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Dedicated to my wife, Marlene



Abstract

Pattern recognition is a central task in a variety of applications ranging from engineering
to financial analysis. For this reason, it is very important to develop efficient pattern
recognition systems that help to make decisions automatically and reliably. This thesis
describes the implementation of pattern recognition systems based on computational
intelligence approaches (in particular support vector machines and radial basis function
neural networks). To improve the efficacy of these systems. a notion of prototypes
stability analysis is introduced and fuzzy kernels are developed. Prototypes stability
analysis is used for determining the adequate number of prototypes, clusters, or
information granules to be used in classifiers design. Fuzzy kernels, optimized using
genetic algorithms, allow for the incorporation of fuzzy set methods into the support
vector machine approach. To demonstrate the applicability of these pattern recognition
systems, detailed numerical experiments with synthetic and real-world data sets are

included and analyzed.
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1 Introduction

1.1  Pattern recognition

Pattern recognition generally refers to “assigning an object to a so far unknown class of
objects, and identifying an object as a member of the already known class”[73]. This field of
research can be applied to solve a broad range of problems related to weather forecasting,
speech recognition, credit appraisal, face recognition, and so on [38]. Some of the best-known
approaches for pattern recognition are syntactic matching, statistical classification, template
matching, and computational intelligence methods. Such methods are able to perform
classifications from labelled training data sets as well as to explore structures and classes in
unlabeled data. This thesis studies the following techniques: granular computing, support
vector machines, and neural networks.

Granular computing [78]-[80] is oriented toward the representation of knowledge
related to problems in basic entities known as information granules. An information granule is
a set of objects that are grouped based on their similarity, proximity or functionality. These
information granules may be crisp (i.e. with sharp boundaries) or fuzzy (i.e. with boundaries
that are not well-defined). The importance of granular computing lies in the fact that a suitable
granulation may facilitate the identification of useful patterns in a data set.

The Support Vector Machine (SVM) [12], [71] is a binary classification tool that has
been successfully applied in numerous areas ranging from bioinformatics to face
identification. In the SVM approach. the optimization criterion is the maximization of the
margin which is the minimum distance from any training point to the separating hyperplane.
The location and slope of this hyperplane are defined by a group of training points called
support vectors.

An artificial neural network [9], [41] is a computational structure that is composed of
a number of simple processors connected through a set of links that have some weights
associated with them. The radial basis function (RBF) network [9] is a neural network with
two layers. The first layer consists of neurons equipped with basis functions, which normally
are Gaussian-like functions. The second layer performs the linear combination of the outputs
obtained from the first layer. The leaming process in RBF networks involves the modification
of the network architecture (centres) and the connection weights in order to classify correctly

the given input patterns.



1.2

This thesis has two objectives.

1. The first one is to study the potential of RBF networks and SVM’s when
applied to a series of classification problems. The potential of these
approaches (in contrast to classical pattern recognition approaches) lies in
their ability to learn complex input-output relationships and to adapt
themselves to the data. Moreover, they have been extensively evaluated and
demonstrated to be useful in practical applications.

2. The second objective is to enhance the RBF networks and the SVM’s by
using two new concepts related to information granulation. The first concept
is prototypes stability. Prototypes obtained by applying a clustering algorithm
to different portions of the data should no differ significantly (i.e., they should
be stable). This is not the case if there is an error in the choice of the number
of clusters [65]. Based on this idea, prototypes stability analysis may be used
to determine the appropriate number of clusters, prototypes or information
granules to be used in classifiers design. The second new concept is fuzzy
kernels. Fuzzy kernels may be used to incorporate fuzzy sets methods into the
SVM approach.

To verify the proposed architectures and leamning methods, extensive computer
simulations were performed. The data sets used for the experiments include synthetic data
sets, an iris data set, a Wisconsin breast cancer data set, a Boston housing data set, and a

severe storm cell data set from Environment Canada.

Thesis overview

This thesis begins with an overview of the problem in Chapter 2. This chapter
introduces the basic terminology needed for the upcoming chapters and the data sets to be
used in the experiments (synthetic data sets, a Wisconsin breast cancer data set, an iris data
set, a Boston housing data set, and a severe storm cell data set from Environment Canada).

In Chapter 3, an overview of granular computing is presented. The main interest of
this chapter is to describe the use of granular computing as a tool for classifier design. In this
sense, the use of prototype stability analysis for determining the best number of centres to be

used in classifier design is presented.



Chapter 4 studies the Support Vector Machine classifier and its extension to the multi-
class case. Some illustrative examples are discussed.

An introduction to radial basis function networks is presented in Chapter 5. Special
attention is given to the methods of assigning the centres of the receptive fields. To do so, two
methods are used: orthogonal least squares and a clustering approach discussed in Chapter 3.
An empirical comparison of the SVM with the RBF kernel against the RBF approaches is also
presented.

In Chapter 6, the original SVM approach is extended to incorporate fuzzy sets
methods. The fuzzy sets are generated using fuzzy clustering. Some numerical studies
involving synthetic data sets are presented.

Chapter 7 is devoted to experimental studies with a Wisconsin breast cancer data set, a
Boston housing data set and a severe storm cell data set from Environment Canada to
demonstrate the applicability of the developed classifiers in solving these pattern recognition
problems.

The last chapter, Chapter 8, contains the conclusions resulting from this research, the

summary of contributions and the recommendations for future work.



2 Problem Overview

2.1 Introduction

This chapter begins with a brief introduction to pattern recognition. For further
information, the reader is referred to [23], [28], [38], (9], [67]. Some performance measures
are then presented, followed by a description of some of the approaches for pattern

recognition. Finally, the data sets for the experiments are described.

2.2 Pattern recognition

One of the main tasks of a pattern recognition system consists of finding structure in a
data set to perform classification. The classification tasks are done over a certain group of
elements known as patterns. Patterns are entities characterized by a series of features. Given a
pattern, the classification may be (1) supervised if the system uses the pattern-class
information (i.e. the samples are labelled), or (2) unsupervised if the system does not know or
does not use the pattern-class information (in this case, the patterns are assigned to a
previously unknown class) [38].

Interest in the area of pattern recognition is related to its use as one of the principal
tools in human decision-making tasks, helping doctors in the diagnosis of diseases,
meteorologists in the forecasting of weather, bankers in the appraisal of credits, and so on

(Table 2-1).

2.3 The pattern recognition system

The process of pattern recognition can be divided in three principal steps: (1) data
acquisition, (2) feature selection, and (3) classification. See Figure 2-1.

1. Data acquisition. In this module, the input data are gathered via a set of sensors and
converted into a form suitable for machine processing. It is important to mention that
this block is highly related to the particular application that is being developed.

2. Feature selection. Usually, this block is mainly concerned with the reduction of space
dimensionality. This may be stated as follows: “given a set of d features, select a

subset of size m that leads to the smallest classification error” [38].



Classification: This module has two different modes of operation: the learning mode

and the decision-making mode. In the learning mode, this module is trained to

partition the feature space. This means that some parameters in this module are

adjusted to produce a correct output over the training samples. In the decision-making

mode, the input patterns are assigned to a specific class based on the parameters that

were learned in the previous mode.

rﬁm’-ﬂ—’ Acquisition

Data

—

Feature
Selection

W_' :}Ccognizcd
atiern

Figure 2-1: A typical scheme of pattern recognition.

Medical Medical Medical recording
diagnosis waveform such as EEG and
classification ECG
Meteorology Severe storm Multidimensional Known type of storm cell
cell derived features
classification
Financial Credit appraisal | Financial records Credit
assessment approval/disapproval
Multimedia Internet search | Images Image categories
retrieval
Computer Face detection | Digitized image Presence/absence of
Vision in images humans
Bioinformatics | Sequence DNA/Protein Known types of
analysis sequence enes/patterns
Industrial Printed circuit | Board image Defective/non-defective
automation board nature of product
inspection
Biometric Personal Face, iris, Authorized users for access
recognition identification | fingerprint, voice. control
Document World Wide Text document Categories of web pages,
classification Web search such as business, sports,

entertainment, etc

Table 2-1: Examples of Pattern Recognition Applications




2.4 Performance measures

The typical classifier performance measures are classification accuracy and
classification error. The classification accuracy (P,) is equal to the number of correctly

classified samples (correct) divided by the number of samples (n), that is

P, = correct [n
(2-1)

while the classification error is

(2-2)

These performance measures may be complemented with a visual indication (of how
well the classifier was trained) known as confusion matrix. The confusion matrix gives
information about overall performance and distribution of errors. For example, in Table 2-2, it
can be seen that there is no confusion between classes A and B, virtually no confusion

between B and C. and a small confusion between A and C.

Table 2-2: Confusion matrix for hypothetical results in a test example.

One additional performance measure to be used in this thesis is known as kappa score
(k) [26]. The kappa score is a coefficient that is not affected by differences in the number of

patterns of each class. This coefficient is given by
k=(p-PY(-F)
(2-3)
where (given that CM; is one element in the diagonal of the confusion matrix; CMj; is an

element of the confusion matrix: k is the number of classes; and n is the number of elements)

P, is the conventional performance measure



o)

(24)
and Pc is the coefficient that eliminates the agreement due to chance
k k k ,
p-3(Tou Som, | fn
i=l \_j=I =l
(2-5)

A final note regarding the kappa score is that the closer the value is to one 17, the

better the classifier is.

2.5 Approaches for pattern recognition
Some of the most common approaches for pattern recognition are template matching,
statistical classification, syntactic matching, and computational intelligence classification. A

brief description of these approaches is given below.

2.5.1 Template matching

In this approach, a template or prototype is available. The data to be recognised are
matched against a prototype while taking into account all allowable positions (translations
and/or rotations) or rotation changes. If the resulting distance is smaller than a certain
threshold, the pattern is correctly classified. This approach will fail if there are large intra-

class variations among the patterns {38].

2.5.2 Statistical methods

In this case, each pattern is represented in terms of “p” features, and it is viewed as a
point in a p-dimensional space. The objective, in this approach, is to recognise the patterns
based on decision boundaries that are determined by the probability distribution of the patterns

belonging to each class. This probability distribution must be either specified or learned [28].

2.5.3 Structural or syntactic methods

In this approach, the patterns are composed of sub-patterns, which are themselves

built from simpler sub-patterns. The simplest sub-patterns to be recognized are known as



primitives. The classification, in this approach, is done based on a determined acceptance error
in accordance to some predefined rules. The importance of this method lies in the fact that it
provides a description of how the given pattern is constructed in terms of the predefined

primitives [67].

2.5.4 Computational intelligence

James C. Bezdek presented the term computational intelligence in 1992 [7]. This term
describe methods of computation which adapt solutions to new problems, deal only with
numerical data, have a pattern recognition component, and do not rely on explicit human
knowledge [7], [27]. Computational intelligence emerges because of synergy of genetic,
fuzzy, rough, and neural computing. Thanks to this synergy, computational intelligence offers
a well-developed algorithmic framework needed to solve problems related to complex system

behaviour.

2.6 Data sets to be studied

In this thesis, several data sets were used to evaluate the performance of the different

classifiers that were developed. A description of these data sets is given below.

2.6.1 Synthetic data sets
The patterns in the following two data sets were separated into two classes. The
patterns for each class were distributed according to a normal density function with unit
covariance matrices. The mean vectors (m; for class 1 and m: for class 2) were:
e For data (a): m;=(2.0, 2.0) and m,=(-2.0, -2.0). See Figure 2-2.
e For data (b): m;=(1.0, 1.0) and m,=(-1.0, -1.0). See Figure 2-3.
Each class has 50 elements, giving a data set of 100 elements, 60 of which were used

for training and 40 for testing.
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Figure 2-2: Synthetic data (a). Squares and diamonds represent class 1 and class 2
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Figure 2-3: Synthetic data (b). Squares and diamonds represent class 1 and class 2
respectively.

The patterns in the following data set were separated into five clusters of 200 elements
each. The patterns for each cluster were distributed according to a normal density function
with unit covariance matrices. The mean vectors (m; for cluster 1, m, for cluster 2, m; for
cluster 3, m, for cluster 4, and ms for cluster 5) were m;=(0, 0, 0), m,=(5, 0, 0), m;=(0, 5, 0),
m,=(0, 0, 5), and ms=(5, 5, 5) (see Figure 2-4).
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Figure 2-4: Synthetic data (c). Five clusters with unit covariance matrices.

2.6.2 Iris data set

The iris data set first appeared in [2]. This data set consist of patterns representing
three varieties of irises: Setosa, Versicolour, and Virginica. Each class has 50 patterns. Each
pattern has four attributes indicated in Table 2-3. Figure 2-5 shows a plot of sepal length vs.
sepal width. Figure 2-6 shows a plot of petal length vs. petal width. From these figures, it
seems that petal length and petal width are the most discriminant features for the iris data set.

The version of the iris data set used here comes from the repository of machine
learning data sets at University of California, Irvine' and corresponds to the iris data version
used by Bezdek et al. [8]. The entire data set includes 150 instances, 75 of which were used

for training and 75 for testing.

1 Sepal Length cm
2 Sepal Width cm
3 Petal Length cm
4 Petal Width cm

Table 2-3: Listing of features for the iris data set.

' UCI Repository of Machine Learning Databases, C. Blake, E. Keogh, and C. J. Merz. [Online].
Available: http://www.ics.uci.eduw/~mlearn’/MLRepository.html
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Figure 2-5: A two-dimensional (dimension 1 vs. dimension 2) section of the Anderson iris data.

Iris Classification Problem
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Figure 2-6: A two-dimensional (dimension 3 vs. dimension 4) section of the Anderson iris data.

2.6.3 Wisconsin breast cancer database

Dr. William H. Goldberg created the Wisconsin breast cancer database as part of a
study that aimed to diagnose cancer via linear programming {45]. The data set has 11
attributes indicated in Table 2-4. These variables are used to determine whether a tumour is

benign or not.
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1 S be
2 Clump thickness 1-10

3 Uniformity of cell size 1-10

4 Uniformity of cell shape | 1-10

5 Marginal adhesion 1-10

6 Single epithelial cell size | 1-10

7 Bare nuclei 1-10

8 Bland chromatin 1-10

9 Normal nucleoli 1-10

10 Mitoses 1-10

11 Class 2 for benign and 4 for malign

Table 2-4: Listing of features for the Wisconsin breast cancer database.

The version of the Wisconsin breast cancer database used here comes from the
repository of machine learning data sets at University of California, Irvine. The entire data set
includes 683 instances, of which 444 were confirmed to correspond to benign tumours and

239 of which were labelled as malign tumours.

2.6.4 Boston housing data set

The Boston housing data set first appeared in [31] and has been studied. among
others, in [5], [13], and [70]. It is concerned with house prices in the suburbs of Boston. This
data set has 13 continuous attributes and one binary-valued attribute. See Table 2-5 for a
description of all the attributes. The classification problem consists of determining whether a
house price is greater than or equal to $21,000.

The version of the Boston data set used here comes from the repository of machine
learning data sets at University of California, Irvine. The entire data set includes 506
instances, of which 260 correspond to house prices greater than or equal to $21,000 and 246 of

which correspond to house prices less than $21,000.
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CRIM Per capita crime rate by town.

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.
INDUS Proportion of non-retail business acres per town.

CHAS Charles River dummy variable (=1 if tract bounds river; 0 otherwise).
NOX Nitric oxides concentration (parts per 10 million).

RM Average number of rooms per dwelling.

AGE Proportion of owner-occupied units built prior to 1940.

DIS Weighted distances to five Boston employment centres.

RAD Index of accessibility to radial highways.

TAX Full-value property — tax rate per $10,0000.

PTRATIO | Pupil-teacher ratio by town.

B 1000(Bk- 0.63)” where Bk is the proportion of blacks by town
LSTAT % Lower status of the population.

MEDV Median value of owner-occupied homes in $1000’s.

Table 2-5: Listing of features for the Boston housing data set.

2.6.5 A Severe storm cell data set

Storm cells, which are the cause of most severe summer weather, may be defined as
volumetric patterns that present high radar reflectivity at mid to high altitude levels and
exhibit a single updraft [74]. There are four main types of storm cells: hail, rain, tomado, and
wind. To characterize them, 22 products (see Table 2-6) [63] (derived from reflectivity values
and certain heuristics) might be used. The system used to produce these derived features is the
Radar Decision Support System (RDSS) [74], developed for Environment Canada by
Infomagnetics Technologies Corporation. A comprehensive description of the algorithms used
for the derivation of the 22 previously mentioned and other products may be found in [74].

From a careful analysis of the data, it can be seen that there are a considerable number
of identical cells (that is, the 22 features used to describe them have the same values) with two
different labels. This happens for about 25% of the cells. To cover those cells with two labels,
one may envision adding six more classes to the four original ones (hail, rain, tornado, wind).
The new classes are: hail or rain, hail or tornado, hail or wind, rain or tornado, hail or wind,
and tomado or wind. The entire data set includes 577 instances, 346 of which were used for

training and 231 for testing.
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Extent (X and Y values) Integer +and Integer +
Core volume Integer +

Core height Integer +

Core size Xand Y Real + and Real +
Core tilt vector X, Y and Z | Real, Real and Real +
Core tilt angle Real +

Velocity X, Y and Z Real, Real and Real
Orientation Real +

Join count {0,2}

Split count {0, 1}

Super cell severity {0, 1,2,3}

Wind gust severity {0, 1,2, 3}

Hail occurrence (%) {0, 50, 90}

Velocity set flag {0, 1}

Super cell flag {0, 1}

Table 2-6: Listing of derived features for the severe storm cell data set.

2.7 Summary

This chapter has provided a succinct overview to the problem that is studied in this
thesis (i.e. the development of pattern recognition systems, based on the computational
intelligence approach, which helps in making decisions automatically and reliably). This
chapter has given a brief description of what one of the main tasks of pattern recognition is
(i.e. finding structure in a data set to perform classification), as well as a list of examples of
pattern recognition applications. The typical pattern recognition system was presented as well
as the methods for measuring its performance. Some common approaches to pattern
recognition were also presented. Finally, the data sets used in the experiments were described.

The next chapter will present granular computing, a computational intelligence

approach that allows for the representation and processing of knowledge.
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3 Granular Computing

3.1 Introduction

Granular computing is a computing paradigm that is concerned with the formation and
processing of information granules. An information granule is a set of objects that are grouped
based on their similarity, proximity or functionality. This chapter begins with a brief
introduction to granular computing. A method for generating information granules is then
presented. Next, the use of prototype stability analysis to determine the best group of centres
to be used in classifiers design is described. Finally, some illustrative numerical examples are

presented.

3.2 Information granulation

Granular computing is oriented toward the representation and processing of
knowledge related to problems in basic entities known as information granules. An
information granule is a set of objects that are grouped based on their similarity, proximity or
functionality (see Figure 3-1). These information granules may be crisp (i.e. with sharp
boundaries) or fuzzy (i.e. with boundaries that are not well-defined) (See Figure 3-2). The
importance of granular computing lies in the fact that a suitable granulation may facilitate the

identification of useful patterns in a data set.

Leaves

Figure 3-1: A granule is a set of objects that are grouped based on their similarity, proximity or
functionality.
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Figure 3-2: Examples of crisp and fuzzy granulation

Information granulation (IG) of an object results in a collection of information
granules [79]. For example, granulation of the object “tree” may result in the following
granules: roots, trunk, leaves, flowers, and seeds.

IG in which granules are crisp has been used in a broad range of applications
including the following: quantization, analog-to-digital-conversion, image segmentation, and
many others [80]. Even though crisp information granulation (crisp IG) is very important in
these applications, it does not take advantage of the fact that human beings are able to make
rational decisions based on partial knowledge and imprecision. For example, in the case of a
tree, the boundaries of the roots, trunk, etc. are fuzzy. Therefore, the resulting information
granules are fuzzy. Moreover, the granules are associated with fuzzy attributes, e.g., size,
colour, and texture in the case of a leaf. Finally, granule attributes have fuzzy values, e.g.. in
the case of the fuzzy attribute size (of a leaf), the fuzzy values might be small, medium or
large. [79] (Figure 3-3).

To deal with imprecise real world situations, Zadeh introduced the concept of fuzzy
information granulation (fuzzy IG) [78]-[80]. Fuzzy IG is realized through the use of fuzzy
sets, which were introduced by Zadeh in 1973 [77]. Fuzzy sets use symbols (linguistic terms
such as long, fast, very short, around, etc.) to summarize the domain knowledge in a
convenient format [55]. Fuzzy sets are able to express the notion of partial membership of an
element to a particular granule [34]. This property is intensively used in clustering algorithms

and will be studied in the next section.
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Figure 3-3: Basic structure of fuzzy information granulation: granules, attributes, and values.

3.3 Construction of information granules

Information granulation can be obtained in various ways depending on the type of
problem and the type of data available. For example, granules can be obtained manually
through expert interviews or automatically by clustering techniques. Expert interviews are
useful when the designer wants to obtain information granules that reflect subjective
perceptions about concepts associated with the problem that is being solved. In contrast,
clustering techniques are used when the information granules must account for information
contained in experimental data. This section of the thesis is concerned with the use of
clustering techniques (in particular, partitional clustering techniques) for the generation of
information granules.

Partitional clustering techniques attempt to find partitions in a sample data set by
minimizing the within-cluster dispersion or by maximizing the between-cluster dispersion
[38]. So the problem of partitional clustering can be formulated in the following way: given n
patterns in an p-dimensional space, determine a partition U of the patterns into ¢ clusters such
that the patterns in a cluster are more similar to each other than to patterns of different clusters

[38]. To get reliable results, the number of pattern available n should be greater than the
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expected number of clusters c. Partitional clustering techniques are also known as objective
function methods because for each ¢, a criterion or objective function measures the
“desirability” of clustering candidates [6]. The most widely used objective function model for
partitional clustering is based on the weighted-within-groups sum of squared errors. The
general goal is to obtain that partition which, for a fixed number of clusters, minimizes the
square error.

Two of the most representative partitional clustering techniques are K-means [23] and
the fuzzy c-means [6]. The partitional clustering technique to be studied in this thesis is the
fuzzy c-means because it can be used to generate fuzzy information granules that are required
for the development of a classifier presented in Chapter 6. The fuzzy c-means (FCM)
overcomes the problem of assigning a particular class to those patterns that are doubtful, using
the fuzzy set concept of intermediate membership degree [50]. Therefore, the jth pattern
belongs to the ith cluster to a degree specified by a membership grade “u;”. For this reason,
the partition matrix U, which is often called the fuzzy partition matrix, should satisfy these

conditions [10]:

0<u, <1, forall i=12,.,c j= 1,200y 11

(3-1)
Zu,,. =1, forall j=12,..,n
i=l
(3-2)
0< Z“if <n, forall i=12,..,c
j=l
(3-3)
and the objective function assumes the following form [10]:
0=3 2ujd;
i=l j=l
(34)

where

18



(h
_ _ _ i
d,,_||x,_vi||,_[i|.r,, |] 151
5=

(3-5)

with v, =(v,.l,v,.2 yooey v,.p) being a vector that corresponds to a p-dimensional (unknown)

cluster centre (weight, or prototype); and d;; is normally the Euclidean norm, but in general it

is the Minkowski distance or /-norm distance that is often used with the Hamming or

Manhattan (/=1), Euclidean (/=2) and Tschebyschev (/= ») distances [56].

The iterative minimization of the objective function (for m>1) involves the calculation

of the partition matrix and the prototypes in the following way [49]:

1

U, =— I
/ m-=
Z(dii/dk/)z/
k=l

y 1€i<c;1<j<n

(3-6)
214,7 x/-
Z“ij
j=1
(3-7)

The FCM method has two essential design components:

1.

The distance function d; that will affect the shape of the clusters that are

produced. As shown in [10], in the R* space, for the Manhattan distance, the
clusters will have a diamond shape, for the Euclidean distance, the shape will be
circular, and for the Tschebyschev distance, the clusters will be squares. The
distance function has also a significant impact in the calculations of the prototypes
because differentiation of dj; in ( 3-5 ) leads to the different forms of prototypes v.
When dj is defined by the Euclidean distance, the resulting prototypes can be
interpreted as the weighted (fuzzy) means of the clusters ( 3-7). When dj is
defined by a non-differentiable Minkowski metric, the calculation of prototypes
becomes more complicated. In this case, a method such as linear programming or

Newton’s method may be required to estimate v numerically. In the particular
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case of the Manhattan distance, the calculation of v can be interpreted as the
construction of the weighted (fuzzy) medians of the clusters.

2. The fuzzification parameter (m) that affects the form of the membership functions
being produced ( 3-6 ). For increasing values of “m”, there is a deep rippling

effect where the membership functions tend to exhibit more local minima.
Additionally, for m —» © we have that u; — % For lower values of “m”, the

membership functions look like the characteristic functions of sets; so fewer
elements with intermediate membership values are obtained [56]. In the limit.
when m — |, the prototypes given by ( 3-7 ) resemble the means of the clusters.
It is important to mention that the best choice for “m™ is probably in the interval
[1.5,2.5] [49] whose midpoint “m=2" has often been the preferred choice for
many users of FCM. This is mainly because it constitutes a reasonable
compromise between membership functions with excessive oscillations in the

membership values and set-like membership functions [56].

The FCM Algorithm [6] is carried out as a sequence of the following steps:

1. Fix the number of clusters c such that ¢ is greater than 2 and less than the number
of data samples. Choose the form of the distance function to be used (Manhattan,
Euclidean or Tschebyschev). Fix the fuzzification factor such that m € (1, »).
Initialize the tuzzy partition matrix.

2. Calculate the ¢ fuzzy prototypes v, 1 <Si<c.

Update the fuzzy partition matrix using the just calculated prototypes.

4. Compare the actual partition matrix with the previous one. If they are close

old

i )< £, where & is a threshold

1 4 id !
enough (i.e., HU“"’“’ -U° =max(lulfl’.""" —u

typically in the interval [0.00001, 0.01]) then stop.
5. Gotostep 2.

3.4 Prototypes stability analysis to determine an appropriate number of information

granules to be used in classifiers

One of the most important considerations before applying a partitional clustering

technique is the selection of the number of clusters (c). An error in the choice of the number of
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clusters may prevent for a correct detection of clustering structure [24]. This can be illustrated
by considering the data set depicted in Figure 3-4. If clustering is applied to ten, randomly
selected, portions of the data set, the following results may be obtained: for ¢=5, the resulting
prototypes for each cluster are very close to each other (see Figure 3-5); while for c=4, some
of the prototypes are split into two visually different clusters (see Figure 3-6). From Figures
3-5 and 3-6, we conclude that if the number of clusters is appropriate, any prominent data
structure ought to survive even if clustering is applied only to a random portion of the data.
This idea will be used in the development of a method to determine the appropriate number of

clusters for clustering a data set. This method is explained below.
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Figure 3-4: Synthetic data (c).

Figure 3-5: Prototypes generated by the FCM with ¢=S.
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Figure 3-6: Prototypes generated by the FCM with c=4.

Let us start with the results of clustering collected in the matrix of prototypes

v € R? (with ¢ being the number of clusters and p being the number of dimensions). Then,

the data set is analyzed by clustering n, random portions of the data and n, matrices

v, v, v¥,..., v are obtained.

The first step, which has to be performed to do the prototypes stability (or variability)
analysis, is concerned with identification of the corresponding prototypes in each matrix vE.
In this thesis, a suboptimal® way to determine the relationship between prototypes is applied. It
consists of the following steps:

a. Initialize the matrix index (k) and the cluster index (¢) to one, i.e., k=1, i=1.

b. Compare the ith prototype of the matrix v* with the prototypes of the matrix

v¥*! and find an index j,, jo=1,2,...,c, for which the distance between the ith

rototype of the matrix v* and the j,th prototype of the matrix v**! attains a
p Joth p

minimum.

c. Perform step “b” for all i, i=1.2,...,c to determine a correspondence between the

prototypes of the matrix v* and v**'.

d. Reset i (i.e., i=1) and increase k (i.e., k=k+1) if k<n, go to step “b” otherwise

calculate the standard deviation & € R’ of the corresponding prototypes by

2 It is suboptimal because the relationship between prototypes is determined based on a specified
distance measure (in this thesis we used Euclidean distance). Different distance measures may lead to
different results. Finally, to be optimal, the real assignation of prototypes to clusters must be known.
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o,,:\/ ! i(v;-;,-f s i =L2mC , j=1,2mp
n, -l

(3-8)
where c is the number of clusters, p is the number of dimensions of the data, #, is the

number of portions in which the data set was divided, v,.']‘. is the value of the jth
dimension of the prototype corresponding to the ith cluster for the kth portion of the

data, and v is the average of the jth dimension for the prototypes of the ith cluster,

that is:

n

- 1 . .
Vi =—Zvi’l‘. , =124, j=1,20yp
"p k=1
(3-9)
The above-mentioned method allows us to arrange the results of clustering in the

following tabular form

Data Portions
Clusters | | 2 . | my,
1 Vi | v v’
2 Vil v v
c ! 2 n
Ve | Ve v’

Table 3-1: Results obtained by clustering the n, portions of the data.

Every column in Table 3-1 coresponds to the representation of the ith cluster
obtained by applying a clustering algorithm on the kth portion of the data. With these results,
the average scattering (or stability index) per dimension for ¢ clusters can be calculated by

l C
— C..
3

—= 1< jSp,28cScp.

r;

L

(3-10)
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where p is the number of dimensions, Cmax is the maximum number of clusters that are tested,
o; is the standard deviation of the jth dimension for the prototypes of the ith cluster, and r; is

the range per dimension of the training data (X) given by
r = max(X)- min(X) , re %’

(3-11)

The average scattering indicates the average of the variation within the clusters for a

number of clusters set to c¢. A small value for this term indicates a partition where the

prototypes in each cluster are close to each other. As the scattering within the clusters

increase, the prototypes are getting farther away. Bearing this in mind, a number of clusters

which minimizes the scattering index can be considered as an optimal value to be used for
clustering the data. Therefore, the appropriate number of clusters per dimension (nc;) 1s

nc; =arg[min t;], 1sjsp

=2 el max

(3-12)
Now. if all the dimensions are going to be calculated at once, the number of clusters

can be determined as a function of the number of clusters per dimensions, that is
nc=f (nc /.)

(3-13)

In this thesis, nc is obtained by rounding the mean of the number of clusters per
dimension to the nearest integer greater than or equal to this mean.

The overall algorithm for applying prototypes stability analysis (PSA) to determine

the appropriate number of clusters is given by the following steps [65 ]:
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Given The data set X = {x, yXap.o0r X, }c R? ., aset of n feature vectors in a p-
dimensional space.

Defined Cmar, the maximum number of clusters.
n,, the number of portions in which the data set will be randomly divided.
Any parameter needed for the clustering algorithm at hand.

Initialization  Randomly divide the data set in n, non-overlapping subsets.

Processing For each number of clusters ¢ € {2,3,...,c,m }
a. Apply clustering to each one of the n, subsets and sort and record
their prototypes.

b. Calculate the standard deviation per dimension of the n, prototypes in
each one of the clusters.
c. Calculate the stability coefficient by using:

l [4
2
=—El — (1<j<p,28cSCpp
Ty
with r; being the range per dimension.

T,

Determine the appropriate number of clusters (per dimension) by:
ncj = arg minc:l.l.....c." tq‘ ’ l < .I < p

Determine the number of clusters to be used in modeling by calculating the

: : 1
mean of the number of clusters per dimension nc,,,,.. =—2_nc,; and
j=!

rounding MCayerage tO the nearest integer greater than or equal t0 MCavcrage-

Result Number of clusters, prototypes or information granules to be used in the
desiﬁn of classifiers.

Table 3-2: Algorithm for applying PSA.

Summarizing PSA, the original data set is randomly re-sampled to produce n, subsets.
Clustering is applied to each subset. The resulting prototypes are sorted and the stability index
( 3-10) is determined. The number of clusters that minimizes the stability index is chosen as
the number of clusters in the data. PSA will favour those partitions that consist of clusters that
are stable against re-sampling. Moreover, if there is overlap between clusters (as depicted in
Figure 3-7), PSA may prefer a number of clusters greater than the true number of clusters to
produce prototypes that are robust against re-sampling (for instance, in the case of Figure 3-7,

PSA may prefer 3 as the number of clusters instead of 2). Finally, if the data set is so sparse
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that re-sampling can remove the underlying structure, PSA should not be used to determine

Figure 3-7: Two overlapping clusters.

the appropriate number of clusters.

3.5 Illustrative examples

These studies rely on three synthetic data sets and a widely available data set, the iris

data set.

3.5.1 Synthetic data sets

For the first group of experiments, two classes of vectors were generated. The vectors
were distributed according to a normal density function with unit covariance matrices. The
mean vectors (m, for class land m; for class 2) were:

e For data (a): m;=(2.0, 2.0) and m,=(-2.0, -2.0). See Figure 3-8.
e For data (b): m;=(1.0, 1.0) and m,=(-1.0, -1.0). See Figure 3-9.

Each class had 50 elements, giving a data set of 100 elements, 60 of which were used
for clustering. To obtain reliable results, a rotation method was employed by randomly re-
sampling the data to be clustered and repeating the experiments ten times. The results are

summarized in Table 3-3 for data (a) and in Table 3-4 for data (b).
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Figure 3-8: Synthetic data (2). Squares and diamonds represent class 1 and class 2
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Figure 3-9: Synthetic data (b). Squares and diamonds represent class 1 and class 2
respectively.

Table 3-3: Number of clusters (nc) to be used in clustering data (a).
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3

Table 3-4: Number of clusters (nc) to be used in clustering data (b).

For the next group of experiments a data set - data (c) - with five clearly defined

clusters was used (see Figure 3-10). The patterns for each cluster were distributed according to

a normal density function with unit covariance matrices. The mean vectors (m, for cluster 1,

m; for cluster 2, m; for cluster 3, m; for cluster 4, and ms for cluster 5) were m;=(0, 0, 0),
m,=(5, 0, 0), m;=(0, 5, 0), my=(0, 0, 5), and ms=(5, 5, 5) (see Figure 2-4).

Each cluster had 200 elements, giving a data set of 1000 elements, 500 of which were

used for clustering. To obtain reliable results, a rotation method was employed by randomly

re-sampling the data to be clustered and repeating the experiments ten times. The results are

summarized in Table 3-5.
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Table 3-5: Number of clusters (n¢) to be used in clustering data (c).
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3.5.2 Iris data set

This data set consist of patterns representing three varieties of irises: Setosa,
Versicolour, and Virginica. Each class has 50 patterns, giving a data set of 150 elements, 75 of
which were used for clustering. To obtain reliable results, a rotation method was employed by
randomly re-sampling the data to be clustered and repeating the experiments ten times. The

results are summarized in Table 3-6.

Table 3-6: Number of clusters (z1¢) to be used in clustering the iris data.

To verify the applicability of PSA in determining a stable structure in the data, the

previous results will be used in the design of classifiers later in this thesis.

3.6 Summary

This chapter has provided an overview to granular computing and clustering. This
chapter has also described how to use fuzzy clustering to generate information granules.
Finally, how to determine an appropriate number of information granules to be used in
modeling using prototypes stability analysis was presented.

The next chapter will present one of the most recent computational intelligence

developments in pattern recognition, the support vector machine (SVM) approach.
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4 Support vector machines (SVM’s) in pattern recbgnition

4.1 Introduction

The support vector machine (SVM) approach [20], [71] is a binary classification
technique that has been used with a high degree of success in several applications® ranging
from bioinformatics to face identification and text categorisation. In this approach, training
involves the maximization of the margin, which is the minimum distance from any training
point to a separating hyperplane [12]. The location and slope of this hyperplane are defined by
a group of training points called support vectors. This chapter presents a brief introduction to
the SVM. For further information, the reader is referred to [14], [22], [71], [72]. This chapter
begins with three cases that appear when studying the SVM approach. Some illustrative
examples are then presented, followed by a description of an algorithm to select the SVM
parameters. Next, the extension of the SVM approach to the multi-class classifier is presented.

Finally, some implementation aspects are studied.

4.2 Theory

To introduce the subject, one can begin by considering the illustrative binary
classification problem shown in Figure 4-1. It can be seen that there are a number of
hyperplanes that one can draw to correctly divide the training data into two classes. The
hyperplane in Figure 4-1 (a) correctly classifies all the training points, but in the case of a
testing point like the bold pattern shown in Figure 4-1 (b), the decision system would
misclassify it. Now, in the case of a hyperplane that maximizes the distance from any training
pattern to it, as depicted in Figure 4-1 (c), the decision system would correctly classify the
bold testing pattern as shown in Figure 4-1 (d). This hyperplane, which correctly classifies all
the training patterns and maximizes the margin (i.e. the minimum distance from any training
pattern to the hyperplane), is called the optimal separating hyperplane (OSH). The optimal
separating hyperplane is the key concept of the maximal margin classifier, which is the base

architecture of the SVM approach.

* See http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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Figure 4-1: Illustrative classification problem.

4.2.1 The maximal margin classifier

The maximal margin classifier is the simplest model of the Support Vector Machine.

It works only for data sets that are linearly separable as is the one depicted in Figure 4-2.
From a linearly separable data set (X,,, J(Xy, 3 Joeos (X5 ¥, ), x, €R?, y, e {-1,+1} (see
Figure 4-2) one can intuitively derive several separating hyperplanes that satisfy
Vi (w ‘X; +b)2 I, i=1lyyn
(4-1)
where w € R” is a p-dimensional vector that corresponds to the slope of the hyperplane, b is a

bias or thresheld, and W - X, is a dot product of vectors w and x;. The dot product is given by
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w-X; = i W;X;
=1

(4-2)

with p being the number of dimensions of the input data.

(wex)+5=0

(w . x)+b = -1——. \ );p— (w ° x)+ b=+1

4]

Figure 4-2: An optimal margin classifier. The dashed lines identify the margin
M=1/ ||w|| . The patterns inside the squares are the support vectors.

An optimal separating hyperplane is one that satisfies the condition ( 4-1 ) and
minimizes the function

2

1
t(w)= 5||w
(4-3)

with respect to the vector w and the scalar b. ||w|| represents the length of the vector w. This

length is given by
[W]=vw-w

(44)
It is important to mention that the minimization of ( 4-3 ) corresponds to the

maximization of the margin
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M=1/|w|

(4-5)
The solution to the problem stated in ( 4-3 ) is obtained by finding the saddle points of
the Lagrange function

L(w,b,a)= —||w|| —Za {[x;-w)+8]y, -1}

(4-6)
where @;is the ith Lagrange multiplier. The function ( 4-6 ) has to be minimized with respect

to w and b and maximized with respectto @, 20.

The dual form of ( 4-6 ) is given by the maximization of

Za ——ZZaa vy, (x,-x;)

l|]|

(4-7)
subject to
a 20
(4-8)
and
Z via,=0
i=l
(49)
The reader is referred to [72], [14] for a detailed derivation.
The classification function is determined by:
re)=sien| Syatts et
1/x,e8V
(4-10)
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where x is a p-dimensional input, X; is the ith input that belongs to the support vector ( SV')
set, y; is the class label for the ith input, af’ is the Lagrange multiplier associated with the ith

input, and b, is computed as:

b=~ mintw. x) - maxtw. -5

(4-11)

where x; is the ith SV, and w, is the p-dimensional weighting vector that corresponds to the
multidimensional “slope™ of the optimal hyper plane. The vector w, is computed as:
n
o
W, = Zy % X;
i=l

(4-12)

4.2.2 The linear soft-margin classifier

In the case of data sets that are not linearly separable, as depicted in Figure 4-3, the

linear SVM may be generalized by introducing n non-negative variables &_=(§l yesns G, )5 ONE
for each training pattern. These variables reflect the amount of misclassification that is equal

or greater than zero [61]. In this situation, the constraints for & take the following form:

"

Pattem # 1

Pattern # 12

Figure 4-3: A soft margin classifier. The dashed lines identify the margin. The patterns inside the
square are the support vectors. &, and &, are the positive variables associated with patterns 1
and 12 respectively. All the other £, are equal to zero.
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Za'.o_vl =0, 0<sa’ <C, i =l,,n

1=1
(4-13)

where C is the error penalty term and » is the number of data patterns.

The classification function 1s determined by ( 4-10 ).

4.2.3 The non-linear classifier

This case, depicted in Figure 4-4, was discussed for the first time in [20]. In this
situation, the solution is to map, using the function @, the input data to a higher dimensional

space where the data become linearly separable. Now, the classification function becomes

71e)=sier 3. a(0fs) o)

1/ x, =S¥
(4-14)
with the constraints:
ia,"y, =0, 0<a’ <C, i=l.,n
=1
(4-15)

To avoid the explicit calculation of the dot product Q(x,)- tD(x), a function K(x,, x),

called the kernel (see Table 4-1), may be used. So the decision function becomes:

f(x)= sign( Y va K(x, ,x)+b,,]

i/ x5V
(4-16)

where x; is the ith SV and x is an input vector.

Linear X.-"‘)=(x'x.-)
Polynomial of degree d K(x,,x)=(1+x-x,)’
Radial basis function with spread y K(x,,x)= cxp(— ¥|x- x‘.u:)

Table 4-1: Some commonly used kernels

35



o [ ¢ 0(0) &(x)

X

4(0) o(x)
X x I &o) o
¢ #o) 8x) °
X x &(o) &(x)
° #(o) o
[

Input Space R-* Feature Space R¢ Input Space R?

x=[x;, X,] ox)= [t,‘ x; ﬁxl ﬁ.l': «/?Z-.r,.r: l]r x=[x,,.%,]

9]

Input Space ‘R

Classification Function

ON

3 A
o wine | OH
g O
O

Oy

Feature Space 96
x)= signlw.x’ +woxl +w V2, +w V2x, + w250, +w, +b
- "2 ) 1 4 2 5 12 6

Figure 4-4: A non-linear classifier. The mapping from the input space (top left) to the
feature space (top middle) is performed using the function ®. The separating hyperplane
in the feature space (top middle), as determined by the SVM (bottom), corresponds to a
non-linear decision surface in the input space (top right).

With an appropriate choice of kernel, the original data may become linearly separable
in the feature space even though they are not linearly separable in the input space [15]. The
selection of the kernel is still a research issue, although certain approaches to include previous
knowledge of the problem have been attempted [69], [4].

Summarizing the SVM approach, the input vector x and the support vectors x; are
mapped into a feature space where the necessary dot products are computed by using the
kernel function K. The results are linearly combined by weights 4; = y;a;, where y; is the label
of the ith training sample and q; is its Lagrange multiplier. The kemel function is chosen a
priori, and it determines the type of classifier (polynomial or radial basis function). All other
parameters (the number of support vectors and weights, and the threshold b) are found during

training by solving a quadratic programming problem [68].
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4.3 Illustrative examples
For these experiments, two classes of vectors were generated. The vectors were
distributed according to a normal density function with unit covariance matrices. The mean

vectors were m;=(2.0, 2.0) and m,=(-2.0, -2.0). See Figure 4-5.
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Figure 4-5: Synthetic data. Squares and diamonds represent class 1 and class 2
respectively.

Examples of decision boundaries generated by the SVM approach using the three
kernel functions depicted in Table 4-1 are shown in Figures 4-6 through 4-8. From these
figures, it is clear that the selection of the kernel affects the shape of the generated decision
boundary. This is particularly useful because by just changing the kernel, the SVM technique

can be applied to different data distributions.
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Figure 4-6: The discrimination boundary produced by the SVM with the linear kernel for
C=100. The testing points are the bold patterns. S}°s are indicated with a circle around

the corresponding pattern.
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Figure 4-7: The discrimination boundaries produced by the SVM with the polynomial
kernel (¢=2) for C=100. The testing points are the bold patterns. S¥”s are indicated with a
circle around the corresponding pattern.

Figure 4-8: The discrimination boundary produced by the SVM with the radial basis
function kernel (y=0.04) for C=100. The testing points are the bold patterns. S}’s are
indicated with a circle around the corresponding pattern.

4.4 Model selection

To study the effect of the kemnel parameters in the decision boundaries that are
generated by the SVM, a group of experiments (with the same data set used in the previous
section) was performed. For the linear kernel, the decision boundaries for several values of C
are shown in Figure 4-9 (C=0.1 in Figure 4-9 (a), C=1 in Figure 4-9 (b), C=10 in Figure 4-9
(c), and C=1000 in Figure 4-9 (d)). From this figure, it can be seen that the decision
boundaries with smaller C (see Figure 4-9 (a) and Figure 4-9 (b)) have a larger margin and a

larger number of support vectors, while the solutions with larger C (see Figure 4-9 (c) and
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Figure 4-9 (d)) have a smaller number of support vectors. Moreover, there is no significant

difference between the decisions boundaries generated by the SVM with the linear kemnel for

C=10 and C=1000 (see Figure 4-9 (c) and Figure 4-9 (d)).
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Figure 4-9: Decision boundaries generated by the SYM with the linear kernel for C=0.1 (a), c=1
(b), C=10 (c), and C=1000 (d). The testing points are the bold patterns. S}”s are indicated with a
circle around the corresponding pattern.

For the polynomial kernel, the decision boundaries for C=100 and several values of d
are shown in Figure 4-10 (d=2 in Figure 4-10 (a), =3 in Figure 4-10 (b), d=5 in Figure 4-10
(c), and d=10 in Figure 4-10 (d)). From this figure, it can be seen that the decision boundaries
change when the value of d is changed (see Figure 4-10 (a) and Figure 4-10 (d)). On the other

hand, the number of support vectors was the same for the four values of d that were tested.
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For the polynomial kernel, the decision boundaries for d=2 and several values of C are
shown in Figure 4-11 (C=0.1 in Figure 4-11 (a), C=1 in Figure 4-11 (b), C=10 in Figure 4-11
(c), and C=1000 in Figure 4-11 (d)). From this figure. it can be seen that the decision
boundaries with smaller C (see Figure 4-11 (a)) have a larger margin and a larger number of
support vectors, while the solutions with larger C (see Figure 4-11 (d)) have a smaller number
of support vectors. Moreover, there is not significant difference between the decisions
boundaries generated for C=10 and C=1000 (see Figure 4-11 (c) and Figure 4-11 (d)).

(@) (b)

(©) ()
Figure 4-10: Decision boundaries generated by the SVM with the polynomial kernel (C=100) for

d=2 (a), d=3 (b), d=5 (c), and @=10 (d). The testing points are the bold patterns. S}”s are indicated
with a circle around the corresponding pattern.
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Figure 4-11: Decision boundaries generated by the SVM with the polynomial kernel (¢=2) for
C=0.1 (a), C=1 (b), C=10 (c), and C=1000 (d). The testing points are the bold patterns. S}"s are
indicated with a circle around the corresponding pattern.

For the radial basis kernel, the decision boundaries for C=100 and several values of y
are shown in Figure 4-12 (3=0.005 in Figure 4-12 (a), »=0.05 in Figure 4-12 (b), }=0.5 in
Figure 4-12 (c), and =5 in Figure 4-12 (d)). From this figure, it can be seen that the decision
boundaries change when the value of y is changed (see Figure 4-12 (a) and Figure 4-12 (d)).
Moreover, the number of support vectors also changes when the value of yis changed (see

Figure 4-12 (c) and Figure 4-12 (d)).
For the radial basis function kernel, the decision boundaries for »=0.1 and several

values of C are shown in Figure 4-13 (C=0.1 in Figure 4-13 (a), C=1 in Figure 4-13 (b), C=10
in Figure 4-13 (c), and C=1000 in Figure 4-13 (d)). From this figure, it can be seen that the
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decision boundaries with smaller C (see Figure 4-13 (a) and Figure 4-13 (b)) have a larger
margin and a larger number of support vectors, while the solutions with larger C (see Figure
4-9 (c) and Figure 4-13 (d)) have a smaller number of support vectors. Moreover, there is not a
dramatic difference between the decisions boundaries generated for C=10 and C=1000 (see

Figure 4-13 (c) and Figure 4-13 (d)).
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Figure 4-12: Decision boundaries generated by the SVM with the RBF kernel (C=100) for =0.005
(a), 7=0.05 (b), y=0.5 (c), and »=5 (d). The testing points are the bold patterns. S}’s are indicated
with a circle around the corresponding pattern.
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Figure 4-13: Decision boundaries generated by the SVM with the RBF kernel (=0.1) for C=0.1
(a), C=1 (b), C=10 (c), and C=1000 (d). The testing points are the bold patterns. §}"s are indicated
with a circle around the corresponding pattern.

From Figure 4-9 through Figure 4-13, we conclude that the choice of the values of C
and d or yhas a significant effect in the resulting shape and associated margin of the decision
boundaries generated by the SVM classifier. Bearing these results in mind, in this thesis, a
process of n,-fold cross-validation is used to select the appropriate values for the kernel
parameters. The process of cross-validation is performed in two stages. In the first one, cross-
validation is done over a wide range of the parameters space to find an initial estimate of the
parameters. In the second stage, the estimated parameters become more precise. This process
is repeated n, times. Finally, the kernel parameters are computed as the mean of the n,
previous estimations. The algorithm for selecting the values of the kernel parameters is

depicted in Table 4-2.
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Given The data set (X,, ¥, )b (Xs5 72 hoes (X, , 7, ), X; €R?, v, € 1,41}

Defined n,, the number of portions in which the data set will be randomly divided.

C' =1{C,,Cyy0e0s C;5ees G }, initial space for the error penalty term.

Y = {7, sV aseses Y jreens ) }, initial space for the spread.

C’/ = {Rl s Ry e R eeer R, }, final space for the error penalty term with
R, ={C/,C’ s Ci}

v/ = {Sl 1S3 pee0rS eens S, } final space for the spread with
S, =/ rimrl)

Processing For each one of the n, combinations of local training set ((n,-1)/n, of the
training data)/local test set (1/n, of the training data)

For each value of error penalty term C, C € C'
For each value of spread 7,7 € ¥'
e Determine the error on the local test set for the SVM trained with
the local training set using a combination of C and y.
e Store the value of the local test error.
Choose the values of C and y for which the local test error is minimized.
For each value of error penalty term C»>, C, € R, , if C=C,

For each value of spread 5, 7, €S, , iIf y =y,

e Determine the error on the local test set for the SVM trained with
the local training set using a combination of C> and .
o Store the value of the local test error.
Choose the values of C, and j for which the local test error 1s
minimized.
Store the values of C; and p.

Calculate Coy and 7. as the mean of the stored values of C> and 7
respectively.

Result Error Penalty term Cou and spread fou.

Table 4-2: Algorithm for setting the parameters of the radial basis function kernel.



4.5 Multi-class SVM

Until now, this thesis has considered only the two-class classification problem.
However, in real world problems, more than two classes are often involved. To properly deal
with these problems, the original SVM approach must be extended to the multiclass case
[71], [59], [75]. This work will be concerned mainly with these two approaches: (1) the one
versus the rest (1-v-R) [71], which is the standard method for solving multi-class problems,
and the decision-directed acyclic graph (DDAG), which was recently proposed by Platt et al.
[59].

45.1 1-v-R

In this method, k binary classifiers are constructed. Each classifier is trained to
separate one class, j, from the remaining classes. This approach involves all the training
points: the training points of class j with positive labels and the other training points with

negative labels. The output f{x) is obtained by
f(X) =arg [maxj=l.....k g; (x)]
(4-17)

where g (x) is
g, ()= Y rya K(x, x)+b,, j=lek

1/ x,€SK
(4-18)

with & being the number of classes.

45.2 DDAG

In this method, k(k-1)/2 binary classifiers are constructed. Each classifier is trained to
separate one class from another, so in this approach, the only training points that are involved
are those from the corresponding two classes. To obtain the output, a type of exclusion
approach is used in the form of a directed acyclic graph. See Figure 4-14 for an example with

four classes.
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Figure 4-14: DDAG

An analysis of the training time required by the 1-v-R and the DDAG approaches to
solve a multi-class classification problem is presented below.

Empirically, SVM training is observed to increase with the training set size according
to the following expression [58]

b
T =an

(4-19)
where a is a proportionality constant, n is the number of training patterns, and b is usually
equal to 2 when the SVM is implemented using sequential minimal optimization (see Section
4.6.4).

For the 1-v-R approach, the entire training set is used to train all & classifiers (with &

being equal to the number of classes). Therefore, the training time for the 1-v-R approach is

T_.g = kan®

(4-20)

For the DDAG approach, only the training patterns of two classes are used to train
k(k-1)/2 classifiers. Assuming that all the classes have the same number of elements, training
one node of the DDAG requires 2n/k samples. Thus, the training time for the complete DDAG

1S

46



k(k -1) (2nY
Topac = > a %
(4-21)
From { 4-20 ) and ( 4-21 ), the following expression can be derived
kb
T . x= - Topac
(4-22)

From ( 4-22 ), we conclude that for increasing number of classes, the DDAG approach

is faster than the 1-v-R approach in solving the multi-class classification problem.
Finally, even though these approaches have been successfully applied to solve multi-
class classification problems, there is no a comprehensive study of their applicability.

limitations, and associated error bounds.

4.6 Implementation techniques

This section briefly reviews some of the approaches used in training the SVM.

4.6.1 General Issues

The optimization problem associated with the SVM as classifier can be written as the

maximization of

n 1 n n )
W(a)= Zai —;Zzaia/’yiyjK(xi’x/)
il

< =l j=l

(4-23)
subject to
0<aq,=<C
(4-24)
and
ya; =0
i=l
(4-25)
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This problem is called quadratic programming (QP) because the function to be
maximized depends quadratically on a, while a only appears linearly in the constraints.
The QP problem is solved when the Karush-Kuhn-Tucker (KKT) conditions are

satisfied. This happens when for all i (1 < i < n, with n being the number of training patterns):
=0= .V.-g("i)2 1,
O0<aq,<C= y,.g(x,.)=l,
a,=C=yg(x)<],

(4-26)
where q; is the Lagrange muitiplier associated with the ith input; y; is the class label of the ith
input; C is the error penalty term and g(x) is given by

g(x)— Z va K(x,,x

1/ x,€54

(4-27)

To solve the QP problem, one may use any of the optimization techniques developed

over the years such as the Newton method, the conjugate gradient, the primal dual interior-
point methods, etc. The main disadvantage of these methods is that many of them require the
kernel matrix to be stored in memory. This matrix has a number of elements equal to the
square of the number of training samples. Therefore, for large size problems a huge amount of
memory may be required. For example, in the case of a data set of 30,000 training samples,
storing the kernel matrix in memory requires 7,200 Mbytes (assuming that each element is
stored as an 8-byte double precision number). Other approaches to solve the quadratic

programming problem are described below.

4.6.2 The Gradient ascent approach

This method is described in [22]. The algorithm starts by assuming an initial solution,
say o’. Then it iteratively updates the vectors such that, at step 7, the vectors move a short
distance in the direction of the greatest rate of increase of ( 4-23 ), i.e. in the direction of the

gradient, evaluated at "

Aa’ =nVW |,

(4-28)

where the parameter 1 (7 > 0) is the learning rate.
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The drawbacks of this method are that it can be extremely slow in some data sets, a
large value of 1 can cause the algorithm to oscillate without converging to the solution, and

small values of n can result in a slow rate of convergence.

4.6.3 Chunking and Decomposition

The chunking method starts with an arbitrary subset ‘chunk’ of the data and trains the
SVM with a standard QP solver. The support vectors are then retained, and all other data
patterns in the chunk (with @=0) are discarded. Next, a new subset is formed with the support
vector of the previous step and a subset of “S” of the remaining original patterns that most
violate the KKT conditions when tested with the solution of the previous step for some value
of S. This procedure is iterated until the stop condition is satisfied [22].

The chunking method assumes that the kernel matrix for the set of support vectors fits
in memory so it can be fed to the QP solver being used. This assumption may cause the
chunking algorithm to fail if the data set is too large or there are too many support vectors. To
overcome this problem. Osuna et al. [47], {48] presented an algorithm (called decomposition)
that uses a constant-size matrix, allowing for the training of arbitrarily large data sets. In this
algorithm, the goal is to solve the QP problem by acting only on a small subset of the data at a

time [22].

4.6.4 Sequential minimal optimization

Sequential minimal optimization (SMO) [58] is a method that can decompose the
SVM QP problem without any extra matrix storage and without using standard QP solvers. In
this method, only two @;’s are optimized at each iteration. The two elements to be optimized
are chosen based on two heuristics, and the solution is found analytically. The first heuristic
consists of choosing a pattern x, that violates the KKT condition. The second choice heuristic
consist of choosing a pattern x; in such a way that updating & (the Lagrange multiplier
associated with pattern x,) and a; (the Lagrange multiplier associated with pattern x;) causes a
large increase in ( 4-23 ).

A final remark regarding the SMO algorithm is that even though it requires more
iterations to converge than the previous methods, the small number of operations that each

iteration requires make the SMO faster than the other methods presented.
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4.7 Relationship of SVM to partitional clustering

Before finishing this chapter, it is important to present a summary of the comparisons between
SVM and partitional clustering.

¢ Both approaches store the learned data structure in a matrix (a partition matrix in the
case of clustering and a kemnel matrix in the case of SVM).

e After leaming, both approaches select an usually small number of patterns as
representatives of the data structure (prototypes in the case of clustering and support
vectors in the case of SVM).

o They differ in the following two aspects:

1. SVM requires the knowledge of the class labels while clustering does not.
2. The similarities measures, used to determine the data structure, are performed in
different spaces (the input space in the case of clustering and feature space in the

case of SVM).

4.8 Summary

This chapter has introduced the SVM approach, a binary classification tool that has
been successfully applied in a number of classification problems. This chapter has shown how
the binary classification problem is solved using the SVM and how the choice of the kernel
function affects the type of decision surfaces generated. The extension to the multi-class
classifier was also studied, and some implementation techniques were discussed.

The following chapter will present another computational intelligence technique used
for pattern recognition, artificial neural networks (specifically the radial basis functions neural

networks).
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5 Radial basis functions networks in pattern recognition

5.1 Introduction

The neural network approach is one of the approaches most commonly used for
pattern recognition [41], [67]. An artificial neural network is a computational structure that is
composed of a number of simple processors connected through a set of links, which have
some weights associated with them. The most common architecture of neural networks used
for pattern recognition is the feed-forward network, which includes single-layer perceptron,
multilayer perceptron (MLP), and radial basis function (RBF) networks. This chapter gives a
brief overview of RBF networks. Further information can be found in [9], [37].

This chapter begins with a brief introduction to neural networks. RBF neural networks
are then studied, including approaches to determine their centres. Next, the centres of the RBF
neural network are found using the orthogonal least squares approach [19] or prototypes
stability analysis and FCM. Finally, an empirical comparison of the SVM with the RBF kernel
against the RBF approaches is presented.

5.2 Background

An artificial neural network is a computational structure that is composed of a number
of simple processors (neurons) connected in the form of a weighted directed graph [38]. There
are two types of networks architectures: feed-forward networks, in which graphs have no
loops (see Figure 5-1 a), and recurrent/feedback networks, in which loops occur (see Figure
5-1 b) [37], [11]. Feed-forward networks, which include the single-layer perceptron, the
multilayer perceptron (MLP) [43], and the RBF neural networks [9], are normally trained in
supervised mode (i.e. they require the knowledge of the desired output). Recurrent neural
networks, such as self-organizing maps [40], the Hopfield networks [43], and the ART models
[16}-[18), are normally used in unsupervised mode (i.e. they do not require previous
knowledge about the expected output).

The learning process in a neural network involves modification of the network
architecture and the connection weights to correctly classify the given input patterns. This

property allows them to learn complex non-linear input-output relationships [38].
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Neural network models are popular techniques for pattern recognition because of their

ability to learn from data and the availability of efficient learning algorithms [38].

(a) (b)

Figure 5-1: Feed-forward (a) and Feedback (b) neural network architectures.

5.3 Classic radial basis function (CRBF) neural networks

The RBF neural network [9] is a feed-forward neural network with two layers. The
first layer consists of neurons normally equipped with Gaussian-like functions, even though
other types of basis functions might be used, centred at the points specified by the weights
associated with this layer. The second layer performs the linear combination of the outputs

obtained from the first layer (see Figure 5-2).

inputs basis biases outputs
functions

Figure 5-2: Architecture of a radial basis function neural network. x; is the ith p-dimensional
input pattern. Ns is the number of centres. k is the number of classes.
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The decision boundary defined by the RBF classifier with Gaussian basis functions is

given by:
N3 s
1,0)=sign S, e sl b, | >0 ek
i=1

(5-1)
where k represents the number of classes; Ns is the number of centres; X is an input pattern; wj;
are the weights for the second layer;  represents the ith spread; b; is the bias for the class "™,
and ¢; is the ith centre vector used as a reference.

Considering a data set that falls into four classes as shown in Figure 5-3, one has that
a multilayer perceptron separates the classes by forming hyperplanes in the input space
(Figure 5-3 a), while an RBF classifier separates the classes by assigning a kernel to each class

distribution separately (Figure 5-3 b).

() (b)

Figure 5-3: Schematic example of data points that fall into four distinct classes.

5.4 CRBF neural network training

For the training of a CRBF neural network, one may consider the two layers
separately, leading to a two-stage training procedure. In the first stage, the centres ¢; and y are
determined. In the second stage, the basis functions are kept fixed and the weights of the

second layer are found.
The most commonly used approaches to find the centres are the orthogonal least

squares (OLS) [19] and the application of clustering approaches, the latter of which includes
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the k-means [36], the fuzzy c-means (FCM) [6], and self-organizing feature maps (SOM) [40].
In the OLS approach, centres (training points) are added until some preset performance is
reached or all the training points have been used. In the clustering methods, the input data set
is partitioned into several groups in such a way that the similarity among members of a group
is larger than the similarity among groups. In this case, the centres represent the prototypes of
each one of the resulting groups.

Depending on how the centres are found, some heuristics approaches set the values of
7 as a function of the distance between the basis function layer’s centres, while other
heuristics set the values of # as a function of the variance in each cluster. Other options to
determine the values of y; involve using gradient-based methods or cross-validation.

Finally, the two basic approaches for finding the weights w; are the error

backpropagation [66] and the pseudo-inverse method [60].

5.5 An empirical comparison of the SYM with the RBF against CRBF

The data sets for these experiments are depicted in Figure 54 and Figure 5-5. The
vectors were distributed according to a normal density function with unit covariance matrices.
The mean vectors (m, for class 1 and m;, for class 2) were:

¢ For data (a): m;=(2.0, 2.0) and m,=(-2.0, -2.0). See Figure 5-4.
e For data (b): m;=(1.0, 1.0) and m,=(-1.0, -1.0). See Figure 5-5.

Each class had 50 elements, giving a data set of 100 elements, 60 of which were used
for training and 40 for testing.

The experiments compare the performance of the SVM with the RBF kemel (SVM)
against a CRBF classifier with the centres found using the OLS approach (CRBF1) and a
CRBF classifier with the centres found using FCM (CRBF2).

For the SVM, the values of y and C were determined using a two-stages process of
cross-validation (on the training data). This process is explained in Table 5-1.

For the CRBF1, the performance criterion was set to reduce the mean square error
during training up to a value G=5. The value y was determined using a two-stages process of
cross-validation (on the training data). This process is explained in Table 5-3.

For the CRBF2, prototypes stability analysis was performed to find the centres of the

first layer. The second layer was trained to correctly classify the input data. The value of y was
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determined using a two-stages process of cross-validation (on the training data). This process

is explained in Table 5-3.
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Figure 5-4: Synthetic data (a). Squares and diamonds represent class 1 and class 2,

respectively.
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Figure 5-5: Synthetic data (b). Squares and diamonds represent class 1 and class 2,
respectively.

To obtain reliable results, a rotation method was employed by randomly re-sampling
training and testing data and repeating the experiments ten times. The results were averaged

over the ten iterations.

55



Given The data set (x,,y, ),(xz.yz ),---,(X,.,y,,), x,eR’, y € {“lvH}

Defined n,, the number of portions in which the data set wili be randomly divided.
C' ={C,,Cy e C 90ees C } initial space for the error penalty term.

¥ = {7, sVasmens ¥ s ¥ } initial space for the spread.

C’/ = {Rl 'Rypes Rty R, } final space for the error penalty term with
R, ={C/,C/ s C7}

v/ = {SI 1S5 5000s S gueey S ,}, final space for the spread with
S, =l 7Lt}

Processing For each one of the n, combinations of local training set ((n,-1)/n, of the
training data)/local test set (1/n, of the training data)
For each value of error penalty term C, C € C
For each value of spread 7,7 € ¥°
e Determine the error on the local test set for the SVM trained with
the local training set using a combination of C and y.
o Store the value of the local test error.
Choose the values of C and y for which the local test error is minimized.
For each value of error penalty term C>, C, € R, , if C=C;

For each value of spread 5, y, €S, , if y =y,

e Determine the error on the local test set for the SVM trained with

the local training set using a combination of C: and 7.
e Store the value of the local test error.
Choose the values of C; and » for which the local test error is
minimized.
Store the values of C; and 3.

Calculate C,, and ¥, as the mean of the stored values of C; and
respectively.

Result Error Penalty term C,,, and spread Y.

Table 5-1: Algorithm for setting the parameters of the radial basis function kernel.

The set of parameters to be used in the process of cross-validation, in the case of the
SVM, is shown in Table 5-2. This set was selected after gathering empirical evidence from
experiments with different sets of parameters. This was achieved by monitoring the resulting
number of support vectors generated by the SVM trained with each combination. It was
noticed that sets with very small values for C and y produce results with a high number of

support vectors. These sets were discarded because as stated in [71], the expectation of the
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probability of error for optimal hyperplanes is less than or equal to the expected number of
support vectors divided by the number of training point plus one. Therefore, reducing the

number of support vectors, the classifier may reduce the expectation of the probability of

error.

C e {100,1000} yefonl}
C, € {10,50,100,500} , if C =100 7, €10.05,0.1,0.2,0.5} , if 7 =0.1
C, € {100,500,1000,5000} , if C=1000 7, €{0.51,2,5} , if y=1I

Table 5-2: Set of parameters to be used in the process of cross-validation, in the case of the SVM,
for the artificial-data classification problem.

Given The data set (x, ' Vi ),(xz,,vz ),---,(X,,,y,,), x,eR”, y e {‘ I’H}
Defined n,, the number of portions in which the data set will be randomly divided.
Y =V areeer? ; ,...,}’,}, initial space for the spread.

v/ = {S, 1S5S I.,...,S,}, final space for the spread with
S, = {77! ey}

Processing For each one of the n, combinations of local training set ((1,-1)/n, of the
training data)/local test set (1/n, of the training data).

For each value of spread 3,7 €y’

e Determine the error on the local test set for the CRBF trained with the
local training set.

e Store the value of the local test error.

Choose the values of y for which the local test error is minimised.

For each value of spread y2, ¥, €8, ,if y =y,

e Determine the error on the local test set for the CRBF trained with
the local training set.

e Store the value of the local test error.

Choose the values of v, for which the local test error is minimised.
Store the value of y-.

Calculate ¥, as the mean of the stored values of v..

Result Spread You-

Table 5-3: Algorithm for setting the spread of a radial basis function neural network.
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The sets of parameters to be used in the process of cross-validation are shown in Table
5-4, in the case of the CRBF1, and in Table 5-5, in the case of the CRBF2. These sets were
selected after gathering empirical evidence from experiments with different sets of parameters.
This was achieved by monitoring the time required to train the classifiers. The sets that
produced the best ratio of accuracy in training to time required to train the classifiers were

selected.

y € {0.01,0.1,1}

¥, € {0.001,0.002,0.005,0.01} , if 7 =0.01
¥, € {0.01,0.02,0.05,0.1} , if y=0.1

¥, €{0.1,0.2,0.5,1} , if y=1

Table 5-4: Set of parameters to be used in the process of cross-validation, in the case of the
CRBF1, for the artificial-data classification problem.

y € {0.001,0.01,0.1}

7, € {0.0001,0.0002,0.0005,0.001,0.002,0.005} , if » =0.001
¥, € 0.001,0.002,0.005,0.01,0.02,0.05} , if » =0.01

¥, € {0.01,0.02,0.05,0.1,0.2,0.5} , if 7 =0.1

Table 5-5: Set of parameters to be used in the process of cross-validation, in the case of the
CRBF2, for the artificial-data classification problem.

The results for data (a) are summarized in Table 5-6 and the results for data (b) are
summarized in Table 5-7. From these results, it can be seen that for data (a) the SVM and the
CRBF?2 had a perfect accuracy (100% in testing) while the performance of the CRBF1 was
slightly lower (99.25% in testing). In the case of data (b), the SVM had the best accuracy in
average (91.75% in testing), followed by the CRBF1 (with 91.5% in testing) and the CRBF2
(with 90.75% in testing).

CRBFI 99.17% 99.25% 12
CRBE2 100% 100% 35

Table 5-6; Classification results obtained with different classifiers for data (a).
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SVM 96% 91.75% 11.1
CRBF1 96% 91.5% 7.1
CRBF2 95.67% 90.75% 3.7

Table 5-7: Classification results obtained with different kernels for data (b).

The graphical representation of the decision boundaries for the four classifiers on data

(a) can be seen: in Figure 5-6 for the SVM (for y=0.04 and C=10), in Figure 5-7 for the
CRBF]1 (for y=0.04 and G=5), and in Figure 5-8 for the CRBF2 (for y=0.04). From these

figures, we conclude that:

. All the classifiers correctly classify the training and testing data.

] The SVM with RBF kernel maximizes the distance between the closest data point

and the decision boundary.

] The CRBF1 and the CRBF2 generate a decision boundary that does a good job of

separating the two classes but does not maximize the distance to the closest data point.

Figure 5-6: Decision boundaries for the SVM on data (a). Testing points are the bold patterns.

Support vectors are indicated with a circle around the corresponding patterns.
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Figure 5-7: Decision boundaries for the CRBF1 on data (a). Testing points are the bold patterns.

The centre is indicated with a circle around the corresponding pattern.

Figure 5-8: Decision boundaries for the CRBF2 on data (a). Testing points are the bold patterns.

Centres are indicated with a circle.

Below is a summary of the comparisons between the SVM and the radial basis function neural

networks.

e Both the SVM and the radial basis function neural networks learn from experimental

data.
e After learning, both approaches are given the same mathematical model.

For the radial basis function neural network, we have that

f(x)= sign(i W, exp(— 7, ||x —c,||2 )+b) ,7,>0
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For the SVM, we have that
flx)= sign[ Y ya; atp(— yx-x|’ )+ boj 7, >0
i/xeS

e They differ by the learning method used. While RBF neural networks adjust their
weights to reduce the error during training, the SVM’s adjust their weights to

maximize the margin in the training data.

5.6 Summary

This chapter has provided a brief overview of neural networks. The RBF approach
was then described as well as some common approaches for its training. Finally, an empirical
comparison of the RBF approaches studied so far (the SVM with the RBF kernel, the CRBF
with the centres found using the OLS approach, and the CRBF with the centres found using
FCM) for solving an artificial-data classification problem was presented. In the next chapter,

fuzzy kernels are developed to incorporate fuzzy set methods into the SVM approach.
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6 Designing Support Vector Machines with the Use of Fuzzy

Granulation: Some Preliminary Results

6.1 Introduction

Even though support vector machines have a superb learning capability, it is almost
impossible to come up with a reasonable interpretation of the results produced by them.
Moreover, support vector machines were not developed to deal with problems stated in a
linguistic way, situation that could often appears in practice of pattern recognition [50]. In
contrast, fuzzy set technology hinge on linguistic terms [77], [79], [80], [56] to summarize the
domain knowledge explicitly. Consequently, the results are clearly interpretable. Nevertheless,
the learning ability of fuzzy systems is very limited. This chapter is concemned with the
incorporation of fuzzy set methods into the support vector machine approach. In particular,
fuzzy kernels are developed to allow for the manipulation of fuzzy information granules.

This chapter begins with a general discussion on merging fuzzy sets and support
vector machines. The generation of the information granules is then presented. Next, fuzzy
kernels are introduced, followed by the general architecture of the resulting approach. Finally,

some numerical experiments are presented.

6.2  Fuzzy sets and support vector machines

This chapter considers using fuzzy sets in the design of support vector machines
originating an approach that will be referred to as hybrid SVM (HSVM). The units of the
HSVM model in which fuzzy sets appear are pre-processing, processing, and interpretation of
the results (see Figure 6-1).

The pre-processing is performed by the fuzzy interface. It transforms the input data

through the mapping R? —» [0,1]”° where p is the dimensionality of the input data and c is

the number of information granules. The resulting representation is appropriate for the HSVM
operation because the HSVM operates at the level of information granules (more exactly, their
levels of activation caused by the input data). The main roles of the input interface are related
to non-linear data normalization (because the input data is normalized into [0,1] interval

through a non-linear mapping that is driven by information granules defined in the input
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space), variable processing resolution (because information granules are capable of focusing
on suitable regions of the input variables [53] and capable of covering symbolic and numeric
data [34)), and uncertainty representation (because fuzzy set theory provides a conceptual

framework to represent and handle uncertainty in the input space [50]).

Interpretation

Pre-processing Processing
Input Pattern

Pattem _[Fuzzy Set Descriptig Hybrid
nterface SVM

Figure 6-1: The scheme of pattern recognition using hybrid support vector machines (HSVM).

Processing involves handling the information coming from the fuzzy set interface. To
do so, the system must incorporate fuzzy kernels. These fuzzy kernels allow for computation
of similarities in the fuzzy sets space.

Interpretation of the results derives from analysis of the results and derivation of rules

that represent the knowledge acquired by the hybrid support vector machine.

6.3 Generation of information granules

In this thesis, FCM is used to generate information granules. This is done in the
following way: Prototypes stability analysis (see Section 3.4) is used to determine the
appropriate number of information granules c. Fuzzy c-means is then applied to find ¢
prototypes (V;, Vs, ..., V.). Finally, the activation level of each information granules caused by

a pattern x is given by

(6-1)
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stands for a distance function

where m is the fuzzification factor (see Section 3.3) and

defined between x and the respective prototype (see Section 3.3).

6.4 Fuzzy kernels

Kernels can be seen as similarity measures for the data in feature space. In the case of
the hybrid support vector machine, the feature space consists of fuzzy sets. For this reason, the
kernels (or fuzzy kernels, one may say) must be able to perform calculations that follow the
rules of operations on fuzzy sets. The derivation of this type of kernels is presented in the next

section.

6.4.1 Derivation

Matching neurons, a special case of referential logic-based neurons [52], [53], [55] are
the logic structure behind the fuzzy kemels. In these neurons, the input signals are compared
with respect to a given reference point. The results of this analysis are afterward aggregated
using an OR neuron (disjunctive form of aggregation) or an AND neuron (conjunctive form of
aggregation). Figure 6-2 and Figure 6-3 show a fuzzy kemel for a disjunctive form of

aggregation and for a conjunctive form of aggregation respectively.

Figure 6-2: Fuzzy kernel for fuzzy inputs. The aggregation is disjunctive, m, and m; are the
outputs of the matching neurons, and w, and w, are the aggregative neuron’s connections.



Figure 6-3: Fuzzy kernel for fuzzy inputs. The aggregation is conjunctive, m, and m, are the
outputs of the matching neurons, and w, and w; are the aggregative neuron’s connections.

The description of a fuzzy kernel for a disjunctive form of aggregation is

K, =((a| Ebl)s w )’«az Ebz)swz)

(6-2)
and for a conjunctive form of aggregation is

K, =((ax Ebl)' Wl)s«az Ebz)t Wz)

(6-3)
where w, and w- are the connections of the aggregative neuron, s and ¢ are triangular norms

[55], and the matching operation (=) [51], [55] is given by
a=b=05{a—- b (b - a)+[(1-a)> (-b)P[1-b) > (1-a)]}

(6-4)
with the implication (—) being defined as

(a—>b)= supfc e [O,l]/ atc<b}

(6-5)
The triangular norms used in this thesis were the algebraic product and probabilistic
sum (i.e. atb=ab and asb=a+b—ab), even though different norms may be used. For

the product/sum norms, the matching operation is equal to
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Figure 6-4 shows a fuzzy kernel (including the fuzzy set interface) for p-dimensional
input data, ¢ information granules, and a disjunctive form of aggregation.

Figure 6-5 shows the dimensionality of the data in each one of the stages of a fuzzy
kernel.

Fuzzy Set Interface

Kerpel

Matching

Aggregation

——» K(x,r)

Figure 6-4: Fuzzy kernel as a superposition of matching and aggregative computation. In this
case, the aggregation is disjunctive.
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Data  Transformation Matching Aggregation Kemel output
into membership
degrees

x: sr——p[01]-

[0.]7: —»[o.1} > K(x, 1)

R [O,I]Pt

-
.e

Figure 6-5: Mapping from a SR’ space of the input data to the [0,1] space of the kernel output,
where p is the dimensionality of the input data and c is the number of information granules.

6.4.2 Fuzzy kernel outputs

These examples aim to illustrate the form of the outputs produced by the fuzzy
kernels. For these experiments, the data represents activation levels of information granules
allowing for a suitable graphical visualization. The input data consist of a group of vectors that
were distributed uniformly in the [0, 1] interval and a reference vector that was set to r=[0.4
0.5]". The connections of the aggregative neuron were set to w,=0.3 and w,=0.3. The
characteristics for a conjunctive form of aggregation are depicted in Figure 6-6. The

characteristics for a disjunctive form of aggregation are depicted in Figure 6-7.

.
“s-
[
[ X%
s,
XY
(AN
(RS

Figure 6-6: Non-linear characteristic of the kernel with conjunctive aggregation, with w,=0.3,
w,=0.3, b,=0.4, b,=0.5, a,€[0,1], a,€[0,1], and the algebraic product and probabilistic sum norms.
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Figure 6-7: Non-linear characteristic of the kernel with disjunctive aggregation, with w,=0.3,
wy=0.3, b,=0.4, b,=0.5, a,€[0,1], a,€[0,1], and the algebraic product and probabilistic sum norms.

6.4.3 Fuzzy kernels optimization

Fuzzy kemels weights will be optimized with the aid of genetic algorithms. In this
section, background information related to genetic algorithms will be presented. Following
that. the algorithm for optimizing the weighis of the kernel and the error penalty term

associated with the SVM approach will be described.

6.4.3.1 Background
Genetic algorithms [35], [29], [46] (GA’s) are search techniques based on the

principles of natural selection and evolution theory. A genetic algorithm (GA) operates on a
population of chromosomes (or strings), which are basic units composed of a list of features
called genes. Each chromosome is encoded to represent a solution to a given optimization
problem. All chromosomes have an assigned fitness value that indicates how good their
proposed solutions are. Before running a GA, the following prerequisites must be satisfied: the
representation scheme must be chosen, the fitness measure formulated, the operations devised,
the control parameters adjusted, and the termination condition determined.

The representation scheme can be seen as the encoding of the problem in a group of
chromosomes. These artificial chromosomes can be strings of 1’s and 0’s, real numbers,
parameter lists, computer programs, etc. The key issues in the representation scheme are the

chromosomes’ lengths and the alphabet symbols.
The fitness of a chromosome is a function fit:R™ — R (with “m” being the

dimensionality of the space of solutions), which is proportional to the goodness of the solution
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represented by the chromosome. The fitness function makes it possible to discriminate a good
solution from a bad one.

The main operators employed in the manipulation of chromosomes are reproduction,
crossover, and mutation. Reproduction is a process in which individual strings are copied to a
new population according to their fitness values. This can be accomplished in several ways. A
weighted roulette wheel can be spun [29], a local tournament can be held [30], or a ranking
procedure can be applied, etc. These methods can be combined with an elitist strategy, which
implies passing a number of the fittest individuals to the next generation to avoid a decline in
the fitness from one generation to the next. Crossover is an operator in which two parent
chromosomes are combined to produce two new chromosomes. The crossover can be single-
point, two-point, multiple points, or uniform, depending on how many portions are exchanged.
Mutation is a process that is used to find new points in the search space by randomly altering a
gene with small probability. It represents a random walk through the search space.

The control parameters of a GA are the population size, the number of generations to
be run, the probability of crossover (p.), and the probability of mutation (p,). These
parameters are usually tuned by hand, even though there have been several attempts to tune
them automatically [25], {3], [44].

A termination criterion is set in such a way that the process is stopped when a given
number of generations has been exceeded or a desired level of fitness function is achieved.

Once the steps for setting up a GA are completed, it can be run by following these
steps (see Figure 6-8):

1. The initial population is obtained by generating, usually at random, a certain
number of individuals.

The solutions are evaluated.
The genetic operators (reproduction, crossover, and mutation) are applied.

The solutions are evaluated.

TP S N

The termination condition is verified. If it is not satisfied, then go to step 3.
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Initialize Population
|

Evaluate Population
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¥
Reproduction

'

Crossover

:

Mutation

i

Evaluate Population

o>
Yes
Solution

Figure 6-8: Major steps in a genetic algorithm.

Finally, the following is a list of features that separate GA’s from most optimization
algorithms [29]:
1. GA's operate with a coding of the input variables, not with the input variables
themselves.
2. GA's search through a population of possible solutions, not a single solution.
GA’s use fitness values only (no other information is needed).

4. GA'’s use probabilistic transition rules, not deterministic ones.

6.4.3.2 Optimization algorithm

Before presenting the optimization algorithm, the following aspects are described: the
representation scheme, the fitness measure, the selection procedure, the reproduction
operations, the adjustment of the control parameters, and the termination condition.

a. Representation: The optimization problem is encoded using real numbers that
represent the strength of the connections (weights) and the error penalty term (C)
associated with the SVM algorithm. See Figure 6-9. Real-coded GA’s were selected
because, compared to binary coded GA's, they have the following strengths [76]:
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(1) increased efficiency because there is no need to convert bit strings into real
numbers and (2) increased precision because there is no loss of precision due to binary

representation,

Wi Wil - [ Wy |- [ W | €

Figure 6-9: Fuzzy kernel parameters encoding. C is the error penalty term, w; is the weight of the
connection ij, ¢ is the number of information granules, p is the number of dimensions of the input
data.

b. Fitness measure: the fitness function is given by

fit =(n-nsv)/(n-2)

(6-7)
where n is the number of training patterns and nsv is the number of support vectors.
The main objective of this fitness function is to promote a reduced number of support
vectors. As stated in [71], the expectation of the probability of error for optimal
hyperplanes is less than or equal to the expected number of support vectors divided by
the number of training point plus one. Therefore, reducing the number of support
vectors, the classifier may reduce the expectation of the probability of error.

c. Selection: First, select the two chromosomes with the best fitness and pass them to the
next generation (elitism). Next, select a single individual by choosing two
chromosomes randomly from the population and selecting the chromosome with the
best fitness to survive to the next generation (binary tournament). The process is
repeated PS-2 times (with PS being the population size).

d. Reproduction operators: the crossover and mutation operators used in this thesis are

simple crossover [33]and uniform mutation [76]. The crossover operation 1is

performed as  follows: given X, =[x,' - X e t,',,] and

X, = [xf xlz. t,f,] two chromosomes that have been selected to apply the

crossover operator to them, a position j € {1,2,..., m-— l} is randomly chosen and two

new chromosomes are built
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z,-[\rl w X; X e X ]and zz-[x, oo Xj o X e x,,,]. The

e+l m

mutation operation is performed as follows: given x, = [x,l x; t,',,] a

chromosome that has been selected to apply the mutation operator to it, a randomly
selected element x| with x) € [a job; ], J€ {1,2,...,m} is replaced by z;, whichisa

random number in the range [a /’b j]. The resulting chromosome is

i i |
zl - Ll oo ZI oo .tm ].

Control parameters: selecting parameter setting for genetic algorithms, such as
population size, crossover rate, and mutation rate, is often done by hand, even though
there have been several works for setting them automatically. For example, Herrera
and Lozano [32] introduced a rule-based approach to adjust the values of crossover
and mutation rates. The rules have the following form:
if generation and population size then p. (or p»)

where p. and p,, represent the crossover and mutation rates respectively. The complete
collection of rules can be obtained from Table 6-1 in the case of p. and in Table 6-2 in
the case of py.

Regarding the last control parameter, population size, it is important to
mention that if the population size is too large, the GA tends to take longer to
converge upon a solution. However, if the population size is too small, the GA is in
danger of premature convergence upon a suboptimal solution. This is primarily
because there may not be enough diversity in the population to allow the GA to escape
local optima. In general, the more difficult the problem is, the larger the population
size should be. In practice, users typically perform empirical tests to set the value of
the population size. They start with a small population size (say 8 to 20 chromosomes)
and then they might try larger sizes (say 30 to 100 —or even more- chromosomes).

Finally, they choose the population size that leaded to the best performance.

Small Small
Very Large | Medium
Very Large | Large
Crossover rate

Table 6-1: Rule bases for the control of p..
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| Large Medium
| Medium | Small Very Small
d Small | Very Small | Very Small
Mutation rate

Table 6-2: Rule bases for the control of p,,.

The genetic algorithm to optimize the fuzzy kernel parameters is the following:
Initialization. Initialize the values of weights (w;) with random numbers in [0, 1] and
the value of C with a random number in [0, C,..] (With C,.. being the maximum value
C can take).

Evaluation. Apply the HSVM algorithm and calculate the fitness function which is
given by ( 6-7 ).

Selection. Apply elitism to pass the best two chromosomes to the new generation.
Apply local tournaments (of order two) to select the parents for the mating pool.
Crossover. Apply simple crossover to the chromosomes in the mating pool.

Mutation. Mutate, with probability equal to the mutation rate, each gene of the genes

generated in step 4. Mutation consists of generating new random values subject to

w;€[0, 1], with i< c and 1 Sk < p, and C€[0, Ca]. Where ¢ is the number of

clusters and p is the number of dimensions of the input data.

Evaluation. Repeat step 2.

Check for termination condition. If the maximum number of generation is reached

then stop. Otherwise, go to step 3.

General Scheme

The general architecture of a hybrid support vector machine is depicted in Figure

6-10. If there are not fuzzy granules available, the input data is used to generate information
granules (via fuzzy c-means). The activation levels of each information granule caused by the
input data are then determined. Next, the similarities of these activation levels are computed
by using a fuzzy kernel. After that, the SVM algorithm is used to perform classification and to
determine the number of support vectors (see Figure 6-11). Finally, a genetic algorithm is used

to generate weights of the fuzzy kernels that minimize the number of support vectors.
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Via Seeeee cersasased
Information
Granules

Figure 6-10: Hybrid Support Vector Machine.

K(x,, x,)
K(x,, x,)
Output
Class
K(xnsw xl)

Figure 6-11: The SVM algorithm in the hybrid SVM has two layers. In the first layer, the
similarity of the input data is computed by the fuzzy kernels K(x;, x)) (for i=1,...,n and j=1,...,asv
with n being the number of input patterns and asv being the number of support vectors). The
second layer performs a linear combination of the outputs of the first layer. The weights of the
second layer are given by the product of y; (the label of the jth output variable in the training set)
and g (the Lagrange multiplier, obtained by solving the quadratic programming problem
associated with the SVM method, corresponding to the jth training vector).
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The complete algorithm to apply the hybrid support vector machine for binary
classification is given below (in the case of multi-class classification problems, the DDAG or

1-v-R approaches may be used)

Given The data set (x,, ¥, ) (Xss ¥s ees(X,5 7, ), X, €R?, y, € {- 1,+1}

Defined t-norm and s-norm for the fuzzy kemel.
Any parameter needed for the optimization algorithm.

Initialization  If required, use fuzzy c-means to generate the appropriate information
granules.

Processing e Transform the input data by finding their degree of membership (a value
in the unit interval [0, 1]) in each information granule.

e Use a genetic algorithm to determine the optimal values of the weights
associated with the fuzzy kernels and the error penalty term associated
with the SVM approach.

e Train the hybrid support vector machine with the calculated error penalty
term and weights.

Result a (Lagrange multipliers).
SV’s (support vectors).
w (weights associated with the fuzzy kernels).
C (error penalty term).

Table 6-3: Algorithm for implementing the HSVM approach.

6.6 Numerical studies

For these experiments, two classes of vectors were generated. The vectors were
distributed according to a normal density function with unit covariance matrices. The mean
vectors (m, for class land m, for class 2) were:

e For data (a): m;=(2.0, 2.0) and m,=(-2.0, -2.0). See Figure 6-12.
e For data (b): m;=(1.0, 1.0) and m,=(-1.0, -1.0). See Figure 6-13.

Each class had 50 elements, giving a data set of 100 elements, 60 of which were used
for training and 40 for testing. To obtain reliable results, a rotation method was employed by
randomly re-sampling training and testing data and repeating the experiments five times. The
results were averaged over the five iterations. The experiments were conducted for the

disjunctive aggregation kemnel. The norms used were algebraic product and probabilistic sum.
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The aggregative connections and the error penalty term were optimized by a genetic algorithm
with the following parameters:

¢ Maximum number of generations: 30

e Population size: 50

o Crossover rate: 0.6

e Mutation rate: 0.01

This set of parameters was selected after gathering empirical evidence from
experiments with different combinations of parameters. This was achieved by monitoring the
number of support vectors and the accuracy over a validation set. The set that produced the

best performance was selected.
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Figure 6-12: Synthetic data (a). Squares and diamonds represent class 1 and class 2
respectively.
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Figure 6-13: Synthetic data (b). Squares and diamonds represent class 1 and class 2
respectively.

The decision boundaries for one of the five experiments performed on data (a) are
shown in Figure 6-14. From this figure, we conclude that more work must be done to produce
decision surfaces with larger margin. This may lead to better generalization performances. The
fitness function in successive generations, for the data displayed in Figure 6-14, is depicted in
Figure 6-15. From this figure, it can be seen that the fitness of the best chromosome remained
constant during all the generation.

The decision boundaries for one of the five experiments performed on data (b) are
shown in Figure 6-16. From this figure, we conclude that, as indicated in the case of data (a),
more work must be done to produce decision surfaces with larger margin. The fitness function
in successive generations, for the data displayed in Figure 6-16, is depicted in Figure 6-17.
From this figure, it can be seen that the fitness of the best chromosome remained constant after

the seventh generation.
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Figure 6-14: The discrimination boundaries produced by the HSVM classifier for data (a).
Testing points are the bold patterns. Support vectors are indicated with a circle around the
corresponding patterns.
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Figure 6-15: Fitness in successive generations for the data displayed in Figure 6-13.
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Figure 6-16: The discrimination boundaries produced by the HSVM classifier for data (b).

Testing points are the bold patterns. Support vectors are indicated with a circle around the

corresponding training patterns. Errors in testing are indicated with an X across the testing
pattern with the wrong shape.
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Figure 6-17:Fitness in successive generations for the data displayed in Figure 6-15.

The classification performance for both data sets is summarized in Table 6-4. From
these results, we conclude that even though the number of support vectors was small, the
performance over test data was not as good as expected. This may be related to the fact that
the decision boundaries did not maximize the margin. Therefore, experiments involving a

fitness function that takes into account the margin are required. Moreover, the number of
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generations must be increased, and new reproduction operators, and control parameters must

be tested to thoroughly study the performance of the HSVM approach.

Data (a) 98.33% 97%

Data (b) 90.67% 88.0%
Table 6-4: Classification results obtained with the HSVM.

6.7 Summary

This chapter has provided a brief introduction to the design methodology needed to
allow for the incorporation of fuzzy set methods into the support vector machine approach. In
this sense, fuzzy kernels were developed to provide the computational framework needed to
calculate similarity in the fuzzy sets space. The generation of the information granules was
also studied, and some numerical experiments with artificial data sets were presented and

discussed.
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7 Experimental Studies

7.1 Introduction

This chapter compares the performance of the methods described in the previous
chapters (i.e. the RBF and the SVM approaches) with the performance of a l-nearest
neighbour classifier [21], [28]. These studies rely on widely available data sets, an iris data set,
a Wisconsin breast cancer data set, and a Boston housing data, and a severe storm cell data set
from Environment Canada.

The iris data set is available at the UCI Repository of Machine Learning”. It consists
of patterns representing three varieties of irises: Setosa, Versicolour, and Virginica. The
Wisconsin breast cancer data set is also available at UCI Repository of Machine Learning. It
consists of records from 683 patients. Each record has nine attributes that are used to
determine whether a tumour is benign or not. The Boston housing data set, from the UCI
Repository of Machine Learning, is the third data set studied. It is concerned with house prices
in the suburbs of Boston. The classification problem consists of determining whether a house
price is greater than or equal to $21,000. The fourth data set, the severe storm cell data, is
composed of meteorological volumetric data represented by a set of derived products. The
classification problem is concerned with the classification of storm cells based on these
derived features’. The problem has been divided into the following two types of sub-problems:
(1) the binary classification problem, in which only hail and tornado storm cells are
considered, and (2) the multi-class classification problem, in which four or ten categories of
storm cells are considered. The criterion for comparison is the accuracy of the classification

over a testing set.

7.2 Architectures
The experiments compare the performance of the SVM with the RBF kernel (SVM)
against a CRBF classifier with the centres found using the OLS approach (CRBF1), a CRBF

* UCI Repository of Machine Learning Databases, C. Blake, E. Keogh, and C. J. Merz. [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

5 Part of this work was done during my 2000 research assistantship at the University of Alberta under
the supervision and guidance of Dr. W. Pedrycz and Dr. N. Pizzi. Without their detailed guidance, this
work would not have been possible.
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classifier with the centres found using FCM (CRBF2), and a k-nearest neighbour classifier
[21], [28]. The HSVM was left aside because the decision boundaries it generated for the
artificial data suggest that most work must be done to obtain simpler decision surfaces before
using it to solve more complex classification problems.

For the SVM, the selected multi-class approaches were the 1-v-R approach and the
DDAG approach, both of which used soft-margin classifiers. A two-stages process of cross-
validation (on the training data) was used to determine the best combination for the values of Y
and C. This process was explained in Table 5-1. The set of parameters to be used in the
process of cross-validation is shown in Table 7-1. This set was selected after gathering
empirical evidence from experiments with different sets of parameters. This was achieved by
monitoring the resulting margin generated by the SVM trained with each combination. The

set. which generated the largest margin, was the one selected.

C e {1,10,100} y € {0.001,0.01,0.1}
C, €{0.1,0.5,1,5} , if C =1 7, € {0.0001,0.0002,0.0005,0.001,0.002,0.005} ,
C, €{1,5,10,50} , if C =10 if 7=0.001
C, € {10,50,100,500} , if C =1000 7, € {0.001,0.002,0.005,0.01,0.02,0.05} ,
if 7=0.01

7, € {0.01,0.02,0.05,0.1,0.2,0.5} , if y=0.1

Table 7-1: Set of parameters to be used in the process of cross-validation, in the case of the SVM,
for the real-data classification problems.

For the CRBF1, the performance criterion was set to reduce the mean square error
during training up to a value G=5. The value y was determined using a two-stages process of
cross-validation (on the training data). This process was explained in Table 5-3. The set of
parameters to be used in the process of cross-validation is shown in Table 7-2. This set was
selected after gathering empirical evidence from experiments with different sets of parameters.
This was achieved by monitoring the time required to train the classifiers. The set that
produced the best ratio of accuracy in training to time required to train the classifiers was

selected.
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y € {0.01,0.1,1}

¥, € {0.001,0.002,0.005,0.01} , if y =0.01
7, €{0.01,0.02,0.05,0.1} , if y=0.1

7, €40.1,0.2,0.5,1} , if =1

Table 7-2: Set of parameters to be used in the process of cross-validation, in the case of the
CRBF1, for the real-data classification problems.

For the CRBF2, prototypes stability analysis was performed to find the centres of the
first layer. The second layer was trained to correctly classify the input data. The value of y was
determined using a two-stages process of cross-validation (on the training data). This process
was explained in Table 5-3. The set of parameters to be used in the process of cross-validation
is shown in Table 7-3. This set was selected after gathering empirical evidence from
experiments with different sets of parameters. This was achieved by monitoring the time
required to train the classifiers. The set that produced the best ratio of accuracy in training to

time required to train the classifiers was selected.

¥ € {0.001,0.01,0.1}

7, € {0.0001,0.0002,0.0005,0.001,0.002,0.005} , if 7 =0.001
7, € {0.001,0.002,0.005,0.01,0.02,0.05} , if y =0.01

¥, € {0.01,0.02,0.05,0.1,0.2,0.5} , if y =0.1

Table 7-3: Set of parameters to be used in the process of cross-validation, in the case of the
CRBF?2, for the real-data classification problems.

For the final classifier, the k-nearest neighbours approach was tested for k € {1, 3, 5}

using Euclidean distance. The best result in terms of classification performance was given by

k=1, i.e. the 1-nearest neighbour (1-NN) algorithm.

7.3 Iris Classification
The data set consists of 50 instances of each of the three species of iris: Setosa,

Versicolour, and Virginica.
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7.3.1 Methodology

In the experiments, 50% of the data set (i.e. 75 samples) was used as a training

(learning) set and the remaining 50% (75 samples) was used as a testing set. To obtain reliable

results, a rotation method was employed, repeating the experiments ten times. Subsequently,

the training data for each one of the ten experiments were normalized to attain a zero mean

and one standard deviation. The values for the mean and the standard deviation were then used

to normalize the testing data for each experiment.

7.3.2 Comparative analysis

The experiments were performed independently over the 10 randomly re-sampled

groups. The results described in this section include:

1.

training and testing sets.

The average and standard deviation (in parenthesis) confusion matrices for the

2. The average kappa score (x), including its standard deviation (in parenthesis), for the

training and testing sets.

3. The average classification error (E), including its standard deviation (in parenthesis),

for the training and testing sets.

The labels for the confusion matrices are:

¢ To: True (desired) output

¢ Co: Classifier (actual) output

¢ S: Setosa

¢ Ve: Versicolour

¢ Vi: Virginica

The performance results are displayed in Table 7-4 through Table 7-8.

0(0)
24.6(3.0) | 0.1(0.3)
0(0) | 0.3(0.7) | 24.4(1.8)

«=0.97(0.01), E=1.87%(0.93%)

& 25.4(2.7) 0(0) 0(0)

3 0(0) | 24.4(2.6) | 0.9(0.9)
R 0(0) | 3.1(1.3) | 21.22.2)
=0.92(0.04), E=5.33%(2.43%)

Table 7-4: CRBF1 training and testing performance results for the iris data set.
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2.5(1.5)

0(0)

4.42.4)

21.3(3.7)

" x=0.86(0.07), E=9.33%(4.53%)

. ,f P

. ‘_',,,.
i 0.9(1.3) | 21.2(2.5)

0(0) | 44(2.1)

19.92.4

"k=0.83(0.06), E=11.33%(3.78%)

Table 7-5: CRBF?2 training and testing performance results for the iris data set.

0(0)
24.7(3.0) 0(0)
0(0) | 25.7(1.6)

x—1(0) E=0%(0%)

Table 7-6: 1-NN training and testing performance results for the iris data set.

23.5(2.8)

1.2(0.9)

0.9(1.3)

24.8(2.3)

k=0.91(0.16), E=6.27%(10.52%)

25.4(2.7)

0(0)

0(0) | 232.8)

2.3(0.8)

0(0) | 2.1(1.2)

22.2(2.4

x=0.91(0.03), E=5.87%(2.01%)

8(7.8) | 0(0)
0(0) | 23.6(3.2) | L.7(L.1)
00) | 1.3(1.6) | 232.1)

K—0.88(0 16), E=7.73%(10.55%)

Table 7-7: DDAG training and testing performance results for the iris data set.

: 00) | 0(0)
000) | 24(2.8) | 0.7(0.7
0(0) [ 0.6(0.7) | 25.1(1.7)

x=0. 97(0 02), E=1.73%(1.10%)

Table 7-8: 1-v-R training and testing performance results for the iris data set.

The results averaged over ten iterations are summarized in Table 7-9, Figure 7-1, and

. 00| 0(0)
00) | 23.6@3.1) |_1.7(1.0)
00| 1(1.3) | 23.32.0)

x095(o 02), E=3.6%(1.55%)

Figure 7-2. The results include the accuracy in training and testing and the kappa score in

training and testing. From these results, it can be seen that the SVM, in the 1-v-R approach,
outperformed the CRBF1, the CRBF2, the 1-NN, and the DDAG classifiers showing the best

accuracy (98.27% under testing) and the highest kappa score (0.95 under testing).
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98.13% | 90.67% | 100% | 93.73% | 98.27%
94.67% | 88.67% | 94.13% | 92.27% | 96.4%
0.97 0.86 1 0.91 0.97
0.92 0.83 091 0.88 0.95

Table 7-9: Summary of results for the iris data set.

Accuracy (in Percentage) for the iris Data

100

Accuracy (%)
3

Training

Figure 7-1: Training accuracy for the iris data set.

Accuracy (in Percentage) for the Iris Data

100" -

Accuracy (%)
3

Figure 7-2: Testing accuracy for the iris data set.

7.4  Wisconsin Breast Cancer Classification
The data set consists of 683 records, of which 444 were confirmed to correspond to

benign tumours and 239 of which were labelled as malign tumours.
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74.1 Methodology

In the experiments, 60% of the data set (i.e. 409 records) was used as a training
(learning) set and the remaining 40% (274 records) was used as a testing set. To obtain
reliable results, a rotation method was employed, repeating the experiments ten times.
Subsequently, the training data for each one of the ten experiments were normalized to attain a
zero mean and one standard deviation. The values for the mean and the standard deviation

were then used to normalize the testing data for each experiment.

7.4.2 Comparative analysis

The experiments were performed independently over the 10 randomly re-sampled
groups. The results described in this section include:
1. The average and standard deviation (in parenthesis) confusion matrices for the
training and testing sets.
2. The average kappa score (k), including its standard deviation (in parenthesis), for the
training and testing sets.
3. The average classification error (E), including its standard deviation (in parenthesis),
for the training and testing sets.
The labels for the confusion matrices are:
¢ To: True (desired) output ¢ B:Benign
¢ Co: Classifier (actual) output ¢ M: Malign

The performance results are displayed in Table 7-10 through Table 7-13.

: . 6(5.8) | 4.5(1.
B 3.1(14)| 1406.7) | BEEER 5.6(3.2) | 90.3(7.8)
96(0.02), E=1.86%(0.71%)  =0.92(0.03), E=3.70%(1.19%)

Table 7-10: CRBF1 training and testing performance results for the Wisconsin breast cancer
data.
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250.6(5.8) | 63(1.6)
6.3(1.1) | 136.8(6.0) 91.8(5.8)

93(0.01), E=3.08%(0.49%)  «=0.94(0.02), E=2.75%(0.80%)

Table 7-11: CRBF2 training and testing performance results for the Wisconsin breast cancer
data.

K

okl 265.9(5.8) 0(0) 173.3(5.3) 3.8(1.7)
oA 0(0) | 143.1(5.8) 6(3.0) | 89.9(5.7)

x=1(0), E=0%(0%) " k=0.92(0.03), E=3.59%(1.12%)

Table 7-12: 1-NN training and testing performance results for the Wisconsin breast cancer data.

260.(6.7) 5.4(2.6) 4.2(1.6)
3.5(2.1) | 139.6(6.4) 4.6(2.4) | 91.3(5.9)

k=0.95(0.02), E=2.18%(0.88%) x=0.93(0.03), E=3.22%(1.24%)

Table 7-13: SVM training and testing performance results for the Wisconsin breast cancer data.

The results averaged over the ten iterations are summarized in Table 7-14, F igure 7-3,
and Figure 7-4. The results include the accuracy in training and testing and the kappa score in
training and testing. From these results, it can be seen that the CRBF2 followed by the SVM
were the approaches that showed the best accuracy (97.25% and 96.78% respectively under

testing) and the highest kappa score (0.94 and 0.93 respectively under testing).

RO U PRS- ¥

98.14% | 96.92% | 100% | 97.82%
96.3% | 97.25% | 96.41% | 96.78%
096 | 0.93 1 0.95
$¥ 092 |094 092 [093

Table 7-14: Summary of results for the Wisconsin breast cancer data set.
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Accuracy (in Percentage) for the Wisconsin Data

Accuracy (%)

Training

Accuracy (%)

Figure 7-4: Testing accuracy for the Wisconsin breast cancer data set.

7.5 Boston Housing Classification
The data set consists of 506 instances, of which 260 correspond to house prices

greater than or equal to $21,000 and 246 of which correspond to house prices less than

$21,000.

7.5.1 Methodology
In the experiments, 60% of the data set (i.e. 304 patterns) was used as a training

(learning) set and the remaining 40% (202 patterns) was used as a testing set. To obtain
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reliable results, a rotation method was employed, repeating the experiments ten times.
Subsequently, the training data for each one of the ten experiments were normalized to attain a
zero mean and one standard deviation. The values for the mean and the standard deviation

were then used to normalize the testing data for each experiment.

7.5.2 Comparative analysis

The experiments were performed independently over the 10 randomly re-sampled
groups. The results described in this section include:
1. The average and standard deviation (in parenthesis) confusion matrices for the
training and testing sets.
2. The average kappa score (k), including its standard deviation (in parenthesis), for the
training and testing sets.
3. The average classification error (E), including its standard deviation (in parenthesis),
for the training and testing sets.
The labels for the confusion matrices are:
¢ To: True (desired) output ¢ A: House prices greater than or equal to $21,000

¢ Co: Classifier (actual) output ¢ B: House prices less than $21,000

The performance results are displayed in Table 7-15 through Table 7-18.

23.15.1)

2.72.7)

| 151.5(5.8) 82.7(6.4)
LEAPRGY 2.6(2.6) | 146.2(6.0) | & 8 19.1(7.3) | 78.1(6.8
k=0.97(0.03), E=1.75%(1.61%) K—O.SS(O 10), E=20.79%(5.19%)

Table 7-15: CRBF1 training and testing performance results for the Boston housing data.

4.7(1.2) | 19.5(4. 91.1(5.3) | 14.7(3.
24.4(5.5) | 124.4(8.3 17.7(2.8) | 79.5(4.9)
x=0.71(0.06), E=1449%(2.87%)  k=0.68(0.04), E=15.96%(2.13%)

Table 7-16: CRBF2 training and testing performance results for the Boston housing data.
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. _;" J

88.2(4.6)

17.6(4.1)

0(0)

148.8(5.1)

14.2(3.8)

83d.2)

k=1(0), E=0%(0%)

Table 7-17: 1-NN training and testing performance results for the Boston housing data.

T 482.3)

K=0.69(0.04), E=15.67%(2.2%)

" 94(6.1)

11.8(3

| 4.3(3.0) | 144.5(6.0)

13.2(4.3)

84(5.1)

The results averaged over the ten iterations are summarized in Table 7-19, Figure 7-5,
and Figure 7-6. The results include the accuracy and the kappa score in training and testing.

From these results, it can be seen that the SVM was the approach that showed the best

k=0.94(0.03), E=3.00%(1.32%)

k=0.75(0.03), E=12.32%(1.58%)

Table 7-18: SVM training and testing performance results for the Boston housing data.

accuracy (87.68% under testing) and the highest kappa score (0.75 under testing).

I T
e IEs
[

100%
79.21% | 84.04% | 84.33% | 87.68%
0.97 0.71 1 0.94
0.58 0.68 0.69 0.75

Table 7-19: Summary of results for the Boston housing data set.

Accuracy (in Percentage) for the Boston Data

Accuracy (%)

Training

Figure 7-5: Training accuracy for the Boston housing data set.
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Accuracy (in Percentage) for the Boston Data

i
2l

Accuracy (%)

Figure 7-6: Testing accuracy for the Boston housing data set.

7.6  Storm Cell Classification

This study is concerned with data that were collected from the Vivian radar in
Manitoba and processed by the RDSS. There are three groups of experiments: the first dealt
with a two-class classification problem [63], [64], the second one with a multiclass
classification problem for four classes [62], and the third one with a multi-class classification

problem for ten classes [62].

7.6.1 Weather data (a): Hail vs. Tornado
In this first group of experiments, the data set was a subset of the original data. This
data set consisted of 431 cells, of which 166 were confirmed to be hail patterns and 265 of

which were labelled as tornado cells.

7.6.1.1 Methodology

In the experiments, 60% of the data set (i.e. 258 cells) was used as a training
(learning) set and the remaining 40% (173 cells) was used as a testing set. To obtain reliable
results, a rotation method was employed, repeating the experiments ten times. Subsequently,

the training data for each one of the ten experiments were normalized to attain a zero mean
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and one standard deviation. The values for the mean and the standard deviation were then used

to normalize the testing data for each experiment.

7.6.1.2 Comparative analysis

The experiments were performed independently over the 10 randomly re-sampled
groups. The results described in this section include:
1. The average and standard deviation (in parenthesis) confusion matrices for the
training and testing sets.
2. The average kappa score (x), including its standard deviation (in parenthesis), for the
training and testing sets.
3. The average classification error (E), including its standard deviation (in parenthesis),
for the training and testing sets.
The labels for the confusion matrices are:
¢ To: True (desired) output ¢ H: Hail cells

¢ Co: Classifier (actual) output ¢ T: Tornado cells

The performance results are displayed in Table 7-20 through Table 7-23.

22.9(5.4)

2.1(1.1) 42.8(5.8)
2.2(1.1) | 155.5(6.1) SRR 21.1G.1) | 86.2(5.2

=0.97(0.01), E=1.67%(0.55%) K=0.46(.07), E=25.43%(3.28%)

Table 7-20: CRBF1 training and testing performance results for the weather data (a).

) | 52.5(11.3)
13.6(9.4) | 144.1(14.7) 97(5.8
x=0.14(0.07), E=35.74%(3.11%) 13(0.06), E=36.30%(2.52%)

Table 7-21: CRBF2 training and testing performance results for the weather data (a).

21.7(11.3)
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B 100.3(6.0) 0(0) B 47.8(4.3) | 17.9(4.0)
N | 0(0) | 157.7(6.0) | IR 16.7(6.5) | 90.6(4.4)
x=1(0), E=0%(0%) k=0.57(0.07), E=20%(3.15%)

Table 7-22: 1-NN training and testing performance results for the weather data (a).

. 7(5.2) )
156.6(6.3 14.8(4.2) | 92.5(5.6)
x=0.98(0.03), E=1.2%(1.51%)  x=0.61(0.05), E=18.38%(2.43%)

Table 7-23: SVM training and testing performance results for the weather data (a).

The results averaged over the ten iterations are summarized in Table 7-24, Figure 7-7,
and Figure 7-8. The results include the accuracy and the kappa score in training and testing.
From these results, it can be seen that the SVM was the approach that showed the best

accuracy (81.62% under testing) and the highest kappa score (0.61 under testing).

R O PR RN I T
PEAREASARR L M AV
100% | 98.8%
80% | 81.62%
1 0.98
0.57 | 0.6l

Table 7-24: Summary of results for the weather data set (a).

Accuracy (in Percentage) for the Weather Data (a)

100

sof i
1

Accuracy (%)

388888

Training

Figure 7-7: Training accuracy for the weather data (a). The classification problem is binary.
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Accuracy (in Percentage) for the Weather Data (a)

--

Accuracy (%)
3888883888

Figure 7-8: Testing accuracy for the weather data (a). The classification problem is binary.

7.6.1.3 Comparison with previous work

Table 7-25 shows the performance (accuracy, in percentage, on the test set) of the
following methods for solving the storm cell classification task: a multilayer perceptron used
by Alexiuk et al. [1], a linear discriminant analysis used by Li et al. [42], and the support
vector machine-based classifier presented here. Direct comparison. however, could not be
done because of the following reasons:

1. The experiments were conducted for different data sets (99 hail cells and 25 tornado
cells in the case of Alexiuk et al. and 172 hail cells and 163 tornado cells in the case
of Lietal.).

2. The pre-processing strategies were different (in the case of Alexiuk et al., they used
PCA [39], fuzzy interquartile encoding, and genetic algorithms. In the case of Li et al.,
they used genetic algorithms for optimizing the derived products).

3. The experiments were conducted under different formats (Li et al. used leave one out
to estimate the test error. Alexiuk et al. did not specify the percentages of

training/testing data used for the experiments).

Multilayer Perceptron | Linear Discriminant Analysis | Support Vector Machines
78% 75.2% 81.62%

Table 7-25: Performance of different methods for solving a storm cell classification problem.
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7.6.2 Weather data (b): Four-class Classification Problem

This data set consisted of 577 cells, of which 166 were confirmed to be hail patterns,
54 of which were labelled as rain cells, 265 of which were confirmed to be tomado cells, and

92 of which were labelled as wind cells.

7.6.2.1 Methodology

In the experiments, 60% of the data set (i.e. 346 cells) was used as a training
(learning) set and the remaining 40% (231 cells) was used as a testing set. To obtain reliable
results, a rotation method was employed, repeating the experiments ten times. Subsequently,
the training data for each one of the ten experiments were normalized to attain a zero mean
and one standard deviation. The values for the mean and the standard deviation were then used

to normalize the testing data for each experiment.

7.6.2.2 Comparative analysis
The experiments were performed independently over the 10 randomly re-sampled
groups. The results described in this section include:
1. The average and standard deviation (in parenthesis) confusion matrices for the
training and testing sets.
2. The average kappa score (x), including its standard deviation (in parenthesis), for the
training and testing sets.
3. The average classification error (E), including its standard deviation (in parenthesis),
for the training and testing sets.

The labels for the confusion matrices are:

¢ To: True (desired) output ¢ R:Rain
¢ Co: Classifier (actual) output ¢ T: Tomado
¢ H: Hail ¢ W:Wind

The performance results are displayed in Table 7-26 through Table 7-30.
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y (

2.401.7)|

0.1(0.3)

21.8(d.2)

3.9(1.7)

4.2(1.7)

1.5(1.1)

153.1(2.9)

2.6(2.1)

1.5(1.5)

7.3(1.5)

46.3(4.2

=0.87(0.02), E=8.41%(1.32%)

0)] 8.4(4.1)

149(4 D)

7.12.6)] 6.5(3.2)

10.9(3.9)[67.5(6.8)

11.5(4.6)

4.8(2.5)] 9.8(3.0)

16.9(4.3)

k=0. 34(0 07), E=45.07%(4.92%)

Table 7-26: CRBF1 training and testing set performance results for the weather data (b).

8(7. 0.1(0.3)

0.2(0.6) | 0(@0) 31.9(4.2) _ 0(0)

13.7(5.3)]  0(0) 144.5(7.2) 0.3(0.7)

EW6.7(4.1) | 0(0)  48(5.3) 0.5(1.3
009(0 03), E=51.50%(1.59%)

53.8(7.1

0(0) 21.8(4.6)

0(0)

0.2(04) 96(3.2)

1.1(1.2)

0(0) 32.8(3.9)

0.2(0.6

K—O 05(0 02), E=53.16%(1.11%)

Table 7-27: CRBF? training and testing set performance results for the weather data (b).

0(0)

0(0)

0(0)

0(0)32.1(4.5) 0(0) 0(0)
0(0) 0(0) 158.5(2.9) 0(0)
0(0) 0(0) 0(5.3)55.2(3.3

K—I(O) E=0%(0%)

5.0(2.4) 16.7(4.1)

4.2(1 )

7.7(2.7)_6.4(2.6)

4.2(2.0)

8.7(3.2) 70.8(4.9)

13.2(3.4)

5.2(2.5) 9.5(2.4)

16.4(3.3)

k=0.38(0.03), E=42.04%(2.53%)

Table 7-28: 1-NN training and testing set performance results for the weather data (b).

LA

(L. 1.9(1.6) 0.1(0.3)
3.6(1.4)18(3.9)  6(3.3) 4.5(2.0)
0.5(0.7)0.6(0.7) 155.8(3.2) 1.6(1.1
0.4(0.8)1.6(1.9) 9.2(2.5) 44(4.8

K_O 86(0.03), E=9.05%(1.79%)

.2(2.8) 15.1(5.5)

4.2(2.6)

6(1.2) 8.2(3.1)

3.4(1.2)

5.9(2.9) 81.1(7.0)

7.6(4.0)

3.9(2.9)

12.1(3.2)]15.6(3.8)

k=0.43(0.04), E=37.66%(3.02%)

Table 7-29: DDAG training and testing set performance results for the weather data (b).
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. ‘h - i
14.9(5.0) 4.7(2.6)
B 4.4(3.0) 6.6(1.6) 7.7(2.9) 3.2(1.3)
- 13.3(3.1) 3.7(2.8) 80.9(5.0) 8.6(3.9)

975.7) 1.3(1.1) 1.9(1.2)  0(0) [EEEE42. 3.3(2.5)
3.1(1.50182(3.9) _ 5.9(2.4) 4.9(1.8) I
0.6(0.8) 0.7(1.6) 155.3(3-6)] 1.9(1.0) [
BN 0.4(0.7) 0.7(1.1)  9(2.6)45.1(5.0) NRES 6.1(2.9) 3(1.4) 11.4(3.0)[16.3(4.0)
=0.87(0.03), E=8.79%(1.65%) x—0.45(0 05), E=36.49%(3.09%)

Table 7-30: 1-v-R training and testing set performance results for the weather data (b).

The results averaged over ten iterations are summarized in Figure 7-9, Figure 7-10,
and Table 7-31. The results include the accuracy in training and testing and the kappa score in
training and testing. From these results, it can be seen that the SVM, in both multi-class
approaches, outperformed the CRBF1, the CRBF2, and the 1-NN classifiers showing the best
accuracy (63.51% under testing) and the highest kappa score (0.45 under testing). Between the
two SVM approaches that were tested, the 1-v-R approach had better accuracy (63.51%
against 62.34% under testing) and higher kappa score (0.45 against 0.43 under testing).

100"
80

801

07

50
40
o
20 -
10

Accuracy (%)

Tralnlng

Figure 7-9: Training accuracy for the weather data (b). 4-class case.
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Accuracy (in Percentage) for the Weather Data (b)

Accuracy (%)

91.59% 100% | 90.95% | 91.21%
54.93% 46.84% 57.96% | 62.34% | 63.51%
0.87 0.09 1 0.86 0.87
0.34 0.05 0.38 0.43 0.45

Table 7-31: Summary of results for the weather data (b).

7.6.3 Weather data (c): Ten-class Classification Problem

This data set has ten classes that include the four original ones (hail, rain, tornado and
wind) and six new classes that were added to deal with the patterns that had two different

labels.

7.6.3.1 Methodology

In the experiments, 60% of the data set (i.e. 346 cells) was used as a training
(learning) set and the remaining 40% (231 cells) was used as a testing set. To obtain reliable
results, a rotation method was employed, repeating the experiments ten times. Subsequently,
the training data for each one of the ten experiments were normalized to attain a zero mean
and one standard deviation. The values for the mean and the standard deviation were then used
to normalize the testing data for each experiment. The pattern distribution for each one of the

ten experiments is depicted in Table 7-32.
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8 Hail or Rain 20 15 5

i Hail or Tomado | 10 7 3

§ Hail or Wind 0 0 0

d Rain or Tornado | 33 24 9

} Rain or Wind 33 24 9

¥ Tornado or Wind | 50 37 13
Totals 577 431 146

Table 7-32: Pattern distribution for the 10-class classification problem

7.6.3.2 Comparative analysis

The experiments were performed independently over the 10 randomly re-sampled

groups. The results described in this section include:

1. The average and standard deviation confusion matrices for the training and testing

sets.

2. The average kappa score (x), including its standard deviation (in parenthesis), for the

training and testing sets.

3. The average classification error (E), including its standard deviation (in parenthesis),

for the training and testing sets.

The labels for the confusion matrices are:

To: True (desired) output

Co: Classifier (actual) output

H: Hail

R: Rain

T: Tornado
W: Wind

® & & o o o

HR: Hail or Rain

HT: Hail or Tornado
HW: Hail or Wind
RT: Rain or Tornado
RW: Rain or Wind
TW: Tornado or Wind

The performance results are displayed in Table 7-33 through Table 7-52.
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1.1 0.1 1244 0.1 0.0 02| 00 0.0 0.0 0.0
0.1 0.0 00| 30.7 0.0 00| 00 0.0 0.0 0.0
0.1 0.0 0.0 0.0 11.5 00| 00 0.0 0.0 0.0
0.1 0.0 0.2 0.0 0.0 55| 00 0.0 0.0 0.1
0.0 0.0 0.0 0.0 0.0 00| 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 00| 0.0 194 0.0 0.0
0.0 0.0 0.0 0.0 0.0 00| 0.0 00] 21.0 0.0
0.0 0.0 0.0 0.0 0.0 00| 0.0 0.0 0.0] 29.6

=0.98(0.01), E=1.27%(0.74%)

Table 7-33: CRBF1 training set performance results (average) for the weather data (c).

T A R L e e
2 6.7 0.0 1.6 0.0 0.0 00| 00 0.0 04 0.0
0.0 2.6 0.8 0.0 0.0 00| 00 0.0 0.0 0.0
h 1.1 0.3 5.2 0.3 0.0 04| 00 0.0 0.0 0.0
; 0.3 0.0 0.0 3.1 0.0 00| 00 0.0 0.0 0.0
B 0.3 0.0 0.0 0.0 3.0 00| 00 0.0 0.0 0.0
A 0.3 0.0 0.4 0.0 00| 21| 00 00| 00] 03
2 0.0 0.0 0.0 0.0 00] 00] 0.0 00 00| 00
; 0.0 0.0 0.0 0.0 0.0 00| 00 35 0.0 0.0
0.0 0.0 0.0 0.0 0.0 00| 00 0.0 1.6 0.0
0.0 0.0 0.0 0.0 0.0 00| 00 0.0 0.0 3.3

Table 7-34: CRBF1 training set performance results (standard deviation) for the weather data

(c).

2.7 . 3.9
0.2 5.5 1.6 04 0.4
10.5 1.9 56.4 3.7 2.7
24 0.1 3.1 124 1.2
1.1 0.0 0.0 0.0 0.0
0.6 0.0 0.8 0.0 0.3
0.0 0.0 0.0 0.0 0.0
1.2 0.0 0.6 0.0 0.0
1.2 0.0 0.6 0.0 0.0
1.0 0.3 1.2 0.6 17.1

k=0.57(0.04), E=34.29%(3.17%)
Table 7-35: CRBF1 testing set performance results (average) for the weather data (c).
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0.0 . . . . . .
0.5 0.0 12.6 0.0 0.0 00] 0.0 0.0 0.1 0.3
10.4 0.0 114.5 0.0 0.0 00| 0.0 0.8 0.0 0.2
4.3 0.0 26.5 0.0 0.0 00| 0.0 0.0 0.0 0.0
0.5 0.0 9.9 0.0 0.0 00| 00 1.2 0.0 0.0
0.0 0.0 59 0.0 0.0 00| 00 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 00| 0.0 0.0 0.0 0.0
1.6 0.0 16.3 0.0 0.0 00| 0.0 1.5 0.0 0.0
% 0.3 0.0 20.3 0.0 0.0 00| 0.0 0.2 0.0 0.2

SR 0.1 0.0 28.6 0.0 0.0 00| 0.0 0.3 0.1 0.5
x=0.05(0.05), E=61.76%(2.24%)

Table 7-37: CRBF?2 training set performance results (average) for the weather data (c).

00| 00] 00 07[ 00] 00
00| 00| 00| 00| 03] 07
00| 00| 00| 09| 00| o4
00| 00| 00| 00[ 00] 00
00| 00| 00| 26| 00] 00
00| 00| 00 00[ 00| 00
00] 00] 00| 00] 00[ 00
00] 00] 00| 41| 00] 00
00] 00] 00| 06| 00[ 06
00] 00] 00| 09] 03] o8

Table 7-38; CRBF?2 training set performance results (standard deviation) for the weather data

(c).
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00| 513 0.0 0.0 0.0 0.0 1.1 0.0 0.0
0.0 8.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1
00| 73.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2
0.0 18.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
0.0 7.7 0.0 0.0 0.0 0.0 04 0.0 0.0
0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00| 113 0.0 0.0 0.0 0.0 0.6 0.0 0.0
00| 115 0.0 0.0 0.0 0.0 0.1 0.0 0.1
00| 195 0.0 0.0 0.0 0.0 0.2 0.2 0.4
k=0. 04(0 03), E—63 94%(2.47%)

Table 7-39: CRBF?2 testing set performance results (average) for the weather data (c).

FSHEI DT

,x;1 \\ v‘,;_;-

Table 7-41: 1-NN training set performance results (average) for the weather data (c).
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02| 5.5 200 02 0.0 0.0 00| 00 06| 00
83| 18| 60.4 2.5 0.0 0.8 0.0 1.3 30 3.0
32| 0.0 271 131 0.4 0.2 00| 00 10| 06
04| 00 00| 00 1.6 0.0 0.0 0.4 00| 00
00| 00 07| 00 0.0 3.4 0.0 0.0 00| 00
00! 00 00| 0.0 0.0 0.0 00| 00 00| 00
09| 00 0.3 0.0 0.0 0.0 00| 124 00| 00
06| 06 00! 00 0.0 0.0 00| 00| 105| 03

& 08| 00 0.3 0.4 0.0 0.2 0.0 0.5 02| 18.0
k=0.67(0.04), E=26.19%(3.07%)

Table 7-43: 1-NN testing set performance results (average) for the weather data (c).

1.2 0.9
1.0 0.0
1.4 2.1
1.4 0.8
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.7 0.9
0.6 3.7

Table 7-44: 1-NN testing set performance results (standard deviation) for the weather data (c).
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0.0 8.9 3.1 0.2 0.0 00( 0.0 1.3 0.0
1.5 0.1 122.5 0.5 0.2 02} 00 04 0.5 0.0
0.4 0.2 0.7 28.9 0.1 021 00 0.0 0.0 03
1.0 0.0 0.6 0.0 9.2 00} 0.0 0.6 0.0 0.2
0.6 0.0 2.5 0.6 0.2 1.7{ 0.0 0.0 0.0 0.3
0.0 0.0 0.0 0.0 0.0 00} 0.0 0.0 0.0 0.0
0.0 0.0 0.7 0.1 0.2 00} 00 18.3 0.0 0.1
: 0.2 0.1 0.5 0.1 0.0 00] 0.0 02} 199 0.0
o 0.0 0.0 0.2 0.3 0.1 02] 00 04 0.5] 279

«=0.91(0.03), E=6.97%(2.54%)
Table 7-45: DDAG training set performance results (average) for the weather data (c).

384| 20| 126] 29 14 03 0.0 1.2 2.1 0.8

04| 2.7 3.1 0.6 04| 00| 0.0 1.3 00| 00

72| 10| 639 26 0.3 10 00| 22 06| 23

24| 02 30| 14.5 02| 0.1 00| 00 02| 06

14| 0.0 1.0/ 0.0 48| 00| 00| 06| 00| 06

03] 0.3 28| 03 0.1 0.2 00/ 00| 00| 0.1

8 o0 00| 00| 00 00/ 00| 00| 00 00| 00

B 06 00| 08| 05 07 00| o00] 108 00| 02

i 10| 05 1.3 0.2 0.0 0.3 0.0 0.4 8.3 0.0

4 i 04| 00 1.7 0.7 0.2 0.4 0.0 0.7 14| 149

! . .
x=0.60(0.04), E=31.39%(3.04%)
Table 7-47: DDAG testing set performance results (average) for the weather data (c).

105



0.1 13.0 . ] . . . . . .
0.0 0.0 125.9 0.0 0.0 00| 0.0 0.0 0.0 0.0
0.1 0.0 0.0 30.7 0.0 00| 00 0.0 0.0 0.0
0.0 0.0 0.0 0.0 11.6| 00| 00 0.0 0.0 0.0
0.0 0.0 0.1 0.0 0.0 57| 0.0 0.0 0.0 0.1
0.0 0.0 0.0 0.0 0.0 00| 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 00| 0.0 19.1 0.0 0.1
0.0 0.0 0.0 0.0 0.0 00 0.0 00| 21.0 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 00| 295

=1.00(0.01), E=0.35%(0.47%)

Table 7-49: 1-v-R training set performance results (average) for the weather data (c).

00 00| 00| 00
00| 00] 00| 00
00| 00] 00] 00
00| 00[ 00] 00
00 00[ 00] 00
00 00 00] 03
00| 00| 00| 00
00| 40] 00| 03
00 00] 16| 00
00| 00[ 00| 35

Table 7-50: 1-v-R training set performance results (standard deviation) for the weather data (c).
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1.0 . . . . . . .
07| 54 1.4 0.2 0.0 0.0 0.0 04 04 0.0
82| 10| 63.7 2.1 04 0.1 0.0 1.5 0.8 33
20 0.1 2.8 14.9 0.3 0.1 0.0 0.0 0.0 1.0
04| 0.0 0.0 0.0 7.6 0.0 0.0 0.0 0.0 0.4
00] 0.0 1.0 0.0 0.0 2.8 0.0 0.0 0.0 0.3
00| 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
07| 00 0.3 0.0 0.0 0.0 0.0 12.4 0.0 0.2
09| 0.0 0.3 0.0 0.0 0.0 0.0 00| 108 0.0
Ee g 08| 0.0 0.2 0.8 0.0 0.1 0.0 0.0 00| 185

k=0.71(0.04), E=22.64%(2.78%)

Table 7-51: 1-v-R testing set performance results (average) for the weather data (c).

Table 7-52: 1-v-R testing set performance results (standard deviation) for the weather data (c).

The results averaged over ten iterations, for the 10-class case, are summarized in
Table 7-53, Figure 7-11, and Figure 7-12. The resuits include the accuracy in training and
testing and the kappa score in training and testing. From these resuits, it can be seen that the
SVM, in the 1-v-R approach, outperformed all the other classifiers showing the best accuracy
(77.36% under testing) and the highest kappa score (0.71 under testing). From these results, it
can also be seen that the CRBF2 classifier performed poorly in this 10-class classification
problem. This poor performance may be caused by the small number of receptive fields the
CRBF?2 is using in solving this problem. In fact, while the CRBF1 used an average of 199
receptive fields, the CRBF2 used an average of 11 receptive fields. This small number of
receptive fields is associated with a small number of clusters (determined by prototypes
stability analysis) that may not adequately represent the structure in the data. Therefore,

experiments involving a larger maximum number of clusters to be used in the prototypes
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stability analysis are required to properly study the performance of the CRBF2 classifier in

solving this 10-class classification problem.

99.65%

36.06% | 73.81% | 68.61% | 77.36%
0.98 0.05 1 091 1.0
0.57 0.04 0.67 0.60 0.71

Table 7-53: Summary of resuits for the weather data (c).

Accuracy (in Percentage) for the Weather Data (c)

Accuracy (%)

Figure 7-11: Training accuracy for the weather data (c). 10-class case.

Accuracy (in Percentage) for the Weather Data (c)

Accuracy (%)

Testing

Figure 7-12: Testing accuracy for the weather data (c). 10-class case.
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7.7 Discussion

Through the experiments presented in this chapter, it has been found that the SVM
approach generally outperforms other classification methods in terms of higher classification
accuracy. The good results obtained with the SVM may be related to the fact that the SVM
produces decision surfaces that maximize the margin, as illustrated in Section 4.3. This fact
makes it more robust than other classifiers in dealing with imprecise class labels.

In this chapter, the notion of prototypes stability analysis (whose intent is to determine
the appropriate number of clusters, prototypes, or information granules to be used in classifier
design) was applied to determine the number of centres for the design of the receptive fields of
an RBF neural network (CRBF2). Even though the classification rates were not the best ones,
the results in training and testing were quite similar (a difference of less than 3%). This may
indicate that certain structure in the data was found and that most work must be done in the
recognition stage to improve the classification rates.

Finally, it could be observed that the results were variable for the accuracy of the
different methods. The greatest variability was associated with the weather data set. This may
be related to the fact that this particular data set has a large number of data patterns that are
identical but have different labels (see Section 2.6.5). Therefore, only the classifiers that were

robust in dealing with imprecise class labels produced similar results.

7.8 Summary

This chapter compared the performance of the methods described in the previous
sections (i.e. the RBF and the SVM approaches) with the performance of 1-nearest neighbour
classifier. These studies relied on widely available data sets, an iris data set, 2 Wisconsin
breast cancer data set and a Boston housing data, and a real-life data set, a severe storm cell
data set from Environment Canada.

It has been found through these experiments that, when compared to classic radial
basis function neural networks and the 1-nearest neighbour classifier, the support vector
machine approach achieved superior classification accuracy in most of the classification tasks.
The good results obtained with the SVM may be related to the fact that the SVM generally
produces smooth decision surfaces that maximize the margin as depicted in the artificial data

classification problem of Section 4.3.
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Finally, the applicability of the prototypes stability analysis for determining the
number of prototypes (in the case of the CRBF2) to be used in classifier design was also
studied. The results suggest that this technique could be applied with success in future

applications.
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8 Conclusions and Recommendations for Future Work

8.1 Conclusions

This thesis had two main objectives. The first objective was to study the potential of
support vector machines and radial basis function neural networks when applied to a series of
classification problems. The second objective was to enhance these two approaches by using
ideas of granular computing.

Regarding the first objective, this thesis has assessed the applicability of the support
vector machine for a series of classification tasks that include iris classification, breast cancer
classification, housing price classification, and storm cell classification. Compared to classic
radial basis function neural networks and I-NN classifiers the support vector machine
achieved superior classification accuracy in all the cases but in the breast cancer classification
in which its performance was similar to that of the other classifiers. The decision directed
acyclic graph and one-versus-rest strategies were used with the support vector machine in
order to deal with the above multi-class (3 in the case of the iris data set and 4 and 10 in the
case of the storm cell data) problems. The latter strategy consistently outperformed the former
with respect to accuracy. The good results obtained with the SVM may be related to the fact
that the SVM generally produces smooth decision surfaces that maximize the margin as
depicted in the artificial data classification problem of previous chapters. This fact makes it
more robust than the other classifiers in dealing with imprecise class labels.

Regarding the second objective, this thesis presented an attempt to incorporate fuzzy
methods into the support vector machine (SVM) approach. This may be the first step to
develop an SVM approach capable of using previous knowledge, encoded in the form of fuzzy
rules, during the learning process and capable of producing interpretable results by
transforming the parameters learned back to fuzzy rules. This SVM approach was called
hybrid support vector machine (HSVM) because some computations are performed using
operations on fuzzy sets. These operations consisted of similarity measures realized through a
special type of kernels that were called fuzzy kernels because they operate on fuzzy sets.
These fuzzy kernels were optimized using genetic algorithms. The HSVM performance was
studied using artificial classification problems. The initial results obtained suggest that even
though more work must be done to make sure the HSVM maximizes the margin, the accuracy

in testing is promising enough to justify further research.
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One of the most important considerations in classifier design is the selection of the
appropriate number of clusters, prototypes, or information granules. In this thesis, a concept of
prototypes stability was introduced. Prototypes are said to be stable if the variation among
dimensions of the resulting prototypes corresponding to the same cluster in different subsets
of the same data is minimal. Based on this idea, prototypes stability analysis (PSA) was used
to determine an appropriate number of prototypes, clusters, or information granules to be used
in classifier design. In this thesis, PSA was used to determine the number of centres for the
design of the receptive fields of a radial basis function (RBF) neural network. Fuzzy c-means
was used to find the centres of the receptive fields. From the results obtained, it could be seen
that even though the classification rates were not always the best ones. the results in training
and testing were quite similar indicating that the prototype stability analysis helped to find the

best possible structure for classifier design.

8.2 Future Work

Below is a list of some of areas that should be considered for further work.

Hybrid support vector machines:
Among the aspects that could be considered for future investigation are the following:

1. Develop alternative methods for information granules generation.

2. Perform new experiments involving a fitness function that also takes into
account the margin to produce decision surfaces that maximize the margin
leading to better generalization performances.

3. Develop new kernels to generate different types of decision surfaces.

4. Use alternative optimization algorithms, such as gradient descent, to optimize
the parameters associated with the kernels. These methods should focus in the
reduction of the computational load associated with the use of genetic
algorithms in the present approach.

5. Develop a methodology for interpreting the results obtained.
Prototypes stability analysis:

The future investigations should be centred in applying the proposed method in the

design of other type of classifiers and in the development of rule-based systems.
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Storm cell classification:
The main avenue for future investigations would be to evaluate complementary pre-
processing strategies involving fuzzy set theory [77], [50], [54], [57]. Doing so, it will be

possible to deal with imprecise class labels.
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