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Abstract

The Wireless Sensor Networks (WSNs) have emerged as a new paréatigwllecting
and processing data from physical environments, such as wild life saregularge ware-
houses, and battlefields. Users can access sensor data by issuirg quer the network,
e.g., to find what are the 10 highest temperature values in the network.allypa&c WSN
operates by constructing a logical topology, such as a spanning titterop of the phys-
ical topology of the network. The constructed logical topology is then tseisseminate
gueries in the network, and also to process and return the results ofjsedies back to
the user. A major challenge in this context is prolonging the network’s lifetimentiaanly
depends on the energy cost of data communication via wireless radio$ istknown to
be very expensive as compared to the cost of data processing withiattherh.

In this research, we investigate some of the core problems that deal witlifférerat
aspects of in-network query processing in WSNs. In that context, ojgose an efficient
filtering based algorithm for the top-query processing in WSNs. Through a systematic
study of the topk query processing in WSNs we propose several solutions in this thesis,
which are applicable not only to the tdpegueries, but also to in-network query processing
problems in general. Specifically, we consider broadcasting and gmuasting, which
are two basic operations that are required by many in-network quecggsong solutions.
Scheduling broadcasting and convergecasting is another problem thddgant for en-
ergy efficiency in WSNs. Failure of communication links, which are common ilNé/$
yet another important issue that needs to be addressed.

In this research, we take a holistic approach to deal with the above probibites
processing the tog-queries in WSNs. To this end, the thesis makes several contributions.
In particular, our proposed solutions include new logical topologiegduding algorithms,
and an overall sophisticated communication framework, which allows to gsdbe topk
queries efficiently and with increased reliability. Extensive simulation studiesat that
our solutions are not only energy efficient, saving up to 50% of the groarst as compared

to the current state-of-the-art solutions, but they are also robust tddlilokes.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a collection of sensor nodes thailsoeequipped
with computing and communication capabilities. Nodes have on-board radsré&iaars
through which they can communicate with other nodes, thus creating a wiredessrk.
Through sensors these nodes capture data from the physical eneinbnwhich are then
stored and possibly processed for extracting useful information. dtnthese nodes can
be equipped with different kinds of sensors to perform various sgresitivities, they are
generally constrained by limited memory, processing power, and communicdtamel
capacity. Typically the nodes operate on batteries; hence they have a liméeyy eeserve
and therefore energy conservation is one of the design goals in WSNSs.

In the past few years WSNs have grown rapidly in their capabilities, e.geswiith
a low-power 32 bit PXA271 XScale processor with 32MB of RAM and 32 bE-lash
memory, an integrated 802.15.4 radio with a built-in 2.4GHz antenna are nalatdga
commercially [18]. The way these networks are beginning to be deployexsearch and
the commercial sphere [71], it is not unreasonable to expect that in #tel@€el5 years
a vast amount of information gathered by widely deployed WSNs will bessdgle over
the Internet [63]. This trend favors the integration of the existing Intesith our physical
world to create new interesting applications. Before listing some of these afiptis we

review a generic architecture of a WSN and its most important characteristics

1.1.1 Architecture

Due to specific objectives of various applications, WSNs do not haveed fiane-size-
fits-all” architecture. As surveyed in [36], the architecture of WSNstically varies at a

node level as well as at the network level. At the node level, physical diimenstorage
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Figure 1.1: A WSN architecture.

capacity, and computational and communication power, are some of the intpaetagn
considerations. At the network level, the nodes’ organization and theamazmication
strategies on a collective basis influence the architecture. Howevemmao desirable
characteristic across all WSNs is low power consumption.

In general, we would like WSNs to be integrated with the existing wireless ordwire
networks, e.g., the Internet. Figure 1.1 represents a typical design dbMd &¥chitec-
ture. Multiple sensor networks, possibly at different geographicaltions, can be setup
to monitor areas of interest. Heterogeneous sensor networks may comtaumittaeach
other usingntra sensor networlgateways A user may move in a sensor network area to
inquire individual nodes directly, or sensor networks may have a base statierevdata
from individual nodes can be gathered and processed. Base staagriz connected to the

Internet and users at various locations may access the informationegthethe nodes.

1.1.2 Characteristics

WSNs have been characterized according to several parametersdikeleployment, node
capabilities, applications, energy and communication constraints, etc. 38].3Some of

those general characteristics include:

e Ad Hoc DeploymentNodes are generally designed to be deployed in an arbitrary
fashion. An extreme example of such deployment is where the nodesappedr

from an airplane onto a geographical region of interest.



e Dynamic Topology Because of the unreliable wireless communication at certain
times and the failure of individual nodes due to depletion of their energyneiie

work topology may change unpredictably and randomly at any point in time.

e Application Specificlt is very likely that sensor nodes are designed for specific ap-
plications. That means the functionality of nodes will highly depend upon the ty

of applications for which the nodes were designed.

e Energy Constrainedin most cases, nodes in a network rely upon a limited supply
of energy from their batteries. Energy consumption of individual nodesaneount
for the overall lifetime of the network as failure of some nodes may leave tione

disconnected and less useful.

e Bandwidth ConstrainedSensor nodes will primarily be dependent on their wireless
radios for communicating data and/or control messages. In a typical situretias

share the limited bandwidth of the available communication channels.

e Self-ReconfiguratiarDue to limited external (user) involvement, WSNSs are expected
to have self-reconfiguration capabilities. The tasks of self-recordigur and net-
working may mostly depend on nodes’ knowledge about their relative poisitjo

with respect to their neighbors.

e Multi-Hop CommunicationDue to the power constraint of wireless radios and also
to restrict the communication interference, nodes have limited transmissioa.rang
In this situation, two nodes that are not in each other’s transmission rarayeyse
multi-hop communication, i.e., they may usgermediatenodes to communicate

with each other.

1.1.3 Applications

WSNs may play a crucial role around us. Surveillance, tracking and spaces are some

of the important applications of WSNs. We list some of the popular applicatiexts n

e Military Applications Military applications are one of the promising areas in which
WSNs are being explored on a large scale. Such applications includatjatknov-
ing objects [12, 25, 67, 74], classification of ground vehicles basdti@nacoustic
signals [11, 21, 47], monitoring of hostile environments in a battlefield [42], s0

on. Deployment of sensor nodes in a hostile environment may reduce hojuides



and other costs. Nodes can be dropped from a plane over a vasagkmal region
to detect harmful and dangerous materials. Tracking of tanks and athales in a

war zone may provide the observer with better strategic decisions.

Urban Applications Sensor nodes are typically being deployed to solve urban prob-
lems like traffic congestion, vehicular parking, security and health cade §4].
Nodes can be deployed along the busy highways for route informationraffid
diversions in case of accidents. Sensor nodes can also be depliakiedtie vehi-

cles to collect and exchange useful information as they cross eachwdthemoving
along the roads/highways. Parking management is another applicatioa séresor

nodes can be used for effective parking services in busy urbaa|at

Industrial Applications Tracking inventory through sensor nodes in a warehouse is
another application which has generated interest in retail and other reldigstries
[62]. Based on the information available with the nodes deployed in a large- wa
house inventory items can be managed efficiently. Intelligent forklifts hipeeteen
designed using low-cost sensors [53]. RFID systems [35] that arelyigsed in

industrial applications can be thought as forms of low capability WSN systems.

Environmental StudiesNodes capable of measuring variations in temperature, hu-
midity, pressure, etc., can be very useful in environmental health monitsystgms
[27]. For example, nodes can be deployed for an early warning sytsteimeck the
spread of forest fires. Habitat monitoring is one such application in whi&Ngv
have been experimented with success [45]. Environmental studies tbbtamisits
to regions of harsh weather can benefit from WSNs. Nodes in suabngegan be
deployed to collect data over a period of time without involving human expeds.
motely accessing the data may help in reducing the operational cost oframeindal
studies. Also, WSNs are preferred to avoid human interference with toeahhabi-
tat, especially in cases where continuous study is required and heqgoeritevisits
to the area. This way WSNs may reduce the negative side effects oftsulidss and
at the same time, are capable of providing useful information about theitahtgin
the deployed region. Towards that end there are several appsopabosed in the

literature for data collection and query processing in WSNs [17, 33,3444} 59].

Next, we present a more detailed discussion on query processing in Wid$ is

the main research topic of this thesis.



In a typical situation in WSNs, nodes perform the tasks of sensing, gsoneg data
storage and reporting of useful data according to the objectives gi@itation. Depend-
ing on the application’s objectives nodes can pro-actively processfitared data within
the network for taking appropriate actions, such as informing other niadhe network of
an event occurrence or sending an alert message to an obsere#ineAaption is for users
to issue queries over the network to collect data at a particular node,-tedledsink for
further processing to extract useful information. Towards that entbsonust collaborate
with each other in a distributed way, which comes at an increased costrohgpication
required to exchange data and/or control messages. One of the marchesballenges
here is to reduce the amount of data and the number of messages beingttezthby the
nodes in order to reduce their energy consumption, which is cruciakrfdompging the net-
work lifetime. Primarily due to this reason energy efficient data processaigigues have
received a considerable attention from the research community [176488458, 59, 60].

A major source of energy consumption in WSNs is the radio component ofoithesn
which makes data communication very expensive as compared to the c@gacfamhsing
and processing [54]. Because in most cases nodes are batterjedperidh a limited sup-
ply of energy, lowering energy consumption by reducing the volume ofiréited data
is the most important goal of this thesis. It is worth noting that the radios coasig-
nificantly less energy duringleepmode as compared to thenansmissionor reception
mode [28]. Due to this reason it may be beneficial for the nodes to switdhaiffradios
whenever they are neither transmitting nor receiving. In this thesis, &partour efforts
on reducing the volume of transmitted data, we also pay attention to the scheshlling
tions, which can allow the nodes to sleep as long as they can to furtheerttkicenergy

consumption.

1.2 In-network Query Processing

In-network processing of sensor data is a basic technique used by apaligations in
which computations are performed by nodes “locally” with the hope that Iésmi@ation
will need to be transmitted in order to reduce the communication overhead.is[hat
network processing is about performilagal computation®n nodes within the network in
order for the volume of transmitted data to be as small as possible. The malerprob
in-network data processing that we consider in this research is how &nuiisate queries

in the network and collect data of interest at a particular node, i.e., the etk MThe data
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Figure 1.2: A WSN based Decision Support System.

of interest is defined by the users through the semantics of the queries.

In a typical situation a user initiates in-network query processing by issyueges to
the sink, e.g., to find what are the 10 highest temperature values in the ketwaevhich
nodes have detected a particular type of tank in a battlefield. In this thesisngeer
continuous queries that seek data (query answer) periodically, i.egrg tissued only
once, but it isexecutedmultiple times for collecting data periodically as defined by the
user. Basically a WSN operates as an element of a Decision SupponrSistieguides the
decision-making activities of individuals or organizations.

Figure 1.2 shows the interaction between a user and a WSN. The sinkgptepdhe
guery issued by the user into the network and the nodes respond &pfelyp The nodes
reply back to the sink, if necessary, while making local decisions, i.e., theyds pro-
cessed in-network. Finally, the sink responds to the user by returningsb# of the query
back to the user. Essentially, we have two phases of in-network quecgssing that are
involved here:disseminatioranddata collectionphases, which both might require multi-
hop communication. In this context of in-network query processing siceas depicted in

Figure 1.2, this thesis considers the following core research problems:

e How to disseminate the query from the sink to every other node in the netWhek.
objective here is to reduce the number of messages used for quemnitiaien and
hence to reduce the energy consumption of the nodes. It is trivial tarstade that
any solution for query dissemination can also be used for any message#us to

be disseminated from the sink to the nodes.

e How to exploit the semantics of a given query to make local decisions durenggtta

collection phase. The local results computed by the nodes then must lagateg to
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the sink to answer the query. The objective here is to reduce the numiverssfiges

as well as the volume of data transmitted by the nodes.

How to schedule transmissions in the network for exchanging control/datsages
during dissemination and data collection phases. It is trivial to understadath
schedule will facilitate the nodes to b&akeat specific times during query process-
ing, i.e., only when they are supposed to either transmit or receive massagat

in turn will allow the nodes to sleep as long as they can in order to furtheccesdu
their energy consumption. Therefore, a “tight” schedule will be consitlar‘good”
schedule. More importantly, since multiple nodes may participate during query p
cessing, it is likely that their wireless transmissions may interfere with eacl. othe

Therefore, the objective is to construct “tight” and “interferencefrechedules.

How to deal with communication failures that are inherent in a wireless network
Because of failures, at certain times during query processing, sones tioat were

able to communicate previously may suddenly be devoid of any communication to

exchange control/data messages. That may cause the sink to returedhoorin-
complete results. Therefore, in-network query processing must disopsaflutions
to recover from the failures either partially or fully. Obviously, there will $mme
communication overhead for the nodes to recover from the failures. tNeless,
the objective here is to opportunistically recover from the failures with the mimimu

possible overhead.

Itis beyond the scope of this thesis to consider every type of querydhdieprocessed
in a WSN. Instead, we consider a class of aggregation queries, prdigirepresented by

the top% queries, to pursue an investigation of in-network query processingigoin

WSNSs. Topk queries are simple, yet an important class of queries that are widely used

in various applications [6, 30, 73, 80]. In the context of WSNs, remotelpitaong a
physical environment is a typical application. There exist many situatioresembne is
interested in monitoring extreme and atypical behavior. For example, findangighest
temperature values in a building or a patch of forest, the most frequentlyd/isitations
by animals, etc. Oftentimes, there are limited resources, e.g., dispatchin¢egebicieal

with such observed extremes and as a consequence, one may be idtendsia the top-

k observations. In this context, tdpgueries represent an important class of aggregation

queries, e.g., mirk;, MAX, and MIN queries.

Through a systematic study of the tépguery processing in WSNs, we strive to gain
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more insights about in-network query processing in general. Nonetheleswill show
in this thesis that our proposed solutions for processingitoperies are natied to top+
queries only, but they are also applicable to a wide range of in-netwarkyqarocessing
problems in WSNs. Since performing local computations is much cheaper émesmtitting
data to a sink, the main idea behind these solutions jmisithe local computations into
the network to reduce the communication cost and thus to increase the nstlifetine.
Towards that end we design nduagical topologies that are effective for efficient query
processing in WSNSs. Logical topologies basically provide a virtual itfuasure for effi-
cient communication in a wireless network. Our intuition is that by exploiting théapa
proximity of the nodes one can create various logical topologies built onfttpeqhys-
ical topology of a network, which cannot only support the in-networlal@omputations,
but they also provide an effective infrastructure that is robust to féland efficient for
exchanging data/messages between the nodes to reduce the communicition co

Our proposed logical topologies are unique in the sense that they fullgieste two
basic properties of a WSN, i.e., its multi-hop communication setup and wireless natu
of transmission/reception, to reduce the communication cost significantlymuitehop
setup of WSNs enforces the nodes to process sensor data in an intakfaghion while
providing an opportunity to make local decisions, e.g., we will show in thisaresehow
to exploit the “multi-hop” property effectively for dataggregationandfiltering. Wireless
transmission/reception is essentially performed in a “broadcast” enviranimena single
transmission by a node (transmitter) can be received by multiple nodes/éex}eresent
within the radio range of the transmitting node. Though reception also atcfmrrenergy
consumption in WSNSs, it usually comes at a reduced cost as compared tartbmigsion
cost [28]. In this research we will show novel techniques that expleitlbinoadcast” prop-
erty not only to reduce the transmission cost (at the expense of ansecreaception cost
that is cheaper than the transmission cost), but also to recover fromilime$an WSNSs.
Nevertheless, reducing the overall communication cost, which includes shéocdrans-
mission as well as reception, remains the primary research objective of #sis.tiNext,

we present a background discussion on what is going to follow fronptens2 to 6.

1.2.1 In-Network Processing of Topk Queries

Top-k queries in distributed systems is a widely studied problem. Olstoal. addressed
the problem of caching approximate values with appropriate precision [BBgir work

lead to the idea of implantingrithmetic filtersin a distributed environment to suppress



communication messages. Babcock and Olston [6] extended that and applieiéa of
cached values for the topmonitoring problem in data streams. The key idea is to use the
cached values as range-based arithmetic filters. Filters are adjustedidgthawhen they
are violated. A coordinator node monitors the filter constraints of the rasieafiodes and
also maintains the top-result. This fundamental idea of installing filters for suppressing
unnecessary updates has turned out to be especially useful within VSNsnber of al-
gorithms proposed in the literature, e.g., [56, 57, 59, 60, 73], rely on teéfiok continuous
monitoring of sensor values, a problem that is closely related to the problmweéhinves-
tigate in this thesis. The difference among the previously proposed algoritbsnis the
various strategies being used for maintaining the filters at successigdgerhere are also
solutions that only apphaggregationand do not use any filtering mechanism. TAG [43]
is a classical example of such non-filtering based approach that caseddar the topk
qguery problem that is addressed in this thesis. We will discuss more adpgrgigation and
filtering based solutions of the tdpeguery problem in the next chapter.

Not surprisingly, several other versions of the toguery problem exist. For instance,
a variation of the toge query is to rank the objects based on the aggregated scores on a
set of attributes stored at distributed locations. The Threshold Algorithihig2be best
known solution for this problem. The main constraint of this algorithm is thatstiemes
single-hop communication. Zeinalipour-Yaeti al. [80] propose a solution to a similarly
defined problem but which is developed in the context of a multi-hop WSN. Sinyia
different problems have been investigated elsewhere. In [58] the @utlse a model-
based optimization technique for answering the approximate:tqperies; the goal is to
minimize the number of true answers missed in approximate answer. Morelyetten
authors of [15] propose exploiting the spatially correlated sensor datailtbgartial order
trees (POT) to answer the tdpgueries. Their main idea is to select “hot spots” (sensors
with highest readings) in a network to build a logical topology to reduce eassary sensor
updates.

The precise top: query problem that we address in this thesis is presented in the next
chapter. Before presenting this problem and our proposed solutiorriefylyeview the
different aspects of in-network query processing that we investigatédrthesis. We start

with a discussion on logical topologies.
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Figure 1.3: Solid lines represent edges, and arrowed lines represssages with the
distinction that all arrowed lines coming out from a node represent a sirggilsmission
from that node. Dashed lines in Figure (b) represent edges that #ve graph but not in
the tree.

1.2.2 Logical Topologies : A Virtual Infrastructure for Que ry Processing

Throughout this thesis we use a Unit Disk Graph (UDG) to representld.\WWSGs are fre-
qguently used to model the communication of wireless nodes with identical cireulges,
deployed on 2—dimensional space. UDGs are, therefore, consideimhchmark” class
of graphs for the study of wireless algorithm complexity [16]. Nonethelgmssolutions
proposed in this thesis aiedependentf UDGs, i.e., they are also applicable to general
topology graphs with some modifications.

A WSN often operates by constructing logical topologies, such as a sygimee, built
on top of the physical topology of the network. The constructed logicalltgpes are then
used to disseminate queries in the network, and also to process and retresuths of such
queries back to the user. To demonstrate the importance of logical topologiesietwork
guery processing we present an example as illustrated in Figure 1.3. n&ctivity graph
representing which wireless nodes a node can communicate with is showmie Ei§(a).
Consider that node A is the sink, which is responsible for disseminating thg (gsued
by a user into the network, and to return the results of the query back tséne u

To start the query processing, the first step is to disseminate the query metiierk
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to all nodes. An obvious solution is for A to transmit the query in its neighbaihand

request all of its neighbors to do the same. This is repeated until all nodles iretwork

have received the query, i.e., disseminationflopding It is trivial to see that a node
may receive the query message more than once, to be precise, up tor@mceaich of

its neighbors. However, note that the query message is the “same” for mede, and

therefore a node does not need to transmit the query message morec¢baindhe specific
example flooding generates 11 query messages.

Each node can also forward its reply message containing its data. Sinmyereply
message, unlike the query message, is “unique” (containing data fromieuf@ node),
every node may forward the reply messages for all of its neighborsitiaky the sink will
receive the data from all the nodes, which can then answer the quameudr, note that re-
dundant messages are transmitted by multiple nodes traversing multiple-patlosghting
a high communication traffic in the network. That makes flooding an inefficelition.
In the specific network shown in Figure 1.3(a) flooding generates 49 negssages.

In the network shown in Figure 1.3(a) we note that several nodes caableed by one
single message due to the wireless nature of transmissions. Therefensjlae alternative
to flooding is to use a logical tree topology, e.g., a Shortest Path Tree €BBWh in Fig-
ure 1.3(b) built from the graph shown in Figure 1.3(a) in which the sinken, becomes
the root of the logical tree. Using a logical tree topology such as an SRiEy gan be
received by all nodes if the root and every non-leaf node of the ta@sitnit the query. This
specific SPT requires a total of 8 messages (transmitted by nodes A, BECFDG, 1) to
disseminate the query in the network as compared to 11 messages requieating.

The advantage of using a logical tree topology appears more prominemthgdbe
reply phase. Data arriving at a parent node from its children caaglgeegatedn-network,
and only the aggregated data can be forwarded further up in the tresideq e.g., node |
that aggregates the data it receives from its child K with its own data, biflovarding the
aggregated data to its parent F. TAG [44] is a well-known method that usestwork ag-
gregation to reduce the communication cost substantially. This technique wil$tessed
in detail in the next chapter. For the particular SPT shown in Figure 1.3{(@fahof 10
reply messages are generated as compared to 40 reply messages ie thigfloasling.

Itis trivial to understand from the above discussion that logical toposogjiegy a crucial
role in query processing in WSNs. Basically, logical topologies providétaat infras-
tructure for query processing in WSNSs. In this research we pay attettithre logical tree

topologies that can efficiently process queries in WSNs.
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1.2.3 Broadcasting and Convergecasting

An important observation from the above discussion is that in-netwonk/guecessing ba-
sically involves two types of communication messages, i.e., sink-to-the-naagsodes-
to-the-sink. Recall the example in which the sink is required to disseminate ¢ng igithe
network, and nodes need to send an appropriate response back ittktha she literature
sink-to-the-nodes and nodes-to-the-sink communication are commonlynkasiaroad-
castingandconvergecastingrespectively. In a typical situation, in-network processing of
a query, irrespective of its type, will require at least one broadchase to disseminate
the query and at least one convergecast phase to collect the redpamsthe nodes. In
summary, broadcasting and convergecasting are the two basic opemaiigiNs that may
have a profound impact on in-network query processing solutions hviditbe precise topic
that we discuss in Chapters 3 through 5 of this thesis. In particular, wassishe results
of our investigation with respect to logical topologies that are better suitdatdadcasting

and convergecasting as well as energy-efficient scheduling foe thos

1.2.4 Failure Recovery

Failures are part of wireless networks that may disrupt the logical topspghich are used
for in-network query processing. Failures are equally likely to occuinduthe broadcast
as well as convergecast. Consider the scenario of query broadrastig SPT as shown
in Figure 1.3(b). The failure of the communication link between nodes A andl@esult
in many nodes not receiving the query message. One obvious solutiemsttaat node A
can try to re-transmit the message if it does not receive an acknowledgA®@K) from
its children. In this particular case since node C did not receive the nmessabhence
node A did not receive an ACK from C, node A can re-transmit the messHgs process
can be repeated for every parent node and as long as they did eotereqy ACK from
all of their children. It is trivial to see that an excessive amount of ngEsséincluding
re-transmissions and ACKs) will be used to recover from the failureshignresearch we
will present novel solutions for opportunistic failure recovery durimgdulcast as well as
convergecast, whictlo not require re-transmissiorad ACKs. As we will show in Chapter

6 that is indeed possible by exploiting the broadcast and convergetashdes.
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1.3 A Summary of Contributions

e We propose an efficient distributed algorithm for processing thektaopteries in
WSNSs. Our carefully designed algorithm is significantly better than the custate-

of-the-art solution in terms of energy consumption (Chapter 2).

e We propose new algorithms for constructing logical tree topologies thatedterb
than the existing solutions in reducing the communication cost required fadbro

casting and convergecasting in WSNs (Chapter 3).

e We establish new theoretical bounds for broadcast and convetgebasluling prob-
lems in WSNs and prove their correctness. We also propose an effiaemgiork
for broadcast and convergecast scheduling in WSNs. Our schgddintions have

shown better performance than the existing solutions (Chapters 4 and 5).

e We present a novel solution for failure recovery in WSNs. The pregsslution is an
efficient communication framework that opportunistically exploits the coraaagt

and broadcast schedules for robust query processing in WSNap{€to).

e We demonstrate the importance of our proposed in-network procesdirt@as by
putting them together for efficiently processing tbgueries. In particular, we evalu-
ate the impact of various logical topologies, scheduling schemes and fatoeery

mechanisms on the topquery processing in WSNs (Chapter 7).

e Another important aspect of this thesis is that, apart from synthetic datésetes
real world WSN setup and sensor data to evaluate the performancei@is/aplu-

tions proposed in Chapters 2 through 7.
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Chapter 2

Tok-k Query Processing

2.1 Introduction

As mentioned in the previous chapter, there are several versions ofghedqoeries that
have been considered in the literature [6, 58, 59, 60, 73]. The pregigequery as consid-
ered in this thesis satisfies the following requirements(e)not restricted (but naturally
cannot be larger than the number of nodes in the network), (b) the gieteymines the
exactk highest observed values, (c) the query determines the full set obribdereported
the k highest values, and (d) the query is executed periodically starting at poimein
time and reporting values for a number of subsequent rounds.

We want to avoid trivial and energy-inefficient solutions for procegsop+ queries.
One such solution is a centralized approach whereby, in every rolinthdes send their
measurements directly to the sink (using one hop communication) which then loakaily
lates the topk values. This solution is of little practical interest because it introduces a larg
communication overhead, and hence energy consumption. An alternggix@aah here is
to construct a logical topology built on top of the physical topology, e.gpaasing tree
rooted at the sink, in which nodes are connected to the root using multipte Rejgall the
example SPT, a logical tree topology that was discussed in the previoptecha logical
topology not only provides a multi-hapfrastructurefor nodes to communicate with each
other and the root, but it also allows to impose sdoren of data aggregation to reduce the
volume of data being transmitted to save on the communication cost. Beforatmgsmur

energy-efficient solution we formally describe the touery problem in WSNs.
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2.2 Problem Statement

We consider a WSN consisting of a set of nodgs; {i : : = 1,2,...N}. Time is discrete

and counted in rounds. Each node produces one value per routd), |k ée the set of
nodes that produced thé" highest value}' (.S, ;), during thej*" round. The exact top-
query problem then is to find the setbhighest valuesD; = {V (S, ;) : p = 1,2,.... k},

for each roundj. This implies also obtaining the set of nodlegtlsp,j, that observed the
highest values. An example of 8 nodes and their corresponding valuieg é given round

is presented in Table 2.1. A top-2 query would retéim= {23, 20}. Note that because of
ties, the number of nodes reporting the topalues may be larger than e.g., nodeg ss,

s4, sg} in this case. Solutions not concerned with dealing with ties would return only the
top-k nodesi.e., either{ss, ss} or {s4, sg}. In some applications, failing to report a node
that has a topk value may be problematic. For example, if one needs to plan and schedule
resources according to the number of points of interest (reportingsBnsot being able

to know the exact number of (correct) points is likely to have undesiralsisezpences.

’SGnSOI’SHsl‘82‘83‘84‘85‘86‘87‘88‘
| Values [ 10[ 15| 20| 20[ 16| 15[ 18] 23|

Table 2.1: An example of 8 sensor values.

To start the topk query processing using a logical topology, the first step is to dissemi-
nate the query in the network to all nodes, i.e., a broadcasting phase edrteatisseminate
the query. In response to the query message propagated by the e, take appropriate
action by forwarding their messages (containing data) to the root using thiehop struc-
ture of the logical tree, i.e., a convergecasting phase is needed to collgesfionses. We
will assume in this chapter the existence of a logical tree topology, e.g., ad@Rrif both
phases of query processing, i.e., broadcasting and convergecast®igapters 3 through 5
of this thesis we will present a detailed discussion on which logical tree tgigsl@are best
suited for efficiently processing the tdpegueries. For the purpose of this chapter it is suf-
ficient to assume the existence of an underlying logical tree topology thaili®h top of
the physical topology for broadcasting as well as convergecastinghaie already seen
how a logical tree topology is useful for broadcasting the query in thear&twShortly
we will look into ways in which the togs query processing solutions can benefit from the

structure of a logical tree topology during convergecasting.
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Figure 2.1: An example of a top-2 query processing using TAG. Darikeles represent
nodes that triggered an update. Rectangles represent the packsisitieah by the corre-
sponding nodes.

2.3 Related Work

Earlier solutions of processing the témueries in WSNs include TAG [43]. In TAG an SPT
is used as an underlying logical topology for converegecast. In agimend processing
starts from the leaf nodes and every non-leaf node first receitagrdaall of its children
before sending theombineddata to its own parent. A scenario of top-2 query processing
using TAG on top of SPT is presented in Figure 2.1 in which nodes are @aadotéh the
values observed during a specific round. One prominent feature Gf i$Ahat non-leaf
nodes exploit the semantics of a tbmuery to performaggregationin order to reduce the
volume of transmitted data during the convergecast. For instance as shéiguie 2.1,
node C, after receiving values from its child F, discards the rd$ul2} to forward its local
top-2 result only, i.e.{C:20, F:15, K:15. Since unique tog values are considered, the
local top-2 result forwarded by node C contains 2 unique values widet 3 different
nodes. Finally, the root finds the top-2 result, i{®;23, C:20, E:20.

Unfortunately, TAG requires every node to send an update (containiowits/alue or
aggregated values) during every round irrespective of the facotiigtt such values will
eventually become part of the actual answer. In an ideal solution onlyoithesrthat have
values among the top-ones should send their values to the sink. However, these nodes do

not know of their own “special” status-priori. In order to address these issues, recently
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FILA [73] has been proposed to process the topueries. The basic idea of FILA is to use
arithmeticfiltersfor suppressing updates from nodes that are unlikely to become ph# of
solution to the topk query. The intuition behind using filters is that nodes that reported the
top-k values during a round are more likely to produce the togalues again in the next
round. It also means that the updates from the nodes, which had rihtqe the tope
values are potentially not required to compute the result in the next round.

There are other similar works presented elsewhere [4, 6, 58, 59,9%0,Qur work
differs from the ones presented in [6, 58, 59, 60, 73] in a number gbwRange caching
[6] as well as FILA [73] use “range-based” filters, due to which thetum approximate
answers. In contrast to that, and as shown in this chapter, our algoritoaranteed to
produce exact answers. Furthermore, FILA assumes a particuldotypio which the root
can directly communicate with the nodes (i.e., a single-hop setup to delivergesssam
the root to the nodes). This assumption is not very realistic, in particul&vfiXs deployed
in large areas where obstacles, interference, and other environawtotsf restrict how far
the root’s signal can reach. We do not make any assumptions with respecterling
logical tree topology.

A solution proposed by Silberstein et. al. in [59] combines the ide@miporaland
spatial suppression for continuously collectiad) sensor values from the WSN. Although
related, this problem is fundamentally different than the problem that weiden The so-
lutions proposed in [58] also deal with returning approximate answesgetlanother work
[60] Silbersteinet. al. carried out a detailed investigation of MAX (top-1), which unfor-
tunately cannot be easily generalized. In addition, neither of these gatspdeal properly
with possible tied values, e.g., only one of many nodes with tied values is rdthyrtbese
solutions, which may have undesired consequences as mentioned phgviarinalipour-
Yazti et. al. proposed a novel framework for answering continuoesies based otop-k
views[79]. In another study [4], details of a graphical tool for monitoring thkeighest-
ranked answers in a wireless sensor network are presented.

FILA has been up to now the state-of-the-art solution for processintppi# queries
in WSN and, as such, we use it as the basis to compare our proposedrsthatitopk
queries. FILAs performance is not only significantly better than TAG uitperforms all
other filtering based solutions proposed elsewhere [6]. Thus, foalkeed setting a proper

background, we present a more detailed overview of FILA in the following
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Figure 2.2: Initial rounds of a top-2 query in FILA. Darker circles reg#nt nodes that
triggered an update. Rectangles represent the packets transmitted byrrspanding
nodes.

2.3.1 A Review of the State-of-the-Art

In the first round FILA works similar to TAG [44], that is all nodes sendittodserved
values, with parent nodes in the SPT performamgrouteaggregation. At this point the root
determines the tog-result and also computes filters for the nodes (which are communicated
to them by the root). A filter in FILA is a set of two values, an upper and a tdwsend, and
is used to control a node’s update in the subsequent rounds. Aftelténe dire installed, a
node triggers an update, i.e., sends its most recent value, only if it violafidteitsi.e., if
its value in not within the filter's specified range.

A scenario of top-2 query processing in FILA is shown in Figure 2.2 in Whialues
of nodes are depicted within the circles. In the first round every nodessiés update with
aggregation performeen-routeas shown in Figure 2.2(a). The root finds the top-2 values
{23, 20; that are produced by nodé®, C, E}. Based on the top-2 result from the first
round, the root computes the filtef22 30 for node D and19 22 for nodes C and E. The
rest of the nodes will havél 19 as their filter. These filters are then sent (not shown in
the figures) by the root to the corresponding nodes at the end of musdin the second

round, only node D violates its filter (as its value, 20, falls out of the rai2ge30), and

1In this example we used the uniform filter setting [73] rounding off the \&l&®r simplicity we assume
that the nodes’ values are within 1 and 30.
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it triggers an update as shown in Figure 2.2(b). During the validation phiaseoot finds

that the newly received value of node D, i.e., 20, falls into the filtering windbmodes C

and E, i.e.(19 22. In this situation the top-2 result becomes undecided as nodes C and E
may have any value from the ran¢f9 22). Therefore, the root must find the current values

of nodes C and E to compute the correct top-2 result. For that the roo¢ptbe previous
top-k nodes, which had not sent an update during the current round, inxémspte nodes

C and E. (For this purpose the root sends a probing message which sawh in the
figures.) In response to the probing message nodes C and E reply ihdkeir current
values as shown in Figure 2.2(c). The root can now compute the new rtegult {21,

20} from nodes{C, D} respectively. Finally the root computes new filters and updates the

corresponding nodes, if necessary, at the end of the currendroun

2.3.2 Observations

There are several observations that can be made from FILA's exaabplee in particular
and filtering based solutions in general. Let us first examine FILA in detacaR that
we seek the exact top-unique values and the full set of nodes that observed them in a
WSN. In contrast to that FILA may return approximate values of nodefragas their
values remain within their filtering range. More precisely, FILA may use thaeerbvalues
reported in the previous rounds to compute the kaesult of the current round. Consider
again the example of top-2 query processing as shown in Figure 2.2. doinénsecond
round, consider that the value of node D is 25 and the values for thefrthst nodes are the
same as before, i.e., as shown in Figure 2.2(b). During the second, mamel of the nodes
triggers its update (as none of them violates its filter), and no further actitakén by
the root. In this situation FILA's reported result during the second rowiticoe {20, 23},
coming from nodg D, C, E}, which is different than the actual correct resy21, 25; from
nodes{D, C}. We can clearly see in this simple example that FILAS result is often-time
just an approximation, not only on the nodes’ values, but also on thd setles. \We note
that although in [73] the authors propose a means to control the ansypgrsximation,
it comes at the expense of increased energy cost, hence at a rewhtaedk lifetime (c.f.,
Figures 15 and 16 in [73].) As we shall see shortly our solution alwagsagiees exact
answers while at the same time processing queries more efficiently than FILA.

Another characteristic of FILA is that it computés+ 1 filters, one each for the top-
k nodes and one common filter for all other non tomodes. Whenever a node’s value,

regardless of whether in the tdpset or not, enters the filtering window of a tépaode,
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then that topk node must be probed during the validation phase if it has not triggered its
update in the beginning of a round. Note that in the second round as shé&igure 2.2(b),

if nodes C and E had triggered their update they would need not to bedorivbgeneral, if

all the top4 nodes trigger their update during every round then thektopdes need not be
probed at all during the validation phase, which may result in reduced coioation cost.

The worst case for FILA is when the root, apart from probing thekomdes, needs to
probe the non tog-nodes as well during the validation phase (only those norktopees
that had not triggered their update in the beginning of a round). Assun&uhiag the
second round nodes C and E have a common value of 20, and all othes eakias before
for the rest of the nodes as shown in Figure 2.2(b). Again only node Detrigits update
in the second round (recall that filter values @22 30 for node D,(19 22 for nodes C
and E, and1 19 for the rest of the nodes). The root probes the values of nodes € and
during the validation phase. Now when the root receives their valuesppHzresult still
remain undecided as the root has only top-1 value (as nodes D, C ang Briecommon
value, 20). In this situation the root must inquire for the second top valoiefmwmust come
from the non topk nodes. For this, the root needs to send another probe message for the
non top4 nodes to which they need to reply back appropriately. In essence FisAvio
exclusive probing phases for: (i) the téprodes and (ii) the non top-nodes. We argue
that it is beneficial to eliminate the first probing phase altogether while usingetend
probing phase only when required. As we will show in our proposalithiaideed possible
and it results in reduced communication cost.

Overall FILA uses 3 convergecast and 3 broadcast phases in exand to produce
the top# result. Though during a convergecast phase only a limited number obravde
required to participate, a broadcast phase still needs all non-lea$ wbtlee logical tree to
forward the messages (recall the example of query broadcasting as &héigure 1.3).
Furthermore, many convergecast and broadcast phases (6 in totah)anamwly increase
FILA's communication cost, but they may also increase the glagncy i.e., the time it
takes for the sink to actually answer the query. The above observatianstiie basis of

our proposed algorithm, EXTOK, which stands for EXact TOp-K that igeuks next.

2.4 EXTOK: An Algorithm for EXact TOp- K Queries

In every round EXTOK’s execution starts from the leaf nodes andrpssgs towards the

root. In the first round EXTOK works similarly to TAG, in which all nodes detheir
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K
©
(&) Round 1 (old- = —c0, newr = 20) (b) Round 2 (old- = 20, newr = 20)
(Answer Set:{D:23, C:20, E:20) (Answer Set:{C:21, D:2G)
A A

(c) Round 3 (oldr = 20, newr is undecided) (d) Round 3 (okd= 20, newr = 19)
(Answer set needs to be validated) (Answer set validaeéd21, E:19)

Figure 2.3: Initial rounds of a top-2 query in EXTOK. Darker nodesaler M-nodes.

updates, and the root, after collecting values, determines thé t@tues. The root also
calculates a threshold value, henceforth referred to asich is the minimum value of
the current topk values, and that will be sent to the nodes and installed as their filter. At
this point nodes enter in one of two operation modes. A node is said to be imadtal
monitoring” mode (or a TM-node) if it produced one of the current kogalues. TM-nodes

are required to reporny changes to their current value eteryround as it may yield a
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change in the current topanswer set. Otherwise, a node is said to be in a “filtering” mode
(or a F-node) if its value did not contribute to the current answer sebdesare required

to report their new values only when they observe a value that could dpébatine answer
set, i.e., a value that is greater than or equal.to

After the first round each subsequent round in EXTOK consists oétbtages. In the
first stage nodes trigger their update according to their operating moder w&teiving
values during the first stage, the root proceeds to validate the curpehtresults, and, if
necessary, it initiates a validation procedure at the end of the first dbagigg the second
stage of the algorithnsomenodes may reply back in response to the validation procedure
invoked by the root. At the end of the second stage the root determinesrtiegtcanswer
to the query. During the third stage the root adjusts the value lbhsed on the newly
computed result, and informs all other nodes about it,hiis changed.

We illustrate the execution of EXTOK during the three initial rounds for a tau@ry
in Figure 2.3. Values observed by the nodes during a particular roundegicted within
the respective nodes. (Note that the nodes’ values during the firsbwals are similar to
the values used in FILA's example as shown in Figure 2.2.)

In the first round all nodes but the root are TM-nodes arid set to the application’s
minimum meaningful value (which we assume to be-xo for simplicity). Then every
node (Figure 2.3(a)) sends its update to the root. As the nodes pushaheswp in the
tree, aggregation is performed by parent nodes. For instance, nafeBreceiving values
from its child E discards the resul{B, 15)}, i.e., its own value and only forwards its local
top-2 result, i.e.{(E, 20), (H, 16}, to its parent A. Since EXTOK considers the unique
top-k values, the local top-2 result forwarded by node (8, 20), (F, 15), (K, 15), i.e., 2
unique values observed at 3 different nodes. Finally, the root fireltoh2 result and also
determinesr, which is the lower bound on the current tépralues (20 in this particular
example). The root transmitsafter which only nodes C, D and E become TM-nodes, i.e.,
if their values change, they must propagate their new values. The rés¢ ofodes will
trigger an update only if their value is greater than or equal te 20 (i.e., they become
F-nodes).

During the second round (Figure 2.3(b)) nodes C, D and E changevleies and
trigger updates. In order to correctly compute the results the root alggysres the current
values of the TM-nodes that changed during a given round, thexefloeir values cannot
be aggregatedn-route Since the top-2 values received by the root during the second round

(i.e., 21 and 20) do not invalidate = 20, and also the value of every F-node is less than
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20 (otherwise they would have triggered their own update) the root caaatly find the
top-2 values in the second round without taking further action. (This isntrast to FILA'S
execution which required to trigger the validation phase during the secamdiras shown
in Figure 2.2(b).) Note that at the end of the current round E has neivestan update for
7 (because it has not changed yet) and since its own value is smaller ihaecomes a
F-node automatically.

Changes to the values in nodes C and D in the third round (Figure 2.3(qtray
propagation of their update. Node G (which was a F-node) also triggerpdste because
its new value is above. At the end of the stage one in the third round the root receives
values{21, 18, 1% yielding {21, 18 as the (temporary) answer set. At this point the root
finds that the current top-2’s lower bound (18) is lower than the ctis@ne ofr (20). This
means that other unreported values from F-nodes may now be part ahsneer set. To
determine the new correct result, the root sends a validation query in thedeking values
that are greater than or equal to 18. In response to the validation aueisy,E replies back
with its value (Figure 2.3(d)). The root finally determines the (guaranteedict top-2
values, i.e.{21, 19}, and also updates = 19, which is propagated down in the tree to
update the nodes’ filters. Thus after round 3, E and G will become TMsicahd C and
D will become F-nodes along with the rest of the nodes that are alreaadyd&sn Next
we provide a textual description of the EXTOK algorithm after which we withpde its

pseudo-code.

2.4.1 EXTOK'’s Algorithm

Initialization

In the first round every node but the root sends its update. Aggregatapplied by the non-

leaf nodes of the tree. If the total number of values received by a redméele, including its

own value, is less thakthen that node sends all values to its parent; otherwise it sends the
information pertaining to the top-values only. After receiving values from its immediate
children the root can determine the tépralues and the corresponding nodes.

The root computes an arithmetic filter for the non topedes to suppress unnecessary
updates in the subsequent rounds. For that the root uses a threshodgvset to the
minimum value of the topk values it collected. The root transmitsso that all nodes can
update their filters. (For the sake of efficiency we make the assumption thatéfvr
is not transmitted within a round the nodes will behave as if the same curiiead been

transmitted. This approach has been adopted in other studies as well,.sgge6].) Let
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v; j be the value of nodeduring the;j** round. Afterr is announced, a nodebecomes a
TM-node for roundj + 1) if v; ; > 7, otherwise it becomes an F-node. After that EXTOK

works in three sequential stages detailed next.

Stage 1

During this stage a TM-node, triggers its update only if; ; # v; j—1, while an F-node,
i’, triggers its update only if;; ; > 7. The root requires the new values of all triggering
TM-nodes in a given round, therefore their values cannot be agtgégn-route However,
the values of F-nodes can and indeed are aggregstadute After the root has received
values from all of its children, it determines the correctness of the cutoprk result. As
represented in Figure 2.4 there are a few cases that the root needsier@nd which we
discuss next. For the sake of explanation we use Figure 2.4(a) to illusteasetiof topk
and the non togke values separated by the current threshelgvalue, further we refer to
the former as “topk-space”.

Sla:In this case we consider updates triggered by changes in TM-nodesmopéytic-
ular changes that happenthin the top4-space (Figure 2.4(b)). The only interesting event
is when there is a new and higher value for the lower bound of the cuop#it values. In
this case a new is computed and transmitted to all nodes. Consequently some TM-nodes
may now become F-nodes. This scenario has no effect on curresdésn

S1b: Next we consider changes triggered by updates from F-nodes onjyhanges
that happen outside the tdpspace (Figure 2.4(c)). By definition this means that the new
values of these nodes are greater than or equal &amd also that those nodes may become
TM-nodes. It is also possible that a newexists and needs to be transmitted, and again
depending on that value, some TM-nodes may need to switch to F-nodeganrsa.

Sic: The last case of interest is more general; values are coming in or leavingpthe
k-space (Figure 2.4(d)). The first situation can be triggered by cerfadates from either
TM- or F-nodes, while the second happens when a TM-node’s valuestlhmique falls
below the current. When the root receives all updates it will hav/evalues that are equal
or above the current value andmn values that are below. If ¥’ > k, the root computes
the current lower bound and, if there is a change, transmits it. As before, nodes may then
need to switch their operating modes accordingly. Evendbes not change, and therefore
is not transmitted, nodes may still switch their mode since they know their ownsvahgk
can presume that did not change. A more interesting scenario however, is when the root

ends up witht’ < k values greater than. Then there are two cases to consider depending
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(b) Moving values within the top-space.

top—-k non top—-k

kro{ ————— {o{®®®®§gp ————————————————— SIS
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(d) Moving values in and out of the tapspace.

Figure 2.4: Various scenarios of changing values that can impact the tegult andr
setting. The dark-color filled circles represent the topalues and the circles with a filled
pattern represent the non téprsalues. The arrows visually represent how the nodes’ values
may change with respect to the total order of values from one round te#teAnon-filled
circle represents a “space” created by a moving #am-non topk value. Solid (dashed)
vertical lines represent the new (previousyalues.

on the relation betweeh — &’ andm, in both cases the root determines a suitgivzbe
valueto be sent in aalidation queryto all F-nodes; their responses are considered in Stage
2 (which we discuss shortly.). The purpose of the probe value is to rteteisubset of the

nodes that need to respond to the validation query.

e If k— k' < mthe root has enough values to complete the answer set, but it is possible

that F-nodes that did not trigger an update, and therefore whoses\ae@ot known
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to the root, should be part of the answer. To solve that potential problemrtbe
value is set equal to th@g — k’)th highest value from the set of values of nodes

that have dropped below:

e On the other hand it — ¥’ > m the root does not have enough values to complete
the answer set and is unable to set a sensible bound for the probe \alef®ié it
operates similar to the first “TAG-like” round over the F-nodes (TM-rodeed not
be queried as they would have already sent useful updates by theg)selwd the

probe value is set te-co.

To illustrate the situations above consider an example whete30, k¥’ = 8 and the
set ofm values belowr at the root is{25, 22, 19, 18, 1k If £ = 10, then the root needs
k — k' = 2 values to complete its answer set. Only values greater than or equal to@2 nee
be considered since the root already has values above it to completesiter zet, thus the
probe value in the validation message is set to 22, i.e.2thd(k — k’)th) highest value
among then values available. Ik = 15 then the root has no means to set a bound on the

probe value as it has less values than it needs, thus it sets the probé&vadueso

Stage 2

In the second stage all F-nodes, which had not triggered their update @uthent round,
reply back in response to the validation query only if their value is greaterdhaqual to
the probed value. Aggregation is applied-routeand can actually be “tightened”. Note
that the node needs no more than- £’ values, thus if a node receives more than £’
values, then it forwards only the information about the kop &’ values to its parent. The
root may or may not receive any values in response to the validation.dqueayy case the
root can correctly determine the tdpresult from the values it has received from the TM-
or F-nodes during the first stage, plus the F-nodes that have rept&drbidne second stage
in response to the validation query (if any), which is in addition toithealues above that
the root already has. At this point the root can recompute a new valueffom the newly

computed topk values, and if it is different from the previousthen it is transmitted.

Stage 3

In this “concluding” stage the root updates the nodes about therhand the nodes can

set their mode accordingly. In the absence of a threshold update meksagga given
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Algorithm 1

1: procedure EXTOK-NODE((;, P;, R, k)

2: 7«1
3: mode; < TN,
4: V0 = —00;
5. repeat
6: Q=10
7 Trigger «— false;
8: if (mode; = TN Awvj;; # vij—1)V (mode; = FN Awv;; > ;) then
9: Trigger < true;
10: Q= {<U1,j71>}7
11: if & # () then
12: forall i/ € ¢ do
13: if Receive(Q',i") then
14: RQ=QUQ";
15: if @ # 0 then
16: Send(P;, Q);
17: if Receive(ValidationQuery(vy ;,rVal), P;) then
18: Broadcast(&;, ValidationQuery(vg j,rVal));
19: Q =0
20: if mode; = FN ANw;j > vg; ATrigger = false then
21: Q= {<vi7j7 Z)}v
22: if & # 0 then
23: forall i/ € ¢ do
24: if Receive(Q',i") then
25: Q=QuUQ";
26: if @ # () then
27: Send(P;, Q);
28: if (Receive(tj41, P;)) then
29: if & # 0 then
30: Broadcast(&;, Tj+1);
31 else
32: Tj+1 = Tj;
33: if (I > Ti+1 then
34: mode; = TN
35: else
36: mode; = FN;
37 Jje—J+1

38: until 7 > R
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Algorithm 2

1. procedure EXTOK-RooT(,, R, k)

2: 7«1
3 repeat
4 Q=10
5 forall i/ € &, do
6: if Receive(Q',i") then
7 RQ=QUQ"
8 S; = ExtractI Ds(Q);
9: forall i’ € S¢; \ S;; do
10: Q = {<'Ui’,j71a 7,/>} U Q;
11: S; = ExtractI Ds(Q);
12: ST"F,j - @7
13: Sr_j=10;
14: forall i/ € S;do
15: if Vi j > T then
16: S7—+7j =i U S—r+7]’;
17: else
18: S‘,-f’j =i U 57-77]';
19: K =1V(Sr15)l;
20: m= ‘V(ST—J)|§
21: if & > k then
22: [V(St’j), S@j] = FindTOpK(V(ST+,j), ST+7J');
23: else
24: if K — k' < mthen
25: g — (k — k" highest value of V(S,_;);
26: else
27: Vq,j = —OQ;
28: rVal =k —k';
29: Broadcast (&, ValidationQuery(vg ;,rVal));
30: Q = 0;
31: forall i/ € ¢, do
32: if Receive(Q',i") then
33: Q=QUQ;
34: S; = ExtractI Ds(Q);
35: forall i/ € Sq—+7j U S.,_,,j do
36: S; =4 US;
37: [V (St,5), St 5] = FindTopK(V(S;), S1);
38: Tj+1 = FindMin (V(St,])) ;
39: if Tj+1 75 Tj then
40: Broadcast(&y, Tj41);
41: Output ([V'(St5), St,4]);
42: Jje—J+1

43: until j > R
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round nodes can safely assume that the threshold value has not dlzamthey set their

(possibly) new mode for the next round based on their current valure alo

2.4.2 EXTOK's Pseudocode

EXTOK'’s pseudocode for node and root’s functionality are given@spectively. EXTOK-
Node takes as input the set of childrén,and parentpP;, of nodei in the logical tree. Num-
ber of rounds R, andk are other two inputs. EXTOK-Root, which is executed exclusively
on the root node, takes, R, andk as input, where represents the root node.

It is worth noting that thdBroadcastoperation used in Algorithm 1 at lines 18 and 30,
and in Algorithm 2 at lines 29 and 40 represents a single transmission the¢igad by the
appropriate nodekcally, i.e., only neighbors (possibly more than one) of a transmitting
node. It differs from theglobal broadcasting (discussed in the next chapter) where the
main goal is to send a message transmitted by a particular node to every afleeénribe
network, which is clearly different from sending the message to the nerghimly. Of
course the nodes may use a multi-hop setup of the network, e.g., a logicsirtretire to
disseminate the message in the network. We will examine this problem in detail iexthe n

chapter.

2.4.3 EXTOK'’s Correctness

The correctness of EXTOK'’s algorithm in the first round is straightfodia establish, as
its behavior is very much similar to TAG’s. The following theorem asserts aodes its
correctness for subsequent rounds. We assume the availability of hwtidns: V' (S) that
returns the number of unique values within a given set of néjesdv; ; that returns the

value of a given nodéat roundj.
Theorem 1. In any given round > 2, EXTOK produces a correct topresult.

Proof. Given a setS of N nodes, letS; ; and Sy ; be the sets of TM-nodes and F-nodes,
respectively, from which the root received values in feround. LetS, ; = S; ; U Sy ;, be
the combined set of TM-nodes and F-nodes. Furthe§let; = {i € S.;, s.t. v;; > 7}
and similarlyS;_ ; = {i € S.;, s.t.v; j < 7}. 7 is setto the minimum value in the current

answer set, i.e., it is the smallest of the current koyalues. Finally, le&’ = |S;, ;|, and

m = |S;_ ;|. We distinguish two case&’ > k andk’ < k.
Cl: If ¥ > k the root has at least values that are greater than or equaltoBy
construction, the values that the root does not know must be less thlarefore the root

must have the exact topvalues.
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C2: If ¥’ < k, then the root requires additional— £’ values to find the top:- result.
Further,S-_ ; # 0 (otherwise we would necessarily hal/e> k) and it contains only those
TM-nodes whose values have dropped betgWF-nodes only send updates if their values
become greater than or equaktoAt this stage (S1c, Algorithm 2, line 29), the root sends a
validation query containing a probe valug;, which leads to the following two sub-cases.

C2a: If k — k' < m, then the probe value, ;, is the(k — k:’)th highest value from the
set,V (S-— ;). Assume the root receivés$’ values in response to the validation query. By
construction alk” values that the root receives are greater than or equgl tbut smaller
than; otherwise they would have triggered an update and be known to thelreatin
The root now hag’ values that are greater than or equaktandk — k' values that are
less thanr but greater than or equal tg ;, and additionak” values (received in response
to the validation query) that are also less thamut greater than or equal tg ;. The root
now is guaranteed to have at le&stalues that are greater than or equakfg and all other
values in the tree are, again, by construction smaller thgn Thus the root must be able
to find the correct toge values.

C2b: If k — k' > m, theny, ; = —oo, which means that the root will receive answers,
possibly aggregateehn-routefrom every F-node that had not triggered its update during the
first stage, and clearly there will be enough values (current plus ne@esived ones) at the

root for the correct tope values to be found. O]

2.5 Performance Evaluation

In our simulation study we implemented FILA and EXTOK using the commonly usé&d SP
topology. For FILA we implemented uniform and skewed filter settings, any filier
update policy because of its superior performance [73]. A node id andlile are repre-
sented by 2 bytes each. A filter in FILA andvalue in EXTOK are characterized by 4 and
2 bytes, respectively. Each message also accounts for 4 bytes deet lpeader overhead.
In all experiments we assume that messages are delivered using a multiiinopEEs is

in contrast with the experimental setup used in [73] in which only nodesdbmessages
are delivered using a multi-hop setup; while the root is assumed to be cajaldmmu-
nicating with the nodes using single-hop transmissions. For various iea&obelieve this
assumption cannot be considered to hold in general. Consider e.g., th@siinavhich
the root has limited power to transmit the signals that can be received by a limited n

ber nodes only. Nonetheless, for the sake of fair comparison we atBwpesxperiments
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while considering such an assumption for both approaches, i.e., we alsideoa setup in
which the root is capable of communicating with the nodes using single-haggniissions
in FILA as well as EXTOK.

In order to evaluate our proposal we used both synthetic and reaktimtasie synthetic
dataset was generated by simulating a network of nodes deployed in ax200m area.
Using this dataset we performed experiments by varying five parametensber of top
values soughtk), number of nodes), wireless/transmission range)( probability that
a node’s value changes between two consecutive roup)dsnd percentage of change in
node’s value ). To investigate the impact of randomly changing values (hodes’ measure-
ments) on the performance of the algorithms we generated “temperature’svalunodes.
The initial value of nodes was randomly set between 1 and 100 and coyldeaveen
rounds according to paramet&iequally likely to be a negative or positive change). Re-
sults using the synthetic dataset are based on an average of 20 simulasdn winich
each run consists of 200 rounds. In each of these simulation runs thiepas$ the nodes
and the root node were chosen randomly. All results presented in this thelside 95%

Confidence Intervals as marked by the vertical error bars.

2.5.1 Intel Berkeley Research Lab Setup

In all simulation studies presented in this thesis we also used a real sehsorkngetup
from the Intel Berkeley Research Lab [1], which provided us with as#taonsisting of
approximately 3.5 million sensor readings from 54 nodes deployed in th@xptely
50mx50m lab. There were some missing values from the data that were replsiced u
linear interpolation. Sensor readings were originally maintained by epachsnotonically
increasing number for each of the nodes. We organized the senslamgsan such a way
that the dataset has 60,000 rounds, each one containing one valaeliarfehe 54 nodes.
Nodes’ position were also available with the dataset that we used to createdinal
physical topology. Since the number of nodes and their positions areifixidis setup,
we varied transmission range (in meters) of nodes from the[8etl0, 12, 14, 1§ to
create various logical tree topologies. As before the reported res@taraaverage of
20 simulation runs, and during each of those runs the root node wasrchasdomly to
create a logical tree topology. Note that unlike the synthetic dataset in whactowlid
vary parameters, w, v, § and N, only parameterg and w are investigated using the
Intel dataset in this chapter. Nonetheless, throughout this researabeslehis real sensor

network setup (and the corresponding data as well whenever it wéisalp) to evaluate
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] Parameter H Values \

k (# of top values) 1, 5,10, 15, 20
N (# of nodes) 100, 200,300, 400, 500
L (length of the square area [m 200 (Synthetic)
50 (Intel)
w (transmission range [m]) 25, 30,35, 40, 45 (Synthetic
and 8, 10,12, 14, 16 (Intel)
~ (probability of change) 0.1,0.2,0.3 0.4,0.5
0 (change [%]) 2,4,6,8,10

Table 2.2: Parameter values used in this chapter (default values ara shbuld face).

various solutions including the ones proposed in this thesis.

w2 N
LQ I

number of nodesy is the transmission range of nodes ahds the length of a square

In our experiments we also keep track of the denslty— where N is the
area. In particular, whenever we valy, L andw (or a combination of those parameters),
we report the changes # value as well. Note that changing basically represents the
change in the node density of the network, which may impact the underlyincaldgee
topologies. Table 2.2 summarizes the set of values used for various pararire our

experiments presented in this chapter.

2.5.2 Transmission Cost

Transmission cost is measured as the average number of bytes transmittatbtg per
round. Results from our experiments with the synthetic dataset are sumcdarifég-
ure 2.5. In the first experiment we evaluate the impact of varking the EXTOK’s perfor-
mance (Figure 2.5(a)). The foremost trend that we can see is that EXTi@kKsmission
cost is consistently smaller than FILAs. Particularly EXTOK incurs 70-86%6 cost than
FILA. The reason for this behavior is root-to-node communication whicligcmore often
in FILA (recall its filter updates and two probing phases). In contrastabEXTOK gen-
erates less root-to-node communication (recall that there is a single vadshoid updates
for filter settings and only one probing phase in EXTOK). As expecte@nikhincreases
the costs for EXTOK and FILA increase as well, however, the increasaih faster in
the case of FILA as more filters need to be maintained (specifidat,pairs of values).
Overall EXTOK offers the best solution which saves up to 80% of the conation cost
as compared to the previously best known solution, FILA.

In the second experiment we evaluate the impact of varyifigigure 2.5(b)). Note that

changingw is bound to chang@&, and hence the node degree (humber of neighbors) of the
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Figure 2.6: Transmission cost in the Intel dataset.

nodes. Therefore, along with, we also show the changes in valuelaf Clearly EXTOK
is the best option. The reason for the improved performance with incteagethat asv

increases the underlying tree becomes shorter, decreasing the nunhio@isdo the root.
That results in efficient communication between the root and the nodes/ieadersa.
Here again, EXTOK consistently performs better than FILA.

Varying v andé create a scenario that allows observing how the dynamics of the ob-
served values affect the algorithms’ performance. Naturally, the mavardic the observed
values, the more updates will be required. In essence this situation cneate€ommuni-
cation traffic in the tree. Our experiments in this regard are summarized ineSi@ub(c)
and 2.5(d). Again EXTOK outperforms FILA by a substantial margin. It teri@sting to
note that the increase in communication traffic clearly impacts FILAs perfoo@awhile
EXTOK is virtually oblivious to the same. The reason for FILA's behaviothiat when
values are changed more dynamically filters are violated more frequentlynarelcom-
munication takes place between the root and nodes. That results in duerakse in
the transmission cost of FILA. On the other hand filters are violated in EXEOKvell,
however, since the top-nodes always send their update, the validation phase is used less
frequently by the root. Moreover, whenever the threshold is changsilling new filters
at the nodes is much cheaper in EXTOK making it much less affected by tlzerdym of
values. Overall, EXTOK saved more than 65% of the cost over FILA.

Figure 2.5(e) summarizes the results from the experiments with the synthetimmdata

which we vary N while keeping all other parameters fixed. IncreasiMigncreases the
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Figure 2.7: Energy cost.

network density, which basically increases the node degree of the nodes. As expected
EXTOK performs better than FILA. The noticeable trend is thaiNaimcreases the perfor-
mance of all approaches increases, which can be explained by thadaeis the number

of nodes increases the amortized per-sensor cost decreases.

Results from our experiments using the Intel dataset are discussed e Rigu The
gualitative behavior is not very different from the case where syntdetiz is used. Quanti-
tatively though, there are noticeable differences. This can be explajnthe following two
observations and their compounded effect. First, the average nodsedsgiow smaller
(compare e.g., the node density in Figure 2.6(b) with that in Figure 2.5(legortl, the
Intel dataset is more dynamic, naturally triggering more updates and agersygmore
nodes-to-root transmissions, which has resulted in overall increase fratiismission cost,

e.g., compare the scale of results in Figures 2.5(a)-(b) and 2.6(a)-(b).
2.5.3 Energy Cost

Each bit received by a wireless transceiver incurs an energy £pst, It is also typical

of transceivers used in wireless sensor platforms that receiving ibmedoiires less than
the energy for transmitting one bik{,). Models capturing the energy consumption have
been proposed and used in various previous studies [43, 60]. éntwrdhake the presented
results as technology-neutral as possible, we assume that the unitrgy ewst is the
energy required for the transmission of a single bit,, and we use a parameté,, to link
transmission and reception cost Via = F,,/E.,. The energy cost of a node is computed

as B; + B,.R., where B; and B,., respectively, are the number of bytes transmitted and
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Figure 2.8: Network lifetime.

received by the node. In our experimerits assumes values from the sgt.2, 0.4, 0.6,
0.8, 1.0, and all other parameters are kept at their default values. An incee&sinalue
means the cost of reception is increasingly becoming equal to the coshgifitission. For
simplicity we do not include the processing cost (which is generally muchpehnd¢han the
transmission or reception cost) in our energy consumption model.

The results from synthetic data are summarized in Figure 2.7(a). As thetosst
ception increases the overall energy cost increases for all soluttmgyh the increase is
much faster in the case of FILA. The reason is that FILA uses rangallfdiers that nodes
receive during the filter updates apart from the two probing phasesgiwhich nodes re-
ceive probing messages, which accounts for much of the receptiomdd&tA. Therefore,
when R, increases the reception cost becomes dominant and increases tHeenagy
cost in FILA. On the other hand EXTOK has less reception cost to begin aiith there-
fore, it does not contribute much to the overall energy consumption. Quaditasimilar

results were obtained when using the Intel dataset as shown in Figuiod.2.7(

2.5.4 Network Lifetime

We also evaluated the performance with respect tontevork lifetimethat we define as
the number of rounds before the first node runs out of its energy.ofigpate the energy
consumption we used &R, value of 0.6. The initial energy budget for a node was chosen
from the set{4000, 5000, 6000, 7000, 80POResults are summarized in Figure 2.8.
Results from synthetic data reveal that EXTOK extends the network’s lifetime

significantly as compared with FILA. In particular when the initial budget i8Q10nits
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of energy, EXTOK works for 100 rounds as compared to 28 roundsliAFThe lifetime
in EXTOK is almost doubled to 200 rounds when the energy budget is dibubdI8000
units. Qualitatively similar results were obtained when using the Intel datagetevér,
the network lifetime is decreased as the overall per-node energy cotisarighigher in
the Intel dataset due to which the network lifetime is reduced. This can lifeetieny
comparing the results in Figures 2.7(a) and 2.7(b) in which we can see ¢hanéngy cost

in the Intel dataset is more than the synthetic dataset.

2.5.5 The Case of a Single-Hop Broadcast

As presented in [73], FILA uses a TAG tree (an SPT) as an underlygigdbtopology to
deliver messages from the nodes to the root (i.e., multi-hop setup for #edest mes-
sages). However, no tree is used to deliver root-to-nodes messEgesise it is assumed
that root can directly communicate with nodes (i.e., single-hop setup fotoemddes mes-
sages). This assumption, which was made in [73], is not very realistic,riicydar for
WSNs deployed in large areas where obstacles, interference, andeothenment fac-
tors restrict how far the root’s signal can reach. Nevertheless, veeeasmined FILA vs.
EXTOK assuming this assumption holds for both approaches.

Results on transmission cost from synthetic and Intel dataset are sumaniarizay-
ures 2.9 and 2.10, respectively. As before EXTOK outperforms Fhd¥ever, the margin
in performance gain is reduced. This can be attributed to the fact thatrdsedts do not ac-
count for broadcast messages that are significant in the case of Riedall nodes receive

filter updates and probe messages directly from the root without using nolts¢tup.
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Figure 2.12: Network lifetime (the case of a single-hop broadcast).

Results on energy cost and network lifetime are summarized in Figures 2112.48,
respectively. Once again EXTOK decreases the energy consumpibtherefore extends
the network’s lifetime by a significant margin. Note that in this setup in which tiséfco
multi-hop transmission of root-to-nodes messages is not considered ttharkie lifetime
is increased even further, which is in contrast to the results summarizedureRd. This
can be explained by the fact that nodes do not spend their enemgyagingthe messages
from the root as the root can reach all nodes with single-hop transmssgidowever, the
nodes still pay the cost of reception for the messages received fromodhewhich has

been accounted for in all our results.) Nevertheless, even in this setagtterk lifetime
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while using EXTOK is significantly higher than the lifetime achieved by FILA asnghin
Figures 2.12(a)-(b).

2.6 Conclusions

In this chapter we proposed a filtering based solution for efficiently msing the contin-
uous topk queries in WSNs. Filters allow to suppress a considerable amount of -nodes
to-root messages during the convergecast phase. However, tichiésed at an increased
amount of root-to-nodes messages in order to get nodes’ responaédate the results
and also to update the nodes’ filter. Note that a filtering based solution esduioadcast
phases in every round hence increasing the query latency. In cotatthat, a non-filtering
based solution, e.g., TAG, does not need broadcast phase at allftapathe one during
which the query is actually disseminated) in which every node simply senddutsiveev-
ery round and aggregation is performeatroute Nevertheless, employing filters, as in the
case of EXTOK, saves a considerable amount of query processstgnderms of energy
as compared to TAG. Basically there exists a trade-off between the ecesgwand query
latency for these two types of solutions, i.e., filtering and non-filtering based
Irrespective of the type of a solution, broadcasting and convergegagmain two
basic operations to process the queries and hence their importance isamgnifihe effi-
ciency of a filtering based solution for the tépgueries will be highly dependent on how
efficiently broadcasting is done, in particular with respect to EXTOK’s \aiah query and
threshold updates. This is the precise problem that we discuss in detailnexhehapter.
Our intuition is that by effectively exploiting the physical topology one casate a logical
tree topology that is better suited than commonly used logical topologies, e.g.f@PT

broadcasting.
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Chapter 3

Broadcasting

3.1 Introduction

Broadcasting is a basic operation used in WSNSs for disseminating mességesatwork.
Many applications rely on broadcasting to achieve certain objectivesieapordinate the
distributed computing operations or to update a patch of software throwghuble code
dissemination. In particular, recall the tépguery processing from the previous chapter in
which EXTOK and FILA require the root to send the validation query andfitieeshold
update messages to the nodes in the network. In this chapter we make nag@eassump-
tion about what is the message that needs to be broadcast. We just asatialernthdes,
either periodically or during pre—determined periods, need to participat®adbasting to
allow the network—wide dissemination of messages.

Typically, there are two types of broadcasting problems that are coesiderthe lit-
erature, i.e.One-to-Alland All-to-All. In the One-to-All broadcast problem a particular
node generates a message that needs to be delivered to every othen tioel network,
e.g., a validation query issued by the sink. In the All-to-All broadcastlpratevery node
in the network generates a message that needs to be communicated to esenodthin
the network. All-to-All broadcasting essentially requires multiplstancesof One-to-All
broadcasting. In this thesis, we propose solutions for One-to-All lmastthg problem only,
however, the proposed solutions can be extended to the All-to-All besdidg problem.

As discussed previously in Chapter 1, onémasolution to broadcasting is flooding in
which every node simply forwards the message that it receives fromighler. It is trivial
to see that flooding will achieve the desired goal, i.e., every node in the rietilbeventu-
ally receive the message originated from the sink. Nevertheless, flotedidg to increased
redundancy, contention and collisions in the network, which makes it dficieet solution

[29]. A sensible alternative to flooding is to use a logical tree topology, eogayronly
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(a) SPT (b) DST
(Total 8 messages used for broadcasting) (Total 4 messages usedddcasting)

Figure 3.1: Examples of different logical trees used for broadcas&ofjd arrowed lines
represent edges of the logical tree. Dashed lines represent edgesehn the graph but
not in the logical tree. Arrowed lines also represent messages with thectistithat all
arrowed lines coming out from a node represent a single transmissiorthiat node.

used SPT. An obvious problem now is to decide which logical tree is bettermtiners for
broadcasting in WSNs. This is the precise problem that we address in #pgech

It is interesting to note that only the root and non-leaf nodes of a logicalieed to
transmit the message during broadcasting. Leaf nodes need to be recipietusively.
Consider, e.g., the SPT as shown in Figure 3.1(a). It is easy to undktbina smaller
set of non-leaf nodes will result in a lesser number of transmissionssi@me.g., the
Dominating Set Tree (DST) [46] shown in Figure 3.1(b), which is anothlterrative for
the logical tree that can be used for broadcasting instead of the SPT #hé&igure 3.1(a).
(Note that both logical trees, i.e., SPT and DST are constructed fromriee g@mmunica-
tion graph.) Clearly the DST has a lesser number of non-leaf nodes asoeatp the SPT.
Using the DST, only nodefA, C, F, I} need to transmit the message, i.e., only 4 messages
are used for broadcasting. This is in contrast to the SPT in which 8 mesaageised.
Therefore, the problem here is to find a logical tree topology rooted airtecplar node,
i.e., the sink, and which has the smallest possible set of non-leaf nodegestingly, the
above problem is similar to the problem of finding a Minimum Connected Dominaghg S
(MCDS) [69] of a graph. Formally the MCDS problem is defined as following
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Definition 1. The MCDS problem. Given an undirected grapli’(V, E), find a set of
verticesV’ € V such that (i)V’ is connected, (ii/v’ € V — V': v/ is connected to one of

the vertices i/, and (iii) |[V/| is minimum.

The above two problems are similar in the sense that the non-leaf nodeseef @otr-
structed from a graph constitute a connected dominating set of the sante grgp the
non-leaf nodegC, F, I} of the DST shown in Figure 3.1(b) also constitute the correspond-
ing MCDS of the underlying graph from which that DST has been credttedn be easily
verified that node$C, F, I} satisfy all three conditions of the MCDS problem, i.e., (i) nodes
{C, F, I} are connected, (ii) all nodes other thg®, F, I} are connected to at least one of the
nodes from{C, F, I}, and (iii) there is no set of less than three nodes that meet the former
two conditions. Unfortunately, finding an MCDS is known to be an NP-haolpm even
when specialized to Unit Disk Graphs (UDG&§)6]. The question of a tight approximation
to the MCDS remains an area of active research [9].

An MCDS represents the minimum number of transmissions to reach all nodes in a
network during broadcasting. Note that an MCDS is not constrained biadhéhat a par-
ticular node initiates the broadcasting. However, this is in contrast to ouifigperoblem
in which it is required that the broadcasting be initiated from a particular rigggethe sink.
Basically in this case the vertex representing the sink must be contained irGB&M\ext,
we examine the problem of finding an MCDS with the condition that a givenwesteart

of the solution. The new problem is defined as following:

Definition 2. The MDST problem. Given an undirected grap&'(V, E) and a particular
vertex,v € V, find a set of vertice¥”’ C V such that (i)V’ is connected, (iiy € V", (iii)

Vo' € V. — V': v’ is connected to one of the verticeslihand (iv) |V'| is minimum.
Theorem 2. The MDST problem is NP-Hard.

Proof. Assume there exists an algorithfthat takes two input&!(V, E) andv; € V to
solve the MDST problem, and outputs the solutihC V' containingv;. We can execute
A, |V| times, to find every solution with respect to every input vertexc V. Clearly
we can check the cardinality of each output 3ét(from the possibléV'| solutions) in a
polynomial time. IfV} is the set with the minimum cardinality, thér, must also be the

solution of the MCDS problem (as it does not restrict which set of ver@cesselected).

'UDGs are frequently used to model the communication of wireless noiflesdentical circular ranges,
deployed on 2—dimensional space. UDGs are, therefore, condidefieenchmark” class of graphs for the
study of wireless algorithm complexity.
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It means that ifA solves the MDST problem in polynomial time then the MCDS problem
is also solvable in polynomial time. However, it is known that the MCSD probleRPis
Hard [69]. Therefore, the MDST problem is not polynomial time solvablessP = NP,
and hence the proof that the MDST problem is NP-Hard. O

3.2 Related Work

Because constructing an optimal broadcast tree is an NP-Hard proldeerakapprox-
imation solutions have been proposed. Many heuristics including Broabhzasmental
Power (BIP) [72, 77], Iterative Maximum-Branch Minimization (IMBM) [JAdaptive
Broadcast Consumption (ABC) [38] and others [20, 23, 69]. Shostywill propose our
solution while establishing a lower bound on the number of transmissionsajedéry a
logical tree during broadcasting. As a side note, [69] provides anrdppend on the size
of the CDS, i.e., the number of dominating or non-leaf nodes, which will rés@tuiv-
alent number of transmissions. To be precise their algorithm has an appten ratio
of 8. But from the performance of their algorithm it is evident that this uggmeind is far
too pessimistic compared to the typigahctical behavior of their algorithm. We take a
different view of trying to squeeze the performance as close as possitble kmwer bound
corresponding to the broadcasting tree. Nevertheless, for compatisposes, we will also
evaluate the performance of [69] in our simulation study.

There are several other existing proposals that use different Iagjrcgtures, e.g., clus-
ters, for efficient communication in wireless networks [7, 41, 49, 51, Bilparticular, Lin
and Gerla [41] proposed a clustering based network architecture ftinmedia support and
Basagni proposed DCA [7], a distributed clustering algorithm for acl+etworks. Con-
sidering the power constraints of WSNs several energy-efficientisnkihave also been
proposed in the literature. Heinzelman et. al. proposed a class of adamitteeols, SPIN,
for efficient dissemination of data in WSNs [28]. In [33], a data centrigragch called
Directed Diffusion has been presented for query processing in W3blsis and Fahmy
proposed HEED [51], a distributed clustering protocol for ad-hosgenetworks. Our
work is different from [7, 41, 49, 51, 61] in the sense that we areised on logical tree

topologies for broadcasting.
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3.3 Bounds and Tree Construction

A lower bound on broadcasting represents that the minimum number of trasiensighat
are required to broadcast a message from a particular node to everynoitfe in the net-
work. Consider, e.g., node A that has a message, which needs to lgedsbasing either

of the two logical tree topologies shown in Figure 3.1. Consider the DSTitiasis shown

in Figure 3.1(b). The depth of nod¢Hl, K, J} (i.e., their distance from the root, node A) is
4. Note that node$H, K, J} have the maximum depth in the DST, i.e., no other node in the
DST has depth 4. Clearly nodésl, K, J} cannot receive the message unless their parent
node | transmits the message. Similarly, node | cannot receive the mesdaggeits parent
node F transmits the message, and so on. Overall, broadcasting camoohjpleted with
less than four transmissions while using the DST. Similarly, in the case of thel&min in
Figure 3.1(a), the depth of node K is 4, which is also the node with the maximpth ohe

the SPT. Clearly, broadcasting requires more than four transmissions weirig the SPT.

To generalize this observation, we introduce the following lemma.

Lemma 1. Given an undirected grapt¥(V, ) and a particular vertexp € V, a lower
bound on broadcasting by, T,in, iIs maz{d; : i = 1,2,...N}, whered; is the shortest-

distance of nodé fromv in the graph.

Proof. Let £ € V be a node that has the maximum shortest-distance framthe given
graph, i.e.dy = maz{d; : i = 1,2,...N}. We will prove by contradiction that},,;,, >
mazx{d; : i = 1,2,...N} for any given graph.

Assume thafl},,;, < mazx{d; : i = 1,2,...N}. Recalldy = maz{d; : i =1,2,...N},
therefore 1, < d. However, that is an impossible result as nédell require at leasti;,
transmissions (by and possibly some other intermediate nodes) to receive the message. It
means that our assumpti@h,;, < maz{d; : i = 1,2, ...N} must be incorrect. Therefore,
Tnin > max{d; : i =1,2,...N}, and hence the proof.

[

We note that a tree construction algorithm, whether for an SPT, a DST mthaykind
of tree, ought to be guided by the potential it has for using fewer transmisor broad-
casting. Until now, the tree construction algorithms produced a tree bastapological
properties alone, e.g., by finding a Maximal Independent Set (MIS)graph [69]. To
the best of our knowledge, we are the first to perform the broadaestconstruction in a

manner that is “guided” by the lower bound as established in Lemma 1. Intyitiés
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approach has the potential to result in a tree that requires the smalledti@ossnber of
transmissions needed for broadcasting.

As discussed previously, a tree with fewer non-leaf nodes or coglyargth more leaf
nodes is better for reducing the number of transmissions needed fatdastang (recall
Definition 2). Therefore, our primary objective in this chapter is to comstaliree that is
not only “leafy”, but which also meets the criterion as set forth in Lemma %higoend, and
in contrast to the existing approaches, our solution specifically targetgastiracting a leafy
tree that also “relaxes” the dependencies of the logical treepier{d; : i = 1,2,...N}.
Next, we describe our procedure for constructing a leafy broadieesbased on the bound

established by Lemma 1.
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3.4 Biased Shortest Path Tree

Itis easy to understand that any SPT constructed from a given gridphimimize the lower
bound,T,,;, , established in Lemma 1. However, not all SPTs may have the same number
of non-leaf nodes. Therefore, our problem now is to construct anf&®ing a minimum
possible number of non-leaf nodes. More formallyg,ifrepresents the set of children of
nodes in a given logical tree, then the problem is to construct an SPT that has ttienoma
number of leaf nodes, i.e., nodes havigg = 0. Our intuition behind constructing such

a logical structure is that a logical tree that minimizes the lower bound as eb&bliy
Lemma 1, and that also has the maximum number of leaf nodes may potentially use a
smaller number of transmissions for broadcasting.

For every node, d; can be minimized by ensuring that every node is connected to
the root using a shortest path, i.e., by constructing an SPT. A shortdstrpa can be
constructed using a standard Breadth First Search (BFS) algorithmegowninimizing
the total number of non-leaf nodes in SPT is non-trivial. Consider theasiceof a shortest
path tree construction as shown in Figure 3.2. A set of 12 nodes havesbesn in
Figure 3.2(a) at two consecutive “depthg’andd + 1, of the tree. In particular, nodes
from A to F are at distancé, and nodes from U to Z are at distan¢e- 1 from the root
(not shown in the figures). A possible scenario of parent-childreiy@ms®nt is shown
in Figure 3.2(b). In this examplga| = |€5| = |{c| = 2. However, this parent-children
assignment has resulted in nodes A, B and C being non-leaf nodes. einvadinds this
parent-children assignment has not created any leaf node in the tregrgWeto perform
parent-children assignments in such a way that the number of leaf naubs caaximized.
The reason being that by maximizing the number of leaf nodes, we can lhataigimize
the number of non-leaf nodes. To that end, our goal is to maximize the “lmadpecific
parents during parent-children assignments so that other potentiatpasgrbe “freed” to

become leaf nodes. In general, we have the following sub-problemeledsrio be solved.

Definition 3. Assuming’; represents the set of nodes that are at distahé®m the root,
the parent-children assignment problem is to assign every node at depth, C4.1, a

parent from the nodes at depihC,, such thatnax{|{x| : Vk € C4} is maximum.

Interestingly, the parent-children assignment problem as defined @&beyeivalent to

the problem of finding maximum-load semi-matchings in bipartite graj28]. A bipartite

2Harvey et. al. propose solution for optimal semi-matchings thimimizesthe load in semi-matchings
(with respect tal.., norm). However, our goal is tmaximizehe semi-matchings load.
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Algorithm 3
1: procedure FINDMAXLOADSEMIMATCHING(P, C, E)

2: B =

3: C'=C;

4:  repeat

5: forall p € Pdo

6: &p — 0;

7 & =C' N Ny;

8: W(p) = [&;

9: Pmaz = FindMaxW eight Parent(P, W);
10: forall c €¢p,,,, do

1% /:E/U{(pmazac)};
12: C'=C"\ &g

13:  until ¢" =10
14: return (E’);

graph formed by the nodes at depthi.e.,C; = {A, B, C}, and nodes at depth+ 1, i.e.,
Car1 ={U, V, W, X, Y, Z}, is shown in Figure 3.2(c). (Since nodes D, E and F do not
have any neighbors from the nodes at depth 1, they cannot become parents during the
SPT construction and hence they are ignored. However, they will esdynbecome leaves

of the SPT). A maximum-load semi-matching is shown in Figure 3.2(d). In this pkatic

example,

€4l =0, ¢p| =5, and|{¢| = 1. Itis optimal with respect to the maximum load
assigned to a parent among all possible parentspi@r{ |4, |€8], |£c|} =5 is maximum.
Note that this assignment has resulted in node A being a leaf node. This iatnastao
the parent-children assignment shown in Figure 3.2(b) in wigigh= |¢5| = |{¢| = 2, and
maz{|€al, &R, |[£c]} = 2, due to which node A did not become a leaf node.

Using the basic idea depicted in Figure 3.2(d) we construct a “special”isRFich,
at every two consecutive depths, maximum-load semi-matchings are obtgineddiruct-
ing bipartite graphs with nodes at those consecutive depths. Of coaseetults in the
maximization ofmaz{|{;| : Vk € Cy} at every depthil of the SPT. Intuitively, maximizing
max{|&| : Vk € C4} will result in the increased number of leaf nodes at every depth of the
SPT. We call an SPT for which the parent-children assignments are dorgeraaximum-
load semi-matchings as a Blased SPT (BISPT).

The pseudo-code for finding the semi-matchings (with maximum load) in bipartite
graphs is presented in Algorithm 3. FindMaxLoadSemiMatching takes as anpipartite
graphG (P, C, E) and returns a subgragh (P, C, E’) containing semi-matchings. Shortly
we will prove that FindMaxLoadSemiMatching produces an optimal solutiofirioing

the semi-matchings having a maximum load, a problem that we will reféagmum-
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Algorithm 4

1. procedure CONSTRUCTBISPT(V, E, r)

N

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

P —{r};
E —
forall v € V do
Mark(v) = False;
repeat
C—0
forall m € P do
Mark(m) = True;
for all m € P do
forall n € N,, do
if Mark(n) = False then
C=CuU{n};
Gy, < BipartiteGraph(P,C);
7 «— FindMax LoadSemiM atching(Gy);
E — E'UZ;
P~ C,
until P = 0;
return (E');

Load Semi-Matchingroblem. The procedure starts by assigning every npdépm P

(which are the potential parents) with a weight that is equivalent to the tatabar of

neighbors, i.e.]NV,, thatp has in the bipartite graph (lines 5 through 8). (Recall the property

of bipartite graphs thaw,, € C': Vp € P, i.e., all neighbors of a node from sEtare in set

C). The parent with the maximum weight is then chosen and all its neighboessigned

as children to that parent (lines 10-11). The assigned children arad¢hsoved from the

bipartite graph (line 12). This procedure continues until all children sseggaed (line 13).

Theorem 3. Given a bipartite graph, G(P, C, E), FindMaxLoadSemiMatching produce

optimal solution for the Maximum-Load Semi-Matching problem.

Proof. The very first node chosen by the procedure for children assignsiird node with

the maximum number of neighbors in the bipartite graph. (Recall the weigigihassnt

based on the degree of nodes.) Nép,,...) be the degree (and its weight) of the first chosen

node. It is trivial to see thah (p,,q.) = A(G). Since the maximum possible load for the

semi-matchings cannot be greater tha((z), FindMaxLoadSemiMatching is guaranteed

to find the semi-matchings having the maximum load, and hence the proof. O

The pseudo-code for BISPT construction is shown in Algorithm 4. It seesally a

breadth first search algorithm with two new additions: (i) a bipartite grapheisted from
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Figure 3.3: A BISPT constructed by the procedure ConstructBISPIid Soowed lines
represent edges of the logical tree. Dashed lines represent edgesehn the graph but
not in the logical tree.

the nodes of two consecutive depths of the tree as shown at line 14i)anahéximum-load
semi-matching is found for the corresponding bipartite graph using the FartdtvadSemi-
Matching procedure at line 15. Parent-children assignments obtainedythtba semi-
matchings, which eventually become edges of the desired tree, are theshiadtie edge
set of the tree under construction at line 16. This procedure is repaatiéll possible
parents are exhausted (line 18). Finally the desired tree, BISPT, isgeddat line 19.

A BISPT produced by the ConstructBISPT procedure is shown in FigBe First
notice that the constructed BISPT is indeed an SPT, i.e., every node in this t@ennected
to the root using a shortest path. Nod€s F, I} constitute the non-leaf nodes of the BISPT,
which also forms the MCDS. Notice the difference between the DST showigume=3.1(b)
and the BISPT shown in Figure 3.3. In the DST some paths connecting tles tmthe
root are not optimal, e.g., see nodgs, D, E, G, H, }J. We will discuss the importance of

this observation during the discussion on convergecasting in Chapter 5.

3.5 Performance Evaluation

To evaluate our proposal we implemented the solutions based on the gsojpdé®] and
more recently in [23]. In the rest of the section we will refer to the two solstigmposed

in [69] and [23] as WAF and GKLRW, respectively, named after the asthast names.
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] Parameter H Values \

N (number of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)
L (length of the square area [m]) 800, 1000,120Q 1400, 1600 (Synthetic
50 (Intel)
w (transmission range [m]) 200 (Synthetic)
8, 10,12, 14 16 (Intel)

Table 3.1: Parameter values used in this chapter (default values ara shbuld face).

WAF is a two phase approach for constructing a connected dominatingi $ke first phase
an MIS is chosen from the given graph and then a spanning tree is wctestito connect
the nodes of the chosen MIS. Non-leaf nodes of the constructed tnsétate a connected
dominating set. More recently GKLRW proposed an algorithm for constrgietioroadcast
tree which can eventually be used for broadcast scheduling, a topicsdest in Chapter 4.
For the purpose of our study it is sufficient to use the broadcast togped by GKLRW

to evaluate the performance of BISPT.

In our study we considered a similar setup as the one presented in [23]artic-
ular, the authors considered four different setups, i.e., 100, 200, &@d 400 nodes in
a 800nMx800m, 1000mx1000m, 1200m1200m, and 1400m1400m area, respectively.
Transmission range of nodes was fixed at 200m. To test the scalability sblilons to a
larger network we added one additional setup, i.e., 500 nodes in a 260800m area. We

also used the Intel setup discussed in the previous chapter to evaluatdudions.

We keep track of densityy = 7“222]\[, whereN is the number of nodes; is the trans-
mission range of nodes and is the length of a square area. Table 3.1 summarizes the
values used for all the parameters used in our experiments in this chapiténe Aesults
from the synthetic and Intel setups are an average of 20 simulation miresach run one

node is chosen randomly uniformly as the root.

3.5.1 Number of Dominating Nodes

We use thenumber of dominating (non-leaf) nodeshich is basically the size of a con-
nected dominating set (CDS) representing the number of non-leaf nbtteslogical tree,
as the metric to evaluate the performance of various solutions, since thetfengominat-
ing nodes, the fewer the transmissions for broadcasting. In the followipgrienents we
vary N, L andw to note their impact on the size of the dominating set.

Figure 3.4 summarizes the results from the synthetic dataset. In the firgsiregpée

we vary the area size and the number of nodes to observe the scalability pifaposed
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Figure 3.4: Performance of various solutions with the synthetic dataset.
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Figure 3.5: Performance of various solutions with the Intel dataset.

solutions for which the results are presented in Figure 3.4(a). In thexdepgeriment we
keep the area fixed at 12000200m and change the number of nodes from 100 to 500.
This experiment creates the scenario of an increasing node density ih amiocreasing
number of nodes are “packed” in a fixed area. The results from thisrerpnt are pre-
sented in Figure 3.4(b). The foremost trend that can be observedifi@nesults obtained
through these experiments is that BISPT’s approximation of MCDS is betterihather
solutions. In particular, the size of the CDS produced by BISPT is 5 to 26%cthean the
size of the CDS produced by other solutions.

As shown in Figure 3.4(a), when the network scales up (in terms of theaashe
number of nodes), the size of the CDS increases as expected. Thasmdsemuch faster
in the case of WAF as compared to GKLRW and BISPT. Nevertheless, tf@ampance

of BISPT with respect to GKLRW increases as the network scales up.elnabe of the
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increasing node density, the CDS size increases as well, but by a smalign nidre reason
is that when more nodes are “packed” in a fixed area the size of thelyingeree grows.
However, that does not necessarily increase the number of dominatieg ae many of the
nodes become leaf nodes in the logical tree.

Figure 3.5 summarizes the results from the Intel dataset. The main changesén the
results with respect to the synthetic setup is that the trend of the perforncanges is
reversed. The reason is that in the case of the Intel setup we can onljyhedransmission
range to change the node density. Due to this the number of neighborsdeeisrincreased.
That results in a “short” and “fat” underlying tree due to which the size ©GDS (number

of dominating nodes) is reduced to a trivially small value.

3.6 Conclusions

In this chapter we proposed BISPT, a logical tree topology for effideatdcasting in
WSNs. Simulation results reveal that BISPT outperforms other well knautisns in
terms of better approximation for MCDS or MDST. It also means that BISP Triseawith
a smaller set of non-leaf nodes, which will incur lower transmission cadifoadcasting.
Clearly this will reduce the query processing cost for solutions thatiredproadcasting as
an elementary operation, e.g., recall EXTOK and FILA. In the next chapte propose
solutions for scheduling broadcast. It is a problem in its own right, whigus¢o take into
account the unique features of a WSN, mainly its distributed environmerthandireless

nature of nodes’ transmissions.
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Chapter 4

Broadcast Scheduling

4.1 Introduction

In the previous chapter we studied the problem of broadcasting in W&Nwrticular, we
highlighted the importance of an underlying logical tree topology during tbadwasting
operation. We proposed a simple solution for constructing an efficientdbigée topology
that is more suitable than the existing logical tree topologies for broadca&sgsgntially,
the problem of broadcasting is the problem of determining which nodes indtveork
should repeat (relay) a message and which ones should not, sucli tiades receive a
message sent by a particular node. The former are catiedeaf nodesor relay9 and the
latter are calledeaf nodedn recognition of the fact that the dependency of transmissions
forms a logical tree. (A non-leaf node cannot transmit before it resdile message from
another “upstream” non-leaf node, i.e., its parent in the logical tree.) Djextive here is
to minimize the number of transmissions, hence the number of non-leaf nottesloical
tree topology. This objective led to the BISPT algorithm presented in thequeehapter.

An obvious problem now is to efficiently schedule a given logical tree, 8kpPT,
which is the main focus of this chapter. Determining the logical tree is not muffibecause
it does not determinerhenthe non-leaf nodes need to transmit. Consider the scenario of
broadcasting using a commonly used logical tree topology, SPT, as dejpidtagure 4.1.
As shown in Figure 4.1(a), the root starts broadcasting by transmitting aageggich is
received by the root’s childrefB, C, D}. Next, the root’s children are required to forward
the message. As all of the root’s children are ready to transmit the megszggbly at
the same time, there may be interference if they transmit the message cotiguirethe
worst case nodefB, C, D} transmit the message simultaneously as shown in Figure 4.1(b).
Because of the wireless medium, transmissions from n¢Be€, D} interfere with each

other causing “collisions” at the receiving nodgs, F, G} due to which none of the nodes
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(a) Transmission from the root. (b) Transmission from the root’s children
(No collisions at root’s children B, C, D) (Collisions at nodes E, F, G mekiixg arcs.)

Figure 4.1: Interference in SPT during broadcasting. (Solid lines septeedges of the
logical tree. Arrowed lines coming out from a node represent a singhsrimassion from

that node. Dashed lines represent edges that are in the graph buotthetlogical tree.

Highlighted circles represent nodes that are transmitting a message.)

from {E, F, G} are able to receive the message from their respective parents.

One solution here is to rely on an underlying Medium Access Protocol (MAACh as
CSMA/CA [66] to handle contention and re-transmissions in the event of ioolfis The
main problem with a contention-based MAC protocol is that nodes do nat kviten to
expect the messages that areendedor them. In this situation, the transceivers need to be
turned on to continuouslijstenfor the intended messages, which may consume a signif-
icant amount of the nodes’ energy. There exist compelling reason®id avontention-
based MAC protocol, and to create a time schedule instead, e.g., a Time DMslbple
Access (TDMA) like protocol [66]. More specifically:a) it makes no sense to try to
minimize the number of transmissions which, among other things, reduces theylaében
complete the broadcast, only to introduce latency caused by contentiontashitreecha-
nisms, but more importantlypf we are interested to reduce the time a node needs to listen
on the medium and hence waste energy while idle listening [29]. In otherswasthedule
allows us to prescribexactlywhen a node has to listen and when it has to transmit (if at all),
keeping its transceiver inactive at all other times. Naturally, the schedudé aiso ensure
that, €) there are no collisions (from the perspective of each intended retjmiansed by

transmissions scheduled to occur in the slot that the recipient is listening.
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There are two kinds of solutions that exist for TDMA-based broadsetséduling. A
common approach of most of these solutions [23] is to decompose the prividdetwo in-
dependent subproblems: (i) a logical tree construction, and (ii) stihgdf transmissions
along the constructed tree. Other existing solutions, e.g., [76], proptree-acheduling
algorithm alone, which obviously needs an already constructed tree s (dpe common
objective of both kinds of solutions is to reduce the broadcast latencytheenumber of
time slots used for scheduling the broadcast. Before further discuss®udgscribe the

broadcast scheduling problem in detail.

4.2 Problem Statement

Throughout this thesis, we assume a slotted system and that all nodeadeapeate syn-
chronization capabilities to follow a slot-by-slot schedule. The purpodterbroadcast
(and convergecast, discussed in Chapter 5) schedule is to instrichede when to: re-
ceive, transmit, or deactivate the transceiver (thus avoiding idle listenifigg¢ schedule
is constructed for a single round/epoch and then the same schedule asegefier each
round. This mode of operation is consistent with the execution model of cantsqueries
and their solutions, e.g., TAG, FILA and EXTOK. Extensions to multiple (prejoated)

schedules are possible but beyond the scope of this thesis.

Given a network ofV nodes, the problem is to minimize the total number of time slots,

T, that are required for broadcast scheduling, subject to the followdngtcaints:

e C1: only a subset of nodes, including the sink, are allocated one of the time slots

from the set{1,2,...7'} to transmit the broadcast message only once.

e C2: every node (except the sink) is allocated one of the time slots from the set
{1,2,...]'} to receive the broadcast message only once. (The sink is assumed to be

the originator of the message, therefore, it need not be scheduledeteakc

e C3: the reception slot of any transmitting node (except the sink) is earlier than its
transmission slot, i.e., all transmitting nodes (except the sink) are scheduésdioe
before they are actually scheduled to transmit. This also means that théoecem
transmission slots of any transmitting node cannot be the same, i.e., evemitrans
ting node is scheduled to receive and transmit using two different slot$accerthe

half-duplex operation, i.e., a node can either receive or transmit dugngea slot.
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e C4: there is no interference by colliding transmissions at any of the recipietgano

during its assigned reception slot.

Unfortunately, the problem of finding a schedule that satisfy all the abowmstraints
has been shown to be NP-Complete by Gandhi et. al. in [24]. Therdfogegxisting

solutions are heuristic approximations, which are reviewed in the next sectio

4.3 Related Work

Broadcast scheduling requires resolving interference introducedebghysical (wireless)
topology of the network while minimizing the broadcast latency, i.e., the numbsgiots
that are required to schedule the transmissions. Several heuristic sslbtve been pro-
posed in the literature to solve the above NP-Complete problem. In particidaghGet.
al. proposed their solution that achieved a constant approximation, i.e giloerpance ra-
tio of their proposed solution with respect to an optimal solution is constantrtumfately,
their broadcast latency approximation bound is greater than 400, whidlitestggh. Re-
cently they proposed another solution in [23], which improved the apprdiomaatio to
12. Huang et. al. also proposed a 16-approximation algorithm in [31].@deryas noted in
[23] their algorithm has a hidden cost in the ordextfR), whereR is the longest shortest
path from the sink in the network. Chen et. al. proposed yet anothetardregoproxima-
tion algorithm in [14], which has been found to be at best 16-approximatibnin special
cases [23].

Existing solutions typically take the approach of first constructing a logieal topol-
ogy and then scheduling the nodes of the constructed tree. Some othiEmrsotnly focus
on minimizing the broadcast latency through efficiently scheduling the nddzsogical
tree. All of the solutions proposed in [23, 24, 31, 76] take one of the ppo@aches men-
tioned above. In particular, [23] proposes a solution that contain a trestreiction phase
and a scheduling phase, and [76] only proposes a tree schedulimigratgdn yet another
study [78], Zadoronzhny et. al. propose solutions for constructingdbdrees for query
processing and data delivery in mobile sensor networks.

Our work is different from [23, 24, 31, 76] in many ways. First, theesbliling solu-
tions proposed in these works are not independent of tree construdtierto which their
usefulness is not obvious in certain situations (discussed in section 4e5nake the tree
scheduling independent of the tree construction, while still paying dudiatien the qual-

ity of the constructed tree in terms of the number of time slots that the tree may use fo
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(b) DST (c) BISPT

Figure 4.2: Various logical trees and their corresponding scheduBadid(arrowed lines
represent edges of the logical tree. Dashed lines represent edgesdtin the graph but
not in the logical tree. Arrowed lines also represent messages with thectistithat all
arrowed lines coming out from a node represent a single transmissiorthiat node. Each
arrowed edge is also annotated with a time slot in which it will be activated.)

broadcasting (examples to follow.) Towards that end our schedulingitiligotends to
maximize the number of concurrent transmissions in order to reduce the naitwe
slots used. This is in contrast with approaches, such as the one in [T&je the schedule
is constructed through a traversal of the supplied tree without any oomseto whether
such a traversal allows the maximum number of concurrent transmissiomssichieduled
in every time slot. Yet another important difference, which distinguishesanauk from
[23, 24, 31, 76], is that unlike previous solutions we strive to make lwastthg more reli-
able in the event of failures which are common in WSNSs, an issue that we wlilessl in

detail in Chapter 6.

4.4 Proposed Solution

Our tree usage for broadcast scheduling is marked by the observadtaomily the root and
non-leaf nodes of a logical tree need to be scheduled as only thesgindte logical tree
need to be the transmitters and all leaf nodes need to be the recipients dntpue all
nodes, except the root, need to be scheduled for reception as welitiveiia smaller set

of non-leaf nodes will require a lesser number of time slots for schedulengdhsmissions.
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Therefore, the problem is to ensure that only the smallest possible sendtaf nodes
transmit the message.

It is trivial to see that the BISPT presented in the previous chapter meetbhthe
criterion. To put forth our case more concretely we consider the examplesious log-
ical trees, BISPT as well as SPT and DST, and their correspondimglgles as shown in
Figure 4.2. Clearly the schedules meet all the constraints C1 through @artbein sec-
tion 4.2. The total length of the broadcast schedtilgfor the SPT is 6 with node§A, B,
C, D, E, F, G, } scheduled to transmit the message. Note that the set of {&le®}
and{E, G} are scheduled for concurrent transmissions during slots 2 and 4&atesgly,
as doing so does not violate the collision-free constraint. In the case DSfenly nodes
{A, C, F, I} are scheduled to transmit during slots 1, 2, 3 and 4, respectively, asmsho
Figure 4.2(b). The total length of the schedule in this case is 4 as compaéeih tihe
case of the SPT. Similarly, the total length of the schedule used by the BISRisishown
in Figure 4.2(c). Clearly in these examples of the DST and BISPT, whica aamaller
set of non-leaf nodes as compared to the SPT, indeed a lesser nunshas @fre used for
scheduling. Now an obvious question is, after forming a logical tree togplamyv to con-
struct a schedule that meets the constraints set forth in in section 4.2.dEothat end we

present the Wighted hcremental 8Heduling (WISH) algorithm for broadcasting.

4.4.1 WISH for Broadcast Scheduling

WISH takes as input a spanning tree over a gr&filv, E') which represents the logical
topology over which broadcasting is to be performed. Let us denote fpyc V) the
sink and the root of the broadcast tree. For convenience, let usedas®t”’ all nodes of
V except forr, i.e., V' = V \ {r}. The tree can be described by the parent-of relation
denoted byP, which indicates which node is the parent of nadeThe set of parent-of
relationsP is defined as® = {P,|v € V'}. The inverse of the parent-of relation is the
children-of set.,, which indicates the set of children of nodgas per the logical tree
topology), that is, = {u|P, = v A u € V'}. Finally, let us capture thphysicaltopology
of G(V, E) through the neighborhood séY,,, that includes all nodes connected to nede
in the physical topology, i.eV,, = {u|(v,u) € E}. Collectively, the set of neighbor sets
for all nodes inV’ will be denoted byV, i.e., ' = {N,|v € V'}. The pseudocode for
WISH is presented in Algorithm 5.

The algorithm maintains a set of nodes that are eligible to transmit, denotdd by

However, only a subset of nodes i will be allowed to transmit concurrently because
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Algorithm 5
1: procedure WISH(r, V', N, P)

2: j 0

3: F — {r};

4: repeat

5: e+ 1

6: forall e € F do

7 we  [&el;

8: Sj — 0

9: Rj — 0

10: for all e € F'in decreasingw, do
11: NoCollA «— true;

12: NoCollB « true;

13: forall s € S; do

14: forall c € & do

15: if ¢ € Ngthen

16: NoCollA — false; break;
17: if NoCollA = true then

18: forall » € R; do

19: if € N, then
20: NoColl B +— false; break;
21: if NoCollA A NoCollB then
22: Sj — Sj Ue;
23: R; — R; U&;
24: F —0; }
25: forall ¢ € U/_, R, do
26: if ¢ ¢ U/_,S; then
27: if |£4| > 0 then
28: F — FuU{q};

29: until | ngl R;| = |V
30: S—{Slve{l,....j}h
31 return (S);

they need to satisfy the requirement that no collision is caused (from th@eietof the
receivers) with any other transmissions happening in the same slot. Trivethe first slot
only the rootr is eligible to be scheduled (line 3). Subsequently all of its children become
the recipients of its transmission and become eligible to transmit in the secondtstotl
a subset of them may be allowed to transmit concurrently.

The basic idea is to rank all eligible nodes based on theightand then consider them
in decreasing order based on their weight (line 10). We check whetbdrahsmission of
an eligible nodeg, can be scheduled in the current slot in a collision-free manner. This

test considers two possible types of collisions: (A) collisions perceiyeanly child of e
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due to concurrent transmission in the same slot from a node alreadyuetiénl the same
slot (lines 13-16), and (B) collisions that could be causedtiinsmits in the current slot
because it would collide at the children of nodes already assigned tonitainghe same
slot (lines 17-20). If a node does not cause either type of collision, itheduled for
transmission and its children are marked as receiving the node’s tranamiéses 21-23).
This procedure continues with the new set of eligible nodes (lines 24+28)all nodes
have received the transmission (line 29). WISH returns the sets of tiogeare assigned
to transmit in each slot (lines 30-31).

The ability of this process to generate good schedules in terms of lengthdtepa
the way the weights are assigned. We have experimented with many altenvetgles
and the one that we have found as consistently producing good resuksaarttinality of
the children-of set, i.e|¢,| (lines 6-7). The higher weight gives a higher relative priority
to a node to be scheduled in the current slot over other eligible nodesinfiligon be-
hind why this works best is based on the observation that the earlier veeldeha node
with many children, the larger the increase in the eligible set (because theechildcome
subsequently eligible for scheduling). The larger the eligible set earlierarst¢hedule,
the higher the chances that several eligible nodes can transmit camtturBy enhancing
the number of concurrent transmissions, we are reducing the numbertgfitsiakes to

schedule all the nodes.
Lemma 2. A schedule produced by WISH is collision-free.

Proof. Every slotin WISH is allocated in an incremental fashion, iS¢.andR; are initial-
ized to empty sets and then eligible transmitters and receivers are added miothemen-
tally. Since a node is added & and its children tai?; only if it meets the collision-free
criteria, S; will contain the set of nodes that do not interfere with each other’s trarsmis
sions. Because this procedure is repeated for every glot, 1, S; and R; will always

contain nodes that are collision-free, and hence the proof. O

4.5 Performance Evaluation

To evaluate our proposal we implemented the solutions proposed in [23V&hdIn the
rest of the section we will refer to the two solutions proposed in [23] a6fldg GKLRW
and YMV, respectively, named after the authors’ last names. Note thatkeeluling phase
of GKLRW is not independent of its tree construction phase, there&i&RW cannot be
used for scheduling “any” tree that is given as input to the algorithm. fiiqodar, GKLRW
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] Parameter H Values \

N (# of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)
L (length of the square area [m]) 800, 1000,120Q 1400, 1600 (Synthetic
50 (Intel)
w (transmission range [m]) 200 (Synthetic)
8, 10,12, 14 16 (Intel)

Table 4.1: Parameter values used in this chapter (default values ara shbuld face).

requires an SPT as an input. In contrast to that, YMV is a tree scheduliogthlg, which

means that it is independent of the input tree, and can schedule anyatressgiven as input.
Unlike GKLRW and like YMV, our tree scheduling algorithm, WISH, is indepemnicof the

tree construction phase, which means it can be used to schedule any toggcaThis

feature of a solution, to independently schedule a tree, is particularlylusefituations
where a specific tree is given to be scheduled to achieve certain otHeadipp objectives.
In our experiments we will use this feature of a solution to evaluate GKLRWVYavid

WISH using various scenarios.

GKLRW is currently the-state-of-the-art solution for broadcast salieg. GKLRW
has been shown to outperform solutions proposed previously in [34, IBierestingly,
YMV has not been compared against these solutions including GKLRWsitwrlation
study “fills” this gap and evaluates GKLRW with respect to YMV as well as oan
solutions. In the simulation study presented in this section, we considered ar Siatila
as presented in the previous chapter. However, for the readevgci@mce we present the
main details of the setup again.

Five different simulation setups are considered in this chapter. In pkntid00, 200,
300, 400 and 500 nodes in a 808®00mM, 1000nx 1000m, 1200m 1200m, 1400n%x 1400m,
and 1600nx 1600m area, respectively. Transmission range of nodes was fi2@dat. We

also used the Intel setup discussed in Chapter 2 to evaluate our solutiekeey/track of

the node densityy = ”‘*;N, whereN is the number of nodes; is the transmission range
of nodes and. is the length of a square area. All results presented here are an ewdrag
20 simulation runs. Table 4.1 presents a summary of the values that we usbffieient

parameters in our experiments presented in this chapter.

4.5.1 Broadcast Latency

We usebroadcast latencywhich is the total number of slots used for a given schedule, as

a metric to evaluate the performance of various solutions. In the first setpariments
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Figure 4.4: Density (fixed, and varying/N) in the synthetic dataset.

we keep the underlying logical tree same for GKLRW, YMV and WISH. Intipalar,
we constructed and used the same tree that is proposed for GKLRW. Wefeillto the
tree proposed in GKLRW as GKLRW-tree. Since YMV and WISH can inddpatly
schedule this tree, we can evaluate the latency of the schedule produttezse solutions
independent of the underlying logical tree. The results are summarizéglired.3(a). We
can see that for a smaller network with less than 200 nodes WISH can fouip&KLRW
by 5 to 15% and YMV by 15 to 30%. As the network scales up, the performmgap
between WISH and GKLRW shrinks and becomes insignificant. Howewepgdtformance
of YMV degrades quite rapidly when the network size is increased becaasve remarked
in section 4.3, YMV misses opportunities to concurrently schedule nodearhatligible
in other parts of the tree because of its strict traversal strategy of thetieeu

In the second set of experiments we kept the original tree for GKLRWhédss the only
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option it has) and supply WISH and YMV with BISPT as the underlying trear i@sults
are summarized in Figure 4.3(b). Obviously the performance of GKLRWtisxymected to
change as compared to Figure 4.3(a) and indeed that is the case asisirogure 4.3(b).
However, the performance of WISH and YMV is improved, though slighthi#8SH and
considerably for YMV. As a matter of fact, YMV with BISPT has outperfoch@KLRW.

This result highlights the importance of the underlying logical tree topology.

In the above set of experiments we tested the scalability of solutions by gatfyén
network area and the number of nodes. In the next set of experimerkisapahe network
area fixed at 1200m1200m and vary number of nodes from 100 to 500. These experiments
create the scenario of an increasing node density in which an increasimigen of nodes
is “packed” in a fixed area. The results from these experiments aremisgbsin Figure 4.4.
Similar trends can be noticed here as observed in Figure 4.3, i.e., WISétperimilar
to GKLRW when supplied with the common logical tree topology. However, vBI&PT
is supplied as the input tree, the performance of WISH improves.

Another interesting trend that we can notice with WISH as well as GKLRW aviif ¥
that when the nodes are more “densely packed”, the schedule lengdases. Compare,
e.g., Figure 4.3(a) with Figure 4.4(a) and Figure 4.3(b) with Figure 4.4fmtice that
WISH schedules 500 nodes that are spread over 16A@A0m area using 18 time slots
(Figure 4.3(a)), however, when 500 nodes are deployed within 120@00m area the
total slots used are reduced to less than 16 (Figure 4.4(a)). This bebaxibe attributed
to the fact that when nodes are densely packed the underlying logiedktianks” while
having a lesser number of non-leaf nodes, which can be schedulepfesiar slots.

Figure 4.5 summarizes the results from the Intel setup. The main differertbese
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results with respect to the synthetic setup is that the trend of the perforncanges is
reversed. The reason is that in the case of the Intel setup we varytisenission range due
to which the underlying logical tree becomes “shorter” resulting in the dsed number
of non-leaf nodes. Recall that only non-leaf nodes need to be Seluefitn broadcasting.
As the non-leaf nodes decrease it is natural that the total number of sedsfar their
scheduling is also decreased. There is not much difference among rfoenpces of
WISH, GKLRW and YMV as shown in Figures 4.5(a). However, an int@mgstrend,
which did not appear in the synthetic setup, can now be seen in Figur&3.4T5(s result
is from the setup in which we supply WISH and YMV a different tree than GWL We
can clearly see that GKLRW is outperformed not only by WISH but also MVYThis
result shows the sensitivity of GKLRW towards a particular type of netwopology (as
in the case of the Intel dataset that is restricted to produce a certain tyipe loQical tree

topologies). Nonetheless, in all cases WISH outperformed all other sadutio

4.6 Conclusions

Broadcasting is an important operation in wireless networks. In this chagteddressed
the problem of schedulingne-to-allbroadcasting. Towards that end we proposed an effi-
cient broadcast scheduling algorithm, WISH, that outperformed themustate-of-the-art
solution. Admittedly, the results show that the reduction in the scheduling lefatla (
single broadcast schedule) is marginal, however, overall that mayacéar a signifi-
cant reduction if a query is processed for a large number of roundshwould be the
case in many applications. The time that is gained due to short schedulesy reduls-

ing the broadcast latency, may actually improve the response time of the sirdngveers
the query. In the next chapter we study another important operation regtimerk query

processing in WSNs, i.e., convergecasting.
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Chapter 5

Convergecast Scheduling

5.1 Introduction

Data gathering is a basic capability expected of any WSN. In the contextradtimork
guery processing the usual means of performing data gathering is tcallavedes send
their measurements (possibly over multiple hops) to the sink. To that end alltgiea
topology is used for collecting and forwarding data to the sink, which besdah®eroot of
the logical tree. The corresponding many-to-one “funnel” type of comaation is called
convergecast Convergecast is the basic building block for various solutions prapse
the literature for data gathering and query processing including TAGARIhd EXTOK
that we discussed in the previous chapters.

A scenario of convergecasting is presented in Figure 5.1 in which a ta@ s pro-
cessed using TAG on top of SPT, DST, and BISPT. Note that in TAG exalg participates
during the convergecast by forwarding its own value or aggregateeésalt is trivial to see
that, because of the different structures of the logical trees, the saengigyrocessed dif-
ferently. Hence, the convergecast cost (in terms of bytes transmitteeddy the nodes)
is also different for different trees. For example, if a sensor’s valu D are represented
by 2 bytes each, then the total bytes transmitted to find the top-2 results whige S8R
DST and BISPT are 76, 56 and 60, respectively. Similarly, the costanfgsising EXTOK
on top of SPT, DST, and BISPT may vary during any given round assti Figure 5.2.

Finding a tree that minimizes the convergecast cost is a non-trivial prodieerest-
ingly, this problem can be treated as a Minimum Steiner Tree (MST) problermnhwgwell
known to be NP-Hard [39]. Filtering based solutions complicate the problem feirther.
Recall that in EXTOK the threshold value may change due to which F-nodiEEM-nodes
may change accordingly during every round. It means that unlike the pd&Jlem,source

nodes cannot be determined in advance while using a filtering based solB&sically,
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122 [10

(a) SPT (b) DST (c) BISPT

Figure 5.1. Convergecasting (TAG) using various logical topologiegrKer circles rep-
resent nodes that triggered an update. Rectangles represent kie¢spgeansmitted by the
corresponding nodes.)

a new instance of the MST problem is created during every round in tleeafegtering
based solutions. In this situation, constructing an optimal or near-optimahldgge topol-
ogy during every round is impractical and costly due to the overheadshwiiicbecome
significant because of multiple rounds. Therefore in this thesis, we focunvergecast
scheduling rather than investigating logical tree topologies for convasgeg.

Several algorithms proposed for multi-hop wireless convergecastslihg can be
used for WSNs (see e.g., [37] and the references there in). A comnjectigb of schedul-

ing algorithms is to use the least number of time slots. As with broadcast scterdalin

common trait of most of those algorithms is the decomposition of the problem into two

independent subproblems: first a logical tree construction, followethéyscheduling of
transmissions along the constructed tree. We will see a similar approach wddllio

aggregation convergecast problem that we address in this chapter.

5.2 Problem Statement

Aggregation convergecast is described as the routing and the enaggregation of data
as they travel to the sink (plus of course interference constraints agufareonvergecast).
Aggregation is a means to achieve energy efficiency by reducing thenttited traffic

volume, recall e.g., TAG. In its simplest definition, aggregation operatesibyrimg that
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(a) SPT (b) DST (c) BISPT
Figure 5.2: Convergecasting (EXTOK) using various logical topolog{&arker circles

represent nodes that triggered an update. Rectangles represeackats transmitted by
the corresponding nodes.)

a node receives a specific number of incoming messages (from amamoksgly specific
subset of its neighbors), then combines the received data along with itsoogenerate
a singleoutput message that describes collectively the received and its own dathdo
Naturally, this definition can be applied recursively all the way to the sink.

The important characteristic of aggregation convergecast is that a(@ockpt the root)
transmits only once per round. This transmission can happen only afteotieehas col-
lected data from other nodes on which to perform aggregation (includiogvitsdata). The
aggregated data is subsequently received by another node thatypeffother aggregation
along with those from other nodes, and so on, until the aggregated diatsat the sink.
We assume that a single slot period is sufficient to transmit data in its origoaiog) form
or in its aggregated form. For example, in the case ofkapsery processing some nodes
may forward exactly: values and some nodes may forward less thealues depending on
the number of values collected. The slot size should be tailored to “fit” thetwase size
of k£ values (inclusive of header and other overheads). For the pugbdisis thesis we will
assume that all slots have the same fixed duration, which is sufficient toiit&neseive the
largestpacket/message required by the application.

Given a network ofV nodes, the problem is to minimize the total number of time slots,

T, that are required to schedule transmissions, subject to the followingraimms:
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e C1: every node, except the sink, is allocated a single time slot frorfi'ttime slots

to transmit.

e C2: a subset of nodes, including the sink, are allocated a subset of time slots fr

the set{1, 2...T'} to receive transmissions.

e C3: once a node transmits, it can no longer be scheduled to receive the trsiosisis

from any other node.

e C4:. a recipient cannot transmit in the same slot in which it has been assigned to

receive, i.e., half—duplex operation.

e C5: there is no interference by colliding transmissions at any of the recipietgano

during its assigned reception slot.

Unfortunately, the problem described above is known to be NP-complete ieve-
stricted to Unit Disk Graphs (UDGs) [13]. Therefore, the existing solgtiorthe literature
are heuristic approximations, and will be reviewed in the next section.

Before reviewing the existing work it is worth noting that the combination of @d a
C2 means that the activated edges (i.e., those edges of the underlyingknetpaogy
graph that are used for communication, regardless of when they aratadtor used) form
a subgraph of the network topology graph, which is a tree. This profaibws from the
fact that this subgraph (a) contains exaa¥ly— 1 edges (to satisfy C1) and (b) is directed
and acyclic (to satisfy C2). As it is well-known, a subgraph satisfyingetia® character-
istics must be a tree. That means a byproduct of solving the schedulibteprds a tree
that represents a dependency of transmissions dictating the order inaggoégation con-
vergecast is performed. In other words, no matter what solution we &atape scheduling
problem a tree must be used to schedule the nodes.

The above fact has been recognized by the existing solutions that sértioir heuris-
tics as consisting of two phases: first a phase to build a dependencidsszi(on a variety
of criteria), and then a second phase to construct a schedule. Togaat $solutions in
some concrete perspective, we will consider the example of Figure 5.3tot ddterna-
tive aggregation/dependency trees and the corresponding sche@gesifically, sched-
uled transmissions are represented as directed edges from a transimittehe recipient
P;. Each directed edge is also annotated with the timetslotwhich it will be activated

(by the transmittef) in order for dependency and interference constraints (as deddribe
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(a) SPT (b) DST (c) BISPT

Figure 5.3: Various logical trees and their corresponding scheduBadid(arrowed lines
represent edges of the logical tree. Dashed lines represent edgesdtin the graph but
not in the logical tree. Each arrowed edge is also annotated with a time slotah wwtvill
be activated, by a node marked as a dark circle, to transmit the message.)

this section) to be met. Next, we review the existing solutions in detail while makimg so

observations that lay the foundation of our proposed solutions.

5.3 Related Work

There are two types of solutions that exist for aggregation convesgscheduling. One
approach is to schedule a given aggregation tree irrespective of labivek is constructed.
(Recall that constraints C1 and C2 enforce any solution to have a logeea) tNaturally,
if the scheduling algorithm is defined independently of the aggregationttrer the per-
formance will vary greatly depending on the aggregation tree suppliezh Suhe case of
the scheme called PAS by Yu et. al. [76]. Another (and more common) agpisdor a
scheme to prescribe both the tree construction as well as the schedulinthaigdVithin
this category, there are those algorithms that retain the tree constructedfirsthmhase,
and others that do not. In the latter category we find SDA by Chen et glafiBFirst—Fit
by Huang et al. [32]. Unfortunately, the algorithm proposed in [32[dpices schedules
with possible collisions. This leaves SDA as the main example in this category.

SDA constructs an SPT in the first phase. It then incrementally schedelesdes but

also assigns them a parent, possibly different than the one in the origiifal&e examples
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shown in Figures 5.3(a) and 5.3(c) are in fact two possible (distinct)/sefesdules that
may be generated by the SDA algorithm with the input of SPT shown in Figu(a)5!8ote

the change of parents for nodes E and D in Figure 5.3(c) that is différan the original

parents as shown in Figure 5.3(a). As we will later see, SDA is an effialgaotithm but its

drawback is the “distortion” caused by the scheduling phase, which meaoannot apply
SDA's scheduler when we need to retain the aggregation tree exactlpplsesi

In contrast to SDA, the scheme called DAS by Yu et al. [75] retains the trestiuicted
in the first phase. The shortcoming of DAS is that its first phase cons@aub&T (based
on [69]) An example of such a tree is shown in Figures 5.3(b). Unfoteiyaa DST is not
necessarily a good selection for producing a better schedule. Comparhe schedules of
the SPT and DST shown in Figures 5.3. In particular, the DST used 8 slotsrgmred the
SPT, which is scheduled using 7 slots only. The reason is that adBfgihizeghe nodes of
a network in the forntlustersin which many those nodes eventually become leaf (children)
nodes of the tree, with the rest of the nodes being a (smaller) set of ehesidrbecome
internal (parent) nodes. That leads to the formation of a “bushy” treimpa large number
of dependency constraints. Note that a cluster-head (parent) cpariotm aggregation
before it receives data from its cluster-members (children), and threr@k transmission
cannot take place earlier than the transmissions from all (typically many) ohilkdren.
Overall, the result is long schedules.

Finally, other examples of two-phase approaches are the scheme byt\Waln E70]
(DST-based via Maximal Independent Set construction), and therechg Annamalai et
al. [5] (SPT-based) which has been exceeded in performance [y (edtain other efforts,
such as [81], result in schedules that are potentiadi/collision free, and have been left

out of consideration for obvious reasons.

5.4 Bounds and Tree Construction

As we pointed out earlier, DST (as well as BISPT) is not necessarilyigirg a short
schedule compared to SPT. This is partly to be expected because theim@®$ and
BISPT are “clustered” to create more leaf nodes (conversely to deerem-leaf nodes for
the purpose of decreasing the broadcasting transmissions). On thehatttgrgiven suf-
ficiently rich connectivity, there also exist multiple alternative SPTs for timesphysical
topology. Hence, we would like to know what features make an SPT betteratinather

SPT; a question that we address in this section.
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We note that a tree construction phase, whether SPT, DST or any otlteokiree,
ought to be guided by the potential it has to generate a short schedualenfrgecasting.
Until now, the two—phase schemes produced a tree based on topolagipaltes alone.
To the best of our knowledge, we are the first to perform the tree aargtn in a manner
that is “informed” by the potential it has to result in a short schedule. §Rétat we had
followed a similar principle to tackle the broadcast scheduling problem, wlashédsulted
in improved performance.) To this end, and in contrast to the existing agipesaour tree
construction specifically targets at “relaxing” the logical dependenogttaints of the tree.
The intuition being that the less constrained in terms of dependencies is tlegation tree,
the fewer the additional constraints (on top of the collision freedom cantgtjahence the
potentially shorter the schedule will be.

We start by establishing, for a given tree, a lower bound on the schihgéh. Then,
we restrict ourselves to SPT trees and produce an SPT that follows thas bmund. As a
side note, [70] provides ampperbound on the schedule length. But from the performance
of their algorithm it is evident that this upper bound is far too pessimistic cosapiarthe
typical practical behavior of their algorithm. We take a different view of trying to squeeze
the performance as close as possible to the lower bound correspondimgdonstructed
tree. Nevertheless, for comparison purposes, we will also evaluatetfempance of [70]
in our performance study Section 5.6.

A lower bound specifies the minimum number of slots that are required farecge-
casting. Chen et. al. proposed the lower bound toree:{h,loga N}, whereh is the
longest path in a logical tree [13]. Similarly, Huang et. al. also argue thatdteeaggrega-
tion latency cannot be less than the network radius [32]. It basically ntbahthe lower
bound is the longest shortest path between the sink and a node in thelge®vge. Unfor-
tunately, these lower bounds are loose. Consider the DST shown in BE@{l¥. Chen’s
and Huang’s lower bound for this particular DST is 4, i.e., this particular B&Tnhot be
scheduled with less than four slots. However, it is clear from the DSTtsteithat node |
will need at least 6 slots to send its data to the root. In particular, threeatiffstots are
required by its children, i.e., nodes H, J and K. (That is because all of tizve the same
parent and therefore, they cannot transmit concurrently without gasofiisions.) Node |
will need one additional slot to transmit to its parent F. Finally, since F is twe laomay
from the root, it will need at least two more slots (after receiving data fitsrohildren) to
send across the aggregated data to the root, e.g., node F can use thetfdtidsnode C

can use the sixth slot. To generalize this observation, we introduce the ifadjéemma.
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Lemma 3. Given a logical tree, an aggregation convergecast schedule length lmoumd,
Tnin, iISmaz{|&| + d; : i = 1,2,...N}, where; andd;, respectively, are the children set

and depth (distance from the root) of nodia the given tree.

Proof. Let k£ be a node with the maximum sum of the children-count and distance, i.e.,
|€k| + di = max{|&| + d; - i = 1,2,...N}. We will prove by contradiction thal’ >
max{|&| +d; - i =1,2,..N} for any schedulg 7, of the given tree.

Assume thatl’ < maz{|&| +d; : i = 1,2,..N}. If k has been assigned the slot
numbert(k), then it must be less than or equal to the total number of slots used kg.,
< T. Since our assumption & < maxz{|&| + d; : i = 1,2,...N}, thereforet(k) <
max{|&| +d; i = 1,2,...N}. It also means that(k) < || + dg, which we get by
replacingmaz{|&| + d; : i = 1,2,...N} with || + di. (Recall thatk is the node with
the maximum sum of the children-count and distance, figgl,+ dx = max{|&| + d; :

i =1,2,..N}.) Howevert(k) < || + dj, contradicts the fact thdt needs at leagty|
slots for its children (for them to transmit first) and anothgrslots to send across its data
to the root. It means that our assumptibn< maz{|¢;| + d; = i = 1,2,...N} must be
incorrect. Thereforel" > max{|§;| + d; : i = 1,2,...N}, and hence the proof thdt,,;,, =
max{|&| +di 1 =1,2,..N}. O

Next, we describe our procedure for constructing the aggregatiorbised on the

bound established by Lemma 3.

5.4.1 Balanced Shortest Path Tree

A tree that minimizes the lower bound potentially uses a lesser number of sleishiedul-
ing N nodes. Consider the SPT, DST and BISPT shown in Figure 5.3 that Haveen
bound of 4, 6 and 5 slots, respectively, as computed according to Lemma8&cordance
with their respective lower bound, the SPT used 6 slots as compared tB8séotd used by
the DST and BISPT. This scenario exemplifies our observation that axtnéeh “relaxes”
the logical constraints, i.e§; andd;, can indeed reduce the total number of slots that are
required for scheduling the nodes. An obvious question now is how tetieart such a tree
that minimizesnax{|&| +d; : i =1,2,...N}.

For every node, d; can be minimized by ensuring that every node is connected to
the root using a shortest path, i.e., by constructing an SPT. A shortéstrpa can be

constructed using a standard Breadth First Search (BFS) algorithmewdoywminimizing

That meets the criteria set-forth in Section 5.2.
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Figure 5.4: Parent-children assignment during SPT construction. Rgesacontain nodes
at a particular depth (from the root) of the tree under construction. &hbhes represent
the graph (adjacency) edges. Solid lines represent parent-childsggnenents and also
represent potential edges that can be selected in the tree construcéiehedvery-thick
lines represent the edges in the bipartite graph formed between two otimeatepths of
the tree. Solid very-thick lines represent the optimal semi-matching of thetibépgiraph.

|&i| is non-trivial. Consider the scenario of a shortest path tree construasicshown in
Figure 5.4. A set of 12 nodes have been shown in Figure 5.4(a) at tvgecotive “depths”,
d andd + 1, of the tree. In particular, nodes from A to F are at distadcand nodes
from U to Z are at distancé + 1 from the root (not shown in the figures). A possible
scenario of parent-children assignment is shown in Figure 5.4(b). lexaisiple children-
count for nodes B and C have been minimized by assigning only one chilcctoceee
of them, i.e., nodes U and Z, respectively. However, this parent-childssignment has
resulted in the assignment of four children to node B. In fact, the pateluren assignment
shown in Figure 5.4(b) has maximized the “local” lower bound at depththe tree, i.e.,

maz{|€al,|¢B], |€c|} = 4. (All the nodes at depthi are at same distance (hop) from the
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root, i.e.,ds = dg = d¢, therefore, their respective children set will actually determine the
lower bound at deptll of the tree.) An increase in the lower bound at dephf the tree
may indeed result in the increased “global” lower bound of the tree. Iergérwe have the

following sub-problem that needs to be solved.

Definition 4. Assuming’; represents the set of nodes that are at distahé®m the root,
the parent-children assignment problem is to assign every node at depth, C4.1, a

parent from the nodes at depihC,, such thatnax{|{x| : Vk € C4} is minimum.

Interestingly, the parent-children assignment problem as defined @&beyeivalent to
the problem of finding an optimalsemi-matching in a bipartite graph [26]. A bipartite
graph formed by the nodes at depthi.e.,C; = {A, B, C}, and nodes at depth+ 1, i.e.,
Car1 ={U,V\W, X, Y, Z}, is shown in Figure 5.4(c). (Since nodes D, E and F do not have
any neighbors from the nodes at degth- 1, they cannot become parents and hence they
are ignored. However, they will eventually become leaves of the shqrédisttree). An
optimal semi-matching is shown in Figure 5.4(d). It is optimal with respect to theeu
of assigned children, i.emax{|£4l, |81, |£c|} = 2 is minimum.

The BSPT construction is the construction of a “special” SPT in which optierai-s
matchings are obtained by constructing bipartite graphs with nodes attexecpnsecutive
levels of an SPT. Of course that results in the minimizatiomef:{ || : Vi € C;} at every
depthd of the SPT, which we will prove shortly in this section. We call an SPT for Wwhic
parent-children assignments are balanced using optimal semi-matchingsnadsasPT
(BSPT).

Algorithm 6 describes the operation of the BSPT. It is essentially a breasitisdiarch
algorithm which, as it progresses, (i) creates successive instatdgesf bipartite graphs
from the nodes at two consecutive levels of the tree (line 14), and, (bkew and solves
optimal semi-matchings on each bipartite graph using the algorithm by Harvel; §6]
(line 15). The obtained semi-matchings (expressed as edde isdine 15) are collected
to produce the edge s€t!, of the BSPT.

Lemma 4. Given a graph,G(V, E), and a root noder, ConstructBSPT outputs an SPT

with a minimum lower bound (as defined in Lemma 3) across all SP&'s of

Proof. It is trivial to see that by virtue of the breadth first traversal the numlbdrops

to reach each node from the root is minimum, i.e., the tree is an SPT. An optimal semi-

2In this thesis whenever we mention an optimal semi-matching, we mean ¢hsgthi-matching is optimal
with respect toL, norm. Note that the optimal semi-matching, which minimizes the minimum loaa, is
different problem than the Maximum-Load Semi-Matching problem disedsn the previous chapter.
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Algorithm 6
1: procedure CONSTRUCTBSPT(, E, r)

2: P — {s.};

3: E — 0

4: forall v € V do

5: Mark(v) = False;

6:  repeat

7: C—0;

8: forall m € P do

o: Mark(m) = True;

10: forall m € P do

11: forall n € N'(m) do

12: if Mark(n) = False then
13: C=CuU{n};

14: Gy, < BipartiteGraph(P,C);
15: Z «— FindMinLoadSemiM atchings(Gy);
16: E —FE'UZ,

17: P~ C,

18: until P = (;
19: return (E');

matching with respect to thé., norm minimizes the maximum load [26]. It basically
means that itC; is the set of nodes at depthof the tree, thennaz{|&;| : VE € C4}

is minimum. Because the distance (from the root) of every node at dejstthe same,
thereforemaxz{|&;| + hi : Yk € Cy} is also minimum at depth of the SPT. Since optimal
semi-matching is performed at every depth of the SRz {|¢;| + d; : i = {1,2,...N}}is

minimum for the SPT produced. O

It is worth noting that for a given graph, ConstructBSPT generateptimal SPT that
has a lower bound as defined in Lemma 3, which is guaranteed to be minimum syétte
to all possible SPTs that can be generated from that given graph. wdowedoes not
guarantee a minimum lower bound (as defined in Lemma 3) with respect to te¢ @sdiot
SPTs. Itis conceivable that a tree can be constructed in which the gdktesrades can be
elongatedhence increasing their hop-count (compared to the shortest posathlewhile
possiblydecreasingheir children-count to potentially achieve an optimal lower bound as

defined in Lemma 3. A more detailed study on this topic is part of our future study
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5.5 A Ranking Based Scheduling Algorithm

In this section we present an algorithm for scheduling the tree producssttion 5.4. As
a matter of fact our algorithm can be used for any given tree to produelision free
schedule. Unlike some other proposals, e.g., SDA [13], our algorithrimsetiae structure
of the input tree. First, we introduce some additional notation.

Let us denote a¥’ all nodes ofV except for the root, i.e., V' = V \ {r}. For
convenience, in addition to the child-of relationslgipwe introduced earlier, we denote
by = the set of all child-of relationships, i.e5; = {{,|v € V}, and the complementary
parent-of relation denoted by,. P, indicates which node is the parent of nadend?P is
the set ofP,, i.e.,P = {P,|v € V'}. Also, we denote by, the neighborhood set of node
v in the network topology, i.elN, = {u|(v,u) € E}. Collectively, the set of neighbor sets
for all nodes inV will be denoted byV, i.e., N' = {N,|v € V}.

On the surface, our scheduling algorithm (Algorithm 7) is fairly simple as @egbto
many other proposals. It takes as input a tree (as capturéd &yd =) and the network
topology (as captured by and ') and constructs a convergecast schedule that leads to the
rootr. At each step, i.e., for each time slp{starting with timeslot 1) it considers the set
of nodes,F, that areeligible to be scheduled. Initially, only the tree leaf nodes are eligible.
Subsequently, nodes become eligible if all their children have been deldeiduearlier
slots. However, only a subset of eligible nodes can actually be seleatdthfarticular
slot in order to meet the collision-freedom constraint (C4 in Section 5.2 bEsic idea
is that in each slot we go through a ranked list of eligible nodes. The rgn&im terms
of decreasingveightw(i). As we work through this list from highest to lowest weight, we
skip nodes that are not possible to schedule due to violation of collisiortraorts with
transmissions already scheduled for the same slot. The transmissionsledhiada slot
can make more nodes eligible for transmission starting in the next slot. Théwehgthe
collection of which nodes$;, are to transmit in thg—th slot and a corresponding set of
receivers (their parent nodeR).

Naturally, the ability of this process to generate good (short) scheduteshds on the
way the weightsu(i) are assigned to each eligible nodec F') in a given slot. We have
experimented with many alternative weights and have found that the wegighatent that
gave the best results was the cardinality oflo@-leaf neighbors)(i) C N; of an eligible
node,i, which are yet to be scheduled. The intuition behind this choice is as follbisk

of the act of scheduling an eligible node as “removing” it from the tree. Reivaf a node
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Algorithm 7

1: procedure WIRES(, V., N, =, P)

N

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

27:
28:
29:
30:
31:

32:
33:
34:
35:

Ve VA {rk
J<— L
repeat
F —
forall v € V' do
if & = 0then

F — FuU{v};

forall e € F' do
n(e) < 0;
forall ¢ € N, do
if ¢ € V' and & # 0 then
n(e) < nle) U{e'};
w(e) < |n(e)l;
Sj — @;
Rj — 0;
FlagC4a «+— True;
FlagC4b « True;
for all e € F'in decreasingw, do
forall s € S; do
if P, € N,then
FlagC4a « False; break;
if FlagC4a = True then
forall » € R; do
if e € N, then
FlagC4b < False; break;
if FlagC4a = True A FlagC4b = True then

Sj — Sj Ue;

Rj — Rj U P.;

V' —V'\{e};

E'— B\ {(e,P.)};
S—{Sylve{l,....7}}
j—i+1

until V/' =0
return (S);

changes the set of leaves in the tree. Hence scheduling a node ideufuivareating aew

tree in which the non-leaf neighbors of nodes may change compared tadhreabtree. If

G(Vy, Ey) is the graph representing the new tree, théi) = {j : j € N; A j € Vi A

&; # 0}. Fisthe list of eligible nodes in decreasing)| order. Hence by scheduling first

the nodes with higher values pf(i)|, we are essentially scheduling the most “constrained”

nodes first, hence enabling many other nodes to become eligible nodabseigsient slots.
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The name we use in the rest of this thesis to identify the framework for rarsdindg
incremental scheduling is ®ighted hcremental Rnking for convergBast with aggreg-
ation Sheduling (WIRES). Note that a concrete implementation of WIRES requires o
to define a specific weight (priority) assignment strategy to eligible nodeAlgorithm 7
the set of eligible nodes for thg" slot, and their corresponding weights are computed at
lines 6 through 14. Eligible nodes are considered in the decreasing airtleir weight
at lines 19 through 31. Only those eligible nodes are finally allocategtthglot (line 28)
that do not violate the collision-free criteria (line 27). The eligible nodes dnatfinally
scheduled are removed from consideration at lines 30-31. This pracedntinues until

no nodes remain to schedule (line 34).
Lemma 5. The schedule produced by WIRES is collision—free.

Proof. Every slot in WIRES is allocated in an incremental fashion, iS%.is initiated as
an empty set and then eligible nodes are added into it incrementally. Sinceodayim
added toS; only if that node meets the collision-free criterig; will contain the set of
nodes that do not interfere with each other’s transmissions. Lines 20 eéasite that no
nodes already scheduled to transmit in the current slot are neighbéns phrent of the
eligible nodeg, currently being considered. Lines 24 to 26 ensure that the considedzd
is not a neighbor of the nodes already scheduled to receive in thentgiot. Because
this procedure is repeated for every slpt> 1, S; will always contain nodes that do not

interfere with each other’s transmissions. O

5.6 Performance Evaluation

To evaluate our proposal we implemented SDA [13], PAS [76], DAS [83|S [70] and
First-Fit [32] algorithms to compare their performance with WIRES-BSPTdWeovered
that the First-Fit algorithm does not produce a collision-free schediievhas also been
noted in [75]. Therefore, in our evaluations we omit the results of the Fitstlgorithm.

It is interesting to note that all existing proposals have been tested urakicdily
different simulation setups. For example, Chen et. al. [13] assumed a rketfv@00
nodes in a 200m200m area. Various topological scenarios were created by varying the
transmission range of nodes between 21.7m and 40m. In contrast, Yu diz5alused
1000 to 2000 nodes, with a radio range of 25m, in an area of 2HHAm area. These two
scenarios exemplify the extreme variations in the simulation setups being usedidys

studies. Choosing a particular “representative” setup for our studychallenging as one
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] Parameter H Values \
N (# of nodes) 200, 300, 400, 500, 600, 700, 800,

900, 1000, 1100, 1200, 1300, 1400, 1500,
1600, 1700, 1800, 1900, 2000 (Synthetjc)

54 (Intel)

L (length of the square area [m 200 (Synthetic)
50 (Intel)

w (transmission range [m]) 20 (Synthetic)

8, 10, 12, 14 16 (Intel)

Table 5.1: Parameter values used in this chapter (default values ara shbuld face).

particular setup may not have revealed the actual performance of afl suithgions. To
address this problem we used tthensitymetric (also used in the previous chapters of this

thesis) to provide a “common platform” to test all algorithms as fairly as possitéeall

Tw?N
L2 ’

transmission range of nodes afds the length of a square area. By varying density we

that we define the density to b& = where N is the number of nodesy is the
have essentially captured the “essence” of various setups being usiirstudies.

In our experiments reported in this chapter we kepand L fixed at 25m and 200m,
respectively, while variedV to change the density. Table 5.1 summarizes the set of values
used for the different parameters in our experiments presented in tiptech@he reported
results are an average of 20 simulation runs. A node is chosen uniforndpmaly as the
root in each of these runs. We also performed experiments while usingitislesetup as

described in Chapter 2.

5.6.1 Convergecast Latency

We useconvergecast latengwhich is the total number of slots used for a given schedule, as
a metric to evaluate the performance of various solutions. The first sesolts, shown in
Figure 5.5, are for the synthetic dataset. As shown in Figure 5.5(a) wseeathat WIRES-
BSPT outperforms all other solutions by 10 to 30%, which means that outicsohwill
require that much less time for its schedule. More interestingly, as the densigages,

the performance of WIRES-BSPT improves compared to other appreachee reason

for the improvement is that, as the density increases, the underlying tr&d,, BScomes
more “bushy”. It also means that, on average, the number of childrepgsent increases
substantially. The way BSPT is constructed it tends to spread the load éshildmong

the parents evenly which in turn “relaxes” the logical constraint for thements. This

results in WIRES taking advantage of the tree to: (1) make nodes eligibletiedsling
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Figure 5.5: Latency (synthetic dataset). In the “( )" withwe have provided average-
degree/degree-variance of the nodes.

100

80

0! ERBEER

401

% of nodes with new parent

20r

10 15 20
N (x 100)

Figure 5.6: Changes inflicted by SDA (synthetic dataset).

earlier in the schedule, and, (2), as more parents become eligible, to sigtiifilmcrease
the “pool” of eligible nodes providing more opportunities for concurreahgmissions and
hence spatial reuse.

Since SDA, DAS and PAS can work independently as standalone algorithisehiedul-
ing, we ought to evaluate their performance with respect to BSPT. Weda@d\BSPT as
input tree to each one of these algorithms. The results are shown in Fidi{l®,5nd
they confirm that the choice of the tree is important. We can see that SDA,dDAFAS
are now able to produce schedules using a smaller number of slots. THeimpence is
improved by replacing with BSPT the tree with which they were originally prepasnd
evaluated. In addition, WIRES still performs better than all other solutionsveder, asl
increases the performance gap between WIRES and SDA shrinks. &y digh density,
i.e., U > 45 the difference between WIRES and SDA becomes negligible. However, SDA
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has its own limitation, i.e., it does not retain the input tree. (Shortly, we will priete
results in that context). Figure 5.5(b) also presents the results computedtios lower
bound,T,,;, as described in Lemma 3. Of course, changes to the logical tree across simu
lation runs changes also the corresponding lower bound (HEpgevalues are surrounded

by errorbars to represent their range of values).

Figure 5.6 summarizes the “side effects” of SDA-BSPT by illustrating theegeenum-
ber of nodes that have been assigned new parents, different feoongs they had in the
tree provided as input to SDA. The main trend that we can observe is tleat thle node
density increases (as the number of nodes increases) the total numbeesfwith the new
parents also increases. Overall, approximately 30% to 60% of the naglassagned a new
parent. These results suggest that the changes inflicted by SDA cabdiartial.

The second set of results using the Intel dataset are summarized in Bigurdhe
gualitative behavior of the results remains the same as seen in the results ynthetic
dataset. However, their quantitative behavior has changed. As shoWigure 5.7(a),
WIRES outperforms all other solutions but by slightly less margin, i.e., by 1G%.1An
interesting result that did not appear in the synthetic dataset is that therparfce gain
of SDA with respect to DAS and PAS is insignificant as shown in Figure h.7(ais ex-
periment reveals SDA's sensitivity to particular topologies. However, B8Ronsistently
performs better than all other solutions. Figure 5.7(b) summarizes therpearfice of the
algorithms when BSPT is used for all scheduling algorithms. Here againgthits of
SDA, DAS and PAS are improved as compared to the results shown in Figi{e9.5

Figure 5.8 summarizes the performance of SDA with respect to the chantjes ag-
gregation tree. As shown in these results, SDA changes approximatelp#b original
parents in the output tree when the transmission ranés(8m. An interesting trend here
is that asv increases the number of “newly” assigned parents is decreased. diasibr
can be explained by the fact that whenincreases the underlying logical tree becomes
“bushy” since the topology becomes and almost complete connected dtado means
that the number leaf nodes are increased while reducing the number-¢déafamodes that
can actually become parent. (Recall that the number of nodes is fixed intdielataset.)
Because the “pool” of nodes that can possibly become parent is dhegprobability of
selecting a new parent is also reduced. It is worth mentioning here thatd8Bg\not adopt
any specific mechanism for allocating original parents (from the inpuj teethe nodes,
which is the main cause of the changes inflicted by the SDA's schedulinggsoc

To summarize, if the underlying tree is not important and the only objective egioce
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degree/degree-variance of the nodes.
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Figure 5.8: Changes inflicted by SDA (Intel dataset).

the number of slots, then WIRES-BSPT performs better in most of the caddsgher
densities, WIRES-BSPT and SDA-BSPT offered equally good solutiNiesertheless, if
the underlying tree is important (i.e., if we have constructed a tree that is inmpdmben
the application’s perspective), then WIRES is the most efficient solutiogurés 5.5(b)
and 5.7(b) also show the results of the lower bound on BSPT computeddrdaoce with
Lemma 3, which suggest that the practical behavior of WISH is near to tlzat optimal

solution since the optimal schedule has to be between the lind%.fgrand WIRES.

5.7 Conclusions

Previous aggregation convergecast scheduling solutions rely on@dgproaches to cre-
ate the aggregation dependency tree before applying their schedulorgraigs. Some of

the proposed solutions even change the tree, hence their usefulne$ls/ious to ap-
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plications that wish to retain the aggregation tree intact. Some of the previowggsed

solutions are not even collision-free. We have presented severaibrdions in this chap-
ter. First, we proposed a tighter lower bound to the tree scheduling problehproved its

correctness. Second, we proposed an algorithm to construct a logeaBSPT, guided by
the lower bound, allowing the generation of schedules with fewer slotsd,u& proposed
a ranking/priority—based scheduling algorithm, WIRES, that produdesdsdes, that are
guaranteed to be collision-free. Our proposal was evaluated exégnsising synthetic
and real datasets. Our proposed algorithms are efficient and carugaeel5% of the

scheduling time, and hence reduces the convergecast latency.

An important conclusion here is that a tree that is better for convergegastiarms of
reducing the convergecast latency is not necessarily better in redheitig@nsmission cost.
Basically, a tree that reduces the convergecast latency may actuallgsedtes query pro-
cessing cost in terms of energy. We will evaluate our proposal in this xtint€hapter 7.
Before that in the next chapter we address another important issueaile$ in WSNs,

that is equally likely to effect the performance of broadcasting as welbagergecasting.
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Chapter 6

Opportunistic Failure Recovery

6.1 Introduction

Sensor networks, because of energy depletion, and also by virtusratsnes being de-
ployed in hostile environments, are prone to node failures. Certain nidaeefacould result
in a network partition, in which case nothing (short of replacing them with nedes or
changing the network topology) can be sensibly done to reconnecttiienke More insid-
iously, there could be link failures, e.g., when a physical obstruction isdotred between
two nodes and all of a sudden they are devoid of any communication, aghpreviously
they were able to communicate directly. In this latter case, a node that wassaapio
forward its message might not be able to get its transmission across, leadimmémodes
not receiving the message. In the context of logical topologies the impé#iokdailures
could be more serious.

Consider, e.g., the scenario of broadcasting using the SPT shown irefdi(a) in
which the link between nodes A and B has failed. Node B will not receivertbssage
from A, and hence it will not forward the message. In this situation eveles& and H
will not be able to receive the message, though they are still connectedntoeth@ective
parents. Similarly, nodes | and K will not receive the message becausieRHE, |) has
failed. In contrast to the SPT, failure of the link (A, B) has no impact on t&d Bhown
in Figure 6.1(b), as the link (A, B) is not used by the DST. However, tileddink (F, 1)
has prevented nodds, I, J, K} from receiving the message. Link failures are sometimes
transient, i.e., it is possible that they do not persist for long. Hence, angttte consider
an update of the overall logical topology may not be called for, when teamponeasures
could mitigate the impact of a transiently failing link.

Similarly, failures may impact data collection during convergecast. Congdgr,the

scenario of convergecasting using SPT and DST as shown in Figuren@articular, the
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(b) DST

Figure 6.1: Impact of failures (marked with bold “X”) on logical topologiesidg broad-
cast. (Solid arrowed lines represent edges of the logical tree. Déisksdepresent edges
that are in the graph but not in the logical tree. Arrowed lines also reptesessages with
the distinction that all arrowed lines coming out from a node represengediansmission
from that node. Each arrowed edge is also annotated with a time slot in whidh lite
activated by the transmitting node marked as dark circle.

failed link (A, B) has no impact on the DST shown in Figure 6.2(b). Howgvecause of
the same link failure in the case of the SPT shown in Figure 6.2(a), node Bowitlenable
to send across its data to the root. On the other hand, the failed link (F, Wdr@ssevere
impact on the DST as compared to the SPT. More precisely, nddels J, K} will not be
able to send across their data in the case of the DST, while in the case offtlemgPodes
K and | are effected by the failure of the link (I, F).

In summary, link failures are equally likely to effect the underlying logicalolopgies
and hence the performance of broadcasting as well as convergegcdstthis chapter, we
propose opportunistic schemes that effectively exploit broadcastidgcamvergecasting
schedules for failure recovery in WSNs. Before presenting ourreekewe first discuss

some related work.

6.2 Related Work

A commonly used solution for the nodes to recover from the failures is taaresinit the
message if they do not receive an acknowledgment (ACK) from thectgbeecipients

of the message. Consider e.g., the scenario of broadcasting using th&h®Wii in Fig-
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(a) SPT (b) DST

Figure 6.2: Impact of failures (marked with bold “X”) on logical topologiasidg con-
vergecast. (Solid arrowed lines represent edges of the logical treghdd lines represent
edges that are in the graph but not in the logical tree. Arrowed lines afsesent mes-
sages with the distinction that all arrowed lines coming out from a nodegsepta single
transmission from that node. Each arrowed edge is also annotated with ddinmevehich

it will be activated by the transmitting node marked as dark circle.

ure 6.1(a) in which every node is expected to send an ACK after theyreaedved the

broadcast message successfully. Because of the failed link (A, Blots B did not re-

ceive the message and hence node A did not receive an ACK fromd#) Aas triggered

to re-transmit the message. This process (which can be controlled bypesgfied param-
eters) can be repeated until node A receives an ACK from node Bpdisisible that node B
receives the message successfully, but node A fails to receive and\@«o which node A
re-transmits the message, i.e., uni-directional link failures may also occumetheless, it
is trivial to see that such an approach will require an excessive ambuorgssages (includ-
ing re-transmissions and ACKSs) to recover from the failures, which cbeldxpensive for
WSNSs. There are several other approaches that use the basic rg@emasfsmissions/ACKs
to build more sophisticated solutions, for instance, [52, 68].

Reliable broadcasting [52] and convergecasting [55, 64] have bddmessed in the
past, but in isolation from scheduling. In particular, they do not exploitofygortunities
arising from a schedule that is created based on completely differenttobg e.g., the
minimization of schedule length. In this thesis, we take a holistic approach wdglience

to failures is seen as an attribute of a TDMA schedule. To the best of awl&dge this is
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the first proposal that exploits a TDMA schedule for failure recovenyiieless networks.
We will first address the problem of failures in broadcasting for whichaitepropose
our solutions and then we will extend the same proposal to address the fawes in
convergecasting. The basis of our proposal is that a TDMA schedlolsates only one
slot per node to receive a message during broadcast. Recall con§2diom Section 4.2
of Chapter 4 that enforces the nodes to receive only once. We argué i possible
to relax this constraint to effectively exploit a TDMA schedule for nodesetmver from
the link failures in a network. We propose itgect “redundancy” in terms of reception to
increase the chance of successful reception of messages by ttseduithg broadcast. It is
key to note that in all schemes described here there are no redundemisaions (recall
that due to the scheduling constraints every node gets only one slotyref to transmit
its message), and the redundancy is with respect to receptions only. Asllvebow in
this chapter, that is indeed possible without using any additional messatigsrietwork
by simply exploiting a constructed schedule. We name this approach RIBSnib feta
Reception Rdundancynjection in Boadcast 8heduling. We will use a similar approach
to recover from the failures during convergecast, which we calleduRdancynjection in
Convergecast &heduling or RICS in short. We start with a detailed description of RIBS in

the next section.

6.3 RIBS for Reliable Broadcasting

Our basic idea is that nodes can opportunistically exploit a TDMA schedslecmessfully
receive messages during broadcast. It is trivial to notice that if a dosam node was
supposed to receive from its upstream node at a particular time slot, butrvadle to do so
due to link failure there could be more opportunities for it to do so later, by bmigcON
its receiver during contingent (“backup”) time slots. Consider node Bgure 6.1(a) that
is scheduled to receive from node A during slot 1. Since the link (A, B)faded, node
B did not receive node As transmission. However, node B can redbiy message during
time slot 3, which is essentially meant for transmission from node C to F. Notetiokst
B still “missed” its allocated transmission slot 2, because it had not rec#ivethessage
earlier but eventually received it from node C at time slot 3. Hence, Bocknnot receive
the message from node B during slot 2. Nevertheless, node E (haviigaa from node
B in slot 2) can also opportunistically listen in slot 3 to receive the messagericale C.

Since node H will be able to receive the message from its parent nodertg dsrallocated
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Algorithm 8

1: procedure RIBS_.BACKUPY V', N, P,S)
forall v € V' do
3 W, «— 0;
4 forall ¢t € {1,...,|S|} do
5: b« N, NS
6: if |b| =1A P, ¢ bthen
7.
8
9

Wy — W, Ub;
W — {W,lv e V'};
return (W);

slot 4, it does not need to use slot 5 to receive from node F. In contra®des B, E and
H, node | does not have the opportunity to receive from nodes E anati@gdslot 4. The

reason being that node | receives concurrent transmissions frdesrtoand G resulting in
a collision at node I. Because of node I's inability to transmit the messade,Kkaoes not
receive the message either.

The situation is somewhat different in the case of the DST as shown in FégL(ie)
because node | has no other non-leaf node in its neighborhood dgcégtown assigned
parent node E (the link from which has already failed), and hence hodenot recover
from the failure. Nevertheless, nodes H and J can still use slot 3 to ystically receive
from node F. Overall, in the example, in both SPT and DST, the impact ofirceintk
failures could be recovered by exploiting the schedule. While there is atagtee that
100% of failures are recovered, it is important to note that it comes at lirtuaadditional
cost, except for the need to switch a receiver ON, @migt as neededn more than one slot.
This is in contrast to ACK/RTX/CTX based solutions, which will consume mosrgnas
the transmission cost is considered to be more expensive than the recsysi¢R9].

An obvious question now is to decide, for each node, which slots cangokfaisrecep-
tion. Some nodes may be able to hear from non-leaf nodes other than tmeassigned
parent, but not all transmissions from “other” non-leaf nodes may b&uljsas node | in
Figure 6.1(a) illustrates because it was unable to opportunistically use @la t the po-
tential for collision (from I's perspective). Hence, the problem fodes is to select only
those slots for reception that are collision-free. Stated differently, theKip” nodesiV,,
of nodev are the non-leaf neighboring nodes whose transmissions are schedalsidt in
which no other neighboring node transmits. For example, in the SPT shovigiLireFs.1(a)
nodes C and F are the backup nodes of node BJilg.= {C, F'}. The pseudocode of the

algorithm that determines the backup nodes for broadcast is presemttgbiithm 8.
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The input to RIBS consists of a broadcast schedSlg the logical tree ®), and the
topology information about the neighborhood of each notlg. (At line 3 every node’s
backup set is initialized to the empty set. At lines 4 to 7, the transmitting nodé&s in
(recall thatS; is the set of nodes that are scheduled to transmit in#3Jahat are also
neighbors ofv become backup nodes, provided there exists only one such node lse th
two or more transmissions could collide at receiviand that this node is not the parent
of v. RIBS operates by forcing each node to listen to the transmissions fronsitgad
parent,P,, as well as its backup nodeH/,, (if any) during their corresponding slots. A
node stops listening in subsequent slots if it successfully received treageem an earlier
slot. Notice that the application of the constrgiiit= 1 eliminates the potential for using
backup transmissions that are concurrent and colliding, eveodtild potentially correctly
receive one of them (due to the capture effect). Such strict applicatitreatquirement
for no—collision could often result ifi’, = () for many nodes.

Next we present our scheduling based solution for failure recovegoinvergecast.
Note that RIBS, which finds the backup nodes for failure recoveryoadcast is not appli-
cable to convergecast because the corresponding scheduleso@idchst or convergecast)
enforce an order of message transmissions, and this order is partictiter lmgic of ag-
gregation performed in convergecast. Hence, a scheme applicableviergecast should
also honor the aggregation logic. Towards that end we present, RIS&®eauling based

solution for failure recovery in convergecast.

6.4 RICS for Reliable Convergecasting

RICS works on the same principle of allocating “backup” nodes for faite@very in
convergecast as in the case of RIBS for recovery in broadcast. eowunlike RIBS,
backup nodes in RICS play an additional role. More precisely, backdpsiin RICS not
only receive messages opportunistically but they also redundantlygregage their data
together with what they have received as scheduled as well as opigtidaifhy (which are
essential to the correctness of the aggregation data) in a logical treeoteerdom the
failures. Consider, e.g., the failure scenario in the SPT as depicted ireFég(a). As the
link (A, B) fails node B is not able to send its message to the root. Howevdg Gothat
is scheduled after node B, can opportunistically receive from nodeuBin®its scheduled
transmission at slot 6, node C can now send data that represents (egadgd) B’s data

along with its own (if any). It is trivial to see that node C will be forced todsarmessage
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containing the impact of B’s data, if node C did not have any data to semtdtgrallocated
time. Furthermore, node C will send a message containing B’s data regaodilfhse fact
that “some” other nodes might be doing the same to recover B’s data. tNeless, B's
data will be successfully delivered to the root in this particular example oSHE shown
in Figure 6.2(a).

A much more interesting scenario is for node | with respect to the failed link)(in
the SPT shown in Figure 6.2(a). Notice that all neighbors of node | fgXisegparent F with
which its link has failed) are scheduled before it due to which node I's (@atansmitted)
cannot be recovered. Nod¢g, G, H, J can opportunistically receive the message from
node | during its allocated slot 3, but nodds, G, H, J cannot forward node I's data due to
their scheduling constraints, i.e., the transmitting slots of n¢&e$, H, J are earlier than
the transmitting slot of node I. Hence, none of those nodes can becorgpbaade for
node . It also means that there is no 100% guarantee that every ntsddgepportunity
for its data to be recovered via redundantly re-aggregating them.

Note that no new transmissions are added to the schedule hence colligdarfrés
maintained. Though there is no guarantee that every node has a bameponrecover
from the failures, recovery also depends upon the underlying logieas tand their corre-
sponding schedules. Consider, e.g., the DST now as shown in Figubg.6/2(ile using
the DST, node I's data is now recoverable because the schedule atides B and G (that
are scheduled to transmit after node I's transmission) to receive argirtitamode I's data
successfully, which is in contrast to the SPT shown in Figure 6.2(a). Rou®v receives
the messages from nodes E and G, and aggregates the data (to rennonarey as nodes
E and G are essentially sending the same data) before forwarding thegmés#s parent,
i.e., node C. The failed link (A, B) has no impact on the DST.

It is worth noting that both nodes, E and G, act as backup nodes ferInelile using
the DST shown in Figure 6.2(b). However, only one of them is sufficiensficcessful re-
covery of node I's data. Unfortunately, deciding which one of thos#esshould actually
be assigned as a backup node is non-trivial. It is possible that they akddurns over
successive rounds to save energy. A more detailed study on this topict f par future
research work. Also note that, a node may become a backup node fotlmorene node
(which is different than the case in which one node has more than onagpaockles, as dis-
cussed above). Consider, e.g., the SPT shown in Figure 6.2(a) in widehGiis a backup
node for node B as well as node D. Similarly, in the DST shown in Figure pritfte K is

a backup node for node H as well as node J. Hence some nodes mayirisecallly more

91



Algorithm 9
1: procedure RICS.BACKUPY V', N, P,S)
forall v € V' do
W, «— 0;
forall t € {t, +1,...,|S|} do
B «— N, NS
forall b € Bdo
if {Np\v}n{S, \v}=0Ab#p,then
Wy «— W, U b;
W — {W,lv e V'};
10: return (W);

N

“helpful” as backup nodes. Unfortunately, any advantages have sedx under the light
of uncertainty about knowing which link will fail and for how long. Hence thpproach
taken here is the simplest, which does not require any a-priory informatiaar than the
constructed schedule.

Like RIBS, not all slots in RICS are useful for opportunistic recepti@@wsnsider, e.g.,
nodes H and J in Figure 6.2(a), which cannot have any backup nodailioce recovery
during convergecast. In particular, nodes H and J have three poteantididates for backup
recovery, i.e., node F, | and K. However, concurrent transmissiam fiodes H and J
during slot 1 may collide at nodes F, | and K, due to which they cannoiveetiee message
from either of them. Overall, the problem in RICS is to find the backup nodesatie not
only scheduled after a particular node (for which the backup nodekedng sought) but
which can receive the messages in a collision-free manner.

The pseudocode of the algorithm that determines the backup nodesi@rgecast is
presented in Algorithm 9. The input to RICS consists of a convergechstsile §), the
logical tree ), and the topology information about the neighborhood of each n&de (
At line 3 every node’s backup set is initialized to the empty set. At lines 4 to 8,ablkup
nodes for every node are determined by exploring all those nodes that are scheduled after
v, i.e., considering the nodes from the sgis ... St (recall thatS, is the set of nodes
that are scheduled to transmit in stoand S = UL, S;). Naturally only those nodes can
be considered that are neighborswoflines 5 and 6). Furthermore, only those nodes can
actually become backup nodes, which can receive collision-free trasismisomo during
slott, (line 7).

RICS operates by forcing a paret, and backup nodesV, to receive the transmission
of nodewv. Essentiallyp transmits only one message, which is received by multiple nodes,

i.e., the parent and backup nodes. Notice that the application of the doh$tig \ v} N
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] Parameter H Values \

N (# of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)

L (length of the square area [m]) 800, 1000,120Q 1400, 1600 (Synthetic
50 (Intel)

w (transmission range [m]) 200 (Synthetic)

8, 10,12, 14 16 (Intel)
R. 0.2,0.40.6,0.8,1.0
PER (packet error rate) .05, .10,.15, .20, .25, .30

Table 6.1: Parameter values used in this chapter (default values ara shbuld face).

{S:, \ v} eliminates the potential for using some backup nodes. In particular, naigen
may transmit during their allocated slot, e.g., when filters are installed, leaving rsotes

not being used as backup nodes. Such strict application of the requiréaneo—collision
could often result in¥,, = () for some nodes. Recall, e.g., nodes H and J in Figure 6.2(a)
that will not have any backup nodes. Also, note tHat is the set of recipients that will
incur additional energy cost. Hence, while we do wintto be small we do not want it to

be(, although in some cases it is.

6.5 Performance Evaluation

In this section we evaluate the performance of RIBS. The effectivei@d€ S will be eval-
uated in the next chapter for which we implement RICS as well as RIBS orf 8§ TOK.
To evaluate RIBS we implemented the solutions GKLRW [23] and YMV [76]. i&Gdly
we generated broadcast schedules using GKLRW and YMV as well rasvou broad-
cast scheduling solution WISH proposed in Chapter 4. Recall that tlezlslthg phase
of GKLRW is not independent of its tree construction phase, there®kd,RW cannot
be used for scheduling “any” tree that is given as input to the solutiomtr@y to that
WISH and YMV can schedule any given tree. Therefore, in the follovgingulations, to
fairly evaluate the performance of RIBS with different trees and theresponding sched-
ules, we use the tree proposed in GKLRW (which we will refer as GKLR#)tas well as
BISPT. The schedule for GKLRW-tree is constructed through WISH Wad of course
GKLRW. The schedule for BISPT is constructed through WISH and YMly as GKLRW
is not tree-independent. To check the effectiveness of RIBS, wélfiplemented GKLRW,
YMV and WISH independently, and then evaluated these solutions aga{hsR®-RIBS,
YMV-RIBS and WISH-RIBS, i.e., when RIBS is implemented on top of each erfith

Five different simulation setups are considered in this chapter. In platid00, 200,
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300, 400, 500 nodes in a 80BOOM, 1000nx 1000m, 1200nx 1200m, 1400nx 1400m,
and 1600nx 1600m area, respectively. Transmission range of nodes was fi2@@at. \We

also used the Intel setup discussed in Chapter 2 to evaluate our solutieniseeyy track

of density, ¥ = mzzN, where N is the number of nodes, is the transmission range of

nodes and. is the length of a square area. All results presented here are an exafrag

20 simulation runs. Table 6.1 presents a summary of the values that we uskffeient
parameters in our experiments presented in this chapter.

In the following experiments we collected results for two metrics, seccess ratiand
energy costto evaluate the performance of the competing solutions. Recall that RIBS is a
recovery mechanism employed by the nodes to recover the messagesvartheféailures.
Naturally, when failures occur some nodes in the network do not ret¢b&droadcast
message that is being propagated in the network. To be precise thestatees defined
as the fraction of nodes that successfully receive a broadcast geesshus the success
ratio measures the overall impact of the failures to evaluate the perforroétiwerecovery
mechanisms, e.g., by comparing WISH with WISH-RIBS.

In our experiments we introduce link failures to vary Packet Error RaER(HN the
range of{.05, .10, .15, .20, .25, .30PER is defined as the ratio of the number of messages
transmitted to the number of messages that are received successfullyghtad?ER of
0.25 to 0.30 is considered relatively high, we are interested to know if REBSactually

withstand that severe testing.

6.5.1 Success Ratio

The results of RIBS when implemented with WISH, GKLRW and YMV are shown in
Figure 6.3 and Figure 6.4. The foremost trend that can be seen in thedts s that
irrespective of the scheduling solutions (Figure 6.3(a)) and underty@eg (Figure 6.3(b))
RIBS increases the success ratio significantly. That can also be vdrgiadhe results
shown in Figures 6.4 that are obtained through the Intel dataset.

In all of the above results, as PER increases the success ratio dscredsch is ex-
pected. As far as the improvement is concerned, we can clearly seedhmdrtbrmance of
WISH-RIBS is improved by more than 50%, i.e., when RIBS is applied on top I&HV
50% of nodes that were not able to receive the message previoushgwarble to receive
the messages. Note that this significant improvement is achieved withoutarsirapdi-
tional transmissions in the network. Even at a high PER of 0.30 more than #ib#modes

are able to receive the messages as compared to 20% in the case whas RIB&oplied.
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Figure 6.3: Success ratio vs. PER (Synthetic dataset)
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Figure 6.4: Success ratio vs. PER (Intel dataset)

An interesting observation here is that YMV-RIBS does better than all sihletions.

The reason for its improved performance is that on average YMV pexlac'lengthier”

schedule (recall latency results). Because of more slots used in YM¥ dnemmore oppor-

tunistic slots that are available to nodes which they may use during failureecar his

result highlights the fact that a lengthier schedule may actually do bettexifiore recovery

while using RIBS.

Also note that when RIBS is not applied then the success ratio is same foluibas,

i.e., WISH, GKLRW and YMYV, as shown in Figure 6.3(a) and Figure 6.47d)e reason
is that all of those solutions are using a common logical tree, i.e., GKLRW-@&ethe
other hand GKLRW's success ratio is different than that of WISH andvYad shown in

95



o o
= 0.6 = 0.6
< ! ¢ g Fooe- PR R 5
%)) -—— 1%} - _
804 S R $oomnoes ? 04 L 9
S || -=-WISH-RIBS S || -=-WISH-RIBS
o —-e-~GKLRW-RIBS o —-e-~GKLRW-RIBS
0.2l 7= YMV-RIBS i 0.2l 7= YMV-RIBS
RERWE “l|-s-wisH
-6-GKLRW -6-GKLRW
oll=-ymv ‘ ‘ ] oll=-ymv ‘ ‘ ]
100 200 300 400 500 100 200 300 400 500
N (¥:19.6,25.1, 26.1, 25.6, 24.5) N (¥:19.6, 25.1, 26.1, 25.6, 24.5)
(a) With GKLRW tree for all solutions (b) With BISPT for WISH and YMV
Figure 6.5: Success ratio VAl (Synthetic dataset).
0.9 0.9
0.8 0.8

o
~
o
~

Success Ratio
o
(2]
Success Ratio
o
(2]

~a-WISH-RIBS A -a-WISH-RIBS
0.5 ¢~ —o- GKLRW-RIBS] 05/ &~ —o- GKLRW-RIBS]
——YMV-RIBS ——YMV-RIBS
0.4l -5-WISH 0.4f o WISH
-o-GKLRW -o-GKLRW
03 -x-YMV 03 -x-YMV
8 10 12 14 16 8 10 12 14 16
N (W:19.6, 25.1, 26.1, 25.6, 24.5) N (W:19.6, 25.1, 26.1, 25.6, 24.5)
(a) With GKLRW tree for all solutions (b) With BISPT for WISH and YMV

Figure 6.6: Success ratio vs.(Intel dataset).

Figure 6.3(b) and Figure 6.4(b). The reason for this behavior is th&HA\dnd YMV are
using BISPT, while GKLRW is using it's own logical tree.

In another set of experiments with the synthetic dataset we evaluate thenpanice of
RIBS whenN\ is increased while keeping the PER fixed at 0.15. The results are summarized
in Figure 6.5. The foremost trend that can be seen from these results RIB&improves
the performance of all solutions by up to 85%. Another trend that we aimgbese results
is that asN increases, the performance of RIBS is improved even further. Thiavimh
can be explained by the fact that wha&his increasedy is also increased, which basically
increases the node-degree of the nodes. Overall, that increasesribenof backup nodes

for the nodes in the network while increasing the robustness of the solaiensfurther.
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Similar trends can be seen in the results obtained from the Intel datasetisanama-
rized in Figure 6.6. RIBS improves the performance of all solutions. Anéstarg trend
that was not visible with the synthetic dataset can now be observed withtdlelataset.
Notice that whenw is increased the performance of the underlying logical trees (without
RIBS) is also improved. This can be verified when a common tree is usedéFadi(a)),
and also when two different logical trees are used (Figure 6.6(b)¥ ifiprovement in
the performance of the underlying logical trees can be attributed to théhitoivhenw is
increased the logical trees become short. It also means that nodes bacoen&loser”
to the root. When the nodes’ distance (hop-count) from the root is egtjulce probability
that the nodes successfully receive the message is increased, aedthersuccess ratio
is increased. These results suggest that the “shorter” logical treaaa@e robust to fail-
ures, which can actually be verified from the results summarized in Figufie)6Note that
the GKLRW-tree (without RIBS) is outperformed by the BISPT (WISH amdWwithout
RIBS). Recall that, unlike GKLRW-tree, BISPT is a “special” kind of gbst path tree.

6.5.2 Energy Cost

To consider the energy consumption we used a message consisting os@Hattaeeeded
to be broadcast in the network. The cost of an unsuccessful messeg@ion, either
because of a failed link or “idle” listening, is considered to be 1 byte. Récatiduring
broadcasting a schedule is in place, and the nodes are “awake” #icsfige slots to
receive the broadcast message. However, some nodes may neé réeeimessage either
because of their failed links or the message is not transmitted by their pasdhinavhich
case the nodes will incur the idle listening cost.

The energy cost of a node is computed®st B,..R., where B, and B,., respectively,
are the number of bytes transmitted and received by the node. Recall thatF,,/E:,,
where £, and E,.,,, respectively, are the energy cost to transmit and receive a single bit.
In our experiments we tried various valuesiof from the set{0.2, 0.4, 0.6, 0.8, 1,0 An
increasingR. value means the cost of reception is increasingly becoming equal to the cost
of transmission. In the following experiments we fix&d at 0.6 for which the results are
summarized in Figures 6.7 and 6.8.

The trend seen in Figures 6.7 and 6.8 is that as PER increases the erstiggareases.
The reason for this behavior is that as more packets are lost many nadesable to
forward the message along the tree. That further triggers the nodegher hevels of

the tree to not participate in the broadcasting. In this situation many nodestdacno
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than an average of 2 units per node of additional energy cost.
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6.6 Conclusions

In this chapter we addressed the problem of link failures in broadcastidgcanverge-
casting that are often neglected by the existing scheduling solutions. deweat end we
proposed a novel failure recovery framework consisting of RIBS RIS that exploits
TDMA scheduling to effectively deal with failures. Our extensive simulatstudy re-
veals that our proposed solutions are not only reliable but they are mésgyeefficient. In
particular, we evaluated the performance of different logical tree topedagnder various
conditions of PER)N, w and scheduling solutions. An important conclusion that can be
drawn from the results presented in this chapter is that not all logical tpeddmies are
equally effected by failures, i.e., some logical tree topologies are moretrtftarsothers.
In the next chapter all of our proposed solutions culminate to make a cas#iéent and
reliable topk query processing in WSNs. In particular, through EXTOK we evaluate the
performance of proposed logical trees, scheduling and failure eeg®olutions for effec-

tive top+% query processing in WSNs.
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Chapter 7

Efficient and Reliable EXTOK

7.1 Introduction

In this chapter we evaluate the performance of our various solutions vdgece to top-
k query processing using EXTOK. In particular, we evaluate the perfocemaf EXTOK
while using various combinations of logical trees i.e., SPT, DST, BISPTB&RIT. Recall
that a logical tree topology plays a crucial role in broadcasting and cgewasting, which
are two elementary operations for query processing. To that end wetarested in using
various combinations of logical trees for different phases of EXT@IS.ihteresting to note
that we can use either a single tree, e.g., BISPT, or a combination of trege8BISPT and
BSPT, for broadcast and convergecast phases of EXTOK. Thadde use a “specialized”
tree for a particular phase. For example, we have already seen thHaT Bd3nore efficient
than other logical tree topologies for broadcasting, but not necesfaritpnvergecasting.
Therefore, it might be useful to use “another” tree for converg@ugisvhile still using
BISPT for broadcasting. In this chapter, we use the following combinatiblogjical trees,
as mentioned in Table 7.1, for tdpquery processing using EXTOK. Later we will use
the notation X-Y to represent the logical trees X and Y that are used asldmet and

convergecast trees, respectively, during EXTOK’s broadcaktanvergecast phases.

| Broadcast Tree || Convergecast Tree|| Combination Name |

SPT SPT S-S
DST DST D-D
BSPT BSPT B-B
BISPT BISPT BI-BI
BISPT SPT BI-S
BISPT BSPT BI-B

Table 7.1: Combinations of various logical trees that are evaluated.
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Many existing solutions use underlying logical tree topologies for perfoocaaains
without paying much attention to the quality of such logical topologies. It is heyhe
scope of this thesis to study all logical trees that are possible for piagaks topk queries
in WSNs. Nevertheless, our goal here is to demonstrate that the choiceunfderlying
logical tree does matter. As we will show later in this chapter that is indeed Seeasaan
underlying logical tree significantly influences the query processing cos

We are also interested in evaluating the performance of our failure rgcegtutions,
RIBS and RICS, for broadcasting and convergecasting with respée top4 query pro-
cessing using EXTOK. More precisely, we implemented RIBS and RICS oof e TOK
to make it resilient to failures in WSNs. Again we use various combinations a¢dbg
topologies with EXTOK and note the impact of failures. Note that in order tdIB& and
RICS we need broadcasting and converecasting schedules. Taharésd we use WISH
and WIRES for generating broadcast and convergecast schetkgpsctively. Overall in
this chapter, various components of a query processing solution ategaiher to present
a case of efficient and reliable in-network query processing in WSgt, e present the
results of our detailed simulation study. The simulation setup remains the samelussd$
in the second chapter. However, for reader’s convenience werrége main details of our

simulation setup again.

7.2 Simulation Setup

Our proposal is evaluated using both synthetic and real datasets. ety dataset was
generated by simulating a network of nodes deployed in a 20800m area. Using this
dataset we performed experiments by varying five parameters: numtmogr wdlues sought
(k), number of nodes/), wireless/transmission range) probability that a node’s value
changes between two consecutive roungsgnd percentage of change in node’s value
(6). Table 7.2 shows the values used for these parameters. To investigatepta of
randomly changing values (hodes’ measurements) on the performance aligtirithms
we generated “temperature” values for nodes. The initial value of n@desandomly set
between 1 and 100 and could vary between rounds according to paranjegeially likely
to be a negative or positive change). Results using the synthetic datadetsed on an
average of 20 simulation runs in which each run consists of 200 roundsadh of these
simulation runs position of the nodes and the root node were chosermmgndo

The experiments with real data was performed using the Intel BerkelegeddtH,
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] Parameter I Values \
k (# of top values) 1, 5,10, 15, 20
N (# of nodes) 100, 200,300, 400, 500
w (transmission range [m]) 25, 30,35, 40, 45 (synthetic datal
and 8, 10,12, 14, 16 (Intel data)

~ (probability of change) 0.1,0.2,0.3 0.4,0.5
0 (change [%]) 2,4,6,8, 10
R. 0.2,0.40.6,0.8,1.0
PER 0.05, 0.100.15 0.20, 0.25
Enaz 4000, 5000600Q 7000, 8000

Table 7.2: Parameter values used in this chapter (default values ara shbuld face).

which consists of approximately 3.5 million readings from 54 nodes deploy#tkiitel
Berkeley Research lab. Missing values in the data were replaced usiagihiterpolation.
Sensor readings were originally maintained by epochs, a monotonicallyasicgenumber
for each of the nodes. We organized the sensor readings in such thatdiie dataset has
60,000 rounds, each one containing one value for each of the 54.nbldés that in the
Intel dataset only parameteksandw are investigated using the original placement of the
nodes, and having one such node randomly chosen as the root medefiacun. As before
the reported results are an average of 20 runs.

A node id and its value are represented by 2 bytes eachr Vakie in EXTOK is char-
acterized by 2 bytes. Each message also accounts for 4 bytes as ahsaaler overhead.
Energy cost is the energy required for the transmission and recept@asiogle bit repre-
sented by, andE,.., respectively. We usg, to link transmission and reception cost via
R. = E,,/E,. The energy cost of a node is computed®st B,.R., whereB; and B,,
respectively, are the number of bytes transmitted and received by tlee Mbe values for
R, are chosen from the set mentioned in Table 7.2. We also evaluated theyperte with
respect to th@etwork lifetimehat we define as the number of rounds before the first node
runs out of its energy. The initial energy budg#t,...., for a node is chosen from the set

mentioned in Table 7.2.

7.3 Transmission Cost

Transmission cost is measured as the average number of bytes transmittetbdg per
round. Results on the transmission cost are summarized in Figure 7.1. $hedird
that we can notice is that each combination of the trees has incurred adiffarst. As

expected, whetk increases the cost for all combinations of logical trees also increases as
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Figure 7.1: Transmission cost in the synthetic dataset.

shown in Figure 7.1(a). This can be explained by the fact that ihienreases more data

is needed for the root to answer the query. When transmission rafigigc(eases as shown
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in Figure 7.1(b), the cost decreases for every combination of treesteéHson is that when
w increases the underlying logical trees “shrink” while reducing the nurobe&on-leaf
nodes, hence decreasing the communication cost. When communicationin@aiases
the communication cost is affected slightly as shown in Figure 7.1(c) andd-fgiufd). As
expected, wheV increases the cost decreases as shown in Figure 7.1(e).

Out of all the combinations, BI-BI, BI-S and BI-B have incurred lesagraission cost.
This can be attributed to the fact that these combinations use BISPT asésotide, which
we have already seen is efficient for broadcasting. Because of fittexstransmission
cost during convergecast is reduced significantly, therefore theeogecast tree in these
combinations plays less significant role compared to the broadcast trewiion D-D
also incurs less transmission cost, which is due to the DST that is efficiettraadcasting
tree. A more interesting result, however, is that the communication cost iseddy up
to 50%, just by replacing the commonly used logical tree topology, SPT with {BEB
or DST, which can be seen while comparing S-S with D-D, BI-BlI, BI-S Bh@. Similar
trends can be noticed in the results shown in Figure 7.2, that are obtaoradhe Intel

dataset. The magnitude of results, however, has changed.

7.4 Energy Cost

The results for the energy cost are summarized in Figure 7.3. As showiguneF7.3(a)
the energy cost for combinations D-D, BI-BI, BI-S and BI-B is less t8a8. This reflects
the efficiency of DST and BISPT for disseminating messages. In partiBliBi is able
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Figure 7.4: Varying energy budget in the synthetic and Intel datasets.

to reduce the energy cost by 15% as compared to S-S and more than 23%npared
to B-B. Similar results can be seen in Figure 7.3(b) that presents the rasultiie Intel
dataset. The magnitude of the results, however, has changed. Herthalsombination

BI-BI outperformed all other solutions in reducing the energy consumption

7.5 Network Lifetime

Results for the network lifetime are summarized in Figure 7.4. Some interesting obse

vations can be made from these results. BI-Bl performs consistently wedbincing the

transmission as well as energy cost. However, BI-Bl's performanitie nespect to the

network lifetime is not as good as B-B or BI-B. Recall that BI-Bl usesBIBISPT com-
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bination for broadcast and convergecast. BISPT is a tree with the learier of non-leaf
nodes (as compared to all other trees used here), i.e., it is good in rgdheitransmission
cost and hence the energy cost. However, that results in an increaseoht of “load” on
the non-leaf nodes to process and forward the data for the leaf nodles iree. Because
of this increased load “one” non-leaf node dies quickly resulting in theaed network
lifetime. (Recall our definition for the network lifetime that is defined to the nundfer
rounds before the first node runs out of its energy.)

In contrast to that, B-B, which is a combination of BSPT-BSPT, and whicimdiigher-
form well in reducing the transmission and energy costs, actually improveddiwork
lifetime significantly compared to other combinations. This behavior can be asdtia
the fact that BSPT is a “balanced” tree (recall the BSPT constructiohdudh the com-
munication and energy cost accumulated by the BSPT is higher but it tendkatab that
cost. This is in contrast to BISPT in which “some” nodes are given more canuaiion
and processing load. The combination BI-B (BISPT-BSPT) perforres é&etter than B-
B, though slightly. Note that BI-B uses two different logical trees, i.e.,/BI%&nd BSPT
for broadcast and convergecast, respectively, which helps irefuiricreasing the network
lifetime by “distributing” the energy cost evenly. However, the advantdgs-B is that
only one structure (logical tree) needs to be maintained within the network.

These results suggest that using a “leafy” tree (e.g., BISPT) fodoasting while us-
ing a “non-leafy” or “balanced” tree for convergecasting (e.g., BB Tthe most useful
combination for extending the network lifetime. This can be verified from thi®spaance
of BI-B as shown in Figure 7.4. Even using a single, but balanced toedo¢th phases),
i.e., BSPT-BSPT, is useful in extending the network lifetime, which is confirtnethe
results from B-B as shown in Figure 7.4. All other combinations are fourmbtless use-
ful. Nevertheless, the combination of our proposed trees BISPT-BSEBlésto extend
the network lifetime by more than 60%, which is achieved by just replacing thécoos
monly used underlying logical tree topology, i.e., SPT-SPT combination. ©hisrms our
intuition that the underlying logical tree topologies indeed play a significdatinoquery

processing.

7.6 Failures and Recovery

In this section we evaluate the effectiveness of EXTOK in the presentekofailures,

which may cause the root to report an incorrect result. We assume theregult to be
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Figure 7.5: Failure recovery in the synthetic dataset.

incorrect if one or more of the sensidisis missing or its value is not correct in the reported
top-k result set. Recall tha$), ; is the set of sensomctually producing thep” highest
value, and let us deno@d as the set of sensors that were reported as producing/the
highest correct value; both with respect to tfié round. Then we can define the error
accuracy ratiog, = | UF_; S, \ Us_,S), ;|/| UE_; S, ;|. To better understand the effect
of failures we also compute the error frequeney, which is the fraction of rounds that
produced an incorrect top+result having:, > 0.

In the following experiments we set different values for the probability thabde,
during a round, cannot communicate with a specific neighbor, iliek #ailure. We restrict
our attention of course only to pairs of nodes (i.e., edges/links) that b&sahg underlying
physical topology. Each link fails independently of all the other links. Mueg, link

failures are assumed to be independent from one round to the nextugrhliok failures
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we vary Packet Error Rate (PER) in the range{d5, .10, .15, .20, .25 As mentioned
previously PER is defined as the ratio of the number of messages transmittechtortber
of messages that are received successfully.

Results for failure recovery in the synthetic dataset are summarized ineFrgbir As
shown in Figure 7.5(a) error frequenay ] of EXTOK with any tree combination is around
90% when PER is 0.05. It means that during 90% of the rounds EXTOKtee{spme”
error in the returned results when links fail with a probability of 5&pincreases to 100%
as PER is increased beyond 0.15.

Figure 7.5(b) summarizes the “magnitude” of the error in the reported reselts,,.

In particular, when links fail with a probability of 5%, then 18% of the valugseported

by EXTOK are incorrect. More specifically, less than 2 values are iecbfrom the top-10
results (recall that the default value fhris 10). As expected, when PER is increased to
0.25¢, is also increased. In particular, around 40% of the values were foupelittcorrect
from the top# values.

Figure 7.5(c) summarizes the resultsegrwhen failure recovery solutions are applied,
i.e., when RIBS and RICS are implemented on top of EXTOK. In this setting all eomb
nations of trees respond differently, but overall the performanceXd@K is improved
significantly as shown in Figure 7.5(c). In particular, at 0.05 RER reduced from 90%
to 20% for B-B, to 40% for S-S and to 55% for BI-Bl. The B-B combinatiamsistently
resists failures even at high PER, e.g., when PER is §:.26r B-B is still less than 80%.

Figure 7.5(d) summarizes the resultsqgrwhen failure recovery solutions are applied.
€, is reduced from 20% to less than 10% when PER is 0.05. Here also, amaagrddi-
nations, EXTOK with B-B shows improved robustness to failures. EvenhaglaPER of
0.25 EXTOK with B-B returns less than 2 incorrect values.

Another observation from these results is that some tree combinationstare must
as other tree combinations, e.g., BI-Bl (BISPT-BISPT). This behawnr® explained by
the fact that the trees, which are more “leafy” as compared to others am pnone to
failures. The reason is that, since there are less non-leaf nodes irfyd ttee, any failure
of such nodes leave many nodes disconnected resulting in the incresmed e

Results on failure recovery from the Intel dataset are summarized ind=fgér Similar
trends can be observed in these results that we noticed with respect ymthetg dataset,
however, the magnitude of results is different. EXTOK with different tremlinations
responded differently to failures. Nonetheless, RIBS and RICS imgdrtharobustness of
EXTOK with S-S by decreasing from 90% to up to 25%, ané, from 30% to up to 10%.
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Figure 7.6: Failure recovery in the Intel dataset.

7.6.1 Transmission Cost for Failure Recovery

In this section we evaluate the overhead in terms of transmission cost thas euthe
the failure recovery solutions. Recall that RIBS and RICS increaseetteption cost by
receiving multiple messages, and also the transmission cost by injecting thagee fisat
are essential for failure recovery. In these experiments, first, Weia@eathe transmission
cost when no recovery solutions are applied, i.e., EXTOK without RIBERICS. Then
we compare the results when RIBS and RICS are applied. Results frogmthec dataset
are summarized in Figure 7.7.
There are two observations that can be made from the results summarizégh in F

ure 7.7(a) that are obtained without applying RIBS and RICS. The hsstiwation is that all
tree combinations have different transmission cost, which was quite egpddte second,

more interesting observation is that as PER is increased the transmissios desteased
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Figure 7.8: Transmission cost for failure recovery in the Intel dataset.

(for all combinations of trees). This behavior can be explained by thetliat as more
messages are dropped due to failures many nodes are either unablesialftire messages
along the tree (during broadcasting) or they are missing data partially ¢pewimvergecast),
which reduces the number of bytes being transmitted. In the case of lasiamdythe effects
are more severe as the children nodes under the subtree of a failed vtk darticipate in
the broadcasting at all. In this situation many nodes do not incur the transmecsst
Another interesting trend with respect to the tree combinations is that the cdinhina
B-B (BSPT-BSPT) that we found more robust among all other combinati@usred more
cost than others. This is because BSPT is a “balanced” tree due to whscmdre re-

silient to failures. Because many nodes are still able to participate in ceoastng and
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broadcasting, its transmission cost is more as compared to other tree conmsinatio

Figure 7.7(b) summarizes the results when RIBS and RICS are implemente@ on to
of EXTOK with various tree combinations. The first trend that can be obsehere is
that the transmission cost has increased for all solutions. This wastegpEsnodes that
were unable to send across their messages are now able to send thegendssause of
recovery schemes. Overall, the transmission cost is almost doubled wB&naRd RICS
are implemented on top of EXTOK. One way in which this result can be intepretbat
when failures occur in the network, EXTOK reduces the chance oftiega wrong result
by paying more communication cost. Here also, when PER increases thmissios cost
decreases for the same reason as explained above.

Similar trends can be observed in the results obtained from Intel datasshofs in
Figure 7.8, different combinations of the trees incurred different tréssion costs. As PER
increased the transmission cost decreased (with and without recmletipss) because of
the reasons that we explained previously. The combination B-B (BSHPTFB®icurred

more cost than other because of its robustness to failures.

7.6.2 Energy Cost for Failure Recovery

Results of the failure recovery overhead in terms of the energy costianenarized in Fig-
ure 7.9. As expected when PER is increased the energy cost for albsalis decreased.
As explained previously, transmission cost is decreased as the PERdasadr which
results in the reduced energy cost. As shown in Figure 7.9(a), B-Bsralightly more
energy than other tree combinations when no failures are recoveregh RICS and RIBS
are implemented on top of EXTOK the energy consumption increases for abthtons
as shown in Figure 7.9(b). The reason for the increased energysdbsitt as more nodes
are able to participate in query processing more transmission as well gdioeceost is
incurred by the nodes. Recall that some nodes that were not able tmirdimsir message
at all or were able to send their partial data only (which reduced theimrisgon cost) are
now able to send their messages as well as redundantly re-aggregetetliddo failures
recovery. Also, note that RIBS and RICS require that nddgsen during backup slots.
That results in the overall increased reception and transmission cosiciilpin the case
of RICS many backup nodes may trigger messages for a node increasirectption as
well transmission cost. Since every node may have many backup nodescéipéion cost
dominates the transmission cost in RICS. This is the reason that, when RIBH@S are

applied, the energy cost has four to six fold increase as compared todigyecost when
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Figure 7.10: Energy cosf. = 0.6) for failure recovery in the Intel dataset.

failure recovery scheme is not used. This is in contrast to the transmisssbrstwown in
Figure 7.7 in which we noticed less than three-fold increase. As expdahtednergy cost
decreases when PER increases. That is partly due to many nodestimpatéEng in the
query processing as they do not get “updated” because of the &ilure

The results from the Intel dataset are summarized in Figure 7.10. Similastamd
be seen in these results as observed during the synthetic dataset, hineewagnitude of
results has changed. Here again, when RIBS and RICS are applieatice an increase in
the energy cost, however the increase is around three-fold as cahiparsix-fold increase
in the case of the synthetic dataset.
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7.7 Conclusions

In this chapter we evaluated the performance of EXTOK with respect tadeuof combi-
nations of various logical trees. We evaluated EXTOK's performanceeipyibknt of failures
as well while using our failure recovery solutions, RIBS and RICS. &hlesults revealed
two important observations: (1) Logical topologies are important not amygéiery pro-
cessing cost but also for dealing with failures. In particular, some logppallogies are not
only better suited than others in reducing the query processing costdyuté also more
robust to failures even at a high rate of failures. (2) The robustnessjoery processing
solution can be improved significantly but at the expense of an increasedyecost. In
particular, RIBS and RICS reduced the chance of EXTOK giving anriecoresult (in the
event of failures) from 90% to upto 20%. However, that reduction iseaveld at the expense
of three to six fold increase in the energy expenditure. In the next chagtsummarize
this thesis while outlining some future directions in which the work presented ithibgss

can further be extended.
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Chapter 8

Conclusions and Future Directions

In this thesis we addressed the problem of in-network query procegssidéSNs. We
started this research while investigating the issues dealing with efficieregsiog of MAX
gueries in WSNs. We discovered that a particular logical tree topology, Bi§nificantly
influenced the query processing cost for MAX queries [46]. To kexige we showed
that by simply replacing a commonly used logical tree topology, SPT, with the @80
without any changes to the original algorithms) one can reduce the quacggsing cost
up to 50%, depending upon the type of the algorithm used for MAX queries.
Subsequently, our investigation moved beyond that work to identify Sdvasa prob-
lems that were not only concerned with MAX queries but they were alsticajte to
several other in-network query processing problems in WSNs. Singsid&ring every
type of query to make a generic case for in-network query processifggms was beyond
the scope of this thesis, we eventually focused on the:tgperies to take our investigation
to the next level. Tog: queries are an important class of aggregation queries that are useful
in many applications. Through a systematic study of thektapiery processing in WSNs
we shared our findings in this thesis, which are applicable not only to thi tpries, but
also to other in-network query processing problems in WSNs. Towardetiubthis thesis

offered several contributions that are listed as following.

¢ In this research we relied upon a filtering based mechanism for efficiemtbepsing
top-k queries in WSNs. The fundamental idea of filters was proposed in [60); h
ever, we are first to propose a filtering based algorithm for processiagt topk
queries in WSNs. EXTOK does not only return exact answers but ittalses into
account the tied values, which were neglected by existing solutions. Fuiihe,
previous proposals often “detached” the properties of a tree frometmastics of

a query and the specialized techniques used, e.g., arithmetic filters, whdaidgs
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their solutions. EXTOK, however, is built upon this observation, andcatfely ex-
ploits the semantics of a tapquery, filtering constraints and the underlying logical

tree topology for processing the tdpgueries efficiently.

We proposed a new logical tree topology, BISPT, that is better suited thanexist-
ing logical tree topologies for one-to-all broadcasting in WSNSs. In pddicBISPT
outperformed SPT, as well as DST and GKLRW-tree in terms of reducinguhre
ber of messages that are required to disseminate the message in a netovoekek]
BISPT has its own disadvantage. Because BISPT is a “leafy” tree itesdbe num-
ber of non-leaf nodes in a logical tree topology. It means that the ndmdeles have
more communication and computation “load”, which might leave the non-leafsnode
depleted of energy faster. This could become a problem in WSNs wheesrave
battery powered. Nevertheless, BISPT could be more useful in statiorietwhere
energy is not an issue or in networks where the non-leaf nodes ammedgo be rich
in resources. We also established a theoretical bound for the broiadcasblem,

which actually guided us to discover the BISPT.

In this research we propose efficient TDMA-based solutions for tbadwast and
convergecast scheduling problems. Our approach was to, firstligstitie theo-
retical bounds for those problems and then look into solutions, which cdorpe
as close as possible to the established bounds. Towards that end wézkedntize
theoretical bound for broadcast scheduling, and presented a néwettigpound for
convergecast scheduling. We found in our research that the tastaled converge-
cast scheduling problems (with their particular constraints) enforce thetrewtion
of a logical tree topology for scheduling the nodes in a network. Towdraisend
we identified certain logical topologies that offer better solutions (in termseoé#h
tablished theoretical bounds) for the scheduling problem. In particuaysed the
BISPT for the convergecast scheduling problem, and proposed doggeal tree,
BSPT, for the convergecast scheduling problem. In addition to thoseilmaions
we proposed two new scheduling algorithms, WISH and WIRES, for loastcand
convergecast scheduling, respectively. WISH and WIRES are tgpdtmlependent

algorithms that can be used for scheduling any given logical tree.

Link failures are part of any wireless network, and the solutions pregasthis the-
sis, e.g., algorithms and logical topologies, are not immune to failures eithéneiru

more, unlike many other wireless networks, nodes in WSNs have limited @@sour
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to deal with failures. Therefore, dealing with failures in WSNs is a challengiob-
lem. We wanted to avoid existing re-transmissions/ACKs based solutionsdayen
efficiency in WSNs. Furthermore, our TDMA based scheduling solutiopaiticu-
lar for convergecast, seemed to have a “gap”. Recall that in EXTOK madgs do
not reply during convergecast due to their filtering constraints. In thiatita many
nodes do not use their allocated slot during convergecast. This alsctiesrihe
time slots that we allocated to many nodes are “unused” while unnecessardgsAac
ing the convergecast latency. RICS filled this “gap” by utilizing the “unlisiece
slots through the backup nodes for failure recovery. With RICS welaesta avoid a
costlier solution for failures based on re-transmissions/ACKs while explcétioaon-
vergecast schedule effectively, which was a natural choice whilsidering energy
efficiency. (Note that inefficient utilization of the time slots is not an issue durin

broadcast as every node participates during that operation.)

Our work in this thesis has addressed some important problems in WSNs.olthe s
tions presented in this thesis are simple yet effective as revealed by temsie simula-
tion studies. Our proposed solutions are applicable, of course with somificatdns, to
some other problems not addressed in this thesis, e.g., extending@edo-allbroadcast-
ing solution to solve the problem afl-to-all broadcasting in WSNSs is one such possibility.
Within the context of the contributions offered in this thesis, next, we list sonre fature

directions in which our work can be extended.

e Broadcasting remains a fundamental problem in many distributed wired aattssr
networks. Further research on BISPT in this context could be usefubth®r di-
rection here is to extend the BISPT based solution to non UDGs based tigsolog
Recall that in this thesis we applied BISPT in UDGs only, which is generallg use
to model a WSN. One can also use a non-UDG to model a WSN, which basically
means that nodes may have different transmission ranges in that parsetuar In

this situation, it remains to be seen that BISPT is a “good” solution.

e Filtering and aggregation remain two important techniques for reducing thence
nication cost in WSNSs. Filtering is mainly used for aggregation queries in WSNs
e.g., the topk query processing. It might be useful to survey other types of queries
such as join and nearest neighbor queries for which filtering and ggtpa based
solutions can be designed. Towards that end another important directiorinis

vestigate which logical topologies are better suited to “execute” the new swutio
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Obviously, if the new solutions also require broadcast and convesgeparations,
we can use the solutions proposed in this thesis. However, there may becopihiee-
ments and objectives for which one may need “special” logical structuchsdimg

trees and clusters.

Another interesting direction of our future work is the processing of multiplerigs.
Continuous execution of a single query, e.g., kops considered in this thesis, may
not be sufficient for some applications that seek to extract more complexriafo
tion than just the togs sensors/values. To that end, it is possible that users may
want to process a combination of multiple queries during various roundshisn
situation, one can compute (in advance) multiple logical trees (built upon the sa
physical topology) to be used for various queries during specificd®uRecall that
the “backbone” nodes of a given logical tree propagate most of the coioation
traffic causing faster dissipation of energy from those nodes, whichaverall re-
duce the network lifetime. Therefore, it might be useful to employ multiple logical
trees during various rounds on “rotation” basis to evenly distribute theggro®st of

the nodes to prolong the network lifetime.

Recent advances in MIMO technologies may allow single-radio nodes fuecate
on data transmission and/or reception [19]. What that means basically inrnkext
of this thesis is that there could be transceivers that could receive multgris-tr
missions concurrently, which may change the scheduling problems addriesthis
thesis. In this new scenario, scheduling constraints may change as wathpartant
research in this direction is to construct schedules that take into accewabitity of

the radios to receive multiple transmissions concurrently.

In the context of failure recovery and RICS, an important problem is tdrobthe
“redundancy” injected by the backup nodes. Recall that in RICS theyebmanul-
tiple backup nodes that may forward multiple messages in a logical tree foea gi
node. Overall, that leads to increased energy consumption in WSNsrtuimditely,
it is not trivial for the backup nodes to know which “one” of them shouldger a
message in order to recover a failure. Solving this problem in an endfigient
manner could be a challenging issue. In the context of failures it might be tieg
to explore for new techniques to deal with failures that were not reeoveppor-

tunistically.
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e In this thesis, we addressed the problem of semi-matchings (with two diffeniea
ria) in bipartite graphs for constructing “special” logical trees. This weahk further
be extended to find other criteria for semi-matchings to discover new logeal tr
topologies. It might be useful to find applications (other than the logicaldoee
structions), e.g., in social network analysis where Maximum-Load Semi-Natch

can be applied.

e BSPT proposed in Chapter 5, does not guarantee a minimum lower bodedirzsd
in Lemma 3 with respect to trees that a@ SPTs. It might be an interesting problem
to find a logical tree topology that is optimal with respect to Lemma 3. Intuitively,
a tree can be constructed in which the paths of the nodes catobgated hence
increasing their hop-count (compared to the shortest possible path) pdsably

decreasingheir children-count to potentially achieve this optimal lower bound.
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