

Automated Feedback Generation for Learner Modeling in Intelligent Tutoring Systems

by

Chang Lu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Measurement, Evaluation, and Data Science

Department of Educational Psychology

University of Alberta

© Chang Lu, 2021

ii

Abstract

Feedback is essential for knowledge acquisition, but there is a paucity of automated feedback

generation frameworks in intelligent tutoring systems (ITSs) that facilitate and scaffold

students’ learning across domains. This study introduces a novel framework for generating

templated-based feedback to tackle the issue of automated feedback generation for different

learner models. Specifically, it (1) implements several learner modeling algorithms including

IRT, BKT, DKT-RNN, and DKT-RNN-LSTM; (2) devises and implements DKT-CI (i.e.,

DKT-RNN-LSTM with Contextualized Information) to estimate learners’ skill mastery states

using both product data and process data; (3) compares these algorithms’ prediction accuracy,

interpretability, and applicability on three datasets with various sizes extracted from different

ITSs; and (4) introduces a framework to automatically generate template-based feedback on

learners’ performance for the output of these learner models. Results revealed that (1) BKT

and IRT outperformed DKT on smaller datasets, whereas DKT-CI outperformed other models

on larger datasets; (2) for BKT, the proposed template-based feedback generation could

produce KC-dependent feedback based on learner performance and expert-derived thresholds;

(3) for DKT, the feedback-generation method could produce adaptive feedback for all KCs at

every time step and plot individuals’ knowledge transfer, thus being more suitable for

individualized formative tutoring. Implications regarding context-specific automated feedback

provision for interactive digital learning systems are discussed. Findings from the present

research facilitate the understanding of students’ learning behaviour and the dynamic

knowledge acquisition process on different knowledge components in the ITSs and inform

decision making on when and how to provide feedback in these systems.

iii

Acknowledgments

First, I would like to express my gratitude to my supervisors, Dr. Maria Cutumisu and Dr.

Mark Gierl, for their constant motivation and patience to guide me through my Ph.D. study.

They mentored me to be an independent researcher, and their support has always been an

encouragement for me to push myself to the next level. I cannot express my appreciation

enough for all they have provided for me. Thank you, Maria, for bringing me in so many

amazing projects, helping me outline the path to an academic career, teaching me what is

expected from a researcher, and investing countless hours throughout these years to

painstakingly foster my abilities on research, critical thinking, writing, and beyond. Thank

you for inspiring me and raising me up when I felt lost during this journey. I will never have

come to this point without your guidance and support. Thank you, Mark, for always being

supportive and pointing out the direction for me.

I would also like to thank my examining committee members Dr. Lili Mou, Dr. Luiza

Antonie, Dr. Ying Cui, and Dr. Veronica Smith for providing insightful comments for my

dissertation and Dr. George Buck for hosting my defense.

Moreover, I want to thank my friends. Dr. Qi Guo and Dr. Fu Chen studied with me and were

always willing to offer help. I also want to thank other CRAMERs for being inspiring friends.

Special thanks to my friends Shuran Meng and Qin Wang for being my side along the way.

Finally, I would like to thank my parents for their unconditional love, especially my mom for

trusting, comforting, and encouraging me on this journey.

iv

Table of Contents

Page

Abstract ii

Acknowledgments iii

List of Figures vi

List of Tables vii

List of Abbreviations and Acronyms viii

Chapter 1 Introduction 1

Research Purpose 3

Research Contributions 4

Organization of the Dissertation 4

Chapter Summary 5

Chapter 2 Theoretical Framework 6

The Definition of Feedback 6

Feedback and Learning Theories 7

Models of Feedback 8

Chapter Summary 14

Chapter 3 Literature Review 16

Technology-Enhanced Education 16

Learner Modeling in Digital Learning Systems 23

Automated Feedback Generation in Digital Learning Systems 30

Research Gaps 40

Chapter Summary 42

Chapter 4 Methods 43

Overview 43

Datasets for the Learner Models 44

Learner Models 49

Baseline Models 49

The DKT with Contextualized Information (DKT-CI) 50

Implementation of the Learner Models 51

Evaluation Metrics of the Learner Models 52

Summary of the Learner Model Experiment 52

v

Feedback Augmentation 53

Implementation of the Feedback Augmentation System 53

Evaluation Metrics of the Feedback Augmentation System 56

Summary of the Feedback Augmentation System 57

Synthesis of the Learner Models and Feedback Generation System 57

Chapter Summary 58

Chapter 5 Results and Discussion 59

Learner Model Prediction Performance 59

Output Representation of Different Learner Models 61

Output Representation for IRT 61

Output Representation for BKT 62

Output Representation for DKT and Its Variants 64

Automated Feedback Generation for Learner Models 66

The Augmented Feedback Corpus 66

Feedback for Different Learner Models 68

Discussion 70

Learner Model Selection 71

Feedback Generation Model Selection 72

Chapter Summary 73

Chapter 6 Educational Implications 74

Theoretical and Methodological Implications 74

Practical Implications 74

Future Research 75

Chapter Summary 75

Chapter 7 Conclusion and Limitation 76

References 77

Appendices 97

Appendix 1 97

Appendix 2 99

Appendix 3 101

vi

List of Figures

FIGURE PAGE

Figure 1. Graph Representation of the Standard Bayesian Knowledge Tracing

(BKT) Model

25

Figure 2. Recurrent Neural Network (RNN) Representation of Deep Knowledge

Tracing (DKT)

27

Figure 3. Conceptual Representation of the LSTM Cell 29

Figure 4. Conceptual Representation of CNN 30

Figure 5. A Representation of a Typical Automated Feedback Technology by Deeva

et al. (2021)

32

Figure 6. Automated Feedback Generation for Learner Models 44

Figure 7. Representation of Deep Knowledge Tracing with Contextualized

Information

51

Figure 8. The Framework of the Feedback Generation for the Learner Models 58

Figure 9. DKT Output (skill-correctness) Heatmap 66

Figure 10. Feedback Generation for BKT on KC “Box and Whisker” 69

Figure 11. Feedback Generation for DKT after Practice of the KC “Box and

Whisker”

70

vii

List of Tables

TABLE PAGE

Table 1. Guidelines of Formative Feedback Adapted from Shute (2008) 13

Table 2. Dataset Information 45

Table 3. Summary of the ASSISTment 2009-2010 Dataset 45

Table 4. Summary of the Algebra I 2005-2006 KDD Cup 2010 EDM Challenge 47

Table 5. Summary of the Open Learning Initiative (OLI) Engineering Statics - Fall

2011

48

Table 6. The Feedback Template Corpus, Including Both Positive and Negative

Feedback Messages and Insertion Positions for Knowledge Components (KCs)

54

Table 7. Results of The Model Performance on the Test Dataset for the Five

Algorithms

60

Table 8. The Item Parameter Estimations from the IRT Output on the ASSISTment

2009-2010 Dataset

62

Table 9. The First Ten Knowledge Components (KCs) from the BKT Output on the

ASSISTment 2009-2010 Dataset

63

Table 10. The First Ten Knowledge Components (KCs) from the BKT Output on the

KDD Algebra I 2005-2006 Dataset

63

Table 11. The First Ten Knowledge Components (KCs) from the BKT Output on the

OLI Fall 2011 Dataset

64

Table 12. The Adaptive DKT Output for 10 Actions and 5 KCs for the ASSISTment

09-10 Dataset (A complete output of predicted probabilities can be found in

Appendix 2)

65

Table 13. Paraphrase Feedback Generation Performance and Examples 67

Table 14. Comparisons of Human Ratings Between Expert-Derived and Augmented

Feedback

68

viii

List of Abbreviations and Acronyms

ANN Artificial Neural Network

AUC Area Under the Curve

BKT Bayesian Knowledge Tracing

CGMH Constrained Sentence Generation by Metropolis-Hastings Sampling

CNN Convolutional Neural Network

DKT Deep Knowledge Tracing

EDM Educational Data Mining

FIT Feedback Intervention Theory

GRU Gated Recurrent Units

HCI Human Computer Interaction

HMM Hidden Markov Model

ICT Information and Communication Technologies

IRT Item Response Theory

ITS Intelligent Tutoring System

KC Knowledge Components

LMS Learning Management System

LSTM Long Short-Term Memory

MCMC Markov Chain Monte Carlo

MOOC Massive Open Online Course

NLL Negative Likelihood

NLP Natural Language Processing

OULA Open University Learning Analytics

PFA Performance Factor Analysis

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ix

SVM Support Vector Machine

TAF-ClaF Technologies for Automated Feedback – Classification

TSF Time Series Forest

VLE Virtual Learning Environments

1

Chapter 1 Introduction

Online education was brought to the forefront of higher education by the outbreak of

the coronavirus disease (COVID-19) in late 2019. China initiated a nationwide massive

migration from traditional face-to-face teaching to fully online courses in 1,291 universities,

enforced by the government’s policy of “non-stop teaching and learning” in early 2020 (Bao,

2020; Sun et al., 2020). Followed by the rapid spread of the pandemic across the globe, 123

countries in Asia, North America, South America, Europe, Africa, and the Middle East have

announced school closures and immediate transformations to online education as of June 21,

2020; meanwhile, more than one billion learners have been affected by the pandemic, which

is equivalent with 62.3% of the total enrolled learners (UNESCO, 2020). Online education is

becoming the main theme for most learners around the world.

Online education has strong roots in both informal online learning platforms and

formal higher education. The proliferation of information and communication technologies

(ICT) has supported the advent of open learning platforms, including Massive Open Online

Courses (MOOCs), Coursera, and other virtual learning environments (VLE). Great efforts

have also been made by post-secondary institutions to adopt Learning Management Systems

(LMSs) and promote formal online education over the last decades (Allen & Seaman, 2008;

Bradford et al., 2007; O’Neill et al., 2004; Patel & Patel, 2005). Macfadyen and Dawson

(2012) reported that more than 90% of higher-education institutions in the USA have made

significant investments in the implementation of LMSs, such as Moodle, Canvas, and

Blackboard, since the late 1990s. Similarly, in Great Britain, 85% of higher education

institutions have adopted VLEs since 2003 (Ferguson, 2012). Unlike open online learning

platforms, LMSs adopted by higher education are often used to deliver course materials as a

supplement to traditional formal instruction (Zhou et al., 2020), whereas most interactions

between students and instructors occur in class.

2

On the other hand, open learning platforms such as Intelligent Tutoring Systems

(ITSs) make asynchronous learning materials and instructional videos accessible to learners

without time or space limitations (Washington, 2019; Zacharis, 2015). ITSs are designed to

provide personalized hints and to automate the adaptive learning process of knowledge

components (KCs), a generic term for skills, concepts, procedures, and strategies (Pardo et

al., 2019). With the availability of large volumes of log data generated from learners’

interactions with ITSs, many studies attempted to develop models to estimate individuals’

skill mastery state, track their learning processes, and diagnose their strengths and

weaknesses on KCs (Macfadyen et al., 2014). Those models were later defined as learner

models (or student models), as they constitute a structured representation of a learner’s

knowledge, misconceptions, or difficulties (Bull, 2004). The tutoring and assessment within

ITSs could help students practice skills outside the school, where feedback from human

experts might not be readily available. However, a recent review of automated feedback

systems revealed that the weakest links of ITSs are pedagogical policy and feedback

provision (Deeva et al., 2021; Gervet et al., 2021). Although providing feedback is crucial for

scaffolding students to improve performance (Hattie & Timperley, 2007), research on how

learning technologies effectively estimate learners’ skills and automatically generate

individualized feedback is lagging (Deeva et al., 2021; Maniktala et al., 2020; Sedrakyan et

al., 2020; Weimer, 2002). Specifically, discussions of automated feedback systems are still

ongoing regarding when to provide feedback (immediate vs. delayed), how to provide

feedback (summative vs. formative, adaptive vs. non-adaptive, expert-derived vs. data-

driven), and how to assemble the feedback content (generic vs. specific, KC based vs. item

based).

Some of the earlier attempts of implementing feedback within ITSs focused on

providing real-time online tutoring by humans in those environments (Merrill et al., 1992;

3

Heffernan & Koedinger, 2002). Findings show that human tutoring is effective in improving

students’ performance, but it is time- and labor-consuming, and not applicable to large-scale

practice and open-ended platforms.

In the last decade, many studies focused on implementing automated feedback

systems that can generate item-based hints or holistic summative feedback based on student

product data (i.e., student direct responses to the items) in structured domains (e.g., math and

algebra) or generating corrective feedback using natural language processing (NLP)

techniques in unstructured domains (e.g., essay writing and programming). However, few

studies focused on providing timely and specific adaptive feedback at the skill level (i.e., KC

level) that would prompt student reflection based on both product data and process data (i.e.,

the duration of the tasks, action took, number of attempts, number of hints requested)

collected from the ITSs (Aleven et al., 2006; Barnes & Stamper, 2010; Shatnawi et al., 2014).

With the advancement of various learner models, researchers can trace and update learners’

KC profiles using different prediction models based on both product data and process data.

Multiple output representations of learner KC mastery are available to inform instructors and

students on their status of knowledge acquisition and transfer. Meanwhile, the advances in

natural language processing techniques motivate the implementation of human-machine

communications that bridge learner modeling and automated feedback generation.

Research Purpose

We propose a framework of automated feedback generation for different learner

models at the skill level for structured domains. Specifically, we implement an Item

Response Model (IRT), Bayesian Knowledge Tracing (BKT), Deep Knowledge Tracing

(DKT), and its variants with Long Short-Term Memory (LSTM; Hochreiter & Schmidhuber,

1997) and with contextualized information. We compare them on input representation, output

representation, model prediction accuracy, interpretability, and applicability in various

4

educational assessment contexts. Further, we describe an automated feedback-generation

approach and demonstrate the template-based feedback generated for each learner model.

This dissertation is guided by the following research questions:

1. To what extent do the learner models perform accurate and interpretable estimations of

students’ performance? What are the predictive accuracies, input representations,

output representations, and characteristics of the different learner models?

2. To what extent does the feedback generation method produce fluent and semantically

related feedback? Can the feedback generation method create a variety of feedback

templates that are grammatically correct and semantically related?

3. To what extent is the proposed framework of Automated Feedback Generation for

Learner Models feasible for structured knowledge domains? How does the proposed

feedback generation method fit into different learner models? What format and

information does the generated feedback provide for learners?

Research Contributions

This dissertation makes the following contributions: it (1) implemented several

learner modeling algorithms including IRT, BKT, DKT-RNN, and DKT-RNN-LSTM; (2)

devised and implemented DKT-CI (i.e., DKT-RNN-LSTM with Contextualized Information)

to estimate learners’ skill mastery states using both product data and process data; (3)

compared these algorithms’ prediction accuracy, interpretability, and applicability on three

datasets with various sizes extracted from different ITSs; and (4) introduced a framework to

automatically generate template-based feedback on learners’ performance for the output of

these learner models.

Organization of the Dissertation

The rest of the document is organized as follows. First, the theoretical framework of

the dissertation is presented. Then, studies on educational data mining (EDM) and different

5

learner models are reviewed. Further, related work on automated feedback generation is

examined. Fourth, the potential research gaps from previous studies are identified. Fifth, a

novel learner-modeling and feedback-generation approach is introduced. Lastly, discussions

are made on the importance of understanding the test contexts and interpreting the outputs of

learner modeling and feedback generation. Suggestions are provided regarding learner model

and feedback generation selections that cater to different educational settings.

Chapter Summary

Chapter 1 introduced the context of the problem tackled in this research: technology-

enhanced learning, tutoring, and assessments make big educational data in the digital learning

environments available (i.e., students’ interactions with the systems and artefacts recorded).

Then, the state-of-art studies on learner modeling and automated feedback generation in the

digital learning environments were reviewed, the gaps in current approaches were identified,

and a novel solution to this problem was proposed. Lastly, this chapter outlined the main

research questions and the organization of the remaining document.

6

Chapter 2 Theoretical Framework

The Definition of Feedback

In education, feedback is regarded as a key concept for learning and performance

(Shute, 2008). Feedback is defined as information provided by an agent regarding one’s

performance or understanding to improve knowledge and skills (Hattie & Timperley, 2007),

or learning processes where the gaps between actual performance and intended performance

are identified and provided for learners to improve on (Carless et al., 2011; Molley & Boud,

2014).

Sadler (1989) stated that feedback should deliver messages related to the process of

learning that specifies the discrepancies between what is understood and the pre-defined goal.

Winnie and Butler (1994, p. 5740) noted that “feedback is information with which a learner

can confirm, add to, overwrite, tune, and restructure information in memory, whether that

information is domain knowledge, meta-cognitive knowledge, beliefs about self and tasks, or

cognitive tactics and strategies”. Kluger and DeNisi (1996, 1998) defined feedback as the

information regarding one’s performance and one of widely used psychological interventions.

Hattie and Timperley (2007) conceptualized feedback as a “consequence” of performance

and positioned feedback within a continuum of instruction and feedback. To fulfil the

instructional purpose of feedback, it can be achieved through cognitive processes (e.g.,

increased effect, motivation, and engagement) and affective processes (e.g., restructuring

understanding and confirming information). Shute (2008, p. 154) defined feedback “as

information communicated to the learner that is intended to modify his or her thinking or

behaviour for the purpose of improving learning”. Molley and Boud (2014) described

feedback as a key process of learning, where the gap between actual performance and the

goal of performance is identified and provided for learners. To summarize, feedback can be

either regarded as information that is related to specific learning tasks and goals, or a learning

7

process that communicates the gaps between one’s actual performance and the intended

performance.

Feedback and Learning Theories

Feedback is regarded a key concept for learning and teaching, which has gained

growing interests by researchers and practitioners alike on exploring the development,

administration, and effectiveness of feedback under different educational contexts (e.g.,

Anderson, Conrad, & Corbett, 1989; Black & Wiliam, 1998; Carless, 2006; Corbett, Conrad,

& Anderson, 1994; Hattie & Timperley, 2007; Kluger & DeNisi, 1996; Moreno, 2004;

Narciss & Huth, 2004; Shute, 2008). Previous research on feedback was mainly grounded on

several learning theories—behaviourism, cognitivism, and social constructivism—to

represent different processes of how feedback impacts learning and performance. However,

social constructivism is generally embedded in traditional classroom-based contexts and not

directly related to the present work; thus, it is excluded from the discussion.

Behaviourism regards providing feedback as a linear process, where teachers guide

students step by step to achieve the goals of the predefined curriculum (Thurlings et al.,

2013). It primarily focuses on how teachers monitor and manipulate students’ behaviour

through positive feedback to reinforce the behaviour and negative feedback to punish and

correct the behaviour (Skinner, 1968). In the behaviourist perspective, teachers are seen as

the action takers and students as recipients of instructions. Therefore, the teacher’s role takes

the lead and functions as the determinant of the effectiveness of feedback, whereas students

follow what teachers request and produce an outcome of feedback (Butler & Winne, 1995;

Duchaine, Jolivette, & Fredrick, 2011). However, the behaviourist view of feedback was later

contested by other researchers (Boud & Molloy, 2013; Carless et al., 2011; Price et al., 2010;

Shute, 2008). They criticized that the psychological behaviourism oversimplifies the process

of providing feedback by interpreting learning as a unilateral and unidirectional process led

8

by educators and the curriculum (Biggs, 1993), without acknowledging “the active role of the

learner in co-producing knowledge” (Molloy & Boud, 2014, p. 3) and the learners’

capabilities on self-evaluating and self-regulating (Carless et al., 2011; Hattie & Timperley,

2007; Price et al., 2010).

Cognitivism also considers feedback as a linear process and interprets learning as

human information processing rather than observable behaviour (Newell & Simon, 1972;

Shuell, 1986). As opposed to behaviourists, cognitivists shift the focus from teachers to

students. Teachers use feedback to guide students to receive, use, and reflect on knowledge

so that students can process and decode information internally and finalize it in the learning

outcomes. Therefore, cognitivists focus more on the internal mental processes in learning, the

interconnections among notions of knowledge, and conscious representations of the real

world rather than on the behaviour-based exhibition of learning. Most technology-enhanced

learning is based on cognitivist learning theory. The cognitive approach identifies the

cognitive domain in a hierarchy of learning objectives, including remembering,

understanding, applying, analyzing, evaluating, and creating (Anderson & Bloom, 2001;

Bloom, 1956). It operationalizes the cognitive domain into external factors, and it embeds

them into technology-based learning, such as intelligent tutoring systems and adaptive

learning environments (Roll et al., 2011). Among the digital learning systems, knowledge

acquisition is broken down into manageable steps. Then, the machine provides instructions or

more practices, and it leads learners to the most appropriate step to achieve the goal of pre-

defined learning outcomes. To conclude, cognitivists hold a concept of mind (Fontana, 1981),

and view feedback as information that is processed and internalized by learners.

Models of Feedback

Several models of feedback underlying different learning theories were proposed to

model different types of feedback within various educational contexts. Specifically, we

9

discussed the Instructive Feedback by Werts, Wolery, Holcombe, and Gast (1995), the

Feedback Intervention Theory (FIT) by Kluger and DeNisi’s (1996), the Four Levels of

Feedback Framework by Hattie and Timperley (2007), and the Framework of Formative

Feedback by Shute (2008).

Instructive Feedback. Werts et al. (1995, p. 55) claimed that feedback should be

instructional and that “instructive feedback is a method of presenting extra, non-target stimuli

in the consequent events of instructional trials (e.g., during praise statements)”. This

framework is rooted in a behaviourist approach. More specifically, they categorized

instructive feedback into three categories: parallel, expansion, and novel. Parallel instructive

feedback stimuli refer to the repetition of previous instruction. For example, teachers use

numbers to teach numbers. Expansive instructional feedback extends the previous instruction

from a specific content to new target stimuli. For example, Gast et al. (1994) used spelling of

words as instructive feedback to teach the target stimuli sight words. Novel instructional

feedback uses conceptually unrelated instruction and targets to a new study domain. For

example, Werts et al. (1993) used social studies (i.e., instructive feedback) to teach students

math equations (i.e., target stimuli). The common goal of all three categories is to stimulate

students to learn target stimuli through a series of instructions and trials. However, if

additional instructions are provided, students are not required to respond to the stimuli or

reinforced by feedback. Werts et al. (1995) also examined key factors of instructive feedback

from previous literature including (1) student demographic variables (e.g., age, gender); (2)

diagnosis of disabilities (e.g., mental retardation, autism, seizure disorders, developmental

delays, learning disabilities); (3) procedural parameters (e.g., the type of target behaviour,

location of the instruction, the type of instructor, instructional grouping, and the type of

instructional strategy used); and (4) presentation variables (e.g., the feedback is presented

verbally or visually). They concluded that students acquire and maintain performance on the

10

response-prompting instructive feedback behaviours among parallel, expensive, and novel

categories; thus, teachers are encouraged to incorporate more direct instructional feedback in

their pedagogical practices.

Feedback Intervention Theory (FIT). FIT is one of the most widely recognized

feedback theories grounded in cognitivism. Kluger and DeNisi (1996) conducted a meta-

analysis that included 607 cases (effect sizes) and 23,663 observations. They found that FIs

improved performance on average (d = .41), but more than a third of studies reported that FI

reduced performance, which cannot be explained by sampling errors or existing theories.

Following on from this finding, they proposed the Feedback Intervention Theory (FIT). FIT

assumes that feedback affects performance by changing the locus of a learner’s attention

among three hierarchical levels of control including task learning, task motivation, and meta-

task processes. The lower in the hierarchy the FI-induced locus of attention is, the stronger is

the benefit of an FI for performance. More specifically, FIT consists of five basic arguments:

(1) behaviour is regulated by comparisons of feedback to goals or standard, (2) goals or

standards are organized hierarchically, (3) attention is limited and therefore only feedback

standard gaps (i.e., discrepancies between actual and desired performance) that receive

attention actively participate in behaviour regulation, (4) attention is normally directed to a

moderate level of the hierarchy, and (5) FIs change the locus of attention and therefore affect

behaviour. These arguments are interdependent, and each consecutive argument is built on

the preceding argument. Kluger and DeNisi (1998) later further discussed how FIs might

have both positive and negative effects on performance. They drew on three theoretical

constructs of control theory including the regulation of feedback-standard discrepancies, the

locus of attention, and the task complexity (Carver & Scheier, 1981). In addition, they related

them to the FIT assumptions as follows: (1) behaviour is regulated by comparisons of

feedback with goals or standards (and identification of gaps between the two); (2) attention is

11

limited, and only those feedback-standard gaps that receive attention actively participate in

behaviour regulation; and (3) FIs change the locus of attention and therefore affect behaviour.

By connecting between control theory and FIT, they made the following arguments (1)

“behaviour is regulated through the control of discrepancies or errors in the system”; (2)

changing locus of attention and “knowing where attention is directed provides a better

position to predict FIs’ effects on performance”; and (3) task properties determine how FI

affect performance (Kluger & DeNisi, 1998, p. 69). To conclude, the FI functions as a

double-edge sword that may support and hinder performance, depending on conditions.

Four Levels of Feedback Framework. Hattie and Timperley (2007) conceptualize

feedback as a tool that reduces discrepancies between current and desired performance. They

stated that effective feedback must answer three major questions asked by a teacher and/or by

a student: Where am I going? (What are the goals?), How am I going? (What progress is

being made toward the goal?), and Where to next? (What activities need to be undertaken to

make better progress?). These questions correspond to notions of feed-up, feed-back, and

feed-forward. The level at which the feedback operates partly determines whether a teacher

and/or student can effectively answer the three questions above. Therefore, they proposed a

model that addresses four levels of feedback, namely, task, process, self-regulation, and self.

Feedback has differing effects across these levels. The task level and the process level refer

to how well the task is being performed; the self-regulation level describes how students

monitor, direct, and regulate actions toward the learning goal; and the self level describes the

affective evaluations about the student, which are usually not related to the task itself

(Brophy, 1981). Hattie and Timperley (2007) argued that effective feedback should be

focused on the task level and the process level, rather than the self level.

Framework of Formative Feedback. Shute (2008) proposed a framework for

formative feedback, in which several key components of effective formative feedback were

12

addressed and elaborated including the purpose (i.e., directive or facilitative feedback),

cognitive mechanisms (i.e., how the formative feedback motivates learning efforts), feedback

specificity (i.e., levels of information provided), features (i.e., verification and elaboration),

complexity and length, and timing (i.e., immediate vs. delayed feedback). Furthermore, Shute

(2008) reviewed existing frameworks of feedback and provided guidelines to generate

effective formative feedback. Shute (2008) concluded that formative feedback should be non-

evaluative, supportive, timely, and specific to promote learning. First, in contrast to

behaviorists and social constructivists who suggest feedback be only positive and

constructive, Shute (2008) suggested feedback should be neutral, unbiased, and be either

positive or negative. Second, timing is sensitive to task difficulties. For difficult tasks,

immediate feedback is more effective. For easy tasks, delayed feedback yields better learning

outcomes. Immediate feedback helps retain procedural or conceptual knowledge, whereas

delayed feedback promotes transfer of learning. Third, feedback should be task-directed and

goal-oriented to help learners to identify and close the gaps between the intended and actual

performance. Thus, the feedback should be specific, detailed, and clear at task levels without

being too long. Fourth, learner characteristics such as ability levels and motivation should

also be considered when providing formative feedback. For example, for high-achieving

students, it is suggested to use delayed facilitative feedback with verification. For low-

achieving students, it is suggested to use immediate corrective feedback with elaboration.

Table 1 summarizes the feedback guidelines categorized by Shute based on three dimensions

including learning, timing, and student characteristics. To sum up, Shute (2008, p. 175)

highlighted the importance of formative feedback for learning in technology-assisted

instructions and called for more investigation on three aspects of feedback. The first aspect is

‘motive’, which discusses whether the students need the feedback. The second aspect is

13

‘opportunity’, which evaluates the timing of the feedback. The last aspect is ‘means’, which

explores whether the students are able and willing to use the feedback.

Table 1

Guidelines of Formative Feedback Adapted from Shute (2008)

Dimension Prescriptions

Learning Focus feedback on the task, not on the learner.

Provide elaborated feedback to enhance learning.

Present elaborated feedback in manageable units.

Be specific and clear with the feedback message.

Keep feedback as simple as possible but no simpler (based on learner

needs and instructional constraints).

Reduce uncertainty between performance and goals.

Give unbiased, objective feedback, written or via a computer.

Promote a “learning” goal orientation via feedback.

Provide feedback after learners have attempted a solution.

Do not give normative comparisons.

Be cautious about providing overall grades

Do not present feedback that discourages the learner or threatens the

learner’s self-esteem.

Use “praise” sparingly, if at all.

Try to avoid delivering feedback orally.

Do not interrupt the learner with feedback if the learner is actively

engaged.

14

Avoid using progressive hints that always terminate with the correct

answer.

Do not limit the mode of feedback presentation to text.

Minimize the use of extensive error analyses and diagnosis.

Timing Design timing of feedback to align with the desired outcome.

For difficult tasks, use immediate feedback.

For relatively simple tasks, use delayed feedback.

For retention of procedural or conceptual knowledge, use immediate

feedback.

To promote transfer of learning, consider using delayed feedback.

Learner

characteristics

For high-achieving learners, consider using delayed feedback.

For low-achieving learners, use immediate feedback.

For low-achieving learners, use directive (or corrective) feedback.

For high-achieving learners, use facilitative feedback.

For low-achieving learners, use scaffolding.

For high-achieving learners, verification feedback may be sufficient.

For low-achieving learners, use correct response and some kind of

elaboration feedback.

For learners with low learning orientation (or high performance

orientation), give specific feedback.

Chapter Summary

Chapter 2 provided an overview of the learning theories underlying feedback and

several feedback frameworks. Behaviourist and cognitivist approaches to feedback were

discussed. In addition, four frameworks of feedback based on different learning theories were

15

presented detailing what information is delivered by feedback, how it is provided, the

cognitive mechanism, and the related instructional activities. The next chapter describes a

comprehensive review of empirical studies in feedback and learning within technology-

enhanced learning environments.

16

Chapter 3 Literature Review

This chapter starts with an introduction to technology-enhanced education and digital

learning environments, followed by a comprehensive review of educational data mining

techniques and learner models that were commonly used for identifying student learning

status and providing automated feedback. Next, a survey of current trends of automated

feedback generation within digital learning environments is discussed, with a special focus on

the data-driven approach to feedback generation based on student data. Lastly, the gaps and

limitations of previous studies are summarized.

Technology-Enhanced Education

The current learning technology climate prompted the transitions of blended courses

to exclusively online delivered courses in education (Hannafin & Land, 1997). In addition,

many computer-based tutoring and assessment systems are available for students to practice

knowledge and skills without time and space limitation. Thus, it is especially important to

understand students’ behaviours while they are learning in the digital learning systems and to

provide individualized feedback. Also, the availability of large volumes of log events

generated by the learning systems as well as the advancement of educational data mining

(EDM) techniques prompted many studies designed to observe and cluster students’ online

learning behaviours (Becker et al., 2006; Cantabella et al., 2019; Geigle & Zhai, 2017; Khalil

& Ebner, 2017; Papamitsiou & Economides, 2014; Peña-Ayala, 2014; Shi et al., 2015),

predict students’ academic achievement or dropout rates (Baker & Inventado, 2014; Baker,

Lindrum, Lindrum, & Perkowski, 2015; Baker & Yacef, 2009; Conijn et al., 2016; Gardner &

Brooks, 2018; Gašević et al., 2016; Jayaprakash, Moody, Lauría, Regan, & Baron, 2014; Kim

et al., 2018; Poornima & Pushpalatha, 2019; Smith, Lange, & Huston, 2012; Xing et al.,

2016; Zacharis, 2015), conduct sequential mining using features extracted from log files

(Hung & Crooks, 2009; Juhaňák, Zounek, & Rohlíková, 2019), evaluate students’ real-time

17

online work and activities (Liu et al., 2018), and detect at-risk students at early stages to

inform decision making (Chung & Lee, 2019; He et al., 2015; Lu et al., 2017; Mao et al.,

2018; Xing & Du, 2019). In short, a great number of studies have been conducted to

understand learners’ online learning behaviours and their relationship with performance on

digital learning systems using a variety of data-driven approaches.

Predictions of Learner Performance: Static versus Sequential Models and

Features. Many previous studies on log-file analysis have been conducted to examine the

relationships between online learning activities and academic achievement (Bousbia &

Belamri, 2014; Dutt, Ismail, & Herawan, 2017; Jovanovic, Gasevic, Dawson, Pardo, &

Mirriahi, 2017; Juhaňák, Zounek, & Rohlíková, 2019). Research on prediction of academic

performance using log data generated by digital learning systems heavily relies on feature

engineering, data representation, and analytical methods. Previous studies mainly adopted

two types of behaviour-based features (static and sequential) and two types of predictive

models (static and sequential).

Behaviour-based static features commonly refer to the aggregated click frequencies

related to logins, files accessed, assignment submissions, practice attempts and forum

postings over a certain period or the total time spent on different modules embedded in the

systems. Static predictive models are classification or regression models that predict

academic achievement indicators (e.g., assignment scores, midterm exam scores, final exam

scores, project performance, and dropout; Bousbia & Belamri, 2014; Dutt, Ismail, &

Herawan, 2017; Jovanovic, Gasevic, Dawson, Pardo, & Mirriahi, 2017; Zacharis, 2015).

Some of the prevalent methods employed to predict academic achievement include multiple

linear regressions (Agudo-Peregrina et al., 2014; Ashenafi et al., 2015; Zacharis, 2015),

decision trees (Hung & Crooks, 2009; Topîrceanu & Grosseck, 2017), random forests (Liu,

Wang, Benachour, & Tubman, 2018), support vector machines (Ifenthaler &

18

Widanapathirana, 2014; Kloft et al., 2014), and artificial neural networks (Olivé et al., 2020;

Zhang & Jiang, 2018). Generally, static models rely on statistical assumptions, but they are

widely used in the previous studies for their adequate interpretability.

On the other hand, behaviour-based sequential features extracted in the related

research are typically in the format of time-series sequence on one or more components (e.g.,

Hassan et al., 2019; Liu et al., 2018; Liu et al., 2018). Sequential predictive models are

analytical models that can take as input and process high-dimensional sequential features,

such as Recurrent Neural Networks (RNN; Mikolov et al., 2010), and Long Short-Term

Memory (LSTM; Hassan et al., 2019; Liu et al., 2018), which is a special RNN variant..

Sequential models can capture the temporal variations and heterogeneity of the evolving

online behaviours within learners. Thus, they can more accurately model the temporal

behavioural information in log events (Li & Zhao, 2020). For example, if two students both

reached 100 clicks on the Quiz component in the LMS during the term, static models would

fail to capture students’ potentially different problem-solving patterns (e.g., one student could

have practiced more at the beginning of the term, whereas the other student could have

practiced the most at the end of the term). Sequential models detect their differences in terms

of temporal behavioural patterns. Indeed, sequential models, especially deep sequential

models, showed superior performance over static models on predictions in several Human

Computer Interaction (HCI) domains (Beutel et al., 2018; Donkers, Loepp, & Ziegler, 2017;

Kim et al., 2019).

Based on the behaviour-based features and statistical models prevalent in the

literature on early prediction of academic performance, I organized the related research

studies into three main categories: static models with static features, static models with

sequential features, and sequential models with sequential features. The category of

sequential models with static features is not found in the literature, because sequential models

19

generally require specific data structures of sequence representation that only sequential

features could achieve. Thus, no previous studies have been conducted on log analysis using

sequential models with static features.

Static Models with Static Features. Some of the earliest studies on performance

prediction through log analysis calculated the term-total click frequencies on each section of

an LMS using static models with strong assumptions of independence of observations, such

as multiple linear regression (Seber & Lee, 2012), logistic regression (Kleinbaum et al.,

2002), support vector machines (Schlkopf, Smola, & Bach, 2018), decision trees (Kamiński,

Jakubczyk, & Szufel, 2018), or random forests (Breiman, 2001). Researchers extracted data

from log files in LMSs to develop a multiple-regression model for predicting 134 first-year

university Computer Science and Computer Engineering students at risk of performing

poorly or of failing in blended courses and to further identify the most significant explanatory

variables related to online activities when predicting students’ academic achievement in a

blended course (Zacharis, 2015). Another study compared the online learning behaviours

between peer-moderated and teacher-moderated groups for 98 undergraduate students using

log data extracted from an LMS to investigate the indicators that predicted students’ learning

outcomes (Hung & Crooks, 2009). The authors used cluster analysis to observe the

differences in learning patterns across levels of academic achievement. Association rule

analysis was used to discover meaningful relationships among logged events, employing

support and confidence measures (Hung & Crooks, 2009). Also, a decision-tree model was

developed based on several manually extracted features (i.e., independent variables) to

predict students’ final grades for both groups (Hung & Crooks, 2009). More recently, Xu et

al. (2019) revealed the relationship between Internet usage behaviours and undergraduates’

academic achievement by predicting students’ course final grades from their Internet usage

features, including total time spent online, Internet traffic volume, and login frequency. They

20

used the non-parametric Mann-Whitney U test to ascertain the significance of the differences

between usage features and academic performance levels among groups of students.

Additionally, they calculated the Spearman's correlation coefficient to explore any

associations between participants’ academic performance and their time-usage behavioural

features. Finally, they compared the performance of three popular machine-learning

algorithms (decision trees, neural networks, and support vector machines) to validate the

predictive power of the extracted features to performance. Findings showed that features

related to Internet usage time were able to discriminate and predict students’ academic

performance. All three algorithms showed substantial accuracy on predicting performance

using the time-usage features (Xu et al., 2019).

Static Models with Sequential Features. To address the limitation of simply using

static models and features, previous studies harnessed the temporal nature of log data by

transforming the static LMS features to sequential features to predict academic performance.

However, most studies only used sequential features (i.e., extracting LMS features at

different time steps), without adopting sequential models to describe the temporal

dependency of the behaviour-based features. Instead, they employed static models, assuming

that the temporal LMS features were not related chronologically but rather that they were

independent from each other (Juhaňák, Zounek, & Rohlíková, 2019; Keogh & Kasetty,

2003). A study used hierarchical regression to predict 530 South Korean undergraduate

students’ self-regulated learning outcomes, represented by course grades in an online-

learning course, from their weekly online activities, such as total viewing time, late

submissions, proof of reading, message created, and total time spent on sessions (You, 2016).

Another study collected 4,989 Dutch university students’ log data from 17 blended courses

on Moodle, extracting weekly click frequencies and time spent on different LMS sections to

predict students’ final scores (Conijn et al., 2016). In total, LMS features collected across 11

21

weeks, including total time spent online, number of course pages viewed, number of

discussion posts, number of quizzes started, and number of assignments submitted, were fit

into a multilevel regression model to observe the stepwise prediction accuracy for students

from different grade levels. The findings showed a significant increase in the proportion of

the final grade variance explained as more weekly variables were added into the model.

However, both previous studies use a static model with sequential features, assuming that the

weekly LMS features are independent of each other. Thus, they used multiple regression to

make predictions, which neglects the temporal nature of online activities. Waheed et al.

(2020) also implemented a three-layer perceptron and compared its classification

performance with a support vector machine (SVM) and logistic regression on predicting at-

risk students’ dropout rate using quarterly aggregated hand-crafted features from the VLE

click-stream data. They found that the artificial neural network (ANN) not only outperformed

the SVM and logistic regression at the fourth quarter but also yielded early good prediction

accuracy and better accuracy at every time step (quarter 1 to quarter 4).

Sequential Models with Sequential Features. The last category is sequential models

with sequential features. Geigle and Zhai (2017) proposed a student behaviour-representation

method that enables the automatic discovery of behaviour patterns based on students’ click

log data collected from a MOOC. They used a two-layer Markov model (2L-HMM) to

extract interpretable and meaningful behaviour representation of students’ interactions with

the MOOC platform. However, their study only modeled students’ online learning at the

behavioural level, without linking learning behaviours to academic performance. One study

employed a univariate sequential classification model to predict the dropout rates of students

from the Open University (OU; Liu, Wang, Benachour, & Tubman, 2018). More specifically,

they counted 170,000 learners’ daily click frequencies on all sections of OU and fit the

temporal sequence feature to a time-series forest (TSF) model to predict the dropout status of

22

students registered in OU. The univariate prediction model yields an accuracy of 84% with

only 5% of the dataset. Results show a great potential of applying sequential models to

process temporal features. Nonetheless, compared with multivariate sequential models,

univariate sequential prediction models bring in limited information on students’ online

learning behaviours. Liu et al. (2018) expanded the univariate sequential model by proposing

a prediction model based on Recurrent Neural Network (RNN), namely Long Short-Term

Memory (LSTM), to predict learners’ early dropout status. The model that they implemented

and trained on a dataset extracted from Chinese University MOOCs yielded an accuracy of

90%. The authors transformed the dropout-prediction problem into a sequential prediction

problem and utilized LSTMs to make predictions. However, their work has several

limitations. First, they apply their approach in the context of the informal MOOCs online

learning platform, so it is not clear whether the results would generalize to other online

learning environments, such as the LMSs formal learning platform. Second, the scope of the

features they employed is limited, including only learners’ interactions with the forums (e.g.,

post count in general discussion, post count in professor answer area, and post count in class

exchange area) and ignoring other important aspects of online learning. Third, the study

focuses on dropout rate, but it does not explore the relationship between log events and

academic performance.

Recent studies implemented sequential deep sequential learning algorithms and

compared the prediction performance of students’ dropout rate in virtual learning

environments using large-scale, publicly available MOOC datasets. Hassan et al. (2019)

implemented a deep-learning model with LSTM and compared its performance with a two-

layer perceptron and logistic regression on predicting students’ dropout rate on the Open

University Learning Analytics (OULA) dataset in different weeks (e.g., weeks 5, 10, 15, 20,

and 25) across a term. They found that the deep-learning model performed best among the

23

three models at every time step and achieved high accuracy as early as Week 10, which was

comparable to the prediction accuracy of a two-layer perceptron and logistic regression in

Week 25. Their study demonstrates the potential of deep-sequential models in predicting

students’ attainment in online learning platforms.

Learner Modeling in Digital Learning Systems

While EDM is developing at a rapid pace in the last decades, one branch of EDM,

namely adaptive tutoring and e-learning, draws special attention from the field for two

reasons. First, the log-event data collected from the open online tutoring systems is at a much

larger scale compared with data collected from local digital learning systems. Second, the

huge datasets are publicly available so that different newly devised analytic approaches and

algorithms can be tested on them and compared with benchmarks.

Emerging research on learner models is being conducted based on large volumes of

publicly available process data, which facilitates researchers and teachers to better understand

learners’ behaviours in the ITSs and to implement efficient tools to scaffold learners on

adaptive learning paths that meet their individualized needs (Abyaa et al., 2019). Learner

models are crucial for individualized learning and tutoring, as they model learners’

behaviours and characteristics, including prior knowledge, emotions, and demographic

information to predict their future skill performance and to adapt within the learning

platforms. Some of the commonly used learner models include Item Response Theory (IRT;

Embretson & Reise, 2013), Performance Factor Analysis (PFA; Pavlik et al., 2009), Bayesian

Knowledge Tracing (BKT; Corbett & Anderson, 1994), and Deep Knowledge Tracing (DKT;

Piech et al., 2015).

Item Response Theory (IRT; Embretson & Reise, 2013) is the methodological

framework that applies generalized linear models to predict the probability that the student

will answer the next item correctly based on previous item responses. This technique is

24

widely used in computer-adaptive testing to measure student mastery of latent skills (van der

Linden & Glas, 2010). Several variants of IRT have been developed to incorporate more

parameters for better calibration among various contexts, including 1-parameter logistic item

response theory (1PL IRT; Rasch, 1993), 2-parameter logistic item response theory (2PL

IRT; Lord, 1980), 3-parameter logistic item response theory (3PL IRT; Birnbaum, 1968), 4-

parameter logistic item response theory (4PL IRT; Barton & Lord, 1981) model, and partial

credit item response theory model (PCM; Masters, 1982) for polytomous response data. The

1PL IRT (i.e., Rasch model) is widely used in computer-based educational and psychometric

measurement for its simplicity and precision. The Rasch model can be computed as follows:

𝑙𝑛 (
𝑃(𝑋𝑛𝑖 = 1)

𝑃(𝑋𝑛𝑖 = 0)
) = θn − β𝑖,

where 𝑋𝑛𝑖 is the actual response to a dichotomously scored item, 𝑋𝑛𝑖 = 1 refers to the

student correctly answering an item, and 𝑋𝑛𝑖 = 0 refers to the student incorrectly answering

an item; θn is the ability parameter of student n (a higher θn means that the student has a

higher ability level); and β𝑖 is the difficulty parameter of item i. Thus, the log odds of the

probability of success on an item 𝑃(𝑋𝑛𝑖 = 1) over the failure trial 𝑃(𝑋𝑛𝑖 = 0) can be

calculated as the (θn − β𝑖).

Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1994) is a popular learner

modeling approach in the EDM community, designed to make inferences about learners’

knowledge learning and transfer. A standard BKT is a two-state Hidden Markov Model

(HMM; Eddy, 1996) that estimates learners’ skill mastery, where learners’ response is a

binary (correct or incorrect) observable node, and a knowledge state is a hidden binary node

with mastery and non-mastery states. Although BKT is one of the most popular knowledge

tracing models, it presents some limitations. First, BKT dichotomizes student knowledge

mastery states into “learned” and “unlearned”, which is unrealistic. Second, BKT maps items

to a single concept, and cannot be adapted for questions that cover multiple knowledge

25

concepts. Some variants of BKT have been developed to improve predictive accuracy such as

incorporating time-based contextualized parameters (Baker et al., 2008) or past item

responses and correctness (Beck et al., 2008) into BKT estimation. Some variants are also

developed based on BKT such as individualized BKT (Yudelson et al., 2013) and BKT plus

(Khajah et al., 2016).

BKT can be characterized by five basic elements as plotted in Figure 1:

(1) 𝑃(𝐼𝑛𝑖𝑡𝑖𝑎𝑙) or 𝑃(𝐿0): the probability that the skill was known a priori (i.e., before

learning began); (2) 𝑃(𝐿𝑒𝑎𝑟𝑛) or 𝑃(𝑇): the probability that the skill will transition into

mastered state after a practice attempt; (3) 𝑃(𝐹𝑜𝑟𝑔𝑒𝑡) or 𝑃(𝐹): the probability that the skill

will transition into a non-mastery state after a practice attempt; traditionally, p-forget is set to

zero and is not counted towards the total number of parameters; (4) 𝑃(𝑆𝑙𝑖𝑝) or 𝑃(𝑆): the

probability that a mastered skill is applied incorrectly; and (5) 𝑃(𝐺𝑢𝑒𝑠𝑠) or 𝑃(𝐺): the

probability that an unmastered skill will be applied correctly.

Figure 1. Graph Representation of the Standard Bayesian Knowledge Tracing (BKT) Model

In standard BKT, the binary state nodes, 0 and 1, represent the state of student

knowledge mastery: 0 refers to the student not mastering the skill or knowledge component,

whereas 1 assumes that the student mastered the skill. The conditional probability of a

student mastering a skill at time step t can be calculated as follows:

26

𝑃(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =
𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆)) + (1 − 𝑃(𝐿𝑡−1)) ∗ 𝑃(𝐺)

𝑃(𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑡) =
𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝑆))

𝑃(𝐿𝑡−1) ∗ 𝑃(𝑆) + (1 − 𝑃(𝐿𝑡−1) ∗ (1 − 𝑃(𝐺)))

Thus, the student’s actual response 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ϵ {0, 1} to an exercise can be used to compute

the probability of mastering a skill at time 𝑡:

𝑃(𝐿𝑡) = 𝑃(𝐿𝑡|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡) + [1 − 𝑃(𝐿𝑡|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡)] ∗ 𝑃(𝑇)

Deep Knowledge Tracing (DKT; Piech et al., 2015) is another widely discussed

approach in the EDM community. DKT was first proposed by Piech et al. (2015). It utilizes

recurrent neural networks to model learners’ sequential product data. Similar to BKT, the

DKT approach models students’ product data and observes knowledge transfer at both latent

skill level and item level. However, DKT does not treat skills independently. Instead, it

updates the knowledge states on all skills concurrently as a learner practices a single skill.

Moreover, DKT considers the temporal connections between actions within the systems. The

RNN is illustrated in Figure 2. At different time steps {t = 1, 2, …, T}, the input layer 𝑥1,

𝑥2,…, 𝑥𝑇 is described as a one-hot encoding of a student trial-performance, the hidden layer

ℎ1, ℎ2,…, ℎ𝑇 is an RNN layer for predictions, and the output layer 𝑦1, 𝑦2,…, 𝑦𝑇 is the

correctness prediction of every knowledge component. The output vector can be computed as

follows:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ),

𝑦𝑡 = 𝜎(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦),

where 𝑊ℎ𝑥 is the input weight matrix, 𝑊ℎℎ is the recurrent weight matrix, and 𝑊𝑦ℎ is the

output weight matrix; 𝑏𝑦 and 𝑏ℎ are the latent bias vector and the output bias vector, and 𝜎 is

the sigmoid function.

27

Figure 2. Recurrent Neural Network (RNN) Representation of Deep Knowledge Tracing

(DKT)

The deep learning approach (Goodfellow et al., 2016; LeCun, Bengio, & Hinton,

2015) captures the temporal information of student actions to make more accurate

performance predictions. DKT also has some variants including Long Short-Term Memory

DKT (LSTM DKT; Piech et al., 2015) and DKT with Gated Recurrent Units (GRU; Chung et

al., 2014) to improve performance predictions. Compared with the vanilla RNN, the RNN-

variant LSTM introduces a forget gate to retain information from previous steps. Figure 3

illustrates an LSTM cell in which the output at time t depends on the input x at both time (t –

1) and t:

𝑦𝑡 = 𝑊𝑦ℎℎ𝑡 + 𝑏𝑦,

ℎ𝑡 = 𝐻(𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ),

where 𝑦𝑡 is the output unit, 𝑥𝑡 is the input at time t, 𝑊ℎ𝑥 is the input weight matrix, 𝑊ℎℎ is the

recurrent weight matrix, and 𝑊𝑦ℎ is the output weight matrix, 𝑏𝑦 and 𝑏ℎ are bias vectors, and

𝐻 is usually a series of element-wise operation functions:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),

28

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔),

𝑠𝑡 = 𝑖𝑡⨀𝑔𝑡 + 𝑓𝑡𝑠𝑡−1,

𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),

ℎ𝑡 = 𝑂𝑡 𝑡𝑎𝑛ℎ(𝑠𝑡) ,

in which 𝑥𝑡 is the input vector at time step t, 𝑖𝑡 is the input gate's activation vector, 𝑓𝑡 is the

forget gate's activation vector, 𝑔𝑡 is the cell input activation vector, 𝑠𝑡 is cell state vector, 𝑂𝑡

is the output gate's activation vector, and, lastly, ℎ𝑡 is the output vector of this LSTM unit.

𝑊𝑖, 𝑊𝑓, 𝑊𝑔, 𝑊𝑜, 𝑈𝑖, 𝑈𝑓, 𝑈𝑔, 𝑈𝑜 are the estimated weight matrices, 𝑏𝑖, 𝑏𝑓, 𝑏𝑔, 𝑏𝑜 are the bias

vectors, 𝜎 is the sigmoid function, 𝑡𝑎𝑛ℎ is the tangent function, and ⨀ is the element-wise

multiplication operator.

DKT also has many extensions including DKT plus (Yeung & Yeung, 2018), DKT

with Convolutions (Yang et al., 2020), DKT with Rich Features (Zhang et al., 2017), and

Graph-based Knowledge Tracing (GKT; Nakagawa et al., 2019). DKT and its variants gained

its popularity in the field of EDM in the last decade, as it displayed higher predictive

accuracy and abilities of processing sequential data and exploiting the temporal dynamics

compared with probabilistic approaches.

29

Figure 3. Conceptual Representation of the LSTM Cell

Recent studies also employed the Convolutional Neural Network (CNN) instead of

RNN to process student interactions with ITSs. CNN is a commonly used model for image

recognition, and currently has been widely used in text analysis. The convolutional layer is

seen as a function which could learn features from n-grams, and can be represented as:

𝑍𝑖 = ƒ(𝑊𝑧[𝑥𝑖
𝑗

∶ 𝑥𝑖
𝑗+ℎ𝑤−1

] + 𝑏𝑧)

where 𝑥𝑖 is the ith embedded word, 𝑊𝑧 is the weight matrix, 𝑏𝑧 is the bias vector, ℎ𝑤 is the

window size of the convolutional layer, ƒ is a non-linear activation function (i.e., sigmoid or

tanh), and 𝑍𝑖 is the output of feature representation. A conceptual representation of a 5-

dimension CNN for dichotomous text classification is shown in Figure 4.

30

Figure 4. Conceptual Representation of CNN

Automated Feedback Generation in Digital Learning Systems

Precise learner modeling is important, but it is not enough for effective delivery of

online tutoring and e-learning. Providing feedback is a key factor for improving knowledge.

In education, feedback is defined as the information provided by an agent regarding aspects

of one’s performance or understanding (Hattie & Timperley, 2007; Shute, 2008). High-

quality personalized and timely feedback can improve learners’ performance (Hattie &

Timperley, 2007), but feedback provision is often reported as the long-standing weakness of

ITSs and e-learning systems (Maniktala et al., 2020; McFarland & Hamilton, 2005). On the

one hand, students complain that they receive too little quality feedback in the process of

learning (Boud & Molloy, 2013; Ferguson, 2011). On the other hand, students are reported to

misuse and abuse the feedback or hints provided by the ITSs (Price et al., 2017). Thus,

knowing how and when to provide real-time personalized feedback that guides and motivates

students’ learning remains a challenge. Some of the earlier attempts of implementing

feedback within ITSs focused on providing real-time online tutoring by humans in those

31

environments (Merrill et al., 1992; Heffernan & Koedinger, 2002). Findings show that human

tutoring is effective in improving students’ performance, but it is time and labor consuming,

and not applicable to large-scale practice and open-ended platforms. Although providing

feedback is crucial for scaffolding students to improve performance (Hattie & Timperley,

2007), research on how learning technologies effectively estimate learners’ skills and

automatically generate individualized feedback is lagging (Deeva et al., 2021; Maniktala et

al., 2020). Specifically, discussions of automated feedback systems are still ongoing

regarding when to provide feedback (immediate vs. delayed), how to provide feedback

(summative vs. formative, adaptive vs. non-adaptive, expert-derived vs. data-driven), and

how to assemble the feedback content (generic vs. specific, KC based vs. item based).

Based on a review of automated feedback systems for learners in the last decade,

Deeva et al. (2021) proposed a framework for TAF-ClaF (Technologies for Automated

Feedback – Classification). They identified the main elements for automated feedback

systems as outlined in Figure 5. The elements can be categorized into three dimensions:

where feedback is deduced, how it should be delivered, and when to provide it. The first

question of ‘where’ is addressed by the domain model, which is a structured domain

knowledge representation based on Bloom’s taxonomy (Bloom et al., 1984). It defines the

subjects (e.g., math, literature, etc.) and the corresponding sequential order of teaching of the

knowledge components. The second question of ‘how’ is addressed by the feedback

generation model, which is determined by two factors: (1) whether the rules for feedback

generation is derived from expert knowledge or student data; and (2) whether the approach of

feedback delivery is expert-driven, data-driven, or a mixture of both. More specifically,

expert knowledge refers to the learning and teaching theories dictated by experts for

predefining feedback for students, whereas student data represents the learning traces from

students that can be analyzed through educational data mining or learning analytical

32

techniques to empirically induce knowledge representation architecture and to trigger

feedback delivery. Regarding the feedback generation model, the expert-driven model uses

expert knowledge as the set of rules for both feedback generation and feedback provision, the

data-driven model is solely derived from student data and it delivers feedback purely based

on empirical evidence, whereas the mixed model uses both sources of expert knowledge and

student data to derive feedback. The last question of ‘when’ is defined by the timing of

feedback provision. Recent technologies have advanced the implementation of hint

generation systems and feedback generation for unstructured domains such as programming

tasks and essay writing.

Figure 5. A Representation of a Typical Automated Feedback Technology by Deeva et al.

(2021)

Hint Generation. Most empirical studies focus on implementing automated hint

generation methods for intelligent tutoring systems to scaffold students and recommend next-

step learning. For example, Price et al. (2017) sampled 171 students to compare the quality of

33

data-driven hint-generation algorithms. The hints produced by the algorithms were evaluated

using a “QualityScore” procedure, which sampled a set of “gold standard” hints produced by

a group of three expert tutors familiar with the problems to set a benchmark for hint

comparison. The data-driven hints were distinguished into three categories: full match, partial

match, and no match in comparison to the quality of a “gold standard” hint. This study

included two experiments. The first experiment aimed to validate the “QualityScore”

procedure as a benchmark for hint evaluation. QualityScore matched 82.9% of manual hint

ratings, which is why it can be deemed as a reasonable procedure. The second experiment

compared 6 hint generation algorithms and found that the Intelligent Teaching Assistant for

Programming (ITAP) and SourceCheck outperformed every other algorithm in terms of

producing reasonable hints. ITAP was designed specifically for Python, which suggests that it

holds an advantage over the other algorithms for the Python dataset, which could be a

possible reason for its success.

Marwan, Williams, and Price (2019) also conducted two studies to investigate next-

step programming hints’ effect on learners’ performance, overall understanding, and

perspectives. The first study sampled 10 students from an introductory engineering course

who had no prior programming experience and the second study sampled 201 paid workers

from Amazon’s Mechanical Turk platform. Both studies used a block-based programming

platform called iSnap. The first study’s goal was to understand student perceptions of four

types of hints: code hint only, code hint with textual explanation, code hint with self

explanation prompts, and code hint with both textual and self-explanation prompts. A variety

of these hints would be offered every 2 minutes over the course of a 15-minute programming

task that would update with each code change. Students could use these hints immediately or

choose to wait as the hints would accumulate over time, hence they were given the option to

request multiple hints in a row. This feature was specifically put in place to encourage hint

34

usage while preventing overreliance on them. The study spanned two programming tasks in

which the first one was followed up with questions about the timing, helpfulness,

trustworthiness of each hint and what motivated them to use it. Task 2 was similar to the first

task, but it was noticeably more difficult and, thus, had an easier and harder version. Students

who finished Task 1 within ten minutes were given the harder version while the rest were

given Task 2 to ensure a fair level of challenge while attempting the second task. A similar

interview to Task 1 was conducted after Task 2 as well. The interview answers showed a

positive sentiment towards textual explanations (7 out of 10 students), as it helped them

understand the “how” and “why” of a code hint. Self-explanation prompts were appreciated

(4 out of 10) as they prompted students to think more deeply about the given hint. However,

3 out of 10 students criticized self-explanation prompts for being frustrating and confusing.

The interview additionally revealed that there was no specific time when the students agreed

to get hints. The second study’s goal was to investigate performance and learning transfer on

a larger sample size. The procedure of the study was similar to the first study, except for a

few differences. There were three types of hints: No hint (control), Code hints with Textual

Explanations (CT) and Code hints with Textual and Self-explanation prompts (CTE). Each

learner was assigned one of the three hint types provided in Task 1. However, no hints were

given in Task 2, to measure one’s ability to perform a similar task without help. The results

of immediate performance were compared based on the completion of 4 objectives during

both tasks. More learners completed the task in CT condition (27.8%) and CTE condition

(45.8%) than control condition (22.2%). The difference between the three groups became

more pronounced over time. In Task 2, the measure of learning was compared through a post-

hoc Dunn’s test with Benjamini-Hochberg correction, which showed a significant difference

between CTE learners and both the control group (z = 2.73; p = .01) and CT learners (z =

2.35; p = .028), respectively. However, there was no significant difference between CT

35

learners and the control group. This suggests that only code hints with self-explanation

prompts improve learners’ performance. There was a weak but significant negative Spearman

correlation between the number of hints requested on Task 1 hints and the performance on

Task 2 in the CT group (r = -.243, p = .03) but not in the CTE group (r = -.102, p = 0.40).

This suggested that the number of hints requested does not strongly predict the performance

of current or future tasks. Ratings of learners on a scale of 1-10 were much less in the control

group (Median = 5, IQR = 4) compared with CT learners (Median = 7, IQR = 3.4) and CTE

learners (Median = 8, IQR = 2). This suggests that hints were perceived as much more

helpful when providing textual and self-explanation hints. Overall, these results provided an

important step in understanding the potential benefits and limitations of coding hints and they

also suggest significant performance improvement with textual explanations.

Another study (Marwan, Lytle, Williams, & Price, 2019) introduces a straightforward

method for generating textual explanations to accompany automated, next-step programming

hints. Next-step hints can support students during program construction and automatically

adapt to the student’s current code to support different student solutions. The authors

evaluated the impact of adding these textual explanations to code hints in iSnap through two

controlled experiments with different populations. In Experiment 1, they conducted a

controlled study on novices in an introductory programming course for non-CS majors and

found that explanations may increase students’ willingness to use and follow the hints.

However, they also claimed that the majority of students did not use hints, so the sample size

was small, and the results were inconclusive. The further experiment was conducted with

crowd workers recruited on Amazon’s Mechanical Turk platform. They found that learners

who received code hints with textual explanations rated hints as significantly more useful and

were more likely to follow hints which showed a similar trend to Experiment 1. In addition,

learners who received textual explanations were also significantly more likely to explain the

36

relationship between the received hints, their code, and the assignment objectives. The

authors argued that they isolated the impact of one specific element of support – textual

explanations – to evaluate it directly. In addition, they evaluate the systems by ascertaining

student performance on future tasks as a measure of learning and by using self-explanations

as an alternative technique to measure the impact of hints on students’ knowledge. The

platform generates textual explanations for a given problem in iSnap by identifying all

common abstract syntax tree (AST) nodes in the database of solutions, and then manually

annotating each of these solution AST nodes with a textual explanation for the corresponding

hint. Therefore, the study designed complementary textual explanations for existing code

hints in iSnap, with the goal of overcoming the limitations of code hints that only tell a

student what to do.

A study (Mao et al., 2019) sampled 171 undergraduate University students (non-CS

majors) over the course of four months in an introductory programming course on iSnap, a

block-based coding platform. The goal of the study was to effectively predict whether the

student would succeed eventually and if the student would need intervention at any given

time. The binary measure of success was classified as Trajectory Level prediction and the

need for intervention was classified as Event Level prediction. The study uses the Recent

Temporal Pattern (RTP) versions of classic machine learning models such as K-nearest

neighbors (KNN; Altman, 1992), Support Vector Machine (SVM; Cortes & Vapnik, 1995),

and Logistic Regression (LR; Wright, 1995) to build interpretable models and compare them

to the performance of their standalone versions as well as a deep learning LSTM model. A

student's state was determined by the identification of data-driven features (DDF) and expert

features (EF). The results reflected that the RTP-based models were able to predict student

success within a minute of an otherwise 20-minute programming task. The RTP-based

models also successfully predicted the need for intervention 85% of the time during repeated

37

application every 5 minutes. However, the study was limited by a lack of progressive features

with multiple values and the measure of success was restricted to a binary metric. A larger

sample size and longer course duration could also result in the incorporation of recency

measures for the temporal patterns. The next steps for the study include incorporating recency

measures into the temporal patterns and expanding the binary measure of success and need

for intervention.

To summarize, results from the above literature review show that most studies: (1)

were based on unstructured domains; (2) used supervised-learning techniques to track

students’ learning status; (3) and generated hints within the systems for improving students’

performance and adapting future learning. However, few studies addressed skill-level

automated feedback generation for intelligent tutoring systems in other domains.

Feedback Generation for Unstructured Domains. Among a handful of studies on

automated feedback generation systems, most were developed for programming tasks,

constructed response questions, or essays. Silva et al. (2019) sampled 34 students in an

introductory programming class to present an approach to provide adaptive feedback while

the programmer solves a problem in the form of text, video, and flowchart feedback. The

study explored various previous attempts at providing adaptive feedback but found that most

systems provided low-quality feedback out of which only 32.7% of the systems generated

feedback for error correction and only 18.8% generated messages that help the student

proceed with the next step of the problem. Thus, the researchers developed an intelligent

tutoring system (ITS) aiming to provide high-quality adaptive feedback that the students can

use to program in C/C++ language. When students ask for feedback, the system checks if the

student has indicated which part of the solution they need help with by selecting that portion.

Then, the system looks for specific feedback whose content has been created and associated

with code parts of the model solution. If there is no selection, the system uses the current

38

state of the student solution to search for general feedback. The process of generating

feedback involves (1) extracting information from each question posed to the learner; (2)

extracting the part of the code provided by the student; (3) extracting the gold-standard

solution given by the ITS; and (4) performing a similarity calculation between the student’s

code and the solution, using the Levenshtein’s distance algorithm, which returns a score

ranging from zero to one. The study involved a quasi-experiment to determine the pre-test

and post-test performance of each student giving them one basic programming problem to

solve in each test. The results of the test were evaluated using test cases and scores between

zero to ten. They found that the students’ performance on the post-test was significantly

better than their pre-test performance, as evidenced by a statistically significant t-test (p-value

< .001). In the second session of the experiment, the students’ interaction log with the system

was analyzed to check their response and behaviour during feedback requests. It was found

that some students showed atypical behaviour by making several feedback requests in

sequence but did not use the feedback to make changes to the solution. By removing these

students from the analysis, it was found that 85% of the feedback messages received by the

group were useful for the student to make progress on their solution.

An ongoing study (Katan & Anstead, 2020) explores student behaviour on a gamified

platform, Sleuth, for teaching introductory programming to large student cohorts. The study

sampled 1,500 students over an assessed coursework assignment to empirically test

automated feedback generation and gamification of educational material. The platform

provides a set of code puzzles based on a film-noir detective story where a ‘Chief’ provides

immediate feedback (i.e., for runtime or compile-time errors) on every attempt, which is then

graded automatically. The coding exercises are generated with variations between each

attempt to create an inexhaustible supply of puzzles and reduce the scope of plagiarism. The

preliminary results show that the student cohorts performed significantly better in Sleuth with

39

an impressive mean grade of 90.67%, whereas module tests yielded a much poorer mean

grade of 66.94%. A positive correlation was found between the two Sleuth assignments

through a Spearman’s rank correlation (r = .63, p < .01). A significant improvement in

student motivation and activity was observed, as there was an average of 158 puzzle attempts

per student. Students also seemed to enjoy the presence of Easter Egg levels that had no

graded reward associated with them. The perceived task difficulty of 2.7 on a 5-point Likert

scale and the high levels of achievement indicate some degree of intrinsic motivation. Some

of the limitations of this study include undesirable and obsessive behaviours to get a 100% on

each puzzle due to the lack of an upper limit on time or attempts for them. Also, rather than

adopting a strategic route towards solving the problems, students approached them in a much

more linear way and compensated with multiple failed attempts instead. The next steps for

the study are to explore the role and method of feedback delivery in student performance and

mitigate the sequential approach when students solve the puzzles.

Keuning et al. (2014) examined the rising number of individuals who wish to learn how

to program and started to introduce a programming prototype that helps students with feedback

and hints to progress towards a solution for an introductory imperative programming problem.

The study’s main goal is to provide an intelligent strategy-based feedback tutor, trying to

generate relevant hints and tips to the programmer to solve a somewhat simple problem. The

study implies that many of the programming tutors’ comments on a program are based on a

complete program, but the authors’ programming tutor is a step-by-step tutor who comments

on each of the statements of the program. There is a web interface that enables the student to

select the exercise from a list of available exercises. The editor, in which the code can be typed,

provides syntax highlighting. When the student first asks for a hint, the first option (branch) of

the hint tree is shown. The student has the opportunity to ‘expand’ (denoted by the -+ symbol)

a specific path and view a hint that provides more details. The tutor is built on top of the IDEAS

40

framework (Interactive Domain-specific Exercise Assistants), which provides services to build

exercise assistants to help students solve problems incrementally. The tutor has three

components: (1) Domain specification: a domain is described, among other things, by a

grammar for its abstract syntax and an accompanying parser to process submitted work. (2)

Steps: a step is a transformation on values of the domain, such as refining or rewriting a student

submission. (3) Strategies: a strategy combines basic steps and specifies which steps can be

taken, in which order. A strategy to solve an exercise is composed of several steps. Two types

of steps are used in the tutor for imperative programming: append steps and refinement steps.

A programming exercise can be specified by providing a set of model solutions and an exercise

description in a text file. Students can do the exercises by creating a solution and asking for

feedback. The tutor can understand different algorithms, different statements, and different

statement orders which helps to differentiate between the different solutions. The study

evaluated its tutor by collecting data from first-year IT-students during their Web programming

course and their Java programming course. They were given three exercises. Exercises 1 and

2 are relatively simple PHP exercises from the Web programming course. The tutor was

capable of recognizing 75% (24 out of 32, for the first exercise) and 33% (for the second

exercise) of the solutions that they considered similar to a model if they would be manually

assessed.

Research Gaps

Several research gaps were identified by Deeva et al. (2021) in the existing literature

based on a review of automated feedback generation technologies from 2008 to 2020. First,

the transparency and implementation accessibility of feedback generation systems are

deficient. Most of the related studies did not share the technical details on how their system

was created and what tools or languages were used. Second, most studies did not report the

educational frameworks or learning theories underlying their automated feedback generation

41

systems, and they did not report the context in which the system was built. Third, only half of

the systems reviewed reported that they adopted a data-driven approach for feedback

generation, whereas most of the previous studies still heavily relied on expert knowledge.

Although an expert-driven approach is not a drawback by itself, it might slow down the full

automation of tutoring and assessment. Fourth, while most research emphasized adaptiveness

as an important factor for feedback, only one third of the reviewed studies adapted the

feedback to student characteristics and personality. Fifth, the selected studies still show

deficiencies in providing personalized feedback, especially on determining when the

feedback should be delivered. In addition, the review of empirical studies on automated

feedback generation revealed that most automated feedback systems aimed to generate item-

level comments or feedback (i.e., created based on the learners’ performance on items),

whereas only few incorporated measurement models to detect students’ latent skill mastery

states and provide higher-level feedback on their performance (Lu et al., 2021).

Based on the comprehensive review of the previous studies, we identified the

following additional research gaps. First, most automated feedback systems only evaluated

student performance and mastery of skills based on product data, whereas the process data

collected from the ITSs were unused. Second, most automated feedback generation models

aimed to provide item-related hint to guide students to complete the items for structured

domains or corrective feedback for unstructured domains such as essay writing and

programming using natural language processing techniques. Research on providing skill-level

feedback for structured domains is lacking.

To address the gaps identified from previous studies, we propose a data-driven based,

personalized feedback generation system informed by cognitivist learning theory that suits

different learner environments and learner models for structured domain knowledge (i.e.,

math, algebra, and statistics). Details on the implementations and evaluations of different

42

components of the automated feedback generation framework were addressed and elaborated

to ensure transparency, accessibility, and reproducibility. Specifically, we implemented an

evaluation model that incorporates both student product data and process data and used

natural language processing (NLP) techniques to augment our corpus of feedback templates

for both positive and negative feedback to avoid word repetitions. We also detailed the

feedback generation process for different learner models.

Chapter Summary

Chapter 3 first reviewed the current trends of studies on technology-enhanced

learning and digital tutoring and assessment. Next, it summarized the features and models

that were commonly used to model students’ log-event data and introduced several

mainstream learner models that apply to large-scale log-event datasets. Third, it examined the

classifications and empirical studies of automated feedback technologies including hint

generation and feedback generation systems for unstructured and structured domains within

digital learning environments. It further highlighted the advantages and potentials of a data-

driven approach to automated feedback generation. Finally, it identified the existing research

gaps. The next chapter describes the proposed novel data-driven framework of automated

feedback generation for different learner models.

43

Chapter 4 Methods

Overview

This chapter introduces the proposed framework of Automated Feedback Generation

for Learner Models. The organization of this chapter is guided by the three proposed research

questions:

1. To what extent do the learner models perform accurate and interpretable estimations of

students’ performance? What are the predictive accuracies, input representations,

output representations, and characteristics of the different learner models? Does the

proposed learner model that incorporates both product data and process data yield

better prediction performance compared with previous learner models?

2. To what extent does the feedback generation method produce fluent and related

feedback? Can the feedback generation method create a variety of feedback templates

that are grammatically correct and semantically related?

3. To what extent is the proposed framework of Automated Feedback Generation for

Learner Models feasible for structured knowledge domains? How does the proposed

feedback generation method fit into different learner models? What format and

information does the generated feedback provide for learners?

Drawing upon Deeva et al.’s (2020) framework for TAF-ClaF (Technologies for

Automated Feedback – Classification), we adapted the structure of the automated feedback

technology and specified each component within the proposed framework of feedback

generation for learner model as shown in Figure 6. Compared with Deva’s framework, the

proposed system makes the following contributions: (1) it replaces Student Data with Student

Product Data and Process Data and (2) it defines the Automated Feedback model as being

an Augmented Templated-based Automated Feedback model. The main components (i.e., the

KC/learner model, student data, data-driven feedback generation model, the feedback trigger,

44

and feedback content), their implementations (i.e., the implementations of the learner model

and the feedback augmentation model), and the evaluation methods are detailed later in this

section. The implementations and evaluation metrics of different learner models are first

described. Then, the implementations and evaluation metrics of the unsupervised feedback

generation algorithm are described. This chapter ends with a summary of the synthesized

framework.

Figure 6. Automated Feedback Generation for Learner Models

Datasets for the Learner Models

Three datasets of various sizes, commonly used as benchmarks in previous studies,

were selected to compare the characteristics and performance of the learner models and to

demonstrate that the proposed framework of feedback generation works well with different

learner models: the ASSISTment 2009-2010 dataset (Heffernan & Heffernan, 2014), the

KDD Cup 2010 EDM Challenge-Algebra I 2005-2006 dataset (Koedinger et al., 2010), and

the OLI Engineering Statics - Fall 2011 (Koedinger et al., 2010). Table 2 summarizes the

45

numbers of students, Knowledge Components (KCs), items, and total steps (interactions with

the system) for these datasets.

Table 2

Dataset Information

 ASSISTment 2009-2010 Algebra I 2005-2006 OLI Fall 2010

Student 4,163 574 333

KCs 110 178 80

Items 17,709 173,113 300

Interaction 459,209 809,695 261,948

ASSISTment 2009-2010 is one of the largest datasets collected from intelligent

tutoring systems and the benchmark for learner modeling studies. ASSISTment is a

computer-based learning and assessment that is often used to teach math after school. This

dataset was collected from the ASSISTment skill builder problem, which assigns a student to

work on similar consecutive questions (normally set to answer 3 questions correctly in a row)

until the student can answer problems on the KCs correctly. After completion, students

commonly do not practice at the KC again. This dataset is the largest of all three datasets

employed in this work. This dataset contains the main following columns as shown in Table

3.

Table 3

Summary of the ASSISTment 2009-2010 Dataset

Column Descriptions

order_id The chronological identifier (ID) of the original problem log.

assignment_id Two different assignments can have the same sequence ID. Each

assignment is specific to a single teacher/class.

user_id The identifier of the student who solves the problem.

46

problem_id The identifier of the problem.

orignial 1 = Main problem.

0 = Scaffolding problem.

correct 1 = Correct on the first attempt.

0 = Incorrect on the first attempt or asked for help.

This column is often the target for prediction.

attempt_count The number of attempts on this problem.

ms_first_response The time in milliseconds for the first response.

skill_id The identifier of the skill associated with the problem.

For the skill builder dataset, different skills for the same data record

are represented in different rows. Thus, if a student answers a multi-

skill question, this record is duplicated several times and each

duplication is tagged with one of the multi skills.

skill_name Skill name associated with the problem.

For the skill builder dataset, different skills for the same data record

are represented in different rows. Thus, if a student answers a multi-

skill question, this record is duplicated several times, and each

duplication is tagged with one of the multi skills.

hint_count Number of hints requested on this problem.

first_action The type of the first action: attempt or ask for a hint.

opportunity The number of opportunities the student has to practice this skill.

For the skill builder dataset, opportunities for different skills of the

same data record are represented in different rows. Thus, if a student

answers a multi-skill question, this record is duplicated several

times, and each duplication is tagged with one of the multi-skills

and the corresponding opportunity count.

opportunity_original The number of opportunities the student has to practice this skill

counting only original problems.

For the skill builder dataset, original opportunities for different

skills of the same data record are represented in different rows.

Thus, if a student answers a multi skill question, this record is

duplicated several times, and each duplication is tagged with one of

the multi-skills and the corresponding original opportunity count.

47

Algebra I 2005-2006 KDD Cup 2010 EDM Challenge is another benchmark dataset

for learner modeling. The dataset was gathered within an Intelligent Tutoring System (ITS)

from The Cognitive Tutors suite of tutors provided by the Carnegie Learning Inc. and hosted

by the PSLC DataShop. This dataset was collected from three high schools for an entire year

and contains most of the main elements of ASSISTment (e.g., student id, start time, duration,

attempt, correct, and problem name), except for the skill_id column shown in Table 3. Thus,

in the present work, we used the text skill name (i.e., the KC column in Table 4) as the

equivalent of the column skill_id, which was represented as an integer in the ASSISTment

datasets. Similar to ASSISTment, students must master a skill to progress to the next skill.

This dataset is the second largest of all three datasets employed in this work. Table 4 presents

the main columns of the dataset.

Table 4

Summary of the Algebra I 2005-2006 KDD Cup 2010 EDM Challenge

Column Descriptions

Anon Student Id Unique, anonymous identifier of a student solving the problem.

Problem Hierarchy Hierarchy of curriculum levels containing the problem.

Problem Name Unique identifier of a problem.

Problem View Total number of times the student encountered the problem.

Step Name Each problem consists of one or more steps. The step name is

unique within each problem, but there may be collisions between

different problems, so the only unique identifier for a step is the

pair of Problem Name and Step Name.

Duration (sec) Elapsed time of the step in seconds, calculated by adding all of

the durations for transactions that were attributed to the step. It

can be null (if step start time is null).

Correct First Attempt Tutor’s evaluation of the student’s first attempt on the step.

1 = Correct on the first attempt.

0 = Incorrect on the first attempt.

This is used for prediction.

48

Attempt at Step Number of attempts on this problem.

Incorrects Total number of incorrect attempts by the student on the step.

Hints Total number of hints requested by the student for the step.

Corrects

Total correct attempts by the student for the step. It increases if

the step is encountered more than once.

KC (KC Model Name)

The identified skills that are used in a problem, where available.

A step can have multiple KCs assigned to it. Multiple KCs for a

step are separated by ~~ (two tildes). Since opportunity describes

practice by knowledge component, the corresponding

opportunities are similarly separated by ~~.

Opportunities A count that increases by one each time the student encounters a

step with the listed KC. Steps with multiple KCs will have

multiple opportunity numbers separated by ~~.

The Open Learning Initiative (OLI) Engineering Statics - Fall 2011 is a computer

learning system developed at Carnegie Mellon University. The OLI provides online

engineering static courses and assessments at college levels. The OLI embeds assessment into

instruction and collects real-time data of student use. We used the OLI Engineering Statics -

Fall 2012 dataset accessed via DataShop (Koedinger et al., 2010). This dataset is the smallest

of all three datasets employed in this work. Table 5 presents the main columns of this dataset.

Table 5

Summary of the Open Learning Initiative (OLI) Engineering Statics - Fall 2011

Column Descriptions

Anon Student Id Unique, anonymous identifier of a student solving the problem.

Problem Hierarchy Hierarchy of curriculum levels containing the problem.

Problem Name Unique identifier of a problem.

Problem View Total number of times the student encountered the problem.

First Action Type of the first action: attempt or ask for a hint.

Step Name Each problem consists of one or more steps (e.g., "find the area

of rectangle ABCD" or "divide both sides of the equation by x").

The step name is unique within each problem, but there may be

49

collisions between different problems, so the only unique

identifier for a step is the pair of Problem Name and Step Name .

Step Duration (sec) Elapsed time of the step in seconds, calculated by adding all of

the durations for transactions that were attributed to the step. Can

be null (if step start time is null).

Attempt Level Number of attempts on this problem.

correct Tutor’s evaluation of the student’s first attempt on the step.

1 = Correct on the first attempt.

0 = Incorrect on the first attempt.

This is used for prediction.

KC (Fall 2011)

The identified skill that is used in a problem, where available.

This dataset adopts a single KC model.

Prior to model training, we performed data cleaning and preprocessing in R using the

dplyr library (Wickham and Francois, 2014). We removed students who practiced fewer than

two KCs or items, and interactions containing missing KCs (i.e., denoted as NA in the

dataset). In addition, learners who had fewer than ten interactions or tagged with no KCs

were also removed, according to the common procedure followed by the other studies

employing these datasets (Gervet et al., 2020). Among the three datasets, some interactions

are tagged with a single KC, whereas others are tagged with several KCs. We regarded

combinations of KCs as constituting new KCs, according to the procedure outlined in most

previous research.

Learner Models

Baseline Models

The baseline models for the current study are Rasch model (IRT based), BKT (HMM

based), DKT-RNN, and DKT-RNN-LSTM (both are deep learning models). The detailed

descriptions of the baseline models can be found in the previous Chapter on learner models.

50

The DKT with Contextualized Information (DKT-CI)

The four baseline models all used static or sequential product data as the input vectors

(i.e., item ID/skill ID vs. student response where 1 denotes correctness and 0 denotes

incorrectness) to predict the probabilities of answering the next item correctly. With the

advent of learning technologies, the ITSs not only stored student product data but also

collected contextualized information including duration of the tasks, number of hints

requested, skill hierarchy, and total trials on the tasks. Thus, this study implemented a deep

knowledge tracing model with contextualized information (DKT-CI). Specifically, we

incorporated the contextualized information to a standard DKT using embedding techniques

(Mikolov et al., 2013) to learn the feature representations of the following columns in the

three datasets: the time (or duration) spent on a problem, the first action took to answer an

item, the total number of attempts (or opportunities) on a step, and the total number of hints

requested from the system. Then, the DKT-CI concatenated the embedding layer of

contextualized information and the input vector of student product data as in the standard

DKT. Figure 7 illustrates the conceptual representation of the DKT-CI that incorporates both

the product data (𝑥𝑡) and the contextualized information related to task activities at different

time steps (𝑖𝑡).

51

Figure 7. Representation of Deep Knowledge Tracing with Contextualized Information

Implementation of the Learner Models

IRT. The 1PL IRT model (i.e., the Rasch model) was implemented using the glmer

function built in the lme4 library in R (Bates et al., 2007). The generalized linear mixed model

employed the family=binomial(“logit”) and it was fitted using the maximum likelihood with

Laplace approximation.

BKT. The standard BKT model was implemented in C++ using the hmm-scalable

algorithm (Yudelson et al., 2013). In the process of model training on the three selected

datasets, we used the Baum-Welch method to estimate the parameters and adopted the default

settings for the hyperparameters. Specifically, we set the initial probability of mastering a

skill 𝑃(𝐿0) = 0.5, the transition probability from non-mastery to mastery of a skill 𝑃(𝑇) =

0.4, the probability that unmastered skill is applied correctly 𝑃(𝐺) = 0.2, and the probability

that a mastered skill is applied incorrectly 𝑃(𝑆) = 0.2.

… … …

52

DKT-RNN, DKT-LSTM, and DKT-CI. We implemented the standard DKT-RNN,

its variants DKT-LSTM, and DKT-LSTM with contextualized information in Keras, using

the TensorFlow backend (Abadi et al., 2016). We first performed grid search to select the

best hyperparameters on the training set. Specifically, we chose among the RMSprop, Adam,

and Adagrad optimizers with a learning rate of 0.001, batch size chosen from the set {5, 10,

32, 64, 128}, and dropout probability chosen from {0.2, 0.4, 0.6}. For the hidden layers, we

selected the dimension in {50, 100, 150}, the number of recurrent layers in {1, 2, 3}, and the

ℓ1 and ℓ2 regularizers in {0.01, 0.02, 0.05}. For the embedding layer, we selected the

dimension in {250, 500, 1000}. After training and validation, we obtained the

hyperparameters that yield the best results. Appendix 1 presents the best hyperparameter sets

for DKT-RNN, DKT-LSTM, and DKT-CI on the three selected datasets.

Evaluation Metrics of the Learner Models

In the training process, we split the datasets into training (60%), validation (20%), and

testing (20%). For comparisons among the algorithms, we computed the predictive accuracy

using the Area Under the Curve (AUC), because the response variable is binary. The AUC

plots the true-positive rate against the false-positive rate at all decision thresholds. The AUC

is a commonly used evaluation metric for learner models in which a score of 1 reflects a

perfect discrimination and 0 reflects no discrimination. Following related studies, we also

reported the Root Mean Squared Error (RMSE) to assess the squared error of prediction.

Summary of the Learner Model Experiment

Previous studies mainly focused on providing item-level hints or feedback, with only

few examining personalized skill-level feedback. Incorporating learner models into feedback-

generation systems addresses this gap by providing higher-order diagnosis based on learners’

latent skill mastery states and knowledge transfer as measured by the learner models. In

53

addition, the proposed learner model incorporates contextualized information to the product

data for more accurate calibration of student latent abilities.

Feedback Augmentation

Previous studies mainly provided automated feedback using expert-derived feedback

templates (Zhu et al., 2020) or demonstrated the correct answer (Singh et al., 2013), where

the feedback is greatly limited regarding the quantity, diversity, and communication

efficiency. The present study used an unsupervised sentence generation method to augment

expert-derived feedback templates for digital learning and assessment systems. The feedback

generation phase includes three steps. In Step 1 (Corpus Development), we developed a

corpus of feedback, which included positive and negative feedback along with the insertion

position for KCs. In Step 2 (Corpus Augmentation), we expanded the feedback corpus by

augmenting the feedback templates using the Constrained Sentence Generation by

Metropolis-Hastings Sampling method (CGMH; Miao et al., 2019). Most sentence generation

methods are based on RNNs so that a sentence can only be generated in a sequential order

from left to right, whereas the MH sampler for sentence generation allows more flexible

manipulations of sentences (Miao et al., 2019). Moreover, the unsupervised method does not

require parallel corpus for sentence generation. In Step 3 (Feedback Generation & Provision),

we generated item-student specific feedback based on students’ performance on the

Intelligent Tutoring System.

Implementation of the Feedback Augmentation System

Step 1: Expert-Derived Feedback Templates. Table 6 presents a few examples of

feedback templates that we devised for our corpus. A positive or negative feedback was

retrieved from the corpus based on: (1) a learner’s performance and (2) a performance

threshold.

54

Table 6

The Feedback Template Corpus, Including Both Positive and Negative Feedback Messages

and Insertion Positions for Knowledge Components (KCs)

Positive Negative

You are on your way to mastering [Insertion]. [Insertion] could use some focused practice.

It looks like you have a good handle

on [Insertion].

Consider practicing [Insertion] a bit more.

Great work so far on mastering [Insertion]. [Insertion] requires a bit more attention.

Great job mastering [Insertion]. See if you can fine tune your skill on

[Insertion].

Keep up the good work on [Insertion]. You will master [Insertion] with a bit more

practice.

Step 2: Feedback Augmentation. To expand the corpus, we adopted the Constrained

Sentence Generation by Metropolis-Hastings Sampling method (CGMH; Miao et al., 2019)

to perform unsupervised paraphrase generation. The CGMH is a subtype of Markov chain

Monte Carlo (MCMC; Geyer, 1992) methods and it supports more flexible operations on

word tokens in a sentence space. Thus, it is easier to generate content with constraints and

varying sentence lengths. Miao et al. (2019) tested the CGMH on three generation tasks:

keywords-to-sentence generation with hard constraints, paraphrase, and error correction with

soft constraints. In the present research, we implemented the unsupervised paraphrasing to

augment the feedback corpus. Specifically, we first trained a language model based on the

IMDB review corpus (Maas et al., 2011) that contains 25,000 positive and 25,000 negative

reviews. Then, we performed the paraphrase generation.

55

A Markov model is used to train the language model on the selected corpus. The

Markov Chain is commonly used to model natural language as a function of the probability

that a word appearing in position n is only dependent on the previous z ϵ [1, n-1] such that:

𝑝(𝑤1, 𝑤2, … , 𝑤𝑛)= p(𝑤1) 𝑝(𝑤2|𝑤1),……, p(𝑤𝑛|𝑤𝑛−𝑧 , … , 𝑤𝑛−1),

where 𝑝(𝑤1, 𝑤2, … , 𝑤𝑛) refers to the probability of a specific sentence based on the trained

corpus, that is, the joint probability of all words within the sentence. In the present research,

we used forward-backward dynamic programming to train the language model.

In Step 2 (feedback paraphrase), we performed the CGMH task of unsupervised

sentence paraphrasing. The CGMH is concerned with a goal of stationary distribution that

defines the sentence distribution sampled from the corpus and three actions, namely,

replacement, insertion, and deletion. Specifically, 𝜋(𝑥) was set as the distribution from which

we plan to sample sentences, where x denotes a particular sentence and 𝑥0 refers to the

feedback template that is fed to the algorithm at time step 0. The MH sampler either accepts

or rejects a word from the given distributions 𝜋(𝑥) to finally form a desired joint distribution

of all words based on a predefined stationary distribution. The process is intuitive, as it

mainly involves two actions: accepting or rejecting a word monitored by the acceptance rate

α:

α = min{1,
𝜋(𝑥′)𝑔(𝑥𝑡−1|𝑥′)

𝜋(𝑥𝑡−1)𝑔(𝑥′|𝑥𝑡−1)
}

At time step t, the word sampling is conducted to update the previous state x to a

candidate distribution 𝑥′ from a proposed distribution 𝑔(𝑥′|𝑥𝑡−1), where 𝑥𝑡−1 refers to the

distribution from previous step (t-1), thus 𝑥′ = 𝑥𝑡. Therefore, α determines the acceptance or

rejection of a sample. In our paraphrase generation, the desired distribution denotes the most

likely and logical sentence to the original sentence fed to the model.

At each step, a selected word in the sentence will be randomly updated by the actions

such as insertion, deletion, and replacement, where the respective probabilities are

56

[𝑝𝑖𝑛𝑠𝑒𝑟𝑡, 𝑝𝑑𝑒𝑙𝑒𝑡𝑒 , 𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒]. At the first time step, these probabilities are set as being equal. At

the following step, if Replacement is applied on a selected word 𝑤𝑚 in a sentence 𝑥 =

[𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚, 𝑤𝑚+1, … , 𝑤𝑛], then the conditional probability of choosing 𝑤𝑚
𝑛𝑒𝑤 to

replace 𝑤𝑚 to form candidate sentence 𝑥′ from x can be computed as:

𝑔𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑥) = 𝜋(𝑥−𝑚) =
𝜋(𝑤1,𝑤2,…,𝑤𝑚−1,𝑤𝑚

𝑛𝑒𝑤,𝑤𝑚+1,…,𝑤𝑛)

∑ (𝑤1,𝑤2,…,𝑤𝑚−1,𝑤,𝑤𝑚+1,…,𝑤𝑛)𝑤∈𝑉
,

where V refers to the vocabulary, and 𝑤𝑚 is the selected word. If, on the other hand,

Insertion is applied, an additional step of inserting a placeholder will be conducted before

taking the action Replacement, and then a real word will be sampled to replace the

placeholder token with the Replacement token. Finally, if Deletion is applied, the 𝑤𝑚 word

selected will be deleted, and 𝑔𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛(𝑥) =1 if 𝑥′ = [𝑤1, 𝑤2, … , 𝑤𝑚−1, 𝑤𝑚+1, … , 𝑤𝑛], and 0

otherwise.

At the end of all operations, we want to achieve a stationary distribution of 𝜋(𝑥), such

that 𝜋(𝑥) ∝ 𝑝𝐿𝑀(𝑥) ∙ 𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗), where 𝑝𝐿𝑀(𝑥) is the probability of the language model and

𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗) is a matching score defined by word embedding similarity (Pennington, Socher,

& Manning, 2014). The value of 𝑋𝑚𝑎𝑡𝑐ℎ(𝑥|𝑥∗) is 1, if the constraints are met, and 0 otherwise.

Evaluation Metrics of the Feedback Augmentation System

Previous studies mainly used the BLEU score to evaluate the quality of a sentence

(Papineni et al., 2002). Miao et al. (2019) used an alternative method to compare the BLEU

score of the paraphrases (i.e., BLEU-ref) against the original input sentence (i.e., BLEU-ori)

to evaluate the accuracy of the paraphrasing. The model is regarded as performing well if the

BLEU-ref is high, whereas BLEU-ori is low. However, in the current study, we used the MH

sampler to generate diverse feedback. Therefore, the evaluation metrics used in the previous

NLP studies are not appropriate for this study. Since the purpose is to generate fluent,

semantically-related, and diverse feedback, we used the negative likelihood (NLL) of the

57

sentences to evaluate the feedback fluency using the Reuters corpus released by NLTK

modules. The lower the NLL is, the more fluent the sentences are. In addition, we invited 2

volunteers to rate the quality of feedback in terms of the paraphrased feedback regarding the

fluency and relatedness at a scale of 0-1 and a grain size of 0.1, and the higher the scores are,

the more fluent and related the feedback sentences are. The inter-rater reliability was reported

using Kendall’s Kappa (Kendall, 1938). Kendall rank correlation coefficient is a non-

parametric rank order correlation that measures ordinal correlation among raters. Kendall’s

Kappa ranges from 0 to 1, with higher values indicating higher levels of agreement. The null

hypothesis of Kendall’s Kappa is that there is no agreement among the judges. The raters are

regarded rating consistently if the null hypothesis is rejected.

Summary of the Feedback Augmentation System

Our recent literature review revealed that text-based feedback was more effective in

improving performance (Lu et al., 2021). However, it is laborious to manually devise a large

amount of quality feedback. Compared with sentence-generation supervised-learning

methods, the unsupervised CGMH sentence-paraphrasing method can augment the expert-

driven feedback template corpus by generating feedback phrases with higher efficiency and

flexibility. Thus, the proposed method is promising in promoting text-based feedback

generation within ITSs.

Synthesis of the Learner Models and Feedback Generation System

Figure 8 illustrates the synthesis process of the proposed learner modeling and

feedback generation approach. Specifically, at the experiment stage, an augmented corpus of

positive and negative feedback is constructed. Meanwhile, learner models are trained based

on the process data of student interactions with the ITS. At the tutoring stage, the proposed

framework generates feedback based on student performance on items and the threshold of

mastering the KC underlying the items. Students can receive the individualized feedback that

58

includes the specific KC and valence (i.e., positive or negative) based on their performance.

The purpose of this framework is to automatically provide specific feedback on the

underlying KCs for users to reflect on their past performance.

Figure 8. The Framework of the Feedback Generation for the Learner Models

Chapter Summary

Chapter 4 described the proposed methodological framework of automated feedback

generation for different learner models. It first detailed the overall framework and structure of

the automated feedback system. Then, the implementations, model setup, training, and

evaluation processes of the learner models and the feedback augmentation methods were

presented, followed by the synthesis of learner modeling and automated feedback generation.

The next chapter presents the results and discussion.

59

Chapter 5 Results and Discussion

This chapter is organized as follows. First, it compares the accuracy of the learner

models on each of the three selected datasets. Second, this chapter reports the output

representations of the different learner models. Specifically, example outputs from the three

large-scale datasets (ASSISTment 2009-2010, KDD Algebra 05-06, and OLI Fall 2011) are

presented with interpretations in detail. Third, evaluations of the feedback augmentation

methods are presented. Then, the feedback generation processes are illustrated for different

learner models. The last section discusses the learner model selection and feedback

generation model selection for various educational purposes and contexts.

Learner Model Prediction Performance

The performances of the IRT, BKT, DKT-RNN, DKT-LSTM, and the proposed

DKT-CI on each of the three selected datasets are presented in Table 7. The DKT-CI

performs best on the larger datasets including the ASSISTment 2009-2010 (AUC = 0.859,

RMSE = 0.370) and the KDD Algebra I 2005-2006 (AUC = 0.834. RMSE = 0.472), which

contain 4,163 and 574 students, respectively. Apart from DKT-CI, the DKT-LSTM also

yielded satisfactory performance on the two larger datasets, with ASSISTment 2009-2010

having an AUC = 0.842, RMSE = 0.386, and KDD Algebra I 2005-2006 having an AUC =

0.802. RMSE = 0.346. The DKT-CI outperformed the DKT mainly because it incorporated

the process data including the response time, number of attempts, number of hints, and

actions took collected by the ITSs, whereas DKT only modeled the product data. Within the

proposed automated feedback generation system, the DKT-CI is preferable for it not only

improved the prediction performance of the evaluation model, but also had the potentials to

inform when to provide feedback prompted by the response time or the number of attempts.

The BKT has the best predictive performance on the smallest dataset (i.e., the OLI

Fall 2011 dataset containing 333 students), with an AUC of 0.802, followed by the IRT

60

(AUC = 0.791, RMSE = 0.514). The OLI Fall 2011 is regarded as too small for deep learning

models and only yielded a lower AUC of 0.686 (RMSE = 0.523) for DKT-RNN and an AUC

of 0.700 (RMSE = 0.523) for DKT-LSTM. The DKT-CI has the best performance among the

deep learning models (AUC = 735, RMSE = 0.397); however, it is still not comparable to the

BKT and IRT. The big gap of AUC between BKT and DKT on OLI datasets reveals that

BKT tends to overfit on small datasets and yield high AUC, whereas DKT circumvents the

overfitting issue by using regularization and dropout techniques. Thus, we conclude that the

probabilistic approach performs faster and more accurate estimations on smaller-scale

datasets. By contrast, the deep learning approach better exploits the temporal information

within large-scale datasets, and thus, makes more accurate predictions.

Table 7

Results of The Model Performance on the Test Dataset for the Five Algorithms.

Algorithm AUC RMSE

ASSISTment 2009-2010

IRT 0.770 0.383

BKT 0.761 0.406

DKT-RNN 0.833 0.337

DKT-LSTM 0.842 0.386

DKT-CI 0.859 0.370

Algebra I 2005-2006

IRT 0.757 0.419

BKT 0.791 0.393

DKT-RNN 0.708 0.338

DKT-LSTM 0.802 0.346

DKT-CI 0.834 0.472

61

OLI Fall 2011

IRT 0.791 0.514

BKT 0.802 0.367

DKT-RNN 0.686 0.523

DKT-LSTM 0.700 0.572

DKT-CI 0.735 0.397

Output Representation of Different Learner Models

Output Representation for IRT

The output of learner models is the input of the template-based generation.

Therefore, it is crucial to understand the output representation of learner models rather than

simply compare their predictive accuracy. The output of the Rasch model yields several item

parameters including the item discrimination fixed to 1. The difficulty values normally range

between -2.5 and 2.5. If the difficulty level is 0, it means that the correct rate for an item is

50%. Any negative values indicate that the item was easier than average (i.e., more than 50%

participants scored correctly), and positive values indicate more difficult items. The higher

the value, the more difficult the item. If the item difficulty parameters are larger than 2.5 or

smaller than -2.5, the item is deemed as too difficult or too easy for the candidates. Table 8

presents the item parameter estimations for the first six items on the ASSISTment 2009-2010

dataset. Results show that the three items corresponding to the skill Box and Whisker are

considerably easier for the students, with item difficulty ranging from -2.86 to -1.13. The

three items corresponding to Circle Graph are more difficult than Box and Whisker, with

item difficulty ranging from -0.44 to -0.20.

62

Table 8

The Item Parameter Estimations from the IRT Output on the ASSISTment 2009-2010 Dataset

Item Item Discrimination Item Difficulty

Box and Whisker Item 1 1 -1.13

Box and Whisker Item 2 1 -1.66

Box and Whisker Item 3 1 -2.86

Circle Graph Item 1 1 -0.44

Circle Graph Item 2 1 -0.39

Circle Graph Item 3 1 -0.20

Output Representation for BKT

The goal of the present study is to employ the output of different learner models to

generate KC-level feedback that scaffolds learning. Tables 9, 10, and 11 present the output

representation of BKT on the ASSISTment 2009-2010, Algebra 2005-2006, and OLI Fall

2011 datasets, respectively. The initial probability 𝑃(𝐿0) was set to 0.5 for the initial states.

The transition probability 𝑃(𝑇) reflects the extent that students can learn and improve from

consecutive practice with items on a given KC. For example, in Table 9, students improve

most on the Scatter Plot KC (𝑃(𝑇) = 0.464) after consecutive problem trials but show the

least improvement on the Circle Graph KC (𝑃(𝑇) = 0.059). The slip parameter 𝑃(𝑆)

represents the probability of students making a mistake when applying KCs, even if they

have mastered those KCs. The guess parameter 𝑃(𝐺) represents the probability of a student’s

correct response by guessing. Finally, students’ mastery of KCs reflected in 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is

used as a reference for feedback generation. Specifically, we set 0.55 as the threshold of

mastery. The threshold is flexible, and it is determined based on each dataset and student

proficiency level.

63

Table 9

The First Ten Knowledge Components (KCs) from the BKT Output on the ASSISTment

2009-2010 Dataset

Skill 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚)

Box and Whisker 0.5 0.180 0.202 0.239 0.812

Circle Graph 0.5 0.059 0.300 0.133 0.567

Histogram as Table or Graph 0.5 0.213 0.260 0.190 0.811

Number Line 0.5 0.075 0.300 0.300 0.636

Scatter Plot 0.5 0.464 0.067 0.297 0.640

Stem and Leaf Plot 0.5 0.141 0.239 0.156 0.717

Table 0.5 0.117 0.214 0.147 0.815

Venn Diagram 0.5 0.066 0.132 0.078 0.750

Mean 0.5 0.164 0.300 0.081 0.604

Median 0.5 0.091 0.205 0.289 0.593

Table 10

The First Ten Knowledge Components (KCs) from the BKT Output on the KDD Algebra I

2005-2006 Dataset

 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚)

Eliminate Parentheses 0.5 0.044 0.145 0.300 0.756

Remove Constant 0.5 0.014 0.188 0.300 0.633

Remove Coefficient 0.5 0.031 0.183 0.300 0.690

Remove Positive Coefficient 0.5 0.042 0.079 0.300 0.757

Add/Subtract 0.5 0.052 0.156 0.300 0.717

64

Multiply/Divide 0.5 0.097 0.082 0.300 0.789

Consolidate Vars with Coefficient 0.5 0.016 0.095 0.300 0.914

Combine-like-terms 0.5 0.017 0.300 0.300 0.735

Calculate Eliminate Parentheses 0.5 0.425 0.178 0.233 0.869

Simplify Fractions 0.5 0.024 0.300 0.300 0.642

Table 11

The First Ten Knowledge Components (KCs) from the BKT Output on the OLI Fall 2011

Dataset

 𝑷(𝑳𝟎) 𝑷(𝑻) 𝑷(𝑺) 𝑷(𝑮) 𝑷(𝑴𝒂𝒔𝒕𝒆𝒓𝒚)

Represent Interaction Spring 0.5 0.357 0.000 0.003 0.311

Identify Interaction 0.5 0.248 0.000 0.001 0.237

Gravitational Forces 0.5 0.460 0.000 0.004 0.902

Distinguish Rotation Translation 0.5 0.667 0.000 0.014 0.833

Motion Dependence on Force 0.5 0.422 0.000 0.003 0.343

Rotation Sense of Force 0.5 0.424 0.000 0.003 0.367

Find Moment Arm 0.5 0.150 0.000 0.000 0.035

Simple Step 0.5 0.154 0.000 0.001 0.232

Moment Sign Sense Relation 0.5 0.422 0.000 0.002 0.246

Represent Interaction Contacting

Body

0.5 0.338 0.000 0.002 0.284

Output Representation for DKT and Its Variants

BKT is a probabilistic approach based on a two-layer HMM and it yields probabilities

of learning, slipping, guessing, and mastery. On the other hand, DKT is a deep learning

65

approach (i.e., recurrent networks) and it yields vectors of predictions at different time steps.

Specifically, the input 𝑥𝑡 is a vector of length equal to the number of problems. If the number

of problems attempted varies, then padding techniques are used. Each entry of output 𝑦𝑡

represents the predicted probability that the student would solve that problem correctly at

time step t. Table 12 presents the exact predicted probabilities of a student’s (with ID = 1)

correct attempts of the five KCs (32: Ordering Positive Decimals; 33: Ordering Fractions; 45:

Subtraction Whole Numbers; 55: Absolute Value; 98: Equation Solving Two or Fewer Steps)

after ten practice rounds. The first column is a skill-correctness dyad.

The predicted probabilities of the five KCs are updated after each practice round.

Figure 9 plots the knowledge tracing heatmap of a student’s predicted responses while

solving 50 ASSISTment exercises. The x-axis presents the student’s actual attempts (1:

correct; 0: incorrect) on a set of KCs, in the format (skill_ID: KC). The y-axis shows the

predicted probabilities of a student’s correct attempts of the KC after an exercise. Figure 9

not only provides information of student mastery profiles after completing all the exercises

but also plots the knowledge transfer of the student during the whole practice process.

Appendix 3 presents a complete heatmap of this student with all the KCs attempted.

Table 12

The Adaptive DKT Output for 10 Actions and 5 KCs for the ASSISTment09-10 Dataset (A

complete output of predicted probabilities can be found in Appendix 2)

Attempts

(skill ID,

correct or

not)

32:

Ordering

Positive

Decimals

33:

Ordering

Fractions

45:

Subtraction

Whole

Numbers

55:

Absolute

Value

98: Equation

Solving Two or

Fewer Steps

(55,1) 0.4173 0.5133 0.3680 0.4703 0.5641

(45,1) 0.3574 0.8526 0.5014 0.3749 0.4338

(55,1) 0.3714 0.7322 0.4427 0.4686 0.4776

(55,1) 0.5310 0.6108 0.5783 0.5147 0.5209

(55,0) 0.2793 0.6292 0.4974 0.5713 0.4899

66

(45,0) 0.3221 0.6397 0.5526 0.3927 0.3128

(98,1) 0.3388 0.5687 0.4477 0.4094 0.5792

(98,1) 0.3669 0.6980 0.4929 0.4686 0.5741

(98,1) 0.4644 0.7553 0.5098 0.5074 0.6554

(33,0) 0.2838 0.1308 0.3025 0.4147 0.4536

Figure 9. DKT Output (skill-correctness) Heatmap

Automated Feedback Generation for Learner Models

This section presents the augmented feedback corpus and demonstrates the feedback

generation for learner models. Examples of feedback for standard BKT, DKT, and its variants

are provided to illustrate the automated feedback provision process at skill (KC) level.

The Augmented Feedback Corpus

Based on the 30 expert-derived feedback templates, the CGMH automatically

paraphrased them into 300 augmented feedback sentences. To evaluate the quality of the

paraphrased feedback, we first randomly selected 50 paraphrased feedback sentences and

evaluated them using NLL and human ratings. Table 13 shows the NLL and human-rater

evaluations of the generated sentences regarding Fluency and Relatedness on a scale of 0 to

1. The higher the scores, the more fluent and related the generated feedback sentences, and a

score of 0.5 indicates acceptable quality. The results revealed that the MCMC method can

generate generally fluent and semantically relevant sentences (Human Rating: Fluency =

67

0.65; Human Rating: Relatedness = 0.59). The bottom of Table 13 presents an example of

augmented feedback based on an expert-derived template.

Table 13

Paraphrase Feedback Generation Performance and Examples (n=50)

Evaluation Metrics Measures

NLL 11.28

Human Rating: Fluency 0.65

Human Rating: Relatedness 0.59

Examples of feedback

Original feedback templates Paraphrased feedback templates

You excel at [Insertion]. You are strong at [Insertion].

You demonstrated best on [Insertion].

You master [Insertion].

You do profound job in [Insertion].

Great work on [Insertion]. Profound job in [Insertion].

 Good job in [Insertion].

 Great work for [Insertion].

 Good work on this [Insertion].

To further evaluate the quality of the augmented feedback, we did a simple filtering of

the augmented feedback corpus and compared the filtered feedback (n=120) with the expert-

derived feedback (n=30) on human ratings using Welch Two Sample t-test. Results revealed

that there are no significant differences on the two raters’ ratings on Fluency between the

paraphrased feedback and the expert-derived feedback. Regarding feedback Relatedness,

Rater 1 assigned significantly higher scores to expert-derived feedback [t(86.06) = 3.58, p

< .01], compared with augmented feedback. However, there is no significant difference on

68

Relatedness scores assigned by Rater 2. The results confirm that the augmented feedback is

fluent and semantically related compared with expert-derived feedback. The inter-rater

reliabilities show that the inter-rater reliabilities are 0.80 [𝑋2(149) = 238, p<.01] on fluency

and 0.76 on relatedness [𝑋2(149) = 225, p<.01], validating that the two independent raters

demonstrated consistent ratings.

Table 14

Comparisons of Human Ratings Between Expert-Derived and Augmented Feedback

Measure Expert-derived

Feedback

(n=30)

Augmented

Feedback

(n=120)

Diff. df t p

Fluency Rater 1 0.84 0.80 0.04 41.47 0.57 0.57

Fluency Rater 2 0.83 0.78 0.05 40.45 0.81 0.42

Relatedness Rater 1 0.97 0.80 0.17 86.06 3.58 <.01

Relatedness Rater 2 0.68 0.71 0.03 38.73 -0.39 0.70

Note: Diff. = Difference of mean scores; df = degree of freedom; t = t statistic; p = p value.

Feedback for Different Learner Models

Feedback for BKT. For BKT, we used expert-derived KC thresholds for feedback

generation. Mastery thresholds for KCs were set by domain experts for students with

different levels of knowledge proficiency. After setting the mastery threshold, we retrieve the

positive feedback template from the augmented corpus if 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is estimated as larger

than the threshold, and we retrieve the negative feedback template from the corpus if

𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is estimated as less than the threshold. Then, a feedback message with a

specific KC and valence (i.e., positive or negative) will be triggered and provided for the

learners. Figure 10 presents an illustration of automated feedback provision for BKT, where

69

𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) is set as 0.55. If a student practices the KC “Box and Whisker” and the BKT

estimates that the 𝑃(𝑀𝑎𝑠𝑡𝑒𝑟𝑦) of the student is updated to 0.812 from the previous practice,

the system is notified that the student has successfully mastered this skill and is triggered to

retrieve a positive feedback template from the augmented feedback corpus. Then, the

keyword “Box and Whisker” is inserted to the placeholder in the feedback template. At the

end of the feedback generation stage, the feedback on “Box and Whisker” is generated and

provided for the student.

Figure 10. Feedback Generation for BKT on KC “Box and Whisker”

Feedback for DKT and its variants. For DKT and its variants, we extract the

predicted probabilities for each KC at a time step, retrieve positive or negative feedback

templates based on the mastery thresholds (like BKT), and insert the KCs in the templates. A

student can choose to receive feedback on any KC at any time step since their mastery of

KCs are updated stepwise. Unlike BKT, which can only model one KC at a time, the

feedback for DKT will contain multiple KCs and generate adaptive feedback for every KC at

each time step. Figure 11 details an example of the feedback generation process for DKT. In

70

Figure 11, a student’s predicted mastery probabilities of all KCs are updated after practicing

an item associated with the “Absolute Value” KC. More specifically, the predicted

probability of answering an item associated with “Absolute Value” KC correctly is updated

to 0.470, for “Ordering Positive Decimals” is updated to 0.417, “Ordering Fractions” is

updated to 0.513, “Subtraction Whole Numbers” to 0.368, and “Equation Solving Two or

Fewer Steps” to 0.564. In this scenario, the threshold for mastery is also set as 0.55.

Therefore, four negative and one positive feedback messages will be retrieved from the

corpus of negative and positive feedback, and all five pieces of feedback are triggered by

student performance updates.

Figure 11. Feedback Generation for DKT after Practice of the KC “Box and Whisker”

Discussion

Providing feedback is essential for improving performance. However, understanding

the context of learning is fundamental prior to learner modeling and feedback generation.

Thus, it is important to conduct in-depth investigations regarding which learner model and

corresponding output representation should be applied to a certain context (i.e., system,

student, or domain) and what forms of feedback (i.e., summative vs. formative, static vs.

adaptive, single KC vs. all KCs) students need for knowledge acquisition. From a comparison

among the learner models’ analytical methods, performance, output representations, and the

71

feedback generation process for different learner models, we found the following elements

important for the implementation of automated feedback generation frameworks.

Learner Model Selection

The present study argues that the learner model and output representation are the

foundation for automated feedback generation. Thus, caution is needed when choosing the

most appropriate learner model for feedback generation. The comparison of model

performance among IRT, BKT, DKT, and its variants on the three datasets reveals that the

probabilistic approaches IRT and BKT outperform the DKT deep learning approach on

smaller datasets (OLI Fall 2011), whereas deep learning (DKT-CI, DKT-RNN, and DKT-

LSTM) boosts predictive accuracy on larger datasets (ASSISTment 09-10). Further, the DKT

that incorporates both the product data and the contextualized information yields the best

performance among all the implemented models on larger datasets.

Therefore, we conclude that BKT requires easily adapts to immediate KC-level

feedback generation. It is more suitable for small-scale datasets including contexts such as

local computer-based tutoring and assessment (e.g., OLI datasets) or classroom-based

tutoring and assessment. On the other hand, DKT is powerful on modeling large datasets with

higher prediction accuracy. It is more suitable to large-scale datasets extracted from open

online learning systems, such as the ASSISTments and Cognitive Tutor datasets. In

technology-enhanced education, digital tutoring and assessment systems can capture both

product data and process data, such as action and response time. The DKT-CI implemented in

the present study used both product data and process data as the input of the prediction model

and demonstrated better performance than the model with fewer input features. More

investigations should be conducted regarding the trade-off between better calibrations of

students’ abilities and faster immediate personalized feedback.

72

Feedback Generation Model Selection

Most studies focused on improving the predictive performance of learner models, or

optimally prompting hint generation/provision within ITSs, in which researchers examined

when and whether to provide hints for learners (e.g., Maniktala et al., 2020). Few studies

scrutinized the underlying assumptions and output representations of learner models, or how

to provide feedback on learners’ performance. The present study explains the output

representations of IRT, BKT, and DKT in detail and interprets the meaning of the outputs and

take-home messages for learners. In addition, the proposed feedback generation framework

specifies how to prepare and provide adaptive feedback for learners based on different learner

models. Specifically, IRT yields only item-level estimations. By contrast, BKT and DKT

performs KC-level estimations. Thus, BKT and DKT are more suitable for feedback

generation in structured domains at KC-level. In addition, BKT regards KCs as independent

from each other, and it updates the probabilities of mastery for each KC separately, whereas

DKT assumes the underlying KCs are interconnected with each other. BKT has a unique

advantage over DKT, because it can both predict accurately, make inferences, and explain its

decisions. Thus, it contributes to the understanding of learning at the specific skill level.

Results of BKT can also be generalized to groups. By contrast, DKT considers the

interconnected relations among KCs but can not trace back and recover the cumulative

developmental process of a single KC. DKT better exploits the temporal information

embedded in the datasets and models the sequential actions recorded in the log data. It

updates the predicted probabilities of all KCs at a time whenever a learner is practicing on a

KC. Thus, learners’ complex knowledge transfer on all KCs can be plotted using DKT.

DKT is a pure data-driven approach for knowledge transfer pattern discovery,

whereas BKT can be interpreted with learning theories. DKT can learn conceptual knowledge

transfer and progression without domain-expert annotations. By contrast, BKT requires

73

experts to manually set thresholds for mastery/non-mastery. We recommend that researchers

adopt BKT if they are interested in inferring the acquisition process of a specific KC and

generalizing to a group to generate learning theories. By contrast, researchers could adopt

DKT to depict the individualized complex knowledge transfer (both on a single KC and

among all KCs) for a student. Thus, one implication from the present research is that DKT is

better suited for individualized, adaptive formative feedback, whereas BKT for summative

feedback. Moreover, instructors could combine both methods to achieve better teaching

effectiveness in practice. For example, DKT with adaptive formative feedback can be used to

guide the students to learn, whereas BKT with summative feedback can be used by

instructors to induce the learning curve of specific skills.

Chapter Summary

Chapter 5 reported the classification and predictive accuracy of several baseline

learner models and the proposed DKT-CI (i.e., DKT with Contextualized Information). The

output representations of learner models were presented and compared regarding their

interpretation, adaptiveness, and assumptions of the underlying KCs. Then, the data-driven

feedback templates generated by the unsupervised feedback augmentation methods were

demonstrated and evaluated. Based on the results of the learner model comparisons and the

data-driven feedback evaluations, descriptions of the automated feedback generation

processes for different learner models were provided, detailing the conceptualization and

operationalization of the main elements of the proposed automated feedback generation

framework for learner models. This chapter ended with a discussion on learner model

selection and automated feedback generation model selection for various educational tasks

and assessments.

74

Chapter 6 Educational Implications

By implementing the automated feedback generation system for different learner

models, this research makes the following contributions.

Theoretical and Methodological Implications

The present research proposes and implements a data-driven automated feedback

generation system for learner models in structured knowledge domains. It reviews the

mainstream learner models within the EDM community and explains their statistical

assumptions, input representations, and output representations for various educational

purposes. Specifically, the meanings of the output representations and take-home messages

for learners are interpreted for more efficient use of learning technologies. A deep knowledge

tracing model with contextualized information is also proposed and implemented to use both

product and process data to make more accurate estimations of learners’ abilities and better

understandings of learners’ knowledge acquisition processes. In addition, the proposed data-

driven feedback generation framework specifies how to augment expert-derived feedback

templates and create a corpus of academic feedback using unsupervised sentence generation

method. The framework also details the process of preparing and providing adaptive

feedback for learners based on different learner models using a combination of data-driven

and expert-driven approaches.

Practical Implications

Providing feedback is essential for improving performance. However, understanding

the context of learning is fundamental prior to learner modeling and feedback generation.

Thus, it is important to conduct in-depth investigations regarding which learner models

should be applied to a certain context (i.e., system, student, or domain) and what forms of

feedback (i.e., summative vs. formative, static vs. adaptive, single KC vs. all KCs) students

need for knowledge acquisition that best suit the learner model and output representation.

75

Practically and pedagogically, this research contributes to the educational data mining and

learning analytics research on learner modeling and adaptive feedback generation based on

different contexts. The proposed framework aims to facilitate online tutoring and assessment

systems in monitoring their students’ learning activities and conducting real-time feedback

generation to motivate students and to prevent failure.

Future Research

Future research can be conducted in the following aspects. First, the proposed

framework will be extended from structured domains to unstructured domains such as essay

writing. Second, future studies will prompt adaptive feedback with dynamic thresholds of KC

mastery that fluctuate with learners’ knowledge gains to counterbalance the need for expert-

derived thresholds. Third, the feedback models will incorporate more learner characteristics

including demographic information, mindsets, and affective features to better calibrate

student performance for personalized learning. Another potential direction is to induce

feedback provision policies using deep reinforcement learning to determine the optimal

strategies of feedback provision with data-driven approaches.

Chapter Summary

Chapter 6 summarized the theoretical, methodological, and practical implications of

this research and outlines the main future research directions. Theoretically, the proposed

approach leverages the understanding of students’ learning behaviour and the dynamic

knowledge acquisition process on different knowledge components in digital learning

systems. Methodologically, it implements a novel approach that incorporates both data-driven

methods and expert-derived strategies to inform decision making on feedback generation and

provision. Pedagogically, the real-time monitoring and feedback prompting system enables

the existing digital learning systems to detect students’ dynamic skill mastery progressions

and to provide feedback that adapts to learners’ future practice.

76

Chapter 7 Conclusion and Limitation

The study implements five learner models (Rasch model, BKT, DKT-RNN, DKT-

LSTM, and DKT-CI) on three datasets of various sizes, and further develops an automated

feedback generation framework for learner models. The characteristics, pros and cons,

interpretations, and applicability of the feedback generation method for each model are

compared and discussed. Results show that IRT and BKT outperform DKT on smaller

datasets, whereas DKT-CI outperforms all other models on larger datasets. For BKT, the

proposed template-based feedback generation can produce KC-dependent feedback

corresponding to each learner’s performance as well as expert-derived thresholds, in which

KCs are estimated independently. For DKT, the feedback generation methods can produce

adaptive feedback for all KCs at every time step and plot the knowledge transfer for

individuals. Thus, DKT is more suitable for individualized formative tutoring. Learner

models and feedback provision are both key elements of ITSs. The synthesis of learner

models in the present study can facilitate researchers and educators to better incorporate

instructional design and adapt pedagogical policy in the ITSs. Future research can be

conducted on prompting adaptive feedback with dynamic thresholds of KC mastery that

fluctuate with learners’ knowledge gains to counterbalance the need for expert-derived

thresholds. Another potential direction is to induce feedback provision policies using deep

reinforcement learning to determine the optimal strategies of feedback provision with data-

driven approaches.

77

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016).

Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467.

Abyaa, A., Khalidi Idrissi, M., & Bennani, S. (2019). Learner modelling: Systematic review

of the literature from the last 5 years. Educational Technology Research and

Development, 67(5), 1105-1143. https://doi.org/10.1007/s11423-018-09644-1

Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García,

Á. (2014). Can we predict success from log data in VLEs? Classification of

interactions for learning analytics and their relation with performance in VLE-

supported F2F and online learning. Computers in Human Behavior, 31, 542-550.

Aleven, V., Mclaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive tutoring: A

model of help seeking with a Cognitive Tutor. International Journal of Artificial

Intelligence in Education, 16(2), 101-128.

Allen, I. E., & Seaman, J. (2008). Staying the course. Online education in the United States,

2008. Newburyport, MA: The Sloan Consortium.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3), 175-185.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP

tutor. Cognitive Science, 13(4), 467-505.

Anderson, L. W., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing:

A revision of Bloom's taxonomy of educational objectives. New York: Longman.

https://doi.org/10.1007/s11423-018-09644-1

78

Ashenafi, M. M., Riccardi, G., & Ronchetti, M. (2015, October). Predicting students’ final

exam scores from their course activities. In IEEE Frontiers in Education

Conference (pp. 1-9). IEEE.

Baker, R. S. J. d., Corbett, A. T., & Aleven, V. (2008). More accurate student modeling

through contextual estimation of slip and guess probabilities in Bayesian Knowledge

Tracing. Paper presented at the Intelligent Tutoring, 406-415.

Baker, R. S. J. d., & Inventado, P. S. (2014). Educational data mining and learning analytics.

In J. A. Larusson, & B.White (Eds.), Learning analytics: From research to practice.

New York: Springer.

Baker, R. S. J. d., Lindrum, D., Lindrum, M. J., & Perkowski, D. (2015). Analyzing early at-

risk factors in higher education e-Learning courses. In Proceedings of the 8th

International Conference on Educational Data Mining, Madrid, Spain, June 26-29,

2015.

Baker, R. S. J. d., & Yacef, K. (2009). The state of educational data mining in 2009: A

review and future visions. Journal of Educational Data Mining, 1(1), 3-17.

Bao, W. (2020). COVID‐19 and online teaching in higher education: A case study of Peking

University. Human Behavior and Emerging Technologies, 2(2), 113-115.

Barnes, T., & Stamper, J. (2010). Automatic hint generation for logic proof tutoring using

historical data. Journal of Educational Technology & Society, 13(1), 3-12.

Barton, M. A., & Lord, F. M. (1981). An upper asymptote for the three-parameter logistic

Item-Response Model. ETS Research Report Series, 1981(1), i-8.

https://doi.org/10.1002/j.2333-8504.1981.tb01255.x

https://doi.org/10.1002/j.2333-8504.1981.tb01255.x

79

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models

using lme4. arXiv preprint arXiv:1406.5823.

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N.,

Latham, P. E., & Pouget, A. (2008). Probabilistic population codes for Bayesian

decision making. Neuron (Cambridge, Mass.), 60(6), 1142-1152.

https://doi.org/10.1016/j.neuron.2008.09.021

Becker, K., Vanzin, M., Marquardt, C., & Ruiz, D. (2006). Applying web usage mining for

the analysis of behavior in web-based learning environments. In C. Romero & S.

Ventura, (Eds.), Data mining in e-learning (pp. 117-137). Billerica, MA: WitPress.

Beutel, A., Covington, P., Jain, S., Xu, C., Li, J., Gatto, V., & Chi, E. H. (2018, February).

Latent cross: Making use of context in recurrent recommender systems.

In Proceedings of the Eleventh ACM International Conference on Web Search and

Data Mining (pp. 46-54).

Biggs, J. (1993). What do inventories of students' learning processes really measure? A

theoretical review and clarification. British Journal of Educational Psychology, 63(1),

3-19.

Birnbaum, A. L. (1968). Some latent trait models and their use in inferring an examinee's

ability. Statistical Theories of Mental Test Scores,

https://ci.nii.ac.jp/naid/10011544105/en/

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in

Education: Principles, Policy & Practice, 5(1), 7-74.

Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. New

York: McKay, 20, 24.

https://doi.org/
https://ci.nii.ac.jp/naid/10011544105/en/

80

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy of educational

objectives. In Allyn and Bacon. Pearson Education.

Boud, D., & Molloy, E. (2013). Feedback in higher and professional education:

Understanding it and doing it well. Routledge.

Boud, D., & Molloy, E. (2013). Rethinking models of feedback for learning: The challenge of

design. Assessment & Evaluation in Higher Education, 38(6), 698-712.

Bousbia, N., & Belamri, I. (2014). Which contribution does EDM provide to computer-based

learning environments? In A. Peña-Ayala (Ed.), Educational Data Mining:

Applications and Trends. New York: Springer.

Bradford, P., Porciello, M., Balkon, N., & Backus, D. (2007). The Blackboard learning

system: The be all and end all in educational instruction?. Journal of Educational

Technology Systems, 35(3), 301-314.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Brophy, J. (1981). Teacher praise: A functional analysis. Review of Educational

Research, 51(1), 5-32.

Bull, S. (2004). Supporting learning with open learner models. Planning, 29(14), 1.

Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical

synthesis. Review of Educational Research, 65(3), 245-281.

Cantabella, M., Martínez-España, R., Ayuso, B., Yáñez, J. A., & Muñoz, A. (2019). Analysis

of student behavior in learning management systems through a Big Data framework.

Future Generation Computer Systems, 90, 262-272.

81

Carless, D. (2006). Differing perceptions in the feedback process. Studies in Higher

Education, 31(2), 219-233.

Carless, D., Salter, D., Yang, M., & Lam, J. (2011). Developing sustainable feedback

practices. Studies in Higher Education, 36(4), 395-407.

Carver, C. S., & Scheier, M. F. (1981). The self-attention-induced feedback loop and social

facilitation. Journal of Experimental Social Psychology, 17(6), 545-568.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Chung, J. Y., & Lee, S. (2019). Dropout early warning systems for high school students using

machine learning. Children and Youth Services Review, 96, 346-353.

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2016). Predicting student performance

from LMS data: A comparison of 17 blended courses using Moodle LMS. IEEE

Transactions on Learning Technologies, 10(1), 17-29.

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of

procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253-278.

https://doi.org/10.1007/BF01099821

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-

297.

Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of

automated feedback systems for learners: Classification framework, challenges and

opportunities. Computers & Education, 162, 104094.

https://doi.org/10.1016/j.compedu.2020.104094

https://doi.org/10.1007/BF01099821
https://doi.org/

82

Donkers, T., Loepp, B., & Ziegler, J. (2017, August). Sequential user-based recurrent neural

network recommendations. In Proceedings of the Eleventh ACM Conference on

Recommender Systems (pp. 152-160).

Duchaine, E. L., Jolivette, K., & Fredrick, L. D. (2011). The effect of teacher coaching with

performance feedback on behavior-specific praise in inclusion classrooms. Education

and Treatment of Children, 209-227.

Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data

mining. IEEE Access, 5, 15991-16005.

Eddy, S. R. (1996). Hidden Markov models. Current Opinion in Structural Biology, 6(3),

361-365. https://doi.org/10.1016/S0959-440X(96)80056-X

Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.

Ferguson, P. (2011). Student perceptions of quality feedback in teacher education.

Assessment & Evaluation in Higher Education, 36(1), 51-62.

https://doi.org/10.1080/02602930903197883

Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International

Journal of Technology Enhanced Learning, 4(5-6), 304-317.

Fontana, D. (1981). Learning and teaching. In Psychology for physiotherapists (pp. 66-100).

Palgrave, London.

Gardner, J., & Brooks, C. (2018, April). Dropout model evaluation in MOOCs. The 8th

AAAI Symposium on Educational Advances in Artificial Intelligence. In Proceedings

of the 32nd AAAI Conference on Artificial Intelligence (pp. 7906-7912).

https://doi.org/
https://doi.org/

83

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not

promote one size fits all: The effects of instructional conditions in predicting

academic success. The Internet and Higher Education, 28, 68-84.

Gast, D. L., Doyle, P. M., Wolery, M., Ault, M. J., & Kolenda, J. L. (1994). Instructive

feedback: Effects of number and type. Journal of Behavioral Education, 4(3), 313-

334.

Geigle, C., & Zhai, C. (2017, April). Modeling MOOC student behavior with two-layer

hidden Markov models. In Proceedings of the Fourth ACM conference on Learning@

Scale (pp. 205-208).

Gervet, T., Koedinger, K., Schneider, J., & Mitchell, T. (2020). When is deep learning the

best approach to knowledge tracing?. JEDM| Journal of Educational Data

Mining, 12(3), 31-54.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483.

https://www.jstor.org/stable/2246094

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No.

2). Cambridge: MIT press.

Hannafin, M. J., & Land, S. M. (1997). The foundations and assumptions of technology-

enhanced student-centered learning environments. Instructional Science, 25(3), 167-

202.

Hassan, S. U., Waheed, H., Aljohani, N. R., Ali, M., Ventura, S., & Herrera, F. (2019).

Virtual learning environment to predict withdrawal by leveraging deep

learning. International Journal of Intelligent Systems, 34(8), 1935-1952.

https://www.jstor.org/stable/2246094

84

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research,

77(1), 81-112. https://doi.org/10.3102/003465430298487

He, J., Bailey, J., Rubinstein, B. I., & Zhang, R. (2015, February). Identifying at-risk students

in massive open online courses. In Proceedings of the 29th AAAI Conference on

Artificial Intelligence (Vol. 29, No. 1).

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a

platform that brings scientists and teachers together for minimally invasive research

on human learning and teaching. International Journal of Artificial Intelligence in

Education, 24(4), 470-497. https://doi.org/10.1007/s40593-014-0024-x

Heffernan, N. T., & Koedinger, K. R. (2002). An intelligent tutoring system incorporating a

model of an experienced human tutor. Paper presented at the International

Conference on Intelligent Tutoring Systems, 596-608.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735-1780.

Hung, J. L., & Crooks, S. M. (2009). Examining online learning patterns with data mining

techniques in peer-moderated and teacher-moderated courses. Journal of Educational

Computing Research, 40(2), 183-210.

Ifenthaler, D., & Widanapathirana, C. (2014). Development and validation of a learning

analytics framework: Two case studies using support vector machines. Technology,

Knowledge and Learning, 19(1-2), 221-240.

Jayaprakash, S. M., Moody, E. W., Lauría, E. J., Regan, J. R., & Baron, J. D. (2014). Early

alert of academically at-risk students: An open source analytics initiative. Journal of

Learning Analytics, 1(1), 6-47.

https://doi.org/10.3102/003465430298487
https://doi.org/

85

Jovanovic, J., Gasevic, D., Dawson, S., Pardo, A., & Mirriahi, N. (2017). Learning analytics

to unveil learning strategies in a flipped classroom. Internet and Higher Education,

33, 74-85.

Juhaňák, L., Zounek, J., & Rohlíková, L. (2019). Using process mining to analyze students'

quiz-taking behavior patterns in a learning management system. Computers in Human

Behavior, 92, 496-506.

Kamiński, B., Jakubczyk, M., & Szufel, P. (2018). A framework for sensitivity analysis of

decision trees. Central European Journal of Operations Research, 26(1), 135-159.

Katan, S., & Anstead, E. (2020, April). Work In Progress: Sleuth, a programming

environment for testing gamification. In 2020 IEEE Global Engineering Education

Conference (EDUCON) (pp. 1503-1507). IEEE.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

Keogh, E., & Kasetty, S. (2003). On the need for time series data mining benchmarks: A

survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4),

349-371.

Keuning, H., Heeren, B., & Jeuring, J. (2014, November). Strategy-based feedback in a

programming tutor. In Proceedings of the Computer Science Education Research

Conference (pp. 43-54).

Khajah, M., Lindsey, R. V., & Mozer, M. C. (2016). How deep is knowledge tracing?. arXiv

preprint arXiv:1604.02416.

Khalil, M., & Ebner, M. (2017). Clustering patterns of engagement in massive open online

courses (MOOCs): The use of learning analytics to reveal student categories. Journal

of Computing in Higher Education, 29(1), 114-132.

86

Kim, D., Kim, S., Zhao, H., Li, S., Rossi, R. A., & Koh, E. (2019, January). Domain switch-

aware holistic recurrent neural network for modeling multi-domain user behavior.

In Proceedings of the Twelfth ACM International Conference on Web Search and

Data Mining (pp. 663-671).

Kim, D., Yoon, M., Jo, I. H., & Branch, R. M. (2018). Learning analytics to support self-

regulated learning in asynchronous online courses: A case study at a women's

university in South Korea. Computers & Education, 127, 233-251.

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic regression.

New York: Springer-Verlag.

Kloft, M., Stiehler, F., Zheng, Z., & Pinkwart, N. (2014, October). Predicting MOOC dropout

over weeks using machine learning methods. In Proceedings of the EMNLP workshop

on Analysis of Large Scale Social Interaction in MOOCs (pp. 60-65).

Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J.

(2010). A data repository for the EDM community: The PSLC DataShop. Handbook

of educational data mining, 43, 43-56.

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A

historical review, a meta-analysis, and a preliminary feedback intervention

theory. Psychological Bulletin, 119(2), 254.

Kluger, A. N., & DeNisi, A. (1998). Feedback interventions: Toward the understanding of a

double-edged sword. Current Directions in Psychological Science, 7(3), 67-72.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

87

Li, S., & Zhao, H. (2020). A survey on representation learning for user modeling.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial

Intelligence (pp. 4997-5003).

Liu, H., Wang, Z., Benachour, P., & Tubman, P. (2018). A time series classification method

for behaviour-based dropout prediction. In Proceedings of the IEEE 18th

International Conference on Advanced Learning Technologies (pp. 191-195),

Mumbai.

Liu, Z., Xiong, F., Zou, K., & Wang, H. (2018). Predicting learning status in MOOCs using

LSTM. arXiv preprint arXiv:1808.01616.

Lord, F. M. (1980). Applications of item response theory to practical testing problems.

Routledge.

Lu, C., Ganguly, P., Sabharwal, P., Karimi Abdolmaleki, M., Southcott, J., Jin, H.-Y.,

González Esparza, L., & Cutumisu, M. (2021). A review of automated-feedback

generation in Intelligent Tutoring Systems. Paper presented at the 49th of the

Canadian Society for the Study of Education (CSSE) Conference. Edmonton, AB,

May 29 - June 3.

Lu, O. H., Huang, J. C., Huang, A. Y., & Yang, S. J. (2017). Applying learning analytics for

improving students’ engagement and learning outcomes in an MOOCs enabled

collaborative programming course. Interactive Learning Environments, 25(2), 220-

234.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word

vectors for sentiment analysis. Paper presented at the Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language

Technologies, 142-150.

88

Macfadyen, L. P., & Dawson, S. (2012). Numbers are not enough. Why e-learning analytics

failed to inform an institutional strategic plan. Journal of Educational Technology &

Society, 15(3), 149-163.

Macfadyen, L. P., Dawson, S., Pardo, A., & Gaševic, D. (2014). Embracing big data in

complex educational systems: The learning analytics imperative and the policy

challenge. Research & Practice in Assessment, 9, 17-28.

Maniktala, M., Barnes, T., & Chi, M. (2020). Extending the hint factory: Towards modelling

productivity for open-ended problem-solving. Paper presented at the In Proceedings

of the 13th International Conference on Educational Data Mining (DC Paper).

Marwan, S., Lytle, N., Williams, J. J., & Price, T. (2019, July). The impact of adding textual

explanations to next-step hints in a novice programming environment. In Proceedings

of the 2019 ACM Conference on Innovation and Technology in Computer Science

Education (pp. 520-526).

Marwan, S., Jay Williams, J., & Price, T. (2019, July). An evaluation of the impact of

automated programming hints on performance and learning. In Proceedings of the

2019 ACM Conference on International Computing Education Research (pp. 61-70).

Mao, Y., Lin, C., & Chi, M. (2018). Deep Learning vs. Bayesian Knowledge Tracing:

Student models for interventions. Journal of Educational Data Mining, 10(2).

Mao, Y., Zhi, R., Khoshnevisan, F., Price, T. W., Barnes, T., & Chi, M. (2019, January). One

minute is enough: Early prediction of student success and event-level difficulty during

novice programming tasks. In C. F. Lynch, A. Merceron, M. Desmarais, & R.

Nkambou (eds.). In Proceedings of the 12th International Conference on Educational

Data Mining (pp. 119 - 128).

89

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-

174.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3),

276-282.

McFarland, D., & Hamilton, D. (2005). Factors affecting student performance and

satisfaction: Online versus traditional course delivery. Journal of Computer

Information Systems, 46(2), 25-32.

Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. (1992). Effective tutoring

techniques: A comparison of human tutors and intelligent tutoring systems. Journal of

the Learning Sciences, 2(3), 277-305. https://doi.org/10.1207/s15327809jls0203_2

Miao, N., Zhou, H., Mou, L., Yan, R., & Li, L. (2019). CGMH: Constrained Sentence

Generation by Metropolis-Hastings Sampling. In Proceedings of the AAAI Conference

on Artificial Intelligence, 33(01), 6834-6842.

https://doi.org/10.1609/aaai.v33i01.33016834

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent

neural network based language model. In INTERSPEECH-2010, 1045-1048.

Molloy, E. K., & Boud, D. (2014). Feedback models for learning, teaching and performance.

In Handbook of research on educational communications and technology (pp. 413-

424). Springer, New York, NY.

https://doi.org/
https://doi.org/10.1609/aaai.v33i01.33016834

90

Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory

versus corrective feedback in discovery-based multimedia. Instructional

Science, 32(1), 99-113.

Nakagawa, H., Iwasawa, Y., & Matsuo, Y. (2019, October). Graph-based knowledge tracing:

Modeling student proficiency using graph neural network. In 2019 IEEE/WIC/ACM

International Conference on Web Intelligence (WI) (pp. 156-163). IEEE.

Narciss, S., & Huth, K. (2004). How to design informative tutoring feedback for multimedia

learning. Instructional Design for Multimedia Learning, 181195.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood

Cliffs, NJ: Prentice-hall.

Olivé, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2020). A

supervised learning framework: Using assessment to identify students at risk of

dropping out of a MOOC. Journal of Computing in Higher Education, 32(1), 9-26.

O’Neill, K., Singh, G., & O’Donoghue, J. (2004). Implementing eLearning programmes for

higher education: A review of the literature. Journal of Information Technology

Education: Research, 3(1), 313-323.

Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data

mining in practice: A systematic literature review of empirical evidence. Educational

Technology & Society, 17(4), 49-64.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: A method for automatic

evaluation of machine translation. In Proceedings of the 40th annual meeting of the

Association for Computational Linguistics (pp. 311-318).

91

Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning

analytics to scale the provision of personalised feedback. British Journal of

Educational Technology, 50(1), 128-138.

Patel, C., & Patel, T. (2006). Exploring a joint model of conventional and online learning

systems. E-Service, 4(2), 27-46.

Pavlik Jr, P. I., Cen, H., & Koedinger, K. R. (2009). Performance Factors Analysis--A New

Alternative to Knowledge Tracing. Online Submission. Retrieved from

https://eric.ed.gov/?id=ED506305.

Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis

of recent works. Expert Systems with Applications, 41(4), 1432-1462.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on Empirical Methods in

Natural Language Processing (EMNLP) (pp. 1532-1543).

Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J.

(2015). Deep knowledge tracing. arXiv preprint arXiv:1506.05908.

Poornima, S., & Pushpalatha, M. (2019). Drought prediction based on SPI and SPEI with

varying timescales using LSTM recurrent neural network. Soft Computing, 23(18),

8399-8412.

Price, M., Handley, K., Millar, J., & O'Donovan, B. (2010). Feedback: All that effort, but

what is the effect?. Assessment & Evaluation in Higher Education, 35(3), 277-289.

Price, T. W., Zhi, R., & Barnes, T. (2017, June). Hint generation under uncertainty: The

effect of hint quality on help-seeking behavior. In International Conference on

Artificial Intelligence in Education (pp. 311-322). Springer, Cham.

https://eric.ed.gov/?id=ED506305

92

Rasch, G. (1993). Probabilistic models for some intelligence and attainment tests. MESA

Press, 5835 S.

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ help-

seeking skills using metacognitive feedback in an intelligent tutoring

system. Learning and Instruction, 21(2), 267-280.

Sadler, D. R. (1989). Formative assessment and the design of instructional

systems. Instructional Science, 18(2), 119-144.

Schlkopf, B., Smola, A. J., & Bach, F. (2018). Learning with kernels: Support vector

machines, regularization, optimization, and beyond. MIT Press.

Seber, G. A., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley & Sons.

Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking

learning behavior analytics and learning science concepts: Designing a learning

analytics dashboard for feedback to support learning regulation. Computers in Human

Behavior, 107, 105512.

Shatnawi, S., Gaber, M. M., & Cocea, M. (2014, September). Automatic content related

feedback for MOOCs based on course domain ontology. In International Conference

on Intelligent Data Engineering and Automated Learning (pp. 27-35). Springer,

Cham.

Shi, C., Fu, S., Chen, Q., & Qu, H. (2015, April). VisMOOC: Visualizing video clickstream

data from massive open online courses. In Visualization Symposium (PacificVis),

IEEE Pacific (pp. 159-166). IEEE.

Shuell, T. J. (1986). Cognitive conceptions of learning. Review of Educational

Research, 56(4), 411-436.

93

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1),

153-189.

Silva, P., Costa, E., & de Araújo, J. R. (2019, June). An adaptive approach to provide

feedback for students in programming problem solving. In International Conference

on Intelligent Tutoring Systems (pp. 14-23). Springer, Cham.

Singh, R., Gulwani, S., & Solar-Lezama, A. (2013, June). Automated feedback generation for

introductory programming assignments. In Proceedings of the 34th ACM SIGPLAN

conference on Programming language design and implementation (pp. 15-26).

Smith, V. C., Lange, A., & Huston, D. R. (2012). Predictive modeling to forecast student

outcomes and drive effective interventions in online community college courses.

Journal of Asynchronous Learning Networks, 16(3), 51-61.

Sun, L., Tang, Y., & Zuo, W. (2020). Coronavirus pushes education online. Nature

Materials, 19(6), 687-687.

Thurlings, M., Vermeulen, M., Bastiaens, T., & Stijnen, S. (2013). Understanding feedback:

A learning theory perspective. Educational Research Review, 9, 1-15.

Topîrceanu, A., & Grosseck, G. (2017). Decision tree learning used for the classification of

student archetypes in online courses. Procedia Computer Science, 112, 51-60.

UNESCO. (2020, June 21). COVID‐19 educational disruption and response.

https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures

Van Der Aalst, W. (2012). Process mining. Communications of the ACM, 55(8), 76-83.

van der Linden, Wim J, & Glas, C. A. (2010). Elements of adaptive testing. Springer.

94

Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020).

Predicting academic performance of students from VLE big data using deep learning

models. Computers in Human Behavior, 104, 106189.

Wang, L., Sy, A., Liu, L., & Piech, C. (2017, April). Deep knowledge tracing on

programming exercises. In Proceedings of the Fourth (2017) ACM Conference on

Learning@ Scale (pp. 201-204).

Washington, G. Y. (2019). The learning management system matters in face-to-face higher

education courses. Journal of Educational Technology Systems, 48(2), 255-275.

Weimer, M. (2002). Learner-centered teaching: Five key changes to practice. John Wiley &

Sons.

Werts, M. G., Wolery, M., Holcombe, A., & Gast, D. L. (1995). Instructive feedback: Review

of parameters and effects. Journal of Behavioral Education, 5(1), 55-75.

Werts, M. G., Wolery, M., Holcombe, A., & Frederick, C. (1993). Effects of instructive

feedback related and unrelated to the target behaviors. Exceptionality, 4(2), 81-95.

Wickham, H., Francois, R., Henry, L., & Müller, K. (2014, June). Dplyr. In useR!

Conference.

Winnie, P., & Butler, D. (1994). Student cognitive processing and learning. For the 2nd

Edition of The International Encyclopaedia of Education. HUSEN, T. &

POSTLETHWAITE, TN, Eds.

Wright, R. E. (1995). Logistic regression. In L. G. Grimm & P. R. Yarnold (Eds.), Reading

and understanding multivariate statistics (p. 217–244). American Psychological

Association.

95

Xing, W., Chen, X., Stein, J., & Marcinkowski, M. (2016). Temporal prediction of dropouts

in MOOCs: Reaching the low hanging fruit through stacking

generalization. Computers in Human Behavior, 58, 119-129.

Xing, W., & Du, D. (2019). Dropout prediction in MOOCs: Using deep learning for

personalized intervention. Journal of Educational Computing Research, 57(3), 547-

570.

Xu, X., Wang, J., Peng, H., & Wu, R. (2019). Prediction of academic performance associated

with internet usage behaviors using machine learning algorithms. Computers in

Human Behavior, 98, 166-173.

Yang, S., Zhu, M., Hou, J., & Lu, X. (2020). Deep Knowledge Tracing with

Convolutions. arXiv preprint arXiv:2008.01169.

Yeung, C. K., & Yeung, D. Y. (2018, June). Addressing two problems in deep knowledge

tracing via prediction-consistent regularization. In Proceedings of the Fifth Annual

ACM Conference on Learning at Scale (pp. 1-10).

You, J. W. (2016). Identifying significant indicators using LMS data to predict course

achievement in online learning. The Internet and Higher Education, 29, 23-30.

Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013, July). Individualized Bayesian

Knowledge Tracing models. In International Conference on Artificial Intelligence in

Education (pp. 171-180). Springer, Berlin, Heidelberg.

Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-

enabled blended learning courses. The Internet and Higher Education, 27, 44-53.

96

Zhang, Y., & Jiang, W. (2018). Score prediction model of MOOCs learners based on neural

network. International Journal of Emerging Technologies in Learning (iJET), 13(10),

171-182.

Zhang, L., Xiong, X., Zhao, S., Botelho, A., & Heffernan, N. T. (2017, April). Incorporating

rich features into deep knowledge tracing. In Proceedings of the Fourth (2017) ACM

Conference on Learning@ Scale (pp. 169-172).

Zhou, L., Wu, S., Zhou, M., & Li, F. (2020). ‘School’s Out, But Class’ On’, The largest

online education in the world today: Taking China’s practical exploration during the

COVID-19 epidemic prevention and control as an example. Best Evidence of Chinese

Education, 4(2):501-519. http://dx.doi.org/10.2139/ssrn.3555520

Zhu, M., Liu, O. L., & Lee, H. S. (2020). The effect of automated feedback on revision

behavior and learning gains in formative assessment of scientific argument

writing. Computers & Education, 143, 103668.

https://dx.doi.org/10.2139/ssrn.3555520

97

Appendices

Appendix 1

Hyperparameter Settings of the Best DKT Models

 Hyperparameters

 ASSISTment 2009-

2010

Algebra I 2005-2006 OLI Fall 2010

DKT-RNN Optimizer: Adam;

learning rate: 0.001;

batch size: 32, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01

Optimizer: Adam;

learning rate: 0.001;

batch size: 32, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01

Optimizer: Adam;

learning rate: 0.001;

batch size: 5, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01

DKT-LSTM Optimizer: Adam;

learning rate: 0.001;

batch size: 32, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

Optimizer: Adam;

learning rate: 0.001;

batch size: 32, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

Optimizer: Adam;

learning rate: 0.001;

batch size: 5, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

98

regularizers: 0.01; ℓ2

regularizers: 0.01

regularizers: 0.01; ℓ2

regularizers: 0.01

regularizers: 0.01; ℓ2

regularizers: 0.01

DKT-CI Optimizer: Adam;

learning rate: 0.001;

batch size: 32, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01;

embedding dimension:

1000

Optimizer: Adam;

learning rate: 0.001;

batch size: 5, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 2; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01;

embedding dimension:

500

Optimizer: Adam;

learning rate: 0.001;

batch size: 5, dropout

probability: 0.6;

hidden layer

dimension: 100;

number of recurrent

layers: 1; ℓ1

regularizers: 0.01; ℓ2

regularizers: 0.01;

embedding dimension:

250

99

Appendix 2

The Adaptive DKT Output for 50 actions and 5 KCs for the ASSISTment 09-10 Dataset at

one time step

Attempts

(skill ID,

correct or

not)

32:

Ordering

Positive

Decimals

33:

Ordering

Fractions

45:

Subtraction

Whole

Numbers

55: Absolute

Value

98:

Equation

Solving

Two or

Fewer

Steps

(55,1) 0.4173 0.5133 0.3680 0.4703 0.5641

(45,1) 0.3574 0.8526 0.5014 0.3749 0.4338

(55,1) 0.3714 0.7322 0.4427 0.4686 0.4776

(55,1) 0.5310 0.6108 0.5783 0.5147 0.5209

(55,0) 0.2793 0.6292 0.4974 0.5713 0.4899

(45,0) 0.3221 0.6397 0.5526 0.3927 0.3128

(98,1) 0.3388 0.5687 0.4477 0.4094 0.5792

(98,1) 0.3669 0.6980 0.4929 0.4686 0.5741

(98,1) 0.4644 0.7553 0.5098 0.5074 0.6554

(33,0) 0.2838 0.1308 0.3025 0.4147 0.4536

(32,0) 0.2495 0.6049 0.3801 0.5093 0.4857

(33,0) 0.0571 0.0492 0.1131 0.3916 0.3764

(32,0) 0.2502 0.5591 0.3398 0.4836 0.4463

(33,0) 0.0307 0.0172 0.0695 0.2991 0.3083

(32,0) 0.2198 0.5945 0.2595 0.4663 0.4236

(33,0) 0.0164 0.0140 0.0363 0.2335 0.2552

(32,0) 0.1500 0.5769 0.1966 0.4387 0.4030

(32,0) 0.0023 0.3902 0.0172 0.1657 0.4962

(33,0) 0.2155 0.6740 0.4003 0.3985 0.4233

(32,1) 0.4916 0.8385 0.2973 0.4391 0.5519

(33,1) 0.1649 0.7374 0.2551 0.4138 0.5028

(32,0) 0.0136 0.6091 0.0669 0.3151 0.5622

(33,0) 0.1142 0.5292 0.2173 0.3897 0.4366

(32,0) 0.0128 0.2942 0.0432 0.2190 0.5666

(33,0) 0.1593 0.3907 0.2288 0.3712 0.4340

(33,0) 0.0633 0.0257 0.0581 0.2571 0.3425

(32,0) 0.0767 0.4318 0.1296 0.3800 0.4071

(33,0) 0.0185 0.0287 0.0404 0.2332 0.2650

(32,0) 0.0877 0.4507 0.1165 0.3719 0.3897

(32,0) 0.0029 0.2943 0.0151 0.1605 0.4757

(33,0) 0.2256 0.6106 0.3444 0.3675 0.4243

(32,1) 0.4733 0.7905 0.2316 0.3370 0.5346

(33,1) 0.1239 0.7155 0.1837 0.3527 0.4981

(33,1) 0.1727 0.9446 0.1914 0.4035 0.6139

100

(32,1) 0.2130 0.8012 0.3285 0.3880 0.4067

(32,0) 0.0015 0.6081 0.0177 0.2324 0.5458

(33,0) 0.1486 0.7020 0.2803 0.4095 0.4678

(33,0) 0.0366 0.0133 0.0426 0.2464 0.3329

(32,0) 0.1059 0.5061 0.1694 0.3897 0.4609

(33,0) 0.0234 0.0385 0.0550 0.2761 0.2727

(32,0) 0.0363 0.4957 0.0668 0.3709 0.3884

(33,1) 0.0534 0.9797 0.1621 0.3205 0.5700

(32,1) 0.3483 0.7996 0.3666 0.3989 0.3985

(33,0) 0.0236 0.0079 0.0313 0.2276 0.3718

(32,0) 0.3510 0.5579 0.2928 0.4043 0.4526

(33,1) 0.0789 0.9944 0.2976 0.3878 0.5800

(33,1) 0.1418 0.6365 0.2299 0.3633 0.4046

101

Appendix 3

The Complete KC Knowledge Transfer Heatmap (110 KCs) for the ASSISTment 09-10

Dataset

