
A Specific Construction of a Versal Torsor

under a Finite Group G

by

Zhaowei Zeng

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

Department of Mathematical and Statistical Sciences

University of Alberta

© Zhaowei Zeng, 2023



Abstract

Versal torsors arise as an important tool in algebraic groups and algebraic

geometry for the universal perspective they provide on the behaviour and

properties of other torsors under the same group. Two classic examples of

versal torsors are constructed from general linear groups and affine spaces,

respectively, described in lecture notes of Jean-Pierre Serre. The objective of

this thesis is to find an algebraic proof for the second construction under finite

groups without the use of heavy machinery from Galois cohomology.

The content of the different chapters is as follows:

Chapter 1 is an introduction to the goals of the thesis.

Chapter 2 is dedicated to give the readers a comprehensive introduction to

étale algebras and Galois algebras.

Chapter 3 and 4 are general discussions on quotients of varieties and torsors,

respectively, followed by their behaviour in our special case.

Chapter 5 presents two classic constructions of versal torsors under finite

groups and lastly gives a new proof for the construction from affine spaces.
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Chapter 1

Introduction

1.1 Background

The notion of versal torsors 1 arises in the theory of algebraic groups and

becomes an important tool in many areas. In Galois cohomology for instance,

one can show that two cohomological invariants are equal if and only if they

agree on a versal torsor, cf. [5] Part I Theorem 12.3. Using this result, Serre

computed the cohomological invariants of H1( , G) for some algebraic groups

G, cf. [5] Part I Chapter VI.

Versal torsors are also related to Noether’s problem. Let G be a finite

group and k a field. Noether’s problem asks whether the following statement

is true: there exists an embedding G ↪→ GLn(k) for some n such that, if

K is the subfield of k(x1, · · · , xn) fixed by the induced G-action, then K is

k-rational (i.e., is a purely transcendental extension of k).

For this, one may consider whether there exists a versal G-torsor X → Y

such that Y is a smooth and irreducible k-variety and its function field K is

k-rational. If an embedding G ↪→ GLn(k) in Noether’s problem exists, then

the second construction of versal G-torsors sketched in Section 1.3 gives such

a versal torsor. As a corollary, Noether’s problem turns out to have a negative

answer over Q for some finite groups, e.g., any group with a 2-Sylow subgroup

which is cyclic of order ≥ 8, cf. [5] Part I Theorem 33.16.

1Unless otherwise stated, the term “torsor” refers to a right torsor in this thesis, though
a left torsor can be defined analogously.
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1.2 Torsors and Galois algebras

The primary objective of the first part of this thesis is to examine the

various descriptions of torsors and explore how they are connected.

Let G be a finite group. We fix a base field k and a separable closure ks of

k, and denote by Γ the Galois group Gal(ks/k). The first notion of torsors is

developed within the category of finite Γ-sets and Γ-maps, cf. [17] I.5.2.

Definition 1.2.1 (Definition 2.2.1). An étale k-algebra is a finite direct prod-

uct of finite separable field extensions of k.

Let Γ act trivially on G.

Definition 1.2.2 (Definition 2.3.7). A G-torsor over Γ is a Γ-set X endowed

with a simply transitive right G-action such that the G-action is commutative

with the Γ-action.

Together with Γ- and G-maps, these G-torsors form a category. This cate-

gory will be demonstrated to be equivalent to the category of Galois G-algebras

over k and G-algebra homomorphisms.

Definition 1.2.3 (Definition 2.3.1). Suppose G is a finite group. A Galois

G-algebra over k is an étale k-algebra L on which G acts faithfully by automor-

phisms such that the G-action on L(ks) := Homk -alg(L, ks) by composing on

the right is simply transitive. A G-algebra homomorphism is a G-equivariant

k-algebra homomorphism.

It is readily seen by definition that we can assign to a given Galois G-

algebra L over k the G-torsor L(ks), see Subsection 2.3.1 for the details.

Example 1.2.4. Let L = k[G] denote the set of maps from G to k. It

is a k-algebra if endowed with point-wise addition, multiplication and scalar

multiplication. As a k-algebra, it is nothing but a direct product of |G| copies
of k; hence an étale k-algebra. L(ks) is the set of the |G| natural projections
onto k followed by the embedding k ↪→ ks. If we let Γ act on L(ks) by

composing on the left, then L(ks) is a finite Γ-set.
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Now we define a left faithful G-action on k[G] as follows:

G× k[G]→ k[G]

(h, f) ↦→
(︁
g ↦→ f(gh)

)︁
.

This gives a right G-action on L(ks): for any τ ∈ L(ks), g ∈ G, f ∈ k[G],

(τ · g)(f) = τ(g · f).

Together with the Γ-action above, it makes L(ks) a G-torsor over Γ.

An alternative notion of torsors can be found in the category of schemes

that plays an important role in a wider scope, cf. [12]. III.4. This perspective

is particularly useful when one considers schemes over an arbitrary base S.

Definition 1.2.5 (Definition 4.1.5). Suppose G is an fppf group scheme over

S. A G-torsor over S is an fppf S-scheme X with a right G-action such that

there is an fppf base change S ′ → S such that XS′ with the right GS′-action is

isomorphic to GS′ with right translation GS′-action. A morphism of G-torsors

over S is a G-equivariant S-morphism.

The connection between these two definitions may not be obvious at first

sight. However, ifG is (the constant group scheme associated to) a finite group,

which is the case we focus on in this thesis, then G-torsors in Definition 1.2.5

are precisely the spectra of Galois G-algebras. In this way, Definition 1.2.5

can be viewed as a generalization of the set-theoretic G-torsors introduced in

Definition 1.2.2, as expounded in Section 4.2.

There are several intermediate approaches that could also be discussed

such as those in [18] 2.1.1 and [13] 2.66. These approaches, however, are

also reduced to Galois G-algebras due to the assumption that G is finite,

so beginning with Chapter 4 we will exclusively use Definition 1.2.5 for its

generality and applicablity.

Galois cohomology is briefly introduced in Section 2.1. The classification

of torsors under finite groups is done in Subsection 2.3.2 with respect to Defi-

nition 1.2.2, though it could also be done purely in the category of schemes in

a more general setting.
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In Chapter 3, we discuss quotients of varieties and find an explicit example

of torsors to be the quotient map under a free group action. This particular

example will be essential in the subsequent constructions of versal torsors.

1.3 Versal torsors

The second part of the thesis is about a very special type of torsors, called

versal torsors. Roughly speaking, a versal torsor is a torsor that is locally

isomorphic to every other torsor under the same group. More precisely, any

G-torsor can be obtained by pulling back a versal G-torsor along some rational

points.

We fix a base field k0 and a finite group G for the rest of the section.

Definition 1.3.1 (Definition 5.1.1). A versal G-torsor over a k0-scheme S

is a G-torsor Q over S such that for every extension k of k0 with k infinite,

every G-torsor T over k, and every non-empty open subset U of S, there exists

x ∈ U(k) whose fiber Qx is isomorphic to T as a G-torsor.

There are two classic constructions of versal torsors described in the lecture

notes of Jean-Pierre Serre, c.f. [5] Part I Section I.5, briefly sketched as follows:

1. Choose an embedding of G into the general linear group GLn defined

over k0 for some n. The quotient map GLn → GLn/G is a versal G-

torsor.

2. Choose an embedding of G into the general linear group GLn defined

over k0 for some n. Let V be the affine n-space (hence G acts on V )

and V ′ the G-stable open subset of V with ker(g − 1) removed for all

1 ̸= g ∈ G. The quotient map V ′ → V ′/G is a versal G-torsor.

The classical proofs rely on the applications of Galois cohomology. Addi-

tionally, 2 is regarded as a corollary of 1, see Section 5.1.

We present a new proof showing directly that V ′ → V ′/G above is a

versal G-torsor. Notably, this approach differs from the traditional Galois

cohomology method and we outline the basic idea as follows:
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1. Given a G-torsor T (which must be the spectrum of some Galois G-

algebra L) over a field extension k of k0 with k infinite, to find a k-point

x that realizes T , it suffices to find a surjective G-algebra homomorphism

O(V )→ O(T ) = L.

2. Consider the k-vector space (L⊗k Vk)
G, denoted by H. It is canonically

in bijection with the set of G-algebra homomorphisms O(V )→ L.

3. We show that there is an element in H that corresponds to a surjection

using the fact that there are only finitely-many G-stable sub-k-algebras

of L, which proves the existence of a k-point x that realizes T .

4. We show that such k-points must be dense in V ′/G due to the density

of the orbit of x under the action of GLn(k0).
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Chapter 2

Étale algebras and Galois

algebras

The goal of this chapter is to give a general discussion of étale and Galois

algebras. We start with some main results in Galois cohomology. It studies

how properties of objects defined over a Galois extension2 of a base field “de-

scend” to those of objects defined over the base field by studying the actions

of Galois groups. In particular, Galois cohomology is used to classify objects

defined over a base field that become isomorphic over some Galois extension.

Étale algebras over a field k can be thought as a generalization of finite

separable field extensions of k such that finite (co)products exist in the en-

larged category. They are characterized by being isomorphic to split étale

algebras over some Galois extension of k, namely the direct product of copies

of the underlying field. We show they are equivalent to finite sets with con-

tinuous actions of the absolute Galois group, and the isomorphism classes of

étale algebras of dimension n over k are in bijection with H1(k, Sn) by Galois

descent.

Let G be a finite group. Galois G-algebras over k are a generalization of

finite Galois field extensions of k. They become isomorphic to the split Galois

G-algebras after base change to some Galois extension. Galois G-algebras are

equivalent to torsors for G, and their isomorphism classes are in bijection with

2In this article, the term “Galois extension” refers to a field extension that is Galois and
we refer to “Galois ring extensions” as Galois algebras.
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the first cohomology set H1(k,G).

2.1 Galois descent

2.1.1 First cohomology sets

The mail goal of this section is to introduce to the readers the first coho-

mology set. Although in general, the first cohomology sets could be defined

for so-called profinite groups, the only profinite groups in this thesis will be

Galois groups.

In this thesis, we fix a bask field throughout, and denote it by k unless

otherwise specified.

Definition 2.1.1. Let Ω be a (not necessarily finite) Galois extension of k.

The Krull topology on Gal(Ω/k) is the group topology defined by taking as a

basis of open neighborhoods of 1 the family of subgroups

{Gal(Ω/L) : L/k is a finite Galois subextension of Ω/k}.

Unless specified otherwise, all Galois groups in this thesis are endowed with

the Krull topology. Note that the Krull topology on any finite Galois group is

the same as the discrete topology.

Let Γ be a Galois group (endowed with the Krull topology).

Definition 2.1.2. Let A be a discrete topological space with a left Γ-action.

We say the action is continuous if the following equivalent conditions hold:

1. The map of the action

Γ× A→ A

(σ, a) ↦→ σa

is continuous.

2. For any a ∈ A, the Γ-stabilizer of a is open in Γ.

Definition 2.1.3. A (left) Γ-set is a discrete topological space with a continu-

ous left Γ-action. A (left) Γ-group is a Γ-set if Γ acts by group automorphisms.
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A morphism of Γ-sets (resp. Γ-groups) is a Γ-equivariant map (resp. group

homomorphism).

Let A be a Γ-group.

Definition 2.1.4. A 1-cocycle (or simply cocycle) of Γ with values in A is a

continuous map α : Γ→ A, σ ↦→ ασ satisfying the cocycle condition

αστ = ασ
σατ .

We denote by Z1(Γ, A) the set of all 1-cocycles of Γ with values in A. The

constant map 1 is clearly a cocycle, called the trivial cocycle.

Note that the cocycle condition implies that any cocycle maps 1 to 1.

Definition 2.1.5. A pointed set is a pair (X, x) of a set X and an element x

in X, often denoted by only X when the choice of x is clear from the context.

The element x is called the base point. A morphism of pointed sets is map

preserving the base point (so an isomorphism of pointed sets is nothing but a

bijection preserving the base point).

Example 2.1.6. The set Z1(Γ, A) is a pointed set with the base point being

the trivial cocycle.

Remark 2.1.7. If Γ acts on A trivially, then a cocycle is nothing but a contin-

uous group homomorphism from Γ to A.

Lemma 2.1.8. Let α be a cocycle of Γ with values in A and let a ∈ A. The

map

α′ : Γ→ A

σ ↦→ a−1ασ
σa

is again a cocycle of Γ with values in A.

Proof. See [3] Lemma II.3.9.

Definition 2.1.9. We define a relation ∼ in Z1(Γ, A) as follows: α ∼ α′ if

there exists an a ∈ A such that α′ = a−1ασa. In this case, we say α and α′ are
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cohomologous. It is easy to see that this relation is reflexive, symmetric and

transitive; hence an equivalence relation in Z1(Γ, A). We denote by H1(Γ, A)

the quotient set

H1(Γ, A) := Z1(Γ, A)/ ∼,

called the first cohomology set of Γ with coefficients in A. It is a pointed set

with the base point being the equivalence class of the trivial cocycle. If α is a

cocycle, we denote by [α] its equivalence class, called the cohomology class of

α.

2.1.2 Galois descent for vector spaces

We first introduce the notion of semi-linear actions. Let Ω be a Galois

extension of k with Galois group G.

Definition 2.1.10. Let W be a vector space3 over Ω. A G-action on W is

called semi-linear if it is k-linear and

∀w ∈ W,∀g ∈ G,∀s ∈ Ω: g(s · w) = g(s) · g(w).

For any G-set X, we denote by XG the set of fixed points of X under the

G-action. Very often XG has some additional structure induced from some

structure on X.

Theorem 2.1.11. Let V be a (possibly infinite-dimensional) k-vector space

on which G acts trivially. Then Ω ⊗k V endowed with the diagonal G-action

is a Ω-vector space and the G-action is semi-linear. Furthermore, the map

V → (Ω⊗k V )G

v ↦→ 1⊗k v.

is an isomorphism of k-vector spaces.

Proof. The first assertion is clear. Choose a k-basis B of V . Then we have

a k-vector space isomorphism V ≃ ⊕i∈Bk. Now it follows from Galois theory

3In this article, all modules are assumed to be left modules unless specified otherwise.
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that the map k → (Ω ⊗k k)G, x ↦→ 1 ⊗ x is a k-vector space isomorphism.

Thus, the map in question is again a k-vector space isomorphism as it respects

direct sums.

Theorem 2.1.12. Let W be a (possibly infinite-dimensional) Ω-vector space

with a semi-linear G-action. Then WG is a k-vector space with the trivial G-

action. Furthermore, there is a G-equivariant isomorphism of Ω-vector spaces

f : Ω⊗k W
G → W

s⊗k w ↦→ s · w,

where Ω⊗k W
G is endowed with the diagonal G-action.

Proof (taken from [9] Lemma 18.1). It is routine to show that the map f is

Ω-linear and G-equivariant. To see it is injective, suppose x =
∑︁m

i=1 si ⊗wi ∈
ker f , where si ∈ Ω and wi ∈ WG for all i. And we have f(x) =

∑︁m
i=1 si·wi = 0.

We may assume WLOG that wi’s are linearly independent over k since WG is

a k-vector space. Then it amounts to show that si = 0 for all i, namely wi’s

are linearly independent over Ω.

Assume towards a contradiction that there are m ∈ N and w1, · · · , wm ∈
WG such that these wi’s are linearly independent over k but not over Ω.

Let m be the minimum of such natural numbers. Then there are non-zero

t1, · · · , tm ∈ Ω such that
∑︁m

i=1 ti · wi = 0. Renaming t−1
1 ti to ti if necessary,

we may assume that t1 = 1. By assumption not all ti’s belong to k, say

t2 ∈ Ω \ k. Then there is a g ∈ G = Gal(Ω/k) such that g(t2) ̸= t2. Therefore,

the equation
∑︁m

i=2(g(ti)− ti) ·wi = 0 gives a linear relation among w2, · · · , wm

over Ω, which contradicts the minimality of m.

As for the surjectivity of f , consider an arbitrary x ∈ W . Suppose that

{α1, α2, · · · , αn} is a basis for Ω over k, and G = {gi : i = 1, · · · , n} with

g1 = id. Define yj =
∑︁n

i=1 gi(αj) · gi(x) for j = 1, · · · , n. Since G acts

semi-linearly on W , we have yj ∈ WG for all j. By Dedekind’s lemma, gi’s

are linearly independent over Ω as endomorphisms of Ω, so the n × n matrix

{gi(αj)} is invertible. In particular, x = g1(x) can be written as a Ω-linear

combination of y1, · · · , yn; hence lies in the image of f .
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Corollary 2.1.13. There is an equivalence of categories

{k-vector spaces} ↔ {Ω-vector spaces with semi-linear G-actions}

V ↦→ VΩ

WG ←[ W.

One can use the previous theorem to prove the Hilbert’s Theorem 90.

Let GLN denote the general linear group of degree N > 0 defined over k.

The functoriality of GLN induces a continuous action of Gal(Ω/k) on GLN ,

so we may consider the pointed set H1(Gal(Ω/k),GLN(Ω)).

Theorem 2.1.14 (Hilbert’s Theorem 90). The first cohomology set of Gal(Ω/k)

with coefficients in GLN(Ω) is trivial, i.e., H
1(Gal(Ω/k),GLN(Ω)) = 1.

Proof. The continuity of the Gal(Ω/k)-action on GLN follows from the fact

that GLN is representable, as shown in [3] Lemma III.7.16. The main theorem

is proved in [3] Proposition III.8.24.

2.1.3 Galois descent for algebras

Suppose K is a field extension of k. For any k-algebra L, we write the

tensor product K ⊗k L simply as LK when the base field k is understood.

Let A be a finite-dimensional algebra over k.

Definition 2.1.15. A k-algebra A′ is called a K/k-twisted form of A if they

become isomorphic over K as K-algebras, i.e.,

K ⊗k A ≃ K ⊗k A
′.

Example 2.1.16. The complex numbers C is a C/R-twisted form of R× R.

In descent theory, one can show that K/k-twisted forms of A correspond

to so-called descent data on AK , which then relates to the first cohomology

set. We give some results here that will be used later.

Definition 2.1.17. Let R→ S be a morphism of k-algebras. Let AutR- alg(S)

be the group of automorphisms of the R-algebra S.

11



For any k-algebra R, we define

Autk- alg(A)(R) = AutR- alg (R⊗k A) .

If ι : R→ S is a morphism of k-algebras, we define the map

Autk- alg(A)(ι) : AutR- alg (R⊗k A)→ AutS- alg (S ⊗k A)

f ↦→ idS ⊗Rf

under the identification S ⊗R R ⊗k A ≃ S ⊗k A. Thus, we have a functor

Autk -alg(A) from the category of k-algebras to the category of groups.

If Ω is a Galois (field) extension of k, then the functoriality of Autk -alg(A)

induces a Gal(Ω/k)-action on Autk- alg(A)(Ω). More explicitly, this action is

give by the map

Gal(Ω/k)×Autk- alg(A)(Ω)→ Autk- alg(A)(Ω)

(σ, f) ↦→ σf := σ ◦ f ◦ σ−1.
(2.1)

This action is continuous by [3] Lemma III.8.13 and the setup in [3] III.9.1, so

we may consider the pointed set H1(Gal(Ω/k),Autk -alg(A)(Ω)).

Note that the set of k-algebra isomorphism classes of Ω/k-twisted forms of

A is naturally a pointed set with the base point being the isomorphism class

of A.

Theorem 2.1.18. Let Ω be a Galois extension of k. There is an isomorphism

of pointed sets

{Ω/k-twisted forms of A}
k-algebra isomorphism

↔ H1(Gal(Ω/k),Autk -alg(A)(Ω))

defined as follows. Given a k-algebra A′ such that there is an Ω-algebra iso-

morphism f : A′
Ω ≃ AΩ, it corresponds to the cohomology class of the cocycle

α : Gal(Ω/k)→ Autk -alg(A)(Ω)

σ ↦→ f ◦ σ(f−1).

12



Conversely, given [α] ∈ H1(Gal(Ω/k),Autk -alg(A)(Ω)), it corresponds to the

isomorphism class of the k-algebra

A′ = {a ∈ AΩ | ασ(σ · a) = a for all σ ∈ GΩ}

whose k-algebra structure is given by the restriction of the algebra structure of

AΩ.

Under this correspondence, the isomorphism class of A corresponds to the

cohomology class of the trivial cocycle.

Proof. See the discussion before [3] Proposition III.9.1.

2.1.4 Galois descent for algebras with group actions

If A has further structure, a group action for example, descent formalism

often works similarly with respect to the structure on A. Throughout this

subsection, let G be a group.

Definition 2.1.19. A G-algebra over k is a k-algebra A on which G acts faith-

fully by automorphisms, i.e., there is an injective embedding G ↪→ Aut(A). 4

A homomorphism (resp. isomorphism) of G-algebras over k is a G-equivariant

k-algebra homomorphism (resp. isomorphism).

Without loss of generality, G can be identified with a subgroup of Aut(A),

namely the image of the defining embedding.

Let A be a finite-dimensional G-algebra over k and K a field extension of

k.

Definition 2.1.20. A G-algebra A′ over k is called a K/k-twisted form of A

if they become isomorphic over K as G-algebras.

Definition 2.1.21. Let R→ S be a homomorphism of G-algebras over k. Let

AutG -alg/R(S) be the group of automorphisms of an G-algebra S over R. One

can define as before a functor AutG -alg(A) from the category of G-algebras

4Here we understand that by a G-algebra in general it is not necessary that G ↪→ Aut(A).
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over k to the category of groups given by

AutG- alg(A)(R) = AutG -alg /R (R⊗k A) ,

where G acts on the second component of R⊗kA. Let Ω be a Galois extension

of k. It can be seen similarly that the functoriality of AutG -alg(A) gives a

continuous action of Gal(Ω/k) on AutG -alg(A)(Ω).

Note that the set of G-algebra isomorphism classes of Ω/k-twisted forms of

A is naturally a pointed set with the base point being the isomorphism class

of A.

Theorem 2.1.22. Let Ω be a Galois extension of k. There is an isomorphism

of pointed sets

{Ω/k-twisted forms of A}
G-algebra isomorphism over k

↔ H1(Gal(Ω/k),AutG -alg(A)(Ω)).

defined as follows. Given a G-algebra A′ over k such that there is an G-algebra

isomorphism f : A′
Ω ≃ AΩ over Ω, it corresponds to the cohomology class of

the cocycle

α : Gal(Ω/k)→ AutG -alg(A)(Ω)

σ ↦→ f ◦ σ(f−1).

Conversely, given [α] ∈ H1(Gal(Ω/k),AutG -alg(A)(Ω)), it corresponds to the

isomorphism class of the G-algebra

A′ = {a ∈ AΩ | ασ(σ · a) = a for all σ ∈ GΩ}

whose G-algebra structure is given by the restriction of the G-algebra structure

of AΩ.

Under this correspondence, the isomorphism class of A corresponds to the

cohomology class of the trivial cocycle.

Proof. See the discussion before [3] Proposition III.9.7.
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2.2 Étale algebras

2.2.1 Definition and first properties

In the category of field extensions of k, (finite) products and coproducts do

not exist. For example, C×C and C⊗R C are no longer fields. Étale algebras

over k can be thought of as an enlargement of the category of finite separable

field extensions of k such that this problem is fixed.

From now on, we fix a separable closure ks of k and an embedding k ↪→ ks,

and write Γ for the Galois group Gal(ks/k) for short.

Definition 2.2.1. A k-algebra L is called étale if L can be written as a finite

direct product of finite separable field extensions of k. A morphism of étale

algebras over k is a k-algebra homomorphism.

Étale algebras over k and k-algebra homomorphisms form a subcategory

of the category of k-algebras and k-algebra homomorphisms, denoted by Étk

or simply Ét if the base field k is understood from the context. We will show

that products and coproducts exist in Ét and are given by direct products and

tensor products, respectively.

There is a geometric interpretation of étale algebras. We recall étale mor-

phisms of schemes before we proceed.

Definition 2.2.2.

• A local homomorphism of local rings f : A→ B with maximal ideals mA

and mB is unramified if f(mA)B = mB and B/mB is a finite separable

extension of A/mA.

• Let f : X → Y be a morphism of schemes. Then f is unramified5 at

x ∈ X if f is locally of finite presentation at x and the natural map

OY,f(x) → OX,x is an unramified homomorphism of local rings. We say

f is unramified if it is unramified at every point x ∈ X.

5Some authors call such a property “G-unramified” and reserve the term “unramified”
for morphisms not necessarily locally of finite presentation but locally of finite type.
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• Let f : X → Y be a morphism of schemes. Then f is flat at x ∈ X if

OX,x is flat as an OY,f(x)-module. We say f is flat if it is flat at every

point x ∈ X.

• Let f : X → Y be a morphism of schemes. Then f is étale at x ∈ X if it

is flat at x and unramified at x. We say f is étale if it is étale at every

point x ∈ X.

Theorem 2.2.3. Let L be a k-algebra. The following are equivalent:

1. L is étale;

2. The morphism of schemes SpecL→ Spec k is finite and étale.

Proof. If L is étale, then L = L1 × · · · × Lm for some finite separable field

extensions Li/k for i = 1, · · · ,m. The morphism SpecL→ Spec k is finite and

flat since L is finite-dimensional as a k-vector space. To see it is unramified,

it then suffices to notice that the local homomorphisms are given by finite

separable field extensions k ↪→ Li.

Conversely, if the morphism of schemes SpecL→ Spec k is finite and étale,

then for any maximal ideal m ⊂ L, the natural homomorphism k ↪→ Lm of

local rings is unramified. This means that mLm = 0 · Lm = 0, so Lm is a finite

separable field extension of k. In particular, L has no non-zero nilpotent. Since

prime ideals of L that are contained in m are in one-to-one correspondence with

the prime ideals of Lm, no prime ideal of L is contained properly in m. This

implies that dimSpecL = 0. Noticing that L is a finitely generated k-algebra,

L is Noetherian; hence an Artin ring by [1] Theorem 8.5. Let m1, · · · ,mn be

the distinct maximal ideals of L. Then

∩ni=1mi ⊆ nil(L) = {0},

where nil(L) = {x ∈ L : ∃n, xn = 0} is the nilradical of L. Also mi and mj

are coprime whenever i ̸= j. By the Chinese remainder theorem (see e.g. [1]
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Proposition 1.10), the natural map

L→
n∏︂

i=1

L/mi ≃
n∏︂

i=1

Lmi

x ↦→ (x+mi)i

is a k-algebra isomorphism. Thus, L is written as a finite product a finite

separable field extensions of k and is étale.

Let L be an étale algebra over k. By a ks-point of L we mean a k-algebra

homomorphism from L to ks. The set of ks-points of L is denoted by L(ks).

Then there is a canonical Γ-action on the ks-points L(ks) = Homk -alg(L, ks):

Γ× L(ks)→ L(ks)

(σ, τ) ↦→ στ := σ ◦ τ.

Notably, this Γ-action is continuous when L(ks) is endowed with the discrete

topology and makes L(ks) a finite Γ-set. Indeed, let l1, · · · , lm be generators

of L over k as a k-algebra. For any τ ∈ L(ks), σ ∈ StabΓ(τ) if and only if σ

acts trivially on the finite field extension K = k[τ(l1), · · · , τ(lm)]. This implies

that StabΓ(τ) = Gal(ks/K), an open subgroup in Γ. Hence the Γ-action is

continuous by Definition 2.1.2.

Example 2.2.4. If L is a direct product ofm copies of k viewed as a k-algebra,

namely L = km endowed with component-wise addition, multiplication and

scalar multiplication, then L is an étale k-algebra called the split (or trivial)

étale k-algebra of dimension m. We denote it simply by km when no confusion

is possible.

The ks-points of k
m are exactly the m natural projections followed by the

embedding k ↪→ ks on which Γ acts trivially.

Example 2.2.5. If L is a finite separable field extension of k with a primitive

element γ ∈ L, then L(ks) is in bijection with all roots of the minimal polyno-

mial of γ over k. In particular, we have dimk L = |L(ks)|. If, furthermore, L

is Galois, then L(ks) is in bijection with Gal(L/k), a quotient of Γ by a clopen

subgroup.
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Lemma 2.2.6. Suppose Li is an étale algebra over k for all i = 1, · · · ,m.

Then the ks-points of the direct product of Li’s canonically correspond to the

disjoint union of the ks-points of individual Li’s. More precisely, the map

m∐︂
i=1

Li(ks) ≃

(︄
m∏︂
i=1

Li

)︄
(ks)

τ ∈ Li(ks) ↦→ τ ◦ pi

is a bijective morphism of Γ-sets, where pi is the canonical projection from∏︁m
i=1 Li onto Li and ⨿ denotes the disjoint union operation.

Proof. Put L =
∏︁m

i=1 Li. For any i = 1, · · · ,m, Li(ks) is a Γ-set and the map

fi : Li(ks)→ L(ks)

τ ↦→ τ ◦ pi

is Γ-equivariant. These maps induce a Γ-map

f :
m∐︂
i=1

Li(ks)→ L(ks).

It is clearly injective. For any τ ∈ L(ks), note that τ maps idempotents to

idempotents. Denote by ei the idempotent in L with the ith factor being

1 and other factors being 0. Because τ is a k-algebra homomorphism, we

have τ(
∑︁

ei) = 1 and τ(ei · ej) = 0 for any i ̸= j. Thus, there is a unique

ei mapped to 1 for some i and others are mapped to 0. Say τ(e1) = 1.

Then τ1 : L1 → ks, x ↦→ τ(x, 0, · · · , 0) lies in L1(ks) and τ = f1(τ1), so f is

surjective.

Remark 2.2.7. For the rest of this section we identify these two Γ-sets: L(ks)

and
∐︁m

i=1 Li(ks), though they are not the same set strictly speaking.

Corollary 2.2.8. If L is an étale algebra over k, then |L(ks)| = dimk L.

Corollary 2.2.9. Suppose L is an étale k-algebra. Then L is a field if and

only if Γ acts transitively on L(ks), and L is split if and only if Γ acts trivially

on L(ks).
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Finite Γ-sets and Γ-maps form a category, denoted by FinSetΓ. Our dis-

cussion above gives a contravariant functor α from Étk to FinSetΓ. It assigns

to each étale algebra L over k the finite Γ-set α(L) = L(ks). Suppose we

have a k-algebra homomorphism f : L1 → L2, then α assigns to f the Γ-map

α(f) : L2(ks) → L1(ks), τ ↦→ τ ◦ f . It respects the identity morphism and

composition of morphisms, so α is indeed a functor.

It turns out the ks-points of an étale algebra L determine L completely. To

see this, we give a contravariant functor β : FinSetΓ → Étk that is an inverse

of α.

Given a finite Γ-set X, the set of Γ-maps from X to ks, denoted by

MapΓ(X, ks), has a k-algebra structure, namely point-wise addition, multi-

plication and scalar multiplication.

Lemma 2.2.10. Let X be a finite Γ-set. Then MapΓ(X, ks) is an étale k-

algebra.

Proof. Consider the Γ-orbit decomposition X =
∐︁m

i=1Xi. Then it is clear that

the map
m∏︂
i=1

MapΓ(Xi, ks) ≃ MapΓ(X, ks)

(τ1, · · · , τm) ↦→
(︁
x ∈ Xi ↦→ τi(x)

)︁
is a k-algebra isomorphism. So it suffices to prove the statement in the case

that Γ acts transitively on X. Pick any x ∈ X. Then a Γ-map from X to ks is

determined by where it maps x. Since Γ acts continuously on X, the stabilizer

Stab(x) is an open subgroup of Γ. The homomorphism

f : MapΓ(X, ks)→ kStab(x)
s

τ ↦→ τ(x)

is an isomorphism of k-algebras. Indeed, if τ(x) = 0, then the transitivity

of the Γ-action on X implies that τ = 0 and f is injective. To see it is

surjective, note that for any c ∈ k
Stab(x)
s , there is a unique Γ-map from X to

ks sending x to c. By the fundamental theorem of (infinite) Galois theory (see

e.g. [14] Theorem 17.8), k
Stab(x)
s is a finite separable field extension of k, which
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completes the proof.

Remark 2.2.11. If one chooses a different element x′ ∈ X, say x′ = σx for

some σ ∈ Γ, then Stab(x′) = σ Stab(x)σ−1, so σ(k
Stab(x)
s ) = k

Stab(x′)
s by Galois

theory. In particular, they are isomorphic.

Now let β assign to each finite Γ-set X the étale k-algebra MapΓ(X, ks).

Suppose g : X → Y is a Γ-map between finite Γ-sets. Let β assign to g the

k-algebra homomorphism β(g) : MapΓ(Y, ks) → MapΓ(X, ks), τ ↦→ τ ◦ g. It

respects the identity morphism and composition of morphisms, so β is indeed

a functor.

Theorem 2.2.12 ([9] Theorem 18.4). There is an anti-equivalence of cate-

gories between Étk and FinSetΓ given by the contravariant functors α and

β.

Proof. Suppose L is an étale algebra over k. By Lemma 2.2.6, we may assume

without loss of generality that L is a finite separable field extension of k. Then

we have k-algebra isomorphisms

MapΓ(L(ks), ks) ≃ kStab(τ)
s = kAut(ks/τ(L))

s = τ(L) ≃ L

for any τ ∈ L(ks), where the first isomorphism is shown in the proof of

Lemma 2.2.10.

Conversely, suppose given a finite Γ-set X. We may assume without loss of

generality that Γ acts onX transitively. Then the isomorphism MapΓ(X, ks) ≃
k
Stab(x)
s induces

MapΓ(X, ks)(ks) ≃ kStab(x)
s (ks) (2.2)

for any x ∈ X. The latter is isomorphic to the cosets of Stab(x) in Γ by Galois

theory; hence isomorphic to X by the orbit-stabilizer theorem.

Remark 2.2.13. One can also write down the general isomorphisms explicitly:

• For any étale k-algebra L, we have the canonical k-algebra isomorphism

given by the functor β ◦α (which is naturally isomorphic to the identity
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functor on Étk)

L ≃ MapΓ(L(ks), ks)

l ↦→
(︁
τ ↦→ τ(l)

)︁
.

• For any finite Γ-set X, we have the canonical Γ-set isomorphism given by

the functor α ◦ β (which is naturally isomorphic to the identity functor

on FinSetΓ)

X ≃ MapΓ(X, ks)(ks)

x ↦→
(︁
τ ↦→ τ(x)

)︁
.

Corollary 2.2.14. Let X be a finite Γ-set. Then

dimk MapΓ(X, ks) = |X|.

Proof. This follows from the isomorphism (2.2) and Corollary 2.2.8.

This theorem gives a categorial interpretation of Lemma 2.2.6. Also, it

implies that the tensor product of étale k-algebras corresponds to the direct

product of the corresponding Γ-sets.

It is worth mentioning that being étale is stable under base change. Sup-

pose K is field extension of k.

Proposition 2.2.15. Let L be an étale algebra over k. Then K ⊗k L is an

étale algebra over K.

Proof. Suppose L =
∏︁m

i=1 Li for some finite separable extensions Li’s. Since

K ⊗k L =
∏︁m

i=1(K ⊗k Li), we reduce to the case where L is a finite separa-

ble extension of k. Let α be a primitive element of L over k with minimal

polynomial f ∈ k[x]. Then L ≃ k[x]/(f) and we have

K ⊗k L ≃ K ⊗k k[x]/(f) ≃ K[x]/(f) ≃
n∏︂

i=1

K[x]/(fi),

where f =
∏︁n

i=1 fi is a decomposition of f into distinct irreducibles in K[x].

For each i = 1, · · · , n, K[x]/(fi) is a finite separable field extension of K, so

K ⊗k L is étale over K.
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We finish this subsection with the following fact that will be used later.

Proposition 2.2.16. Any étale k-algebra has only finitely many subalgebras6

over k.

Proof. Let L =
∏︁m

i=1 Li be an étale k-algebra, where Li’s are finite separable

field extensions of k. We use induction on m ≥ 1.

The base case m = 1 is the statement of the primitive element theorem.

Assume it is true for m = k for some k ≥ 1. Then we need to verify that if

L =
∏︁k+1

i=1 Li is an étale k-algebra, where Li’s are finite separable field exten-

sions of k, then L has only finitely many subalgebras over k. By the inductive

hypothesis, the étale k-algebra
∏︁k+1

i=1 Li, denoted by A, has only finitely many

subalgebras over k. In fact, Goursat’s Lemma, cf. [10] Lemma 4.5, states that

there is a bijection between the set of subalgebras of L = A × Lk+1 and the

set of 5-tuples (B,C, I, J, φ) with the following properties

• B is a subalgebra of A over k;

• C is a subalgebra of Lk+1 over k;

• I ≤ B is an ideal of B;

• J ≤ C is an ideal of C;

• φ : B/I → C/J is an isomorphism of k-algebras;

given by (B,C, I, J, φ) ↦→ {(b, c) ∈ B × C : φ(b̄) = c̄}, where b̄ denotes the

image of b under B → B/I and c̄ denotes the image of c under C → C/J .

We have only finitely many choices for B and C, which is guaranteed by

the hypothesis and the base case. Now that Lm+1 is a field, J must be either 0

or (1). If J = (1), then I = (1) and φ must be the trivial map. If J = 0, then

the number of choices for φ equals |Autk(Lk+1)| which is finite. Furthermore,

I must be a maximal ideal of B since B/I = Lk+1 is a field. Since the

inclusion B ↪→ A is integral, B has only finitely many maximal ideals due to

the finiteness of maximal ideals of A. To summarize, the set of such 5-tuples

is finite, and so is the number of subalgebras of L.
6By a subalgebra of a k-algebra L, we refer to a subset of L that contains 1 ∈ L and is

closed under addition, multiplication and scalar multiplication.
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2.2.2 A cohomological interpretation

Theorem 2.2.17. Let L be a finite-dimensional commutative k-algebra. The

following are equivalent:

1. L is étale;

2. L is a ks/k-twisted form of the split étale k-algebra, i.e., Lks ≃ kn
s , where

n = dimk L.

Proof. 1 ⇒ 2 follows immediately from the proof of 2.2.15. For the other

direction we refer to [4] Theorem 4, p.V.34.

Remark 2.2.18. In the case above, L is a K/k-twisted form for some finite field

extension K/k. For example, one may take K to be a normal closure of the

compositum of the factors of L.

This theorem suggests that one can use Galois descent to classify the iso-

morphism classes of étale algebras over k. Let [Étn] denote the pointed set of

the isomorphism classes of étale algebras over k with the base point being the

isomorphism class of the split étale k-algebra of dimension n. It follows from

Theorem 2.1.18 that [Étn] is classified by H1(k,Autks -alg(k
n
s )). Our next goal

is to compute this automorphism group.

Definition 2.2.19 ([11], Proposition 21.8 and Exercise 21.2). Let R be a

nonzero commutative ring and e ∈ R a nonzero idempotent. We say e is a

primitive idempotent if the following equivalent conditions hold:

1. The ring Re is connected, i.e., it has no non-trivial idempotent;

2. The idempotent e admits no decomposition e = α + β such that α and

β are nonzero idempotents and α · β = 0;

3. The idempotent e is minimal with respect to the partial order: e′ ≤ e if

and only if e · e′ = e′.

Example 2.2.20. Let L = L1 × · · · × Lm for some finite separable field

extensions Li/k, i = 1, · · ·m. It is easy to see that L has exactly m primitive
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idempotents given by

ei := (δij)
m
j=1, where δij =

⎧⎨⎩0 if i ̸= j

1 if i = j
.

Lemma 2.2.21. Let K be a field and Kn the split étale K-algebra of dimension

n. There is a group isomorphism

AutK -alg K
n ≃ Sn.

Proof. Consider the canonical homomorphism

Sn → AutK -alg K
n

σ ↦→
(︁
(xi)

n
i=1 ↦→ (xσ−1(i))

n
i=1

)︁
.

It is clearly injective. To see it is surjective, for any K-algebra automorphism

γ : Kn → Kn, we note that γ maps primitive idempotents to primitive idempo-

tents, and hence corresponds to a permutation σ ∈ Sn such that γ(ei) = eσ(i)

for all i. Then this permutation is mapped to γ.

Via this isomorphism, the Γ-action on the automorphism group defined in

(2.1) induces a trivial Γ-action on Sn. Thus, H
1(k, Sn) is the set of cohomology

classes of continuous group homomorphisms from Γ to Sn.

Theorem 2.2.22 ([3] Proposition V.13.5). There is an isomorphism of pointed

sets

[Étn]↔ H1(k, Sn).

Under this correspondence, the isomorphism class of the n-dimensional split

étale k-algebra corresponds to the cohomology class of the trivial cocycle.
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2.3 Galois algebras

2.3.1 Definition and first properties

Let G be a finite group and L an étale G-algebra over k. Then G acts on

the ks-points L(ks) of L by composing on the right:

L(ks)×G→ L(ks)

(τ, g) ↦→ τ · g := τ ◦ g.

Definition 2.3.1. A G-algebra L over k is called Galois if it is étale and the

G-action on L(ks) is simply transitive, i.e.,

∀τ1, τ2 ∈ L(ks),∃!g ∈ G, τ1 · g = τ2.

A morphism of Galois G-algebras is a morphism of G-algebras. The Galois

G-algebras over k form a subcategory of Étk, denoted by G-Galk or simply

G-Gal if the base field k is understood.

First, we will examine the two simplest cases: when L is a field and when

L is split.

Example 2.3.2. Suppose L is a finite Galois extension of k. Then L is a

Galois Gal(L/k)-algebra over k. Indeed, we have seen in Example 2.2.5 that

L(ks) is in bijection with Gal(L/k) and the action of Gal(L/k) is given by

right composition; hence simply transitive.

Proposition 2.3.3. Suppose L is a field extension of k. Then L is a Galois

G-algebra over k for some finite group G if and only if L/k is a finite Galois

extension and G ≃ Gal(L/k).

Proof. It remains to show the “only if” part of the statement. Fix a τ ∈ L(ks)

and consider the following maps

• f1 : Aut(L/k)→ L(ks) that maps σ to τ ◦ σ;

• f2 : L(ks)→ G that maps τ ′ to the unique g such that τ ′ = τ ◦ g;
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• f3 : G → Aut(L/k), the defining injective homomorphism of the G-

algebra L.

By construction, their composite f3 ◦ f2 ◦ f1 is the identity map on Aut(L/K).

By definition f2 is bijective and f3 is injective, so they are all bijective. In

particular, |Aut(L/k)| = |L(ks)| = dimk L, so L/k is a Galois extension, and

f3 gives the group isomorphism G ≃ Gal(L/k).

This proposition could be misleading because the structure of G is not

intrinsic to a Galois G-algebra L over k in general.

Example 2.3.4. Let L = k4 be the split étale algebra over k of dimension 4.

Define

G1 = Z/4Z ≃ ⟨(1234)⟩ ≤ S4

and

G2 = Z/2Z× Z/2Z ≃ {(1), (12)(34), (13)(24), (14)(23)} ≤ S4.

Then L has a Galois Gi-algebra structure for both i = 1, 2. These two groups

have the same cardinality (which is a must by Corollary 2.2.8) but are not

isomorphic. This example explains why the group G should be specified in

advance when we talk about Galois algebras.

Given a finite group G, we have a unique (up to isomorphism) Galois G-

algebra over k that is split.

Example 2.3.5. Let L = Map(G, k) denote the set of maps from G to k

endowed with point-wise addition, multiplication, scalar multiplication and a

left G-action as follows

G× L→ L

(h, f) ↦→
(︁
g ↦→ f(gh)

)︁
.

It is easy to see that L has an underlying split étale k-algebra structure of
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dimension |G| and the maps eg, g ∈ G defined by

eg(h) =

⎧⎨⎩1 if h = g

0 otherwise

are exactly the |G| primitive idempotents of L and generate L as a k-algebra.

It is worth mentioning that G acts on the primitive idempotents by

h · eg = egh−1 .

The ks-points of L are exactly the evaluations at |G| elements of G followed

by the embedding k ↪→ ks, so G acts simply transitively on L(ks). We call this

Galois G-algebra L the split (or trivial) Galois G-algebra over k, denoted by

k[G]. Sometimes we denote elements
(︁
g ↦→ xg

)︁
of k[G] simply by (xg)g∈G.

Proposition 2.3.6. Let G be a group of cardinality n and L a split étale

k-algebra of dimension n on which G acts faithfully. Then L is a Galois G-

algebra over k if and only if L ≃ k[G] as G-algebras.

Proof. It remains to show the “only if” part. Pick any primitive element of

L and denote it by e1. Then for all g ∈ G, put eg := g−1 · e1 and denote the

factors eg · L ≃ k of L by Lg. Since G acts simply transitively on L(ks), this

indexing process is well-defined and the map

L =
∏︂
g∈G

Lg → k[G]

(lg)g∈G ↦→
(︁
g ↦→ lg

)︁
is a G-algebra isomorphism.

Next, we consider GaloisG-algebras in the correspondence Étk ↔ FinSetΓ.

If L is a Galois G-algebra over k, then the corresponding Γ-set L(ks) is a G-

torsor over Γ.

Definition 2.3.7 (Following [17] I.5.2).
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• Suppose G is a Γ-group. A (right) G-torsor over Γ is a Γ-set X on which

G acts simply transitively on the right, and the G-action is compatible

with the Γ-action, namely

σ(x · g) = σx · σg, ∀x ∈ X, ∀g ∈ G,∀σ ∈ Γ.

• Suppose G is a Γ-group. G-torsors over Γ and G- and Γ-equivariant maps

form a subcategory of FinSetΓ, denoted by G-TorΓ or simply G-Tor

when Γ is understood from the context. Note that G itself endowed with

right multiplication is a G-torsor over Γ, called the trivial G-torsor over

Γ.

Example 2.3.8. Suppose L is a Galois G-algebra over k and Γ acts trivially

on G,7 then L(ks) is a G-torsor over Γ. Indeed, G acts simply transitively on

L(ks) by definition. The left Γ-action and the right G-action are compatible

because for any g ∈ G, τ ∈ L(ks), σ ∈ Γ, we have

σ(τ · g) = σ ◦ τ ◦ g = στ · g = στ · σg.

In fact, any G-torsor over Γ is given by some Galois G-algebra. More

precisely, if P is a G-torsor over Γ, then we can make β(X) = MapΓ(P, ks) an

étale G-algebra over k by letting G acts by

G×MapΓ(P, ks)→ MapΓ(P, ks)

(g, f) ↦→ g(f),

where g(f) is defined by

(g(f))(τ) = f(τ · g), ∀τ ∈ P.

Theorem 2.3.9 ([9] Theorem 18.19). There is an anti-equivalence of cate-

gories between G-Galk and G-TorΓ given by the restrictions of α and β in

Theorem 2.2.12.

7A deeper reason why we let Γ act trivially on G is given in Lemma 2.3.16.
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Proof. We first check that the restriction of β is also well-defined. Suppose

that P is a G-torsor over Γ. We verify that the étale k-algebra MapΓ(P, ks)

with the G-action above is Galois, namely the G-action on MapΓ(P, ks)(ks) is

simply transitive. To see this, it suffices to check that the Γ-set isomorphism

given in Remark 2.2.13

P → MapΓ(P, ks)(ks)

τ ↦→
(︁
f ↦→ f(τ)

)︁
is G-equivariant. Indeed, for any τ ∈ P and any g ∈ G, (β ◦ α)(τ · g) and

(β ◦ α)(τ) · g both map any f ∈ MapΓ(P, ks) to f(τ · g) ∈ ks. Because the

G-action on P is simply transitive, so is the G-action on MapΓ(P, ks)(ks).

This also shows that β ◦ α is naturally isomorphic to the identity functor

on G-TorΓ. For similar reasons, α ◦ β also respects the G-action and hence is

naturally isomorphic to the identity functor on G-Galk.

The following theorem describes the structure of Galois G-algebras.

Theorem 2.3.10. Every Galois G-algebra L over k can be written as a direct

product of Galois extensions of k that are isomorphic as field extensions of k.

Proof. Since L is étale over k, we may assume that L =
∏︁m

i=1 Li for some finite

separable field extensions Li of k. We will have shown that all Li’s are Galois

and isomorphic as field extensions of k.

We have seen in Section 2.2 the Γ-orbit decomposition L(ks) =
∐︁m

i=1 Li(ks).

Pick a ks-point τ ∈ L1(ks) ⊆ L(ks) and consider the map

ρ : G→ L(ks)

g ↦→ τ · g.

The assumption that L is Galois implies this map is bijective. Let H denote

the stabilizer of the idempotent e1 ∈ L, as in Example 2.2.20, under the G-

action. Then ρ(g) ∈ L1(ks) if and only if ρ(g)(e1) = 1, if and only if g fixed

e1, so ρ(H) = L1(ks). Therefore, L1 is a Galois H-algebra by Theorem 2.3.9

as H acts simply transitively on ρ(H) = L1(ks); hence a Galois extension of k

with Galois group H by Corollary 2.2.9.
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Furthermore, the right cosets of H in G are mapped to Li(ks) for i ̸= 1. In

fact, if f ∈ G\H, say f(ei) = e1 for some i ̸= 1, then ρ(hf)(ei) = ρ(h)(e1) = 1

for any h ∈ H. Thus, ρ(Hf) ⊆ Li(ks). On the other hand, if ρ(f ′) ∈
Li(ks), then ρ(f ′f−1)(e1) = ρ(f ′)(ei) = 1, so f ′f−1 ∈ H and Li(ks) ⊆ ρ(Hf).

Therefore, ρ(Hf) = Li(ks), which implies that f maps Li(ks) bijectively onto

L1(ks) and gives an isomorphism Li → L1 of field extensions of k. In particular,

each Li is a Galois extension of k with Galois group isomorphic to H.

Remark 2.3.11. We will later see in Proposition 2.3.21 that L can be recovered

as the Galois G-algebra induced from the Galois H-algebra L1.

Products and coproducts do not exist in the category G-Gal by dimension

considerations. Indeed, every Galois G-algebra over k has dimension equal to

the cardinality of G. But base change still makes sense.

Suppose K is a field extension of k with defining homomorphism ι : k → K

and fix an embedding e : K → Ks.

Proposition 2.3.12. Let L be a Galois G-algebra over k. Then K ⊗k L is a

Galois G-algebra over K with G acting on the second component.

Proof. Since being étale is stable under base change (Proposition 2.2.15), the

tensor product LK is étale over K. The group G acts faithfully on L and so

it does on LK . By definition of Galois algebras, it remains to show that the

G-action on LK(Ks) is simply transitive. Let ι̃ : ks → Ks be an extension of

ι : k → K; that is, the diagram

ks Ks

k K

ι̃

ι

e

commutes. Such an extension always exists, see e.g. [3] Corollary I.1.20. Now

consider the map

L(ks) = Homk -alg(L, ks)→ HomK -alg(LK , Ks) = LK(Ks)

τ ↦→ e⊗ (ι̃ ◦ τ).
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If τ1 and τ2 have the same image, then in particular, for any l ∈ L we have

(e⊗ (ι̃ ◦ τ1))(1⊗ l) = (ι̃ ◦ τ1)(l) = (ι̃ ◦ τ2)(l) = (e⊗ (ι̃ ◦ τ2))(1⊗ l),

which implies τ1(l) = τ2(l), so τ1 = τ2 and the map is injective. Notice that

|L(ks)| = dimk L = dimK LK = |LK(Ks)| <∞.

Thus, this map is bijective. Furthermore, since the G-action on LK is in-

duced by the G-action on L, this correspondence is G-equivariant, so G acts

on LK(Ks) simply transitively because it acts on L(ks) simply transitively.

Therefore, LK is Galois over K.

Remark 2.3.13. Galois G-algebras over k also have a geometric interpretation.

They are equivalent to scheme-theoretic G-torsors over k, which we will discuss

in Section 4.2.

2.3.2 A cohomological interpretation

Let G be a finite group. This subsection is devoted to give a cohomological

interpretation of Galois G-algebras. We start with the following lemma.

Lemma 2.3.14. Let G be a finite group acting on a k-vector space V faith-

fully and linearly, and K/k a field extension. Then G acts naturally on the

extension of scalars VK = K ⊗k V by acting on the second component and we

have

(V G)K = (VK)
G.

Proof. The inclusion (V G)K ⊂ (VK)
G is straightforward. For the other direc-

tion, we need to show the implication∑︂
i

(g · vi − vi)⊗k xi = 0, ∀g ∈ G⇒ g · vi − vi = 0, ∀i, ∀g ∈ G,

for which it suffices to show∑︂
i

vi ⊗k xi = 0⇒ vi = 0, ∀i,
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where xi ∈ K are linearly independent over k and vi ∈ V . This follows

immediately from the natural isomorphisms of k-vector spaces

V ⊗k (⊕ikxi) ≃ ⊕i(V ⊗k kxi) ≃ ⊕iV

0 =
∑︂
i

vi ⊗k xi ↦−→ (vi)i = 0

Theorem 2.3.15. Let L be an étale G-algebra over k. The following are

equivalent:

1. L is Galois;

2. L is a ks/k-twisted form of the split Galois G-algebra, i.e., Lks ≃ ks[G]

as G-algebras over ks;

3. LG = k and |G| = dimk L.

Proof. The implication 1 ⇒ 2 follows immediately from Proposition 2.3.12,

Proposition 2.3.6 and Theorem 2.2.17.

To see 2⇒ 3, note that by Lemma 2.3.14,

(LG)ks = (Lks)
G ≃ (ks[G])G ≃ ks,

which implies that LG is of dimension 1 as a vector space over k; hence equal

to k. Also dimk L = dimks Lks = |G|.
For the implication 3 ⇒ 1, assume towards a contradiction that the G-

action on L(ks) is not simply transitive. Since |G| = dimk L = |L(ks)| by
assumption, the G-orbit decomposition of L(ks) is non-trivial. Consider the

G-algebra isomorphism

L ≃ MapΓ(L(ks), ks)

l ↦→
(︁
τ ↦→ τ(l)

)︁
.

It restricts to a G-algebra isomorphism on the G-invariants

LG ≃ (MapΓ(L(ks), ks))
G = MapΓ(L(ks)/G, ks),
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where L(ks)/G denotes the set of the G-orbits of L(ks) (this is again a Γ-set

since on L(ks) the Γ-action commutes with the G-action). By Corollary 2.2.14,

dimk MapΓ(L(ks)/G, ks) ≥ 2, so the dimension of LG as a k-vector space must

be at least two, leading to a contradiction.

This theorem suggests Galois G-algebras are ks/k-twisted forms of the split

Galois G-algebra k[G]. Let [G-Galk] denote the pointed set of the isomorphism

classes of Galois G-algebras over k with the base point being the isomorphism

class of the split Galois G-algebra, so one can use H1(k,AutG -alg /ks(ks[G])) to

classify [G-Galk] by Theorem 2.1.22.

We now compute this automorphism group.

Lemma 2.3.16. Let K be a field. There is a group isomorphism

AutG -alg /K (K[G]) ≃ G.

Proof. Let (eg)g∈G be the primitive idempotents of K[G]. The map

G→ AutG -alg (K[G])

g ↦→
(︁
(xh)h∈G ↦→ (xgh)h∈G

)︁
is an injective group homomorphism. Notice that the image of g maps the

primitive idempotents eh to eg−1h for all h ∈ G. To see it is surjective, suppose

f ∈ AutG -alg (K[G]). Then f(e1) = eg for some g ∈ G. For any h ∈ G, we

have

f(eh) = f(h−1 · e1) = h−1 · f(e1) = h−1 · eg = egh,

which shows that g−1 is mapped to f .

Via this isomorphism, the Γ-action on the automorphism group defined in

(2.1) induces a trivial Γ-action on G, so H1(k,G) is the set of cohomology

classes of continuous group homomorphism from Γ to G.

Theorem 2.3.17 ([3] Proposition V.14.13). There is an isomorphism of pointed

sets

[G-Galk]↔ H1(k,G).
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Under this correspondence, the isomorphism class of the split Galois G-algebra

over k corresponds to the cohomology class of the trivial cocycle.

Remark 2.3.18. There is an isomorphism between [G-TorΓ], the pointed set

of isomorphism classes of G-torsors over Γ with the base point being the class

of the trivial torsor, and the pointed set H1(Gal(ks/k), G)

λ : [G-TorΓ]→ H1(Gal(ks/k), G)

defined as follows: If P is a G-torsors over Gal(ks/k), pick an x ∈ P . We define

a cocycle α by associating to each σ ∈ Gal(ks/k) the unique element ασ ∈ G

such that σ · x = x · ασ and define λ by taking λ[P ] to be the cohomology

class of α. This is well-defined, base-point-preserving and bijective, as shown

in [17], Proposition I.33.

In summary, we now have the following diagram connecting H1(k,G),

[G-TorΓ] and [G-Galk].

[G-Galk] H1(k,G)

[G-TorΓ]

∼

∼

λ

Straightforward calculation shows that this triangle is commutative, see [3],

Lemma V.14.16 for the details.

2.3.3 Induced Galois algebras

Let G be a finite group and H ⊆ G a subgroup. Suppose M is a Galois

H-algebra over k. There is a natural way to construct a Galois G-algebra out

of M .

Definition 2.3.19. The induced G-algebra of M is the set MapH(G,M) of

H-equivariant maps of sets from G to M , denoted by IndG
H M , where H acts

on G by left multiplication and G acts on IndG
H M by

(g(f))(g′) = f(g′g), ∀g, g′ ∈ G, ∀f ∈ IndG
H M.
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It is a k-algebra with point-wise addition, multiplication and scalar mul-

tiplication. For any 1 ̸= g ∈ G, there is an f ∈ IndG
H M such that f ̸= g(f).

Indeed, one could take f to be

f(g′) =

⎧⎨⎩c if g′ ∈ H

0 otherwise
,

where we take

c =

⎧⎨⎩1 if g ̸∈ H

any element of M that is not fixed by g if g ∈ H
.

This shows that the G-action is faithful and IndG
H M is indeed a G-algebra.

Let e denote the identity element of G. Then the map e : IndG
H M → M ,

f ↦→ f(e) is H-equivariant because f is. Indeed, for any h ∈ H,

e(h(f)) = (h(f))(e) = f(h) = h · f(e) = h · e(f).

This induced algebra has the following universal property:

X

IndG
H M M

f
F

e

For any G-algebra X and H-equivariant homomorphism f : X → M , there

exists a unique G-equivariant homomorphism F : X → IndG
H M such that the

diagram above commutes. Indeed, for any x ∈ X, one has F (x) : G → M

given by g ↦→ f(g · x).

Proposition 2.3.20. The G-algebra IndG
H M is Galois over k.

Proof. Let Hg1, · · · , Hgr be the distinct right cosets of H in G. Consider the

map

IndG
H M →M r

f → (f(g1), · · · , f(gr)),
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whereM r is the direct product of r copies ofM with component-wise addition,

multiplication and scalar multiplication. Notice that every H-equivariant map

f ∈ MapH(G,M) is uniquely determined by how it maps g1, · · · , gm, so this

is a k-algebra isomorphism and hence IndG
H M is étale over k.

Furthermore, if f ∈ IndG
H M is G-fixed, then it is constant. But because

f is H-equivariant, the image lies in MH . By Theorem 2.3.15, MH = k, so f

is a k-valued constant map and (IndG
H M)G = k. Also we have |G| = r|H| =

dimk M
r = dimk Ind

G
H M . Therefore, IndG

H M is Galois.

Proposition 2.3.21. Let L = L1×· · ·×Lr be a Galois G-algebra over k where

Li’s are Galois field extensions of k with Galois group isomorphic to H ≤ G.

The projection L → L1 induces a G-algebra isomorphism L → IndG
H L1. In

particular, every Galois algebra is induced by a field.

Proof. The projection p1 : L → L1 induces a G-equivariant homomorphism

P : L → IndG
H L1 by the universal property of induced algebras. This map

P is injective because for distinct x1, x2 ∈ L, there exists a g ∈ G such that

p1(g · x1) ̸= p1(g · x2). Then P is an isomorphism because dimk Ind
G
H L1 =

|G| = dimk L, as shown in the proof of last proposition.
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Chapter 3

Quotients of Varieties

This chapter serves as justification for the construction of versal torsors in

the following chapters. We show that the quotient of a k-variety X under a

G-action exists in the category of k-varieties when G is finite. Furthermore,

when G acts freely on X, the quotient map is an étale morphism.

We start with a clarification on what we mean by actions on varieties and in

what sense an action is free in a general viewpoint, though our main interests

lie in actions of finite groups. So in the second section, we restrict ourselves to

group varieties associated to finite groups and sketch a proof due to Mumford

for the existence of quotients under finite groups. In the end of the chapter,

we present several examples of quotients.

3.1 Generalities

Definition 3.1.1. Let C be a category where finite products8 exist. A group

object in C is an object G in C with morphisms m : G × G → G, i : G → G

and e : • → G, where • is the terminal object in C, that makes the following

diagrams commute.

8In this article, by saying finite products exist, we explicitly assume an empty product
exists, which is the same thing as a terminal object.
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G×G×G G×G

G×G G

idG ×m

m×idG m

m

(associativity)

• ×G G×G • ×G

G

e×idG

m

e×idG

(identity)

G×G G×G

• G

i×idG

m

e

G×G G×G

• G

idG ×i

m

e

(inverse)

Example 3.1.2. If C is the category Sets of sets and maps of sets, then the

group objects in C are (abstract) groups. In fact, the terminal object in C is

a one-point set (which is unique up to isomorphism). For any group G, the

morphism m is the multiplication, i is the inverse operation, and e is the map

from a one-point set to the neutral element of G. The diagrams above are

commutative due to the axioms of groups.

We assume that the readers are familiar with the definition and first prop-

erties of schemes. For a complete introduction, we refer to [8] Chapter II.

From now on, we fix an algebraic closure of the base field k and denote it

by k̄.

Definition 3.1.3. Let S be a k-scheme. We say S is geometrically reduced if

Sk̄ is reduced.

Definition 3.1.4. An (algebraic) variety over a field k is a separated and

geometrically reduced scheme of finite type over Spec k. A morphism between

two varieties over k is a k-morphism of schemes. A group variety over k is a

group object in the category of varieties over k.

Remark 3.1.5. If G = SpecR is an affine group variety over k, then the defin-

ing morphisms m, i, e correspond to k-algebra homomorphisms satisfying the
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opposite diagrams

M : R→ R⊗k R (comultiplication)

I : R→ R (coinverse)

E : R→ k (augmentation),

which, together with the k-algebra structure of R, makes R a Hopf algebra

over k.

We now define actions of group varieties on algebraic varieties, which is

analogous to actions of groups on sets.

Definition 3.1.6. A (right) action of a group variety G over k on a variety

X over k is a morphism φ : X ×k G → X that makes the following diagrams

commute.

1. The identity of G acts trivially on X:

X × •

X ×k G X

idX ×e

φ

2. The action is associative with the multiplication on G:

X ×k G×k G X ×k G

X ×k G X

idX ×m

φ×idG φ

φ

We say G acts freely on X if for any scheme S over k, the induced group action

of G(S) on the set X(S) is free.

Remark 3.1.7. One can define group schemes and actions of group schemes

similarly in the category of schemes.

Remark 3.1.8. If G acts freely on X, the G-action on the underlying set |X|
of prime ideals of X need not be free. For example, let the generator g of

G = Z/2Z act on the 1-dimensional affine space X = A1
R over R by g : R[x]→

R[x], f(x) ↦→ f(−x). Then G acts freely on X \ {0} but the ideal (x2 + c) is

fixed by g for any c > 0.
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Proposition 3.1.9. With the setting above, the following are equivalent:

1. The G-action on X is free;

2. The G-action on X is geometrically free, i.e., the induced Gk̄-action on

Xk̄ is free;

3. The natural morphism

X ×k G→ X ×k X

(x, g) ↦→ (x · g, x)

is a monomorphism of k-schemes.

Proof.

1 ⇔ 3: Note that G acts on X freely if and only if the natural map G(S) ×
X(S) → X(S) ×X(S) is injective (monomorphic) for any k-scheme S.

What we desire then follows from Yoneda’s lemma.

1 ⇒ 2: This is clear as Gk̄(S) = G(S) and Xk̄(S) = X(S) for any k̄-scheme S.

2 ⇒ 1: This follows from the fact that monomorphism fpqc descends.

In this thesis, we will use fpqc descent and some fpqc descending properties

of schemes that we now explain.

Definition 3.1.10. A morphism of schemes X → Y is fpqc if it is faithfully

flat and every quasi-compact9 open subset of Y is the image of a quasi-compact

open subset of X.

Example 3.1.11. Let k ↪→ k̄ be an embedding of k into an algebraic closure.

The induced morphism of schemes Spec k̄ → Spec k is fpqc.

9In this article, a scheme is said to be quasi-compact if every open covering has a finite
subcovering. We reserve the term “compact” for spaces that are both quasi-compact and
Hausdorff.
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Definition 3.1.12. Let P be a property of morphisms of schemes, f : X → S

a morphism of schemes, and let f̃ : XS′ → S ′ be the base extension of f by a

fpqc morphism S ′ → S. We say that P fpqc descends if f̃ has P implies that

f has P .

Example 3.1.13. The following properties of morphisms of schemes fpqc

descend:

1. surjective (cf. [6] 2.6.1(i));

2. bijective (cf. [6] 2.6.1(iv));

3. isomorphism (cf. [6] 2.7.1(viii));

4. monomorphism (cf. [6] 2.7.1(ix));

5. finite (cf. [6] 2.7.1(xv));

6. étale (cf. [7] 17.7.3(ii)).

Example 3.1.14. Let G be a finite group and k a field. We can make G a

group variety by considering the spectrum of k[G], denoted by G. The group

structure of G is given by the comorphisms defined as follows

M : k[G]→ k[G]⊗k k[G] (comultiplication)

eg ↦→
∑︂
hh′=g

eh ⊗ eh′

I : k[G]→ k[G] (coinverse)

eg ↦→ eg−1

E : k[G]→ k (augmentation)

f ↦→ f(1)

Intuitively, G is
∐︁

G Spec k, the disjoint union of |G| copies of Spec k. The
multiplication, for instance, is then given by mapping g1th Spec k and g2th

Spec k to the (g1 · g2)th Spec k.

Viewing G as a functor of points, for any field extension K of k, we have

G(K) = Mork(SpecK,G) = Homk -alg(k[G], K) = G. For this reason, G is

called the constant group scheme(variety) associated to G over k.
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3.2 Quotients of varieties by finite groups

From now on, we assume that G is a finite group and make no notational

distinction between G and the constant group scheme associated to G over k

when the field k is understood, though many propositions would still be valid

in a more general setting.

We now introduce various notions of quotients of varieties, which have been

the central objects in the geometric invariant theory.

Definition 3.2.1. Let X be an algebraic variety over k and G a finite group

acting on X. A categorial quotient of X by G is a pair (Y, π), where Y is an

algebraic variety with the trivial G-action and π : X → Y is a G-morphism,

such that for any variety Z with the trivial G-action and any G-morphism

π′ : X → Z, there exists a unique G-morphism f : Y → Z such that the

diagram

X Z

Y

π′

π
f

commutes. If there exists such a pair, it is unique up to canonical isomorphism

by the universal property, so one may speak of the categorial quotient.

This definition of categorial quotients generalize the quotients of sets with

group actions in the most general and simplest way. However, it is not very

useful in practice as it gives no information of what the categorial quotients,

if exist, should look like. A possible answer to this question lies in the notion

of geometric quotients.

Definition 3.2.2 ([16] Definition 0.6). Let X be an algebraic variety over k

and G a finite group acting on X. A geometric quotient of X by G is a pair

(Y, π), where Y is an algebraic variety with the trivial G-action and π : X → Y

is a G-morphism, satisfying the following properties:

1. π is surjective and the fibers of π coincide with the G-orbits of X.

2. π is submersive, i.e., a subset V ⊂ Y is open if and only if π−1(V ) is

open in X.

42



3. the natural morphismOY → π∗ (OX)
G is an isomorphism, where π∗ (OX)

G

denotes the subsheaf of G-invariants of π∗ (OX) for the G-action.

Note that if a geometric quotient is to exist, then property 1 and 2 state

that π is the quotient map for the G-action. Furthermore, one can show that a

geometric quotient, if exists, is the categorial quotient, cf. [16] Proposition 0.1,

so it is also unique up to isomorphism.

Due to the assumption that G is a finite group, the categorial quotient and

geometric quotient both exist and coincide.

Theorem 3.2.3. Let X = SpecA be an affine k-variety on which G acts.

Denote by π : X → SpecAG the morphism induced by the inclusion AG ↪→ A.

Then (SpecAG, π) is the geometric quotient of X by G, denoted by X/G.

Proof. See [16] Theorem 1.1 and Amplification 1.3.

Lemma 3.2.4. Let X = SpecA be an affine k-variety on which G acts and

let π : X → SpecAG be the quotient map. The morphism π is finite, surjective

and separable. Furthermore, if G acts freely on X, π is an étale morphism.

Proof. The statement is proved in [15], II. 7 in the case that k is algebraically

closed.

If k is not algebraically closed, we make a base change to k̄ and obtain the

morphism

π̄ = idk̄⊗π : SpecAk̄ → Spec(AG)k̄.

Let G act on the second component of Ak̄ = k̄ ⊗ A. Since (Ak̄)
G = (AG)k̄

by Lemma 2.3.14, the morphism π̄ is the quotient of Xk̄ under the induced

G-action. By the algebraically closed case, π̄ is finite and surjective. These

two properties fpqc descend, so π is also finite and surjective. If the G-action

on X is free, then the induced G-action on Xk̄ is also free by Proposition 3.1.9.

This implies that π is étale as being étale also descends.

Finally, the G-action on A extends uniquely on Frac(A), the field of frac-

tions of A. For any a/b ∈ Frac(A)G, a, b ∈ A and b ̸= 0, we have

a

b
=

a
∏︁

g ̸=e g(b)∏︁
g∈G g(b)

.
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Then a
∏︁

g ̸=e g(b) ∈ AG, which implies Frac(A)G = Frac(AG). Therefore,

Frac(AG) is a Galois field extension of Frac(A). In particular, π is separable.

In general, X is not affine, but is covered by affine open subsets. Suppose

that X is irreducible and for any x ∈ X, the orbit Gx of x is contained in a

non-empty affine open subset of X. In this case, the existence of the quotient

is also guaranteed and the previous lemma suggests that the quotient is locally

given by the k-algebra of invariants.

Theorem 3.2.5. Let X be an irreducible algebraic variety over k and G a

finite group acting on X. Suppose that for any x ∈ X, the orbit Gx of x is

contained in a non-empty affine open subset of X. Then the quotient (Y, π)

exists and satisfies the following properties:

1. the map π : X → Y is the quotient map between the underlying topological

spaces for the G-action;

2. the natural morphism OY → π∗ (OX)
G is an isomorphism, where π∗ (OX)

G

denotes the subsheaf of G-invariants of π∗ (OX) for the G-action.

The morphism π is finite, surjective and separable. Furthermore, if G acts

freely on X, π is an étale morphism.

Proof. First, it suffices to show that the quotient topological space (Y, π) of

X for the G-action, given the sheaf OY = π∗(OX)
G, is an algebraic variety.

Indeed, for any x ∈ X, there is an open affine subset Ux ⊂ X containing

the orbit Gx by the assumption. Substituting Ux by ∩g∈GgUx (which is non-

empty since X is irreducible and affine since X is separated) if needed, we may

assume Ux is G-stable without loss of generality, so we obtain a G-stable open

covering {Ux, x ∈ X} of X. Suppose {Xi, i ∈ I} is a finite subcovering. Then

π(Xi)’s form a finite open covering of Y and OY |π(Xi) = π∗(OXi
)G, so each

π(Xi) is an affine variety by the previous theorem; hence Y is an algebraic

variety. The other assertions follows immediately from the affine case.

Example 3.2.6. For N ≥ 1, let GLN denote the general linear group over

k, and let G be a finite group embedded in GLN . Then there is a morphism
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π : GLN → GLN/G of affine varieties, where GLN/G is the spectrum of the

ring RG
D of G-invariants in the localization of the affine N -space R = AN2

k at

the determinant form D = det(X11, · · · , XNN).

Example 3.2.7. Let the generator g of G = Z/2Z act on the 1-dimensional

affine space X = A1
R over R by g : R[x] → R[x], f(x) ↦→ f(−x). Then

(R[x])G = R[x2] and X/G ≃ SpecR[x2], where we view R[x2] as a subring

of R[x].
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Chapter 4

Torsors

This chapter revisits the notion of torsors in the category of schemes, gen-

eralizing the torsors discussed in section 2.3. The latter will be referred to as

set-theoretic torsors from now on.

Geometrically, a torsor can be thought as a family of set-theoretic torsors.

We discuss the definition of torsors and some first properties in the first section.

In the second section, we focus on the case when the base scheme is a field

and the group is finite. In that case, torsors turn out to be relatively uncom-

plicated. Indeed, the category of G-torsors and G-equivariant morphisms is

equivalent to that of set-theoretic G-torsors over Gal(ks/k) and G-maps, and

that of G-Galois algebras over k and G-equivariant homomorphisms as well.

4.1 Generalities

Throughout this section, we fix a base scheme S.

Definition 4.1.1. A morphism of schemes X → Y is fppf if it is faithfully flat

and locally of finite presentation. We say an S-scheme is fppf if the defining

morphism is fppf.

Remark 4.1.2. Both fppf and fpqc are French abbreviations: fppf stands for

“fidèlement plat de présentation finie” and fpqc stands for “fidèlement plat

quasi-compact”.
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Example 4.1.3. If the base scheme is a field K, then the faithful flatness is

automatic. Since K is Noetherian, any K-scheme is fppf if and only if it is

locally of finite type. In particular, any K-variety is fppf.

Proposition 4.1.4. Let f be a morphism of schemes. Each of the following

propositions implies the next:

1. f is surjective and étale;

2. f is fppf;

3. f is fpqc.

Proof. The implication 1⇒2 follows immediately from the definition. For 2⇒3

we refer to [19] Proposition 2.35(iv).

Definition 4.1.5 ([12]. III.4). Let G be an fppf group scheme over S, i.e.,

the defining morphism G → S is fppf. A (right) G-torsor over S is an fppf

S-scheme X with a right G-action X ×S G → X such that the following

equivalent conditions hold:

1. There exists an fppf base change S ′ → S such that XS′ with the right

GS′-action is isomorphic to GS′ with right translation GS′-action.

2. The map

X ×S G→ X ×S X

(x, g) ↦→ (x, x · g)
(4.1)

is an isomorphism of S-schemes.

A morphism of G-torsors over S is a G-equivariant morphism of S-schemes.

Proof of equivalence. 2⇒1: Take S ′ = X. Then the map (4.1) gives an isomor-

phism XS′ ≃ GS′ as S-schemes. It respects the GS′-action as x(gh) = (xg)h

by the axioms of actions.

1⇒2: Base change the map (4.1) to S ′ and composite with XS′ ≃ GS′ , we

obtain
GS′ ×S′ GS′ → GS′ ×S GS′

(x, g) ↦→ (x, x · g),
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which is a translation isomorphism. Since S ′ → S is fppf; hence fpqc by

Proposition 4.1.4. Since isomorphism fpqc descends, the map (4.1) is again an

isomorphism.

If S is a variety over a field k and G an fppf group scheme over k, we refer

GS-torsors X as G-torsors because X×SGS ≃ X×kG and fppf is stable under

base change.

Remark 4.1.6. Being a G-torsor is stable under base change. More precisely,

let X be a G-torsor over S. Then for any morphism S ′ → S, the base change

XS′ is a GS′-torsor over S ′. Indeed, fppf is stable under base change, so we

need only verify the torsor condition:

XS′ ×S′ XS′ ≃ S ′ ×S (X ×S X) ≃ S ′ ×S (X ×S G) ≃ XS′ ×S′ GS′ .

Before we proceed, we first prove the following lemma.

Lemma 4.1.7. Let X1 and X2 be G-torsors over S0. Suppose f : X1 → X2 is

a G-equivariant S0-morphism. Then f is an isomorphism of G-torsors.

Proof. By the definition of G-torsors, there exists fppf base changes Si → S0

such that there are GSi
-equivariant isomorphisms Si ×S0 G ≃ Si ×S0 Xi for

i = 1, 2. Taking S = S1 ×S0 S2, one obtains the GS-equivariant isomorphisms

S ×S0 G ≃ S ×S0 Xi for i = 1, 2.

Then the following diagram commutes for some GS-equivariant morphism

t : GS → GS:

S ×S0 X1 S ×S0 G

S ×S0 X2 S ×S0 G

∼

idS ×f t

∼

Since t is GS-equivariant, the following diagram also commutes:

GS ≃ GS ×S S GS ×S GS GS ×S GS

GS GS

id×e

m

id×t

m

t
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where m and e are the defining morphisms of GS as a group scheme over S,

so t is given by a right translation by t ◦ e ∈ G(S) and hence an isomorphism.

Therefore, idS ×f is an isomorphism, so f is an isomorphism by fpqc descent.

Corollary 4.1.8. Let (S, π′) be a G-torsor over S0 and (T, π) a G-torsor over

T0. Suppose that the following diagram commutes

S T

S0 T0

f

π′ π

f0

where f is a G-equivariant morphism. Then S ≃ T ×T0 S0 as G-torsors over

S0.

Proof. The fiber product of f and π′ is a G-equivariant morphism (f, π′) : S →
T ×T0 S0 between G-torsors over S0; hence an isomorphism by the previous

lemma.

4.2 Torsors under finite groups over fields

Now we come back to the case where G is a finite group and make no

notational distinction between G and its associated constant group scheme

over k.

Example 4.2.1. The group scheme G with the right translation is itself a

G-torsor, called the trivial G-torsor over k, denoted by G.

Example 4.2.2. Let L be a Galois G-algebra over k. Then X = SpecL is a

G-torsor over Spec k, because there is a finite field extension K of k such that

XK = Spec(LK) ≃ SpecK[G] ≃ GK .

In fact, the G-torsors over k are equivalent to the set-theoretic torsors.

Proposition 4.2.3. The G-torsors over k are precisely the spectra of G-Galois

algebras over k. Furthermore, the category of G-torsors over k and morphisms
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of G-torsors is equivalent to the category of G-Galois algebras and the category

of set-theoretic G-torsors over Gal(ks/k).

{G-torsors over k} ≡ G-Galopk ≡ G-TorGal(ks/k).

Thus, there is a bijection between pointed sets

{isomorphism classes of G-torsors over k} ↔ H1(k,G),

where the isomorphism class of the trivial G-torsor corresponds to the coho-

mology class of the trivial cocycle.

Proof. The spectra of G-Galois algebras over k are G-torsors over k as dis-

cussed above.

Conversely, for any G-torsor X over k, we have XS ≃ GS for some fppf

k-scheme S. Since GS is finite and étale over S, by fpqc descent, so is X over

k. Then X = SpecL for some étale k-algebra L by Theorem 2.2.3. And the

isomorphism (4.1) implies that the induced action of G(ks) = G on L(ks) is

simply transitive, so L is a Galois G-algebra over k. The rest then follows

immediately from Theorem 2.3.9.

Remark 4.2.4. This correspondence gives us an explicit way to compute the

corresponding cohomology class of a G-torsor X over k. Namely, pick any

element x in X(ks) (on which G acts simply transitively as X is given by some

Galois k-algebra) and for any σ ∈ Gal(ks/k), we define aσ by σx = x ·aσ. Then
a : Gal(ks/k)→ G is a cocycle representing X in H1(k,G).

The next proposition gives an example of G-torsors that is of crucial im-

portance to us.

Proposition 4.2.5. Let X be an algebraic variety over a field k and G act

freely on X, and (Y, π) the quotient of X under the G-action. Then X is a

G-torsor over Y .

Proof. The morphism G→ Spec k is clearly fppf. Taking a base change to Y ,

we obtain that GY → Y is fppf. By Theorem 3.2.5, π : X → Y is surjective

and étale; hence fppf.
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We may assume without loss of generality that k is algebraically closed,

otherwise we take a fpqc base change Y → Yk̄ and then apply fpqc descent to

the quotient map idk̄×π : Xk̄ → Yk̄.

It remains to show that the map τ : X×Y GY → X×Y X, (x, g) ↦→ (x, x ·g)
is an isomorphism. Note that X ×Y GY ≃ X ×k G, and τ is the fiber product

of étale morphisms p1 : X ×k G → X, (x, g) ↦→ x and µ : X ×k G → X,

(x, g) ↦→ x · g, so τ is étale. Thus, it suffices to show that τ is bijective.

Since they are varieties over k, we need only check the bijectivity on closed

points. As sets of prime ideals, we have

X ×Y X ≃ {(x, x′, y, p) : y = π(x) = π(x′) and p ∈ Spec(k(x)⊗k(y) k(x
′))},

see e.g. [2] Lemma 26.17.5. Notice that only closed points are mapped to

closed points via the finite morphism π and the residue field of any closed

point x ∈ X must be a finite field extension of k, so for any closed point

x, x′ ∈ X, we have k(x) = k(x′) = k(y) = k because k is algebraically closed.

Thus, the set of closed points of X ×Y X is in bijection with the set of pairs

{(x, x′) : π(x) = π(x′), x is a closed point in X},

and hence in bijection with the closed points of X ×k G via τ since π is the

quotient map for the G-action.
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Chapter 5

Versal Torsors

In this chapter, we denote by k0 a base field and keep the assumption that

G is a finite group throughout.

The goal of this chapter is to introduce versal torsors to the readers and

present some specific constructions of versal torsors under finite groups. In-

tuitively, versal G-torsors are G-torsors in the category of S-schemes with the

universal property that any G-torsor T over any infinite field k ⊇ k0 can be

obtained by pulling back a versal torsor along some k-points in S. So many

properties of G-torsors are inherited by versal G-torsors, which motivates the

study of versal torsors. For example, if a versal G-torsor is smooth, then so

are all G-torsors by base change.

The first section of this chapter presents two classic ways of constructing a

versal torsor under finite groups: from a general linear group scheme or from

an affine space over k0. In the second section, we provide a more direct proof

of the second construction that avoids the use of Galois cohomology.

5.1 Two classic constructions

Definition 5.1.1. A versal G-torsor over a k0-scheme S is a G-torsor Q over

S such that for every extension k of k0 with k infinite, every G-torsor T over

k, and every non-empty open subset U of S, there exists x ∈ U(k) whose fiber

Qx is isomorphic to T as a G-torsor.
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A versal G-torsor Q over S is “universal” in the sense that any G-torsor T

over any infinite field k ⊇ k0 can be obtained by pulling back Q along some

k-points in S. We say such a k-point realizes the G-torsor T .

The next theorem asserts that versal G-torsors exist for any finite group

G and gives a specific construction out of general linear groups.

Theorem 5.1.2. Suppose G is a finite group embedded into GLN for some

N over k0. Let G act on GLN by right multiplication. Then GLN is a versal

G-torsor over GLN/G.

Proof. We have shown GLN is a G-torsor over GLN/G in Proposition 4.2.5.

We now show that it is versal. By [17] Proposition I.36, the sequence of pointed

sets
∗ → H0(k,G)→ H0(k,GLN(ks))→ H0(k, (GLN/G)(ks))

δ→ H1(k,G)→ H1(k,GLN(ks))
(5.1)

is exact, where H0(k,A) is defined to be group of the invariants AGal(ks/k) for

any Gal(ks/k)-group A. It follows from Theorem 2.1.14 that H1(k,GLN(ks))

is trivial, so sequence (5.1) reduces to

∗ → G→ GLN(k)→ (GLN/G)(k)
δ→ H1(k,G)→ ∗ (5.2)

Therefore, for any t ∈ H1(k,G), there exists an x ∈ (GLN/G)(k) such that

δ(x) = t. Pick a y ∈ GLN(ks) such that the following diagram commutes.

T GLN

Spec ks Spec k GLN/G

π
ỹ

y

ι
x

Then t = δ(x) is represented by the cocycle aσ = y−1 · σy for σ ∈ Gal(ks/k).

On the other hand, put T := GLN ×GLN/G Spec k. Then T is a G-torsor

over k by Remark 4.1.6. The fiber product ỹ of y and ι lies in T (ks), so by

Remark 4.2.4, T is represented by the cocycle a′ : Gal(ks/k)→ G defined by

σỹ = ỹ · a′σ,

so a′σ = y−1 · σy = aσ and the class of T is represented by t.
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Furthermore, the exactness of sequence (5.2) implies that the fiber of x for δ

is identified with the orbit Ox of x under the action ofGLN(k) on (GLN/G)(k)

by [17] Corollary 1 (following Proposition I.36). Note that GLN(k) is dense

in GLN . In fact, since

GLN(k) = Mork0(Spec k,GLN) ≃ Mork(Spec k, (GLN)k) = GLN,k(k),

we may assume k = k0 without loss of generality. Consider the closed points

in the form (Xij − aij) that have residue fields k where aij ∈ k. Assume there

exists a non-zero f ∈ RD such that Uf contains no such point. Then f vanishes

for all aij ∈ k. Since k is infinite, this is absurd. Next, π sends dense subsets

to dense subsets due to its continuity, so Ox is dense in GLN/G; hence GLN

is versal.

We can also construct a versal G-torsor out of the N -dimensional affine

space V over k0 on which GLN acts. Fix an embedding G ↪→ GLN over k0.

If we remove all the closed subschemes that are fixed under some 1 ̸= g ∈ G

and end up with an open dense G-stable subscheme V ′ of V on which G acts

freely, then Proposition 4.2.5 shows that V ′ → V ′/G is a G-torsor. Indeed, it

is a versal G-torsor.

Theorem 5.1.3. Let G be a finite group embedded into GLN for some N over

k0 and V the affine N-dimensional space over k0 on which GLN (and hence

G) acts. Define

V ′ = V \
⋃︂

1̸=g∈G

ker(g − 1).

Then V ′ is an open dense G-stable subscheme of V . Furthermore, V ′ is a

versal G-torsor over V ′/G.

Proof. We verify that the G-action on V ′ ⊆ V is free. By Proposition 3.1.9, it

suffices to show that Gk̄ acts on V ′
k̄
freely. Indeed, for any closed point v ∈ V ′

k̄
,

if there was a 1 ̸= g ∈ G such that gv = v, then v ∈ ker(g − 1), which is

contradictory.

It remains to show that V ′ → V ′/G is versal. Because of the definition of

versal torsors, we may assume k0 is infinite. Pick a k0-point v = (Yi − ai : i =
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1, · · · , n) ∈ V ′, where ai ∈ k0. The natural GLN -action on V induces a

G-equivariant dominant morphism of schemes f : GLN → V given by the

homomorphism of coordinate rings (on the generators)

O(V ) = k0[Y1, · · · , YN ] ↪→ k0[X11, · · · , XNN ]D = O(GLN)

Yi ↦→
∑︂
j

ajXij.

Put U = f−1(V ′), then U is an open G-stable subset of GLN , and hence

dense since GLN is irreducible. Then f restricts to a G-equivariant dominant

morphism f1 : U → V ′ which induces a dominant morphism f2 : U/G→ V ′/G.

GLN V

T U V ′

GLN/G V/G

Spec k U/G V ′/G

f

π
f1

π|U

x f2

π′

The quotient U/G is well-defined by Theorem 3.2.5 since π−1(π(U)) = U ,

where π : GLN → GLN/G is the quotient map.

For any G-torsor T over a field extension k of k0, we have shown in

Theorem 5.1.2 that the k-points realizing T are dense in GLN/G. Since

U/G is non-empty and open in GLN/G, there exists x ∈ U/G(k) such that

GLN ×GLN/G Spec k ≃ T as G-torsors.

Clearly U is the fiber product of GLN and U/G over GLN/G. Further-

more, U is the fiber product of V ′ and U/G over V ′/G by Corollary 4.1.8.

Therefore, the fiber of π′ : V ′ → V ′/G over the k-point f2 ◦ x is isomorphic to

T as G-torsors by the transitivity of base change.

For any open subsetW ⊂ V ′/G, f−1
2 (W ) is non-empty since f2 is dominant,

so the existence of such x that realizes T in f−1
2 (W ) follows from the versal

property of GLN over GLN/G, which implies the versal property for V ′ over

V ′/G.
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Remark 5.1.4. Viewing V as a set of prime ideals, it would be too much if we

remove all elements of V that are fixed by some 1 ̸= g ∈ G.

For example, let G = Z/2Z = ⟨g⟩ act on X = A1
R by x ↦→ −x as in

Remark 3.1.8. Take k = k0 = R. Prime ideals in R[x] are generated by a

irreducible monic polynomial in R[x]. We shall denote by c the ideals in the

form (x− c) for any c ∈ R and by (b+ ci, b− ci) the prime ideals in the form

((x − b)2 + c2) for any b, c ∈ R and c > 0 in Figure 5.1. Then the points in

the form (ci,−ci) are fixed by g as they correspond to ideals (x2 + c), and

so is the generic point. However, if we remove all these points and pass to

the quotient X/G = SpecR[x2], we end up with R-points in the form (c,−c)
for c > 0 which realize only the trivial G-torsor. But we should have more

because H1(k,G) is non-trivial (it contains two elements).

-2+i-2+i

-2-i-2-i

3i3i

-3i-3i

2+i2+i

2-i2-i

33-3-3 00(0)(0)

Figure 5.1: 1-dimensional affine space over R.

(3i,-3i)(3i,-3i) (3,-3)(3,-3)00(0)(0)

(2+i,-2-i)(2+i,-2-i)

(-2+i,2-i)(-2+i,2-i)

Figure 5.2: R-points in A1
R/G.
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5.2 An alternative proof of Theorem 5.1.3

In this section, we work in the context of Theorem 5.1.3; that is, let G

be a finite group embedded into GLN for some N over k0 and V the N -

dimensional affine space over k0 on which GLN (and hence G) acts. Let V ′ be

the subscheme of V with the varieties ker(g − 1) removed, for all g ∈ G \ {1}.
Then V ′ is an open dense G-stable subscheme of V .

Given k that is infinite and a field extension of k0, we have seen in Sec-

tion 4.2 that G-torsors over k are given by Galois G-algebras over k. To realize

them out of V ′ → V ′/G, we proceed in the following steps:

First, we argue that to find a k-point of V ′/G that realizes a Galois G-

algebra L, it suffices to find a surjective G-equivariant k-algebra homomor-

phism O(Vk)→ L. Next, we give a proof for the existence of such a homomor-

phism based on the fact that any Galois G-algebra over k has finitely many

G-stable subalgebras. Finally, we show that the k-points of V ′/G that realize

L are dense.

Lemma 5.2.1. Let L be a Galois G-algebra over k. If x is a G-equivariant

embedding from SpecL to Vk, then x factors through V ′
k.

Proof. By Theorem 2.3.15, SpecLk̄ is a finite set on which G acts simply

transitively. Since x̃ is G-equivariant, this implies that G acts freely on SpecL

by Proposition 3.1.9; hence also acts freely on im(x). Therefore, x factors

through V ′
k .

Lemma 5.2.2. To find a k-point of V ′/G that realizes a Galois G-algebra L, it

suffices to find a surjective G-equivariant k-algebra homomorphism O(Vk) →
L, where G acts on the second component of O(Vk) = k ⊗k0 O(V ).

Proof. Suppose h : O(Vk)→ L is a surjective G-equivariant k0-algebra homo-

morphism. Then the restriction of h on the G-invariants is a homomorphism

h|O(Vk)G : O(Vk/G)→ k. By Lemma 5.2.1, the comorphisms factor through V ′
k

and V ′
k/G, respectively, such that the diagram

SpecL V ′
k Vk

Spec k V ′
k/G Vk/G
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commutes. Note that the left two columns are G-torsors and the top row is G-

equivariant, so SpecL→ Spec k is a pullback of V ′
k → V ′

k/G by Corollary 4.1.8;

hence a pullback of V → V/G by the transitivity of fiber products.

Next, we find such a surjective homomorphism based on the fact that any

Galois G-algebra has only finitely many G-stable subalgebras.

Lemma 5.2.3. Any Galois G-algebra L over k has only finitely many G-stable

subalgebras over k.

Proof. This is an immediate corollary of Proposition 2.2.16.

Lemma 5.2.4. If L is a Galois G-algebra over k, then there is a k-point in

V ′/G that realizes L.

Proof. First, by Lemma 5.2.2, it suffices to show that there is a surjective

G-equivariant k-algebra homomorphism

h : O(Vk)→ L,

where G acts on the second component of O(Vk) = k ⊗k0 O(V ).

Let V ∗
k denote the dual space of Vk. Consider the canonical bijections

Homk-alg(O(Vk), L) ≃ Homk(V
∗
k , L) ≃ L⊗k Vk,

where the first bijection comes from the universal property of the symmetric

algebra O(Vk) = Sym(V ∗
k ), and the second bijection is indeed a k-vector space

isomorphism.

LetG act on L⊗kVk diagonally and act on Homk-alg(O(Vk), L) by (g·f)(p) =
g(f(g−1p)) for any g ∈ G and f ∈ Homk-alg(O(Vk), L) so that the bijection

Homk-alg(O(Vk), L) ≃ L ⊗k Vk is G-equivariant and (Homk-alg(O(Vk), L))
G =

HomG-alg(O(Vk), L).

LetH denote the k-vector space (L⊗kVk)
G. Restricting to theG-invariants,

we obtain bijections

j : H
j1≃ (Homk(V

∗
k , L))

G j2≃ HomG-alg(O(Vk), L).
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Note that j1 is a k-vector space isomorphism and each h ∈ H gives a G-algebra

morphism j(h) : O(Vk) → L. We will have shown that there exists an h ∈ H

such that j(h) is surjective, which would complete the proof.

Assume towards a contradiction that j(h) is not surjective for all h ∈
H. Since G is finite, the number of G-stable sub-k-algebras of L is finite by

Lemma 5.2.3. Denote by L1, · · · , Lm the distinct proper G-stable subalgebras.

Consider the subsets of H

Hi := {h ∈ H : im(j(h)) ⊆ Li}, for i = 1, · · · ,m.

These subsets are indeed subspaces of H, for Hi = {h ∈ H : im(j1(h)) ⊆ Li}.
Because H =

⋃︁m
i=1Hi by assumption and we cannot write a vector space as

a finite union of proper subspaces over an infinite field k, there must be an i

such that H = Hi. This implies the images of all j(h) are contained in Li and

(L⊗k Vk)
G = (Li ⊗k Vk)

G (5.3)

Consider the canonical bijections

jks : ks ⊗k H = (ks ⊗k L⊗k Vk)
G ≃ ((Lks)⊗k Vk)

G

≃ HomG -alg /k (O(Vk), Lks) ≃ HomG -alg /ks (O(Vks), Lks) .

But taking equation (5.3) into account, one obtains

jks : ks ⊗k H ≃ HomG -alg /ks (O(Vks), (Li)ks)

via the same maps, so all G-algebra homomorphisms from O(Vks) have images

contained in (Li)ks .

However, Li⊗kks ̸= L⊗kks ≃
∏︁

G ks by dimension consideration, and there

is indeed a G-algebra homomorphism from O(Vks) to Lks that is surjective.

For instance, if one picks an arbitrary ks-point x ∈ Vks with trivial G-stabilizer

(such points are dense), then the closed immersion Gx → Vks induces such a

surjection. This contradiction implies that there exists an h ∈ H such that

j(h) is surjective G-algebra homomorphism from O(Vk) to L as we desire.
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Lemma 5.2.5. Let L be a Galois G-algebra over k. The k-points that realize

L are dense in V ′/G.

Proof. Assuming without loss of generality that k0 is infinite, we have demon-

strated the existence of a k-point y = π(x) in V ′/G that realizes L. We assert

that any A ∈ GLN(k0) also results in π(Ax) realizing L. This is because the

fiber of π(Ax) is determined by the residue fields of Ax and π(Ax), which are

independent of the choice of A. As a result, the k-points that realize L are

dense due to the density of the GLN(k0)-orbit of x.

Proof of Theorem 5.1.3. This follows immediately from the preceding lemmas.

Example 5.2.6. Let G = Sn act on the affine n-space V = Spec k[x1, · · · , xn]

by permuting the variables. Then V ′ contains closed points with distinct co-

ordinates. By Lemma 3.2.4, V/G is given by the ring of symmetric polynomial

in n variable. Then Vieta’s formulas show that V ′/G can be identified with

polynomials of degree ≤ n with distinct roots. Theorem 5.1.3 shows that

V ′ → V ′/G is a versal torsor under Sn.
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