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Abstract

Power consumption is becoming more and more important with the increased popularity of smart-
phones, tablets and laptops. The threat of reducing a customer’s battery-life now hangs over the software
developer, who now asks, “will this next change be the one that causes my software to drain a customer’s
battery?” One solution is to detect power consumption regressions by measuring the power usage of tests,
but this is time-consuming and often noisy. An alternative is to rely on software metrics that allow us to
estimate the impact that a change might have on power consumption thus relieving the developer from
expensive testing. This paper presents a general methodology for investigating the impact of software
change on power consumption, we relate power consumption to software changes, and then investigate
the impact of OO software metrics and churn metrics on power consumption. We demonstrated that
software change can effect power consumption using the Firefox web-browser and the Azureus/Vuze
BitTorrent client. We found evidence of a potential relationship between some software metrics and
power consumption. We also investigate the effect of library versioning on the power consumption
of rTorrent. In conclusion, we investigate the effect of software change on power consumption on two
projects; and we provide an initial investigation on the impact of software metrics on power consumption.

1 Introduction

Change can be scary, but software often needs to change. With change comes new opportunities and new
dangers. Given a mobile context, such as software on a smart phone or laptop, new dangers may present
themselves as power-consumption regressions. A change to the power consumption profile of an application
can have a significant impact on the end-users’ ability to use and access their mobile device, whether it be
a phone or a laptop.

Power consumption in a mobile setting limits the length of time that a device can operate between
charges. When there is no power left, the user cannot use their device and is often left stranded without the
aide of their mobile device, even in an emergency.

In this paper we will investigate the effect of software evolution on power consumption. Questions that
should be addressed include: when a developer changes an application, will that application consume more
or less power? Will new events and notifications quickly use up the battery? Will improving one quality,
like responsiveness, negatively affect power consumption? In many of these cases the developer will not
know until they test their application, or release it to unsuspecting users. Testing an application for change
in power consumption is time consuming, one has to design a regression test and run it multiple times for
reliable readings. Furthermore as these tests are running, the system needs to be monitored in terms of power
consumption or resource usage. Thus testing for power consumption is expensive and time consuming [3].

This paper works towards the vision of Green Mining [11], an attempt to measure and model how
software maintenance impacts a system’s power usage. Green Mining’s goal is to help software engineers
reduce the power consumption of their own software by estimating the impact of software change on power
consumption based on empirical evidence. Concretely, we seek to give recommendations based on past
evidence extracted by looking at each change in a version control system (VCS) and dynamically measure



its effect on power consumption. Green Mining mixes the non-functional requirement of software power
consumption with mining software repositories (MSR) research. Thus Green mining is an attempt to leverage
historical information extracted from the corpus of publicly available software to model software power
consumption. This paper explores the feasibility of power consumption prediction based on OO metrics and
churn metrics.

One might ask, why bother measuring power when you can measure CPU utilization? Most research [1,
4,27] about software power consumption has focused on the CPU, but other resources such as memory, disk
I/0 [7], temperature and cooling, and network I/O all impact software power consumption [3]. In a mobile
setting, such as smart-phones and laptops, disk and network I/O can severely affect power consumption.
Furthermore, mobile vendors such as Apple, Microsoft, Intel, and IBM, have demonstrated an interest in
software power consumption by providing power-management documentation and tools [2,6,8,12,13].

Our research questions include:

e RQ1: Does power consumption evolve over time?

e RQ2: What software metrics are relevant to power consumption?

In this paper we will address some of the initial steps towards Green Mining: measuring the power
consumption of multiple versions and multiple contiguous commits/revisions (commits in version control) of
a software system and leveraging that information to investigate the relationship between software change
and power consumption. Small gains in power consumption can have a large effect when multiplied across
multiple users, systems, or hours. We will discuss 2 of our previous cases [10] and 1 new case study from the
perspective of the pitfalls faced when one has to investigate software change and software power consumption
together.

This paper’s contributions include:

e A clearly defined general methodology for measuring the power consumption of snapshots and revisions;
e A comparison of the power consumption of Firefox branches;

e A revision-by-revision analysis of Azureus/Vuze power consumption;

An attempt to relate power consumption and software metrics.

e An investigation and analysis of the pitfalls relevant to measuring the power consumption of software
change via three case studies.

A case study of multiple versions of a library (LibTorrent) and its effect on power consumption of its
client application (rTorrent).

e The first study of the effect of churn on power consumption.

This paper discusses 3 case studies, 2 of which have already been published, but with less emphasis on the
difficulty of measurement. This paper differs significantly from our ICSE 2012 NIER paper, Green Mining:
Investigating Power Consumption Across Versions [11], which served as a call to arms for Green Mining,
as we have more case studies and a more thorough analysis. This paper extends our MSR 2012 paper,
Green Mining: A Methodology of Relating Software Change to Power Consumption [10], that illustrates our
methodology and depicted power consumption tests across Firefox 3.6 and Azureus Vuze. As well we discuss
difficulties faced during that work. We also cover a new case-study on library variation, churn, and power
consumption.



2 Power

Throughout this paper we will discuss power consumption in terms of watts. Watts are a SI unit of energy
conversion, or power, equal to 1 Joule per second, named after James Watt. Thus watt is an instantaneous
rate of power consumption. A useful reference point is that a 40W incandescent light-bulb consumes 40W
when it is operating. To talk about cumulative consumption, we use a unit of watts over time, such as a
watt-hour: a 40W bulb operating for 1 hour takes 40 watt-hours. We report mean-watts (average power),
the mean of watt measures over time rather than watt-hours because per each study the tests takes an equal
amount of time and thus will have only differ by their average power consumption (e.g, 32 measures of 40
watt each taken 1 second apart will be 1280 watt seconds and 40 mean watts).

If these tests were on tasks that do work and immediately terminate, such as compilation, or rendering,
that did not have idle behaviour, such as a user reading a screen worth of text on a web browser, then
reporting Joules or watt-hours would be more appropriate.

3 Previous Work

Industrial interest in software power consumption is apparent [2,3,6,8,13]. Companies who produce mobile
devices and mobile software have expressed their interest in terms of research funding, documentation, and
tools. Google has funded Power Tutor [3], an Android power monitor. Microsoft provides Windows Phone
documentation and research [6,8] about how to reduce power consumption on the Windows Phone platform.
Apple provides advice for improving iOS battery performance of applications [2]. Intel [13] has contributed
to Linux in terms of PowerTop, a power-oriented version of UNIX top. IBM publishes documentation and
sells tools that help reduce server room power consumption [12]. Industrial interest in software-based power
consumption is evident as many of these companies have formed and joined the GreenIT [19] group.

Measurement: Power consumption must be measured and related to the software that induces this con-
sumption. Gurumurthi et al. [9] produced a machine simulator called SoftWatt meant to simulate a power
consuming device. This kind of virtualization is valuable as hardware instrumentation is expensive. This
kind of simulation also avoids the observer effect because the system under test is not self-instrumented,
so the load of the instrumentation is not felt within the system, but outside the system in the simulator.
Amsel et al. [1] have produced tools that simulates a real system’s power usage based on CPU measurements,
and benchmark individual applications’ power. They do not avoid the observer effect because they have to
measure the system under test as it is running. Gupta et al. [8] describe a method of measuring the power
consumption of applications running on Windows Phone 7. They avoid the observer effect though hardware
instrumentation while repeatedly running benchmarks of calls.

Tiwari et al. [27] modeled the power consumption of individual CPU instructions and were able to model
power consumption based on traces of CPU instructions.

As power consumption is not just the CPU’s fault, Lattanzi et al. [17] investigated the power consump-
tion of WiFi adapters and were able to produce an accurate model of WiFi power usage from a synthetic
benchmark. Lattanzi derived and compared their model to power measurements of synthetic benchmarks.
They instrumented the wireless network interface and recorded its power use externally. This kind of work
is especially important in the context of networked mobile computing because it allows modelling of the
environment before deployment. Greenwalt [7] modelled the power consumption attributes of hard-drives
(HD), especially the HD seek times and power management timeouts. Greenwalt [7] derived his model from
the properties of disk accesses and harddrives but did not measure actual harddrives them.

In the mobile space PowerTutor [3] is an Android power monitor that augments ACPI power readings
with machine learning to improve accuracy. Dong et al. [3] confirm that measuring power usage is resource
and effort intensive.

Industrially, Powertop [13] is popular for power consumption monitoring because it reports the processes
and drivers that produce events and wakeups, as well it estimates power use from the ACPI (the power



management system interface used on modern computers). Powertop is recommended by Michael Larabel [16]
who also benchmarked multiple versions of Ubuntu against each other given idle and load tests.

Kocher et al. [15] used power measurement to execute side-channel attacks on crypto-system implemen-
tations in order to expose key-bits. Others use measurement to minimize power consumption.

Optimization: One goal of measuring power consumption is to optimize systems for reduced power con-
sumption. Li et al. [18] applied the idea of load balancing to server-room heating and cooling. Fei et al. [4]
used context-aware source code transformations and achieved power consumption reductions of up to 23%
for their software. Selby [21] investigated methods of using compiler optimization to save power by reducing
the load on the CPU by reducing branch prediction and staying in cache to avoid memory bus access. But
power usage research has not leveraged the big-data corpus-based approaches used in MSR research.

Mining Software Repositories: This work is relevant to the field of mining software repositories (MSR)
because it investigates the changes in a resource usage or performance, namely power consumption, over
revisions and snapshots. These revisions and snapshots come from version control systems, continuous
integration archives, and other kinds of software repositories. Furthermore this work hopes to motivate
the production new software repositories of power-traces in order to enable us to reason about software
based power consumption without the heavy lifting of the testing we executed in this paper. Thus any
MSR work that is relevant to performance via traces is relevant to this work. For instance Shang et al. [22]
have investigated performance over versions of software, in particular Hadoop. They evaluated the multiple
versions against the stability of the log messages, while not quite a performance measure it required running
multiple versions of the system to collect this date. To date there has not been much work, on combining
MSR techniques with power performance, other than Gupta’s [8] work on mining Windows Phone 7 power
consumption traces.

Summary: We have demonstrated that there is much industrial and academic interest in power consump-
tion but not a lot of focus on the effect of software change and software evolution on power consumption.
Thus Green mining demonstrates novelty by combining MSR, research and power consumption.

4 Methodology

In this section we present an abstract methodology for measuring and correlating power consumption of
software snapshots and commits. We will also present the concrete methodology we used in the case studies
to follow.

4.1 Green Mining Abstract Methodology

Within this section we will describe how to setup a green mining style power measurement experiment. This
methodology is primary for the measurement and extraction of power consumption information relevant to
software change. An overview of the general methodology is as follows:

1. Choose a software product to test and what context it should be tested in.

2. Decide on the level of instrumentation and the different kinds of data recorded, including power mea-
surements.

3. Choose a set of versions, snapshots or revisions, of a software product to test.

4. Develop a test case for the software that can be run on the selected snapshots and revisions of the
software.

5. Configure the testbed system to reduce background noise from other processes.



6. For every chosen version and configuration:

e Run the test within the testbed and record the instrumented data.
e Compile and store the recorded data.

e Clean up the test and the testbed.

7. Compile and Analyze the results

Choosing a product and a context: The first step is to choose a product and the context in which the
product is going to be tested. It is important to consider the purpose of the test: is a particular feature
being tested? Is new code being tested? Is the test meant to represent the average user using a product?

Decide on measurement and instrumentation: To decide on instrumentation one has to decide what
they want to measure. If the test is going to be deployed on systems with or without power monitoring,
does CPU, Disk I/O and Memory use need to be recorded in order to build models and make a proxy power
consumption? On some systems, such as VMs, power cannot always be directly measured so other measures
might have to serve as a proxy. One should consider the overhead of measurement in terms of CPU, 1/0,
and events and if any of this affects the power consumption of the system. Too much overhead results in
a confounding observer effect which can skew results. Some aspects of a system can be measured without
affecting the run-time system. For instance recording power consumption with a separate computer, which
logs the readings from a power monitor of computer under test, avoids the overhead of recording power use
on the same machine.

Choose a set of versions: One must choose a range of versions of the software, snapshots or revision-
s/commits, to iterate over and test. If one wants to tease out the effects of software evolution one has to
monitor the power consumption response of different versions of the software. Snapshots are either source-
code or compiled releases of the software. Revisions or commits are the version control’s snapshot of the
system at a specific time or revision. Furthermore if compilation is needed, candidates chosen might have to
be compiled or built . This kind of testing requires an executable binary or package, thus one has to account
for building these VCS snapshots when they decide to use these snapshots and revisions.

If a version control system is used, one will have to walk through commits and determine executable or
build-able candidate commits. For instance in the case studies we tried to compile every revision in the VCS
with varying success.

Developing a test case: Based on the context chosen at the beginning, a representative test case must
be built that will exercise the necessary functionality of the target product. A test case might simulate user
input, or focus on specific tasks of a system such as initialization. The test case is expected to be independent
and clean up after itself. One test case should not affect the next. This can be difficult to achieve and might
require monitoring a test case before one can be confident it has been addressed. Furthermore the test cases
must deal with the evolution of the software, the same feature might be accessed in different ways depending
on the version of the software. Tests must handle situations such as software that is run for the first time
and prompts for input to help initialize the software.

Configure the testbed: the testbed will often include or require a running, full, modern operating system.
These modern operating systems have numerous services that execute automatically. These kinds of services
add noise to measurements and should be disabled. Such interruptions include: disk defragmentation, virus
scanning, CRON jobs, automatic updates, disk indexing, document indexing, RSS feed updates, Twitter
updates, etc. Furthermore the system should be isolated in terms of other users and services that the
testbed system provides. In terms of user interfaces it is useful to turn off screen blanking and screen savers.
Window manager choice can matter as well, if a window manager is used that makes window placement
predictable then tests are easier to develop, without Ul predictability tests need to include more logic to



handle UI exceptions. If the configuration and setup of the testbed can be automated then the results from
these tests are far more reproducible.

Per each version and configuration: the version of the software should be unpacked, configured, and
the tests run against this version, multiple times. Before the test starts the testbed must initiate all external
instrumentation, such as memory, CPU, and disk I/O monitoring tools. Once the system is ready the test
is initiated. Once the test is complete the information from the instrumentation, the power monitoring
device, the external instrumentation and the logs are all recorded and packed up. This bundle of compiled
information is then locally or remotely stored. Once all necessary information is extracted from the remains
of the test-case, the test-case or testbed is meant to clean up after itself as to allow another test-case to
run independently. Note for reliable results these tests should be run multiple times as it is unlikely that
one has full control over every tiny minutia in the system, the testbed, and the tests. Multiple runs ensure
reliability, but one should avoid multiple consecutive runs for fear of disk caching (restarting the system can
alleviate this issue). When storing the results of each test one should record the necessary meta-data which
could include the machine-name, testbed identity, the current configuration, start and end time, the power
monitor trace itself and summary statistics.

Compile and Analyze the results: once the tests are executed enough times one can analyze the results.
It is useful to summarize each run by the energy consumed (watt-seconds) or mean watts.

4.2 Green Mining Concrete Methodology

In this section we instantiate the methodology of the previous section and we describe the concrete aspects
of tests. We demonstrate the applicability of the previous methodology to our case studies.

Choosing a product and a context: in this paper we chose 3 products. The first product is Fire-
fox, a popular C++ implemented consumer-oriented open-source web-browser maintained by the Mozilla
foundation. The second product is Azureus, now known as Vuze, a popular Java-based Peer-to-Peer (P2P)
BitTorrent client. The third product is rTorrent, much like Vuze, it is a BitTorrent client but it is meant to
run on UNIX shells. rTorrent allowed us to share some of the BitTorrent testing framework built around
Vuze. Our Firefox testing context simulates the browsing behaviour of a mobile-user, and slightly exercises
the animation and Javascript features of Firefox in the process. For Vuze we test 2 contexts: the first context
tests the start-up cost of Vuze before it seeds a 2GB file, and then the cost of an idle Vuze seeding; the
second context, the Vuze leech (a BitTorrent downloader) test, tests the cost of Vuze downloading a file from
a seeder. We test rTorrent using the Vuze leech test.

Decide on measurement and instrumentation: we decided to measure the power consumption of the
system using an external AC power monitor called the Watts Up? Pro ', a hardware device that measures
wall socket AC power consumption (watts, kWh, amps, power-factor, volts, etc.), and reports power measures
per second. The Watts Up? Pro is a general purpose device, unaware that is measuring a computer. SAR [5]
was used to record system activity information (CPU, Disk, Memory, Network, etc.) because we wanted to
mine for information that would allow us to model power consumption and avoid hardware instrumentation.
We combine both of these measures and synchronize them with timestamps.

Choose a set of versions: For Firefox we relied on nightly snapshots for the 2009-2010 nightly builds
of Firefox with versions ranging from 2.0 to 3.6, focusing mostly on 3.6 compilations for the main Mozilla
Firefox branch and the Electrolysis branch (a branch meant to explore improving UT latency). Because the
Firefox versions we had were binary snapshots we could immediately run them. For Vuze, we relied on 45
subversion revisions starting from revision 26730 on September 14, 2011 to revision 26801 on December 15,

1For more information on the Watts Up? Pro see https://www.wattsupmeters.com/secure/products.php?pn=0&wai=837&
spec=4



2011 (3 months); between those 2 revisions we successfully compiled 45 versions. For rTorrent we chose 18
snapshot versions that we could compile between rTorrent version 0.3.0 (2005) to rTorrent 0.8.9 (2011),
and libTorrent versions 0.6.4 (2005) to 0.13.0 (2011).

Developing a test case: Within each case study’s section we will explain each test case in more detail.
The test case is the setup and actions executed again an application. For the Firefox test case we opened 4
different webpages and randomly scrolled through them as if we were a mobile user browsing the web and
reading the webpages they downloaded. We had two Vuze tests, the first test checks Vuze’s start-up, idling
and file integrity check; the second test measures the power consumption of downloading a 2GB file from a
seeder. rTorrent and libTorrent were run using a leech test similar to the Vuze tests.

Configure the testbed: In all test cases we had the same testbed. The hardware we used in the case study
included an IBM Lenovo X31 Thinkpad laptop running Ubuntu 11.04, with its battery removed, plugged into
a Watts Up? Pro device for power monitoring. We did not use the battery because we did not have a method
of recharging the battery automatically. We made a script that put the laptop into an aggressive power-
saving mode (enable CPU Governor and POWERSAVE mode in ACPI daemon) that would simulate mobile use.
We turned off screen-savers and screen-blankers for consistency. We turned off automatic software updates
and the checking for such updates, we also disabled disk indexers and spurious cronjobs. We logged into
X11 as the greenminer user, using the XMonad window manager, which was set to full-screen each window
that popped up. The screen was left on during the tests.

Per each version and configuration: for all versions of Firefox we unpacked them and ran tests on
them multiple times, we describe these details in the Firefox case study Section 5.1. For the versions of Vuze
we compiled, we unpacked and ran the tests multiple times on the executable, see Section 5.2. For rTorrent
5.3 we compiled every available combination of snapshots we could (40 versions) and ran the tests on each
combination, these combinations are an example of different configurations. Each test run would upload the
monitoring data to another server as to not impact the disk space of the testbed machine.

Compile and Analyze the Results: Our case studies contain the analysis of the results in terms of
performance, power consumption and correlation with software metrics. In the end we had thousands of
power traces and we had to aggregate this data meaningfully.

We seek to produce a huge corpus of software change correlated with power consumption behaviour by
following this Green Mining vision and replicating this methodology over a large corpus of available software,
version per version, revision per revision. The more measurements we have the better we can estimate the
power consumption induced by software changes without compilation or testing. In the next section we
discuss our case studies which use this methodology.

5 Case Studies

Our case studies demonstrate an investigation of Firefox 3.6, Vuze and rTorrent. The Firefox case study
focuses on the power consumption of nightly compiled versions of Firefox, each run and tested many times.
The Vuze case study investigates the fine grained version control commits by checking out a range of revisions
or commits, compiling them, testing them, and then correlating their power consumption with software
metrics. The rTorrent case study investigates the effect that linking to different versions of the 1ibTorrent
library has on power consumption. These case studies took more than 30 days to run. Table 1 summarizes
the case studies used in this study and the general findings, as well as the number of tests per each scenario.

5.1 Firefox 3.6

Firefox is a popular open-source web-browser developed and published by the Mozilla Foundation. Firefox
is a very large software application, thus instead of compiling each version ourselves, we relied on nightly



Firefox  Firefox: Vuze: Vuze: rTorrent
Elec- Idle Leech
trolysis
Binaries 509 482 45 45 18
Releases 43 11 3 3 18
Lib/App Combos N/A N/A N/A N/A 40
Tests 2131 1500 900 500 294
Source Nightlies Nightlies SubversionSubversionTarballs
Change in Power Decrease Decrease Similar  Decrease Similar
Focus on Perfor- | Some Yes Minimal Minimal Some
mance
Networked Yes Yes Yes Yes Yes
Remote Network Yes Yes Maybe  Maybe No
DHT DHT
Stores  Significant | Yes Yes Yes Yes No
Configuration
Information
Location of Con- | Yes Yes Yes Yes No
figuration Changed
Over Time
GUI Popups Yes Yes Yes Yes No
Compiler  Incom- | N/A N/A No No Yes
patibility
Build System | N/A N/A Yes Yes No
Changed
External  Library | N/A N/A Could Could Yes
Dependencies Have Have
Changed
Could Not Compile | N/A N/A Yes Yes Yes
All Versions
Language C++ CH++ Java Java C++
and and
JavaScriptJavaScript

Table 1 — A Summary of the Case Studies and issues encountered. “Maybe DHT” means that the BitTorrent
client could call out to the internet, but our file was unique so there will be no seeders. “Tarballs” are .tar.gz
archives of source code. “Nightlies” are evening compilations of Firefox from their version control system.
“Releases” are publicly named versions such as 3.0b1l and 5.1.1 while “Binaries” are successful builds that were
tested. Focus on performance indicates if we observed any attempts to improve performance.



Wattage of Browsing Tests per version of Firefox 3.6 (and a sampling of earlier versions)
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Figure 1 — This is a graph of the distributions of mean wattage (power consumption) of different versions of
Firefox. The green-blue area is the range between the minimum and maximum mean wattage for that version.
The red line is the mean of mean wattages and the box-plots depict the distribution of mean wattage per test per
Firefox version. Note this plot depicts over 509 builds of Firefox 3.6 from alpha to stable versions. The dotted
line with a negative slope is a line of best fit on the means; its slope indicates a decrease in power consumption
across versions. The ranges for the earlier versions are smaller because we tested less instances of each of the
earlier versions. This diagram depicts 2131 test runs. This figure shares data with our previous work that
promoted and motivated Green Mining [11].

builds. The Firefox binaries that we tested were “nightly builds” provided by Mozilla on their FTP site.
Thus each binary tested was the accumulation of revisions for that day on that branch (mozilla-1.9.2 for
Firefox 3.6). We did not evaluate RQ2 in terms of OO-metrics on Firefox because we used “nightly builds”
and did not have a similar metric suite for C++ and Javascript code as we did for Java code. Near the
end of Firefox 3.6 the most common type of source file in the repository was Javascript. This was further
complicated by multiple branches of Firefox being developed at once so we focused on the main branch of
Firefox 3.6 (depicted in Figure 1 [10]).

Our tests for Firefox were meant to simulate a mobile user browsing multiple webpages, and also to catch
the cost of Firefox start-ups. For each page viewed we killed and restarted Firefox. Each page that we used
was remotely hosted. For each page Firefox would load the page and then our UI driver would simulate a
user scrolling through the webpage. To drive the UI we used X11::GUITest, a GUI testing framework. In
order to generate the test of the user scrolling, we used X11::GUITest to record our own browsing session
of reading and scrolling through a webpage. The intent was to produce a realistic browsing session with
navigation keys such as up, down, page-up, page-down, and mouse motions to catch messages that pop-up
when we mouse over them.

The 4 different web-pages consisted of 2 Wikipedia pages, a mirror of the main-page and a page about the
“Battle of Vukovar”, and 2 NYAN-Cat pages (http://nyan.cat/) mirrored in different ways (but hosted
remotely by us). The NYAN-Cat pages include GIF animations and client side Javascript animation. Testing
all 4 pages took about 6 minutes.

Firefox is a large desktop application and it has a GUI. This GUI needs to run in order to test Firefox,
thus our first task was to make Firefox visible to the windowing system. We would start Firefox with all the
display variables set so it would start on the appropriate display. We encountered numerous GUI related
issues that the GUI driver had to address, these are discussed in Section 8.3.



Firefox also creates, caches and saves a lot of information about the user’s preferences, settings, cookies,
plug-ins and extensions, history, and browser cache. Thus to be fair, each run of Firefox had to delete the
/.mozilla data directory created by Firefox.

Figure 1 displays the results of 2131 runs of 43 different distinct releases of Firefox from version 2.0.0.21pre
to version 3.6.14pre. Each version is a box-plot consisting of a set of nightly builds of Firefox, each run 3 or
more times. The number of success runs vary because of random failures such as failure to connect to the
watts up? pro, old tests that did not get shutdown, or an erroneous run.

Figure 1 shows that Firefox 3.6 is relatively stable in terms of power consumption, but it can fluctuate
between versions and measurements. The negative slope of the fitted line shows that there is a decrease in
power consumption over time. For the 3.6 versions of Firefox it was relatively flat and stable. The difference
in means between pre-3.6 Firefox versions and Firefox 3.6 versions is about 0.56 watts (T-test p-value of
0.012). Earlier versions of Firefox had higher mean power consumption, but also poorer general performance.

The first part of Figure 2 shows a density plot of the Firefox tests. Visible at the top of the figure are
four yellowish peaks, each indicate a Firefox start-up for a webpage, which are heavy in terms of disk 1/0,
memory and CPU use. Most Firefox runs looked similar to other runs hence the high density. This plot,
Figure 2, effectively summarizes the power consumption over time of 2131 separate runs of Firefox with our
test. The last half of this plot shows elevated power consumption due to the GIF animation and Javascript
animation used in the NYAN Cat tests. One take away from this is that webpages that are concerned about
power usage should avoid causing their pages to produce more events. Sources of events include Javascript
with timers, and animations from gif files, flash animations and Javascript mouse-overs.

To summarize, Firefox was becoming more efficient over time and was consuming less power. Power
consumption was relatively stable during Firefox 3.6, but was up to 0.5 watts less than prior versions. This
correlates with Firefox’s pressure to achieve similar performance to that of Webkit-based competitors such
as Chrome and Safari as discussed in the next section.

5.1.1 Firefox Electrolysis Branch

In parallel with mainline Firefox 3.6 development, a branch of Firefox was created called Electrolysis 2.
Electrolysis was an attempt to improve Firefox’s performance and improve stability by allowing separate
pages or tabs to exist as separate processes. Electrolysis also included some Javascript optimizations to deal
with the pressure of HTML5 JS performance demonstrated by competing browsers at the time. One reason
to test Electrolysis power consumption is to see if improved Firefox UI performance leads to increased
Firefox resource usage and more power consumption. For example in an attempt to address Ul fluidity
and smoothness the Firefox developers could have added even more events and timers in order to improve
responsiveness, thus this new version could potentially use more power.

We measured 1500 separate Firefox Electrolysis-branch tests (the same as the Firefox 3.6 tests) over 482
different binaries consisting of 11 distinct releases, and compared them to Firefox 3.6. Figure 3 shows the
plot of Electrolysis versions of Firefox compiled as nightlies. We can see that as Electrolysis was developed
power consumption slowly increased. Yet when we compare the mean of the Electrolysis tests to that of the
Firefox tests we can see that Electrolysis branch has reduced mean power consumption by about 0.27 Watts
(T-test p-value of 0.023). We have plotted the difference in means of Firefox 3.6 and Firefox Electrolysis
tests in Figure 4, we can see that electrolysis tests are clearly below most of Firefox 3.6’s tests.

In response to our first research question (RQ1) the performance oriented branch, Electrolysis, of Firefox
achieved a savings in power consumption (0.27W), showing that power consumption can indeed change over
time, and often as a side effect of other behaviour. We can see that intent behind Electrolysis was slowly
being achieved, performance gains were happening and this was evident in reduced power consumption even
without explicitly addressing power consumption. Small savings in power consumption for popular software
such as Firefox can quickly multiply and result in worldwide power savings.

2Further details can be seen here: https://wiki.mozilla.org/Electrolysis
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5.2 Azureus/Vuze BitTorrent Case Study

The purpose of this case study is to investigate the relationship between the revision by revision change of
Vuze with respect to power consumption. Furthermore we want to investigate the effect of code metrics
on power consumption, thus we need coherent chunks of code to experiment with. Commits provide this
appropriate coherency. The value of these kinds of tests is they allow us to relate fine grained incremental
changes, the code of software revisions, to power consumption.

Vuze is a popular Java based open-source BitTorrent client. BitTorrent is a popular P2P file-sharing
protocol often blamed for much IP infringement, but it is also an effective method of distribution for large
legal files, such as the Ubuntu Linux CDs, as BitTorrent relies on the bandwidth of volunteers, who act as
seeders. Seeders provide pieces of the file being shared to leechers who download these parts. Leechers can
be seeders as well: BitTorrent tries to use game theory to make downloaders more willing to upload parts
of files to other leechers.

BitTorrent clients are interesting because they are long running background processes, on desktops and
mobile PCs, that share files by seeding and leeching torrents. Also, BitTorrent tries ensure random redun-
dancy of its network by seeding blocks of files in random order to leechers. This is meant to protect against
the seeders disconnecting, and leaving the network of leechers without enough blocks to achieve 100% file
block coverage. BitTorrent clients also use much cryptographic hashing to verify that blocks are received.
Thus the profile of a BitTorrent client is interesting, it mixes intermittent heavy CPU use, with intermittent
heavy random I/O usage. Often a BitTorrent client has to verify file block integrity and entire files have to
be integrity checked.

Vuze was chosen because it is a popular product, often appearing in the Source Forge top 10; implemented
in Java, it is often easy to compile, and runs on many machines. In this study we used multiple machines
to attempt to compile all versions of Vuze. We achieved approximately 25% to 50% compilation coverage of
the versions investigated as not all commits are compilable, and changes in build systems can affect ability
to compile. Of those we chose a 3 months worth of relatively recent commits that compiled without much
issue: 45 compilations of subversion revisions starting from revision 26730 on September 14, 2011 to revision
26801 on December 15, 2011 (3 months). To compile all of these versions we made a flexible build script
that tried to handle the different build methods (Apache Ant, javac, Eclipse) used to compile Vuze.

We then developed two sets of tests to be described in the next sub-sections: the first test investigates
Vuze’s start-up, idling and file integrity check; the second test measures the power consumption of leeching a
2GB file from a seeder. The same file was used in both tests, to avoid bandwidth savings due to compression
we generated a 2GB file made of uniformly random noise exhibiting an entropy of 8 bits per byte.

Since the tests were about BitTorrent we had a server act as both the tracker and a seeder. The server
and laptop communicated via 100Mbit Ethernet with a cross-over cable.

5.2.1 Azureus/Vuze Init, Verify, and Idle Test

Our first test was a relatively simple idle seeding test. BitTorrent clients upon start-up tend to verify the
blocks in their downloaded files. In this test, the file was already placed in the download folder, and thus
Vuze would verify the integrity of the file. After the integrity check, Vuze would register with the tracker
(the computer serving the file as well) that it can share the file it just verified. Then the Vuze client would
open up ports and wait for any communication. The Vuze client would also announce the availability of the
file using the distributed hash table (DHT) function, but no one randomly generated the same file so this
did not cause a problem. DHT allows BitTorrent clients to connect and find each other without a single
centralized tracker.

Based on this test setup we ran the test between 17 and 21 times (median 20) for each version of Vuze
that we compiled. This range was chosen as a function of available test time, test runs that did not fail,
and minimal test runs to achieve usable statistical power. Figure 5, shows a test with some variability but
it is primarily centered around 22.6 watts per test. In terms of means, the mean power consumption has a
tiny negative slope of —0.0015, but this more pronounced in the medians with a negative slope of —0.0024,
arguably this is still quite flat, and the difference in means from the first and last versions is not statistically
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Wattage of BitTorrent Verify Files and Idle Seeding Test per version of Vuze
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Figure 5 — Vuze Init, Verify and Idle test. This test shows the distribution of tests run on 45 revisions of Vuze,

totaling 900 tests. The line of best fit has a weak negative slope across the versions. The test consists of Vuze

starting up, checking file integrity, seeding the file and idling.
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Figure 6 — Comparison of distribution of the Idle Vuze (Figure 5) tests mean watts and Leech Vuze test mean
watts (Figure 7).

significantly different (T-test p-value of 0.59). But the tests between earlier revisions and the revisions
26753 to 26783 (the start of the 4700 release) tend to be statistically significantly different than revisions
before and after (T-test p-values less than 0.05). This behaviour becomes more prominent in the next test.
An investigation of the commit-log shows that many of the changes are Ul hints, minor performance fixes
and minor bug fixes. This could suggest that careful attention to Ul APIs could result in power savings,
especially anything that produces events. Furthermore attempts to improve performance might have power
saving benefits, as demonstrated by Firefox Electrolysis.

This test’s trace of wattage measurements is in the second sub-figure of Figure 2, it clearly shows the
busy work at the start where Vuze verified the file, and then the system goes relatively idle after the file is
verified. One interesting observation is that the power consumption of the Vuze tests is higher even while
idle than the Firefox tests.

5.2.2 Azureus/Vuze Leech Test

The Vuze leech test is meant to simulate a user downloading a file with BitTorrent from 1 primary seeder
and no other leechers. In this test, the download directory is cleaned out and the Vuze application starts up
ready to download the 2GB file described by the torrent file. Upon discovering there is no file yet, the client
builds a sparse file on the file-system and then proceeds to contact the tracker. The tracker tells the client
about the seeders and leechers on that torrent and announces this client’s new membership. Then the client
contacts the lone seeder and starts requesting blocks from it. We did not specify to Vuze to download blocks
in order so it downloaded blocks in random order. This test required more network I/O and disk writing
I/0 than the idle test. The X31 with instrumentation, while idle, ran at approximately 19.5 watts.

In total for the 45 versions of Vuze, we ran each test 10 to 15 times with a median of 12 times. This range
was chosen as a function of available test time, test runs that did not fail, and minimal test runs to achieve
usable statistical power. The mean-watts measurement for the Vuze Leech tests was 23.8 watts. Figure 7
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Wattage of BitTorrent Leech Test per version of Vuze
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Figure 7 — Wattage of Vuze Leech Tests. This test shows the distribution of tests run over 45 revisions of Vuze,

totaling more than 500 tests. The line of best fit has a stronger negative slope than Figure 5, across the versions.

The test consists of Vuze starting up, initializing a file, and leeching the blocks from a seeder.
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shows the power consumption distribution of each version of Vuze tested. Interesting features of this test
include the drop around revision 26753, that was visible in the previous test as well, shown in Figure 5. That
power consumption is reduced in the dip, but it briefly spikes up again later. This test shows that the power
consumption of Vuze seemed to be going down over 3 months and maybe that had something to do with
fixes addressing resource use (memory leaks) and the mild performance improvements that were discussed
in the commit-log. The slope of this plot is —0.0023, similar to the slope of the idle test’s median line.

The trace of wattage measurements is in the third sub-figure of Figure 2, it clearly shows the busy work
at the start where Vuze starts up, makes a new file, and then proceeds to download blocks of the file. In the
tests the file tends to be entirely downloaded by the 6th to 8th minute and then its integrity is verified. But
even when it is downloading, the power consumption remains high, it is has not settled down and perhaps
the system has not had time to idle yet. The CPU use of the test was about 46% on average and there
were many write transactions. It seems that both CPU and disk usage matter here. If we make a linear
model of just percent user CPU utilization, we achieve an adjusted-R? of 0.038 for this test with very tiny
p-values, by adding transactions per second we achieve an adjusted-R? value of 0.046, so some information
is being provided by the disk usage (AIC also drops slightly). These R? values indicate that the linear model
poorly estimates power usage for this test, yet disk writes have an effect on power usage. This test probably
lacks enough variation to tease out interesting relationships based on resource usage metrics such as CPU
utilization.

5.3 rTorrent and libTorrent

rTorrent [24] is a popular Linux C++ console-based BitTorrent client. rTorrent’s popularity comes from its
lack of a graphical Ul, instead it has a textual UI implemented in ncurses, which allows users to often couple
GNU/Screen with it in order to run it remotely and in the background. rTorrent can leech (download) and
seed (upload) files shared over BitTorrent.

rTorrent is the front-end client that makes calls to 1ibTorrent in order to download a torrent from a
BitTorrent cloud of peers (seeders and leechers). rTorrent and libTorrent are generally developed together
and not all versions of 1ibTorrent are compatible with rTorrent and vice-versa.

Out of 60 rTorrent tarballs we managed to successfully build 18 of them with 1ibTorrent, and out of
65 1ibTorrent tarballs we could build 18 that would link with rTorrent. The 40 combinations of what was
testable are depicted in Figure 11. See section 8.1.2 for a discussion of issues facing building rTorrent.

5.3.1 Testing rTorrent and libTorrent

Our test for rTorrent and 1ibTorrent was similar to the test for the Leech test for Vuze described in 5.2.
The test plan was that a seeder would run on a separate machine which also ran the tracker (the service
that tells BitTorrent clients who is available in the swarm). This seeder would seed a file at a maximum rate
of 5 to 6 Mb/s. Our testbed would checkout a pre-compiled version of rTorrent and 1ibTorrent, that we
had built ourselves, and then run that rTorrent in order to download a high-entropy 2GB file. We ran each
combination of rTorrent and libTorrent multiple times.

Our tests did not need a GUI driver, as rTorrent could be started from the command-line. Yet rTorrent
is ncurses-based, and requires a terminal. To provide a terminal without the actual need for a screen we used
GNU/Screen to start a new session with rTorrent started within it. This would allow control of rTorrent
and allow rTorrent to output to a terminal. Unfortunately Screen adds more complexity to the framework
and can have some effect on power consumption.

We found that the behaviour in terms of power consumption of rTorrent was quite stable. Over time
and over versions there was not much change in behaviour. This is evident in the slope of the line of best fit
on the Means Watts per version of rTorrent as seen in Figures 8 and 9. We can see that rTorrent versions
have a slight downward slope over time, indicating perhaps an increase in efficiency causing an decrease in
power consumption.
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Figure 8 depicts the power usage of rTorrent over all tests for any combination of 1ibTorrent and
rTorrent that was built. We can see there is some variability between versions but there is no clear gain or
drop in power consumption across the versions.

Figure 9 depicts the power usage broken down by version of 1ibTorrent over all tests for any combination
of 1ibTorrent and rTorrent that was built. We can see if we compare with Figure 8 that there is some
change. But it is not clear if changes in 1ibTorrent or rTorrent really have any affect. There is a lot of
variability near the end of 1ibTorrent 0.12.x series and it settles down at 0.13.z.

Later libTorrent 0.12.z series changes added features such as relying on operating system specific syscalls
to preallocate files [26], as well as refactoring out some of the polling calls (to 1ibevent and libepoll) into
a new scheduler (verified in diffs and changelog) [25]. Many other new features were added but these two
features could lead to a lot of variability.

Figure 10 is a density plot of our measurements showing per second wattage measurements. We can
trace our test based on the power consumption: first there is a slow gradual ramp up as more blocks are
downloaded and traded from second 0 to around second 360. Then once the file is complete rTorrent
cryptographically hashes all blocks and checks them against the hashes in the .torrent file which describes
the hashes of the blocks of the files, after-wards rTorrent goes idle waiting for connections.

The checking blocks requires disk usage (reading the blocks) and CPU usage (hashing the blocks). We
created 3 linear models to explain the interaction of CPU and IO on the power consumption (watts) of
rTorrent. A model of just CPU (% user time) had an adjusted R? of 0.6789, a model of just IO (transactions
per second) had an adjusted R? of 0.3085. Combined, the model had an adjusted R? of 0.6856 indicating that
more variance was explained and the combination of CPU and IO tells us more than CPU alone. Since this
is an adjusted R? it already penalizes the model for adding another variable, thus this small improvement is
an improvement nonetheless. This is visually apparent in Figure 10.

5.3.2 Version by Version Variation

Figure 11 depicts the combinations of 1ibTorrent and rTorrent that were successfully built together. We
tried all pair-wise combinations and found only these 40 combinations worked together. We can see that
certain versions are more compatible than others. The range of this plot is not much and thus we can see
that software change in 1ibTorrent and rTorrent did not have much effect on the tests that we ran.

Thus to address RQ1, we can clearly see differences in power consumption based on Figure 11, between
libraries and versions but no real trend is apparent. We can see that as the system evolves its power
consumption evolves as well, but it does not follow, in this case study, a clear trend with respect to the
libraries (1ibTorrent) linked to it. Between all pairs of rTorrent versions and between all pairs 1ibTorrent
versions there were no significant differences found by T-tests at a threshold of 0.05. This could be due to
low number of samples, but nonetheless there is no clear trend in terms of difference of means. The take
away is that different configurations of libraries and library-clients react differently and a change in one can
cause a change in the other. The maximum difference in means between all compilable combinations of
libTorrent and rTorrent is about 0.275 watts, with a mean usage of 22.69 watts. rTorrent’s leech test
used 1.15 watts less than Vuze’s leech test.

6 RQ1: Does power consumption evolve over time?

In this section we address our first research question, RQ1, “Does power consumption evolve over time?”
Based on the results from our 3 case studies presented in the previous section we can clearly state that the
power consumption of a system is not constant over time. There is variation and sometimes a clear positive
or negative trend, but this often depends on the context, the configuration and the test being evaluated.

In Table 1 we can see that most of the cases resulted in a reduction but for some tests such as Vuze Idle
tests and rTorrent tests the power consumption varied but did not change much over time.

Why did the power consumption change? For Firefox we found that there was a general focus on
performance optimization, due to competing browsers such as Google Chrome, this eventually resulted
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being downloaded until around second 360 where the file was validated by rTorrent and then rTorrent idled

waiting for leechers. This plot summarizes 294 tests.
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in Morzilla attempting to re-architect Firefox in order to improve user-facing performance. For Vuze the
emphasis was less clear, we attributed one drastic drop to changes in how the application used the SWT’s
GUI API, as well as a mild performance improvements.

rTorrent had a complicated history with its relatively tight co-evolutionary coupling with 1ibTorrent.
Judging from the changelogs there was also some focus on improving performance as well as a focus on using
the optimal operating system call for IO operations. But the focus was not power performance, as bug fixes
and new features were added in each revision thus the reasons behind variation rTorrent are complex and
varied. We investigated the diffs between 0.8.5, 0.8.6, and 0.8.7 of rTorrent and observed changes in polling
behaviour (the move to a scheduler) but it does not explain why 0.8.7 does not exhibit the drop in mean
watts that 0.8.6 did.

Thus it seems that performance, as a non-functional requirement, is often relevant to power consumption
but it can modify power consumption in different ways. Vuze and Firefox seemed to consistently gain from
attention to performance while rTorrent was inconsistent.

In summary, the granularity of what we evaluate affects our ability to determine the fault behind a
change in power measurements. These results suggest that power consumption does indeed change, but
further motivate the need for more research on explaining why power consumption changes.

7 RQ2: What software metrics are relevant to power consump-
tion?

This section addresses RQ2: what software metrics are relevant to power consumption? We investigate the
relationship between OO metrics, and process metrics and power consumption.

7.1 CKJM Metrics and Power Consumption

The extended CKJM metrics [14,23] suite relies on compiled Java bytecode to extract classes, exceptions,
methods, calls to other methods and classes, call graphs, field visibility and field accesses in order to calculate
a raft of OO metrics based around coupling, cohesion, fan-in, fan-out, and size measures.

For each test we evaluated the effect of OO software metrics on power consumption. Using the extended
CKJM metrics suite [14, 23] we measured the metrics of each version of Vuze tested and investigated the
effect of various metrics on power consumption. Our primary tool is Spearman-rho rank based correlation.
We chose rank based correlation because we hope to provide recommendations to programmers later, thus
knowing that an increase in one measure correlates to an increase in power consumption is quite valuable.
Most of the CKJM metrics did not rank-correlate with any level of statistical significance so we will not
discuss them, and those with enough statistical significance are unlikely to be significant after correcting for
multiple hypotheses.

We did not execute CKJM metrics on Javascript or C++ code (rTorrent and Firefox) as the CKJM
metrics suite we used did not support those languages and only supported Java byte-code [14,23].

Table 2 depicts the Spearman-rho correlation (p) and p-values (p) of mean OO metrics and mean-watts
and the change in mean-watts (DX mean watts). Conversely, table 3 depicts the Spearman-rho correlation
and p-values of mean change in OO metrics and mean-watts and the change in mean-watts (DX mean watts).

7.1.1 Vuze Idle Test

Software Metrics and Power Consumption: to address RQ2 about software metrics for this test,
change in mean watts correlated with a change in mean DAM (p = —0.334, p = 0.026) and a change in mean
MOA (p = 0.315, p = 0.037), see Table 3. Data access metric (DAM) is the ratio of private and protected
attributes versus the total number of attributes in a class [14]. Measure of aggregation (MOA) is the measure
of count of fields in a class that derive from user provided classes [14]. Total mean watts rank-correlated with
changes in polymorphic measures such as depth in inheritance tree (DIT) (p = —0.373, p = 0.013), changes
in DAM (p = —0.324, p = 0.032), and changes in number of children (NOC) [14] (p = 0.369, p = 0.014), in
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Mean Watts DX Mean Watts
Idle p Idlep Leechp Leechp | Idlep Idlep Leechp Leech p

WMC 0.146  0.338 0.184 0.225 | -0.094 0.539 -0.040 0.796
DIT -0.250 0.098 -0.374 0.011 | 0.140 0.360 -0.024 0.874
NOC 0.250  0.098 0.374 0.011 | -0.140  0.360 0.024 0.874
CBO 0.166 0.274 0.231 0.127 | -0.126  0.409 0.019 0.900
RFC 0.159  0.298 0.160 0.293 | -0.100 0.512 -0.018 0.904

LCOM 0.137  0.370 0.191 0.210 | -0.096  0.529 -0.039 0.801

Ca 0.166  0.275 0.230 0.129 | -0.125  0.415 0.021 0.893
Ce 0.175  0.250 0.056 0.712 | -0.036  0.812 0.136 0.372
NPM 0.126  0.408 0.183 0.229 | -0.098  0.520 -0.059 0.698
LCOM3 | 0.106 0.489 0.218 0.151 | -0.049  0.750 -0.151 0.323
LCO 0.143  0.349 0.139 0.363 | -0.090 0.557 -0.003 0.983

DAM | -0.004 0.980 -0.100 0.512 | 0.108 0.479 -0.120 0.430
MOA | -0.127 0.404 -0.315 0.035 | 0.152 0.319 0.029 0.850
MFA -0.259  0.086 -0.076 0.621 | 0.060 0.695 0.064 0.676
CAM -0.220 0.147  -0.335 0.024 | 0.106 0.486 0.063 0.680

IC -0.259  0.086 -0.076 0.621 | 0.060 0.695 0.064 0.676

CBM -0.259  0.086 -0.076 0.621 | 0.060 0.695 0.064 0.676

AMC 0.105 0.494 -0.119 0.437 | 0.043 0.779 0.036 0.816

Table 2 — Spearmean-rho (p) correlation and p-value of correlation between Vuze Idle and Vuze Leech test and
mean CKJM metrics and mean watts for those tests.

Mean Watts DX Mean Watts
Idle p Idlep Leech p Leech p Idle p Idle p Leech p Leech p

WMC -0.058 0.710 0.176 0.254 | -0.063 0.686 -0.123 0.426
DIT -0.373 0.013 0.075 0.629 | -0.296 0.051 -0.103 0.504
NOC 0.369 0.014 -0.073 0.640 0.290 0.057 0.112 0.467
CBO 0.174  0.259 0.142 0.359 | -0.008 0.961 0.236 0.123
RFC -0.045 0.772 0.232 0.129 | -0.251 0.101 -0.047 0.762

LCOM -0.060  0.700 0.152 0.324 | -0.050 0.746 -0.120 0.437

Ca 0.121 0.434 0.109 0.482 | -0.005 0.973 0.205 0.182
Ce 0.148 0.338 -0.059 0.702 0.124 0.423 0.057 0.712
NPM -0.021  0.890 0.170 0.269 | -0.120 0.438 -0.184 0.231
LCOM3 | -0.293 0.054 0.097 0.531 | -0.295 0.052 -0.171 0.268
LCO 0.101  0.513 0.240 0.117 | -0.032 0.836 0.042 0.785

DAM | -0.324 0.032 0.166 0.281 | -0.334 0.026 -0.168 0.274
MOA 0.257  0.092 -0.041 0.793 | 0.315 0.037 -0.078 0.616
MFA -0.151  0.328 0.222 0.147 | -0.211 0.169 0.051 0.745
CAM 0.073  0.637 -0.253 0.098 0.079  0.610 0.155 0.315

IC -0.151  0.328 0.222 0.147 | -0.211 0.169 0.051 0.745

CBM -0.151  0.328 0.222 0.147 | -0.211 0.169 0.051 0.745

AMC 0.124 0.421 0.153 0.322 0.074 0.631 -0.120 0.438

Table 3 — Spearmean-rho (p) correlation and p-value of correlation between Vuze Idle and Vuze Leech test and
mean change in CKJM metrics and mean watts for those tests.
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Table 3. These correlations are interesting and suggest that we need more data and more study to further
tease out relationships if they exist.

7.1.2 Vuze Leech Test

Software Metrics and Power Consumption: to address RQ2 for this test we used the same method-
ology as the last test for investigating OO software metrics related to these results. In this test, no metric
correlated with statistical significance with the change in watts between versions. Mean Depth of Inheritance
(DIT) (p = —0.374, p = 0.011), mean number of children (NOC) (p = —0.374, p = 0.011), mean measure
of aggregation (MOA) (p = —0.315, p = 0.035), and mean Cohesion Among Methods of Class (CAM)
(p = —0.335, p = 0.024) all rank-correlated with mean watts (and each other, see Table 2). Thus there was
an interesting correlation between OO structural size metrics and mean watts. In the future, we want to
test more Vuze versions, and other systems, in order to improve reliability.

7.2 Process Metrics: Lines of Code and Churn

Process metrics, such as churn, and size metrics such as lines of code (LOC) could correlate with power
consumption. In our prior work [10] we report a lack of or a weak correlation with LOC, and for the
most part that is confirmed in this section, but not for every case. Instead we find that Firefox and Vuze,
when evaluated at a fine-grained level do not tend to exhibit churn correlations with power consumption or
difference in power consumption, yet rTorrent does.

7.2.1 Churn Measures

Churn is viewed as the change in lines and files between two versions of a software system. It can be measured
absolutely or relatively against the later or newer version. We leverage the churn measures from Nagappan
et al. [20]. These measures are between versions of the systems and we only measure files with source code
file extension such as .java, .cpp, .js, etc.

Added lines are the number of new lines added to the new system.

Removed lines are the number of lines removed from the old system.

Churned Lines are sum of number of added and removed lines.

Total Files is the total files in the new system.

File Churn is the total files modified divided by the total files in the new system.
LOC is the total lines of code from source code files in the new system.

ChurnLOC is the Churned Lines divided by the LOC.

We measured these values from each consecutive version of the software that we tested for Vuze, Firefox
and rTorrent. We sought to find if there was relationship between mean watts and these metrics. We also
measured the difference in mean watts between versions and investigated if churn would correlate with those
measures.

7.2.2 Firefox and Churn

For Firefox, depicted in Table 4 we can see that the only correlations with a p-value less than 0.05 are
total files and LOC, but these measures are very weakly correlated with mean watts or mean changed watts.
The rest of the correlations are very low and have high p-values. Yet for Electrolysis total files and LOC are
negatively correlated with Spearman-rhos less than —0.27. We conclude for Firefox, given our specific tests,
that churn does not correlate with mean watts or a change in mean watts, but the high p-values imply we
might need more data to make this statement with any sort of statistical significance.
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Firefox Firefox Electrolysis
mean W p dx mean p | mean W p dx mean P
Added Lines 0.004 0.932 -0.055 0.293 0.063 0.202 -0.001  0.990
Removed Lines 0.013 0.812 -0.034 0.521 0.085 0.083 0.047 0.342
Churned Lines 0.009 0.866 -0.053 0.314 0.075 0.126 0.019 0.705
TotalFiles 0.142 0.007 0.035 0.502 -0.295 0.000 0.035 0.472
File Churn -0.005 0.930 -0.038  0.467 0.064 0.190 0.020 0.678
LOC 0.133 0.012 0.042 0.431 -0.270 0.000 0.032  0.508
ChurnLOC 0.006 0.907 -0.053 0.319 0.076  0.122 0.018 0.707
mean Watt 1.000 NA 0.675 0.000 1.000 NA 0.477 0.000
dx mean 0.675 0.000 1.000 NA 0.477  0.000 1.000 NA

Table 4 — Firefox Churn Metrics versus mean watts using Spearman-rho rank correlation

7.2.3 Vuze and Churn

For Vuze, depicted in Table 5 no churn measure or size measure was statistically significantly correlated
with mean watts or mean changed watts. The p-values are so high they defy interpretation, in both the idle
test and the leech test.

7.2.4 rTorrent and Churn

For rTorrent, in Table 6, we can see some positive response between churn and size metrics and mean watts
and mean change watts, but only in the rTorrent version tests and not if the granualarity was 1libTorrent
versions. For the rTorrent version tests we can see, added lines, removed lines, churned lines, file churn, and
ChurnLLOC (relative churn over lines) all correlate with meant watts. Relative churn, ChurnLOC correlates
the most, and has a strong Spearman rho correlation of 0.71 and a p-value of 0.001. Added lines, removed
lines, and churned lines all had p-values less than 0.01 and medium to strong Spearman rho correlations
greater than 0.64. Thus for the rTorrent tests we observe that churn does matter and does relate to
mean-watts of the test.

With such high correlations can we predict the mean watts? Given rTorrent’s correlations with
some churn measures we created linear models to see if we could predict the mean watts of the system.
Using a linear model for mean watts, while controlling for size by including LOC, we can achieve adjusted-
R? values between 0.1 and 0.26 using log(0.5 + addedLines) (R? = 0.26), log(0.5 + removedLines) (R? =
0.24), log(0.5 + churn) (R?* = 0.26), or ChurnLOC (R? = 0.10). Without log scaling the raw churn
values the R? value is much less, but this is expected as the linear correlations with these measures and
mean watts is low, but they have high rank correlations. In all of the models LOC’s coefficient is not
statistically significant. Both coeflicients of the independent variables in the ChurnLOC + LOC model
were not statistically significant. Furthermore our models are simple, as they consist of only 2 independent
variables because of heavy multi-colinearity between the size and churn measures, and even between LOC
and the other measures. The positive correlation and the positive linear model coefficients indicates that
churn measures are positively correlated with mean watts for rTorrent.

The rTorrent results make it very apparent that the granularity of the testing and the kind of testing
definitely matter. This suggests that to better model power we need more kinds of code executed as well
more use cases.

7.3 Summary

Our investigation leads us to conclude that there is some promise in OO metrics, but we need more data.
Also, we need a wide variety of tests and systems before we can generalize. Perhaps OO metrics are not
going to relate to power consumption because they might not represent the dynamic run-time qualities of a
system that would affect power consumption. It is apparent that the code that is executed during a test has
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Vuze Idle Vuze Leech
mean W p dx mean p | mean W p dx mean P
Added Lines -0.031 0.843 0.151 0.328 -0.031 0.843 0.151 0.328
Removed Lines -0.154 0.319 -0.038  0.806 -0.154 0.319 -0.038  0.806
Churned Lines -0.040 0.795 0.119  0.440 -0.040 0.795 0.119  0.440
TotalFiles -0.108 0.484 0.006 0.969 -0.108 0.484 0.006 0.969
File Churn 0.085 0.584 0.063 0.686 0.085 0.584 0.063 0.686
LOC -0.055 0.725 0.123 0.427 -0.055 0.725 0.123 0.427
ChurnLOC -0.046 0.767 0.105 0.499 -0.046 0.767 0.105 0.499
mean Watt 1.000 NA 0.556 0.000 1.000 NA 0.556 0.000
dx mean 0.556 0.000 1.000 NA 0.556 0.000 1.000 NA

Table 5 — Vuze Churn Metrics versus mean watts using Spearman-rho rank correlation

rTorrent libTorrent
mean W p dx mean p | mean W p dx mean P
Added Lines 0.688 0.002 0.495 0.043 0.392 0.119 0.279 0.277
Removed Lines 0.640 0.006 0.498 0.042 0.475 0.054 0.287 0.264
Churned Lines 0.667 0.003 0.505 0.039 0.395 0.117 0.297 0.248
TotalFiles -0.159  0.543 0.196  0.452 -0.272  0.291 0.059 0.821
File Churn 0.588 0.013 0.306 0.232 0.110 0.673 0.201 0.439
LOC -0.159  0.541 0.189 0.468 -0.289  0.260 0.049 0.852
ChurnLOC 0.708 0.001 0.468 0.058 0.444 0.074 0.267  0.300
mean Watt 1.000 NA 0.598 0.011 1.000 NA 0.784 0.000
dx mean 0.598 0.011 1.000 NA 0.784  0.000 1.000 NA

Table 6 — rTorrent and 1ibTorrent Churn Metrics versus mean watts using Spearman-rho rank correlation.
Note, this shows the same set of tests broken down by rTorrent churn first, then 1ibTorrent churn.

a significant effect on the power consumption and thus if we only test and study two main code paths we
are probably missing what the changes in the system are related to. Thus we need more tests that exercise
more code in more systems to definitely say anything more about static OO metrics and process metrics and
how they relate to power consumption. The response to churn by rTorrent is interesting and suggests that
in some scenarios churn might be relevant to power consumption, yet it was not evident in Firefox or Vuze
tests.

8 Difficulties Faced While Green Mining

There were patterns that we encountered when dealing with the problem of compiling, building, packaging,
configuring, executing, power monitoring, and testing multiple versions of a software application. Table 1
relates the issues discussed in this section to each case study undertaken.

8.1 Compilation

Compiling binaries is a constant issue in MSR studies because of the evolving requirements of a system, as
well as changing implicit dependencies. Furthermore not ever commit is made to be immediately compilable.

The change of build environment can cause numerous headaches. This is evident because distributions
such as Debian and Ubuntu have many volunteers solely dedicated to building new versions of single packages
within the distributions’ ecosystem.

For Firefox we avoided compilation entirely because we relied on nightly builds that were distributed by
Morzilla to allow people to alpha-test the latest Firefox commits.

Compilation was confounded by evolving compilers and evolving language specifications (C++) as well
as changes in build systems.
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8.1.1 Compilation of Vuze

In total we built 30% of all versions of Vuze from its Subversion repository. We ran into numerous problems,
the build system tended to change over time, Eclipse was popular, ant was popular and plain javac was
popular for a time. Build instructions were sparse and not very trust-able. Thus in our compilation history
there are large swathes of Vuze which do not compile given our compilation scripts. In terms of ant, targets
(goals) in the ant files would change and get in the way of building, thus we had to check the ant file for
particular targets first, before we called them (or build them unsuccessfully).

During the building of Vuze/Azureus we found there was a lot of development that was not being compiled
into the main jar file. Thus we had to try to address branches, and branches in development. We did not
successfully address all of these concerns.

8.1.2 Compilation of rTorrent and libTorrent

One of the first problems with investigating software changes that requires dynamic tests is building the
software. rTorrent depends on libTorrent and the documentation is not always clear which versions of
libTorrent are compatible with which versions of rTorrent.

Furthermore, as rTorrent evolved, so did GCC. The evolution from GCC3 to GCC4 was a major shift,
especially in adherence to C++ standards, the C++ standard libraries and name-spaces. Changes in GCC
made most of rTorrent and libTorrent uncompilable without patching.

In order to build many versions of rTorrent and libTorrent on Ubuntu 11.04 machines we had to
produce patches for at least each major version of 1ibTorrent and rTorrent. Most patches added header
includes such as cstring, cstdio, cstddef, inttypes algorithm, and functional. Our build scripts had
to try the relevant patches that we had manually developed for specific versions on versions we did not
manually develop patches for. Often this patch application would fail.

8.2 Library Compatibility

Library compatibility becomes a larger concern when one investigates a software ecosystem where different
configurations of versions of applications could have drastically different power consumption behaviour.
Systems change and so do compilers and development environments. As the environment changes many
applications suffer bit rot and become more difficult to build.

The testbed to test for power consumption must be constructed, but the software installed might not
be compatible with the intended applications. Library compatibility was not an issue with Firefox because
they used statically compiled libraries for many of their dependencies, but in rTorrent, 1ibSigc++ changed
during the evolution of rTorrent and the older versions of rTorrent and libTorrent do not reflect this
reality.

Vuze tests could be confounded by the underlying widget toolkit used as well as the version of the JDK
and JVM used.

rTorrent was an interesting case, while we were fortunate not to run into library issues with Firefox or
Vuze, rTorrent had a kind of development where its UI, rTorrent, was closely coupled with the 1ibTorrent
library. This caused configuration issues, because rTorrent would need a specific version of 1ibTorrent or
better to compile and to run. The need for pairwise testing of valid rTorrent and 1libTorrent candidates
shows that this could be a serious problem if one was testing an application dependent on more than 1
important external library. Also rTorrent relied on 1ibSigc++, which changed include-file locations and
thus rTorrent had to be patched. Sometimes there were more serious errors, but the sources of errors were
often not consistent between versions. Worse, some headers, if included would cause errors in modules, thus
we could not just include every single header. We tried to address this by applying manually written patches
to rTorrent, but were not always successful.

As systems evolve so do their libraries, older versions of the system are often difficult to run on newer
operating systems. This could be remedied by virtualization or building images of an appropriate operating
system. Unfortunately this would add the operating system as another source of variation.
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8.3 Spurious GUI Events and GUI Issues

GUIs are difficult to control, hard to read, interpret, and parse automatically and fraught with peril. In
all three case studies GUIs caused problems. In Vuze and Firefox numerous modal dialogs needed to be
dispatched and canceled, in rTorrent a terminal had to be provided for the text-based ncurses Ul to run
in. Furthermore Vuze would start other applications automatically that would have to be closed.

These issues lead to drastic measures where every few seconds the driver must check the window in
focus and check for other spurious windows. This is further compounded by changes in UI behaviour as the
program evolves. The GUI driver has to address changes in behaviour over time.

rTorrent was had a very stable UI that did not require any interaction. Firefox and Vuze Uls were
dynamic and sometimes slightly changed their Uls between versions.

One possible solution to this issue would be a general purpose dialog canceling GUI driver that dismissed
any popups or dialogs immediately. We achieved repeatable window placement performance from XMonad, a
tile-able window manager, and would recommend that Ul window place be taken into account while testing.
A maximization keyboard shortcut could be enough to ensure appropriate window placement.

8.3.1 Firefox UI Issues

In the case of Firefox we ran into many GUI related issues. When Firefox starts up for the first time it often
asks the user if they want Firefox to be the default browser. Often this dialog is modal and thus must be
addressed before anything else can be done in Firefox. When Firefox starts up a second time it might execute
the default browser check again, or might ask a question about restoring the previous session. Another kind
of pop-up is the check for updates dialog, sometimes Firefox will check for updates or check for extensions.
To address these confounding issues which can impede the application starting, we created logic in our GUI
driver to detect spurious dialog boxes and press escape to cancel them. While the Firefox tests ran we also
had to check to see if the browser was in focus.

8.3.2 Vuze UI Issues

Vuze/Azureus is a GUI application, it is full of dynamic self-updating behaviour. Every-time it would
start-up, pop-ups and dialogs would appear. Some pop-ups offered to download “Download Accelerators”,
other pop-ups would check for updates and offer to update our version of Vuze/Azureus for us. Some of
these dialogs might be modal so we had to script our GUI driver to cancel all of these dialogs. This was
complicated further by the application opening the Vuze/Azureus blog within Firefox. We had to program
the GUI driver to detect if Firefox was open, switch to the Firefox window and close it immediately.

8.4 Evolving Application Configuration and Cleaning up State

In all tests we needed to carefully scrub not only the testbed where the programs were run, but other
directories including our home directories in order to avoid cached configuration information or cached
downloads. Vuze was particularly difficult because it changed its save file behaviour and made its own
directories within the current user’s home-directory that had to be deleted. The dot files and dot directories
that contained configuration information often had to be deleted as well. In all cases configuration directories
were automatically created, and thus had to be deleted. If one could re-image quickly this difficulty would
be rectified.

The testbed had to be cleaned up as well. Old testbed that were inadvertently running needed to be
cleanly and clearly killed off before a new test could run.

In operating systems like Linux caching of executables is a concern because it affects start-up time and
if the disk needs to be read. By avoiding peripheral access power is generally saved but at the cost of test
accuracy.

One possible solution to the state problem is to re-image the machine under test and reboot after each
test.
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8.4.1 Firefox

Firefox is a complicated piece of software with many user-facing customization stored within its profile. We
had to delete the profile from /.mozilla each time to avoid cache effects. This had the side effect of causing
Firefox to build a new profile each and every time.

8.4.2 Vuze

Running Vuze/Azureus was not easy, we had to make a script that could invoke the jar file safely with all
the necessary extra dependency jar files. We were fortunate not to run into library incompatibilities when
trying to run Vuze/Azureus. Furthermore the behaviour of Vuze/Azureus changes over time. Our tests on
revisions in the r12000 to r13000 range showed that the download directory would be local, while r25000
and greater revisions tended to create a download directory called /Vuze Downloads. Thus per each run
we had to delete all the configuration directories and the file download directories. Without deleting the
download directory, our client would simply validate a file and start seeding it.

8.4.3 rTorrent

For rTorrent we could simply delete the download directory over which we had explicit control. rTorrent
was the least troublesome of the applications in terms of stored configuration.

8.5 Remote/Network Effects

We did not wish to store test data on the testbed, for worry of disk fragmentation and the disk filling up.
Thus we transferred the results of a test remotely to another machine. Furthermore we remotely stored
many of the compilations and snapshots of a programs we tested. Thus if the network was disconnected and
did not reconnect itself valuable test time would be lost.

Some of our tests relied on the network as well, thus network failure had to be monitored as it could
affect the test. Imagine a BitTorrent or Firefox test with no accessible content to download or view. Such a
test would give spurious results.

Remote content is also a concern. For our Firefox tests we remotely hosted some test content, but
dynamic content is hard to mirror and emulate, especially if there are advertisements and AJAX. The more
dynamic a webpage is, the harder it is to consistently test it.

Other issues include checking for updates and auto-updating, one should investigate the applications
being tested and try to avoid exercising these features unless it is the intent of the test.

Remote network effects can be avoided in some cases by careful routing or by isolating a machine from
the network completely, which is not feasible for all tests.

8.6 Appropriate Peripherals

Our BitTorrent tests (both rTorrent and Vuze) occurred on a local area network, using Ethernet. This
means that the cost of communication would be quite low compared with WiFi. We were not at liberty to
use BitTorrent over WiFi but it would have been interesting to observe the effect.

Thus when one builds a test, one has to be aware of the peripherals (network adapters, disks) that might
affected such a test.

8.7 Temperature: Heat and Cooling

The temperature of the testbed should be maintained constant, because if the room temperature changes the
behaviour of the fans within the testbed can affect the power recorded during a test. A change in exposure
to sunlight could cause an idle 1W difference in desktop machines. Since a system under load tends to be
hotter, one is often measuring a complex response of the cooling system spinning up to counteract the heat
detected by the case and CPU heat sensors. Furthermore if the building in which the testbed is stored has
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different heating or cooling behaviour during different seasons tests recorded in winter could be very different
than tests recorded in summer. One problem with ACPI and batteries is that they often lack temperature
circuitry and cannot correct their measurements for temperature.

One possible solution is to place machines under test in a temperature controlled environment, much like
an incubator, as it is easier to heat a device than to cool it.

8.8 Mining Software Repositories

One of the issues facing anyone involved in green-mining or the investigation of software power consumption
relevant to existing software is that there is a dearth of power trace repositories. In this paper we tested
multiple systems and produced numerous power consumption traces from numerous tests, but it is our hope
that in the future practitioners who do this kind of work will be record their power consumption traces in a
software repository. These power trace repositories would leverage the resources of the stakeholders involved
and hopefully would provide mining software repositories researchers with a wider variety of data than they
could generate themselves. One of the major issues facing this particular work is the lack of available traces,
with the ever increasing focus on software power consumption we suspect future MSR, researchers will be
able to leverage power consumption traces from performance test repositories for tests they did not write,
and for software they did not actually test.
Future avenues of this work relevant to mining software repositories include:

Normalization of power measurements from different operating system images. Based on our find-
ings regarding compilation and libraries How can we combine measurements from different machines
or VMs and different operating systems versions in order to get a clear understanding of the effect that
software maintenance has on power consumption?

How to model power consumption based on multiple kinds of tests. One test will not fully exer-
cise the system or cover all the relevant tasks, thus when one tests a system and monitor power
consumption how can one combine these measurements later into a coherent model? We encountered
this problem as we could not clearly combine our Idle Vuze and Leech Vuze tests.

From a diff-level perspective, what structures and tokens affect power consumption. Instead of
a purely metric/structural approach, are there code tokens or topics of code tokens that closely related
to power consumption. These more semantically oriented models would likely prove of immediate use
to practitioners.

Temperature, how to handle inconsistency. If one parallelizes tests then the temperature of the ma-
chines under test is unlikely to be constant and could cause a bias.

More tests, more systems, more code. This study suffers heavily from not having enough data in some
case studies to make a statistically significant distinction between some measurements. We need
repositories of this kind of information.

Exploring process metrics and power consumption. We tested a very small subset of measures, but
the process metrics (relevant to churn) are particularly relevant to MSR research. There needs to be
more investigation into conveniently extracted measures and their relationship to power consumption.

8.9 Threats to Validity

This work faces numerous threats to validity, but we hope that our experiences, which we have presented
in this paper, will allow others to carry out similar experiments with more reliability, accuracy and fewer
threats.

Construct validity is threatened by the assumptions regarding the granularity or meaning of revisions/-
commits and snapshots. Fortunately measuring power consumption of a system is very concrete, but we
suffer from the observer effect of whether or not we are measuring the software that we are testing. We
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also place meaning on software change even though there are obviously many meanings and purposes behind
change. Furthermore our tests were not necessarily built to observe or exploit the software in terms of the
code that was changed. Future work should address the coverage of the tests that we do run.

Internal Validity: our OO metrics results are largely inconclusive because after p-value correction for
multiple hypotheses these p-values would be insignificant. The measurements from the power monitor are
not extremely accurate (reported with a precision of 0.1 W) and wattage measurements are actually estimates,
so there can be measurement error. One concern in this work is if it was software change or if it was the
environment that induced variability in measurement. Measurement error is a concern on modern systems,
as well as the overhead of the testbed, as often we are measuring its interaction as well.

Ezxternal Validity: one obvious weakness of this approach is that the tests are very system specific.
Generalizability could be improved with more test diversity and more systems; for instance some software
has hardware specific optimizations. External validity was also hampered by the lack of variation in terms of
hardware. Unfortunately these tests are time consuming and difficult to setup, thus data is limited. Future
work will address this by evaluating more software systems.

Reliability: our methodology is laid out clearly; others could replicate this study with their own equip-
ment. The reliability of the OO metrics correlations are low. The purpose of this paper was to lay out this
methodology and hence we feel this aides the reliability of the result.

9 Conclusions

In this paper we proposed a methodology of relating software change to software power consumption and
we applied this methodology in 3 case studies on 3 distinct systems. In our case studies we observed the
effects of intentional performance optimization within Mozilla Firefox and observed a steady reduction in
power consumption of Firefox over time. We showed the the Electrolysis branch of Firefox 3.6, which was
dedicated to improving Firefox performance with a multi-process model, achieved lower power consumption
than the versions before it. With savings of 0.25W, if 4 million users upgraded to the electrolysis branch
there could be a savings of 1.0 Mega-Watt per hour worldwide; this is equivalent to saving an American
household’s monthly power use [28] per hour!

Our Azureus/Vuze tests were across the actual revisions of the project, we showed that even with a small
number of revisions that power relevant behaviour was visible. We then tried to relate OO software metrics,
such as depth of inheritance and number of children to power consumption. We demonstrated the difficulty
of building and testing an library that had high coupling with its client application (rTorrent), but we could
not find any clear power relevant interaction between the library versions and the client version. We found
evidence of some effect, but we found that this relationship depended greatly on the structure of the tests
executed. Future work will include a more detailed evaluation of which kinds of changes lead to changes in
power consumption.

We found that power consumption of rTorrent tests correlated with churn measures, but for other
systems such as Vuze, and Firefox no such correlation between their churn metrics and mean wattage was
found.

We discussed our encounters with various common difficulties, that included UI noise such as dialog
windows, pop-ups and Ul based exceptions, as well as cached configurations, library configuration issues,
and build issues compounded by an evolving environment.

Our case studies demonstrated the feasibility and the promise of the green mining methodology: measur-
ing the power consumption of tests of multiple versions of a software system by combining power measurement
and mining software repositories methodologies.
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