
 

 

 

Automated Feedback Generation for Learner Modeling in Intelligent Tutoring Systems 

 

 

by 

  

Chang Lu 

                                                                                        

                                                                                                                                          

  

  

  

  

A thesis submitted in partial fulfillment of the requirements for the degree of 

  

  

Doctor of Philosophy 

  

in 

 

Measurement, Evaluation, and Data Science 

  

  

  

  

  

Department of Educational Psychology 

University of Alberta 

  

  

  

  

  

  

  

                                                                                                         

  

  

© Chang Lu, 2021



ii 

 

Abstract 

Feedback is essential for knowledge acquisition, but there is a paucity of automated feedback 

generation frameworks in intelligent tutoring systems (ITSs) that facilitate and scaffold 

students’ learning across domains. This study introduces a novel framework for generating 

templated-based feedback to tackle the issue of automated feedback generation for different 

learner models. Specifically, it (1) implements several learner modeling algorithms including 

IRT, BKT, DKT-RNN, and DKT-RNN-LSTM; (2) devises and implements DKT-CI (i.e., 

DKT-RNN-LSTM with Contextualized Information) to estimate learners’ skill mastery states 

using both product data and process data; (3) compares these algorithms’ prediction accuracy, 

interpretability, and applicability on three datasets with various sizes extracted from different 

ITSs; and (4) introduces a framework to automatically generate template-based feedback on 

learners’ performance for the output of these learner models. Results revealed that (1) BKT 

and IRT outperformed DKT on smaller datasets, whereas DKT-CI outperformed other models 

on larger datasets; (2) for BKT, the proposed template-based feedback generation could 

produce KC-dependent feedback based on learner performance and expert-derived thresholds; 

(3) for DKT, the feedback-generation method could produce adaptive feedback for all KCs at 

every time step and plot individuals’ knowledge transfer, thus being more suitable for 

individualized formative tutoring. Implications regarding context-specific automated feedback 

provision for interactive digital learning systems are discussed. Findings from the present 

research facilitate the understanding of students’ learning behaviour and the dynamic 

knowledge acquisition process on different knowledge components in the ITSs and inform 

decision making on when and how to provide feedback in these systems. 
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Chapter 1 Introduction 

Online education was brought to the forefront of higher education by the outbreak of 

the coronavirus disease (COVID-19) in late 2019. China initiated a nationwide massive 

migration from traditional face-to-face teaching to fully online courses in 1,291 universities, 

enforced by the government’s policy of “non-stop teaching and learning” in early 2020 (Bao, 

2020; Sun et al., 2020). Followed by the rapid spread of the pandemic across the globe, 123 

countries in Asia, North America, South America, Europe, Africa, and the Middle East have 

announced school closures and immediate transformations to online education as of June 21, 

2020; meanwhile, more than one billion learners have been affected by the pandemic, which 

is equivalent with 62.3% of the total enrolled learners (UNESCO, 2020). Online education is 

becoming the main theme for most learners around the world. 

Online education has strong roots in both informal online learning platforms and 

formal higher education. The proliferation of information and communication technologies 

(ICT) has supported the advent of open learning platforms, including Massive Open Online 

Courses (MOOCs), Coursera, and other virtual learning environments (VLE). Great efforts 

have also been made by post-secondary institutions to adopt Learning Management Systems 

(LMSs) and promote formal online education over the last decades (Allen & Seaman, 2008; 

Bradford et al., 2007; O’Neill et al., 2004; Patel & Patel, 2005). Macfadyen and Dawson 

(2012) reported that more than 90% of higher-education institutions in the USA have made 

significant investments in the implementation of LMSs, such as Moodle, Canvas, and 

Blackboard, since the late 1990s. Similarly, in Great Britain, 85% of higher education 

institutions have adopted VLEs since 2003 (Ferguson, 2012). Unlike open online learning 

platforms, LMSs adopted by higher education are often used to deliver course materials as a 

supplement to traditional formal instruction (Zhou et al., 2020), whereas most interactions 

between students and instructors occur in class.  
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On the other hand, open learning platforms such as Intelligent Tutoring Systems 

(ITSs) make asynchronous learning materials and instructional videos accessible to learners 

without time or space limitations (Washington, 2019; Zacharis, 2015). ITSs are designed to 

provide personalized hints and to automate the adaptive learning process of knowledge 

components (KCs), a generic term for skills, concepts, procedures, and strategies (Pardo et 

al., 2019). With the availability of large volumes of log data generated from learners’ 

interactions with ITSs, many studies attempted to develop models to estimate individuals’ 

skill mastery state, track their learning processes, and diagnose their strengths and 

weaknesses on KCs (Macfadyen et al., 2014). Those models were later defined as learner 

models (or student models), as they constitute a structured representation of a learner’s 

knowledge, misconceptions, or difficulties (Bull, 2004). The tutoring and assessment within 

ITSs could help students practice skills outside the school, where feedback from human 

experts might not be readily available. However, a recent review of automated feedback 

systems revealed that the weakest links of ITSs are pedagogical policy and feedback 

provision (Deeva et al., 2021; Gervet et al., 2021). Although providing feedback is crucial for 

scaffolding students to improve performance (Hattie & Timperley, 2007), research on how 

learning technologies effectively estimate learners’ skills and automatically generate 

individualized feedback is lagging (Deeva et al., 2021; Maniktala et al., 2020; Sedrakyan et 

al., 2020; Weimer, 2002). Specifically, discussions of automated feedback systems are still 

ongoing regarding when to provide feedback (immediate vs. delayed), how to provide 

feedback (summative vs. formative, adaptive vs. non-adaptive, expert-derived vs. data-

driven), and how to assemble the feedback content (generic vs. specific, KC based vs. item 

based). 

Some of the earlier attempts of implementing feedback within ITSs focused on 

providing real-time online tutoring by humans in those environments (Merrill et al., 1992; 
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Heffernan & Koedinger, 2002). Findings show that human tutoring is effective in improving 

students’ performance, but it is time- and labor-consuming, and not applicable to large-scale 

practice and open-ended platforms.  

In the last decade, many studies focused on implementing automated feedback 

systems that can generate item-based hints or holistic summative feedback based on student 

product data (i.e., student direct responses to the items) in structured domains (e.g., math and 

algebra) or generating corrective feedback using natural language processing (NLP) 

techniques in unstructured domains (e.g., essay writing and programming). However, few 

studies focused on providing timely and specific adaptive feedback at the skill level (i.e., KC 

level) that would prompt student reflection based on both product data and process data (i.e., 

the duration of the tasks, action took, number of attempts, number of hints requested) 

collected from the ITSs (Aleven et al., 2006; Barnes & Stamper, 2010; Shatnawi et al., 2014). 

With the advancement of various learner models, researchers can trace and update learners’ 

KC profiles using different prediction models based on both product data and process data. 

Multiple output representations of learner KC mastery are available to inform instructors and 

students on their status of knowledge acquisition and transfer. Meanwhile, the advances in 

natural language processing techniques motivate the implementation of human-machine 

communications that bridge learner modeling and automated feedback generation.  

Research Purpose 

We propose a framework of automated feedback generation for different learner 

models at the skill level for structured domains. Specifically, we implement an Item 

Response Model (IRT), Bayesian Knowledge Tracing (BKT), Deep Knowledge Tracing 

(DKT), and its variants with Long Short-Term Memory (LSTM; Hochreiter & Schmidhuber, 

1997) and with contextualized information. We compare them on input representation, output 

representation, model prediction accuracy, interpretability, and applicability in various 
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educational assessment contexts. Further, we describe an automated feedback-generation 

approach and demonstrate the template-based feedback generated for each learner model. 

This dissertation is guided by the following research questions: 

1. To what extent do the learner models perform accurate and interpretable estimations of 

students’ performance? What are the predictive accuracies, input representations, 

output representations, and characteristics of the different learner models?  

2. To what extent does the feedback generation method produce fluent and semantically 

related feedback? Can the feedback generation method create a variety of feedback 

templates that are grammatically correct and semantically related?  

3. To what extent is the proposed framework of Automated Feedback Generation for 

Learner Models feasible for structured knowledge domains? How does the proposed 

feedback generation method fit into different learner models? What format and 

information does the generated feedback provide for learners? 

Research Contributions 

This dissertation makes the following contributions: it (1) implemented several 

learner modeling algorithms including IRT, BKT, DKT-RNN, and DKT-RNN-LSTM; (2) 

devised and implemented DKT-CI (i.e., DKT-RNN-LSTM with Contextualized Information) 

to estimate learners’ skill mastery states using both product data and process data; (3) 

compared these algorithms’ prediction accuracy, interpretability, and applicability on three 

datasets with various sizes extracted from different ITSs; and (4) introduced a framework to 

automatically generate template-based feedback on learners’ performance for the output of 

these learner models. 

Organization of the Dissertation 

The rest of the document is organized as follows. First, the theoretical framework of 

the dissertation is presented. Then, studies on educational data mining (EDM) and different 
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learner models are reviewed. Further, related work on automated feedback generation is 

examined. Fourth, the potential research gaps from previous studies are identified. Fifth, a 

novel learner-modeling and feedback-generation approach is introduced. Lastly, discussions 

are made on the importance of understanding the test contexts and interpreting the outputs of 

learner modeling and feedback generation. Suggestions are provided regarding learner model 

and feedback generation selections that cater to different educational settings.  

Chapter Summary 

Chapter 1 introduced the context of the problem tackled in this research: technology-

enhanced learning, tutoring, and assessments make big educational data in the digital learning 

environments available (i.e., students’ interactions with the systems and artefacts recorded). 

Then, the state-of-art studies on learner modeling and automated feedback generation in the 

digital learning environments were reviewed, the gaps in current approaches were identified, 

and a novel solution to this problem was proposed. Lastly, this chapter outlined the main 

research questions and the organization of the remaining document. 
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Chapter 2 Theoretical Framework 

The Definition of Feedback 

In education, feedback is regarded as a key concept for learning and performance 

(Shute, 2008). Feedback is defined as information provided by an agent regarding one’s 

performance or understanding to improve knowledge and skills (Hattie & Timperley, 2007), 

or learning processes where the gaps between actual performance and intended performance 

are identified and provided for learners to improve on (Carless et al., 2011; Molley & Boud, 

2014).  

Sadler (1989) stated that feedback should deliver messages related to the process of 

learning that specifies the discrepancies between what is understood and the pre-defined goal. 

Winnie and Butler (1994, p. 5740) noted that “feedback is information with which a learner 

can confirm, add to, overwrite, tune, and restructure information in memory, whether that 

information is domain knowledge, meta-cognitive knowledge, beliefs about self and tasks, or 

cognitive tactics and strategies”. Kluger and DeNisi (1996, 1998) defined feedback as the 

information regarding one’s performance and one of widely used psychological interventions. 

Hattie and Timperley (2007) conceptualized feedback as a “consequence” of performance 

and positioned feedback within a continuum of instruction and feedback. To fulfil the 

instructional purpose of feedback, it can be achieved through cognitive processes (e.g., 

increased effect, motivation, and engagement) and affective processes (e.g., restructuring 

understanding and confirming information). Shute (2008, p. 154) defined feedback “as 

information communicated to the learner that is intended to modify his or her thinking or 

behaviour for the purpose of improving learning”. Molley and Boud (2014) described 

feedback as a key process of learning, where the gap between actual performance and the 

goal of performance is identified and provided for learners. To summarize, feedback can be 

either regarded as information that is related to specific learning tasks and goals, or a learning 
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process that communicates the gaps between one’s actual performance and the intended 

performance. 

Feedback and Learning Theories 

Feedback is regarded a key concept for learning and teaching, which has gained 

growing interests by researchers and practitioners alike on exploring the development, 

administration, and effectiveness of feedback under different educational contexts (e.g., 

Anderson, Conrad, & Corbett, 1989; Black & Wiliam, 1998; Carless, 2006; Corbett, Conrad, 

& Anderson, 1994; Hattie & Timperley, 2007; Kluger & DeNisi, 1996; Moreno, 2004; 

Narciss & Huth, 2004; Shute, 2008). Previous research on feedback was mainly grounded on 

several learning theories—behaviourism, cognitivism, and social constructivism—to 

represent different processes of how feedback impacts learning and performance. However, 

social constructivism is generally embedded in traditional classroom-based contexts and not 

directly related to the present work; thus, it is excluded from the discussion. 

Behaviourism regards providing feedback as a linear process, where teachers guide 

students step by step to achieve the goals of the predefined curriculum (Thurlings et al., 

2013). It primarily focuses on how teachers monitor and manipulate students’ behaviour 

through positive feedback to reinforce the behaviour and negative feedback to punish and 

correct the behaviour (Skinner, 1968). In the behaviourist perspective, teachers are seen as 

the action takers and students as recipients of instructions. Therefore, the teacher’s role takes 

the lead and functions as the determinant of the effectiveness of feedback, whereas students 

follow what teachers request and produce an outcome of feedback (Butler & Winne, 1995; 

Duchaine, Jolivette, & Fredrick, 2011). However, the behaviourist view of feedback was later 

contested by other researchers (Boud & Molloy, 2013; Carless et al., 2011; Price et al., 2010; 

Shute, 2008). They criticized that the psychological behaviourism oversimplifies the process 

of providing feedback by interpreting learning as a unilateral and unidirectional process led 
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by educators and the curriculum (Biggs, 1993), without acknowledging “the active role of the 

learner in co-producing knowledge” (Molloy & Boud, 2014, p. 3) and the learners’ 

capabilities on self-evaluating and self-regulating (Carless et al., 2011; Hattie & Timperley, 

2007; Price et al., 2010).  

Cognitivism also considers feedback as a linear process and interprets learning as 

human information processing rather than observable behaviour (Newell & Simon, 1972; 

Shuell, 1986). As opposed to behaviourists, cognitivists shift the focus from teachers to 

students. Teachers use feedback to guide students to receive, use, and reflect on knowledge 

so that students can process and decode information internally and finalize it in the learning 

outcomes. Therefore, cognitivists focus more on the internal mental processes in learning, the 

interconnections among notions of knowledge, and conscious representations of the real 

world rather than on the behaviour-based exhibition of learning. Most technology-enhanced 

learning is based on cognitivist learning theory. The cognitive approach identifies the 

cognitive domain in a hierarchy of learning objectives, including remembering, 

understanding, applying, analyzing, evaluating, and creating (Anderson & Bloom, 2001; 

Bloom, 1956). It operationalizes the cognitive domain into external factors, and it embeds 

them into technology-based learning, such as intelligent tutoring systems and adaptive 

learning environments (Roll et al., 2011). Among the digital learning systems, knowledge 

acquisition is broken down into manageable steps. Then, the machine provides instructions or 

more practices, and it leads learners to the most appropriate step to achieve the goal of pre-

defined learning outcomes. To conclude, cognitivists hold a concept of mind (Fontana, 1981), 

and view feedback as information that is processed and internalized by learners.  

Models of Feedback 

Several models of feedback underlying different learning theories were proposed to 

model different types of feedback within various educational contexts. Specifically, we 
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discussed the Instructive Feedback by Werts, Wolery, Holcombe, and Gast (1995), the 

Feedback Intervention Theory (FIT) by Kluger and DeNisi’s (1996), the Four Levels of 

Feedback Framework by Hattie and Timperley (2007), and the Framework of Formative 

Feedback by Shute (2008). 

Instructive Feedback. Werts et al. (1995, p. 55) claimed that feedback should be 

instructional and that “instructive feedback is a method of presenting extra, non-target stimuli 

in the consequent events of instructional trials (e.g., during praise statements)”. This 

framework is rooted in a behaviourist approach. More specifically, they categorized 

instructive feedback into three categories: parallel, expansion, and novel. Parallel instructive 

feedback stimuli refer to the repetition of previous instruction. For example, teachers use 

numbers to teach numbers. Expansive instructional feedback extends the previous instruction 

from a specific content to new target stimuli. For example, Gast et al. (1994) used spelling of 

words as instructive feedback to teach the target stimuli sight words. Novel instructional 

feedback uses conceptually unrelated instruction and targets to a new study domain. For 

example, Werts et al. (1993) used social studies (i.e., instructive feedback) to teach students 

math equations (i.e., target stimuli). The common goal of all three categories is to stimulate 

students to learn target stimuli through a series of instructions and trials. However, if 

additional instructions are provided, students are not required to respond to the stimuli or 

reinforced by feedback. Werts et al. (1995) also examined key factors of instructive feedback 

from previous literature including (1) student demographic variables (e.g., age, gender); (2) 

diagnosis of disabilities (e.g., mental retardation, autism, seizure disorders, developmental 

delays, learning disabilities); (3) procedural parameters (e.g., the type of target behaviour, 

location of the instruction, the type of instructor, instructional grouping, and the type of 

instructional strategy used); and (4) presentation variables (e.g., the feedback is presented 

verbally or visually). They concluded that students acquire and maintain performance on the 
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response-prompting instructive feedback behaviours among parallel, expensive, and novel 

categories; thus, teachers are encouraged to incorporate more direct instructional feedback in 

their pedagogical practices. 

Feedback Intervention Theory (FIT). FIT is one of the most widely recognized 

feedback theories grounded in cognitivism. Kluger and DeNisi (1996) conducted a meta-

analysis that included 607 cases (effect sizes) and 23,663 observations. They found that FIs 

improved performance on average (d = .41), but more than a third of studies reported that FI 

reduced performance, which cannot be explained by sampling errors or existing theories. 

Following on from this finding, they proposed the Feedback Intervention Theory (FIT). FIT 

assumes that feedback affects performance by changing the locus of a learner’s attention 

among three hierarchical levels of control including task learning, task motivation, and meta-

task processes. The lower in the hierarchy the FI-induced locus of attention is, the stronger is 

the benefit of an FI for performance. More specifically, FIT consists of five basic arguments: 

(1) behaviour is regulated by comparisons of feedback to goals or standard, (2) goals or 

standards are organized hierarchically, (3) attention is limited and therefore only feedback 

standard gaps (i.e., discrepancies between actual and desired performance) that receive 

attention actively participate in behaviour regulation, (4) attention is normally directed to a 

moderate level of the hierarchy, and (5) FIs change the locus of attention and therefore affect 

behaviour. These arguments are interdependent, and each consecutive argument is built on 

the preceding argument. Kluger and DeNisi (1998) later further discussed how FIs might 

have both positive and negative effects on performance. They drew on three theoretical 

constructs of control theory including the regulation of feedback-standard discrepancies, the 

locus of attention, and the task complexity (Carver & Scheier, 1981). In addition, they related 

them to the FIT assumptions as follows: (1) behaviour is regulated by comparisons of 

feedback with goals or standards (and identification of gaps between the two); (2) attention is 
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limited, and only those feedback-standard gaps that receive attention actively participate in 

behaviour regulation; and (3) FIs change the locus of attention and therefore affect behaviour. 

By connecting between control theory and FIT, they made the following arguments (1) 

“behaviour is regulated through the control of discrepancies or errors in the system”; (2) 

changing locus of attention and “knowing where attention is directed provides a better 

position to predict FIs’ effects on performance”; and (3) task properties determine how FI 

affect performance (Kluger & DeNisi, 1998, p. 69). To conclude, the FI functions as a 

double-edge sword that may support and hinder performance, depending on conditions.  

Four Levels of Feedback Framework. Hattie and Timperley (2007) conceptualize 

feedback as a tool that reduces discrepancies between current and desired performance. They 

stated that effective feedback must answer three major questions asked by a teacher and/or by 

a student: Where am I going? (What are the goals?), How am I going? (What progress is 

being made toward the goal?), and Where to next? (What activities need to be undertaken to 

make better progress?). These questions correspond to notions of feed-up, feed-back, and 

feed-forward. The level at which the feedback operates partly determines whether a teacher 

and/or student can effectively answer the three questions above. Therefore, they proposed a 

model that addresses four levels of feedback, namely, task, process, self-regulation, and self. 

Feedback has differing effects across these levels. The task level and the process level refer 

to how well the task is being performed; the self-regulation level describes how students 

monitor, direct, and regulate actions toward the learning goal; and the self level describes the 

affective evaluations about the student, which are usually not related to the task itself 

(Brophy, 1981). Hattie and Timperley (2007) argued that effective feedback should be 

focused on the task level and the process level, rather than the self level.  

Framework of Formative Feedback. Shute (2008) proposed a framework for 

formative feedback, in which several key components of effective formative feedback were 
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addressed and elaborated including the purpose (i.e., directive or facilitative feedback), 

cognitive mechanisms (i.e., how the formative feedback motivates learning efforts), feedback 

specificity (i.e., levels of information provided), features (i.e., verification and elaboration), 

complexity and length, and timing (i.e., immediate vs. delayed feedback). Furthermore, Shute 

(2008) reviewed existing frameworks of feedback and provided guidelines to generate 

effective formative feedback. Shute (2008) concluded that formative feedback should be non-

evaluative, supportive, timely, and specific to promote learning. First, in contrast to 

behaviorists and social constructivists who suggest feedback be only positive and 

constructive, Shute (2008) suggested feedback should be neutral, unbiased, and be either 

positive or negative. Second, timing is sensitive to task difficulties. For difficult tasks, 

immediate feedback is more effective. For easy tasks, delayed feedback yields better learning 

outcomes. Immediate feedback helps retain procedural or conceptual knowledge, whereas 

delayed feedback promotes transfer of learning. Third, feedback should be task-directed and 

goal-oriented to help learners to identify and close the gaps between the intended and actual 

performance. Thus, the feedback should be specific, detailed, and clear at task levels without 

being too long. Fourth, learner characteristics such as ability levels and motivation should 

also be considered when providing formative feedback. For example, for high-achieving 

students, it is suggested to use delayed facilitative feedback with verification. For low-

achieving students, it is suggested to use immediate corrective feedback with elaboration. 

Table 1 summarizes the feedback guidelines categorized by Shute based on three dimensions 

including learning, timing, and student characteristics. To sum up, Shute (2008, p. 175) 

highlighted the importance of formative feedback for learning in technology-assisted 

instructions and called for more investigation on three aspects of feedback. The first aspect is 

‘motive’, which discusses whether the students need the feedback. The second aspect is 
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‘opportunity’, which evaluates the timing of the feedback. The last aspect is ‘means’, which 

explores whether the students are able and willing to use the feedback. 

Table 1 

Guidelines of Formative Feedback Adapted from Shute (2008) 

Dimension Prescriptions 

Learning Focus feedback on the task, not on the learner. 

Provide elaborated feedback to enhance learning. 

Present elaborated feedback in manageable units. 

Be specific and clear with the feedback message. 

Keep feedback as simple as possible but no simpler (based on learner 

needs and instructional constraints). 

Reduce uncertainty between performance and goals. 

Give unbiased, objective feedback, written or via a computer. 

Promote a “learning” goal orientation via feedback. 

Provide feedback after learners have attempted a solution. 

Do not give normative comparisons. 

Be cautious about providing overall grades 

Do not present feedback that discourages the learner or threatens the 

learner’s self-esteem. 

Use “praise” sparingly, if at all. 

Try to avoid delivering feedback orally. 

Do not interrupt the learner with feedback if the learner is actively 

engaged. 
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Avoid using progressive hints that always terminate with the correct 

answer. 

Do not limit the mode of feedback presentation to text. 

Minimize the use of extensive error analyses and diagnosis. 

Timing Design timing of feedback to align with the desired outcome. 

For difficult tasks, use immediate feedback. 

For relatively simple tasks, use delayed feedback. 

For retention of procedural or conceptual knowledge, use immediate 

feedback. 

To promote transfer of learning, consider using delayed feedback. 

Learner 

characteristics 

For high-achieving learners, consider using delayed feedback. 

For low-achieving learners, use immediate feedback. 

For low-achieving learners, use directive (or corrective) feedback. 

For high-achieving learners, use facilitative feedback. 

For low-achieving learners, use scaffolding. 

For high-achieving learners, verification feedback may be sufficient. 

For low-achieving learners, use correct response and some kind of 

elaboration feedback. 

For learners with low learning orientation (or high performance 

orientation), give specific feedback. 

 

Chapter Summary 

Chapter 2 provided an overview of the learning theories underlying feedback and 

several feedback frameworks. Behaviourist and cognitivist approaches to feedback were 

discussed. In addition, four frameworks of feedback based on different learning theories were 
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presented detailing what information is delivered by feedback, how it is provided, the 

cognitive mechanism, and the related instructional activities. The next chapter describes a 

comprehensive review of empirical studies in feedback and learning within technology-

enhanced learning environments. 
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Chapter 3 Literature Review 

This chapter starts with an introduction to technology-enhanced education and digital 

learning environments, followed by a comprehensive review of educational data mining 

techniques and learner models that were commonly used for identifying student learning 

status and providing automated feedback. Next, a survey of current trends of automated 

feedback generation within digital learning environments is discussed, with a special focus on 

the data-driven approach to feedback generation based on student data. Lastly, the gaps and 

limitations of previous studies are summarized. 

Technology-Enhanced Education  

The current learning technology climate prompted the transitions of blended courses 

to exclusively online delivered courses in education (Hannafin & Land, 1997). In addition, 

many computer-based tutoring and assessment systems are available for students to practice 

knowledge and skills without time and space limitation. Thus, it is especially important to 

understand students’ behaviours while they are learning in the digital learning systems and to 

provide individualized feedback. Also, the availability of large volumes of log events 

generated by the learning systems as well as the advancement of educational data mining 

(EDM) techniques prompted many studies designed to observe and cluster students’ online 

learning behaviours (Becker et al., 2006; Cantabella et al., 2019; Geigle & Zhai, 2017; Khalil 

& Ebner, 2017; Papamitsiou & Economides, 2014; Peña-Ayala, 2014; Shi et al., 2015), 

predict students’ academic achievement or dropout rates (Baker & Inventado, 2014; Baker, 

Lindrum, Lindrum, & Perkowski, 2015; Baker & Yacef, 2009; Conijn et al., 2016; Gardner & 

Brooks, 2018; Gašević et al., 2016; Jayaprakash, Moody, Lauría, Regan, & Baron, 2014; Kim 

et al., 2018; Poornima & Pushpalatha, 2019; Smith, Lange, & Huston, 2012; Xing et al., 

2016; Zacharis, 2015), conduct sequential mining using features extracted from log files 

(Hung & Crooks, 2009; Juhaňák, Zounek, & Rohlíková, 2019), evaluate students’ real-time 
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online work and activities (Liu et al., 2018), and detect at-risk students at early stages to 

inform decision making (Chung & Lee, 2019; He et al., 2015; Lu et al., 2017; Mao et al., 

2018; Xing & Du, 2019). In short, a great number of studies have been conducted to 

understand learners’ online learning behaviours and their relationship with performance on 

digital learning systems using a variety of data-driven approaches. 

Predictions of Learner Performance: Static versus Sequential Models and 

Features. Many previous studies on log-file analysis have been conducted to examine the 

relationships between online learning activities and academic achievement (Bousbia & 

Belamri, 2014; Dutt, Ismail, & Herawan, 2017; Jovanovic, Gasevic, Dawson, Pardo, & 

Mirriahi, 2017; Juhaňák, Zounek, & Rohlíková, 2019). Research on prediction of academic 

performance using log data generated by digital learning systems heavily relies on feature 

engineering, data representation, and analytical methods. Previous studies mainly adopted 

two types of behaviour-based features (static and sequential) and two types of predictive 

models (static and sequential). 

Behaviour-based static features commonly refer to the aggregated click frequencies 

related to logins, files accessed, assignment submissions, practice attempts and forum 

postings over a certain period or the total time spent on different modules embedded in the 

systems. Static predictive models are classification or regression models that predict 

academic achievement indicators (e.g., assignment scores, midterm exam scores, final exam 

scores, project performance, and dropout; Bousbia & Belamri, 2014; Dutt, Ismail, & 

Herawan, 2017; Jovanovic, Gasevic, Dawson, Pardo, & Mirriahi, 2017; Zacharis, 2015). 

Some of the prevalent methods employed to predict academic achievement include multiple 

linear regressions (Agudo-Peregrina et al., 2014; Ashenafi et al., 2015; Zacharis, 2015), 

decision trees (Hung & Crooks, 2009; Topîrceanu & Grosseck, 2017), random forests (Liu, 

Wang, Benachour, & Tubman, 2018), support vector machines (Ifenthaler & 
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Widanapathirana, 2014; Kloft et al., 2014), and artificial neural networks (Olivé et al., 2020; 

Zhang & Jiang, 2018). Generally, static models rely on statistical assumptions, but they are 

widely used in the previous studies for their adequate interpretability.  

On the other hand, behaviour-based sequential features extracted in the related 

research are typically in the format of time-series sequence on one or more components (e.g., 

Hassan et al., 2019; Liu et al., 2018; Liu et al., 2018). Sequential predictive models are 

analytical models that can take as input and process high-dimensional sequential features, 

such as Recurrent Neural Networks (RNN; Mikolov et al., 2010), and Long Short-Term 

Memory (LSTM; Hassan et al., 2019; Liu et al., 2018), which is a special RNN variant.. 

Sequential models can capture the temporal variations and heterogeneity of the evolving 

online behaviours within learners. Thus, they can more accurately model the temporal 

behavioural information in log events (Li & Zhao, 2020). For example, if two students both 

reached 100 clicks on the Quiz component in the LMS during the term, static models would 

fail to capture students’ potentially different problem-solving patterns (e.g., one student could 

have practiced more at the beginning of the term, whereas the other student could have 

practiced the most at the end of the term). Sequential models detect their differences in terms 

of temporal behavioural patterns. Indeed, sequential models, especially deep sequential 

models, showed superior performance over static models on predictions in several Human 

Computer Interaction (HCI) domains (Beutel et al., 2018; Donkers, Loepp, & Ziegler, 2017; 

Kim et al., 2019). 

Based on the behaviour-based features and statistical models prevalent in the 

literature on early prediction of academic performance, I organized the related research 

studies into three main categories: static models with static features, static models with 

sequential features, and sequential models with sequential features. The category of 

sequential models with static features is not found in the literature, because sequential models 
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generally require specific data structures of sequence representation that only sequential 

features could achieve. Thus, no previous studies have been conducted on log analysis using 

sequential models with static features. 

Static Models with Static Features. Some of the earliest studies on performance 

prediction through log analysis calculated the term-total click frequencies on each section of 

an LMS using static models with strong assumptions of independence of observations, such 

as multiple linear regression (Seber & Lee, 2012), logistic regression (Kleinbaum et al., 

2002), support vector machines (Schlkopf, Smola, & Bach, 2018), decision trees (Kamiński, 

Jakubczyk, & Szufel, 2018), or random forests (Breiman, 2001). Researchers extracted data 

from log files in LMSs to develop a multiple-regression model for predicting 134 first-year 

university Computer Science and Computer Engineering students at risk of performing 

poorly or of failing in blended courses and to further identify the most significant explanatory 

variables related to online activities when predicting students’ academic achievement in a 

blended course (Zacharis, 2015). Another study compared the online learning behaviours 

between peer-moderated and teacher-moderated groups for 98 undergraduate students using 

log data extracted from an LMS to investigate the indicators that predicted students’ learning 

outcomes (Hung & Crooks, 2009). The authors used cluster analysis to observe the 

differences in learning patterns across levels of academic achievement. Association rule 

analysis was used to discover meaningful relationships among logged events, employing 

support and confidence measures (Hung & Crooks, 2009). Also, a decision-tree model was 

developed based on several manually extracted features (i.e., independent variables) to 

predict students’ final grades for both groups (Hung & Crooks, 2009). More recently, Xu et 

al. (2019) revealed the relationship between Internet usage behaviours and undergraduates’ 

academic achievement by predicting students’ course final grades from their Internet usage 

features, including total time spent online, Internet traffic volume, and login frequency. They 
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used the non-parametric Mann-Whitney U test to ascertain the significance of the differences 

between usage features and academic performance levels among groups of students. 

Additionally, they calculated the Spearman's correlation coefficient to explore any 

associations between participants’ academic performance and their time-usage behavioural 

features. Finally, they compared the performance of three popular machine-learning 

algorithms (decision trees, neural networks, and support vector machines) to validate the 

predictive power of the extracted features to performance. Findings showed that features 

related to Internet usage time were able to discriminate and predict students’ academic 

performance. All three algorithms showed substantial accuracy on predicting performance 

using the time-usage features (Xu et al., 2019).  

Static Models with Sequential Features. To address the limitation of simply using 

static models and features, previous studies harnessed the temporal nature of log data by 

transforming the static LMS features to sequential features to predict academic performance. 

However, most studies only used sequential features (i.e., extracting LMS features at 

different time steps), without adopting sequential models to describe the temporal 

dependency of the behaviour-based features. Instead, they employed static models, assuming 

that the temporal LMS features were not related chronologically but rather that they were 

independent from each other (Juhaňák, Zounek, & Rohlíková, 2019; Keogh & Kasetty, 

2003). A study used hierarchical regression to predict 530 South Korean undergraduate 

students’ self-regulated learning outcomes, represented by course grades in an online-

learning course, from their weekly online activities, such as total viewing time, late 

submissions, proof of reading, message created, and total time spent on sessions (You, 2016). 

Another study collected 4,989 Dutch university students’ log data from 17 blended courses 

on Moodle, extracting weekly click frequencies and time spent on different LMS sections to 

predict students’ final scores (Conijn et al., 2016). In total, LMS features collected across 11 
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weeks, including total time spent online, number of course pages viewed, number of 

discussion posts, number of quizzes started, and number of assignments submitted, were fit 

into a multilevel regression model to observe the stepwise prediction accuracy for students 

from different grade levels. The findings showed a significant increase in the proportion of 

the final grade variance explained as more weekly variables were added into the model. 

However, both previous studies use a static model with sequential features, assuming that the 

weekly LMS features are independent of each other. Thus, they used multiple regression to 

make predictions, which neglects the temporal nature of online activities. Waheed et al. 

(2020) also implemented a three-layer perceptron and compared its classification 

performance with a support vector machine (SVM) and logistic regression on predicting at-

risk students’ dropout rate using quarterly aggregated hand-crafted features from the VLE 

click-stream data. They found that the artificial neural network (ANN) not only outperformed 

the SVM and logistic regression at the fourth quarter but also yielded early good prediction 

accuracy and better accuracy at every time step (quarter 1 to quarter 4). 

Sequential Models with Sequential Features. The last category is sequential models 

with sequential features. Geigle and Zhai (2017) proposed a student behaviour-representation 

method that enables the automatic discovery of behaviour patterns based on students’ click 

log data collected from a MOOC. They used a two-layer Markov model (2L-HMM) to 

extract interpretable and meaningful behaviour representation of students’ interactions with 

the MOOC platform. However, their study only modeled students’ online learning at the 

behavioural level, without linking learning behaviours to academic performance. One study 

employed a univariate sequential classification model to predict the dropout rates of students 

from the Open University (OU; Liu, Wang, Benachour, & Tubman, 2018). More specifically, 

they counted 170,000 learners’ daily click frequencies on all sections of OU and fit the 

temporal sequence feature to a time-series forest (TSF) model to predict the dropout status of 
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students registered in OU. The univariate prediction model yields an accuracy of 84% with 

only 5% of the dataset. Results show a great potential of applying sequential models to 

process temporal features. Nonetheless, compared with multivariate sequential models, 

univariate sequential prediction models bring in limited information on students’ online 

learning behaviours. Liu et al. (2018) expanded the univariate sequential model by proposing 

a prediction model based on Recurrent Neural Network (RNN), namely Long Short-Term 

Memory (LSTM), to predict learners’ early dropout status. The model that they implemented 

and trained on a dataset extracted from Chinese University MOOCs yielded an accuracy of 

90%. The authors transformed the dropout-prediction problem into a sequential prediction 

problem and utilized LSTMs to make predictions. However, their work has several 

limitations. First, they apply their approach in the context of the informal MOOCs online 

learning platform, so it is not clear whether the results would generalize to other online 

learning environments, such as the LMSs formal learning platform. Second, the scope of the 

features they employed is limited, including only learners’ interactions with the forums (e.g., 

post count in general discussion, post count in professor answer area, and post count in class 

exchange area) and ignoring other important aspects of online learning. Third, the study 

focuses on dropout rate, but it does not explore the relationship between log events and 

academic performance. 

Recent studies implemented sequential deep sequential learning algorithms and 

compared the prediction performance of students’ dropout rate in virtual learning 

environments using large-scale, publicly available MOOC datasets. Hassan et al. (2019) 

implemented a deep-learning model with LSTM and compared its performance with a two-

layer perceptron and logistic regression on predicting students’ dropout rate on the Open 

University Learning Analytics (OULA) dataset in different weeks (e.g., weeks 5, 10, 15, 20, 

and 25) across a term. They found that the deep-learning model performed best among the 
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three models at every time step and achieved high accuracy as early as Week 10, which was 

comparable to the prediction accuracy of a two-layer perceptron and logistic regression in 

Week 25. Their study demonstrates the potential of deep-sequential models in predicting 

students’ attainment in online learning platforms.  

Learner Modeling in Digital Learning Systems  

While EDM is developing at a rapid pace in the last decades, one branch of EDM, 

namely adaptive tutoring and e-learning, draws special attention from the field for two 

reasons. First, the log-event data collected from the open online tutoring systems is at a much 

larger scale compared with data collected from local digital learning systems. Second, the 

huge datasets are publicly available so that different newly devised analytic approaches and 

algorithms can be tested on them and compared with benchmarks.  

Emerging research on learner models is being conducted based on large volumes of 

publicly available process data, which facilitates researchers and teachers to better understand 

learners’ behaviours in the ITSs and to implement efficient tools to scaffold learners on 

adaptive learning paths that meet their individualized needs (Abyaa et al., 2019). Learner 

models are crucial for individualized learning and tutoring, as they model learners’ 

behaviours and characteristics, including prior knowledge, emotions, and demographic 

information to predict their future skill performance and to adapt within the learning 

platforms. Some of the commonly used learner models include Item Response Theory (IRT; 

Embretson & Reise, 2013), Performance Factor Analysis (PFA; Pavlik et al., 2009), Bayesian 

Knowledge Tracing (BKT; Corbett & Anderson, 1994), and Deep Knowledge Tracing (DKT; 

Piech et al., 2015). 

Item Response Theory (IRT; Embretson & Reise, 2013) is the methodological 

framework that applies generalized linear models to predict the probability that the student 

will answer the next item correctly based on previous item responses. This technique is 
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widely used in computer-adaptive testing to measure student mastery of latent skills (van der 

Linden & Glas, 2010). Several variants of IRT have been developed to incorporate more 

parameters for better calibration among various contexts, including 1-parameter logistic item 

response theory (1PL IRT; Rasch, 1993), 2-parameter logistic item response theory (2PL 

IRT; Lord, 1980), 3-parameter logistic item response theory (3PL IRT; Birnbaum, 1968), 4-

parameter logistic item response theory (4PL IRT; Barton & Lord, 1981) model, and partial 

credit item response theory model (PCM; Masters, 1982) for polytomous response data. The 

1PL IRT (i.e., Rasch model) is widely used in computer-based educational and psychometric 

measurement for its simplicity and precision. The Rasch model can be computed as follows: 

𝑙𝑛 (
𝑃(𝑋𝑛𝑖 = 1)

𝑃(𝑋𝑛𝑖 = 0)
) = θn − β𝑖, 

where 𝑋𝑛𝑖 is the actual response to a dichotomously scored item, 𝑋𝑛𝑖 = 1 refers to the 

student correctly answering an item, and 𝑋𝑛𝑖 = 0 refers to the student incorrectly answering 

an item; θn is the ability parameter of student n (a higher θn means that the student has a 

higher ability level); and β𝑖 is the difficulty parameter of item i. Thus, the log odds of the 

probability of success on an item 𝑃(𝑋𝑛𝑖 = 1) over the failure trial 𝑃(𝑋𝑛𝑖 = 0) can be 

calculated as the (θn − β𝑖).  

Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1994) is a popular learner 

modeling approach in the EDM community, designed to make inferences about learners’ 

knowledge learning and transfer. A standard BKT is a two-state Hidden Markov Model 

(HMM; Eddy, 1996) that estimates learners’ skill mastery, where learners’ response is a 

binary (correct or incorrect) observable node, and a knowledge state is a hidden binary node 

with mastery and non-mastery states. Although BKT is one of the most popular knowledge 

tracing models, it presents some limitations. First, BKT dichotomizes student knowledge 

mastery states into “learned” and “unlearned”, which is unrealistic. Second, BKT maps items 

to a single concept, and cannot be adapted for questions that cover multiple knowledge 



25 

 

concepts. Some variants of BKT have been developed to improve predictive accuracy such as 

incorporating time-based contextualized parameters (Baker et al., 2008) or past item 

responses and correctness (Beck et al., 2008) into BKT estimation. Some variants are also 

developed based on BKT such as individualized BKT (Yudelson et al., 2013) and BKT plus 

(Khajah et al., 2016).  

BKT can be characterized by five basic elements as plotted in Figure 1: 

(1) 𝑃(𝐼𝑛𝑖𝑡𝑖𝑎𝑙) or 𝑃(𝐿0): the probability that the skill was known a priori (i.e., before 

learning began); (2) 𝑃(𝐿𝑒𝑎𝑟𝑛) or 𝑃(𝑇): the probability that the skill will transition into 

mastered state after a practice attempt; (3) 𝑃(𝐹𝑜𝑟𝑔𝑒𝑡) or 𝑃(𝐹): the probability that the skill 

will transition into a non-mastery state after a practice attempt; traditionally, p-forget is set to 

zero and is not counted towards the total number of parameters; (4) 𝑃(𝑆𝑙𝑖𝑝) or 𝑃(𝑆): the 

probability that a mastered skill is applied incorrectly; and (5) 𝑃(𝐺𝑢𝑒𝑠𝑠) or 𝑃(𝐺): the 

probability that an unmastered skill will be applied correctly. 

 

Figure 1. Graph Representation of the Standard Bayesian Knowledge Tracing (BKT) Model 

In standard BKT, the binary state nodes, 0 and 1, represent the state of student 

knowledge mastery: 0 refers to the student not mastering the skill or knowledge component, 

whereas 1 assumes that the student mastered the skill. The conditional probability of a 

student mastering a skill at time step t can be calculated as follows: 
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𝑃(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =
𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑡−1)) ∗ 𝑃(𝐺)
 

𝑃(𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =
𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑡−1) ∗ 𝑃(𝑆) + (1 − 𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝐺)))
 

Thus, the student’s actual response 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ϵ {0, 1} to an exercise can be used to compute 

the probability of mastering a skill at time 𝑡: 

𝑃(𝐿𝑡) = 𝑃(𝐿𝑡|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡) + [1 − 𝑃(𝐿𝑡|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡)] ∗ 𝑃(𝑇) 

 

Deep Knowledge Tracing (DKT; Piech et al., 2015) is another widely discussed 

approach in the EDM community. DKT was first proposed by Piech et al. (2015). It utilizes 

recurrent neural networks to model learners’ sequential product data. Similar to BKT, the 

DKT approach models students’ product data and observes knowledge transfer at both latent 

skill level and item level. However, DKT does not treat skills independently. Instead, it 

updates the knowledge states on all skills concurrently as a learner practices a single skill. 

Moreover, DKT considers the temporal connections between actions within the systems. The 

RNN is illustrated in Figure 2. At different time steps {t = 1, 2, …, T}, the input layer 𝑥1, 

𝑥2,…, 𝑥𝑇 is described as a one-hot encoding of a student trial-performance, the hidden layer 

ℎ1, ℎ2,…, ℎ𝑇 is an RNN layer for predictions, and the output layer 𝑦1, 𝑦2,…, 𝑦𝑇 is the 

correctness prediction of every knowledge component. The output vector can be computed as 

follows:  

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡  +  𝑊ℎℎℎ𝑡−1 +  𝑏ℎ), 

𝑦𝑡 = 𝜎(𝑊𝑦ℎℎ𝑡 +  𝑏𝑦), 

where 𝑊ℎ𝑥 is the input weight matrix, 𝑊ℎℎ is the recurrent weight matrix, and 𝑊𝑦ℎ is the 

output weight matrix; 𝑏𝑦 and 𝑏ℎ are the latent bias vector and the output bias vector, and 𝜎 is 

the sigmoid function. 
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Figure 2. Recurrent Neural Network (RNN) Representation of Deep Knowledge Tracing 

(DKT) 

The deep learning approach (Goodfellow et al., 2016; LeCun, Bengio, & Hinton, 

2015) captures the temporal information of student actions to make more accurate 

performance predictions. DKT also has some variants including Long Short-Term Memory 

DKT (LSTM DKT; Piech et al., 2015) and DKT with Gated Recurrent Units (GRU; Chung et 

al., 2014) to improve performance predictions. Compared with the vanilla RNN, the RNN-

variant LSTM introduces a forget gate to retain information from previous steps. Figure 3 

illustrates an LSTM cell in which the output at time t depends on the input x at both time (t – 

1) and t: 

𝑦𝑡 = 𝑊𝑦ℎℎ𝑡 +  𝑏𝑦, 

ℎ𝑡 = 𝐻(𝑊ℎ𝑥𝑥𝑡  + 𝑊ℎℎℎ𝑡−1 +  𝑏ℎ), 

where 𝑦𝑡 is the output unit, 𝑥𝑡 is the input at time t, 𝑊ℎ𝑥 is the input weight matrix, 𝑊ℎℎ is the 

recurrent weight matrix, and 𝑊𝑦ℎ is the output weight matrix, 𝑏𝑦 and 𝑏ℎ are bias vectors, and 

𝐻 is usually a series of element-wise operation functions: 

𝑖𝑡 =  𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖), 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓), 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔), 

𝑠𝑡 = 𝑖𝑡⨀𝑔𝑡 + 𝑓𝑡𝑠𝑡−1, 

𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜), 

ℎ𝑡 = 𝑂𝑡 𝑡𝑎𝑛ℎ(𝑠𝑡) , 

 

in which 𝑥𝑡 is the input vector at time step t, 𝑖𝑡 is the input gate's activation vector, 𝑓𝑡 is the 

forget gate's activation vector, 𝑔𝑡 is the cell input activation vector, 𝑠𝑡 is cell state vector, 𝑂𝑡 

is the output gate's activation vector, and, lastly, ℎ𝑡 is the output vector of this LSTM unit. 

𝑊𝑖, 𝑊𝑓, 𝑊𝑔, 𝑊𝑜, 𝑈𝑖, 𝑈𝑓, 𝑈𝑔, 𝑈𝑜 are the estimated weight matrices, 𝑏𝑖, 𝑏𝑓, 𝑏𝑔, 𝑏𝑜 are the bias 

vectors, 𝜎 is the sigmoid function, 𝑡𝑎𝑛ℎ is the tangent function, and ⨀ is the element-wise 

multiplication operator.  

DKT also has many extensions including DKT plus (Yeung & Yeung, 2018), DKT 

with Convolutions (Yang et al., 2020), DKT with Rich Features (Zhang et al., 2017), and 

Graph-based Knowledge Tracing (GKT; Nakagawa et al., 2019). DKT and its variants gained 

its popularity in the field of EDM in the last decade, as it displayed higher predictive 

accuracy and abilities of processing sequential data and exploiting the temporal dynamics 

compared with probabilistic approaches. 



29 

 

 

Figure 3. Conceptual Representation of the LSTM Cell 

Recent studies also employed the Convolutional Neural Network (CNN) instead of 

RNN to process student interactions with ITSs. CNN is a commonly used model for image 

recognition, and currently has been widely used in text analysis. The convolutional layer is 

seen as a function which could learn features from n-grams, and can be represented as: 

𝑍𝑖 = ƒ(𝑊𝑧[𝑥𝑖
𝑗

∶ 𝑥𝑖
𝑗+ℎ𝑤−1

] + 𝑏𝑧) 

 

where 𝑥𝑖 is the ith embedded word, 𝑊𝑧 is the weight matrix, 𝑏𝑧 is the bias vector, ℎ𝑤 is the 

window size of the convolutional layer, ƒ is a non-linear activation function (i.e., sigmoid or 

tanh), and 𝑍𝑖 is the output of feature representation. A conceptual representation of a 5-

dimension CNN for dichotomous text classification is shown in Figure 4.  
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Figure 4. Conceptual Representation of CNN 

Automated Feedback Generation in Digital Learning Systems 

Precise learner modeling is important, but it is not enough for effective delivery of 

online tutoring and e-learning. Providing feedback is a key factor for improving knowledge. 

In education, feedback is defined as the information provided by an agent regarding aspects 

of one’s performance or understanding (Hattie & Timperley, 2007; Shute, 2008). High-

quality personalized and timely feedback can improve learners’ performance (Hattie & 

Timperley, 2007), but feedback provision is often reported as the long-standing weakness of 

ITSs and e-learning systems (Maniktala et al., 2020; McFarland & Hamilton, 2005). On the 

one hand, students complain that they receive too little quality feedback in the process of 

learning (Boud & Molloy, 2013; Ferguson, 2011). On the other hand, students are reported to 

misuse and abuse the feedback or hints provided by the ITSs (Price et al., 2017). Thus, 

knowing how and when to provide real-time personalized feedback that guides and motivates 

students’ learning remains a challenge. Some of the earlier attempts of implementing 

feedback within ITSs focused on providing real-time online tutoring by humans in those 
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environments (Merrill et al., 1992; Heffernan & Koedinger, 2002). Findings show that human 

tutoring is effective in improving students’ performance, but it is time and labor consuming, 

and not applicable to large-scale practice and open-ended platforms. Although providing 

feedback is crucial for scaffolding students to improve performance (Hattie & Timperley, 

2007), research on how learning technologies effectively estimate learners’ skills and 

automatically generate individualized feedback is lagging (Deeva et al., 2021; Maniktala et 

al., 2020). Specifically, discussions of automated feedback systems are still ongoing 

regarding when to provide feedback (immediate vs. delayed), how to provide feedback 

(summative vs. formative, adaptive vs. non-adaptive, expert-derived vs. data-driven), and 

how to assemble the feedback content (generic vs. specific, KC based vs. item based).  

Based on a review of automated feedback systems for learners in the last decade, 

Deeva et al. (2021) proposed a framework for TAF-ClaF (Technologies for Automated 

Feedback – Classification). They identified the main elements for automated feedback 

systems as outlined in Figure 5. The elements can be categorized into three dimensions: 

where feedback is deduced, how it should be delivered, and when to provide it. The first 

question of ‘where’ is addressed by the domain model, which is a structured domain 

knowledge representation based on Bloom’s taxonomy (Bloom et al., 1984). It defines the 

subjects (e.g., math, literature, etc.) and the corresponding sequential order of teaching of the 

knowledge components. The second question of ‘how’ is addressed by the feedback 

generation model, which is determined by two factors: (1) whether the rules for feedback 

generation is derived from expert knowledge or student data; and (2) whether the approach of 

feedback delivery is expert-driven, data-driven, or a mixture of both. More specifically, 

expert knowledge refers to the learning and teaching theories dictated by experts for 

predefining feedback for students, whereas student data represents the learning traces from 

students that can be analyzed through educational data mining or learning analytical 
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techniques to empirically induce knowledge representation architecture and to trigger 

feedback delivery. Regarding the feedback generation model, the expert-driven model uses 

expert knowledge as the set of rules for both feedback generation and feedback provision, the 

data-driven model is solely derived from student data and it delivers feedback purely based 

on empirical evidence, whereas the mixed model uses both sources of expert knowledge and 

student data to derive feedback. The last question of ‘when’ is defined by the timing of 

feedback provision. Recent technologies have advanced the implementation of hint 

generation systems and feedback generation for unstructured domains such as programming 

tasks and essay writing. 

 

Figure 5. A Representation of a Typical Automated Feedback Technology by Deeva et al. 

(2021) 

Hint Generation. Most empirical studies focus on implementing automated hint 

generation methods for intelligent tutoring systems to scaffold students and recommend next-

step learning. For example, Price et al. (2017) sampled 171 students to compare the quality of 
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data-driven hint-generation algorithms. The hints produced by the algorithms were evaluated 

using a “QualityScore” procedure, which sampled a set of “gold standard” hints produced by 

a group of three expert tutors familiar with the problems to set a benchmark for hint 

comparison. The data-driven hints were distinguished into three categories: full match, partial 

match, and no match in comparison to the quality of a “gold standard” hint. This study 

included two experiments. The first experiment aimed to validate the “QualityScore” 

procedure as a benchmark for hint evaluation. QualityScore matched 82.9% of manual hint 

ratings, which is why it can be deemed as a reasonable procedure. The second experiment 

compared 6 hint generation algorithms and found that the Intelligent Teaching Assistant for 

Programming (ITAP) and SourceCheck outperformed every other algorithm in terms of 

producing reasonable hints. ITAP was designed specifically for Python, which suggests that it 

holds an advantage over the other algorithms for the Python dataset, which could be a 

possible reason for its success.  

Marwan, Williams, and Price (2019) also conducted two studies to investigate next-

step programming hints’ effect on learners’ performance, overall understanding, and 

perspectives. The first study sampled 10 students from an introductory engineering course 

who had no prior programming experience and the second study sampled 201 paid workers 

from Amazon’s Mechanical Turk platform. Both studies used a block-based programming 

platform called iSnap. The first study’s goal was to understand student perceptions of four 

types of hints: code hint only, code hint with textual explanation, code hint with self 

explanation prompts, and code hint with both textual and self-explanation prompts. A variety 

of these hints would be offered every 2 minutes over the course of a 15-minute programming 

task that would update with each code change. Students could use these hints immediately or 

choose to wait as the hints would accumulate over time, hence they were given the option to 

request multiple hints in a row. This feature was specifically put in place to encourage hint 
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usage while preventing overreliance on them. The study spanned two programming tasks in 

which the first one was followed up with questions about the timing, helpfulness, 

trustworthiness of each hint and what motivated them to use it. Task 2 was similar to the first 

task, but it was noticeably more difficult and, thus, had an easier and harder version. Students 

who finished Task 1 within ten minutes were given the harder version while the rest were 

given Task 2 to ensure a fair level of challenge while attempting the second task. A similar 

interview to Task 1 was conducted after Task 2 as well. The interview answers showed a 

positive sentiment towards textual explanations (7 out of 10 students), as it helped them 

understand the “how” and “why” of a code hint. Self-explanation prompts were appreciated 

(4 out of 10) as they prompted students to think more deeply about the given hint. However, 

3 out of 10 students criticized self-explanation prompts for being frustrating and confusing. 

The interview additionally revealed that there was no specific time when the students agreed 

to get hints. The second study’s goal was to investigate performance and learning transfer on 

a larger sample size. The procedure of the study was similar to the first study, except for a 

few differences. There were three types of hints: No hint (control), Code hints with Textual 

Explanations (CT) and Code hints with Textual and Self-explanation prompts (CTE). Each 

learner was assigned one of the three hint types provided in Task 1. However, no hints were 

given in Task 2, to measure one’s ability to perform a similar task without help. The results 

of immediate performance were compared based on the completion of 4 objectives during 

both tasks. More learners completed the task in CT condition (27.8%) and CTE condition 

(45.8%) than control condition (22.2%). The difference between the three groups became 

more pronounced over time. In Task 2, the measure of learning was compared through a post-

hoc Dunn’s test with Benjamini-Hochberg correction, which showed a significant difference 

between CTE learners and both the control group (z = 2.73; p = .01) and CT learners (z = 

2.35; p = .028), respectively. However, there was no significant difference between CT 



35 

 

learners and the control group. This suggests that only code hints with self-explanation 

prompts improve learners’ performance. There was a weak but significant negative Spearman 

correlation between the number of hints requested on Task 1 hints and the performance on 

Task 2 in the CT group (r = -.243, p = .03) but not in the CTE group (r = -.102, p = 0.40). 

This suggested that the number of hints requested does not strongly predict the performance 

of current or future tasks. Ratings of learners on a scale of 1-10 were much less in the control 

group (Median = 5, IQR = 4) compared with CT learners (Median = 7, IQR = 3.4) and CTE 

learners (Median = 8, IQR = 2). This suggests that hints were perceived as much more 

helpful when providing textual and self-explanation hints. Overall, these results provided an 

important step in understanding the potential benefits and limitations of coding hints and they 

also suggest significant performance improvement with textual explanations.  

Another study (Marwan, Lytle, Williams, & Price, 2019) introduces a straightforward 

method for generating textual explanations to accompany automated, next-step programming 

hints. Next-step hints can support students during program construction and automatically 

adapt to the student’s current code to support different student solutions. The authors 

evaluated the impact of adding these textual explanations to code hints in iSnap through two 

controlled experiments with different populations. In Experiment 1, they conducted a 

controlled study on novices in an introductory programming course for non-CS majors and 

found that explanations may increase students’ willingness to use and follow the hints. 

However, they also claimed that the majority of students did not use hints, so the sample size 

was small, and the results were inconclusive. The further experiment was conducted with 

crowd workers recruited on Amazon’s Mechanical Turk platform. They found that learners 

who received code hints with textual explanations rated hints as significantly more useful and 

were more likely to follow hints which showed a similar trend to Experiment 1. In addition, 

learners who received textual explanations were also significantly more likely to explain the 
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relationship between the received hints, their code, and the assignment objectives. The 

authors argued that they isolated the impact of one specific element of support – textual 

explanations – to evaluate it directly. In addition, they evaluate the systems by ascertaining 

student performance on future tasks as a measure of learning and by using self-explanations 

as an alternative technique to measure the impact of hints on students’ knowledge. The 

platform generates textual explanations for a given problem in iSnap by identifying all 

common abstract syntax tree (AST) nodes in the database of solutions, and then manually 

annotating each of these solution AST nodes with a textual explanation for the corresponding 

hint. Therefore, the study designed complementary textual explanations for existing code 

hints in iSnap, with the goal of overcoming the limitations of code hints that only tell a 

student what to do. 

A study (Mao et al., 2019) sampled 171 undergraduate University students (non-CS 

majors) over the course of four months in an introductory programming course on iSnap, a 

block-based coding platform. The goal of the study was to effectively predict whether the 

student would succeed eventually and if the student would need intervention at any given 

time. The binary measure of success was classified as Trajectory Level prediction and the 

need for intervention was classified as Event Level prediction. The study uses the Recent 

Temporal Pattern (RTP) versions of classic machine learning models such as K-nearest 

neighbors (KNN; Altman, 1992), Support Vector Machine (SVM; Cortes & Vapnik, 1995), 

and Logistic Regression (LR; Wright, 1995) to build interpretable models and compare them 

to the performance of their standalone versions as well as a deep learning LSTM model. A 

student's state was determined by the identification of data-driven features (DDF) and expert 

features (EF). The results reflected that the RTP-based models were able to predict student 

success within a minute of an otherwise 20-minute programming task. The RTP-based 

models also successfully predicted the need for intervention 85% of the time during repeated 
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application every 5 minutes. However, the study was limited by a lack of progressive features 

with multiple values and the measure of success was restricted to a binary metric. A larger 

sample size and longer course duration could also result in the incorporation of recency 

measures for the temporal patterns. The next steps for the study include incorporating recency 

measures into the temporal patterns and expanding the binary measure of success and need 

for intervention. 

To summarize, results from the above literature review show that most studies: (1) 

were based on unstructured domains; (2) used supervised-learning techniques to track 

students’ learning status; (3) and generated hints within the systems for improving students’ 

performance and adapting future learning. However, few studies addressed skill-level 

automated feedback generation for intelligent tutoring systems in other domains. 

Feedback Generation for Unstructured Domains. Among a handful of studies on 

automated feedback generation systems, most were developed for programming tasks, 

constructed response questions, or essays. Silva et al. (2019) sampled 34 students in an 

introductory programming class to present an approach to provide adaptive feedback while 

the programmer solves a problem in the form of text, video, and flowchart feedback. The 

study explored various previous attempts at providing adaptive feedback but found that most 

systems provided low-quality feedback out of which only 32.7% of the systems generated 

feedback for error correction and only 18.8% generated messages that help the student 

proceed with the next step of the problem. Thus, the researchers developed an intelligent 

tutoring system (ITS) aiming to provide high-quality adaptive feedback that the students can 

use to program in C/C++ language. When students ask for feedback, the system checks if the 

student has indicated which part of the solution they need help with by selecting that portion. 

Then, the system looks for specific feedback whose content has been created and associated 

with code parts of the model solution. If there is no selection, the system uses the current 
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state of the student solution to search for general feedback. The process of generating 

feedback involves (1) extracting information from each question posed to the learner; (2) 

extracting the part of the code provided by the student; (3) extracting the gold-standard 

solution given by the ITS; and (4) performing a similarity calculation between the student’s 

code and the solution, using the Levenshtein’s distance algorithm, which returns a score 

ranging from zero to one. The study involved a quasi-experiment to determine the pre-test 

and post-test performance of each student giving them one basic programming problem to 

solve in each test. The results of the test were evaluated using test cases and scores between 

zero to ten. They found that the students’ performance on the post-test was significantly 

better than their pre-test performance, as evidenced by a statistically significant t-test (p-value 

< .001). In the second session of the experiment, the students’ interaction log with the system 

was analyzed to check their response and behaviour during feedback requests. It was found 

that some students showed atypical behaviour by making several feedback requests in 

sequence but did not use the feedback to make changes to the solution. By removing these 

students from the analysis, it was found that 85% of the feedback messages received by the 

group were useful for the student to make progress on their solution. 

An ongoing study (Katan & Anstead, 2020) explores student behaviour on a gamified 

platform, Sleuth, for teaching introductory programming to large student cohorts. The study 

sampled 1,500 students over an assessed coursework assignment to empirically test 

automated feedback generation and gamification of educational material. The platform 

provides a set of code puzzles based on a film-noir detective story where a ‘Chief’ provides 

immediate feedback (i.e., for runtime or compile-time errors) on every attempt, which is then 

graded automatically. The coding exercises are generated with variations between each 

attempt to create an inexhaustible supply of puzzles and reduce the scope of plagiarism. The 

preliminary results show that the student cohorts performed significantly better in Sleuth with 
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an impressive mean grade of 90.67%, whereas module tests yielded a much poorer mean 

grade of 66.94%. A positive correlation was found between the two Sleuth assignments 

through a Spearman’s rank correlation (r = .63, p < .01). A significant improvement in 

student motivation and activity was observed, as there was an average of 158 puzzle attempts 

per student. Students also seemed to enjoy the presence of Easter Egg levels that had no 

graded reward associated with them. The perceived task difficulty of 2.7 on a 5-point Likert 

scale and the high levels of achievement indicate some degree of intrinsic motivation. Some 

of the limitations of this study include undesirable and obsessive behaviours to get a 100% on 

each puzzle due to the lack of an upper limit on time or attempts for them. Also, rather than 

adopting a strategic route towards solving the problems, students approached them in a much 

more linear way and compensated with multiple failed attempts instead. The next steps for 

the study are to explore the role and method of feedback delivery in student performance and 

mitigate the sequential approach when students solve the puzzles.  

Keuning et al. (2014) examined the rising number of individuals who wish to learn how 

to program and started to introduce a programming prototype that helps students with feedback 

and hints to progress towards a solution for an introductory imperative programming problem. 

The study’s main goal is to provide an intelligent strategy-based feedback tutor, trying to 

generate relevant hints and tips to the programmer to solve a somewhat simple problem. The 

study implies that many of the programming tutors’ comments on a program are based on a 

complete program, but the authors’ programming tutor is a step-by-step tutor who comments 

on each of the statements of the program. There is a web interface that enables the student to 

select the exercise from a list of available exercises. The editor, in which the code can be typed, 

provides syntax highlighting. When the student first asks for a hint, the first option (branch) of 

the hint tree is shown. The student has the opportunity to ‘expand’ (denoted by the -+ symbol) 

a specific path and view a hint that provides more details. The tutor is built on top of the IDEAS 
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framework (Interactive Domain-specific Exercise Assistants), which provides services to build 

exercise assistants to help students solve problems incrementally. The tutor has three 

components: (1) Domain specification: a domain is described, among other things, by a 

grammar for its abstract syntax and an accompanying parser to process submitted work. (2) 

Steps: a step is a transformation on values of the domain, such as refining or rewriting a student 

submission. (3) Strategies: a strategy combines basic steps and specifies which steps can be 

taken, in which order. A strategy to solve an exercise is composed of several steps. Two types 

of steps are used in the tutor for imperative programming: append steps and refinement steps. 

A programming exercise can be specified by providing a set of model solutions and an exercise 

description in a text file. Students can do the exercises by creating a solution and asking for 

feedback. The tutor can understand different algorithms, different statements, and different 

statement orders which helps to differentiate between the different solutions. The study 

evaluated its tutor by collecting data from first-year IT-students during their Web programming 

course and their Java programming course. They were given three exercises. Exercises 1 and 

2 are relatively simple PHP exercises from the Web programming course. The tutor was 

capable of recognizing 75% (24 out of 32, for the first exercise) and 33% (for the second 

exercise) of the solutions that they considered similar to a model if they would be manually 

assessed. 

Research Gaps 

Several research gaps were identified by Deeva et al. (2021) in the existing literature 

based on a review of automated feedback generation technologies from 2008 to 2020. First, 

the transparency and implementation accessibility of feedback generation systems are 

deficient. Most of the related studies did not share the technical details on how their system 

was created and what tools or languages were used. Second, most studies did not report the 

educational frameworks or learning theories underlying their automated feedback generation 
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systems, and they did not report the context in which the system was built. Third, only half of 

the systems reviewed reported that they adopted a data-driven approach for feedback 

generation, whereas most of the previous studies still heavily relied on expert knowledge. 

Although an expert-driven approach is not a drawback by itself, it might slow down the full 

automation of tutoring and assessment. Fourth, while most research emphasized adaptiveness 

as an important factor for feedback, only one third of the reviewed studies adapted the 

feedback to student characteristics and personality. Fifth, the selected studies still show 

deficiencies in providing personalized feedback, especially on determining when the 

feedback should be delivered. In addition, the review of empirical studies on automated 

feedback generation revealed that most automated feedback systems aimed to generate item-

level comments or feedback (i.e., created based on the learners’ performance on items), 

whereas only few incorporated measurement models to detect students’ latent skill mastery 

states and provide higher-level feedback on their performance (Lu et al., 2021).  

Based on the comprehensive review of the previous studies, we identified the 

following additional research gaps. First, most automated feedback systems only evaluated 

student performance and mastery of skills based on product data, whereas the process data 

collected from the ITSs were unused. Second, most automated feedback generation models 

aimed to provide item-related hint to guide students to complete the items for structured 

domains or corrective feedback for unstructured domains such as essay writing and 

programming using natural language processing techniques. Research on providing skill-level 

feedback for structured domains is lacking. 

To address the gaps identified from previous studies, we propose a data-driven based, 

personalized feedback generation system informed by cognitivist learning theory that suits 

different learner environments and learner models for structured domain knowledge (i.e., 

math, algebra, and statistics). Details on the implementations and evaluations of different 
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components of the automated feedback generation framework were addressed and elaborated 

to ensure transparency, accessibility, and reproducibility. Specifically, we implemented an 

evaluation model that incorporates both student product data and process data and used 

natural language processing (NLP) techniques to augment our corpus of feedback templates 

for both positive and negative feedback to avoid word repetitions. We also detailed the 

feedback generation process for different learner models.  

Chapter Summary  

Chapter 3 first reviewed the current trends of studies on technology-enhanced 

learning and digital tutoring and assessment. Next, it summarized the features and models 

that were commonly used to model students’ log-event data and introduced several 

mainstream learner models that apply to large-scale log-event datasets. Third, it examined the 

classifications and empirical studies of automated feedback technologies including hint 

generation and feedback generation systems for unstructured and structured domains within 

digital learning environments. It further highlighted the advantages and potentials of a data-

driven approach to automated feedback generation. Finally, it identified the existing research 

gaps. The next chapter describes the proposed novel data-driven framework of automated 

feedback generation for different learner models.
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Chapter 4 Methods 

Overview 

This chapter introduces the proposed framework of Automated Feedback Generation 

for Learner Models. The organization of this chapter is guided by the three proposed research 

questions:  

1. To what extent do the learner models perform accurate and interpretable estimations of 

students’ performance? What are the predictive accuracies, input representations, 

output representations, and characteristics of the different learner models? Does the 

proposed learner model that incorporates both product data and process data yield 

better prediction performance compared with previous learner models?  

2. To what extent does the feedback generation method produce fluent and related 

feedback? Can the feedback generation method create a variety of feedback templates 

that are grammatically correct and semantically related?  

3. To what extent is the proposed framework of Automated Feedback Generation for 

Learner Models feasible for structured knowledge domains? How does the proposed 

feedback generation method fit into different learner models? What format and 

information does the generated feedback provide for learners? 

Drawing upon Deeva et al.’s (2020) framework for TAF-ClaF (Technologies for 

Automated Feedback – Classification), we adapted the structure of the automated feedback 

technology and specified each component within the proposed framework of feedback 

generation for learner model as shown in Figure 6. Compared with Deva’s framework, the 

proposed system makes the following contributions: (1) it replaces Student Data with Student 

Product Data and Process Data and (2) it defines the Automated Feedback model as being 

an Augmented Templated-based Automated Feedback model. The main components (i.e., the 

KC/learner model, student data, data-driven feedback generation model, the feedback trigger, 
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and feedback content), their implementations (i.e., the implementations of the learner model 

and the feedback augmentation model), and the evaluation methods are detailed later in this 

section. The implementations and evaluation metrics of different learner models are first 

described. Then, the implementations and evaluation metrics of the unsupervised feedback 

generation algorithm are described. This chapter ends with a summary of the synthesized 

framework. 

 

Figure 6. Automated Feedback Generation for Learner Models 

 

Datasets for the Learner Models 

Three datasets of various sizes, commonly used as benchmarks in previous studies, 

were selected to compare the characteristics and performance of the learner models and to 

demonstrate that the proposed framework of feedback generation works well with different 

learner models: the ASSISTment 2009-2010 dataset (Heffernan & Heffernan, 2014), the 

KDD Cup 2010 EDM Challenge-Algebra I 2005-2006 dataset (Koedinger et al., 2010), and 

the OLI Engineering Statics - Fall 2011 (Koedinger et al., 2010). Table 2 summarizes the 
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numbers of students, Knowledge Components (KCs), items, and total steps (interactions with 

the system) for these datasets.  

Table 2  

Dataset Information 

 ASSISTment 2009-2010 Algebra I 2005-2006 OLI Fall 2010 

Student 4,163 574 333 

KCs 110 178 80 

Items 17,709 173,113 300 

Interaction 459,209 809,695 261,948 

 

ASSISTment 2009-2010 is one of the largest datasets collected from intelligent 

tutoring systems and the benchmark for learner modeling studies. ASSISTment is a 

computer-based learning and assessment that is often used to teach math after school. This 

dataset was collected from the ASSISTment skill builder problem, which assigns a student to 

work on similar consecutive questions (normally set to answer 3 questions correctly in a row) 

until the student can answer problems on the KCs correctly. After completion, students 

commonly do not practice at the KC again. This dataset is the largest of all three datasets 

employed in this work. This dataset contains the main following columns as shown in Table 

3. 

Table 3 

Summary of the ASSISTment 2009-2010 Dataset 

Column Descriptions 

order_id The chronological identifier (ID) of the original problem log. 

assignment_id Two different assignments can have the same sequence ID. Each 

assignment is specific to a single teacher/class. 

user_id The identifier of the student who solves the problem. 
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problem_id The identifier of the problem. 

orignial 1 = Main problem. 

0 = Scaffolding problem. 

correct 1 = Correct on the first attempt. 

0 = Incorrect on the first attempt or asked for help. 

This column is often the target for prediction. 

attempt_count The number of attempts on this problem. 

ms_first_response The time in milliseconds for the first response. 

skill_id The identifier of the skill associated with the problem. 

For the skill builder dataset, different skills for the same data record 

are represented in different rows. Thus, if a student answers a multi-

skill question, this record is duplicated several times and each 

duplication is tagged with one of the multi skills. 

skill_name Skill name associated with the problem. 

For the skill builder dataset, different skills for the same data record 

are represented in different rows. Thus, if a student answers a multi-

skill question, this record is duplicated several times, and each 

duplication is tagged with one of the multi skills. 

hint_count Number of hints requested on this problem. 

first_action The type of the first action: attempt or ask for a hint. 

opportunity The number of opportunities the student has to practice this skill. 

For the skill builder dataset, opportunities for different skills of the 

same data record are represented in different rows. Thus, if a student 

answers a multi-skill question, this record is duplicated several 

times, and each duplication is tagged with one of the multi-skills 

and the corresponding opportunity count. 

opportunity_original The number of opportunities the student has to practice this skill 

counting only original problems. 

For the skill builder dataset, original opportunities for different 

skills of the same data record are represented in different rows. 

Thus, if a student answers a multi skill question, this record is 

duplicated several times, and each duplication is tagged with one of 

the multi-skills and the corresponding original opportunity count. 
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Algebra I 2005-2006 KDD Cup 2010 EDM Challenge is another benchmark dataset 

for learner modeling. The dataset was gathered within an Intelligent Tutoring System (ITS) 

from The Cognitive Tutors suite of tutors provided by the Carnegie Learning Inc. and hosted 

by the PSLC DataShop. This dataset was collected from three high schools for an entire year 

and contains most of the main elements of ASSISTment (e.g., student id, start time, duration, 

attempt, correct, and problem name), except for the skill_id column shown in Table 3. Thus, 

in the present work, we used the text skill name (i.e., the KC column in Table 4) as the 

equivalent of the column skill_id, which was represented as an integer in the ASSISTment 

datasets. Similar to ASSISTment, students must master a skill to progress to the next skill. 

This dataset is the second largest of all three datasets employed in this work. Table 4 presents 

the main columns of the dataset. 

Table 4 

Summary of the Algebra I 2005-2006 KDD Cup 2010 EDM Challenge 

Column Descriptions 

Anon Student Id Unique, anonymous identifier of a student solving the problem. 

Problem Hierarchy Hierarchy of curriculum levels containing the problem. 

Problem Name Unique identifier of a problem. 

Problem View Total number of times the student encountered the problem. 

Step Name Each problem consists of one or more steps. The step name is 

unique within each problem, but there may be collisions between 

different problems, so the only unique identifier for a step is the 

pair of Problem Name and Step Name. 

Duration (sec) Elapsed time of the step in seconds, calculated by adding all of 

the durations for transactions that were attributed to the step. It 

can be null (if step start time is null). 

Correct First Attempt Tutor’s evaluation of the student’s first attempt on the step. 

1 = Correct on the first attempt. 

0 = Incorrect on the first attempt. 

This is used for prediction. 



48 

 

Attempt at Step Number of attempts on this problem. 

Incorrects Total number of incorrect attempts by the student on the step. 

Hints Total number of hints requested by the student for the step. 

Corrects 

 

Total correct attempts by the student for the step. It increases if 

the step is encountered more than once. 

KC (KC Model Name) 

 

The identified skills that are used in a problem, where available. 

A step can have multiple KCs assigned to it. Multiple KCs for a 

step are separated by ~~ (two tildes). Since opportunity describes 

practice by knowledge component, the corresponding 

opportunities are similarly separated by ~~. 

Opportunities A count that increases by one each time the student encounters a 

step with the listed KC. Steps with multiple KCs will have 

multiple opportunity numbers separated by ~~. 

 

The Open Learning Initiative (OLI) Engineering Statics - Fall 2011 is a computer 

learning system developed at Carnegie Mellon University. The OLI provides online 

engineering static courses and assessments at college levels. The OLI embeds assessment into 

instruction and collects real-time data of student use. We used the OLI Engineering Statics - 

Fall 2012 dataset accessed via DataShop (Koedinger et al., 2010). This dataset is the smallest 

of all three datasets employed in this work. Table 5 presents the main columns of this dataset. 

Table 5 

Summary of the Open Learning Initiative (OLI) Engineering Statics - Fall 2011 

Column Descriptions 

Anon Student Id Unique, anonymous identifier of a student solving the problem. 

Problem Hierarchy  Hierarchy of curriculum levels containing the problem. 

Problem Name Unique identifier of a problem. 

Problem View Total number of times the student encountered the problem. 

First Action Type of the first action: attempt or ask for a hint. 

Step Name Each problem consists of one or more steps (e.g., "find the area 

of rectangle ABCD" or "divide both sides of the equation by x"). 

The step name is unique within each problem, but there may be 
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collisions between different problems, so the only unique 

identifier for a step is the pair of Problem Name and Step Name . 

Step Duration (sec) Elapsed time of the step in seconds, calculated by adding all of 

the durations for transactions that were attributed to the step. Can 

be null (if step start time is null). 

Attempt Level Number of attempts on this problem. 

correct Tutor’s evaluation of the student’s first attempt on the step. 

1 = Correct on the first attempt. 

0 = Incorrect on the first attempt. 

This is used for prediction. 

KC (Fall 2011) 

 

The identified skill that is used in a problem, where available. 

This dataset adopts a single KC model. 

 

Prior to model training, we performed data cleaning and preprocessing in R using the 

dplyr library (Wickham and Francois, 2014). We removed students who practiced fewer than 

two KCs or items, and interactions containing missing KCs (i.e., denoted as NA in the 

dataset). In addition, learners who had fewer than ten interactions or tagged with no KCs 

were also removed, according to the common procedure followed by the other studies 

employing these datasets (Gervet et al., 2020). Among the three datasets, some interactions 

are tagged with a single KC, whereas others are tagged with several KCs. We regarded 

combinations of KCs as constituting new KCs, according to the procedure outlined in most 

previous research.  

Learner Models  

Baseline Models 

The baseline models for the current study are Rasch model (IRT based), BKT (HMM 

based), DKT-RNN, and DKT-RNN-LSTM (both are deep learning models). The detailed 

descriptions of the baseline models can be found in the previous Chapter on learner models. 
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The DKT with Contextualized Information (DKT-CI) 

The four baseline models all used static or sequential product data as the input vectors 

(i.e., item ID/skill ID vs. student response where 1 denotes correctness and 0 denotes 

incorrectness) to predict the probabilities of answering the next item correctly. With the 

advent of learning technologies, the ITSs not only stored student product data but also 

collected contextualized information including duration of the tasks, number of hints 

requested, skill hierarchy, and total trials on the tasks. Thus, this study implemented a deep 

knowledge tracing model with contextualized information (DKT-CI). Specifically, we 

incorporated the contextualized information to a standard DKT using embedding techniques 

(Mikolov et al., 2013) to learn the feature representations of the following columns in the 

three datasets: the time (or duration) spent on a problem, the first action took to answer an 

item, the total number of attempts (or opportunities) on a step, and the total number of hints 

requested from the system. Then, the DKT-CI concatenated the embedding layer of 

contextualized information and the input vector of student product data as in the standard 

DKT. Figure 7 illustrates the conceptual representation of the DKT-CI that incorporates both 

the product data (𝑥𝑡) and the contextualized information related to task activities at different 

time steps (𝑖𝑡). 
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Figure 7. Representation of Deep Knowledge Tracing with Contextualized Information 

 

Implementation of the Learner Models 

IRT. The 1PL IRT model (i.e., the Rasch model) was implemented using the glmer 

function built in the lme4 library in R (Bates et al., 2007). The generalized linear mixed model 

employed the family=binomial(“logit”) and it was fitted using the maximum likelihood with 

Laplace approximation.  

BKT. The standard BKT model was implemented in C++ using the hmm-scalable 

algorithm (Yudelson et al., 2013). In the process of model training on the three selected 

datasets, we used the Baum-Welch method to estimate the parameters and adopted the default 

settings for the hyperparameters. Specifically, we set the initial probability of mastering a 

skill 𝑃(𝐿0) = 0.5, the transition probability from non-mastery to mastery of a skill 𝑃(𝑇) = 

0.4, the probability that unmastered skill is applied correctly 𝑃(𝐺) = 0.2, and the probability 

that a mastered skill is applied incorrectly 𝑃(𝑆) = 0.2. 

… … …
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DKT-RNN, DKT-LSTM, and DKT-CI. We implemented the standard DKT-RNN, 

its variants DKT-LSTM, and DKT-LSTM with contextualized information in Keras, using 

the TensorFlow backend (Abadi et al., 2016). We first performed grid search to select the 

best hyperparameters on the training set. Specifically, we chose among the RMSprop, Adam, 

and Adagrad optimizers with a learning rate of 0.001, batch size chosen from the set {5, 10, 

32, 64, 128}, and dropout probability chosen from {0.2, 0.4, 0.6}. For the hidden layers, we 

selected the dimension in {50, 100, 150}, the number of recurrent layers in {1, 2, 3}, and the 

ℓ1 and ℓ2 regularizers in {0.01, 0.02, 0.05}. For the embedding layer, we selected the 

dimension in {250, 500, 1000}. After training and validation, we obtained the 

hyperparameters that yield the best results. Appendix 1 presents the best hyperparameter sets 

for DKT-RNN, DKT-LSTM, and DKT-CI on the three selected datasets. 

Evaluation Metrics of the Learner Models 

In the training process, we split the datasets into training (60%), validation (20%), and 

testing (20%). For comparisons among the algorithms, we computed the predictive accuracy 

using the Area Under the Curve (AUC), because the response variable is binary. The AUC 

plots the true-positive rate against the false-positive rate at all decision thresholds. The AUC 

is a commonly used evaluation metric for learner models in which a score of 1 reflects a 

perfect discrimination and 0 reflects no discrimination. Following related studies, we also 

reported the Root Mean Squared Error (RMSE) to assess the squared error of prediction. 

Summary of the Learner Model Experiment 

Previous studies mainly focused on providing item-level hints or feedback, with only 

few examining personalized skill-level feedback. Incorporating learner models into feedback-

generation systems addresses this gap by providing higher-order diagnosis based on learners’ 

latent skill mastery states and knowledge transfer as measured by the learner models. In 
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addition, the proposed learner model incorporates contextualized information to the product 

data for more accurate calibration of student latent abilities.  

Feedback Augmentation  

Previous studies mainly provided automated feedback using expert-derived feedback 

templates (Zhu et al., 2020) or demonstrated the correct answer (Singh et al., 2013), where 

the feedback is greatly limited regarding the quantity, diversity, and communication 

efficiency. The present study used an unsupervised sentence generation method to augment 

expert-derived feedback templates for digital learning and assessment systems. The feedback 

generation phase includes three steps. In Step 1 (Corpus Development), we developed a 

corpus of feedback, which included positive and negative feedback along with the insertion 

position for KCs. In Step 2 (Corpus Augmentation), we expanded the feedback corpus by 

augmenting the feedback templates using the Constrained Sentence Generation by 

Metropolis-Hastings Sampling method (CGMH; Miao et al., 2019). Most sentence generation 

methods are based on RNNs so that a sentence can only be generated in a sequential order 

from left to right, whereas the MH sampler for sentence generation allows more flexible 

manipulations of sentences (Miao et al., 2019). Moreover, the unsupervised method does not 

require parallel corpus for sentence generation. In Step 3 (Feedback Generation & Provision), 

we generated item-student specific feedback based on students’ performance on the 

Intelligent Tutoring System. 

Implementation of the Feedback Augmentation System 

Step 1: Expert-Derived Feedback Templates. Table 6 presents a few examples of 

feedback templates that we devised for our corpus. A positive or negative feedback was 

retrieved from the corpus based on: (1) a learner’s performance and (2) a performance 

threshold.  
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Table 6 

The Feedback Template Corpus, Including Both Positive and Negative Feedback Messages 

and Insertion Positions for Knowledge Components (KCs) 

Positive Negative 

You are on your way to mastering [Insertion]. [Insertion] could use some focused practice. 

It looks like you have a good handle 

on [Insertion]. 

Consider practicing [Insertion] a bit more. 

Great work so far on mastering [Insertion]. [Insertion] requires a bit more attention. 

Great job mastering [Insertion]. See if you can fine tune your skill on 

[Insertion]. 

Keep up the good work on [Insertion]. You will master [Insertion] with a bit more 

practice. 

 

Step 2: Feedback Augmentation. To expand the corpus, we adopted the Constrained 

Sentence Generation by Metropolis-Hastings Sampling method (CGMH; Miao et al., 2019) 

to perform unsupervised paraphrase generation. The CGMH is a subtype of Markov chain 

Monte Carlo (MCMC; Geyer, 1992) methods and it supports more flexible operations on 

word tokens in a sentence space. Thus, it is easier to generate content with constraints and 

varying sentence lengths. Miao et al. (2019) tested the CGMH on three generation tasks: 

keywords-to-sentence generation with hard constraints, paraphrase, and error correction with 

soft constraints. In the present research, we implemented the unsupervised paraphrasing to 

augment the feedback corpus. Specifically, we first trained a language model based on the 

IMDB review corpus (Maas et al., 2011) that contains 25,000 positive and 25,000 negative 

reviews. Then, we performed the paraphrase generation.  



55 

 

A Markov model is used to train the language model on the selected corpus. The 

Markov Chain is commonly used to model natural language as a function of the probability 

that a word appearing in position n is only dependent on the previous z ϵ [1, n-1] such that: 

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛)= p(𝑤1) 𝑝(𝑤2|𝑤1),……, p(𝑤𝑛|𝑤𝑛−𝑧 , … , 𝑤𝑛−1), 

where 𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) refers to the probability of a specific sentence based on the trained 

corpus, that is, the joint probability of all words within the sentence. In the present research, 

we used forward-backward dynamic programming to train the language model. 

In Step 2 (feedback paraphrase), we performed the CGMH task of unsupervised 

sentence paraphrasing. The CGMH is concerned with a goal of stationary distribution that 

defines the sentence distribution sampled from the corpus and three actions, namely, 

replacement, insertion, and deletion. Specifically, 𝜋(𝑥) was set as the distribution from which 

we plan to sample sentences, where x denotes a particular sentence and 𝑥0 refers to the 

feedback template that is fed to the algorithm at time step 0. The MH sampler either accepts 

or rejects a word from the given distributions 𝜋(𝑥) to finally form a desired joint distribution 

of all words based on a predefined stationary distribution. The process is intuitive, as it 

mainly involves two actions: accepting or rejecting a word monitored by the acceptance rate 

α: 

α = min{1, 
𝜋(𝑥′)𝑔(𝑥𝑡−1|𝑥′)

𝜋(𝑥𝑡−1)𝑔(𝑥′|𝑥𝑡−1)
} 

At time step t, the word sampling is conducted to update the previous state x to a 

candidate distribution 𝑥′ from a proposed distribution 𝑔(𝑥′|𝑥𝑡−1), where 𝑥𝑡−1 refers to the 

distribution from previous step (t-1), thus 𝑥′ =  𝑥𝑡. Therefore, α determines the acceptance or 

rejection of a sample. In our paraphrase generation, the desired distribution denotes the most 

likely and logical sentence to the original sentence fed to the model.  

At each step, a selected word in the sentence will be randomly updated by the actions 

such as insertion, deletion, and replacement, where the respective probabilities are 
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[𝑝𝑖𝑛𝑠𝑒𝑟𝑡, 𝑝𝑑𝑒𝑙𝑒𝑡𝑒 , 𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒]. At the first time step, these probabilities are set as being equal. At 

the following step, if Replacement is applied on a selected word 𝑤𝑚 in a sentence 𝑥 =

[𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚, 𝑤𝑚+1, … , 𝑤𝑛], then the conditional probability of choosing 𝑤𝑚
𝑛𝑒𝑤 to 

replace 𝑤𝑚 to form candidate sentence 𝑥′ from x can be computed as: 

𝑔𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑥) = 𝜋(𝑥−𝑚) = 
𝜋(𝑤1,𝑤2,…,𝑤𝑚−1,𝑤𝑚

𝑛𝑒𝑤,𝑤𝑚+1,…,𝑤𝑛)

∑ (𝑤1,𝑤2,…,𝑤𝑚−1,𝑤,𝑤𝑚+1,…,𝑤𝑛)𝑤∈𝑉
, 

where V refers to the vocabulary, and  𝑤𝑚 is the selected word. If, on the other hand, 

Insertion is applied, an additional step of inserting a placeholder will be conducted before 

taking the action Replacement, and then a real word will be sampled to replace the 

placeholder token with the Replacement token. Finally, if Deletion is applied, the  𝑤𝑚 word 

selected will be deleted, and 𝑔𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛(𝑥) =1 if 𝑥′ = [𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚+1, … , 𝑤𝑛], and 0 

otherwise.  

At the end of all operations, we want to achieve a stationary distribution of 𝜋(𝑥), such 

that 𝜋(𝑥) ∝ 𝑝𝐿𝑀(𝑥) ∙ 𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗), where 𝑝𝐿𝑀(𝑥) is the probability of the language model and 

𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗) is a matching score defined by word embedding similarity (Pennington, Socher, 

& Manning, 2014). The value of 𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗) is 1, if the constraints are met, and 0 otherwise.  

Evaluation Metrics of the Feedback Augmentation System 

Previous studies mainly used the BLEU score to evaluate the quality of a sentence 

(Papineni et al., 2002). Miao et al. (2019) used an alternative method to compare the BLEU 

score of the paraphrases (i.e., BLEU-ref) against the original input sentence (i.e., BLEU-ori) 

to evaluate the accuracy of the paraphrasing. The model is regarded as performing well if the 

BLEU-ref is high, whereas BLEU-ori is low. However, in the current study, we used the MH 

sampler to generate diverse feedback. Therefore, the evaluation metrics used in the previous 

NLP studies are not appropriate for this study. Since the purpose is to generate fluent, 

semantically-related, and diverse feedback, we used the negative likelihood (NLL) of the 
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sentences to evaluate the feedback fluency using the Reuters corpus released by NLTK 

modules. The lower the NLL is, the more fluent the sentences are. In addition, we invited 2 

volunteers to rate the quality of feedback in terms of the paraphrased feedback regarding the 

fluency and relatedness at a scale of 0-1 and a grain size of 0.1, and the higher the scores are, 

the more fluent and related the feedback sentences are. The inter-rater reliability was reported 

using Kendall’s Kappa (Kendall, 1938). Kendall rank correlation coefficient is a non-

parametric rank order correlation that measures ordinal correlation among raters. Kendall’s 

Kappa ranges from 0 to 1, with higher values indicating higher levels of agreement. The null 

hypothesis of Kendall’s Kappa is that there is no agreement among the judges. The raters are 

regarded rating consistently if the null hypothesis is rejected. 

Summary of the Feedback Augmentation System 

Our recent literature review revealed that text-based feedback was more effective in 

improving performance (Lu et al., 2021). However, it is laborious to manually devise a large 

amount of quality feedback. Compared with sentence-generation supervised-learning 

methods, the unsupervised CGMH sentence-paraphrasing method can augment the expert-

driven feedback template corpus by generating feedback phrases with higher efficiency and 

flexibility. Thus, the proposed method is promising in promoting text-based feedback 

generation within ITSs. 

Synthesis of the Learner Models and Feedback Generation System 

Figure 8 illustrates the synthesis process of the proposed learner modeling and 

feedback generation approach. Specifically, at the experiment stage, an augmented corpus of 

positive and negative feedback is constructed. Meanwhile, learner models are trained based 

on the process data of student interactions with the ITS. At the tutoring stage, the proposed 

framework generates feedback based on student performance on items and the threshold of 

mastering the KC underlying the items. Students can receive the individualized feedback that 
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includes the specific KC and valence (i.e., positive or negative) based on their performance. 

The purpose of this framework is to automatically provide specific feedback on the 

underlying KCs for users to reflect on their past performance.  

 

 

Figure 8. The Framework of the Feedback Generation for the Learner Models 

Chapter Summary  

Chapter 4 described the proposed methodological framework of automated feedback 

generation for different learner models. It first detailed the overall framework and structure of 

the automated feedback system. Then, the implementations, model setup, training, and 

evaluation processes of the learner models and the feedback augmentation methods were 

presented, followed by the synthesis of learner modeling and automated feedback generation. 

The next chapter presents the results and discussion. 
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Chapter 5 Results and Discussion 

This chapter is organized as follows. First, it compares the accuracy of the learner 

models on each of the three selected datasets. Second, this chapter reports the output 

representations of the different learner models. Specifically, example outputs from the three 

large-scale datasets (ASSISTment 2009-2010, KDD Algebra 05-06, and OLI Fall 2011) are 

presented with interpretations in detail. Third, evaluations of the feedback augmentation 

methods are presented. Then, the feedback generation processes are illustrated for different 

learner models. The last section discusses the learner model selection and feedback 

generation model selection for various educational purposes and contexts. 

Learner Model Prediction Performance 

The performances of the IRT, BKT, DKT-RNN, DKT-LSTM, and the proposed 

DKT-CI on each of the three selected datasets are presented in Table 7. The DKT-CI 

performs best on the larger datasets including the ASSISTment 2009-2010 (AUC = 0.859, 

RMSE = 0.370) and the KDD Algebra I 2005-2006 (AUC = 0.834. RMSE = 0.472), which 

contain 4,163 and 574 students, respectively. Apart from DKT-CI, the DKT-LSTM also 

yielded satisfactory performance on the two larger datasets, with ASSISTment 2009-2010 

having an AUC = 0.842, RMSE = 0.386, and KDD Algebra I 2005-2006 having an AUC = 

0.802. RMSE = 0.346. The DKT-CI outperformed the DKT mainly because it incorporated 

the process data including the response time, number of attempts, number of hints, and 

actions took collected by the ITSs, whereas DKT only modeled the product data. Within the 

proposed automated feedback generation system, the DKT-CI is preferable for it not only 

improved the prediction performance of the evaluation model, but also had the potentials to 

inform when to provide feedback prompted by the response time or the number of attempts. 

The BKT has the best predictive performance on the smallest dataset (i.e., the OLI 

Fall 2011 dataset containing 333 students), with an AUC of 0.802, followed by the IRT 
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(AUC = 0.791, RMSE = 0.514). The OLI Fall 2011 is regarded as too small for deep learning 

models and only yielded a lower AUC of 0.686 (RMSE = 0.523) for DKT-RNN and an AUC 

of 0.700 (RMSE = 0.523) for DKT-LSTM. The DKT-CI has the best performance among the 

deep learning models (AUC = 735, RMSE = 0.397); however, it is still not comparable to the 

BKT and IRT. The big gap of AUC between BKT and DKT on OLI datasets reveals that 

BKT tends to overfit on small datasets and yield high AUC, whereas DKT circumvents the 

overfitting issue by using regularization and dropout techniques. Thus, we conclude that the 

probabilistic approach performs faster and more accurate estimations on smaller-scale 

datasets. By contrast, the deep learning approach better exploits the temporal information 

within large-scale datasets, and thus, makes more accurate predictions. 

Table 7  

Results of The Model Performance on the Test Dataset for the Five Algorithms. 

Algorithm AUC RMSE 

ASSISTment 2009-2010 

IRT 0.770 0.383 

BKT 0.761 0.406 

DKT-RNN 0.833 0.337 

DKT-LSTM 0.842 0.386 

DKT-CI 0.859 0.370 

Algebra I 2005-2006 

IRT 0.757 0.419 

BKT 0.791 0.393 

DKT-RNN 0.708 0.338 

DKT-LSTM 0.802 0.346 

DKT-CI 0.834 0.472 
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OLI Fall 2011 

IRT 0.791 0.514 

BKT 0.802 0.367 

DKT-RNN 0.686 0.523 

DKT-LSTM 0.700 0.572 

DKT-CI 0.735 0.397 

 

Output Representation of Different Learner Models 

Output Representation for IRT 

The output of learner models is the input of the template-based generation. 

Therefore, it is crucial to understand the output representation of learner models rather than 

simply compare their predictive accuracy. The output of the Rasch model yields several item 

parameters including the item discrimination fixed to 1. The difficulty values normally range 

between -2.5 and 2.5. If the difficulty level is 0, it means that the correct rate for an item is 

50%. Any negative values indicate that the item was easier than average (i.e., more than 50% 

participants scored correctly), and positive values indicate more difficult items. The higher 

the value, the more difficult the item. If the item difficulty parameters are larger than 2.5 or 

smaller than -2.5, the item is deemed as too difficult or too easy for the candidates. Table 8 

presents the item parameter estimations for the first six items on the ASSISTment 2009-2010 

dataset. Results show that the three items corresponding to the skill Box and Whisker are 

considerably easier for the students, with item difficulty ranging from -2.86 to -1.13. The 

three items corresponding to Circle Graph are more difficult than Box and Whisker, with 

item difficulty ranging from -0.44 to -0.20. 
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Table 8 

The Item Parameter Estimations from the IRT Output on the ASSISTment 2009-2010 Dataset 

Item Item Discrimination Item Difficulty 

Box and Whisker Item 1 1 -1.13 

Box and Whisker Item 2 1 -1.66 

Box and Whisker Item 3 1 -2.86 

Circle Graph Item 1 1 -0.44 

Circle Graph Item 2 1 -0.39 

Circle Graph Item 3 1 -0.20 

 

Output Representation for BKT  

The goal of the present study is to employ the output of different learner models to 

generate KC-level feedback that scaffolds learning. Tables 9, 10, and 11 present the output 

representation of BKT on the ASSISTment 2009-2010, Algebra 2005-2006, and OLI Fall 

2011 datasets, respectively. The initial probability 𝑃(𝐿0) was set to 0.5 for the initial states. 

The transition probability 𝑃(𝑇) reflects the extent that students can learn and improve from 

consecutive practice with items on a given KC. For example, in Table 9, students improve 

most on the Scatter Plot KC (𝑃(𝑇) = 0.464) after consecutive problem trials but show the 

least improvement on the Circle Graph KC (𝑃(𝑇) = 0.059). The slip parameter 𝑃(𝑆) 

represents the probability of students making a mistake when applying KCs, even if they 

have mastered those KCs. The guess parameter 𝑃(𝐺) represents the probability of a student’s 

correct response by guessing. Finally, students’ mastery of KCs reflected in 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is 

used as a reference for feedback generation. Specifically, we set 0.55 as the threshold of 

mastery. The threshold is flexible, and it is determined based on each dataset and student 

proficiency level.  
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Table 9  

The First Ten Knowledge Components (KCs) from the BKT Output on the ASSISTment 

2009-2010 Dataset 

Skill 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚) 

Box and Whisker 0.5 0.180 0.202 0.239 0.812 

Circle Graph 0.5 0.059 0.300 0.133 0.567 

Histogram as Table or Graph 0.5 0.213 0.260 0.190 0.811 

Number Line 0.5 0.075 0.300 0.300 0.636 

Scatter Plot 0.5 0.464 0.067 0.297 0.640 

Stem and Leaf Plot 0.5 0.141 0.239 0.156 0.717 

Table 0.5 0.117 0.214 0.147 0.815 

Venn Diagram 0.5 0.066 0.132 0.078 0.750 

Mean 0.5 0.164 0.300 0.081 0.604 

Median 0.5 0.091 0.205 0.289 0.593 

 

Table 10  

The First Ten Knowledge Components (KCs) from the BKT Output on the KDD Algebra I 

2005-2006 Dataset 

 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚) 

Eliminate Parentheses 0.5 0.044 0.145 0.300 0.756 

Remove Constant 0.5 0.014 0.188 0.300 0.633 

Remove Coefficient 0.5 0.031 0.183 0.300 0.690 

Remove Positive Coefficient 0.5 0.042 0.079 0.300 0.757 

Add/Subtract 0.5 0.052 0.156 0.300 0.717 
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Multiply/Divide 0.5 0.097 0.082 0.300 0.789 

Consolidate Vars with Coefficient 0.5 0.016 0.095 0.300 0.914 

Combine-like-terms 0.5 0.017 0.300 0.300 0.735 

Calculate Eliminate Parentheses 0.5 0.425 0.178 0.233 0.869 

Simplify Fractions 0.5 0.024 0.300 0.300 0.642 

 

Table 11  

The First Ten Knowledge Components (KCs) from the BKT Output on the OLI Fall 2011 

Dataset 

 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚) 

Represent Interaction Spring 0.5 0.357 0.000 0.003 0.311 

Identify Interaction 0.5 0.248 0.000 0.001 0.237 

Gravitational Forces 0.5 0.460 0.000 0.004 0.902 

Distinguish Rotation Translation 0.5 0.667 0.000 0.014 0.833 

Motion Dependence on Force 0.5 0.422 0.000 0.003 0.343 

Rotation Sense of Force 0.5 0.424 0.000 0.003 0.367 

Find Moment Arm 0.5 0.150 0.000 0.000 0.035 

Simple Step 0.5 0.154 0.000 0.001 0.232 

Moment Sign Sense Relation 0.5 0.422 0.000 0.002 0.246 

Represent Interaction Contacting 

Body 

0.5 0.338 0.000 0.002 0.284 

 

Output Representation for DKT and Its Variants 

BKT is a probabilistic approach based on a two-layer HMM and it yields probabilities 

of learning, slipping, guessing, and mastery. On the other hand, DKT is a deep learning 
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approach (i.e., recurrent networks) and it yields vectors of predictions at different time steps. 

Specifically, the input 𝑥𝑡 is a vector of length equal to the number of problems. If the number 

of problems attempted varies, then padding techniques are used. Each entry of output 𝑦𝑡 

represents the predicted probability that the student would solve that problem correctly at 

time step t. Table 12 presents the exact predicted probabilities of a student’s (with ID = 1) 

correct attempts of the five KCs (32: Ordering Positive Decimals; 33: Ordering Fractions; 45: 

Subtraction Whole Numbers; 55: Absolute Value; 98: Equation Solving Two or Fewer Steps) 

after ten practice rounds. The first column is a skill-correctness dyad.  

The predicted probabilities of the five KCs are updated after each practice round. 

Figure 9 plots the knowledge tracing heatmap of a student’s predicted responses while 

solving 50 ASSISTment exercises. The x-axis presents the student’s actual attempts (1: 

correct; 0: incorrect) on a set of KCs, in the format (skill_ID: KC). The y-axis shows the 

predicted probabilities of a student’s correct attempts of the KC after an exercise. Figure 9 

not only provides information of student mastery profiles after completing all the exercises 

but also plots the knowledge transfer of the student during the whole practice process. 

Appendix 3 presents a complete heatmap of this student with all the KCs attempted.  

Table 12  

The Adaptive DKT Output for 10 Actions and 5 KCs for the ASSISTment09-10 Dataset (A 

complete output of predicted probabilities can be found in Appendix 2) 

Attempts 

(skill ID, 

correct or 

not) 

32: 

Ordering 

Positive 

Decimals 

33: 

Ordering 

Fractions 

45: 

Subtraction 

Whole 

Numbers 

55: 

Absolute 

Value 

98: Equation 

Solving Two or 

Fewer Steps 

(55,1) 0.4173 0.5133 0.3680 0.4703 0.5641 

(45,1) 0.3574 0.8526 0.5014 0.3749 0.4338 

(55,1) 0.3714 0.7322 0.4427 0.4686 0.4776 

(55,1) 0.5310 0.6108 0.5783 0.5147 0.5209 

(55,0) 0.2793 0.6292 0.4974 0.5713 0.4899 
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(45,0) 0.3221 0.6397 0.5526 0.3927 0.3128 

(98,1) 0.3388 0.5687 0.4477 0.4094 0.5792 

(98,1) 0.3669 0.6980 0.4929 0.4686 0.5741 

(98,1) 0.4644 0.7553 0.5098 0.5074 0.6554 

(33,0) 0.2838 0.1308 0.3025 0.4147 0.4536 

 

 

Figure 9. DKT Output (skill-correctness) Heatmap 

Automated Feedback Generation for Learner Models 

This section presents the augmented feedback corpus and demonstrates the feedback 

generation for learner models. Examples of feedback for standard BKT, DKT, and its variants 

are provided to illustrate the automated feedback provision process at skill (KC) level.  

The Augmented Feedback Corpus 

Based on the 30 expert-derived feedback templates, the CGMH automatically 

paraphrased them into 300 augmented feedback sentences. To evaluate the quality of the 

paraphrased feedback, we first randomly selected 50 paraphrased feedback sentences and 

evaluated them using NLL and human ratings. Table 13 shows the NLL and human-rater 

evaluations of the generated sentences regarding Fluency and Relatedness on a scale of 0 to 

1. The higher the scores, the more fluent and related the generated feedback sentences, and a 

score of 0.5 indicates acceptable quality. The results revealed that the MCMC method can 

generate generally fluent and semantically relevant sentences (Human Rating: Fluency = 



67 

 

0.65; Human Rating: Relatedness = 0.59). The bottom of Table 13 presents an example of 

augmented feedback based on an expert-derived template. 

Table 13  

Paraphrase Feedback Generation Performance and Examples (n=50) 

Evaluation Metrics Measures 

NLL 11.28 

Human Rating: Fluency 0.65 

Human Rating: Relatedness 0.59 

Examples of feedback 

Original feedback templates Paraphrased feedback templates 

You excel at [Insertion]. You are strong at [Insertion]. 

You demonstrated best on [Insertion]. 

You master [Insertion]. 

You do profound job in [Insertion]. 

Great work on [Insertion]. Profound job in [Insertion]. 

 Good job in [Insertion]. 

 Great work for [Insertion]. 

 Good work on this [Insertion]. 

 

To further evaluate the quality of the augmented feedback, we did a simple filtering of 

the augmented feedback corpus and compared the filtered feedback (n=120) with the expert-

derived feedback (n=30) on human ratings using Welch Two Sample t-test. Results revealed 

that there are no significant differences on the two raters’ ratings on Fluency between the 

paraphrased feedback and the expert-derived feedback. Regarding feedback Relatedness, 

Rater 1 assigned significantly higher scores to expert-derived feedback [t(86.06) = 3.58, p 

< .01], compared with augmented feedback. However, there is no significant difference on 
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Relatedness scores assigned by Rater 2. The results confirm that the augmented feedback is 

fluent and semantically related compared with expert-derived feedback. The inter-rater 

reliabilities show that the inter-rater reliabilities are 0.80 [𝑋2(149) = 238, p<.01] on fluency 

and 0.76 on relatedness [𝑋2(149) = 225, p<.01], validating that the two independent raters 

demonstrated consistent ratings. 

Table 14  

Comparisons of Human Ratings Between Expert-Derived and Augmented Feedback  

Measure Expert-derived 

Feedback 

(n=30) 

Augmented 

Feedback 

(n=120) 

Diff. df t p 

Fluency Rater 1 0.84 0.80 0.04 41.47 0.57 0.57 

Fluency Rater 2 0.83 0.78 0.05 40.45 0.81 0.42 

Relatedness Rater 1 0.97 0.80 0.17 86.06 3.58 <.01 

Relatedness Rater 2 0.68 0.71 0.03 38.73 -0.39 0.70 

Note: Diff. = Difference of mean scores; df = degree of freedom; t = t statistic; p = p value. 

Feedback for Different Learner Models 

Feedback for BKT. For BKT, we used expert-derived KC thresholds for feedback 

generation. Mastery thresholds for KCs were set by domain experts for students with 

different levels of knowledge proficiency. After setting the mastery threshold, we retrieve the 

positive feedback template from the augmented corpus if 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is estimated as larger 

than the threshold, and we retrieve the negative feedback template from the corpus if 

𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is estimated as less than the threshold. Then, a feedback message with a 

specific KC and valence (i.e., positive or negative) will be triggered and provided for the 

learners. Figure 10 presents an illustration of automated feedback provision for BKT, where 
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𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is set as 0.55. If a student practices the KC “Box and Whisker” and the BKT 

estimates that the 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) of the student is updated to 0.812 from the previous practice, 

the system is notified that the student has successfully mastered this skill and is triggered to 

retrieve a positive feedback template from the augmented feedback corpus. Then, the 

keyword “Box and Whisker” is inserted to the placeholder in the feedback template. At the 

end of the feedback generation stage, the feedback on “Box and Whisker” is generated and 

provided for the student.  

 

 

Figure 10. Feedback Generation for BKT on KC “Box and Whisker” 

Feedback for DKT and its variants. For DKT and its variants, we extract the 

predicted probabilities for each KC at a time step, retrieve positive or negative feedback 

templates based on the mastery thresholds (like BKT), and insert the KCs in the templates. A 

student can choose to receive feedback on any KC at any time step since their mastery of 

KCs are updated stepwise. Unlike BKT, which can only model one KC at a time, the 

feedback for DKT will contain multiple KCs and generate adaptive feedback for every KC at 

each time step. Figure 11 details an example of the feedback generation process for DKT. In 



70 

 

Figure 11, a student’s predicted mastery probabilities of all KCs are updated after practicing 

an item associated with the “Absolute Value” KC. More specifically, the predicted 

probability of answering an item associated with “Absolute Value” KC correctly is updated 

to 0.470, for “Ordering Positive Decimals” is updated to 0.417, “Ordering Fractions” is 

updated to 0.513, “Subtraction Whole Numbers” to 0.368, and “Equation Solving Two or 

Fewer Steps” to 0.564. In this scenario, the threshold for mastery is also set as 0.55. 

Therefore, four negative and one positive feedback messages will be retrieved from the 

corpus of negative and positive feedback, and all five pieces of feedback are triggered by 

student performance updates.  

 

Figure 11. Feedback Generation for DKT after Practice of the KC “Box and Whisker” 

 

Discussion 

Providing feedback is essential for improving performance. However, understanding 

the context of learning is fundamental prior to learner modeling and feedback generation. 

Thus, it is important to conduct in-depth investigations regarding which learner model and 

corresponding output representation should be applied to a certain context (i.e., system, 

student, or domain) and what forms of feedback (i.e., summative vs. formative, static vs. 

adaptive, single KC vs. all KCs) students need for knowledge acquisition. From a comparison 

among the learner models’ analytical methods, performance, output representations, and the 
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feedback generation process for different learner models, we found the following elements 

important for the implementation of automated feedback generation frameworks. 

Learner Model Selection 

The present study argues that the learner model and output representation are the 

foundation for automated feedback generation. Thus, caution is needed when choosing the 

most appropriate learner model for feedback generation. The comparison of model 

performance among IRT, BKT, DKT, and its variants on the three datasets reveals that the 

probabilistic approaches IRT and BKT outperform the DKT deep learning approach on 

smaller datasets (OLI Fall 2011), whereas deep learning (DKT-CI, DKT-RNN, and DKT-

LSTM) boosts predictive accuracy on larger datasets (ASSISTment 09-10). Further, the DKT 

that incorporates both the product data and the contextualized information yields the best 

performance among all the implemented models on larger datasets.  

Therefore, we conclude that BKT requires easily adapts to immediate KC-level 

feedback generation. It is more suitable for small-scale datasets including contexts such as 

local computer-based tutoring and assessment (e.g., OLI datasets) or classroom-based 

tutoring and assessment. On the other hand, DKT is powerful on modeling large datasets with 

higher prediction accuracy. It is more suitable to large-scale datasets extracted from open 

online learning systems, such as the ASSISTments and Cognitive Tutor datasets. In 

technology-enhanced education, digital tutoring and assessment systems can capture both 

product data and process data, such as action and response time. The DKT-CI implemented in 

the present study used both product data and process data as the input of the prediction model 

and demonstrated better performance than the model with fewer input features. More 

investigations should be conducted regarding the trade-off between better calibrations of 

students’ abilities and faster immediate personalized feedback. 



72 

 

Feedback Generation Model Selection  

Most studies focused on improving the predictive performance of learner models, or 

optimally prompting hint generation/provision within ITSs, in which researchers examined 

when and whether to provide hints for learners (e.g., Maniktala et al., 2020). Few studies 

scrutinized the underlying assumptions and output representations of learner models, or how 

to provide feedback on learners’ performance. The present study explains the output 

representations of IRT, BKT, and DKT in detail and interprets the meaning of the outputs and 

take-home messages for learners. In addition, the proposed feedback generation framework 

specifies how to prepare and provide adaptive feedback for learners based on different learner 

models. Specifically, IRT yields only item-level estimations. By contrast, BKT and DKT 

performs KC-level estimations. Thus, BKT and DKT are more suitable for feedback 

generation in structured domains at KC-level. In addition, BKT regards KCs as independent 

from each other, and it updates the probabilities of mastery for each KC separately, whereas 

DKT assumes the underlying KCs are interconnected with each other. BKT has a unique 

advantage over DKT, because it can both predict accurately, make inferences, and explain its 

decisions. Thus, it contributes to the understanding of learning at the specific skill level. 

Results of BKT can also be generalized to groups. By contrast, DKT considers the 

interconnected relations among KCs but can not trace back and recover the cumulative 

developmental process of a single KC. DKT better exploits the temporal information 

embedded in the datasets and models the sequential actions recorded in the log data. It 

updates the predicted probabilities of all KCs at a time whenever a learner is practicing on a 

KC. Thus, learners’ complex knowledge transfer on all KCs can be plotted using DKT.  

DKT is a pure data-driven approach for knowledge transfer pattern discovery, 

whereas BKT can be interpreted with learning theories. DKT can learn conceptual knowledge 

transfer and progression without domain-expert annotations. By contrast, BKT requires 
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experts to manually set thresholds for mastery/non-mastery. We recommend that researchers 

adopt BKT if they are interested in inferring the acquisition process of a specific KC and 

generalizing to a group to generate learning theories. By contrast, researchers could adopt 

DKT to depict the individualized complex knowledge transfer (both on a single KC and 

among all KCs) for a student. Thus, one implication from the present research is that DKT is 

better suited for individualized, adaptive formative feedback, whereas BKT for summative 

feedback. Moreover, instructors could combine both methods to achieve better teaching 

effectiveness in practice. For example, DKT with adaptive formative feedback can be used to 

guide the students to learn, whereas BKT with summative feedback can be used by 

instructors to induce the learning curve of specific skills. 

Chapter Summary  

Chapter 5 reported the classification and predictive accuracy of several baseline 

learner models and the proposed DKT-CI (i.e., DKT with Contextualized Information). The 

output representations of learner models were presented and compared regarding their 

interpretation, adaptiveness, and assumptions of the underlying KCs. Then, the data-driven 

feedback templates generated by the unsupervised feedback augmentation methods were 

demonstrated and evaluated. Based on the results of the learner model comparisons and the 

data-driven feedback evaluations, descriptions of the automated feedback generation 

processes for different learner models were provided, detailing the conceptualization and 

operationalization of the main elements of the proposed automated feedback generation 

framework for learner models. This chapter ended with a discussion on learner model 

selection and automated feedback generation model selection for various educational tasks 

and assessments. 
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Chapter 6 Educational Implications 

By implementing the automated feedback generation system for different learner 

models, this research makes the following contributions.  

Theoretical and Methodological Implications 

The present research proposes and implements a data-driven automated feedback 

generation system for learner models in structured knowledge domains. It reviews the 

mainstream learner models within the EDM community and explains their statistical 

assumptions, input representations, and output representations for various educational 

purposes. Specifically, the meanings of the output representations and take-home messages 

for learners are interpreted for more efficient use of learning technologies. A deep knowledge 

tracing model with contextualized information is also proposed and implemented to use both 

product and process data to make more accurate estimations of learners’ abilities and better 

understandings of learners’ knowledge acquisition processes. In addition, the proposed data-

driven feedback generation framework specifies how to augment expert-derived feedback 

templates and create a corpus of academic feedback using unsupervised sentence generation 

method. The framework also details the process of preparing and providing adaptive 

feedback for learners based on different learner models using a combination of data-driven 

and expert-driven approaches. 

Practical Implications 

Providing feedback is essential for improving performance. However, understanding 

the context of learning is fundamental prior to learner modeling and feedback generation. 

Thus, it is important to conduct in-depth investigations regarding which learner models 

should be applied to a certain context (i.e., system, student, or domain) and what forms of 

feedback (i.e., summative vs. formative, static vs. adaptive, single KC vs. all KCs) students 

need for knowledge acquisition that best suit the learner model and output representation. 
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Practically and pedagogically, this research contributes to the educational data mining and 

learning analytics research on learner modeling and adaptive feedback generation based on 

different contexts. The proposed framework aims to facilitate online tutoring and assessment 

systems in monitoring their students’ learning activities and conducting real-time feedback 

generation to motivate students and to prevent failure. 

Future Research 

Future research can be conducted in the following aspects. First, the proposed 

framework will be extended from structured domains to unstructured domains such as essay 

writing. Second, future studies will prompt adaptive feedback with dynamic thresholds of KC 

mastery that fluctuate with learners’ knowledge gains to counterbalance the need for expert-

derived thresholds. Third, the feedback models will incorporate more learner characteristics 

including demographic information, mindsets, and affective features to better calibrate 

student performance for personalized learning. Another potential direction is to induce 

feedback provision policies using deep reinforcement learning to determine the optimal 

strategies of feedback provision with data-driven approaches. 

Chapter Summary 

Chapter 6 summarized the theoretical, methodological, and practical implications of 

this research and outlines the main future research directions. Theoretically, the proposed 

approach leverages the understanding of students’ learning behaviour and the dynamic 

knowledge acquisition process on different knowledge components in digital learning 

systems. Methodologically, it implements a novel approach that incorporates both data-driven 

methods and expert-derived strategies to inform decision making on feedback generation and 

provision. Pedagogically, the real-time monitoring and feedback prompting system enables 

the existing digital learning systems to detect students’ dynamic skill mastery progressions 

and to provide feedback that adapts to learners’ future practice.  
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Chapter 7 Conclusion and Limitation 

The study implements five learner models (Rasch model, BKT, DKT-RNN, DKT-

LSTM, and DKT-CI) on three datasets of various sizes, and further develops an automated 

feedback generation framework for learner models. The characteristics, pros and cons, 

interpretations, and applicability of the feedback generation method for each model are 

compared and discussed. Results show that IRT and BKT outperform DKT on smaller 

datasets, whereas DKT-CI outperforms all other models on larger datasets. For BKT, the 

proposed template-based feedback generation can produce KC-dependent feedback 

corresponding to each learner’s performance as well as expert-derived thresholds, in which 

KCs are estimated independently. For DKT, the feedback generation methods can produce 

adaptive feedback for all KCs at every time step and plot the knowledge transfer for 

individuals. Thus, DKT is more suitable for individualized formative tutoring. Learner 

models and feedback provision are both key elements of ITSs. The synthesis of learner 

models in the present study can facilitate researchers and educators to better incorporate 

instructional design and adapt pedagogical policy in the ITSs. Future research can be 

conducted on prompting adaptive feedback with dynamic thresholds of KC mastery that 

fluctuate with learners’ knowledge gains to counterbalance the need for expert-derived 

thresholds. Another potential direction is to induce feedback provision policies using deep 

reinforcement learning to determine the optimal strategies of feedback provision with data-

driven approaches. 
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Appendices  

Appendix 1  

Hyperparameter Settings of the Best DKT Models 

 Hyperparameters 

 ASSISTment 2009-

2010 

Algebra I 2005-2006 OLI Fall 2010 

DKT-RNN Optimizer: Adam; 

learning rate: 0.001; 

batch size: 32, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 32, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 5, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01 

DKT-LSTM Optimizer: Adam; 

learning rate: 0.001; 

batch size: 32, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 32, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 5, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 
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regularizers: 0.01; ℓ2 

regularizers: 0.01 

regularizers: 0.01; ℓ2 

regularizers: 0.01 

regularizers: 0.01; ℓ2 

regularizers: 0.01 

DKT-CI Optimizer: Adam; 

learning rate: 0.001; 

batch size: 32, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01; 

embedding dimension: 

1000 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 5, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 2; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01; 

embedding dimension: 

500 

Optimizer: Adam; 

learning rate: 0.001; 

batch size: 5, dropout 

probability: 0.6; 

hidden layer 

dimension: 100; 

number of recurrent 

layers: 1; ℓ1 

regularizers: 0.01; ℓ2 

regularizers: 0.01; 

embedding dimension: 

250 
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Appendix 2 

The Adaptive DKT Output for 50 actions and 5 KCs for the ASSISTment 09-10 Dataset at 

one time step 

 
Attempts 

(skill ID, 

correct or 

not) 

32: 

Ordering 

Positive 

Decimals 

33: 

Ordering 

Fractions 

45: 

Subtraction 

Whole 

Numbers 

55: Absolute 

Value 

98: 

Equation 

Solving 

Two or 

Fewer 

Steps 

(55,1) 0.4173 0.5133 0.3680 0.4703 0.5641 

(45,1) 0.3574 0.8526 0.5014 0.3749 0.4338 

(55,1) 0.3714 0.7322 0.4427 0.4686 0.4776 

(55,1) 0.5310 0.6108 0.5783 0.5147 0.5209 

(55,0) 0.2793 0.6292 0.4974 0.5713 0.4899 

(45,0) 0.3221 0.6397 0.5526 0.3927 0.3128 

(98,1) 0.3388 0.5687 0.4477 0.4094 0.5792 

(98,1) 0.3669 0.6980 0.4929 0.4686 0.5741 

(98,1) 0.4644 0.7553 0.5098 0.5074 0.6554 

(33,0) 0.2838 0.1308 0.3025 0.4147 0.4536 

(32,0) 0.2495 0.6049 0.3801 0.5093 0.4857 

(33,0) 0.0571 0.0492 0.1131 0.3916 0.3764 

(32,0) 0.2502 0.5591 0.3398 0.4836 0.4463 

(33,0) 0.0307 0.0172 0.0695 0.2991 0.3083 

(32,0) 0.2198 0.5945 0.2595 0.4663 0.4236 

(33,0) 0.0164 0.0140 0.0363 0.2335 0.2552 

(32,0) 0.1500 0.5769 0.1966 0.4387 0.4030 

(32,0) 0.0023 0.3902 0.0172 0.1657 0.4962 

(33,0) 0.2155 0.6740 0.4003 0.3985 0.4233 

(32,1) 0.4916 0.8385 0.2973 0.4391 0.5519 

(33,1) 0.1649 0.7374 0.2551 0.4138 0.5028 

(32,0) 0.0136 0.6091 0.0669 0.3151 0.5622 

(33,0) 0.1142 0.5292 0.2173 0.3897 0.4366 

(32,0) 0.0128 0.2942 0.0432 0.2190 0.5666 

(33,0) 0.1593 0.3907 0.2288 0.3712 0.4340 

(33,0) 0.0633 0.0257 0.0581 0.2571 0.3425 

(32,0) 0.0767 0.4318 0.1296 0.3800 0.4071 

(33,0) 0.0185 0.0287 0.0404 0.2332 0.2650 

(32,0) 0.0877 0.4507 0.1165 0.3719 0.3897 

(32,0) 0.0029 0.2943 0.0151 0.1605 0.4757 

(33,0) 0.2256 0.6106 0.3444 0.3675 0.4243 

(32,1) 0.4733 0.7905 0.2316 0.3370 0.5346 

(33,1) 0.1239 0.7155 0.1837 0.3527 0.4981 

(33,1) 0.1727 0.9446 0.1914 0.4035 0.6139 
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(32,1) 0.2130 0.8012 0.3285 0.3880 0.4067 

(32,0) 0.0015 0.6081 0.0177 0.2324 0.5458 

(33,0) 0.1486 0.7020 0.2803 0.4095 0.4678 

(33,0) 0.0366 0.0133 0.0426 0.2464 0.3329 

(32,0) 0.1059 0.5061 0.1694 0.3897 0.4609 

(33,0) 0.0234 0.0385 0.0550 0.2761 0.2727 

(32,0) 0.0363 0.4957 0.0668 0.3709 0.3884 

(33,1) 0.0534 0.9797 0.1621 0.3205 0.5700 

(32,1) 0.3483 0.7996 0.3666 0.3989 0.3985 

(33,0) 0.0236 0.0079 0.0313 0.2276 0.3718 

(32,0) 0.3510 0.5579 0.2928 0.4043 0.4526 

(33,1) 0.0789 0.9944 0.2976 0.3878 0.5800 

(33,1) 0.1418 0.6365 0.2299 0.3633 0.4046 
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Appendix 3 

The Complete KC Knowledge Transfer Heatmap (110 KCs) for the ASSISTment 09-10 

Dataset 

 


