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Abstract

Lipid membranes represent a critically important interface in biological cells and cellular

organelles and mediate all interactions between cells and their surrounding environment.

Although quite fragile and negligibly thin, they can be homogeneous down to molecular

dimension. Consequently, their mechanical properties can be described by idealizing their

structure as a thin-walled continuum approximated by a two-dimensional surface. In this

context, theoretical approaches based on continuum mechanics are becoming powerful tools

to examine lipid bilayer membrane models to explain various aspects of the mechanical

deformability of the membrane. However, the corresponding analysis most often involves

heavy numerical treatments due to the highly nonlinear nature of the resulting systems of

equations. For example, some analytical description of lipid membranes assembled into non-

axisymmetric shapes such as rectangular and elliptical shapes remains largely absent from

the literature. In addition, most bilayer membrane studies have been conducted using the

classical elastic model of lipid membranes which cannot account for simultaneous changes

in membrane shape and membrane tension arising from certain biological phenomena such

as protein absorption or surface diffusion of proteins on the membrane surface.

To address these issues, in the present work we employ the theory of continuum me-

chanics to develop a comprehensive model for predicting the deformation behavior of both

uniform and non-uniform lipid bilayer membranes. For the uniform lipid membrane, our

emphasis is to develop an analytical description for the membrane morphology when dif-

ferent membrane shapes are subjected to various types of boundary forces or membrane
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lipid-protein interactions. In this regard, we supply a complete analytical solution predict-

ing the deformation profile of rectangular lipid membranes resulting from boundary forces

acting on the perimeter of the membrane. We also give a complete semi-analytic analysis for

the deformation profiles of lipid membranes induced by their interactions with solid ellipti-

cal cylinder substrates (e.g. proteins). In both problems, the theoretical framework for the

mechanics of lipid membranes is described in terms of the classical Helfrich model. A lin-

earized version of the shape equation describing the membrane morphology is obtained via

a limit of superposed incremental deformations for the respective problems. Thus, complete

analytical solutions are obtained by reducing the corresponding problem to a single partial

differential equation and formulating the resulting shape equations with suitable coordinate

systems to accommodate the shapes of the membrane. Each of the analytical results suc-

cessfully predict smooth morphological transitions over the respective domain of interest.

Membrane proteins play a vital role in various cellular activities (such as endocytosis,

vesiculation and tubulation) yet the study of the contribution of membrane proteins presents

a major challenge with one of the main difficulties being the lack of a full understanding of

the mechanics of membrane-protein interaction. Therefore, a portion of this work is devoted

to the study of the mechanics of vesicle formation on a non-uniform flat bilayer membrane

where the vesicle formation process is assumed to be induced by surface diffusion of trans-

membrane proteins and acting line tension energy on the membrane. Much attention is also

given to the discussion of the role of thickness deformation (distension) in the vesicle forma-

tion of the bilayer membrane. Since the classical elastic model of lipid membranes cannot

account for simultaneous changes in membrane shape and membrane tension due to sur-

face diffusion proteins, we propose a modified Helfrich-type model for non-homogeneous

membranes. The proposed model is based on the free energy functional accounting for the

bending energy of the membrane including the spontaneous curvature, thickness distension

and the acting line tension energy on the boundary of the protein concentrated domain and
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the surrounding bulk lipid. In the analysis, the protein concentration level is coupled to

the deformation of the membrane through the spontaneous curvature term appearing in the

resulting shape equation.

Our emphasis in this research is the rigorous mathematical treatment of this model, in

particular to find the numerical solution of the membrane shape equation with associated

boundary conditions. Accordingly, we supply numerical solutions by reducing the corre-

sponding problem to a coupled two-point boundary value problem by the use of collocation

method. These results successfully predict the vesicle formation phenomenon on a flat

lipid membrane surface with a smooth transition of membrane thickness variation inside

the boundary layer where the protein-free membrane and the protein-coated domain is ob-

served.

iv



Preface

Four journal papers were combined to compose the main body of this thesis.

Chapters 2 of this thesis has been published as: Belay T., Kim C.I, and Schiavone P.,

Analytical Solution of Lipid Membrane Morphology Subjected to Boundary Forces on the

Edges of Rectangular Membranes, Continuum Mechanics and Thermodynamics, 2016 (28),

305–315; Chapter 3 as: Belay T., Kim C.I, and Schiavone P., Interaction Induced Mor-

phological Transitions of Lipid Membranes in Contact with an Elliptical Cross Section of

a Rigid Substrate, Journal of Applied Mechanics (ASME), 2016 83(1), 011001-011001-

12; Chapters 4 as: Belay T., Kim C.I, and Schiavone P., Bud formation of lipid mem-

branes in response to the surface diffusion of transmembrane proteins and line tension.

Mathematics and Mechanics of Solids, 2016, doi: 10.1177/108128516657684; Chapter

5 as: Belay T., Kim C.I, and Schiavone P., Mechanics of lipid bilayer membrane bud-

ding subjected to thickness distension, Mathematics and Mechanics of Solids, 2016, doi:

10.1177/1081286516666136. I was responsible for the development of the models, deriva-

tion of the solutions, analysis and was principal author on all of the papers. Kim C.I. is the

supervisory author who suggested the problems. Kim C.I. and Schiavone P. are the supervi-

sory authors who contributed on the concept development of the problems, checked all the

analysis and corresponding results, and revised the manuscripts.

v



I would like to dedicate this thesis to my parents, my wife Meaza A. Desta and in memory

of my daughter Abigel Tsegay Belay who died during childbirth on July 19, 2014.

vi



Acknowledgements

I would like to express my deepest appreciation to my supervisor Dr. Kim. Thank you for

encouraging my research and for supporting me to grow into this research area. Without

his guidance and persistent help this thesis would not have been possible. I would also like

to express special appreciation and thanks to my co-supervisor Professor Dr. Schiavone.

Words can not express how grateful I am for his tremendous help not only academically but

also emotionally through the rough road since the days I began working on this research to

finishing this thesis. He has also been a tremendous mentor for me and his advice on both

research as well as on my career have been invaluable.

I am extremely grateful to Kassa Michael W. Yohannes and Tsega Birhan Gebru who

have given me unconditional mentorship and encouragement during my educational journey

thus far. I am also indebted to Professor Dr. Ichiro Hagiwara for the inspiration he instilled

in me to pursue graduate studies in the field of Mechanical Engineering.

Besides, I wish to thank many of my colleagues, friends and family who have supported

me. A special thanks to my father, Debalkew Belay, and mother, Meaza Mesfin, for all the

sacrifices they have made on my behalf and prayer for me which sustained me thus far. I

would like to express how grateful I am to my brothers, sisters and father-in-law, Abraham

G. Desta and Abdirashid Dulane (Ambassador) for their continuous help and encourage-

ment. I would also like to thank to my beautiful and beloved wife, Meaza A. Desta. Thank

you for supporting me for everything, and especially I can’t thank you enough for your

continued patience and encouraging me throughout this journey. To my beloved daughter

vii



Eliora Tsegay Belay, I would like to express my thanks for being such a good baby girl who

always makes my heart smile, my face light up and made me laugh every time I saw her.

Finally, thank you God, for letting me through all the difficult times and allowing me to

finish my degree. I always keep on trusting You in my life.

viii



Table of contents

List of figures xii

1 Introduction and Background 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Biological membranes . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Lipid bilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Membrane proteins . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Aims and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Analytical Solution of Lipid Membrane Morphology Subjected to Boundary

Forces on the Edges of Rectangular Membranes 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Definitions and basic formulas related to surface geometry . . . . . 16

2.2.2 Shape equations and edge Conditions . . . . . . . . . . . . . . . . 17

2.3 Monge representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Analytical series solution to the linearized shape equation . . . . . . . . . . 24



Table of contents

2.6 Examples and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Interaction Induced Morphological Transitions of Lipid Membranes in Contact

with an Elliptical Cross Section of a Rigid Substrate 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Surface geometry, shape equation and boundary conditions . . . . . 37

3.2.2 Lipid molecule-substrate interaction model . . . . . . . . . . . . . 40

3.3 Linearized shape equation and boundary conditions . . . . . . . . . . . . . 41

3.3.1 Linearized shape equation and boundary conditions in elliptical co-

ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Analytical solution of the linearized shape equation . . . . . . . . . . . . . 48

3.4.1 Deformation of the elliptical lipid membrane when λ > 0 . . . . . 49

3.4.2 Determination of the coefficients . . . . . . . . . . . . . . . . . . . 52

3.4.3 Deformation of the elliptical lipid membrane when λ < 0 . . . . . 55

3.4.4 Transition to circular lipid membrane . . . . . . . . . . . . . . . . 56

3.5 Examples and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Bud Formation of Lipid Membranes in Response to the Surface Diffusion of

Transmembrane Proteins and Line Tension 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Convected coordinates . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 Mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



Table of contents

4.2.4 Shape equation and boundary conditions . . . . . . . . . . . . . . 77

4.3 Protein diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Surface representation and numerical solutions . . . . . . . . . . . . . . . 82

4.4.1 Surfaces of revolution . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.3 Numerical solutions in the budding region and examples . . . . . . 90

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Mechanics of a Lipid Bilayer Subjected to Thickness Distension and Membrane

Budding 100

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Description of the bilayer membrane model with thickness distension . . . 103

5.2.1 Energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Membrane protein diffusion balance law . . . . . . . . . . . . . . . 107

5.2.3 Membrane equilibrium equation and boundary conditions . . . . . 108

5.3 Membrane surface representation . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Numerical solutions and examples . . . . . . . . . . . . . . . . . . 121

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions and Future Work 135

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

References 140

xi



List of figures

1.1 Schematics of a biological cell. (Picture taken from: © 2003 Pearson Edu-

cation, Inc., Publishing as Benjamin Cummings). . . . . . . . . . . . . . . 2

1.2 Chemical structure and schematics of amphiphilic lipid molecule. (Picture

taken from: © 2009 Encyclopedia Britannica, Inc.) . . . . . . . . . . . . . 4

1.3 Schematics of self-assembled structures of lipid molecules. (Picture taken

from: © 2009 Encyclopedia Britannica, Inc.) . . . . . . . . . . . . . . . . 4

1.4 Schematic diagram of membrane proteins in a biological membrane. (Pic-

ture taken from: Michael H. Ross et al. 2005). . . . . . . . . . . . . . . . . 5

2.1 Representation of membrane surface. . . . . . . . . . . . . . . . . . . . . . 16

2.2 Monge representation of points in a membrane surface using cartesian coor-

dinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Coordinate systems of lipid bilayer membrane and schematic of applied mo-

ment at the edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Membrane shape evolution with an applied moment of M1 = M1 = 30×
10−4(pNnm) and ratio of sides of domain(b

a = 2). . . . . . . . . . . . . . . 30

2.5 Membrane shape evolution with an applied moment of M1 = M1 = 70×
10−4(pNnm) and ratio of sides of domain(b

a = 2) . . . . . . . . . . . . . . . 31

2.6 Membrane shape evolution with an applied moment of M1 = M1 = 70×
10−4(pNnm) and ratio of sides of domain(b

a = 3). . . . . . . . . . . . . . . 31

xii



List of figures

2.7 Membrane shape evolution with ratio of sides of domain: (i)(b
a = 2), (ii)(b

a =

3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Circular, cylindrical and elliptical structure formed from lipid molecules.(Picture

taken from: Skar-Gislinge, N., et al. 2010). . . . . . . . . . . . . . . . . . 36

3.2 Schematics of interaction of membrane, substrate and bulk liquid: (a) three-

dimensional and (b) two-dimensional representations. . . . . . . . . . . . . 42

3.3 Deflection of lipid membrane along the (a) major (b) minor axes with (γ =

π/2, e = 0.95, σ/λ =−3). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Deflection of lipid membrane along the (a) major (b) minor axes with (γ =

π/2, e = 0.95, σ/λ =−9). . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Deflection of lipid membrane along the (a) major (b) minor axes with (γ =

π/2, e = 0.95, σ/λ =−15). . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Contour plot of lipid membrane deflection with elliptical substrate (γ = π/2,

e = 0.75, σ/λ =−15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Contour plot of lipid membrane deflection with circular substrate interaction

(γ = π/2, σ/λ =−3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Linear solution of lipid-membrane circular cylinder substrate interaction

(γ = π/2, (a) σ/λ =−3, (b) σ/λ =−9, (c) σ/λ =−15). . . . . . . . . . 63

3.9 Effect of substrate cylinder radius with (a) μρ0 = 0.05, (b) μρ0 = 10. . . . 64

xiii



List of figures

4.1 (a) HIV-1 Gag assembling into capsids and budding from the plasma mem-

brane. Transmission electron micrograph, (The Lingappa Lab & The Fred

Hutchinson Cancer Research EM facility, 2006), (b) Clathrin-coated vesi-

cle prior to fission, observed by [65] (1979, reproduced by permission of

the Company of Biologists), (c) Electron micrographs of arenavirus parti-

cles emerging from an infected cell (Picture taken from: Schley, D., et. al.,

2013) and (d) Electron micrographs of virions budding from the surface a

human embryonic lung cell. (Picture taken from: Grimwood, B.G., 1985). . 69

4.2 Representation of surface revolution. . . . . . . . . . . . . . . . . . . . . . 83

4.3 Spatial distribution of protein concentration on the membrane surface. Ar-

row pointing upwards indicates an increase of diffusion time for the proteins. 91

4.4 Sequence of membrane shape-changes as the protein diffuses proceeds with

(γ = 0), and weak membrane tension of (fυ = 0.001). The associated diffu-

sion time for the protein is (t=0 s,0.91s,1.45s) . . . . . . . . . . . . . . . . 92

4.5 Sequence of membrane shape-changes as the protein diffuses proceeds with

(γ = 0.1), and weak membrane tension of (fυ = 0.001).The associated dif-

fusion time for the protein is (t=0 s,0.91s,1.45s) . . . . . . . . . . . . . . . 92

4.6 Sequence of radial distance of a membrane point from the axis of sym-

metry as the protein diffuses proceeds with (γ = 0), and weak membrane

tension of (fυ = 0.001). The associated diffusion time for the protein is

(t=0 s,0.91s,1.45s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Sequence of radial distance of a membrane point from the axis of symme-

try as the protein diffuses proceeds with (γ = 0.1), and weak membrane

tension of (fυ = 0.001).The associated diffusion time for the protein is

(t=0 s,0.91s,1.45s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



List of figures

4.8 Location of line tension on the evolved membrane bud at (t=1.45s) is shown

with an arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 (A & B) Sequence of membrane budding evolution as the protein diffuses

over the membrane with (γ = 0.0), and weak membrane tension of (fυ =

0.001) and the corresponding diffusion time for the protein is (t=0.91s,1.45s)

and (C) Transmission electron microscopy images of the bud neck of a WT

yeast cell. (D) Transmission electron microscopy images of the bud neck of

a shs1Δ mutant cell. (Pictures (C) and (D) are taken from: Cosima, L., et

al., 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.10 (A) Spinning disk confocal images through the bud neck of a yeast cell

expressing ssDFP-HDEL. Arrows point at GFP-HDEL localization to the

bud neck, (B) Images of WT, bud6Δ, and shs1Δ mutant cell expressing

Sec61-GFP localization at the bud neck and (C&D) Sequence of membrane

budding evolution as the protein diffuses over the membrane with (γ = 0.1),

and weak membrane tension of (fυ = 0.001). The associated diffusion time

for the protein is (t=0.91s,1.45s). (E) is the 2D plot of the membrane shape

corresponding to the counter plot in D. (Pictures (A) and (B) are taken from:

Cosima, L., et al., 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Schematic representation of membrane budding with thickness distension. . 114

5.2 Schematic representation of the deformation of lipid bilayer membrane sur-

face. Ω is the mid-surface of the membrane and represents the reference

configuration of an initially flat membrane whereas ω is mid-surface of the

membrane in the current configuration membrane. The gray box shows the

space occupied by a sample of lipid molecules during the deformation process.126

xv



List of figures

5.3 Sequence of membrane shape-changes with the effect of thickness disten-

sion, as the protein diffusion proceeds with (γ = 0.00104555), and weak

membrane tension of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Sequence of thickness distension induced by the deformation of the mem-

brane as the protein diffusion proceeds with (γ = 0.00104555), and weak

membrane tension of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . 127

5.5 (a) a bulged membrane shape , (b) the corresponding inhomogeneous thick-

ness distension and (c) a schematic of the bud formation showing simulta-

neous change of the shape and thickness distension as the protein diffusion

proceeds in correspondence of (γ = 0.00104555), and weak membrane ten-

sion of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 A fully budded membrane shape (up) and the corresponding inhomoge-

neous thickness distension (down) as the protein diffusion proceeds in corre-

spondence of (γ = 0.00104555), and weak membrane tension of (fυ = 0.001).128

5.7 Contour plot for a sequence of membrane shape-changes: (a) for bulged,

and (b) fully budded membrane, as the protein diffusion proceeds with (γ =

0.00104555), and weak membrane tension of (fυ = 0.001). . . . . . . . . . 128

5.8 Sequence of membrane shape-changes with the effect of thickness disten-

sion, as the protein diffusion proceeds with (γ = 0.0), and weak membrane

tension of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.9 Sequence of membrane thickness distension as the protein diffusion pro-

ceeds with (γ = 0.0), and weak membrane tension of (fυ = 0.001). . . . . . 129

5.10 A bulged membrane shape with its inhomogeneous thickness variation as

the protein diffusion proceeds with (γ = 0.0), and weak membrane tension

of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvi



List of figures

5.11 A fully budded membrane shape with its inhomogeneous thickness varia-

tion as the protein diffusion proceeds with (γ = 0.0), and weak membrane

tension of (fυ = 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.12 Contour plot for a sequence of membrane shape-changes (a) for bulged and

(b) fully budded membrane, as the protein diffusion proceeds with (γ = 0.0),

and weak membrane tension of (fυ = 0.001). . . . . . . . . . . . . . . . . 131

5.13 Radial distance of a membrane point from the axis of symmetry of a fully

budded membrane subjected to thickness distension (down) and combined

with line tension effect (up). . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 Sequence of change of Landau potential free energy (up) and radial distance

of a membrane point from the axis of symmetry depicting necking location

on the membrane (down) as the protein diffuses proceeds in correspondence

of (γ = 0), and weak membrane tension of (fυ = 0.001). . . . . . . . . . . 132

xvii



Chapter 1

Introduction and Background

Lipid bilayer membranes represent a critically important interface in biological cells and
cellular organelles and mediate all interactions between cells and their surrounding environ-
ment. They are also home to a variety of proteins, which perform the majority of biological
functions. Although, bilayer membranes are quite fragile and negligibly thin, they can be
homogeneous down to molecular dimension. Therefore, their mechanical properties can
be described by idealizing their structure as a thin-walled continuum approximated by a
two-dimensional surface.

1.1 Introduction

1.1.1 Biological membranes

Biological cells are surrounded by membranes which have distinct functions. The extracellu-

lar (plasma) membrane of the cell serves as a physical barrier, forming the boundary of every

cell, while the internal-limited membranes compartimentalize functions into the organelles

of animal and plant cells. The outer membrane can also play a vital role in transmitting

information to the cell in the form of chemical or electrical signals assisted by signalling

molecules, which may initiate various cellular activities within the cell, such as cell division

and protein production. In most cases, the signal transmitting molecules are bound to spe-

cific receptors in the plasma membrane which generate a secondary signal inside the cell,

but they are sometimes able to cross the plasma membrane into the cell [30]. Membranes

also help to control the flow and exchange of many substances in and out of the cell. These
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Introduction and Background

Fig. 1.1 Schematics of a biological cell. (Picture taken from: © 2003 Pearson Education,
Inc., Publishing as Benjamin Cummings).

substances include water, ions, gases, and other useful nutrients. In addition, various waste

products are removed from the cell with the help of the membrane.

From the above discussion, we observe that membranes are critically important com-

ponents of cellular structures. Besides that, due to the interaction with the surrounding

environment, every living cell can experience bending, compression, stretching and shear

deformations. Therefore, to cope with applied external forces, the different tasks mentioned

above and execute many other crucial cellular activities, cell membranes need to be flexible

and elastic in order to allow variation of shape and motion.

Figure 1.1 shows a schematic structure of a biological cell. Different organelles play dif-

ferent roles in the cell, for instance, the mitochondria is responsible for the cell’s metabolism,

the nucleus contains the genetic materials, the endoplasmic reticulum is responsible for pro-

tein molecules synthesis, and Golgi apparatus is involved in sorting and packaging of pro-

teins [56]. Despite their differing functions, these organelles have certain structure in com-
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1.1 Introduction

mon: a lipid bilayer membrane which is a thin sheet like structure that consists of mainly

thin film of lipids and protein molecules (Figure 1.4).

1.1.2 Lipid bilayers

Lipid molecules are biologically important molecules that contain hydrocarbon chains and

make up the structural and functional building blocks for all living cells. Lipid molecules

are amphiphilic in that they have hydrophilic polar (i.e., “water-loving”) head groups and

a hydrophobic nonpolar (i.e., “water-hating”) tail end (see Fig. 1.2). The polarity of the

hydrophilic head is due to the presence of a negatively charged phosphate group linked to

a positively charged amine. The hydrophilic molecules dissolve readily in water and have

the tendency to interact or form hydrogen bonds with water molecules. The hydrophobic

molecules, however, disturb the hydrogen bonds that exist between the water molecules

close to it and hence don’t dissolve in water [98]. When dispersed in water, the difference

in solvation preference of these two parts of the lipid molecules forces them to assemble

spontaneously into a condensed structure, such that their polar heads are facing out toward

the aqueous environment, shielding their hydrophobic tails from the water. The morphology

of the assembled structures depends on the specific size and shape of the hydrophobic and

hydrophilic parts and as a result the lipid molecules can form typical structures such as

bilayers, miceles and vesicles (see Fig. 1.3). Besides, other forms of structures such as

circular, cylindrical and elliptical shapes can be formed from lipid molecules ( see, e.g.,

Fig. 3.1, in Chap. 3).

In fact, it is known that a lipid bilayer structure is characteristic of all biomembranes [33,

73]. For example, in plasma membranes, lipid bilayer structues provide a physical barrier to

separate the extracellular environment from the interior part of the cell. Furthermore, the or-

ganelles (internal membrane-limited subcompartments) of animal and plant cells, the endo-

plasmic reticulum which is the powerhouse where protein molecules are synthesized [56] all
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Fig. 1.2 Chemical structure and schematics of amphiphilic lipid molecule. (Picture taken
from: © 2009 Encyclopedia Britannica, Inc.)

(a) planar bilayer (b) spherical micelles (c) bilayer vesicle

Fig. 1.3 Schematics of self-assembled structures of lipid molecules. (Picture taken from: ©
2009 Encyclopedia Britannica, Inc.)
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Fig. 1.4 Schematic diagram of membrane proteins in a biological membrane. (Picture taken
from: Michael H. Ross et al. 2005).

contain the lipid bilayer structures. The bilayer of a biological membrane is approximately

(5-10 nm) thick and the membrane’s molecular composition is highly inhomogeneous which

typically contains many different types of lipids. The lipid fractions vary between cells, the

many different organelles within the cell, and between the two sides of the bilayer (see

Ref. [56] for the biological details).

1.1.3 Membrane proteins

Biological membranes consist of various proteins interacting with or embedded within lipid

bilayer membranes (see Fig. 1.4). In general, membrane proteins are amphiphatic and hence,

they orient and fold themselves in the lipid bilayer accordingly. The hydrophobic part of the

protein associate with the interior of the membrane, whereas hydrophilic regions protrude

into the aqueous environment at the surface of the membrane.

An array of protein families can be bound to the bilayer membranes in different ways: (i)

transmembrane (integral) proteins, which span the lipid bilayer; (ii) Peripheral membrane

5



Introduction and Background

proteins which are either bound through interaction with the transmembrane proteins or the

lipid hydrophilic head group. These proteins do not interact with the hydrophobic tail groups

of the lipid molecules. (iii) Lipid-anchored membrane proteins which are bound covalently

to one or more lipid molecules. The hydrophobic tail of the attached lipid is embedded in

one leaflet of the membrane. All types of proteins can interact with one another, interact

with the membrane and can also diffuse laterally in the bilayer membrane. In general, mem-

brane proteins perform most cellular activities such as transport of molecules, ion pumps,

signal transduction, endocytosis, vesiculation, tubulation, fission and fusion (for example,

see [7, 10, 15, 53, 71] and the references therein). These various cellular tasks may rely

heavily on mechanical membrane properties and can be studied by developing appropriate

mathematical models. In this thesis, since our focus is the study of the mechanical response

of lipid membranes subjected to various boundary interactions, the interested reader is re-

ferred to [56] for biological details of membranes. Further detailed and related literature

reviews will accompany subsequent chapters.

1.2 Background and motivation

From the above discussions, we observe that lipid bilayer membranes are critically impor-

tant components of cellular structures. Besides that, they rely heavily on mechanical mem-

brane properties to execute many crucial cellular activities and hence, can be studied within

the framework of applied mathematics and theoretical physics. On the other hand, interest

in artificially produced lipid membranes with different shapes is also gaining momentum in

various commercial applications most notably in drug delivery and other potential applica-

tions such as in the field of biosensors and in the development of bilayer-based devices (see

e.g., [40, 43, 68, 99]). Therefore, due to the rise of important practical applications in med-

ical and biological sectors, the need to develop comprehensive models able to adequately

describe the behavior of lipid membranes is crucial.
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Several recent studies on the mechanics of lipid membranes have identified various con-

formational states of the membranes such as scaffolding by proteins [71] and the aggregation

of transmembrane proteins [11, 13, 63]. Further examples can be found in Harvey et al. [60]

and the references contained therein. In each of these cases, the interactions of intermem-

brane proteins provide necessary mechanical forces to regulate the membrane’s shape. The

generated membrane deformation profiles are also dependent on the mechanical responses

of lipid bilayers. Therefore, most of the protein-induced deformations of lipid membranes

can be examined through the "compatible deformations" assimilated by resultant tensions,

bending moments and intra-bilayer pressures on the boundaries and/or some parts of lipid

membranes.

Many of the aforementioned studies indicate that the bilayer of biological membranes

are quite fragile and negligibly thin (typically 5nm-10nm) but they can be homogeneous

down to molecular dimension and therefore, the mechanical response and associated mor-

phological transitions of the lipid membranes can be described by quantitative theoretical

models arising from the classical bilayer mechanics theory [14, 25, 37]. In this context,

the mechanical properties of a lipid membrane can be described by idealizing its structure

as a thin-walled continuum approximated by a two-dimensional surface embedded in three-

dimensional Euclidean space. Besides, in the process of membrane modeling, the shape of

the proteins can be analogized to a cone, a cylinder or an inverted cone. With these idealiza-

tions, in the theory of classical bilayer mechanics, the mechanical surface response of the

membrane can be described by the deformation and geometry of the membrane surface and

the equilibrium configurations of the membrane corresponds to the local minimum of an

areal free-energy density. It should be noted that the free energy density associated with the

lipid membrane is often completely described by a surface parametrization-invariant such

as the mean and Gaussian curvatures which depends only on the surface geometry and this

energy is mainly dominated by bending. This is because the bending mode of deformation
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of a membrane is weak and therefore costs much less energy than, for example, stretching.

The resulting predictive models (which are highly nonlinear), and the admissible boundary

forces and moments transmitted through the membrane can also be expressed in terms of

the membrane surface geometry invariants such as the mean and Gaussian curvatures of the

surface. Unfortunately, the resulting equilibrium equation is a highly nonlinear partial dif-

ferential equation of fourth order and the corresponding analyses most often involve heavy

numerical treatments. This suggests that obtaining these nonlinear systems of equations is

not a substitute for solving the relevant field equation if one wants to determine the actual

shape of the membrane. On the other hand, exact analytical approaches have been proposed

under the assumption of superposed incremental deformations of lipid membranes, yet scar-

ify the complexity of the associate boundary forces and domains of interest [1] and thus far,

in many of the existing analytical and numerical analysis of lipid membranes in the litera-

ture, one of the main challenges that one faces is breaking the assumption of axisymmetry.

Lipid bilayer membranes with different shapes, for example, such as (circular, rectangu-

lar, elliptical) are powerful tools for studying various cellular activities such as functional

analysis of proteins in cells [87]. Moreover, membranes with these shapes are artificially

engineered in order to mimic the fundamental properties of natural cells and can be used

in biosensors development, biotechnology applications [40, 43, 68, 99]. As a result, there

is an imperative demand for the thorough understanding of the mechanical response of the

membrane morphology with these shapes when they are subjected to some specified bound-

ary conditions or interacting with other substrates; there is also demand for a generation

of reliable mathematical models to predict the interaction induced smooth morphological

transition of the lipid membranes with these shapes. To the author’s knowledge, analyti-

cal solutions which predict the deformation profile of rectangular or elliptical membrane

shapes subjected to boundary interactions are absent from the literature. The lack of suf-

ficient studies may be due to the mathematical complexity of the governing equations and
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admissible boundary conditions corresponding to these problems. Indeed, the analytical so-

lution predicting the deformation of membrane morphology with elliptical shape subjected

to boundary interactions and protein substrate, for example, requires to break the assump-

tion of axisymmetry, which is the main challenge in the analytical and numerical analysis

of lipid membranes. To this end, in Chapters 2 and 3, the contents of which can be found

in the author’s publications [9, 10], we develop complete analytical solutions which are

able to serve as a predictive model for the the deformation behaviour of membranes with

rectangular and elliptical shapes subjected to various boundary force/substrate interactions.

Most of the studies of the mechanical response of lipid membranes are within the frame-

work of the classical elastic model of lipid membranes. However, the classical mechan-

ics of a membrane model fails to explain numerous phenomena occurring in the deforma-

tion of nonuniform lipid membranes which experience simultaneous changes in membrane

shape and membrane tension, for example, due to protein absorption on the membrane [70]

or other protein-mediated morphology changes in biomembranes [2, 90]. The work by

Steigmann [90] has addressed this issue to remedy the shortcomings of classical elasticity

and some important papers have been published since then (for example, see [2, 70] and

the references therein). In general, the deformation of nonuniform lipid membranes can

experience the simultaneous changes in membrane shape and membrane tension during the

deformation or morphological transition.

One reason for the inhomogeneity of lipid membranes is the existence of non-uniformly

distributed proteins over the composite membrane surface. As reported above, since mem-

brane proteins play a vital role in various cellular activities (such as endocytosis, vesicu-

lation and tubulation ) and studying membrane proteins still represents a major challenge,

with one of the major difficulties being the problems encountered when interacting with the

membrane, a portion of this work is devoted to the study of lipid membrane deformation

behaviour subjected to surface diffusion of transmembrane proteins. In this regard, we will
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discuss nonuniform membrane remodeling, particularly, the mechanics of bud formation on

a membrane as an example where protein diffusion on the membrane surface acts to change

the membrane curvature locally which is an important step in cellular vesicular transport

such as exocytosis and endocytosis processes [50, 75]. This intracellular vesicle transport is

promoted by vesicle transport proteins which are required to move molecules between cel-

lular organelles. Unfortunately, to the best of the author’s knowledge, the mechanics of bud

formation on a nonuniform membrane subjected to surface diffusion of proteins over a mem-

brane surface (which also undergoes inhomogeneous thickness deformation) remains absent

from the literature. This again may be due to the mathematical complexity of the resulting

systems of equations and boundary conditions. Therefore, a rigorous numerical analysis

of the corresponding systems of equation and boundary conditions is needed to obtain the

required solution of this challenging problem. Furthermore, despite tremendous progress

in the theory of continuum-based modeling of lipid membranes and several studies on the

influence of proteins on membrane bud formation (for example, see [3, 26, 42, 60, 72] and

the references therein), the mechanics of membrane budding is not yet fully understood [79].

Regarding this situation, researchers have faced challenges in their attempts to fully under-

stand the mechanics of protein interaction with the membranes and its effect in membrane

budding. Therefore, we propose a comprehensive continuum-based model which will be

able to serve as a predictive model for the formation of vesicles on a nonuniform lipid mem-

brane. To this end, in Chapter 4 and 5, the contents of which can be found in the author’s

publications [7, 8], we discuss the mechanics of bud formation of lipid membranes in re-

sponse to the surface diffusion of transmembrane proteins. We also discuss the mechanics

of lipid bilayer subjected to thickness deformation (distension) and membrane budding.
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1.3 Aims and scope

The ultimate goal of this study is therefore, to develop analytical and numerical descrip-

tions for the lipid membrane morphology when different membrane shapes (eg. rectangular,

elliptic patches) are subjected to various types of boundary forces (e.g clamping, applied

moments etc...) on their edges or membrane lipid-protein interactions. The analytical de-

scription presented in this thesis will overcome one of the main challenges that one faces

when simulating membrane response: breaking the assumption of axisymmetry.

It is also the focus of this study to develop theoretical model and numerical solutions

which are able to describe the mechanical response of lipid membranes which undergo

inhomogeneous thickness deformation in which inhomogeneity of the membrane is assumed

to arise from a non-uniform spatial distribution and diffusion of transmembrane proteins.

Specifically, this model will predict one particular phenomenana of membrane deformation

which is membrane budding.

Overall, a framework is established in the thesis to predict the mechanical response

(deformation profile) of membrane morphology with rectangular and elliptical membrane

shapes when they are subjected to some specified boundary forces or boundary interactions

with substrates (e.g., proteins). In addition, a comprehensive theoretical framework is also

established to predict membrane budding subjected to surface diffusion of transmembrane

proteins and line tension energy on the membrane. In addition, a mechanistic model which

enables to assess the role of thickness deformation (distension) in membrane budding will

be developed.

1.4 Structure of the thesis

Part I of this thesis is concerned with the analysis of uniform lipid membrane morphology

subjected to boundary interactions, comprising of
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• Chapter 2, discussing the analytical approaches to prediction of the deformation of

lipid membrane morphology with rectangular shape subjected to boundary forces act-

ing on the perimeter of the membrane;

• Chapter 3, introducing analytical methods to predict interaction-induced morphologi-

cal transition of lipid membranes in contact with an elliptical cross-section of a rigid

substrate.

Part II of this thesis is concerned with the simulation of a bud formation process on a

nonuniform lipid membrane, which consists of

• Chapter 4, introducing a new proposed continuum-based model describing the me-

chanics of bud formation on lipid membranes induced by the surface diffusion of

transmembrane proteins and acting line tension on the membrane. This chapter also

presents the results of numerical simulations of the proposed theoretical model which

predicts the vesicle formation phenomenon on an initially flat lipid membrane surface;

• Chapter 5, presenting a new proposed continuum-based model describing the me-

chanics of lipid bilayer membrane subjected to thickness distension and membrane

budding based on the work in chapter 4 and can be used to study the phenomena of

membrane budding in the scenarios where there exists an inhomogeneous deforma-

tion along the thickness of the membrane.

Each of Chapters 2 to 5 also contains an independent abstract, introduction and literature

review regarding the main topic of that chapter.

The last chapter summarizes the entire work and identifies potential research that could

be addressed in the future work.
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Chapter 2

Analytical Solution of Lipid Membrane

Morphology Subjected to Boundary

Forces on the Edges of Rectangular

Membranes

We develop a complete analytical solution predicting the deformation of rectangular lipid
membranes resulting from boundary forces acting on the perimeter of the membrane. The
shape equation describing the equilibrium state of a lipid membrane is taken from the clas-
sical Helfrich model. A linearized version of the shape equation describing membrane mor-
phology (within the Monge representation) is obtained via a limit of superposed incremental
deformations. We obtain a complete analytical solution by reducing the corresponding prob-
lem to a single partial differential equation and by using Fourier series representations for
various types of boundary forces. The solution obtained predicts smooth morphological
transition over the domain of interest. Finally, we note that the methods used in our analy-
sis are not restricted to the particular type of boundary conditions considered here and can
accommodate a wide class of practical and important edge conditions.

2.1 Introduction

Biological membranes are the basic elements of cell and cellular organelles which may in-

clude the mitochondria, chloroplast, the endoplasmic reticulum (ER) , the Golgi apparatus,

and lysosomes. It was found (Gorter and Grendel [33]; Robertson [73]) that a lipid bilayer

structure is, in fact, characteristic of all biological membranes (biomembranes). Lipid mem-

branes are quite fragile and negligibly thin (typically 5nm – 10nm), yet form a continuous
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on the Edges of Rectangular Membranes

permeability barrier around cells. In addition, the composition of the lipid bilayer matrix

(together with cellular proteins) assist the cell membrane to undergo constant morphologi-

cal transitions such as invaginations, fusion, fission [15, 53] regulated by membrane forces.

This in turn, suggests that the mechanical response of a lipid membrane plays an important

role for a wide range of essential cellular functions [60, 84, 96].

Recent studies on the mechanics of lipid membranes have identified various conforma-

tional states of the membranes: the aggregation of transmembrane proteins [11, 13, 63],

scaffolding by proteins [71], filament assembly and the disassembly process of cytoskele-

ton [58, 86, 102]. Further examples can be found in Harvey et al. [60], and the references

contained therein. In these cases, the interactions of intermembrane proteins provide neces-

sary mechanical forces to regulate the membrane’s morphological transitions. The induced

morphological profiles are also dependent on the mechanical responses of lipid bilayers.

Therefore, most of the protein-induced deformations of lipid membranes can be examined

through the "compatible deformations" assimilated by resultant tensions, bending moments

and intra-bilayer pressures on the boundaries and/or some parts of lipid membranes. For

example, Evans [25] discussed chemically induced bending moments in lipid membranes

as a possible mechanism for the crenation of red blood cells (more studies can be found in

the references therein).

The aforementioned studies indicate that the mechanical response and associate morpho-

logical transitions of lipid membranes can be described by quantitative theoretical models

arising from the classical bilayer mechanics theory [14, 25, 37]. In this context, a lipid bi-

layer can be regarded as a closed membrane, much like a thin film sandwich structure where

a fluid-like substance is present between the two films. This further allows for a continuum

setting in the modeling of biomembranes, mainly via the couple-stress theory of elastic sur-

faces [45, 61, 100]. In this context, it also seems useful to consider models belonging to

the (two-dimensional) theory of second-gradient fluids, which are able to take into account
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capillarity effects in an elastic fluid at small length scales. Relevant developments may be

found in [17–20]. The resulting predictive models demonstrate good agreement with exper-

imental data, particularly when the area density of lipids on the membrane is sufficiently

high [93]. However, the corresponding analyses most often involve heavy numerical treat-

ments due to the highly nonlinear nature of the resulting systems of equations. On the other

hand, exact analytical approaches have been proposed under the assumption of superposed

incremental deformations of lipid membranes, yet scarify the complexity of the associate

boundary forces and domains of interest [1].

The present study seeks to develop a complete analytical description for lipid membrane

morphology when rectangular membranes are subjected to various types of boundary forces

(e.g clamping, applied moments etc...) on their edges. Emphasis is placed on the assimila-

tion of the complex nature of boundary forces by means of Fourier series expansions, at the

same time, maintaining the rigor and generality in the derivation of compatible shape equa-

tions within the prescription of superposed incremental deformations. We obtain an exact

analytical solution by reducing the problem to that for a single PDE and by using Fourier

series representation for boundary forces. The corresponding boundary problem indicates

smooth transition of deformation profiles over the domain of interest and converges to the

imposed boundary conditions/forces on the edges of the membrane.

The chapter is organized as follows. Section 2.2 introduces a review of the geometry

and kinematics of the surfaces. Sections 2.3 to 2.4 describe the generalized equilibrium-

shape equation of the lipid membrane and the corresponding admissible edge conditions.

Sections 2.5 and 2.6 present the derivation of the analytical solutions and discuss the results

with examples. Finally, Section 2.7 presents our conclusions.
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Fig. 2.1 Representation of membrane surface.

2.2 Mathematical model

Thus far, it has been noted that the bilayer membrane can be modelled as a continuous elastic

two-dimensional geometric surface embedded in Euclidean three-dimensional space. The

geometry of the surface can be described by its mean curvature and Gaussian curvature (see,

e.g., [95]). Here, some useful formulas and definitions are given making use of the basic

notions of differential geometry after which we introduce the bilayer equilibrium equation

(shape equation) and admissible edge conditions from the literature.

2.2.1 Definitions and basic formulas related to surface geometry

Suppose that ω represents the membrane surface, parametrized by two internal surface co-

ordinates {x1,x2}, such that the position vector of a point on the surface r ∈ R
3 is given by

the map r= r{x1,x2} (see Fig. 2.1). The following vector and tensor quantities are defined

for later use:

aα = r,α , aαβ = aα ·aβ , aαβ = (aαβ )
−1, a = det(aαβ ), (α,β = 1,2) (2.1)
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where aα are the tangent vectors to ω induced by the parametrization r {x1,x2}, aαβ is the

matrix of dual metric components (i.e, the contravariant components of the surface metric

tensor), aαβ is the induced surface metric tensor which is non-negative definite in general,

a is the determinant of the metric tensor aαβ and the commas are used to denote partial

differentiation with respect to the surface coordinates (i.e.,(∗),α = ∂ (∗)
∂xα

)

n =
1
2
εαβaα ×aβ , bαβ = n ·aα,β , bαβ = aαλ aβμbλμ , (2.2)

where n is the local surface orientation, εαβ = eαβ√
a is the permutation tensor density with

e12 =−e21 = 1, e11 = e22 = 0 and bαβ are the symmetric coefficients of the second funda-

mental form on ω .

The geometry of the bilayer membrane can be described in terms of the mean curvature

H and Gaussian curvature K of the membrane surface ω . These are defined by

H =
1
2

aαβbαβ , K =
1
2
εαβ ελμbαλbβμ , (2.3)

and the cofactor of the curvature b̃αβ is given by [90].

b̃αβ = 2Haαβ −bαβ . (2.4)

2.2.2 Shape equations and edge Conditions

In the theory of classical bilayer mechanics, the response of the membrane can be described

by the deformation and geometry of the membrane surface, and the equilibrium configura-

tions of the membrane corresponds to the local minimum of an areal free-energy density Wf .

For a bilayer membrane with densely distributed lipid molecules on the surface, the area of

the lipid membrane can be almost regarded as incompressible, and the equilibrium shape
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of the membrane is determined by the local energy minimization of Helfrich’s model [37]

given by

W f =
k
2

∮
(2H−H0)

2dA+Δp
∫

dV +λ
∮

dA. (2.5)

where dA is the surface area element, dV is the volume element, k is the (positive) bending

modulus, H is the surface mean curvature, H0 is the spontaneous curvature, Δp serves as the

Lagrange multiplier due to constant volume of the system and denotes the osmotic pressure

difference between the two leaflets of the lipid bilayer membrane and λ is the Lagrange

multiplier due to the constraint of constant area and denotes the tensile stress acting on the

surface of the membrane. The first part of Eq. (2.5) is the free energy associated with bend-

ing deformation on the membrane surface (or the curvature-elastic energy of the membrane).

The second and third terms are energy contributions from volume deformations induced by

pressure differences and membrane surface tension, respectively.

Much of the literature on bilayer membrane mechanics has revealed that the bending

energy Wb in terms of H and K plays a crucial role in the determination of the equilibrium

configuration of lipid bilayer membranes, which is given by Helfrich [37] as

Wb(H,K) =
k
2
(2H−H0)

2 + k̄K. (2.6)

Here k and k̄ are bending rigidities which pertains to lipid membranes with uniform prop-

erties. While k̄ is unrestricted, k is found to be positive [1]. In the above, H0 is called the

spontaneous curvature which reflects any possible intrinsic curvature of the membrane, due

to, for example, either the bilayer asymmetry or the physical constraint [29, 47, 60, 104].

The bilayer asymmetry can be produced by the transbilayer lipid shape asymmetry [104].

Hamai et. al. [36] has analogized the shape of lipids to a cone, a cylinder or an inverted cone,

corresponding to negative, zero or positive spontaneous curvature. The physical constraint

can arise from the interaction of proteins on the lipid bilayer membrane surfaces without
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penetrating into the hydrophobic region of the bilayer [29]. Therefore, the above-mentioned

and other chemical factors may cause a nonzero value of the spontaneous curvature. How-

ever, as reported in [27], some mechanism of spontaneous curvature, such as the splayed

geometry of the individual lipid, can be mitigated by the slow process of transmembrane

diffusion of lipids from one layer to the other [84].

Following the works of Agrawal et. al. [1], in this paper, we study a simplified uniform

bilayer membrane that has no natural orientation in which the free energy function Wf satis-

fies the symmetry relation Wf (H,K)=Wf (−H,K) [92] and present the governing equations

describing the equilibrium configurations of the membrane within the framework of the

well-known Helfrich model:

W(H,K;xα) = kH2 + k̄K. (2.7)

Minimization of the free energy
∫
ω W(H,K;xα)da with respect to Helfrich’s zero spon-

taneous curvature model in Eq. (2.7) using variational method leads to the shape equation [1]

of the lipid bilayer membrane, which furnishes

k[ΔH +2H(H2−K)]−2λH = P. (2.8)

The admissible boundary conditions (e.g., boundary forces f and moments M on ∂ω) of

Eq. (2.8) are derived in detail in [1, 70, 90, 91]. These are given by

f = Fυυ+Fττ+Fnn, (2.9)

M =
1
2

WH +κτWK, (2.10)

where υ and τ = n× υ correspond to the exterior unit normal and unit tangent to ∂ω ,

respectively, and

19



Analytical Solution of Lipid Membrane Morphology Subjected to Boundary Forces

on the Edges of Rectangular Membranes

Fυ = W +λ −κυM, Fτ =−τM, Fn = (τM)
′ − (

1
2

WH),υ − (WK),β b̃αβυα , (2.11)

respectively, are the υ-,τ- and n-components of distributed forces per unit length applied to

∂ω . Here, the subscripts H and K refers to partial derivative with respect to the indicated

variables (e.g., WH = ∂W
∂H etc...). For example, the force applied to the membrane at the ith

corner of ∂ω is

fi = WK[τ]in, (2.12)

where,

τ = bαβ ταυβ , (2.13)

is the twist of the membrane surface ω on the (υ ,τ)- axes with (υα = aα .υ and τβ = aβ .τ),

and

κυ = bαβυαυβ , κτ = bαβ τατβ . (2.14)

are the normal curvatures of ω in the directions of υ and τ , respectively.

2.3 Monge representation

We consider a uniform symmetric bilayer membrane described by a surface ω embedded

in IR3 and written as a function of the parametric variables (x1,x2). For convenience, here

and henceforth, the subscripts of the surface coordinates are dropped and replaced by x1 = x,

x2 = y. In order to analyze the responses of the membrane in the rectangular domain, we use
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Fig. 2.2 Monge representation of points in a membrane surface using cartesian coordinate
system.

the Monge representation with space vector r representing material points on the membrane

surface which is given by

r(x,y) = xe1 + ye2 + z(x,y)k, (2.15)

where x and y are positions on a plane, (e1,e2,k) is the orthonormal Cartesian basis and

z(x,y) is height function that describes the bilayer membrane mid-plane shape. Here we note

that the thickness of the membrane is assumed to be uniform. The Monge representation

is an approximation of out-of-plane deformations in which no folds of the membrane are

allowed, and hence, z(x,y) is restricted to a single valued function. This representation is

valid for nearly flat membrane surfaces with gradual variation of the height function away
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from the xy-plane, leading to relatively simple expressions for the corresponding curvature

tensor and other response variables given by:

a = [1+(zx)
2 +(zy)

2], n =
(k−∇z)√

a
, b =

(z,αβ eα ⊗ eβ )√
a

, (2.16)

H =
(1+(zy)

2)zxx−2zxzyzxy +(1+(zx)
2)zyy

2[1+(zx)2 +(zy)2]3/2
, K =

zxxzyy− (zxy)
2

[1+(zx)2 +(zy)2]3/2
. (2.17)

However, the evaluation of the corresponding shape equation Eq. (2.8) in terms of

Eqs. (2.17)1 and (2.17)2 furnishes a highly non-linear PDE system which most often re-

quires heavy computational resources. Instead, a means of "admissible linearization" can

be employed to make the system mathematically tractable with minimum loss of generality.

2.4 Linearization

Within the description of superposed incremental deformations and nearly flat membranes,

we speculate that z,α � 1 (α = x,y), and therefore, their products can be neglected. Thus,

using the notation� to identify equations to the leading order in z, Eqs. (2.16 - 2.17) reduce

to

a� 1, n� k−∇z, and b� ∇2z, (2.18)

H � zxx + zyy

2
� 1

2
Δz and K � 0, (2.19)

where ∇2z = z,αβ eα ⊗ eβ is the second gradient on the plane and Δz = tr(∇2z) is the corre-

sponding Laplacian on the plane.
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Equations (2.18 - 2.19) together with Eq. (2.8) yield the following simplified shape

equation in the case of a uniform Helfrich membrane:

1
2

kΔ(Δz)−λΔz� P. (2.20)

Now, let r̄(S) = r(X̄(S)) where X̄(S) is the arclength parametrization of the projected

curve ∂ω on the plane. Note that (X = xe1 + ye2) in Eq. (2.15) parametrizes the plane in

the global sense. The first derivative can be interpreted as the local tangent vectors r̄,S =

τ̄ +(τ̄.∇z)k, where τ̄ = X̄
′
(S) is the unit tangent to the projected curve. Then τ and τ̄ are

related as r̄,S =
∣∣r̄,S∣∣τ where

∣∣r̄,S∣∣=√
1+(τ̄.∇z)2. Up to leading order, we obtain

τ � τ̄+(τ̄.∇z)k, (2.21)

and similarly for υ as

υ = τ×n� ῡ+∇z×k, (2.22)

where ῡ = τ̄ ×k is the unit normal to the projected curve. Consequently, Eqs. (2.13) and

(2.14) yield,

τ � τ̄.(∇2z)ῡ , κυ � ῡ .(∇2z)ῡ , and κτ � τ̄.(∇2z)τ̄. (2.23)

Thus, the linearized expansion of the edge conditions ( i.e, forces and bending moments

in Eqs. (2.9)-(2.11) in terms of the unit tangents and normals of the projected curve ∂ω can

be obtained as

M � 1
2

kΔz+ k̄τ̄.(∇2z)τ̄, (2.24)

and

fυ � λ , fτ � 0, and fn � k̄τ̄.∇τ− kῡ .∇H. (2.25)
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where τ and H are given by Eqs. (2.23)1 and (2.19)1, respectively.

2.5 Analytical series solution to the linearized shape equa-

tion

In this work, we consider the deformations of a rectangular lipid membrane, in the case

of vanishing lateral pressure and superposed incremental deformations, subjected to vari-

ous types of boundary forces. Emphasis is placed on the cases where the membrane is

subjected to applied boundary moments, since the corresponding deformation profiles are

quantitatively equivalent to those induced by the lateral pressure gradient in the membrane

conformation. However, we also note here that the methods adopted in the present anal-

yses are sufficient general in that they can accommodate more general types of boundary

conditions (e.g., non-uniform tractions, forces and edge clamping etc...).

Consider an isotropic homogeneous bilayer membrane deformation over a rectangular

domain (−a
2 ≤ x≤ a

2 ,−b
2 ≤ y≤ b

2) with simply supported edges (see Fig. 2.3).

The kinematic edge conditions are z = 0 and n � k−∇z = k. The later implies that

∇z = 0 on the boundary, and thus, the edge moment acting in the boundary (2.24) becomes

M � 1
2kΔz. Therefore, the shape equation for the surface deformation of the membrane

reduces to
1
2

kΔ(Δz)−λΔz� 0. (2.26)

and is subject to the boundary conditions:

z = 0, and
1
2

kΔz = M, on ∂ω (2.27)

where k is the bending modulus and λ is a constitutively indeterminate Lagrange-multiplier

field associated with the lipid membrane surface area constraint [1, 41, 70]. Note that the
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Fig. 2.3 Coordinate systems of lipid bilayer membrane and schematic of applied moment at
the edges.

latter is not a material property and hence can be assigned any value in the equation of the

equilibrium and any related conditions in a particular problem whenever deemed necessary.

For example, if the surface area of the lipid membrane is fixed and prevents local dilation of

the area, then λ can be physically interpreted as surface pressure, and this may be a spatially

varying field [70]. Accordingly, in the case of constant surface pressure, λ can be assigned

a negative constant, λ < 0. On the other hand, λ can also be mechanically interpreted as

the traction acting on the surface of the lipid membrane induced by the bending couple and

assuming this stress to be tensile, it can be assigned a positive constant, λ > 0. Note that

although λ > 0 and λ < 0 have quantitatively different behaviour, both of these cases can be

treated analytically in a similar manner. For instance, for the case λ < 0, the Eq. (2.26) can

be recast to the two-dimensional Helmholtz equation which has the form shown in Eq. (2.28)

(with ∈=−1) and the general solution to z(x,y) can be established as sums of trigonometric

functions using the methods of separation of variables plus Fourier series. Similarly, for

the case λ > 0 considered in the present work, the general solution to the linearized shape
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equation z(x,y) can be obtained by recasting Eq. (2.26) to the following modified Helmholtz

equation (with ∈= 1)

ΔH− ∈ μ2H = 0, (2.28)

where H = 1
2Δz from Eq. (2.19)1 and

μ2 =
2λ
k

, where (k > 0). (2.29)

Further, combining (2.19)1 and (2.28) furnishes Δ[z− ( 2
μ2 )H] = 0. Therefore, we obtain

the general solution of z(x,y) as

z(x,y) =
2
μ2 H(x,y)+φ(x,y), (2.30)

where φ is a plane harmonic function (i.e, Δφ = 0).

An analytical series solution to Eq. (2.28) for domains with rectangular boundaries can

be obtained through the method of separation of variables and the general solution for

H(x,y) becomes:

H(x,y) =
∞

∑
n=0

(Cn sinhβny+Dn coshβny)(An sinαnx+Bn cosαnx), (2.31)

Here, the arbitrary constants An,Bn,Cn,Dn and separation constant α2
n , are to be de-

termined from the admissible boundary conditions. Additionally, βn is defined as (β 2
n =

μ2 +α2
n ). We can also get another kind of like solutions for H by changing the sign of α2

n .

Regarding φ in Eq. (2.30), we propose the following plane harmonic function which is a

product of trigonometric and hyperbolic functions as

φ(x,y) =
∞

∑
n=0

(En sinhαny+Fn coshαny)sinαnx, (2.32)
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where En and Fn are arbitrary constants. Consequently, the solution for the linearized shape

equation (2.26) can be formed by the composition of solutions chosen suitably from the

given solution of H and the proposed function of φ . In addition, it will be simpler to solve the

linearized shape equation if we make use of symmetric conditions. For symmetric surface

deformation of the membrane with respect to both axes (see Fig. 2.3):

z(−a
2
,y) = z(

a
2
,y),

z(x,−b
2
) = z(x,

b
2
).

(2.33)

Accordingly, the solution for solving the bilayer membrane deformation and for satisfy-

ing the above double symmetry and boundary conditions of the four edges can be established

in the following form:

z(x,y) =
∞

∑
n=1

(
2
μ2 Dn coshβny+Fn coshαny)(cosαnx)+

2
μ2

∞

∑
n=1

(Gn
coshθnx
coshθn

a
2
+Ln

coshγnx
coshγn

a
2
)cosγny,

(2.34)

where and Dn,Fn,Gn and Ln are unknown constants, which can be completely determined

by imposing admissible boundary conditions, a and b are lengths of the rectangular domain

and:

β 2
n = μ2 +α2

n , θ 2
n = μ2 + γ2

n , αn =
nπ
a
, γn =

nπ
b
. (2.35)

It should also be noted that by introducing the double symmetry conditions into the

expressions for the shape function Eq. (2.33), the solution of the problem is reduced to the

determination of four unknown coefficients.

Finally, the procedure for the computation of the analytical solution starts by introducing

the applied moment in the form of Fourier series expansions:
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f (y) =
∞

∑
n=1

Qn cosγny,

g(x) =
∞

∑
n=1

Rn cosαnx
(2.36)

where Qn and Rn are coefficients of the Fourier series, which can be determined from the

given distribution f (y) and g(x), respectively (see [16]). Thus, by substituting the expres-

sions in (2.34) into Eq. (2.27), we obtain

z(x,y)|x=− a
2
= 0, ⇒ ∂ 2z

∂y2 = 0, Mx|x=− a
2
=

1
2

k
∂ 2z
∂x2 = f (y)

z(x,y)|x= a
2
= 0, ⇒ ∂ 2z

∂y2 = 0, Mx|x= a
2
=

1
2

k
∂ 2z
∂x2 = f (y)

z(x,y)|y=− b
2
= 0, ⇒ ∂ 2z

∂x2 = 0, My|y=− b
2
=

1
2

k
∂ 2z
∂y2 = g(x)

z(x,y)|y= b
2
= 0, ⇒ ∂ 2z

∂x2 = 0, My|y= b
2
=

1
2

k
∂ 2z
∂y2 = g(x)

(2.37)

In general, eight boundary conditions (two on each side) are necessary to completely

determine the unknowns, but due to the introduction of the double symmetry condition, the

solution of the linearized shape equation of the membrane is reduced to the determination

of four unknown Dn,Fn,Gn and Ln from the above specified boundary conditions. The

boundary conditions also follow most easily from an analysis of the symmetry at (x,y)-axes

(see Fig. 2.3). Thus, solving procedure for the unknown constants continues with selec-

tion of two boundary conditions through which the direct dependence between appropriate

groups of unknown coefficients is defined. Applying the boundary conditions along the

edges y =±b
2 [see(2.37)3 and (2.37)4)], we find the coefficients Dn and Fn as

Fn =− 2
μ2 Dn

coshβn
b
2

coshαn
b
2

, Dn =
Rn

kcoshβn
b
2

(2.38)

where Rn is the coefficient of the Fourier series. Similarly, for the boundary conditions along

the edges at x =±a
2 , we find the remaining unknown coefficients Gn and Ln which reads:
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Gn =−Ln, Dn =−Qn

k
, (2.39)

where Qn is the coefficient of the Fourier series.

Let us assume that the bending moment applied to the boundary of the bilayer mem-

brane is constant and is expanded in Fourier cosine series. Then, the applied edge moments

(denoted as Mx = M1 and My = M2) can be expanded in terms of Fourier cosine series as

M1 =
∞

∑
n=1

Qn cosγny, M2 =
∞

∑
n=1

Rn cosαnx, (2.40)

where Qn and Rn are obtained as:

Qn =
4M1

nπ
(−1)

n−1
2 , Rn =

4M2

nπ
(−1)

n−1
2 . (2.41)

Subsequently, the solution of the linearized shape equation of the membrane subjected

to the bending moment for simply supported edges is obtained by substituting Eqs. (2.38),

(2.39) and (2.41) into (2.34), viz.

z(x,y) =
4

μ2kπ

{ ∞

∑
n=1,3,...

(−1)
n−1

2

n

{
M1(

coshβny
coshβn

b
2

− coshαny
coshαn

b
2

)cosαnx+

M2(
coshθnx
coshθn

a
2
− coshγnx

coshγn
a
2
)cosγny

}}
.

(2.42)

2.6 Examples and results

As noted in the previous section, the problem to be considered is a rectangular portion of

the plane of a bilayer membrane with lengths a and b with its edges simply supported. We

study the evolution of the membrane shape in response to an applied bending moment M1

and M2 specified across the boundary of the surface for different values of b
a of the sides of

the domain (see Fig. 2.3). The boundary of the membrane surface consists of piece-wise
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Fig. 2.4 Membrane shape evolution with an applied moment of M1 = M1 = 30 ×
10−4(pNnm) and ratio of sides of domain(b

a = 2).

continuous linear segments and there are no jumps in the twist at the corners and therefore,

no corner forces. The bilayer membrane is homogeneous, with constant bending modulus,

which is assumed to be k = 82 pNnm [70]. The value of the surface stress λ is also constant

and is assumed to be (10−4) pN/nm.

We show the height of the membrane z at the center in response to the different values

of applied bending moment at different values of the aspect ratio of the membrane patch.

From Eq. (2.42), the height z at the center is directly proportional to the applied bending

moment and therefore, it increases in response to the increasing applied bending moment as

shown Figs. 2.4, 2.5 and 2.6.

For the isotropic membrane, as the shape evolves in response to the bending moment M,

implicitly the surface pressure develops in the rectangular patch spatially in a homogeneous

manner and intensifies as bending moment increases. In this work, the connection of the

surface shape and lateral pressure p is interpreted implicitly through the behavior of the ap-

plied bending moment. In reality, any lateral pressure gradient across the bilayer membrane

can create a bending moment [76]. We demonstrate that by replacing the lateral pressure
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Fig. 2.5 Membrane shape evolution with an applied moment of M1 = M1 = 70 ×
10−4(pNnm) and ratio of sides of domain(b

a = 2) .

Fig. 2.6 Membrane shape evolution with an applied moment of M1 = M1 = 70 ×
10−4(pNnm) and ratio of sides of domain(b

a = 3).

Fig. 2.7 Membrane shape evolution with ratio of sides of domain: (i)(b
a = 2), (ii)(b

a = 3)
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with the applied bending moment at the boundaries, the shape evolution behavior can be

analyzed in a similar manner to that in lateral pressure load. Fig. 2.7 depicts the symmetric

shape deformation of the membrane for different values of the ratio of the sides of the rect-

angular domain. Thus, the choice of bending moment M at the boundaries is important in

analyzing how the membrane shape evolves and could be used in various applications such

as in the study of tether formation [88] in membrane bending stiffness measurement and

checking the convergence, validity and accuracy of numerical methods for the analysis of

lipid bilayer membranes.

2.7 Conclusion

This research presents an analytical expression for the deformations of a rectangular lipid

membrane in the case of vanishing lateral pressure, subjected to various boundary forces

acting on their edges. Emphasis is placed on the cases where the membrane is subjected to

applied boundary moments, since the corresponding deformation profiles are quantitatively

equivalent to those induced by the lateral pressure gradient in the membrane conformation.

The principle of superposed incremental deformation is effectively applied to reduce the

highly non-linear shape equation of the lipid membrane to a single mathematically tractable

PDE with minimum loss of generality. Hence, a complete analytical solution is obtained

which predicts smooth membrane morphological transitions over the domain of interest and

satisfies the imposed boundary conditions. A number of examples which demonstrate the

evolution of the membrane shape in response to an applied bending moment for different

values of the aspect ratio of the sides of the rectangular patch have been presented. In all the

examples, it has been found that for isotropic membranes, as the shape evolves in response

to the bending moment, the surface pressure develops in the rectangular patch spatially in a

homogeneous manner and intensifies as bending moment increases.
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2.7 Conclusion

Finally, the analysis presented here can serve as a guide in solving problems involving

rectangular lipid membranes subjected to different types of set boundary conditions/forces.

Potential applications includes the study of spontaneous curvature of a membrane, tether

formation in bending stiffness measurements and more importantly as a benchmark solution

for checking the convergence and accuracy of numerical methods for the analysis of lipid

bilayer membranes.
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Chapter 3

Interaction Induced Morphological

Transitions of Lipid Membranes in

Contact with an Elliptical Cross Section

of a Rigid Substrate

We present a complete analysis for the deformation profiles of lipid membranes induced
by their interactions with solid elliptical cylinder substrates (e.g., proteins). The theoreti-
cal framework for the mechanics of lipid membranes is described in terms of the classical
Helfrich model and the resulting shape equation is formulated in general curvilinear coor-
dinates to accommodate the elliptical shape of the contour surrounding the contact area.
Admissible boundary conditions for the contact region are taken from the existing literature
but reformulated and adapted to the current framework. A complete semi-analytic solution
(in terms of Mathieu functions) is obtained within the limitation of superposed incremental
deformations and the Monge representation in the deformed configuration functions. The
results predict smooth morphological transitions over the domain of interest when a lipid
membrane interacts with a rigid substrate through an elliptical contact region.

3.1 Introduction

Lipid molecules are biologically important molecules which contain hydrocarbon chains

and make up the structural and functional building blocks for all living cells. Lipid molecules

are amphiphilic in that they have hydrophilic polar head groups and a hydrophobic nonpolar

tail end. The hydrophilic molecules dissolve readily in water and have the tendency to in-

teract or form hydrogen bonds with water molecules. The hydrophobic molecules, however,
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don’t dissolve in water. When dispersed in water, the difference in solvation preference

of these two parts of the lipid molecules forces them to assemble spontaneously into lipid

bilayer structures (lipid membranes). In fact, it is known that a lipid bilayer structure is

characteristic of all biomembranes [33, 73]. Depending on the specific size and shape of the

hydrophobic and hydrophilic parts, lipid molecules can also form other structures such as

micelles, ellipsoids, and cylinders (e.g., see Fig. 3.1).

Although they are negligibly thin (typically 5-10nm), lipid membranes represent a crit-

ically important interface within biological cells providing a selective permeability barrier

around each cell. In addition, lipid membranes mediate all interactions between cells and

their surrounding environment through the involvement of a variety of proteins. Proteins co-

exist and co-evolve with lipid bilayers in the membrane composition (approxinately thirty

per cent) and are involved in the process of various essential cellular activities across the

membrane, for example, transportation of molecules, ion pumps and signal transduction in

and out of the cell. In particular, so-called "trans-membrane proteins" assist morphological

aspects of cellular processes such as fusion, fission, and envagination [15, 53, 71] regulated

by membrane forces. In addition, interactions between "trans-membrane proteins" and the

membranes themselves produce necessary mechanical forces to regulate desired morpholog-

ical transitions for the aforementioned cellular processes [11, 13, 15, 53, 63]. Consequently,

the study of the morphological aspects of such interactions is crucial to the understanding

of a wide variety of essential cellular functions.

Recent studies have indicated that the mechanism of lipid membrane interaction with

trans-membrane proteins can be examined by quantitative theoretical models through so-

called "compatible deformations" and the consideration of necessary equilibrium conditions

on the boundaries and/or some parts of the lipid membrane interacting with a substrate (see,

for example, Refs. [1, 2, 23, 74] and the references contained therein). Artificially produced

lipid bilayer membranes [99] are used as cell membrane systems in vitro and can be used to
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Fig. 3.1 Circular, cylindrical and elliptical structure formed from lipid molecules.(Picture
taken from: Skar-Gislinge, N., et al. 2010).

study the dynamics of lipid membranes, for example, domain formation, hydrophobic mis-

matching, and lipid diffusion. In this regard, phospholipid bilayer membranes of elliptical

shape can also be stabilized allowing for unprecedented studies of the functions of mem-

brane proteins and their interaction with lipid membranes [87] (see Fig. 3.1). Within this

context, solid cylindrical [1] and elliptical substrate structures can be used to study lipid

membrane-protein interactions. Since lipid membranes are negligibly thin and fragile, any

empirical examination of the above-mentioned conditions can present formidable difficul-

ties. Consequently, it is of interest to develop analytical models to predict and describe

the morphological transitions of lipid membranes. Such analytical models are largely ab-

sent from the literature, in particular in cases when lipid membranes interact through the

elliptical contact domain of a trans-membrane protein substrate. Perhaps this is most likely

explained by the massive analytical and numerical complexity arising from the highly non-

linear nature of the corresponding systems of equations defined in the necessary curvilinear

setting. In the context of analytical modelling, few successful attempts have been reported

under the assumption of superposed incremental deformations of lipid membranes while

incorporating the generality and complexity of the associated boundary forces and domains

of interest [1, 9].
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In the present work, we develop a complete analytical framework describing the defor-

mations of lipid membranes resulting from their interaction with solid elliptical cylinder

substrates along their edges. Emphasis is placed on the representation of the film/substrate

interaction boundary conditions by means of Mathieu functions, at the same time, main-

taining the rigor and generality in the derivation of compatible shape equations within the

prescription of superposed incremental deformations. We obtain a complete semi-analytical

solution by reducing the corresponding problem to a system involving a single partial dif-

ferential equation. Our results indicate smooth transition of deformation profiles over the

domain of interest and also accommodate solutions in Ref. [1] when the magnitude of the

two parameter families coincide.

The chapter is organized as follows. Sections 3.2 and 3.3 introduce a formulation of the

problem which includes a brief review of the geometry and kinematics of the membrane

surface, description of the generalized equilibrium-shape equation of the lipid membrane

and the corresponding boundary conditions. Sections 3.4 and 3.5 present the derivation of

the solutions and a discussion of the results with examples. Finally, Section 3.6 presents our

conclusions.

3.2 Formulation

3.2.1 Surface geometry, shape equation and boundary conditions

In much of the literature on lipid membrane mechanics, it has been noted that a bilayer mem-

brane can be modeled as a continuous elastic two-dimensional geometric surface embedded

in three-dimensional Euclidean space relying on the classical Helfrich theory [37] to pro-

vide the theoretical framework for modeling the shape changes in the membrane. Thus, the

mechanical response and associated morphological transitions of lipid membranes can be

described entirely by the deformation and geometry of the membrane surface. In this work,
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we study a simplified uniform bilayer membrane in which the areal free-energy density for

the membrane can be expressed within the framework of the well-known Helfrich model as

W(H,K;xα) = kH2 + k̄K. (3.1)

Here and in what follows, Greek indices take the value 1,2 and we sum over repeated

indices. The parameters k and k̄ are bending rigidities which pertain to lipid membranes

with uniform properties. While k̄ is unrestricted, k is found to be positive [1] . In the above,

H is called the mean curvature of the membrane surface ω (with boundary ∂ω), and K is

the Gaussian curvature. These curvatures are defined by

H =
1
2

aαβbαβ , K =
1
2
εαβ ελμbαλbβμ , (3.2)

where (aαβ ) is the matrix of dual metric components (i.e, the contravariant components

of the surface metric tensor), the inverse of the metric (aαβ ); εαβ = eαβ√
a is the permutation

tensor density with a = det(aαβ ); e12 =−e21 = 1, e11 = e22 = 0; and bαβ are the symmetric

coefficients of the second fundamental form on ω . The latter are the covariant components

of the surface curvature tensor. The contravariant cofactor of the curvature is given by [90]

b̃αβ = 2Haαβ −bαβ . (3.3)

In Eqs. (3.2)1 and (3.3), the metric is defined by (aαβ = aα ·aβ ), where (aα = r,α) are

the tangent vectors to ω induced by the parametrization r(xα), the position in R
3 of a point

on the membrane surface with coordinates xα . The unit vector field which defines the local

surface orientation of the membrane can also be given by n = 1
2ε

αβaα ×aβ .

According to the classical Helfrich theory [37], the shape equation describing the equi-

librium configurations of the membrane can be obtained by minimization of the free energy∫
ω W(H,K;xα)da leading to [1]
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k[ΔH +2H(H2−K)]−2λH = P, (3.4)

where λ is a constitutively indeterminate Lagrange-multiplier field associated with the lipid

membrane surface area constraint [1, 41, 70] and P is mechanically interpreted as net lateral

pressure exerted on the membrane in the direction of its orientation n.

The associated admissible boundary conditions (e.g., boundary forces f and moments M

on ∂ω) of Eq. (3.4) are derived in detail in Refs. [1, 70, 90, 91]. These are given by

f = Fυυ+Fττ+Fnn, (3.5)

M =
1
2

WH +κτWK, (3.6)

where υ and τ = n×υ correspond to the exterior unit normal and unit tangent to ∂ω ,

respectively, and

Fυ = W +λ −κυM, Fτ =−τM, Fn = (τM)
′ − (

1
2

WH),υ − (WK),β b̃αβυα , (3.7)

are, respectively, the υ-,τ- and n-components of distributed forces per unit length applied

to ∂ω (we note here the use of the subscripts H and K to also denote partial derivatives with

respect to the indicated variables, e.g., WH = ∂W
∂H etc...). For example, the force applied to

the membrane at the ith corner of ∂ω is

fi = WK [τ]in, (3.8)

where,

τ = bαβ ταυβ , (3.9)
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is the twist of the membrane surfaceω on the (υ ,τ)- axes with (υα = aα ·υ and τβ = aβ · τ),
and

κυ = bαβυαυβ , κτ = bαβ τατβ . (3.10)

are the normal curvatures of ω in the directions of υ and τ , respectively.

3.2.2 Lipid molecule-substrate interaction model

In contrast to trans-membrane proteins which are held within the interior of the lipid bilayer

in an aqueous environment, many membrane proteins are anchored to the surface of the

membrane by special molecules that are associated with lipids and these substrates are free

to move on the surface of the membrane. The membrane-solid substrate-liquid interaction

is schematically demonstrated in Fig. 3.2. The interaction between lipid molecules and a

homogeneous isotropic solid substrate may be modeled using conical anchoring [49, 101].

In this work, we utilize the contact boundary conditions developed (for lipid membranes

interacting with curved substrates) by Agrawal and Steigmann [1] in order to analyze the

behavior of elliptical lipid membranes resulting from their interaction with solid elliptical

cylindrical substrates (e.g., proteins) along their edges.

Let Γ represent the wall of the elliptical substrate, B the (symmetric) curvature tensor

of Γ, and N the unit normal to the wall at a point of ∂ω . The boundary ∂ω is a simple

closed smooth curve on Γ. Now we consider a system consisting of a volume of bulk liquid

with uniform properties bounded by the lipid bilayer membrane ω (with configurations of

n ) and the wall of the solid elliptical cylindrical substrate Γ. The interaction in this system

is considered to be energetically costly for configurations of n to deviate from N and this

situation is idealized by the following constraint in the conical anchoring models as [101]:

n ·N = cosγ , (3.11)
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in which γ is assigned.

Since Γ is a curved structure, then Ṅ does not vanish at a membrane point of ∂ω for all

variations u ∈ TΓ, where u is a virtual displacement and TΓ is the tangent plane at a point on

the lipid membrane boundary ∂ω . Instead, the variation of (3.11) may result in the possi-

bility of a non-uniform membrane/wall interaction; i.e., γ is not constant on Γ. In contrast,

γ is assigned a constant value in the case of a uniform film/wall interaction (details in Ref.

[1]). Furthermore, the boundary condition for the membrane/curved substrate interactions

is given by [1]

Fυ cosγ+Fn sinγ−Mn · (∇Γγ−Bn) = σ , Fτ −Mτ · (∇Γγ−Bn) = 0, (3.12)

where σ is an empirical constant which accounts for the wetting of the wall by the volume

of the liquid. Positive values of σ promote wetting, while negative values penalize wetting.

Here, Fυ , Fn and M are boundary force components and moments, respectively, on ∂ω .

3.3 Linearized shape equation and boundary conditions

The evaluation of the shape equation Eq. (3.4) (within the Monge representation) furnishes

a highly non-linear problem which most often requires heavy computational resources. In

our previous study [9], we considered an "admissible linearization" method to make the

system mathematically tractable without compromising generality and obtained the mean

and Gaussian curvatures etc to linear order as

a� 1, n� k−∇z, and b� ∇2z, (3.13)
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Fig. 3.2 Schematics of interaction of membrane, substrate and bulk liquid: (a) three-
dimensional and (b) two-dimensional representations.
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3.3 Linearized shape equation and boundary conditions

H � 1
2
Δz and K � 0, (3.14)

where z(xα) is the height function that describes the bilayer membrane mid-plane shape,

∇2z= z,αβ eα ⊗ eβ is the second gradient on the plane and Δz= tr(∇2z) is the corresponding

Laplacian in the plane. It follows from Eqs. (3.13), (3.14), and (3.4) that the linearized shape

equation describing membrane morphology in the case of the Helfrich uniform membrane

is obtained as

1
2

kΔ(Δz)−λΔz� P. (3.15)

The associated boundary conditions (see Eqs. (3.5)-(3.7) ) in terms of the unit tangents

and normals of the projected curve ∂ω on the plane can be linearized as

M � 1
2

kΔz+ k̄τ̄.(∇2z)τ̄, (3.16)

fυ � λ , fτ � 0, and fn � k̄τ̄ ·∇τ− kῡ ·∇H, (3.17)

and τ (see Eq. (3.9)) is reduced to

τ � τ̄ · (∇2z)ῡ . (3.18)

Here, τ̄ and ῡ are the unit tangent and normal vectors to the projected curve, respectively

(see, for example, Ref. [9]).
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3.3.1 Linearized shape equation and boundary conditions in elliptical

coordinates

Here, we consider deformations of an elliptical lipid membrane, in the case of vanishing

lateral pressure and superposed incremental deformations, subjected to the interaction of

the lipid molecules in the membrane with an isotropic solid elliptical cylindrical substrate

(which may represent the action of, e.g., proteins). The deformation problem on an elliptical

domain can be rigorously analyzed by introducing the elliptical coordinates (ξ ,η) defined

as

x+ iy = ccosh(ξ + iη) (3.19)

such that

x = ccosh(ξ )cos(η),

y = csinh(ξ )sin(η),

z = z.

(3.20)

where the semi-focal length c is given by c =
√

a2−b2 and ξ , η are radial and angular

coordinates, respectively. The ranges of these parameters are given by ξ ∈ [0,∞), η ∈ [0,2π],

and −∞ < z < ∞ . The constant values of ξ and η form a family of confocal ellipses and

hyperbolas, respectively.

The gradient (∇) and Laplacian (Δ) operators in elliptical coordinates are (see Ref. [62],

p. 18)

∇=
1√

c2(cosh2 ξ − cos2η)
(
∂
∂ξ

eξ ,
∂
∂η

eη), (3.21)

Δ=
1

c2(cosh2 ξ − cos2η)
(
∂ 2

∂ξ 2 +
∂ 2

∂η2 ), (3.22)
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The interaction problem under consideration is analyzed by solving the linearized shape

equation (3.15) on an unbounded elliptical domain ξ ≥ ξ0. We represent the wall of the hy-

drophobic elliptical cylinder by Γ with ξ0(> 0), corresponding to the edge of the bounding

elliptical (N = eξ ) substrate on Γ, such that the length of the semi-major axis is given by

a = ccosh(ξ0), whilst that of the semi-minor axis is b = csinh(ξ0). In addition, the empir-

ical constant σ in Eq. (3.12) is assigned a negative value so that wetting of the wall by the

volume of the surrounding bulk liquid is suppressed, i.e., energetically disfavored. Further,

we also assign γ = π/2 so as to minimize the energy cost for configuration n to deviate

from the elliptical cylinder. This yields the kinematic edge condition n� k−∇z = k at the

wall, implying that the lipid molecule tail groups of the bilayer form a full contact around

the elliptical cylinder which is thus shielded from the surrounding bulk liquid.

To express the boundary conditions in terms of elliptical coordinates, we assign γ = π/2

in Eqs. (3.12)1,2. Then, Eq. (3.12)1 reduces to

Fn−Mn · (−Bn) = σ , (3.23)

where the curvature of the elliptical cylinders is found to be

B =
−c2 coshξ sinhξ

(c2(cosh2 ξ − cos2η))3/2
eη ⊗ eη . (3.24)

Since n−∇z= k, we impose∇z = 0 on the boundary ∂ω and also find Bn= 0. Accordingly,

Eqs. (3.18) and (3.23) are reduced respectively to

τ � τ̄ · (∇2z)ῡ = 0. (3.25)

Fn = σ . (3.26)
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Substituting in Eq. (3.17)3 yields

fn �−kῡ ·∇H = σ , (3.27)

where τ̄ and ῡ are identified in the elliptical coordinate system as eη and −eξ , respectively.

Finally, writing ∇H in elliptical coordinates using the definition of the gradient operator in

Eq. (3.21) and substituting into Eq. (3.27) furnishes the boundary condition for the lipid

membrane/solid elliptical substrate as

1
h
∂H
∂ξ

=
σ
k
, on ∂ω (3.28)

where

h(ξ ,η) = c(cosh2 ξ − cos2η)1/2
(3.29)

The above film/substrate interaction conditions together with the kinematic edge condi-

tion z = 0 are here demonstrated by solving the linearized shape equation (3.15) with P = 0.

Therefore, the shape equation for the surface deformation of the membrane reduces to

1
2

kΔ(Δz)−λΔz� 0, in ω (3.30)

subject to the boundary conditions

z = 0, ∇z = 0, and
1
h
∂H
∂ξ

=
σ
k
, on ∂ω (3.31)

where k is the bending modulus and λ is a Lagrange-multiplier field associated with the

lipid membrane surface area constraint. Note that the latter is not a material property and

hence can be assigned any value in the equation of equilibrium and any related conditions

in a particular problem whenever deemed necessary. For example, if the surface area of the

lipid membrane is fixed and prevents local dilation of the area, then λ can be physically
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interpreted as surface pressure and thus may be a spatially varying field [70]. Accordingly,

in the case of constant surface pressure, λ can be assigned a negative value, λ < 0. On the

other hand, λ can also be mechanically interpreted as the traction acting on the surface of

the lipid membrane induced by the bending couple and assuming this stress to be tensile,

it can be assigned a positive constant value, λ > 0. Note that although λ > 0 and λ < 0

have quantitatively different behaviours, each of these cases can be treated analytically in a

similar manner as special cases of the following equation:

ΔH−ζμ2H = 0, (3.32)

in which H = 1
2 Δz (Eq. (3.14)1) and

μ2 =
2λ
k

, and k > 0. (3.33)

In fact, when λ < 0, Eq. (3.15) can be recast in the form of the two-dimensional Helmholtz

equation (Eq. (3.32) with ζ =−1) and the case λ > 0, corresponds to the modified Helmholtz

equation (Eq. (3.32) with ζ =+1).

Using the definition of the Laplacian, Eq.(3.32) may be written as

∂ 2H
∂ξ 2 +

∂ 2H
∂η2 −

μ2c2

2
(cosh2ξ -cos2η)H = 0. (3.34)

In addition, the boundary conditions of the system under consideration (see Eq. (3.31)) are

written in elliptical coordinates as

1
h
∂
∂ξ

H(ξ0,η) =
σ
k
,

∂
∂ξ z(ξ0,η) = 0, ∂

∂η z(ξ0,η) = 0,

z(ξ0,η) = 0,

(3.35)

where z = z(ξ ,η) and h(ξ0,η) is given by Eq. (3.29).
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3.4 Analytical solution of the linearized shape equation

The general solution of Eq. (3.30) can be established by combining Eqs. (3.14)1 and (3.30),

which furnishes Δ[z− ( 2
μ2 )H] = 0. Hence, we obtain the solution z(ξ ,η) as

z(ξ ,η) =
2
μ2 H(ξ ,η)+φ(ξ ,η), (3.36)

where φ is a plane harmonic function.

The general solution to the modified Helmholtz equation in Eq. (3.34) can be obtained

through the method of separation of variables and may be written as (see Ref. [62], p. 20)

H(ξ ,η) = F(ξ )G(η), (3.37)

with which F(ξ ) and G(η) respectively satisfy the following differential equations

∂ 2F
∂ξ 2 − (α−2qcosh(2ξ ))F = 0 (3.38a)

∂ 2G
∂η2 +(α−2qcos(2η))G = 0 (3.38b)

Here, α is the constant of separation and is also referred to as the Mathieu characteristic

number; q is the Mathieu parameter which can be positive or negative depending on the

value of λ (i.e., q=−μ2c2/4, when λ > 0 and q= μ2c2/4, when λ < 0). Equations (3.38a)

and (3.38b) are modified Mathieu differential equations of the radial and circumferential

kind, respectively [59]. In the subsequent subsections, we first obtain solutions to these

differential equations with positive and negative values of λ and then the corresponding

general solution z(ξ ,η) will be obtained.
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3.4.1 Deformation of the elliptical lipid membrane when λ > 0

As noted earlier, the bending of the elliptical lipid membrane resulting from the film/substrate

interaction can induce a tensile stress on the surface of the membrane and this can be phys-

ically represented in the shape equation by assigning a positive value of λ , (i.e,λ > 0).

Thus, the parameter q < 0. We now proceed to solve Eqs. (3.38a) and (3.38b). Since we

seek a bounded solution to a problem in an unbounded domain, the free-space solutions to

Eqs. (3.38a) and the corresponding general solution to (3.38b) may be written, respectively

as:

F(ξ ) =
∞

∑
m=0

CmKe2m(ξ ,−q)+
∞

∑
m=1

C̄mKo2m(ξ ,−q), (3.39)

G(η) =
∞

∑
m=0

Dmce2m(η ,−q)+
∞

∑
m=1

D̄mse2m(η ,−q), (3.40)

where Cm, C̄m, Dm and D̄m are arbitrary constants to be determined from the admissible

boundary condition. Here, the functions Ke2m(ξ ,−q) and Ko2m(ξ ,−q) are the even and

odd, 2mth-order, second kind, modified Mathieu functions, respectively. Similarly, the pe-

riodic functions ce2m(η ,−q) and se2m(η ,−q) are the even and odd, 2mth-order, first kind

modified Mathieu functions which can also appropriately satisfy the single-valuedness of

z(ξ ,η) in Eq. (3.36). Since we study the deformation field in an unbounded domain of

the elliptical lipid membrane, in order to have a unique single-valued solution, G(η) must

return to the same value as η increases by 2π . In addition, it will be simpler to solve the

linearized shape equation if we assume a symmetric deformation of the elliptical membrane

about the major and minor axes simultaneously. Therefore, we choose ce2m(η ,−q) which

satisfies the quadrant symmetry behavior of the ellipse. Accordingly, we choose the solution

Ke2m(ξ ,−q) for (3.38b) since this also satisfies the requirement that the solution be bounded

in the unbounded domain; i.e., at a large distance from the boundary ξ0, (ξ ≥ ξ0,ξ → ∞),
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and Ke2m(ξ ,−q)→ 0 as required. Therefore, the solution H(ξ ,η) may now be written in

the form

H(ξ ,η) =
∞

∑
m=0

L2mKe2m(ξ ,−q)ce2m(η ,−q), (3.41)

where the constant L2m must be determined from a given boundary condition. Here, the

most appropriate representations for ce2m(η ,−q) and Ke2m(ξ ,−q) are [59]

ce2m(η ,−q) = (−1)m
∞

∑
r=0

(−1)rA(2m)
2r cos(2rη), (3.42)

Ke2m(ξ ,−q) = (−1)m p2m

πA2
0

∞

∑
r=0

A(2m)
2r Ir(v1)kr(v2), (3.43)

where A(2m)
2r are coefficients associated with and determined through a recurrence rela-

tion once the values of α2m (see Eqs. (3.38a) and (3.38b)) have been evaluated as func-

tions of q. Here, p2m = ce2m(0,q)ce2m(π/2,q), Ir(v1) and kr(v2) are, respectively, mod-

ified Bessel functions of the first and second kind of order r and v1(ξ ) =
√

qexp(−ξ ),
v2(ξ ) =

√
qexp(ξ ). It should also be noted that with the asymptotic value of Ke2m(ξ ,−q),

Eq. (3.41) yields H2 ∝ p2
2m exp(2v2)

2πv2A2
0

, which is a bounded multiplicative function of η as

ξ → ∞. Accordingly, the associated contribution to the net bending energy is finite.

The detailed procedure by which the Mathieu characteristic number α2m and the as-

sociated coefficients A(2m)
2r are obtained has been addressed in Ref. [59]. For the sake of

brevity here, we report only a summary of that procedure. When the infinite series given in

Eq. (3.42) is substituted into the differential equation in Eq. (3.38b), an infinite set of cou-

pled equations associated with an infinite matrix defining a recurrence relation for the coef-

ficients which involve (q, α , and A(2m)
2r ) is obtained. After truncating the infinite matrix at an

appropriately chosen row and column, this problem is reduced to an eigenvalue-eigenvector

problem in which α2m become the eigenvalues, and the coefficients A(2m)
2r are those of the
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corresponding eigenvectors. MATLAB code was written for computing these eigenvalues

and eigenvectors.

In the case of φ in Eq. (3.36), we choose among the following periodic harmonic func-

tions of ξ and η , which satisfy the condition which ensures that n→ k for large ξ → ∞.

This condition is satisfied by imposing the requirement that |∇z| → 0 which further entails,

∂ z
∂ξ → 0 and ∂ z

∂η → 0

e−2mξ cos(2mη), e−2mξ sin(2mη),
∞
∑

m=0

∞
∑

r=0
A(2m)

2r e−2rξ ce2m(η ,−q); and log(eξ/eξ0).
(3.44)

Thus, the general solution in Eq. (3.36) can be written in the form

z(ξ ,η) =
2
μ2

∞

∑
m=0

L2mKe2m(ξ ,−q)ce2m(η ,−q)+β +D
{

log(
ceξ

2
)− log(

ceξ0

2
)
}
+

∞
∑

m=0

∞
∑

r=0
β2rA

(2m)
2r e−2rξ ce2m(η ,−q),

(3.45)

where L2m, β , D, and β2r are arbitrary constants to be determined from the given boundary

conditions.

Finally, the procedure for the computation of the analytical solution is completed by the

determination of the four unknown coefficients. Thus, by substituting the expressions (3.41)

and (3.45) into Eq. (3.35), we obtain
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1
h(ξ0,η)

∂
∂ξ

H(ξ0,η) =
σ
k
, ⇒ 1

h(ξ0,η)

∞

∑
m=0

L2mKe
′
2m(ξ0,−q)ce2m(η ,−q) =

σ
k
,

∂
∂η

z(ξ0,η) = 0, ⇒
∞

∑
m=0

{
2
μ2 L2mKe2m(ξ0,−q)+

∞

∑
r=0

β2rA
(2m)
2r e−2rξ0

}
ce
′
2m(η ,−q) = 0,

∂
∂ξ

z(ξ0,η) = 0, ⇒
∞

∑
m=0

{
2
μ2 L2mKe

′
2m(ξ0,−q)+

∞

∑
r=0

β2rA
(2m)
2r (−2r)e−2rξ0

}
ce2m(η ,−q)+

2D
ceξ0

= 0,

z(ξ0,η) = 0, ⇒
∞

∑
m=0

{
2
μ2 L2mKe2m(ξ0,−q)+

∞

∑
r=0

β2rA
(2m)
2r e−2rξ0

}
ce2m(η ,−q)+β = 0,

(3.46)

where the prime (′) attached to Ke2m and ce2m denotes the ξ− and η−derivatives, respec-

tively.

3.4.2 Determination of the coefficients

The solution procedure for the unknown coefficients in Eq. (3.46) continues by making use

of the orthogonality of the angular Mathieu functions, and the relations are summarized in

the following equations [59]:

∫ 2π

0
ce2mse2n = 0,

∫ 2π
0 (ce0)

2 = 2π,∫ 2π

0
ce2mce2n =

∫ 2π

0
se2mse2n = πδmn, m≥ 1, n≥ 1

(3.47)

where δmn is the Kronecker delta.

For example, let us consider the boundary condition in Eq. (3.46)1. Multiplying both

sides of the equation by ce2m(η ,−q) and integrating over the domain (0→ 2π) results in

an integral expression for the coefficient L2m

∞
∑

m=0
L2mKe

′
2m(ξ0,−q)

∫ 2π
0 [ce2m(η ,−q)]2/h(ξ0,η) dη = σ

k
∫ 2π

0 ce2m(η ,−q) dη . (3.48)
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Now

h(ξ0,η) = c(cosh2 ξ0− cos2η)1/2
= ccoshξ0(1− (cosη/coshξ0)

2)
1/2

= a(1− e2 cos2η)1/2

(3.49)

where e is the eccentricity of the bounding ellipse. Thus, the integral expression of the

coefficient L2m is

L2m =
σa
k

∫ 2π
0 ce2m(η ,−q) dη

Ke′2m(ξ0,−q)
∫ 2π

0 [ce2m(η ,−q)]2/(1− e2 cos2η)1/2 dη
. (3.50)

On substituting the infinite cosine series for ce2m(η ,−q) in Eq. (3.50), and using the integral

definition for Mathieu function in Ref. [59], p.177, we obtain

L2m =
2πσa(−1)mA(2m)

0

kKe′2m(ξ0,−q)S2m
. (3.51)

Here,

S2m = π[1+ 1
4e2(1+Θ2m)+ . . . ] (3.52)

where Θ2m is

Θ2m = A(2m)
0 A(2m)

2 +
∞
∑

r=0
A(2m)

2r A(2m)
2r+2 (3.53)

The substitution of Eq. (3.51) into Eq. (3.46)2 yields an infinite system of simultaneous

linear equations
∞
∑

r=0
β2rcmr =− 2

μ2 γm (3.54)

where
cmr = A(2m)

2r e−2rξ0,

γm = L2mKe2m(ξ0,−q).
(3.55)
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Then, the solution of Eq. (3.54) can be obtained as (see also Ref. [78])

β2r =− 2
μ2 T2r(ξ0,−q), T2r(ξ0,−q) = Δ(r)/Δ, r = 0,1,2, . . . , (3.56)

where

Δ=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c00 c01 c02 ... ...

c10 c11 c12 ... ...

c20 c21 c22 ... ...

. . . ... ...

. . . ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Δ(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c00 c01 ... γ0 ...

c10 c11 ... γ1 ...

c20 c21 ... γ2 ...

. . ... . ...

. . ... . ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Similarly, with some effort, we obtain the remaining coefficients as:

β =−1
2

∞

∑
m=0

{
4πσa
μ2k

Ke2m(ξ0,−q)
S2mKe′2m(ξ0,−q)

+
1

(−1)mA(2m)
0

∞

∑
r=0
− 2
μ2 T2r(ξ0,−q)A(2m)

2r e−2rξ0

}
,

D =−ceξ0

4

∞

∑
m=0

{
4πσa
μ2kS2m

+
1

(−1)mA(2m)
0

∞

∑
r=0
− 2
μ2 T2r(ξ0,−q)A(2m)

2r (−2r)e−2rξ0

}
.

(3.57)

Subsequently, the solution of the linearized shape equation of the membrane subjected to

the lipid membrane/solid elliptical cylindrical substrate is obtained by substituting Eqs. (3.51)

and (3.57) into Eq. (3.45), namely:
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z(ξ ,η) =
∞

∑
m=0

{
4πσa
μ2k

(−1)mA(2m)
0

S2m

Ke2m(ξ ,−q)
Ke′2m(ξ0,−q)

− 2
μ2

∞

∑
r=0

T2r(ξ0,−q)A(2m)
2r e−2rξ

}
ce2m(η ,−q)

−1
2

∞

∑
m=0

{
4πσa
μ2k

Ke2m(ξ0,−q)
S2mKe′2m(ξ0,−q)

+
1

(−1)mA(2m)
0

∞

∑
r=0
− 2
μ2 T2r(ξ0,−q)A(2m)

2r e−2rξ0

}

−ceξ0

4

∞

∑
m=0

{
4πσa
μ2kS2m

+
4

μ2(−1)mA(2m)
0

∞

∑
r=0

T2r(ξ0,−q)A(2m)
2r (−2r)e−2rξ0

}{
log(

ceξ

2
)− log(

ceξ0

2
)
}
.

(3.58)

3.4.3 Deformation of the elliptical lipid membrane when λ < 0

In Sec. (3.4.1), the general solution for Eq. (3.36) was derived for the condition λ > 0.

Here, we briefly discuss the procedure for the computation of the analytical solution for the

case when λ < 0, which is mechanically interpreted as induced surface pressure on the lipid

membrane. In the case λ < 0, we have q > 0. For Mathieu equations, a change in the sign

of the parameter q corresponds to the replacement η by (π2 −η). According to the theory

of Mathieu functions [59], the following relation can be found by applying this replacement

in the infinite Fourier series corresponding to ce2m and Ke2m,

ce2m(η ,−q) = (−1)mce2m(η− π
2
,q),

Ke2m(η ,−q) = (−1)mKe2m(ξ ,q+ iπ2 ),

α2m(q) = α2m(−q), A(2m)
2r (−q) = (−1)m+rA(2m)

2r (q).

(3.59)

Thus, the solution for Eqs. (3.38a) and (3.38b) having a positive parameter q, can be written

as (see Ref. [59] for details)

ce2m(η ,q) =
∞

∑
r=0

A(2m)
2r (q)cos(2rη), (3.60)

Ke2m(ξ ,q) =
1

A2m
0 (q)

∞

∑
r=0

(−1)r+1A(2m)
2r (q)Jr(v1)Jr(v2), (3.61)
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where Jr represents the Bessel function of order r.

The solution of the linearized shape equation with a positive parameter q > 0 can now

be rewritten using the characteristic number, the Fourier coefficients, the Mathieu functions,

and the modified Mathieu functions using the expressions found above.

3.4.4 Transition to circular lipid membrane

When the elliptical cylinder tends to a circular cylinder of radius ρ , we recover the circular

solution of Agrawal and Steigmann [1]. This limiting case (when e→ 0) can be obtained

with the following simplifications [78]:

A(2m)
2r → 1/

√
2(m = r = 0), 1(m = r = 0) 0(m = r) m,r = 0,1,2, . . .

α2m → 4m2, ce2m(η ,−q)→ 1/
√

2(m = 0), cos2mθ(m = 0) m = 0,1,2, . . .

Ke2m(η ,−q)→ G2mK2m(μρ), Ke
′
2m(η ,−q)→ G2mμK

′
2m(μρ), m = 0,1,2, . . . .

(3.62)

where K2m is the second-kind modified Bessel function of order 2m and G2m is a constant

multiplier. The prime (′) attached to K represents the ρ-derivative. Next, by defining the

circular radius ρ = ceξ
2 (details in Ref. [35]), then, the circular cylinder solution can be

derived from Eq. (3.58) as

z(ρ) =
2σρ0

μ3k
K0(μρ)
K ′

0(μρ0)
− 2σρ0

μ3k
K0(μρ0)

K ′
0(μρ0)

− 2σρ2
0

μ2k
log(

ρ
ρ0

). (3.63)

Normalizing the deflection of the lipid membrane z(ρ) by the radius of the circular

cylinder ρ0 and substituting μ2 = 2λ
k , the above expression can be further reduced to give

the solution in Agrawal and Steigmann [1]:

z(ρ) =
2σ

μ3kK ′
0(μρ0)

{
K0(μρ)−K0(μρ0)

}
− σρ0

λ
log(

ρ
ρ0

). (3.64)
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It should be noted that the above solution is independent of θ , that is, only the first term

in the series Eq. (3.58) is retained.

3.5 Examples and results

As noted above, we consider the deformation problem on an unbounded domain of an ellipti-

cal lipid membrane subjected to the interaction of the lipid molecules in the membrane with

an isotropic solid elliptical cylindrical substrate. In the numerical calculations presented

below, ξ0, a, b, c, and e denote the boundary of the substrate, the length of the semi-major

axis, the length of the semi-minor axis, the half-focal length and the eccentricity of the sub-

strate ellipse, respectively. We study the evolution of the shape of the membrane in response

to the membrane’s interaction with the solid elliptical substrate for different values of the

eccentricity of the bounding elliptical substrate. It should be noted that in the limiting cases,

the elliptical cylinder degenerates to the corresponding circular (e = 0) and strip (e = 1)

cross-sections.

In Figs. (3.3)-(3.5), we show the membrane deformation z in response to the different

values of the hydrophobicity |σ/λ |. Furthermore, from the contour plot of the deflection

of the membrane shown in Fig. 3.6, we observe that the membrane deformation profile ex-

hibits a "wavy pattern" along the circumferential direction near the contour of the contact

region. This "pattern" may be associated with the non-uniform force generated by the el-

liptic cylinder on the membrane in the corresponding direction. The shape is controlled by

the eccentricity of the ellipse. In all of these results, we clearly observe that large values

of |σ/λ | induce a significant depression in the lipid membrane which can be easily veri-

fied by noting the direct proportionality of z and its derivatives to σ as shown in Eq. (3.58).

Further, for a given e, comparing the induced depressions in the membrane along the major

and minor axes of the ellipse, the latter increase with the values of the hydrophobicity (see

Figs. 3.3(b), 3.4(b) and 3.5(b)). This also reflects the obvious difference between the ellip-
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Fig. 3.3 Deflection of lipid membrane along the (a) major (b) minor axes with (γ = π/2,
e = 0.95, σ/λ =−3).

tical and circular cylindrical substrates in which the deflection behavior of the membrane

resulting from elliptical substrate interaction can be expressed in terms of elliptical coordi-

nate arguments (ξ ,η) and q(±), in Eqs. (3.20), (3.38a) and (3.38b) while in the circular

case in only one parameter, ρ , in Eq. (3.64).

Finally, when the elliptical cylinder degenerates to the corresponding circular cross-

section, the deformation profile of the lipid membrane induced by its interaction with the

now circular cylinder substrate coincides with the solution of Agrawal and Steigmann ( [1]).

This is shown in Figs. (3.7)-(3.9). While Fig. 3.7 shows the contour plot of the deflection
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Fig. 3.4 Deflection of lipid membrane along the (a) major (b) minor axes with (γ = π/2,
e = 0.95, σ/λ =−9).
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Fig. 3.5 Deflection of lipid membrane along the (a) major (b) minor axes with (γ = π/2,
e = 0.95, σ/λ =−15).
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3.5 Examples and results

Fig. 3.6 Contour plot of lipid membrane deflection with elliptical substrate (γ = π/2,
e = 0.75, σ/λ =−15).
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an Elliptical Cross Section of a Rigid Substrate

Fig. 3.7 Contour plot of lipid membrane deflection with circular substrate interaction (γ =
π/2, σ/λ =−3).
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3.5 Examples and results

Fig. 3.8 Linear solution of lipid-membrane circular cylinder substrate interaction (γ = π/2,
(a) σ/λ =−3, (b) σ/λ =−9, (c) σ/λ =−15).
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an Elliptical Cross Section of a Rigid Substrate

Fig. 3.9 Effect of substrate cylinder radius with (a) μρ0 = 0.05, (b) μρ0 = 10.
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of the membrane, in Fig. 3.8, we show the membrane deformation z in response to the dif-

ferent values of the hydrophobicity |σ/λ |. The circular cylinder generates a vertical load

on the membrane and as a result the magnitude of the depressed region on the membrane

as well as the non-linear response of the membrane varies with the change of the radius of

the cylinder. Figure 3.9, depicts the effect of increasing the radius of the cylinder on the

membrane depression at fixed hydrophobicity. These observations make it clear that the so-

lutions obtained here for the film/elliptical substrate interactions generalize, in some sense,

the solutions of the corresponding case of a circular lipid membrane interacting with a cir-

cular cylinder substrate in which the circular membrane solutions are merely limiting cases

of the elliptical membrane solutions. Furthermore, based on the solution for the circular

cylinder [1], the linear solution of Eq. (3.64) was found to be valid in the range in which

|σ/λ | is sufficiently small. Consistent with this, we expect that the linear solution for the

elliptical substrate is valid for sufficiently small values of |σ/λ |. The verification of this

result will form part of a future work on this subject.

3.6 Conclusions

We have obtained a semi-analytical solution describing the morphological transitions of

lipid membranes when interacting with solid elliptical cylindrical substrates through an el-

liptical contact region. The deformation mode is characterized by the modified Mathieu

functions and performed in the framework of a general curvilinear coordinate system. A

linearized version of the shape equation for the corresponding system is obtained via the

principle of superposed incremental deformations and is reduced to a single partial differ-

ential equation with minimum loss of generality. Hence, a complete semi-analytical solu-

tion is obtained which predicts the deformations of lipid membranes as a result of lipid

membrane/elliptical substrate interactions. The actual deformation profiles are computed

from the infinite series of the eigenfunctions for the desired elliptical domain. A number
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of examples which demonstrate the evolution of the membrane shape in response to the

film/substrate interaction for various values of hydrophobicity have been presented. In all

the examples, it has been found that, larger values of hydrophobicity create a depressed

region in the membrane and this intensifies as the value of hydrophobicity increases. Conse-

quently, the significant depression induced in the membrane indicates a dominant non-linear

response and thus the linear solution developed for the linearzed shape equation is valid

for only sufficiently small values of hydrophobicity. Finally, the results obtained predict

"smooth" morphological transitions over the domain of interest and accommodate solutions

in Ref. [1] when the magnitudes of the two parameter families coincide.
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Chapter 4

Bud Formation of Lipid Membranes in

Response to the Surface Diffusion of

Transmembrane Proteins and Line

Tension

We study the formation of membrane budding in model lipid bilayers with the budding as-
sumed to be driven by means of diffusion of trans-membrane proteins over a composite
membrane surface. The theoretical model for the lipid membrane incorporates a modified
Helfrich-type formulation as a special case. In addition, a spontaneous curvature is intro-
duced into the model in order to accommodate the effect of the non-uniformly distributed
proteins in the bending response of the membrane. Furthermore, we discuss the effects of
line tension on the budding of the membrane, and the necessary adjustments to the boundary
conditions. The resulting shape equation is solved numerically for the parametric represen-
tation of the surface which has one to one correspondence to the membrane surface in con-
sideration. Our numerical results successfully predict the vesicle formation phenomenon
on a flat lipid membrane surface, since the present analysis is not restricted to the conven-
tional Monge representation often adopted to the problems of these kind for the obvious
computational simplicity, despite it’s limited capability on describing the deformed configu-
ration of membranes. In addition, we show that line tension at the interface of the protein
concentrated domain makes a significant contribution to the bud formation of membranes.

4.1 Introduction

Lipid bilayer membranes are negligibly thin (typically 5-10nm) but represent a critically

important interface within biological cells mediating all interactions between cells and their

surrounding environment through the involvement of a variety of proteins [33]. These pro-
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teins can aggregate into clusters or domains on the membrane surface. In particular, so-

called "trans-membrane proteins" domain, which, for example, covers more than 30% of

the plasma membrane, the inner mitochondrial membrane and other membranes such as

synaptic vesicles [67, 82], can induce local curvature [104] and hence assist morphological

aspects of cellular processes such as fission, fusion and budding [10, 15, 53, 71] regulated

by membrane forces. Specifically, membrane budding, which manifests as spherical pro-

trusions emerging out of a flat or curved bilayer membrane, is one particular phenomenon

and is an important step in cellular vesicular transport such as exocytosis and endocyto-

sis processes [50, 75]. This intracellular vesicle transport is promoted by vesicle transport

proteins, which are required to move molecules between cellular organelles. Another typ-

ical example concerns the many viruses which can cause diseases such as AIDS, H1N1

influenza and Lassa fever. These are membrane enveloped and escape from still living host

cells by membrane budding events [44, 79]. In the above cellular activities, the topology

change (budding) involves novel mechanisms, but the development of proper medicine for

some of the diseases caused by these viruses has proved challenging, in part because of

the poor understanding of the mechanics of the bud formation process. Therefore, it is

critically important to understand the physical mechanisms for the above shape transforma-

tion, and consequently several studies have been made on the mechanics and influence of

membrane proteins on membrane bud formation ( e.g., see Refs. [42, 72, 79, 3, 26, 60]

and the references therein). These studies are mostly confined to the context of curvature

changes ascribed to changes in protein distribution on the membrane, although the full un-

derstanding of the mechanics still remains challenging. For example, some of the proposed

mechanisms which explain the way proteins induce high curvature in biological membranes

and bud formation are: high concentration of proteins locally can drive membrane curvature

by a crowding mechanism [89]; intrinsically curved proteins which have a high affinity for

membranes such as BAR domain [66] and dynamin [97] may wrap around the membrane to
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Fig. 4.1 (a) HIV-1 Gag assembling into capsids and budding from the plasma membrane.
Transmission electron micrograph, (The Lingappa Lab & The Fred Hutchinson Cancer Re-
search EM facility, 2006), (b) Clathrin-coated vesicle prior to fission, observed by [65]
(1979, reproduced by permission of the Company of Biologists), (c) Electron micrographs
of arenavirus particles emerging from an infected cell (Picture taken from: Schley, D., et. al.,
2013) and (d) Electron micrographs of virions budding from the surface a human embryonic
lung cell. (Picture taken from: Grimwood, B.G., 1985).

form buds and triggering of membrane bending by conformational change, causing part of

a protein such as Sarlp [51] and Epsin [12] to be inserted like a wedge in the membrane and

consequently causing the membrane to form vesicle budding in response. Some examples

for membrane bud formation are shown in Figure 4.1.

The work described here is motivated by the approach in [3] to consider the use of sur-

face diffusion of trans-membrane proteins on the membrane as one possible driving mech-

anism for membrane budding. Diffusion of membrane proteins is considered an important

step in the assembly of macromolecular structures on a membrane surface, which lead to the

shape transformation of the membrane, including viral buds, endocytic pits and cell-to-cell
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junction [48]. Hence, determining/identifying the forces and energies involved in the bud

formation induced by the diffusion of trans-membrane proteins is a key step towards the un-

derstanding of the mechanics of bud formation by this mechanism. In this context, several

studies have indicated that the interactions of intermembrane proteins provide necessary me-

chanical forces to regulate the membrane′s morphological transitions and the induced mor-

phological profiles are also dependent on the mechanical responses of lipid bilayers. In fact,

most protein-induced deformations of lipid membranes can be examined through the "com-

patible deformations" assimilated by resultant tensions, bending moments and intra-bilayer

pressures on the boundaries and/or some parts of lipid membranes. Relevant developments

and reviews can be found in Refs. [1, 3, 10, 41, 90, 91, 94] and the references therein. In

addition, another example of membrane energy such as line tension (interfacial energy),

which arises locally at the interface between the protein concentration domain and the bulk

lipid boundary due to the difference in bending modulus and thickness of the heterogeneous

membrane, can physically determine or influence the distribution of proteins [28] as well as

the formation of bud [55] on the membrane. Thus, line tension, which is suppressed in [3],

can have a non-negligible effect on the formation of membrane budding, and is considered

to persist in the geometrically nonlinear limit considered in [3]. Therefore, this work also

will examine the potential role of line tension in orchestrating membrane shape transforma-

tion (bud formation). In other words, we hypothesize that bud formation is related to the

line tension at the boundary of protein domain and surrounding bulk lipid of the membrane.

Furthermore, we assume that the bud formation occurs on a relatively much slower time

scale than the fission of the bud, and therefore we don’t model the dynamics of the pinching

off of the bud. In other words, we model the stage from nucleation to bud formation prior

to pinching off.

In the present study, the mechanical response and associated morphological transitions

of membranes is described based on a continuum model which incorporates a modified local
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form of the Helfrich energy-type formulation [37]. This modification is taken into account

to reflect the effect of protein diffusion on the membrane local curvature change. In ad-

dition, a spontaneous curvature is introduced into the model in order to accommodate the

effect of the non-uniformly distributed proteins in the bending response of the membrane.

However, the resulting shape equation is highly nonlinear, and the corresponding analysis

most often involves heavy numerical treatments. In addition, in most cases, the derived equi-

librium shape equations are solved based on linear geometric approximations in the Monge

representation of the membrane surfaces, and this is limited in scope to small deviations

of the membrane shape from a plane [52, 72]. In the present work, the description of the

shape equation is based on a parametric representation of the surface (not limited within the

Monge representation) and hence applicable for general membrane geometries.

Boundary conditions are central to the modelling of functions of lipid membranes in-

teracting with biological structures such as transmembrane proteins [42]. Here, the need

is even more pressing, since line tension is induced by local interactions at the boundaries

between the proteins domain and the surrounding bulk lipids at phase interface. For this

reason, we extend the work described in [3] to obtain the appropriate set of boundary condi-

tions in the presence of line tension and study its influence on the formation of bud on the

membrane.

In this chapter, Sections 4.2 and 4.3 introduce a summary of the formulation of the prob-

lem which includes a brief review of the geometry and kinematics of the membrane surface,

description of the generalized equilibrium-shape equation of the lipid membrane and the cor-

responding boundary conditions. These matters are addressed in detail elsewhere [1, 3, 41].

Vesicle formation of the membrane is possible when the membrane is subjected to the ten-

sion field together with the internal pressure. However, we mention here that this is not

the only case. Boundary interactions and local membrane bending in certain directions to-

gether with other intercellular activities may also result in vesicle formation [69]. Section
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4.4 presents the membrane surface representation, numerical solutions and a discussion of

the results with examples. Finally, Section 4.5 summarizes our conclusions.

4.2 Problem formulation

4.2.1 Energy functional

The present model is an extension of that discussed in [3] for lipid membranes with diffusion

of trans-membrane proteins domain on the membrane surface and the line tension γ of the

domain edge. The constitutive response and associated shape transformation of the lipid

membrane induced by a diffusion of proteins which has an areal concentration of proteins,

σ(θα , t), on the membrane surface can be described by the deformation and geometry of

the membrane. In this work, we study a non-uniform bilayer membrane in which the areal

energy density for the lipid membrane is a natural extension of the Helfrich energy [37] and

is necessarily assumed of the form

W(H,K,σ ;θα) = η(σ)+ k(σ)[H−C(σ)]2 + k̄(σ)K. (4.1)

Here, and in what follows, Greek indices take the value 1,2 and we sum over repeated

indices. The parameters k(σ) and k̄(σ) are bending rigidities which pertain to lipid mem-

branes with non-uniform properties. In the above, η(σ) is the energy contribution associ-

ated with bending deformation induced from protein density σ , H is the mean curvature of

the membrane surface ω and K is the Gaussian curvature. These curvatures are defined by

H =
1
2
(κυ +κt), K = κυκt− τ2, (4.2)

where υ and t = n×υ correspond to the exterior unit normal and unit tangent to a smooth

surface boundary ∂ω , respectively; κυ and κt are the normal curvatures on these axes and
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τ is the twist. The unit vector field n = (a1×a2)/|a1×a2| is the local surface orientation.

Here, (aα = r,α), are the tangent vectors to ω induced by the parametrization r(θα), the

position in R
3 of a point on the membrane surface with coordinates θα . The surface met-

ric tensor is also defined by (aαβ = aα · aβ ). The local curvature of the membrane by the

surface-tensor field is (b = bαβaα ⊗ aβ ), where (bαβ = n · r,αβ = −aα ·n,β ) are the sym-

metric coefficients of the second fundamental form on ω . The contravariant cofactor of the

curvature is given by [90]

b̃αβ = 2Haαβ −bαβ , (4.3)

where (aαβ ) is the matrix of dual metric components (i.e, the contravariant components of

the surface metric tensor), the inverse of the metric (aαβ ); and (bαβ ) is also the inverse of

(bαβ ). Furthermore, the local curvature of the membrane can be described in terms of the

orthonormal vectors (υ , t) in the tangent plane as [3]

b = κυυ⊗υ+κtt⊗ t+ τ(υ⊗ t+ t⊗υ). (4.4)

In equation (4.1), the spontaneous curvature C(σ) is introduced in order to accommo-

date the effect of non-uniformly distributed proteins which interact with the lipid bilayer

to generate a distribution of spontaneous curvature fields. Local hydrophobic lipid-protein

interactions can promote a specific local curvature in lipid bilayers, and this curvature de-

pends on protein geometry and density [10, 42]. The shape of transmembrane proteins

can be analogized to a cone, a cylinder or an inverted cone, with its axis of revolution di-

rected along the surface normal n. To quantify the distribution of the spontaneous curvature

induced by the diffusion of proteins, we consider a hypothesized spontaneous curvature

proportional to protein density, consistent with the viewpoint presented in [3]. A simple

73



Bud Formation of Lipid Membranes in Response to the Surface Diffusion of

Transmembrane Proteins and Line Tension

proposal for the distribution of the spontaneous curvature which ensures bilayer symmetry

in the absence of proteins is

C(σ) = (μϕ)σ , (4.5)

where (μϕ) is a constant of proportionality. Here, μ is a positive constant and ϕ is the angle

made by the meridian of the cone with n.

As mentioned earlier, we consider the possibility that the diffusion of transmembrane

proteins on the membrane surface promote membrane bending and subsequently formation

of a bud as the area covered by the protein increases with time. We also hypothesize that

bud formation is related to the line tension at the boundary of the protein concentration

domain and the surrounding bulk lipid of the membrane. This means that bud formation can

be analyzed as an interplay between bilayer bending energies and the domain line tension.

Thus, if γ is the line tension energy per unit length, the total energy of the lipid membrane

may be expressed as

E =
∫
ω

W(H,K,σ ;θα)da+
∫
∂ω
γds, (4.6)

where ds is the length element along the boundary curve.

To accommodate the constraint of bulk area incompressibility, an augmented energy

functional is considered

E∗ =
∫
Ω
[JW(H,K,σ ;θα)−λ (J−1)]dA+

∫
∂Ω
γds, (4.7)

where λ (θα) is a Lagrange multiplier field [1, 3, 41] associated with the incompressiblity

constraint, and J is the local areal stretch induced by the map from a fixed reference surface

Ω to the current surface configuration ω .
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4.2.2 Convected coordinates

In order to ease the formulation of balance laws, we apply the convected coordinate (ξα)

technique to parametrize the material manifold. A material point on the membrane may

be labeled by a convected coordinate system x(ξα). Initially, at time t0, these may be

distinctly identified with the coordinate θα . The associated surface Ω, with parametric

representation x(ξα) = r(ξα , t0), may serve as a reference configuration of the material

body in a Lagrangian description of the motion. This configuration represents the membrane

surface at a fixed instant t0. This same material points may peruse a spatial trajectory in time

in which their current position at time t is defined by the convected coordinate system using

the parametrization, via a map r(ξα) = r(ξα , t). This functional relation gives the current

position at time t of a particular material point that originally occupied the position x(ξα) ∈
Ω at time t0. The connection with the θα parametrization of ω is provided by [4, 83]

r̂(ξα , t) = r(θα(ξβ , t), t) (4.8)

Thus, we specify the fixed surface coordinates θα as functions of ξα and t subject to the

initial condition, and such a coordinate can be written generally as θα(ξβ , t0) = ξα . We

note that once it is specified, any function, f (θα , t), say, may be expressed in terms of

convected coordinates as f (ξα , t), where

f̂ (ξα , t) = f (θα(ξβ , t), t). (4.9)

The partial time derivative of a function defined on a surface given in the convected parametriza-

tion is ḟ = ∂ f̂ (ξα , t)/∂ t, whereas that in the fixed-coordinate parametrization is ft = ∂ f (θα , t)/∂ t.

The two are related by ḟ = ft +(θα)·f,α .

The velocity vector of the convected material point in the current configuration ω may

thus be defined as u = ṙ = ∂ r̂/∂ t. Furthermore, this velocity may be written terms of
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components on the natural basis as

u = uαaα +un, (4.10)

where uα and u are respectively the tangential and normal variations of the position field

induced by the fixed-coordinate (θα) parametrization. This is not the same as the time

derivative rt . By chain rule, the two are related by

u = (θα)·aα +un. (4.11)

Following [3, 4], we adopt the notion of the time derivative of the fixed-coordinate parametriza-

tion defined by
d
dt
θα |ξα = uα(θβ , t), θα|t0 = ξα , (4.12)

where the subscript refers to the derivative evaluated at a fixed value of the doublet {ξα};
i.e., with t fixed in the function θα(ξβ , t) and is therefore equal to (θα)·. In this connection

we note that the normal velocity of the point on the surface in Eq. (4.10) is given by

un = rt, (4.13)

and the convected and fixed-coordinate time derivatives satisfy

ḟ = ft +uα f,α . (4.14)

4.2.3 Mass balance

The foregoing relationships facilitate the reduction of global balance laws. For example, if

σ is the areal density of the transmembrane protein concentration on ω , then the rate of

change of the total quantity of σ in a part π of ω is
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d
dt

∫
π
σda =

d
dt

∫
Π
σJdA =

∫
π
(σ̇ +σ J̇/J)da (4.15)

where Π is the part of the fixed surface Ω that is convected to π and J is the local areal

dilation of the surface; i.e.,

∫
π

da =
∫
Π

JdA f or all Π ∈Ω (4.16)

To express the right-hand side of Eq. (4.15) in terms of the fixed-coordinate parametrization,

we use [94]

J̇/J = uα;α −2Hu (4.17)

4.2.4 Shape equation and boundary conditions

We note that the equations characterizing membrane equilibrium (or shape equations) and

boundary conditions can be obtained by applying variational methods to the total energy

functional in Eq. (4.7), which includes contributions from the total line tension energy. Thus,

the induced variation of the total energy of the membrane-protein system is

d
dt

E∗ =
∫
ω
[Ẇ +(W +λ )J̇/J+ λ̇ (1− J−1)]da+

∫
∂ω
γ(ds)·, (4.18)

where

Ẇ = WHḢ+WKK̇ +Wσ σ̇ . (4.19)

Here, and henceforth, the subscripts H, K, and σ denote partial derivatives with respect to

the indicated variables (e.g., WH = ∂W
∂H etc...).

To compute the variation of the energy, we use Eq. (4.17) and the explicit formulas

for the variational derivative of H and K from Ref. [94]. Thus, following the procedures

outlined in [3, 41, 90, 91], the Euler equation which describes the geometry of the membrane
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in mechanical equilibrium under a net lateral pressure p in the direction of its orientation n

is obtained as

1
2
Δ(WH)+(WK);αβ b̃αβ +WH(2H2−K)+2H(KWK−W )−2λH = p, (4.20)

where Δ(·) = (·);αβaαβ is the surface Laplacian. The Lagrange multipier λ satisfies [3],

∇λ =−Wσ∇σ , (4.21)

in which the right hand side of Eq. (4.21) accommodates any non-uniformity in the bend-

ing properties of the membranes that may be generated by the constitutive response of the

membrane to transmembrane proteins, and Wσ is the chemical potential for the diffusing

proteins.

In addition, the variation of the energy membrane also yields terms that define boundary

forces and moments on a smooth boundary ∂ω of the membrane, and hence we obtain the

following admissible boundary conditions

f = fυυ+ ftτ+ fnn, (4.22)

M =
1
2

WH +κtWK, (4.23)

fυ = W +λ −κυM+ cgγ , (4.24)

ft =−τM, (4.25)

fn = (τM)
′ − (

1
2

WH),υ − (WK),β b̃αβυα + cnγ. (4.26)

Here, fυ , ft and fn are, respectively, the υ-,t- and n-components of distributed forces per

unit length applied to ∂ω . We also note here that cn is the normal curvature and cg is

the geodesic curvature. The force applied to the membrane at the ith corner of ∂ω is also
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obtained as

fi = WK [τ]in, (4.27)

where,

τ = bαβ ταυβ , (4.28)

is the twist of the membrane surface ω on the (υ , t)- axes with (υα = aα ·υ and τβ = aβ · t),
and

κυ = bαβυαυβ , κt = bαβ τατβ . (4.29)

are the normal curvatures of ω in the directions of υ and t, respectively.

For a bilayer membrane that has no natural orientation, a simple energy function W that

satisfies the influence of protein density on the membrane shape, and which also conforms

to the conventional theory of bending elasticity in the absence of protein diffusion, is given

by [3]

W = (ασ −β )2 + k[H−C]2. (4.30)

We note that W in Eq. (4.30) corresponds to the restriction of Eq. (4.1) to the case of constant

bending moduli (k > 0) and k̄. The assumption of uniform bending moduli is justifiable for

dilute concentration of proteins on the membrane. However, here, we make the assumption

primarily to ensure that their effect on the bending stiffness remains negligible. This also

allows us to avoid any influence of non-uniformity of the bending moduli on the spontaneous

curvature in equation (4.5). In addition, for the sake of simplicity, the term involving K is

suppressed in this study.

The shape equation in Eq. (4.20) reduces to

kΔ(H−C)+2k(H−C)(2H2−K)−2H[(ασ −β )2 + k(H−C)2]−2λH = p, (4.31)
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and the Lagrange multiplier is simplified to

∇λ = 2[kμϕ(H−C)−α(ασ −β )]∇σ , (4.32)

The full set of boundary conditions for the foregoing assumed energy function is

M = k(H−C), (4.33)

fυ = (ασ −β )2 + k[H−C]2 +λ −κυM+ cgγ , (4.34)

ft =−τM, (4.35)

fn = (τM)
′ −M,υ + cnγ . (4.36)

4.3 Protein diffusion

Here it is assumed that the transmembrane proteins are continuously distributed over the

membrane surface, and the associated areal concentration, σ(θα , t), is assumed to evolve

in a diffusive manner. Thus, for any simply connected part π of the current configuration

surface ω , we have

d
dt

∫
π
σda =−

∫
∂π

m ·υds, all π ⊂ ω, (4.37)

where the surface vector m=mαaα is the protein flux. Here, and in what follows, υ = υαaα

is the exterior unit normal to the edge ∂π , defined by υ = t×n, where t = aα(dθα/ds) and

θα(s) is the arclength parametrization of ∂π at time t. We assume that there is no transfer

of proteins between the membrane and the bulk fluid in which it is immersed.

For an incompressible membrane, we note that the local constraint equations are J = 1

and J̇ = 0. A diffusive balance law which satisfies this bulk areal incompressiblity constraint
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is derived from Eq. (4.37) using a combination of the the transport Eq. (4.15), Stoke’s the-

orem, together with Eq. (4.17) and the local areal constraint. Thus, the normal surface

velocity field in Eq. (2.13) and the protein concentration satisfy [3]

uα;α = 2Hu and σt +uασ,α +mα
;α = 0 on ω (4.38)

where

mα
;α = (

√
amα),α/

√
a (4.39)

in which a = det(aαβ ), is the surface divergence of m. In this study, a simple constitutive

equation for m which accommodates classical Fickean diffusion is adopted from the works

of [3]

m =−c∇(Wσ ), (4.40)

where c is a positive constant and Wσ is the chemical potential for the diffusing proteins.

With the assumed energy function in Eq. (4.30), we have

Wσ = 2[ α(ασ −β )+ kμϕ(C−H)], (4.41)

and the protein flux is

m =−2c{[ α2 + k(μϕ)2]∇σ − kμϕ∇H}, (4.42)

in which ∇C = μϕ∇σ .
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4.4 Surface representation and numerical solutions

4.4.1 Surfaces of revolution

In our model, budding is assumed to be driven by the change of curvature of the membrane

caused by the diffusion of the transmembrane proteins over the composite membrane sur-

face. Thus, the shape of the bud evolves dynamically as the diffusion proceeds. In this

model, the intra-membrane viscous flow is not taken into account in the consideration of

the evolution of the bud, since the area ap(s) covered by the diffusion of the transmembrane

protein increases with time. Here, as mentioned in the introduction, since we exclude the

budding scission process in our study, we impose the criteria in equation (4.43) to halt the

membrane surface penetration around the necking region during the bud formation process,

with the assumption that the resulting vesicle develops into a spherical-like shape which

corresponds to the most stable membrane curvature. The surface area of this sphere is 4πR2,

where R is the radius of the sphere. Imposing the criteria in equation (4.43) also avoids

difficulties associated with heavy numerical computational.

Outside the budding region, for the sake of simplicity, the spontaneous curvature of the

membrane is assumed to be constant, C = μϕσ0 where σ0 = β/α (i.e. in the absence

of protein diffusion, the infimum of the energy can be achieved if λ = 0 and H = C(σ0)).

Furthermore, this assumption is equally applied to the membrane immediately around the

budding region, and so the model is also applicable to a deformed and/or non-uniform mem-

brane.

In order to treat the possible membrane budding transitions, we assume that the diffusion

of the protein forms in an axisymmetric region of area ap(s) and that the bud that forms will

also possess axisymmetry (i.e., the budding region maintains a circular boundary on the

membrane). Consequently, we seek a simple class of axisymmetric solution in the surface

of revolution parametrized by meridional arclength s and azimuthal angle θ . If a(s) is the
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Fig. 4.2 Representation of surface revolution.

area of the membrane within a distance of s of the axis of symmetry, from the assumptions

above, we then have that the spontaneous curvature is given by

C(s) =

⎧⎪⎨
⎪⎩

μϕσ : a(s)≤ ap(s)

μϕσ0 : a(s)> ap(s)
(4.43)

whereas the Lagrange multiplier is given by

∇λ =

⎧⎪⎨
⎪⎩

2[kμϕ(H−C)−α(ασ −β )]∇σ : a(s)≤ ap(s)

0 : a(s)> ap(s)
(4.44)

Here, we use a cylindrical polar coordinate system (r,θ ,z) to represent a material point

in the deformed membrane. Thus, a continuum point on the membrane surface of revolution

may be represented as

r(s,θ , t) = r(s, t)er(θ)+ z(s, t)k, (4.45)
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where, r(s, t) is the radial distance of a material point from the axis of symmetry, z(s, t) is

the elevation above the base plane, and {er,eθ ,k} is the orthonormal basis in the cylindrical

polar coordinate system. Since s measures arclength along meridians, we have

r′2 + z′2 = 1, (4.46)

where (·)′ = d(·)/ds. We choose surface coordinates θ 1 = s and θ 2 = θ . The induced

tangent vectors are

a1 = r′er + z′k, and a2 = reθ , (4.47)

and it follows from Eq. (4.46) that there is a local tangent angle ψ(s) relative to a horizontal,

flat conformation, such that

r′ = cosψ(s) and z′ = sinψ(s). (4.48)

Since a1 is orthogonal to a parallel of latitude, we identify it with υ Fig. 4.2. Consequently,

υ = cosψ(s)er + sinψ(s)k, t = eθ and n = cosψ(s)k− sinψ(s)er. (4.49)

The metric and dual metric are aαβ = diag(1,r2) and aαβ = diag(1,r−2), respectively, and

the later can be used to compute

a1 = υ and a2 = r−1eθ (4.50)

At any given position, the components of curvature of the membrane can be obtained by

combining the value of (bαβ = diag(ψ ′,r sinψ)) with Eqs. (4.4) and (4.49) as

κυ = ψ ′, κt = r−1 sinψ(s), τ = 0, cg = cosψ(s)/r and cn = sinψ(s)/r. (4.51)
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In the previous sections, relevant boundary forces and moment (per unit length) acting

on the membrane are derived. In this model, we consider that there exists a non-zero traction

force fυ that is the projection onto υ of the force per unit length transmitted across a curve

(in this case, particularly, the boundary of the protein concentration domain interface where

line tension exists) with unit normal υ and is compressive when diffusion proceeds. Due

to the presence of this compressive force, a large bending moment will be generated at the

edge arising from the possible high curvature, that must be in a clockwise direction in order

to maintain equilibrium. Now, the deformation of the membrane by this compressive force,

which in turn is generated by the interaction of the diffusing proteins, may encourage/assist

the formation of a growing bud on the membrane surface. It should also be noted that

the traction force fυ is used to relate the line tension energy and the surface tension with

the membrane shape. In this regard, for the sake of convenience, we describe the model

equations of the membrane in terms of the specified boundary conditions such as bending

moment M, which is generated by the change in the difference in the mean curvature and

the spontaneous curvature, and the traction force fυ . It should also be mentioned that we

use the fully coupled systems for diffusion of proteins and membrane shape to obtain the

distribution of λ in the interior of the membrane, but we specify a uniform value of λ at

the boundary far from the budding regime of the membrane. If the membrane remains

flat under specified boundary conditions, then λ affects the diffusion of protein through

(∇λ = 0). Thus, the sum of the normal curvatures is twice the mean curvature H(s, t) and

together with the bending moment equation in (4.33), the following differential equation is

obtained

ψ ′ =
2M
k
− sinψ(s)

r
+2C. (4.52)

The product of the normal curvatures is the Gaussian curvature K(s, t); thus,

K = (M/k+C)2− (M/k+C− sinψ(s)/r). (4.53)
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The traction force in Eq. (4.34) is expressed by

fυ = (ασ −β )2 +M2/k+λ − (
2M
k
− sinψ(s)

r
+2C)M+ γ

cosψ
r

, (4.54)

and the shape equation (4.31), with P = 0, simplifies to

L′= r{(Fυ−γ cosψ
r

)(
2M
k
− sinψ

r
+2C)+(Fυ−γ cosψ

r
)
sinψ

r
+2M(

M
k
− sinψ

r
+C)

sinψ
r
},

(4.55)

where

L =
1
2

r(WH)
′ = rM′, (4.56)

and the Lagrange multiplier λ also satisfies [1]

λ ′ = 2[μϕM−α(ασ −β )]σ ′. (4.57)

The normal and tangential velocities of the surface, which are related by Eq. (4.38)1, is

reduced to

(rv)′ = 2(
M
k
+C)u, (4.58)

where v(s, t) is the velocity component in the direction of the tangent to the meridian; we

assume that the velocity in the azimuthal direction vanishes. This furnishes the tangential

velocity gradient and thus may be used to estimate the error incurred by neglecting intra-

membrane viscosity.

The protein flux in Eq. (4.42) becomes

m =−c(Wσ )
′ = 2c[μϕM′ −α2σ ′], (4.59)

where m = m ·υ is the component of the flux m in the direction tangent to the meridian; the

azimuthal component of this vector also vanishes. Finally the diffusive balance law (4.32)2
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reduces to

σt + vσ ′ =
2c
r
{r[α2σ ′ −μϕM′]}′, (4.60)

In order to maintain control over the domain over which the transmembrane proteins

interact with the membrane and on which the preceding differential equation is to be solved,

the surface area enclosed by the sector (0,s) is specified by the following relation as

a′ = 2πr, (4.61)

in which a global constraint on the area of the current surface is enforced by applying the

local constraint, J̇ = 0.

In addition, we non-dimensionlized lengths using the assumed radius of curvature of R

of the budding regime, whereas force and moment variables are scaled by the membrane

bending rigidity k. Thus we define,

s̄ = s/R, r̄ = r/R, z̄ = z/R, H̄ = RH, C̄ = RC, ā = a/R2, μ̄ = μ/R,

ū = uτ̂/R, v̄ = vτ̂/R, σ̄ = R2σ , t̄ = t/τ̂ , ᾱ = α/(R
√

k), β̄ = βR/
√

k,

L̄ = RL/k, λ̄ = R2λ/k, M̄ = RM/k, F̄υ = R2Fυ/k, F̄n = R2Fn/k,

γ̄ = Rγ/k,

(4.62)

where τ̂ = (ck)−1 is used as a measure of time scale from a dimensional analysis of the bal-

ance law [3]. For the sake of brevity, we don’t list the associated systems of dimensionless

equations.

4.4.2 Boundary conditions

In the following, we denote the cross-sectional curve at the boundary between the protein

concentration domain and the surrounding bulk lipids by Γ (assumed circular). The non-
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dimensionalized form of the nonlinear equations (4.48)1, (4.48)2, (4.52), (4.55)-(4.57) and

(4.61) are solved between s̄= 0 at the center of the axis of symmetry of the bud and s̄ = s̄max

which is an unknown arclength yet to be determined as part of the solution. However, in the

numerical simulation we specify s̄max a sufficiently large length from the center of the bud in

order to model an isolated bud on an unbounded domain. Symmetry dictates that the shear

force vanishes at the pole where s̄ = 0, and at far end of the cross-section of the membrane

where s̄ = s̄max i.e.,

L(s̄ = 0) = 0 and L̄(s̄ = s̄max) = 0. (4.63)

The slope is zero at both ends of the cross-section of the membrane, i.e.,

ψ(s̄ = 0) = 0 and ψ(s̄ = s̄max) = 0. (4.64)

Also, at these ends, we have

r̄(s̄ = 0) = 0 and z̄(s̄ = s̄max) = 0. (4.65)

The equations are solved on a flat circular membrane with radius ρ . Thus, since there is no

area enclosed at s̄ = 0, and the total area of the membrane is fixed to be πρ2, we have the

following additional conditions at the two ends of the cross-section of the membrane

ā(s̄ = 0) = 0 and ā(s̄ = s̄max) = πρ2. (4.66)

Equation (4.55) involves the traction force fυ , which relates the line tension and mem-

brane surface tension λ to the membrane shape at the boundary. Thus, we choose and

specify a suitable value for fυ based on the condition given by Eq. (4.54) at Γ. Further-
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more, at the interface Γ, two additional boundary conditions which must be satisfied are the

continuity of r̄(s̄) and ψ(s̄) at the boundary.

Note that λ is nonlinear function of the protein density (see Eq. 4.57). If there is no

diffusion of proteins on the membrane, then the inhomogeneity in the value of the local

tension λ is insignificant. In the region where there is no protein diffusion ∂ σ̄/∂ s̄ goes to

zero, and λ may be given by a constant value at the boundary, say λ0. At the boundary of

the protein concentration domain where line tension exists, the actual mean curvature is less

than the spontaneous curvature and hence (M = 0). Also, (∂ σ̄/∂ s̄ = 0). This implies that the

gradient in the tension λ is not zero (using Eq. (4.32)). However, the value of λ is equal to

the tension outside the budding region plus the jump in tension at the boundary immediately

near the budding regime, thereby making the change in tension an effect confined to the

budding region.

It is also a possibility that a jump in bending rigidities exist at the boundary between the

membrane covered with protein by the diffusion and the surround bulk lipid. In this case the

ratio of the bending rigidities in the budding region (covered with dilute concentration of

proteins) and near or far away from the budding regime may fix the ratio of the radii away

from the interface and of the surface tensions in the two regions. We assume this bending

rigidities ratio to be unity. In other words, we assume the bending rigidities of the membrane

to be uniform. Note that, for convenience, we also suppress the jump in Gaussian rigidity

of the membrane.

Finally, the equations are solved by specifying zero initial value for the protein density at

every mesh point in the membrane except at the boundary which we impose a value σ̄ = σ̄Γ

in order to expose the membrane to a protein bath and no protein flux (m) is assumed at Γ.
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4.4.3 Numerical solutions in the budding region and examples

This highly nonlinear coupled two-point boundary value problem, with boundary condi-

tions Eqs. (4.63) - (4.66) is solved using the Matlab boundary value problem solver routine

bvp4c [85]. The equations were solved on a weakly curved or nearly flat circular domain of

radius ρ = 10 with ᾱ = 1.5, β̄ = 0.75, μ̄ϕ = −π , τ̄ = 1 and Δt̄ = 0.001 [3]. It should be

noted that there is a singularity at s̄ = 0. To mitigate this problem, we sought an asymptotic

solution near s̄ = 0 and solved the boundary value problem at s̄ = δ � 1 and s̄ = s̄max � 1.

Near the origin, δ = 0.0001 gives sufficiently accurate results. The boundary at the far

end of the membrane from the axis of symmetry is applied at a large value of s̄ = s̄max;

s̄max ≥ 10 effectively models an unbounded domain or, in other words, an isolated bud suffi-

ciently removed from its neighbors such that the effect of interaction may be ignored. This

also provides more than sufficient for far-field behavior to become clear.

The equations are solved by specifying a protein distribution function defined by σ̄ =

exp σ̃ at an initial time t̄ = 0. This distribution ensures that the numerical solutions yield

positive values of the protein density. In addition, the initial surface velocity (both normal

and tangential) is assigned zero values at t̄ = 0. Then, we integrate numerically equations

(4.48), (4.52),(4.55)-(4.57) and (4.61) using Matlab routine (bvp4c) in order to obtain the

initial membrane shape at t̄ = 0. Next, taking a suitable time step Δt̄, we use the forward

Euler approximation scheme to compute the distribution of the protein density in equation

(4.60) and the corresponding membrane shape at this time step is calculated by integrating

equations (4.48), (4.52),(4.55)-(4.57) and (4.61) as before. Now, with the time derivative

rt in (4.13) known at time zero and Δt̄, we form a backward Euler approximation at each

mesh point to compute the normal velocity u = n ·rt , in which surface normal is evaluated at

the initial instant. This normal surface velocity is used to integrate (4.58) for the tangential

velocity field at time Δt̄, assuming the tangential velocity at s̄ = 0 to vanish, and with the

mean curvature equal to the initial distribution. As a result, this tangential velocity is then
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Fig. 4.3 Spatial distribution of protein concentration on the membrane surface. Arrow point-
ing upwards indicates an increase of diffusion time for the proteins.

used with (4.60) to evaluate the time derivative of the protein density at Δt̄, in a similar

manner as before by forward Euler integration scheme. The procedure is repeated for a

specified time interval or until an equilibrium state is reached.

During budding, the first stage is initiation of the bud by the diffusion of the transmem-

brane over the surface of the membrane, inducing a change in the membrane curvature and

local elastic energy. This local elastic energy of the deformed surface tends to pull the un-

reformed membrane (see Figures 4.4 and 4.5). In other words, the local curvature change

further promotes the protein to diffuse on the surface in order to accommodate the changes

in membrane curvature. During this process, the membrane may sustain a residual local

tension to balance local moment generated due to the difference between the actual mean

curvature and the spontaneous curvature. Thus, this residual local tension may alter the

shape of the membrane by influencing the pulling forces in the presence of the transmem-

brane proteins.

Here, we mention that it is not a straightforward matter to locate and prescribe line

tension, particularly in the initial stage of the protein diffusion process, since the transmem-
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Fig. 4.4 Sequence of membrane shape-changes as the protein diffuses proceeds with (γ = 0),
and weak membrane tension of (fυ = 0.001). The associated diffusion time for the protein
is (t=0 s,0.91s,1.45s)

Fig. 4.5 Sequence of membrane shape-changes as the protein diffuses proceeds with (γ =
0.1), and weak membrane tension of (fυ = 0.001).The associated diffusion time for the
protein is (t=0 s,0.91s,1.45s)
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Fig. 4.6 Sequence of radial distance of a membrane point from the axis of symmetry as the
protein diffuses proceeds with (γ = 0), and weak membrane tension of (fυ = 0.001). The
associated diffusion time for the protein is (t=0 s,0.91s,1.45s)
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Fig. 4.7 Sequence of radial distance of a membrane point from the axis of symmetry as the
protein diffuses proceeds with (γ = 0.1), and weak membrane tension of (fυ = 0.001).The
associated diffusion time for the protein is (t=0 s,0.91s,1.45s)
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Fig. 4.8 Location of line tension on the evolved membrane bud at (t=1.45s) is shown with
an arrow.

Fig. 4.9 (A & B) Sequence of membrane budding evolution as the protein diffuses over
the membrane with (γ = 0.0), and weak membrane tension of (fυ = 0.001) and the cor-
responding diffusion time for the protein is (t=0.91s,1.45s) and (C) Transmission electron
microscopy images of the bud neck of a WT yeast cell. (D) Transmission electron mi-
croscopy images of the bud neck of a shs1Δ mutant cell. (Pictures (C) and (D) are taken
from: Cosima, L., et al., 2005).
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Fig. 4.10 (A) Spinning disk confocal images through the bud neck of a yeast cell expressing
ssDFP-HDEL. Arrows point at GFP-HDEL localization to the bud neck, (B) Images of
WT, bud6Δ, and shs1Δ mutant cell expressing Sec61-GFP localization at the bud neck and
(C&D) Sequence of membrane budding evolution as the protein diffuses over the membrane
with (γ = 0.1), and weak membrane tension of (fυ = 0.001). The associated diffusion time
for the protein is (t=0.91s,1.45s). (E) is the 2D plot of the membrane shape corresponding
to the counter plot in D. (Pictures (A) and (B) are taken from: Cosima, L., et al., 2005).
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brane proteins have a continuous spatial distribution with no distinct boundary separating

the protein-free planar membrane from the protein-coated domain. The explicit interface

separating the protein-free domain from the protein-coated domain evolves as the diffusion

of proteins proceeds with time. As the proteins diffuse, during the process of vesicle forma-

tion, a highly concentrated local protein domain develops at the base of the resulting bud

and this induces the formation of interface between the protein-free planar membrane and

the protein-covered bud. This interface is evolves into a well-defined circular boundary per-

pendicular to the axis of revolution of the bud and consequently a line tension is induced at

this interface. This interface is also responsible to minimize any possible energetically un-

favorable contacts between the protein-free planar membrane and the protein-covered bud.

Figure 4.8 shows the location of line tension on the resulting membrane bud.

Figures (4.4) - (4.10) illustrate the different effects that line tension has on the bud forma-

tion. As shown in Fig. 4.4, each of the spherically-shape domains with positive and negative

Gaussian curvatures are generated by a sequence of changes in protein distribution covering

the area of the membrane as the protein diffuses from the outer boundary into the membrane.

The protein covers the bud regions in both vesicle shapes but the area covered in each case

is different depending on the sequence of protein diffusion. The vesicle shape with positive

Gaussian curvature has less area covered by the protein compared with the vesicle shape cor-

responding to the negative Gaussian curvature, since the former shape evolves first followed

by the shape with negative Gaussian curvature as the protein diffusion process proceeds.

At the early stages of protein diffusion, the growth of the protein domain in the membrane

induces bending and helps promote budding with positive Gaussian curvature. As the mem-

brane surface area covered by the protein increases (as a result of the subsequent protein

diffusion), the formation of a vesicle with defined neck region increases. When the surface

of the bud is saturated with proteins, further diffusion leads to development of a highly con-

centrated local protein domain at the base of the resulting bud. This local concentration
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of protein is responsible for shifting the Gaussian curvature of the neck membrane towards

negative values, possibly via protein shape effects, changes in the membrane shape and the

gradual evolution of interface formation between the protein-free planar membrane and the

protein-covered bud. Thus, the generation of the negative Gaussian curvature during protein

diffusion on the membrane surface is a clear indication of the formation of bud and necking.

In fact, as reported in [80], the negative Gaussian curvature is necessary, geometrically, for

membrane remodeling in biological processes including budding and scission. It should

also be noted that, when the diffusion of protein proceeds in the absence of line tension (see

Fig. 4.4), the area covered by the protein increases and, consequently, the formation of the

spherical-like shape bud increases. The associated displacement in the center of the budding

regime increases for the corresponding area covered by the proteins. However, in this case,

the neck formation process in the evolution of the membrane bud is slow. On the other hand,

the diffusion of the protein in the presence of the line tension has a stronger effect in the bud

formation as well as the necking process, to the extent that the displacement in the center of

the budding regime decreases as the areas covered by the protein increases (see Fig. 4.5).

Without line tension, the radius decreases smoothly towards the neck of the budding

regime, but with a remarkable structural feature; a small plateau (i.e., a membrane region

with a nearly horizontal tangent) occurs around this region (see Fig. 4.6).

When line tension dominates (Fig. 4.7), numerical evidence suggests that the radius at

the interface decreases with increasing line tension. It nearly vanishes all the way down to

zero for a large line tension. Note that this description breaks down at scales comparable to

the bilayer width. Despite the fact that the radius goes closer to zero, the difference between

the mean curvature and the spontaneous curvature distribution remains finite; in the highly

pinched limit, a saddle point develops at the neck which keeps the total curvature energy

finite. The result may also suggest that the presence of the neck seems to favor the breaking
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process. In this case, fission may occur exactly at the neck. Details of the fission mechanism

is outside of the scope of this study and will be the subject of a future work.

4.5 Conclusions

We have proposed a continuum based model describing bud formation of lipid membranes

induced by the surface diffusion of transmembrane proteins and acting line tension on the

membrane. As such, the protein distribution over the membrane in consideration is assumed

to be non-uniform. The proposed model is based on the free energy functional accounting

for the bending energy of the membrane, including the spontaneous curvature and the acting

line tension energy on the boundary of the protein concentrated domain and the surrounding

bulk lipid. In the analysis, the protein concentration level is coupled to the deformation

of the membrane through the spontaneous curvature term appearing in the resulting shape

equation. Our results successfully predict the vesicle formation phenomenon on a flat lipid

membrane surface, which were possible under the parametric representation of the mem-

brane surface (not limited to the Monge representation) together with the presence of the

acting line tension. In fact, the acting line tension takes a significant role in the bud forma-

tion process which was analyzed as an interplay between the bilayer bending energy and

the line tension on the domain of interest. This, in turn, suggests that the bud formation

is potentially driven by the acting line tension on the membrane surface. It is also found

that the final deformed configuration of the membrane (in the form of a spherical bud) is

energetically favourable state and, therefore, the bud formation of the membrane is natural

and stable.

We conclude that a sufficient amount of line tension energy at the boundary between

protein concentrated domain and the surrounding bulk lipid is a major role player in control-

ling the bud formation process of the lipid bilayer membranes. Therefore, the result can be

further extended to the study of important cellular functions associated with budding, mor-
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phological aspects of cellular processes in particular, by providing necessary quantitative

information for the bud formation of cellular membranes.
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Chapter 5

Mechanics of a Lipid Bilayer Subjected

to Thickness Distension and Membrane

Budding

We study the distension-induced gradient capillarity in membrane budding formation. The
budding process is assumed to be primarily driven by a diffusion of trans-membrane pro-
teins and acting line tensions on the protein-concentrated interface. The proposed model,
based on the Helfrich type potential, is designed to accommodate inhomogeneous elastic re-
sponses of the membrane, non-uniform protein distributions over the membrane surface and
more importantly, the thickness distensions induced by the membrane’s budding formations.
The latter are employed via the augmented energy potential of bulk incompressibility in a
weakened manner. By computing the variations of the proposed membrane energy potential,
we obtained the corresponding equilibrium equation (membrane’s shape equation) describ-
ing the morphological transitions of the lipid membrane undergoing the bud formation and
the associated thickness distensions. The effects of lipid distension on the shape equation
and the necessary adjustments to the accompanying boundary conditions are also derived
in detail. The resulting shape equation is solved numerically for the parametric representa-
tion of the surface which has one-to-one correspondence with the membrane surface under
consideration. The proposed model successfully predicts the bud formation phenomenon
on a flat lipid membrane and the associated thickness distension of the membrane demon-
strating a smooth transition from one phase to the other (including necking domains). It is
also found that the final deformed configuration is energetically favourable and therefore
stable. Finally, we show that the inhomogeneous thickness deformation on the membrane in
response to transmembrane protein diffusion makes a significant contribution to the mem-
brane’s budding and necking processes.

100



5.1 Introduction

5.1 Introduction

Lipid bilayer membranes are complex assemblies composed of a large variety of trans-

versely oriented two layers of lipid molecules, each of which is characterized by hydrophilic

head groups and hydrophobic tails. These membranes play an important role for a wide

range of essential cellular functions [33, 67, 82]. Morphological transitions of biological

membranes can be regulated by membrane forces induced by the interactions between lipid

molecules and proteins. For instance, interactions of trans-membrane proteins with the bio-

logical membrane may give rise to local membrane curvature changes (see [26, 31, 60, 104]

for a detailed review) and assist morphological aspects of important cellular processes such

as fission, fusion and budding [10, 15, 53, 71]. In particular, a bud formation of membranes

is an essential initial step in cellular vesicular transport (e.g. exocytosis and endocytosis

processes [50, 75]) and in releasing various viral infectious agents in biological cells [79].

Extensive studies have been devoted to this particular subject and evidence has been col-

lected that indicate proteins may drive and/or influence budding on biological membranes

(see for example, Refs. [3, 7, 12, 28, 42, 48, 51, 55, 66, 72, 79, 89, 97] and the references

therein). Furthermore, the authors in [80] have reported that the positive and negative Gaus-

sian curvature changes are related to the formation of membrane budding. In this respect,the

work in [7] showed that, in the presence of acting line tension, spherically-shaped domains

with positive and negative Gaussian curvatures can be simulated by a sequence of changes

in protein distribution over the membrane as the protein diffusion progresses on the mem-

brane surface. Although, the results in [7] enhanced our understanding of the morphological

transitions of biological membranes in bud formation, many of the contributing factors re-

garding bud formation are still unknown. One of the important factors is the influence of

thickness variations of the membranes’ deformations (which is not accounted for in [7]).

In fact, it is reported in [41] that membranes can undergo rapid thickness changes during

the desired deformations (see also [24, 54, 81] and the references therein) and the final
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deformed configuration of the membrane is stable with more than one thickness present

in a single membrane. Further, experimental evidence [21, 57, 93] suggests that lipid mem-

branes may experience thickness distension with or without tilting motion of lipid molecules.

This further suggests that a more accurate prediction of the budding process can be done by

incorporating thickness distension of membranes.

In the present work, we consider a lipid bilayer subjected to inhomogeneous thickness

distensions and bud formations. The proposed model is based on the modification of the

Helfrich type energy potential in [37] to accommodate thickness distensions together with

the surface diffusion of trans-membrane proteins and acting line tension on the membrane.

The bilayer membrane is assumed to be inhomogeneous and incompressible and the me-

chanical responses of the membrane are characterized by the changes of mean and Gaus-

sian curvature during deformations. Thickness distension effects are employed by relaxing

the constraint of bulk incompressibility in the augmented energy functional via a Lagrange

multiplier. This allows the computation of the surface shape (local curvature changes) and

distension as essentially independent fields. In addition, we consider lipid bilayers with

non-zero spontaneous curvature in order to take into account the effects of non-uniformly

distributed proteins in the bending response of the membrane. The corresponding thickness

distension profiles inside the boundary layer are calculated on the basis of the modified Hel-

frich type free energy potential satisfying the influence of protein density distribution on

the membrane shape. In this regard, we also adopt the desired energy features given by the

Ginzburg-Landau potential to simulate coexistent phase equilibria [41].

The shape equation of the membrane is obtained via variational methods and is solved

numerically for a parametric representation of the surface (not limited to the Monge rep-

resentation) and therefore applicable to general membrane deformations. In addition, a

complete analysis of natural boundary conditions has been conducted by extending the re-

sults in [7] and is imposed as necessary. The obtained solution successfully predicts the bud
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formation phenomenon on a flat lipid membrane and the associated thickness distension of

the membrane demonstrating a smooth transition from one phase to the other (including

necking domains). It is found that the occurrences of inhomogeneous thickness deforma-

tions (distension) in the membrane are able to facilitate the membrane budding and necking

during the bud formation process in lipid bilayer membranes.

This chapter is organized as follows. In Section 5.2 we present a concise summary of

the membrane model which includes a brief review of the geometry and kinematics of the

membrane surface as well as a description of the generalized equilibrium-shape equation of

the lipid membrane and the associated admissible boundary conditions ( [1, 3, 41, 90, 91,

94]). In Sections 5.3 and 5.4 we present the membrane surface representation and discuss

the numerical solutions and results with examples. Finally, Section 5.5 presents our results

and conclusions.

5.2 Description of the bilayer membrane model with thick-

ness distension

5.2.1 Energy functional

As mentioned in the introduction, in our previous study [7], the thickness distension effect

in membrane budding was not taken into consideration. Hence, the current work, which

accounts for this effect, is an extension of that discussed in [7] and the total free energy of

the lipid bilayer that undergoes inhomogeneous thickness deformation is assumed to be of

the form

W (H,K,σ ,ϕ,G;θα) = ϒ(σ)+ζ (ϕ)+ k(σ)[H−C(σ)]2 + k̄(σ)K +ρ(ϕ)G2. (5.1)

Here and in what follows, Greek indices take the value 1,2 and we sum over repeated in-

dices; σ(θα , t) is the areal concentration of proteins on the membrane surface; ϕ is the lipid
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distension and G = |∇ϕ|, where ∇ϕ is the gradient of ϕ with respect to material points of

the current surface. The parameters k(σ) and k̄(σ) are bending rigidities which pertain to

lipid membranes with nonuniform properties and ρ(ϕ) is a penalty modulus. Further, con-

siderations pertaining to the existence of an energy minimizer [93] require that k ≥ 0 and

ρ ≥ 0 at values of ϕ associated with stable equilibria. In the above, ϒ(σ) is the energy con-

tribution associated with bending deformation induced from the non-uniformly distributed

protein density σ , ζ (ϕ) is the stretching energy density of the membrane which regulates

the thickness distension. The Landau expansion of the free energy for ζ (ϕ), which has the

desired energy feature to simulate coexistent phase equilibria [41], would be defined later

in the text. H is the mean curvature of the membrane surface ω and K is the Gaussian

curvature. These curvatures are defined by

H =
1
2
(κυ +κt), K = κυκt− τ2, (5.2)

where υ and t = n×υ correspond to the exterior unit normal and unit tangent to a smooth

surface boundary ∂ω , respectively; κυ and κt are the normal curvatures on these axes and

τ is the twist. The unit vector field n = (a1×a2)/|a1×a2| is the local surface orientation.

Here, (aα = r,α), are the tangent vectors to ω induced by the parametrization r(θα), the

position in R
3 of a point on the membrane surface with coordinates θα . The surface metric

tensor is also defined by (aαβ = aα · aβ ). The local curvature of the membrane by the

surface-tensor field is

b = bαβaα ⊗aβ , (5.3)

where

bαβ = n · r,αβ =−aα ·n,β , (5.4)
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are the symmetric coefficients of the second fundamental form on ω . The contravariant

cofactor of the curvature is given by [90]

b̃αβ = 2Haαβ −bαβ , (5.5)

where (aαβ ) is the matrix of dual metric components (i.e, the contravariant components of

the surface metric tensor), the inverse of the metric (aαβ ); and (bαβ ) is also the inverse of

(bαβ ) which can be written as

bαβ = aαλaβμbλμ . (5.6)

In Eq. (5.1), a non-zero spontaneous curvature, C(σ), which takes into account the ef-

fects of non-uniformly distributed proteins in the bending response of the membrane, can

be written in the following form (see also [3, 7])

C(σ) = (μΦ)σ , (5.7)

where (μΦ) is a coupling constant of proportionality. Here, μ is a positive constant andΦ is

the angle made by the meridian of an assumed conical shape of the transmembrane protein

in which its axis of revolution is directed along the surface normal n.

In the presence of acting line tensions [55, 6, 38, 103, 5, 39] on the protein-concentrated

interface of the membrane, equilibrium configurations are those which render stationary the

potential energy defined by

E =
∫
ω

W(H,K,σ ,ϕ,G;θα)da+
∫
∂ω
γds, (5.8)

where ds is the length element along the boundary curve and γ is the line tension energy per

unit length.
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In the proposed model, for a quasi-incompressible membrane, the constraint of bulk in-

compressibility is evaluated on the membrane surface and takes the form ϕJ = 1, where

J =
√

a/A in which A is the value of a on the fixed reference surface. Thus, in Eq. (5.1),

the thickness distensions induced by the membrane’s bud formations are employed by re-

laxing the constraint of bulk incompressibility in the augmented energy functional potential

via a Lagrange multiplier in a weakened manner. This allows the computation of the sur-

face shape (local curvature changes) and distension as essentially independent fields. To

accommodate the constraint of bulk area incompressibility, an augmented energy functional

is considered

E∗ =
∫
Ω
[JW(H,K,σ ,ϕ,G;θα)−q(ϕJ−1)]dA+

∫
∂Ω
γds, (5.9)

where q(θα) is a Lagrange multiplier field [3, 41, 1] associated with the incompressiblity

constraint, and J is the local areal stretch induced by the map from a fixed reference surface

Ω to the current surface configuration ω .

Before proceeding, we note that the Euler equation emerging from the variation with

respect to q is simply the constraint equation, ϕJ = 1. Thus, the remaining content of the

stationarity condition is extracted as fixed values of the function q. For this reason, we

henceforth regard this function as being fixed, and therefore suppress the contribution of the

associated constant
∫
Ω qdA to the energy; we thus replace Eq. (5.9) by the functional

E∗ =
∫
Ω

J[W(H,K,σ ,ϕ,G;θα)−qϕ]dA+
∫
∂Ω
γds (5.10a)

=
∫
ω
[W(H,K,σ ,ϕ,G;θα)−qϕ]da+

∫
∂ω
γds (5.10b)
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5.2.2 Membrane protein diffusion balance law

In [3, 7], a suitable format is established to frame the formulation of the protein diffusion

balance by applying the convected coordinate (ξα) technique to parametrize the material

manifold. A brief review of the theory of convected coordinate systems will facilitate

our discussion. In this coordinate system, a material point on the membrane is labeled

by x(ξα). It is assumed that, at each fixed time t0, (ξα) may be distinctly identified with

the θα . We can identify a body with its reference surface Ω, with parametric representation

x(ξα) = r(ξα , t0) and this surface may serve as a reference configuration of the material

body in a Lagrangian description of the motion. That is, we may regard these coordinates

as being convected in the sense that they identify, via a map r(ξα) = r(ξα , t), the current

position at time t of a point that was located at x(ξα) ∈ Ω at time t0. The connection with

the θα parametrization of ω is given as r̂(ξα , t) = r(θα(ξβ , t), t) [4, 83]. Similarly, the

fixed surface coordinates θα can be specified as functions of ξα and t subject to the initial

condition, and such a coordinate can be written generally as θα(ξβ , t0) = ξα . In addition,

following [3, 4], the time derivative of the fixed-coordinate parametrization can be defined

by d
dtθ

α |ξα = uα(θβ , t), θα|t0 = ξα . Thus, the balance law for the surface diffusion of

trans-membrane proteins as well as the tangential and normal membrane velocities in in dif-

fusive balance law can be derived based on this coordinate transformation framework. Here,

we adopt the expression for the balance law and both components (normal and tangential)

of the membrane velocities from [3, 7] relevant to our current work. Thus, we have

un = rt, (5.11)

where u is the normal velocity of a material point on the membrane surface,

uα;α = 2Hu and σt +uασ,α +mα
;α = 0 or σ̇ =−mα

;α on ω (5.12)
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where uα is the tangential velocity of a material point on the membrane surface and,

mα
;α = (

√
amα),α/

√
a (5.13)

in which a = det(aαβ ), is the surface divergence of m. A simple constitutive equation for

m which accommodates classical Fickean diffusion is adopted from the works of [3]

m =−c∇(Wσ ), (5.14)

where c is a positive constant and Wσ is the chemical potential for the diffusing proteins.

5.2.3 Membrane equilibrium equation and boundary conditions

The shape equation of the membrane and admissible boundary conditions can be obtained

via the variational methods. Thus, the variational derivative of the total free energy of the

membrane-protein system in Eq. (5.9) is

d
dt

E∗ =
∫
ω
[Ẇ−qϕ̇+(W −qϕ)J̇/J]da+

∫
∂ω
γ(ds)·, (5.15)

where

Ẇ = WHḢ+WKK̇ +Wσ σ̇ +Wϕϕ̇+WGĠ. (5.16)

Here and henceforth, the subscripts H, K, σ , ϕ and G denote partial derivatives with respect

to the indicated variables (e.g. WH = ∂W
∂H etc...).

To compute the variation of the energy, we use Eq. (5.12)3 and the expressions for the

variations J̇, Ḣ, K̇ and Ġ from [3, 41, 94]. Consequently, following the procedures outlined
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in [3, 41, 90, 91], we found the expression of the shape equation of the membrane as

p =
1
2
Δ(WH)+(WK);αβ b̃αβ +WH(2H2−K)+2H(KWK−W )+2qϕH+

G−1WGbαβϕ,αϕ,β ,
(5.17)

where Δ(·) = (·);αβaαβ is the surface Laplacian. The Lagrange multipier q satisfies [41],

Wϕ −q = (G−1WGaαβϕ,β );α on ω, (5.18)

and

ϕq,α = ∂W/∂θα on ω, (5.19)

in which the right hand side of Eq. (5.19) accounts for any explicit coordinate dependence

of the material properties arising in non-uniform membranes. In this regard, we adopt the

following expression from [3]

ϕq,α =−Wσσ,α on ω, (5.20)

to accommodate any non-uniformity in the bending properties of the membranes which may

be generated by the constitutive response of the membrane to transmembrane proteins where

Wσ is the chemical potential for the diffusing proteins. In the absence of protein concentra-

tion effect on the membrane surface [3, 41], the Euler equation arising from Eq. (5.15) under

tangential variation are then given by q,α = 0; i.e.,

q = const. on ω, (5.21)

as in the classical Canham-Helfrich theory for lipid bilayers with properties that are uniform

in the sense that the energy density W does not depend explicitly on the coordinates θα .

109



Mechanics of a Lipid Bilayer Subjected to Thickness Distension and Membrane

Budding

In addition, we obtain, after applying the variation of the energy membrane, the admis-

sible boundary conditions on a smooth edge ∂ω of the membrane:

M =
1
2

WH +κtWK, (5.22)

is the bending couple per unit length on ∂ω ,

f = fυυ+ ftτ+ fnn, (5.23)

is the edge traction (force per unit length) on ∂ω , with

fυ = W−qϕ−κυM+G−1WG(ϕ,υ)2 + cgγ, (5.24)

ft =−τM+G−1WGϕ,υϕ ′, (5.25)

fn = (τM)
′ − (

1
2

WH),υ − (WK),β b̃αβυα + cnγ. (5.26)

Here (·),υ = υα(·),α and (·)′ = d(·)/ds are the normal and tangential derivatives on the

boundary; fυ , ft and fn respectively, are the components of distributed forces per unit length

applied on the boundary in the directions of υ , t and n. We also note here that cn is the

normal curvature and cg is the geodesic curvature.

Further,

τ = bαβ ταυβ , (5.27)

is the twist of the membrane surface ω on the (υ , t)- axes with (υα = aα ·υ and τβ = aβ · t),
whereas

κυ = bαβυαυβ and κt = bαβ τατβ . (5.28)

are the normal curvatures of ω in the directions of υ and t, respectively.
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For a non-uniform bilayer membrane with lipid distension, we adopt a simple modified

Helfrich-type free energy function W that satisfies the influence of protein density distribu-

tion on the membrane shape and which also conforms to the conventional theory of bending

elasticity in the absence of protein diffusion and distension:

W = (ασ −β )2 + k[H−C]2 +ζ (ϕ)+ρG2. (5.29)

Here, the energy ζ (ϕ) that regulates the thickness distension can be constructed in a phe-

nomenological Landau expansion of the stretching free energy in powers of the areal stretch

J (see, for example, [32, 46, 64, 22]). Thus, in the present work, under the assumption of

fixed temperature of the membrane for any configuration setting and bulk quasi-compressibility

constraint which takes the form of ϕJ = 1, the energy term ζ (ϕ) is chosen as a simple non-

convex function possessing the desired features to simulate coexistent phase equilibria [41]

and is given by the Ginzburg-Landau potential as

ζ (ϕ) = W(ϕ−1) = a1ϕ−4 +a2ϕ−3 +a3ϕ−2 +a4ϕ−1 +a5ϕ+a6, (5.30)

where the phenomenological parameters a1−a6 are constants.

We note that W in Eq. (5.29) corresponds to the restriction of Eq. (5.1) to the case of

constant bending moduli (k > 0) and k̄. The assumption of uniform bending moduli is jus-

tifiable for dilute concentration of proteins on the membrane. However, here, we make the

assumption primarily to ensure that their effect on the bending stiffness remains negligible.

This also allows us to avoid any influence of non-uniformity of the bending moduli on the

spontaneous curvature in equation Eq. (5.7). In addition, for the sake of simplicity, the term

involving K is suppressed in this study.
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For the particular energy given by Eq. (5.29), with

WH = 2k[H−C], Wσ = 2[α(ασ −β )− kμϕ(H−C)], WG = 2ρG (5.31a)

Wϕ = ζ (ϕ)ϕ =−4a1ϕ−5−3a2ϕ−4−2a3ϕ−3−a4ϕ−2−a5ϕ−1 (5.31b)

the shape equation reduces to

kΔ(H−C)+2k(H−C)(2H2−K)−2H[(ασ −β )2 + k(H−C)2−qϕ+ζ (ϕ)+ρG2]

+2ρbαβϕ,αϕ,β = p,

(5.32)

and equations (5.18) and (5.20) are simplified to

Wϕ −q = 2ρaαβ (ϕ,βα −ϕ,λΓλβα), (5.33)

ϕ∇q = 2[kμΦ(H−C)−α(ασ −β )]∇σ . (5.34)

where Γλβα are the Christoffel symbols induced by the coordinates of ω .

In addition, the bending moment and edge forces which are assigned on part of the

membrane boundary ∂ω are

M = k(H−C), (5.35)

and

fυ = (ασ −β )2 + k[H−C]2−qϕ+ζ (ϕ)+ρG2−κυM+2ρ(ϕ,υ)2 + cgγ, (5.36)

ft =−τM+2ρϕ,υϕ ′, (5.37)

fn = (τM)
′ −M,υ + cnγ . (5.38)
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Finally, using Eq. (5.29) and the chemical potential for the diffusing proteins in Eq. (5.31b)2,

the protein flux in Eq. (5.14) is reduced to

m =−2c{[ α2 + k(μΦ)2]∇σ − kμΦ∇H}, (5.39)

in which ∇C = μϕ∇σ .

5.3 Membrane surface representation

We assume that the diffusion of the protein on the membrane surface forms a bud which

possesses axisymmetry (i.e. the budding region maintains a circular boundary on the mem-

brane). Figure 5.1 shows a schematic of an axisymmetric membrane bud generated by a

planar curve in which ϕ represents the thickness distension in the current configuration of

the membrane surface, ω . Consequently, we seek a simple class of axisymmetric solution

in the surface of revolution parametrized by arclength coordinate s, which is measured from

the center of the vesicle and an angle ψ(s), that the membrane surface makes from the

horizontal plane.

r(s,θ , t) = r(s, t)er(θ)+ z(s, t)k, (5.40)

where, (r,θ ,z) are cylindrical polar coordinate system which represent a material point

in the deformed membrane, r(s, t) is the radial distance of a material point from the axis

of symmetry, z(s, t) is the elevation above the base plane, and {er,eθ ,k} is the orthonormal

basis in the cylindrical polar coordinate system. Since s measures arclength along meridians,

we have

r′2 + z′2 = 1, (5.41)
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Fig. 5.1 Schematic representation of membrane budding with thickness distension.

where (·)′ = d(·)/ds. It follows from Eq. (5.41) and the simple geometry in figure 5.1 that

r(s) and z(s) can be related to s and ψ by

r′ = cosψ(s) and z′ = sinψ(s). (5.42)

We choose surface coordinates θ 1 = s and θ 2 = θ . The induced tangent vectors are

a1 = r′er + z′k, and a2 = reθ . (5.43)

Since a1 is orthogonal to a parallel of latitude, we identify it with υ (Fig. 5.1). Consequently,

υ = cosψ(s)er + sinψ(s)k, t = eθ and n = cosψ(s)k− sinψ(s)er. (5.44)

The metric and dual metric are aαβ = diag(1,r2) and aαβ = diag(1,r−2), respectively, and

the later can be used to compute

a1 = υ and a2 = r−1eθ (5.45)
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We can also get all the components of the Christoffel symbols in (5.33):

Γθsθ = Γθθs =
1
r

and Γs
θθ =−r. (5.46)

At any given position, the components of curvature of the membrane can be obtained by

combining the value of (bαβ = diag(ψ ′,r sinψ)) with equations (5.6) and (5.44) as

κυ = ψ ′, κt = r−1 sinψ(s), τ = 0, cg = cosψ(s)/r and cn = sinψ(s)/r. (5.47)

In the previous sections, relevant admissible boundary edge forces and moments acting

on the membrane are derived. Following the procedures outlined in [7], we obtain the

following differential equation as

ψ ′ =
2M
k
− sinψ(s)

r
+2C. (5.48)

The product of the normal curvatures is the Gaussian curvature K(s, t); thus,

K = (
M
k
+C)

2
− (

M
k
− sinψ(s)

r
+C). (5.49)

The traction force in equation (5.36) is expressed by

fυ = (ασ −β )2 +M2/k−qϕ+ζ (ϕ)+ρG2− (
2M
k
− sinψ(s)

r
+2C)M+

2ρd2 + γ
cosψ

r
,

(5.50)

and the shape equation (5.32), with P = 0 and (bαβ = diag(ψ ′,r−3 sinψ)), simplifies to

L′ = r{( fυ − γ cosψ
r
−2ρd2)(

2M
k
− sinψ

r
+2C)+( fυ − γ cosψ

r
−2ρd2)

sinψ
r

+

2M(
M
k
− sinψ

r
+C)

sinψ
r
−2ρd2(

2M
k
− sinψ

r
+2C)},

(5.51)
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where

L =
1
2

r(WH)
′ = rM′ and d = ϕ ′, (5.52)

and the Lagrange multiplier q in equations (5.33) and (5.34) also satisfies

Wϕ −q = 2ρ(ϕ ′)′ = 2ρ(d)′, (5.53)

and

q′ = 2[μΦM−α(ασ −β )]σ ′. (5.54)

Further, rearranging of Eq. (5.53) gives

d′ =
1

2ρ
[−4a1ϕ−5−3a2ϕ−4−2a3ϕ−3−a4ϕ−2−a5ϕ−1]− q

2ρ
− d

r
cosψ. (5.55)

The normal and tangential velocities of the surface, which are related by Eq. (5.12)1,

lead to

(rv)′ = 2(
M
k
+C)u, (5.56)

where v(s, t) is the velocity component in the direction of the tangent to the meridian; we

assume that the velocity in the azimuthal direction vanishes. This furnishes the tangential

velocity gradient and thus may be used to estimate the error incurred by neglecting intra-

membrane viscosity.

The protein flux in Eq. (5.39) becomes

m =−c(Wσ )
′ = 2c[μΦM′ −α2σ ′], (5.57)

where m = m ·υ is the component of the flux m in the direction tangent to the meridian; the

azimuthal component of this vector also vanishes. Finally the diffusive balance law (5.12)2
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reduces to

σt + vσ ′ =
2c
r
{r[α2σ ′ −μΦM′]}′, (5.58)

In order to maintain control over the domain over which the transmembrane proteins

interact with the membrane and on which the preceding differential equation is to be solved,

the surface area enclosed by the sector (0,s) is specified by the following relation as

a′ = 2πr, (5.59)

in which a global constraint on the area of the current surface is enforced by applying the

local constraint, J̇ = 0.

The nine equations (5.42), (5.48), (5.51)−(5.56) and (5.59) form a ninth-order system

for the nine unknowns r,z,a,φ ,L,M,d,q and ψ as a function of s. We can re-cast these

equations as a set of explicit first-order equations:

r′ = cosψ(s). (5.60)

z′ = sinψ(s). (5.61)

a′ = 2πr, (5.62)

ψ ′ =
2M
k
− sinψ(s)

r
+2C. (5.63)

L′ = r{(Fυ − γ cosψ
r
−2ρd2)(

2M
k
− sinψ

r
+2C)+(Fυ − γ cosψ

r
−2ρd2)

sinψ
r

+

2M(
M
k
− sinψ

r
+C)

sinψ
r
−2ρd2(

2M
k
− sinψ

r
+2C)},

(5.64)

M′ =
L
r

(5.65)

d′ =
1

2ρ
[−4a1ϕ−5−3a2ϕ−4−2a3ϕ−3−a4ϕ−2−a5ϕ−1]− q

2ρ
− d

r
cosψ. (5.66)

q′ = 2[μΦM−α(ασ −β )]σ ′. (5.67)

117



Mechanics of a Lipid Bilayer Subjected to Thickness Distension and Membrane

Budding

ϕ ′ = d (5.68)

In addition, we non-dimensionlized lengths using the assumed radius of curvature of R

of the budding regime, whereas force and moment variables are scaled by the membrane

bending rigidity k. Thus we define,

s̄ = s/R, r̄ = r/R, z̄ = z/R, H̄ = RH, C̄ = RC, ā = a/R2, μ̄ = μ/R,

ū = uτ̂/R, v̄ = vτ̂/R, σ̄ = R2σ , t̄ = t/τ̂, ᾱ = α/(R
√

k), β̄ = βR/
√

k,

L̄ = RL/k, q̄ = R2q/k, M̄ = RM/k, F̄υ = R2Fυ/k, F̄n = R2Fn/k,

γ̄ = Rγ/k,

(5.69)

where τ̂ = (ck)−1 is used as a measure of time scale from a dimensional analysis of the bal-

ance law [3]. For the sake of brevity, we don’t list the associated systems of dimensionless

equations.

5.4 Numerical results and discussion

5.4.1 Boundary conditions

Here, we have cast our boundary conditions following our previous study [7], with further

additional thickness distension related conditions. In the following, we denote the cross-

sectional curve at the boundary between the protein concentration domain and the surround-

ing bulk lipids by Γ (assumed circular). The non-dimensionalized form of the nonlinear

equations (5.60)-(5.68) are solved between s̄ = 0 at the center of the axis of symmetry of

the bud and s̄ = s̄max which is an unknown arclength yet to be determined as part of the

solution. However, in order to avoid effects arising from finite boundaries in our numerical

simulation analysis, we specify s̄max a sufficiently large length from the center of the bud.
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Furthermore, this large value of s̄max assumption is also applied to model an isolated bud on

an unbounded domain. Symmetry dictates that the shear force vanishes at the pole where

s̄ = 0, and at far end of the cross-section of the membrane where s̄ = s̄max i.e.,

L(s̄ = 0) = 0 and L̄(s̄ = s̄max) = 0. (5.70)

The slope is zero at both ends of the cross-section of the membrane, i.e.,

ψ(s̄ = 0) = 0 and ψ(s̄ = s̄max) = 0. (5.71)

Also, at these ends, we have

r̄(s̄ = 0) = 0 and z̄(s̄ = s̄max) = 0. (5.72)

The equations are solved on a flat circular membrane with radius ρ . Thus, since there is no

area enclosed at s̄ = 0, and the total area of the membrane is fixed to be πρ2, we have the

following additional conditions at the two ends of the cross-section of the membrane

ā(s̄ = 0) = 0 and ā(s̄ = s̄max) = πρ2. (5.73)

In addition, we impose a constant thickness distension at the outer boundary of the

membrane cross-section through the simulation and thus, the variation of the membrane

thickness at the outer end of the cross-section is restricted. Thus, we have

ϕ̄(s̄ = s̄max) = 0.8 and d̄(s̄ = s̄max) = 0. (5.74)

Due to a lack of specific experimental data and in order to show the numerical feasibility

of the model, we fix the values of phenomenological parameters ai (i = 1, ...,6) as shown in
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Table 5.1 Parameters used in the proposed Ginzburg-Landau potential

Phenomenological parameters
Value

[N/nm]

a1 -8.7579
a2 20.8034
a3 2.8
a4 2.56
a5 80.80
a6 -8.0458

Table. 5.1, dimensionally all multiplied by [10−9]. It is also worth mentioning that this spe-

cific choice is merely for the sake of illustration of the simulation of the model. In principle,

these values must be adjusted to optimize agreement between the numerical prediction and

the corresponding experimental data.

Equation (5.51) involves the traction force fυ which relates the thickness distension, line

tension and membrane surface tension (ϕq) to the membrane shape at the boundary. Thus,

we choose and specify a suitable value for fυ based on the condition given by (5.50) at Γ.

Note that (ϕq) is a nonlinear function of the protein density (see Eq. 5.54). If there is

no diffusion of proteins on the membrane, then the inhomogeneity in the value of the local

tension (ϕq) as well as the change of thickness is insignificant. In the region where there

is no protein diffusion ∂ σ̄/∂ s̄ goes to zero, and (ϕq) may be given by a constant value at

the boundary, say (ϕ0q0). At the boundary of the protein concentration domain where line

tension exists, the actual mean curvature is less than the spontaneous curvature and hence

(M = 0). Also, (∂ σ̄/∂ s̄ = 0). This implies that the gradient in the tension (ϕq) is not zero.

However, the value of (ϕq) is equal to the tension outside the budding region plus the jump

in tension at the boundary immediately near the budding regime, thereby making the change

in tension an effect confined to the budding region.

We also assume the bending rigidities of the membrane to be uniform and also suppress

the jump in Gaussian rigidity of the membrane for numerical convenience. Finally, the
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equations are solved by specifying zero initial values for the protein density at every mesh

point in the membrane except at the boundary which we impose a value σ̄ = σ̄Γ in order to

expose the membrane to a protein bath and no protein flux (m) is assumed at Γ.

5.4.2 Numerical solutions and examples

Here, we start to solve the non-dimensionalized form of the following two-point boundary

value problem

r′ = cosψ(s), (5.75)

z′ = sinψ(s), (5.76)

a′ = 2πr, (5.77)

ψ ′ =
2M
k
− sinψ(s)

r
+2C, (5.78)

L′ = r{(Fυ − γ cosψ
r
−2ρd2)(

2M
k
− sinψ

r
+2C)+(Fυ − γ cosψ

r
−2ρd2)

sinψ
r

+

2M(
M
k
− sinψ

r
+C)

sinψ
r
−2ρd2(

2M
k
− sinψ

r
+2C)},

(5.79)

M′ =
L
r
, (5.80)

d′ =
1

2ρ
[−4a1ϕ−5−3a2ϕ−4−2a3ϕ−3−a4ϕ−2−a5ϕ−1]− q

2ρ
− d

r
cosψ, (5.81)

q′ = 2[μΦM−α(ασ −β )]σ ′, (5.82)

ϕ ′ = d, (5.83)

with boundary conditions Eqs. (5.70) - (5.74), is solved using the Matlab boundary value

problem solver routine bvp4c [85]. The equations were solved on a weakly curved or nearly

flat circular domain of radius ρ = 10 with ᾱ = 1.5, β̄ = 0.75, μ̄ϕ = −π , τ̄ = 1 and Δt̄ =

0.001 [3, 7]. It should be noted that there is a singularity at s̄ = 0. To mitigate this problem,

we sought an asymptotic solution near s̄ = 0 and solved the boundary value problem at
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s̄ = δ � 1 and s̄ = s̄max � 1. Near the origin, δ = 0.0001 gives sufficiently accurate results.

The boundary at the far end of the membrane from the axis of symmetry is applied at a large

value of s̄ = s̄max; s̄max ≥ 10 effectively models an unbounded domain or in other words, an

isolated bud sufficiently removed from its neighbors such that the effect of interaction may

be ignored. This also provides more than sufficient for far-field behavior to become clear.

The equations are solved by specifying a protein distribution function defined by σ̄ =

exp σ̃ at an initial time t̄ = 0. This distribution ensures that the numerical solutions yield pos-

itive values of the protein density. In addition, the initial surface velocity (both normal and

tangential) is assigned zero values at t̄ = 0. Then, we integrate numerically equations (5.60)-

(5.68) using Matlab routine (bvp4c) in order to obtain the initial membrane shape at t̄ = 0.

Next, taking a suitable time step Δt̄, we use the forward Euler approximation scheme to

compute the distribution of the protein density in equation (5.58) and the corresponding

membrane shape at this time step is calculated by integrating equations (5.60)-(5.68) as

before. Now, with the time derivative rt in (5.11) known at time zero and Δt̄, we form a

backward Euler approximation at each mesh point to compute the normal velocity u = n ·rt ,

in which surface normal is evaluated at the initial instant. This normal surface velocity is

used to integrate (5.56) for the tangential velocity field at time Δt̄, assuming the tangential

velocity at s̄ = 0 to vanish and with the mean curvature equal to the initial distribution. As a

result, this tangential velocity is then used with (5.58) to evaluate the time derivative of the

protein density at Δt̄, in a similar manner as before by forward Euler integration scheme. The

procedure is repeated for a specified time interval or until an equilibrium state is reached.

As reported in [7], the membrane budding is initiated by the diffusion of the transmem-

brane over the surface of the membrane which induces a local curvature change in the mem-

brane. This local curvature change is also accompanied by an enhanced diffusion of proteins

on the surface in order to accommodate the changes in membrane curvature. Besides that,

this local disturbance of the membrane may also promote the protein concentration fluctu-
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ation on the membrane which may also result in the generation of tensional forces on the

membrane. As a result of these forces and the protein diffusion, a local elastic energy will be

developed. This local elastic energy of the deformed surface tends to pull the undeformed

membrane. During this process, the membrane may sustain a residual local tension to bal-

ance local moment generated due to the difference between the actual mean curvature and

the spontaneous curvature. Thus, this residual local tension may have an impact to alter the

shape of the membrane as well as to induce the thickness distension on the membrane by

influencing the pulling forces in the presence of the transmembrane proteins.

Figures (5.3)–(5.12) illustrate the solution of the numerical analysis which include the

sequence of membrane shape changes and the corresponding thickness distension induced

by membrane budding as the protein diffusion progresses on the membrane surface. In our

analysis, since the lipid molecules are not allowed to deviate from the mid-surface normal

(without tilt), the thickness changes in membrane are assumed to occur in the direction

parallel to the surface normal of the membrane. Besides that, since the thickness distension

and local curvature changes are computed essentially as independent fields; for clarity, we

make reference to the schematic representation of the membrane deformation depicted in

Fig. 5.2 in order to present discussions of our results.

Figures (5.3) and (5.4), respectively, show a sequence of changes in the membrane’s

local curvature ( surface shape changes) and the corresponding thickness distension changes

induced by the membrane deformation as the protein diffusion progresses on the membrane

surface. These results are computed in the presence of acting line tension in the membrane

interface. The curves in the Fig. 5.3 correspond to the flat state, bulged and fully budded

conditions of the membrane. Similarly, the curves in Fig. 5.4 shows the corresponding

nonlinear thickness variations for each of the membrane shapes in Fig. 5.3. The solution

in Fig. 5.4 shows that there is a strong localization of deformation around the base of the

bulged membrane which can locally reduce the membrane thickness. This is probably due
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to emergence of membrane-protein mediated forces in the protein concentrated domain and

these forces may influence the local tensional forces which may indirectly cause the phase

transition from thicker region (ordered phase) to thinner region (disordered phase). Using

the curves in Fig. 5.5 (a),(b), Fig. 5.5(c) shows a schematic of the thickness distension

variation on the bilayer membrane. As noted, this schematic representation is based on the

two curves in Fig. 5.5 (a) and 5.5 (b) which respectively, represent the shape of the mid-

surface, ω , and thickness distension, ϕ , in the current configuration. The result in Fig. 5.6

can also be interpreted in a similar manner to that of the result in Fig. 5.5.

Furthermore, we also note that in both Figs. 5.5 and 5.6 the thickness distension takes its

minimum at two different r̄ values near the base of the bulged or fully budded region of the

membrane. In addition, the presence of line tension energy in the model further facilitates

the reduction of the thickness of the membrane at the base of the generated bud and acceler-

ates the membrane budding process which may also lead to the possible membrane scission.

For clarity, Figures 5.5 and 5.6 are included to indicate the nonlinear spatial variation of the

thickness distension in each of the spherically-shape curvatures as the protein diffuses from

the outer boundary into the membrane surface. From these figures, we conclude that local

thickness distension and line tension have a strong impact in altering membrane shape in the

bud formation on the bilayer membrane (see for example, the contour plot corresponding to

this membrane deformation state in Fig. 5.7).

Figures 5.8 - 5.12 illustrate the effects of thickness distension in the membrane bud for-

mation process in the absence of acting line tension energy on the membrane. As shown

in Fig. 5.8, an inhomogeneous thickness variation is observed corresponding to flat state,

bulged and fully budded region of the membrane (see Fig. 5.9). In this figure, we show also

that the thickness distension takes its minimum at two different curvatures values for differ-

ent r̄ values near the base of the bulged or fully budded region of the membrane. For clarity,

figures 5.10 and 5.11 indicate the inhomogeneous variation of the thickness distension in
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each of the spherically-shaped curvatures as the protein diffuses from the outer boundary

into the membrane. From these figures, we observe that, depending on the sequence of pro-

tein diffusion, the influence of thickness distension on the membrane bud formation process

is strong compared to the results discussed in our previous study [7]. In view of this, we

highlight that local thickness distension generated during membrane budding may have a

strong impact in changing the bud formation process on the bilayer membrane by chang-

ing the curvature of the membrane in the presence of the transmembrane proteins (see for

example, the contour plot corresponding to this membrane deformation state in Fig. 5.12 ).

Furthermore, in Fig. 5.14, we observe that the energy that accommodates the thickness

distension on the membrane given by Landau potential in Eq. (5.30) takes its minimum at

two different curvature values for different s̄ values. The curves in Figure 5.14 correspond

to the bulged and fully budded conditions of the membrane, respectively. As indicated in

the figure, this result also indicates that the minimum points in the Landau potential free

energy function corresponds to the minimum thickness section of the membrane which is at

the base of the generated bud.

Our numerical results (see Fig. 5.13) suggest that the radius at the interface decreases

smoothly towards the neck of the budding regime with the presence of thickness distension

(shown in red curve in the figure) or a combination with line tension (shown in purple

curve in the figure). It nearly vanishes all the way down to zero. Note that this description

breaks down at scales comparable to the bilayer width. Despite the fact that the radius tends

closer to zero, the difference between the mean curvature and the spontaneous curvature

distribution remains finite; in the highly pinched limit, a saddle point develops at the neck

which keeps the total curvature energy finite. The result may also suggest that the presence

of the neck seems to favor the breaking process. In this case, fission may occur exactly at

the neck. Details of the fission mechanism is outside of the scope of this study but certainly

merits further investigation.
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Fig. 5.2 Schematic representation of the deformation of lipid bilayer membrane surface. Ω
is the mid-surface of the membrane and represents the reference configuration of an initially
flat membrane whereas ω is mid-surface of the membrane in the current configuration mem-
brane. The gray box shows the space occupied by a sample of lipid molecules during the
deformation process.

Fig. 5.3 Sequence of membrane shape-changes with the effect of thickness distension, as
the protein diffusion proceeds with (γ = 0.00104555), and weak membrane tension of (fυ =
0.001).
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Fig. 5.4 Sequence of thickness distension induced by the deformation of the membrane
as the protein diffusion proceeds with (γ = 0.00104555), and weak membrane tension of
(fυ = 0.001).

Fig. 5.5 (a) a bulged membrane shape , (b) the corresponding inhomogeneous thickness
distension and (c) a schematic of the bud formation showing simultaneous change of the
shape and thickness distension as the protein diffusion proceeds in correspondence of (γ =
0.00104555), and weak membrane tension of (fυ = 0.001).
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Fig. 5.6 A fully budded membrane shape (up) and the corresponding inhomogeneous
thickness distension (down) as the protein diffusion proceeds in correspondence of (γ =
0.00104555), and weak membrane tension of (fυ = 0.001).

Fig. 5.7 Contour plot for a sequence of membrane shape-changes: (a) for bulged, and (b)
fully budded membrane, as the protein diffusion proceeds with (γ = 0.00104555), and weak
membrane tension of (fυ = 0.001).
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Fig. 5.8 Sequence of membrane shape-changes with the effect of thickness distension, as
the protein diffusion proceeds with (γ = 0.0), and weak membrane tension of (fυ = 0.001).

Fig. 5.9 Sequence of membrane thickness distension as the protein diffusion proceeds with
(γ = 0.0), and weak membrane tension of (fυ = 0.001).
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Fig. 5.10 A bulged membrane shape with its inhomogeneous thickness variation as the pro-
tein diffusion proceeds with (γ = 0.0), and weak membrane tension of (fυ = 0.001).

Fig. 5.11 A fully budded membrane shape with its inhomogeneous thickness variation as
the protein diffusion proceeds with (γ = 0.0), and weak membrane tension of (fυ = 0.001).
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Fig. 5.12 Contour plot for a sequence of membrane shape-changes (a) for bulged and (b)
fully budded membrane, as the protein diffusion proceeds with (γ = 0.0), and weak mem-
brane tension of (fυ = 0.001).
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Fig. 5.13 Radial distance of a membrane point from the axis of symmetry of a fully budded
membrane subjected to thickness distension (down) and combined with line tension effect
(up).
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Fig. 5.14 Sequence of change of Landau potential free energy (up) and radial distance of
a membrane point from the axis of symmetry depicting necking location on the membrane
(down) as the protein diffuses proceeds in correspondence of (γ = 0), and weak membrane
tension of (fυ = 0.001).
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Finally, in all of our simulation results, we observe a smooth variation of thickness on

the domain of interest and the formation of stable membrane bud. This elucidates the fact

that the strong localization deformation which occurs in our analysis leads to the possible

coexistence of a thicker region (the ordered phase ) and a thinner region (the disordered

phase ).

5.5 Conclusions

We present a continuum-based model (centered on the Helfrich potential) describing the bud

formation of a lipid bilayer subjected to thickness distension, surface diffusion of proteins

and acting line tension. The proposed energy potential incorporates the mean and Gaussian

curvatures of the surface, the corresponding spontaneous curvature, the surface gradient of

dilation and the line tension energy on the membrane. In particular, the thickness distension

on the membrane and the desired potential to simulate phase equilibria are incorporated

into the augmented energy functional by relaxing the constraint of bulk incompressibility.

The protein concentration level is coupled with the deformations of the membrane through

the spontaneous curvature term appearing in the resulting shape equation. As such, the

membrane budding is assumed to be induced by the surface diffusion of transmembrane

proteins in which the protein distribution over the membrane is assumed to be non-uniform.

The equilibrium shape equation of the bilayer membrane and the complete set of necessary

boundary conditions are also derived using variational methods and work-energy principles.

The resulting shape equation is solved numerically and its solutions demonstrate the strong

influence of the thickness distension on budding formation in the bilayer membrane. In fact,

the thickness distension plays a significant role in the process of bud formation which was

analyzed as the interaction between the bilayer bending energy, thickness distension and the

acting line tension on the domain of interest. In addition, the associated thickness distension

of the membrane demonstrates a smooth transition from one phase to the other (including

133



Mechanics of a Lipid Bilayer Subjected to Thickness Distension and Membrane

Budding

necking domains) with ‘minimum’ thickness on the necking domain. Our results indicate

that, even in the absence of acting line tension on the membrane, there is great potential

for thickness distension to drive membrane budding. It is also found that the final deformed

configuration of the membrane (in the form of a spherical bud) is an energetically favourable

state and therefore the bud formation of the membrane is natural and stable.

We conclude that thickness distensions encountered in lipid bilayer membranes result in

significant energetic consequences for bud formation and possibly necking and/or vesicle

formations on the lipid membrane. Further, it is believed that the separation processes of

vesicles from the mother lipid bilayer will most likely initiate on the necking domain in view

of the fact that the necking area shows minimum thickness. Consequently, by providing

essential quantitative information, our results can be extended to the study of important

cellular functions associated with budding and vesicle formations in cellular processes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work we have studied the mechanical response of both uniform and non-uniform

bilayer membranes induced by cellular functions in the context of continuum mechanics.

Much attention was given to the discussion of the deformation behaviour of lipid membranes

subjected to some specified practically applicable boundary conditions and/or membrane-

substrate interactions. In this regard, the mechanics of lipid bilayer membrane morphology

with different membrane shapes were studied using a combination of analytical and numeri-

cal methods. These techniques are complementary approaches to solving the corresponding

governing equations of the membrane and yield results which would probably have been

overlooked if just one approach was chosen. Thus, using both analytical and numerical

methods, a framework has been proposed for the prediction of the deformation profile of

lipid membranes.

The first part of this study presented two analytical expressions for predicting the defor-

mation profile of a uniform bilayer membrane morphology with different membrane shapes,

and given boundary conditions. The first analytical solution is for predicting the deforma-

tion of a rectangular lipid membrane in the case of vanishing lateral pressure, subjected to

various boundary forces acting on its edges. Here, emphasis is placed on the cases where the
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rectangular membrane is subjected to applied boundary moments, since the corresponding

deformation profiles are quantitatively equivalent to those induced by the lateral pressure

gradient in the membrane conformation. The principle of superposed incremental deforma-

tion is effectively applied to reduce the highly non-linear shape equation of the lipid mem-

brane to a single mathematically tractable PDE with minimum loss of generality. Hence, a

complete analytical solution is obtained which predicts smooth membrane morphological

transitions over the domain of interest and satisfies the imposed boundary conditions. Sev-

eral examples, which demonstrate the evolution of the membrane shape in response to an

applied bending moment for different values of the aspect ratio of the sides of the rectan-

gular patch, have been presented. In all the examples, it has been found that for isotropic

membranes, as the shape evolves in response to the bending moment, the surface pressure

develops in the rectangular patch spatially in a homogeneous manner and intensifies as bend-

ing moment increases.

The second is a semi-analytical solution, which describes the morphological transitions

of lipid membranes when interacting with solid elliptical cylindrical substrates (which may

represent the action of, e.g., proteins) through an elliptical contact region. In this solution,

the deformation mode of the membrane-substrate interaction is characterized by modified

Mathieu functions and performed in the framework of a general curvilinear coordinate sys-

tem. The actual deformation profiles are computed from infinite series of eigenfunctions for

the desired elliptical domain. The semi-analytic solution method was used to study the effect

of hydrophobicity on the evolution of the membrane shape subjected to the film/substrate in-

teraction. In this regard, through the demonstration of many examples, we found that larger

values of hydrophobicity create a depressed region in the membrane and this intensifies as

the value of hydrophobicity increases. Consequently, the significant depression induced in

the membrane indicates a dominant non-linear response and thus, we conclude that the linear

solution developed for the linearzed shape equation is valid for only sufficiently small val-
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ues of hydrophobicity. Furthermore, the semi-analytic solution successfully predicts smooth

membrane morphological transitions over the domain of interest and overcomes one of the

main challenges that one faces in the analysis of lipid membrane, which is removing the

assumption of axisymmetry.

In part II of this work, we proposed a comprehensive continuum based model describing

bud (vesicle) formation of lipid membranes induced by the surface diffusion of transmem-

brane proteins. Much attention was also given to the discussion of the role of line tension

energy and/or thickness distension in the membrane budding, while our main objective was

to provide a rigorous numerical analysis of the model. As such, the protein distribution over

the membrane in consideration is assumed to be non-uniform. The proposed model is based

on the free energy functional that involves the mean and Gaussian curvatures of the surface

including the spontaneous curvature as well as the surface gradient of dilation and the act-

ing line tension energy on the membrane. An energetic term, which regulates the thickness

distension on the membrane and has the desired potential to simulate phase equilibria, is

included in the free energy function of the membrane. In the analysis, the protein concentra-

tion level is coupled to the deformation of the membrane through the spontaneous curvature

term appearing in the resulting equilibrium equation. In addition, coupling the thickness

distension and line tension energy effect into the membrane model was challenging; never-

theless, our numerical results successfully predict the vesicle formation phenomenon on a

flat lipid membrane surface, which was possible under the parametric representation of the

membrane surface (not limited to the Monge representation) together with the presence of

the acting line tension and/or thickness distension. In fact, in the absence of thickness dis-

tension, the acting line tension plays a significant role in the bud formation process which

was analyzed as an interplay between the bilayer bending energy and the line tension on the

domain of interest. This, in turn, suggests that the bud formation is potentially driven by

the acting line tension on the membrane surface. Therefore, we conclude that a sufficient
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amount of line tension energy at the boundary between protein concentrated domain and

the surrounding bulk lipid plays a major role in controlling the bud formation process of the

lipid bilayer membranes. Interestingly, in the absence of line tension from the model, our

results also show that thickness distension has strong potential to drive membrane budding.

Hence, we also conclude that a thickness distension encounter in biological lipid bilayer

membrane is a significantly energetic consequence for bud formation and possibly neck-

ing in lipid bilayer membrane. It is also found that the final deformed configuration of the

membrane (in the form of a spherical bud) is an energetically favourable state and therefore,

the bud formation of the membrane is natural and stable. Finally, these numerical results

can be further extended to the study of important cellular functions associated with budding,

morphological aspect of cellular processes in particular, by providing necessary quantitative

information for the bud formation of cellular membranes.

6.2 Future work

The results of the numerical study of bilayer membrane budding (Chapter 4 and 5) which is

induced by the surface diffusion of the transmembrane proteins with the presence of either

acting line tension energy on the membrane or thickness distension or with a combination

of both methods have shown a new insight into the understanding of the mechanics of bud

formation on a lipid bilayer membrane and furthermore, giving confidence on the validity

of the proposed continuum based membrane model to predict the membrane’s mechanical

response.

A bilayer membrane structure is symmetric with respect to its mid-plane and since it

is held together by weak non-bonded interaction forces, it is very susceptible to external

forces, which give rise to deformations of the overall shape of the bilayer and to flow within

the bilayer. In this regard, shear flows directed along the bilayer membrane surface by the
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surrounding aqueous environment, may induce shear deformation in the bilayer, which is

not addressed in this study.

A comprehensive continuum-based model for predicting the deformation behavior of a

non-uniform bilayer membrane should include the shear deformation mode of the bilayer

membrane. This also requires the need to include dynamic membrane properties such as

surface shear viscosity and the intermonolayer friction of the bilayer membrane into the

model. The presence of these dynamic membrane properties may affect the diffusion of

transmembrane proteins over the composite membrane surface. Therefore, taking this into

consideration, the investigation on the contribution of shear mode deformation on membrane

budding, for example, is one new area to be explored.

To take the bilayer shear deformation mode into account may also be a challenge for

the numerical simulation of bud formation process on the membrane. So far, the extension

of the standard equilibrium membrane energy which accounts for protein concentration,

thickness distension and acting line tension energy on the membrane worked well in the

prediction of the bud formation on the lipid membrane. The constitutive equation for the

associated concentration flux was based on a classical Fickean diffusion theory. If adopting

and modifying a similar approach used in [34], i.e. describing the diffusion of membrane

proteins by an expression which is defined in terms of the lipid bilayer thickness, protein

shape geometry, viscosities of the membrane and the adjacent bulk fluid [77], the proposed

continuum-membrane models in Chapters 4 and 5 could be easily extended to accommodate

the effects of surface viscosity and the intermonolayer friction of the bilayer in membrane

budding or in general other modes of deformation of the membrane.
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