mined complexity

there is reason to suspect that they would be similarly impacted by any other

inaccuracies in mined complexity. We speculate that a better mining process, one

that more reliably determines the minimum skills required by the ground policy on

each level, could allow the flow-seeking metacontrol to compete with the borg in

Angband. This may require a better mining algorithm or even a different definition

of complexity (Section 6.2).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we presented an algorithm for metacontrol. We assumed a sequential

decision-making in an environment that can be divided into levels of increasing

complexity, and the goal is to reach the final level as quickly as possible. We

based our algorithm on the psychological state of flow; specifically on the concept

of matching the skills of the agent to the complexity of a level.

First, we showed how, for a given set of skills, data from probe agents can be

used determine complexity by finding the minimum skill required of agents on a

given level to reach the goal. We then presented a simple mathematical model of

the degree of flow that maximizes when the skills of the agent match the mined

complexity. This model led to a metacontrol policy that seeks to maximize degree

of flow to find the state closest to flow.

We gave an example of how the flow-seeking metacontrol can be applied to a

simple, single-skill environment and then tested it in the role-playing game Angband.

We used both a hand-selected set of skills and an automatically selected one. Flow-

seeking agents with the hand-selected skill set had the fastest average time to reach

the goal but were no more reliable or higher scoring than a random metacontrol

and worse than the existing hand-coded metacontrol. Flow-seeking agents using an

automatically selected skill set proved to be the slowest; but reliability and score

were the same as the existing hand-coded agents.

We also found the flow-seeking metacontrol to be sensitive to variations in the

mined complexity; especially to a decrease in a skill value from one level to the next.

This led us to speculate that a different scheme for complexity mining could perform

better.
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6.2 Directions for Future Work

The results of our algorithm in Angband indicated that complexity mining plays an

important role. The technique presented in this thesis is based on the minimum skills

required by probe agents to reach the goal. Generally it will accurately estimate the

actual complexity, as we define it, only if exploration of probe agents is sufficient.

Other methods of estimating complexity, such as genetic search [14] where agents

evolve a complexity profile, could be evaluated in future work.

Another line of future work will explore removing some the assumptions used

in our current estimation of complexity. For example, we assumed for each feature

a higher value means better survival, regardless of other feature values. However,

skills may be correlated such as a character’s armour weighting them down; thus

reducing their speed. A player can invest in either heavy armour or high speed

to prevent damage from hits and increase survivability. Agents relying on a per-

component minimum, however, would target neither speed nor armour since the

minimum for armour would come from the fast characters and the minimum for

speed would come from the heavily armoured characters. A potential solution is

to use automated clustering techniques to first define the modes of the skill profiles

needed to operate at a level. Then one may take the minimum of abilities within

each clusters to arrive at the complexity for each mode.

Another aspect our algorithm neglects is skill weighting. Our degree of flow is

based on matching all components of the skill and complexity vectors equally. This

does not take into account the potential for some features to be more important than

others for defining the complexity of a level. An example of this are hit points in

Angband. With low hit points the character can die to a low level monster. Even if

all other skills match the desired values for a level perfectly when hit points are low

surviving the level becomes difficult. This problem could be corrected by weighting

skills such that something important (e.g., hit points) would receive a higher weight.

Another potential direction for research is the applicability of our flow model.

Our model is based on the concept of matching agent’s skills to complexity but it is

not known whether or when doing this maximizes performance in an environment.

There is no theoretical proof that the assumptions we made on the environment are

necessary or sufficient to ensure the flow-seeking agents reach optimal performance.

Flow would likely not be applicable to all environments. For example, in path-
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finding a flow-seeking agent may feel that climbing a mountain is just the right

complexity for his skills although the easier path through a mountain-pass is a more

optimal solution.

Finally, the mathematical model of flow used in this thesis has not been

psychologically validated. Other models of flow exist [30, 45, 23] and although

studies [31] confirm that flow is linked to the match between skills and difficulty,

to the best of our knowledge no experiments have been conducted to validate our

model. User studies, using established measures of flow, could reveal if the flow-

seeking metacontrol improves experience of flow for human players.
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