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Abstract

This work focuses on the implementation and validation of the implicit Total

Variation Diminishing (TVD) schemes for modelling of two-dimensional multiphase

flow. The TVD schemes are designed to mitigate the numerical diffusion at the inter-

face where discontinuities of fluid properties exist while preserving the boundedness

of the solutions. The volume of fluid approach was taken. The one-dimensional code

was implemented in FORTRAN 77 and MATLAB, and the two-dimensional code

was implemented in FORTRAN 77. The in-house developed code can be expanded

into three-dimensions using similar algorithms and structures. The programs can

be served as computational tools in the future studies of multiphase flow.

To validate the code, a one-dimensional passive scalar convection-diffusion prob-

lem, the lids-driven cavity (LDC) problem and the cylinder convection problem were

investigated. The code results were compared with the solutions from a commercial

computational fluid dynamics software ANSYS Fluent and the analytical solutions.

In the one-dimensional case, with a grid size of 0.125 m, the TVD code produced

an average relative error in the order of 10−1, while Fluent produced an average

relative error in the order of 100 with its most accurate discretization scheme. The

maximum error between the code prediction and the Fluent prediction for the LDC

problem was 7% using the second-order upwind scheme at a grid size of 0.01 m. The

relative errors for the first and third-order schemes were close to 1%.

In the cylinder advection studies, the TVD schemes were effective in the cylinder

volume conservation. Among the four TVD schemes tested, the SUPERBEE flux

limiter function produced the most accurate results while consuming the longest

time; whereas the Lin-Lin flux limiter function was the best in terms of the usage of

computational resources. With a 0.02 m mesh size, the SUPERBEE method gave

an error of 7% in cylinder volume after 80 seconds of elapsed time.
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Chapter 1

Introduction to Multiphase

Flow

Fluid flow is present in all aspect of our life. It is the fundamental of meteorology,

hydro-geology, aeronautics, and many more other subjects. Its significance becomes

more appreciated with the recent advancement and growing demand for renewable

energy. Fluid flow is able to carry kinematic energy as in windmills and water dams;

and in combination with thermal energy, it is capable of storing and transporting

heat [7]. Multiphase flow is the fluid flow consisting of two or more distinct phases.

The phases refer to either physical states (solid, liquid and gas) or distinct liquids

that are immiscible. In general, in the heterogeneous mixture, the two phases can

be dispersed or separated. Water cascade exposed in the atmosphere is an example

of separated flow. Particle-laden flow, fluidized bed and atomization are examples

of dispersed flow.

The understanding of multiphase fluid dynamics was initiated from the obser-

vations and develops through experimentations. Exact solutions for some simplified

problems can be found, but it is unrealistic to solve most of the practical applica-

tions analytically. Thus, many scholars were dedicated to finding empirical models

to describe the flow behaviours. For instance, the well established Richardson and

Zaki [8] correlation for fluidized bed; and the Beggs and Brill [9] model for liquid-gas

pipe flow. On the other hand, some other researchers use the aid of computers to

promote the understanding of the fundamentals of flow. Such study is called com-

putational fluid dynamics (CFD). In CFD, the flow is represented by rudimentary

equations to be discretized and solved iteratively by computers. After validating

the CFD solutions with experimental results, the developed CFD tool is commonly

used to predict more complex flows.
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In contrast to single-phase flow, multiphase flow introduces the complication of

the interface and the handling of the surface tension force. The sharp change in

fluid properties at the interface poses exceptional challenges to researchers [10]. In

addition, unlike the solid-fluid flows, in which the solid components stay relatively

constant in shape and size, the fluid-fluid flows deal with interfaces that are dynamic.

Therefore, it is crucial to control and minimize the numerical errors, such as the

spurious current and false diffusion, which will be defined in Chapter 2.

1.1 Numerical Models for Two-Phase Flow

Before introducing the approaches used for multiphase flow calculations, a brief dis-

cussion about the flow description theorems is necessary. In Eulerian description,

the fluid is treated as a continuum. The flow evaluation is based on a fixed volume

in space, and the constitutive equation is the conservation of momentum. In La-

grangian description, the particles are traced by their trajectories, while the particle

force balance is solved.

Therefore, by definition, the Euler-Lagrange approach deals with one of the

phases using the Eulerian description and the other phase using the Lagrangian

description. As a result, this approach is appropriate for flows that are comprised

of a continuous phase and a dispersed phase, which is scattered and occupies only

a small fraction of the total fluid volume [11]. This approach is also known as the

Lagrangian particle tracking (LPT) method [12] or discrete element method (DEM).

In the Euler-Euler approach, both phases are treated as continua. The volume of

fluid (VOF) method and the Eulerian method are base on the Euler-Euler approach.

The Eulerian method requires solving multiple sets of momentum equations, one for

each phase. This method is rather sophisticated hence rarely used. In the VOF

method, only one set of momentum equations is needed. The volume fraction α,

which is a passive scalar, is obtained by solving an advection equation. A passive

scalar is a quantity that is independent of both pressure and temperature. The

volume fraction for a particular phase is the volume occupied by that phase divided

by the total volume.

The fraction is dimensionless and is expected to be bounded within zero and one.

In a control volume, a fraction of zero means that the phase is absolutely absent,

whereas a fraction of unity indicates that the phase is the only phase present. Ideally,

for immiscible fluids, α should be either exactly zero or exactly one in all cells except

at the interface. The molecular diffusion is negligible, so the physical interface is

thin. The interface is located at α = 0.5. In numerical practices, numerical diffusion
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from discretization errors is inevitable; as a result, a thick layer of cells has α in

between zero and one, indicating unphysical mixing of the two phases, and smeared

interface. The interface smearing cannot be eliminated but can be controlled and

mitigated by using a finer mesh, or a higher order discretization scheme.

Moreover, fractions of all phases should sum up to one. The fluid properties

used in solving the constitutive equations are weighted functions of the properties

of individual fluids, based on their fractions. Supposing in a two-phase system, there

exists an intensive scalar property ϕ. The ϕ values for the two phases are ϕ1 and

ϕ2 respectively. Let ε be the volume fraction of phase one, the volume fraction of

phase two is then (1− ε). The ϕ value for the resulting mixture, denoted by ϕm, is

demonstrated in Equation 1.1.

ϕm = εϕ1 + (1− ε)ϕ2 (1.1)

It should be noted that solid particles can also be regarded as continuum [13].

With the presence of large quantity of solid particles, tracking individual particles

with direct numerical simulation (DNS) becomes impractical. Resultantly, some

averaging techniques were developed to summarize the behaviours of the solid par-

ticles. In this case, the concentration of the solid species is monitored, instead of the

fluid volume fraction that is used in conventional VOF. The constitutive equations

imitate the equations used for fluid-fluid simulations.

There are also approaches that focus on solving the interface instead of tracking

the fluid volume, such as the markers-and-cells (MAC) method and the level-set

method. In the MAC method, the computational domain is discretized into a Eu-

lerian grid, and the fluids are highlighter by frictional marker particles, which are

traced with the Lagrangian description. Unlike the VOF method, in which the do-

main always has to be entirely filled by fluid, the MAC method allows cavity cells,

denoted by “null” cells. To simplify a two-phase system with large density and

viscosity ratios, the phase with lower density and viscosity is treated as an “inert”

phase. With such modification, the interface transforms into a free surface, and only

one of the fluids needs to be marked and traced.

Recent development in MAC permits marker particles at only the interface.

McKee et al. [14] asserted that such approach significantly saves the computational

resources and is efficient for complex problems.

The advantage of the MAC method is that it produces minimum smearing at

the interface. Consequently, the interface curvature calculations and resultantly, the

surface tension calculations become relatively straightforward. However, since the

governing equations are solved by the finite difference method rather than the finite
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volume method, which is used in VOF, the mass conservation is not guaranteed and

has to be carefully manipulated.

The level-set (LS) method uses a continuous function to represent the interface;

this auxiliary function is so called the level-set function φ. The level-set function is

dependent on variables x and t, with x being a location in space and t being the time.

For a two-phase flow, one of the phases has negative φ and the other has positive

φ; the interface is located at where the φ equals to zero. The LS method is efficient

in solving changing interface topology, but it suffers greatly from discretization and

mass conservation errors. However, due to the fact that curvature calculations in the

LS method are trivial since it can be derived directly from the function formulation,

it is commonly used in conjunction with other methods. Huang and Zhang [6] used

the LS method to simulate a rising bubble. Wang et al. [5] investigated rising and

merging of multiple bubbles using a hybrid MAC and LS scheme. Aniszewski et al.

[15] used a coupled LS-VOF method to model a bubble advection.

Provided a brief discussion on some of the frequently used models for solving

two-phase flows, this paper will be focusing on the VOF method.

1.2 Applications and Recent Publications

Bubble behaviours are of great interest to researchers and were studied intensively.

It is commonly used in the industry to facilitate separation or promote heat transfer.

Samkhaniani and Ansari [16], when investigating a case of vapour bubble conden-

sation, pointed out that bubbles are subjected to frequent variations in size, shape,

velocity and collapse rate. Due to the nature of the VOF formulations, fluid prop-

erties at the interface changes abruptly from zero to unity. This characteristic

introduced errors in the calculation of the bubble’s surface geometry thus results in

unphysical disturbance in the flow, known as the “parasitic currents”.

In fact, it is quite challenging to maintain the shape of a bubble that is immersed

in a quiescent liquid, in the absence of any physical forces or velocities, using nu-

merical simulations. Aniszewski et al. [15] conducted the static droplet test for a

spherical droplet placed at the center of a computational domain. The density and

viscosity ratios of the fluids inside and outside of the droplet were kept at unity.

The authors [15] observed fictional velocity and bubble distortion, which may even-

tually lead to breakage of the bubble. Mesh refinement is ineffective in remitting

this issue. The authors also noticed that the coupled LS-VOF methods are affected

by convergence difficulties when it comes to the calculation of interface curvature

and surface tension [15].
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One approach to mitigate the bubble distortion caused by the spurious current

is to use an artificial statistical filter to post-process the interface, as described in

Samkhaniani and Ansari’s work [16]. Another approach to reduce the impact of

abrupt transitions at the interface is to give the interface a predefined thickness,

normally a few cell lengths. With this treatment, the smearing is introduced artifi-

cially, and the property transitions are made smooth. However, Shardt et al. [17]

concluded that this artificial interface smearing results in overlapped droplet bound-

aries, and thereby causing non-physical coalescence. To better resolve the interfaces

in order to obtain a more physically meaningful solution, numerical schemes that

are capable of mitigating the false diffusion and retain the interface sharpness is in

demand.

Grosshans et al. [12] studied the atomization of a liquid jet using the VOF

method. A liquid jet imitating diesel injection in combustion chambers was consid-

ered. The authors [12] examined the impacts of numerical parameters, liquid-gas

density and viscosity ratios with the VOF simulations. They evaluated the prob-

ability distribution function (PDF) of droplet diameters while adjusting the input

parameters. They concluded that high numerical diffusion occurs when the grid is

coarse and such diffusion suppresses turbulence. The density ratio tested was from

10 to 30 and the viscosity ratio tested was from 1 to 7. With such small ratios, the

difference in the numerical results is significant. Therefore, it can be inferred that

VOF results are susceptible to property ratios of the two phases, which can be as

great as 1000 in real flows.

1.3 Overview on Interface Reconstruction Techniques

Aniszewski et al. [15] compared four different interface reconstruction methods when

investigating the static bubble problem, and found that the results are to a large

extent dependent on the methods selected. Interface reconstruction techniques are

impacted by mesh types. A mesh can be either fixed or moving [18], and the fixed

mesh can be either structured or unstructured. A moving grid allows local mesh

refinement along the curvature of the interface, in an effort to minimize smearing

at the interface. However, with a small movement of the interface, such grids can

be deformed drastically resulting in poorer grid quality. Elghobashi [19] stated that

such method is inappropriate for turbulent flows.

Fixed unstructured grids can be easily fitted to irregular domains, but it suffers

from problems concerning convergence rate and solution accuracy. On the other

hand, a uniform Cartesian grid is preferable since it is more computationally ef-
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ficient and is easier to implement. Some commonly used surface approximation

techniques for VOF results on a uniform Cartesian grid are the stair-step approx-

imation, the simple line interface calculation (SLIC), which produces a piecewise

constant interface approximation [20], and the piecewise linear interface calculation

(PLIC).

A detailed illustration of the stair-step approximation is included in Section 4.3.

The SLIC algorithm is first-order accurate whereas the PLIC algorithm is second-

order accurate. In the PLIC algorithm, the vector n normal to the interface is

calculated by:

n =
∇ε
|∇ε|

(1.2)

The interface in a specific cell is mapped such that its normal is equivalent to

the calculated n. Rider and Kothe [20] stated that high-order schemes should be

used to calculate the gradient of n. Therefore, an accurate discretization method

would also benefit the preciseness of interface reconstruction.

1.4 Conclusions

Multiphase fluid modelling is challenging because resolving the interface between

phases is difficult. These difficulties are mainly caused by the discontinuity in fluid

properties at the interface. Therefore, high-order numerical schemes producing ac-

curate and bounded solutions are in demand.
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Chapter 2

Introduction to TVD

TVD stands for “Total Variation Diminishing”. In fluid dynamics, solving the

Navier-Stokes (NS) equations is challenging. Such equations can be solved ana-

lytically in few idealized cases, but they pose extreme challenges when applied to

real-world scenarios, because of the scenarios’ nonlinearity and complexity. In these

scenarios, the equations are then discretized in attempt to obtain a numerical ap-

proximation. Some well-known discretization schemes include the first-order accu-

rate upwind difference scheme (UDS) the second-order accurate central difference

scheme (CDS) and the third-order accurate quadratic upstream interpolation for

convective kinematics (QUICK) scheme [2].

However, researchers in the CFD field encountered difficulties in the spatial

discretization of the convective term in the NS equations. It was observed that,

although low-order schemes such as UDS are always conservative and thus able to

generate stable iterative results, the results exhibit enormous numerical diffusion

[2]. In turbulent flows, false diffusion leads to unphysical results [21] [22]. With grid

refinement, the problem of numerical diffusion remitted, with an extensive increase

in the computational cost [2]. High-order schemes such as the QUICK scheme cause

dispersion and undesirable oscillations in the solutions [2]. To eliminate the spurious

oscillations, the TVD schemes are introduced.

Versteeg et al. [2] modelled a two-dimensional source-free diffusion-free property

ϕ, to compare the results of the Van Leer TVD scheme to the QUICK scheme, the

UDS and the exact solution. The rectangular computational domain is 1 m × 1 m

in size and its schematic is presented in Figure 2.1. The authors [2] set the velocity

field to be uniform and diagonal on a 50 x 50 uniform grid. Property ϕ has a value

of 100 along the left and upper boundaries, and a value of zero along the right and

bottom boundaries.
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Figure 2.1: Flow domain for false diffusion illustration, adapted from [2]

The ϕ profile is plotted along the X-X diagonal line in Figure 2.2. Since there

is no physical diffusion, property ϕ is expected to have a sharp transition from 100

to zero, as illustrated by the exact solution. From the figure, the TVD scheme

produces the most reliable result compared to the exact solution. The result from

the QUICK scheme wiggles near the interface and the result from the UDS shows

unrealistic smearing, which represents the artificial diffusion introduced by numerical

approximations.

0 0.7 1.4
Distance along diagonal X-X [m]

0

50

100

 φ

Exact
UDS
QUICK
TVD

Figure 2.2: Comparison of numerical solutions obtained from TVD schemes with
the QUICK results, UDS results and the exact solution respectively on a 50 x 50
grid, adapted from [2]
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2.1 Background of TVD Schemes

Harton [23] first introduced the concept of TVNI (total variation non-increasing),

which is later known as TVD. In general, TVD refers to a class of methods that

ensures numerical stability and avoids unphysical wiggling in numerical solutions.

Total variation is defined as the sum of differences between adjacent discretized

points [24]. For example in Figure 2.3, the total variation of a transport property ϕ

can be written as Equation 2.1.

TV (ϕ) = |ϕ2 − ϕ1|+ |ϕ3 − ϕ2|+ |ϕ4 − ϕ3|+ |ϕ5 − ϕ4| = |ϕ3 − ϕ1|+ |ϕ5 − ϕ3| (2.1)

φ2

φ3

φ1
φ4

φ5

Figure 2.3: Example of discretized points for TV illustration, adapted from [2]

Harten [23] stated that a property must satisfy monotonicity preservation, to be

oscillation-free. This indicates that the property must not create new local extremas

and any existing extremas must not increase in magnitude [23]. For a property to

satisfy monotonicity preserving, its total variation must not increase [23] [24].

Nikrityuk [25] conducted a comparative analysis of different methods on solving

the convective term in the one-dimensional convection-diffusion equation. The nu-

merical solutions were compared to the exact solution. With a homogeneous velocity

field, the solutions obtained by implicit TVD schemes are oscillation free regardless

of the number of control volumes. At a hundred control volumes, the TVD solution

coincides with the analytical solution. In another test case with a non-homogeneous

sinusoidal velocity field, when the CDS fails to capture the trend exhibited by the

analytical solution, TVD schemes successfully tracks the step changes in the prop-

erty of interest.

The most significant advantage of TVD schemes is that they avoid undesirable

wiggles in the numerical solution while maintaining the minimum degree of smearing

in the solution obtained when high-order schemes are used. The solutions obtained

with TVD schemes are generally more realistic and reliable compared with which

are achieved with other schemes.
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2.2 Applications of TVD Schemes

TVD schemes are commonly used in solving problems that involve discontinuities.

It had first found its applications in gas dynamics to simulate pressure, density and

velocity discontinuities [23]. Sandham and Yee [26] discovered that TVD schemes

can be used to solve high-speed turbulent flow and compressible mixing layer prob-

lems. The authors [26] suggested that explicit TVD schemes captured the shocks,

but the solution accuracy is dependent on the flux limiter functions being used. The

flux limiter function is a feature that characterizes a discretization scheme and gives

information on whether a method is TVD or not. The criteria for a scheme to be

TVD will be discussed in detail in Chapter 3.

Nandi and Date [1] [27] formulated and validated a fully implicit method for

simulation of flows with interface. The authors used the “single fluid formalism”,

which treated two immiscible fluids as a single fluid with an abrupt change in fluid

properties at the interface, to simulate the multiphase flow behaviour. They used the

TVD scheme to evaluate the convective terms in the convection-diffusion equation

and had thus managed to decrease the degree of smearing at the interface.

Inspired by Nandi and Date [1] [27], Pirker [28] used experimental methods to

further investigate the sloshing resonance phenomena. Wang et al. [29] cited for

the stability of the implicit methods in their article regarding the modelling of gas

storage in underground aquifers. The authors did not apply the TVD schemes to

solve the associated governing equations; instead, they used CDS on a non-uniform

grid. However, more in-depth future studies in this area may involve the use of TVD

schemes.

In addition, TVD schemes have applications in material science and engineering

to model heat flow [25]. Date [30] concluded that TVD schemes result in a reduction

in numerical diffusion when temperature discontinuity is present.

10



2.3 TVD Validation Cases

Validation is an essential step in the numerical study process. By comparing the

obtained simulation results to the analytical solutions, the experimental results, or

simulation results acquired by other authors using different approaches, the validity

of the algorithms, as well as the quality of the computer code prepared to effectuate

the algorithms, can be checked.

Nandi and Date [1] illustrated potential applications of TVD in six research

problems: one regarding liquid-liquid interface, and the others regarding liquid-gas

(air) interface [1]. These research problems include the large-scale Rayleigh-Taylor

instability, dam break, and sloshing problems; as well as some small-scale problems

involving splashing droplet on a liquid surface, bursting bubble through a water-

air interface and merging of bubbles surrounded by liquid [1]. The authors adopted

single machine precision for two-dimensional problems and double machine precision

for three-dimensional problems.

The authors [1] compared their simulation outcomes to previous results em-

ploying different schemes and the available experimental data. The conclusions are

summarized in Table 2.1. It is shown that TVD predictions are in close agreement

with the experiment results. In three-dimensional cases, TVD results in significantly

less error in comparison with the level-set method developed by Takahira et al. [31].

The details of the dam break problems and bubble-in-liquid problems are elaborated

in the subsections. Similar cases analyzed by other researchers are also presented.

A range of input properties and the associated outputs are discussed in detail.

2.3.1 Dam-Break Problems

Three major types of dam break problems were of interest to the researchers:

two-dimensional idealized dam-break, two-dimensional dam-break in channels, and

three-dimensional partial dam-break. The researchers also investigated some other

relevant two-dimensional problems, including dam-break in converging-diverging

channels and the oblique hydraulic jump problem. Results from these studies were

summarized in Table 2.2 at the end of the dam-break section, and the details can

be found in the subsections.
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Two-Dimensional Idealized Dam-Break

A schematic of this type of problem is shown in Figure 2.4, in which h stands for the

water column height and b is the water column width. Nandi and Date [1] evaluated

this problem using their formulation with the assumption of both fluids (water and

air) being incompressible. The simulation domain was 4 × 2.2 m2 consisting of

40 × 22 control volumes. The height and width of the water column are 2 m and

1 m respectively. Time step of 0.001 s was used. The gas to liquid density ratio

was 1.205 : 998.1 and the viscosity ratio was 101 : 1.81 [1]. The volume fraction of

the two fluids was tracked. With the Lin-Lin flux limiter, the authors obtained a

solution with 0.43% relative error compared with the solutions obtained with the

explicit Van Leer TVD approach [33].

h

b

Water

Dam

Air

Figure 2.4: Schematic of two-dimensional idealized dam-break, adapted from [1]

Chang et al. [4] took the compressibility of air into consideration and conducted

a sensitivity study on the compressibility parameter β. Initially, the water column

is 10 m in height and 500 m in width. The grid number was refined to 401 × 61

to achieve the grid-independent results. Different TVD limiter functions, including

the Min-Mod, the SUPERBEE and the monotonic upwind scheme for conserva-

tion laws (MUSCL) functions, were tested and the results obtained were compared

[4]. An exact solution was obtained in this simplified case, and the relative errors

were calculated as the means of comparison. The authors [4] concluded that the

SUPERBEE method produced the least relative error and thus the most accurate

results.
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Two-Dimensional Dam-Break in Channels

A generalized side view of this type of problem is presented in Figure 2.5. Wood

and Wang [3] used the second-order explicit MacCormack TVD scheme to add an

artificial diffusion into the algorithm, to eliminate wiggles in the evaluation of the

shallow water equations (SWE). Experiments were performed prior to the simu-

lation, and the simulation domain was fitted to the experimental dimensions [3].

Initially, the water column height was 0.889 m and the water depth was set to

2.54× 10−4 m in the channel [3]. The computational domain covers a 4.9× 2.7 m2

area, and local grid refinement was employed in the channel and near the dam (the

water intake) in the water reservoir [3]. Compared to the experimental results, the

authors overestimated water depth in the channel upstream of the channel bend,

while underestimating it around the channel bend [3].

l
1

l
2

h

b

Water

Damw

A
ir

Figure 2.5: Side view of two-dimensional dam-break in channels, adapted from [3]

A combination of the idealized dam-break problem and the dam-break in chan-

nels problem gives a problem of dam-break onto a slope. In Chang’s [4] work, a

reservoir of size 2.25× 0.25 m2 was considered. A total of 401× 51 grids were simu-

lated. The air and water densities were 1.23 kg/m3 and 103 kg/m3 respectively, and

the corresponding viscosities were 1.78× 10−5 Ns/m2 and 1.34× 10−3 Ns/m2. The

SUPERBEE TVD method was used. The authors [4] concluded that the simulated

water depth variation over time was smoother than the measurements. This can be

due to excessive numerical dissipation in the computation [4].
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Three-Dimensional Partial Dam-Break

A generalized top view of this type of problem is presented in Figure 2.6. Chang et

al. [4] considered a symmetrical 0.4 m breach on a 3 × 2 × 1.2 m3 domain, where

the reservoir has a dimension of 1 × 2 × 0.6 m3. A total of 151 × 101 × 51 grids

was employed. The SUPERBEE TVD flux limiter was used. The simulation results

show reasonable agreement with previous experimental and simulation results [4].

b

Floodplain

Dam

Dam

BreachWater Airl

Figure 2.6: Top view of three-dimensional partial dam-break, adapted from [4]

Song et al. [37] modeled a problem with a non-symmetrical 75 m breach on a

200×200×10 m3 domain. The unstructured Delaunay triangular meshes were used,

and a total of 7394 triangles were included in the simulation [37]. The reservoir width

was 100 m, and the dam width was 15 m. The breach was 75 m in length, and the top

of the breach was 30 m apart from the top of the reservoir boundary. The roughness

of the walls was neglected. Initially, the water depth was 10 m upstream of the dam

and 5 m downstream of the dam. The simulation results were plotted in 3D as well

as in a contour plot of the water depth. The authors [37] concluded qualitatively

that the results agreed with the results obtained from previous simulations. A more

complex case, which introduces a rectangular downstream barrier, was also analyzed.

In this scenario, the flow detours around the barrier.
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2.3.2 Bubble-in-Liquid Problems

In this section, the two case studies performed by Nandi and Date [1] involving

bubbles (three-dimensional bubble bursting and bubble merging), a two-dimensional

problem of a single rising bubble, as well as another two-dimensional problem consid-

ering merging and bursting simultaneously, are discussed. The schematics of initial

conditions of these problems are presented in Figure 2.7 from (a) to (d) respectively.

(a) (b) (c) (d)

Figure 2.7: Schematics of initial conditions in bubble-in-liquid problems, adapted
from (a) [1] (b) [1] (c) [5] (d) [6] (the schematics are not to scale)

Three-Dimensional Bursting of Bubble

Nandi and Date [1] used the fully implicit Lin-Lin TVD scheme to study the bursting

of a gas bubble at the liquid-gas interface. The computational domain was 6 ×
6 × 12 U3 and the mesh dimensions were 30 × 30 × 60. The liquid-gas contact

surface was located at 4 U (one-third of the domain was filled with liquid). A

bubble with a radius of r = 1 U was placed at (3, 3, 2.8) U initially. The time

step used was ∆t = 5.645 × 10−4 s, or dimensionless time step ∆τ = 0.001. The

dimensionless time is defined as τ = t× Uref

D where Uref =
√
0.64gD. At the onset

of the simulation, the bubble rose due to the buoyancy force. The bubble burst once

it reached the free liquid surface; ripples and water neck were observed on the liquid

surface subsequently. In the simulation, gas to liquid density and viscosity ratios

were set to 0.001 and 0.01 respectively. The maximum volume error was found to

be 0.078%. The authors observed improvement in results over results from previous

work carried by Takahira et al. [31].
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Three-Dimensional Merging of Rising Bubbles

Nandi and Date [1] also validated their TVD formulation with the study of the three-

dimensional merging of rising bubbles. The computational domain was 4 × 4 × 12

U3 and the mesh size was 30 × 30 × 90. There was no free water surface. At the

beginning of the simulation, the two bubbles were located at (0.25, 0,−4.5) U and

(−0.25, 0,−2.3) U. The time step used was ∆t = 4.516 × 10−4 s, or dimensionless

time step ∆τ = 0.001. The dimensionless time is defined as τ = t × Uref

D where

Uref =
√
gD. The gas to liquid density and viscosity ratios tested were 0.001 and

0.01816 respectively. In this case, the maximum volume error was 0.054%, which

was improved significantly compared with the error of 2% obtained by Takahira et

al. [31], while using a more refined grid of 50 × 50× 150.

Two-Dimensional Rising bubble

Huang and Zhang [6] investigated a two-dimensional axisymmetric rising bubble

problem with two TVD schemes: the SUPERBEE TVD scheme and the Min-Mod

TVD scheme. The gas to liquid density ratio was 0.001, and the viscosity ratio was

0.01 [6]. It was observed that the down face velocity of the bubble exceeded the

up face velocity of the bubble, so the initially circular gas bubble deforms into a

ring-shaped bubble over time. The computational domain tested was 6× 10 U2 and

the bubble radius was 1 U. The grid resolution was 121 × 200 [6]. The maximum

relative error for the volume of the bubble at time 1.8 s was 9.65%. The authors [6]

concluded a good agreement of their work with the previous works.

Two-Dimensional Merging and Bursting of Rising Bubbles

Wang et al. [5] used the TVD Runge-Kutta scheme to solve the NS equations. The

authors used the level-set method with ghost technique to capture the oil-water

interface (with a density ratio of 1 : 1.205) in the problem of merging bubbles [5]. A

two-dimensional domain of 4× 3 U2 with 80× 60 grids was considered and the time

step was 0.002 s [5]. The top one-fourth of the computational domain was occupied

by oil whereas the rest was occupied by water [5]. The two bubbles of different

sizes were initially placed at the x-midline but one above the other in y. The top

and bottom bubbles have radii of 0.5 and 0.4 respectively [5]. At time zero, the

two bubbles started to rise and merge; and at time 0.25 s, the merged bubble burst

at the oil-water interface. The authors compared the simulation results to results

produced by the commercial CFD software “ANSYS Fluent” and had found close

agreement between the two solutions [5].
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2.3.3 Other Cases

Date [38] used the Lin-Lin [39] TVD scheme to predict compressible shocks. The

author [38] considered a two-dimensional problem of flow through a plane channel

with a bump on one wall on a non-staggered grid. It was concluded that when

the UDS failed to predict transonic and supersonic flows accurately on a mesh of

116 × 33, the implicit TVD scheme successfully captured the shocks on a coarser

mesh of 80× 20.

In later years, Date [30] employed the Lin-Lin [39] TVD scheme again, to simu-

late gas flow in a two-dimensional convergent-divergent nozzle on an unstructured

mesh. The Mach number and pressure were predicted. The pressure values were

compared with the experimental values [40]. A R2 value of 0.96 was observed for

both pressure along the nozzle wall and pressure along the center line. Date [30]

suggested that this type of simulation can be used to obtain a specific Mach number

at the nozzle exit, thus facilitate nozzle designs.

Song et al. [37] solved the conservative form of the SWE to study the two-

dimensional oblique hydraulic jump problem. The second-order MUSCL scheme

was used for spacial discretization, and the TVD Runge-Kutta scheme was used for

time discretization. The oblique hydraulic jump problem studies the increase in flow

height at the deflected channel wall when a supercritical flow goes through a con-

verging channel [41]. The unstructured Delaunay triangular meshes were employed

on a 20 m × 10 m computational domain. One of the channel walls was deflected

by a 8.95◦ angle. Initially, the fluid flowed at 1 m/s down the channel, and the flow

depth was 1 m. The outlet boundary was a free-flow boundary, while the channel

walls were free-slip solid boundaries. The simulation solutions were compared with

the analytical solutions and errors of 0.07%, 0.2% and 5× 10−3% were observed in

the hydraulic jump angle, the flow depth at the jump and the velocity across the

jump respectively.
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2.4 TVD Deficiencies

Despite all the advantages TVD schemes present, it has some drawbacks. Sandham

and Yee [26] mentioned that TVD schemes fail to capture the vortex growth due

to the “clipping phenomena”. The “clipping phenomena” is a risk posed by TVD

schemes, which smooths out most of the true extremas in the numerical solution [26].

The authors [26] suggested that the clipping effect affects the results significantly

when the flow growth rate is sensitive to changes in the Reynolds number.

Other than the accuracy in the predictions, Yee et al. [42] mentioned that com-

pared to the conventional implicit methods, implicit TVD scheme requires roughly

2.5 times more CPU time per time step. Lien and Leschziner [24] found that the

UMIST TVD scheme requires 15% more CPU time than the QUICK scheme.

2.5 Objectives

The objective of the current study is to implement and validate the fully implicit

TVD method developed by Nandi and Date [1] [27]. After the implementation, this

software can be used to solve two-dimensional multiphase immiscible flow problems.

This implementation facilitates future researches in the CFD field, especially in areas

involving multiphase immiscible flows.

Besides, the current study distinguishes and compares various TVD schemes in

terms of their formulations, the accuracy of results, as well as the required compu-

tational time.
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Chapter 3

1D Formulation and Validation

3.1 Introduction to TVD Criteria

Two functions that are most commonly used to determine whether a scheme is TVD

or not are the flux limiter function ψ(r) [2] and the shape sensing function fc(ξ)

[25]. These two functions can be visualized in two types of diagrams: the r − ψ

diagram and the normalized variable diagram (NVD).

Considering a standard one-dimensional control volume as shown in Figure 3.1,

the central point and the adjacent points west and east of it are denoted by upper-

case letters P , W and E. The cell faces are denoted by lower-case letters w and e.

The size of the control volume is δx.

EW
e

P
w

δx

Figure 3.1: Example of one-dimensional control volume discretization around node
P on a uniform grid

The independent variable r in the flux limiter function is the ratio between

upwind gradient and downwind gradient (Equation 3.1) [2], where ϕU , ϕUU and

ϕD are values of the transport property ϕ upstream, upstream of upstream and

downstream of the cell face, respectively.

r =
ϕU − ϕUU

ϕD − ϕU
(3.1)
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As a result, the flux limiter function reveals the balance between upwind and

downwind contributions. For flux in the positive direction, r is (ϕP−ϕW )/(ϕE−ϕP );
and the property value at the east face ϕe can be expressed in the generalized form:

ϕe = ϕP +
1

2
ψ(r)× (ϕE − ϕP ) (3.2)

The r−ψ diagram that displays the relationship between the flux limiter function

ψ and the variable r as defined in Equation 3.1, is presented in Figure 3.2. Sweby

[43] suggested that a TVD scheme must satisfy ψ ≤ 2r in the range 0 < r < 1

and ψ ≤ 2 in the range r ≥ 1. It can be seen that UDS is unconditionally TVD;

therefore solutions obtained by UDS are always bounded. Boundedness means that

the value of ϕ stays within the boundary values in the absence of source; in other

words, the normalized ϕ value belongs to [0, 1] when the source term equals to zero.

0 1 2 3 4 5 6
r

0

1

2

3

4

5

6

 ψ

UDS
CDS
LUDS
QUICK

UDS

Figure 3.2: r − ψ diagram for conventional schemes

However, UDS’s low (first) order of accuracy causes large numerical diffusion.

Sweby [43] suggested that the r − ψ diagram also gives information on the order of

accuracy of a scheme. The scheme is of second-order accurate if its r− ψ curve lies

between ψ = 1 and ψ = r, and passes through the point (1, 1). Several high-order

TVD schemes are presented in Figure 3.3. According to Sweby’s criteria, all the

schemes presented in Figure 3.3 are second-order accurate.
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Figure 3.3: r − ψ diagram for TVD schemes

Similarly, the independent variable ξ in the shape sensing function is the ratio

between upwind gradient and overall gradient (Equation 3.3) [27].

ξ =
ϕU − ϕUU

ϕD − ϕUU
(3.3)

For flux in the positive direction, ξ is (ϕP − ϕW )/(ϕE − ϕW ); and the property

value at the east face ϕe can be expressed in the generalized form:

ϕe = ϕP + fc(ξ)× (ϕE − ϕW ) (3.4)

The NVD is a plot of normalized face value ξf over ξ. ξf is defined as (ϕf −
ϕUU )/(ϕD − ϕUU ) and it is the sum of ξ and fc(ξ). A TVD scheme must satisfy

ξ ≤ ξf ≤ 1 in the region 0 ≤ ξ ≤ 1. For ξ < 0 or ξ > 1, a TVD scheme must have

ξf equals to ξ; in other word, only UDS is bounded in in such regions. A NVD for

a list of conventional schemes is plotted in Figure 3.4.
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Figure 3.4: NVD curves for conventional schemes

Leonard [44] stated that for a uniform grid, a scheme with NVD curve passing

through the point (0.5, 0.75) is at least second-order accurate; if the scheme’s NVD

curve passes through the point with a slope of 0.75, the scheme is third-order ac-

curate. Some high-order TVD schemes are presented in Figure 3.5. According to

Leonard’s criteria, all the schemes presented in Figure 3.5 are second-order accurate,

except for the Lin-Lin scheme, which is third-order accurate.
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Figure 3.5: NVD curves for TVD schemes
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A systematic comparison between the two characteristic functions was not con-

ducted previously. In fact, the shape sensing function fc and the flux limiter function

ψ can be related by Equation 3.5 and the corresponding independent variables r and

ξ can be converted using Equation 3.6. Formulations of the shape sensing function

and the flux limiter function for various schemes and conditions are summarized in

Table 3.1.

ψ =
2fc(ξ)

1− ξ
(3.5)

r =
ξ

1− ξ
(3.6)

Table 3.1: Conversion from shape sensing functions to flux limiter functions

Schemes or Conditions fc(ξ) ψ(r)

UDS 0 0

CDS 1
2 − ξ

2 1

LUDS ξ
2 r

QUICK 3
8 − ξ

4
3
4 + r

4

TVD Bound for 0 < r < 1 [43] ξ 2r

TVD Bound for r ≥ 1 [43] 1− ξ 2

TVD schemes are developed such that it stays within the TVD boundaries pre-

sented in Table 3.1 under all circumstances. The detailed formulation of a number

of TVD schemes in terms of both the shape sensing functions and the flux limiter

functions are listed in Table 3.2.
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Table 3.2: Conversion from shape sensing functions to flux limiter functions for
TVD schemes

Schemes fc(ξ) ψ(r)

0, if ξ ≤ 0
ξ, if 0 < ξ ≤ 3

10

Lin-Lin [27] 3
8 − ξ

4 , if 3
10 < ξ ≤ 5

6 max[0,min(2r, 34 + r
4 , 2)]

1− ξ, if 5
6 < ξ ≤ 1

0, if ξ ≥ 1

0, if ξ ≤ 0

Min-Mod [2] ξ
2 , if 0 < ξ ≤ 1

2 max[0,min(r, 1)]
1
2 − ξ

2 , if 1
2 < ξ ≤ 1

0, if ξ ≥ 1

0, if ξ ≤ 0
ξ, if 0 < ξ ≤ 1

3

SUPERBEE [2] 1
2 − ξ

2 , if 1
3 < ξ ≤ 1

2 max[0,min(2r, 1),min(r, 2)]
ξ
2 , if 1

2 < ξ ≤ 2
3

1− ξ, if 2
3 < ξ ≤ 1

0, if ξ ≥ 1

0, if ξ ≤ 0

Van Leer [2] ξ − ξ2, if 0 < ξ ≤ 1 r+|r|
1+r

0, if ξ ≥ 1

0, if ξ ≤ 0
ξ, if 0 < ξ ≤ 1

4
MUSCL [2] 1

4 , if 1
4 < ξ ≤ 3

4 max[0,min(2r, r2 + 1
2 , 2)]

1− ξ, if 3
4 < ξ ≤ 1

0, if ξ ≥ 1

0, if ξ ≤ 0
βξ
2 , if 0 < ξ ≤ 1

β+1

Sweby [2] 1
2 − ξ

2 , if 1
β+1 < ξ ≤ 1

2 max[0,min(βr, 1),min(r, β)]
ξ
2 , if 1

2 < ξ ≤ β
β+1

(1−ξ)β
2 , if β

β+1 < ξ ≤ 1

0, if ξ ≥ 1

0, if ξ ≤ 0
ξ, if 0 < ξ ≤ 1

6

UMIST [2] 1
8 + ξ

4 , if 1
6 < ξ ≤ 1

2 max[0,min(2r, 14 + 3r
4 ,

3
4 + r

4 , 2)]
3
8 − ξ

4 , if 1
2 < ξ ≤ 5

6
1− ξ, if 5

6 < ξ ≤ 1
0, if ξ ≥ 1

0, if ξ ≤ 0

Van Albada [2] ξ−ξ2

2+4ξ2−4ξ
, if 0 < ξ ≤ 1 r+r2

1+r2

0, if ξ ≥ 1
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3.2 Formulation of the Convection-Diffusion Equation

A variety of numerical schemes were evaluated considering discretization of the

one-dimensional steady-state convection-diffusion Equation 3.7; where ρ is the fluid

density, u is the flow velocity, ϕ is the property of interest, x is the length in the

flow direction, and Γ is the diffusivity. The problem is visualized in Figure 3.6.

Defining the product of fluid density and velocity at a specified cell face as flow flux

f , namely, f = ρu, Equation 3.7 can be expressed into Equation 3.8 using a control

volume approach.

0
φ = φ u φ = φ

L

x

x = 0 x = L

Figure 3.6: Convection-diffusion problem simulation domain with boundary condi-
tions implemented in code

ρu
∂ϕ

∂x
=Γ

∂2ϕ

∂x2
+Q (3.7)

feϕe − fwϕw =(Γ
∂ϕ

∂x
)e − (Γ

∂ϕ

∂x
)w +Q∆x (3.8)

The second-order partial differential diffusive term Γ ∂2ϕ
∂x2 is discretized using CDS

as a standard operation [30]. The convective term ρu∂ϕ
∂x were discretized using CDS,

UDS, LUDS, QUICK and TVD. The source term is ignored.

Coding was carried out using shape sensing functions. The deferred correction

was utilized to linearize the discretized equations while moving the non-linear terms

to the source term. This can be illustrated using Equation 3.4. In Equation 3.4, ϕP

was treated as the linear term that represents the contribution from the first-order

upwind scheme. Meanwhile, the non-linear term fc(ξ)×(ϕE−ϕW ) was moved to the

source term. The solution was then obtained iteratively. The deferred correction was

utilized to ensure main diagonal dominance in the solution matrix, thus promotes

convergence of the solution.

Moving all terms in Equation 3.8 to the same side of equation gives Equation

3.9. Discretization of individual terms in the equation are presented in Equations

3.10 to 3.12.

feϕe − fwϕw − ((Γ
∂ϕ

∂x
)e − (Γ

∂ϕ

∂x
)w) = 0 (3.9)
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feϕe =(ϕP + f+ce(ϕE − ϕW ))AMAX(fe, 0)

− (ϕE − f−ce(ϕEE − ϕP ))AMAX(−fe, 0) (3.10)

fwϕw =(ϕW + f+cw(ϕP − ϕWW ))AMAX(fw, 0)

− (ϕP − f−cw(ϕE − ϕW ))AMAX(−fw, 0) (3.11)

(Γ
∂ϕ

∂x
)e =Γe

ϕE − ϕP
xE − xP

& (Γ
∂ϕ

∂x
)w = Γw

ϕP − ϕW
xP − xW

(3.12)

With deferred correction, Equation 3.9 can be linearized into:

AEϕE +APϕP +AWϕW = bP (3.13)

Denoting the convective contribution to coefficients as Ac and the diffusive con-

tribution to coefficients as Ad. The coefficients AW , AP and AE in Equation 3.13 are

then the sums of Ac and Ad. The term bp is the artificial source term induced by de-

ferred correction. Plugging Equations 3.10 to 3.12 into Equation 3.9 and organizing

equation gives:

Ac
E =−AMAX(−fe, 0), Ac

W = −AMAX(0, fw) & Ac
P = −(Ac

E +Ac
W ) (3.14)

Ad
E =− Γe

xE − xP
, Ad

W = − Γw

xP − xW
& Ad

P = −(Ad
E +Ad

W ) (3.15)

bp =f
+
ce(ϕW − ϕE)AMAX(fe, 0)− f−ce(ϕEE − ϕP )AMAX(−fe, 0)

+ f+cw(ϕP − ϕWW )AMAX(fw, 0)− f−cw(ϕW − ϕE)AMAX(−fw, 0) (3.16)

Note that for UDS, the source term bp equals to zero since the shape sensing

function has a value of zero.

Fixed value boundary conditions (the Dirichlet boundary conditions) was used.

Solution matrix contains only internal nodes. At the west-most internal node, ϕW

is known and is moved to the source term. Similarly, at the east-most internal

node, ϕE is known and is moved to the source term. Supposing there are N control

volumes, there would be N + 1 nodes in total and N − 1 internal nodes. Mark the

nodes with subscript number from 1 to N + 1; ϕ1 and ϕN+1 are known and ϕ2 to

29



ϕN are to be calculated. The solution matrix has the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AP,2 AE,2 0 0 ... 0 0 0 0 ϕ2

AW,3 AP,3 AE,3 0 ... 0 0 0 0 ϕ3

0 AW,4 AP,4 AE,4 ... 0 0 0 0 ϕ4

... ...

0 0 0 0 ... AW,N−2 AP,N−2 AE,N−2 0 ϕN−2

0 0 0 0 ... 0 AW,N−1 AP,N−1 AE,N−1 ϕN−1

0 0 0 0 ... 0 0 AW,N AP,N ϕN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bP,2 −AW,2ϕ1

bP,3

bP,4

...

bP,N−2

bP,N−1

bP,N −AE,NϕN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.17)

The code performing the calculations were written in FORTRAN and MATLAB

and are attached in Appendix A and Appendix B. The user has the option to select

from either uniform or progressively changing grid width by modifying the expansion

factor. With the expansion factor equals to one, the grid is uniform. With the

expansion fact less than one, the grid size decreases at a constant rate; similarly, with

the expansion factor greater than one, the grid size increases at a constant rate. The

expansion factor has to be positive. Other required input parameters are: the output

file name; fluid density, velocity and diffusivity; boundary values; discretization

scheme for the convective term; minimum and maximum x; total number of nodes

and the matrix solver. Four matrix solvers, successive over-relaxation (SOR), Gauss-

Seidel (GS), Jacobi and Tri-Diagonal Matrix Algorithm (TDMA) are available. The

output file contains the x value, ϕ value, exact solution and residual at every nodal

point. It also provides information on matrix iteration and convergence. A sample

output file is attached in Appendix C.
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3.3 Comparison of Results from Various Methods

In the current study, a reference case was generated to demonstrate the difference

in results obtained from various methods. The tested fluid was air at standard

conditions (ρ = 1 kg/m3, cp = 1000 J/kg·K and k = 0.02 W/m·K). The fluid flows

from x = 0 m to x = 1 m at velocity equals to 0.001 m/s. The UDS, CDS, LUDS,

QUICK and Lin-Lin TVD schemes were used to discretize the convective term.

Boundary values were set to zero at x = 0 m and one at x = 1 m. Four control

volume sizes were tested, corresponding to 11, 21, 41 and 81 nodal points uniformly

distributed along the flow direction (expansion factor equals to one). TDMA solver

was selected for the fastest convergence. The threshold residual for convergence was

set to 10−15.

Analytical solution of this problem is presented in Equation 3.18. ϕ0 and ϕL are

the known ϕ values at the boundaries. Pe is the Peclet number defined as ρu∆x/Γ.

ϕ(x) = ϕ0 +
exp(Pe·x

L )

exp(Pe)− 1
(ϕL − ϕ0) (3.18)

In Equation 3.18, Pe is the global Peclet number; in other words, ∆x is the

difference between xmax and xmin. The global Peclet number is the ratio between

convective strength and diffusive strength [25]. Local Peclet number is calculated

using the mesh size as ∆x. The mesh size is equivalent to the size of a single control

volume. With increasing mesh size, the local Pe number grows. In the reference

case, the thermal diffusivity of air is 2×10−5, thus the global Pe is 50. For 10, 20, 40

and 80 control volumes, the mesh sizes are 0.1, 0.05, 0.025 and 0.0125 respectively;

the resulting local Pes are 5, 2.5, 1.25 and 0.625 accordingly.

Results from all schemes as well as from the analytical solution are plotted in

Figure 3.7. The vertical axis ϕ∗ is the normalized ϕ calculated by (ϕ−ϕmin)/(ϕmax−
ϕmin) and the horizontal axis x∗ is the normalized x calculated by (x−xmin)/(xmax−
xmin). For coarse grid containing 10 CVs, local Pe values are large, and the results

obtained from CDS and QUICK scheme fluctuate wildly. Other schemes give non-

fluctuating solutions, but the residual from UDS is significant. The TVD result is

oscillation-free and gives the smallest error among results from all other schemes.

When the grid was refined to 20 CVs, errors from all methods dropped. Re-

sults from QUICK scheme becomes stable, while results from CDS keeps oscillating.

When the grid was further refined to 40 and 80 CVs, all solutions became more

accurate and oscillation-free.
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Figure 3.7: Normalized ϕ variations from UDS, CDS, LUDS, QUICK and TVD
schemes for (a) 10 CVs (b) 20 CVs (c) 40 CVs (d) 80 CVs

The average relative error was plotted against the local Peclet number in Figure

3.8. Maximum relative error was not used because it always appears when the exact

solution firstly switches from zero to a non-zero but extremely small value, and it is

not representative of the actual deviation of the prediction from the exact solution.

To avoid infinitely large errors, a small number was added to the numerator. The

small number was set to be 10−6 in the current studies. The average relative error

formulation is presented in Equation 3.19, where N is the total number of nodal

values in the domain.

Error % =
1

N

∑ |ϕexact − ϕnumerical|
ϕexact + small

× 100% (3.19)

For all the schemes, the average relative error always drops as local Pe drops.

Since the Peclet number is directly proportional to the mesh size, this trend infers

the error reduction with grid refinement.
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At large local Pe, the CDS gives the most significant error among all schemes,

even though its order of accuracy exceeds the UDS’s order of accuracy. The CDS is

unsuitable for convection dominated flow since it is unable to differentiate flows from

different directions. Thus, it takes upwind and downwind contributions identically.

In convection dominated flows, the property value should be affected more by its

upstream node value. Therefore, upwind schemes are more appropriate when large

Pe is present.

It is also observed that at large local Pe, the third-order accurate QUICK scheme

gives the second largest error. The error is caused by the fluctuation in ϕ∗ presented

in Figure 3.7. It is thus evident that high-order schemes like QUICK produce results

that is quite unstable when the mesh is coarse. On the contrary, the TVD scheme

gives the most accurate result. As local Pe drops, the QUICK error reduces rapidly

and at Pe = 0.625, it matches the error from TVD. The lowest percentage error

achieved with the code is 10−2.
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Figure 3.8: Maximum percentage error variation with Peclet number for code results
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3.4 Verification on Order of Accuracy

Order of accuracy of a scheme depicts the rate of error reduction as the grid refines.

For instance, the error of a first-order scheme is supposed to drop one order of

magnitude when the mesh size is refined by an order of magnitude. The error is

defined as:

Error =

∑
|ϕexact − ϕnumerical|

N
(3.20)

A plot of error for various schemes versus mesh size is presented in Figure 3.9.

Comparing the slope of the schemes with the slope of the lines representing different

orders of accuracy, it is verified that UDS is first-order accurate, and the CDS and

LUDS are second-order accurate.
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Figure 3.9: Order of accuracy check for code results
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3.5 Validation

3.5.1 ANSYS Fluent

A pseudo one-dimensional case was tested in ANASYS Fluent. The simulation

domain is two-dimensional and has size 10 m × 1 m. The temperature was set

to 300 K at the top and 280 K at the bottom. The left and right boundaries

are symmetry boundaries. The horizontal direction is uniform and fluid flow from

the bottom to the top at a velocity of 0.001m/s. A schematic of the mesh and the

problem statements is presented in Figure 3.10. For comparison purposes, the tested

fluid properties were the same as the inputs for the code (ρ = 1 kg/m3, cp = 1000

J/kg·K and k = 0.02 W/m·K). Four mesh sizes, 10 × 100, 20 × 200, 40 × 400 and

80× 800 were tested. The results were compared to the code outputs for 10, 20, 40,

80 CVs respectively.

φ = φ
L

x = 0,

0
φ = φx = L,

y

x

u u

Figure 3.10: Convection-diffusion problem simulation domain with boundary con-
ditions in Fluent

Results for the three upwind difference schemes: UDS, LUDS and QUICK were

compared. The UDS results from Fluent and the code were precisely the same;

however, results for LUDS and QUICK scheme showed large deviation. It was

observed that Fluent’s QUICK scheme always produces non-oscillation results. The

exact formulation was not provided in Fluent’s theory manual; thereby, the code

results and Fluent’s findings are not comparable. Results for LUDS are plotted in

Figure 3.11, along with the exact solutions. It was observed that results from code

were always more accurate than results from Fluent.

The mean relative error is again plotted against local Peclet number in Figure

3.12. The maximum number of control volume plotted is 80, because the solution

failed to converge with further mesh refinement. The error drops as local Pe drops.

However, the error for LUDS and QUICK are nearly overlapping. This proves the

conjecture that Fluent algorithm for LUDS and QUICK deviates from the true

LUDS and QUICK formulations.
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Figure 3.11: Comparison between code and Fluent results obtained from LUDS for
(a) 10 CVs (b) 20 CVs (c) 40 CVs (d) 80 CVs
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Figure 3.12: Maximum percentage error variation with Peclet number for Fluent
results
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To better understand the reason behind the discrepancy, a plot of error for UDS,

LUDS and QUICK from Fluent calculations versus mesh size is presented in Figure

3.13. Comparing with Figure 3.9, it can be seen that, for QUICK, the Fluent error

is dropped to 10−3 at 80 CVs, while the Code error is as low as 10−4. It is thereby

suspected that Fluent uses a blending formulation for LUDS and QUICK to prevent

oscillation in high local Pe regions.

10
-3

10
-2

10
-1

Mesh size, ∆x [m]

10
-4

10
-2

E
rr

o
r

UDS
LUDS
QUICK

1st order slope

2nd order slope

3rd order slope

Figure 3.13: Order of accuracy check for Fluent results
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Chapter 4

2D Formulation and Validation

4.1 Formulation of the Convection-Diffusion Equation

Considering a standard two-dimensional control volume as shown in Figure 4.1, the

central point and the adjacent points west, east, north and south of it are denoted

by upper-case letters P, W, E, N and S. The cell faces are denoted by lower-case

letters w, e, n and s. The size of the control volume is δx× δy.

xδ

δy

EW

ew
P

S

N

n

s

Figure 4.1: Example of two-dimensional control volume discretization around node
P on a uniform grid

The two-dimensional steady-state convection-diffusion equation, without the
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source term, is presented in Equation 4.1.

ρ(ux
∂ϕ

∂x
+ uy

∂ϕ

∂y
) = Γ(

∂2ϕ

∂x2
+
∂2ϕ

∂y2
) (4.1)

The two dimensions were treated separately; namely, the flow was artificially

divided into the x-component and y-component. The flux in the x-direction was

solved first; the flux in the y-direction was solved subsequently. The x-direction

formulation is the same as in the one-dimensional case; the y-direction formulation

is very similar. For clarity, formulations for flux in the y-direction are presented in

Equations 4.2 to 4.4.

fnϕn =(ϕP + f+cn(ϕN − ϕS))AMAX(fn, 0)

− (ϕN − f−cn(ϕNN − ϕP ))AMAX(−fn, 0) (4.2)

fsϕs =(ϕS + f+cs(ϕP − ϕSS))AMAX(fs, 0)

− (ϕP − f−cs(ϕN − ϕS))AMAX(−fs, 0) (4.3)

(Γ
∂ϕ

∂y
)n =Γn

ϕN − ϕP
yN − yP

& (Γ
∂ϕ

∂y
)s = Γs

ϕP − ϕS
xP − xS

(4.4)

The linearized equation and its coefficients are presented in Equations 4.5 to 4.9;

where the superscript c denotes convection and the superscript d denotes diffusion.

ANϕN +APϕP +ASϕS = bP (4.5)

AN = Ac
N +Ad

N = −AMAX(−fn, 0)−
Γn

xN − xP
(4.6)

AS = Ac
S +Ad

S = −AMAX(0, fs)−
Γs

xP − xS
(4.7)

AP = −(AN +AS) (4.8)

bp = f+cn(ϕS − ϕN )AMAX(fn, 0)− f−cn(ϕNN − ϕP )AMAX(−fn, 0)

+ f+cs(ϕP − ϕSS)AMAX(fs, 0)− f−cs(ϕS − ϕN )AMAX(−fs, 0) (4.9)
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4.2 2D Lids-Driven Cavity Problem

The two-dimensional lids-driven cavity (LDC) problem was studied to validate the

program. The schematic of a typical LDC problem is shown in Figure 4.2. The LDC

problem studies the flow and temperature distribution inside a closed rectangular

cavity. Either, or both of the top and bottom boundaries of the domain are “lids”

moving toward the positive x-direction at a constant speed Ulid. The top and bottom

lids are at constant temperatures of Tt and Tb respectively. The left and right of the

domain are solid walls that are no-slip and adiabatic.

Ulid

Ulid

y

x

L0

Tt

Tb

0H

Figure 4.2: Schematic of the lids-driven cavity (LDC) problem

In order to solve this problem, three fundamental equations are solved simul-

taneously. These three equations are: the mass conservation equation (Equation

4.10), the Navier-Stokes equation (Equation 4.11), and the temperature convection-

diffusion equation (Equation 4.12). The system is at equilibrium, so the ∂u
∂t term is

eliminated. Fluid properties are assumed constant. The viscous heating effect and

the buoyancy effect are also neglected.
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∇ · u⃗ =0 (4.10)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ =− ∇p

ρ
+ ν∇2u⃗ (4.11)

∂T

∂t
+ (u⃗ · ∇)T =

k

ρcp
∇2T (4.12)

The domain is 2 × 1 m2 and both lids are moving at Ulid = 0.007 m/s. The

top lid is held at Tt = 320 K and the bottom lid at Tb = 300 K. The tested

fluid was air with ρ = 1.225 kg/m3, cp = 1006.43 J/kg·K, k = 0.0242 W/m·K,

and dynamic viscosity µ = 1.7894 × 10−5 kg/m·s. The p and ν in Equation 4.11

stand for pressure and fluid kinematic viscosity respectively. Kinematic viscosity is

the quotient of the fluid’s dynamic viscosity and density. The Reynolds number is

Re = ρUlidH
µ = 1.225×0.007×1

1.7894×10−5 = 479.2. The flow is laminar and the domain can be

considered symmetric under current flow specifications.

Square control volumes were used for discretization. Three mesh sizes where

tested: ∆x = ∆y = 0.04 m, ∆x = ∆y = 0.02 m and ∆x = ∆y = 0.01 m; these

mesh sizes corresponds to 25 × 50, 50 × 100 and 100 × 200 total control volumes.

The corresponding Peclet numbers calculated by (ρulid∆xcp)/k are 14.3, 7.1 and 3.6

respectively for the systematically refined grids. The simulated temperature contour

plot is similar for all cases; therefore, only one plot is presented for visualization.

Figure 4.3 shows the temperature contour for the finest grid with Lin-Lin TVD.

Figure 4.3: Normalized temperature profile for the lids-driven cavity (LDC) problem
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The contour plot confirms geometrical and physical symmetry of the domain.

No vortices are present. The density of the contour lines provides information on

the gradient of temperature. Near the left wall, temperature change along the y-

direction is more gradual near the symmetry line at y = 0 and more abrupt near

the top and bottom lids. As opposed to which was observed near the right wall,

temperature change along the y-direction is more gradual near the lids and more

abrupt crossing the symmetry line.

In order to conduct a quantitative analysis, temperatures were taken from two

lines in the domain: one at x = 0.5 m and the other at x = 1.5 m. Results from

the upwind schemes (UDS, LUDS, QUICK and TVD) are plotted in Figure 4.4.

The horizontal axis is y, and the vertical axis is the normalized temperature T ∗

calculated by (T − Tb)/(Tt − Tb).

In the current study, spurious oscillations are not observed, and all the solutions

are bounded. As presented in Figure 4.4 (a), with the coarsest mesh tested, along

x = 0.5 m, all schemes result in similar trends. However, the temperature magnitude

varies. While UDS and LUDS over-predict temperature for y < 0 and under-predict

temperature for y > 0, TVD produces results that are in close agreement with the

QUICK scheme.

When the mesh is refined, as presented in Figure 4.4 (c) and (e), the gap between

results from various schemes diminishes. With twenty thousand control volumes, the

solution from low-order schemes overlaps with TVD, with the expense of excessive

computational resources. All schemes give comparable temperature profiles along

x = 1.5 m as shown in Figure 4.4 (b), (d) and (f).

Similar to high order scheme, the TVD solution is less dependent on the mesh

size. The mean relative error is calculated by taking the average of |T1−T2
T1

| × 100%;

where T1 is the solution temperature for the coarser grid, and T2 is the solution

temperature for the finer grid. The corresponding errors are listed in Table 4.1.

The relative error calculated using the coarsest mesh with ∆x = 0.04 m and the

finest mesh with ∆x = 0.01 m is 0.0333% lies between the results from LUDS and

QUICK. Overall, the TVD scheme is able to give reasonably accurate predictions

with a limited number of control volumes.

Table 4.1: Summary of mean relative errors (%) as the grid refines

Schemes \ ∆x, [×10−2 m] 4 → 2 2 → 1 4 → 1

UDS 0.0490 0.0198 0.0689

LUDS 0.0256 0.0085 0.0357

QUICK 0.0186 0.0052 0.0240

TVD 0.0263 0.0064 0.0333
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Figure 4.4: Normalized temperature plots from various methods along x = 0.5 m:
(a) 1250 CVs (c) 5000 CVs (e) 20000 CVs and along x = 1.5 m: (b) 1250 CVs (d)
5000 CVs (f) 20000 CVs
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Figure 4.5: Comparison between results from code and Fluent along x = 0.5 m: (a)
1250 CVs (c) 5000 CVs (e) 20000 CVs and along x = 1.5 m: (b) 1250 CVs (d) 5000
CVs (f) 20000 CVs
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The UDS, LUDS and QUICK solutions were validated against the results from

Fluent. The overall trend align well with the trend from the code results as presented

in Figure 4.5. The maximum relative discrepancies were calculated with Equation

4.13 and was summarized in Table 4.2.

Error % = max |
T ∗
Fluent − T ∗

code

T ∗
Fluent

| × 100% (4.13)

Table 4.2: Summary of maximum relative discrepancies (%) as the grid refines

Schemes \ ∆x, [×10−2 m] 4 2 1

UDS 5.6863 3.4278 1.9069

LUDS 16.4903 12.3029 6.6917

QUICK 3.7169 3.6264 2.1455

The relative error decreases as the grid refines because theoretically, both the

code results and the Fluent results are approaching the exact solution asymptoti-

cally, even though the exact solution is unavailable for this case. In one dimension,

the UDS implemented in code and the Fluent UDS produces the exact same results.

However, in the LDC problem, the difference is not negligible. Such difference can

be caused by different algorithms in calculation of the velocity field, and is not

discussed here.

Furthermore, the QUICK scheme implemented in code and Fluent produces the

most similar results. Due to QUICK’s high-order of accuracy, when its solution

does not oscillate, it is capable of producing the best approximation among the

three upwind schemes. The percentage discrepancy is the largest for LUDS.

Although it is generally a good practice to validate simulation results with com-

mercial software solutions, results from commercial software needs to be used with

caution since the exact implementations are encapsulated from the users. Developing

an in-house software therefore gives user the option to manage the implementations

and truly understand the algorithms.
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4.3 2D Cylinder Advection

A two-dimensional unsteady problem of cylinder advection was considered. This is

a simplification of bubble advection in three dimensions. Since the third dimension

is ignored, the circle extends infinitely in the third dimension, transforming into a

cylinder. Instead of the temperature convection-diffusion equation (Equation 4.12),

the convection-diffusion of volume fraction ε was solved (Equation 4.14). The flow

field has a uniform velocity; as a result, the momentum equation was not solved.

∂ε

∂t
+ (u⃗ · ∇)ε = D∇2ε (4.14)

Both the cylinder and the surrounding are fluids with the same properties. The

two fluids considered are immiscible, so physical diffusion is assumed absent. D is

the diffusive coefficient of volume fraction, which should have a value of exactly zero.

For numerical purposes, D was set to 10−15. The physical value of ε is confined to

the range of zero to one. The flow velocity was set to U = 0.1 m/s in the z-direction

and zero in the r-direction. The strongly implicit procedure (SIP) solver was used

for the matrix calculations.

The Cartesian grid was used. The stair-step approximation was applied. The

stair-step approximation is the most simplistic approach for surface reconstruction.

Some other commonly used options are the simple linear interface calculation (SLIC)

and the piecewise linear interface calculation (PLIC) [25].

An illustration of the stair-step approximation is provided in Figure 4.6. A circle

containing fluid A (the shaded area) with radius R is immersed in fluid B (the non-

shaded area), and placed on a two-dimensional discretized mesh with ∆x = ∆y =

R/5. Fluid A has a volume fraction of one whereas fluid B has a volume fraction

of zero. In a control volume, if ε ≥ 0.5, the entire cell is treated as if it was filled

by fluid A; to the contrary, if ε < 0.5, the cell is considered entirely occupied by

fluid B. The thicker line in Figure 4.6 represents the reconstructed interface given

by the method. Such a technique is incapable of providing a precise prediction of

the surface, and the resulted surface smoothness is closely related to the mesh size

adopted. The surface curvature calculations was not included in the code since the

surface tension calculations were not implemented.
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Figure 4.6: Illustration of the stair-step approximation

Figure 4.7: Initial schematic of the cylinder convection problem

In the current simulation, the computational domain is 10 × 1 m2, as demon-

strated in Figure 4.7. The colour bar depicts the volume fraction of the cylinder.

The radius of the cylinder is set to 0.1 m. Initially, the cylinder is located at (1, 0.5)

m. The top and bottom boundaries were set to constant ε; while the left and right

boundaries were set to no ε-flux, namely, ∂ε
∂z equals to zero.

Explicit time discretization was used. In convection dominated flow, the Courant-

Friedrichs-Lewy (CFL) number, defined by the ratio of flow velocity U and dimen-

sionless velocity u∗ has to be less than one. The dimensionless velocity is equal to

the mesh size divided by the time step. Due to the fact that a fluid particle cannot

travel through more than one control volume in a single time step, the time step ∆t

is restricted to be less than ∆z/U , which is the time needed for a particle to travel

through one control volume.

Two meshes with ∆x equal to 0.02 m and 0.01 m respectively were tested. The

corresponding Peclet numbers are 2×1012 and 1012 for the coarse grid and the finer

grid respectively. the At the given velocity, the critical time steps calculated by the

CFL restriction are 0.2 s and 0.1 s respectively. To guarantee convergence, ∆t was

set to 0.02 s. Physically, the cylinder is expected to hold its shape and maintain its

volume while moving through the domain because there is no external force present.
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The simulation was carried out for an 80-s period. The CDS, UDS, LUDS,

QUICK and Lin-Lin TVD scheme were assessed. Figure 4.8 is the solution ε contour

plot at t = 40 s and Figure 4.9 is the solution ε contour plot at the end of simulation

period for the 50×500 grid. The commercial software Tecplot 360 was used to post-

process the data and prepare the plots. The scales of the plots were not unified

on intention. The span of the volume fraction illustrates the boundedness of the

solution. Since the field was initialized with 0 < ε < 1, any solution that is beyond

this range is unbounded and thus non-physical.

It was observed that, for all the schemes tested, the cylinder was deformed into

a slender bar extending in the z-direction. The degree of deformation differs. The

solution remained unaltered in the top 1/3 and bottom 1/3 of the simulation domain.

For both mesh sizes tested, only the UDS and TVD scheme were able to produce

bounded solutions. The CDS produced a mirrored image of the cylinder tailed two

meters behind the actual cylinder. This mirrored image of the cylinder imitated the

modelled shape of the cylinder but had a negative ε value. The absolute value of

ε inside the mirrored cylinder is close to the value of ε inside the actual cylinder.

Aside from the mirrored image, the resulted volume was scattered throughout the

simulation domain. Overall, the CDS gave the most unbounded solution.

Even though the UDS provided a bounded solution, the numerical diffusion

caused a massive reduction in the cylinder volume. At the end of the simulation

period, there was nearly no trace of the cylinder remaining as seen in Figure 4.9.

The LUDS has an intermediate ability in predicting the shape and volume of the

cylinder, but it gave a region of negative ε right ahead of the actual cylinder resulting

in unboundedness. In addition, there appeared to be segments of diffused volumes

near the cylinder. The QUICK scheme well preserved the shape of the cylinder due

to its high order of accuracy. However, the cylinder was immediately followed by a

region of negative ε, and similar to the LUDS, there were segmented regions with

0 < ε < 1. TVD produced the most reliable result. With a 50 × 500 grid, the

cylinder was deformed slightly, and the cylinder surface is somewhat smeared.
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Figure 4.8: Volume fraction contour plots obtained with a 50× 500 grid at t = 40 s
for: CDS, UDS, LUDS, QUICK and TVD respectively
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Figure 4.9: Volume fraction contour plots obtained with a 50× 500 grid at t = 80 s
for: CDS, UDS, LUDS, QUICK and TVD respectively

After mesh refinement, solutions from all schemes improved in terms of volume

preservation as showed in Figure 4.10 and Figure 4.11. There was no visible defor-

mation for the QUICK and TVD scheme. However, the problem of unboundedness

for the CDS, LUDS and QUICK did not mitigate at all, meaning that the unphysical

oscillation became more severe.
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Figure 4.10: Volume fraction contour plots obtained with a 100×1000 grid at t = 40
s for: CDS, UDS, LUDS, QUICK and TVD respectively
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Figure 4.11: Volume fraction contour plots obtained with a 100×1000 grid at t = 80
s for: CDS, UDS, LUDS, QUICK and TVD respectively

To quantitatively analyze the results, two parameters were plotted against time:

the volume averaged ε (Figure 4.12) and the stair-step approximated volume V ∗

of the cylinder (Figure 4.13). Both of these parameters were normalized with the

initial values since both of these parameters should remain unchanged theoretically.
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Figure 4.12: Normalized volume averaged fraction obtained with (a) a 50×500 grid
and (b) a 100× 1000 grid for various schemes
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The normalized volume averaged ε plots provide information on the bounded-

ness of the solutions. Since the UDS and TVD solutions are both bounded, their

(
∫
V |ε|dV )∗ values stay unity. The LUDS solution is more unbounded than the

QUICK solution in the current test case. The CDS solution is the most unbounded.

At t = 10 s, (
∫
V |ε|dV )∗ for CDS jumped abruptly. This is due to the first appear-

ance of the mirrored image of the cylinder. Since the absolute value of ε was used,

the appearance of the mirrored image resulted in fictional mass creation.

After the grid refinement, (
∫
V |ε|dV )∗ lowered in magnitude for all schemes.

Along with the observation from the contour plots, it is clear that even though the

solution range expanded as the grid is refined (ε becomes more negative), the volume

containing the unbounded values decreased. As a result, the overall integration

dropped.
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Figure 4.13: Normalized cylinder volume obtained with (a) a 50× 500 grid and (b)
a 100× 1000 grid for various schemes
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The normalized volume plots provide information on the volume conservation

of the cylinder. Scatters are used instead of lines to avoid overlapping lines. Point

skips of 10 and 20 are applied to the plots for the coarse grid and the refined

grid respectively. The values fluctuate violently due to the nature of the stair-step

approximation. Such fluctuation can be illustrated in Figure 4.14. Two circles of

the same size are placed on the same mesh but at different locations. Note that

the approximated volume of the circle on the left is equivalent to 80 CVs and the

approximated volume of the circle on the right is equal to only 69 CVs; while the

actual size of the circle is 78.5 CVs. The errors are then 2% and 12% respectively.

Since this fluctuation is directly related to the size of the control volume, it can be

reduced and controlled by mesh refinement. In the illustration, if the mesh is refined

uniformly by a factor of two, the error reduces to 0.6%.

Figure 4.14: Illustration of the fluctuation in the stair-step approximated volume

For the 50 × 500 mesh, using the 0.5 volume fraction threshold, the cylinder

modelled by the UDS vanished in 11 seconds. V ∗ predicted by LUDS grew in the

first 20 seconds, then declined and stabilized to approximately 0.9 of the initial

volume. Cylinder volume predicted by QUICK stayed relatively constant in the

first 30 seconds then elevated 1.1V0, where V0 is the initial cylinder volume. V ∗

predicted by TVD stayed relatively constant in the first 60 seconds, then reduced

to 0.9.

With grid refinement, the fluctuation in V ∗ was mitigated as expected. All so-

lutions improved except for the CDS result. The cylinder modelled by the UDS

vanished in 22 seconds. It can be concluded that UDS is not appropriate for con-

vection dominated problems due to enormous numerical diffusion. The QUICK and

TVD schemes were able to maintain the volume, and V ∗ remained unity throughout

the simulation period. On the whole, the observations from the plots align with the

observations from the ε contours.
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4.4 Comparison between various TVD schemes

There are unlimited variations of the flux limiter function, thus an unlimited number

of TVD schemes. The results produced by different TVD schemes are inconsistent.

Aside from the Lin-Lin TVD, three other famous TVD schemes: Min-Mod, SUPER-

BEE and Van Leer were tested in the two-dimensional cylinder convection case, to

promote the understanding of TVD.

Figure 4.15 is the solution ε contour plot at t = 40 s and Figure 4.16 is the

solution ε contour plot at the end of simulation period for the 50× 500 grid. Figure

4.17 is the solution ε contour plot at t = 40 s and Figure 4.18 is the solution ε

contour plot at the end of simulation period for the 100 × 1000 grid.

Figure 4.15: Volume fraction contour plots obtained with a 50 × 500 grid at t = 40
s for: Lin-Lin, Min-Mod, SUPERBEE and Van Leer respectively
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Figure 4.16: Volume fraction contour plots obtained with a 50 × 500 grid at t = 80
s for: Lin-Lin, Min-Mod, SUPERBEE and Van Leer respectively

The performance of these schemes can be ranked according to the resolution of

the cylinder. SUPERBEE produced the best resolution of the cylinder, followed by

Lin-Lin and Van Leer. SUPERBEE was able to conserve the cylinder perfectly even

in the coarser mesh. The Min-Mod TVD scheme produced the worst resolution.

From the r−ψ diagram (Figure 3.3) and the NVD diagram (Figure 3.5), it is clear

that the SUPERBEE curve is the furthest away from the UDS line, whereas the

Min-Mod curve is the closest to the UDS line.

With mesh refinement, cylinder volume conservation and solution resolution im-

proved for all TVD schemes.
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Figure 4.17: Volume fraction contour plots obtained with a 100×1000 grid at t = 40
s for: Lin-Lin, Min-Mod, SUPERBEE and Van Leer respectively

59



Figure 4.18: Volume fraction contour plots obtained with a 100×1000 grid at t = 80
s for: Lin-Lin, Min-Mod, SUPERBEE and Van Leer respectively

Since all TVD schemes produce bounded solutions, the normalized volume av-

eraged fraction plots were not prepared. The V ∗ plots are presented in Figure 4.19.

For the coarser grid, the Min-Mod TVD scheme was unable to hold the cylinder

volume, so V ∗ declined to zero at 65 s. Van Leer result was slightly worse than the

Lin-Lin result; it resulted in about 15% reduction in cylinder volume. SUPERBEE

gave an increase in the cylinder volume at 80 seconds.

For the refined grid, Min-Mod TVD scheme predicted a volume reduction of

approximately 13%. All other TVD schemes resulted in solutions that wiggle near

unity.

60



0 20 40 60 80

Time, t [s]

0

0.6

1.2

V
*

Lin-Lin
Min-Mod
SUPERBEE
Van Leer

(a)

0 20 40 60 80

Time, t [s]

0.8

0.9

1

1.1

V
*

Lin-Lin
Min-Mod
SUPERBEE
Van Leer

(b)

Figure 4.19: Normalized cylinder volume obtained with (a) a 50× 500 grid and (b)
a 100× 1000 grid for various TVD schemes
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4.5 Time Complexity Analysis

The computational time is a major concern and constraint of CFD simulations. The

time performance of a program is determined by the number of basic operations

required to solve the problem. In the current studies, as the source term becomes

more non-linear, the number of iterations needed to solve the solution matrix at a

specific numerical time step increases thus results in rising computation time.

Figure 4.20 illustrated the change in real time elapse with the change in numerical

time elapse. Linear correlations are observed for all discretization schemes analyzed.

The CDS takes the longest time while providing the worst results. It is confirmed

that CDS is inappropriate in solving terms that are biased by flow direction. For

the upwind terms, it is generally true that the computational time is in direct

relation with the order of the scheme and the accuracy of the output; that is,

tQUICK > tLUDS > tUDS as presented in Figure 4.20 (a).

Figure 4.20 (b) provides information on the TVD schemes. The SUPERBEE

flux limiter, while providing the most resolved solution, requires the largest amount

of computational resources. The Van Leer solution and the Lin-Lin solution have

similar levels of accuracy; however, the Lin-Lin flux limiter requires the least com-

putational resources. The time performance of the Min-Mod method is similar to

which of the Lin-Lin method, but it produces the most smeared solution as analyzed

in the previous section.

It is shown that the time-dependence on non-linearity of the source term is

insignificant in coarse meshes and when numerical time elapse is small. However, the

difference in computational time accumulates as time propagates. More importantly,

the computational time is directly proportional to the number of control volumes

present in the mesh. It takes approximately 6 × 10−4 second per control volume

per physical time using a time step of ∆t = 0.02 s. Although increasing the time

step would decrease the total number of time frames, it would increase the difficulty

in convergence at each time step. Namely, more iterations are required to achieve

the desired precision and consequently, more time is needed. The time step should

also obey the CFL restriction. When CFL number is higher than one, even if one

manages to obtain a converged solution, the solution is not physically meaningful.

It should be noted that the current timing only accounted for the calculations

performed on a single passive scalar convection-diffusion equation. The solutions

of the Navier-Stokes equation and the temperature convection-diffusion equations

were not activated.
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Figure 4.20: The correlation between real time elapse and numerical time elapse for
the cylinder advection studies. The dashed lines are for the 50 × 500 grid and solid
lines for the 100× 1000 grid: (a) for conventional schemes (b) for TVD schemes
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Chapter 5

Conclusions

In the current studies, the algorithms for multiple implicit TVD schemes were im-

plemented in FORTRAN 77 and MATLAB. The codes use the Eulerian-Eulerian

volume of fluid (VOF) method to model two-phase fluid flow. The numerical so-

lutions were validated using the one-dimensional convection-diffusion problem, the

two-dimensional lids-driven cavity (LDC) problem, as well as the two-dimensional

cylinder advection problem. The numerical results were compared with the exact

solutions, whenever available, and the solutions from a commercial computational

fluid dynamics (CFD) software ANSYS Fluent. For the one-dimensional simulation,

the smallest relative error achieved by the code was 1.16×10−2% compared to 4.55%

calculated from the Fluent results.

In the LDC study case, the TVD results are in best agreement with the QUICK

results. With a grid size of 0.04 m, the maximum relative discrepancy was 5.67%,

which reduces to 0.12% when the grid was refined. A large deviation in the results

was observed when comparing the results from the three upwind schemes with the

Fluent results. This indicates that LUDS implementation in the code and in Fluent

are inconsistent. The commercial software is convenient to use and is capable of

analysing complicated problems. However, due to its ambiguity in concept defi-

nitions and the encapsulation of its implementations, it is doubtable whether the

solution could be trusted or not.

In the cylinder advection study investigation, the TVD schemes were proven to

provide accurate and bounded results, and their performances exceed which of the

conventional upwind schemes (first-order UDS, second-order LUDS and third-order

QUICK scheme). A comparison between four different TVD schemes was conducted.

The stair-step volume approximation technique was applied. The volume conserva-

tion plot shows that the Min-Mod flux limiter function failed to preserve the cylinder
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volume in a coarse mesh. The SUPERBEE flux limiter function results in the most

resolved solutions and the smallest volume variation (7% ) in the coarse grid while

consuming the longest computational time. After the grid refinement, all TVD flux

limiters except for the Min-Mod flux limiter give 100% volume conservation. The

Lin-Lin TVD flux limiter is the most efficient in terms of calculation speed. The

difference in time consumption is caused by the level of non-linearity in the matrix

source term.

5.1 Future works

• Additional validation cases against the current code should be performed. The

results should be compared with some experimental data in addition to other

numerical solutions.

• In order to solve more complex problems, calculations in the third dimension

must be added to the code. The algorithm is similar to which of the other two

dimensions.

• Implementing the TVD algorithm in the Navier-Stokes solver and the second-

order interface reconstruction method.

• With surface reconstruction, implementing the surface tension calculations.

The code can then be used to solve more realistic problems.

• Expanding the code to adapt the multiphase VOF method instead of just the

two-phase VOF method.
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Appendix A

1D FORTRAN Code

C#######################################################
PROGRAM FD

C#######################################################
C This program so l v e s the one−dimens iona l convect ion−
C d i f f u s i o n equat ion with D i r i c h l e t boundary cond i t i on s
C on both ends . The d i f f u s i v e term i s c a l c u l a t ed us ing
C CDS and the convec t ive term us ing CDS, UDS, LUDS,
C QUICK and TVD (Lin−Lin ) . The s o l u t i o n s obta ined are
C compared with the exact s o l u t i o n . The code i s adapted
C from Milovan Peric ’ s code in the book ”Computational
C Methods f o r Flu id Dynamics ” .
C#######################################################

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX) ,U(NX) ,
∗ FluxC(NX)
DIMENSION FIEX(NX)
CHARACTER FILOUT∗10 ,STRING1∗45 ,STRING2∗40 ,STRING3∗34

C
C . . . . . OPEN FILES

PRINT ∗ , ’ ENTER OUTPUT FILE NAME: ’
READ(∗ , 1 ) FILOUT

1 FORMAT(A10)
OPEN (UNIT=8,FILE=FILOUT)
OPEN (UNIT=1,FILE=’ rez . dat ’ )

C
C . . . . . READ INPUT DATA

PRINT ∗ , ’ ENTER: DEN(SITY) , VEL(OCITY) , DIF(FUSION COEFF. ) ’
READ(∗ ,∗ ) DEN,VEL,DIF
PRINT ∗ , ’ ENTER BOUNDARY VALUES: FI0 , FIN ’
READ(∗ ,∗ ) FI0 , FIN
STRING1=’ CHOOSE CONVECTION SCHEME: 1 − CDS, 2 − UDS, ’
STRING2=’3 − UWDS, 4 − PDS, 5 − LUDS, 6 − QUICK, ’
STRING3=’7 − DEFFERED CORRECTION, 8 − TVD ’
PRINT ∗ , STRING1//STRING2//STRING3
READ(∗ ,∗ ) IC

C
C . . . . . DEFINE THE GRID: EX − EXPANSION FACTOR;
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C N − NUMBER OF NODES INCL . BOUNDARY ONES
PRINT ∗ , ’ ENTER: XMIN, XMAX, EX, N ’
READ(∗ ,∗ ) XMIN,XMAX,EX,N
NM=N−1
IF (EX.EQ. 1 . ) THEN

DX=(XMAX−XMIN)/REAL(N−1)
ELSE

DX=(XMAX−XMIN)∗(1.−EX)/(1.−EX∗∗(N−1))
ENDIF
X(1)=XMIN
DO I=2,N

X( I )=X( I−1)+DX
DX=DX∗EX

ENDDO
C
C . . . . . INITIALIZE FIELDS

DO I=1,N
FI ( I )=0.
U ( I )=VEL
FluxC( I )=DEN∗U( I )

ENDDO
FI(1)=FI0
FI (N)=FIN
DENVEL=DEN∗VEL
ZERO=0.

C
DO I=2,NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2.
DENVEL w=(FluxC( I )+FluxC( I −1))/2.
PEce l l e=DENVEL e∗(X( I+1)−X( I ) )/DIF
PEcel l w=DENVEL w∗(X( I )−X( I −1))/DIF

C
C . . . . . CENTRAL DIFFERENCE CONVECTION APPROX. (CDS)

IF ( IC .EQ. 1 ) THEN
AEC= DENVEL e/2 .
AWC=−DENVEL w/2 .

C
C . . . . . UPWIND CONVECTION APPROX. (UDS)

ELSEIF( IC .EQ.2 .OR. IC .GE. 4 ) THEN
AEC= AMIN1(DENVEL e,ZERO)
AWC=−AMAX1(DENVEL w,ZERO)

C
C . . . . . UPWIND WEIGHTED DIFFERENCE APPROX. (UWDS)

ELSEIF( IC .EQ. 3 ) THEN
AEC cds= DENVEL e/2 .
AWC cds=−DENVEL w/2 .
AEC uds= AMIN1(DENVEL e,ZERO)
AWC uds=−AMAX1(DENVEL w,ZERO)

C
gama e=(PEce l l e ∗PEce l l e )/(5+ PEce l l e ∗PEce l l e )
gama w=(PEcel l w ∗PEcel l w )/(5+PEcel l w ∗PEcel l w )

C
AEC=(1.−gama e )∗AEC cds+gama e∗AEC uds
AWC=(1.−gama w)∗AWC cds+gama w∗AWC uds

C
ENDIF
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C
C . . . . . CENTRAL DIFFERENCE DIFFUSION APPROX. (CDS)

AED=−DIF/(X( I+1)−X( I ) )
AWD=−DIF/(X( I )−X( I−1))

C
IF ( IC .EQ. 4 ) THEN

AED=AED∗AMAX1(0 . , ( 1 . −0 . 1∗DABS( PEce l l e ) )∗∗5 )
AWD=AWD∗AMAX1(0 . , ( 1 . −0 . 1∗DABS( PEcel l w ) )∗∗5 )

ENDIF
C
C . . . . . ASSEMBLE COEFFICIENT MATRIX

AE( I )=AEC+AED
AW( I)=AWC+AWD
AP( I)=−AW( I)−AE( I )

C
Q( I )=0.

ENDDO
C
C . . . . .BOUNDARY CONDITIONS

Q(2)=Q(2)−AW(2)∗FI (1 )
AW(2)=0.
Q(NM)=Q(NM)−AE(NM)∗FI (N)
AE(NM)=0.

C
C . . . . . SOLVE EQUATION SYSTEM

PRINT ∗ , ’ CHOOSE SOLVER: 1 − JACOBI, 2 − GS, 3 − GSOR, 4 − TDMA’
READ(∗ ,∗ ) IS

C IF ( IC .GT. 4) IS=3
IF ( IS .EQ. 1 ) THEN

CALL JACOBI( IC )
ELSEIF( IS .EQ. 2 ) THEN

CALL GS( IC)
ELSEIF( IS .EQ. 3 ) THEN

CALL GSOR( IC)
ELSEIF( IS .EQ. 4 ) THEN

CALL TDMA( IC)
ENDIF

C
C . . . . . CALCULATE EXACT SOLUTION AND ERROR NORM

ERROR=0.
FIEX(1)=FI0
FIEX(N)=FIN
PE=DENVEL∗(XMAX−XMIN)/DIF
pr in t ∗ , ’Pe ’ ,PE
RX=1./(XMAX−XMIN)
DO I=2,NM

FIEX( I )=FI0+((DEXP(PE∗X( I )∗RX)−1.)/(DEXP(PE) −1 . ) )∗ (FIN−FI0 )
p r i n t ∗ , ’FIEX( I ) ’ , I , FIEX( I )

C
ERROR=ERROR+ABS(FIEX( I )−FI ( I ) )

ENDDO
ERROR=ERROR/REAL(N)

C
C . . . . . PRINT THE RESULT

WRITE(8 ,∗ ) ’ ’
WRITE(8 ,∗ ) ’ PECLET NUMBER: PE = ’ ,PE
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WRITE(8 ,∗ ) ’ LOcal PECLET NUMBER: PE = ’ ,PE∗DX/(XMAX−XMIN)
WRITE(8 ,∗ ) ’ ERROR NORM = ’ ,ERROR
IF ( IC .EQ. 1 ) WRITE(8 ,∗ ) ’ CDS USED FOR CONVECTION ’
IF ( IC .EQ. 2 ) WRITE(8 ,∗ ) ’ UDS USED FOR CONVECTION ’
IF ( IC .EQ. 3 ) WRITE(8 ,∗ ) ’ UWDS USED FOR CONVECTION ’
IF ( IC .EQ. 4 ) WRITE(8 ,∗ ) ’ PDS USED FOR CONVECTION ’
IF ( IC .EQ. 5 ) WRITE(8 ,∗ ) ’ LUDS USED FOR CONVECTION ’
IF ( IC .EQ. 6 ) WRITE(8 ,∗ ) ’ QUICK USED FOR CONVECTION ’
IF ( IC .EQ. 7 ) WRITE(8 ,∗ ) ’ DEFERRED CORRECTION USED FOR CONVECTION ’
IF ( IC .EQ. 8 ) WRITE(8 ,∗ ) ’ TVD USED FOR CONVECTION ’
IF ( IS .EQ. 1 ) WRITE(8 ,∗ ) ’ JACOBI SOLVER ’
IF ( IS .EQ. 2 ) WRITE(8 ,∗ ) ’ GAUSS−SEIDEL SOLVER ’
IF ( IS .EQ. 3 ) WRITE(8 ,∗ ) ’ GSOR SOLVER ’
IF ( IS .EQ. 4 ) WRITE(8 ,∗ ) ’ TDMA SOLVER ’
WRITE(8 ,∗ ) ’ ’
WRITE(8 ,∗ ) ’ X FI EXACT FI ERROR ’
WRITE(8 ,∗ ) ’ ’
DO I=1,N

WRITE(8 ,65 ) X( I ) ,FIEX( I ) , FI ( I ) ,FIEX( I )−FI ( I )
WRITE(1 ,65 ) X( I ) ,FIEX( I ) , FI ( I ) ,FIEX( I )−FI ( I )

ENDDO
65 FORMAT(1P4E16 . 5 )

STOP
END

C
C#######################################################

SUBROUTINE TDMA( IC)
C#######################################################
C INITIAL VALUES OF VARIABLES BPR( I ) AND V( I ) ASSUMED ZERO!
C

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX) , FluxC(NX)
DIMENSION BPR(NX) ,V(NX) ,Q2(NX)

C
DO I=1,NX

Q2( I )=Q( I )
ENDDO

C
DO IT=1 ,1000

C
C . . . . . CALCULATE NEW SOLUTION

DO I=3,NM
DENVEL e=(FluxC( I )+FluxC( I +1))/2.
DENVEL w=(FluxC( I )+FluxC( I −1))/2.

C
C . . . . . UPDATE NEW SOURCE TERM

IF ( IC .GE. 5) THEN
CALL GETQ(IC , I ,Q2( I ) ,DENVEL e,DENVEL w)

ENDIF
C

ENDDO
C
C . . . . . CALCULATE 1./U P (BPR) AND MODIFIED SOURCE TERM (V)

DO I=2,NM
BPR( I )=1./(AP( I )−AW( I )∗AE( I−1)∗BPR( I−1))
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V( I )=Q( I )−AW( I )∗V( I−1)∗BPR( I−1)
ENDDO

C
C . . . . . CALCULATE VARIABLE VALUES − BACKWARD SUBSTITUTION

DO I=NM,2 ,−1
FI ( I )=(V( I )−AE( I )∗FI ( I +1))∗BPR( I )

ENDDO
C
C . . . . . CALCULATE RESIDUAL AND CHECK CONVERGENCE

CALL GETRES(RES, IT )
IF (RES.LT . 1 . E−15) RETURN

C
ENDDO
pr in t ∗ , ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED’
RETURN
END

C
C#######################################################

SUBROUTINE JACOBI( IC )
C#######################################################

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX) , FluxC(NX)
DIMENSION FIO(NX) ,Q2(NX)

C
DO I=1,NX

Q2( I )=Q( I )
ENDDO

C
DO IT=1 ,1000

C
C . . . . . SAVE OLD SOLUTION

DO I=1,N
FIO( I )=FI ( I )

ENDDO
C

DO I=3,NM
DENVEL e=(FluxC( I )+FluxC( I +1))/2.
DENVEL w=(FluxC( I )+FluxC( I −1))/2.

C
C . . . . . UPDATE NEW SOURCE TERM

IF ( IC .GE. 5) THEN
CALL GETQ(IC , I ,Q2( I ) ,DENVEL e,DENVEL w)

ENDIF
C

ENDDO
C
C . . . . . CALCULATE NEW SOLUTION

DO I=2,NM
FI ( I )=(−AE( I )∗FIO( I+1)−AW( I )∗FIO( I−1)+Q( I ) )/AP( I )

ENDDO
C
C . . . . . CALCULATE RESIDUAL AND CHECK CONVERGENCE

CALL GETRES(RES, IT )
IF (RES.LT . 1 . E−4) RETURN

C
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ENDDO
pr in t ∗ , ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED’
RETURN
END

C
C#######################################################

SUBROUTINE GS( IC)
C#######################################################

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX) , FluxC(NX)
DIMENSION Q2(NX)

C
DO I=1,NX

Q2( I )=Q( I )
ENDDO

C
DO IT=1 ,1000

C
C . . . . . CALCULATE NEW SOLUTION

DO I=3,NM
DENVEL e=(FluxC( I )+FluxC( I +1))/2.
DENVEL w=(FluxC( I )+FluxC( I −1))/2.

C
C . . . . . UPDATE NEW SOURCE TERM

IF ( IC .GE. 5) THEN
CALL GETQ(IC , I ,Q2( I ) ,DENVEL e,DENVEL w)

ENDIF
C

ENDDO
C

DO I=2,NM
FI ( I )=(−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I ) )/AP( I )

ENDDO
C
C . . . . . CALCULATE RESIDUAL AND CHECK CONVERGENCE

CALL GETRES(RES, IT )
IF (RES.LT . 1 . E−4) RETURN

C
ENDDO
pr in t ∗ , ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED’
RETURN
END

C
C#######################################################

SUBROUTINE GSOR( IC)
C#######################################################

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX) , FluxC(NX)
DIMENSION Q2(NX)

C
PRINT ∗ , ’ ENTER OVERRELAXATION PARAMETER: OM ’
READ(∗ ,∗ ) OM

C
DO I=1,NX
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Q2( I )=Q( I )
ENDDO

C
DO IT=1 ,1000

C
C . . . . . CALCULATE NEW SOLUTION

DO I=3,NM
DENVEL e=(FluxC( I )+FluxC( I +1))/2.
DENVEL w=(FluxC( I )+FluxC( I −1))/2.

C
C . . . . . UPDATE NEW SOURCE TERM

IF ( IC .GE. 5) THEN
CALL GETQ(IC , I ,Q2( I ) ,DENVEL e,DENVEL w)

ENDIF
C

ENDDO
C

DO I=2,NM
FI ( I )=FI ( I )+

∗ OM∗((−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I ) )/AP( I )−FI ( I ) )
ENDDO

C
C . . . . . CALCULATE RESIDUAL AND CHECK CONVERGENCE

CALL GETRES(RES, IT )
IF (RES.LT . 1 . E−15) RETURN

C
ENDDO
pr in t ∗ , ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED’
RETURN
END

C
C#######################################################

SUBROUTINE few pm( fe p , f e2 p , IC )
C#######################################################

inc lude ’ f l o a t . h ’
C
C . . . . . LUDS

IF ( IC .EQ. 5) THEN
fe2 p=f e p /2 .

C
C . . . . . QUICK

ELSEIF( IC .EQ. 6) THEN
fe2 p =3./8.− f e p /4 .

C
C . . . . . TVD

ELSEIF( IC .EQ. 8) THEN
IF ( f e p .LT. 0 . .OR. f e p .GT. 1 . ) THEN

fe2 p =0.
ELSEIF( f e p .GE. 0 . .AND. f e p .LE. 0 . 3 ) THEN

fe2 p=f e p
ELSEIF( f e p .GT. 0 .3 .AND. f e p .LE. 5 . / 6 . ) THEN

fe2 p =3./8.− f e p /4 .
ELSEIF( f e p .GT. 5 . / 6 . .AND. f e p .LE. 1 . ) THEN

fe2 p=1.− f e p
ENDIF

ENDIF
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RETURN
END

C
C#######################################################

SUBROUTINE GETQ(IC , I ,Q2 ,DENVEL e,DENVEL w)
C#######################################################

inc lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX)

C
ZERO=0.
smal l=1e−15

C
C . . . . . Def Cor . Scheme

IF ( IC .EQ. 7) THEN
Q( I )=Q2+(FI ( I )∗AMAX1( DENVEL e,ZERO)

∗ + FI ( I+1)∗AMAX1(−DENVEL e,ZERO)
∗ − FI ( I +1)∗0.5∗DENVEL e
∗ − FI ( I−1)∗AMAX1( DENVEL w,ZERO)
∗ − FI ( I )∗AMAX1(−DENVEL w,ZERO)
∗ + FI ( I −1)∗0.5∗DENVEL w)

C
C . . . . . LUDS, QUICK, TVD

ELSEIF( IC .GE. 5) THEN
C
C . . . . . Date p . 64 , f (\ eta )= f ( ( Fi U − Fi UU )/( Fi D − Fi UU ) )

f e p=(FI ( I )−FI ( I −1))/(FI ( I+1)−FI ( I−1)+smal l )
fe m=(FI ( I+1)−FI ( I +2))/(FI ( I )−FI ( I+2)+smal l )

C
fw p=(FI ( I−1)−FI ( I −2))/(FI ( I )−FI ( I−2)+smal l )
fw m=(FI ( I )−FI ( I +1))/(FI ( I−1)−FI ( I+1)+smal l )

C
CALL few pm( fe p , f e2 p , IC )
CALL few pm( fe m , fe2 m , IC )
CALL few pm( fw p , fw2 p , IC )
CALL few pm( fw m , fw2 m , IC )

C
IF ( I .EQ. NM) THEN

Q( I )=Q2+0.5∗(DENVEL e+DABS(DENVEL e) )∗ f e 2 p ∗( FI ( I−1)−FI ( I +1))
C ∗ +0.5∗(DENVEL e−DABS(DENVEL e) )∗ fe2 m ∗( FI ( I+2)−FI ( I ) )

∗ +0.5∗(DENVEL w+DABS(DENVEL w))∗ fw2 p ∗( FI ( I )−FI ( I−2))
∗ +0.5∗(DENVEL w−DABS(DENVEL w))∗ fw2 m ∗( FI ( I−1)−FI ( I +1))

C
ELSE

Q( I )=Q2+0.5∗(DENVEL e+DABS(DENVEL e) )∗ f e 2 p ∗( FI ( I−1)−FI ( I +1))
∗ +0.5∗(DENVEL e−DABS(DENVEL e) )∗ fe2 m ∗( FI ( I+2)−FI ( I ) )
∗ +0.5∗(DENVEL w+DABS(DENVEL w))∗ fw2 p ∗( FI ( I )−FI ( I−2))
∗ +0.5∗(DENVEL w−DABS(DENVEL w))∗ fw2 m ∗( FI ( I−1)−FI ( I +1))

ENDIF
ENDIF
RETURN
END

C
C#######################################################

SUBROUTINE GETRES(RES, IT )
C#######################################################
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i n c lude ’ f l o a t . h ’
PARAMETER (NX=200)
COMMON N,NM, FI (NX) ,AE(NX) ,AW(NX) ,AP(NX) ,Q(NX) ,X(NX)

C
RES=0.

C
DO I=2,NM

RES=RES+ABS(−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I )−AP( I )∗FI ( I ) )
ENDDO
WRITE(8 ,∗ ) IT , ’ ITER. , RES = ’ ,RES
WRITE(∗ ,∗ ) IT , ’ ITER. , RES = ’ ,RES
RETURN
END

C

Subfile ’float.h’

IMPLICIT DOUBLE PRECISION (A−H,O−Z)
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Appendix B

1D MATLAB Code

c l c ; c l e a r ;
%#######################################################
% PROGRAM FD
% This program so l v e s the one−dimens iona l convect ion−
% d i f f u s i o n equat ion with D i r i c h l e t boundary cond i t i on s
% on both ends . The d i f f u s i v e term i s c a l c u l a t ed us ing
% CDS and the convec t ive term us ing CDS, UDS, LUDS,
% QUICK and TVD (Lin−Lin ) . The s o l u t i o n s obta ined are
% compared with the exact s o l u t i o n .
%#######################################################
%
% OPEN FILES
FILOUT=input ( ’ENTER OUTPUT FILE NAME: ’ , ’ s ’ ) ;
f i l e ID1=fopen (FILOUT, ’w ’ ) ;
f i l e ID2=fopen ( ’ rez m . dat ’ , ’w ’ ) ;
%
% READ INPUT DATA
TMP=str2num ( input ( ’ENTER: DEN(SITY) , VEL(OCITY) , . . .

DIF(FUSION COEFF. ) \ n ’ , ’ s ’ ) ) ;
DEN=TMP( 1 ) ; VEL=TMP( 2 ) ; DIF=TMP( 3 ) ;
TMP=str2num ( input ( ’ENTER BOUNDARY VALUES: FI0 , FIN \n ’ , ’ s ’ ) ) ;
FI0=TMP( 1 ) ; FIN=TMP( 2 ) ;
METHODS=[”CDS” ,”UDS” ,”UWDS” ,”PDS” ,”LUDS” ,”QUICK” , . . .

”DEFERRED CORRECTION” ,”TVD” ] ;
PROMPT=’CHOOSE CONVECTION SCHEME: ’ ;
f o r I =1: s i z e ( s t r l e n g t h (METHODS) , 2 )

i f I == s i z e ( s t r l e n g t h (METHODS) , 2 )
PROMPT=[PROMPT, num2str ( I ) , ’ − ’ ,METHODS( I ) , ’\n ’ ] ;

e l s e
PROMPT=[PROMPT, num2str ( I ) , ’ − ’ ,METHODS( I ) , ’ , ’ ] ;

end
end
IC=input ( char ( s t r j o i n (PROMPT) ) ) ;
%
% DEFINE THE GRID: EX − EXPANSION FACTOR;
% N − NUMBER OF NODES INCL . BOUNDARY ONES
TMP=str2num ( input ( ’ENTER: XMIN, XMAX, EX, N\n ’ , ’ s ’ ) ) ;
XMIN=TMP( 1 ) ; XMAX=TMP( 2 ) ; EX=TMP( 3 ) ; N=TMP( 4 ) ;
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NM=N−1;
i f EX == 1

DX=(XMAX−XMIN)/NM;
e l s e

DX=(XMAX−XMIN)∗(1−EX)/(1−EXˆNM) ;
end
X(1)=XMIN;
f o r I =2:N

X( I )=X( I−1)+DX;
DX=DX∗EX;

end
%
% INITIALIZE FIELDS
f o r I =1:N+1

FI ( I )=0;
U( I )=VEL;
FluxC( I )=DEN∗U( I ) ;

end
FI (1)=FI0 ; FI (N)=FIN ; DENVEL=DEN∗VEL;
%
f o r I =2:NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2;
DENVEL w=(FluxC( I )+FluxC( I −1))/2;
PEce l l e=DENVEL e∗(X( I+1)−X( I ) )/DIF ;
PEcel l w=DENVEL w∗(X( I )−X( I −1))/DIF ;
%
% CENTRAL DIFFERENCE CONVECTOIN APPROX. (CDS)
i f IC == 1

AEC= DENVEL e/2 ;
AWC=−DENVEL w/2 ;
%
% UPWIND CONVECTION APPROX. (UDS)

e l s e i f IC == 2 | | IC >= 4
AEC= min(DENVEL e , 0 ) ;
AWC=−max(DENVEL w, 0 ) ;
%
% UPWIND WEIGHTED DIFFERENCE APPROX. (UWDS)

e l s e i f IC == 3
AEC cds= DENVEL e/2 ;
AWC cds=−DENVEL w/2 ;
AEC uds= min (DENVEL e , 0 ) ;
AWC uds=−max(DENVEL w, 0 ) ;
%
gama e=(PEce l l e ∗PEce l l e )/(5+ PEce l l e ∗PEce l l e ) ;
gama w=(PEcel l w ∗PEcel l w )/(5+PEcel l w ∗PEcel l w ) ;
%
AEC=(1−gama e )∗AEC cds+gama e∗AEC uds ;
AWC=(1−gama w)∗AWC cds+gama w∗AWC uds ;

end
%
% CENTRAL DIFFERENCE DIFFUSION APPROX. (CDS)
AED=−DIF/(X( I+1)−X( I ) ) ;
AWD=−DIF/(X( I )−X( I −1)) ;
%
i f IC == 4

AED=AED∗max(0 ,(1−0.1∗ abs ( PEce l l e ) ) ˆ 5 ) ;
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AWD=AWD∗max(0 ,(1−0.1∗ abs ( PEcel l w ) ) ˆ 5 ) ;
end
%
% ASSEMBLE COEFFICIENT MATRIX
AE( I )=AEC+AED;
AW( I)=AWC+AWD;
AP( I)=−AW( I)−AE( I ) ;
%
Q( I )=0;

end
%
% BOUNDARY CONDITIONS
Q(2)=Q(2)−AW(2)∗FI ( 1 ) ;
AW(2)=0;
Q(NM)=Q(NM)−AE(NM)∗FI (N) ;
AE(NM)=0;
%
% SOLVE EQUATION SYSTEM
SOLVERS=[”JACOBI” ,”GAUSS−SEIDEL” ,”GSOR” ,”TDMA” ] ;
PROMPT=’ CHOOSE SOLVER: ’ ;
f o r I =1: s i z e ( s t r l e n g t h (SOLVERS) , 2 )

i f I == s i z e ( s t r l e n g t h (SOLVERS) , 2 )
PROMPT=[PROMPT, num2str ( I ) , ’ − ’ ,SOLVERS( I ) , ’\n ’ ] ;

e l s e
PROMPT=[PROMPT, num2str ( I ) , ’ − ’ ,SOLVERS( I ) , ’ , ’ ] ;

end
end
IS=input ( char ( s t r j o i n (PROMPT) ) ) ;
% i f IC > 4 ; IS=3; end
switch IS

case 1
[ FI ]=JACOBI( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP) ;

case 2
[ FI ]=GS( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP) ;

case 3
[ FI ]=GSOR( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP) ;

case 4
[ FI ]=TDMA( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP) ;

end
%
% CALCULATE EXACT SOLUTION AND ERROR NORM
ERROR=0;
FIEX(1)=FI0 ; FIEX(N)=FIN ;
PE=DENVEL∗(XMAX−XMIN)/DIF ;
f p r i n t f ( ’ Pe %f \n ’ ,PE) ;
RX=1/(XMAX−XMIN) ;
f o r I =2:NM

FIEX( I )=FI0+((exp (PE∗X( I )∗RX)−1)/( exp (PE)−1))∗(FIN−FI0 ) ;
f p r i n t f ( ’FIEX( I ) %i %.16E\n ’ , I , FIEX( I ) ) ;
%
ERROR=ERROR+abs (FIEX( I )−FI ( I ) ) ;

end
ERROR=ERROR/N;
%
% PRINT THE RESULT
f p r i n t f ( f i l e ID1 , ’ \ n PECLET NUMBER: PE = %f \n ’ ,PE) ;
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f p r i n t f ( f i l e ID1 , ’LOCAL PECLET NUMBER: PE = %f \n ’ ,PE∗DX/(XMAX−XMIN) ) ;
f p r i n t f ( f i l e ID1 , ’ERROR NORM = %f \n ’ ,ERROR) ;
f p r i n t f ( f i l e ID1 , ’% s USED FOR CONVECTION\n ’ ,METHODS( IC ) ) ;
f p r i n t f ( f i l e ID1 , ’% s SOLVER\n\n ’ ,SOLVERS( IS ) ) ;
f p r i n t f ( f i l e ID1 , ’ X FI EXACT FI ERROR. . .

\n\n ’ ) ;
f o r I =1:N

f p r i n t f ( f i l e ID1 , ’%16.5E %16.5E %16.5E %16.5E\n ’ ,X( I ) ,FIEX( I ) , . . .
FI ( I ) ,FIEX( I )−FI ( I ) ) ;

f p r i n t f ( f i l e ID2 , ’%16.5E %16.5E %16.5E %16.5E\n ’ ,X( I ) ,FIEX( I ) , . . .
FI ( I ) ,FIEX( I )−FI ( I ) ) ;

end

Subfunction ’GETQ.m’

f unc t i on [Q]=GETQ(IC , I ,Q2 , FI ,NM,DENVEL e,DENVEL w)
%#######################################################
% SUBROUTINE GETQ(IC , I ,Q2 ,DENVEL e,DENVEL w)
%#######################################################
%
smal l=1e−15;
% . . . . . Def Cor . Scheme
i f IC == 7

Q=Q2+(FI ( I )∗max( DENVEL e,0)+FI ( I+1)∗max(−DENVEL e , 0 ) . . .
− FI ( I +1)∗0.5∗ DENVEL e −FI ( I−1)∗max( DENVEL w, 0 ) . . .
− FI ( I )∗max(−DENVEL w,0)+FI ( I −1)∗0.5∗ DENVEL w) ;

%
% . . . . . LUDS, QUICK, TVD

e l s e i f IC >= 5
%
% . . . . . Date p . 64 , f (\ eta )= f ( ( Fi U − Fi UU )/( Fi D − Fi UU ) )
%
f e p=(FI ( I )−FI ( I −1))/(FI ( I+1)−FI ( I−1)+smal l ) ;
fe m=(FI ( I+1)−FI ( I +2))/(FI ( I )−FI ( I+2)+smal l ) ;
%
fw p=(FI ( I−1)−FI ( I −2))/(FI ( I )−FI ( I−2)+smal l ) ;
fw m=(FI ( I )−FI ( I +1))/(FI ( I−1)−FI ( I+1)+smal l ) ;
%
f e2 p=few pm( fe p , IC ) ;
fe2 m=few pm( fe m , IC ) ;
fw2 p=few pm( fw p , IC ) ;
fw2 m=few pm( fw m , IC ) ;
%
i f I == NM

Q=Q2+0.5∗(DENVEL e+abs (DENVEL e) )∗ f e 2 p ∗( FI ( I−1)−FI ( I +1 ) ) . . .
+0.5∗(DENVEL w+abs (DENVEL w))∗ fw2 p ∗( FI ( I )−FI ( I − 2 ) ) . . .
+0.5∗(DENVEL w−abs (DENVEL w))∗ fw2 m ∗( FI ( I−1)−FI ( I +1)) ;

e l s e
Q=Q2+0.5∗(DENVEL e+abs (DENVEL e) )∗ f e 2 p ∗( FI ( I−1)−FI ( I +1 ) ) . . .

+0.5∗(DENVEL e−abs (DENVEL e) )∗ fe2 m ∗( FI ( I+2)−FI ( I ) ) . . .
+0.5∗(DENVEL w+abs (DENVEL w))∗ fw2 p ∗( FI ( I )−FI ( I − 2 ) ) . . .
+0.5∗(DENVEL w−abs (DENVEL w))∗ fw2 m ∗( FI ( I−1)−FI ( I +1)) ;

end
end

Subfunction ’GETRES.m’
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f unc t i on [RES]=GETRES( f i l e ID1 ,NM, IT ,AE,AW,AP, FI ,Q)
RES=0;
f o r I =2:NM

RES=RES+abs(−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I )−AP( I )∗FI ( I ) ) ;
end
f p r i n t f ( f i l e ID1 , ’% i ITER. , RES = %.16E\n ’ , IT ,RES) ;
f p r i n t f ( ’% i ITER. , RES = %.16E\n ’ , IT ,RES) ;

Subfunction ’few_pm.m’

f unc t i on [ f e 2 p ]=few pm( fe p , IC )
%#######################################################
% SUBROUTINE few pm( fe p , f e2 p , IC )
%#######################################################
%
% . . . . . LUDS
switch IC

case 5
f e 2 p=f e p /2 ;
%
% . . . . .QUICK
case 6

f e 2 p=3/8− f e p /4 ;
%
% . . . . .TVD
case 8

i f f e p < 0 | | f e p > 1
f e 2 p =0;

e l s e i f f e p >= 0 && f e p <= 0.3
f e 2 p=f e p ;

e l s e i f f e p > 0 .3 && f e p <= 5/6
f e2 p=3/8− f e p /4 ;

e l s e i f f e p > 5/6 && f e p <=1
f e2 p=1.− f e p ;

end
end

Subfunction ’GS.m’

f unc t i on [ FI ]=GS( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP)
%#######################################################
% SUBROUTINE GS
%#######################################################
%
Q2=Q;
%
f o r IT=1:1000

%
% . . . . .CALCULATE NEW SOLUTION
f o r I =3:NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2;
DENVEL w=(FluxC( I )+FluxC( I −1))/2;
%
% . . . . .UPDATE NEW SOURCE TERM
i f IC >= 5

[Q( I )]=GETQ(IC , I ,Q2( I ) , FI ,NM,DENVEL e,DENVEL w) ;
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end
%

end
%
f o r I =2:NM

FI ( I )=(−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I ) )/AP( I ) ;
end
%
% . . . . .CALCULATE RESIDUAL AND CHECK CONVERGENCE
[RES]=GETRES( f i l e ID1 ,NM, IT ,AE,AW,AP, FI ,Q) ;
i f RES < 1E−4; r e turn ; end

end
f p r i n t f ( ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED\n ’ )

Subfunction ’GSOR.m’

f unc t i on [ FI ]=GSOR( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP)
format long
%#######################################################
% SUBROUTINE GSOR( IC)
%#######################################################
OM=input ( ’ENTER OVERRELAXATION PARAMETER: OM \n ’ ) ;
%
Q2=Q;
%
f o r IT=1:1000

%
% . . . . .CALCULATE NEW SOLUTION
f o r I =3:NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2;
DENVEL w=(FluxC( I )+FluxC( I −1))/2;
%
% . . . . .UPDATE NEW SOURCE TERM
i f IC >= 5

[Q( I )]=GETQ(IC , I ,Q2( I ) , FI ,NM,DENVEL e,DENVEL w) ;
end
%

end
%
f o r I =2:NM

FI ( I )=FI ( I )+OM∗((−AE( I )∗FI ( I+1)−AW( I )∗FI ( I−1)+Q( I ) ) / . . .
AP( I )−FI ( I ) ) ;

end
%
% . . . . .CALCULATE RESIDUAL AND CHECK CONVERGENCE
[RES]=GETRES( f i l e ID1 ,NM, IT ,AE,AW,AP, FI ,Q) ;
i f RES < 1E−15; re turn ; end

end
f p r i n t f ( ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED\n ’ )

Subfunction ’JACOBI.m’

f unc t i on [ FI ]=JACOBI( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP)
%#######################################################
% SUBROUTINE JACOBI
%#######################################################
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%
Q2=Q;
%
f o r IT=1:1000

%
% . . . . . SAVE OLD SOLUTION
FIO=FI ;
%
f o r I =3:NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2;
DENVEL w=(FluxC( I )+FluxC( I −1))/2;
%
% . . . . .UPDATE NEW SOURCE TERM
i f IC >= 5

[Q( I )]=GETQ(IC , I ,Q2( I ) , FI ,NM,DENVEL e,DENVEL w) ;
end
%

end
%
% . . . . .CALCULATE NEW SOLUTION
f o r I =2:NM

FI ( I )=(−AE( I )∗FIO( I+1)−AW( I )∗FIO( I−1)+Q( I ) )/AP( I ) ;
end
%
% . . . . .CALCULATE RESIDUAL AND CHECK CONVERGENCE
[RES]=GETRES( f i l e ID1 ,NM, IT ,AE,AW,AP, FI ,Q) ;
i f RES < 1E−4; r e turn ; end

end
f p r i n t f ( ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED\n ’ )

Subfunction ’TDMA.m’

f unc t i on [ FI ]=TDMA( f i l e ID1 , IC ,Q, FI ,NM, FluxC ,AE,AW,AP)
%#######################################################
% SUBROUTINE TDMA
%#######################################################
% INITIAL VALUES OF VARIABLES BPR( I ) AND V( I ) ASSUMED ZERO!
%
Q2=Q;
BPR=ze ro s (NM) ;V=ze ro s (NM) ;
%
f o r IT=1:1000

%
% . . . . .CALCULATE NEW SOLUTION
f o r I =3:NM

DENVEL e=(FluxC( I )+FluxC( I +1))/2;
DENVEL w=(FluxC( I )+FluxC( I −1))/2;
%
% . . . . .UPDATE NEW SOURCE TERM
i f IC >= 5

[Q( I )]=GETQ(IC , I ,Q2( I ) , FI ,NM,DENVEL e,DENVEL w) ;
end
%

end
%
% . . . . .CALCULATE 1./U P (BPR) AND MODIFIED SOURCE TERM (V)
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f o r I =2:NM
BPR( I )=1./(AP( I )−AW( I )∗AE( I−1)∗BPR( I −1)) ;
V( I )=Q( I )−AW( I )∗V( I−1)∗BPR( I −1);

end
%
% . . . . .CALCULATE VARIABLE VALUES − BACKWARD SUBSTITUTION
f o r I = NM:−1:2

FI ( I )=(V( I )−AE( I )∗FI ( I +1))∗BPR( I ) ;
end
%
i f IC>=5

f o r I =3:NM
[Q( I )]=GETQ(IC , I ,Q2( I ) , FI ,NM,DENVEL e,DENVEL w) ;

end
end
%
% . . . . .CALCULATE RESIDUAL AND CHECK CONVERGENCE
[RES]=GETRES( f i l e ID1 ,NM, IT ,AE,AW,AP, FI ,Q) ;
i f RES < 1E−15; re turn ; end

end
f p r i n t f ( ’ATENTION : THE SOLUTION HAS NOT BEEN CONVERGED\n ’ )
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Appendix C

Sample Output from 1D Code

The input are as follows:

ENTER OUTPUT FILE NAME: out
ENTER: DEN(SITY) , VEL(OCITY) , DIF(FUSION COEFF. )
1 , 0 . 001 , 0 . 00002
ENTER BOUNDARY VALUES: FI0 , FIN
0 ,1
CHOOSE CONVECTION SCHEME: 1 − CDS , 2 − UDS , 3 − UWDS ,
4 − PDS , 5 − LUDS , 6 − QUICK , 7 − DEFERRED CORRECTION ,
8 − TVD
8
ENTER: XMIN, XMAX, EX, N
0 ,1 ,1 ,11
CHOOSE SOLVER: 1 − JACOBI , 2 − GAUSS−SEIDEL , 3 − GSOR ,
4 − TDMA
4

The sample output ’out’ with the input parameters listed above:

1 ITER. , RES = 1.3888880849499747E−04
2 ITER. , RES = 7.7160071121169582E−05
3 ITER. , RES = 3.4292387680957279E−05
4 ITER. , RES = 1.2299677686683212E−05
5 ITER. , RES = 6.8685737229986442E−06
6 ITER. , RES = 6.6658006859191125E−06
7 ITER. , RES = 4.7267518749292399E−06
8 ITER. , RES = 3.2931748302273433E−06
9 ITER. , RES = 1.8985038582913801E−06
10 ITER. , RES = 6.5902121637746811E−07
11 ITER. , RES = 7.8801971068598852E−07
12 ITER. , RES = 6.9422517067578522E−07
13 ITER. , RES = 4.0738930977519601E−07
14 ITER. , RES = 3.9005838266500344E−07
15 ITER. , RES = 4.0289655957415377E−07
16 ITER. , RES = 3.0587577319544280E−07
17 ITER. , RES = 2.0753335680265375E−07
18 ITER. , RES = 9.7810731108509703E−08

PECLET NUMBER: PE = 50.000000
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LOCAL PECLET NUMBER: PE = 5.000000
ERROR NORM = 0.008935
TVD USED FOR CONVECTION
TDMA SOLVER

X FI EXACT FI ERROR

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
1.00000E−01 2.84323E−20 −8.09630E−10 8.09630E−10
2.00000E−01 4.24816E−18 −5.66741E−09 5.66741E−09
3.00000E−01 6.30511E−16 −2.61244E−08 2.61244E−08
4.00000E−01 9.35762E−14 2.75349E−07 −2.75349E−07
5.00000E−01 1.38879E−11 5.16871E−06 −5.16870E−06
6.00000E−01 2.06115E−09 7.49621E−05 −7.49600E−05
7.00000E−01 3.05902E−07 8.61715E−04 −8.61409E−04
8.00000E−01 4.53999E−05 9.06567E−03 −9.02027E−03
9.00000E−01 6.73795E−03 9.50629E−02 −8.83249E−02
1.00000E+00 1.00000E+00 1.00000E+00 0.00000E+00
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