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Abstract

The Wireless Sensor Networks (WSNs) have emerged as a new paradigmfor collecting

and processing data from physical environments, such as wild life sanctuaries, large ware-

houses, and battlefields. Users can access sensor data by issuing queries over the network,

e.g., to find what are the 10 highest temperature values in the network. Typically, a WSN

operates by constructing a logical topology, such as a spanning tree, built on top of the phys-

ical topology of the network. The constructed logical topology is then usedto disseminate

queries in the network, and also to process and return the results of suchqueries back to

the user. A major challenge in this context is prolonging the network’s lifetime that mainly

depends on the energy cost of data communication via wireless radios, which is known to

be very expensive as compared to the cost of data processing within the network.

In this research, we investigate some of the core problems that deal with the different

aspects of in-network query processing in WSNs. In that context, we propose an efficient

filtering based algorithm for the top-k query processing in WSNs. Through a systematic

study of the top-k query processing in WSNs we propose several solutions in this thesis,

which are applicable not only to the top-k queries, but also to in-network query processing

problems in general. Specifically, we consider broadcasting and convergecasting, which

are two basic operations that are required by many in-network query processing solutions.

Scheduling broadcasting and convergecasting is another problem that isimportant for en-

ergy efficiency in WSNs. Failure of communication links, which are common in WSNs, is

yet another important issue that needs to be addressed.

In this research, we take a holistic approach to deal with the above problemswhile

processing the top-k queries in WSNs. To this end, the thesis makes several contributions.

In particular, our proposed solutions include new logical topologies, scheduling algorithms,

and an overall sophisticated communication framework, which allows to process the top-k

queries efficiently and with increased reliability. Extensive simulation studies reveal that

our solutions are not only energy efficient, saving up to 50% of the energy cost as compared

to the current state-of-the-art solutions, but they are also robust to linkfailures.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a collection of sensor nodes that arealso equipped

with computing and communication capabilities. Nodes have on-board radio transceivers

through which they can communicate with other nodes, thus creating a wirelessnetwork.

Through sensors these nodes capture data from the physical environment, which are then

stored and possibly processed for extracting useful information. Though these nodes can

be equipped with different kinds of sensors to perform various sensing activities, they are

generally constrained by limited memory, processing power, and communicationchannel

capacity. Typically the nodes operate on batteries; hence they have a limited energy reserve

and therefore energy conservation is one of the design goals in WSNs.

In the past few years WSNs have grown rapidly in their capabilities, e.g., nodes with

a low-power 32 bit PXA271 XScale processor with 32MB of RAM and 32 MBof Flash

memory, an integrated 802.15.4 radio with a built-in 2.4GHz antenna are now available

commercially [18]. The way these networks are beginning to be deployed in research and

the commercial sphere [71], it is not unreasonable to expect that in the next 10-15 years

a vast amount of information gathered by widely deployed WSNs will be accessible over

the Internet [63]. This trend favors the integration of the existing Internet with our physical

world to create new interesting applications. Before listing some of these applications we

review a generic architecture of a WSN and its most important characteristics.

1.1.1 Architecture

Due to specific objectives of various applications, WSNs do not have a fixed “one-size-

fits-all” architecture. As surveyed in [36], the architecture of WSNs drastically varies at a

node level as well as at the network level. At the node level, physical dimension, storage

1
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Figure 1.1: A WSN architecture.

capacity, and computational and communication power, are some of the important design

considerations. At the network level, the nodes’ organization and their communication

strategies on a collective basis influence the architecture. However, a common desirable

characteristic across all WSNs is low power consumption.

In general, we would like WSNs to be integrated with the existing wireless or wired

networks, e.g., the Internet. Figure 1.1 represents a typical design of a WSN architec-

ture. Multiple sensor networks, possibly at different geographical locations, can be setup

to monitor areas of interest. Heterogeneous sensor networks may communicate with each

other usingintra sensor networkgateways. A user may move in a sensor network area to

inquire individual nodes directly, or sensor networks may have a base station where data

from individual nodes can be gathered and processed. Base stationsmay be connected to the

Internet and users at various locations may access the information gathered by the nodes.

1.1.2 Characteristics

WSNs have been characterized according to several parameters like node deployment, node

capabilities, applications, energy and communication constraints, etc. [2, 3,36]. Some of

those general characteristics include:

• Ad Hoc Deployment: Nodes are generally designed to be deployed in an arbitrary

fashion. An extreme example of such deployment is where the nodes are dropped

from an airplane onto a geographical region of interest.
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• Dynamic Topology: Because of the unreliable wireless communication at certain

times and the failure of individual nodes due to depletion of their energy, thenet-

work topology may change unpredictably and randomly at any point in time.

• Application Specific: It is very likely that sensor nodes are designed for specific ap-

plications. That means the functionality of nodes will highly depend upon the type

of applications for which the nodes were designed.

• Energy Constrained: In most cases, nodes in a network rely upon a limited supply

of energy from their batteries. Energy consumption of individual nodes may account

for the overall lifetime of the network as failure of some nodes may leave the network

disconnected and less useful.

• Bandwidth Constrained: Sensor nodes will primarily be dependent on their wireless

radios for communicating data and/or control messages. In a typical situationnodes

share the limited bandwidth of the available communication channels.

• Self-Reconfiguration: Due to limited external (user) involvement, WSNs are expected

to have self-reconfiguration capabilities. The tasks of self-reconfiguration and net-

working may mostly depend on nodes’ knowledge about their relative positioning

with respect to their neighbors.

• Multi-Hop Communication: Due to the power constraint of wireless radios and also

to restrict the communication interference, nodes have limited transmission range.

In this situation, two nodes that are not in each other’s transmission range,may use

multi-hop communication, i.e., they may useintermediatenodes to communicate

with each other.

1.1.3 Applications

WSNs may play a crucial role around us. Surveillance, tracking and smartspaces are some

of the important applications of WSNs. We list some of the popular applications next.

• Military Applications: Military applications are one of the promising areas in which

WSNs are being explored on a large scale. Such applications include tracking of mov-

ing objects [12, 25, 67, 74], classification of ground vehicles based ontheir acoustic

signals [11, 21, 47], monitoring of hostile environments in a battlefield [42], and so

on. Deployment of sensor nodes in a hostile environment may reduce humaninjuries
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and other costs. Nodes can be dropped from a plane over a vast geographical region

to detect harmful and dangerous materials. Tracking of tanks and other vehicles in a

war zone may provide the observer with better strategic decisions.

• Urban Applications: Sensor nodes are typically being deployed to solve urban prob-

lems like traffic congestion, vehicular parking, security and health care [10, 65].

Nodes can be deployed along the busy highways for route information andtraffic

diversions in case of accidents. Sensor nodes can also be deployed within the vehi-

cles to collect and exchange useful information as they cross each otherwhile moving

along the roads/highways. Parking management is another application where sensor

nodes can be used for effective parking services in busy urban places [8].

• Industrial Applications: Tracking inventory through sensor nodes in a warehouse is

another application which has generated interest in retail and other relatedindustries

[62]. Based on the information available with the nodes deployed in a large ware-

house inventory items can be managed efficiently. Intelligent forklifts have also been

designed using low-cost sensors [53]. RFID systems [35] that are widely used in

industrial applications can be thought as forms of low capability WSN systems.

• Environmental Studies: Nodes capable of measuring variations in temperature, hu-

midity, pressure, etc., can be very useful in environmental health monitoringsystems

[27]. For example, nodes can be deployed for an early warning systemto check the

spread of forest fires. Habitat monitoring is one such application in which WSNs

have been experimented with success [45]. Environmental studies that involve visits

to regions of harsh weather can benefit from WSNs. Nodes in such regions can be

deployed to collect data over a period of time without involving human experts.Re-

motely accessing the data may help in reducing the operational cost of environmental

studies. Also, WSNs are preferred to avoid human interference with the natural habi-

tat, especially in cases where continuous study is required and hence frequent visits

to the area. This way WSNs may reduce the negative side effects of such studies, and

at the same time, are capable of providing useful information about the inhabitants in

the deployed region. Towards that end there are several approaches proposed in the

literature for data collection and query processing in WSNs [17, 33, 34, 43, 44, 59].

Next, we present a more detailed discussion on query processing in WSNs, which is

the main research topic of this thesis.
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In a typical situation in WSNs, nodes perform the tasks of sensing, processing, data

storage and reporting of useful data according to the objectives of an application. Depend-

ing on the application’s objectives nodes can pro-actively process the captured data within

the network for taking appropriate actions, such as informing other nodesin the network of

an event occurrence or sending an alert message to an observer. Another option is for users

to issue queries over the network to collect data at a particular node, the so-calledsink, for

further processing to extract useful information. Towards that end nodes must collaborate

with each other in a distributed way, which comes at an increased cost of communication

required to exchange data and/or control messages. One of the main research challenges

here is to reduce the amount of data and the number of messages being transmitted by the

nodes in order to reduce their energy consumption, which is crucial for prolonging the net-

work lifetime. Primarily due to this reason energy efficient data processing techniques have

received a considerable attention from the research community [17, 43, 46, 48, 58, 59, 60].

A major source of energy consumption in WSNs is the radio component of the nodes,

which makes data communication very expensive as compared to the cost of data sensing

and processing [54]. Because in most cases nodes are battery operated, with a limited sup-

ply of energy, lowering energy consumption by reducing the volume of transmitted data

is the most important goal of this thesis. It is worth noting that the radios consume sig-

nificantly less energy duringsleepmode as compared to theirtransmissionor reception

mode [28]. Due to this reason it may be beneficial for the nodes to switch offtheir radios

whenever they are neither transmitting nor receiving. In this thesis, apartfrom our efforts

on reducing the volume of transmitted data, we also pay attention to the schedulingsolu-

tions, which can allow the nodes to sleep as long as they can to further reduce their energy

consumption.

1.2 In-network Query Processing

In-network processing of sensor data is a basic technique used by manyapplications in

which computations are performed by nodes “locally” with the hope that less information

will need to be transmitted in order to reduce the communication overhead. Thatis, in-

network processing is about performinglocal computationson nodes within the network in

order for the volume of transmitted data to be as small as possible. The main problem of

in-network data processing that we consider in this research is how to disseminate queries

in the network and collect data of interest at a particular node, i.e., the sink node. The data
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of interest is defined by the users through the semantics of the queries.

In a typical situation a user initiates in-network query processing by issuingqueries to

the sink, e.g., to find what are the 10 highest temperature values in the network, or which

nodes have detected a particular type of tank in a battlefield. In this thesis we consider

continuous queries that seek data (query answer) periodically, i.e., a query is issued only

once, but it isexecutedmultiple times for collecting data periodically as defined by the

user. Basically a WSN operates as an element of a Decision Support System that guides the

decision-making activities of individuals or organizations.

Figure 1.2 shows the interaction between a user and a WSN. The sink propagates the

query issued by the user into the network and the nodes respond appropriately. The nodes

reply back to the sink, if necessary, while making local decisions, i.e., the query is pro-

cessed in-network. Finally, the sink responds to the user by returning theresult of the query

back to the user. Essentially, we have two phases of in-network query processing that are

involved here:disseminationanddata collectionphases, which both might require multi-

hop communication. In this context of in-network query processing scenario as depicted in

Figure 1.2, this thesis considers the following core research problems:

• How to disseminate the query from the sink to every other node in the network.The

objective here is to reduce the number of messages used for query dissemination and

hence to reduce the energy consumption of the nodes. It is trivial to understand that

any solution for query dissemination can also be used for any message thatneeds to

be disseminated from the sink to the nodes.

• How to exploit the semantics of a given query to make local decisions during the data

collection phase. The local results computed by the nodes then must be propagated to
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the sink to answer the query. The objective here is to reduce the number ofmessages

as well as the volume of data transmitted by the nodes.

• How to schedule transmissions in the network for exchanging control/data messages

during dissemination and data collection phases. It is trivial to understand that a

schedule will facilitate the nodes to beawakeat specific times during query process-

ing, i.e., only when they are supposed to either transmit or receive messages. That

in turn will allow the nodes to sleep as long as they can in order to further reduce

their energy consumption. Therefore, a “tight” schedule will be considered a “good”

schedule. More importantly, since multiple nodes may participate during query pro-

cessing, it is likely that their wireless transmissions may interfere with each other.

Therefore, the objective is to construct “tight” and “interference-free” schedules.

• How to deal with communication failures that are inherent in a wireless network.

Because of failures, at certain times during query processing, some nodes that were

able to communicate previously may suddenly be devoid of any communication to

exchange control/data messages. That may cause the sink to return incorrect or in-

complete results. Therefore, in-network query processing must also offer solutions

to recover from the failures either partially or fully. Obviously, there will besome

communication overhead for the nodes to recover from the failures. Nonetheless,

the objective here is to opportunistically recover from the failures with the minimum

possible overhead.

It is beyond the scope of this thesis to consider every type of query that can be processed

in a WSN. Instead, we consider a class of aggregation queries, prominently represented by

the top-k queries, to pursue an investigation of in-network query processing problem in

WSNs. Top-k queries are simple, yet an important class of queries that are widely used

in various applications [6, 30, 73, 80]. In the context of WSNs, remotely monitoring a

physical environment is a typical application. There exist many situations where one is

interested in monitoring extreme and atypical behavior. For example, finding the highest

temperature values in a building or a patch of forest, the most frequently visited locations

by animals, etc. Oftentimes, there are limited resources, e.g., dispatching vehicles to deal

with such observed extremes and as a consequence, one may be interested only in the top-

k observations. In this context, top-k queries represent an important class of aggregation

queries, e.g., min-k, MAX, and MIN queries.

Through a systematic study of the top-k query processing in WSNs, we strive to gain
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more insights about in-network query processing in general. Nonetheless, we will show

in this thesis that our proposed solutions for processing top-k queries are nottied to top-k

queries only, but they are also applicable to a wide range of in-network query processing

problems in WSNs. Since performing local computations is much cheaper than transmitting

data to a sink, the main idea behind these solutions is topushthe local computations into

the network to reduce the communication cost and thus to increase the network’s lifetime.

Towards that end we design newlogical topologies that are effective for efficient query

processing in WSNs. Logical topologies basically provide a virtual infrastructure for effi-

cient communication in a wireless network. Our intuition is that by exploiting the spatial

proximity of the nodes one can create various logical topologies built on top of the phys-

ical topology of a network, which cannot only support the in-network local computations,

but they also provide an effective infrastructure that is robust to failures and efficient for

exchanging data/messages between the nodes to reduce the communication cost.

Our proposed logical topologies are unique in the sense that they fully exploit the two

basic properties of a WSN, i.e., its multi-hop communication setup and wireless nature

of transmission/reception, to reduce the communication cost significantly. Themulti-hop

setup of WSNs enforces the nodes to process sensor data in an incremental fashion while

providing an opportunity to make local decisions, e.g., we will show in this research how

to exploit the “multi-hop” property effectively for dataaggregationandfiltering. Wireless

transmission/reception is essentially performed in a “broadcast” environment, i.e., a single

transmission by a node (transmitter) can be received by multiple nodes (receivers) present

within the radio range of the transmitting node. Though reception also accounts for energy

consumption in WSNs, it usually comes at a reduced cost as compared to the transmission

cost [28]. In this research we will show novel techniques that exploit the “broadcast” prop-

erty not only to reduce the transmission cost (at the expense of an increased reception cost

that is cheaper than the transmission cost), but also to recover from the failures in WSNs.

Nevertheless, reducing the overall communication cost, which includes the cost for trans-

mission as well as reception, remains the primary research objective of this thesis. Next,

we present a background discussion on what is going to follow from Chapters 2 to 6.

1.2.1 In-Network Processing of Top-k Queries

Top-k queries in distributed systems is a widely studied problem. Olstonet. al. addressed

the problem of caching approximate values with appropriate precision [50]. Their work

lead to the idea of implantingarithmetic filtersin a distributed environment to suppress
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communication messages. Babcock and Olston [6] extended that and appliedthe idea of

cached values for the top-k monitoring problem in data streams. The key idea is to use the

cached values as range-based arithmetic filters. Filters are adjusted dynamically when they

are violated. A coordinator node monitors the filter constraints of the rest ofthe nodes and

also maintains the top-k result. This fundamental idea of installing filters for suppressing

unnecessary updates has turned out to be especially useful within WSNs. A number of al-

gorithms proposed in the literature, e.g., [56, 57, 59, 60, 73], rely on this idea for continuous

monitoring of sensor values, a problem that is closely related to the problem that we inves-

tigate in this thesis. The difference among the previously proposed algorithmslies in the

various strategies being used for maintaining the filters at successive periods. There are also

solutions that only applyaggregationand do not use any filtering mechanism. TAG [43]

is a classical example of such non-filtering based approach that can be used for the top-k

query problem that is addressed in this thesis. We will discuss more about aggregation and

filtering based solutions of the top-k query problem in the next chapter.

Not surprisingly, several other versions of the top-k query problem exist. For instance,

a variation of the top-k query is to rank the objects based on the aggregated scores on a

set of attributes stored at distributed locations. The Threshold Algorithm [22] is the best

known solution for this problem. The main constraint of this algorithm is that it assumes

single-hop communication. Zeinalipour-Yaztiet. al. [80] propose a solution to a similarly

defined problem but which is developed in the context of a multi-hop WSN. Similar, yet

different problems have been investigated elsewhere. In [58] the authors use a model-

based optimization technique for answering the approximate top-k queries; the goal is to

minimize the number of true answers missed in approximate answer. More recently the

authors of [15] propose exploiting the spatially correlated sensor data to build partial order

trees (POT) to answer the top-k queries. Their main idea is to select “hot spots” (sensors

with highest readings) in a network to build a logical topology to reduce unnecessary sensor

updates.

The precise top-k query problem that we address in this thesis is presented in the next

chapter. Before presenting this problem and our proposed solution we briefly review the

different aspects of in-network query processing that we investigate inthis thesis. We start

with a discussion on logical topologies.
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1.2.2 Logical Topologies : A Virtual Infrastructure for Que ry Processing

Throughout this thesis we use a Unit Disk Graph (UDG) to represent a WSN. UDGs are fre-

quently used to model the communication of wireless nodes with identical circularranges,

deployed on 2–dimensional space. UDGs are, therefore, considereda “benchmark” class

of graphs for the study of wireless algorithm complexity [16]. Nonetheless, the solutions

proposed in this thesis areindependentof UDGs, i.e., they are also applicable to general

topology graphs with some modifications.

A WSN often operates by constructing logical topologies, such as a spanning tree, built

on top of the physical topology of the network. The constructed logical topologies are then

used to disseminate queries in the network, and also to process and return the results of such

queries back to the user. To demonstrate the importance of logical topologies for in-network

query processing we present an example as illustrated in Figure 1.3. A connectivity graph

representing which wireless nodes a node can communicate with is shown in Figure 1.3(a).

Consider that node A is the sink, which is responsible for disseminating the query issued

by a user into the network, and to return the results of the query back to the user.

To start the query processing, the first step is to disseminate the query in thenetwork
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to all nodes. An obvious solution is for A to transmit the query in its neighborhood, and

request all of its neighbors to do the same. This is repeated until all nodes inthe network

have received the query, i.e., dissemination byflooding. It is trivial to see that a node

may receive the query message more than once, to be precise, up to once from each of

its neighbors. However, note that the query message is the “same” for every node, and

therefore a node does not need to transmit the query message more than once. In the specific

example flooding generates 11 query messages.

Each node can also forward its reply message containing its data. Since every reply

message, unlike the query message, is “unique” (containing data from a particular node),

every node may forward the reply messages for all of its neighbors. Eventually the sink will

receive the data from all the nodes, which can then answer the query. However, note that re-

dundant messages are transmitted by multiple nodes traversing multiple-paths thus creating

a high communication traffic in the network. That makes flooding an inefficientsolution.

In the specific network shown in Figure 1.3(a) flooding generates 40 reply messages.

In the network shown in Figure 1.3(a) we note that several nodes can bereached by one

single message due to the wireless nature of transmissions. Therefore, a sensible alternative

to flooding is to use a logical tree topology, e.g., a Shortest Path Tree (SPT)shown in Fig-

ure 1.3(b) built from the graph shown in Figure 1.3(a) in which the sink, node A, becomes

the root of the logical tree. Using a logical tree topology such as an SPT a query can be

received by all nodes if the root and every non-leaf node of the tree transmit the query. This

specific SPT requires a total of 8 messages (transmitted by nodes A, B, C, D, E, F, G, I) to

disseminate the query in the network as compared to 11 messages required byflooding.

The advantage of using a logical tree topology appears more prominently during the

reply phase. Data arriving at a parent node from its children can beaggregatedin-network,

and only the aggregated data can be forwarded further up in the tree. Consider, e.g., node I

that aggregates the data it receives from its child K with its own data, beforeforwarding the

aggregated data to its parent F. TAG [44] is a well-known method that uses in-network ag-

gregation to reduce the communication cost substantially. This technique will bediscussed

in detail in the next chapter. For the particular SPT shown in Figure 1.3(a) atotal of 10

reply messages are generated as compared to 40 reply messages in the case of flooding.

It is trivial to understand from the above discussion that logical topologies play a crucial

role in query processing in WSNs. Basically, logical topologies provide a virtual infras-

tructure for query processing in WSNs. In this research we pay attentionto the logical tree

topologies that can efficiently process queries in WSNs.
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1.2.3 Broadcasting and Convergecasting

An important observation from the above discussion is that in-network query processing ba-

sically involves two types of communication messages, i.e., sink-to-the-nodes,and nodes-

to-the-sink. Recall the example in which the sink is required to disseminate the query in the

network, and nodes need to send an appropriate response back to the sink. In the literature

sink-to-the-nodes and nodes-to-the-sink communication are commonly known asbroad-

castingandconvergecasting, respectively. In a typical situation, in-network processing of

a query, irrespective of its type, will require at least one broadcast phase to disseminate

the query and at least one convergecast phase to collect the response from the nodes. In

summary, broadcasting and convergecasting are the two basic operationsin WSNs that may

have a profound impact on in-network query processing solutions, which is the precise topic

that we discuss in Chapters 3 through 5 of this thesis. In particular, we discuss the results

of our investigation with respect to logical topologies that are better suited for broadcasting

and convergecasting as well as energy-efficient scheduling for those.

1.2.4 Failure Recovery

Failures are part of wireless networks that may disrupt the logical topologies, which are used

for in-network query processing. Failures are equally likely to occur during the broadcast

as well as convergecast. Consider the scenario of query broadcasting using SPT as shown

in Figure 1.3(b). The failure of the communication link between nodes A and C will result

in many nodes not receiving the query message. One obvious solution here is that node A

can try to re-transmit the message if it does not receive an acknowledgment (ACK) from

its children. In this particular case since node C did not receive the message and hence

node A did not receive an ACK from C, node A can re-transmit the message. This process

can be repeated for every parent node and as long as they did not receive an ACK from

all of their children. It is trivial to see that an excessive amount of messages (including

re-transmissions and ACKs) will be used to recover from the failures. Inthis research we

will present novel solutions for opportunistic failure recovery during broadcast as well as

convergecast, whichdo not require re-transmissionsand ACKs. As we will show in Chapter

6 that is indeed possible by exploiting the broadcast and convergecast schedules.
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1.3 A Summary of Contributions

• We propose an efficient distributed algorithm for processing the top-k queries in

WSNs. Our carefully designed algorithm is significantly better than the current state-

of-the-art solution in terms of energy consumption (Chapter 2).

• We propose new algorithms for constructing logical tree topologies that are better

than the existing solutions in reducing the communication cost required for broad-

casting and convergecasting in WSNs (Chapter 3).

• We establish new theoretical bounds for broadcast and convergecast scheduling prob-

lems in WSNs and prove their correctness. We also propose an efficient framework

for broadcast and convergecast scheduling in WSNs. Our scheduling solutions have

shown better performance than the existing solutions (Chapters 4 and 5).

• We present a novel solution for failure recovery in WSNs. The proposed solution is an

efficient communication framework that opportunistically exploits the convergecast

and broadcast schedules for robust query processing in WSNs (Chapter 6).

• We demonstrate the importance of our proposed in-network processing solutions by

putting them together for efficiently processing top-k queries. In particular, we evalu-

ate the impact of various logical topologies, scheduling schemes and failurerecovery

mechanisms on the top-k query processing in WSNs (Chapter 7).

• Another important aspect of this thesis is that, apart from synthetic datasets, it uses

real world WSN setup and sensor data to evaluate the performance of various solu-

tions proposed in Chapters 2 through 7.
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Chapter 2

Tok-k Query Processing

2.1 Introduction

As mentioned in the previous chapter, there are several versions of the top-k queries that

have been considered in the literature [6, 58, 59, 60, 73]. The precisetop-k query as consid-

ered in this thesis satisfies the following requirements: (a)k is not restricted (but naturally

cannot be larger than the number of nodes in the network), (b) the querydetermines the

exactk highest observed values, (c) the query determines the full set of nodes that reported

the k highest values, and (d) the query is executed periodically starting at somepoint in

time and reporting values for a number of subsequent rounds.

We want to avoid trivial and energy-inefficient solutions for processing top-k queries.

One such solution is a centralized approach whereby, in every round, all nodes send their

measurements directly to the sink (using one hop communication) which then locallycalcu-

lates the top-k values. This solution is of little practical interest because it introduces a large

communication overhead, and hence energy consumption. An alternative approach here is

to construct a logical topology built on top of the physical topology, e.g., a spanning tree

rooted at the sink, in which nodes are connected to the root using multiple hops. Recall the

example SPT, a logical tree topology that was discussed in the previous chapter. A logical

topology not only provides a multi-hopinfrastructurefor nodes to communicate with each

other and the root, but it also allows to impose someformof data aggregation to reduce the

volume of data being transmitted to save on the communication cost. Before presenting our

energy-efficient solution we formally describe the top-k query problem in WSNs.
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2.2 Problem Statement

We consider a WSN consisting of a set of nodes,S = {i : i = 1, 2, ...N}. Time is discrete

and counted in rounds. Each node produces one value per round. Let Sp,j be the set of

nodes that produced thepth highest value,V (Sp,j), during thejth round. The exact top-k

query problem then is to find the set ofk highest values,Dj = {V (Sp,j) : p = 1, 2, ..., k},

for each round,j. This implies also obtaining the set of nodes,∪k
p=1Sp,j , that observed thek

highest values. An example of 8 nodes and their corresponding values during a given round

is presented in Table 2.1. A top-2 query would returnDj = {23, 20}. Note that because of

ties, the number of nodes reporting the top-k values may be larger thank, e.g., nodes{s3,

s4, s8} in this case. Solutions not concerned with dealing with ties would return only the

top-k nodes, i.e., either{s3, s8} or {s4, s8}. In some applications, failing to report a node

that has a top-k value may be problematic. For example, if one needs to plan and schedule

resources according to the number of points of interest (reporting sensors), not being able

to know the exact number of (correct) points is likely to have undesirable consequences.

Sensors s1 s2 s3 s4 s5 s6 s7 s8

Values 10 15 20 20 16 15 18 23

Table 2.1: An example of 8 sensor values.

To start the top-k query processing using a logical topology, the first step is to dissemi-

nate the query in the network to all nodes, i.e., a broadcasting phase is needed to disseminate

the query. In response to the query message propagated by the root, nodes take appropriate

action by forwarding their messages (containing data) to the root using the multi-hop struc-

ture of the logical tree, i.e., a convergecasting phase is needed to collect the responses. We

will assume in this chapter the existence of a logical tree topology, e.g., an SPTduring both

phases of query processing, i.e., broadcasting and convergecasting. In Chapters 3 through 5

of this thesis we will present a detailed discussion on which logical tree topologies are best

suited for efficiently processing the top-k queries. For the purpose of this chapter it is suf-

ficient to assume the existence of an underlying logical tree topology that is built on top of

the physical topology for broadcasting as well as convergecasting. Wehave already seen

how a logical tree topology is useful for broadcasting the query in the network. Shortly

we will look into ways in which the top-k query processing solutions can benefit from the

structure of a logical tree topology during convergecasting.
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Figure 2.1: An example of a top-2 query processing using TAG. Darker circles represent
nodes that triggered an update. Rectangles represent the packets transmitted by the corre-
sponding nodes.

2.3 Related Work

Earlier solutions of processing the top-k queries in WSNs include TAG [43]. In TAG an SPT

is used as an underlying logical topology for converegecast. In a given round processing

starts from the leaf nodes and every non-leaf node first receives data fromall of its children

before sending thecombineddata to its own parent. A scenario of top-2 query processing

using TAG on top of SPT is presented in Figure 2.1 in which nodes are annotated with the

values observed during a specific round. One prominent feature of TAG is that non-leaf

nodes exploit the semantics of a top-k query to performaggregationin order to reduce the

volume of transmitted data during the convergecast. For instance as shown inFigure 2.1,

node C, after receiving values from its child F, discards the result{I:12} to forward its local

top-2 result only, i.e.,{C:20, F:15, K:15}. Since unique top-k values are considered, the

local top-2 result forwarded by node C contains 2 unique values observed at 3 different

nodes. Finally, the root finds the top-2 result, i.e.,{D:23, C:20, E:20}.

Unfortunately, TAG requires every node to send an update (containing itsown value or

aggregated values) during every round irrespective of the fact thatonly k such values will

eventually become part of the actual answer. In an ideal solution only the nodes that have

values among the top-k ones should send their values to the sink. However, these nodes do

not know of their own “special” statusa-priori. In order to address these issues, recently
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FILA [73] has been proposed to process the top-k queries. The basic idea of FILA is to use

arithmetic-filters for suppressing updates from nodes that are unlikely to become part ofthe

solution to the top-k query. The intuition behind using filters is that nodes that reported the

top-k values during a round are more likely to produce the top-k values again in the next

round. It also means that the updates from the nodes, which had not produced the top-k

values are potentially not required to compute the result in the next round.

There are other similar works presented elsewhere [4, 6, 58, 59, 60, 79]. Our work

differs from the ones presented in [6, 58, 59, 60, 73] in a number of ways. Range caching

[6] as well as FILA [73] use “range-based” filters, due to which they return approximate

answers. In contrast to that, and as shown in this chapter, our algorithm isguaranteed to

produce exact answers. Furthermore, FILA assumes a particular topology in which the root

can directly communicate with the nodes (i.e., a single-hop setup to deliver messages from

the root to the nodes). This assumption is not very realistic, in particular forWSNs deployed

in large areas where obstacles, interference, and other environment factors restrict how far

the root’s signal can reach. We do not make any assumptions with respectto underling

logical tree topology.

A solution proposed by Silberstein et. al. in [59] combines the idea oftemporaland

spatialsuppression for continuously collectingall sensor values from the WSN. Although

related, this problem is fundamentally different than the problem that we consider. The so-

lutions proposed in [58] also deal with returning approximate answers. Inyet another work

[60] Silbersteinet. al. carried out a detailed investigation of MAX (top-1), which unfor-

tunately cannot be easily generalized. In addition, neither of these proposals deal properly

with possible tied values, e.g., only one of many nodes with tied values is returned by these

solutions, which may have undesired consequences as mentioned previously. Zeinalipour-

Yazti et. al. proposed a novel framework for answering continuous queries based ontop-k

views[79]. In another study [4], details of a graphical tool for monitoring thek highest-

ranked answers in a wireless sensor network are presented.

FILA has been up to now the state-of-the-art solution for processing thetop-k queries

in WSN and, as such, we use it as the basis to compare our proposed solution the top-k

queries. FILA’s performance is not only significantly better than TAG, it outperforms all

other filtering based solutions proposed elsewhere [6]. Thus, for the sake of setting a proper

background, we present a more detailed overview of FILA in the following.
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Figure 2.2: Initial rounds of a top-2 query in FILA. Darker circles represent nodes that
triggered an update. Rectangles represent the packets transmitted by the corresponding
nodes.

2.3.1 A Review of the State-of-the-Art

In the first round FILA works similar to TAG [44], that is all nodes send their observed

values, with parent nodes in the SPT performingen-routeaggregation. At this point the root

determines the top-k result and also computes filters for the nodes (which are communicated

to them by the root). A filter in FILA is a set of two values, an upper and a lower bound, and

is used to control a node’s update in the subsequent rounds. After the filters are installed, a

node triggers an update, i.e., sends its most recent value, only if it violates itsfilter, i.e., if

its value in not within the filter’s specified range.

A scenario of top-2 query processing in FILA is shown in Figure 2.2 in which values

of nodes are depicted within the circles. In the first round every node sends its update with

aggregation performeden-routeas shown in Figure 2.2(a). The root finds the top-2 values

{23, 20} that are produced by nodes{D, C, E}. Based on the top-2 result from the first

round, the root computes the filter1 〈22 30〉 for node D and〈19 22〉 for nodes C and E. The

rest of the nodes will have〈1 19〉 as their filter. These filters are then sent (not shown in

the figures) by the root to the corresponding nodes at the end of roundone. In the second

round, only node D violates its filter (as its value, 20, falls out of the range〈22 30〉), and

1In this example we used the uniform filter setting [73] rounding off the values. For simplicity we assume
that the nodes’ values are within 1 and 30.
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it triggers an update as shown in Figure 2.2(b). During the validation phase, the root finds

that the newly received value of node D, i.e., 20, falls into the filtering window of nodes C

and E, i.e.,〈19 22〉. In this situation the top-2 result becomes undecided as nodes C and E

may have any value from the range〈19 22〉. Therefore, the root must find the current values

of nodes C and E to compute the correct top-2 result. For that the root probes the previous

top-k nodes, which had not sent an update during the current round, in this example nodes

C and E. (For this purpose the root sends a probing message which is notshown in the

figures.) In response to the probing message nodes C and E reply back with their current

values as shown in Figure 2.2(c). The root can now compute the new top-2result{21,

20} from nodes{C, D} respectively. Finally the root computes new filters and updates the

corresponding nodes, if necessary, at the end of the current round.

2.3.2 Observations

There are several observations that can be made from FILA’s exampleabove in particular

and filtering based solutions in general. Let us first examine FILA in detail. Recall that

we seek the exact top-k unique values and the full set of nodes that observed them in a

WSN. In contrast to that FILA may return approximate values of nodes, aslong as their

values remain within their filtering range. More precisely, FILA may use the nodes’ values

reported in the previous rounds to compute the top-k result of the current round. Consider

again the example of top-2 query processing as shown in Figure 2.2. During the second

round, consider that the value of node D is 25 and the values for the restof the nodes are the

same as before, i.e., as shown in Figure 2.2(b). During the second round, none of the nodes

triggers its update (as none of them violates its filter), and no further action istaken by

the root. In this situation FILA’s reported result during the second roundwill be {20, 23},

coming from node{D, C, E}, which is different than the actual correct result:{21, 25} from

nodes{D, C}. We can clearly see in this simple example that FILA’s result is often-time

just an approximation, not only on the nodes’ values, but also on the set of nodes. We note

that although in [73] the authors propose a means to control the answer’sapproximation,

it comes at the expense of increased energy cost, hence at a reducednetwork lifetime (c.f.,

Figures 15 and 16 in [73].) As we shall see shortly our solution always guarantees exact

answers while at the same time processing queries more efficiently than FILA.

Another characteristic of FILA is that it computesk + 1 filters, one each for the top-

k nodes and one common filter for all other non top-k nodes. Whenever a node’s value,

regardless of whether in the top-k set or not, enters the filtering window of a top-k node,
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then that top-k node must be probed during the validation phase if it has not triggered its

update in the beginning of a round. Note that in the second round as shownin Figure 2.2(b),

if nodes C and E had triggered their update they would need not to be probed. In general, if

all the top-k nodes trigger their update during every round then the top-k nodes need not be

probed at all during the validation phase, which may result in reduced communication cost.

The worst case for FILA is when the root, apart from probing the top-k nodes, needs to

probe the non top-k nodes as well during the validation phase (only those non top-k nodes

that had not triggered their update in the beginning of a round). Assume that during the

second round nodes C and E have a common value of 20, and all other values are as before

for the rest of the nodes as shown in Figure 2.2(b). Again only node D triggers its update

in the second round (recall that filter values are〈22 30〉 for node D,〈19 22〉 for nodes C

and E, and〈1 19〉 for the rest of the nodes). The root probes the values of nodes C andE

during the validation phase. Now when the root receives their values, thetop-2 result still

remain undecided as the root has only top-1 value (as nodes D, C and E have one common

value, 20). In this situation the root must inquire for the second top value, which must come

from the non top-k nodes. For this, the root needs to send another probe message for the

non top-k nodes to which they need to reply back appropriately. In essence FILA has two

exclusive probing phases for: (i) the top-k nodes and (ii) the non top-k nodes. We argue

that it is beneficial to eliminate the first probing phase altogether while using thesecond

probing phase only when required. As we will show in our proposal thatis indeed possible

and it results in reduced communication cost.

Overall FILA uses 3 convergecast and 3 broadcast phases in every round to produce

the top-k result. Though during a convergecast phase only a limited number of nodes are

required to participate, a broadcast phase still needs all non-leaf nodes of the logical tree to

forward the messages (recall the example of query broadcasting as shown in Figure 1.3).

Furthermore, many convergecast and broadcast phases (6 in total) maynot only increase

FILA’s communication cost, but they may also increase the querylatency, i.e., the time it

takes for the sink to actually answer the query. The above observations form the basis of

our proposed algorithm, EXTOK, which stands for EXact TOp-K that we discuss next.

2.4 EXTOK: An Algorithm for EXact TOp- K Queries

In every round EXTOK’s execution starts from the leaf nodes and progresses towards the

root. In the first round EXTOK works similarly to TAG, in which all nodes send their
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Figure 2.3: Initial rounds of a top-2 query in EXTOK. Darker nodes denote TM-nodes.

updates, and the root, after collecting values, determines the top-k values. The root also

calculates a threshold value, henceforth referred to asτ which is the minimum value of

the current top-k values, and that will be sent to the nodes and installed as their filter. At

this point nodes enter in one of two operation modes. A node is said to be in a “temporal

monitoring” mode (or a TM-node) if it produced one of the current top-k values. TM-nodes

are required to reportany changes to their current value ateveryround as it may yield a
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change in the current top-k answer set. Otherwise, a node is said to be in a “filtering” mode

(or a F-node) if its value did not contribute to the current answer set. F-nodes are required

to report their new values only when they observe a value that could belong to the answer

set, i.e., a value that is greater than or equal toτ .

After the first round each subsequent round in EXTOK consists of three stages. In the

first stage nodes trigger their update according to their operating mode. After receiving

values during the first stage, the root proceeds to validate the current top-k results, and, if

necessary, it initiates a validation procedure at the end of the first stage.During the second

stage of the algorithm,somenodes may reply back in response to the validation procedure

invoked by the root. At the end of the second stage the root determines the correct answer

to the query. During the third stage the root adjusts the value ofτ based on the newly

computed result, and informs all other nodes about it, ifτ has changed.

We illustrate the execution of EXTOK during the three initial rounds for a top-2query

in Figure 2.3. Values observed by the nodes during a particular round are depicted within

the respective nodes. (Note that the nodes’ values during the first two rounds are similar to

the values used in FILA’s example as shown in Figure 2.2.)

In the first round all nodes but the root are TM-nodes andτ is set to the application’s

minimum meaningful value (which we assume to be =−∞ for simplicity). Then every

node (Figure 2.3(a)) sends its update to the root. As the nodes push their values up in the

tree, aggregation is performed by parent nodes. For instance, node B, after receiving values

from its child E discards the result{(B, 15)}, i.e., its own value and only forwards its local

top-2 result, i.e.,{(E, 20), (H, 16)}, to its parent A. Since EXTOK considers the unique

top-k values, the local top-2 result forwarded by node C is{(C, 20), (F, 15), (K, 15)}, i.e., 2

unique values observed at 3 different nodes. Finally, the root finds the top-2 result and also

determinesτ , which is the lower bound on the current top-k values (20 in this particular

example). The root transmitsτ after which only nodes C, D and E become TM-nodes, i.e.,

if their values change, they must propagate their new values. The rest ofthe nodes will

trigger an update only if their value is greater than or equal toτ = 20 (i.e., they become

F-nodes).

During the second round (Figure 2.3(b)) nodes C, D and E change theirvalues and

trigger updates. In order to correctly compute the results the root alwaysrequires the current

values of the TM-nodes that changed during a given round, therefore, their values cannot

be aggregateden-route. Since the top-2 values received by the root during the second round

(i.e., 21 and 20) do not invalidateτ = 20, and also the value of every F-node is less than
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20 (otherwise they would have triggered their own update) the root can correctly find the

top-2 values in the second round without taking further action. (This is in contrast to FILA’s

execution which required to trigger the validation phase during the second round as shown

in Figure 2.2(b).) Note that at the end of the current round E has not received an update for

τ (because it has not changed yet) and since its own value is smaller thanτ it becomes a

F-node automatically.

Changes to the values in nodes C and D in the third round (Figure 2.3(c)) trigger a

propagation of their update. Node G (which was a F-node) also triggers itsupdate because

its new value is aboveτ . At the end of the stage one in the third round the root receives

values{21, 18, 17} yielding {21, 18} as the (temporary) answer set. At this point the root

finds that the current top-2’s lower bound (18) is lower than the current value ofτ (20). This

means that other unreported values from F-nodes may now be part of theanswer set. To

determine the new correct result, the root sends a validation query in the tree seeking values

that are greater than or equal to 18. In response to the validation query,node E replies back

with its value (Figure 2.3(d)). The root finally determines the (guaranteed)correct top-2

values, i.e.,{21, 19}, and also updatesτ = 19, which is propagated down in the tree to

update the nodes’ filters. Thus after round 3, E and G will become TM-nodes, and C and

D will become F-nodes along with the rest of the nodes that are already F-nodes. Next

we provide a textual description of the EXTOK algorithm after which we will provide its

pseudo-code.

2.4.1 EXTOK’s Algorithm

Initialization

In the first round every node but the root sends its update. Aggregation is applied by the non-

leaf nodes of the tree. If the total number of values received by a non-leaf node, including its

own value, is less thank then that node sends all values to its parent; otherwise it sends the

information pertaining to the top-k values only. After receiving values from its immediate

children the root can determine the top-k values and the corresponding nodes.

The root computes an arithmetic filter for the non top-k nodes to suppress unnecessary

updates in the subsequent rounds. For that the root uses a threshold value, τ set to the

minimum value of the top-k values it collected. The root transmitsτ so that all nodes can

update their filters. (For the sake of efficiency we make the assumption that ifa newτ

is not transmitted within a round the nodes will behave as if the same currentτ had been

transmitted. This approach has been adopted in other studies as well, see e.g., [56, 60].) Let
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vi,j be the value of nodei during thejth round. Afterτ is announced, a nodei becomes a

TM-node for round(j +1) if vi,j ≥ τ , otherwise it becomes an F-node. After that EXTOK

works in three sequential stages detailed next.

Stage 1

During this stage a TM-node,i, triggers its update only ifvi,j 6= vi,j−1, while an F-node,

i′, triggers its update only ifvi′,j ≥ τ . The root requires the new values of all triggering

TM-nodes in a given round, therefore their values cannot be aggregateden-route. However,

the values of F-nodes can and indeed are aggregateden-route. After the root has received

values from all of its children, it determines the correctness of the current top-k result. As

represented in Figure 2.4 there are a few cases that the root needs to consider and which we

discuss next. For the sake of explanation we use Figure 2.4(a) to illustrate the set of top-k

and the non top-k values separated by the current threshold (τ ) value, further we refer to

the former as “top-k-space”.

S1a: In this case we consider updates triggered by changes in TM-nodes only, in partic-

ular changes that happenwithin the top-k-space (Figure 2.4(b)). The only interesting event

is when there is a new and higher value for the lower bound of the currenttop-k values. In

this case a newτ is computed and transmitted to all nodes. Consequently some TM-nodes

may now become F-nodes. This scenario has no effect on current F-nodes.

S1b: Next we consider changes triggered by updates from F-nodes only, i.e., changes

that happen outside the top-k-space (Figure 2.4(c)). By definition this means that the new

values of these nodes are greater than or equal toτ , and also that those nodes may become

TM-nodes. It is also possible that a newτ exists and needs to be transmitted, and again

depending on that value, some TM-nodes may need to switch to F-nodes andvice-versa.

S1c: The last case of interest is more general; values are coming in or leaving thetop-

k-space (Figure 2.4(d)). The first situation can be triggered by certain updates from either

TM- or F-nodes, while the second happens when a TM-node’s value that is unique falls

below the currentτ . When the root receives all updates it will havek′ values that are equal

or above the currentτ value andm values that are belowτ . If k′ ≥ k, the root computes

the current lower boundτ and, if there is a change, transmits it. As before, nodes may then

need to switch their operating modes accordingly. Even ifτ does not change, and therefore

is not transmitted, nodes may still switch their mode since they know their own values and

can presume thatτ did not change. A more interesting scenario however, is when the root

ends up withk′ < k values greater thanτ . Then there are two cases to consider depending

24



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

top−k non top−k

threshold
(a) Values in the top-k and non top-k spaces.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

top−k non top−k

(b) Moving values within the top-k space.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

top−k non top−k

(c) Moving values into the top-k space.

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

top−k non top−k

(d) Moving values in and out of the top-k space.

Figure 2.4: Various scenarios of changing values that can impact the top-k result andτ
setting. The dark-color filled circles represent the top-k values and the circles with a filled
pattern represent the non top-k values. The arrows visually represent how the nodes’ values
may change with respect to the total order of values from one round to the next. A non-filled
circle represents a “space” created by a moving top-k or non top-k value. Solid (dashed)
vertical lines represent the new (previous)τ values.

on the relation betweenk − k′ andm, in both cases the root determines a suitableprobe

valueto be sent in avalidation queryto all F-nodes; their responses are considered in Stage

2 (which we discuss shortly.). The purpose of the probe value is to restrict the subset of the

nodes that need to respond to the validation query.

• If k−k′ ≤ m the root has enough values to complete the answer set, but it is possible

that F-nodes that did not trigger an update, and therefore whose values are not known
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to the root, should be part of the answer. To solve that potential problem the probe

value is set equal to the(k − k′)th highest value from the set ofm values of nodes

that have dropped belowτ .

• On the other hand ifk − k′ > m the root does not have enough values to complete

the answer set and is unable to set a sensible bound for the probe value therefore it

operates similar to the first “TAG-like” round over the F-nodes (TM-nodes need not

be queried as they would have already sent useful updates by themselves), and the

probe value is set to−∞.

To illustrate the situations above consider an example whereτ = 30, k′ = 8 and the

set ofm values belowτ at the root is{25, 22, 19, 18, 15}. If k = 10, then the root needs

k − k′ = 2 values to complete its answer set. Only values greater than or equal to 22 need

be considered since the root already has values above it to complete the answer set, thus the

probe value in the validation message is set to 22, i.e., the2nd ((k − k′)th) highest value

among them values available. Ifk = 15 then the root has no means to set a bound on the

probe value as it has less values than it needs, thus it sets the probe valueto be−∞

Stage 2

In the second stage all F-nodes, which had not triggered their update in the current round,

reply back in response to the validation query only if their value is greater than or equal to

the probed value. Aggregation is applieden-routeand can actually be “tightened”. Note

that the node needs no more thank − k′ values, thus if a node receives more thank − k′

values, then it forwards only the information about the topk − k′ values to its parent. The

root may or may not receive any values in response to the validation query. In any case the

root can correctly determine the top-k result from the values it has received from the TM-

or F-nodes during the first stage, plus the F-nodes that have replied back in the second stage

in response to the validation query (if any), which is in addition to thek′ values aboveτ that

the root already has. At this point the root can recompute a new value forτ from the newly

computed top-k values, and if it is different from the previousτ then it is transmitted.

Stage 3

In this “concluding” stage the root updates the nodes about the newτ , and the nodes can

set their mode accordingly. In the absence of a threshold update messageduring a given
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Algorithm 1
1: procedure EXTOK-NODE(ξi, Pi, R, k)
2: j ← 1;
3: modei ← TN ;
4: vi,0 = −∞;
5: repeat
6: Q = ∅;
7: Trigger ← false;
8: if (modei = TN ∧ vi,j 6= vi,j−1) ∨ (modei = FN ∧ vi,j ≥ τj) then
9: Trigger ← true;

10: Q = {〈vi,j , i〉};

11: if ξi 6= ∅ then
12: for all i′ ∈ ξi do
13: if Receive(Q′, i′) then
14: Q = Q ∪Q′;

15: if Q 6= ∅ then
16: Send(Pi, Q);

17: if Receive(V alidationQuery(vq,j , rV al), Pi) then
18: Broadcast(ξi, V alidationQuery(vq,j , rV al));

19: Q = ∅;
20: if modei = FN ∧ vi,j ≥ vq,j ∧ Trigger = false then
21: Q = {〈vi,j , i〉};

22: if ξi 6= ∅ then
23: for all i′ ∈ ξi do
24: if Receive(Q′, i′) then
25: Q = Q ∪Q′;

26: if Q 6= ∅ then
27: Send(Pi, Q);

28: if (Receive(τj+1, Pi)) then
29: if ξi 6= ∅ then
30: Broadcast(ξi, τj+1);

31: else
32: τj+1 = τj ;

33: if vi,j ≥ τj+1 then
34: modei = TN ;
35: else
36: modei = FN ;

37: j ← j + 1;
38: until j > R
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Algorithm 2
1: procedure EXTOK-ROOT(ξr, R, k)
2: j ← 1;
3: repeat
4: Q = ∅;
5: for all i′ ∈ ξr do
6: if Receive(Q′, i′) then
7: Q = Q ∪Q′;

8: Sl = ExtractIDs(Q);
9: for all i′ ∈ St,j \ Sl; do

10: Q = {〈vi′,j−1, i
′〉} ∪Q;

11: Sl = ExtractIDs(Q);
12: Sτ+,j = ∅;
13: Sτ−,j = ∅;
14: for all i′ ∈ Sl do
15: if vi′,j ≥ τj then
16: Sτ+,j = i′ ∪ Sτ+,j ;
17: else
18: Sτ−,j = i′ ∪ Sτ−,j ;

19: k′ = |V (Sτ+,j)|;
20: m = |V (Sτ−,j)|;
21: if k′ ≥ k then
22: [V (St,j), St,j ] = FindTopK(V (Sτ+,j), Sτ+,j);
23: else
24: if k − k′ ≤ m then
25: vq,j ←− (k − k′)th highest value of V (Sτ−,j);
26: else
27: vq,j =−∞;

28: rV al = k − k′;
29: Broadcast(ξr, V alidationQuery(vq,j , rV al));
30: Q = ∅;
31: for all i′ ∈ ξr do
32: if Receive(Q′, i′) then
33: Q = Q ∪Q′;

34: Sl = ExtractIDs(Q);
35: for all i′ ∈ Sτ+,j ∪ Sτ−,j do
36: Sl = i′ ∪ Sl;

37: [V (St,j), St,j ] = FindTopK(V (Sl), Sl);

38: τj+1 = FindMin (V (St,j)) ;
39: if τj+1 6= τj then
40: Broadcast(ξr, τj+1);

41: Output ([V (St,j), St,j ]);
42: j ← j + 1;
43: until j > R
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round nodes can safely assume that the threshold value has not changed and they set their

(possibly) new mode for the next round based on their current value alone.

2.4.2 EXTOK’s Pseudocode

EXTOK’s pseudocode for node and root’s functionality are given in , respectively. EXTOK-

Node takes as input the set of children,ξi, and parent,Pi, of nodei in the logical tree. Num-

ber of rounds,R, andk are other two inputs. EXTOK-Root, which is executed exclusively

on the root node, takesξr, R, andk as input, wherer represents the root node.

It is worth noting that theBroadcastoperation used in Algorithm 1 at lines 18 and 30,

and in Algorithm 2 at lines 29 and 40 represents a single transmission that is received by the

appropriate nodeslocally, i.e., only neighbors (possibly more than one) of a transmitting

node. It differs from theglobal broadcasting (discussed in the next chapter) where the

main goal is to send a message transmitted by a particular node to every other node in the

network, which is clearly different from sending the message to the neighbors only. Of

course the nodes may use a multi-hop setup of the network, e.g., a logical treestructure to

disseminate the message in the network. We will examine this problem in detail in the next

chapter.

2.4.3 EXTOK’s Correctness

The correctness of EXTOK’s algorithm in the first round is straightforward to establish, as

its behavior is very much similar to TAG’s. The following theorem asserts and proves its

correctness for subsequent rounds. We assume the availability of two functions:V (S) that

returns the number of unique values within a given set of nodesS, andvi,j that returns the

value of a given nodei at roundj.

Theorem 1. In any given roundj ≥ 2, EXTOK produces a correct top-k result.

Proof. Given a setS of N nodes, letSt,j andSf,j be the sets of TM-nodes and F-nodes,

respectively, from which the root received values in thejth round. LetSc,j = St,j ∪ Sf,j , be

the combined set of TM-nodes and F-nodes. Further, letSτ+,j = {i ∈ Sc,j , s.t. vi,j ≥ τ}

and similarlySτ−,j = {i ∈ Sc,j , s.t. vi,j < τ}. τ is set to the minimum value in the current

answer set, i.e., it is the smallest of the current top-k values. Finally, letk′ = |Sτ+,j |, and

m = |Sτ−,j |. We distinguish two cases:k′ ≥ k andk′ < k.

C1: If k′ ≥ k the root has at leastk values that are greater than or equal toτ . By

construction, the values that the root does not know must be less thanτ , therefore the root

must have the exact top-k values.
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C2: If k′ < k, then the root requires additionalk − k′ values to find the top-k result.

Further,Sτ−,j 6= ∅ (otherwise we would necessarily havek′ ≥ k) and it contains only those

TM-nodes whose values have dropped belowτ ; F-nodes only send updates if their values

become greater than or equal toτ . At this stage (S1c, Algorithm 2, line 29), the root sends a

validation query containing a probe valuevq,j , which leads to the following two sub-cases.

C2a: If k − k′ ≤m, then the probe value,vq,j , is the(k − k′)th highest value from the

set,V (Sτ−,j). Assume the root receivesk′′ values in response to the validation query. By

construction allk′′ values that the root receives are greater than or equal tovq,j but smaller

thanτ ; otherwise they would have triggered an update and be known to the root already.

The root now hask′ values that are greater than or equal toτ , andk − k′ values that are

less thanτ but greater than or equal tovq,j , and additionalk′′ values (received in response

to the validation query) that are also less thanτ , but greater than or equal tovq,j . The root

now is guaranteed to have at leastk values that are greater than or equal tovq,j and all other

values in the tree are, again, by construction smaller thanvq,j . Thus the root must be able

to find the correct top-k values.

C2b: If k − k′ > m, thenvq,j = −∞, which means that the root will receive answers,

possibly aggregateden-routefrom every F-node that had not triggered its update during the

first stage, and clearly there will be enough values (current plus newlyreceived ones) at the

root for the correct top-k values to be found.

2.5 Performance Evaluation

In our simulation study we implemented FILA and EXTOK using the commonly used SPT

topology. For FILA we implemented uniform and skewed filter settings, and lazy filter

update policy because of its superior performance [73]. A node id and itsvalue are repre-

sented by 2 bytes each. A filter in FILA andτ value in EXTOK are characterized by 4 and

2 bytes, respectively. Each message also accounts for 4 bytes as a packet header overhead.

In all experiments we assume that messages are delivered using a multi-hop setup. This is

in contrast with the experimental setup used in [73] in which only nodes-to-root messages

are delivered using a multi-hop setup; while the root is assumed to be capableof commu-

nicating with the nodes using single-hop transmissions. For various reasons we believe this

assumption cannot be considered to hold in general. Consider e.g., the situation in which

the root has limited power to transmit the signals that can be received by a limited num-

ber nodes only. Nonetheless, for the sake of fair comparison we also perform experiments
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while considering such an assumption for both approaches, i.e., we also consider a setup in

which the root is capable of communicating with the nodes using single-hop transmissions

in FILA as well as EXTOK.

In order to evaluate our proposal we used both synthetic and real datasets. The synthetic

dataset was generated by simulating a network of nodes deployed in a 200m×200m area.

Using this dataset we performed experiments by varying five parameters: number of top

values sought (k), number of nodes (N ), wireless/transmission range (ω), probability that

a node’s value changes between two consecutive rounds (γ) and percentage of change in

node’s value (δ). To investigate the impact of randomly changing values (nodes’ measure-

ments) on the performance of the algorithms we generated “temperature” values for nodes.

The initial value of nodes was randomly set between 1 and 100 and could vary between

rounds according to parameterδ (equally likely to be a negative or positive change). Re-

sults using the synthetic dataset are based on an average of 20 simulation runs in which

each run consists of 200 rounds. In each of these simulation runs the position of the nodes

and the root node were chosen randomly. All results presented in this thesis include 95%

Confidence Intervals as marked by the vertical error bars.

2.5.1 Intel Berkeley Research Lab Setup

In all simulation studies presented in this thesis we also used a real sensor network setup

from the Intel Berkeley Research Lab [1], which provided us with a dataset consisting of

approximately 3.5 million sensor readings from 54 nodes deployed in the approximately

50m×50m lab. There were some missing values from the data that were replaced using

linear interpolation. Sensor readings were originally maintained by epochs,a monotonically

increasing number for each of the nodes. We organized the sensor readings in such a way

that the dataset has 60,000 rounds, each one containing one value for each of the 54 nodes.

Nodes’ position were also available with the dataset that we used to create theoriginal

physical topology. Since the number of nodes and their positions are fixedin this setup,

we varied transmission range (in meters) of nodes from the set{8, 10, 12, 14, 16} to

create various logical tree topologies. As before the reported results are an average of

20 simulation runs, and during each of those runs the root node was chosen randomly to

create a logical tree topology. Note that unlike the synthetic dataset in which we could

vary parametersk, ω, γ, δ and N , only parametersk and ω are investigated using the

Intel dataset in this chapter. Nonetheless, throughout this research weused this real sensor

network setup (and the corresponding data as well whenever it was applicable) to evaluate
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Parameter Values

k (# of top values) 1, 5,10, 15, 20
N (# of nodes) 100, 200,300, 400, 500
L (length of the square area [m]) 200 (Synthetic)

50 (Intel)
ω (transmission range [m]) 25, 30,35, 40, 45 (Synthetic)

and 8, 10,12, 14, 16 (Intel)
γ (probability of change) 0.1, 0.2,0.3, 0.4, 0.5
δ (change [%]) 2, 4,6, 8, 10

Table 2.2: Parameter values used in this chapter (default values are shown in bold face).

various solutions including the ones proposed in this thesis.

In our experiments we also keep track of the density,Ψ = πω2N
L2 , whereN is the

number of nodes,ω is the transmission range of nodes andL is the length of a square

area. In particular, whenever we varyN , L andω (or a combination of those parameters),

we report the changes inΨ value as well. Note that changingΨ basically represents the

change in the node density of the network, which may impact the underlying logical tree

topologies. Table 2.2 summarizes the set of values used for various parameters in our

experiments presented in this chapter.

2.5.2 Transmission Cost

Transmission cost is measured as the average number of bytes transmitted bya node per

round. Results from our experiments with the synthetic dataset are summarized in Fig-

ure 2.5. In the first experiment we evaluate the impact of varyingk on the EXTOK’s perfor-

mance (Figure 2.5(a)). The foremost trend that we can see is that EXTOK’s transmission

cost is consistently smaller than FILA’s. Particularly EXTOK incurs 70-80%less cost than

FILA. The reason for this behavior is root-to-node communication which occurs more often

in FILA (recall its filter updates and two probing phases). In contrast to that EXTOK gen-

erates less root-to-node communication (recall that there is a single value threshold updates

for filter settings and only one probing phase in EXTOK). As expected, whenk increases

the costs for EXTOK and FILA increase as well, however, the increase ismuch faster in

the case of FILA as more filters need to be maintained (specifically,k+1 pairs of values).

Overall EXTOK offers the best solution which saves up to 80% of the communication cost

as compared to the previously best known solution, FILA.

In the second experiment we evaluate the impact of varyingω (Figure 2.5(b)). Note that

changingω is bound to changeΨ, and hence the node degree (number of neighbors) of the
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(b) Varyingω - transmission range (m)
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(c) Varyingγ - probability of change
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(d) Varyingδ - percentage change
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(e) VaryingN - number of nodes

Figure 2.5: Transmission cost in synthetic dataset.
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(b) Varyingω - transmission range (m)

Figure 2.6: Transmission cost in the Intel dataset.

nodes. Therefore, along withω, we also show the changes in value ofΨ. Clearly EXTOK

is the best option. The reason for the improved performance with increased ω is that asω

increases the underlying tree becomes shorter, decreasing the number of hops to the root.

That results in efficient communication between the root and the nodes, andvice-versa.

Here again, EXTOK consistently performs better than FILA.

Varying γ andδ create a scenario that allows observing how the dynamics of the ob-

served values affect the algorithms’ performance. Naturally, the more dynamic the observed

values, the more updates will be required. In essence this situation createsmore communi-

cation traffic in the tree. Our experiments in this regard are summarized in Figures 2.5(c)

and 2.5(d). Again EXTOK outperforms FILA by a substantial margin. It is interesting to

note that the increase in communication traffic clearly impacts FILA’s performance, while

EXTOK is virtually oblivious to the same. The reason for FILA’s behavior isthat when

values are changed more dynamically filters are violated more frequently, andmore com-

munication takes place between the root and nodes. That results in overallincrease in

the transmission cost of FILA. On the other hand filters are violated in EXTOKas well,

however, since the top-k nodes always send their update, the validation phase is used less

frequently by the root. Moreover, whenever the threshold is changed,installing new filters

at the nodes is much cheaper in EXTOK making it much less affected by the dynamism of

values. Overall, EXTOK saved more than 65% of the cost over FILA.

Figure 2.5(e) summarizes the results from the experiments with the synthetic datain

which we varyN while keeping all other parameters fixed. IncreasingN increases the
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(a) Synthetic dataset
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(b) Intel dataset

Figure 2.7: Energy cost.

network density,Ψ, which basically increases the node degree of the nodes. As expected

EXTOK performs better than FILA. The noticeable trend is that asN increases the perfor-

mance of all approaches increases, which can be explained by the factthat as the number

of nodes increases the amortized per-sensor cost decreases.

Results from our experiments using the Intel dataset are discussed in Figure 2.6. The

qualitative behavior is not very different from the case where syntheticdata is used. Quanti-

tatively though, there are noticeable differences. This can be explainedby the following two

observations and their compounded effect. First, the average node degree is now smaller

(compare e.g., the node density in Figure 2.6(b) with that in Figure 2.5(b)). Second, the

Intel dataset is more dynamic, naturally triggering more updates and consequently more

nodes-to-root transmissions, which has resulted in overall increase in the transmission cost,

e.g., compare the scale of results in Figures 2.5(a)-(b) and 2.6(a)-(b).

2.5.3 Energy Cost

Each bit received by a wireless transceiver incurs an energy cost,Erx. It is also typical

of transceivers used in wireless sensor platforms that receiving one bit requires less than

the energy for transmitting one bit (Etx). Models capturing the energy consumption have

been proposed and used in various previous studies [43, 60]. In order to make the presented

results as technology-neutral as possible, we assume that the unit of energy cost is the

energy required for the transmission of a single bit,Etx, and we use a parameter,Rc, to link

transmission and reception cost viaRc = Erx/Etx. The energy cost of a node is computed

asBt + Br.Rc, whereBt andBr, respectively, are the number of bytes transmitted and
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(a) Synthetic dataset
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(b) Intel dataset

Figure 2.8: Network lifetime.

received by the node. In our experimentsRc assumes values from the set{0.2, 0.4, 0.6,

0.8, 1.0}, and all other parameters are kept at their default values. An increasing Rc value

means the cost of reception is increasingly becoming equal to the cost of transmission. For

simplicity we do not include the processing cost (which is generally much cheaper than the

transmission or reception cost) in our energy consumption model.

The results from synthetic data are summarized in Figure 2.7(a). As the costof re-

ception increases the overall energy cost increases for all solutions,though the increase is

much faster in the case of FILA. The reason is that FILA uses range based filters that nodes

receive during the filter updates apart from the two probing phases during which nodes re-

ceive probing messages, which accounts for much of the reception costin FILA. Therefore,

whenRc increases the reception cost becomes dominant and increases the overall energy

cost in FILA. On the other hand EXTOK has less reception cost to begin with, and there-

fore, it does not contribute much to the overall energy consumption. Qualitatively similar

results were obtained when using the Intel dataset as shown in Figure 2.7(b).

2.5.4 Network Lifetime

We also evaluated the performance with respect to thenetwork lifetimethat we define as

the number of rounds before the first node runs out of its energy. To compute the energy

consumption we used anRc value of 0.6. The initial energy budget for a node was chosen

from the set{4000, 5000, 6000, 7000, 8000}. Results are summarized in Figure 2.8.

Results from synthetic data reveal that EXTOK extends the network’s lifetime

significantly as compared with FILA. In particular when the initial budget is 4000 units
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(b) Varyingω - transmission range (m)

0.1 0.2 0.3 0.4 0.5
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

γ

T
ra

ns
m

is
si

on
 c

os
t (

by
te

s/
se

ns
or

/r
ou

nd
)

 

 
FILA EXTOK

(c) Varyingγ - probability of change
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(d) Varyingδ - percentage change
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(e) VaryingN - number of nodes

Figure 2.9: Transmission cost in synthetic dataset (the case of a single-hop broadcast).
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(b) Varyingω - transmission range (m)

Figure 2.10: Transmission cost in the Intel dataset (the case of a single-hop broadcast).

of energy, EXTOK works for 100 rounds as compared to 28 rounds in FILA. The lifetime

in EXTOK is almost doubled to 200 rounds when the energy budget is doubled to 8000

units. Qualitatively similar results were obtained when using the Intel dataset. However,

the network lifetime is decreased as the overall per-node energy consumption is higher in

the Intel dataset due to which the network lifetime is reduced. This can be verified by

comparing the results in Figures 2.7(a) and 2.7(b) in which we can see that the energy cost

in the Intel dataset is more than the synthetic dataset.

2.5.5 The Case of a Single-Hop Broadcast

As presented in [73], FILA uses a TAG tree (an SPT) as an underlying logical topology to

deliver messages from the nodes to the root (i.e., multi-hop setup for nodes-to-root mes-

sages). However, no tree is used to deliver root-to-nodes messages,because it is assumed

that root can directly communicate with nodes (i.e., single-hop setup for root-to-nodes mes-

sages). This assumption, which was made in [73], is not very realistic, in particular for

WSNs deployed in large areas where obstacles, interference, and other environment fac-

tors restrict how far the root’s signal can reach. Nevertheless, we also examined FILA vs.

EXTOK assuming this assumption holds for both approaches.

Results on transmission cost from synthetic and Intel dataset are summarized in Fig-

ures 2.9 and 2.10, respectively. As before EXTOK outperforms FILA,however, the margin

in performance gain is reduced. This can be attributed to the fact that theseresults do not ac-

count for broadcast messages that are significant in the case of FILA. Recall nodes receive

filter updates and probe messages directly from the root without using multi-hop setup.
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(a) Synthetic dataset
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(b) Intel dataset

Figure 2.11: Energy cost (the case of a single-hop broadcast).
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(b) Intel dataset

Figure 2.12: Network lifetime (the case of a single-hop broadcast).

Results on energy cost and network lifetime are summarized in Figures 2.11 and 2.12,

respectively. Once again EXTOK decreases the energy consumption, and therefore extends

the network’s lifetime by a significant margin. Note that in this setup in which the cost for

multi-hop transmission of root-to-nodes messages is not considered, the network’s lifetime

is increased even further, which is in contrast to the results summarized in Figure 2.8. This

can be explained by the fact that nodes do not spend their energy onrelaying the messages

from the root as the root can reach all nodes with single-hop transmissions. (However, the

nodes still pay the cost of reception for the messages received from theroot, which has

been accounted for in all our results.) Nevertheless, even in this setup thenetwork lifetime
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while using EXTOK is significantly higher than the lifetime achieved by FILA as shown in

Figures 2.12(a)-(b).

2.6 Conclusions

In this chapter we proposed a filtering based solution for efficiently processing the contin-

uous top-k queries in WSNs. Filters allow to suppress a considerable amount of nodes-

to-root messages during the convergecast phase. However, that is achieved at an increased

amount of root-to-nodes messages in order to get nodes’ response to validate the results

and also to update the nodes’ filter. Note that a filtering based solution requires broadcast

phases in every round hence increasing the query latency. In contrast to that, a non-filtering

based solution, e.g., TAG, does not need broadcast phase at all (apart from the one during

which the query is actually disseminated) in which every node simply sends its value in ev-

ery round and aggregation is performeden-route. Nevertheless, employing filters, as in the

case of EXTOK, saves a considerable amount of query processing cost in terms of energy

as compared to TAG. Basically there exists a trade-off between the energycost and query

latency for these two types of solutions, i.e., filtering and non-filtering based.

Irrespective of the type of a solution, broadcasting and convergecasting remain two

basic operations to process the queries and hence their importance is significant. The effi-

ciency of a filtering based solution for the top-k queries will be highly dependent on how

efficiently broadcasting is done, in particular with respect to EXTOK’s validation query and

threshold updates. This is the precise problem that we discuss in detail in thenext chapter.

Our intuition is that by effectively exploiting the physical topology one can create a logical

tree topology that is better suited than commonly used logical topologies, e.g., SPT, for

broadcasting.
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Chapter 3

Broadcasting

3.1 Introduction

Broadcasting is a basic operation used in WSNs for disseminating messages inthe network.

Many applications rely on broadcasting to achieve certain objectives, e.g.,to coordinate the

distributed computing operations or to update a patch of software through executable code

dissemination. In particular, recall the top-k query processing from the previous chapter in

which EXTOK and FILA require the root to send the validation query and filter/threshold

update messages to the nodes in the network. In this chapter we make no particular assump-

tion about what is the message that needs to be broadcast. We just assume that all nodes,

either periodically or during pre–determined periods, need to participate in broadcasting to

allow the network–wide dissemination of messages.

Typically, there are two types of broadcasting problems that are considered in the lit-

erature, i.e.,One-to-AllandAll-to-All. In the One-to-All broadcast problem a particular

node generates a message that needs to be delivered to every other node in the network,

e.g., a validation query issued by the sink. In the All-to-All broadcast problem every node

in the network generates a message that needs to be communicated to every other node in

the network. All-to-All broadcasting essentially requires multipleinstancesof One-to-All

broadcasting. In this thesis, we propose solutions for One-to-All broadcasting problem only,

however, the proposed solutions can be extended to the All-to-All broadcasting problem.

As discussed previously in Chapter 1, one naı̈ve solution to broadcasting is flooding in

which every node simply forwards the message that it receives from its neighbor. It is trivial

to see that flooding will achieve the desired goal, i.e., every node in the network will eventu-

ally receive the message originated from the sink. Nevertheless, floodingleads to increased

redundancy, contention and collisions in the network, which makes it an inefficient solution

[29]. A sensible alternative to flooding is to use a logical tree topology, e.g., commonly
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Figure 3.1: Examples of different logical trees used for broadcasting.Solid arrowed lines
represent edges of the logical tree. Dashed lines represent edges that are in the graph but
not in the logical tree. Arrowed lines also represent messages with the distinction that all
arrowed lines coming out from a node represent a single transmission from that node.

used SPT. An obvious problem now is to decide which logical tree is better than others for

broadcasting in WSNs. This is the precise problem that we address in this chapter.

It is interesting to note that only the root and non-leaf nodes of a logical tree need to

transmit the message during broadcasting. Leaf nodes need to be recipients exclusively.

Consider, e.g., the SPT as shown in Figure 3.1(a). It is easy to understand that a smaller

set of non-leaf nodes will result in a lesser number of transmissions. Consider, e.g., the

Dominating Set Tree (DST) [46] shown in Figure 3.1(b), which is another alternative for

the logical tree that can be used for broadcasting instead of the SPT shown in Figure 3.1(a).

(Note that both logical trees, i.e., SPT and DST are constructed from the same communica-

tion graph.) Clearly the DST has a lesser number of non-leaf nodes as compared to the SPT.

Using the DST, only nodes{A, C, F, I} need to transmit the message, i.e., only 4 messages

are used for broadcasting. This is in contrast to the SPT in which 8 messages are used.

Therefore, the problem here is to find a logical tree topology rooted at a particular node,

i.e., the sink, and which has the smallest possible set of non-leaf nodes. Interestingly, the

above problem is similar to the problem of finding a Minimum Connected Dominating Set

(MCDS) [69] of a graph. Formally the MCDS problem is defined as following:
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Definition 1. The MCDS problem. Given an undirected graphG(V, E), find a set of

verticesV ′ ⊂ V such that (i)V ′ is connected, (ii)∀v′ ∈ V − V ′: v′ is connected to one of

the vertices inV ′, and (iii) |V ′| is minimum.

The above two problems are similar in the sense that the non-leaf nodes of a tree con-

structed from a graph constitute a connected dominating set of the same graph, e.g., the

non-leaf nodes{C, F, I} of the DST shown in Figure 3.1(b) also constitute the correspond-

ing MCDS of the underlying graph from which that DST has been created.It can be easily

verified that nodes{C, F, I} satisfy all three conditions of the MCDS problem, i.e., (i) nodes

{C, F, I} are connected, (ii) all nodes other than{C, F, I} are connected to at least one of the

nodes from{C, F, I}, and (iii) there is no set of less than three nodes that meet the former

two conditions. Unfortunately, finding an MCDS is known to be an NP-hard problem even

when specialized to Unit Disk Graphs (UDGs)1 [16]. The question of a tight approximation

to the MCDS remains an area of active research [9].

An MCDS represents the minimum number of transmissions to reach all nodes in a

network during broadcasting. Note that an MCDS is not constrained by thefact that a par-

ticular node initiates the broadcasting. However, this is in contrast to our specific problem

in which it is required that the broadcasting be initiated from a particular node, i.e., the sink.

Basically in this case the vertex representing the sink must be contained in the MCDS. Next,

we examine the problem of finding an MCDS with the condition that a given vertex is part

of the solution. The new problem is defined as following:

Definition 2. The MDST problem. Given an undirected graphG(V, E) and a particular

vertex,v ∈ V , find a set of verticesV ′ ⊂ V such that (i)V ′ is connected, (ii)v ∈ V ′, (iii)

∀v′ ∈ V − V ′: v′ is connected to one of the vertices inV ′ and (iv)|V ′| is minimum.

Theorem 2. The MDST problem is NP-Hard.

Proof. Assume there exists an algorithmA that takes two inputsG(V, E) andvi ∈ V to

solve the MDST problem, and outputs the solution,Vi ⊆ V containingvi. We can execute

A, |V | times, to find every solution with respect to every input vertexvi ∈ V . Clearly

we can check the cardinality of each output set,Vi (from the possible|V | solutions) in a

polynomial time. IfVk is the set with the minimum cardinality, thenVk must also be the

solution of the MCDS problem (as it does not restrict which set of verticesare selected).

1UDGs are frequently used to model the communication of wireless nodes with identical circular ranges,
deployed on 2–dimensional space. UDGs are, therefore, considered a “benchmark” class of graphs for the
study of wireless algorithm complexity.
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It means that ifA solves the MDST problem in polynomial time then the MCDS problem

is also solvable in polynomial time. However, it is known that the MCSD problem isNP-

Hard [69]. Therefore, the MDST problem is not polynomial time solvable unless P = NP,

and hence the proof that the MDST problem is NP-Hard.

3.2 Related Work

Because constructing an optimal broadcast tree is an NP-Hard problem, several approx-

imation solutions have been proposed. Many heuristics including Broadcast Incremental

Power (BIP) [72, 77], Iterative Maximum-Branch Minimization (IMBM) [40], Adaptive

Broadcast Consumption (ABC) [38] and others [20, 23, 69]. Shortly,we will propose our

solution while establishing a lower bound on the number of transmissions generated by a

logical tree during broadcasting. As a side note, [69] provides an upper bound on the size

of the CDS, i.e., the number of dominating or non-leaf nodes, which will resultin equiv-

alent number of transmissions. To be precise their algorithm has an approximation ratio

of 8. But from the performance of their algorithm it is evident that this upper bound is far

too pessimistic compared to the typicalpractical behavior of their algorithm. We take a

different view of trying to squeeze the performance as close as possible tothe lower bound

corresponding to the broadcasting tree. Nevertheless, for comparisonpurposes, we will also

evaluate the performance of [69] in our simulation study.

There are several other existing proposals that use different logicalstructures, e.g., clus-

ters, for efficient communication in wireless networks [7, 41, 49, 51, 61]. In particular, Lin

and Gerla [41] proposed a clustering based network architecture for multimedia support and

Basagni proposed DCA [7], a distributed clustering algorithm for ad-hoc networks. Con-

sidering the power constraints of WSNs several energy-efficient solutions have also been

proposed in the literature. Heinzelman et. al. proposed a class of adaptiveprotocols, SPIN,

for efficient dissemination of data in WSNs [28]. In [33], a data centric approach called

Directed Diffusion has been presented for query processing in WSNs.Younis and Fahmy

proposed HEED [51], a distributed clustering protocol for ad-hoc sensor networks. Our

work is different from [7, 41, 49, 51, 61] in the sense that we are focused on logical tree

topologies for broadcasting.
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3.3 Bounds and Tree Construction

A lower bound on broadcasting represents that the minimum number of transmissions that

are required to broadcast a message from a particular node to every other node in the net-

work. Consider, e.g., node A that has a message, which needs to be broadcast using either

of the two logical tree topologies shown in Figure 3.1. Consider the DST firstthat is shown

in Figure 3.1(b). The depth of nodes{H, K, J} (i.e., their distance from the root, node A) is

4. Note that nodes{H, K, J} have the maximum depth in the DST, i.e., no other node in the

DST has depth 4. Clearly nodes{H, K, J} cannot receive the message unless their parent

node I transmits the message. Similarly, node I cannot receive the message unless its parent

node F transmits the message, and so on. Overall, broadcasting cannot becompleted with

less than four transmissions while using the DST. Similarly, in the case of the SPTshown in

Figure 3.1(a), the depth of node K is 4, which is also the node with the maximum depth in

the SPT. Clearly, broadcasting requires more than four transmissions whileusing the SPT.

To generalize this observation, we introduce the following lemma.

Lemma 1. Given an undirected graphG(V, E) and a particular vertex,v ∈ V , a lower

bound on broadcasting byv, Tmin, is max{di : i = 1, 2, ...N}, wheredi is the shortest-

distance of nodei fromv in the graph.

Proof. Let k ∈ V be a node that has the maximum shortest-distance fromv in the given

graph, i.e.,dk = max{di : i = 1, 2, ...N}. We will prove by contradiction thatTmin ≥

max{di : i = 1, 2, ...N} for any given graph.

Assume thatTmin < max{di : i = 1, 2, ...N}. Recalldk = max{di : i = 1, 2, ...N},

therefore,Tmin < dk. However, that is an impossible result as nodek will require at leastdk

transmissions (byv and possibly some other intermediate nodes) to receive the message. It

means that our assumptionTmin < max{di : i = 1, 2, ...N} must be incorrect. Therefore,

Tmin ≥max{di : i = 1, 2, ...N}, and hence the proof.

We note that a tree construction algorithm, whether for an SPT, a DST or anyother kind

of tree, ought to be guided by the potential it has for using fewer transmissions for broad-

casting. Until now, the tree construction algorithms produced a tree based on topological

properties alone, e.g., by finding a Maximal Independent Set (MIS) of agraph [69]. To

the best of our knowledge, we are the first to perform the broadcast tree construction in a

manner that is “guided” by the lower bound as established in Lemma 1. Intuitively, this
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Figure 3.2: Parent-children assignment during SPT construction. Rectangles contain nodes
at a particular depth (from the root) of the tree under construction. Dashed lines represent
the graph (adjacency) edges. Solid lines represent parent-children assignments and also
represent potential edges that can be selected in the tree construction. Dashed very-thick
lines represent the edges in the bipartite graph formed between two consecutive depths of
the tree. Solid very-thick lines represent the optimal semi-matching of the bipartite graph.

approach has the potential to result in a tree that requires the smallest possible number of

transmissions needed for broadcasting.

As discussed previously, a tree with fewer non-leaf nodes or conversely with more leaf

nodes is better for reducing the number of transmissions needed for broadcasting (recall

Definition 2). Therefore, our primary objective in this chapter is to construct a tree that is

not only “leafy”, but which also meets the criterion as set forth in Lemma 1. Tothis end, and

in contrast to the existing approaches, our solution specifically targets at constructing a leafy

tree that also “relaxes” the dependencies of the logical tree, i.e.,max{di : i = 1, 2, ...N}.

Next, we describe our procedure for constructing a leafy broadcasttree based on the bound

established by Lemma 1.
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3.4 Biased Shortest Path Tree

It is easy to understand that any SPT constructed from a given graph will minimize the lower

bound,Tmin , established in Lemma 1. However, not all SPTs may have the same number

of non-leaf nodes. Therefore, our problem now is to construct an SPT having a minimum

possible number of non-leaf nodes. More formally, ifξi represents the set of children of

nodei in a given logical tree, then the problem is to construct an SPT that has the maximum

number of leaf nodes, i.e., nodes having|ξi| = 0. Our intuition behind constructing such

a logical structure is that a logical tree that minimizes the lower bound as established by

Lemma 1, and that also has the maximum number of leaf nodes may potentially use a

smaller number of transmissions for broadcasting.

For every nodei, di can be minimized by ensuring that every node is connected to

the root using a shortest path, i.e., by constructing an SPT. A shortest path tree can be

constructed using a standard Breadth First Search (BFS) algorithm. However, minimizing

the total number of non-leaf nodes in SPT is non-trivial. Consider the scenario of a shortest

path tree construction as shown in Figure 3.2. A set of 12 nodes have been shown in

Figure 3.2(a) at two consecutive “depths”,d andd + 1, of the tree. In particular, nodes

from A to F are at distanced, and nodes from U to Z are at distanced + 1 from the root

(not shown in the figures). A possible scenario of parent-children assignment is shown

in Figure 3.2(b). In this example|ξA| = |ξB| = |ξC | = 2. However, this parent-children

assignment has resulted in nodes A, B and C being non-leaf nodes. In other words this

parent-children assignment has not created any leaf node in the tree. Weargue to perform

parent-children assignments in such a way that the number of leaf nodes can be maximized.

The reason being that by maximizing the number of leaf nodes, we can naturally minimize

the number of non-leaf nodes. To that end, our goal is to maximize the “load”on specific

parents during parent-children assignments so that other potential parents can be “freed” to

become leaf nodes. In general, we have the following sub-problem that needs to be solved.

Definition 3. AssumingCd represents the set of nodes that are at distanced from the root,

the parent-children assignment problem is to assign every node at depthd + 1, Cd+1, a

parent from the nodes at depthd, Cd, such thatmax{|ξk| : ∀k ∈ Cd} is maximum.

Interestingly, the parent-children assignment problem as defined aboveis equivalent to

the problem of finding maximum-load semi-matchings in bipartite graphs2 [26]. A bipartite

2Harvey et. al. propose solution for optimal semi-matchings thatminimizesthe load in semi-matchings
(with respect toL∞ norm). However, our goal is tomaximizethe semi-matchings load.
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Algorithm 3
1: procedure FINDMAX LOADSEMIMATCHING(P, C, E)
2: E′ = ∅;
3: C ′ = C;
4: repeat
5: for all p ∈ P do
6: ξp ← ∅;
7: ξp = C ′ ∩ Np;
8: W (p) = |ξp|;

9: pmax = FindMaxWeightParent(P, W );
10: for all c ∈ ξpmax

do
11: E′ = E′ ∪ {(pmax, c)};

12: C ′ = C ′ \ ξpmax
;

13: until C ′ = ∅
14: return (E′);

graph formed by the nodes at depthd, i.e.,Cd = {A, B, C}, and nodes at depthd + 1, i.e.,

Cd+1 = {U, V, W, X, Y, Z}, is shown in Figure 3.2(c). (Since nodes D, E and F do not

have any neighbors from the nodes at depthd + 1, they cannot become parents during the

SPT construction and hence they are ignored. However, they will eventually become leaves

of the SPT). A maximum-load semi-matching is shown in Figure 3.2(d). In this particular

example,|ξA| = 0, |ξB| = 5, and|ξC | = 1. It is optimal with respect to the maximum load

assigned to a parent among all possible parents, i.e.,max{|ξA|, |ξB|, |ξC |} = 5 is maximum.

Note that this assignment has resulted in node A being a leaf node. This is in contrast to

the parent-children assignment shown in Figure 3.2(b) in which|ξA| = |ξB| = |ξC | = 2, and

max{|ξA|, |ξB|, |ξC |} = 2, due to which node A did not become a leaf node.

Using the basic idea depicted in Figure 3.2(d) we construct a “special” SPTin which,

at every two consecutive depths, maximum-load semi-matchings are obtained by construct-

ing bipartite graphs with nodes at those consecutive depths. Of course that results in the

maximization ofmax{|ξk| : ∀k ∈ Cd} at every depthd of the SPT. Intuitively, maximizing

max{|ξk| : ∀k ∈ Cd} will result in the increased number of leaf nodes at every depth of the

SPT. We call an SPT for which the parent-children assignments are done using maximum-

load semi-matchings as a BIased SPT (BISPT).

The pseudo-code for finding the semi-matchings (with maximum load) in bipartite

graphs is presented in Algorithm 3. FindMaxLoadSemiMatching takes as input a bipartite

graphG(P, C, E) and returns a subgraphG′(P, C, E′) containing semi-matchings. Shortly

we will prove that FindMaxLoadSemiMatching produces an optimal solution for finding

the semi-matchings having a maximum load, a problem that we will refer asMaximum-
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Algorithm 4
1: procedure CONSTRUCTBISPT(V, E, r)
2: P ← {r};
3: E′ ← ∅;
4: for all v ∈ V do
5: Mark(v) = False;

6: repeat
7: C← ∅;
8: for all m ∈ P do
9: Mark(m) = True;

10: for all m ∈ P do
11: for all n ∈ Nm do
12: if Mark(n) = False then
13: C = C ∪ {n};

14: Gb ← BipartiteGraph(P, C);
15: Z ← FindMaxLoadSemiMatching(Gb);
16: E′ ← E′ ∪ Z;
17: P ← C;
18: until P = ∅;
19: return (E′);

Load Semi-Matchingproblem. The procedure starts by assigning every node,p, from P

(which are the potential parents) with a weight that is equivalent to the total number of

neighbors, i.e.,Np, thatp has in the bipartite graph (lines 5 through 8). (Recall the property

of bipartite graphs thatNp ∈ C : ∀p ∈ P , i.e., all neighbors of a node from setP are in set

C). The parent with the maximum weight is then chosen and all its neighbors areassigned

as children to that parent (lines 10-11). The assigned children are thenremoved from the

bipartite graph (line 12). This procedure continues until all children are assigned (line 13).

Theorem 3. Given a bipartite graph, G(P, C, E), FindMaxLoadSemiMatching produces an

optimal solution for the Maximum-Load Semi-Matching problem.

Proof. The very first node chosen by the procedure for children assignmentis the node with

the maximum number of neighbors in the bipartite graph. (Recall the weight assignment

based on the degree of nodes.) Let∆(pmax) be the degree (and its weight) of the first chosen

node. It is trivial to see that∆(pmax) = ∆(G). Since the maximum possible load for the

semi-matchings cannot be greater than∆(G), FindMaxLoadSemiMatching is guaranteed

to find the semi-matchings having the maximum load, and hence the proof.

The pseudo-code for BISPT construction is shown in Algorithm 4. It is essentially a

breadth first search algorithm with two new additions: (i) a bipartite graph is created from
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Figure 3.3: A BISPT constructed by the procedure ConstructBISPT. Solid arrowed lines
represent edges of the logical tree. Dashed lines represent edges that are in the graph but
not in the logical tree.

the nodes of two consecutive depths of the tree as shown at line 14, and (ii) a maximum-load

semi-matching is found for the corresponding bipartite graph using the FindMaxLoadSemi-

Matching procedure at line 15. Parent-children assignments obtained through the semi-

matchings, which eventually become edges of the desired tree, are then added in the edge

set of the tree under construction at line 16. This procedure is repeateduntil all possible

parents are exhausted (line 18). Finally the desired tree, BISPT, is produced at line 19.

A BISPT produced by the ConstructBISPT procedure is shown in Figure3.3. First

notice that the constructed BISPT is indeed an SPT, i.e., every node in this tree is connected

to the root using a shortest path. Nodes{C, F, I} constitute the non-leaf nodes of the BISPT,

which also forms the MCDS. Notice the difference between the DST shown in Figure 3.1(b)

and the BISPT shown in Figure 3.3. In the DST some paths connecting the nodes to the

root are not optimal, e.g., see nodes{B, D, E, G, H, J}. We will discuss the importance of

this observation during the discussion on convergecasting in Chapter 5.

3.5 Performance Evaluation

To evaluate our proposal we implemented the solutions based on the proposals in [69] and

more recently in [23]. In the rest of the section we will refer to the two solutions proposed

in [69] and [23] as WAF and GKLRW, respectively, named after the authors’ last names.
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Parameter Values

N (number of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)

L (length of the square area [m]) 800, 1000,1200, 1400, 1600 (Synthetic)
50 (Intel)

ω (transmission range [m]) 200 (Synthetic)
8, 10,12, 14 16 (Intel)

Table 3.1: Parameter values used in this chapter (default values are shown in bold face).

WAF is a two phase approach for constructing a connected dominating set. In the first phase

an MIS is chosen from the given graph and then a spanning tree is constructed to connect

the nodes of the chosen MIS. Non-leaf nodes of the constructed tree constitute a connected

dominating set. More recently GKLRW proposed an algorithm for constructing a broadcast

tree which can eventually be used for broadcast scheduling, a topic discussed in Chapter 4.

For the purpose of our study it is sufficient to use the broadcast tree proposed by GKLRW

to evaluate the performance of BISPT.

In our study we considered a similar setup as the one presented in [23]. Inpartic-

ular, the authors considered four different setups, i.e., 100, 200, 300, and 400 nodes in

a 800m×800m, 1000m×1000m, 1200m×1200m, and 1400m×1400m area, respectively.

Transmission range of nodes was fixed at 200m. To test the scalability of thesolutions to a

larger network we added one additional setup, i.e., 500 nodes in a 1600m×1600m area. We

also used the Intel setup discussed in the previous chapter to evaluate oursolutions.

We keep track of density,Ψ = πω2N
L2 , whereN is the number of nodes,ω is the trans-

mission range of nodes andL is the length of a square area. Table 3.1 summarizes the

values used for all the parameters used in our experiments in this chapter. All the results

from the synthetic and Intel setups are an average of 20 simulation runs. In each run one

node is chosen randomly uniformly as the root.

3.5.1 Number of Dominating Nodes

We use thenumber of dominating (non-leaf) nodes, which is basically the size of a con-

nected dominating set (CDS) representing the number of non-leaf nodes of the logical tree,

as the metric to evaluate the performance of various solutions, since the fewer the dominat-

ing nodes, the fewer the transmissions for broadcasting. In the following experiments we

varyN , L andω to note their impact on the size of the dominating set.

Figure 3.4 summarizes the results from the synthetic dataset. In the first experiment

we vary the area size and the number of nodes to observe the scalability of the proposed
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Figure 3.4: Performance of various solutions with the synthetic dataset.
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Figure 3.5: Performance of various solutions with the Intel dataset.

solutions for which the results are presented in Figure 3.4(a). In the second experiment we

keep the area fixed at 1200m×1200m and change the number of nodes from 100 to 500.

This experiment creates the scenario of an increasing node density in which an increasing

number of nodes are “packed” in a fixed area. The results from this experiment are pre-

sented in Figure 3.4(b). The foremost trend that can be observed fromthe results obtained

through these experiments is that BISPT’s approximation of MCDS is better than all other

solutions. In particular, the size of the CDS produced by BISPT is 5 to 20% less than the

size of the CDS produced by other solutions.

As shown in Figure 3.4(a), when the network scales up (in terms of the areaand the

number of nodes), the size of the CDS increases as expected. The increase is much faster

in the case of WAF as compared to GKLRW and BISPT. Nevertheless, the performance

of BISPT with respect to GKLRW increases as the network scales up. In the case of the
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increasing node density, the CDS size increases as well, but by a smaller margin. The reason

is that when more nodes are “packed” in a fixed area the size of the underlying tree grows.

However, that does not necessarily increase the number of dominating nodes as many of the

nodes become leaf nodes in the logical tree.

Figure 3.5 summarizes the results from the Intel dataset. The main change in these

results with respect to the synthetic setup is that the trend of the performancecurves is

reversed. The reason is that in the case of the Intel setup we can only vary the transmission

range to change the node density. Due to this the number of neighbors per node is increased.

That results in a “short” and “fat” underlying tree due to which the size of the CDS (number

of dominating nodes) is reduced to a trivially small value.

3.6 Conclusions

In this chapter we proposed BISPT, a logical tree topology for efficientbroadcasting in

WSNs. Simulation results reveal that BISPT outperforms other well known solutions in

terms of better approximation for MCDS or MDST. It also means that BISPT is atree with

a smaller set of non-leaf nodes, which will incur lower transmission cost for broadcasting.

Clearly this will reduce the query processing cost for solutions that require broadcasting as

an elementary operation, e.g., recall EXTOK and FILA. In the next chapter, we propose

solutions for scheduling broadcast. It is a problem in its own right, which needs to take into

account the unique features of a WSN, mainly its distributed environment andthe wireless

nature of nodes’ transmissions.
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Chapter 4

Broadcast Scheduling

4.1 Introduction

In the previous chapter we studied the problem of broadcasting in WSNs. In particular, we

highlighted the importance of an underlying logical tree topology during the broadcasting

operation. We proposed a simple solution for constructing an efficient logical tree topology

that is more suitable than the existing logical tree topologies for broadcasting.Essentially,

the problem of broadcasting is the problem of determining which nodes in the network

should repeat (relay) a message and which ones should not, such that all nodes receive a

message sent by a particular node. The former are callednon-leaf nodes(or relays) and the

latter are calledleaf nodesin recognition of the fact that the dependency of transmissions

forms a logical tree. (A non-leaf node cannot transmit before it receives the message from

another “upstream” non-leaf node, i.e., its parent in the logical tree.) The objective here is

to minimize the number of transmissions, hence the number of non-leaf nodes ofthe logical

tree topology. This objective led to the BISPT algorithm presented in the previous chapter.

An obvious problem now is to efficiently schedule a given logical tree, e.g.,BISPT,

which is the main focus of this chapter. Determining the logical tree is not sufficient because

it does not determinewhenthe non-leaf nodes need to transmit. Consider the scenario of

broadcasting using a commonly used logical tree topology, SPT, as depictedin Figure 4.1.

As shown in Figure 4.1(a), the root starts broadcasting by transmitting a message which is

received by the root’s children{B, C, D}. Next, the root’s children are required to forward

the message. As all of the root’s children are ready to transmit the message,possibly at

the same time, there may be interference if they transmit the message concurrently. In the

worst case nodes{B, C, D} transmit the message simultaneously as shown in Figure 4.1(b).

Because of the wireless medium, transmissions from nodes{B, C, D} interfere with each

other causing “collisions” at the receiving nodes{E, F, G} due to which none of the nodes
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Figure 4.1: Interference in SPT during broadcasting. (Solid lines represent edges of the
logical tree. Arrowed lines coming out from a node represent a single transmission from
that node. Dashed lines represent edges that are in the graph but notin the logical tree.
Highlighted circles represent nodes that are transmitting a message.)

from {E, F, G} are able to receive the message from their respective parents.

One solution here is to rely on an underlying Medium Access Protocol (MAC) such as

CSMA/CA [66] to handle contention and re-transmissions in the event of collisions. The

main problem with a contention-based MAC protocol is that nodes do not know when to

expect the messages that areintendedfor them. In this situation, the transceivers need to be

turned on to continuouslylisten for the intended messages, which may consume a signif-

icant amount of the nodes’ energy. There exist compelling reasons to avoid a contention-

based MAC protocol, and to create a time schedule instead, e.g., a Time DivisionMultiple

Access (TDMA) like protocol [66]. More specifically: (a) it makes no sense to try to

minimize the number of transmissions which, among other things, reduces the latency to

complete the broadcast, only to introduce latency caused by contention arbitration mecha-

nisms, but more importantly, (b) we are interested to reduce the time a node needs to listen

on the medium and hence waste energy while idle listening [29]. In other words, a schedule

allows us to prescribeexactlywhen a node has to listen and when it has to transmit (if at all),

keeping its transceiver inactive at all other times. Naturally, the schedule must also ensure

that, (c) there are no collisions (from the perspective of each intended recipient) caused by

transmissions scheduled to occur in the slot that the recipient is listening.
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There are two kinds of solutions that exist for TDMA-based broadcastscheduling. A

common approach of most of these solutions [23] is to decompose the probleminto two in-

dependent subproblems: (i) a logical tree construction, and (ii) scheduling of transmissions

along the constructed tree. Other existing solutions, e.g., [76], propose atree-scheduling

algorithm alone, which obviously needs an already constructed tree as input. One common

objective of both kinds of solutions is to reduce the broadcast latency, i.e.,the number of

time slots used for scheduling the broadcast. Before further discussion,we describe the

broadcast scheduling problem in detail.

4.2 Problem Statement

Throughout this thesis, we assume a slotted system and that all nodes haveadequate syn-

chronization capabilities to follow a slot-by-slot schedule. The purpose ofthe broadcast

(and convergecast, discussed in Chapter 5) schedule is to instruct each node when to: re-

ceive, transmit, or deactivate the transceiver (thus avoiding idle listening). The schedule

is constructed for a single round/epoch and then the same schedule is repeated for each

round. This mode of operation is consistent with the execution model of continuous queries

and their solutions, e.g., TAG, FILA and EXTOK. Extensions to multiple (pre-computed)

schedules are possible but beyond the scope of this thesis.

Given a network ofN nodes, the problem is to minimize the total number of time slots,

T , that are required for broadcast scheduling, subject to the following constraints:

• C1: only a subset of nodes, including the sink, are allocated one of the time slots

from the set{1,2,...,T} to transmit the broadcast message only once.

• C2: every node (except the sink) is allocated one of the time slots from the set

{1,2,...,T} to receive the broadcast message only once. (The sink is assumed to be

the originator of the message, therefore, it need not be scheduled to receive).

• C3: the reception slot of any transmitting node (except the sink) is earlier than its

transmission slot, i.e., all transmitting nodes (except the sink) are scheduled toreceive

before they are actually scheduled to transmit. This also means that the reception and

transmission slots of any transmitting node cannot be the same, i.e., every transmit-

ting node is scheduled to receive and transmit using two different slots to enforce the

half–duplex operation, i.e., a node can either receive or transmit during agiven slot.
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• C4: there is no interference by colliding transmissions at any of the recipient nodes

during its assigned reception slot.

Unfortunately, the problem of finding a schedule that satisfy all the aboveconstraints

has been shown to be NP-Complete by Gandhi et. al. in [24]. Therefore,the existing

solutions are heuristic approximations, which are reviewed in the next section.

4.3 Related Work

Broadcast scheduling requires resolving interference introduced bythe physical (wireless)

topology of the network while minimizing the broadcast latency, i.e., the number ofslots

that are required to schedule the transmissions. Several heuristic solutions have been pro-

posed in the literature to solve the above NP-Complete problem. In particular, Gandhi et.

al. proposed their solution that achieved a constant approximation, i.e., the performance ra-

tio of their proposed solution with respect to an optimal solution is constant. Unfortunately,

their broadcast latency approximation bound is greater than 400, which is quite high. Re-

cently they proposed another solution in [23], which improved the approximation ratio to

12. Huang et. al. also proposed a 16-approximation algorithm in [31]. However, as noted in

[23] their algorithm has a hidden cost in the order ofO(R), whereR is the longest shortest

path from the sink in the network. Chen et. al. proposed yet another constant approxima-

tion algorithm in [14], which has been found to be at best 16-approximationonly in special

cases [23].

Existing solutions typically take the approach of first constructing a logical tree topol-

ogy and then scheduling the nodes of the constructed tree. Some other solutions only focus

on minimizing the broadcast latency through efficiently scheduling the nodes of a logical

tree. All of the solutions proposed in [23, 24, 31, 76] take one of the two approaches men-

tioned above. In particular, [23] proposes a solution that contain a tree construction phase

and a scheduling phase, and [76] only proposes a tree scheduling algorithm. In yet another

study [78], Zadoronzhny et. al. propose solutions for constructing logical trees for query

processing and data delivery in mobile sensor networks.

Our work is different from [23, 24, 31, 76] in many ways. First, the scheduling solu-

tions proposed in these works are not independent of tree construction, due to which their

usefulness is not obvious in certain situations (discussed in section 4.5). We make the tree

scheduling independent of the tree construction, while still paying due attention to the qual-

ity of the constructed tree in terms of the number of time slots that the tree may use for
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Figure 4.2: Various logical trees and their corresponding schedules. (Solid arrowed lines
represent edges of the logical tree. Dashed lines represent edges that are in the graph but
not in the logical tree. Arrowed lines also represent messages with the distinction that all
arrowed lines coming out from a node represent a single transmission from that node. Each
arrowed edge is also annotated with a time slot in which it will be activated.)

broadcasting (examples to follow.) Towards that end our scheduling algorithm tends to

maximize the number of concurrent transmissions in order to reduce the number of time

slots used. This is in contrast with approaches, such as the one in [76], where the schedule

is constructed through a traversal of the supplied tree without any concern as to whether

such a traversal allows the maximum number of concurrent transmissions to be scheduled

in every time slot. Yet another important difference, which distinguishes ourwork from

[23, 24, 31, 76], is that unlike previous solutions we strive to make broadcasting more reli-

able in the event of failures which are common in WSNs, an issue that we will address in

detail in Chapter 6.

4.4 Proposed Solution

Our tree usage for broadcast scheduling is marked by the observation that only the root and

non-leaf nodes of a logical tree need to be scheduled as only these nodes in the logical tree

need to be the transmitters and all leaf nodes need to be the recipients only. (Of course all

nodes, except the root, need to be scheduled for reception as well.) Intuitively, a smaller set

of non-leaf nodes will require a lesser number of time slots for scheduling the transmissions.
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Therefore, the problem is to ensure that only the smallest possible set of non-leaf nodes

transmit the message.

It is trivial to see that the BISPT presented in the previous chapter meets theabove

criterion. To put forth our case more concretely we consider the examplesof various log-

ical trees, BISPT as well as SPT and DST, and their corresponding schedules as shown in

Figure 4.2. Clearly the schedules meet all the constraints C1 through C4 setforth in sec-

tion 4.2. The total length of the broadcast schedule,T , for the SPT is 6 with nodes{A, B,

C, D, E, F, G, I} scheduled to transmit the message. Note that the set of nodes{B , D}

and{E, G} are scheduled for concurrent transmissions during slots 2 and 4, respectively,

as doing so does not violate the collision-free constraint. In the case of theDST only nodes

{A, C, F, I} are scheduled to transmit during slots 1, 2, 3 and 4, respectively, as shown in

Figure 4.2(b). The total length of the schedule in this case is 4 as compared to6 in the

case of the SPT. Similarly, the total length of the schedule used by the BISPT is4 as shown

in Figure 4.2(c). Clearly in these examples of the DST and BISPT, which have a smaller

set of non-leaf nodes as compared to the SPT, indeed a lesser number ofslots are used for

scheduling. Now an obvious question is, after forming a logical tree topology, how to con-

struct a schedule that meets the constraints set forth in in section 4.2. Towards that end we

present the Weighted Incremental ScHeduling (WISH) algorithm for broadcasting.

4.4.1 WISH for Broadcast Scheduling

WISH takes as input a spanning tree over a graphG(V, E) which represents the logical

topology over which broadcasting is to be performed. Let us denote byr (r ∈ V ) the

sink and the root of the broadcast tree. For convenience, let us denote asV ′ all nodes of

V except forr, i.e., V ′ = V \ {r}. The tree can be described by the parent-of relation

denoted byPv which indicates which node is the parent of nodev. The set of parent-of

relationsP is defined asP = {Pv|v ∈ V ′}. The inverse of the parent-of relation is the

children-of set,ξv, which indicates the set of children of nodev (as per the logical tree

topology), that isξv = {u|Pu = v ∧ u ∈ V ′}. Finally, let us capture thephysicaltopology

of G(V, E) through the neighborhood set,Nv, that includes all nodes connected to nodev

in the physical topology, i.e.,Nv = {u|(v, u) ∈ E}. Collectively, the set of neighbor sets

for all nodes inV ′ will be denoted byN , i.e.,N = {Nv|v ∈ V ′}. The pseudocode for

WISH is presented in Algorithm 5.

The algorithm maintains a set of nodes that are eligible to transmit, denoted byF .

However, only a subset of nodes inF will be allowed to transmit concurrently because
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Algorithm 5
1: procedure WISH(r, V ′,N ,P)
2: j ← 0;
3: F ← {r};
4: repeat
5: j ← j + 1;
6: for all e ∈ F do
7: we ← |ξe|;

8: Sj ← ∅;
9: Rj ← ∅;

10: for all e ∈ F in decreasingwe do
11: NoCollA← true;
12: NoCollB ← true;
13: for all s ∈ Sj do
14: for all c ∈ ξe do
15: if c ∈ Ns then
16: NoCollA← false; break;

17: if NoCollA = true then
18: for all r ∈ Rj do
19: if r ∈ Ne then
20: NoCollB ← false; break;

21: if NoCollA ∧NoCollB then
22: Sj ← Sj ∪ e;
23: Rj ← Rj ∪ ξe;

24: F ← ∅;
25: for all q ∈ ∪j

i=1
Ri do

26: if q /∈ ∪j
i=1

Si then
27: if |ξq| > 0 then
28: F ← F ∪ {q};

29: until | ∪j
i=1

Ri| = |V
′|

30: S ← {Sv|v ∈ {1, . . . , j}};
31: return (S);

they need to satisfy the requirement that no collision is caused (from the viewpoint of the

receivers) with any other transmissions happening in the same slot. Trivially, in the first slot

only the rootr is eligible to be scheduled (line 3). Subsequently all of its children become

the recipients of its transmission and become eligible to transmit in the second slot but only

a subset of them may be allowed to transmit concurrently.

The basic idea is to rank all eligible nodes based on theirweightand then consider them

in decreasing order based on their weight (line 10). We check whether the transmission of

an eligible node,e, can be scheduled in the current slot in a collision-free manner. This

test considers two possible types of collisions: (A) collisions perceived by any child of e
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due to concurrent transmission in the same slot from a node already scheduled in the same

slot (lines 13-16), and (B) collisions that could be caused ife transmits in the current slot

because it would collide at the children of nodes already assigned to transmit in the same

slot (lines 17-20). If a node does not cause either type of collision, it is scheduled for

transmission and its children are marked as receiving the node’s transmission (lines 21-23).

This procedure continues with the new set of eligible nodes (lines 24-28) until all nodes

have received the transmission (line 29). WISH returns the sets of nodesthat are assigned

to transmit in each slot (lines 30-31).

The ability of this process to generate good schedules in terms of length depends on

the way the weights are assigned. We have experimented with many alternativeweights

and the one that we have found as consistently producing good results is the cardinality of

the children-of set, i.e.,|ξv| (lines 6-7). The higher weight gives a higher relative priority

to a node to be scheduled in the current slot over other eligible nodes. Theintuition be-

hind why this works best is based on the observation that the earlier we schedule a node

with many children, the larger the increase in the eligible set (because the children become

subsequently eligible for scheduling). The larger the eligible set earlier in the schedule,

the higher the chances that several eligible nodes can transmit concurrently. By enhancing

the number of concurrent transmissions, we are reducing the number of slots it takes to

schedule all the nodes.

Lemma 2. A schedule produced by WISH is collision-free.

Proof. Every slot in WISH is allocated in an incremental fashion, i.e.,Sj andRj are initial-

ized to empty sets and then eligible transmitters and receivers are added into them incremen-

tally. Since a node is added toSj and its children toRj only if it meets the collision-free

criteria, Sj will contain the set of nodes that do not interfere with each other’s transmis-

sions. Because this procedure is repeated for every slot,j ≥ 1, Sj andRj will always

contain nodes that are collision-free, and hence the proof.

4.5 Performance Evaluation

To evaluate our proposal we implemented the solutions proposed in [23] and[76]. In the

rest of the section we will refer to the two solutions proposed in [23] and [76] as GKLRW

and YMV, respectively, named after the authors’ last names. Note that thescheduling phase

of GKLRW is not independent of its tree construction phase, therefore,GKLRW cannot be

used for scheduling “any” tree that is given as input to the algorithm. In particular, GKLRW
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Parameter Values

N (# of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)

L (length of the square area [m]) 800, 1000,1200, 1400, 1600 (Synthetic)
50 (Intel)

ω (transmission range [m]) 200 (Synthetic)
8, 10,12, 14 16 (Intel)

Table 4.1: Parameter values used in this chapter (default values are shown in bold face).

requires an SPT as an input. In contrast to that, YMV is a tree scheduling algorithm, which

means that it is independent of the input tree, and can schedule any tree that is given as input.

Unlike GKLRW and like YMV, our tree scheduling algorithm, WISH, is independent of the

tree construction phase, which means it can be used to schedule any logical tree. This

feature of a solution, to independently schedule a tree, is particularly useful in situations

where a specific tree is given to be scheduled to achieve certain other application objectives.

In our experiments we will use this feature of a solution to evaluate GKLRW, YMV and

WISH using various scenarios.

GKLRW is currently the-state-of-the-art solution for broadcast scheduling. GKLRW

has been shown to outperform solutions proposed previously in [24, 31]. Interestingly,

YMV has not been compared against these solutions including GKLRW. Oursimulation

study “fills” this gap and evaluates GKLRW with respect to YMV as well as ourown

solutions. In the simulation study presented in this section, we considered a similar setup

as presented in the previous chapter. However, for the reader’s convenience we present the

main details of the setup again.

Five different simulation setups are considered in this chapter. In particular, 100, 200,

300, 400 and 500 nodes in a 800m×800m, 1000m×1000m, 1200m×1200m, 1400m×1400m,

and 1600m×1600m area, respectively. Transmission range of nodes was fixed at200m. We

also used the Intel setup discussed in Chapter 2 to evaluate our solutions. We keep track of

the node density,Ψ = πω2N
L2 , whereN is the number of nodes,ω is the transmission range

of nodes andL is the length of a square area. All results presented here are an average of

20 simulation runs. Table 4.1 presents a summary of the values that we used for different

parameters in our experiments presented in this chapter.

4.5.1 Broadcast Latency

We usebroadcast latency, which is the total number of slots used for a given schedule, as

a metric to evaluate the performance of various solutions. In the first set ofexperiments
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Figure 4.3: Scalability (varyingL andN ) in the synthetic dataset.
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Figure 4.4: Density (fixedL and varyingN ) in the synthetic dataset.

we keep the underlying logical tree same for GKLRW, YMV and WISH. In particular,

we constructed and used the same tree that is proposed for GKLRW. We willrefer to the

tree proposed in GKLRW as GKLRW-tree. Since YMV and WISH can independently

schedule this tree, we can evaluate the latency of the schedule produced by these solutions

independent of the underlying logical tree. The results are summarized in Figure 4.3(a). We

can see that for a smaller network with less than 200 nodes WISH can outperform GKLRW

by 5 to 15% and YMV by 15 to 30%. As the network scales up, the performance gap

between WISH and GKLRW shrinks and becomes insignificant. However, the performance

of YMV degrades quite rapidly when the network size is increased because, as we remarked

in section 4.3, YMV misses opportunities to concurrently schedule nodes thatare eligible

in other parts of the tree because of its strict traversal strategy of the input tree.

In the second set of experiments we kept the original tree for GKLRW (asthat is the only
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Figure 4.5: Density (fixedL and varyingω) in the Intel dataset.

option it has) and supply WISH and YMV with BISPT as the underlying tree. Our results

are summarized in Figure 4.3(b). Obviously the performance of GKLRW is not expected to

change as compared to Figure 4.3(a) and indeed that is the case as shownin Figure 4.3(b).

However, the performance of WISH and YMV is improved, though slightly for WISH and

considerably for YMV. As a matter of fact, YMV with BISPT has outperformed GKLRW.

This result highlights the importance of the underlying logical tree topology.

In the above set of experiments we tested the scalability of solutions by varying the

network area and the number of nodes. In the next set of experiments wekeep the network

area fixed at 1200m×1200m and vary number of nodes from 100 to 500. These experiments

create the scenario of an increasing node density in which an increasing number of nodes

is “packed” in a fixed area. The results from these experiments are presented in Figure 4.4.

Similar trends can be noticed here as observed in Figure 4.3, i.e., WISH performs similar

to GKLRW when supplied with the common logical tree topology. However, whenBISPT

is supplied as the input tree, the performance of WISH improves.

Another interesting trend that we can notice with WISH as well as GKLRW and YMV is

that when the nodes are more “densely packed”, the schedule length decreases. Compare,

e.g., Figure 4.3(a) with Figure 4.4(a) and Figure 4.3(b) with Figure 4.4(b).Notice that

WISH schedules 500 nodes that are spread over 1600m×1600m area using 18 time slots

(Figure 4.3(a)), however, when 500 nodes are deployed within 1200m×1200m area the

total slots used are reduced to less than 16 (Figure 4.4(a)). This behavior can be attributed

to the fact that when nodes are densely packed the underlying logical tree “shrinks” while

having a lesser number of non-leaf nodes, which can be scheduled using fewer slots.

Figure 4.5 summarizes the results from the Intel setup. The main difference inthese
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results with respect to the synthetic setup is that the trend of the performancecurves is

reversed. The reason is that in the case of the Intel setup we vary the transmission range due

to which the underlying logical tree becomes “shorter” resulting in the decreased number

of non-leaf nodes. Recall that only non-leaf nodes need to be scheduled for broadcasting.

As the non-leaf nodes decrease it is natural that the total number of slots used for their

scheduling is also decreased. There is not much difference among the performances of

WISH, GKLRW and YMV as shown in Figures 4.5(a). However, an interesting trend,

which did not appear in the synthetic setup, can now be seen in Figures 4.5(b). This result

is from the setup in which we supply WISH and YMV a different tree than GKLRW. We

can clearly see that GKLRW is outperformed not only by WISH but also by YMV. This

result shows the sensitivity of GKLRW towards a particular type of networktopology (as

in the case of the Intel dataset that is restricted to produce a certain type ofthe logical tree

topologies). Nonetheless, in all cases WISH outperformed all other solutions.

4.6 Conclusions

Broadcasting is an important operation in wireless networks. In this chapterwe addressed

the problem of schedulingone-to-allbroadcasting. Towards that end we proposed an effi-

cient broadcast scheduling algorithm, WISH, that outperformed the current state-of-the-art

solution. Admittedly, the results show that the reduction in the scheduling length (for a

single broadcast schedule) is marginal, however, overall that may account for a signifi-

cant reduction if a query is processed for a large number of rounds, which could be the

case in many applications. The time that is gained due to short schedules, i.e., by reduc-

ing the broadcast latency, may actually improve the response time of the sink that answers

the query. In the next chapter we study another important operation of in-network query

processing in WSNs, i.e., convergecasting.
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Chapter 5

Convergecast Scheduling

5.1 Introduction

Data gathering is a basic capability expected of any WSN. In the context of in-network

query processing the usual means of performing data gathering is to haveall nodes send

their measurements (possibly over multiple hops) to the sink. To that end a logical tree

topology is used for collecting and forwarding data to the sink, which becomes the root of

the logical tree. The corresponding many-to-one “funnel” type of communication is called

convergecast. Convergecast is the basic building block for various solutions proposed in

the literature for data gathering and query processing including TAG, FILA and EXTOK

that we discussed in the previous chapters.

A scenario of convergecasting is presented in Figure 5.1 in which a top-2 query is pro-

cessed using TAG on top of SPT, DST, and BISPT. Note that in TAG everynode participates

during the convergecast by forwarding its own value or aggregated values. It is trivial to see

that, because of the different structures of the logical trees, the same query is processed dif-

ferently. Hence, the convergecast cost (in terms of bytes transmitted/received by the nodes)

is also different for different trees. For example, if a sensor’s valueand ID are represented

by 2 bytes each, then the total bytes transmitted to find the top-2 results while using SPT,

DST and BISPT are 76, 56 and 60, respectively. Similarly, the cost of processing EXTOK

on top of SPT, DST, and BISPT may vary during any given round as shown in Figure 5.2.

Finding a tree that minimizes the convergecast cost is a non-trivial problem.Interest-

ingly, this problem can be treated as a Minimum Steiner Tree (MST) problem, which is well

known to be NP-Hard [39]. Filtering based solutions complicate the problem even further.

Recall that in EXTOK the threshold value may change due to which F-nodes and TM-nodes

may change accordingly during every round. It means that unlike the MSTproblem,source

nodes cannot be determined in advance while using a filtering based solution. Basically,
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Figure 5.1: Convergecasting (TAG) using various logical topologies. (Darker circles rep-
resent nodes that triggered an update. Rectangles represent the packets transmitted by the
corresponding nodes.)

a new instance of the MST problem is created during every round in the case of filtering

based solutions. In this situation, constructing an optimal or near-optimal logical tree topol-

ogy during every round is impractical and costly due to the overheads, which will become

significant because of multiple rounds. Therefore in this thesis, we focuson convergecast

scheduling rather than investigating logical tree topologies for convergecasting.

Several algorithms proposed for multi-hop wireless convergecast scheduling can be

used for WSNs (see e.g., [37] and the references there in). A common objective of schedul-

ing algorithms is to use the least number of time slots. As with broadcast scheduling, a

common trait of most of those algorithms is the decomposition of the problem into two

independent subproblems: first a logical tree construction, followed bythe scheduling of

transmissions along the constructed tree. We will see a similar approach is followed in

aggregation convergecast, a problem that we address in this chapter.

5.2 Problem Statement

Aggregation convergecast is described as the routing and the en-routeaggregation of data

as they travel to the sink (plus of course interference constraints as in regular convergecast).

Aggregation is a means to achieve energy efficiency by reducing the transmitted traffic

volume, recall e.g., TAG. In its simplest definition, aggregation operates by ensuring that
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Figure 5.2: Convergecasting (EXTOK) using various logical topologies.(Darker circles
represent nodes that triggered an update. Rectangles represent thepackets transmitted by
the corresponding nodes.)

a node receives a specific number of incoming messages (from a correspondingly specific

subset of its neighbors), then combines the received data along with its ownto generate

a singleoutput message that describes collectively the received and its own data together.

Naturally, this definition can be applied recursively all the way to the sink.

The important characteristic of aggregation convergecast is that a node(except the root)

transmits only once per round. This transmission can happen only after the node has col-

lected data from other nodes on which to perform aggregation (including itsown data). The

aggregated data is subsequently received by another node that performs further aggregation

along with those from other nodes, and so on, until the aggregated data arrives at the sink.

We assume that a single slot period is sufficient to transmit data in its original (source) form

or in its aggregated form. For example, in the case of top-k query processing some nodes

may forward exactlyk values and some nodes may forward less thank values depending on

the number of values collected. The slot size should be tailored to “fit” the worst case size

of k values (inclusive of header and other overheads). For the purposeof this thesis we will

assume that all slots have the same fixed duration, which is sufficient to transmit/receive the

largestpacket/message required by the application.

Given a network ofN nodes, the problem is to minimize the total number of time slots,

T , that are required to schedule transmissions, subject to the following constraints:

68



• C1: every node, except the sink, is allocated a single time slot from theT time slots

to transmit.

• C2: a subset of nodes, including the sink, are allocated a subset of time slots from

the set{1, 2...T} to receive transmissions.

• C3: once a node transmits, it can no longer be scheduled to receive the transmissions

from any other node.

• C4: a recipient cannot transmit in the same slot in which it has been assigned to

receive, i.e., half–duplex operation.

• C5: there is no interference by colliding transmissions at any of the recipient nodes

during its assigned reception slot.

Unfortunately, the problem described above is known to be NP-complete even if re-

stricted to Unit Disk Graphs (UDGs) [13]. Therefore, the existing solutions in the literature

are heuristic approximations, and will be reviewed in the next section.

Before reviewing the existing work it is worth noting that the combination of C1 and

C2 means that the activated edges (i.e., those edges of the underlying network topology

graph that are used for communication, regardless of when they are activated or used) form

a subgraph of the network topology graph, which is a tree. This propertyfollows from the

fact that this subgraph (a) contains exactlyN − 1 edges (to satisfy C1) and (b) is directed

and acyclic (to satisfy C2). As it is well-known, a subgraph satisfying those two character-

istics must be a tree. That means a byproduct of solving the scheduling problem is a tree

that represents a dependency of transmissions dictating the order in whichaggregation con-

vergecast is performed. In other words, no matter what solution we adapt for the scheduling

problem a tree must be used to schedule the nodes.

The above fact has been recognized by the existing solutions that structure their heuris-

tics as consisting of two phases: first a phase to build a dependency tree (based on a variety

of criteria), and then a second phase to construct a schedule. To put these solutions in

some concrete perspective, we will consider the example of Figure 5.3 to depict alterna-

tive aggregation/dependency trees and the corresponding schedules. Specifically, sched-

uled transmissions are represented as directed edges from a transmitter,i, to the recipient

Pi. Each directed edge is also annotated with the time slotti in which it will be activated

(by the transmitteri) in order for dependency and interference constraints (as described in
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this section) to be met. Next, we review the existing solutions in detail while making some

observations that lay the foundation of our proposed solutions.

5.3 Related Work

There are two types of solutions that exist for aggregation convergecast scheduling. One

approach is to schedule a given aggregation tree irrespective of how that tree is constructed.

(Recall that constraints C1 and C2 enforce any solution to have a logical tree.) Naturally,

if the scheduling algorithm is defined independently of the aggregation tree,then the per-

formance will vary greatly depending on the aggregation tree supplied. Such is the case of

the scheme called PAS by Yu et. al. [76]. Another (and more common) approach is for a

scheme to prescribe both the tree construction as well as the scheduling algorithm. Within

this category, there are those algorithms that retain the tree constructed in thefirst phase,

and others that do not. In the latter category we find SDA by Chen et al. [13] and First–Fit

by Huang et al. [32]. Unfortunately, the algorithm proposed in [32] produces schedules

with possible collisions. This leaves SDA as the main example in this category.

SDA constructs an SPT in the first phase. It then incrementally schedules the nodes but

also assigns them a parent, possibly different than the one in the original SPT. The examples
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shown in Figures 5.3(a) and 5.3(c) are in fact two possible (distinct) trees/schedules that

may be generated by the SDA algorithm with the input of SPT shown in Figure 5.3(a). Note

the change of parents for nodes E and D in Figure 5.3(c) that is different than the original

parents as shown in Figure 5.3(a). As we will later see, SDA is an efficientalgorithm but its

drawback is the “distortion” caused by the scheduling phase, which meanswe cannot apply

SDA’s scheduler when we need to retain the aggregation tree exactly as supplied.

In contrast to SDA, the scheme called DAS by Yu et al. [75] retains the tree constructed

in the first phase. The shortcoming of DAS is that its first phase constructsa DST (based

on [69]) An example of such a tree is shown in Figures 5.3(b). Unfortunately, a DST is not

necessarily a good selection for producing a better schedule. Compare e.g., the schedules of

the SPT and DST shown in Figures 5.3. In particular, the DST used 8 slots ascompared the

SPT, which is scheduled using 7 slots only. The reason is that a DSTorganizesthe nodes of

a network in the formclustersin which many those nodes eventually become leaf (children)

nodes of the tree, with the rest of the nodes being a (smaller) set of cluster-head become

internal (parent) nodes. That leads to the formation of a “bushy” tree having a large number

of dependency constraints. Note that a cluster-head (parent) cannotperform aggregation

before it receives data from its cluster-members (children), and therefore its transmission

cannot take place earlier than the transmissions from all (typically many) of itschildren.

Overall, the result is long schedules.

Finally, other examples of two-phase approaches are the scheme by Wan et. al. [70]

(DST-based via Maximal Independent Set construction), and the scheme by Annamalai et

al. [5] (SPT-based) which has been exceeded in performance by [13]). Certain other efforts,

such as [81], result in schedules that are potentiallynot collision free, and have been left

out of consideration for obvious reasons.

5.4 Bounds and Tree Construction

As we pointed out earlier, DST (as well as BISPT) is not necessarily providing a short

schedule compared to SPT. This is partly to be expected because the nodesin DST and

BISPT are “clustered” to create more leaf nodes (conversely to decrease non-leaf nodes for

the purpose of decreasing the broadcasting transmissions). On the otherhand, given suf-

ficiently rich connectivity, there also exist multiple alternative SPTs for the same physical

topology. Hence, we would like to know what features make an SPT better than another

SPT; a question that we address in this section.
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We note that a tree construction phase, whether SPT, DST or any other kind of tree,

ought to be guided by the potential it has to generate a short schedule forconvergecasting.

Until now, the two–phase schemes produced a tree based on topological properties alone.

To the best of our knowledge, we are the first to perform the tree construction in a manner

that is “informed” by the potential it has to result in a short schedule. (Recall that we had

followed a similar principle to tackle the broadcast scheduling problem, which has resulted

in improved performance.) To this end, and in contrast to the existing approaches, our tree

construction specifically targets at “relaxing” the logical dependency constraints of the tree.

The intuition being that the less constrained in terms of dependencies is the aggregation tree,

the fewer the additional constraints (on top of the collision freedom constraints), hence the

potentially shorter the schedule will be.

We start by establishing, for a given tree, a lower bound on the schedulelength. Then,

we restrict ourselves to SPT trees and produce an SPT that follows this lower bound. As a

side note, [70] provides anupperbound on the schedule length. But from the performance

of their algorithm it is evident that this upper bound is far too pessimistic compared to the

typical practical behavior of their algorithm. We take a different view of trying to squeeze

the performance as close as possible to the lower bound corresponding tothe constructed

tree. Nevertheless, for comparison purposes, we will also evaluate the performance of [70]

in our performance study Section 5.6.

A lower bound specifies the minimum number of slots that are required for converge-

casting. Chen et. al. proposed the lower bound to bemax{h, log2N}, whereh is the

longest path in a logical tree [13]. Similarly, Huang et. al. also argue that thedata aggrega-

tion latency cannot be less than the network radius [32]. It basically meansthat the lower

bound is the longest shortest path between the sink and a node in the network, i.e.,h. Unfor-

tunately, these lower bounds are loose. Consider the DST shown in Figure5.3(b). Chen’s

and Huang’s lower bound for this particular DST is 4, i.e., this particular DSTcannot be

scheduled with less than four slots. However, it is clear from the DST structure that node I

will need at least 6 slots to send its data to the root. In particular, three different slots are

required by its children, i.e., nodes H, J and K. (That is because all of them have the same

parent and therefore, they cannot transmit concurrently without having collisions.) Node I

will need one additional slot to transmit to its parent F. Finally, since F is two hops away

from the root, it will need at least two more slots (after receiving data fromits children) to

send across the aggregated data to the root, e.g., node F can use the fifth slot and node C

can use the sixth slot. To generalize this observation, we introduce the following lemma.
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Lemma 3. Given a logical tree, an aggregation convergecast schedule length lower bound,

Tmin, is max{|ξi|+ di : i = 1, 2, ...N}, whereξi anddi, respectively, are the children set

and depth (distance from the root) of nodei in the given tree.

Proof. Let k be a node with the maximum sum of the children-count and distance, i.e.,

|ξk| + dk = max{|ξi| + di : i = 1, 2, ...N}. We will prove by contradiction thatT ≥

max{|ξi|+ di : i = 1, 2, ...N} for any schedule1, T , of the given tree.

Assume thatT < max{|ξi| + di : i = 1, 2, ...N}. If k has been assigned the slot

numbert(k), then it must be less than or equal to the total number of slots used i.e.,t(k)

≤ T . Since our assumption isT < max{|ξi| + di : i = 1, 2, ...N}, therefore,t(k) <

max{|ξi| + di : i = 1, 2, ...N}. It also means thatt(k) < |ξk| + dk, which we get by

replacingmax{|ξi| + di : i = 1, 2, ...N} with |ξk| + dk. (Recall thatk is the node with

the maximum sum of the children-count and distance, i.e.,|ξk| + dk = max{|ξi| + di :

i = 1, 2, ...N}.) However,t(k) < |ξk| + dk contradicts the fact thatk needs at least|ξk|

slots for its children (for them to transmit first) and anotherdk slots to send across its data

to the root. It means that our assumptionT < max{|ξi| + di : i = 1, 2, ...N} must be

incorrect. Therefore,T ≥max{|ξi|+ di : i = 1, 2, ...N}, and hence the proof thatTmin =

max{|ξi|+ di : i = 1, 2, ...N}.

Next, we describe our procedure for constructing the aggregation treebased on the

bound established by Lemma 3.

5.4.1 Balanced Shortest Path Tree

A tree that minimizes the lower bound potentially uses a lesser number of slots forschedul-

ing N nodes. Consider the SPT, DST and BISPT shown in Figure 5.3 that have alower

bound of 4, 6 and 5 slots, respectively, as computed according to Lemma 3.In accordance

with their respective lower bound, the SPT used 6 slots as compared to 8 and9 slots used by

the DST and BISPT. This scenario exemplifies our observation that a tree,which “relaxes”

the logical constraints, i.e.,ξi anddi, can indeed reduce the total number of slots that are

required for scheduling the nodes. An obvious question now is how to construct such a tree

that minimizesmax{|ξi|+ di : i = 1, 2, ...N}.

For every nodei, di can be minimized by ensuring that every node is connected to

the root using a shortest path, i.e., by constructing an SPT. A shortest path tree can be

constructed using a standard Breadth First Search (BFS) algorithm. However, minimizing

1That meets the criteria set-forth in Section 5.2.
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|ξi| is non-trivial. Consider the scenario of a shortest path tree constructionas shown in

Figure 5.4. A set of 12 nodes have been shown in Figure 5.4(a) at two consecutive “depths”,

d andd + 1, of the tree. In particular, nodes from A to F are at distanced, and nodes

from U to Z are at distanced + 1 from the root (not shown in the figures). A possible

scenario of parent-children assignment is shown in Figure 5.4(b). In thisexample children-

count for nodes B and C have been minimized by assigning only one child to each one

of them, i.e., nodes U and Z, respectively. However, this parent-childrenassignment has

resulted in the assignment of four children to node B. In fact, the parent-children assignment

shown in Figure 5.4(b) has maximized the “local” lower bound at depthd of the tree, i.e.,

max{|ξA|, |ξB|, |ξC |} = 4. (All the nodes at depthd are at same distance (hop) from the
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root, i.e.,dA = dB = dC , therefore, their respective children set will actually determine the

lower bound at depthd of the tree.) An increase in the lower bound at depthd of the tree

may indeed result in the increased “global” lower bound of the tree. In general, we have the

following sub-problem that needs to be solved.

Definition 4. AssumingCd represents the set of nodes that are at distanced from the root,

the parent-children assignment problem is to assign every node at depthd + 1, Cd+1, a

parent from the nodes at depthd, Cd, such thatmax{|ξk| : ∀k ∈ Cd} is minimum.

Interestingly, the parent-children assignment problem as defined aboveis equivalent to

the problem of finding an optimal2 semi-matching in a bipartite graph [26]. A bipartite

graph formed by the nodes at depthd, i.e.,Cd = {A, B, C}, and nodes at depthd + 1, i.e.,

Cd+1 = {U, V, W, X, Y, Z}, is shown in Figure 5.4(c). (Since nodes D, E and F do not have

any neighbors from the nodes at depthd + 1, they cannot become parents and hence they

are ignored. However, they will eventually become leaves of the shortestpath tree). An

optimal semi-matching is shown in Figure 5.4(d). It is optimal with respect to the number

of assigned children, i.e.,max{|ξA|, |ξB|, |ξC |} = 2 is minimum.

The BSPT construction is the construction of a “special” SPT in which optimal semi-

matchings are obtained by constructing bipartite graphs with nodes at everytwo consecutive

levels of an SPT. Of course that results in the minimization ofmax{|ξk| : ∀k ∈ Cd} at every

depthd of the SPT, which we will prove shortly in this section. We call an SPT for which

parent-children assignments are balanced using optimal semi-matchings a Balanced SPT

(BSPT).

Algorithm 6 describes the operation of the BSPT. It is essentially a breadth first search

algorithm which, as it progresses, (i) creates successive instances,Gb, of bipartite graphs

from the nodes at two consecutive levels of the tree (line 14), and, (ii) invokes and solves

optimal semi-matchings on each bipartite graph using the algorithm by Harvey et.al. [26]

(line 15). The obtained semi-matchings (expressed as edge setZ in line 15) are collected

to produce the edge set,E′, of the BSPT.

Lemma 4. Given a graph,G(V, E), and a root noder, ConstructBSPT outputs an SPT

with a minimum lower bound (as defined in Lemma 3) across all SPTs ofG.

Proof. It is trivial to see that by virtue of the breadth first traversal the number of hops

to reach each node from the root is minimum, i.e., the tree is an SPT. An optimal semi-
2In this thesis whenever we mention an optimal semi-matching, we mean that the semi-matching is optimal

with respect toL∞ norm. Note that the optimal semi-matching, which minimizes the minimum load, isa
different problem than the Maximum-Load Semi-Matching problem discussed in the previous chapter.
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Algorithm 6
1: procedure CONSTRUCTBSPT(V, E, r)
2: P ← {sr};
3: E′ ← ∅;
4: for all v ∈ V do
5: Mark(v) = False;

6: repeat
7: C← ∅;
8: for all m ∈ P do
9: Mark(m) = True;

10: for all m ∈ P do
11: for all n ∈ N (m) do
12: if Mark(n) = False then
13: C = C ∪ {n};

14: Gb ← BipartiteGraph(P, C);
15: Z ← FindMinLoadSemiMatchings(Gb);
16: E′ ← E′ ∪ Z;
17: P ← C;
18: until P = ∅;
19: return (E′);

matching with respect to theL∞ norm minimizes the maximum load [26]. It basically

means that ifCd is the set of nodes at depthd of the tree, thenmax{|ξk| : ∀k ∈ Cd}

is minimum. Because the distance (from the root) of every node at depthd is the same,

therefore,max{|ξk|+ hk : ∀k ∈ Cd} is also minimum at depthd of the SPT. Since optimal

semi-matching is performed at every depth of the SPT,max{|ξi|+ di : i = {1, 2, ...N}} is

minimum for the SPT produced.

It is worth noting that for a given graph, ConstructBSPT generates an optimal SPT that

has a lower bound as defined in Lemma 3, which is guaranteed to be minimum with respect

to all possible SPTs that can be generated from that given graph. However, it does not

guarantee a minimum lower bound (as defined in Lemma 3) with respect to trees that arenot

SPTs. It is conceivable that a tree can be constructed in which the paths of the nodes can be

elongated, hence increasing their hop-count (compared to the shortest possible path) while

possiblydecreasingtheir children-count to potentially achieve an optimal lower bound as

defined in Lemma 3. A more detailed study on this topic is part of our future study.
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5.5 A Ranking Based Scheduling Algorithm

In this section we present an algorithm for scheduling the tree produced insection 5.4. As

a matter of fact our algorithm can be used for any given tree to produce acollision free

schedule. Unlike some other proposals, e.g., SDA [13], our algorithm retains the structure

of the input tree. First, we introduce some additional notation.

Let us denote asV ′ all nodes ofV except for the rootr, i.e., V ′ = V \ {r}. For

convenience, in addition to the child-of relationshipξv we introduced earlier, we denote

by Ξ the set of all child-of relationships, i.e.,Ξ = {ξv|v ∈ V }, and the complementary

parent-of relation denoted byPv. Pv indicates which node is the parent of nodev, andP is

the set ofPv, i.e.,P = {Pv|v ∈ V ′}. Also, we denote byNv the neighborhood set of node

v in the network topology, i.e.,Nv = {u|(v, u) ∈ E}. Collectively, the set of neighbor sets

for all nodes inV will be denoted byN , i.e.,N = {Nv|v ∈ V }.

On the surface, our scheduling algorithm (Algorithm 7) is fairly simple as compared to

many other proposals. It takes as input a tree (as captured byP andΞ) and the network

topology (as captured byV andN ) and constructs a convergecast schedule that leads to the

root r. At each step, i.e., for each time slotj (starting with timeslot 1) it considers the set

of nodes,F , that areeligible to be scheduled. Initially, only the tree leaf nodes are eligible.

Subsequently, nodes become eligible if all their children have been scheduled in earlier

slots. However, only a subset of eligible nodes can actually be selected for that particular

slot in order to meet the collision-freedom constraint (C4 in Section 5.2). The basic idea

is that in each slot we go through a ranked list of eligible nodes. The ranking is in terms

of decreasingweightw(i). As we work through this list from highest to lowest weight, we

skip nodes that are not possible to schedule due to violation of collision constraints with

transmissions already scheduled for the same slot. The transmissions scheduled in a slot

can make more nodes eligible for transmission starting in the next slot. The schedule is the

collection of which nodes,Sj , are to transmit in thej–th slot and a corresponding set of

receivers (their parent nodes)Rj .

Naturally, the ability of this process to generate good (short) schedules depends on the

way the weightsw(i) are assigned to each eligible node(i ∈ F ) in a given slot. We have

experimented with many alternative weights and have found that the weight assignment that

gave the best results was the cardinality of thenon-leaf neighbors, η(i) ⊆ Ni of an eligible

node,i, which are yet to be scheduled. The intuition behind this choice is as follows.Think

of the act of scheduling an eligible node as “removing” it from the tree. Removal of a node
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Algorithm 7
1: procedure WIRES(r, V,N , Ξ,P)
2: V ′ ← V \ {r};
3: j ← 1;
4: repeat
5: F ← ∅;
6: for all v ∈ V ′ do
7: if ξv = 0 then
8: F ← F ∪ {v};

9: for all e ∈ F do
10: η(e)← ∅;
11: for all e′ ∈ Ne do
12: if e′ ∈ V ′

and ξe′ 6= 0 then
13: η(e)← η(e) ∪ {e′};

14: w(e)← |η(e)|;

15: Sj ← ∅;
16: Rj ← ∅;
17: FlagC4a← True;
18: FlagC4b← True;
19: for all e ∈ F in decreasingwe do
20: for all s ∈ Sj do
21: if Pe ∈ Ns then
22: FlagC4a← False; break;

23: if FlagC4a = True then
24: for all r ∈ Rj do
25: if e ∈ Nr then
26: FlagC4b← False; break;

27: if FlagC4a = True ∧ FlagC4b = True then
28: Sj ← Sj ∪ e;
29: Rj ← Rj ∪ Pe;
30: V ′ ← V ′ \ {e};
31: E′ ← E′ \ {(e, Pe)};

32: S ← {Sv|v ∈ {1, . . . , j}};
33: j ← j + 1;
34: until V ′ = ∅
35: return (S);

changes the set of leaves in the tree. Hence scheduling a node is equivalent to creating anew

tree in which the non-leaf neighbors of nodes may change compared to the original tree. If

Gt(Vt, Et) is the graph representing the new tree, thenη(i) = {j : j ∈ Ni ∧ j ∈ Vt ∧

ξj 6= ∅}. F is the list of eligible nodes in decreasing|η(i)| order. Hence by scheduling first

the nodes with higher values of|η(i)|, we are essentially scheduling the most “constrained”

nodes first, hence enabling many other nodes to become eligible nodes for subsequent slots.
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The name we use in the rest of this thesis to identify the framework for rankingand

incremental scheduling is Weighted Incremental Ranking for convergEcast with aggreg-

ation Scheduling (WIRES). Note that a concrete implementation of WIRES requires one

to define a specific weight (priority) assignment strategy to eligible nodes. In Algorithm 7

the set of eligible nodes for thejth slot, and their corresponding weights are computed at

lines 6 through 14. Eligible nodes are considered in the decreasing orderof their weight

at lines 19 through 31. Only those eligible nodes are finally allocated thejth slot (line 28)

that do not violate the collision-free criteria (line 27). The eligible nodes thatare finally

scheduled are removed from consideration at lines 30–31. This procedure continues until

no nodes remain to schedule (line 34).

Lemma 5. The schedule produced by WIRES is collision–free.

Proof. Every slot in WIRES is allocated in an incremental fashion, i.e.,Sj is initiated as

an empty set and then eligible nodes are added into it incrementally. Since any node is

added toSj only if that node meets the collision-free criteria,Sj will contain the set of

nodes that do not interfere with each other’s transmissions. Lines 20 to 22ensure that no

nodes already scheduled to transmit in the current slot are neighbors ofthe parent of the

eligible node,e, currently being considered. Lines 24 to 26 ensure that the considerednode

is not a neighbor of the nodes already scheduled to receive in the current slot. Because

this procedure is repeated for every slot,j ≥ 1, Sj will always contain nodes that do not

interfere with each other’s transmissions.

5.6 Performance Evaluation

To evaluate our proposal we implemented SDA [13], PAS [76], DAS [75],SAS [70] and

First-Fit [32] algorithms to compare their performance with WIRES-BSPT. Wediscovered

that the First-Fit algorithm does not produce a collision-free schedule, which has also been

noted in [75]. Therefore, in our evaluations we omit the results of the First-Fit algorithm.

It is interesting to note that all existing proposals have been tested under drastically

different simulation setups. For example, Chen et. al. [13] assumed a network of 100

nodes in a 200m×200m area. Various topological scenarios were created by varying the

transmission range of nodes between 21.7m and 40m. In contrast, Yu et. al.[75] used

1000 to 2000 nodes, with a radio range of 25m, in an area of 200m×200m area. These two

scenarios exemplify the extreme variations in the simulation setups being used byvarious

studies. Choosing a particular “representative” setup for our study was challenging as one
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Parameter Values

N (# of nodes) 200, 300, 400, 500, 600, 700, 800,
900, 1000, 1100, 1200, 1300, 1400, 1500,
1600, 1700, 1800, 1900, 2000 (Synthetic)

54 (Intel)
L (length of the square area [m]) 200 (Synthetic)

50 (Intel)
ω (transmission range [m]) 20 (Synthetic)

8, 10, 12, 14 16 (Intel)

Table 5.1: Parameter values used in this chapter (default values are shown in bold face).

particular setup may not have revealed the actual performance of all other solutions. To

address this problem we used thedensitymetric (also used in the previous chapters of this

thesis) to provide a “common platform” to test all algorithms as fairly as possible.Recall

that we define the density to be:Ψ = πω2N
L2 , whereN is the number of nodes,ω is the

transmission range of nodes andL is the length of a square area. By varying density we

have essentially captured the “essence” of various setups being used inother studies.

In our experiments reported in this chapter we keptω andL fixed at 25m and 200m,

respectively, while variedN to change the density. Table 5.1 summarizes the set of values

used for the different parameters in our experiments presented in this chapter. The reported

results are an average of 20 simulation runs. A node is chosen uniformly randomly as the

root in each of these runs. We also performed experiments while using the Intel setup as

described in Chapter 2.

5.6.1 Convergecast Latency

We useconvergecast latency, which is the total number of slots used for a given schedule, as

a metric to evaluate the performance of various solutions. The first set of results, shown in

Figure 5.5, are for the synthetic dataset. As shown in Figure 5.5(a) we cansee that WIRES-

BSPT outperforms all other solutions by 10 to 30%, which means that our solution will

require that much less time for its schedule. More interestingly, as the density increases,

the performance of WIRES-BSPT improves compared to other approaches. The reason

for the improvement is that, as the density increases, the underlying tree, BSPT, becomes

more “bushy”. It also means that, on average, the number of children perparent increases

substantially. The way BSPT is constructed it tends to spread the load (children) among

the parents evenly which in turn “relaxes” the logical constraint for theseparents. This

results in WIRES taking advantage of the tree to: (1) make nodes eligible for scheduling
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(a) With different (original) underlying trees. (b) With a common (BSPT) underlying tree.

Figure 5.5: Latency (synthetic dataset). In the “( )” withΨ we have provided average-
degree/degree-variance of the nodes.
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Figure 5.6: Changes inflicted by SDA (synthetic dataset).

earlier in the schedule, and, (2), as more parents become eligible, to significantly increase

the “pool” of eligible nodes providing more opportunities for concurrent transmissions and

hence spatial reuse.

Since SDA, DAS and PAS can work independently as standalone algorithms for schedul-

ing, we ought to evaluate their performance with respect to BSPT. We provided BSPT as

input tree to each one of these algorithms. The results are shown in Figure 5.5(b), and

they confirm that the choice of the tree is important. We can see that SDA, DASand PAS

are now able to produce schedules using a smaller number of slots. Their performance is

improved by replacing with BSPT the tree with which they were originally proposed and

evaluated. In addition, WIRES still performs better than all other solutions. However, asΨ

increases the performance gap between WIRES and SDA shrinks. At a very high density,

i.e.,Ψ ≥ 45 the difference between WIRES and SDA becomes negligible. However, SDA
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has its own limitation, i.e., it does not retain the input tree. (Shortly, we will present the

results in that context). Figure 5.5(b) also presents the results computed using the lower

bound,Tmin as described in Lemma 3. Of course, changes to the logical tree across simu-

lation runs changes also the corresponding lower bound (henceTmin values are surrounded

by errorbars to represent their range of values).

Figure 5.6 summarizes the “side effects” of SDA-BSPT by illustrating the average num-

ber of nodes that have been assigned new parents, different from the ones they had in the

tree provided as input to SDA. The main trend that we can observe is that when the node

density increases (as the number of nodes increases) the total number ofnodes with the new

parents also increases. Overall, approximately 30% to 60% of the nodes are assigned a new

parent. These results suggest that the changes inflicted by SDA can be substantial.

The second set of results using the Intel dataset are summarized in Figure5.7. The

qualitative behavior of the results remains the same as seen in the results for the synthetic

dataset. However, their quantitative behavior has changed. As shown inFigure 5.7(a),

WIRES outperforms all other solutions but by slightly less margin, i.e., by 10 to 15%. An

interesting result that did not appear in the synthetic dataset is that the performance gain

of SDA with respect to DAS and PAS is insignificant as shown in Figure 5.7(a). This ex-

periment reveals SDA’s sensitivity to particular topologies. However, WIRES consistently

performs better than all other solutions. Figure 5.7(b) summarizes the performance of the

algorithms when BSPT is used for all scheduling algorithms. Here again, the results of

SDA, DAS and PAS are improved as compared to the results shown in Figure 5.7(a).

Figure 5.8 summarizes the performance of SDA with respect to the changes inthe ag-

gregation tree. As shown in these results, SDA changes approximately 45%of the original

parents in the output tree when the transmission range (ω) is 8m. An interesting trend here

is that asω increases the number of “newly” assigned parents is decreased. This behavior

can be explained by the fact that whenω increases the underlying logical tree becomes

“bushy” since the topology becomes and almost complete connected graph.It also means

that the number leaf nodes are increased while reducing the number of non-leaf nodes that

can actually become parent. (Recall that the number of nodes is fixed in the Intel dataset.)

Because the “pool” of nodes that can possibly become parent is reduced, the probability of

selecting a new parent is also reduced. It is worth mentioning here that SDAdoes not adopt

any specific mechanism for allocating original parents (from the input tree) to the nodes,

which is the main cause of the changes inflicted by the SDA’s scheduling process.

To summarize, if the underlying tree is not important and the only objective is to reduce
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Figure 5.8: Changes inflicted by SDA (Intel dataset).

the number of slots, then WIRES-BSPT performs better in most of the cases.At higher

densities, WIRES-BSPT and SDA-BSPT offered equally good solutions.Nevertheless, if

the underlying tree is important (i.e., if we have constructed a tree that is important from

the application’s perspective), then WIRES is the most efficient solution. Figures 5.5(b)

and 5.7(b) also show the results of the lower bound on BSPT computed in accordance with

Lemma 3, which suggest that the practical behavior of WISH is near to that of an optimal

solution since the optimal schedule has to be between the lines forTmin and WIRES.

5.7 Conclusions

Previous aggregation convergecast scheduling solutions rely on ad-hoc approaches to cre-

ate the aggregation dependency tree before applying their scheduling algorithms. Some of

the proposed solutions even change the tree, hence their usefulness is not obvious to ap-
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plications that wish to retain the aggregation tree intact. Some of the previously proposed

solutions are not even collision-free. We have presented several contributions in this chap-

ter. First, we proposed a tighter lower bound to the tree scheduling problem,and proved its

correctness. Second, we proposed an algorithm to construct a logicaltree, BSPT, guided by

the lower bound, allowing the generation of schedules with fewer slots. Third, we proposed

a ranking/priority–based scheduling algorithm, WIRES, that produces schedules, that are

guaranteed to be collision-free. Our proposal was evaluated extensively using synthetic

and real datasets. Our proposed algorithms are efficient and can saveup to 15% of the

scheduling time, and hence reduces the convergecast latency.

An important conclusion here is that a tree that is better for convergecasting in terms of

reducing the convergecast latency is not necessarily better in reducingthe transmission cost.

Basically, a tree that reduces the convergecast latency may actually increase the query pro-

cessing cost in terms of energy. We will evaluate our proposal in this context in Chapter 7.

Before that in the next chapter we address another important issue, i.e., failures in WSNs,

that is equally likely to effect the performance of broadcasting as well as convergecasting.
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Chapter 6

Opportunistic Failure Recovery

6.1 Introduction

Sensor networks, because of energy depletion, and also by virtue of sometimes being de-

ployed in hostile environments, are prone to node failures. Certain node failures could result

in a network partition, in which case nothing (short of replacing them with newnodes or

changing the network topology) can be sensibly done to reconnect the network. More insid-

iously, there could be link failures, e.g., when a physical obstruction is introduced between

two nodes and all of a sudden they are devoid of any communication, whereas previously

they were able to communicate directly. In this latter case, a node that was supposed to

forward its message might not be able to get its transmission across, leading tosome nodes

not receiving the message. In the context of logical topologies the impact of link failures

could be more serious.

Consider, e.g., the scenario of broadcasting using the SPT shown in Figure 6.1(a) in

which the link between nodes A and B has failed. Node B will not receive themessage

from A, and hence it will not forward the message. In this situation even nodes E and H

will not be able to receive the message, though they are still connected to their respective

parents. Similarly, nodes I and K will not receive the message because thelink (F, I) has

failed. In contrast to the SPT, failure of the link (A, B) has no impact on the DST shown

in Figure 6.1(b), as the link (A, B) is not used by the DST. However, the failed link (F, I)

has prevented nodes{H, I, J, K} from receiving the message. Link failures are sometimes

transient, i.e., it is possible that they do not persist for long. Hence, an attempt to consider

an update of the overall logical topology may not be called for, when temporary measures

could mitigate the impact of a transiently failing link.

Similarly, failures may impact data collection during convergecast. Consider,e.g., the

scenario of convergecasting using SPT and DST as shown in Figure 6.2.In particular, the
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Figure 6.1: Impact of failures (marked with bold “X”) on logical topologies during broad-
cast. (Solid arrowed lines represent edges of the logical tree. Dashedlines represent edges
that are in the graph but not in the logical tree. Arrowed lines also represent messages with
the distinction that all arrowed lines coming out from a node represent a single transmission
from that node. Each arrowed edge is also annotated with a time slot in which itwill be
activated by the transmitting node marked as dark circle.

failed link (A, B) has no impact on the DST shown in Figure 6.2(b). However, because of

the same link failure in the case of the SPT shown in Figure 6.2(a), node B will not be able

to send across its data to the root. On the other hand, the failed link (F, I) hasmore severe

impact on the DST as compared to the SPT. More precisely, nodes{H, I, J, K} will not be

able to send across their data in the case of the DST, while in the case of the SPT only nodes

K and I are effected by the failure of the link (I, F).

In summary, link failures are equally likely to effect the underlying logical topologies

and hence the performance of broadcasting as well as convergecasting. In this chapter, we

propose opportunistic schemes that effectively exploit broadcasting and convergecasting

schedules for failure recovery in WSNs. Before presenting our schemes, we first discuss

some related work.

6.2 Related Work

A commonly used solution for the nodes to recover from the failures is to re-transmit the

message if they do not receive an acknowledgment (ACK) from the expected recipients

of the message. Consider e.g., the scenario of broadcasting using the SPTshown in Fig-
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Figure 6.2: Impact of failures (marked with bold “X”) on logical topologies during con-
vergecast. (Solid arrowed lines represent edges of the logical tree. Dashed lines represent
edges that are in the graph but not in the logical tree. Arrowed lines also represent mes-
sages with the distinction that all arrowed lines coming out from a node represent a single
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it will be activated by the transmitting node marked as dark circle.

ure 6.1(a) in which every node is expected to send an ACK after they havereceived the

broadcast message successfully. Because of the failed link (A, B) (asnode B did not re-

ceive the message and hence node A did not receive an ACK from B) node A is triggered

to re-transmit the message. This process (which can be controlled by userspecified param-

eters) can be repeated until node A receives an ACK from node B. It ispossible that node B

receives the message successfully, but node A fails to receive an ACK, due to which node A

re-transmits the message, i.e., uni-directional link failures may also occur. Nonetheless, it

is trivial to see that such an approach will require an excessive amountof messages (includ-

ing re-transmissions and ACKs) to recover from the failures, which couldbe expensive for

WSNs. There are several other approaches that use the basic idea ofre-transmissions/ACKs

to build more sophisticated solutions, for instance, [52, 68].

Reliable broadcasting [52] and convergecasting [55, 64] have been addressed in the

past, but in isolation from scheduling. In particular, they do not exploit theopportunities

arising from a schedule that is created based on completely different objectives, e.g., the

minimization of schedule length. In this thesis, we take a holistic approach whereresilience

to failures is seen as an attribute of a TDMA schedule. To the best of our knowledge this is
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the first proposal that exploits a TDMA schedule for failure recovery inwireless networks.

We will first address the problem of failures in broadcasting for which wewill propose

our solutions and then we will extend the same proposal to address the failure issues in

convergecasting. The basis of our proposal is that a TDMA schedule allocates only one

slot per node to receive a message during broadcast. Recall constraint C2 from Section 4.2

of Chapter 4 that enforces the nodes to receive only once. We argue that it is possible

to relax this constraint to effectively exploit a TDMA schedule for nodes torecover from

the link failures in a network. We propose toinject “redundancy” in terms of reception to

increase the chance of successful reception of messages by the nodes during broadcast. It is

key to note that in all schemes described here there are no redundant transmissions (recall

that due to the scheduling constraints every node gets only one slot per round to transmit

its message), and the redundancy is with respect to receptions only. As wewill show in

this chapter, that is indeed possible without using any additional messages inthe network

by simply exploiting a constructed schedule. We name this approach RIBS to stand for

Reception Redundancy Injection in Broadcast Scheduling. We will use a similar approach

to recover from the failures during convergecast, which we called Redundancy Injection in

Convergecast Scheduling or RICS in short. We start with a detailed description of RIBS in

the next section.

6.3 RIBS for Reliable Broadcasting

Our basic idea is that nodes can opportunistically exploit a TDMA schedule tosuccessfully

receive messages during broadcast. It is trivial to notice that if a downstream node was

supposed to receive from its upstream node at a particular time slot, but was unable to do so

due to link failure there could be more opportunities for it to do so later, by switching ON

its receiver during contingent (“backup”) time slots. Consider node B in Figure 6.1(a) that

is scheduled to receive from node A during slot 1. Since the link (A, B) has failed, node

B did not receive node A’s transmission. However, node B can receive the message during

time slot 3, which is essentially meant for transmission from node C to F. Note thatnode

B still “missed” its allocated transmission slot 2, because it had not receivedthe message

earlier but eventually received it from node C at time slot 3. Hence, nodeE cannot receive

the message from node B during slot 2. Nevertheless, node E (having not heard from node

B in slot 2) can also opportunistically listen in slot 3 to receive the message from node C.

Since node H will be able to receive the message from its parent node E during its allocated
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Algorithm 8
1: procedure RIBS BACKUPS(V ′,N ,P,S)
2: for all v ∈ V ′ do
3: Wv ← ∅;
4: for all t ∈ {1, . . . , |S|} do
5: b← Nv ∩ St;
6: if |b| = 1 ∧ Pv /∈ b then
7: Wv ←Wv ∪ b;
8: W ← {Wv|v ∈ V ′};
9: return (W);

slot 4, it does not need to use slot 5 to receive from node F. In contrast to nodes B, E and

H, node I does not have the opportunity to receive from nodes E and G during slot 4. The

reason being that node I receives concurrent transmissions from nodes E and G resulting in

a collision at node I. Because of node I’s inability to transmit the message, node K does not

receive the message either.

The situation is somewhat different in the case of the DST as shown in Figure6.1(b)

because node I has no other non-leaf node in its neighborhood exceptfor its own assigned

parent node E (the link from which has already failed), and hence nodeI cannot recover

from the failure. Nevertheless, nodes H and J can still use slot 3 to opportunistically receive

from node F. Overall, in the example, in both SPT and DST, the impact of certain link

failures could be recovered by exploiting the schedule. While there is no guarantee that

100% of failures are recovered, it is important to note that it comes at virtually no additional

cost, except for the need to switch a receiver ON, andonly as needed, in more than one slot.

This is in contrast to ACK/RTX/CTX based solutions, which will consume more energy as

the transmission cost is considered to be more expensive than the receptioncost [29].

An obvious question now is to decide, for each node, which slots can be used for recep-

tion. Some nodes may be able to hear from non-leaf nodes other than their own assigned

parent, but not all transmissions from “other” non-leaf nodes may be useful, as node I in

Figure 6.1(a) illustrates because it was unable to opportunistically use slot 4due to the po-

tential for collision (from I’s perspective). Hence, the problem for nodes is to select only

those slots for reception that are collision-free. Stated differently, the “backup” nodes,Wv,

of nodev are the non-leaf neighboring nodes whose transmissions are scheduledin a slot in

which no other neighboring node transmits. For example, in the SPT shown in Figure 6.1(a)

nodes C and F are the backup nodes of node B, i.e.,WB = {C, F}. The pseudocode of the

algorithm that determines the backup nodes for broadcast is presented inAlgorithm 8.
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The input to RIBS consists of a broadcast schedule (S), the logical tree (P), and the

topology information about the neighborhood of each node (N ). At line 3 every node’s

backup set is initialized to the empty set. At lines 4 to 7, the transmitting nodes inSt

(recall thatSt is the set of nodes that are scheduled to transmit in slott), that are also

neighbors ofv become backup nodes, provided there exists only one such node (else the

two or more transmissions could collide at receiverv) and that this node is not the parent

of v. RIBS operates by forcing each node to listen to the transmissions from its assigned

parent,Pv, as well as its backup nodes,Wv, (if any) during their corresponding slots. A

node stops listening in subsequent slots if it successfully received the message in an earlier

slot. Notice that the application of the constraint|b| = 1 eliminates the potential for using

backup transmissions that are concurrent and colliding, even ifv could potentially correctly

receive one of them (due to the capture effect). Such strict application ofthe requirement

for no–collision could often result inWv = ∅ for many nodes.

Next we present our scheduling based solution for failure recovery inconvergecast.

Note that RIBS, which finds the backup nodes for failure recovery in broadcast is not appli-

cable to convergecast because the corresponding schedules (for broadcast or convergecast)

enforce an order of message transmissions, and this order is particular tothe logic of ag-

gregation performed in convergecast. Hence, a scheme applicable to convergecast should

also honor the aggregation logic. Towards that end we present, RICS, ascheduling based

solution for failure recovery in convergecast.

6.4 RICS for Reliable Convergecasting

RICS works on the same principle of allocating “backup” nodes for failurerecovery in

convergecast as in the case of RIBS for recovery in broadcast. However, unlike RIBS,

backup nodes in RICS play an additional role. More precisely, backup nodes in RICS not

only receive messages opportunistically but they also redundantly re-aggregate their data

together with what they have received as scheduled as well as opportunistically (which are

essential to the correctness of the aggregation data) in a logical tree to recover from the

failures. Consider, e.g., the failure scenario in the SPT as depicted in Figure 6.2(a). As the

link (A, B) fails node B is not able to send its message to the root. However, node C that

is scheduled after node B, can opportunistically receive from node B. During its scheduled

transmission at slot 6, node C can now send data that represents (as aggregated) B’s data

along with its own (if any). It is trivial to see that node C will be forced to send a message
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containing the impact of B’s data, if node C did not have any data to send during its allocated

time. Furthermore, node C will send a message containing B’s data regardless of the fact

that “some” other nodes might be doing the same to recover B’s data. Nevertheless, B’s

data will be successfully delivered to the root in this particular example of theSPT shown

in Figure 6.2(a).

A much more interesting scenario is for node I with respect to the failed link (I,F) in

the SPT shown in Figure 6.2(a). Notice that all neighbors of node I (except its parent F with

which its link has failed) are scheduled before it due to which node I’s data(if transmitted)

cannot be recovered. Nodes{E, G, H, J} can opportunistically receive the message from

node I during its allocated slot 3, but nodes{E, G, H, J} cannot forward node I’s data due to

their scheduling constraints, i.e., the transmitting slots of nodes{E, G, H, J} are earlier than

the transmitting slot of node I. Hence, none of those nodes can become backup node for

node I. It also means that there is no 100% guarantee that every node gets the opportunity

for its data to be recovered via redundantly re-aggregating them.

Note that no new transmissions are added to the schedule hence collision freedom is

maintained. Though there is no guarantee that every node has a backup node to recover

from the failures, recovery also depends upon the underlying logical trees and their corre-

sponding schedules. Consider, e.g., the DST now as shown in Figure 6.2(b). While using

the DST, node I’s data is now recoverable because the schedule allows nodes E and G (that

are scheduled to transmit after node I’s transmission) to receive and transmit node I’s data

successfully, which is in contrast to the SPT shown in Figure 6.2(a). NodeF now receives

the messages from nodes E and G, and aggregates the data (to remove redundancy as nodes

E and G are essentially sending the same data) before forwarding the message to its parent,

i.e., node C. The failed link (A, B) has no impact on the DST.

It is worth noting that both nodes, E and G, act as backup nodes for node I while using

the DST shown in Figure 6.2(b). However, only one of them is sufficient for successful re-

covery of node I’s data. Unfortunately, deciding which one of those nodes should actually

be assigned as a backup node is non-trivial. It is possible that they couldtake turns over

successive rounds to save energy. A more detailed study on this topic is part of our future

research work. Also note that, a node may become a backup node for morethan one node

(which is different than the case in which one node has more than one backup nodes, as dis-

cussed above). Consider, e.g., the SPT shown in Figure 6.2(a) in which node C is a backup

node for node B as well as node D. Similarly, in the DST shown in Figure 6.2(b) node K is

a backup node for node H as well as node J. Hence some nodes may be intrinsically more

91



Algorithm 9
1: procedure RICS BACKUPS(V ′,N ,P,S)
2: for all v ∈ V ′ do
3: Wv ← ∅;
4: for all t ∈ {tv + 1, . . . , |S|} do
5: B ← Nv ∩ St;
6: for all b ∈ B do
7: if {Nb \ v} ∩ {Stv \ v} = ∅ ∧ b 6= pv then
8: Wv ←Wv ∪ b;
9: W ← {Wv|v ∈ V ′};

10: return (W);

“helpful” as backup nodes. Unfortunately, any advantages have to beseen under the light

of uncertainty about knowing which link will fail and for how long. Hence the approach

taken here is the simplest, which does not require any a-priory information other than the

constructed schedule.

Like RIBS, not all slots in RICS are useful for opportunistic receptions.Consider, e.g.,

nodes H and J in Figure 6.2(a), which cannot have any backup node for failure recovery

during convergecast. In particular, nodes H and J have three potentialcandidates for backup

recovery, i.e., node F, I and K. However, concurrent transmissions from nodes H and J

during slot 1 may collide at nodes F, I and K, due to which they cannot receive the message

from either of them. Overall, the problem in RICS is to find the backup nodes that are not

only scheduled after a particular node (for which the backup nodes arebeing sought) but

which can receive the messages in a collision-free manner.

The pseudocode of the algorithm that determines the backup nodes for convergecast is

presented in Algorithm 9. The input to RICS consists of a convergecast schedule (S), the

logical tree (P), and the topology information about the neighborhood of each node (N ).

At line 3 every node’s backup set is initialized to the empty set. At lines 4 to 8, the backup

nodes for every nodev are determined by exploring all those nodes that are scheduled after

v, i.e., considering the nodes from the setsStv . . . ST (recall thatSt is the set of nodes

that are scheduled to transmit in slott andS = ∪T
t=1St). Naturally only those nodes can

be considered that are neighbors ofv (lines 5 and 6). Furthermore, only those nodes can

actually become backup nodes, which can receive collision-free transmission fromv during

slot tv (line 7).

RICS operates by forcing a parent,Pv and backup nodes,Wv to receive the transmission

of nodev. Essentially,v transmits only one message, which is received by multiple nodes,

i.e., the parent and backup nodes. Notice that the application of the constraint {Nb \ v} ∩
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Parameter Values

N (# of nodes) 100, 200,300, 400, 500 (Synthetic)
54 (Intel)

L (length of the square area [m]) 800, 1000,1200, 1400, 1600 (Synthetic)
50 (Intel)

ω (transmission range [m]) 200 (Synthetic)
8, 10,12, 14 16 (Intel)

Rc 0.2, 0.40.6, 0.8, 1.0
PER (packet error rate) .05, .10,.15, .20, .25, .30

Table 6.1: Parameter values used in this chapter (default values are shown in bold face).

{Stv \ v} eliminates the potential for using some backup nodes. In particular, not all nodes

may transmit during their allocated slot, e.g., when filters are installed, leaving somenodes

not being used as backup nodes. Such strict application of the requirement for no–collision

could often result inWv = ∅ for some nodes. Recall, e.g., nodes H and J in Figure 6.2(a)

that will not have any backup nodes. Also, note thatWv is the set of recipients that will

incur additional energy cost. Hence, while we do wantWv to be small we do not want it to

be∅, although in some cases it is.

6.5 Performance Evaluation

In this section we evaluate the performance of RIBS. The effectivenessof RICS will be eval-

uated in the next chapter for which we implement RICS as well as RIBS on top of EXTOK.

To evaluate RIBS we implemented the solutions GKLRW [23] and YMV [76]. Basically

we generated broadcast schedules using GKLRW and YMV as well as our own broad-

cast scheduling solution WISH proposed in Chapter 4. Recall that the scheduling phase

of GKLRW is not independent of its tree construction phase, therefore,GKLRW cannot

be used for scheduling “any” tree that is given as input to the solution. Contrary to that

WISH and YMV can schedule any given tree. Therefore, in the followingsimulations, to

fairly evaluate the performance of RIBS with different trees and their corresponding sched-

ules, we use the tree proposed in GKLRW (which we will refer as GKLRW-tree) as well as

BISPT. The schedule for GKLRW-tree is constructed through WISH, YMV and of course

GKLRW. The schedule for BISPT is constructed through WISH and YMV only as GKLRW

is not tree-independent. To check the effectiveness of RIBS, we first implemented GKLRW,

YMV and WISH independently, and then evaluated these solutions against GKLRW-RIBS,

YMV-RIBS and WISH-RIBS, i.e., when RIBS is implemented on top of each of them.

Five different simulation setups are considered in this chapter. In particular, 100, 200,
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300, 400, 500 nodes in a 800m×800m, 1000m×1000m, 1200m×1200m, 1400m×1400m,

and 1600m×1600m area, respectively. Transmission range of nodes was fixed at200m. We

also used the Intel setup discussed in Chapter 2 to evaluate our solutions. We keep track

of density,Ψ = πω2N
L2 , whereN is the number of nodes,ω is the transmission range of

nodes andL is the length of a square area. All results presented here are an average of

20 simulation runs. Table 6.1 presents a summary of the values that we used for different

parameters in our experiments presented in this chapter.

In the following experiments we collected results for two metrics, i.e.,success ratioand

energy cost, to evaluate the performance of the competing solutions. Recall that RIBS is a

recovery mechanism employed by the nodes to recover the messages in the event of failures.

Naturally, when failures occur some nodes in the network do not receivethe broadcast

message that is being propagated in the network. To be precise the success ratio is defined

as the fraction of nodes that successfully receive a broadcast message. Thus the success

ratio measures the overall impact of the failures to evaluate the performanceof the recovery

mechanisms, e.g., by comparing WISH with WISH-RIBS.

In our experiments we introduce link failures to vary Packet Error Rate (PER) in the

range of{.05, .10, .15, .20, .25, .30}. PER is defined as the ratio of the number of messages

transmitted to the number of messages that are received successfully. Though a PER of

0.25 to 0.30 is considered relatively high, we are interested to know if RIBS can actually

withstand that severe testing.

6.5.1 Success Ratio

The results of RIBS when implemented with WISH, GKLRW and YMV are shown in

Figure 6.3 and Figure 6.4. The foremost trend that can be seen in these results is that

irrespective of the scheduling solutions (Figure 6.3(a)) and underlyingtrees (Figure 6.3(b))

RIBS increases the success ratio significantly. That can also be verifiedfrom the results

shown in Figures 6.4 that are obtained through the Intel dataset.

In all of the above results, as PER increases the success ratio decreases, which is ex-

pected. As far as the improvement is concerned, we can clearly see that the performance of

WISH-RIBS is improved by more than 50%, i.e., when RIBS is applied on top of WISH,

50% of nodes that were not able to receive the message previously, arenow able to receive

the messages. Note that this significant improvement is achieved without usingany addi-

tional transmissions in the network. Even at a high PER of 0.30 more than 40% of the nodes

are able to receive the messages as compared to 20% in the case when RIBSis not applied.
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Figure 6.3: Success ratio vs. PER (Synthetic dataset)
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Figure 6.4: Success ratio vs. PER (Intel dataset)

An interesting observation here is that YMV-RIBS does better than all othersolutions.

The reason for its improved performance is that on average YMV produces a “lengthier”

schedule (recall latency results). Because of more slots used in YMV there are more oppor-

tunistic slots that are available to nodes which they may use during failure recovery. This

result highlights the fact that a lengthier schedule may actually do better for failure recovery

while using RIBS.

Also note that when RIBS is not applied then the success ratio is same for all solutions,

i.e., WISH, GKLRW and YMV, as shown in Figure 6.3(a) and Figure 6.4(a).The reason

is that all of those solutions are using a common logical tree, i.e., GKLRW-tree.On the

other hand GKLRW’s success ratio is different than that of WISH and YMV as shown in
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Figure 6.5: Success ratio vs.N (Synthetic dataset).
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Figure 6.6: Success ratio vs.ω (Intel dataset).

Figure 6.3(b) and Figure 6.4(b). The reason for this behavior is that WISH and YMV are

using BISPT, while GKLRW is using it’s own logical tree.

In another set of experiments with the synthetic dataset we evaluate the performance of

RIBS whenN is increased while keeping the PER fixed at 0.15. The results are summarized

in Figure 6.5. The foremost trend that can be seen from these results is that RIBS improves

the performance of all solutions by up to 85%. Another trend that we can see in these results

is that asN increases, the performance of RIBS is improved even further. This behavior

can be explained by the fact that whenN is increased,Ψ is also increased, which basically

increases the node-degree of the nodes. Overall, that increases the number of backup nodes

for the nodes in the network while increasing the robustness of the solutionseven further.
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Similar trends can be seen in the results obtained from the Intel dataset that are summa-

rized in Figure 6.6. RIBS improves the performance of all solutions. An interesting trend

that was not visible with the synthetic dataset can now be observed with the Intel dataset.

Notice that whenω is increased the performance of the underlying logical trees (without

RIBS) is also improved. This can be verified when a common tree is used (Figure 6.6(a)),

and also when two different logical trees are used (Figure 6.6(b)). The improvement in

the performance of the underlying logical trees can be attributed to the factthat whenω is

increased the logical trees become short. It also means that nodes becomemore “closer”

to the root. When the nodes’ distance (hop-count) from the root is reduced, the probability

that the nodes successfully receive the message is increased, and hence the success ratio

is increased. These results suggest that the “shorter” logical trees are more robust to fail-

ures, which can actually be verified from the results summarized in Figure 6.6(b). Note that

the GKLRW-tree (without RIBS) is outperformed by the BISPT (WISH and YMV without

RIBS). Recall that, unlike GKLRW-tree, BISPT is a “special” kind of shortest path tree.

6.5.2 Energy Cost

To consider the energy consumption we used a message consisting of 6 bytes that needed

to be broadcast in the network. The cost of an unsuccessful messagereception, either

because of a failed link or “idle” listening, is considered to be 1 byte. Recallthat during

broadcasting a schedule is in place, and the nodes are “awake” at specific time slots to

receive the broadcast message. However, some nodes may not receive the message either

because of their failed links or the message is not transmitted by their parent at all in which

case the nodes will incur the idle listening cost.

The energy cost of a node is computed asBt + Br.Rc, whereBt andBr, respectively,

are the number of bytes transmitted and received by the node. Recall thatRc = Erx/Etx,

whereEtx andErx, respectively, are the energy cost to transmit and receive a single bit.

In our experiments we tried various values ofRc from the set{0.2, 0.4, 0.6, 0.8, 1.0}. An

increasingRc value means the cost of reception is increasingly becoming equal to the cost

of transmission. In the following experiments we fixedRc at 0.6 for which the results are

summarized in Figures 6.7 and 6.8.

The trend seen in Figures 6.7 and 6.8 is that as PER increases the energy cost decreases.

The reason for this behavior is that as more packets are lost many nodes are unable to

forward the message along the tree. That further triggers the nodes at higher levels of

the tree to not participate in the broadcasting. In this situation many nodes do not incur
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Figure 6.7: Energy cost (Synthetic setup).
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Figure 6.8: Energy cost (Intel setup).

transmission cost. As expected, when RIBS is implemented all solutions now payadditional

reception cost which increases their overall energy cost as shown in Figures 6.7 and 6.8.

Furthermore, as PER increases RIBS incurs more cost as the number of opportunistic slots

that a node uses is also increased. Nevertheless, RIBS improved the performance of all

solutions (i.e., irrespective of the quality of the schedules produced by them) by paying less

than an average of 2 units per node of additional energy cost.
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6.6 Conclusions

In this chapter we addressed the problem of link failures in broadcasting and converge-

casting that are often neglected by the existing scheduling solutions. Towards that end we

proposed a novel failure recovery framework consisting of RIBS andRICS that exploits

TDMA scheduling to effectively deal with failures. Our extensive simulationstudy re-

veals that our proposed solutions are not only reliable but they are also energy efficient. In

particular, we evaluated the performance of different logical tree topologies under various

conditions of PER,N , ω and scheduling solutions. An important conclusion that can be

drawn from the results presented in this chapter is that not all logical tree topologies are

equally effected by failures, i.e., some logical tree topologies are more robust than others.

In the next chapter all of our proposed solutions culminate to make a case for efficient and

reliable top-k query processing in WSNs. In particular, through EXTOK we evaluate the

performance of proposed logical trees, scheduling and failure recovery solutions for effec-

tive top-k query processing in WSNs.
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Chapter 7

Efficient and Reliable EXTOK

7.1 Introduction

In this chapter we evaluate the performance of our various solutions with respect to top-

k query processing using EXTOK. In particular, we evaluate the performance of EXTOK

while using various combinations of logical trees i.e., SPT, DST, BISPT, andBSPT. Recall

that a logical tree topology plays a crucial role in broadcasting and convergecasting, which

are two elementary operations for query processing. To that end we areinterested in using

various combinations of logical trees for different phases of EXTOK. It is interesting to note

that we can use either a single tree, e.g., BISPT, or a combination of trees, e.g., BISPT and

BSPT, for broadcast and convergecast phases of EXTOK. The idea is to use a “specialized”

tree for a particular phase. For example, we have already seen that BISPT is more efficient

than other logical tree topologies for broadcasting, but not necessarilyfor convergecasting.

Therefore, it might be useful to use “another” tree for convergecasting while still using

BISPT for broadcasting. In this chapter, we use the following combinationsof logical trees,

as mentioned in Table 7.1, for top-k query processing using EXTOK. Later we will use

the notation X-Y to represent the logical trees X and Y that are used as broadcast and

convergecast trees, respectively, during EXTOK’s broadcast and convergecast phases.

Broadcast Tree Convergecast Tree Combination Name

SPT SPT S-S
DST DST D-D
BSPT BSPT B-B
BISPT BISPT BI-BI
BISPT SPT BI-S
BISPT BSPT BI-B

Table 7.1: Combinations of various logical trees that are evaluated.
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Many existing solutions use underlying logical tree topologies for performance gains

without paying much attention to the quality of such logical topologies. It is beyond the

scope of this thesis to study all logical trees that are possible for processing the top-k queries

in WSNs. Nevertheless, our goal here is to demonstrate that the choice of an underlying

logical tree does matter. As we will show later in this chapter that is indeed the case as an

underlying logical tree significantly influences the query processing cost.

We are also interested in evaluating the performance of our failure recovery solutions,

RIBS and RICS, for broadcasting and convergecasting with respect tothe top-k query pro-

cessing using EXTOK. More precisely, we implemented RIBS and RICS on topof EXTOK

to make it resilient to failures in WSNs. Again we use various combinations of logical

topologies with EXTOK and note the impact of failures. Note that in order to useRIBS and

RICS we need broadcasting and converecasting schedules. Towardsthat end we use WISH

and WIRES for generating broadcast and convergecast schedules, respectively. Overall in

this chapter, various components of a query processing solution are puttogether to present

a case of efficient and reliable in-network query processing in WSNs. Next, we present the

results of our detailed simulation study. The simulation setup remains the same as discussed

in the second chapter. However, for reader’s convenience we present the main details of our

simulation setup again.

7.2 Simulation Setup

Our proposal is evaluated using both synthetic and real datasets. The synthetic dataset was

generated by simulating a network of nodes deployed in a 200m×200m area. Using this

dataset we performed experiments by varying five parameters: number oftop values sought

(k), number of nodes (N ), wireless/transmission range (ω), probability that a node’s value

changes between two consecutive rounds (γ) and percentage of change in node’s value

(δ). Table 7.2 shows the values used for these parameters. To investigate theimpact of

randomly changing values (nodes’ measurements) on the performance of the algorithms

we generated “temperature” values for nodes. The initial value of nodeswas randomly set

between 1 and 100 and could vary between rounds according to parameter δ (equally likely

to be a negative or positive change). Results using the synthetic dataset are based on an

average of 20 simulation runs in which each run consists of 200 rounds. In each of these

simulation runs position of the nodes and the root node were chosen randomly.

The experiments with real data was performed using the Intel Berkeley dataset [1],
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Parameter Values

k (# of top values) 1, 5,10, 15, 20
N (# of nodes) 100, 200,300, 400, 500

ω (transmission range [m]) 25, 30,35, 40, 45 (synthetic data)
and 8, 10,12, 14, 16 (Intel data)

γ (probability of change) 0.1, 0.2,0.3, 0.4, 0.5
δ (change [%]) 2, 4,6, 8, 10

Rc 0.2, 0.40.6, 0.8, 1.0
PER 0.05, 0.10,0.15, 0.20, 0.25
Emax 4000, 5000,6000, 7000, 8000

Table 7.2: Parameter values used in this chapter (default values are shown in bold face).

which consists of approximately 3.5 million readings from 54 nodes deployed inthe Intel

Berkeley Research lab. Missing values in the data were replaced using linear interpolation.

Sensor readings were originally maintained by epochs, a monotonically increasing number

for each of the nodes. We organized the sensor readings in such a waythat the dataset has

60,000 rounds, each one containing one value for each of the 54 nodes. Note that in the

Intel dataset only parametersk andω are investigated using the original placement of the

nodes, and having one such node randomly chosen as the root node for each run. As before

the reported results are an average of 20 runs.

A node id and its value are represented by 2 bytes each. Theτ value in EXTOK is char-

acterized by 2 bytes. Each message also accounts for 4 bytes as a packet header overhead.

Energy cost is the energy required for the transmission and reception ofa single bit repre-

sented byEtx andErx, respectively. We useRc to link transmission and reception cost via

Rc = Erx/Etx. The energy cost of a node is computed asBt + Br.Rc, whereBt andBr,

respectively, are the number of bytes transmitted and received by the node. The values for

Rc are chosen from the set mentioned in Table 7.2. We also evaluated the performance with

respect to thenetwork lifetimethat we define as the number of rounds before the first node

runs out of its energy. The initial energy budget,Emax, for a node is chosen from the set

mentioned in Table 7.2.

7.3 Transmission Cost

Transmission cost is measured as the average number of bytes transmitted bya node per

round. Results on the transmission cost are summarized in Figure 7.1. The first trend

that we can notice is that each combination of the trees has incurred a different cost. As

expected, whenk increases the cost for all combinations of logical trees also increases as
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(b) Varyingω - transmission range (m)
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(c) Varyingγ - probability of change
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(d) Varyingδ - percentage change
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(e) VaryingN - number of nodes

Figure 7.1: Transmission cost in the synthetic dataset.

shown in Figure 7.1(a). This can be explained by the fact that whenk increases more data

is needed for the root to answer the query. When transmission range (ω) increases as shown

103



0 5 10 15 20
2

4

6

8

10

 k

T
ra

ns
m

is
si

on
 C

os
t (

by
te

s/
se

ns
or

/r
ou

nd
)

 

 
S−S D−D B−B BI−BI BI−S BI−B

(a) Varyingk

8 10 12 14 16
2

4

6

8

10

ω

T
ra

ns
m

is
si

on
 C

os
t (

by
te

s/
se

ns
or

/r
ou

nd
)

 

 
S−S D−D B−B BI−BI BI−S BI−B

(b) Varyingω - transmission range (m)

Figure 7.2: Transmission cost in the Intel dataset.

in Figure 7.1(b), the cost decreases for every combination of trees. The reason is that when

ω increases the underlying logical trees “shrink” while reducing the numberof non-leaf

nodes, hence decreasing the communication cost. When communication trafficincreases

the communication cost is affected slightly as shown in Figure 7.1(c) and Figure 7.1(d). As

expected, whenN increases the cost decreases as shown in Figure 7.1(e).

Out of all the combinations, BI-BI, BI-S and BI-B have incurred less transmission cost.

This can be attributed to the fact that these combinations use BISPT as broadcast tree, which

we have already seen is efficient for broadcasting. Because of filters, the transmission

cost during convergecast is reduced significantly, therefore the convergecast tree in these

combinations plays less significant role compared to the broadcast tree. Combination D-D

also incurs less transmission cost, which is due to the DST that is efficient as abroadcasting

tree. A more interesting result, however, is that the communication cost is reduced by up

to 50%, just by replacing the commonly used logical tree topology, SPT with the BISPT

or DST, which can be seen while comparing S-S with D-D, BI-BI, BI-S andBI-B. Similar

trends can be noticed in the results shown in Figure 7.2, that are obtained from the Intel

dataset. The magnitude of results, however, has changed.

7.4 Energy Cost

The results for the energy cost are summarized in Figure 7.3. As shown in Figure 7.3(a)

the energy cost for combinations D-D, BI-BI, BI-S and BI-B is less thanS-S. This reflects

the efficiency of DST and BISPT for disseminating messages. In particularBI-BI is able
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(b) Intel dataset

Figure 7.3: VaryingRc in the synthetic and Intel datasets.
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(b) Intel dataset

Figure 7.4: Varying energy budget in the synthetic and Intel datasets.

to reduce the energy cost by 15% as compared to S-S and more than 23% ascompared

to B-B. Similar results can be seen in Figure 7.3(b) that presents the result from the Intel

dataset. The magnitude of the results, however, has changed. Here also, the combination

BI-BI outperformed all other solutions in reducing the energy consumption.

7.5 Network Lifetime

Results for the network lifetime are summarized in Figure 7.4. Some interesting obser-

vations can be made from these results. BI-BI performs consistently well inreducing the

transmission as well as energy cost. However, BI-BI’s performance with respect to the

network lifetime is not as good as B-B or BI-B. Recall that BI-BI uses BISPT-BISPT com-
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bination for broadcast and convergecast. BISPT is a tree with the least number of non-leaf

nodes (as compared to all other trees used here), i.e., it is good in reducing the transmission

cost and hence the energy cost. However, that results in an increasedamount of “load” on

the non-leaf nodes to process and forward the data for the leaf nodes inthe tree. Because

of this increased load “one” non-leaf node dies quickly resulting in the reduced network

lifetime. (Recall our definition for the network lifetime that is defined to the numberof

rounds before the first node runs out of its energy.)

In contrast to that, B-B, which is a combination of BSPT-BSPT, and which didnot per-

form well in reducing the transmission and energy costs, actually improved the network

lifetime significantly compared to other combinations. This behavior can be attributed to

the fact that BSPT is a “balanced” tree (recall the BSPT construction). Though the com-

munication and energy cost accumulated by the BSPT is higher but it tends to balance that

cost. This is in contrast to BISPT in which “some” nodes are given more communication

and processing load. The combination BI-B (BISPT-BSPT) performs even better than B-

B, though slightly. Note that BI-B uses two different logical trees, i.e., BISPT and BSPT

for broadcast and convergecast, respectively, which helps in further increasing the network

lifetime by “distributing” the energy cost evenly. However, the advantage of B-B is that

only one structure (logical tree) needs to be maintained within the network.

These results suggest that using a “leafy” tree (e.g., BISPT) for broadcasting while us-

ing a “non-leafy” or “balanced” tree for convergecasting (e.g., BSPT) is the most useful

combination for extending the network lifetime. This can be verified from the performance

of BI-B as shown in Figure 7.4. Even using a single, but balanced tree (for both phases),

i.e., BSPT-BSPT, is useful in extending the network lifetime, which is confirmedby the

results from B-B as shown in Figure 7.4. All other combinations are found tobe less use-

ful. Nevertheless, the combination of our proposed trees BISPT-BSPT isable to extend

the network lifetime by more than 60%, which is achieved by just replacing the most com-

monly used underlying logical tree topology, i.e., SPT-SPT combination. This confirms our

intuition that the underlying logical tree topologies indeed play a significant role in query

processing.

7.6 Failures and Recovery

In this section we evaluate the effectiveness of EXTOK in the presence oflink failures,

which may cause the root to report an incorrect result. We assume the top-k result to be
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(b) Error Accuracy without failure recovery
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(c) Error Frequency with failure recovery
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(d) Error Accuracy with failure recovery

Figure 7.5: Failure recovery in the synthetic dataset.

incorrect if one or more of the sensorids is missing or its value is not correct in the reported

top-k result set. Recall thatSp,j is the set of sensorsactually producing thepth highest

value, and let us denoteS′

p,j as the set of sensors that were reported as producing thepth

highest correct value; both with respect to thejth round. Then we can define the error

accuracy ratio,ǫa = | ∪k
p=1 Sp,j \ ∪

k
p=1S

′

p,j |/| ∪
k
p=1 Sp,j |. To better understand the effect

of failures we also compute the error frequency,ǫf , which is the fraction of rounds that

produced an incorrect top-k result havingǫa > 0.

In the following experiments we set different values for the probability thata node,

during a round, cannot communicate with a specific neighbor, i.e., alink failure. We restrict

our attention of course only to pairs of nodes (i.e., edges/links) that belongto the underlying

physical topology. Each link fails independently of all the other links. Moreover, link

failures are assumed to be independent from one round to the next. Through link failures

107



we vary Packet Error Rate (PER) in the range of{.05, .10, .15, .20, .25}. As mentioned

previously PER is defined as the ratio of the number of messages transmitted to the number

of messages that are received successfully.

Results for failure recovery in the synthetic dataset are summarized in Figure 7.5. As

shown in Figure 7.5(a) error frequency (ǫf ) of EXTOK with any tree combination is around

90% when PER is 0.05. It means that during 90% of the rounds EXTOK reports “some”

error in the returned results when links fail with a probability of 5%.ǫf increases to 100%

as PER is increased beyond 0.15.

Figure 7.5(b) summarizes the “magnitude” of the error in the reported results, i.e., ǫa.

In particular, when links fail with a probability of 5%, then 18% of the values as reported

by EXTOK are incorrect. More specifically, less than 2 values are incorrect from the top-10

results (recall that the default value fork is 10). As expected, when PER is increased to

0.25ǫa is also increased. In particular, around 40% of the values were found tobe incorrect

from the top-k values.

Figure 7.5(c) summarizes the results onǫf when failure recovery solutions are applied,

i.e., when RIBS and RICS are implemented on top of EXTOK. In this setting all combi-

nations of trees respond differently, but overall the performance of EXTOK is improved

significantly as shown in Figure 7.5(c). In particular, at 0.05 PERǫf is reduced from 90%

to 20% for B-B, to 40% for S-S and to 55% for BI-BI. The B-B combination consistently

resists failures even at high PER, e.g., when PER is 0.25ǫf for B-B is still less than 80%.

Figure 7.5(d) summarizes the results onǫa when failure recovery solutions are applied.

ǫa is reduced from 20% to less than 10% when PER is 0.05. Here also, among allcombi-

nations, EXTOK with B-B shows improved robustness to failures. Even at ahigh PER of

0.25 EXTOK with B-B returns less than 2 incorrect values.

Another observation from these results is that some tree combinations are not as robust

as other tree combinations, e.g., BI-BI (BISPT-BISPT). This behavior can be explained by

the fact that the trees, which are more “leafy” as compared to others are more prone to

failures. The reason is that, since there are less non-leaf nodes in a “leafy” tree, any failure

of such nodes leave many nodes disconnected resulting in the increased error.

Results on failure recovery from the Intel dataset are summarized in Figure 7.6. Similar

trends can be observed in these results that we noticed with respect to the synthetic dataset,

however, the magnitude of results is different. EXTOK with different tree combinations

responded differently to failures. Nonetheless, RIBS and RICS improved the robustness of

EXTOK with S-S by decreasingǫf from 90% to up to 25%, andǫa from 30% to up to 10%.
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(c) Error Frequency with failure recovery
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(d) Error Accuracy with failure recovery

Figure 7.6: Failure recovery in the Intel dataset.

7.6.1 Transmission Cost for Failure Recovery

In this section we evaluate the overhead in terms of transmission cost that comes with

the failure recovery solutions. Recall that RIBS and RICS increase the reception cost by

receiving multiple messages, and also the transmission cost by injecting the messages that

are essential for failure recovery. In these experiments, first, we evaluate the transmission

cost when no recovery solutions are applied, i.e., EXTOK without RIBS and RICS. Then

we compare the results when RIBS and RICS are applied. Results from the synthetic dataset

are summarized in Figure 7.7.

There are two observations that can be made from the results summarized in Fig-

ure 7.7(a) that are obtained without applying RIBS and RICS. The first observation is that all

tree combinations have different transmission cost, which was quite expected. The second,

more interesting observation is that as PER is increased the transmission costis decreased
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(b) With failure recovery

Figure 7.7: Transmission cost for failure recovery in the synthetic dataset.
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(b) With failure recovery

Figure 7.8: Transmission cost for failure recovery in the Intel dataset.

(for all combinations of trees). This behavior can be explained by the fact that as more

messages are dropped due to failures many nodes are either unable to forward the messages

along the tree (during broadcasting) or they are missing data partially (during convergecast),

which reduces the number of bytes being transmitted. In the case of broadcasting the effects

are more severe as the children nodes under the subtree of a failed link donot participate in

the broadcasting at all. In this situation many nodes do not incur the transmission cost.

Another interesting trend with respect to the tree combinations is that the combination

B-B (BSPT-BSPT) that we found more robust among all other combinations incurred more

cost than others. This is because BSPT is a “balanced” tree due to which itis more re-

silient to failures. Because many nodes are still able to participate in convergecasting and
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broadcasting, its transmission cost is more as compared to other tree combinations.

Figure 7.7(b) summarizes the results when RIBS and RICS are implemented on top

of EXTOK with various tree combinations. The first trend that can be observed here is

that the transmission cost has increased for all solutions. This was expected as nodes that

were unable to send across their messages are now able to send their messages because of

recovery schemes. Overall, the transmission cost is almost doubled when RIBS and RICS

are implemented on top of EXTOK. One way in which this result can be interpreted is that

when failures occur in the network, EXTOK reduces the chance of reporting a wrong result

by paying more communication cost. Here also, when PER increases the transmission cost

decreases for the same reason as explained above.

Similar trends can be observed in the results obtained from Intel dataset. Asshown in

Figure 7.8, different combinations of the trees incurred different transmission costs. As PER

increased the transmission cost decreased (with and without recovery solutions) because of

the reasons that we explained previously. The combination B-B (BSPT-BSPT) incurred

more cost than other because of its robustness to failures.

7.6.2 Energy Cost for Failure Recovery

Results of the failure recovery overhead in terms of the energy cost aresummarized in Fig-

ure 7.9. As expected when PER is increased the energy cost for all solutions is decreased.

As explained previously, transmission cost is decreased as the PER is increased, which

results in the reduced energy cost. As shown in Figure 7.9(a), B-B incurs slightly more

energy than other tree combinations when no failures are recovered. When RICS and RIBS

are implemented on top of EXTOK the energy consumption increases for all thesolutions

as shown in Figure 7.9(b). The reason for the increased energy costis that as more nodes

are able to participate in query processing more transmission as well as reception cost is

incurred by the nodes. Recall that some nodes that were not able to transmit their message

at all or were able to send their partial data only (which reduced their transmission cost) are

now able to send their messages as well as redundantly re-aggregated data due to failures

recovery. Also, note that RIBS and RICS require that nodeslisten during backup slots.

That results in the overall increased reception and transmission cost. Especially in the case

of RICS many backup nodes may trigger messages for a node increasing the reception as

well transmission cost. Since every node may have many backup nodes, thereception cost

dominates the transmission cost in RICS. This is the reason that, when RIBS and RICS are

applied, the energy cost has four to six fold increase as compared to the energy cost when
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(b) With failure recovery

Figure 7.9: Energy cost (Rc = 0.6) for failure recovery in the synthetic dataset.
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(b) With failure recovery

Figure 7.10: Energy cost (Rc = 0.6) for failure recovery in the Intel dataset.

failure recovery scheme is not used. This is in contrast to the transmission cost shown in

Figure 7.7 in which we noticed less than three-fold increase. As expected,the energy cost

decreases when PER increases. That is partly due to many nodes not participating in the

query processing as they do not get “updated” because of the failures.

The results from the Intel dataset are summarized in Figure 7.10. Similar trends can

be seen in these results as observed during the synthetic dataset, however the magnitude of

results has changed. Here again, when RIBS and RICS are applied we notice an increase in

the energy cost, however the increase is around three-fold as compared to a six-fold increase

in the case of the synthetic dataset.
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7.7 Conclusions

In this chapter we evaluated the performance of EXTOK with respect to a number of combi-

nations of various logical trees. We evaluated EXTOK’s performance in the event of failures

as well while using our failure recovery solutions, RIBS and RICS. These results revealed

two important observations: (1) Logical topologies are important not only for query pro-

cessing cost but also for dealing with failures. In particular, some logicaltopologies are not

only better suited than others in reducing the query processing cost, but they are also more

robust to failures even at a high rate of failures. (2) The robustness of a query processing

solution can be improved significantly but at the expense of an increased energy cost. In

particular, RIBS and RICS reduced the chance of EXTOK giving an incorrect result (in the

event of failures) from 90% to upto 20%. However, that reduction is achieved at the expense

of three to six fold increase in the energy expenditure. In the next chapter we summarize

this thesis while outlining some future directions in which the work presented in thisthesis

can further be extended.
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Chapter 8

Conclusions and Future Directions

In this thesis we addressed the problem of in-network query processingin WSNs. We

started this research while investigating the issues dealing with efficient processing of MAX

queries in WSNs. We discovered that a particular logical tree topology, DST, significantly

influenced the query processing cost for MAX queries [46]. To be precise we showed

that by simply replacing a commonly used logical tree topology, SPT, with the DST(and

without any changes to the original algorithms) one can reduce the query processing cost

up to 50%, depending upon the type of the algorithm used for MAX queries.

Subsequently, our investigation moved beyond that work to identify several basic prob-

lems that were not only concerned with MAX queries but they were also applicable to

several other in-network query processing problems in WSNs. Since considering every

type of query to make a generic case for in-network query processing problems was beyond

the scope of this thesis, we eventually focused on the top-k queries to take our investigation

to the next level. Top-k queries are an important class of aggregation queries that are useful

in many applications. Through a systematic study of the top-k query processing in WSNs

we shared our findings in this thesis, which are applicable not only to the top-k queries, but

also to other in-network query processing problems in WSNs. Towards that end this thesis

offered several contributions that are listed as following.

• In this research we relied upon a filtering based mechanism for efficiently processing

top-k queries in WSNs. The fundamental idea of filters was proposed in [50], how-

ever, we are first to propose a filtering based algorithm for processingexact top-k

queries in WSNs. EXTOK does not only return exact answers but it alsotakes into

account the tied values, which were neglected by existing solutions. Furthermore,

previous proposals often “detached” the properties of a tree from the semantics of

a query and the specialized techniques used, e.g., arithmetic filters, while designing
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their solutions. EXTOK, however, is built upon this observation, and effectively ex-

ploits the semantics of a top-k query, filtering constraints and the underlying logical

tree topology for processing the top-k queries efficiently.

• We proposed a new logical tree topology, BISPT, that is better suited than other exist-

ing logical tree topologies for one-to-all broadcasting in WSNs. In particular, BISPT

outperformed SPT, as well as DST and GKLRW-tree in terms of reducing thenum-

ber of messages that are required to disseminate the message in a network. However,

BISPT has its own disadvantage. Because BISPT is a “leafy” tree it reduces the num-

ber of non-leaf nodes in a logical tree topology. It means that the non-leaf nodes have

more communication and computation “load”, which might leave the non-leaf nodes

depleted of energy faster. This could become a problem in WSNs where nodes are

battery powered. Nevertheless, BISPT could be more useful in static networks where

energy is not an issue or in networks where the non-leaf nodes are assumed to be rich

in resources. We also established a theoretical bound for the broadcasting problem,

which actually guided us to discover the BISPT.

• In this research we propose efficient TDMA-based solutions for the broadcast and

convergecast scheduling problems. Our approach was to, first, establish the theo-

retical bounds for those problems and then look into solutions, which can perform

as close as possible to the established bounds. Towards that end we formalized the

theoretical bound for broadcast scheduling, and presented a new “tighter” bound for

convergecast scheduling. We found in our research that the broadcast and converge-

cast scheduling problems (with their particular constraints) enforce the construction

of a logical tree topology for scheduling the nodes in a network. Towardsthat end

we identified certain logical topologies that offer better solutions (in terms of the es-

tablished theoretical bounds) for the scheduling problem. In particular, we used the

BISPT for the convergecast scheduling problem, and proposed a newlogical tree,

BSPT, for the convergecast scheduling problem. In addition to those contributions

we proposed two new scheduling algorithms, WISH and WIRES, for broadcast and

convergecast scheduling, respectively. WISH and WIRES are topology-independent

algorithms that can be used for scheduling any given logical tree.

• Link failures are part of any wireless network, and the solutions proposed in this the-

sis, e.g., algorithms and logical topologies, are not immune to failures either. Further-

more, unlike many other wireless networks, nodes in WSNs have limited resources

115



to deal with failures. Therefore, dealing with failures in WSNs is a challenging prob-

lem. We wanted to avoid existing re-transmissions/ACKs based solutions for energy

efficiency in WSNs. Furthermore, our TDMA based scheduling solution, inparticu-

lar for convergecast, seemed to have a “gap”. Recall that in EXTOK manynodes do

not reply during convergecast due to their filtering constraints. In this situation many

nodes do not use their allocated slot during convergecast. This also means that the

time slots that we allocated to many nodes are “unused” while unnecessarily increas-

ing the convergecast latency. RICS filled this “gap” by utilizing the “unused” time

slots through the backup nodes for failure recovery. With RICS we are able to avoid a

costlier solution for failures based on re-transmissions/ACKs while exploitinga con-

vergecast schedule effectively, which was a natural choice while considering energy

efficiency. (Note that inefficient utilization of the time slots is not an issue during

broadcast as every node participates during that operation.)

Our work in this thesis has addressed some important problems in WSNs. The solu-

tions presented in this thesis are simple yet effective as revealed by our extensive simula-

tion studies. Our proposed solutions are applicable, of course with some modifications, to

some other problems not addressed in this thesis, e.g., extending ourone-to-allbroadcast-

ing solution to solve the problem ofall-to-all broadcasting in WSNs is one such possibility.

Within the context of the contributions offered in this thesis, next, we list some more future

directions in which our work can be extended.

• Broadcasting remains a fundamental problem in many distributed wired and wireless

networks. Further research on BISPT in this context could be useful. Another di-

rection here is to extend the BISPT based solution to non UDGs based topologies.

Recall that in this thesis we applied BISPT in UDGs only, which is generally used

to model a WSN. One can also use a non-UDG to model a WSN, which basically

means that nodes may have different transmission ranges in that particularsetup. In

this situation, it remains to be seen that BISPT is a “good” solution.

• Filtering and aggregation remain two important techniques for reducing the commu-

nication cost in WSNs. Filtering is mainly used for aggregation queries in WSNs,

e.g., the top-k query processing. It might be useful to survey other types of queries

such as join and nearest neighbor queries for which filtering and aggregation based

solutions can be designed. Towards that end another important direction isto in-

vestigate which logical topologies are better suited to “execute” the new solutions.
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Obviously, if the new solutions also require broadcast and convergecast operations,

we can use the solutions proposed in this thesis. However, there may be other require-

ments and objectives for which one may need “special” logical structures including

trees and clusters.

• Another interesting direction of our future work is the processing of multiple queries.

Continuous execution of a single query, e.g., top-k as considered in this thesis, may

not be sufficient for some applications that seek to extract more complex informa-

tion than just the top-k sensors/values. To that end, it is possible that users may

want to process a combination of multiple queries during various rounds. Inthis

situation, one can compute (in advance) multiple logical trees (built upon the same

physical topology) to be used for various queries during specific rounds. Recall that

the “backbone” nodes of a given logical tree propagate most of the communication

traffic causing faster dissipation of energy from those nodes, which mayoverall re-

duce the network lifetime. Therefore, it might be useful to employ multiple logical

trees during various rounds on “rotation” basis to evenly distribute the energy cost of

the nodes to prolong the network lifetime.

• Recent advances in MIMO technologies may allow single-radio nodes to cooperate

on data transmission and/or reception [19]. What that means basically in the context

of this thesis is that there could be transceivers that could receive multiple trans-

missions concurrently, which may change the scheduling problems addressed in this

thesis. In this new scenario, scheduling constraints may change as well. Animportant

research in this direction is to construct schedules that take into account the ability of

the radios to receive multiple transmissions concurrently.

• In the context of failure recovery and RICS, an important problem is to control the

“redundancy” injected by the backup nodes. Recall that in RICS there may be mul-

tiple backup nodes that may forward multiple messages in a logical tree for a given

node. Overall, that leads to increased energy consumption in WSNs. Unfortunately,

it is not trivial for the backup nodes to know which “one” of them should trigger a

message in order to recover a failure. Solving this problem in an energy-efficient

manner could be a challenging issue. In the context of failures it might be interesting

to explore for new techniques to deal with failures that were not recovered oppor-

tunistically.
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• In this thesis, we addressed the problem of semi-matchings (with two different crite-

ria) in bipartite graphs for constructing “special” logical trees. This workcan further

be extended to find other criteria for semi-matchings to discover new logical tree

topologies. It might be useful to find applications (other than the logical treecon-

structions), e.g., in social network analysis where Maximum-Load Semi-Matching

can be applied.

• BSPT proposed in Chapter 5, does not guarantee a minimum lower bound asdefined

in Lemma 3 with respect to trees that arenotSPTs. It might be an interesting problem

to find a logical tree topology that is optimal with respect to Lemma 3. Intuitively,

a tree can be constructed in which the paths of the nodes can beelongated, hence

increasing their hop-count (compared to the shortest possible path) whilepossibly

decreasingtheir children-count to potentially achieve this optimal lower bound.
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