
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lberta

S im ulation an d P ro babilistic Validation

o p C om m unication P rotocols

by

T heodore Ono-Tesfaye

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill­

ment of the requirements for the degree of D octor of Philosophy.

Department of Computing Science

Edmonton, Alberta

Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Sen/ices
385 Wellington Street
Ottawa ON K1A0N4
Canada

Biblioth&que nationals
du Canada

Acquisitions et
services bibliographiques
385, rue Wellington
Ottawa ON K1A0N4
Canada

Your Hit M i i W a n c i

Our A t Moflrt rifimnem

The author has granted a non­
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada de
reproduce, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0- 612- 60010-6

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lb erta

L ibrary Release Form

N am e of A uthor: Theodore Ono-Tesfaye

T itle of Thesis: Simulation and Probabilistic Validation of Communication Proto­
cols

Degree: Doctor of Philosophy

Year th is Degree G ranted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

•TesfiTheodore Ono-Tesfaye
#2005, 8210 111th Street
Edmonton, AB
Canada, T6G2C7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lberta

Faculty of G raduate Studies and Research

The undersigned certify that they have read, and recommend to the Facility of
Graduate Studies and Research for acceptance, a thesis entitled Sim ulation and
P robabilistic V alidation o f Com m unication Protocols submitted by Theodore
Ono-Tesfaye in partial fulfillment of the requirements for the degree of D octor of
Philosophy

Pawel Gbi

Ehab Ebrfallah

Janelle Harms

hosalDii

Ioanis Nixmaidis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Protocol Validation is the process of showing that a (suitably specified) protocol has

certain (suitably specified) properties, for example, that it is free from deadlocks. In

the past, the acceptance of automated tools for the validation of protocols has been

hindered by three main problems: (1) most validation tools are lacking in the level

of realism they support: they are either unable to deal with the timing aspects (e.g.,

delays between events) or the probabilistic aspects (e.g., probability of loss) of pro­

tocols; (2) unlike most performance evaluation tools which are are based on common

programming languages like C or C++, validation tools often employ special-purpose

languages (e.g., P rom ela in Spin, K ro no s); and (3) protocol validation is compu­

tationally difficult due to the state space explosion problem—the fact that the state

space of a protocol is exponential in the number of variables and processes. Validation

algorithms published in the literature often have unrealistic resource requirements.

In this thesis, we propose a validation tool that addresses these problems. Our

tool is based on the well-known discrete event simulation (DES) paradigm and check-

s whether a property expressed in a simple linear-time logic (event logic, (EL)) is

satisfied by a protocol. The tool is based on DES and thus supports time and prob­

abilities (problem 1 above). Problem (2) is addressed by implementing the tool as a

C ++ library. To better deal with the state explosion problem, we propose using state

transition probabilities as a heuristic to guide the state space search, and present some

memory-efficient algorithms for the checking of EL formulas. An added advantage of

our approach is that the same protocol specification can be used for both performance

evaluation by simulation and for validation. A number of experiments described in

the thesis demonstrate the feasibility of our validation tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

2 Survey o f Previous Work 6

2.1 Overview.. 6

2.2 Non-Probabilistic Validation... 7

2.2.1 Validation of Untimed M odels... 7

2.2.2 Validation of Timed M odels.. 19

2.3 Probabilistic Validation.. 25

2.3.1 Specification of M odels... 25

2.3.2 Specification of P roperties... 29

2.3.3 Algorithms and Tools.. 30

2.4 S u m m ary ... 31

3 A Probabilistic P rotocol Validation M odel 32

3.1 Overview... 32

3.2 Low-level Model: Timed Probabilistic Transition S y s te m 33

3.2.1 Timed Probabilistic Transition S y s te m 33

3.2.2 Probabilities... 34

3.2.3 Event L o g ic ... 35

3.3 High-Level Model: Probabilistic P ro to c o ls ... 37

3.3.1 Events and Processes.. 38

3.3.2 Probabilistic P ro tocols... 39

3.3.3 Model R estrictions... 41

3.4 O bservers... 43

3.5 Comparison With Other M odels... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 S u m m a ry .. 48

4 Algorithm s 49

4.1 Overview... 49

4.2 State Space Search Algorithm without Model-Checking..................... 49

4.2.1 Unlimited S e a rc h .. 50

4.2.2 Truncated S earch .. 51

4.3 State Space Search with Model-checking of Event Logic Formulas . . 52

4.3.1 Inner Depth-First Search.. 53

4.3.2 Outer Depth-First Search ... 55

4.3.3 Exam ple.. 57

4.3.4 Proof of Model-Checking Algorithm.. 59

4.3.5 Implementation... 64

4.3.6 Optimized Handling of C ycles... 65

4.3.7 Combining Model-Checking with Truncated Searches............. 66

4.4 Approximate Algorithm: Time In te rv a ls .. 69

4.5 S u m m a ry .. 76

5 The C -H - Library 78
5.1 Overview... 78

5.2 User C lasses... 79

5.2.1 val_time ... 79

5.2.2 v a l .e v e n t ... 80

5.2.3 Kernel Classes... 81

5.2.4 val.process ... 83

5.2.5 Random Variable S u p p o r t... 85

5.3 User Functions ... 86

5.3.1 The roo t F u n c tio n ... 86

5.3.2 The repo rt Function.. 86

5.4 The EL Formula Compiler e l 2 c c .. 86

5.5 Running the M odel... 87

5.6 S u m m a ry .. 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Exam ples 90

6.1 Overview.. 90

6.2 Multiprocessor S y s tem .. 91

6.3 Broadcast Channel Protocols ... 97

6.3.1 Collision Avoidance Protocol... 97

6.3.2 CSMA/CD .. 100

6.3.3 GARP Multicast Registration Protocol (GMRP) 105

6.4 Steam Boiler Control Program ... 110

6.4.1 Description of M o d e l... 110

6.4.2 Experimental R esults... 118

6.4.3 Comparison with other Tools .. 120

6.5 Queueing S y s tem ... 121

6.6 Multimedia System .. 124

6.7 Alternating Bit P ro toco l... 127

6.8 Sliding Window Protocol... 129

6.9 S u m m ary ... 135

7 Conclusion and Future Research 137

Bibliography 139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Our lives are increasingly dependent on ail kinds of hardware and software systems,

and there is great interest in ensuring that these systems operate flawlessly. Validation

is the process of showing that a (suitably specified) system has certain (suitably

specified) properties, for example, that it is free from deadlocks. In this thesis, we

also use the terms verification and model-checking with the same meaning. Our

primary application domain is the validation of communication protocols.

Due to the distributed nature of communication protocols and their resulting com­

plexity, the use of automated tools for the task of validation is highly desirable. In

order to use automated tools, it is necessary for protocol designers to suitably model

their protocol in a form that is accessible to a validation tool. A quick survey of

popular communication conferences (INFOCOM, GLOBECOM) indicates that mod­

elling is already widely performed — but not for the purpose of validation: protocols

are routinely modeled to obtain performance measures. The tool of choice for perfor­

mance evaluation is discrete event simulation (DES).

In contrast, and despite the existence of tools and some recent progress [37, 66,

55, 85], the use of automated tools for the validation of protocols is much less com­

mon. Instead of using automated tools, protocol designers frequently validate their

protocols using methods such as rigorous testing, inspection, and peer review. While

these methods have yielded remarkably stable and robust protocols in the past (such

as Ethernet and IP), they are time-consuming, expensive and require a great deal

of expertise on the part of the protocol designer. The use of automated validation

tools for protocol validation software development promises to be more economical

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and efficient.

There are several reasons why the use of validation tools has lagged behind the

use of performance evaluation tools like DES:

• Most validation tools support a limited level of realism. All validation tools

can validate properties related to qualitative time, i.e., properties related to the

ordering of events. To realistically capture the properties of a protocol, however,

it is often desirable to be able to specify its timing aspects using quantitative

time, i.e., references to time that include the delays between events expressed in

some measuring unit. For example it is not good enough for the alarm system

in a nuclear power plant to start “eventually” — one would rather expect it to

function within an absolute time period of x seconds following a malfunction.

• In addition to time, it is often useful to model the probabilistic aspects of a pro­

tocol. For example, one may want to specify the probability of a packet loss by

a lower-layer protocol or the failure probability of a hardware component. Note

that the most widely known validation tool, S p in [54, 55], supports qualitative

time, but neither quantitative time nor probabilities.

• Unlike most DES tools (O p n e t , S m urph [43]) that are based on common

programming languages, like C or C++, validation tools often employ special-

purpose languages (e.g., P rom ela in Sp in , K ro no s [37]). The use of these

languages is rooted in the desire to achieve a level of mathematical precision

that cannot be easily represented by using C or C++.

• Protocol validation is computationally difficult due to the state space explosion

problem—the fact that the state space of a protocol is exponential in the number

of variables and processes. Validation algorithms published in the literature

often have unrealistic resource requirements. For example, the probabilistic

validation algorithm proposed in [16] requires the manipulation of a Markov

chain representing the entire state space of the protocol.

One of the contributions of this thesis is to address these problems by extending the

DES paradigm to perform the functions of a protocol validator. This approach has

several advantages: protocols can be modeled realistically, including all timing and

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRODUCE
IPUTtUl.l

GET
(EMPTYtOK.I

PUT
(FULU01M

CONSUME
(CETHll.l'

ACT
{ACT[10]JRODUCE15]J.OJ
(ACTI10],CONSUME(5)) ,0.5

Figure 1.1: Buffer Process (left) and Producer/Consumer Process (right)

probabilistic aspects; a single model can be used both for the performance evaluation

via simulation and the validation of protocols.

Of course, discrete event simulators have been used for validation (debugging) of

protocols in the past, but this has generally happened in an ad-hoc fashion by running

a large number of simulations with different random seeds, initial states, etc. Our

approach is more systematic and combines the DES paradigm with methods already

used by validation tools. The task is simplified by the inherent similarity between

DES and protocol validation: in both cases, it is necessary to first specify the protocol

(typically as a set of processes) and then execute it in some fashion. Throughout our

work, the emphasis is on practical utility.

Our high-level protocol model is that of finite state machines (processes) that

exchange messages. Figure 1.1 shows a simple protocol consisting of a data buffer

process and a producer/consumer process. The semantics of the protocol is given in

terms of our low-level model which is a transition system whose transitions are labeled

with times, probabilities and event types. Figure 1.2 shows the low-level model of the

protocol in 1.1.

We use state transition probabilities for two purposes: first, as a heuristic to

guide the state space search to more probable regions of the state space. This is used

in those cases where, due to resource limitations, an exhaustive state space search

is not feasible. The second application of transition probabilities is to express and

verify properties such as “the probability of observing a buffer overflow within the

first 1000 time units is 0.01”. An algorithm that calculates the probability that such

properties will be satisfied with respect to a model is a contribution of this thesis.

In our model, transition probabilities need not be given explicitly, but can also be

given implicitly. For example, in figure 1.3, from the system state g (at time 0), there

are two pending events (transitions): event A must take place between £i = 0.5 and

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: TPTS for Data Buffer Protocol

(p a ys

I -
1.25

B

Figure 1.3: Overlapping Timed Events (left) and Global States

*2 = 1.5, and event B must take place between t3 = 1.25 and U = 2.5. There are two

A and B are equally likely to occur at any point during their respective intervals, then

the relative probabilities of the transition sequences “A then B” and “B then A” are

implicitly given by the areas in figure 1.4.

The thesis is organized as follows. Chapter 2 is a survey of previous work in the

area. Chapter 3 describes our protocol specification method and a logic for specifying

properties of protocols. Our verification algorithms are presented in chapter 4. The

results of this chapter are the foundations for our prototype validation tool which is

described in chapter 5. Examples and experimental results from a variety of applica­

tions are shown in chapter 6. Finally, our conclusions and some directions for future

research are in chapter 7.

possible interleavings of the events A and B: “A then B” or “B then A”. Assuming that

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KB)

KA)

Figure 1.4: Relative Transition Sequence Probabilities

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Survey of Previous Work

2.1 Overview

This chapter is a survey of automatic validation methods. The application domain we

will focus on is the validation of communication protocols. We classify the methods in

three types: the validation of untimed, timed and probabilistic models. Probabilistic

systems, in turn, can be subdivided into timed and untimed models.

Many interesting properties of systems can be expressed based solely on the or­

dering of events, without using quantitative time — this is the domain of untimed

validation methods, which are reviewed in section 2.2.1. Other applications, like the

validation of real-time and multimedia systems, require that properties related to ab­

solute time (e.g., “the nuclear reactor will shut down within 10 minutes of event A”)

be checked, and there has therefore been a significant amount of research in the de­

velopment of timed validation methods. These methods are reviewed in section 2.2.2.

The motivation for probabilistic validation methods is based on two observations:

• Due to the state space explosion problem, a generally useful validation method

remains elusive. Indeed, a validation algorithm is considered to be “efficient”

if it is polynomial in the size of the state space [16], so it is unlikely that such

a solution will ever be found. Therefore, it is usually sufficient to show that a

protocol’s failure probability is smaller that that of the underlying hardware; the

general idea is to only analyze states whose probability of occurring is greater

than some very small threshold, e.g. 10-12.

• Most real-life systems exhibit probabilistic behaviours (e.g., a communication

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channel may introduce errors) which need to be modeled.

Approaches to probabilistic validation are surveyed in section 2.3.

All validation methods have to address three fundamental issues: (i) how to specify

the system, (ii) how to specify its desired properties, and (iii) how to check that the

system satisfies these properties. For this reason, the sections in this chapter have

three parts dealing with each issue in turn.

2.2 Non-Probabilistic Validation

2.2.1 Validation of Untimed Models

In this section, we survey validation methods that are restricted to untimed systems,

i.e., systems that do not include an explicit notion of time. Thus, they can prove

properties related to the temporal ordering of events (e.g., “if A happens before B,

the system will deadlock”), but not properties related to the absolute delay between

events. Such untimed validation methods are now widely used in hardware applica­

tions like the design of integrated circuits. Excellent overviews of untimed validation

methods are [54], which focuses on communication protocols, and [60], which focuses

on hardware applications.

In the first two parts of this section, we examine methodologies for specifying such

untimed systems and their properties, respectively. The last part of this section is

an overview of untimed validation algorithms and tools that check properties against

system specifications.

Specification o f System s

Two popular ways of specifying untimed systems of concurrent processes are finite

state machines and process algebras.

Finite State Machines. Early approaches to system specification with finite state

machines (FSMs) or automata are described by Bochmann and Sunshine in [21]. A

finite state machine consists of a set of states S and a set T C S x S of transitions

between states. Often, the transitions are labeled with one or more symbols indicating

the event(s) that either cause the machine to change from one state to another or

result from such a change. We will frequently refer to FSMs as labeled transition

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: Two States of a simple Petri Net

systems (LTS). Specifying nontrivial systems as single finite state machines is rather

inconvenient, and therefore, many extensions and variations of the basic FSM model

are used for validation purposes: Extended Finite State Machines (EFSMs) allow the

declaration and manipulation of state variables. Using Communicating Finite State

Machines (CFSMs) [23], a protocol can be modeled as a system of communicating

sub-processes, thereby allowing modular design.

A different kind of state machine are Petri nets (see, e.g., [68] for an overview),

usually depicted as a graph. In the most basic type of Petri net ([68] describes some

variants), the nodes of the net are partitioned into two subsets - places and transitions.

Edges can only lead from places to transitions or vice versa. A place can contain zero

or more tokens; a transition is enabled if all places with edges leading to it (incoming

places) have at least one token. An enabled transition can fire, which results in one

token being removed from all incoming places, and one token being added to all places

that the transition leads to (its output places). A state of the Petri net is defined by

the number of tokens in each place and is also called a marking. Figure 2.1 shows a

simple Petri net with 4 places (shown as circles) and 3 transitions (shown as lines).

The initial marking (tokens are shown as black dots) is on the left. Transition a can

fire in this state, leading to the marking on the right, in which transitions b and c

can both fire.

Petri nets are popular because they can often model systems more compactly and

intuitively than simpler state transition systems like finite state machines. However,

the semantics of a Petri net is given in terms of a simple labeled transition system,

i.e., a directed graph whose nodes are the states of the Petri net and whose edges are

its transitions. From each state, there is an LTS transition to each state reachable by

the firing of a transition in the Petri net. The LTS obtained in this fashion is often

called the reachability graph of a Petri net. Figure 2.2 shows the reachability graph

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2: Reachability Graph of the Petri Net in Fig. 2.1

of the Petri net in figure 2.1. Note that in general, the reachability graph of a Petri

net is not necessarily finite: for example, there can be places in which the number of

tokens increases without ever decreasing.

Finite state machines can also be specified by textual means, of course. Several

languages for describing systems of CFSMs have been proposed, including P rom ela

(used in the tool Sp in). The Pascal-based language Estelle and the graphical lan­

guage SDL are standardized formal description techniques (FDTs). They are primar­

ily designed for the unambiguous definition of communication protocols in standard

documents, and not for automated validation. However, both Estelle and SDL specifi­

cations can be readily converted into FSM-type representations [66] that are accessible

to FSM validation methods.

Process Algebras. Process algebras are special-purpose languages for describing

and reasoning about communicating processes. Examples of process algebras are Mil­

ner’s Calculus of Communicating Systems (CCS) [67] and Hoare’s Communicating

Sequential Processes (CSP) [53]. A fundamental introduction to process algebras in

general is in [48]. LOTOS [22] is a standardized protocol description language based

on CCS and CSP. [69] describes a general for a method for converting a LOTOS speci­

fication into an FSM-type representation. We describe some of the features of process

algebras using a CSP-like process algebra as an example. Like any language, process

algebras have two components, syntax and semantics. A simple process specified in

CSP syntax is is

A = a .A

The semantics of this specification is process A takes part in event a and then behaves

like process A. In other words, all process A does is repeatedly engage in event a. A

slightly more complicated specification is

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3: Derivation Graph of a CCS process

A = a . c . A + b . c . A

This process takes part in event a or b, then in event c, and starts all over again.

Communication in CSP is asynchronous, which means that a process can engage in an

event a even if no other process is simultaneously prepared to engage in the event a. If

several processes are prepared to engage in the same event, they do so simultaneously.

Formally, the semantics of CSP processes is given in terms of axioms and rules that

associate a labeled transition system (LTS) with every CSP expression. The states

of this LTS are CSP expressions, and the transitions are labeled with CSP events. In

the example specification above, the expression a.c.A + b.c.A can change to c.A if

the process engages in event a or b. Thus, there are transitions A A c . A and A A

c . A in the LTS. The LTS obtained in this fashion is called the derivation graph of the

process. The derivation graph for the specification above is in figure 2.3.

Specification o f Properties

Once a system has been specified, it is necessary to somehow express its desired prop­

erties. We review three methods of specifying properties: automata-based methods,

algebraic methods and temporal logic.

Finite State Machines. Automata are finite-state machines that accept or reject

words over some alphabet, depending on whether or not the machine is in one of a

set of designated accepting states after the word has been read. Such an automaton

specifies a set of accepted words which is called the language of the automaton, and

since each word can be viewed as a finite computation path, the automaton specifies

a set of accepted finite computation paths.

In general, however, the computation paths of a concurrent system are infinite,

and we therefore need automata that can specify sets of desired infinite paths. Buchi

automata are such automata that accept words of infinite length. Like standard

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4: Buchi Automaton

automata, a Buchi automaton has a set of designated accepting states. The difference

between a Buchi automaton and a standard automaton is in the way that accepted

words are defined: the Buchi automaton accepts an infinite word if accepting states

are visited infinitely often while reading the infinite path. Figure 2.4 shows a Buchi

automaton over the alphabet {a, b } that accepts exactly those infinite words have

the form abababababab In the figure, state 0 is both the start state and the

accepting state.

Process Algebras. In a process algebra like CSP, actions among the processes that

make up a system can be hidden to the outside world — in other words, they can be

internalized. As an example, consider the CSP process

A = a.c.A + b.c.A

described above. It can be composed with another CSP process

C = c.C

to yield a system D by writing D = A|{c}|C which forces process A and C so syn­

chronize on action c. By further writing D = A|{c}|C\c, we specify that action c

is hidden and thus not visible to an outside observer. D behaves like the process

specified by

D = a.D + b.D

i.e., at any time, D can engage in events a or b. Using these concepts of internal

(hidden) and external behaviours, it is possible to define a system of communicating

processes at different levels of abstraction. The specification ofD as a.D + b.D is

more abstract than D = AI {c} I C\c because it abstracts away from the internal action.

The verification problem,then, is equivalent to checking if the more detailed process

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: Simple Labelled Transition System (LTS)

specification (the implementation) has the same external behaviour as the simpler

process specification.

Temporal Logics. Non-temporal prepositional logic can be used to express prop­

erties of a system that are true or false at a given moment in time, e.g., “the system’s

buffers are full” . Temporal logics, on the other hand, can express properties relating

to a system’s evolution over time, e.g., “if the system is in state A, then eventually the

system’s buffers will be full”. Temporal logics are interpreted in the context of a mod­

el or structure that describes the system’s evolution over time. The labeled transition

systems that define the semantics of both process algebras and FSM-representations

can serve as structures over which temporal logic formulas are interpreted. For in­

stance, the LTS of figure 2.5 can be seen to have the properties “event a is always

followed by event b”. There are several flavours of temporal logic, the most prominent

of which are linear-time logics and branching-time logics [9].

Branching time logics view the future as a tree of possible computation paths. At

each point in time, therefore, one can make statements such as “it is possible that

proposition p is true at some time in the future”. Such a statement is true in a state

s if p is true in at least one state on at least one path starting at s. A well-known

branching time logic is computation tree logic (CTL) [29]. The syntax of a CTL

formula 0 is

0 := P I 0i A 02 I ■’01 I 3 O 0i I 3O0i | 30i Ufa

where p is an atomic proposition. The formula 3 0 0 is true in a state s if there

is a direct successor state of s in which formula 0 is true. 3D0 is true in s if there

is path starting at s on which 0 is always true. 30x1702 is true in a state s if there

is a path starting at s on which 0i remains continually true until 02 becomes true.

Widely used abbreviations are VO0 := ->3D->0 (0 is eventually true on all paths) and

3 0 0 := 3(True{70) (there is a path on which 0 is eventually true).

Linear time logics (LTL) view the future as a single computation path. At each

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point in time, one can make statements like “eventually, proposition p will always be

true” . Such a statement is true in state s and an (infinite) path r if there is some

state s' following s on r, such that p is true in s' and all other states that follow s' on

r . Note that in contrast to CTL propositions, a proposition in LTL is not meaningful

in a single state — it is only meaningful in the context of a particular path. The

syntax of an LTL formula <f> is (here, we use the LTL flavour used in S p in)

:= V I <f>i A <fo | ->01 | O fa | 13(f>i | fa

where p is again an atomic proposition. The formula O<f> is true in a state s on a path

r if there is at least one state after s on r in which <f> is true (<f> will eventually be true).

The formula D(j> is true in a state s on a path r if 0 is true in all states following s on r.

A path satisfies a formula / if every state on the path satisfies / , and an LTL formula

can be interpreted as the set of paths that satisfy it. An interesting and very useful

property of LTL is that every LTL formula / can be converted into an equivalent

Buchi automaton such that the Buchi automaton accepts exactly those paths that

satisfy / [31]. This equivalence between Buchi automata and LTL formulas is used

in the tool S p in .

Algorithm s and Tools

Algebraic Methods. Depending on the interpretation of a process-algebraic specifi­

cation (its semantics), it is possible to define some notion of equivalence. One such

equivalence is used by CCS and is called bisimulation. Roughly speaking, two sys­

tems are deemed equivalent if their black box representations (i.e., the representation

where only external events are visible but not the events among the processes that

make up each system) are indistinguishable by experiment. Based on this notion of

equivalence, one can derive equational laws like

P + Q = Q + P

One application of these laws is to check for equivalence of an “implementation” with

its specification (the difference between implementation and specification is that an

implementation is more detailed). Algebraic transformation rules can also be used to

prove process properties expressed in temporal logic. Theorem proving systems like

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HOL [45] and PVS [35] can be used to partially automate this process, see [71] for an

implementation of CCS in HOL. A thorough survey of automated theorem proving is

beyond the scope of this chapter, however, and the interested reader is referred to [45]

and [35].
Enumerative Model-Checking. An enumerative model-checking algorithm (fig­

ure 2.6) was presented by Clarke et al. in 1983 [29, 30]. The algorithm checks whether

a system specified as a finite-state machine (the “structure”) satisfies a property ex­

pressed as a CTL formula / . The method works as follows. Each state s is labeled

with the set L(s) of subformulas of 0 that it satisfies: first with atomic formulas

and then with successively larger subformulas. For instance, a state s satisfies the

subformula 0 1 A 02 if both <f>\ and are already in L(s). Checking temporal “until” -

formulas like 30i£/02 is more complex: from states in which is true, a backwards

depth-first search of the graph along paths in which 02 is true can be used to find

states in which 30iUfa is true. Checking a formula like 3D0i involves detecting cy­

cles in the model with the property that 0t is true in every state of the cycle. This

enumerative algorithm has the distinction of being one of the first model-checking

algorithm s. Unfortunately, it is not practical for verifying non-trivial systems be­

cause the complete state transition graph of the system needs to be constructed and

stored. A slightly modified version of the algorithm, however, has gained widespread

acceptance in the symbolic model-checkers described below.

Automata-theoretic Methods (On-the-fly Model Checking). When both the system

under test and its desired properties are expressed as automata — yielding languages

Ls and Lp, respectively — the verification problem is equivalent to checking whether

the language Ls n L°P is empty or not. The tool S p in [54, 55] uses the algorithms

from [82, 31] to check whether a system specified in the language P rom ela satisfies

a property expressed in LTL. The P rom ela specification represents a finite-state

machine, and the LTL property is negated and converted into a Buchi automaton.

The synchronous product of these two automata is again a Buchi automaton. Because

the LTL property is negated, the model checking problem is equivalent to checking

whether the language accepted by the composite automaton is empty (in which case

the negated property is false and the original property is true) or not (in which case

the negated property is true and the original property has been shown to be false).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / Algorithm enumerative()
/ / Labels the states of the model with the subfonnulas of / that they
/ / satisfy.
/ / Assumes that F S is a stack containing the subformulas of /
/ / such that / is at the bottom of the stack, atomic propositions
/ / are at the top, and the subformulas 0i, 0 2 , . . . that make
/ / up a subformula 0 are always above 0 in the stack.
enumerative() {

while stack not empty
pop 0 from F S
i f 0 =

label all states that are not labeled with 0i
e lse i f 0 = 0i A 02

label all states that are labeled with 0i and 02

e lse i f 0 = 3 O 0i
label all states that are predecessors of states
labeled with 0i

e lse i f 0 = 3O0i
[see main text]

e lse i f 0 = 30i i/02
[see main text]

}

Figure 2.6: Enumerative Model-Checking for CTL (Skeleton)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sp in checks the emptiness of the automaton using a nested depth-first search

algorithm of the state graph and avoids constructing the entire state graph in memory.

A large hash table of bits is used to keep track o f states already visited: whenever

a state is encountered, the state is converted into a hash value which serves as an

index into the hash table, and the bit at that index is set to 1. Recent extensions of

S pin include a PROMELA-to-C compiler [18] and number of optimizations like hash

compaction [78, 79] and partial-order reduction techniques.

Symbolic Model Checking. Figure 2.7 displays an algorithm similar to the enu-

merative algorithm above. Instead of associating sets of subformulas with states, it

associates sets of states with subformulas: starting from atomic propositions, each

subformula 0 of / is labeled with the set of states L(0) that satisfy it. For instance,

a formula <f>\ A 02 is labeled with those states that are in both L(0i) and L(02), i.e.,

L (0i A f a) = L (0 i) fl 1(0*).

Labels for temporal formulas like 300 can be obtained by characterizing them

as fixpoints of simpler formulas. To obtain the set of states L(3O0) that satisfy

300, we start with the empty set. Then the algorithm iterates as follows: at each

iteration, a new set L(3O0) is obtained by including all states already in the set,

and by adding all states from which a state in L(3O0) can be reached in one step.

This continues until the set stops growing (since our model is finite, and the set is

monotonically increasing, this must happen), at which point all states that satisfy

300 have been found. In the language of fixpoint theory, 3 0 0 is the least fixpoint of

the functional Ay.(p V 3 O y)- Similar fixpoint characterizations can be obtained for

the CTL formulas 30iC/02 and 3D0.

Compared to the enumerative model-checking algorithm, the fundamental differ­

ence of this algorithm is that it manipulates sets of states rather than individual

states — thus, the computational cost of having to visit every state at least once can

be potentially avoided. The idea behind McMillan’s symbolic model checking [25, 65]

algorithm is to exploit this by representing state sets and transition relations symbol­

ically using binary decision diagrams (BDDs) [24].

A BDD is a way of representing a subset S of the set { 0 ,1 ,..., 2k — 1} as a directed

graph with two kinds of nodes: internal nodes and end nodes. One special node is

designated as the root of the graph. End nodes and edges are labeled with 0 or 1.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / Algorithm symbolic()
/ / Labels each subformula of / with the set of states of the model
/ / that satisfies it.
/ / Assumes that F S is a stack containing the subformulas of /
11 such that / is at the bottom of the stack, atomic propositions
/ / are at the top, and the subformulas fa, fa , . . . that make
/ / up a subformula (f> are always above <f> in the stack.
enumerativeQ {

while stack not empty
pop 0 from F S
i f 0 = ->fa

label <(> with S \ L(<f>)
e lse i f <j> = fa A fa

label (f> with L(fa) fl L(fa)
e lse i f 0 = 3 O

label <f> with
{states from whichL(0)can be reached in one step}

e lse i f 0 = 3O0i
[see main text]

e lse i f <f> = 3faUfa
[see main text]

}

Figure 2.7: Symbolic Model-Checking for CTL (Skeleton)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.8: Binary Decision Diagram

Figure 2.8 shows an example BDD. To see whether an integer n 6 { 0 ,1 ,..., 2* — 1}

is in the set S, n is represented as a binary number with digits dicfe. . . d*. Starting

at the root of the BDD, the graph is traversed with the binary digits of n indicating

the path in the graph, until an end node is reached, n is n 5 exactly if the end node

is labeled 1. Using k = 3 and the BDD of figure 2.8, we have that 7 6 S since the

path given by the binary representation of 7 — 111 —leads to an end node labeled

1, but 4 & S because 100 leads to an end node labeled 0 .

There are efficient algorithms for computing various operations on BDDs (union,

intersection, negation). If a model has k atomic propositions p i , . . . ,p*, the states of

a model can be identified with integers (0 , 1 , . . . , 2k — 1} by setting the binary digit

di to 1 if a state satisfies proposition p,-. Moreover, the transition relation of a model

can also be written as a BDD, and the model-checking algorithm can be represented

in terms of manipulations of BDDs. The first tool utilize BDDs for model-checking

was McMillan’s SMV [25, 65]; BDDs and their variants have since then been used in

numerous other model-checking tools.

A key problem with BDD’s is that not all state sets admit an efficient BDD rep­

resentation — in fact, it is easy to construct sets whose BDD representation is as

large as the sets themselves — and finding an efficient BDD in those cases where one

exists is difficult. McMillan gives an algorithm for obtaining a BDD from a given

subset of {p i,. . . ,p<:}. The size of the resulting BDD representation of a set of states

depends on the ordering of the propositions Pi, • • - ,pjt and a ‘bad’ ordering can be

exponentially worse than a ‘good’ ordering. See [74] for a discussion of BDD per­

formance problems. Despite these drawbacks, BDD-based symbolic model checking

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has achieved practical successes in verification, especially for hardware systems with

a regular structure (integrated circuits). Recent developments in the field include the

application of partial-order reduction techniques to symbolic model-checking [4] and

the combination of symbolic model-checking with simulation [85].

2.2.2 Validation of Timed Models

Although the success of untimed validation systems like S pin and SMV shows that

many protocol properties can be validated without the notion of time, properties

related to absolute time are either impossible or very difficult to validate without

explicitly considering time. Some examples are:

• Real-time applications. Real-time applications have to be shown to respond to

external events within a specified maximum delay.

• Medium Access Control (MAC) protocols. Many MAC protocols are designed in

such a way that they only function as long as the absolute values of some delay

parameters are within certain limits. CSMA/CD-type protocols, for instance,

do not work properly if the duration of a packet transmission is less than the

maximum propagation delay in the shared medium.

• Application-layer protocols. Multimedia applications like video conferencing

require that corresponding voice and video packets arrive within a maximum

delay tolerance [75,10]. Even simple applications like a mouse click/double-click

recognizer [77] can not be validated without expressing quantitative time.

In some cases, including time can be a natural way of reducing the state space for

reachability analysis. For instance, if 2 events, a and b, are executable on 2 processes,

P I and P2, an untimed validator has to execute both possible interleavings of a and

b. By annotating the events with time values — say time of a is 4, and time of b is 5

— it is possible to give the validator additional information which makes one of the

interleavings redundant.

In this section, we survey verification methods for timed systems. These methods

are usually extensions to untimed validation methods, and the organization of the

section is parallel to that of the previous section on untimed systems: we first discuss

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ways of specifying timed models and then go on to describe ways of specifying prop­

erties of such timed models. Timed verification tools and algorithms are described in

the last part of the section.

Specification of Models

Finite State Machines. Any LTS can of course be interpreted as a timed system by

defining the number of steps between two states as the time that elapses between the

states. Here, we will focus on methods of modelling time more conveniently. One such

simple, yet useful approach is to attach additional labels to the transitions of an LTS

indicating the amount of time that elapses between the states. We will call these LTS

time-labeled LTS. The LTS derived from timed Petri nets and timed process algebras

(see below) are such LTS. When modeled by such an LTS, the delay between two

states can only have one of a finite number of possible values, i.e., the delay values

are discrete.

More sophisticated models like Alur’s timed graphs [5, 8] are needed to model

continuous time. A timed graph is the depiction of a timed transition system, which

has a number of clocks that can be reset and queried. An edge of the transition

system can have timing constraints associated with it; these constraints indicate the

clock values that are required in order for the transition to be enabled. The edges can

also be associated with the set of clocks that are reset when the transition is taken.

As in the case of untimed systems, there are variants of the basic timed automaton

that allow more convenient modelling of protocols through the use of extensions and

modularity. Cacciari and Rafiq [26] propose the notion of temporal communicating

machines (TCM) which are essentially a synthesis of the CFSM model with timed

automata. Communication channel delays in the TCM are specified as time intervals

rather than fixed (deterministic) delays. The model allows the definition of a protocol

as a a temporal communicating system (TCS) consisting of a system of TCMs. Since

every infinitesimal increase in time takes the TCS to a new global state, the graph

of reachable states is locally infinite. Cacciari and Rafiq show, however, that by

grouping global states that differ only in the timer values but are otherwise identical

into regions, the graph becomes locally finite, and a reachability analysis can be

performed.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lin and Liu describe another extension of the CFSM with time [62]. Like in

the TCM, delays in their model — the integrated time transmission grammar model

(ITTG) — are expressed as time intervals. In [56], Huang and Lee use a variant of

Lin and Liu’s model (called timed communicating finite state machine) for an Estelle-

based timed protocol verification system. A combination of Lin and Liu’s model with

the probabilistic approach of [64] is proposed in [57].

Timed Petri Nets are Petri nets that have delays associated with each transition.

As in a basic untimed Petri net, a transition in such a timed Petri net is enabled if all

places with edges leading to it have at least one token. The transition may then fire,

resulting in tokens being removed from the incoming places. However, new tokens

are not added to the output places of the transition until the delay associated with

the transitions has elapsed. The semantics of timed Petri nets are given in terms of

an LTS whose transitions are labeled with delays.

The timed Petri net model we described here is only one way of extending the

Petri net formalism with time; numerous others have been proposed in the literature.

For instance, one could associate delays with places instead of with transitions [68],

or delays in the model can be stochastic instead of deterministic — stochastic delays

lead us to the stochastic Petri nets which are described in the next section.

Timed Process Algebras. Process algebras can be extended to allow special actions

that model the passing of time [72]. For example, the passing of time could be

indicated by the construct d.k (where d is taken from some time domain like the

nonnegative integers or real numbers), specifying a process that lets time d pass and

then behaves like process A. As with untimed process algebras, the semantics of timed

process algebras are given by a set of rules and axioms that associate an LTS with

each expression of the timed process algebra. Some labels of this LTS are therefore

values indicating the passing of time. As an example, consider the processes

A = 3 .a.A

and

B = b.3.B

Their composition is C = A II B. An important rule that most timed process algebras

have is that if the system consists of more than one process, then time can only pass

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b
A’lIB’A’lIB

AIIB’

Figure 2.9: Derivation Graph of a Timed PA Term

if all processes agree to do so. This rule is necessary because it is consistent with our

intuitive notion of global time. Using this rule, and by rewriting the processes as

A = 3 . A’ ; A' = a.A

and

B = b.B’ ; B’ = 3.B

the LTS for process C can be constructed as in figure 2.9. The first action of the joint

process is b, which is followed by a delay of 3 time units. Then, there are two possible

sequences of actions: a ,b and b ,a . Each of these sequences is followed by a delay of

3 time units, and so on.

Specification of Properties

Timed Automata. Alur’s timed automata [5, 8 , 3] are timed graphs with accepting

states. A timed automaton operates on timed words of infinite length, i.e., infinite

sequences of time-stamped symbols. A timed word is accepted if it causes the au­

tomaton to visit accepting states infinitely often. An example (taken from [8]) of a

timed automaton is in figure 2.10. The automaton has one clock x and accepts all

infinite words ababab. . . provided the delay between a symbol a and the following b

is any real value less than 2 .

The theory of timed automata is analogous to that of conventional (untimed) au­

tomata that operate on infinite words: just as the language of an untimed automaton

is a set of words, the language of a timed automaton is a set of timed words. Thus,

the timed automaton can be interpreted to be specifying the acceptable computation

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.10: Simple Timed Automaton

paths and delays of a system. Since timed automata describe sets of timed compu­

tation paths, both the desired properties and implementation of a real-time system

can be given in terms of timed automata. The verification problem is then reduced

to that of determining whether two automata accept the same language, an approach

that is described in [8]. In [7], the properties of a probabilistic system (defined as a

Markov process) are given as a timed automaton.

Timed Process Algebras. The use of timed process algebras to specify system

properties is analogous to the untimed case: because systems can be specified at

different levels of abstraction (through the mechanisms of composition and hiding),

both the properties of a system and its implementation can be specified in a process

algebra. Algebraic transformations can then be employed to determine whether the

two are equivalent or not.

Temporal Logics. Untimed temporal logics are also called qualitative temporal log­

ics because they express properties related to the temporal ordering of events, but can

not be used to specify quantitative time. To make quantitative temporal statements

about structures that include some form of quantitative timing information about a

system’s evolution — the time-labeled LTS described above are such structures —

we must use quantitative temporal logics. Quantitative temporal logics (also called

real-time logics) can be obtained from untimed temporal logics by annotating tem­

poral operators with time bounds. Both linear time and branching time logics have

been extended in this fashion [9]. For example, the untimed until operator U can be

modified to U -1, so that the qualitative CTL formula

i fa U ^ fa

means that there is at least one computation path on which fa is true and will remain

true until fa becomes true within t time units. The satisfaction relation for real-time

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logics is defined analogously to their untimed counterparts. A single state in a time-

labeled LTS can satisfy a timed CTL formula or not; the entire LTS satisfies the

formula if every state satisfies it. In contrast, the satisfaction of timed LTL formulas

in a state is defined in the context of a particular timed path.

Unlike the untimed case, where every LTL formula can be converted into an equiv­

alent Biichi automaton, we know of no similar equivalence for timed LTL formulas.

Algorithms and Tools

In [5], Alur et al. describe an algorithm for checking whether a system specified as

a timed graph satisfies a timed CTL formula. The difficulty lies in the fact that the

state space of a timed graph is infinite — a state consists of the location in the graph

and the clock valuations, which have real values. The authors show how to construct

a finite quotient from this infinite graph by grouping states into regions such that the

states of a region share the integral parts of the clock valuations and the ordering

of the fractional parts. The integral parts are needed to decide which transition

constraints are satisfied; the ordering of the fractional parts is needed to decide which

clock will change its integral value first. Once the finite graph has been constructed,

the model-checking algorithm is similar to the enumerative model-checking algorithm

for untimed systems (figure 2.6). A symbolic algorithm based on the same finite

quotient idea is in described in [49] and implemented by the tool K ronos [36, 37].

VERUS [34] is a language for describing communicating processes with timing

constraints such as delays. The associated tool — also called V erus — converts the

description to a finite state machine. The resulting finite state machine is untimed,

however, and uses the number of transitions between states as a proxy for the elapsed

tim e between states.

A timed extension of S pin and its language P romela is presented in [81]. The

real-time P romela specification is converted to a timed graph, which is composed

with the never claim (given as a timed automaton) to yield another timed automaton.

As in untimed S p in , the verification problem then consists of checking whether the

language of the resulting automaton is empty or not. In a similar approach to the one

taken in [5] and [49], the state space is made finite by grouping states into equivalence

classes.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Probabilistic Validation

Research in probabilistic validation is motivated by two factors. First, verification

in general is intractable due to the state space explosion problem and it is therefore

practical to settle for a result like “the system is correct with high probability” , rather

than no result at all. From this point of view, any validation algorithm based on a

state space search can be considered to be probabilistic if resource limitations restrict

the search to part of the state space. The bitstate hashing algorithm of S pin [54, 55]

and its variants [78, 79] are examples of this. In West’s random state exploration

[84], the validator takes a random walk over the graph of reachable states, rather

than doing a systematic search. Unlike these approaches, which randomly limit the

state space, Maxemchuk’s probabilistic search algorithm [64] uses state transition

probabilities as a heuristic to guide the state space search to more probable regions.

The idea here is to annotate each transition of the protocol with its probability of

occurrence. Using these annotations, the validator can keep track of the probabilities

of all the states that it visits, and avoid searching states whose probability of occurring

is below a given threshold.

Another reason for probabilistic validation — and the focus of this section — is

that many systems and properties of interest are inherently probabilistic. For exam­

ple, two processes might communicate via a channel that can lose messages with a

given probability, and the message transfer delay may have some probabilistic distri­

bution. The organization of this section is analogous to sections 2.2.1 and 2.2.2: We

begin by surveying methods of specifying probabilistic systems and their properties.

Then, we describe some probabilistic validation algorithms and tools.

2.3.1 Specification of Models

Finite State Machines. The simplest and best-known probabilistic state machines

are discrete-time and continuous-time Markov chains. Discrete-time Markov chains

(DTMC) are finite state machines whose transitions are labeled with probabilities;

each state transition is assumed to take one time unit. In continuous-time Markov

chains (CTMC), transition rates are associated with each pair of states; the time

that the system spends in a state is assumed to be exponentially distributed. Other

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

models extend the basic Markov chain in various directions:

• Modularity. As with non-probabilistic finite state machines, it is impractical to

specify a large probabilistic system in terms of a single monolithic transition

system. A number of methods for the modular or compositional modelling of

systems have therefore been proposed.

• Time. As in the non-probabilistic case, there are untimed verification methods

that abstract away from time, and models that support the modelling of time.

• Nondeterminism. Several proposed approaches make a distinction between non-

deterministic transitions (also called pure nondeterminism) and probabilistic

transitions (also called probabilistic nondeterminism). The difference between

these two forms of nondeterminism is that in probabilistic nondeterminism, a

choice is made according to a given probability distribution, whereas in pure

nondeterminism, no assumptions regarding the probabilities of the possible

choices can be made. Instead, it is assumed that nondeterministic choices are

made (resolved) by some unknown scheduler (also called adversary or policy).

A consequence of pure nondeterminism in a model is the notion of fairness: in

order to make useful statements about a system, it is necessary to assume that

the scheduler is fair in some sense. For instance, if two nondeterministic choices

are available in a given state that is visited infinitely often, it seems unfair if the

scheduler always chooses one over the other. A number of definitions of fairness

have been proposed. In this example, one possible fairness requirement is that

the scheduler makes each choice infinitely often.

We now briefly review how the issues of time, modularity and nondeterminism are

handled in some proposed verification methods.

Hansson and Jonsson [46], Iyer and Narasimha’s probabilistic lossy channel system-

s [58], Aziz et al. [11], Courcoubetis and Yannakakis [32,33], Baier et al. [15,17,14,16]

use discrete-time Markov chains as structures over which temporal logic formulas are

interpreted. These approaches are essentially untimed, but the elapsed time between

two system states can be given by the number of state transitions of the Markov chain,

which is inconvenient if large delays need to be modeled. Models whose transitions

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are labeled with values indicating the time delay between two states are used by de

Alfaro [39, 38, 40], Segala [76] and Alur et al. [7, 6]. Alur’s real-time probabilistic

processes are continuous-time Markov processes whose states consist of the system

state, a set of pending events, and a set of real-valued countdown clocks measuring

the time until the triggering of each event.

The modelling of nondeterminism is addressed in [39, 38, 40, 15, 32, 73, 76] using

models similar to Markov decision processes (MDP). Markov decision processes are

extensions of discrete-time Markov chains that include nondeterminism and can be

extended to include time. In an ordinary Markov chain, a probability distribution

that is used to select the successor state is associated with each state. In an MDP,

a set of such probability distributions is associated with each state. The selection

of a probability distribution is nondeterministic. Like Markov chains, MDPs can be

extended for modelling time. A discussion of the interaction of nondeterminism and

probability is in [47].

The issue of modularity is supported by de Alfaro’s stochastic transition systems

(STS) and timed probabilistic transition systems (TPS) which combine time, modular­

ity and nondeterminism in a probabilistic framework [39, 40]. The high-level models

are specified modularly as STS and transitions can have exponential or unspecified

delays. The semantics of these systems is given in terms of the low-level TPS models

which are MDPs with costs (delays) attached to each transition.

Stochastic Petri Nets are Petri nets that have exponentially distributed delays

associated with each transition: the delay between the removal of markers from a

transition’s incoming places and the addition of markers to a transition’s output places

is exponentially distributed. In Generalized stochastic Petri nets (GSPNs) [28, 2],

some transitions may have deterministic delay 0. GSPNs have been widely used for

the modelling of stochastic systems like queueing systems. The reachability graph of

a GSPN is a CTMC and performance measures of a GSPN model can be obtained

using CTMC solution methods.

Process Algebras. Probabilistic extensions to process algebras without time are

discussed in [83]. In traditional process algebras, the choice of action by a process

that has two or more enabled actions is nondeterministic. The authors of [83] propose

instead to annotate actions with probabilities. So, if a process is specified as

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = (0 .8)a .B + (0.2)b.C

and actions a and b are both enabled, then action a occurs with probability 0 .8 , and

action a with probability 0.2. If only one of the actions is enabled, then it occurs

with probability 1. Process algebras extended with probabilistic time — stochastic

process algebras (SPAs)— have been proposed for the specification of probabilistic

systems. We explain the features of SPAs using Performance Evaluation Process

Algebra (PEPA) [52] as an example. Other SPAs like TIPP [51, 50] and EMPA [19]

are similar. PEPA is based on the untimed process algebras CSS and CSP. Time

is introduced by associating an exponentially distributed random variable with each

action. This additional information makes it possible to extract performance measures

from the model. So, whereas the untimed specification

A = a.B

means that the process A engages in action a and then behaves like process A again,

the stochastic specification

A = (a ,A) .A

has the additional meaning that process A can engage in event a at the rate of A. If

two processes engage in an action and have different transition rates, then the rate of

the joint action is given by the slowest process. As in untimed process algebras, the

semantics of a PEPA specification is given in terms of a labeled transition system, its

derivation graph. The derivation graph for the specification

A = (a . n) . (b ,r 2) .A + (c , r 3) . (d ,r4) .A

is shown in figure 2 .11 . This graph is in fact a 3-state CTMC and steady state

probabilities for the nodes of the derivation graph — which are also the states of the

CTMC — can be obtained using standard (numerical) CTMC solution techniques.

Then, performance measures can be calculated by associating rewards with PEPA

actions and associating with state of the CTMC the rewards of the actions enabled

in it. When used for performance evaluation, both SPAs and GSPNs are thus simply

methods of describing CTMCs. Some papers that compare the merits of the two

methods are [41] and [42].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.11: Derivation Graph of a PEPA process

2.3.2 Specification of Properties

Process Algebras. Stochastic process algebras can be used for the specification of

properties in the same way as untimed process algebras. The implementation of a

system can be described by including low-level details, while the high-level specifica­

tion of the system properties is more abstract and hides these details. The verification

problem, then, is to check whether the two descriptions are equivalent.

Probabilistic Logics. Branching time logics have been extended so that they can

express probabilistic properties of discrete-time Markov chains. A probability measure

can be defined on the set of paths of a DTMC, and this measure is then used to define

the probabilistic satisfaction relation. PCTL [46, 17, 14] is a probabilistic version

of the branching time logic CTL. In PCTL, probabilities are expressed using the

constructs

(O <t>)>p and {4>iU<j>2)>p

with the meaning that the formula is satisfied in a state s if the measure of paths

starting at s and satisfying (0 0) and (faUfa), respectively, is at least p. Linear time

logics can be interpreted in a probabilistic way without new constructs [16, 33, 73] —

the probability of a DTMC satisfying an LTL formula 0 is the measure of paths that

satisfy 0. The probabilistic extensions can be readily combined with the real-time

extensions described in section 2.2.2; for instance, [46] uses the construct

to express the property that 0 2 will be true within t time units with probability > p,

and that fa will remain true until then.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3 Algorithms and Tools

The continuous-time Markov chains (CTMC) that underlie stochastic process algebras

and Petri nets can be evaluated using standard numerical methods. Like their non-

probabilistic counterparts, stochastic process algebras are accessible to verification by

algebraic means.

A number of algorithms for model-checking temporal logic formulas with respect

to systems specified as discrete-time Markov chains have been proposed, although few

implementations as tools appear to exist. The simplest probabilistic model-checking

algorithms [73, 6] are virtually identical to their non-probabilistic counterparts be­

cause they check if the formula (LTL in [73] and timed CTL in [6]) is satisfied with

probability 1 — as a result, the actual transition probabilities need not be considered.

The algorithm in [46] checks if a probabilistic timed CTL formula is satisfied

by a DTMC or not. The algorithm is based on the enumerative algorithm shown

in figure 2 .6 : states are labeled first with the atomic formulas that they satisfy,

and then with successively larger subformulas of the main formula. The number

of transitions between two states is taken to indicate the elapsed time between the

states. [14] proposes a symbolic version of the algorithm using multi-terminal binary

decision diagrams (MTBDD) to represent the Markov chain. An implementation of

the algorithm based on the tool V erus is in progress [13].

Courcoubetis and Yannakakis [32, 33] describe an algorithm for checking untimed

DTMC against LTL formulas. Their algorithm, which involves solving a system of

linear equations the size of the DTMC, calculates the exact measure of paths in the

DTMC that satisfy the formula. A less expensive approximate algorithm is presented

in [16]. Both papers address the issue of nondeterminism.

The models of Alur [6] and de Alfaro [38, 20] view time as a continuous value, and

as a result, the state space is infinite and not directly suitable for model-checking.

As in the non-probabilistic case [5], the authors propose algorithms for grouping the

system states into a finite number of regions; the resulting finite-state system can

then be verified using algorithms similar to the one in figure 2 .6 .

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Summary

Methodologies for protocol validation can be broadly separated into untuned, timed

and probabilistic approaches.

Untimed methods abstract away from the notion of qualitative time and allow the

specification of properties related to the ordering of events, but not to the quantita­

tive delay between events. A common basic model is that of the labeled transition

system (LTS), which serves as a structure for interpreting temporal logic formulas.

Other models like Petri nets and process algebras can be translated into LTS. The

main model-checking algorithms are the enumerative approach (which labels each s-

tate of the LTS with successively larger subformulas), the symbolic approach (which

associates with each successively larger subformula the set of states that satisfy it),

and the automata-theoretic approach (which uses the fact that linear temporal logic

formulas can be converted to automata).

Timed methods extend untimed approaches with the notion of qualitative time.

Discrete-time models can be obtained by attaching delay values to the transitions of

a LTS or by interpreting the number of transitions between states as the elapsed time

between them. Such timed LTS are used as structures over which qualitative temporal

logic formulas can be interpreted. Continuous-time models like timed automata have

infinite state spaces and need to be converted into finite projections before performing

model-checking. Aside from this conversion process, the model-checking algorithms

are based on their untimed counterparts.

Probabilistic methods are for the most part based on continuous-time Markov

chains (CTMC) or discrete-time Markov chains (DTMC). While both types of Markov

chains can be tackled by numerical means, DTMC are more accessible as structures

over which probabilistic temporal logic formulas can be interpreted. There are untimed

and timed probabilistic models; the model-checking algorithms are based on the non-

probabilistic versions.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A Probabilistic Protocol Validation
Model

3.1 Overview

In this chapter, we describe the validation model that is the foundation of our val­

idation tool. As is apparent from the survey in the preceding chapter, the design

of a validation system has two components: a method for modelling systems and a

method for expressing properties of the model.

Sections 3.2 and 3.3 describe our validation model and our logic. Following, e.g.,

[38], we define two modelling methods: a low-level model and a high-level model.

The low-level model is mathematically simple but inconvenient for the description

of complex systems. Our logic and our algorithms operate at this level. The high-

level model allows the modular specification of systems as a set of communicating

processes. The semantics of the high-level model are given in terms of the low-level

model. Given the plethora of verification algorithms described in the survey chapter,

it is natural to ask, “Why do we need yet another validation model?”. Section 3.5

attempts to answer the question by comparing our model with others proposed in the

literature and pointing out its advantages and disadvantages.

The results of the chapter are summarized in section 3.6.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Low-level Model: Timed Probabilistic Transi­
tion System

This section describes our low-level model, which is essentially a discrete-time Markov

chain with additional labels denoting the event type and delay on every transition.

We show how to assign a probability measure to the execution paths of the model,

and how to express its properties using the linear-time logic EL.

3.2.1 Timed Probabilistic Transition System

A Timed Probabilistic Transition System (TPTS) is a discrete-time Markov chain

with additional labels e (event type) and t (delay) on every transition. The delay of

a transition indicates the number of time units that the system spends in the origin

state before making the (instantaneous) transition to the destination state. A special

state is designated as the initial state of the system. More formally, we have the

following 1

Definition 1 (Timed Probabilistic Transition System (TPTS)) A timed prob­

abilistic transition system (TPTS) has the following components:

• G is a set of states

• go £ G is an initial state

• £ :G x. G —► E is a function that assigns an event e to each transition between

states.

• T : G x G -+N° is a function that assigns a delay t to every transition between

states

• V : G x G -* [0,1] is a function that assigns a transition probability p to each

pair of states such that J23ieG P (0 > 9i) = 1 f or 9

A TPTS can be written as a quintuple (G ,go ,V ,T ,£). It can be depicted as a

directed graph whose nodes are states and whose edges are the transitions with non­

zero probabilities. These transitions are written as g ^ 4 g'. Figure 3.1 shows an
lIn this and the following definitions, N° is the set of the natural numbers including zero, and E

is some ordered set of symbols, the events

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FULL

ACTPUT
PRODUCE*5

GET

p-IJXX)
ACT

(T y ^ s .
EMPTY

o

Figure 3.1: Example TPTS

example TPTS with 11 states. It represents a system where an activity (event Ac t)

results either in the production of data (event P r o d u c e) or in the consumption of

data (event C o nsu m e) after 5 time units. When data is produced, it is put in the

buffer (P u t) with a delay of 1 time unit, and when it is consumed, it is obtained from

the buffer (G e t) after 1 time unit. The buffer has a capacity of 1 and an attempt to

P u t into a full buffer is immediately followed by a F ull event. Similarly, an attempt

to retrieve data from an empty buffer is followed by an E m p t y event.

3.2.2 Probabilities

The probability V m of a path go, g{, . . . , gn in & TPTS M is defined by:

'Pm(90,91i • • - j 9n) : = *Pm{9Qi gx)*?m{9\i 9z) ' "'PM(9n-l,9n)

For a set Q = (p i,. . . ,pr} of paths, we define V m (Q) V m (Px) H ^'PxriPr)- Let
Clg n be the set of all paths of length n that start at global state g. Vm is a probability

measure on fi3t„. It is easy to see that the usual axioms apply,

1 . VM(&g,n) = 1

2 . 0 < Vm (Q) < 1 for all Q C

3. Vm(Qx U Q2) = "Pm^Qx) + Pm{Qi) for Qi, Q2 Q Qg,n a^d Qi fl Q2 = 0

The probability of an infinite path go,gi,g2, .. is Vm (go, 9 x)Pm(9 x, 92) • • •, which is

typically zero unless there is a cycle in M where each transition has probability 1.

The measure of the set of all infinite paths with a common prefix <7i, • • • ,9n, is

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'Pm(go, 9 i)Pm(9 i, 92) • * * Pm(9 ti-u 9n)- We associate the subtree of all paths starting
at gn with this set. The subtree is said to contain any infinite path that goes through

9n•

3.2.3 Event Logic

We consider events and their delays to be the only externally observable results of the

execution of a TPTS. It is therefore useful to define the notion of event sequence: a

list of events and delays e — eo - ^ 4 e\ -^4 e-i • • • -^4 e^ is an event sequence starting

at go if there is a path go eo- ^ ° gt ei’-^Pl . . . gn More than one path in M may

have the same event sequence — we write that each event sequence e represents a set

of paths [e]. The probability of an event sequence, Vm(z), is defined as Pm([^])-

We present a simple temporal logic — event logic (EL) — for expressing properties

of a TPTS M. EL is based on the linear-time logic implemented by S pin and borrows

probabilistic real-time extensions similar to those used by the logic PCTL [46]. PCTL

itself is an extension of the branching time logic CTL. EL formulas contain event

types, the usual boolean connectives, and the additional temporal “until” operator

U. The meaning of a formula is that /2 becomes true within t time units

and that f \ will be true until f i becomes true. Some examples of EL formulas and

their meanings are

• “event A is followed by event B within 100 time units”

A -4 T ru e£ /'-100B

• “event A is followed by event B within 100 time units with probability > 0.50”.

P(A -4 T r u e £ ^ 100B) > 0.5

(such formulas involving a probability threshold are probabilistic EL formulas)

• “event E never occurs”

—>E

More formally, the grammar for EL formulas is as follows:

• the constants T rue and False and the event types are atomic EL formulas

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• if f i , / 2 are EL formulas, then -i/x, f i A / 2 and f \ V / 2 are EL formulas

• if f i , / 2 are EL formulas, then f iU -1}^ for t G N is an EL formula

• if / is an EL formula, then P (/) > p for p 6 [0,1] is a probabilistic EL formula

A common abbreviation is A —> B for ->A V B. The typical non-probabilistic EL

formula is A —► T rue U- lB which is also called a bounded response property.

The satisfaction relation \= of non-probabilistic EL formulas is defined on events

that are part of infinite event sequences. An infinite event sequence satisfies a formula

if the formula is satisfied by all events of the sequence. For an event type e,, an event

sequence e = e<j ei • • • e* • • • ei+1 and a non-probabilistic formula / we define

• if / is atomic, then e* \=e f if / = T rue or / = e*, otherwise e,- /

• if / = / t V / 2, then e{ |=e / if e* f=e / i or e» t=e / 2

• if / = / i A / 2, then ej |=e / if e* [=e / i and e* |=e / 2

• if / = —«/i, then e< f=e / if e,- / i

• if / = / i £ / - * / 2 , then e* |= e / if e* {=c / 2 or (ej |= e / ! and (ti+l < t and

e*+i K h U ^ + ' h))

• e ^ / if for all i 6 {1 , 2 ,...} : e* =̂e / .

A path (fa e°-^ ° 0 ! ei,i^Pl . . . in a TPTS satisfies / if the corresponding event sequence

eo ei • • • satisfies / . A probabilistic EL formula P(f) > p is satisfied by M if the

measure of satisfying event sequences of M V({e : e [= /}) is greater than or equal

to p. An algorithm that checks this is described in section 4.3.

Although the satisfaction of an EL formula / is defined with respect to infinite

event sequences, only a finite subsequence of the infinite sequence needs to be ex­

amined in order to determine whether an event e* of the sequence satisfies / with

respect to the infinite sequence. This is essentially a consequence of the fact that the

until-operator U always has a time bound, and can be shown with a straightforward

inductive argument. The time-length of a sequence is the sum of its time delays: for

example, the time-length of the sequence eo e\ ■ • • e„ is £ ”=1 1,. We call

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: Checking for Satisfaction of f iU - 1 fa

the time-length of the maximum required subsequence the time-length of / and write

TL(f) . For atomic formulas, only a single event of the sequence — e* itself — needs

to be examined to determine if e* (=e / , and therefore, TL(f) = 0 if / is atomic.

So, to show that a non-atomic formula / also has finite time-length, we can assume

inductively that its subformulas have finite time-length. If / = —«/ i , / = / i A / 2, or

/ = f x v / 2, then TL(f) is clearly finite if TL (f x) and JX (/ 2) are. If / = f iU -*/2>

e* =̂e / if / 2 comes true within t time units and f \ is true until then. The worst case

is as follows: / 2 remains false until the last possible moment, i.e., until t time units

have passed, and f i remains true until then. In this case (figure 3.2), a subsequence

of time-length TL(f \) extending beyond e7 is required to determine that ej (=e f i ,

and a subsequence of length T L (/2) is needed to determine that e7 =̂e / 2. Thus,

TL(f \U - tf 2) = t+ m ax(T L (/i),T L (/2)) and finite. Note that we have used through­

out this argument the requirement that our TPTS is stutter-free (next section), and

that therefore a finite time-length implies an event sequence of finite length.

3.3 High-Level Model: Probabilistic Protocols

This section describes our high-level protocol modelling methodology, which conve­

niently and modularly represents protocols as a set of finite state machines — process­

es — that exchange events. Processes and events are defined in 3.3.1. Subsection 3.3.2

shows how processes are combined to form protocols, and how this represenation map-

s to the low-level TPTS model presented in the previous section. Subsection 3.3.3

points out some restrictions on the general process model that are necessary in order

to make protocols accessible to our algorithms.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BALLI
(DELAY[IO|).l

tNTT
(DELAY(IOI).l

Figure 3.3: Juggler Process

3.3.1 Events and Processes

Processes are finite state machines that respond to events. When a process receives

an event it may change its state and may generate a set of new timed events. For

example, a process representing a receiver may generate an acknowledgement event in

response to an event representing the arrival of data at the receiver. The probability

of generating a particular set of output events is given by the process definition.

An example of a simple “juggler” process is in figure 3.3. Following the I n it event,

the process sends a D elay event to itself. When it receives the D elay event, the

process sends one of n different balls (BALLi, . . . , B all„) to itself. Upon receiving

a B all event, it again sends a D elay event, and the cycle continues. In figure 3.3,

n = 2, and the delays for the D elay and B ali* events are 10 and 1, respectively.

Formally,

Definition 2 (Event, Process) Let Y : = E x N°. A timed event y G Y is a pair

(e,t) with e € E (the event type), and t € N° (the event’s scheduled time). A process

has the following components:

• S is the set of process states.

• so € S is the initial state.

• T C S x E is the transition relation of the process. For (s, e) 6 T, s is the

original state and e is the input event type.

• N :T —► S is the next-state function.

• O :T -> 2zY assigns a set of timed output event sets to each transition.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• P is a probability function T x 2Y —t [0,1] such that for t € T, Z Aeo(t) -P(*» =

1 .

A process can be written as a 5-tuple (S, so, T, N, O, P). When a process is in state

s and it receives an event of type e with t = (s, e) € T, it changes to state s' = N(t)

and generates a set of new timed events A € 0(t). The probability of generating a

particular set of output events is given by the function P . We write s y ÂJ£^'A ̂ s’.

The union of all input event types of a process is called its input set, the union of all

output event sets of a process is called its output set.

3.3.2 Probabilistic Protocols

A set of communicating processes form a protocol. For example, the juggler process

from the preceding section forms a protocol consisting of only one process. Another

simple protocol with two processes is in figure 3.4: a data buffer with capacity 1 and

a producer/consumer that utilizes the buffer (this example was briefly presented in

the chapter 1). The buffer is modeled by the process in figure 3.4 (left). It has two

states - 0 (empty) and 1 (full) and receives P u t and G et events that make it move

between these states. If the buffer process receives a P u t event while it is in the full

state, it generates a F ull event to itself (exposing error conditions as events in this

way makes it possible to specify EL formulas to reason about them). Conversely, if it

receives a G e t event while in the empty state, it generates an event of type E m pt y .

The producer/consumer is modeled by the process in figure 3.4 (right). When it

receives an activity event A c t , it generates the next activity event with a delay of

10 time units and either a P r o d u c e or Consum e event to itself with a delay of 5

time units. P ro du ce or C o nsu m e are each chosen with a probability of 0.5. When

the producer-consumer receives a P ro duce event, it sends a P u t event with delay

1 to the buffer process; when it receives a Co nsum e event, it sends a G e t event to

the buffer process. Note that the producer/consumer process has only one state. A

probabilistic protocol can be composed of these two processes and the initial event

type A c t .

The following definition ensures that the processes of a protocol are compatible

in the sense that each event that occurs during the execution of the protocol is the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRODUCE
{PUTtHJ.1

V J J (EMPTY[0|).l

(pU T) GET

r T v " ' * PUT
V _ J L) {FUmOD.l

Figure 3.4: Buffer Process (left) and Producer/Consumer Process (right)

input of exactly one process, its destination.

D efinition 3 (Probabilistic P ro tocol) A probabilistic protocol is a pair (M , Z)

consisting of a set of processes M = {Mi, . . . , Mn}, M, = (Si, s0,,-, T*, iV„ 0{, Pi), and

a set of event types Z = {z i , . . . , Zm} (the initial events), such that the z\ , . . . ,Zm and

each output event type of each processes is an input event type for exactly one of the

processes Mi.

The protocol works by keeping a list of pending events (the event list) and repeat­

edly executing the earliest event in the list. In the initial global state, all processes

are in their initial states, and the event list consists of the initial events scheduled

at time 0. When an event is executed, the event’s time is subtracted from the times

of the remaining events and the event’s destination process state changes according

to the process transition relation. New events are generated by choosing one set of

new events Ai(i = 1, . . . , L) according to the probability distribution of the transition

and appending it to the event list. Thus, the times of output events denote the delay

between the current time and the new event, not the absolute event times. More

formally, we describe the semantics of a protocol in terms of a TPTS (G, g0, V, T , E):

• the states g 6 G of the TPTS are protocol global states consisting of the

individual process states s* E Si and a set E of events (the event list): g =

(S\, . . . , Sn, {ei,• . . , 6r}).

• the initial state go is (so1i , . . . , so >n»{(2 i ,0) , . . . (z m, 0)}): all processes are in

their initial states and the event list consists of the initial event types scheduled

at time 0.

• V , T , E are obtained as follows. The event 6 E with the lowest time is occurable;

if several events have the same lowest time then the event with the highest

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACT
(ACTUOLPRODUCEtSl 1.0.5
{ACTt IO],CONSUME[5] 1.0.5

CONSUME
{GEnm.i'

DELAYttO)

BALUD*i
pBl.000

BALUUIBALUUI

Figure 3.5: TPTS for Juggler Process

priority is occurable. Let

- a = (yi, U) be the occurable event of a global state g = (s i , . . . , sn, {e\ =

(yu t i) , . . . , e r = (yr, tT)}>,

- Mj = (Sj, sQj , Tj, Nj, Oj, Pj) the destination process of e*,

- t = (Sj, yi) 6 Tj [yj is an occurable event type in state Sj], N(t) = s'- [s'- is

the destination state], and Oj(t) = { A i , At} [the output event sets].

Then, there are transitions from g to I different global states g'k = (s i , . . . , s'-,. . . , sn,

{(2/1 > — t̂)> • • • > (yi—i) 1 — ti), (y»+1, ti+i ~ ti) , . . . , (yr, tr — tj)} U A k) where
k e {1,. . . , /} . The transition (g,g'k) is labeled with V(g,gk) = Pj(t, Ak);

T(g,g') = ti; S(g,g'k) = y i.

The event sets Ai are used to express probabilistic non-detenninistic choices. Every

successor state contains exactly one Ai, so the number of global states reachable by

executing the event is I. Figures 3.5 and 3.6 show the TPTS obtained for the juggler

protocol and producer/consumer protocol examples, respectively.

3.3.3 Model Restrictions

Because processes can generate more than one event in response to receiving an event,

it is possible for a probabilistic protocol to result in an infinite TPTS. Also, processes

can generate events with zero delay, and it is therefore possible for the resulting TPTS

to have an infinite loop in which time never progresses — it stutters. In the rest of

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: TPTS for Data Buffer Protocol

this paper, we will require that protocols are well-behaved in the sense that their

TPTS representation

• is finite

• is stutter-free (i.e., has no zero cycles)

• has no sink states (i.e., states with no successors)

In addition to these requirements, the event logic model-checking algorithm in sec­

tion 4.3 makes the following assumption about the strongly connected components (a

strongly connected component is a maximal subset of states such that there is a path

in the TPTS between any two states of the set) of the TPTS:

• every strongly connected component is a bo tto m strongly c o n n ec ted

COMPONENT

This means that it is not possible to reach one strongly connected component from

another, or, in other words, every infinite path in the TPTS reaches exactly one

strongly connected component. Such a condition is not unusual in the world of Markov

chains: many performance evaluation methods for Markov chains and probabilistic

validation tools based on Markov chains [16, 52], assume that the Markov chain is

ergodic, which essentially means that the entire Markov chain forms a single bottom

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strongly connected component. Our assumption is more general than this ergodicity

requirement.

3.4 Observers

This section describes observers, which are a special kind of process that can be used

as an alternative to EL as a way of specifying protocol properties. The event logic

EL is a convenient way of expressing many qualitative and quantitative properties

of a TPTS, but some more complex properties can not be easily formulated as EL

formulas. For example, the properties

“If there are three events of type A with 100 time units, then event B

must occur within 10 time units following the third event A.”

and

“If the delay between event A and event B is less than 100 time units,

then event C must occur within 10 time units following the event B.”

can not be easily written as EL formulas. Such complex protocol properties can better

be verified using observers similar to those in [43]. Observers are like processes except

that

• they cannot send or receive events of their own

• they see all executed events in the entire system

An observer sees a sequential list of events and must decide whether the observed

sequence is acceptable or not. Like processes, observers see only one possible event

path. To check properties, therefore, observers must be written as error detectors,

i.e., they falsify properties rather than proving them. Since they can not send or

receive events of their own, observers do not interfere in the operation of a protocol.

They do have a state, however, and therefore increase the state space of the protocol.

Both observers and EL formulas can be associated with sets of event sequences:

an observer can be associated with the set of event sequences that result in an error

being detected, and an EL formula can be associated with the set of event sequences

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KB KC

Figure 3.7: Observer Example

that do not satisfy it2. An interesting question is whether observers are strictly more

powerful than EL formulas in the sense that for every formula / , an observer can

be written to recognize the set of sequences associated with / , but that not every

observer can be replaced by an EL formula in this manner. While a precise treatment

of this question is beyond the scope of this thesis, we can offer some observations that

indicate that observers are indeed more powerful that EL formulas.

First, we show that not every observer can be replaced by an equivalent EL for­

mula. Figure 3.7 shows the state transition diagram for an observer for the event

types A, B, and C. It recognizes event sequences that contain a subsequence of the

form C(A,C)*B as errors. Assume that there is an EL formula / recognizing such

sequences, and let e = C —̂ A A —̂ B • • • be an event sequence with n

consecutive A’s. Then, C /• We know that checking C \£e f can be done by

examining a subsequence of e that has finite length TL(f) (section 3.2.3). By setting

n > TL(f) , we have a contradiction: the first TL(f) events of e contain no B’s, and

it is impossible to determine whether e has a subsequence of the form C(A,C)*B by

only looking at the first TL(f) events of e. Therefore, our assumption is wrong and

there can be no formula / that represents sequences that contain subsequences of the

form C(A,C)*B.

Second, we show that for every EL formula / , one can construct an observer that

recognizes the same set of event sequences. The formula / defines a set S of finite

event sequences of length < T L (f), namely, the event sequences whose first event

does not satisfy / . This set S itself is finite. Now, if 5 has only one element s,

then the problem of recognizing whether a path e contains s or not is equivalent to

the well-known string matching problem where a (short) substring has to be found

in a (much longer) text — s corresponds to the short substring, and e to the text.

Linear-time string matching algorithms like the Knuth-Morris-Pratt algorithm [12]
2Of course, a formula can also be associated with the set of sequences that satisfy it, but the

exposition in this part is simplified if we consider the sequences that are not satisfying

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be readily implemented as an observer. If S has two elements Si an S2, then two

observers can be constructed (one to recognize si and one to recognize S2). These

two observers can be combined in an observer whose state space is the cross product

of their state spaces; this new observer recognizes both Si and S2- This construction

can be extended for arbitrary (but finite) S.

3.5 Comparison W ith Other Models

In this section, we compare our model to other validation models and explain some

of the rationale behind our design. Our main goal was to design a validation model

than can serve as a foundation for a practical validation tool of realistic models —

something which, we believe, has not always been a focus of past efforts.

One way in which we aim to increase the practicality of the model is by designing

a high-level model resembling that of discrete event simulators which are familiar to

protocol designers. The choice of a linear temporal logic (LTL) over a branching time

logic is also motivated by the desire to make the notion of “probability of satisfac­

tion” of a formula intuitive with respect to DES: the measure of paths that satisfy

an EL formula is equivalent to the probability of observing a satisfying path when

running a simulator. In other words, if we run a simulator many times with different

random seeds, then the relative frequency of a given event sequence will approach its

probability.

Neither linear time nor branching time logics are perfect for our needs, however.

For example, expressing a property like “95% of all packets will be delivered within

some time limit t from their generation” can not be adequately expressed in either

logic. If we formulate it in EL, our flavour of LTL, then an infinite path in the model

satisfies it if every state on the path satisfies it. Unfortunately, in most stochastic

models, every infinite path will at some point violate the formula, and therefore,

the measure of satisfying paths would be zero even if the actual proportion if packets

that are not delivered within the time limit is arbitrarily small. Branching time logics

like CTL pose a similar problem. If the property is expressed in CTL, then a state

satisfies the formula if on 95% of paths starting here, the delivery will be within t

time units. Since a model is required to satisfy the formula in every state, even a

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model Prob­
abilities?

Time? Non-det? Spec, of
Properties

Language Algorithm

DTMC
[46,14, 13]

Yes no. of
steps

No PCTL VERUS
[13]

enumerative [46]
symbolic [14, 13]

Probabilistic
Real-Time

Systems [7, 6]
Yes

Yes
(cont) No

Automata [7]
TCTL [6]

enumerative,
requires entire MC

DTMC
[32, 33]

Yes No Yes LTL
“

tableau-based,
requires entire MC

Real-Time
S p in [81]

No Yes
(cont)

Yes Automata RT-
P romela

on-the-fly check
for emptiness

DTMC
[16] Yes No Yes LTL —

calculates approx.
satisfaction prob.,
requires entire MC

Our Model Yes Yes
(discr)

No
EL

(LTL) C++
calculates exact,
prob., on-the-fly
constr. of MC

Table 3.1: Comparison of some Validation Models

single non-satisfying state with arbitrarily low probability of occurrence would make

the system non-satisfying. One way to avoid this problem with our model is to use

the model as a DBS tool and make statistical statements about the satisfaction of

the property.

Our approach is most similar to those described in [46, 14, 13], [7, 6], [32, 33],[81],

[16]. These methods, along with our own, are summarized in table 3.1. Other ap­

proaches, like stochastic process algebras and stochastic Petri nets, have their advan­

tages. Most notably, they allow the concise and elegant description of some queueing

systems, but it is questionable if large-scale systems can be programmed by non­

experts.

None of the approaches listed in the table feature a high-level model based on DES.

Only the approaches in [46, 14, 13] and [7, 6] support both time and probabilities,

two modelling parameters that we feel are essential for the realistic modelling of

protocols. Their model-checking algorithms, however, require the manipulation of

the entire underlying Markov chain, which is not realistic. The timed extension to

S pin described in [81] uses the same efficient bitstate hashing algorithm as S p in ,

but does not support the modelling of probabilistic systems. A number of the listed

validation systems address the issue of non-determinism. We chose to omit this in the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interest of simplicity and because the modelling of non-determinism is not normally

needed in a performance evaluation tool.

P ro m ela , the modelling language of S p in , includes special keywords accep t and

p ro g ress that are used to detect livelocks and non-progress cycles, respectively.

• Livelocks are cycles that contain particular undesirable states labeled with the

keyword accept, i.e., labeling a state with accept indicates that it can not

occur infinitely often.

• Non-progress cycles are cycles that contain particular desirable states labeled

with the keyword progress. Thus, non-progress cycles are the dual of accep­

tance cycles in that they specify that “something good must eventually happen”,

whereas acceptance cycles specify that “something bad cannot happen infinitely

often” .

Both concepts are not directly supported by our TPTS model; in part to keep the

model as simple as possible, but also because they are not compatible with the fact

that in our model all temporal statements have a time horizon expressed with the

“until”-operator. The “until”-operator, however, can be used to express time-limited

versions of the livelock and non-progress properties.

In addition to accept and progress, S pin uses the keyword end to identify “prop­

er” end states (states without successors) of processes. If all processes are in such end

states, the global state is not considered to be a deadlock even if there are no succes­

sor states. In contrast, our model assumes that all global states without successors

are deadlocks. An end-state as in SPIN can be easily emulated, however, by letting a

process cycle infinitely between two end states.

Unlike the logics employed by the approaches in table 3.1, which can express

properties related to system states our logic EL can only be used to make statements

about properties explicitly exposed as events. Combined with the model requirement

that a process’ destination state can depend only on its own state and the received

event (an not on the states of other processes), this has the advantage that all internal

actions of processes are atomic by default, resulting in fewer transitions, and thus in

a smaller state space.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Summary

Our approach allows the modelling of probabilistic systems at two levels: a low-level

and a high-level. The low-level model — timed probabilistic transition system (TPTS)

— is based on discrete-time Markov chains; our logic and our algorithms operate at

this level. The high-level model — probabilistic protocol — is based on a variant of

discrete event simulation used in parallel simulation tools and allows the modular

specification of systems as a set of communicating processes. The semantics of the

high-level model are given in terms of the low-level model.

Protocol properties can be expressed using special processes called observers or

with EL, a linear time logic that can express properties of event sequences.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Algorithms

4.1 Overview

This chapter describes our algorithms. The algorithms make use of bitstate hash ta­

bles similar to Holzmann’s algorithm in S p in , because the research literature [78] and

the relative popularity of Spin indicate that this approach is most effective for valida­

tion communication protocols (in contrast to hardware verification, where symbolic

methods relying on BDDs are widely used).

There are three main algorithms described in this chapter. Section 4.2 describes

the basic state space search algorithm that does not perform model-checking of EL

formulas. Section 4.3 presents an algorithm for the model-checking of a TPTS with

respect to an EL formula. Finally, in section 4.4, we show how to obtain an approx­

imate TPTS from a protocol specification in order to deal with time intervals more

efficiently. The algorithms in both section 4.2 and section 4.3 can be applied to the

approximate TPTS.

4.2 State Space Search Algorithm without Model-
Checking

This section describes the basic state space search algorithm without EL formulas.

This basic algorithm can be used in cases when it is not necessary to check the validity

of an EL formula. We first briefly describe Holzmann’s algorithm, which is applicable

when no limits are placed on the search depths. Then, we describe how to extend the

algorithm to cases where the search is limited.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Unlim ited Search

The algorithm for unlimited searches is a depth-first search of the protocol state space

and is similar to the approach described by Holzmann [54, 55] in that the state space

is constructed on-the fly and that a hash table of bits is used to detect previously

visited states.

• The input to the algorithm is a probabilistic protocol specified as a set of com­

municating processes

• The output of the algorithm is either

- OK if no errors are detected during the search; or

- a trace describing the sequence of events from the initial state up to the

error state if an error is detected

The global state space is constructed on-the-fly using the probabilistic protocol-to-

TPTS mapping described in section 3.3.2. Error states that can be detected in this

fashion are those flagged by individual processes (including observers) or global error

states such as deadlocks (states with no pending events).

A state search algorithm needs to detect when it encounters a state that has

already been visited. When the state space is too large to be stored in memory,

Holzmann’s bitstate hashing algorithm can be used. The algorithm uses a large hash

table of bits to mark visited states: whenever a state is visited, a hash value of the

state is calculated. This value is used as an index to the hash table, and the bit at

the indexed location is set to 1. Thus, the validation algorithm can detect previously

visited states by checking if the corresponding bit in the hash table has been set.

This algorithm greatly reduces the memory requirements of the state space search,

but there is a possibility that two different states hash to the same value. No collision

detection is performed and therefore, there is a small probability of mis-identifying

a new state with one that was already visited. If the load factor of the hash-table

is low, i.e., if the table is much larger than the number of states, the probability of

missing a significant number of states is very low. Holzmann’s algorithm uses two

independent hash functions and two hash tables to further reduce the probability that

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two different states map to the same hash values. The memory requirement of this

algorithm is 2 bits per hash table entry.

4.2.2 Truncated Search

The bitstate hashing method is very efficient in that it requires only a few bits of stor­

age per state. Nevertheless, the state space explosion problem means that industrial­

sized protocols can often not be exhaustively validated, and the state space needs to

be restricted in some way. When using the bitstate hashing method, the state space

is naturally limited by the size of the hash table — the state graph is randomly trun­

cated. Other ways to limit the state graph are to set a maximum depth threshold,

a maximum time threshold, or a minimum probability threshold, which results in a

truncated search.

• The input to the truncated search algorithm is a probabilistic protocol specified

as a set of communicating processes, and a search threshold, given either as a

maximum depth, a maximum time, or a minimum probability.

• The output of the algorithm is either

- OK if no errors are detected during the search; or

— a trace describing the sequence of events from the initial state up to the

error state if an error is detected

We first discuss a state space search with a probability threshold. When using such

a probability threshold, path probabilities are used as a heuristic to guide the state

space search towards more probable regions of the state graph. The principle is

simple: we set a small probability threshold (e.g., 10- l °) and truncate a search path

when the current path probability becomes smaller than the threshold.

The basic bitstate hashing method does not work for a probabilistic search. When

the validation algorithm searches the event graph, it keeps track of the probability

of the path from the root until the current node; we call this probability the current

probability. A state can be be visited several times on event paths with different cur­

rent probabilities. For instance, assume that a state is first visited with a probability

p, and then with probability q. Then, the second path through the state should not

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be aborted if q > p, because the second path may extend deeper into the search graph

before reaching the probability threshold.

One possible solution for this is to make the probability part of the state whose

hash value is calculated. This would result in states always being classified as different

if they are on event paths with different probabilities. In our model, we use a different

solution: instead of using just one bit in the hash table to indicate that a state has

been visited, we use n bits. The n bits indicate the largest current probability for a

state that hashes to that hash table entry. Our implementation uses n = 8 and stores

the order of magnitude of the probability, without the minus sign, e.g., p = 1.3 x 10-22

becomes 22. Probabilities < 10-255 are stored as 255. A search path is aborted if

the validator finds that the same state has already been visited with a higher current

probability.

Time-limited and depth-limited searches can be handled in a similar manner. In

both cases, two states can not always be classified as being identical if they occur

at different times and depths, respectively. If a state is re-visited with a larger time

(more time has elapsed since the initial state, i.e., there is less time left until the

time threshold), it is safe to stop the current search path. Similarly, it is safe to

abort a search path in a depth-limited search if it is revisited at a greater depth. The

solutions we discussed for probabilistic searches directly apply to these cases.

4.3 State Space Search with Model-checking of Even-
t Logic Formulas

We now describe an algorithm for calculating the measure of the event sequences of a

TPTS M that satisfy an EL formula / . The basic approach is to search the tree of all

paths of M and to remove paths that do not satisfy / . The measure of the removed

paths is added to some global variable N S which is the output of the algorithm when

it terminates. Like the model-checking algorithm in S p in , we employ a nested depth-

first search (DFS): an outer DFS that searches the global state transition tree and an

inner DFS that is called by the outer DFS from each state that it visits.

This section is organized as follows. The inner DFS is described in subsection 4.3.1;

the outer DFS in 4.3.2. We illustrate the combination of inner and outer DFS with

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an example in subsection 4.3.3. A proof of the algorithm is in subsection 4.3.4.

Some implementational details and a method for the optimized handling of cycles are

discussed in 4.3.5 and 4.3.6, respectively. Finally, subsection 4.3.7 points out some

issues related to the combination of the model-checking algorithm with truncated

searches.

4.3.1 Inner Depth-First Search

The inner DFS is called by the outer DFS at every node of the global search tree.

The inner DFS removes paths from the global search tree if they do not satisfy the

EL formula / .

• The input to the inner DFS is a TPTS, a formula / , and a state g of the TPTS.

• The output of the algorithm is the measure of paths starting at g that were

removed by it. The inner DFS modifies the global search tree in such a way

that the removed paths are not revisited by the outer DFS.

From every state g that is visited by the outer DFS, the inner DFS determines for

each infinite event sequence e = e0 e-i • • • starting at g, whether the

first event eo of e satisfies the (non-probabilistic) formula / or not. Note that since

EL formulas are finite and since every “until” operator U has a finite time horizon,

we can determine if eo does not satisfy / by examining finite subsequences e' of e

(section 3.2.3). If eo does not satisfy / in the context of e', the subtree tree rooted at

the node of e' that follows the last (i.e., farthest from the root) branching point of e'

is removed from the search tree.

Figure 4.1 shows an example of this subtree removal: node h is the last branching

point of e', so e/ is removed starting at k , the node of e' that follows h. We can remove

the entire subtree rooted in k because every infinite path that goes through k must

contain the entire finite subpath e' and is therefore non-satisfying. The measure of

the removed infinite paths is exactly the probability of the finite path from the root

of the TPTS up to k, which can be easily calculated as the product of the transition

probabilities of the path.

The inner DFS procedure returns the measure of all infinite paths that were

removed in this fashion.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I' I
♦ *t 8eO -----5

:2> ,
o * \

Figure 4.1: Example of Inner DFS

/ / Algorithm checkEL (inner DFS)
/ / global constants: TPTS M, formula /
/ / returns the measure of all event sequences starting at g
/ / whose first event does no satisfy / .
inner_dfs(<7) {

n := 0;
fo r all event sequences e = e o e ^ • • • starting at g

e' := required finite subpath of e;
i f e0 f

k := successor of last branching point of e';
n+ = V{k);
remove subtree rooted in A;

re tu rn n;

}

Figure 4.2: Algorithm for Checking EL Formulas, Inner DFS

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Outer D epth-First Search

We now describe the outer DFS, which is our main model-checking algorithm. This

part of the algorithm must ensure that every non-satisfying path in the tree is mea­

sured exactly once. For every state g in the search tree, we define the N(g) as the

measure of infinite paths starting at g that do not satisfy / . The task, therefore, is

to compute N(go). In other words,

• The input to the outer DFS is a TPTS and formula / .

• The output of the algorithm is the measure of paths starting at the initial state

gQ of the TPTS that do not satisfy / .

N(g) is a real value G [0,1] and storing N(g) for all states is too expensive. Because

of this, the algorithm stores only limited information about what is known about

N(g) for a state g. This information can have one of four values:

• 0: N(g) is 0, i.e., all path starting at g satisfy /

• 1: N(g) is 1, i.e., none of the paths starting at g satisfies /

• 0/1: either all paths starting at g satisfy / or none of the paths starting at g

satisfy /

• UNKNOWN: it is not known whether any of the three cases above apply or not

— this is the default situation for unexamined states

Storing this information requires 2 bits per visited state, we will refer to it as 1(g). In

addition to this limited information about the N(g) of all states, the algorithm also

stores the exact N(g) of the nodes on the current path from the root of the search

tree. N(g) is initialized to 0 when g is first visited by the outer DFS.

The inner DFS procedure is started at each node that the outer DFS visits. N(g)

is set to the value that the inner DFS procedure returns for a node g — the measure

of paths that were removed by it. Then, N(g) is propagated backwards along the

current path by updating N() for the nodes on the path (figure 4.3 left). If the
path from the root g0 to g is go gx ei'h f l . . .gn_x enJ i$ n ^ then the value

pnN(g) is added to N(gn- 1), the value pn-iPnN{g) is added to N(gn~2), and so on.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+pOplp2 N[gl

+plp2 Nig}
(

+p2N[gl.

<
N[gJ

eO.pO

>

e2,p2

p=l
»
p=l
I
p-1
g

Figure 4.3: Propagatiou of N-values (left), Satisfying Cycle (middle), 0/1-Cycle
(right)

This propagation of iVQ-values along the current path is necessary because any non­

satisfying infinite path detected by the inner DFS that goes through g must also go

through all other nodes on the current path, but its measure has not yet been added

to their iV()-values. To see why the adjustment factors are needed, consider that the

measure of removed paths as returned by the inner DFS refers to the measure relative

to g. If, for example, the entire subtree rooted in g is removed by the inner DFS, the

inner DFS would return 1, and N(g) would be set to 1. Relative to gn-u however,

the measure of the removed subtree is not 1, but pn, so the value p„ must be added

to N(gn-i).
A search path in the outer DFS is aborted if

1. the measure of non-satisfying paths starting at the current state g is known,

i.e., 1(g) = 0 or 1(g) = 1 (the first two cases above), or

2. the current state g has already been visited on the current path from the root.

In case 1, the value is propagated upwards (figure 4.3 left) just as if it had been

computed again. Case 2 implies that a cycle has been detected. We must consider

two subcases: (i) all transitions between the two identical states have probability 1

(figure 4.3 middle), and (ii) there is at least one transition between the two states

whose probability is not equal to 1 (figure 4.3 right). Scenario (i) means that N(g) is

0, since no non-satisfying path can be reached from g, and 1(g) is set to 0. In scenario

(ii), N(g) can only be 0 (if no non-satisfying path can be reached from g) or 1 (if

at least one non-satisfying path can be reached from g, this means that each infinite

path starting at g is non-satisfying with probability 1). 1(g) is thus set to 0/1.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: Outer DFS Scenario

If 1(g) is 0/1 and N(g) > 0 when the outer DFS has finished searching the subtree

rooted in a state g , we can conclude that the final value of N(g) must be 1. The

difference 1 — N(g) must be propagated backwards along the path. It is important to

note that 1(g) =0/1 and N(g) = 0 on the other hand does not imply that the final

value of N(g) = 0. Figure 4.4 shows a situation where N(g) = 0 ,1(g) =0/1 after the

subtree rooted in g has seen searched, but the final value of N(g) is not necessarily

0. This value can be either 0 if no no-satisfying path can be reached from state h, or

1 if at least one non-satisfying path can be reached from h. Note that the algorithm

does not “miss” any non-satisfying paths — they will be detected during the search

of the subtree rooted in h, and N(h) will be correctly set to 1.

The algorithm stops when the entire tree rooted in go has been searched. N(go)

is then the measure of paths that do not satisfy / , and conversely, 1 — N(go) is the

probability that / is satisfied.

4.3.3 Example

We illustrate the algorithm with the simple 1-process juggler example from sec­

tion 3.3.1. Figure 4.6 shows part of the depth-first search tree for the juggler example

with n = 3. The property we want to check is / = ->Ba lLi , i.e., we claim that B alLi

is never sent. The probability of this being satisfied is, of course, 0. Figure 4.7 shows

how the algorithm operates on this search tree.

In part (a), the outer DFS starts at the root node (named DFSl in the figure) and

descends to node DFS2 and then to node DFS3. From node DFS3, the inner DFS

determines that the occurable event BalLi does not satisfy / . The subtree rooted

at DFS4 is removed by the inner DFS, and its measure — 1 — is propagated up the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / Algorithm checkEL (outer DFS)
/ / global constants: TPTS M, formula /
/ / call as: outer_dfs(<7o, <?o);
/ / *fob] will contain the measure of paths that do not satisfy / .
outer_dfs(<7, path) {

i f 1(g) = 0 or 1(g) = 1 then
propagate 1(g);
return;

e lse i f g visited earlier in path then
i f all probabilities = 1 then 1(g) := 0;
e lse 1(g) := 0/1;
return;

iV[#] := inner_dfs(<7);
propagate N[g]',
fo r each s ta te gr in M w ith pf = V(g , g1) > 0

outer.dfs(^', path g')
i f 1(g) = 0/1 and N(g) > 0 then

propagate 1 — N[g];
1(9) := i;
return;

}

Figure 4.5: Algorithm for Checking EL Formulas, Outer DFS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/wrnoiN
I DFSt J

INtT
c=p=1.000

DELETE DELETE
t»lp-OJ33 t-lp-0.333

DELETE
t» I [—0.333

BALLI[1]
DFS3

BALL2[11
DESS

BALU(I)
DFS7

BALLIt»l
p-1.000

BALL2t»I
p-1.000

BALL3t-l
p-1.000

DELETE(I01
DFS4

DELETE(101
DFS6

DELETEIIO]
DFS8

Figure 4.6: DFS Tree for Juggler Example, up to depth 3

path by the outer DFS. As a result, iV(DFS2) = iV(DFS2) := 0.333— Since node

DFS3 now has no more descendants, the outer DFS returns to DFS2 and descends

to node DFS5 and node DFS6 (part (b)). At this point, the outer DFS detects that

states DFS6 and DFS2 are identical. Not all transition probabilities between these

states are 1, so /(DFS2) is set to 0/1. The outer DFS aborts searching this path,

backs up to node DFS2 and descends to nodes DFS7 and DFS8 (part (c)). As in part

(b), it detects that DFS8 is identical to DFS2 and sets /(DFS2) to 0/1 (which in this

case is redundant). When the outer DFS returns to state DFS2 (part (d)), the entire

tree rooted in DFS2 has been searched. Since iV(DFS2) is 0.333 and /(DFS2), the

final value of AT(DFS2) must be 1. Therefore, iV(DFS2) is set to 1 and the difference

between the old and new values (0.666...) is propagated up the path, resulting in

iV(DFSl) being set to 1.

4.3.4 Proof of Model-Checking Algorithm

Our algorithm works by successively removing sets of infinite paths (i.e., subtrees)

from the search tree and adding the measure of each removed set to N(go). It is not

obvious that the combination of outer DFS and inner DFS correctly calculates the

measure of all paths that do not satisfy / . Consider the scenario in figure 4.8, for

instance: there is a non-satisfying path reachable from both g and h, but the ODFS

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INITIO]
DFS1 _

INITIO]
DFSI

DELETE! IOn ,=u"
^ D f S z ' y ^ 0-333DELE I1[IOjYff=g.J33

— DFS2 y .

BALL2[in
 ̂ '

Tba lut*lp-1.000

BALL1II]
^DFS3>

pSTeeo.
DELETE! lOf
s . DFS6 >

DELETE! 10]
n. DFS4 V

(c)
N=0.333INITIO]

DFSI

DELETE! 10]) l-Ofl
N=0.333

BALL3(i]

BALL3

p>i.oao

DELETEI10]

(d) INITIO]] f f s l
DFSI

DELETE! IO]J/= /
DFS2 J 'A f e /

Figure 4.7: EL Model-Checking Example

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T 1 - n o n - s a t is f y in g fragm ant

Figure 4.8: Algorithm Scenario

is aborted first at the lower g and then at the lower h. We need to show that the

measure of the non-satisfying paths is somehow added to N(go). More precisely, or

aim is to prove the following

T heorem 1 For a TPTS M and an EL formula f , the model-checking algorithm

This section has three parts:

• first, we make the notion of “removing paths” more precise

• we then prove a simple lemma about the correctness of the /()-values as com­

puted by the algorithm

• finally, we proceed with the actual proof of the theorem

Note that thoughout this section, we ignore any errors that may be intro­

duced due to hash collisions, i.e., we assume that no hash collisions occur

because the hash function is perfect and there is ample available memory.

To make the notion of “removing paths" more precise, consider an infinite path p

that is non-satisfying. By definition, there is i and j such that

removes a path p = go g\ ^ . . . from the DFS search tree of M if and only if

there are i , j such that e* \£PiJ f , where Pij = g< gj is a finite subpath

of p.

and

P i j — 9i

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a finite subpath of p ,j with e» \^PiJ f ■ Only the finite fragment p ,j is needed to

determine that p ^ / . Recall that a subtree of the global search tree contains an

infinite path if the entire path except for a finite prefix is in the subtree. When we

write “pij is removed", we mean that a subtree containing the set of infinite paths

that contain Pij is removed from the global search tree, and its measure is added to

N(go). Similarly, when we write that an infinite path p is removed, we mean that a

subtree containing p is removed. In our algorithm, a subtree rooted in a node g can

be removed either by the IDFS (which does so by marking g) or by the ODFS (which

can set 1(g) = 1).

There is nothing to prove for the IDFS, the algorithm is straightforward and

generates all paths starting at a given node g to find the ones on which the first event

does not satisfy / . To show the correctness of our complete algorithm we first show

that the J()-values calculated by the model are correct.

Lem m a 1 I f 1(g) = 0, then all infinite paths starting at g satisfy f . I f 1(g) — 1,

then the measure of infinite paths that start at g and do not satisfy f is 1.

Proof. An inspection of the inner and outer DFS algorithms shows that 1(g) = unknow n

initially for all g, and that 1(g) can only be changed to 0 or 1 by the ODFS.

1(g) can be set to 0 only if a satisfying cycle starting at g is detected such that all

transitions of the cycle have probability 1. This means that an infinite path reaching

g can not have a non-satisfying fragment, and 1(g) must therefore be 0.

1(g) can be set to 1 only if a cycle starting at g is detected and at least one

non-satisfying fragment is reachable from g. The cycle is part of a strongly connected

component (SCC), and because all SCCs are required to be bottom SCCs (BSCC,

section 3.3), part of a BSCC. Thus, the non-satisfying fragment is part of the BSCC

as well, and every infinite path reaching g reaches the non-satisfying fragment with

probability 1. This means that all infinite paths going through g are non-satisfying.

□
We are now ready to proceed with the proof of theorem 1.

Proof, (i) We show that if there is a path p ^ = p* . . . 9j-i 1 9j, such

that e,- / , then p,-j (and thus p) is removed by the algorithm. Our proof is by

induction on the length i of the path from the initial state po to pt. The base case

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!,T

U'5/ gj • J

Figure 4.9: Proof of Algorithm, Part 1

distance = i CT ft

gi

i ^ N

g,

g » gi

gj

g jl

distance <i

Figure 4.10: Proof of Algorithm, Part 2

i = 0 (i.e., go = <&) is obvious because the IDFS, if started at <70, will detect that

ei ftpij f remove p ^ .
Induction Step. If the ODFS visits <&, then Pij will be removed by the IDFS. If

the ODFS does not visit git this can be for three reasons:

1. a subtree that contains Pij was already removed by the IDFS

2. a subtree that contains ptJ was already removed by the ODFS

3. a cycle was detected by the ODFS in the path from go to gt.

There is nothing to show in the first two cases. Case (3) is depicted in figure 4.9 left.

The states gk and g'k are identical, indicating a cycle and preventing the ODFS from

continuing the search at gfk. Since p, is reachable from g'k, it is also reachable from

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gk (shown as g'{ in figure 4.9 right) on another path p'. Now, if the ODFS visits g[

on the other path, there is nothing left to show. Suppose that £ is not visited by

the ODFS. As before, there are three possible reasons why the ODFS was aborted

between gk and pj:

1. a subtree that contains pj • was already removed by the IDFS

2. a subtree that contains p jj was already removed by the ODFS

3. a cycle was detected by the ODFS in the path from go to g[.

Again, there is nothing left to show in the first two cases. In case (3), we have the

situation shown in figure 4.10 left and — slightly redrawn — in figure 4.10 right. This

is the same situation as in figure 4.10 left, except that the distance from the root go

to g[is less than i. By the induction assumption we know that a subtree containing

ptj is removed. The root gm of this subtree is on the path from g0 to g\. If the gm

is below gk, then I(gk) will be set to 1 when the ODFS returns to gk, and Pij will

be removed. If, on the other hand, gm is above gk, then is in gm's subtree and

therefore removed.

(ii) We now show the other direction, i.e., if a path p is removed by the algorithm,

then p has a finite subpath p ^ = gi . . . gj-i g^ such that e* \£PiJ / . We

observe that paths can be removed either by the IDFS or by the ODFS. The IDFS

is straightforward. As for the ODFS, it can remove p by setting I(gk) = 1 for some

node gk on p. By Lemma 1, this implies that all paths going through gk — including

p — are non-satisfying. □

4.3.5 Implementation

Like our basic search algorithm, the implementation of our EL model-checker makes

heavy use of Holzmann’s bitstate hash tables without collision detection. Two tables

are used: one that stores the I()-values of all states, and another to mark the subtrees

that were removed by the IDFS. Storing the f()-values takes two bits per state and

is basically not different from the standard bitstate hashing method — a state’s hash

value is used to index a two-bit entry in the hash table.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r - IDFS starts here

A - removed subtree

Figure 4.11: Removal of a Subtree

Using a hash table to mark removed subtrees requires a little more thought. An

important realization is that when a subtree rooted in a state g is removed by the

inner DFS, then it is only removed from that particular location in the global search

tree. Figure 4.11 illustrates why this is the case. In the figure, the IDFS starts at

node h and removes the subtree rooted in g. The reason for this removal is that any

path that goes through h and g is non-satisfying. However, if the state g re-occurs

elsewhere in the search tree there is no reason to believe that it is preceded by a state

h in the same way it is at this location in the search tree, and the subtree rooted in

that g must still be searched.

We solve this problem by computing the hash values for the roots of removed

subtrees using the entire path from the global root to the root of the removed subtree

— this ensures that identical global states will hash to different locations (with a

residual probability of error). The bit corresponding to the hash value is set to 1

indicating that the subtree has been removed and should not be searched. A simple

trick can make this removal of subtrees much more reliable: when the outer DFS

encounters a marked subtree and backs off, the subtree is un-marked. This is possible

because the marker is no longer needed - the outer DFS will never be in this part of the

search tree again. However, removing unnecessary markers like this greatly reduces

the probability of an un-marked subtree being recognized as a marked subtree.

4.3.6 Optimized Handling of Cycles

The model-checking algorithm in the previous section is designed to make efficient use

of memory by storing only a minimum amount of information per visited state. The

cost of this is that states often need to be visited several times, thereby increasing the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

search time. This increased search time is especially significant in the case of cycles.

Consider for example the TPTS sketched in figure 4.12 (left). States p, h, k of the

TPTS are on a cycle, and there are two paths pi, P2 from h to k. The corresponding

search tree is in figure 4.12 (right). The DFS starting at g first takes path pi from h

to k and goes on to reach state g, which results in the cycle being detected, and 1(g)

is set to 0/1. Then, the DFS takes path P2 from state h and reaches state k. In its

basic form, the model-checking algorithm above would continue searching the path

from k to g for a second time because the search path can only aborted at a state k

if N(k) is known or if k has already been visited on the current path from the root g.

We propose a simple optimization that reduces the search time in such cases at

the expense of increased memory use. The idea is based on the observation that once

a cycle has been detected, the states that are part of the cycle do not need to be

visited again as long as the outer DFS is still in the subtree that contains the cycle.

In figure 4.12, this means that any state that is on the path between the two p’s need

not be visited again while the outer DFS is in p’s subtree: any such visit would again

either lead to another state p or stop before reaching another state p. To implement

this optimization, we simply mark all states between the two p’s by setting their

/()-values to 0. Once p’s subtree has been searched, the /()-values of the states of

the cycle are either set to 1 (if 1(g) = 1) or reset to u n k n o w n . The marking of the

cycle with /() = 0 can be done by traversing the current path backwards; in order to

be able to unmark the cycle after searching the subtree rooted in p, however, we need

to save it in some data structure. This results in increased memory use, especially

when the cycles are very long or when there are many cycles in the same subtree. In

our experiments (chapter 6), the benefits of the optimization generally outweighed

the costs by a large factor.

4.3.7 Combining Model-Checking with Truncated Searches

Section 4.2.2 describes how the basic state space search (without model-checking)

can be limited by depth, time or probability. To combine model-checking with such

truncated searches, we first need to examine what the “measure of satisfying paths"

means in the context of truncated searches. All paths in a truncated search are finite

and have a probability which is the product of all transition probabilities along the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: Cycle Handling Scenario

path. The measure of satisfying paths is the sum of the probabilities of all paths that

satisfy an EL formula / . So, in the case of a time-limited search with threshold t,

the measure of satisfying paths is the measure of all paths with time-length < t that

satisfy / .

Using our model-checking algorithm in the limited search case presents us with

problems because the algorithm assumes that all paths are infinite — this assumption

is used in the way that cycles are handled. Therefore, when performing a truncated

state space search, the model-checking algorithm must disable cycle-detection and

search paths until the limit (given by depth, time, or probability) is reached.

We now consider the time-limited search as an example; the probability-limited

and depth limited searches are analogous. Since the search tree a protocol is typically

exponential in t, simply searching the entire tree is inefficient, and we want to avoid

re-visiting states as much as possible. In the time-limited search without model-

checking, an array, indexed by the hash value of a state, indicates the smallest t for

which a subtree rooted in that state has already been searched for errors. If the state

is re-visited with a greater t than that given by the array (indicating that the current

state is lower in the search tree), the state need not be re-visited, because the subtree

rooted in the current state is included in the subtree that was already searched. If,

on the other hand, the state is re-visited with a smaller t than that given by the array

(indicating that the current state is higher in the search tree), then the state must be

re-visited because the search tree rooted in the current state is larger than the one

searched before.

To extend this approach to model-checking a formula / , we must consider how

the depth of a state affects its /()-value. Recall that the 1(g) for a state g is either 0

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no non-satisfyin
non-satisfying P8**15 =̂0 non-satisfying
paths /= / paths

Figure 4.13: Re-visiting States in Limited Searches

time-
limited

probability-
limited

depth-
limited

7 = 0 smallest t largest p smallest d
1 = 1 largest t smallest p largest d

Table 4.1: Hash Array Contents for Limited Search

(meaning that all paths starting at g satisfy /) , 1 (meaning that none of the paths

starting at g satisfy /) , 0/1 (meaning that g is part of a cycle), or UNKNOWN (the

default).

Now, in a time-limited search, assume that the subtree rooted in g is searched,

all paths starting at g are found to be non-satisfying, and 1(g) is set to 1 as a result.

The situation then is similar to the case without model-checking: if the state g is

re-visited with a lower t (higher in the tree), then the subtree need not be searched

again because all paths starting at this g will inevitably be found to be non-satisfying

as well. If the state g is re-visited with a higher t (lower in the tree), the subtree

needs to be searched again because paths starting at the new g are shorter an are

non necessarily non-satisfying. Figure 4.13 (left) illustrates this reasoning.

This observation needs to be reversed for the case 1(g) = 0 : if g is re-visited with

a lower t (higher in the search tree), then the subtree in g needs to be searched again;

and if g is re-visited with a higher t (lower in the search tree), then the subtree need

not be searched again (figure 4.13 right). Thus, our hash array needs to indicate for

each g the “best” position for which a subtree rooted in g has been searched already;

this can be either the smallest t (if 1(g) = 0) or the largest t (if 1(g) = 1). Table 4.1

summarizes what the array’s contents for the different types of limited searches.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Approximate Algorithm: Time Intervals

Recall that in our process model, nondeterminism is expressed by the output function

O : T -»■ 2aY of a process which assigns a set of timed output event sets to each

transition t € T, and by the probability function P : T x 2Y —> [0,1] which assigns a

probability to each output event set of a transition.

A very common form of nondeterminism in protocol specifications is that of time

nondeterminism: an event is specified to occur not with a deterministic delay but

with lower and upper delay bounds. In terms of process transitions, this type of

nondeterminism is specified with output event sets containing single events that have

identical event types and whose delay values form an interval of N. We call such an

event set {e = (y, t)\t 6 N° A imj„ < t< tmo*} an event interval. It can be compactly

represented as a pair E = (y, [tmm> tmax]), meaning that an event of type y will occur

with a delay of between fmtn and tmax, inclusive. We define type(E) := y, start (E)

:= tmini end(E) := tmax.
When the event intervals are large relative to the indivisible time units, the TPTS

obtained by directly applying the definition in section 3.3 becomes very large, and

model-checking becomes very expensive. In the basic algorithm, the number of tran­

sitions from a state is equal to the number of time units in the event interval. In

this section, we discuss a method of dealing with event intervals more efficiently. The

description is closely based on the TCSM model from [56, 62], except for our method

of assigning probabilities to transitions. For a protocol (M, Z), we describe a way of

obtaining a TPTS that can be smaller than that obtained by the applying the defi­

nition in section 3.3. Let M = {M i,. . . , M„}, M,- = (Si, so,„ Tit Ni, Oi, Pi), be a set of

processes, and Z = { z i , . . . , Zm} be the initial events. First, we define the notion of a

global state interval:

Definition 4 (Global State Interval) A Global State Interval (GSI) g consists of

the individual process states Si € 5,- and a set E of event intervals (the event interval

list): g = (s i , . . . , s n, {Ex,. . . , Er}).

The idea is to construct a TPTS whose nodes are global state intervals (as opposed

to global states in the basic algorithm). Instead of executing events, we execute

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Et E2 E3
I-------------------- 1 ..J ,J

5 /12 . ••• /w

Figure 4.14: Recalculation of Event Delays

event intervals and subtract the time of the executed interval T' from the times

of each remaining interval T using the interval subtraction operator ©: T 0 T ' :=

\max(Hmin - tmax, Q)),max(t'max — tmin, 0)]. The difference between the two intervals

represents the minimum and maximum possible delay between the executed event and

the remaining event. If the output events resulting from the execution of the event

form an event interval, the new event interval is added to the list of event intervals;

if not, the algorithm proceeds like the basic state space search.

The list of event intervals alone is not sufficient to preserve the timing constraints

between events, as figure 4.14 illustrates. In this example, an event E\ is scheduled to

occur with a delay of between 5 and 10 time units. Events E2 and E3 are scheduled to

occur with delays of 12 and 14 time units, respectively. When event Ei is executed,

the delays of events E2 and E3 are recalculated to be 12 © [5,10] = [2,7] and 14 © [5,10]

= [4,9], respectively. Based on these intervals, it would be possible for event E3 to

occur before event E2, something that was not possible before event E2 was executed.

To preserve timing constraints between events, a timing constraint matrix (TCM)

is used in [56, 62]. The timing constraint matrix contains the timing constraints

between any two events in the event list: entry (i,j) of the matrix is start(Ej) -

end(E'i). Thus, entry (i , j) can be interpreted as the minimum number of time units

that must elapse between events i and j , and entry —(j, i) = — (start(Ei) —end{Ej))

= (end(Ej) —start(Ej)) can be interpreted as the maximum number of time units that

can elapse between events i and j . An event Ej can not occur as long as there is an

i such that entry (i,j) is positive (event Ej is constrained from occurring).

The mature event of an event list is an event interval with the earliest end time. T-

wo event intervals overlap if either event can occur first. The occurable event intervals

are the event intervals that overlap with the mature event and are not constrained by

the TCM. We now construct a TPTS (G , Go, V , T , S) that uses these concepts. This

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TPTS departs from definition 1 in that transitions can be labeled with time intervals

instead of single time values. In terms of the model-checking algorithms, this is not

a significant change because a transition labeled with a time interval can be treated

as a set of transitions, each labeled with one element of the time interval.

The states (g, c) 6 G of the TPTS consist of a GSI g and a TCM c. The initial

GSI go is (s0,i , . . . , So,n> {(zi> 0) , . . . (z*,, 0)}): all processes are in their initial states

and the event interval list is the list of the initial events scheduled at time 0. The

initial TCM ^ i s a n m x m matrix filled with zeros (since all events are scheduled at

time zero, the minimum and maximum time between any two events is 0). We show

how T and £ are obtained. Let

• (9. c), g = (*i,. . . , s„, {E i , . . . , £ m}>, c = (c)jj be a state of the TPTS,

• Ei = (yit fc. be an occurable event interval in (g, c),

• Mj = (Sj, soj,Tj, N j,O j, Pj) be the destination process of Ei,

• t = (Sj,yi) 6 Tj (yi be an occurable event type in state Sj of process Mj),

N(t) = s'j (s'j is the destination state), and Oj(t) = {Ax,. . . , Aj} (the output

event sets).

Then, a successor GSI g' and a successor TCM d are constructed as follows:

1. Truncate the time of the executed event Ei to the end time of the mature event

if the priority of Ei greater or equal to the priority of the mature event, and

truncate the end time of Ei to one time unit before the end time of the mature

event if the priority of Ei less than the priority of the mature event. This is

because the time of the executed event can not be later than the end time of

the mature event. If the priority of the executed event Ei is less than that of

the mature event, then it can not occur at the end time of the mature event.

2. Recalculate the time intervals of the remaining events. To calculate the mini­

mum time s between the executed event Ei and a remaining event Ej, consider

that

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• s > 0 if the priority of Ei is greater than the priority of Ej and s > 1 if the

priority of Ei is less than the priority of Ej (if Ei has a lower priority than

Ej and Ei occurs first, then Ej can not occur at the same time as Ei).

• s > start(Ej) — end(Ei) if start (Ej) > end(Ei).

• s > c[i,j\;

Thus, s = max(0, start(Ej) —end(Ei), c[i, j]) if the priority of Ei is greater than

the priority of Ej and s = max(1, start(Ej) — end(Ei), c[i, j]) if the priority of

Ei is less than the priority of Ej. To calculate the maximum time e between

the executed event Ei and a remaining event E j, consider that

• e > s

• e < end(Ej) — start(Ei)

• e < -c \j, i]

Thus, e = max(s,min(end(Ej) — start(Ei), — c[;,t])).

3. Remove Ei from the event list, and remove row i and column i from the TCM

c. If the set of output events Oj(t) = {Ax,. . . , Aj} is an event interval A, add

the new event interval to the event list and calculate the new TCM entries. If

Oj(t) is not an event interval there are I reachable GSIs, each containing the

events of one A*, k G 1 , . . . , I, and a TCM entry for each new event G A*.

4. Replace Sj with s'j

We set T((g,c),(g',cf)) = titTnax}, and £((g,c),(g',cf)) = yt. To complete the

construction of the TPTS, we need to define a probability distribution function V,

i.e., we need to assign a probability V((g, c), (g1, c!)) to each transition of the TPTS.

Since each node (g, c) of the TPTS represents a set of protocol global states, it is

reasonable to use the following general definition:

. | {no. of global states € (g, c) in which Ei occurs first} | . .P(Et) -- (4.1)

In other words, the probability of an event interval of type y being executed from a

node (g, c) is proportional to the number of global states in (g, c) in which an event

7 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EZ

x x / x
x / x X
/ x x x
X X X X
X X X X
X X X X

EZflm

2* *

ElJ I

Figure 4.15: Event Lists and Event Intervals

of type y occurs first. Figure 4.15 shows an example event interval list with two event

intervals E x and £ 2. This event interval list represents 4 x 6 = 24 event lists (marked

with ‘x’ in the figure) with two events each, and if we assume that the events in the

event intervals have equal probability, then all 24 event lists have the same probability.

The event of type type(E\) occurs first in the event lists above the diagonal, and the

event of type type(E2) occurs first in the event lists below the diagonal. The sequence

of events for the event lists on the diagonal depends on the relative priorities of Ex

and E2; here, we assume that E\ has a higher priority than £ 2, and therefore Ex

occurs first in the event lists on the diagonal. The probability of Ex occurring first,

therefore, is ^

If only one node (/ , d) is reachable by executing Ex, then

If the set of output event sets Oj(i) = A x, . . . , Ai obtained by executing Ei is not an

event interval, then I nodes (g'k, <4), k 6 {1, . . . , /} , are reachable by executing E j.

The probability of reaching node (gk, dk) that contains the new events from event set

Ak is

V{(g,c),(g'k,dk))= P (E i) x P j (t,A k)

In assigning probabilities to transitions, we make several assumptions that simplify

the computation at the expense of accuracy. Our basic simplifying premise is that all

events in an event interval have the same probability, i.e., the probability distribution

in an interval is uniform. This is only an approximation, even if the probability

distribution in event intervals is always uniform when they are generated by processes:

if we generate a successor GSI by executing the event interval E x in the GSI of

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

figure 4.15, the successor GSI must contain those event lists in which Ei occurs first,

and the times of event E2 in the successor GSI range from 5 to 7. However, the event

probabilities in the interval [5,7] are no longer uniformly distributed because there

are, for instance, 3 event lists in which E2 occurs with delay 7 and only 1 event list

in which E2 occurs with delay 5.

To further simplify the calculation of transition probabilities, we ignore the effect

that the TCM c has on the set of global states represented by (g, c). Thus, we have

D/ ^ N | {no. of event lists 6 Ei x E2 x . . . Emin which^occurs first }|
(° “ I E l x E 2 x . . . E m\

Assume, without loss of generality, that the event intervals are indexed in decreasing

order of priority, and set = 1 if start(Ei) < I < end(Ei) and 0 otherwise. If

the executed event Ei occurs at time k , then the number of possible delays that a

remaining event Ej can have is
end(Ej)

E EU
l=k+1

if j < i, i.e., the priority of Ej is greater than that of Ei, and

end(Ej)

E Eit
l=k

if j > i, i.e., the priority of Ej is less than that of Ei. Thus the number of global

states in which Ei occurs first and occurs at time k is (ignoring the effect of the TCM

c)
i—1 end(Ej) m end(Ej)

i i (e Eu) n < e e »)
j=l l=k+l j=i+1 l=k

Because k ranges from start(Ei) to end(Ei), the probability of event Ei occurring first

is approximately

Eend(Bi) r r i—1 (Tr~'end(.Ej) j? \ rrm) r> \
k=start(Ei) llj=i+l\Ll=k

I E l x E 2 x . . . E m\

We use a simple lossy channel example to illustrate the event interval algorithm. The

protocol has three processes, a sender, a channel and a receiver. Following an I N I T 5

event, the sender transmits a message MSGc to the channel with a delay of 8 to 12

time units. The channel has two states: “good” and “bad” . It starts in the good state

and alternates between the two states, spending from 5 to 10 time units in each state;

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r r ^ ^ r̂ĵ iMscjurSj.i-p' S v— iLoss atiij v .— s

Figure 4.16: Sender (left), Channel (middle), Receiver (right) Processes

LOSS_C

sender
MSG_C \ / MSG_R

channel receiver

0 0
GOOD_C BAD_C

Figure 4.17: Event Exchange Diagram for Lossy Channel Protocol

events GoODc and BADc trigger the state changes. When the channel receives a

MSGc event while in the good state, it sends a M sg * event to the receiver with delay

10 and probability 0.9 (indicating a successful transmission), and a LosSc event to

itself with delay 1 and probability 0.1 (indicating a message loss). These probabilities

are reversed when the channel is in a bad state — a message is lost with probability

0.9 and successfully transmitted with probability 0.1. The state transition and event

exchange diagrams for the protocol are in figures 4.16 and 4.17, respectively.

After the execution of the two initial events, the event interval list contains the

two events MSGc and BADc scheduled with delays [8,12] and [10,15], respectively,

and the channel is in its good state. The events and the timing constraint matrix are

displayed in figure 4.18. In this figure, we use shortcuts to compactly represent the

process states and the TCM. The states of the three processes are represented as a

three-digit number indicating the state of the sender, channel and receiver. The rows

and columns of the TCM are labeled using the event priorities which are assigned as

follows: In its — 0, Initc — 1, MSGc — 2, M sg * — 3, G oodc — 4, B adc — 5,

Lossc — 7.
Both event intervals in figure 4.18 are occurable. The two event intervals represent

(12—8+1) x (15—10+1) = 30 possible event lists (in fact, these event lists are exactly

those displayed in figure 4.15). Among these event lists, there are 6 in which event

Badc occurs first, and 24 in which MSGc occurs first. Thus, P(B adc) = J, = 0.2

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.18: A Global State of the Lossy Channel Protocol

and P(MSGc) = §5 = 0.8. When event MSGc is received by the channel, it can

generate one of two events: MsGr with probability 0.9 and Lossc with probability

0.1. There are therefore three reachable GSIs. The entire TPTS for the protocol is

displayed in figure 4.19.

4.5 Summary

Our approach allows the modelling of probabilistic systems at two levels: a low-level

and a high-level. The low-level model — timed probabilistic transition system (TPTS)

— is based on discrete-time Markov chains; the algorithms described in this section

operate at this level.

The three main algorithms are a plain state space search similar to Holzmann’s

algorithm in S p in , a novel algorithm for calculating the satisfaction probability of

EL formulas with respect to a TPTS, and an approximate algorithm for efficiently

dealing with large time intervals. The algorithms make heavy use of hash tables.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INXT_S(0|
* 0 .0 1 0 .1 5)

BAOjCtIO.131
MSO_Cl«.t3|

MSO.et<Ut
OOD_.CttO.t3)

tOOD.O*»t5|
MSOJMIO)

OOOD.O 3.131
LOSS.OD

M SO JtlM I
o o o o .c ito .ts iLOSS.C

MSOJtlOO)
BAD.CttO.tS)

o o o o .c t t s i

OOOO.CttOwtSlOOOD.CtlO.13)

Figure 4.19: TPTS for Lossy Channel Protocol

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

The C + + Library

5.1 Overview

We have implemented a prototype validator/simulator as a C ++ library similar to

SimKit [44] and S m u r ph . The basic steps that protocol designers need perform in

order to write a protocol specification using our library are

• define and implement appropriate subclasses of val.process. An important

part of this is the definition of a perform function for each process type — this

function implements the successor relation for the process

• write a global roo tO function that instantiates the protocol components and

creates the initial events

• write a global repo rt 0 function that prints out a final report for simulation

runs

• write an EL formula and compile it into C ++ using the EL-to-C++ compiler

el2cc

The resulting C++ source files are compiled and linked with the validator/simulator

library l ib v a l is .a to yield the validator executable (figure 5.1). This executable can

be run in validation mode or in simulation mode, depending on the command line

parameters. This section is organized as follows: section 5.2 describes the C ++ class

interfaces that a protocol designer needs to understand in order to write specifications

using the library. Section 5.3 explains the two user functions roo t and repo rt. The

EL-to-C++ compiler and its use are described in section 5.4. Finally, section5.5 lists

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

< C + + s o u r c e > . c c
< C + + s o u r c e > . h < E L £ o r m u l a > . e l

I
e l 2 c c

1
C - t - + - c o m p i l e r

l i n k e r

e x e c u t a b l e v a l i d a t o r / s i m u l a t o r

Figure 5.1: Building a Validator

and explains the command line parameters that influence the run-time behaviour of

the validator executable.

5.2 User Classes

5.2.1 val.time

The val-tim e class is used to represent time and time intervals in the model. The

main methods of this class are

• val-tim e () is the constructor; there are three overloaded versions of this method:

— val-tim e (void), which instantiates an object with both start and end

time 0;

— val-tim e (in t t) , which instantiates an object with start and end time t;

and

— val_time (in t s , in t e) which instantiates an object with start time s

and end time e.

• in t s t a r t () returns the start time of the time interval.

• in t endO returns the end time of the time interval.

The stream operators « and » can be used to output time intervals. The operators +

and - can be used to perform addition and subtraction of time intervals, respectively.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 val.event

This is the class that represents events in the model. The main methods o f this class

are

• v a l_ e v e n t(in t ty p e , v a l_ p ro cess * d e s t , v a l-t im e tim e , in t dist=VAL_UNIFORM)

is the constructor. The are parameters are

— in t ty p e : the event type

— va l_p rocess * d e s t : the destination process of the event

— v a l-tim e tim e: the delay of the event

— in t d i s t : this parameter indicates the probability distribution of the

values in the interval. Possible values are VAL.UNIFORM (the default) and

VAL-EXP.

• in t ty p eO returns the event type.

• v a l-p r o c e ss * d est O returns the destination process.

• in t d i s t O returns the probability distribution.

Event objects are created either at setup time (in the ro o t 0 function or by processes

in response to other events. They are then passed to the kernel using the add_event ()

and newevents 0 functions, respectively. The kernel then may treat the event as more

than one event if:

• The event tim e is a tim e interval and the approximate event interval processing

algorithm (section 4.4) is not enabled. In this case, the only supported distri­

bution is VAL-UNIFORM, and the event is treated internally as n different events

(where n is the number of values in the interval), each with probability £.

• The event tim e is a single value, and the probability distribution is VAL-EXP.

In this case, the given tim e value is taken to be the mean j o f the exponential

random variable, and the exponential distribution / (f) = Ae-At is approximated

by a finite number m o f support points. If m = 1 (m is given by the command

line parameter -expapprox), then there is only one support point at t = j , and

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the probability of this point is 1. If m > 1, then the time interval [0, oo] is

partitioned as follows:

— the m-th interval is [£c, oo], where te is chosen so that f (t c) = y (y is given

by the command line parameter -maxexp and defaults to 0.01).

— the interval [0, tc] is divided into m — 1 equal segments to obtain the first

m — 1 partitions.

Figure 5.2 illustrates the procedure. For a finite partition [f4,£e]> we calculate

the probability p of obtaining a time within that interval with

p = f Ae~xtdt
J t.

and the conditional mean t of the interval with

t — - f Ate~xtdt
pJt*

For the final infinite partition [ic, oo], we use

p = 1 - f Xe~xtdt
Jo

and

t = -(1 - / A te dt)
p Jo

All these integrals can of course be obtained by evaluating a simple exponential

function. The result of these calculations is a set of m events with different times

and probabilities, but whose mean matches that of the exponential function.

When running a model in validation mode, the size of the state space depends

critically on m, and it is often advisable to use a small value. On the other

hand, high-fidelity simulation results can be still obtained by choosing a large

m (and small y) for simulation runs.

5.2.3 Kernel Classes

The kernel classes represent protocol global states and manage the execution of events

in a validator or simulator. There are three subclasses of the abstract val_gsi class:

val_sgs, val_agsi and val_sim. Which class is instantiated depends on the command

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.--

y...

I 2 • m-1 m-th partition

Figure 5.2: Approximation of Exponential Distribution

line parameters. The classes val_sgs and val_agsi run validations using the exact

algorithm and the interval approximation algorithms, respectively. If the model is

run in simulation mode, an object of the class val_sim is instantiated. The kernel

object is available to users as the global variable val_kernel. The main methods of

the va l-gsi class are

• void adcLevent (val.event ev) ;

Adds the new event ev to the initial global state. This function can only be

called from the rootO function.

• void neweventsC);

This function is called from the performO method of the process class and

is used to add event sets to the current global state. In effect, it implements

the output function O : T -> 22Y and the probability function P : T x 2Y —►

[0,1] of the process (see definition 2). Thus, by the time control returns from

performO, neweventsC) will have been called in order to define the set of

output event sets and the probability of each set that are generated in response

to the the input event. There are four overloaded versions of this function:

— void neweventsfint n, val.event* e l , double p i , . . .) :

Adds n event sets containing one event each; the probability of event set

ei is pi.

— void neweventsfint n, val_event* e l , . . .)

Adds a single event set containing n events. The probability of this set is

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 .

— void ne we vents (val_event_list n l)

Adds a single event set. The probability of this set is 1.

— void neweventsfint n, double p, val.event* e l , . . .)

Adds a single event set containing n events. The probability of this set is

p. If this function is used, it must be called repeatedly so that the sum of

all event set probabilities is 1.

• void dele te_event(in t type);

Removes events of the given type from the event list. This is a convenience

function because, strictly speaking, the process model from definition 2 does

not allow the removal of events. However, processes are free to ignore events of

any type, and thus, deleting events from the event list is equivalent to setting

a flag in the process indicating that events of the given type should be ignored.

5.2.4 val_process

An object of the val_process class represents a process in the probabilistic protocol.

The class is abstract and does not do anything useful by itself — protocol designers

must define subclasses of val_process that represent the specific process types that

occur in the protocol. The main methods of val.process are

• void performCint type)

This is the event handler of the process and is called from the main validation

or simulation engine. It is the most important method of the class because it

defines the transition relation of the process. The method receives the event

whose type is given by the parameter type, and can change the process state

and generate a set of new event sets as a response to the event. The kernel

function neweventsC) is used to pass new event sets to the kernel.

An important restriction in writing event handlers for processes is that the new

process state can only depend on the input event and on the old process state.

This means that random number generators and other global variables can not

be used by the performO method.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If an error is detected by the performO method, the variable E rror can be set

to a non-zero value — the kernel will then process the error (e.g., by stopping the

state space search and printing a trace) once control returns from the function.

• void save-sta te (void ^location)

This function saves the process state at the given memory location. The easiest

way to implement it is to simply memcpy the entire object; for example, if the

process class is sender, then one could use memcpy (lo ca tio n , (char *) t h i s ,

s izeo f (sender)) ;. Alternatively, a more sophisticated state saving function

could be used if, for example, part of the object never changes.

• void g e t-s ta te (v o id ^location)

This function retrieves the process state state from the given memory location.

Like the sta te_save() function, it can be implemented by a simple memcpy or

by using more efficient methods.

• in t s izeO

Returns the size of the process data in bytes.

• void lab e l(o s trs tream & buff)

Prints a short label identifying the current state. This is used for debugging

purposes.

• void dumpO

Dumps process data to standard output.

• unsigned in t hash(unsigned in t n)

This function returns a hashcode G [0.. . n —1]. It is important that this function

be implemented carefully so that the probability of unequal states hashing to the

same value is minimized. The hash values returned by the individual processes

are combined by the validation engine to yield a hash of the global state.

• in t observer () ;

This function returns 1 if the process is an observer, 0 if not.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.5 Random Variable Support

The prototype library offers some basic support for computing statistical properties

of random variables. There is a class for discrete random variables — val_rand_disc

— and a class for continuous random variables — val_rand_cont. The difference

between the two classes is that for continuous random variables, each value is assumed

to be associated with a duration. The main methods of the val_rand_disc class are

• val_randvar _disc()

This is the constructor. hist_max and h ist_ size are used to specify

• void update(double value)

Adds a new sample.

• double average0

Returns the current arithmetic average (expectation) of the random variable.

• double variance()

Returns the variance (2nd central moment) of the random variable. The stan­

dard deviation is the square root of the variance.

The methods of the val_rand_cont class are identical except for the update () func­

tion:

• void update()

Adds a new sample. There are two overloaded versions of this function:

- void update(double value, double duration)

Adds a new sample with its duration.

— void update (double value); Adds a new sample. The duration of the

sample is assumed to be the simulation time difference between the previ­

ous update and this update.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 User Functions

5.3.1 The root Function

This function is called at the start of a validation or simulation run and is the system

initialization function analogous to the mainO function in C. Typically, the root

function accomplishes four tasks:

• Parse command line parameters.

• Create processes.

• Connect processes to each other.

• Schedule initial event (s).

At least one process and one initial event must be created in order for a protocol to

be meaningful.

5.3.2 The report Function

This function is called at the end of a simulation run. It is not called after a validation,

and therefore, the user may supply an empty function if no simulations are expected to

be run. The main purpose if this function is to print out the results of the simulation.

5.4 The EL Formula Compiler el2cc

Event logic formulas can be written in a plain text file; the program el2cc takes

the text file and produces a C ++ function that creates the formula in an internal

representation suitable for the validator. This file must be compiled and linked to the

executable model.

el2cc accepts the following key words corresponding to EL operators: AND (A), OR

(V), NOT (->), X (O) and UNTIL [t] (£/-*). Atomic symbols (event types) must begin

with a letter and may contain numbers. These atomic symbols are copied directly

into the generated C ++ code — they therefore need to be #def ined somewhere in

the model source code. Event types are often indexed with one or more numbers,

and it is then convenient to use parts of the 32-bit integer event type for indexing

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

purposes. The C ++ operator « can be used for this purpose. For example, a file

containing

(NOT (0VER«12)+1) AND (NOT (0VER«12)+2) AND (NOT (0VER«12)+3)

corresponds to the EL formula -iOver^A -1OVER2A - 1OVER3.

5.5 Running the M odel

Once the model has been built and linked, it can be run in either validation mode or

in simulation mode. The list of supported command line parameters is:

• -approx

Runs the validator using the interval approximation (section 4.4). This is the

default and can be overridden by the -s in g le option.

• - b i t s n

Specifies the size of the bitstate hash table, n is the length of the hashes in bits,

i.e., the size of the hash table is 2n bits.

• -depth n

Runs the validator in depth-limited search mode, n is the maximum search

depth.

• -do t filename

Produces a graphical output of the state space in a format compatible with the

graph visualization package dot. This is option is useful for debugging very

small protocols, but should be used with caution because the amount of output

can easily become unmanageable.

• -dump

Produces diagnostic output: states and transitions.

• -expapprox n

Sets the number of intervals n used to approximate the exponential distribution

(section 5.2.2).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• -maxexp y

Sets the size of the interval used to approximate the exponential distribution

(section 5.2.2). The right edge of the interval r is chosen so that / (r) = y.

• -form ulap

Runs the validator in model-checking mode, p is the required measure of satis­

fying paths; the algorithm stops as soon as the measure of non-satisfying paths

exceeds 1 — p. To check whether all paths of a protocol satisfy the formula, p

should be set to 1. To calculate the measure of non-satisfying paths, p should

be set to 0 If this parameter is omitted, the model is run as a plain state space

search without model-checking.

• -ppaths

Produces diagnostic output: paths.

• -prob p

Runs the validator in probability-threshold mode, p is the minimum probability

threshold.

• -progress

Produces diagnostic output every 100 visited states.

• -rand n

Specifies the integer random seed for the simulation mode.

• -sim

Runs the model in simulation mode.

• -s in g le

Overrides the interval approximation algorithm (section 4.4), i.e., each node of

the constructed TPTS corresponds to exactly one global state of the protocol.

• -tim e t

Specifies a time-limited search with threshold t (in validation mode) or the

simulation end time (in simulation mode).

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• -unique

(Only used with the dot option.) Forces all visited states to be unique in the

search graph. This means that the graph represents the search tree.

5.6 Summary

The library l ib v a l i s . a is a C ++ library that enables protocol designers to imple­

ment a model of their protocol in C++. The model can then be run as a validator or

as a simulator. In validation mode, the program checks whether the model satisfies

a property expressed in the logic EL. In simulation mode, the program can be used

to obtain performance characteristics.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Examples

6.1 Overview

In this section, we describe a number of examples that we implemented using our

prototype validator/simulator. We present these examples with three main objectives

in mind.

First, we use the examples to study the behaviour of our validator under different

scenarios. Some of the questions we examine are

• How effective is the probabilistic search heuristic in guiding the search?

• How does the interval-based approximate algorithm (section 4.4) compare with

the standard algorithm?

• When the property to be model-checked consists of subformulas and conjunc­

tions (/ = / i A f 2 • • • / n)> is it more efficient to check / , or is it better to check

each subformula fi separately?

• How does the size of the state space vary when the number of intervals used to

approximate the exponential distribution is changed?

• How good is the ability of the system to detect errors?

One of our claims in this thesis is that the same model can be used for both

validation and performance evaluation by simulation. Therefore, our second objective

is to obtain performance results for the systems in our examples.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our third objective in this section is to show by example how simulation/validation

models can be implemented using our prototype library. Two types of graphs will be

used to illustrate our models: state transition graphs for each process, and an event

exchange diagram indicating which events are sent and received by which processes.

In some cases, we will also show some fragments of code.

We will not attempt to reach all these objectives for each of the subsequent ex­

amples; rather, each example will be used to illustrate those aspects of our valida­

tor/simulator that it seems best suited to illuminate.

6.2 M ultiprocessor System

We describe a multiprocessor system in which several processors compete for access

to shared memory. A similar example was used in [52] to demonstrate the stochastic

process algebra PEPA.

Each processor in the system alternates between a state in which it is “thinking”

and a state in which it accesses memory. A memory access can be either local or to

the globally shared memory. Local memory accesses present no problem. Accesses

to shared memory, on the other hand, need to be coordinated. A simple protocol

ensures that only one processor can access the shared memory at any one time:

before accessing the shared memory, a processor needs to send a request and receive

a reply. Once the access is completed, the processor must explicitly release the shared

memory.

The shared memory alternates between idle and busy states. If it receives a request

while in the idle state, it changes to the busy state and immediately sends a positive

reply to the requesting processor. It returns to the idle state when the memory is

released. Access requests that are received while the memory is in the busy state are

queued and processed in first-in-first-out order.

It is natural to use two types of processes to model the system: one process type

for modelling a processor and one process type for modelling the shared memory.

Figures 6.1 and 6.2 show the state transition diagrams for the two process types. We

only show the shared memory process for a 2-processor system, because this process

has more than 2n_1 states if there are n processors (this is a result of queueing

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wrr
[START_LOCJ(Tjll. 1-p

{START_SHRJ[Tjl}

STA RT_U XJ
|START_UOCJ(T_tl). l-p

(START_SHRJ[T_tll.p

REL.RESPJ
(STARTJJXr.iCTjII. l-p

(STA RT.SHRJir.il l.p

Figure 6.1: Process for Processor i

GETJIEQJJ ^ RELJtECL?
(G ETJlESP.2tl|M J {REL.RESP.3(t)M

REL_REQ_2
(REIJlESP^(t|»

C E IJtE S P JU lM

R£LJU*Q_l \
(REU.RESP.I[a \ GET.REQ.I

GET.RESPJUUM J

Figure 6.2: Shared Memory Process

access requests: each possible combination of requests is one state of the process).

Local memory access by processor i is modeled with the event types Start-LO C *

and E n d j l o c , . Global memory access is modeled using the event types S t a r t _ s h r iy

GET_REQi, GET-RESPj, End-SHR*, R e l_ r e Q i, R e l_ r e s p , . Communication between

the shared memory and any processor is assumed to take 1 time unit. Figure 6.3 shows

the message exchange diagram for this example.

Our model has 5 parameters: n, the number of processors; Tt,Tt,Ta, the times

spent in the thinking, local access and shared memory access states, respectively;

and ps, the probability that a memory access is to the shared memory. The time

parameters Tt and Ts may be constant, exponentially distributed with the given mean,

or may be given as intervals, in which case they are taken to be uniformly distributed.

We first conduct some plain state space search experiments to ensure that the pro-

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END_LOC, END_SHR,
START_LOCn STRRT_SHRa
END_LOC_ END_SHR

00 00
p r o c z . . . p r o c n

.

REL-RBQ1 R£L_RHQS
REL_RESP. REL_RESP_

GBT_RBQI
GET_R£SP.

m e m o ry GET_R£Qa
GBT_RESP_

Figure 6.3: Event Exchange Diagram for Multiprocessor System

tocol does not have errors like deadlocks and unspecified event receptions. Table 6.1

shows the size of the state space for various combinations of the parameters. The state

space increases with the number of processors n, time nondeterminism (setting delays

to [5,10] instead of 10) and the magnitude of Tt. Of these, the value of n appears to

have the most significant effect. No errors were detected in these experiments.

A basic temporal property that we want to check is that only one processor can

access the shared memory at one time. A processor i may access the shared memory

from the moment it receives a Get_resp,- event until it receives an Endjshr* event

(note that due to the delay incurred when communicating between memory and pro­

cessor, there is a delay between the time a processor receives an EnD-SHR,- event and

the time it receives the Rel_RESP, from the memory — we assume that a processor

will not access the shared memory during this delay). The EL formula
fl

f i := GETJtESPj -* (/ \ -iG ET_RESPj)t/-T*-m“ END_SHRj
j=i
m

specifies that once processor i is granted access to the shared memory, no other

processor is granted access until processor i stops using the shared memory. The

specification for all processors, then, is

i=l

We can either check for / , for each subformula fi or, arguing that the system is sym­

metric with respect to the processors, check only for one of the f i (say f i) . Table 6.2

shows the behaviour of the validator for these cases and two sets of parameters. We

see that — compared to table 6.1 — the state space is significantly larger due to

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n Tt Tt T, Ps no. of states
2 10 5,10 ;s,io 0.5 956
2 20 5,10 5,10 0.5 1444
2 40 5,10 5,10 0.5 2378
3 10 10 5,10 0.5 10545
3 20 10 5,10 0.5 14870
3 40 10 5,10 0.5 22732
3 10 5,10 10 0.5 11187
3 20 5,10 10 0.5 16327
3 40 5,10 10 0.5 22394
3 10 5,10 5,10 0.5 12801
3 20 5,10 5,10 0.5 20475
3 40 5,10 5,10 0.5 27538
4 10 10 5,10 0.5 86603
4 20 10 5,10 0.5 116008
4 40 10 5,10 0.5 140545

Table 6.1: Multiprocessor System State Space

n Tt Tt Ts Ps h h A h
2 20 10 10 0.5 189321 203952
2 40 10 10 0.5 1399597 1491703

Table 6.2: Multiprocessor System Model-Checking

the model-checking of the formula. The table also shows that although checking for

f i A /2 is more expensive than checking for just / i , the difference is not significant.

Our current implementation of the multiprocessor system satisfies / with proba­

bility 1. It is interesting to note, however, that our first implementation contained

a bug that was detected by the validation system. The error was in the way the

shared memory process responded to Rel_REQ events. If the buffer was not empty,

two events were sent: one G e t _ r e s p event to the first waiting request in the queue,

and a R el_RESP to the source of the R e l_ r e q event. The buggy code fragment was

val_kem e l->newevent s (2,

new val_event((MP_6ET_RESP«12)+src, Id2Proc [Buffer [0]] , 1),

new val_event((MP_REL_RESP«12)+src, Id2P roc[src], 1));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which resulted in the G e t _RESP event being indexed with the wrong value src. As

a consequence, this particular GET_RESParc was not followed by E n D-SHARED^ as

specified by / , and the sequence starting with GET-RESPjrc was reported by the

validation tool. The corrected fragment is

val_kernel->newevents(2,

new val_event((MP_GET_RESP«12)+Buffer[0] , Id2Proc [Buffer [0]] , 1) ,

new val_event((MP_REL_RESP«12)+src, Id2Proc [src] , 1));

We now use our model to analyze the performance of the multiprocessor system. The

load I on the shared memory caused by a processor i is the amount of time that

the processor would spend accessing shared memory if it did not have to share it

with other processors. We can calculate I as a function of the model parameters by

observing that the mean length of a cycle from the start of a thinking state to the

start of the next thinking state is

T t + P s Z 4 - (1 — Ps)Ti

(we ignore the communication overhead here). Of this time, the mean time spent

accessing shared memory is p3T3. Therefore,

j _______ PsTj_______
Tt + p$T3 + (1 - ps)Ti

The cumulative load from all processors is n x I. Note that this is only an upper

bound on the actual load, because the time that each processor spends waiting for

access to shared memory reduces the load. As a performance metric for the system,

we choose the ratio w of the time spent waiting for shared memory access to the

“working time”, i.e., time spent thinking and accessing local or shared memory [52].

Some values of w (averaged over all processors) for different scenarios are in table 6.3.

In figure 6.4, where we plot the system performance as a function of the load for

n — 3 and n = 5. Tt and Ti are fixed at 100, Ts is fixed at 80, and p3 is set to achieve

the desired load. The graph shows that w, although growing non-linearly, remains

reasonably small at 0.12 and 0.18 for n = 3 and n = 5, respectively, at a load of 0.6.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n Tt Tt Ts Ps w
2 100 110 150 0.2 0.0475556
3 100 100 100 0.1 0.0270736
3 100 100 50 0.8 0.271662
3 100 100 100 0.5 0.216942
4 100 50 150 0.2 0.181092

Table 6.3: Performance of Multiprocessor System

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

a>
Esa>c
*o
5
a>
E
a>c
a
S

0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

Figure 6.4: Performance of Multiprocessor System

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b r o a d c a s t c h a n n e l

s l a v es l a v e s l a v e

Figure 6.5: Collision Avoidance Protocol with 3 Users

6.3 Broadcast Channel Protocols

In this section, we examine two broadcast channel protocols: a collision avoidance

protocol [59] and CSMA/CD. We model a generic broadcast channel similar to the

one provided by S m u r ph . The channel is implemented as a single process. During the

initialization of the channel, a delay matrix giving the propagation delays between

each pair of attached is provided. The channel operates by receiving events from

any one attached station and sending a copy of that event to all attached stations

(including the sending one), using the values given in the delay matrix. To properly

model packet transmission and collision, attached processes must send two events per

packet: one that indicates the start of a packet (S o p) and one that indicates the end

of a packet (E o p). Then, a collision of packets at a receiving process occurs if (and

only if) two S o p events are received without an E o p event in-between. Note that this

channel model allows packets to pass through each other and still be received correctly.

In practice, more than two event types are required to model a broadcast channel

protocol. Both protocols in this section use two indexes to distinguish different start-

of-packet and end-of-packet events. The indexes i , j of an event type S o p ,-j or S o p ,j

have the following meaning:

• i: the intended destination station index.

• j : the destination process. This is not the same as i because the broadcast chan­

nel propagates events to all attached processes, not just the process representing

the intended destination.

6.3.1 Collision Avoidance Protocol

The first broadcast channel protocol we consider is a collision avoidance protocol

described in[59]. The operation of the protocol is straightforward: a dedicated station

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(the master) periodically polls the other stations (the slaves) in round-robin order. If

a slave has data in its buffer, it transmits it as soon as it receives the polling signal. If

a slave has no data to transmit, it ignores the polling signal. The master station starts

a timer whenever it polls a station. It polls the next slave in round-robin order if it

either determines that the current slave has finished transmitting, or if the timeout

expires indicating that the slave has nothing to send. For simplicity, the stations are

assumed to be equidistantly placed on a bus-shaped channel (figure 6.5), and the

buffer size at each slave is set to 15 packets.

The protocol is modeled using four process types: a master process, n slave pro­

cesses, n user processes and the broadcast channel process. The master process has

index 0, the slave and user processes have indexes 1 , . . . , n, and the broadcast channel

process has index n + 1. The user process periodically generates a data packet and

sends it to the attached slave process. The destination of a data packet is chosen

among the other user processes in the network with uniform probability. Figure 6.6

shows the process types and the events exchanged between them. The generation

of new packets by users i is controlled by event type N e w *. In response to a N E W j

event, user i sends a Send,-0- event to its attached slave process, where j is the index

of any of the other user processes. When slave i receives a data packet correctly, it

sends an event of type Rev, to its user.

The transmission of data packets over the broadcast channel is modeled with two

classes of events, SoDtJ and E od .j, that indicate the start and the end of a data

packet, intended for station i and received at station j , respectively. Similarly, polling

packets are modeled with the two events SoPij and EoPjj. Our implementation has

5 parameters, see table 6.4. All time, packet size and distance values are expressed

in indivisible time units. The packet interarrival time at each user is exponentially

distributed with mean a.

We first check for collisions and buffer overflows. The slave processes are pro­

grammed so that they set an error flag if they detect a collision, therefore this ex­

periment is a plain state space search and does not require checking an EL formula.

Table 6.5 shows the results for some combinations of a, n and t. The packet size I

and the distance d are fixed at 30 and 20, respectively. It is easy to see that colli­

sions can occur if the timeout value is less than the maximum round-trip delay in

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SO P. BOP

RCVJ,
TIMEOUT

c h a n n e lm a s h e r s l a v e y

NEWj MEV^

Figure 6.6: Event Exchange Diagram for Collision Avoidance Protocol

Parameter Meaning
n no. of users
a mean packet generation delay (per user)
I size of packets
d distance between two adjacent stations
t master station timeout

Table 6.4: Collision Avoidance Protocol Parameters

the network. The service rate (the maximum throughput) of the protocol depends on

the number of stations, the distance between stations and the master station timeout

value. Buffer overflows occur if the cumulative arrival rate is greater than the service

rate of the network.

Another property we want to check is that every generated packet is delivered at

its destination within some time limit t. This can be expressed as
n n

kt := f \ / \ SENDjj ->• T r u e C/-£R cV j
t=i j=i

The corresponding probabilistic formula is P(kt) > 1, because we want property kt

to be true on all paths. Table 6.6 shows the size of the state space of this experiment

for the two error-free cases of table 6.5 and three values of t. As expected, kt is false

when t is small, and true when t is large. Note that determining that kt is false is

typically much faster than determining that it’s true — this is because in the former

case, the search is aborted as soon as a single non-satisfying path is discovered.

The protocol is simple enough so that performance measures like mean response

time can be easily calculated. Nevertheless, we run our tool in simulation mode to

demonstrate its capabilities. We want to determine the capacity of the protocol in

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n a t no. of states result
2 200 50 78 collision
2 200 100 1009 ok
3 200 140 1445 buffer overflow
3 300 140 7753 buffer overflow
3 400 140 9711 ok

Table 6.5: Collision Avoidance Protocol: Plain Search

n a t plain &200 £400 &500
2 200 100 1009 False

336
T r u e

3029
T rue

3029
3 400 140 7808 False

375
False

451
T rue

98264

Table 6.6: Collision Avoidance Protocol: formula verification

terms of the maximum cumulative packet arrival rate. To do this, we vary the packet

generation delays for the error-free cases of table 6.5 with the packet size set to 100.

For a system with n slaves and packet generation delay o, the cumulative packet

arrival rate at all slaves is | per time unit. Figure 6.7 plots the mean queue length

(again, this is the cumulative queue length at all n sources) against the cumulative

arrival rate. The graph exhibits a characteristic “knee” shape: the mean queue

length is very small until is suddenly grows very steeply. The capacity of the system

is the arrival rate just before this steep growth. Note that for this collision avoidance

protocol, the capacity decreases as the number of stations increases — this is due to

the overhead caused by polling.

6.3.2 CSMA/CD

The second broadcast channel protocol we consider is a variant of the CSMA/CD

protocol (see, e.g.,[43, 80]. The basic principle of such a protocol is that stations can

start transmitting data packets whenever they sense that the broadcast channel is

idle. If this results in a collision, those stations that are involved in the collision wait

for a randomized back-off period and retransmit their packets.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
n=2
n=38

6

4

2

0
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Arrival rate (per 100 time units)

Figure 6.7: Performance of Collision Avoidance Protocol

Our stations use the following back-off procedure: when a station detects that a

packet that it is transmitting has suffered a collision, it continues to transmit the rest

of the packet, and also sets a back-off timer. When the timer expires at the end of

the back-off period,

• if the channel is idle, the station either retransmits the packet (with probability

p) or waits for another back-off period (with probability (1 — p))

• if the channel is busy, the station waits for another back-off period

At the end of the second back-off period, it again either retransmits the packet or

waits for another back-off period. The process continues until the packet is trans­

mitted successfully. This back-off procedure is known as p-persistent; some types of

CSMA/CD protocols like Ethernet use slightly different procedures.

The protocol is modeled using three process types: n station processes, n user

processes and the broadcast channel process. Figure 6.9 shows the event exchange

diagram for the protocol. The user and broadcast processes are identical to the ones

we use to model the collision avoidance protocol in the previous section: the user

process periodically generates a data packet and sends it to the attached station

(event type S e n d ,) . Each station has one packet buffer, if a data packet is received

from the user while the buffer is still occupied, the station sends an O v er* to the user

process. The transmission of data packets by the station processes is modeled with

two classes of events, SoDtJ and EoD t J , that indicate the start and the end of a data

packet intended for station i and received at station j , respectively. The back-off

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Meaning
n no. of users
a packet generation delay (per user)
b length of back-off period
I size of packets

Table 6.7: CSMA/CD Parameters

procedure is modeled using the two event types E o b* (end of back-off) and B oa ,

(back-off again). Following a collision, a station sends an Coll,- event to itself and

either an E o b* event (with probability p) or a B oa* event (with probability (1 — p))

to itself. When it receives an EOBj event, the station retransmits the collided packet;

when it receives a B oa* event, it again sends either a E ob< or B oa,- event to itself. If

the packet buffer in the station overflows (this is always possible because the protocol

does not provide service guarantees), it generates an O v er* event.

Our implementation has 4 parameters, see table 6.7. All time, packet size and

distance values are expressed in indivisible time units. For simplicity, the stations

are assumed to be equidistantly placed on a bus-shaped channel (figure 6.8) with

a distance d = 20 between them, the persistence parameter p is fixed at and all

packets have the same size I. The packet generation delay is

Table 6.8 shows the results of a state space search for some values of n, a and I.

In those cases where an exhaustive search is not possible due to resource limitations,

we perform probabilistic searches with thresholds p = 10-15,10~20 instead. It is clear

that larger n must lead to an increase in the state space. However, larger values of a

and I also generally lead to larger state spaces because they increase the number of

possible events in the event list. For example, if a = 100, then the event New,- can

appear in the event list with delays 0 , . . . , 100; and if a = 200, it can appear with

delays 0 , . . . , 200.

The CSMA/CD protocol does not work properly if the packet length I is less than

twice the propagation delay between two stations. Consider two stations A and B

that are d time units apart. If A sends a packet of length I to B, and B starts sending

a packet to A just before A’s packet starts arriving at B, then B’s packet will start

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n a b I P no. of states
2 100 60 30 74680
2 100 60 50 150685
2 200 60 30 121275
2 200 60 50 10"15 460755
2 200 60 50 io-*> 953942
3 100 60 30 10-15 482940
3 200 60 100 10-15 185903

Table 6.8: CSMA/CD: Plain Search

arriving at A almost 2d time units after A’s start of transmission. In this case, station

A would not detect the collision if I < 2d. The result is that from A’s point of view,

the packet was successfully transmitted, although it didn’t arrive correctly at station

B — the packet is effectively lost. Some of the scenarios in table 6.8 exhibit this error,

but it is not detected by a simple state space search. To formulate an EL specification

to detect this kind of error, consider that once a station i starts transmitting a packet

to station j (this is indicated by a sending and event Sod^o to the channel)), it must

either be followed by the successful reception of the packet at station j (indicated by

R e c Vj) or else it must result in the detection of a collision by station i (C oll*),

fid := SoDj-,0 -> T r u e C/-‘ (R e c Vj V C o ll*)

For all source/destination pairs, the specification is thus A ^i A " = i H o w e v e r ,

this protocol is essentially symmetric (all sources and destinations are equal) and for

for a protocol like this, it is usually sufficient and more effective to just check the

specification for just one source/destination pair. The time limit t is set to be slightly

larger than the sum of the packet length and the propagation delay between stations

i and j . In table 6.8, we show the results of checking formula / i t2 for four scenarios

of table 6.8.

Finally, we use our model to obtain some performance measures for the CSMA/CD

protocol. As in our analysis of the collision avoidance protocol, we want to determine

the capacity of the protocol in terms of the maximum cumulative packet arrival rate.

To do this, we vary the packet generation delays for the error-free cases of table 6.5

with the packet size set to 100. For a system with n slaves and packet generation delay

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n a 6 I P / u
2 100 60 30 F alse

2 100 60 50 T r u e

3 100 60 30 IQ-15 F alse

3 200 60 100 10- 1* T r u e

Table 6.9: CSMA/CD: Results for Property f i j

CTuserQ

sta tion
IE

CTu se r

s ta tio n
IE

<Cuser^>
i e T

s t a t i o n

t t
r
^ b r o a d c a s t c h a n n e l

Figure 6.8: CSMA/CD with 4 users

c h a n n e l

sqp̂ etoO T T
EO% BO A ; S 0 D . £QQ E°%'

s t a t i o n ^ OVER] . COLL]

RCVj S E N D j j

user̂

7 7

t a t i o n , . Q V EJ^,, COLLq

jR a f a j s E N Q ,^ -

U8e%

NEW] NEVJ,

Figure 6.9: Event Exchange Diagram for CSMA/CD

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Arrival rate (per 100 time units)

Figure 6.10: Performance of CSMA/CD

45
40 y' n=3, cap -*—

/ n=2, csma - b - - t n=3, csma -x—
i —

a>
c
a<D
S

• IT '

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Arrival rate (per 100 time units)

Figure 6.11: Comparison of Collision Avoidance Protocol and CSMA/CD

а, the cumulative packet arrival rate at all slaves is J per time unit. Figure 6.11 plots

the mean cumulative queue length against the cumulative arrival rate. Figure 6.11

compares the results for the CSMA/CD protocol with those of the collision avoidance

protocol. The performance of CSMA/CD is clearly superior across all arrival rates

(note that the buffer size at each station is limited to 15 — this means that the

maximum mean cumulative queue length is 30 for n = 2 and 45 for n = 3 and

explains the flattening of the collision avoidance protocol curves at higher arrival

rates).

б.3.3 GARP Multicast Registration Protocol (GMRP)

The third broadcast channel protocol we study is the GARP Multicast Registration

Protocol (GMRP), which is a version of GARP, the Generic Attributes Registration

Protocol. GARP and GMRP are part of the IEEE 802.1p standard. An untimed

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LAN 1

LAN 3 LAN 2

B.CA 3

Figure 6.12: Bridged LAN with 3 Multicast Groups (A, B, C)

^uaer^

a p p l ic a n t

b r i d g * '

I f t f tV * -
a l l

l« a v « -
a l l

r e g i s ­
t r a r

±

p ro x y
a p p l ic a n t

p ro x y
a p p l ic a n t

Figure 6.13: GMRP Entities

version of the protocol is validated using S pin in [70]. The problem that GMRP is

designed to solve is that of excessive hooding of multicast packets across a bridged

LAN. Figure 6.12 shows a bridged network with three subnets (LAN 1, LAN 2, LAN

3) and three multicast groups (A, B, C). The stations on the network are labeled with

the multicast groups that they are part of. Rather than simply flooding all multicast

packets across all LANs, the aim is to use filters in the bridges to forward packets

only to those LANs that have multicast group members in them. Thus, multicast

packets with address A need not be forwarded to LAN 3, and multicast packets with

address C only need to be forwarded to LAN 3.

The basic idea of the protocol is that stations register with the bridges when­

ever they wish to join or leave a multicast group. Based on this information, the

bridges update a filtering database which they use to decide which packets need to

be forwarded to which port. The entities of the protocol are as follows (figure 6.13):

• User. The user indicates to the applicant whenever it wants to join or leave a

multicast group.

• Applicant. This is the entity that handles the user side of the address regis­

tration protocol. When a user wants to join multicast group, the applicant

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

broadcasts a join request indicating the requested address and starts a times

with timeout tj. At this point, the applicant considers itself part of the multicast

group and forwards any packets for that address to the user. If the applicant

perceives another join request for the same group (from another applicant) be­

fore the timeout, it does nothing further; if on the other hand, no other join

request is received, it re-sends the same join request after the timeout. This re­

sending of the join request is not strictly necessary but increases the robustness

of the protocol. When a user wants to leave a multicast group, the applicant

broadcasts a leave message indicating the multicast group. Any applicant that

is still part of that multicast group must re-register their membership by sending

a corresponding join message.

• Bridge. The bridge has three GMRP components: a registrant, a proxy applicant

for each port and a leave-all process for each port. The registrant is responsible

for most of the bridge-side handling of GMRP. Whenever it receives a join

request on a port, it updates its filtering database if necessary. When it receives

a leave request on a port, the registrant starts a timer with timeout fj. If no

contradicting join request is received during the wait period, the address is

removed from the database. When a new address is added to the database for

one of its ports, the registrar sends a message to the proxy applicant of the

other port, which registers the multicast address with the bridges on the other

broadcast LAN. The proxy applicant functions exactly like an applicant, except

that it receives requests from the registrar and not a user. Finally, the leave-all

process is responsible for garbage collection: it periodically generates a leave

request for all the multicast addresses registered at a port — this forces applicant

that are still members of the multicast group to confirm their membership with

a join message. Stale addresses that are no longer needed are removed in this

way.

We model the protocol with 5 process types corresponding to the protocol entities

user, applicant, registrant, leave-all and the broadcast channel. In addition to these

protocol entities, we use a source process to model a multicast data source. The

source periodically generates multicast packets; the probability of a multicast packet

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

event meaning
C hange* causes user i to add/delete group memberships
ADD*,a causes applicant i to initiate joining of

multicast group a
D e l*,0 causes applicant i to initiate leaving of

multicast group a
Mpa multicast packet with address a
Md0 multicast data with address a
JOIN*,a GMRP join request for multicast

group a by applicant i
L eave*,a GMRP leave request for multicast

group a by applicant i
JOIN_TO*,0 GMRP join timeout at applicant i
LEAVE_TO*,a GMRP leave timeout at bridge i
G ar bag e* causes GMRP leaveall process to start at bridge i

Table 6.10: Events for GMRP Model

having address i is where m is the number of multicast addresses. To simplify the

model, we use only single events to model packet transmission on the broadcast LAN,

instead of two events as in the previous two sections. We also assume that the LAN

transmits all packets in constant time (one time unit). Table 6.10 and figure 6.14

show the events and the event exchange diagram of our model, respectively.

The topology of the bridged LAN is star-shaped, i.e., there is a central LAN to

which all others are attached with bridges. Our model has 8 parameters: n*, the

number of LANs; n^, the number of users per LAN; m, the number of multicast

addresses; tj, the join timeout period; £*, the leave timeout period; tg, the garbage

collection period (used by the leaveall process); fc, the period with which users change

their multicast group memberships and tp, the packet generation period (used by the

source).

We first do some plain state space searches to check for errors like deadlocks and

unspecified receptions. The user processes are programmed to detect incorrectly ad­

dressed multicast packets and set an error flag if they do. The system passes this test

for some parameter values (table 6.11), but as soon as the timing values are random­

ized just a little, an error is quickly detected. The error is essentially caused by a race

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHANGE

ADD.DELMD

SENDJO IN _TO '

J O IN .t L
LEAVE\ V ® HP

JO IN ,
LEAVE

LEAVE

JO IN ,
LEAVE,
MPJO IN _T O (GARBAGE

ADD,DEL
LEAVE_TO

JO IN _TO GARBAGE

user

source

channel

leave-
a l l

leave-
a l l

reg is tra r

proxy
applicant

proxy
applicant

Figure 6.14: Event Exchange Diagram for GMRP

n, Tit* 771 tl *9 tc result
1 l 2 10 10 10 10 20 ok, 52 states
2 l 2 10 10 10 10 20 ok, 347
2 2 2 10 10 10 10 20 ok, 726
2 2 2 10 10 10 [9,10] 20 error (see text)
1 1 2 10 10 10 [14,15] 20 error (see text)
1 2 2 10 10 10 9,10 20 ok, 251445
2 1 2 10 10 10 [9,10] 20 ok, 202366

p = i o - 20

Table 6.11: GMRP State Space Search

condition: a user considers itself to be removed from a multicast group when it sends

an D el event to the attached applicant. It is possible, however, that a previously

sent multicast packet reaches the applicant before the D el message, and the multicast

packet is therefore forwarded to the user, resulting in an error. The error was not

detected with the first few time parameters because they resulted in deterministic

delays between events and avoided the race condition. We can reasonably relax the

requirement so that one unwanted multicast packet is allowed — the last two rows

of table 6.11 show that no errors are detected in this case. This experiment shows

the importance of avoiding overly deterministic models and of using the ability of the

validator to deal with time intervals.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. . Agp-ia-^ Z T)
^D E I^J X. /

Figure 6.15: Observer for GMRP

The next requirement we want to check is that multicast packets are forwarded to

a LAN only if there are multicast group members on that LAN. As before, we would

like to accommodate race conditions by relaxing this requirement to mean that a

small number (say, 1) of packets is allowed. Instead of attempting to write an EL

formula expressing this, we write an observer process that checks for this property.

The observer works by keeping track of the number of members of one multicast

group in one of the LANs (by monitoring D el and A d d events), and checking if any

multicast packets are forwarded to the LAN if this number is zero. The observer flags

an error if more than one multicast packet is forwarded to the LAN after all members

have left the group. The model including the observer has two additional parameter,

namely, the multicast address a to be monitored and an index I indicating which LAN

should be observed. The central LAN should not be observed in this way, since the

source is attached to it and therefore, all packets originate there.

Figure 6.15 shows the state transition diagram for the observer process. In the

figure, an event A d d X)0 indicates an A d d event for address a generated by any user

process on LAN I. For our experiments, we set tj = 10, ti = 10, tg = 10, tc = [5,10],

tp = 20 and check for several combinations of ni, n^, and m. Because of the size of

the state space, we ran a probabilistic validation with threshold 10-20. Table 6.12

shows the validation results: no errors were detected. The last two columns of the

table compare the protocol state space with and without observer.

6.4 Steam Boiler Control Program

6.4.1 Description of Model

We consider the task of validating a steam boiler control program. The problem is

based on a real-life scenario and has previously been analyzed using other validation

110

DELjut

ADPjm

MP_*

Error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Til riu m result
without observer

result
with observer

1 2 2 808144 792325
2 1 2 3040748 2994586
2 2 2 21 xlO6 21 x 106

Table 6.12: GMRP State Space Search with Observer

C o n t r o l
P ro g r a m

Pumps

Ki>

W a t e r L e v e l
M e t e r

r & = \

S te a m V a lv e

= □ -

-■ M2
- - N 2

Ml
h+ M2

H e a t
S o u r c e

B o i l e r

Figure 6.16: Steam Boiler System

systems, including S pin [27, 63]. Figure 6.16 shows the components of a steam

boiler system. It consists of a steam boiler containing a variable amount of water;

a heat source that causes some of the water to turn into steam and escape through

the steam valve; four pumps that can be turned on and off; and a control program.

Two measuring devices, a water level meter and a steam meter, periodically send

information to the control program.

One or more of the pumps may fail, in which case they are unable to pump water.

The measuring devices may fail as well, in which case they stop sending information to

the control program (we assume that they do not fail maliciously and send false data

to the control program — is is easy to see that the system will fail if both measuring

devices somehow collude to fool the controller). Whenever something fails, it may be

repaired after an unspecified period of time.

The task of the control program is to maintain the water level in the boiler between

the levels N x and iV2 (in normal mode), or at least between Mx and M2 (in “degraded”

mode, when one or more components fail). The only way that the controller can

influence the water level is by switching pumps on and off. The exact nature of the

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

swrrcHO I sw rrc tc

IPAIL16UA5.(REPAlR(6|)A5 I {PAm6||.0.5.1REPAIR(6njXS

PAIL
|FAIL(6!)j».3.(REPAlR(6)|A5

PAIL
|FA IL(6|)A 5>{REPAIR(6|}A5

FAIL
(FAQJ61J A3.1 REFAIR(6|) A 5

swttcho \sw rrcH i

REPAIR \ FAIL
[FAQJ611A5.IREPAOQ6IIJJJ V (PAIL461}Ai.{REPA IR(6))D J

REPAIR
(FA lL |6 |)^ .(R E P A IR (6 |)jftJ

Figure 6.17: Pump Process (for 2 pumps)

heat source is left unspecified, but three parameters define the range of its possible

behaviours:

• W, the maximum steam generation rate (in litres per time unit)

• U\, the maximum gradient of increase of W (in litres per squared time units).

So, for example, if the steam generation rate is 10 at time t, then after a delay

At, the steam generation rate can not be greater than 10+ At x U\.

• U%, the maximum gradient of decrease of W (in litres per squared time units).

This is analogous to U\i if the steam generation rate is 10 at time t, then after

a delay At, the steam generation rate must be at least 10 - At x C/2-

We model the system using three processes corresponding to the pumps, the steam

boiler, and the control program.

• Pumps. The pump process models all four pumps. The process accepts SwiTCHj

events from the controller which indicate that i of the four pumps should be

switched on, and the remaining 4 — i pumps should be off. Every time unit, the

process sends a W a te r event to the boiler process indicating how much water

(in litres) is being pumped in that time unit. Also periodically (every 5 time

units), the pump send an P -In f event to the controller process, indicating how

many of the four pumps are functioning and how many are on. The periodic

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmissions are triggered by W a ter_ u p d and Inf.UPD events. Occasionally,

one or more pumps may fail and be repaired after some time. The failure and

restoration of pumps is modeled with the events P _F a il and P .R e p a ir , re­

spectively, as follows: every tp time units, the process generates either a P.FAIL

event — with probability 0.05 — or a P -R e p a ir event — with probability 0.95.

A P _ F a il event results in the number of working pumps being decreased by 1; a

P .R e p a ir event results in the number of working pumps being increased by 1.

Both events cause the rescheduling of P J F a il or P .R e p a ir events with a delay

of tp. Figure 6.17 shows the state transition diagram for the process. Due to

the large number of transitions, we only show the diagram for a 2-pump system.

Also, we omit the periodic update events. Each state in the figure is labeled

with two values: the first indicates the number of operational pumps, and the

second indicates the number of pumps that are on.

• Boiler. The boiler process models the steam boiler including the heat source

and the the two measuring devices. It is responsible for simulating the water

level in the boiler. The boiler periodically — in response to an S .U p d a te event

which is scheduled every 5 time units — calculates the current water level based

on the amount of water coming in from the pumps, the previous water level,

the current steam generation rate and the parameters W, U\ and Ui-

To model the random behaviour of the heat source, the boiler process needs to

choose a value for the change in the steam generation rate is from the interval

[—U2, +C/i]. This is done by sending n, S .U p d a te events, each indexed with

one value from the interval, and each with probability The parameter ns

(the number of steps) is given on the command line.

Also in response to the S .U p d a te event, the measured water level and the

steam generation rate are sent to the controller if the measuring units are func­

tional; if the units are not functional, an illegal value is sent. The events W -Inf*

and S_lNFj represent the water level and steam measurements, respectively. The

events W _F ail and W .R e p a ir represent the failure and repair of the water lev­

el meter. A W _F ail event results in the scheduling of a W _R ep air event after

t-urr time units (the repair time for the water meter). A W _ R ep a ir event re-

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suits in the scheduling of an W _ F a il (probability 0.05) or an W _R ep air event

(probability 0.95) with a delay of t f (the boiler fail-cycle). The events S _F ail,

and S -R e p a ir have the analogous meanings for the steam rate meter.

• Control. This is the most complex process and the component we are interested

in validating. Following [1, 27], our controller has 4 modes: normal, degraded,

rescue, and emergency stop (actually, the specification in [1] has an additional

initialization mode which we omit for brevity). The four modes have these

functions:

— Normal Mode: In this mode, both measuring devices are functioning cor­

rectly; the controller tries to maintain the water level between Nl and

N2.

— Degraded Mode: The steam rate meter has failed, but the water level

measuring unit is still functional.

— Rescue Mode: The water level measuring device has failed, but the steam

measuring device is still functional.

— Emergency Stop Mode: Both measuring devices have failed, or the water

level threatens to exceed M2 or go below M\. We consider this mode to be

an external mode, where operators external to the system are responsible

for a safe shutdown.

In the normal, degraded and rescue modes, the controller works by periodically

— every 5 seconds — calculating the low Ei and high Eh. estimates of possible

water levels after 5 time units. Since this range depends on the number of

pumps that are switched on, the calculation is done for all possible (given the

number of operational pumps) numbers of pumps that are on. Among the

obtained ranges, the controller chooses the range which satisfies the constraints

Ei > Mi, Eh < M2 and whose midpoint £(~j~gA is closest to the midpoint of the

range N i ,N 2.

The estimates Ei and Eh depend on the current water level and the current

steam generation rate. If one of the measuring devices is defective, the controller

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can obtain a simple estimate for the missing value as follows. Let the current

water level and steam generation rate be w and s, respectively, and the previous

values, i.e., 5 seconds ago, w' and s', respectively. Let n be the number of pumps

that are on. If the water level measurement device is defective, the current water

level can be estimated as

w = w' — s x 5 sec + n x rp x 5 sec

Similarly, if the steam rate measurement device is broken, the current steam

generation rate can be estimated as

w’ — w + n x r„ x 5 sec
s ~ ------------E ---------5 sec

These estimates can then be used to calculate values for E[and Eh- The relevant

part of the perform function of the controller process is shown in figures 6.18

and 6.19.

Our validation system does not allow global states without successors because

such states are flagged as deadlocks. To implement an emergency stop mech­

anism, we therefore had to resort to a trick: when the controller decides that

an emergency stop is needed, it sends a S to p message to the other processes

— causing them to cease all activity — and also to itself. When it receives the

S to p message, it re-sends it to itself. Thus, the global emergency stop state

has one successor (itself), and is not recognized as a deadlock.

Figure 6.20 shows the event exchange diagram for our model. We fix some of the

model parameters as follows:

• N\ = 40%, N2 = 60%, Mi = 30%, M2 = 70% of the boiler capacity C

• U\ = U2 = 1 litre / sec2

• the controller update cycle tc is 5 seconds

• the boiler fail cycle is t f = 6 seconds (i.e., every 6 seconds, the boiler water

meter and/or steam rate meter may fail with probability 0.05)

• the boiler repair time is = 24 seconds

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void st_control: :perform(int type) {

int value = type ft 255;
type » = 12;

switch(type) •[
case C_UPDATE:

// determine onr mode depending on what's working and what’s not
Mode = NORMAL;
if (! Water_0K ftft Steam_0K)

Mode = RESCUE;
else if (Water.OK ftft !Steam_0K)

Mode = DEGRADED;
else if (! Water.OK ftft !Steam_0K)

Mode = EMERGENCY;

switch (Mode) {
case NORMAL:

// find best number of pumps to switch on
int best.p = calc_best_p();
if (best.p >= 0) {

// send message to pumps process, and an update
// reminder to ourselves
val_kernel->newevents(2,

new val_event((C_UPDATE«12), this, Cycle),
new val.event((PUMPS«12) +best_p, Pumps, 0));

} else {
// we’re in trouble - we didn’t find anything that
// guarantees the system to remain in [Ml,M2], so
// generate emergency stop messages
val_kernel->newevents(3,

new val.event ((ST0P«12) , this, 0) ,
new val.event((ST0P«12), Pumps, 0),
new val.event((ST0P«12) , Boiler, 0));

>
Prev.Water.Level = Water.Level;
Prev.Steam.Rate = Steam_Rate;

break;
case DEGRADED:

// estimate the steam generation rate, then proceed as in
// normal mode
Steam.Rate = (Prev.Water.Level - Water.Level +

Pumps.ON * Pump.rate * Cycle) / Cycle;
[as in NORMAL mode]

break;
case RESCUE:

// estimate water level, then proceed as in normal mode
Water.Level = (Prev.Water.Level - Steam.Rate * Cycle +

Pumps.ON * Pump.rate * Cycle);
[as in NORMAL mode]

break;

Figure 6.18: Perform Function of Controller Process (part 1)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case EMERGENCY:
I t send an emergency stop message to all devices and to
// ourselves
val_kernel->newevents(3,

new val.event((ST0P«12), this, 0),
new val.event((ST0P«12), Pumps, 0),
new val.event((ST0P«12), Boiler, 0));

break;
>

break;
case P.INF:

// got data from pump
Pumps.ON = value & 15;
Pumps.OK = (value»4) & 15;

break;
case W.INF:

// got value from water level measuring device
if (value >= 0 ftft value <= 100) {

Water.Level = value;
Water.OK = 1;

> else {
11 garbage value, device is out of order
Water.OK = 0;

>
break;
case S.INF:

// got value from steam rate measuring device
if (value >= 0 44 value <= 100) {

Steam.Rate = value;
Steam_0K = 1;

> else {
// garbage value, device is out of order
Steam.OK = 0;

>
break;
case STOP:

// re-send stop message to ourselves
val_kernel->newevents(1,

new val.event((ST0P«12) , this, 0));
break;
default:

cerr « "*** Control Process: unknown event type error.\n";
>

>;

Figure 6.19: Perform Function of Controller Process (part 2)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r j > S_PPOATg

T n r
N_FAIL S _ fA IL
MJtSPAXJl S J tS P A IR

Figure 6.20: Event Exchange Diagram for Steam Boiler Model

c the capacity of the boiler in litres

rp pump rate per pump (in litres/sec)
w maximum steam generation rate
n3 number of possible new values for the change in the

steam generation rate

Table 6.13: Parameters for Steam Boiler Model

• the pump fail cycle is tp = 6 seconds

The remaining three parameters are variable and summarized in table 6.13. In its

initial state, the boiler is 50% full, all devices are functional, and the steam generation

rate is zero, and all pumps are off.

6.4.2 Experimental Results

Figures 6.20 and 6.21 show the traces for two simulation runs. The graphs plot the

water level vs. the simulation time. They show that in the first scenario (C =

1000, rp = 15, W = 35, n , = 5), the water level remains well within the safe zones,

while in the second scenario (1000, rp = 10, W = 35, ra, = 5), the water level quickly

threatens to go below Mi and the controller has to initiate an emergency stop.

Our control program is supposed to ensure that the water level remains between

M\ and Af2 under all circumstances. The boiler process detects violations of this

requirement and sets the error flag. Thus, we can validate the program with a state

space search (without model-checking). We first attempt to use the same parameters

we used in the simulation runs. This is not successful, however, because the validator

runs out of stack memory after reaching a search depth of about 9000. To reduce the

state space, we use two state space reduction strategies:

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Water Level
Steam Meter
Wafer Miter100 ! Wate

Operational

©
>
3

500 20000 1000
timet

1500

Figure 6.21: Simulation Run, pump rate 15, W = 35

Water Level —
Steam Meter —
Water Meter.....

Operational Pumps —
STOP o

100

20000 500 1000
timet

1500

Figure 6.22: Simulation Run, pump rate 10, W = 35

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• We reduce the resolution of the model by setting C = 50. As a result, the

boiler and controller state spaces are reduced by a factor of 20. The values

for Ui,U2,W and rp are scaled appropriately and set to 0.25, 0.25, 4 and 1,

respectively.

• We reduce ns from 5 to 2, meaning that only the minimum and maximum

possible changes in the steam generation rate can occur, resulting in a smaller

state space. This change is reasonable, since any problems with the controller

program are likely to occur in these extreme situations.

With these changes, we can validate the model; the size of the state space is approx­

imately 790000 states.

6.4.3 Comparison with other Tools

The steam boiler control program example has been examined with other validation

tools, for example S p in [27, 63], F ocus and CIP [1]. These tools have in common that

they provide special-purpose languages for the specification of systems: P r o m e la in

Sp in , L u s t r e in Focus, and the process algebra CIP. Compared to our C ++ model,

these languages permit a highly abstract and more concise description of the system.

They do not support quantitative time and probabilities; instead, much of the sys­

tem’s behaviour (e.g., failure of components) can be left unspecified. While this has

the advantage that it is often convenient to leave unknown parameters unspecified,

it makes it difficult to obtain performance measures from the model. For example,

to obtain performance measures from the L u s t r e model described in [1], the au­

thors have to essentially construct a probabilistic model “by hand” and solve it using

techniques from probability theory.

All three tools let the designers check the property that the water level never

exceeds M2 and never goes below Mt. However, verifying the control program in a

model with unspecified behaviours says little about its usefulness: it is possible to

design a simple control program that always goes into the emergency stop mode. Such

a program would be proven “correct” by the validation tool, but is of little use in

practice. Our approach, on the other hand, lets us examine the detailed performance

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arrival
delay

p: a l
1-p: a2

service
time

q: s i
1-q: s2

capacity It

Figure 6.23: Simple Queue

k P ai a2 <7 Sl S2 negOvER
5 0.1 5 10 0.8 5 10 False

15 0.1 5 10 0.8 5 10 False

5 0.1 5 20 0.5 7 8 False

5 0.1 10 20 0.5 7 8 T rue

15 0.1 5 10 0.8 1 2 T rue

Table 6.14: Model-checking Results for ->OvER

of the control program under a variety of conditions. The price of this convenience is

that we have to make decisions about the qualitative parameters of the system.

6.5 Queueing System

In this section, we study a simple queueing system (figure 6.23). It consists of a packet

queue with capacity k and a server. The interarrival time between packets is either

at (with probability p) or a-i (with probability 1 - p) . Similarly, the service time for

a packet is either Si (with probability q) or s2 (with probability 1-q). The system

is modeled using three event types: In it (initialization), A rrival (packet arrival),

Eos (end-of-service). An additional event type — Ov e r — is generated whenever a

buffer overflow occurs.

We can check if the queueing system is free from overflows, i.e., we can check for

the EL formula ->Ov e r . This is not very meaningful, however, as a simple analysis

shows that the system is free from overflows if and only if both possible service times

si and S2 are less than the shortest interarrival delay. If there is an s* that is greater

than one of the interarrival times a.j, then there always a non-zero probability that

enough successive service times have duration s* and enough successive interarrival

times have duration ay, eventually filling up the buffer. The model-checking results

in table 6.14 confirm this view.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

val, k=3
11 sim, k=3 *b—*]

sim, te=5
0.8>

£
*
t

0.6
Q.
sot:
5o

0.4

20 25 30 35 40 45 50 55 60 65 70
t

Figure 6.24: Overflow Probability, Simulation and Validation

Therefore, in the case of a queueing system like ours, it is more meaningful to look

at probabilistic performance measures. Certain questions regarding the performance

of a protocol (e.g., the average delay of a queue) can be answered both by simulation

and by checking for a property like “the probability of the queue length being greater

than x is less than y”. We want to compute the probability v of observing at least one

buffer overflow within t time units of starting the system. This value can be quickly

estimated by running a few simulations, or obtained exactly by using the validator

to calculate the measure of paths with lengths < t that satisfy the property - iOv e r .

We set p = 0.9,0! = 5,02 = 10,9 = 0.1, Si = 5, S2 = 10 and obtain the over­

flow probability for different values of t. Figure 6.24 shows the results obtained by

validation and by simulation. The simulation results were obtained for 100 simu­

lation runs; the figure shows the 95% confidence interval. In all cases, the (exact)

overflow probabilities calculated by the validator are within the simulation confidence

intervals.

Both approaches give quick results for small values of t. As t grows larger, the

state space of the validator explodes (figure 6.25, the y-axis is log-scaled) and it

becomes more feasible to estimate v via simulation. The reason for the inefficiency of

the validator lies in our time-limited validation procedure (section 4.3.7) which works

by assigning values 0 or 1 to states that are roots of subtrees that are satisfying or

nonsatifying, respectively. In other words, for a state to be assigned / = 1, it must

inevitably lead to an overflow event before the time limit t , and for a state to be

assigned / = 0, it must be impossible for a state to lead to an overflow before the

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100000
k=5
k=3

10000
oo
<0
Q .
CO
<D

1000
s

100

20 25 30 35 40 45 50 55 60 65 70
t

Figure 6.25: Size of State Space for Time-Limited Search

time limit. In the queueing system, such states are very rare — in most cases, it

is possible but not inevitable that an overflow occurs, and the validator is forced to

search a search tree whose size is exponential in t. Note that this reasoning does not

extend to unlimited searches — such searches are generally much quicker: in the case

k = 5, for example, the validator obtains the result that all paths are non-satisfying

after searching only 35 states!

Finally, we change the arrival and service times to be exponentially distributed.

The resulting queue is the well-known M/M/l/fc-queue. We want to test to what

extent the approximation of the exponential function with a finite number of support

points affects the accuracy of performance evaluation results. The mean occupancy

of the M/M/l/fc-queue can be easily calculated using results from queueing theory

(see, e.g., [61]). Figure 6.26 plots the mean occupancy of the queue for k = 10

over the system load defined as \/fx , where A is the arrival rate and /z is the service

rate. There are four curves: one for the exact analytical result and three curves

obtained by simulations in which the exponential functions were approximated by

ns = 2, ns = 5, and ns = 10 support points. The results indicate that while ns = 2

does not yield a useful approximation, the plots for ns = 5 and ns = 10 are nearly

indistinguishable from the exact analytical curve. Thus, this experiment, although

by no means exhaustive, does indicate that reasonable performance evaluation results

can be obtained by approximating the exponential function with as few as 5 support

points.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analytical
ns=2
ns=5

ns=1(fc

4.5

3.5c
(0
O l3O 2.5
c(8
©
E 1.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

Figure 6.26: Accuracy of Finite Approximation for M /M /l/k

6.6 M ultimedia System

We examine a simple multimedia transmission/presentation system (figure 6.27). A

generic multimedia system consists on n streams of periodic data, each of which may

have different periods, processing delays and transmission channels. These streams

are merged at the presentation device. In our model, we have n = 2 streams: sound

and video data. The periods of the two streams are pa and pv, respectively. If g is the

greatest common divisor (gcd) of the two periods, then the joint period of the two

streams is (psPv)/9, because {j>apv)/g is divisible by both pa and p„. In order to check

the synchronization of the two streams, they are tagged with sequence numbers as

follows: the stream with the shorter period — sound in this case — is the reference

stream. Its packets are tagged with numbers 0 ,1 ,.. . up to the end of the joint period,

and each time period of length pa is associated with the tag of the packet sent at the

beginning of the period. The packets of the stream with the longer period are tagged

with the tags associated with the periods that are within pa/ 2 of the packet time.

Figure 6.29 illustrates this for the case of pa = 12 and pv = 40. The joint period is

then 120.

Using the sequence numbers, synchronization errors of the video packets relative to

the reference sound stream can be detected at a simple presentation device without

using timers. A video packet is considered to be out of sync if none of its tags

correspond to the tag of the sound packet preceding it.

The implementation of this example is straightforward and uses three process

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s o u r c e p r o c e s s i n g c h a n n e l

OHsound

video

p r e s e n t a t i o n

OH o o

Figure 6.27: Multimedia Stream Model
GENERATR_S GENERATED SYNC.OK SYNC_ERR

Q Q
D A T *_S DATA^S

s o u r c e p r e s e n t
DA?A_V DATA_V

c h a n n e l

Figure 6.28: Event Exchange Diagram for Multimedia Stream Model

types: the source, the presentation device and a channel process. Figure 6.28 shows

the processes and the events exchanged between them. The presentation device pro­

cess generates Sy n c _ok and Sy n c _e r r events to itself in response to video packet

receptions. Because EL formulas are expressed n terms of event types, exposing

synchronization errors as events makes it possible to write EL specifications about

them.

First, we do a state space search for different delay values to check for non-temporal

errors like deadlocks and unspecified receptions. No EL formula is needed for this

test. Given the simplicity of the system, it is not surprising that no such errors are

detected. Table 6.15 summarizes the results for different delay values. Next, we check

for synchronization errors. We want to specify that all video packets are in sync, i.e.,

that they result in the generation of a Sy n c _OK event within some time limit £. In

EL, this is expressed as a formula

/ := G en_v -» T r u e U- 1 S y n c .o k

sound

video

0 1 2 3 4 5 6 7 8 9 0
•I 1--------------1------------- 1--------------1-------------1------------- 1--------------1--------------1--------------1-------------1-

(9,0) (2,3) (6,7) (9,0)

Figure 6.29: Packet Tags for Two Streams

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sound
Del

Video
Del

Channel
Del

No.
States

/

10 10 60 55 True
10 10 [50,60 1079 True
10 [8,12 [50,60 32467 False
10 [7,13 [50,60 84838 False

Table 6.15: State Space and Synchronization, without Synchronizer

s y n c h r o n i z e r p r e s e n t a t i o n
• t h r e s h o l d

Figure 6.30: Synchronizer

where t is set to be greater than the sum of the maximal processing and channel

delays. Since out-of-sync packets result in the generation of an Sy n c _er r , we can

equivalently (and more efficiently) check for the formula

f :=-> Sy n c _er r

The results for this test are in the last column of table 6.15.

In addition to the basic system, we consider a multimedia system with a simple

synchronization device (figure 6.30). The synchronizer works by buffering packets of

both streams until both buffers are at least half full. Once both buffers have exceeded

this threshold, it retrieves packets with the same period as the sources and continues

buffering any incoming packets. The buffers are dimensioned to be twice the size of

the joint period of the two streams (= 2 x 120 = 240 in this case), so the buffer sizes

for the sound and video streams are 20 and 6, respectively.

Running the same tests as above, we find that the EL formula is satisfied in all

cases. Note that the addition of the synchronizer results in a considerably larger state

space. Due to memory constraints, the fourth experiment (final row in table 6.16)

could not be completed as an exhaustive search - we performed a probabilistic search

with threshold 10-15 instead.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sound
Del

Video
Del

Channel
Del

No.
States

/

10 10 60 124 T r u e

10 10 [50,60 206852 T r u e

10 8,12] [50,60 1139013 T r u e

10 7,13] [50,60 1104382 T r u e

Table 6.16: State Space and Synchronization, with Synchronizer

6.7 Alternating Bit Protocol

The alternating bit protocol [43] is very simple, yet powerful enough to — under

certain conditions — correctly transmit data over lossy channels. Due to its simplicity,

the protocol is commonly used as an example in the protocol verification literature.

We model the protocol with three process types, sender, receiver and channel that

work as follows:

• The sender receives data packets from the higher-level protocol entity and tags

them with a control bit. The first packet is tagged with bit 0, the second with

bit 1, the third again with bit 0, and so on. After tagging the packet, the sender

transmits it via the channel to the receiver and starts a timer. No other packets

are transmitted until either the packet is acknowledged by the receiver or a

timeout occurs. If the packet is acknowledged (as indicated by the control bit

of the ACK message), then the timer is reset, and another packet is transmitted.

If a timeout occurs, the packet is re-transmitted.

• The receiver receives packets from the channel and submits them to the higher-

level entity if they have the expected control bit: the first expected control bit

is 0, then 1, then 0, and so on. Any packet, whether it is expected or not, is

acknowledged with an ACK packet bearing the same control bit as the packet.

• The channel is a simple process modelling a unidirectional lossy channel (thus,

the protocol needs two such processes). Packets and ACKs are either passed on

correctly or lost with a given loss probability.

In addition to these alternating bit protocol entities, we require two processes repre-

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RECV,SEND,
PACKER,-

ACK,

s i n ks o u r c e

c h a n n e ls e n d e r r e c e i v e r

TIMEOUT LOSS

Figure 6.31: Event Exchange Diagram for the Alternating Bit Protocol

senting the packet source and sink that model the higher-level entity. The alternating

bit protocol provides a service to these entities. To see the reason for having these

two processes in our model, consider the problem of verifying that the alternating bit

protocol correctly transfers packets and preserves their sequence. From the protocol

point of view, there are only two kinds of packets — those with control bit 0 and

those with control bit 1. As long as successive packets differ in the control bit, the

receiver process accepts them as correct data. To verify that packets are sent in the

correct order, we need processes that are outside the core protocol. The source and

sink processes check for out-of-sequence packets by attaching sequence numbers to

the data that is generated and received. These sequence numbers are invisible to

the alternating bit protocol. For our case, we limit the protocol state space by using

sequence numbers module 4, i.e., the numbers range from 0 to 3.

Figure 6.31 shows the event exchange diagram for the protocol including the source

and the sink. The generation of data by the source and the submission of data to the

sink are modeled with S end* and R ecv , events, respectively, where i is the sequence

number. The packets and ACKs are modeled with P ac k et ,̂ - and A ck7 events,

where i is the sequence number and j is the control bit. Timeouts are modeled with

T im eo ut events.

Our implementation of the protocol has three parameters: the timeout delay t0,

the channel delay d and the channel loss probability pi- To keep the state space smal-

1, we do not introduce any time non-determinism. Figure 6.32 shows the complete

49-state TPTS for the parameters t0 = 30, d = 10 and pi = 0.5. In this diagram, the

protocol global states are displayed as 4 letters “ABCD” where A is the state of the

source (indicating the next sequence number to be sent), B is the state of the sink

(indicating the next expected sequence number), C is the state of the sender (indi-

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel Timeout P{f) > 0.9
5 10 T r u e

5 20 T r u e

5 50 Fa l se

10 20 T r u e

10 30 T r u e

10 50 Fa l se

20 40 Fa l se

20 50 Fa l se

20 60 Fa l se

Table 6.17: Alternating Bit Protocol and an EL Formula

eating the next control bit to be sent), and D is the state of the receiver (indicating

the next expected control bit).

First, we run a plain state space search to check for deadlocks, out-of-sequence

packets and sim ilar errors. No errors are detected. Next, we want to check whether

the protocol delivers packets within a given time limit t with at least some probability

ps. In EL, this translates to the non-probabilistic formula

/ := Send* ->• T r u e U - 1 R ecv *

where i is one of the possible sequence numbers. The probabilistic requirement, then,

is P{f) > pa• On the unmodified protocol, however, the probability of / being

satisfied in a lossy system is zero, because, with probability 1, any infinite path

in the protocol contains enough successive packet losses to violate the time limit t.

Therefore, we modify the protocol to send only one packet and check whether this

packet is received within the time limit. Table 6.17 shows the results for different

values of the channel delay and timeout parameters. The channel loss rate pi is set

at 0.5, and ps to 0.9. In order for the formula to be satisfied, the channel delay must

be small, and the timeout bound tight.

6.8 Sliding W indow Protocol

In this section, we use a unidirectional sliding window protocol (SWP) [80] to test

the behaviour of probability-threshold based searches. SWP can be viewed as a

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.32: TPTS for Alternating Bit Protocol

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generalization of the alternating bit protocol, and variations of it are widely used in

transport layer protocols such as TCP [80].

Like our implementation of the alternating bit protocol, the implementation of

SWP has 6 processes: source, sink, sender, receiver, and 2 channels (one for each

direction). The sliding window protocol is implemented in the sender and receiver

processes. The sender can activate and de-activate the source. Briefly, the sender

and receiver processes work as follows (see, e.g., [80] for a more detailed description).

• Sender. A basic sender parameter is the window size n: the sender sends up to

n packets without receiving an acknowledgment, buffers the packets and starts a

timer associated with each packet. These packets are given successive sequence

numbers modulo n+1 (note that there are thus n+1 different sequence numbers

: 0 . . . n, but only n packets may be unacknowledged).

If an acknowledgment arrives with the sequence number of one of the buffered

unacknowledged packets, it means that all buffered packets up to and including

the one whose sequence number is being acknowledged have been received cor­

rectly. The sender deletes the timers associated with the packets, discards the

packets from the buffer, and sends more packets. If a timer for a packet expires,

all packets in the buffer are retransmitted; and the timers are re-started.

The data that the sender transmits originates from the source process. To

implement a flow control mechanism, the sender has the ability to enable and

disable the source, depending on whether the packet buffer in the sender is full

or not.

• Receiver. The receiver process keeps track of the next expected sequence num­

ber, starting at 0. If a packet arrives with the correct sequence number, it is

submitted to the sink process. All arriving packets — regardless of whether the

sequence number is the expected one or not — are acknowledged with a packet

bearing the last correctly received sequence number, i.e., the sequence number

before the expected one.

Figure 6.33 displays the event exchange diagram for our model. Date generated by

the source and submitted to the sink are represented by the event types D ata_S and

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKi
r e c e i v e rsender

TIMEOUT LOSS

Figure 6.33: Event Exchange Diagram for the Sliding Window Protocol

D ata_R, respectively. The generation of data happens in response to g enerate

events and can be started and stopped by the sender with E nable and D isable

events. Within the protocol layer, data packets are modeled with D ata events,

acknowledgments with A ck events, and timeouts with T im eo ut events.

The model has three parameters: the window size n, timeout t0, and the channel

delay tc. Our validator allows the search to be limited by a probability threshold, by

a depth threshold, or both. In order to assess the effectiveness of these approaches,

we compare the behaviour three searches for the parameter values n = 3, t0 = 100

and tc = [18,22].

• a depth-threshold search using the approximate time interval algorithm

• a probability-threshold search using the approximate time interval algorithm

• a probability-threshold search using the exact algorithm

The probability thresholds are set to 2 x 10~l° for the exact algorithm, 10~9 for the

approximate algorithm, and the depth threshold is set to 64. These values were chosen

to result in the same state space for all searches — about 70000 states. Figure 6.34

compares the search behaviour: it plots the number of visited validator states over

the search depth.

Comparing the approximate depth-threshold and probability threshold searches,

we observe that the maximum search depth for the depth-threshold search is 64, with

many states being searched around that depth, while in the probability-threshold

search many states around that depth are bypassed in favour of higher-probability

states at deeper levels. The maximum search depth is more than 100 in this case.

A comparison of the two probability-threshold searches shows that the approximate

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12000

10000

8000
35
- 6000

2
4000

2000

I X I XX 40 X
depth

X0

Figure 6.34: Depth Threshold vs. Probability Threshold

algorithm alleviates the state space explosion somewhat, resulting in a right-shift of

the graph.

The sliding window protocol does not work always correctly if packets can be re­

ordered by the lower layers (IP [80], for instance, may re-order packets). Figure 6.35

shows two kinds of errors that can occur in this case. In both cases, the result is that

a delayed duplicate packet is wrongly accepted by the receiver and forwarded to the

sink (thick line in the figures). To detect errors like these, we need to add an observer

to our protocol. Our observer counts the data packets DATA_S sent from the source

and the number of packets DATA_R sent to the sink and makes sure that the latter

does not exceed the former. The observer code fragment for this is very simple:

i f (type == DATA.S)

Count++;

e ls e i f (type == DATA_R) {

i f (Count)

Count— ;

e lse {

f la g _ e rro r() ;

>

>

The first error occurs when the timeout value is smaller than the maximum round-

trip delay. Figure 6.35 (left) shows this error for n = 1. For various combinations of

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S e n d e r R e c e iv e r

Data(01

A c k (2]

Data(3)

Ack[01

Figure 6.35: Some SWP Errors

n, p nr3 10"6 10"7

301orH lO-io

1 yes
200

2 no
lk

yes
32k

3 no
lk

no
112k

no
500k

yes
878k

4 no no
112k

no
2.1M

no
11.2M

Table 6.18: Probability Thresholds and Error Detection

probability thresholds and SWP window sizes, table 6.18 lists whether the error was

detected or not and how many states were searched by the validator.

The second kind of error is similar to the first but can happen even if the timer

values are set correctly. Figure 6.35 (right) shows an example of this error for n = 3.

However, the probability of this kind of error is very small because a number of un­

likely events need to occur in succession (it almost seems as if the network would

have to be particularly malicious). It can be argued than in practical networks with

large window sizes, the probability of such an error is zero. For a SWP with maxi­

mum sequence number 3, our validator detected the this error when the probability

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no
. o

l (
ta

le
s

100000

10000

1000

100
75 8040

nm3

100000

S ioooo

100

Figure 6.36: State Space vs. Thresholds

threshold was set to 10- l°.

These examples show that the choice of probability threshold can influence whether

an error in a protocol is detected or not. It is of course impossible to know the “right”

probability threshold before actually finding the error. In practice, the threshold will

be dictated by external factors such as the available computing power and the avail­

able amount of time. For depth-based searches, the state space is initially exponential

in the depth threshold until the growth slows because the state space is ultimately

finite (figure 6.36 left). Probability-threshold searches (figure 6.36 right) exhibit a

similar behaviour. Protocol designers will try to set the threshold as low as possible

while still achieving an acceptable response time.

6.9 Summary

A number of examples from different application domains were used to demonstrate

the prototype implementation of the validation system. In general, the validator

appears to be a useful tool for detecting errors in system specifications, and for

obtaining performance measures.

In some cases, an exhaustive state space search was not possible due to resource

limitations. Some strategies to cope with the state space explosion problem are

• threshold searches based on time, depth of probability

• reduced-complexity models that can be obtained by reducing the time nonde­

terminism (i.e., using smaller time intervals) or by using fewer support points

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the exponential approximation

As a rule of thumb, checking for EL formulas is significantly more expensive than a

raw state space search — programmers should therefore try to incorporate correctness

checks into the process models if possible.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion and Future Research

In this thesis, we have presented a model for the probabilistic validation of commu­

nication protocols and a tool based on the model. Compared to other validation

systems, our tool has several advantages:

• protocols can be modeled realistically, including their timing constraints and

their probabilistic behaviour

• the high-level model is based on the well-known DES paradigm

• the tool uses C++ as its specification language, thereby eliminating the learning

curve associated with special-purpose languages

• due to the use of a DES-like high-level model, the same model can be used both

for validation and for performance evaluation

Combined, these advantages result in a more PRACTICAL validation tool than was

previously available. Two main contributions of this thesis are algorithms for the

validation of probabilistic claims (expressed in the logic EL) and the integration of

simulation and validation in one framework.

The important question, of course, is “Does it work?”. The answer depends on the

point of view. On the one hand, we were only able to exhaustively search the state

space for greatly simplified protocols — thus, we can not convincingly claim that our

tool proves the correctness of protocols. Moreover, even in the cases where we could

perform an exhaustive search, the result is not a conclusive proof of correctness due

to the probabilistic nature of our algorithm, and due to the fact that the validator

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

itself has of course never been proven to work correctly. From the point of view of

correctness proofs, the answer must therefore be, “No”.

On the other hand, our numerous experiments from different application domains

show that our tool is without doubt useful for the modelling, validation and perfor­

mance analysis of protocols. During our experiments, the validator detected numerous

errors — many unintentional ones, and some so arcane that they would have been

extremely difficult to detect without the aid of our tool. Therefore, from the point of

view of detecting errors in protocols, the answer to the question is “Yes”. We believe

that this aspect of the system is particularly useful because it comes essentially for

“free” since performance evaluation by DES is routinely performed anyway.

Our tool is only a prototype and therefore has a number of shortcomings that can

be addressed in future research. Improvements are needed at the C ++ level, at the

algorithmic level, and at the user interface level. At the C ++ level, many obvious

optimizations were omitted in order to code for correctness rather than speed — for

example, the depth-first-search relies on inefficient recursive calls to the validation

procedure. More significant are the possible improvements at the algorithmic level.

Here, we believe that we can take advantage of the many improvements that continue

to be made to S p in , because the tools have many similarities. Some of these advances

deal with partial state reduction techniques and hash compaction; more improvements

are regularly presented at the annual S pin workshops. Finally, improvements are of

course needed at the user, i.e., programmer, interface level. In particular, our support

for statistics is rudimentary and should be brought nearer to the high level us utility

available in simulation tools like S m urph .

Due to its inherent difficulty, protocol validation will remain a fertile research field

for the foreseeable future. It is our expectation that the advantages of our approach

will lead to increased use of automated validation tools like ours and, ultimately, to

better protocols.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] J-R. Abrial, E. Borger, and H Langmaack. Formal Methods for Industrial Ap­

plications: Specifying and Programming the Steam Boiler Control (LNCS 1165).

Springer-Verlag, 1996.

[2] M. Ajmone Marsan, G. Balno, G. Chiola, G. Conte, S. Donatelli, and G. Frances-

chinis. An introduction to generalized stochastic Petri nets. Microelectron. Re-

liab., 31:699-725, 1991.

[3] R. Alur. Timed automata. NATO-ASI summer school on verification of digital

and hybrid systems, 1998.

[4] R. Alur, R. K. Brayton, T. A. Henzinger, A. Qadeer, and S. K. Rajamani.

Partial-order reduction in symbolic state space exploration. Computer Aided

Verification 97, pages 340-363,1997.

[5] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.

Proceedings, Logic in Computer Science, pages 414-425, 1990.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time

systems. Proceedings of the 18th ICALP, LNCS 510, 1991.

[7] R. Alur, C. Courcoubetis, and D. Dill. Verifying automata specifications of

probabilistic real-time systems. Real-Time: Theory in Practice, LNCS 600, pages

28-44, 1991.

[8] R. Alur and D. Dill. The theory of timed automata. Real-Time: Theory in

Practice, LNCS 600, pages 45-73, 1991.

[9] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. Real-

Time: Theory in Practice, LNCS 600, pages 74-106, 1991.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] A. F. Ates, Bilgic M., S. Saito, and B. Sarikaya. Using timed CSP for specifica­

tion, verification and simulation of multimedia synchronization. IEEE Journal

on Selected Areas in Communications, 14:126-136, 1996.

[11] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli. It usually works: The temporal logic of stochastic systems. Computer

Aided Verification 95, pages 155-165, 1995.

[12] S. Baase. Computer Algorithms: Introduction to Design and Analysis. Addison-

Wesley, 1987.

[13] C. Baier, E. M. Clarke, and V. Hartonas-Garmhausen. Probabilistic VERUS:

Semantic foundations and practical results. Proceedings of PROBMIV 98, 1998.

[14] C. Baier, E. M. Clarke, M. Kwiatkowska, V. Hartonas-Garmhausen, and

M. Ryan. Symbolic model checking for probabilistic processes. Proceedings of

ICALP 97, 1997.

[15] C. Baier and M. Kwiatkowska. Model checking for a probabilisitc branching

time logic with fairness. Technical Report CSR-96-12, University of Birmingham,

School of Computer Science, 1996.

[16] C. Baier, M. Kwiatkowska, and G. Norman. Computing probability lower and

upper bounds for LTL formulae over sequential and concurrent Markov chains.

Proceedings of PROBMIV 98, 1998.

[17] C. Baier, M. Kwiatkowska, and M. Ryan. Symbolic model checking for proba­

bilistic processes. Technical Report CSR-97-2, University of Birmingham, School

of Computer Science, 1997.

[18] A. Basu, G. Morrisett, and T. von Eicken. Promela++: A language for con­

structing correct and efficient protocols. IEEE INFOCOM ’98, 1998.

[19] M. Bernardo and R. Gorrieri. Extended markovian process algebra. Proceedings

of CONCUR 96, pages 315-330, 1996.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[20] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. Foundations of Software Technology and Theoretical COmputer Science,

LNCS 1026, pages 499-513, 1995.

[21] G. v. Bochmann and C. A. Sunshine. Formal methods in communication protocol

design. IEEE Transactions on Communications, pages 624-631, 1982.

[22] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Computer Networks and ISDN Systems, pages 25-59, 1987.

[23] D. Brand and P. Zafiropulo. On communicationg finite-state machines. Journal

of the ACM, 30:323-342,1983.

[24] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35:677-691, 1986.

[25] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Proceedings of 5th Annual Symposium

on Logic in Computer Science, pages 428-439, 1990.

[26] L. Cacciari and O. Rafiq. A temporal reachability analysis. Proceedings of

Protocol Specification, Testing, and Verification XV, pages 35-49, 1995.

[27] T. Cattel and G. Duval. Specifying and verifying the steam boiler problem with

SPIN. Formal Methods for Industrial Applications: Specifying and Programming

the Steam Boiler Control (LNCS 1165), 1996.

[28] G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized stochastic

Petri nets: A definition at the net level and its implications. IEEE Transactions

on Software Engineering, 19:89-106,1993.

[29] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logics specification: A practical ap­

proach. Proceedings, 10th PoPL, pages 117-126,1983.

[30] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logics specifications. ACM Transactions

on Programming Languages and Systems, pages 244-263,1986.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient

algorithms for the verification of temporal properties. Formal Methods in Systems

Design, 1:275-288,1992.

[32] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-

state probabilistic programs. Proceedings, 29th Symposium on the Foundations

of Computer Science, 1988.

[33] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.

Journal of the ACM, 42:857-907, 1995.

[34] J-P. Courtiat and R. C. de Oliviera. About time nondeterminism and exception

handling in a temporal extension of LOTOS. Proceedings of the Workshop on

Languages, Compilers, and Tools for Real-Time Systems, pages 70-78, 1995.

[35] J. Crow, A. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction

to pvs. Proceedings of the Workshop on Industrial-Strength Formal Specification

Techniques, 1995.

[36] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. Proceedings,

DIM ACS Workshop on Verification and Control of Hybrid Systems, 1995.

[37] C. Daws and S. Yovine. Two examples of verification of multirate timed automata

with KRONOS. Proceedings, IEEE Real-Time Systems Symposium ’95, 1995.

[38] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford

University, 1997.

[39] L. de Alfaro. Temporal logics for the specification of performance and reliability.

Proceedings of STACS’97, pages 165-176, 1997.

[40] L. de Alfaro. Stochastic transition systems. Proceedings of CONCUR’98, 1998.

[41] S. Donatelli, H. Hermanns, J. Hillston, and M. Ribaudo. GSPN and SPA com­

pared in practice. Qualitative Modelling in Parallel Systems, 1995.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] S. Donatelli, M. Ribaudo, and J. Hillston. A comparison of performance eval­

uation process algebra and generalized stochastic petri nets. Proceedings, 6th

International Workshop on Petri Nets and Performance Models, 1995.

[43] P. Gburzynski. Protocol Design for Local and Metropolitan Area Networks. Pren­

tice Hall, 1996.

[44] F. Gomes, S. Franks, B. W. Unger, Z. Xiao, J. Cleary, and A. Covington. SimKit:

A high performance logical process simulation class library in C++. Proceedings

of the 1995 Winter Simulation Conference, 1995.

[45] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

[46] H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.

Proceedings, IEEE Real-Time Systems Symposium ’89, pages 102-111, 1989.

[47] J. I. Hartog and E. P. de Vink. Mixing up nondeterminism an probability: A

preliminary report. Proceedings of PROBMIV ’98, 1998.

[48] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[49] T. A. Henzinger, X. Nicollin, S. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Information and Computation, 111:193-244, 1994.

[50] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras -

between LOTOS and markov chains. Computer Networks and ISDN Systems,

30:901-924,1998.

[51] H. Hermanns, V. Mertsiotakis, and M. Rettelbach. Performance analysis of

distributed systems using TIPP - a case study. Proc. of the 10th U.K. Perfor­

mance Engineering Workshop for Computer and Telecommunication Systems,

Edinburgh, 1994.

[52] J. Hillston and M. Ribaudo. Stochastic process algebras: A new approach to per­

formance modelling . Modelling and Simulation of Advanced Computer Systems,

1998.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[53] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[54] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

[55] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering, pages 279-295, 1997.

[56] C.-M. Huang and S.-W. Lee. Timed protocol verification for Estelle-specified

protocols. ACM Computer Communication Review, pages 4-32,1995.

[57] C.-M. Huang, S.-W. Lee, and J.-M. Hsu. Probabilistic timed protocol verification

for the extended state transition model. Proceedings of the 1994 International

Conference on Parallel and Distributed Sytems, pages 432-437, 1994.

[58] P. Iyer and M. Narasimha. Probabilistic lossy channel systems. Proceedings of

TAPSOFT 97, pages 667-682, 1997.

[59] H. E. Jensen, Larsenm K. G., and A. Skon. Modelling and analysis of a col­

lision avoidance protocol using SPIN and UPPAAL. Proceedings of 2nd SPIN

Workshop, 1996.

[60] C. Kem and M. R. Greenstreet. Formal verification in hardware design: A

survey. ACM Computing Surveys, 1998.

[61] L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons, 1975.

[62] F. J. Lin and M. T. Liu. An integrated approach to verification and performance

analysis of communication protocols. Proceedings of Protocol Specification, Test­

ing, and Verification VIII, pages 125-140, 1988.

[63] S. Loeffler and A. Serhouchni. Creating a validated implementation of the steam

boiler control. Proceedings of 3rd SPIN Workshop, 1997.

[64] N. F. Maxemchuk and K. Sabnani. Probabilistic verification of communication

protocols. Proceedings of Protocol Specification, Testing, and Verification VII,

pages 307-320,1987.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[65] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[66] R. E. Miller and Y. Xue. Bridging the gap between formal specification and anal­

ysis of communication protocols. Proceedings, 15th Annual Phoenix Conference

on Computers and Communications, pages 225-231, 1996.

[67] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[68] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77:541-577, 1989.

[69] K. Naik and B. Sarikaya. Testing communication protocols. IEEE Software,

pages 27-37, 1992.

[70] T. Nakatani. Verification of group address registration protocol using PROMELA

and SPIN. Proceedings of 3rd SPIN Workshop, 1997.

[71] M. Nesi. Value-passing CCS in HOL. Proceedings of the 6th International Work­

shop on Higher Order Logic Theorem Proving and Its Applications — HUG’93,

pages 352-365, 1993.

[72] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.

Real-Time: Theory in Practice, LNCS 600, pages 526-547, 1991.

[73] A. Pnueli and L. D. Zuck. Probabilisitc verification. Information and Computa­

tion, 103:1-29, 1993.

[74] R. Ranjan, J. Sanghavi, R. K. Brayon, and A. L. Sangiovanni-Vincentelli. High

performance BDD package based on exploiting memory hierarchy. Proceedings

of the Design Automation Conference 96, 1996.

[75] T. Regan. Multimedia in temporal LOTOS: a lip-synchronization algorithm.

Proceedings of Protocol Specification, Testing, and Verification XIII, pages 127-

143, 1993.

[76] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys­

tems. PhD thesis, MIT, 1995.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77] A. C. Shaw. Communicating real-time state machines. IEEE Transactions on

Software Engineering, 18:805-816, 1992.

[78] U. Stem and D. Dill. Improved probabilistic verification by hash compaction.

IF IP WG 10.5 Advanced Research Working Conference on Correct Hardware

Design and Verification Methods, pages 206-224,1995.

[79] U. Stem and D. Dill. A new scheme for memory-efficient probabilistic verifica­

tion. Formal Description Techniques IX, 1996.

[80] A. S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.

[81] S. Tripakis and Courcoubetis. C. Extending Promela and SPIN for real time.

Tools and Algorithms for the Construction and Analysis of Systems TACAS’96,

pages 329-348, 1996.

[82] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro­

gram verification. Proceedings, Logic in Computer Science, pages 332-343,1986.

[83] R. von Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reactive,

generative and stratified models of probabilistic processes. Proceedings, Logic in

Computer Science, 1990.

[84] C. H. West. Protocol validation by random state exploration. Proceedings of

Protocol Specification, Testing, and Verification VI, pages 233-242, 1987.

[85] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal

verification. Computer Aided Verification 97, pages 376-387, 1997.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

