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Abstract

In most applications, because of numerous advantages i t  offers, d igital technol

ogy (computer, PLC, microcontroller etc.) is used to control industrial plants. 

These types of systems, where the process under control is continuous-time 

but the controller is dig itally implemented, are called sampled-data systems. 

Faults can occur in sampled-data systems like any other control system. In 

order to prevent performance degradation, physical damage or failure, faults 

should be prom ptly detected. In this thesis fault diagnosis in sampled-data 

systems is studied. The sampled-data design can be carried out using direct 

or indirect design approaches. Direct design, emphasized in this research, does 

not involve any approximations.

Normally, to design a robust fault detection and isolation (FD I) scheme, a 

performance index which is a measure of the sensitivity of the FD I to faults and 

its robustness to unknown inputs and disturbances is defined and optimized. 

Different performance indices based on Hoo and 'Hi norms are considered. 

Using the direct design approach and the so-called norm invariant transfor

mation, i t  is shown that a sampled-data FD I problem can be converted to an 

equivalent discrete-time problem. This w ill form the foundation of a unifying 

framework for optimal sampled-data residual generator design.

M ultira te systems are also abundant in industry. Here, several methods 

of residual generation based on multirate sampled data are developed. The
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key feature of such residual generators is that they operate at a fast rate for 

prompt fault detection. The lifting  technique is used to convert the multirate 

problem into an equivalent single-rate discrete-time problem w ith  causality 

constraints.

I t  is generally believed that the optimal multirate design performs better 

than the optim al slow-rate and worse than the optimal fast-rate designs. This 

conjecture is theoretically proved in this thesis for general m ultirate control 

systems w ith  norms of the closed-loop system as performance indices. How

ever, i t  is shown that the common performance indices in FD I design do not 

satisfy this property. To resolve this, an alternative performance index is de

fined after formulating the FD I problem as a standard control problem.
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Chapter 1 

Introduction

1.1 Background

By definition a fault is a nonpermitted deviation of a characteristic property 

which leads to the inability  to fu lfil the intended purpose [7, 30]. Faults can 

occur in all of the components of a closed-loop control system including sen
sors, actuators, communication network and the process under control. Such 
faults disturb the normal operation of the control system and may result in un

satisfactory performance, instability, failure (complete breakdown of a system 

component or function) or even dangerous situations. Due to the increasing 

complexity of modern control systems and the growing demands for quality, 
cost efficiency, availability, re liab ility and safety, i t  is important that faults be 
promptly diagnosed and appropriate remedies be applied.

A  monitoring system which is used to detect faults and determine their 

type, location, time of occurrence and significance is called a fault diagnosis 
system [7, 30]. The overall concept of fault diagnosis consists of the following 
three tasks [7, 19]:

•  F a u lt d e tec tion : determination of the presence of a fault in a system 
and the time of its occurrence.

•  F a u lt iso la tion : determination of the location of different faults, e.g., 
which sensor or actuator has become faulty.

•  F a u lt id e n tif ic a tio n : estimation of the type, magnitude and cause of 

the fault.

1
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u{t)

fau lt information FDI

Process

Controller

Figure 1.1: A  typical fault detection and isolation scheme

Depending on the type of fault and the acceptable performance of a control 
system, these three tasks can be relatively important. However, fault detection 

is an absolute must for any practical system and fault isolation is almost 

equally important. On the other hand, fault identification may not be essential 

if  no reconfiguration action is involved [7]. Hence, in the literature, fault 

diagnosis is often considered as fault detection and isolation (FD I). Research 
in fault diagnosis has been gaining attention during the past three decades 

in both theory and application, and numerous results are available in the 
literature. Many books, tutoria l papers and surveys have also been w ritten on 
the subject [7, 18, 19, 21, 22, 23, 24, 25, 41].

A  typical scheme of fault detection and isolation in a control system is 

illustrated in Figure 1.1. In this scheme, besides the control signal u(t), there 

are two other inputs to the process: unknown disturbance d(t) and fault to 

be detected / ( f ) .  The FD I uses process input u(t) and process output y(t) to 
detect the faults. Based on the information obtained from the FD I one can 

decide how to deal w ith  the faults.

Various methods of fault diagnosis have been developed in the literature. 
These methods have also been categorized in various groups based on different 

criteria [19, 41]. Here, three main categories of fault detection methods are 
briefly introduced:

H a rd w a re  re d un d an cy  is a traditional approach to fault diagnosis. The 

method is based on using multiple lanes of sensors, actuators and computer

2
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hardware/software to measure and control a particular variable. A  voting 

scheme is then applied to decide if  a fault has occurred and its likely location 

[31, 43, 47]. The use of hardware redundancy is common in highly sensitive 

systems like flight control [17]. While this method is very reliable, extra equip
ment and maintenance cost and the additional space required to accommodate 
the redundant hardware could be serious problems.

Signal based fault detection is the most frequently used diagnosis method 

in practice [4, 44], The idea is to monitor the level of a particular signal and 

raise alarm when the signal reaches a certain threshold. This method is easy 

to implement but it  has some serious drawbacks. Firstly, the method is not 
robust, i.e., in the event of noise, input variation and change of operating 

point, false alarms can possibly be raised. Secondly, a single fault can cause 
many system signals to exceed their lim its, which makes fault isolation very 

difficult. In view of these drawbacks, some techniques have been recently 
proposed tha t combine the signal based approach w ith statistical methods, in 
order to improve the robustness and accuracy of fault detection [26].

Model based fault detection can be defined as detection and isolation 

of faults by comparing the systems’ available measurements w ith a prio r i in

formation represented by a mathematical model of the system (analytical re

dundancy). The difference between real measurements and estimates of these 

measurements are used to generate a residual quantity. Fault is then detected 

by setting a threshold on this residual quantity. A  number of residuals can be 
designed for faults occurring in different locations of the system. The analysis 

of each individual residual leads to fault isolation. The main focus in this 

thesis is on model based methods of fault detection, which w ill be discussed 

in more details in Chapter 2.
Because of numerous advantages that d igital technology and computers can 

offer, nowadays most of control and fault detection algorithms are implemented 
by computers. A  combination of a real world continuous-time process and a 
digital controller is called a sampled-data system. Extensive research has been 
carried out on sampled-data systems and various approaches for controller 

design have been introduced [9]. Processes that are controlled in a sampled- 

data framework are also susceptible to faults. So the question that naturally

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comes to mind is tha t how faults can be detected in a sampled-data framework. 

This question and other related issues in sampled-data fault detection are 
addressed in this thesis.

A relatively easy approach to the sampled-data FD I problem is to use the 

known continuous-time or discrete-time techniques. This is known as indirect 

design, and can be accomplished in two ways:

•  One can first design a continuous-time FD I for the continuous-time sys
tem and then approximate i t  by a discrete-time FDI.

•  Alternatively, one can first approximate the continuous-time system by 

a discrete-time one and then design a discrete-time FDI.

Because of the approximation involved in both designs, one might not get a 
satisfactory result [54]. In control system design, there exists another approach 

that enables us to directly design a discrete-time controller for the continuous

time system w ithout making any approximations [9], known as direct design. 
The direct approach for controller design motivates us to investigate a direct 

method of FD I design for sampled-data systems. Some work has been re

cently done on this subject and interesting results are available [53, 56, 58]. 
In this thesis, a unifying and general approach is developed for FD I design in 

sampled-data systems by using the so-called norm invariant transformation. 

The approach is based on converting the original sampled-data problem to a 
discrete-time one.

In the study of sampled-data systems, an essential assumption is tha t all the 

inputs/outputs are generated/sampled synchronously at a single rate. How

ever, this is not the case in many industrial situations where different control 

signals are generated at different rates and/or different process outputs are 
measured at different rates. These systems, known as multirate sampled-data 
systems, are again susceptible to faults. The next problem discussed in this 

thesis is how to design an FDI for multirate sampled-data systems. Some 
methods are already available in the literature [14, 15, 16, 49, 55, 57, 59]. In 
most of these methods, detection of faults can be substantially delayed be
cause the fault information (residual) is generated at a slow rate. To reduce 

or eliminate the detection delay, an FDI scheme needs to generate the fault 

information at the fastest rate possible. The approach adopted here guaran-

4
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tees that anytime a new piece of information arrives from the process, the FDI 

updates the residual.

One of the important properties of an FDI is that it  should be insensitive to 
disturbance, noise and other unknown inputs in order to lower the false alarm 

rate. Meanwhile, the FD I should be adequately sensitive to faults so that it  
can properly detect even very small faults. Therefore, the most challenging 
trade-off in FD I design is to increase sensitivity to faults and robustness to 

other unknown inputs. Researchers try  to address this trade-off by introducing 

and optim izing a performance index. Therefore, selection of an appropriate 

performance index and developing analytical or numerical optim ization meth

ods are fundamental steps in any robust FD I design. But what is exactly 

meant by an “appropriate” performance index? This is another subject that 
is investigated in this thesis.

One of the properties that is in tuitively expected from an “appropriate” 
performance index is that: i f  more information (from the system) is available 

then better performance can be achieved. The precise mathematical statement 

of this property w ill be provided later in the thesis, but what is important for 
now is that, the popular and commonly used performance indices in FD I design 

do not satisfy this property. This w ill be shown via some examples. I t  w ill also 

be proved that the performance index used for controller design (some norm 
of the closed-loop system) is in fact “appropriate” in the sense that it  satisfies 
the aforementioned property. Therefore, if  one can formulate the FD I design 
problem as a controller design problem, then the control performance index 
can be readily used. In this thesis an approach is proposed to implement this 

idea and convert the sampled-data FD I problem to an equivalent sampled-data 

control problem.

1.2 Outline of the thesis

The rest of this thesis is organized as follows:
In Chapter 2, model based methods of fault detection are reviewed. A f

ter a brief discussion of how faults are modelled in dynamical systems, the 
concepts of residual and residual generation are introduced. The three main 

methods of model based residual generation which are: observer, parity space 

and factorization, are briefly reviewed. The issue of robust residual generation

5
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and its methods are also addressed. Finally, the decoupling of residual from 

disturbance is discussed.

Chapter 3 is about fault detection in sampled-data systems. After review

ing the concepts of direct and indirect designs in sampled-data systems, the 

techniques to convert a continuous-time model to a discrete-time one are dis

cussed. Generalizations of the concepts of Hoo and H i  norms to sampled-data 

systems are given next. These concepts are then used to address the robustness 

of residual generators in sampled-data systems. The important contribution of 
this chapter is to provide a general formulation of the robust residual generator 
for sampled-data systems. This w ill be achieved by converting the sampled- 

data problem to a discrete-time problem, which can be solved using existing 

methods of discrete-time FD I design.

Chapter 4 is dedicated to fault detection in multirate systems. A  multirate 
sampled-data system is converted to a single-rate discrete-time system using 

the lifting  operation and direct design. This w ill form the basic framework 

for fault detection in multirate systems. Methods of residual generation are 
directly applicable to the equivalent discrete-time model. However, the re

sult w ill be a slow-rate residual generator. Two methods of fast-rate residual 

generation are then proposed based on parity space and factorization (w ith 
Hoo optim ization) techniques, and the optim ality and causality issues are ad

dressed.
In Chapter 5, an analysis of the performance index in sampled-data control 

systems is given. Hoo and H 2 performances of sampled-data and linear peri
odically time-varying systems (LPTV) are defined. Then the theorems that 

compare the performances of slow-rate, fast-rate, and multirate systems are 

proposed and proved.

In Chapter 6, motivated by the results of Chapter 5, the performance 

indices used for sampled-data fault detection are studied. I t  is shown, through 

some examples, that the expected properties do not hold for these performance 

indices. To address this, the sampled-data FD I problem is converted to a 
standard control problem which can be solved using known techniques.

A  summary of the thesis, final conclusions and some directions for future 

work are given in Chapter 7.

6
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Chapter 2 

M odel Based Fault Diagnosis

The model based fault diagnosis approach makes explicit use of a mathematical 
model of the process. I t  has been receiving considerable attention during the 

past decades, both in research and application. A  great variety of methods 

of model based FD I have been developed based on the use of mathematical 
models and modern control theory.

Two main steps in a successful model based FD I algorithm are:

•  R es idua l genera tion : A  residual generator uses the available input and 

output information of the process to generate a fault indicating signal 
(residual). The residual should be normally zero or close to zero when 
no fault is present, but different from zero when a fault occurs. This 

means that in ideal conditions, the residual is independent of the input 

and output of the system.

•  R es idua l eva lua tion  (decis ion m ak ing ): The residuals generated 

by residual generators are examined for the likelihood of faults and a 
decision is made based on that. An evaluation process may consist of a 

simple threshold test on the instantaneous values or moving averages of 

the residual. A lternatively methods of statistical decision theory (e.g., 

generalized likelihood ratio testing or sequential probability ratio testing) 

may be used to evaluate the residual.

Most of the work in the field of model based FD I is focused on the resid

ual generation problem. The reason is that residual evaluation and decision 

making are relatively easy on well designed residuals. However, this does not

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



imply that the research on residual evaluation is not important. This thesis 

concentrates on model based residual generation.
Ideally the residual should only be sensitive to faults. I f  no modelling 

uncertainty is present, the dependency of the residual on the input and output 

of a system can be removed by proper design. In  addition to the controlled 
input of a system (control signal), other unknown inputs (e.g., disturbance, 
measurement noise, etc.) can change the output of the system and hence the 

residual. This may cause a false alarm even when a fault has not occurred. A 

model based FD I has to be sensitive w ith  respect to faults in order to detect 

incipient faults, but robust w ith  respect to unknown inputs and modelling 

uncertainties in order to avoid false alarms. Thus, an important property 

of a model based FD I is the robustness against modelling uncertainty and 
disturbance. Robust FD I has become a central research issue over recent 

years.

2.1 M odelling of faulty system s

From the fault diagnosis point of view, it  is useful to divide the faults into 

three categories [19]:

•  Actuator faults

•  Component faults

•  Sensor faults

In model based methods, faults are commonly modelled as input signals. In 

addition, there are always other (unknown) inputs in the system due to dis
turbance, noise, etc. Model uncertainty, which always exists in real world 
problems, is also modelled by unknown input. So, in general, apart from the 

actual controlled input to the process, two other sets of inputs are considered: 

vector of faults to be detected and vector of unknown inputs (which represents 

disturbance, noise, model uncertainty, etc.).
In this research, linear time-invariant (LTI) multiple-input multiple-output 

(M IM O) dynamical systems are considered. A  dynamical system w ith a pos

sib ility of fault occurrence can be modelled both by state space or transfer 
function equations.

8
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S tate  space m ode l

The state space model of a faulty system is given as

f  ±{t) =  Ax(t) +  B u( t) +  Edd{t) +  E fJ a(t) +  E fJ c(t) 
\  y(t) =  Cx(t) +  Du(t) +  D dd(t) +  D fJ a{t) +  D fJ 8(t)

where x(t) G Rn is the state vector, u(t) G Rn" the vector of control signal, 
y (t) G Rm the vector of plant output, d(t) G Rn<1 the vector of unknown inputs 
(e.g., disturbance, noise, model mismatch, etc.), f a(t) G Rn/« the vector of 

actuator faults, f c{t) G Rn/c the vector of component faults and f s(t) G Rn/* 
the vector of sensor faults. A, B, C, D, Ed, D d, E fa, D ja, E jc and D jm are 

known matrices of appropriate dimensions.

Combining all possible faults together, a general faulty system can be mod

elled as
f  x(t) =  Ax(t) +  B u ( t ) +  Edd(t) +  E f f { t ) 
\  y(t) =  Cx(t) +  Du(t) +  D dd(t) +  D f f ( t )

where f ( t )  G Rn/ is the fault vector. Each element of the fault vector f ( t )  
corresponds to a specific component/actuator/sensor fault. E f  and D j  are 

known as fault entry matrices and represent the effect of faults on the system.

T ransfe r fu n c tio n  m ode l

Transfer functions may also be used to model a faulty system:

y{t) =  Guu(t) +  Gdd{t) +  Gf f ( t ) ,  (2.1)

where u(t) G Rn“ is the input vector, y(t) G Rm the output vector, d(t) G Rn<i 

the vector of unknown inputs and f ( t )  G Rn/ the vector of faults to  be detected. 

Gu(s), Gd(s) and G/(s) are transfer functions of appropriate dimensions.

D isc re te -tim e  system s

Similar to the continuous-time models, one of the following models for discrete

time faulty systems might be used:

State soace model- /  x ^k +  ^  =  A x ^  +  B u ^  +  EddW  +  E f f  ̂
Sp {  y(k) =  Cx(k) +  Du{d) +  D dd(k) +  D f f ( k )

Transfer function model: y(k) =  Guu(k ) +  Gdd(k) +  G / f ( k )

9
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Here, x(k) £ R” , u(k) £ Rn“ , y(k) £ Rm, d(k) £ R "d and f ( k )  £ Rn'  

are the state, control signal, plant output, unknown input and fault vectors 

respectively. A, B, C, D, Ed, Dd, E f  and D f  are known matrices of appropriate 

dimensions. Gu(z), Gd{z) and Gf(z)  are discrete-time LT I transfer functions 

of appropriate dimensions.

2.2 General structure o f residual generator

In this section, the general structure of a residual generator in model based 

methods of FD I design is derived. The information used for residual generation 

in a continuous-time system is the measured output from sensors y(t)  and the 
control signal u(t). A  residual generator is a Unear time-invariant process; its 
input consists of both input and output of the system under monitor and its 
output is the residual. A  typical residual generator is then described by:

where r ( t )  £ R is the residual. Qy(s) and Qu(s) are stable LT I transfer function 

matrices.

First the simple case when no unknown input is present in the system is 

considered, i.e., d =  0. By definition the residual is designed to become zero 

for the fault free case and nonzero for the faulty case:

In other words r  =  0 i f  and only i f  /  =  0. To satisfy this condition, after 
substituting system model (2.1) in (2.2), Qy and Qu must satisfy the following 

constraint:

This condition parameterizes all linear residual generators. Satisfaction of

input of the process. Design of a residual generator is now summarized in the 
selection of Qy and Qu.

I f  the process is affected by unknown inputs (i.e., d(t) /  0), then in addition 
to condition (2.3) other constraints are raised. One now needs to generate a

r { t )  =  [ Qy Qu ] ^  =  Qyy(t ) +  Quu(t), (2.2)

residual
nonzero

f  =  o, 
f ± Q-

Qy(s)Gu(s) +  Qu(s) =  0. (2.3)

condition (2.3) guarantees that the residual is independent of the controlled

10
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residual that is as sensitive as possible to faults and as robust as possible to 

unknown inputs, which introduces the concept of robust FDI.

Different model based methods of residual generation vary in how they 
parameterize the residual generator (i.e., Qy and Qu) and how they tackle the 

robustness problem. Various methods have been developed in  the literature, 

most of them belong to one of these main categories:

•  observer based approach,

•  parity space approach,

•  factorization approach,

•  parameter estimation approach.

Although these methods have been developed independently over decades, 

several researchers have pointed out that there are close relationships among 
the different approaches [19]. In this chapter, some of the methods that are 
emphasized in our research are briefly reviewed.

2.3 Observer based m ethods

A wide class of linear residual generators are observers. The idea is to use an 

observer to estimate the output of the plant and then compaxe the estimated 

output w ith  the actual output to generate the residual. A  typical observer 
based residual generator is formulated as:

f w(t) =  F w {t)  +  K y ( t ) +  Ju(t)
\  r ( t )  =  L iw ( t )  +  L 2y(t) +  L 3u(t)

w (t ) € Mn“  is the state vector of residual generator and r ( t)  € R is the residual. 
Matrices F, K ,  J, L \,  L 2 and L 3 are designed to guarantee stability of the
residual generator, satisfy the general condition (2.3) and make the effect of

d(t) on r ( t )  zero or as small as possible. To do so different approaches are 

available: unknown input observers, fault detection filters and eigenstructure 

assignment, to name a few [21, 28, 42]. The methods are readily extendible to 
the discrete-time case [7].

11
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2.4 Parity space approach

The parity space approach was originally introduced for discrete-time sys

tems [11]. However, some attempts have been made to generalize i t  to the 

continuous-time case [40]. Here, the original form of parity space as intro

duced in [11] is considered for the following discrete-time system

x(k  +  1) =  Ax(k)  4- Bu(k) +  E dd(k) +  E f f ( k )  
y(k) =  Cx(k) +  Du(k) +  D dd(k) +  D f f ( k )

I t  is assumed tha t (C , A)  is observable.

A  parity space based residual generator is formulated as:

{

r ( k ) =  v3{y3(k) -  H Ut3u3(k)), (2.4)

where

y(k -  s) u(k — s)

Vs(k) =
y ( k - s  +  1)

, u3(k) =
u(k — s +  1)

y(k) u(k)

H u . =

D
C B

0
D

0
0

0
0

C A a~l B  C A S~2B C B  D

Here, r(k )  G R is the residual and s is the order of parity relation. The design 
parameter vs € R lxm(s+1) is known as the parity vector. To satisfy the general 

residual generator condition (2.3), the parity vector vs should satisfy

V3Po,S b, E 0'g —

c
CA

C A S

(2.5)

The set of all parity vectors that satisfy condition (2.5) is known as parity 

space P3

Ps =  {vs\vsH 0>s =  0} .

Substituting y(k ) from the plant model in (2.4) and using the condition 
(2.5), the dynamics of the residual generator is expressed by

r (k )  =  v3(H dtSd3(k) +  H ft3f 3(k)), 

12

V. e P3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

d(k — s) f ( k  ~  s)

ds(k) =

H dtS =

H

d(k — s +  1)
, m  =

f ( k -  s +

d(k) f ( k )

D d 0 0 0
CEd D d ••• 0 0

C A s~1Ed C A a~2Ed ••• CEd ° d  _

D f 0 0 0
C Ef D f  ••• 0 0

C A ' - 'E f C A a~2E f  ••• C Ef D f .

f,s

Now, the problem is how to find v3. I f  there exists a parity vector vs € Ps 
such that

v3H d<3 =  0,

^sHft3 ^  0,

then the residual r ( k ) can be perfectly decoupled from the unknown input 

d(k). Otherwise, the effect of d(k) on r(k )  can be minimized by solving an 
optim ization problem. A  common choice of performance index for optim ization 

is
I M M  2 _J (2.6)
\\v3H ft3\\2 v3H u H J X '

The numerator of J  in (2.6) reflects the effect of unknown input d(k) on the 

residual while the denominator reflects the effect of fault f ( k ) .  By minimizing 

J  a compromise is made between sensitivity to the fault and robustness to the 
disturbance. v3 is then designed by solving the optimization problem

min J.
v ,€P ,

(2.7)

The complete analytical solution of this optimization problem can be found 
in [11]. Here the optimal solution is given w ithout proof.

Assume that N b is the basis vector for parity space P3 (or the null space 

of H Qt3), i.e., for any parity vector vs there exists a vector p3 such that v3 =

13
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p„NB■ Also assume that Amj„ is the minimum generalized eigenvalue of the pair 
(N sH ^sH j^N g , N BH f i3H j aN g)  and ps,min is the corresponding generalized 
eigenvector, i.e.,

Ps,minNBHd'sHtf gNg =  AminpSimij,N BHf^sH j 3N g .

Then v* =  pa,mmNB is the optimal solution of (2.7) and J* =  Amin is the 

optimal performance.

2.5 Factorization approach

As discussed earlier, any linear residual generator can be described as (2.2) 
w ith Qy and Qu satisfying (2.3). Here, a parametrization of all linear residual 

generators based on the coprime factorization of Gu is given [20].

Consider the LT I continuous-time process described by the transfer func

tion model
y(t) =  Guu (t ) +  Gdd(t) +  Gf f ( t ) .  (2.8)

Let (M u(s), N u(s)) be a left coprime factorization of Gu(s), i.e., M u(s) and 

Nu(s) are left coprime and they satisfy

Gu(s) =  M ~ 1(s)Nu(s).

Then a parametrization of Qy and Qu is given as

Qy(s) =  R (s)M u(s),

Qu(s) =  ~R (s )N u(s).

In other words all linear residual generators for the continuous-time system in 

(2.8) can be parameterized as

r( t)  =  R (M uy ( t ) - N uu(t)) ,  (2.9)

where R(s) 6 7ZH)£m is a designable post-filter. Let

' A B  '
C D
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Assuming (C, A) is observable, the left coprime factorization (M u(s), N u(s)) 

can be parameterized as

„  , , \ A - L C  L
M u(s) =  —  j -  ,

Ar , , ' A - L C  B - L D  
N.(>) =  —  s  .

where L  is a free-to-choose m atrix which ensures tha t A  — L C  is Hurwitz. 
Note that when Gu(s) is stable, one can choose L  =  0 and thus M u(s) =  I  

and N u(s) =  Gu(s). In  this case the general form of the residual generator is

r ( f)  =  R(y(t) -  Guu(t)).

Design of the residual generator is now summarized in finding the sta

ble transfer function m atrix R(s). Substituting the system model (2.8) into 
the residual generator (2.9), the dynamics of the residual generator can be 
expressed by

r ( t )  =  R M uGdd{t) +  R M UG / /(£ ) 

=  R M u(Gdd(t) +  Gf f ( t ) ) .

This equation shows how the fault f ( t )  and the unknown input d(t) affect the 
residual. In the ideal case, the residual should only be sensitive to f ( t )  which 

means that d(t) should have no effect on the residual. I f  a post-filter R(s) can 

be found such that

R(s)M u{s)Gd(s) =  0,

R(s)M u(s)Gf(s) 0.

then perfect decoupling of the residual from the unknown input is possible (this 

case w ill be discussed later in Section 2.6). Otherwise, in order to compromise 

between the sensitivity of the residual to the fault and its robustness to the 

unknown input, one should design R(s) to make R(s)M u(s)Gd(s) as small 
as possible (in some sense) while keeping R(s)M u(s)Gf(s) reasonably large. 
Using some definition of norm as a measure of the size of a system, R(s) is to 

be found such that ||J?(s)Mu(s)Gd(s)|| becomes small while ||i?(s)Mu(s)G/(s)||

15
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remains large. This is usually achieved by solving an optim ization problem. As 

a widely accepted approach the following optim ization problem is considered

\\R(s)Mu(s)Gd(s)\\
mm

\\R(s)Mu(s)Gf (s)\\'

The solutions of this optim ization problem for the common Hoo and 7 i2 norms 
are briefly review next.

2.5.1 Hoc optim ization

In the Hoo approach the performance index is

||i?(s)M1I(s)Gd(s)||00
00/00

and the optim ization problem becomes

min Joo/oo'
R(s)eR.Hao

The analytical solution of this optim ization problem is given in [13, 20] which 

is briefly reviewed here.
Assume that Gd{s) has no transmission zeros on the imaginary axis and at 

in fin ity  (i.e., Gd(ju) does not lose rank for all u> [5]). This assumption ensures 

that there exists a so-called co-inner-outer factorization of M u(s)Gd(s) such 
that

M u(s)Gd(s) =  Gdo(s)Gdi(s).

The co-inner Gdi(s) satisfies Gdi(joj)G (—jo;) =  I .  The co-outer Gdo(s) has a 

left inverse G ^ ( s )  € TZHoo such that G j01(s)G<i0(s) =  I .  Now define a change 
of variable as

R(s) =  Q (s )G ^(s ),

where Q(s) 6 TZHoo is the new parameter. The performance index in terms of 
Q(s) w ill be

j  l l Q ( g ) G * ( a ) H o o
00/00 ||g (S)Gd- 1(S)M u(S)G/ (s)||oo'

Using the fact that
||Q(s)Gdl(s)||0o=  ||<2(s)||oo,

16
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and the submultiplicative property of H o o  norm

\ \Q (s )G ^(s )M u(s)Gf (s)\\oo< ||Q(s)||oo||G^1( s ) ^ ( s ) G / (s)||00) 

im ply that, IIOMIU _____ IIQMIU_______
w“  NWGi'WW.WG/WIU -  ll<3WIUIIGi,(j)i4.(>)G/(«)|U

1

"  \ \G ^ (s )M u(s)Gf {s)\\oo'

Therefore, the optim al performance index is

=  « G i1W M ,(» )G / (8)|U - (2' U )

This optimal performance index can be achieved by selecting any stable Q(s) 
that satisfies

ll(? (s)^ !do1(s) '^ “ (s)^ !/ ( s) ll0O=  ll<5 (s)llo0||G!d01(s)M u(s)G /(s)||00. (2.12)

Conventionally Q(s) =  I  is chosen, but in this thesis the general form of Q(s) 

is considered.

In  summary, the family of optimal solutions of the optim ization problem 
in (2.10) is given as

R*(s)  =  Q ( s) G £ ( s),

where the parameter Q(s) € TZHoo satisfies (2.12). The optimal value of the 

performance index Joo/oo is given in (2.11).
This solution is obtained under the assumption that Gd(s) has no trans

mission zeros on the imaginary axis and at infinity, which is too restrictive. 

For example i f  Gd(s) is strictly proper, then it  has zeros at in fin ity  and Gdo(s) 
does not have a left inverse in TZHoo- An approach was delivered in [13] which 
extended this result to the case that Gdo(s) is not left invertible. There is 

also another parametrization of the solution in [20] that does not require the 

assumption that Gd(s) has no zeros at infinity.

2.5 .2  H ti op tim ization

For the H 2 approach, the following performance index is considered

2/2 H B W M .W G /W iir
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Thus, the optimization problem becomes

min J2/2 - (2.13)
R(s)eRW  oo

Using the definition of H 2 norm, the performance index J2/ 2 can be w ritten as

/ OO

R ( ju ) M u( ju )G d{j(jj)GTd{ - j u j ) M l { - j u j ) R T{- ju j)dM

•OOJ2/2 "

/OO

R (ju j)M u( ju j ) G f ( ju ) G ' f ( - ju j ) M ^ ( - ju ) R T(-ju!)<Lj
•OO

The analytical solution of this optim ization problem is proposed in [12]. Here 

the optimal solution is given w ithout proof.
Assume that f Ug{s) is an ideal frequency selector at frequency cjq, i.e.,

vg(s) g n n ' * m,
' U o iM Q t iu )  =  0, u ^ u 0

I f°°/ U 0(ju)q(ju>)qT(-ju>)fZo(-ju>)(Lj =  q(ju0)qT( - ju j0).
, J  —OO

Also assume that Amjn(u) is the minimum generalized eigenvalue and Vm m W  
is the corresponding generalized eigenvector of the following generalized eigen

value problem

Vmin(ju)Mu(juj)Gd(juj)Gd{ - j u ) M T ( - j u j )  =

Kin{to)vm-m(juj)Mu(juj)Gf{juj)G' j( - juj )M^{-juj).

Also assume that Amin(o;) has its minimum at frequency i.e.,

Amin(^ ) =  Amin(uj).u>

The optimal solution of the optim ization problem in (2.13) is

R  (^) =  fu ' (s)umjn(s),

and the optimal value of the performance index is

2/2 ~  Amin(^ )■

The ideal frequency selector f UQ{s) is not practically implementable. In 

practice usually a bandpass filter w ith  a narrow frequency bandwidth is used 

to approximate the ideal frequency selector.
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2.5.3 D iscrete-tim e system s

The factorization approach for discrete-time systems is very similar to the 

continuous-time case. Consider the LT I discrete-time process described by

y{k) =  Guu{k) +  Gdd(k) +  Gf f {k ) .  (2.14)

Let (M u(z), Nu(z)) be a left coprime factorization of Gu(z), i.e., M u{z) and 

N u{z) are left coprime and they satisfy

Gu(z) =  M ~ 1(z)Nu(z).

Then all linear discrete-time residual generators can be parameterized as

r (k )  =  R (M uy(k) -  Nuu (k ) ) , (2.15)

where R(z) G 7Z 7 i^ m is a designable post-filter. Substituting the system 
model into the residual generator (2.15) the dynamics of the residual generator 

is expressed by
r(k) =  R M uGdd(k) +  R M uGf f(k ) .

I f  a post-filter R(z) can be found such that

R {z)M u{z)Gd(z) =  0, 

R (z)M u(z)Gf (z) ±  0,

then perfect decoupling of the residual from the unknown input is possible. 
Otherwise similar to the continuous-time case, R(z) is designed by optimizing 

a performance index. Performance indices based on Hoo and H 2 norms are 
widely accepted.

In the Hoo approach the performance index is described by

\\R(z)Mu(z)Gd(z)\\0O

00/00 \\R(z)Mu(z)Gf (z ) \U

and the optim ization problem becomes

min Joo/oo- (2.16)
R{z)ennoo

Assume that Gd{z) has no transmission zeros on the unit circle, then there 

exists a co-inner-outer factorization of M u(z)Gd(z) such that

M u(z)Gd(z) =  Gdo{z)Gdi(z).
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The co-inner Gdi{z) satisfies Gdl(e3ujh)G î i (e~iujh) =  I .  The co-outer Gdo(z) has 

a left inverse G ^ (z )  € TZHoo such that Gd„(z )G do(z) =  I-  In Appendix A 

a method for calculating the co-inner-outer factorization of a discrete-time 
system is given.

Similar to the continuous-tim case, the optimal solution of the optim ization 
problem in (2.16) is parameterized as

There is a major difference between this solution and the solution in the 

continuous-tim case. In continuous-time, the solution was obtained under the 

assumption that Gd(s) has no transmission zeros on the imaginary axis and at 

infinity. The no-zero-at-infinity assumption is quite restrictive for the method 

can not be directly applied when Gd(s) is strictly proper. In  the discrete-time 
case, however, the only assumption required is that Gd(z) has no transmission 

zeros on the un it circle. Therefore, Gd(z) can be s tric tly  proper, which w ill 

always be the case in sampled-data systems.

For the H 2 approach, considering the following performance index

R*(z) =  Q (z)G £(z),

where the free parameter Q(z) € TZHoo satisfies

The optimal value of the performance index is

1

\ \G ^ {z )M u{z)Gf {z)\\oo

_  |1 R (z)M u(z)Gd(z)\\l 
J2/2 \\R(z)Mu(z)Gf (z ) \ \ r

the optim ization problem is

min J5
R(z)enn 00

(2.17)

Let f uo(z) be an ideal discrete-time frequency selector defined as

* r 2ir//i
/  / c o ( ^ ) 7( ^ ) < 7T( e - ^ ) / I 0(e- ^ ) d a ;  =  q ( e ^ h)qT ( e ~ ^ h)

Jo
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Assume that Amin(io>) is the minimum generalized eigenvalue and vmin(e:>wh) is 

the corresponding generalized eigenvector of the following generalized eigen
value problem

^min ( ^ h)M u( ^ h)Gd{e ^ h)GTd { e - ^ h) M l { e ~ ^ h) =

Also assume that

Amin ) ic f Amin ( ^ ) .

Then the optimal solution of the optim ization problem in (2.17) is

R*{z) =  fu,'(z)vmin(z),

and the optimal value of the performance index is

2.5 .4  N orm  based residual evaluation

As mentioned before, after the residual is generated it  has to be evaluated 
(usually by comparing to a threshold) before a decision about fault occurrence

to produce an alarm signal. Instead, some norm of the residual is chosen as the 

residual evaluation function and based on that, the threshold is selected [13, 
22]. The mostly used norm for this purpose is the £2 norm of the continuous

time residual r ( t ) or the £2 norm of the discrete-time residual r(k), for these 

norms indicate the energy level in a signal. Considering the continuous-time 
residual, the residual evaluation function is

Since the evaluation over the whole time domain is unrealistic, the norm is 

often calculated over a lim ited window, i.e.,

Now, based on this evaluation function, a threshold can be determined. 
In  the most common logic for decision making, if  the norm of the residual is

can be made. In practice the instantaneous value of the residual is rarely used
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below threshold, then the system is fault free. Therefore, i t  is reasonable to 

select the threshold, denoted by Jth, as the maximum norm of the residual 
when no fault is present:

Jth =  sup ||r||2.
d

S=o

Considering the general form of the residual generator in  continuous-time, the 
threshold is then given by

Jth =  sup \\RMuGdd\\2-
d

Now, assuming the disturbance is bounded by ||d||2<  1> it  follows that

Jth =  ||-R(s)Mu(s)Grf(s)||00.

2.6 Perfect disturbance decoupling

Perfect disturbance decoupling is the ideal case in FD I design. This happens 

when a residual can be made independent of the unknown input (namely, 

disturbance). I f  this is true then the residual is only sensitive to the fault, so 
there is no chance for false alarms. In this section, the necessary and sufficient 

conditions for perfect disturbance decoupling are discussed.

Consider the continuous-time process in (2.8). As seen earlier, perfect 
decoupling of the residual from the unknown inputs is possible if  a stable 

post-filter R(s) can be found such that

R(s)M u(s)Gd(s) =  0, 

R{s)Mu(s)Gf (s) ±  0.

I t  is easy to check that such a post-filter exists i f  and only i f  (notice that M u(s) 

is fu ll rank) [20]

rank [ Gd(s) G f(s ) ] > rank [ Gd(s) ] . (2-18)

Here, rank [ Gd(s) ] denotes the normal rank or rank for almost all values of 

s. A necessary condition for (2.18) as shown in [20] is

rank [ Gd(s) ] <  m,
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which means tha t for perfect disturbance decoupling, the number of inde
pendent unknown inputs (rank [ Gd(s) ]) should be less than the number of 
measurements m  [20, 22].

Similarly, for the discrete-time process in (2.14), perfect disturbance de
coupling is possible i f  and only if

rank [ Gd(z) G j{z ) ] >  rank [ Gd(z) ] . (2-19)

In the formulation of the parity space approach (Section 2.4), perfect distur

bance decoupling is possible i f  there exists a parity vector vs such that

— 0 

v s H d,s — 0 

VsHfls 0

Therefore, the necessary and sufficient condition for perfect disturbance de
coupling is

rank [ H 0<s H dtS H ftS ] >  rank [ H 0tS Hd,s ] • (2.20)

I t  can be shown that conditions (2.19) and (2.20) are equivalent [22].

2.7 Summary

In this section, model based methods of fault detection were briefly reviewed. 

Two of the most common of these methods, namely parity space and fac

torization approaches, were discussed w ith more details. These methods are 
extensively used in this thesis. A  fundamental step in robust residual gen
erator design is the selection and optim ization of a performance index. The 

performance index is a measure of robustness of the residual to disturbance 

and its sensitivity to fault. Analysis of the performance index in FD I design 
w ill be given in Chapter 6.
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Chapter 3

Fault D etection in 
Sampled-data System s

3.1 Introduction

In control systems, the signals of interest (reference input, error, control signal, 

actuator output, etc.) are usually continuous-time signals. The performance 
specifications (bandwidth, overshoot, settling time, steady state error, etc.) 

are also formulated in continuous time. Also the plants under control generally 

operate in continuous time and are modelled by differential equations. But 

since digital technology offers many benefits, modern control systems and fault 
detection algorithms are usually implemented by dig ital technology. Control 
systems w ith  continuous-time plants and dig itally implemented controllers are 

called sampled-data systems.

A sampled-data controller performs three functions:

•  I t  samples and quantizes a continuous-time signal (measured output or 

tracking error) and produces a digital signal (A /D  converter);

•  i t  processes the digital signal using a dig ital computer and generates a 
digital control signal (digital controller);

•  and i t  converts the digital control signal back into a continuous-time 
signal (D /A  converter).

Some materials of this chapter has been published in:

I. Izadi, T . Chen and Q. Zhao, “Norm invariant discretization for sampled-data 
fault detection” , Automatica, vol. 41, pp. 1633-1637, 2005.
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d{t) / ( f )

u(t)

v (k )

residual FDI

Controller

Process

Figure 3.1: FDI in a sampled-data scheme

Similarly a sampled-data FD I processes the dig ital signals from A /D  converter 
using a dig ital computer to produce the appropriate alarm signal. Sampled- 
data systems operate in continuous time, but they involve both continuous

time and discrete-time signals and systems and thus are hybrid systems [9]. 

Figure 3.1 illustrates a typical FDI in a sampled-data framework, where u(t) is 

the control signal, y(t) the plant output, d(t) the unknown input (disturbance), 
and / ( f )  the fault to be detected. A /D  and D /A  converters are modelled 

by ideal synchronized sampling (S) and hold (H ) operators w ith  sampling 
period h.

During the past decades, the topic of sampled-data systems has been in

tensively studied [9]. The achieved results show a significant improvement 

in control performance when the so-called direct design of dig ital controllers 

for continuous-time plants is adopted [9]. Consequently, because of the in ti

mate relationship between control and FD I problems, research of FD I design 

in sampled-data systems has received increasing attention. Similar to the con

tro l problem [9], there are essentially two approaches to the FD I synthesis for 

sampled-data systems: indirect and direct. Many developed methods suggest 
the indirect design, which can be carried out using two approaches [9]:

A na lo g  design and sam pled-da ta  im p le m e n ta tio n  In this approach, 
a continuous-time FD I is first designed for the continuous-time plant. The
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design can be performed using one of the numerous approaches available in 
the literature for continuous-time FD I design, some of which were introduced 

in Chapter 2. The continuous-time FD I is then d ig ita lly implemented. In 

other words, i t  is approximated by a discrete-time system using a method of 

continuous-to-discrete conversion (or discretization). For example one can use 

the bilinear or step invariant transformations.

Discrete-time design based on a discretized plant In  this approach, 
the continuous-time process is first approximated by a discrete-time system 
(discretization). The discretization however, can only be done using the step 

invariant transformation. A  discrete-time FD I is then designed for the discrete

time model of the process. This discrete-time FD I w ill be implemented on the 

actual continuous-time system.

Approximations exist in both approaches. They also ignore what is happen

ing between the sampling instants (intersample behavior). Thus, the FD I may 

not work properly. In an example shown in [54], perfect disturbance decou
pling is possible for both continuous-time and discretized processes. But, the 

FD I designed by neither of the indirect approaches can detect the fault when 
implemented in a sampled-data framework, let alone decoupling it  from the 

disturbance. Motivated by the direct design approach in sampled-data control 

problem [9], recently a direct design approach was introduced for sampled-data 
FD I [53, 56, 58]. In [53, 56, 58] the parity space, Hoo and methods were 

adopted to design optimal residual generators for sampled-data systems. A ll 

the methods were based on introducing appropriate operators tha t capture the 

intersample behavior which is a well known technique in controller design for 

sampled-data systems [9].
A ll the above methods are successful extensions of the known design tech

niques to the sampled-data case. Unfortunately, introducing one individual 
operator for each approach makes those methods complicated and difficult to 

follow. In this chapter a unifying framework for sampled-data fault detection 

is developed which offers a convenient tool for both design and analysis. By 
clearly defining norms of sampled systems and the so-called norm invariant 

transformation, this framework allows us to easily extend any known (H 2 or 

Hoo) norm based method of fault detection to sampled-data systems.
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v(k) u(t) ip(k)

3.2

Figure 3.2: Step invariant transformation

D iscretization of continuous-tim e system s

The process of converting a continuous-time system to a discrete-time system 

is called discretization. In this section three different methods of discretization 
are briefly reviewed: step invariant, impulse invariant, and bilinear transfor
mations. Step invariant and bilinear transformations are the most common 

methods of discretization and are widely used in indirect contro ller/FD I de
sign. The norm invariant transformation, a useful tool in solving sampled-data 

FD I problems, is also introduced.

3.2.1 S tep  invariant transform ation

The step invariant transformation of a continuous-time system G is defined as 

Go  =  SG H  (Figure 3.2). This method of discretization has the property that 

step responses of G and Go have the same values at sampling instants, hence 
the term step invariant transformation [9]. In  other words, Gold{k)  =  SG l(t) ,  
where l ( t )  and l d(fc) are continuous-time and discrete-time unit step functions 

respectively. To show this, note that 1(f) =  H ld (k ) ,  then

G oU (k)  =  S G H ld(k) =  SG l(t) .

Assume that the state space representation of the continuous-time system 
G is given as

G(s) =

then i t  is well known that [9]

Gd (z) =

where

' A B  ‘
C D

Ao B d 1
C D

,D-f
Jo

eA rdTB .
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3.2 .2  Im pulse invariant transform ation

Consider a continuous-time s tric tly  proper system G. The impulse invari
ant transformation of G, denoted by Gi,  is a discrete-time system w ith  the 
property that impulse responses of G and G j have the same values at sam

pling instants. In  other words Gi5d{k) — SG6(t), where S(t) and 6d(k) are 

continuous-time and discrete-time un it impulse functions respectively. As
suming G has the state space representation as

C M  =  r 4

then i t  can be shown that [9]

Gr(z) =

where

B
0

A d S i
C d i  J (3.1)

An  =  eA h B i =  eAhB, D i  =  CB.

There is a relationship between the frequency responses of the continuous

time system G and its impulse invariant transformation Gj, known as the 

Poisson Sampling Formula [6]:

i ~l~°°
Gi(e?wh) =  -  J 2  G ( j u + j k u s), (3.2)

k =—oo

where c =  qf- This expression is also known as the Impulse Modulation 
Formula.

The following lemma states another property of the impulse invariant trans
formation:

Lem m a 3.1 A state space representation of z~1Gi(z) is given by

z_1G /(z) =

-e■

B  '
c 0

P ro o f Using the state space representation of G j(z ) in (3.1), the impulse 
response of G i can be written as the following sequence

impulse response of G/(z) =  {£)/, C B i,  C A d B i , C A2d B j • • • }

=  {C B , CeAhB, Ce2AhB, Ce3AhB, ■■■}.
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Then,

impulse response of 2 l G i(z ) =  {0, CB, CeAhB , Ce2AhB, • • ■„ 2 A h  ;

Using this impulse response, the state space representation of 2 1G/(z) can 
be derived and the lemma is proved.

□

3.2 .3  N orm  invariant transform ation

Another method of discretization, w ith  extensive applications in sampled-data 

FD I design is the norm invariant transformation [32]. Consider the continuous
time stric tly  proper system G w ith  the following state space model

G(s) =
' A B  ‘

C 0 (3.3)

The norm invariant transformation of G, denoted by G j,  is defined as a 
discrete-time system w ith

G j(z )  = A d B j

C 0
(3.4)

where
A d =  eAh

and B j  is a fu ll rank m atrix satisfying

B j B Tj
- fJ 0

eATB B T eATTdT.

The mathematical details on how to compute B j  are given in Appendix B.

An interesting and useful relationship involving the norm invariant trans

formation is given in the following lemma [27].

Lem m a 3.2 The following statement holds

(■G ( s ) G t ( - s ) ) i ( z )  =  G j ( z ) G tj ( z - 1),

where (G(s)GT(—s))/ (z) denotes the impulse invariant transformation of 
G(s)GT(-s ) .
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P ro o f Starting w ith  the state space representation of G in (3.3), i t  easily 
follows that

GT( - s )  =
r - a t c T ■
[ - B '1' 0

Using the formulas for the state space representation of the product of two 

transfer functions [9], i t  follows that

0 C T '
G (s)Gr ( - s )  = —B B T A 0

0 C 0

Now, using Lemma 3.1, a state space representation of z 1 (G(s)GT(—s))f (z) 

can be constructed as

r ( ' - A T 0 ' CT 'exp (
- B B T A ' 1 0

0 C 0

By using the m atrix exponential formulas, the above equation is further sim

plified

(3.5)
e~ATh 0 CT '

z 1(G(s)Gt (—s)) j(z ) = - B j B Tj e - ATh eAh 0
0 C 0

On the other hand, starting from the state space representation of G j  in (3.4),

G j(z )  =  C (z l  -  A d ) - x B j

= >  GTj{ z ~ l ) =  B j ( z ~ l I  -  A TDy l CT 

= z B Tj { I  -  z A D - ' C ?

=  zB Tj A - J { A - J - zI ) - 1Ct

~ B Tj A~J{zI

---
1

c T '
0

T \ - i r > T

Again, using the state space representation of the product of two transfer 
functions,

(3.6)

o CT '
z 1 G j { z ) G tj { z  *) = - B j B Tj A -J  A d 0oo

i 0
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Comparing (3.5) and (3.6), the lemma w ill be proved:

z - l (G(s)GT(~ s ) ) I (z) =  z~1GJ(z)G1i { z - 1)

= *  (G ( s ) G t ( - s ) ) i ( z ) = G j { z ) G Tj { z - 1 ) .

□
The next lemma states an interesting relationship between the frequency 

responses of a continuous-time system and its norm invariant transformation.

Lemma 3.3 The following statement holds

1 + 0 °

Gj(e*“ h)GTj ( e - i “ h) =  -  £  G ( ju  +  j k u s)GT( - j u  -  j k u s),
k = - o o

where uis =  ^ .

P ro o f Evaluating the result of Lemma 3.2 at z =  ejLuh yields

(G (S)GT( - S) )7(e ^ h) =  G j(e i“ h)GTj ( e - j “ h). (3.7)

On the other hand, using Poisson Sampling Formula (3.2), it  follows that

i ~l~°°
(G{s)GT{ - s ) ) I (ejujh) =  -  ^  G {jw  +  j k u s)GT(-ju>  -  j k u s). (3.8)

& =  — OO

Comparing (3.7) and (3.8) proves the lemma.

□
Note that, unlike the step invariant and impulse invariant transformations, 

the inputs of the discrete-time system G j  are not related to the actual inputs 
of the original continuous-time system G.

Another important point to notice is the number of independent inputs of 

G j.  In the step invariant and impulse invariant cases, f *  eArd r  and eAh are 
full rank square matrices (assuming h is non-pathological). Therefore Bp  and 

B j  have the same dimension and rank as B. Thus the number of indepen

dent inputs of the original continuous-time system is equal to the number of 
independent inputs of its step invariant and impulse invariant transformations.

This, however, is not the case in the norm invariant transformation. The 
number of independent inputs of G j  can be generally greater than the number
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of independent inputs of G [53, 58]. To show this, note that:

number of independent . . . .  , , , _
. ~  =  number of independent columns of B jinputs of G j

=  rank (B j B j )

rh
=  rank [ /  eATB B r eATTdT]

Jo
— dimension of the controllable subspace of (A, B)  

=  rank [ B  A B  • • • ]

>  number of independent columns of B  

=  number of independent inputs of G

As a matter of fact, the norm invariant transformation introduces some fic
titious inputs which are used for design purposes only but carry no physical 
meaning.

3 .2 .4  B ilinear transform ation

Another method of discretization is the bilinear transformation, also known 

as the Tustin ’s method [9]. The bilinear transformation of a continuous-time 
system is obtained by simply using the following bilinear relation between s 
and 2 (hence the term bilinear transformation)

-  1 z ~  1 
li 2 +  1'

Therefore, the continuous-time system G is transformed to the discrete-time 

system Gb t , where

Gb t (*) =  G (s)
 ̂ h z+1

The inverse bilinear transformation from the discrete-time system Gbt into 
the continuous-time system G is given by

1 +  fs
z =  r -  ,

1 ~ l s

G ( s )  —  G b t (z ) li-ij  *
z=T^fl

In this thesis, the fact that the bilinear transformation preserves the 7i0 
norm of a system is used [9]:

I | C ( S ) | U =  I I G b t W I I oo .
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3.2 .5  Sum m ary

In this section four methods of transforming a continuous-time system to a 
discrete-time one were briefly introduced. The step invariant and norm invari
ant transformations w ill be extensively used in this research to address the 

FD I problem in sampled-data systems. Throughout the thesis, the upper-case 

subscripts d ,  i >  j  and b t  are used to denote the step invariant, impulse invari

ant, norm invariant and bilinear transformations of a continuous-time system 

respectively. Notice that the state space realizations of the step invariant and 

norm invariant transformations are the same except for the B  term (i.e., they 

have the same A, C  and D  terms).

3.3 N orm s of sam pled system s

As seen in Chapter 2, in a variety of fault detection methods, a suitably chosen 

norm (e.g., Hoo or H 2 norm) is used to design and analyze residual generators. 

In sampled-data systems, we also require norms to extend the known design 
techniques. To define appropriate norms for sampled systems we generalize the 

concepts of Hoo and H 2 norms. Assume that G : ^ ( R )  —f ^ ( K )  is a stable 
and s tric tly  proper continuous-time system w ith  p inputs and m  outputs, and 

the following state space realization

' A B  '
C 0

The operator SG : £ 2(K) ^ (Z )  maps continuous-time signals to discrete

time signals and is called a sampled system.

3.3 .1  Hoo norm  o f S G

For continuous-time system G the Hoo norm is

||G(s)||oo= sup ||G«||2.
N|2<i

Similarly, the Hoo norm (also known as £2 induced norm or simply induced 

norm) of SG is defined as [9]

||5G||oo= sup ||5G«||2.
Nla<l
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Note that ||-||2 in ||u||2 is defined for continuous-time signals in £ 2(R), while 

||• ||2 in ||5G u||2 is defined for discrete-time signals in £2(Z). To compute 
IISGHoo the following lemma is useful:

Lem m a 3.4 [9, 58] The Hoo norm, of SG is given by

||S G |U =  H G ^ I U .

□

3.3 .2  H .2 norm  o f  S G

For a continuous-time SISO system, the W2 norm is

/ OO

9(t)2dt,

•OO

i.e., the 7 i2 norm of the transfer function G(s) equals the £ 2 norm (total 
energy) of its impulse response. In the multivariable case the W2 norm is

l | G ( s ) | I I =  £ l | G < S ( f ) e , g ,

i =1

where e*, i  — 1, . . .  ,p, denote the standard basis vectors in Rp and S(t) is the 

continuous-time unit impulse function. Thus, S(t)ei is an impulse applied to 

the i th input channel.

To generalize the definition of H 2 norm to sampled systems, notice that 

SG is a time-varying but /i-periodic system. Hence, the H 2 norm of SG is 

defined as the tota l energy of the outputs when impulses are applied in one 
period (sampling interval) to the input channels. Therefore, in the SISO case, 
the H 2 norm of SG w ill be

||S G ||h  A S G 6 ( t - r ) \ \ ld T ,
J 0

and in the multivariable case it  is

E  ( j f ||S G i( i ~  T)e<ii!‘iT)  - <3-9)

Similar to the Tioo norm, the H 2 norm of SG is related to the Ti.2 norm of 

discrete-time system G j  as shown in the following lemma:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lem m a 3.5 The H 2 norm of SG is given by

||SG||a=  | |G ,(z )||2.

P ro o f We know that

GS(t) =  g(t) =  CeAtB  1 (t), 

where 1(f) is the continuous-time unit step function. Then,

GS(t - t )  =  CeA{t~T)B l ( t  -  r ) ,

=► SG6(t - t )  =  {0, CeA{h~T)B, • • • , CeA{kh~T)B, • • • }  ,

=► ||SG<5(f -  r)e i |j|=  trace ( ^  CeA{kh- T)B B TeAT(kh~T)CT J ,
i=l \ k =1

rh (  V^  JQ l|SG<S(t -  T)ei\\lJ d r  =

trace ( ^ C e Akh( j \ - ATB B Te-ATTdT)eATkhCT ĵ ,

where trace(-) denotes the trace of a matrix. A  change of variable (k — 1) —> k 

and (h — r )  —► r  w ill yield

( j [  \ \SGS{t-T)e i\\22dT^

=  tTace( j L CeAkh(Jo eATB B TeATTdT)eAl’khCT')J  (3.10)

=  trace ( Y ^ C e AkhB JB TJ eATkhC'1r A k h  D _ u T „ A T k h r i T

\ k =0

On the other hand [9]

110^)111= trace ^ 2 C A kDB JB j ( A l ) kC?r } .  (3.11)
v.fc=0

Comparing (3.10) and (3.11) and using definition (3.9) complete the proof.

□
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3.3.3 N orm  o f S G  and norm  invariant transform ation

Lemmas 3.4 and 3.5 show that the Hoo and H i  norms of sampled system SG 
are equal to  the H 00 and H i  norms of discrete-time system G j,  the norm 

invariant transformation of G. In other words, the norm invariant transfor

mation preserves the Hoo and H i  norms of sampled systems, hence the term 

norm invariant. Lemmas 3.4 and 3.5 play a significant role in developing norm 

based residual generators for sampled-data systems.

3.4 Residual generation in sam pled-data sys-

Consider the sampled-data system in Figure 3.1. The continuous-time system 

under consideration has the following input-output description

where y(t) € Rm is the vector of plant output, u(t) € Rn“ the vector of 
control signal, d(t) 6 R "d the vector of unknown input (disturbances) and 

f ( t ) 6 Rn/ the vector of fault to be detected. Gu, Gd and G j  are LT I strictly 

proper systems. The assumption of s tric tly  properness of Gu, Gd and G j

involved operators. In practice, because of antialiasing filters tha t are used 

before sampling, the systems are always strictly proper.

The output vector is sampled and discretized using an A /D  converter mod

elled by

tem s

y(t) — Guu(t) +  Gdd(t) +  G f f ( t ) , (3.12)

is standard in the sampled-data literature and necessary for boundedness of

and the control signal is generated by a computer and sent to the actuator 

using a zero-order hold D /A  converter modelled by

u(t) =  v(k), kh < t  <  (k +  1 )h.

Hence,

ip(k) =  Sy(t), 

u (t) =  Hv(k).
(3.13)
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3.4.1 G eneral form o f th e  residual generator

In the sampled-data scheme, the residual generator uses the discrete-time 

process input v(k)  and output ip{k) to generate the residual p(k), which is 

also a discrete-time signal. So the residual generator is a (LTI and stable) 

discrete-time system. The general form of a sampled-data residual generator 
is

p(k) =  Riip{k) +  R2v(k),  (3-14)

where Ri  and R2 axe stable LT I discrete-time systems. Substituting %p(k) =  

Sy(t), u(t) =  H v (k )  and using the system model in (3.12), i t  follows

p(k) =  RiSy(t) +  R2v(k) 

=  RiS{G uu(t) +  Gdd{t) +  G j f ( t ) )  +  R2v(k) 

=  R!SGuu{t) +  RiSG dd(t) +  R \S G ff ( t )  +  R2v(k)  

=  R iSG dd(t) +  R iS G f f ( t )  +  R iSG uH v(k )  +  R2v(k).

Using the step invariant transformation Gud =  SGUH ,  the residual generator 

can be further simplified

p(k) =  R\SGdd{t) +  R \S G f f ( t ) +  {R \G ud +  R2)v (k ). (3.15)

Let (M u(z), Nu(z)) be a left coprime factorization of GuD(z), i.e.,

GuD(z) =  M ~ 1{z)Nu{z).

Using the factorization approach (similar to the continuous-time case in Sec

tion 2.5) and by choosing

R 1(z) =  R (z)M u(z),

R2(z ) =  —R(z)Nu(z),

the residual w ill be independent of the input. The design parameter R(z) 6 

7Z7i^m is a stable LT I discrete-time system. Substituting Ri(z)  and R 2(z ) in 
(3.14) yields

p(k) =  R (M utl>(k) -  Nuv(k )) ,  (3.16)

which is the general form of residual generator in sampled-data systems.
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Also by substituting Ri(z)  and # 2(2) in (3.15), the dynamics of the residual 

generator w ith respect to the continuous-time signals d(t) and f ( t )  is

p(k) =  R M uSGdd{t) +  R M uS G /f ( t ) .  (3.17)

Here R  and M u are discrete-time systems while Gd and G f  are continuous-time 

ones. R M uSGd and R M uSGf  are two operators that map continuous-time 

signals to discrete-time signals. Equation (3.17) shows how continuous-time 

signals d(t) and /(£ ) affect the discrete-time residual p(k).

I f  a discrete-time post-filter R(z) can be found such that

f R M uSGd =  0,
\  R M uSGf  ^  0,

then perfect decoupling of the residual from the unknown input is achievable. 

The conditions of perfect disturbance decoupling w ill be discussed later in 

Section 2.6. I f  perfect disturbance decoupling is not possible, design of a 

robust residual generator is carried out by solving an optim ization problem.

3.4 .2  R ob ust residual generation

Consider the dynamics of the sampled-data residual generator in (3.17). I f  

perfect decoupling of the residual from the unknown input is not possible 
(which is most of the times the case), then a robust residual generator is 
designed by solving an optim ization problem. The idea is that the discrete

time residual p{k) remains as sensitive as possible to the continuous-time fault 
/(£), and as robust as possible to the continuous-time disturbance d(t). In 

other words, R M uSGd should be made as small as possible while keeping 
R M USG/ reasonably large. From previous discussions, one method to quantify 
this requirement is to form the following optim ization problem

min j * =  min (3-is )R(z)eRHoO R(z)eRHBo \\RMUSGfWrj

where r) =  2 or rj — 00. The performance index in (3.18), is the generalization 
of similar performance indices introduced in Section 2.5 for continuous-time 
systems.

The norm preserving property of the norm invariant transformation makes 

it  appropriate to approach the optim ization problem given in (3.18). Lemmas
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3.4 and 3.5 show that the (H 00 and H 2 ) norms of a sampled system are equal 
to the norms of its norm invariant transformation. Similarly, the following 
theorem can be stated and proved:

Theo rem  3.1 For the sampled-data residual generator given in (3.17), the 
following equations hold

\\RMuSGdWr, =  \\R(z)Mu(z)GdJ(z)\\r, 

\\RMuSGf \\v =  \\R(z)Mu(z)GfJ (z) ||„

fo r  77 =  2 and 77 =  00.

Using this theorem, the performance index in (3.18) is further simplified

to

. \\R{z)Mu{z)GdJ{z)\\T, „
mm Jn =  mm -  - - - -  , 77 =  2 or 77 =  00. (3.19)

RWeTCWoo R(z)ennao \\R(z)Mu(z)G / j ( ^ ) | | ,

This is a pure discrete-time optim ization problem.

Now consider the following fictitious discrete-time system

i>(k) =  GuDv (k ) +  Gdj j ( k )  +  Gfj4>(k). (3.20)

Note that this discrete-time system is obtained by discretizing the original 

continuous-time system in (3.12). The step invariant transformation is used 

to discretize Gu, as in indirect method. However, the norm invariant transfor
mation is used instead to discretize Gd and Gf.

Suppose that we want to design a residual generator for the discrete-time 
system in (3.20). Then the general form of the residual generator is

p{k) =  R [M u\j)(k) -  Nuv (k )) 

=  R M uGdJff(k) +  R M uGfj<f>(k).

I f  perfect disturbance decoupling is not possible, for robust design the following 

optim ization problem should be solved

. T . \\R(z)Mu(z)Gdj(z ) \ \v
min Jv - mm > ?7 =  2 or 77 =  00.

R(z)enn«, ' \\R(z)Mu(z)Gfjiz)]},,

which is exactly the same as the one in (3.19) for sampled-data system.
This discussion suggests that to design a residual generator for the sampled- 

data system in (3.12) and (3.13), as far as the norms of the operators relating
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the fault and disturbance signals to the residual axe concerned, one can replace 

the sampled-data system w ith  the discrete-time system in (3.20). Any optimal 
{H.2  or Hoc) norm based residual generator designed for this discrete-time 

system w ill be optimal for the original sampled-data system as well. This 

w ill lead us to a unifying approach to (norm based) robust FD I design for 

sampled-data systems.

Considering the performance index in (3.18), for rj =  oo this result is the 

same as the one given in [58]. For 77 =  2, this approach provides an alternative 

solution to the optimal design given in  [56]. The performance index considered 
in [56] for the sampled-data system is

r  R(e’wh)M u(e’wh)
j2 _  J O ____________________________

J fVa
/  R(e3ujh)M u{eJuh)

Jo
+00

y :  (Gd(ju> +  j k u a) G l ( - j u  -  j k u a)) M j (e~:uh)RT(e~Jbjh)duj
k=—00 

+00

T .  {G f ( ju  +  j k u a)GTs { - j u  -  jku!a)) M l{e ~ Juh)R r {e~luh)dw
k——oo

where u a — 2-K/h. I t  is easy to show that this performance index is equal to 

the H 2 performance index (as in (3.19) for 77 =  2). Using Lemma 3.3,

1 +0°
GdJ{ ^ h)GTdJ{ e - ^ h) =  -  y  Gd(ju; +  jku ja) G l ( - j u ; - j k u a),

k=—00 

 ̂ +00

G f j { j “ h)G TN {e - i “ h) =  -  y  Gf U u  +  j k U ' ) ( % ( - j u - j k u > a).
k——oo

Substituting these values in the expression of J 2 yields
ru3

/  R { ^ h)M u{ejuh)Gdj{e iuh)GTdJ{ e - ^ h) M l  (e-juh)RT{e~juh)dw
j 2  _  JO___________________________________________________________________________

R(e3wh)M u{ejujh)GfJ (eJujh)GT}J {e~iujh)M l(e ~ jwh)RT(e-julh)dio ’
Jo

Now, by the definition of Ti.2 norm for discrete-time systems, i t  follows that 

(notice that R(z) is a row matrix)

2 \\R(z)Mu(z)GdJ(z)\\l 
\\R(z)Mu(z)GfJ (z ) \\r
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This proves tha t the performance index in [56] is equal to J2, the H 2 perfor

mance indexed in (3.19). Nevertheless, this approach is simpler and requires 
less numerical computations.

3.4 .3  O ther m ethods

There are some other types of norm based performance index used in the 
literature to  address the robustness problem in  FD I design. For example in 

[13] the following norm based performance index is considered

min ( \ \R M vS G 4n  -  \\RMuSGf \\00).
R(z)ennlj m ’

Now using the unifying approach, one can replace the original sampled-data 
system by the discrete-time system in (3.20). Then the following discrete-time 
optim ization problem can be solved instead, whose solution is known [13]

min {\\R(z)Mu{z)GdJ{z)\\oa -  \\R(z)Mu(z)GfJ {z)\\00).

In the parity space approach, although the performance index does not 

involve norms of transfer functions, the unifying approach can s till be used [53]. 
So, to design an optimal parity space based residual generator for a sampled- 

data system, one can apply the method to the equivalent discrete-time system 

in (3.20). The designed optimal residual generator is also optimal for the 
original sampled-data system.

3.4 .4  P erfect d isturbance decoupling

As seen in Section 2.6, for the original continuous-time system in (3.12), perfect 
decoupling of the residual from the unknown input is achievable if  and only if

rank [ Gj(s) G/(s) ] >  rank [ Gj(s) ] . (3.21)

A necessary condition for (3.21) is

rank [ Gd(s) ] <  m,

which means that for perfect disturbance decoupling, the number of indepen

dent unknown inputs should be less than the number of measurements.
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Using the norm invariant transformation, the necessary and sufficient con

dition for perfect disturbance decoupling in sampled-data system is obtained 
from the equivalent discrete-time model in (3.20) as

rank [ GdJ(z) G fj(z )  ] >  rank [ GdJ(z) ] .

Gdj(z )  and Gd(s) have the same number of outputs m, but Gdj(z )  has more 

inputs than Gd(s). Therefore, the number of independent unknown inputs in 

the equivalent discrete-time system in (3.20) is greater than the number of 

independent unknown inputs in the original continuous-time system in (3.12). 
Hence, perfect disturbance decoupling is more difficult in the sampled-data 

case than in the continuous-time case [56, 58]. In other words, since in the 

equivalent discrete-time system, the number of independent unknown inputs 

has increased, the chances that this number is less than m  decreases. There
fore, i f  perfect disturbance decoupling is possible for the original continuous

time system, i t  may not always be possible for the sampled-data system.

3.5 Indirect sam pled-data design

In this section, the second method of indirect FD I design is briefly reviewed, for 

it  is closely related to the direct design method. Again consider the sampled- 

data system in  Figure 3.1, described in (3.12) and (3.13). In indirect approach, 
the original continuous-time system in (3.12) is discretized using the step in
variant transformation

ip(k) =  GuDv (k ) +  GdDl { k )  +  G fD(l>{k), (3.22)

where 7 (k) =  Sd(t) and <t>{k) =  S f( t ) .  The discrete-time system obtained from 
step-invariant transformation is usually equivalent to the original continuous

time system at the sampling instants. Here because of the presence of an 
actual zero-order hold, the control signal u(t) is constant over a sampling 

interval. Therefore, v (k ) carries all the information of u(t). But unlike u(t), 
the unknown input d(t) and the fault f ( t )  can arb itrarily  take any value during 
the sampling interval. This means that 7 (k) and 4>{k) are only approximations 

of d(t) and / ( f )  and carry only the information of d(t) and f ( t )  at t =  kh. 
Therefore, the discretized model (3.22) is not accurate even at the sampling 

instants.
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The indirect design procedure can be carried out for the discrete-time 
model in (3.22). As before, if  (M u(z), Nu(z)) is a left coprime factorization of 
Gud (z), the general structure of a residual generator can be given as

p{k) =  R (M uil>(k) -  N uv {k ))

=  R M uGdDj{k) +  R M uG fD<j>(k).

Notice tha t here the residual p(k) is only affected by the values of the dis

turbance and fault at t =  kh (e.g., 7 (fc) and <f>(k)). This is in contrast to 

the direct design, where the value of disturbance and fault during the whole 
sampling period affected the residual.

Another point worth mentioning is that in both indirect and direct designs, 

the original continuous-time system is replaced by a discrete-time model and 

the design is performed in discrete-time. The only difference is tha t in the 

indirect design the step invariant transformations Gad and G f & are used, while 
for the direct design, the norm invariant transformations Gdj  and G f j  axe used. 

So direct design does not involve more design steps or computation loads than 

the indirect design.
The necessary and sufficient condition for perfect disturbance decoupling 

in the discrete-time system in (3.22) is

rank [ G<id {z ) G fo(z)  ] >  rank [ GdD(z) ] . (3.23)

Notice that if  Gd(s) has no poles and (transmission) zeros at the origin and 

Gdo(z) has no (transmission) zeros at 2 =  1 then

rank [ Gd{s) ] =  rank [ Gd(0) ] =  rank(C A _17?rf),

and

rank [ Gdo (z ) ] =  rank [ Gdi) ( l)  ] =  rank(C(7 -  A D)~l EdD)

=  rank(C(7 -  e ^ ) -1^  -  I )A ~ l E d) =  ra n k (G A -1£'d).

Therefore, rank [ Gd{s) ] =  rank [ Gdo(z) ]. This means tha t (3.21) implies 
(3.23) and vice-versa. In other words the perfect disturbance decoupling of 

the continuous-time system in (3.12) and the discrete-time system in (3.22) 
are equivalent. I f  the sampling is pathological or G<j(s) has a zero at the origin 

or Gdo(z) has a zero at 2 =  1, then perfect disturbance decoupling can be
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achieved for one of the continuous or discrete-time systems but not for the 
other one. In  fact Gd(s) and Gdo(z) can have different ranks even though 

they have the same dimensions.
Also note that

R M uSGd =  0 = >  R M uSGdH  =  R M uGdD =  0,

which implies that i f  the sampled-data residual generator (direct design) can 

be perfectly decoupled from the disturbance, the same post-filter R(z) can 

achieve perfect disturbance decoupling in indirect design.

3.6 Sum mary and conclusions

In this chapter, it  was shown that in order to design a robust norm based 

residual generator for the following sampled-data system

y{t) — Guu(t) +  Gdd(t) +  G / f ( t )  

ip(k) =  Sy(t) 

u(t) =  Hv(k),

it  is enough to replace the system w ith the equivalent discrete-time system

ip(k) =  GuDv(k) +  GdJj ( k )  +  GfJ 4>{k).

Any optimal norm based residual generator for the equivalent discrete-time 
system w ill be optimal for the original sampled-data system as well. The pro

posed framework unifies Hoo> parity space and some other robust sampled- 
data FD I design methods. The results are consistent w ith the previous results 
in sampled-data FDI, but the framework developed here is simpler and more 

general.
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Chapter 4 

Fault D etection in M ultirate 
Sampled-data System s

4.1 Introduction

In most industrial process applications, the elements of the control system 

may be structured distributively, i.e., sensors, actuators and controller are con

nected via standard networks. In  such applications D /A  and A /D  converters 
often work at different sampling periods, introducing the so-called multirate 
sampling [1, 9]. I t  is also well known that introducing multirate sampling can 

improve the performance of control systems [9]. Although there are many re

sults available in the literature for multirate sampled-data systems [1,9], there 

are very few pieces of work on fault detection for these systems.

One of the earliest results was reported in [49]. For the m ultirate sampled- 
data systems considered therein, all control inputs were updated at a single 

slow rate while the outputs were sampled at different fast rates. Three differ
ent fault detection schemes including parity space based, observer based and 

detection filte r based were developed. In that approach it  was assumed that 

no unknown disturbance would affect the system. Therefore, the robustness

The materials of this chapter has been published in:

I. Izadi, Q. Zhao and T. Chen, “An optimal scheme for fast-rate fault detection 
based on multirate sampled data”, Journal of Process Control, vol. 15, pp. 307- 
319, 2005.
I. Izadi, Q. Zhao and T. Chen, “An ' H approach to fast-rate fault detection for 
multirate sampled-data systems” , Journal of Process Control, vol. 16, pp. 651- 
658, 2006.
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issue was not considered.

In [14, 16], the well-known lifting  technique was used, and residual gen

erators based on parity space and observers were proposed respectively. I t  

was assumed that there is a single input sampling period and all of the out

put sampling periods are integer multiples of the input sampling period. In 

[55, 57, 59], the direct design approach was utilized to design parity space, 

Hoo optimal and H i  optimal residual generators respectively. In  all of these 
approaches the fault can only be detected at the end of the repetition period 

yielding a slow-rate fault detection scheme. In  many cases this detection delay 

is unsatisfactory.
A  technique to improve the detection speed was proposed in [15]. An 

observer was designed for each set of synchronous measurements resulting in 

a bank of observers that run simultaneously at different rates, which yields a 

fast-rate fault detection scheme. Another method to design a fast-rate residual 
generator was developed in [59]. An observer based residual generator w ith  a 
static weighting m atrix was constructed. The W ^ performance index is used 

to design the optimal observer gain and weighting matrix.

In  this chapter, the design of fast-rate residual generators for multirate 
sampled-data systems by adopting the norm invariant transformation and di

rect design is studied. The objective is to achieve fast-rate residual generation 

w ithout losing performance. The lifting  technique is used to convert the orig
inal multirate sampled-data system to an equivalent single-rate discrete-time 

one (but of higher dimension). Any available technique can be recruited here 
to design a residual generator for the equivalent discrete-time system. But 
regardless of the method used, the designed residual generator w ill be a slow- 

rate system for the equivalent discrete-time system works at slow rate. To 

overcome this, two methods are developed to generate a lifted (vector) resid
ual rather than a scalar one. This lifted (vector) residual is also a slow-rate 
signal but applying the inverse lifting  operation w ill render a scalar residual 

at the fast rate. The methods used here are parity space approach and fac

torization approach w ith Woo optimization. For both problems, the complete 
analytical solution of the optim ization problem is given. Very large degrees 

of freedom in the solutions allow us to impose some constraints, amongst the 
most important of which are causality constraints.

As for the sampling periods, although the methods can be used for any
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d(t) f ( t )

p(k) -

Controller

FDI

Process

Figure 4.1: FD I in multirate sampled-data scheme

input sampling period, it  is assumed that the inputs are available (but not 
necessarily updated) at the fast rate. This assumption may seem restrictive, 
but it  is acceptable by the fact that input (control) signal is generated by the 
computer and so is known at any time instant. The output sampling periods 
are integer multiples of the single input sampling period.

4.1.1 S ystem  descrip tion

The continuous-time process under consideration (Figure 4.1) has the following 

state space description

f  x(t) =  A x ( t ) +  Bu{t)  +  Edd(t) +  E f f ( t )  . .
\  yi(t) =  Cix(t), i  =  1,2, ■ • • ,m

where x(t)  € Rn is the state vector, u(t) € Rn“ the vector of control signals, 
Ui(t) 6 R the i th scalar plant output, d(t) € R "d the vector of unknown inputs 

(disturbances), f ( t ) 6 R"^ the vector of faults to be detected. A  6 Rnxn, 

B  € Rnxn“ , Ed e R nxnd, E f  6 Rnxn/ and Q  e R lxn , i  =  1,2,- •• ,m , are 
known matrices. One may alternatively consider the transfer model form of 

the process
y(t) =  Guu(t) +  Gdd(t) +  G f f ( t ) ,
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where
A B  Ed E f
Ci

0
_ c m

[Gu(s) Gd(s) Gf (s)] =

As discussed in Chapter 2, the residual is independent of the control signal 

u(t) if  there is no uncertainty in the process model. Since this is the case in 

our research, the control signal and its sampling period has no effect on the 

residual. On the other hand, as mentioned earlier, although the control signal 

may be generated at any rate, i t  is known at any time instance. Therefore, for
simplicity and w ithout loss of generality, i t  is assumed that the control signal
is available at the fast rate. So the D /A  converter in the input channel can be 

described by
u(t) =  v(k), k h < t < ( k  +  l)h .  (4.2)

Herein h corresponds to the fast-rate.
Each output channel is sampled at a different rate. The A /D  converters in 

the output channels are then described by

iPi(ki) = y i{k iT i) ,  i  =  1 ,2 ,--- , m. (4.3)

Ti =  riih, rii € N is the sampling period of the scalar output yi{t). Hence,

u(t) =  H hv(k), 

ipi(ki) =  S„ihyi{t), i  =  1,2, • • • , m.

Notice that since the sampled outputs are available at different rates, different 

time indices ki} i  =  1,2, • • • , m, were used.

Also let

N  — l . c . m . ( n ! ,  n 2 , • • • , n m )

N  . , „
<?i =  — , * =  1> 2, • • • , m

n ,

Q — Qi +  92 +  ’ ’ ’ +  Qm

(4.4)

where l.c.m. stands for the least common multiple. N h  is the repetition period, 
the length of one frame of data and is corresponding to the slow rate. <& is the 
number of i th output data in one frame, q is the tota l number of all output 

data in one frame.
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4.1 .2  L ifting

Let 77 be a discrete-time signal

V =  {»?(0), i j ( l) ,  rj(2),...}. 

The lifted signal 77 is defined as
✓

77(0) 77(77)
>

< *7(1) >
77(77 4-1)

,...

\ . ~  !)  . 77(277 -  1) j

The (77-fold) lifting  operator, L n, is defined to be the map 771—»77. Note that 

the dimension of the lifted signal 77 =  L nr) is n times that of 77, and the period 
of 77 again is n times that of 77. The inverse lifting  operator, L~ l , maps 77 back 

to 77. A  system w ith  the lifted input and/or output is called a lifted system.

4.2 Slow-rate residual generator

A residual generator in m ultirate sampled-data systems uses the discrete-time 

input v(k) and outputs ipi{ki), i  =  1,2, • • • , m, to generate a residual. In this 
section it  w ill be shown how to use the lifting  technique to design a slow-rate 

residual generator for multirate sampled-data systems (i.e., it  generates the 

residual at slow rate). In  the following sections the methods w ill be improved 

to design a fast-rate residual generator.
The first step to design a residual generator is to convert the multirate 

sampled-data system to a single-rate (but of higher dimensions) system (called 

lifted system) using the lifting  technique. To obtain a lifted model of the 

process, assume that E f =  0 and Ed =  0 in (4.1). Only one output channel is 

considered first. Let G1 denote the continuous-time system from input u(t) to 
output yi(t) :

y i( t )  =  G\u(t),

' A B  '
[ c , 0

Consider the discrete-time input v(k) and the discrete-time output ipi(ki). 

Then,

ip i(k i) Snih,yi(t^ (5fni/l (ji7i(£) iSfni/lGiLT/1'u(/u).
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Therefore, the m ultirate system from v(k)  to V'i(fci) is SnihG\Hh- Define the 
slow-rate lifted model G1 as the discrete-time system from lifted input v(ka) 
to the lifted output ip^kg), where

v(ka) =  L Nv{k)

v {N k a) 
v (N k a +  1)

v (N k a +  N - 1 )

tpiiqika) 
ip i(qika +  l )

N-TiuXl

^1(91^ +  91 -  1) 9i xl

Here, ks is used for the time index of slow-rate signals. Then G j w ill be

S i — L qiSnihGiHhL - 1
' N

=  D qiL,NShG\HhLx .

D qi is the operator of downsampling by qi described by

(4.5)

r  " i  
„----------^ ,

n  1 711

1 0  0 0  • • •  0
II&

Q
0  0  0 1 0 0  0

. 0 0  0 0  • • •  0 1 • • •  0
q \  X . N

As shown in [9]

( L jv S fc G i iW X * )

---
-1 A g - 'B n a nd ~2b d • • A n Bn B D

C l 0 0 0 0
G iAn C i B d 0 0 0

.  C 1A ^ ~ 1 GiAp~2Bn C r A ^ B n  •• • C \B D 0

(4.6)

N x N - r i u

where A n  and Bn  are as usual obtained from the step invariant transformation 
of G i(s)

A D =  eAh,

B d =  f
Jo

e  cLt B .
(4.7)
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Substituting (4.6) in (4.5), G_\ becomes 

Gx{z) =

r ^ a nd ~1b d a nd ~2b d ■ b d 1
Ci 0 0 • 0

C iA p C i A 'B - 'B d C i A ^ - %B d • 0

_ C iA {̂ ~ 1)ni CxA ^ - 1)ni~l B D C iA ^ ~ l)ni~2B D ■ • 0
q \ X . N - n u

For the other outputs V'i, * =  1,2, • • • , m, can be derived similarly. Using 
the fact that

Gx(s)

Gu(s) =

define GuD(z) as

G 2( s)

Gm(s)

' G x{z) 
G 2(z )

G uD(z ) =

G J z )

The slow-rate lifted model GuD is thus described by 

Gud {z) =

Define

G uD (z ) = Ai Bi 1
c, A  J

(4.8)

r  a » A ND~l B D A nd - 2B d  ••• B d '

Ci
C iA nj

C lA ^ - 1)ni

0 0 ••• 0
C iA rp ~ 1B D C\Anp ~ 2B D ••• 0

C iA [g - l)ni- l B D CiA%x~l]ni~2B D ••• 0

Cm
Anm

x- / m S * D

a(Q™~ 0nm

0 0 ••• 0
CmA n̂ - l B D CmA nD- - 2B D ••• 0

CmA%m~l)nrn' l BD CmA%m- 1)nm- 2B D ••• 0
q x N ' T i u
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GuD is the slow-rate lifted system from the slow-rate lifted input v(ka) to the 
slow-rate lifted output ip{ks) where

v (ks) =

v (N k s) 
v (N k„  +  1)

v (N k s +  N -  1)

t p ( k s )  =

t ^ k , )
± 2{ks)

^ J ks)

N  nuxl

4>i(qiks)
Tpi{qik3 + 1)

-ipi{qiks +  q i - l )

1pm(qmks)
Tpm(qmks “I" 1)

1pm(.qmka T  9m 1) ?xl

The input and output of GuD are slow-rate signals, thus GuD represents a 
slow-rate LT I system.

I t  is known tha t the lifting  does not change the (H 2 or Hoo) norm of a signal 

or a system. Using the method of Chapter 3, the norm invariant transforma
tion can be used to replace the original SISO/MIMO multirate sampled-data 
system w ith  the following M IM O discrete-time system

( x i(ks +  1) =  A ix i(ks) +  B tv{ks) +  E ^ i ^ s )  +  E f i j ik s )  
\  rp(ks) =  Ctx i(ks) +  D iv(ks) +  D ^ k s )  +  D sq {k s)

Or alternatively the transfer function form

± {k s) =  GuDv(ks) +  G dM ks ) +  Gf jy(ks).

(4.9)

(4.10)

(Edi,Ddi) and (E / i , D j i ) have the same structure as (B i,D i), replacing B d 
w ith  Edj and E f j  respectively. E<u and E ji  are as usual obtained from the 

norm invariant transformation

r h

EdJE TdJ=  f  eATE dE je ATrdr, 
J o

E f j E j j  = [  eATE f E j e ATTdT.
Jo

(4.11)

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fidJ and G f j  are defined as

At Edi n  — r a, Eft
Ci Ddi > I i / J  — [ C l D f i

Now, any norm based optimal residual generator designed for the discrete

time system in (4.9) or (4.10), is also optimal for the original sampled-data 

system. But because the discrete-time system in (4.9) or (4.10) is essentially 

a slow-rate system (updated every N h  sec), any residual generated by this 
model w ill be slow rate. In other words, the slow-rate residual generator waits 

for one complete frame of data before proceeding w ith any calculations. So, 
the updated residual is available every N h  sec, even though the information 

from the system is received by the computer more often. This can cause a 
substantial delay in the process of fault detection. In the next two sections 
two methods are developed to generate a fast-rate residual for the multirate 

sampled-data system to eliminate any unnecessary delays.

4.3 Fast-rate residual generator: Parity space

Consider the equivalent slow-rate discrete-time model in (4.9). Following the 

discussions in Chapter 3, an optimal parity space based residual generator for 

the discrete-time lifted model in (4.9) is also optimal for the original multirate 
system. Applying the parity space approach (Section 2.4) to the lifted model 

(4.9), the residual generator is

where

v s{ks) =

p{ks) =  v3(i)_s(ks) -  H u<sv s(ks)),

v {ks -  s) 

v(ks)

v (N k s -  Ns) 
v (N k s — Ns  +  1)

v {N k s - N s  +  N -  1)

v {N k s) 
v (N k s +  1)

_ v (N k s +  N  -  1)
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i p ( k 3 )  =

± {k s -  s) 

ij j(ks)

Tpi(qiks -  qis)

^ i (q ik s -  qis +  qi -  1)

^Pm{qmks qmS)

Tpmjqmks qmS ~~F 1)

fpi(qiks)

fpi(qiks +  qi -  1)

K u ,s  =

A
Q B t

'4>m(qmks)

1pm{qmks qm 1) 

0
A

, (4.13)

0
0

- g(s+l)xl

0 
0

C iA f- 'B ,  Q A ^ B i8 —2  ] Q B , Di

(4.14)

s+1 is the number of data frames used to generate the residual. In this residual 

generator, v3 is a 1 x q(s +  1) vector. Therefore, the residual is a scalar (slow- 

rate) signal. I t  can be shown that this slow-rate residual generator is equivalent 

to the one that was developed in [55] by properly choosing s.

To make sure that a residual is generated as soon as new information from 
the system is received, a fast-rate residual generator has to be designed. Let 

us consider vs to be a N  x q(s +  1) matrix, denoted by K,. This w ill result 
in a vector (or lifted) residual p(ks) which is s till a slow-rate signal. But 

after applying the inverse lifting  operator to this vector signal (during the 

implementation of the residual generator), a scalar fast-rate residual w ill be 

obtained. This scheme is illustrated in Figure 4.2. So the residual generator 

becomes

p(ks) =  Vs(± 3(ks) -  H Ut3v s(k3)), (4.15)

and the fast-rate residual is

p(k) =  L n p(ks). (4.16)
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L qi 4...... ‘S'ni h

Lqm 4. . . . Snmk

Figure 4.2: Proposed fault detection scheme for multirate systems

Assuming perfect disturbance decoupling is not possible, to make a trade
off between sensitivity of the residual to faults and its robustness to unknown 
inputs, a performance index is defined as

J WVsH^Wl A

** W V sK fJ l a msx(VsH fiSH l 8VsTY

Thus V3 is a solution of the following constrained optim ization problem

min Jps
V , :  N x q ( s + l )  H 

s.t. V , ^  =  0.

In the definition of J,

(4.17)

pSl

i L

H f ,s =

Zo,s =

Ddl 0 0 0
Cl Eft Ddi 0 0

Q A ’ -'Ed i C iA \ -2Edi ■■• QEdi Ddi

D f i 0 0 0
Q E }1 D f i • 0 0

C A ’ - 'E f i C iA *r2Ef i ■ • Q E f i D fi

Q
Q A t

Ci A*

(4.18)
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and Amax(') represents maximum eigenvalue. Unlike the single-rate case, here 

V«H i <sH Ti 3V j  and VaH_j aV ^  are two N x N  positive semi-definite matrices. 
Note that the design parameter Vs is a m atrix instead of a vector, so standard 

methods can not apply directly. In the next section the analytical solution to 
the problem in (4.17) w ill be proposed.

4.3 .1  A n alytica l so lu tion

I f  N b is the basis m atrix of parity space (i.e., N b is the basis of N u llf / /0 J )  

then Vs can be expressed in this basis as

where q1 =  dim (N u llf / / , . .,)) and Us is the new design parameter. I f  N RH d 3 is 

singular then there exists a nonzero m atrix U* such that

The solution is triv ia l. Since it  is assumed that perfect disturbance decoupling 

is not possible, then N bR \ s is nonsingular. First several steps of singular 
value decompositions (SVD) are performed

Vs =  UsN b . (4.19)

The optim ization problem (4.17) w ill then be simplified to

II U sN b I L J I  \ mm( U ,N B£ U ag Z aN ] ;u 7 )

II UsN BH ft3 Hi Xm̂ U sN BH ftSH T}tSN l U j )  ’

u : N BH , a =  0.

In this case perfect disturbance decoupling is achievable and

' U£Ub =  UbU [  =  I  
< E &  =  d i a g l c r f c j ,  • • • , u bq, }  

abl >  (Jbi >  ■ ■ ■ >  crbq, >  0
(4.21)
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Consider a change of variable from Us to Ws defined by

Ua =  WsUlTTa^Ul, (4.22)

_ 1
which always exists since U^T.a 2 U j  is nonsingular. Then the optimization 
problem in (4.20) is further simplified to

min
W .- .  N x q '  ^

J _  \\W.\\l A max(WsWfi) (4.23)
J  D S  -----

This problem is easier to solve. The following two lemmas are useful in finding 
the solution.

Lem m a 4.1 The minimal value o f Jps defined in (4-23) is

J* =  —  
p s  o-b l '

P ro o f Submultiplicative property of the induced 2-norm states that for any 

matrices A  and B  of appropriate dimensions [5]

\\AB\\2<  ||5 ||2||A||2.

Using this property, it  follows that

Jps =  w i  >  =  _ j _  =  j _

\\wsx l \ \ i  ~  \ m \ i \ m i  ii2 ! in  a t i '

The above lower bound can be achieved by appropriate choice of Ws (see 
Lemma 4.2 later). This completes the proof.

□
The optimal performance index J*s, does not actually depend on the size 

of Ws. Whether a parity m atrix V3 or a parity vector vs (as in the slow-rate 

case) is used, the optimal performance index does not change. Therefore, using 
a lifted residual instead of a scalar one does not degrade the performance of 
the residual generator. In other words, the slow-rate and fast-rate residual 

generators have the same performance.

The next lemma parameterizes a class of optimal solutions of Jps.
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Lem m a 4.2 Any matrix W* of appropriate dimensions with a SVD of the 

form

w; = uwzw
is an optimal solution of (4-23), where

{
U lu w =  UwU l  =  /

^ 4  —  d ia g { £ 7 u ; i , &w2>  j » & w l  ~  7̂w 2  —  * ' ' —

P ro o f I t  follows easily from the fact that a unitary transformation preserves 
the induced 2-norm of a matrix:

Jps  ---
\ \ W ' ,: \ \ i ||C4 E  112ui||2 O'tUl 1

\ \ w ; z l \ \ l  \\uwz wz i \ \ l h i

=  _  =  j*o — D̂S*
&w\&bl &bl

□
This lemma states that every m atrix w ith  a SVD of the form UwY,wV j  

(which is the general form of SVD) for which 14, =  I  is an optimal solution of 

(4.23). The optim ization problem in (4.23) has an infinite number of optimal 
solutions. The available degree of freedom is later used to impose additional 
constraints (e.g., causality constraints) on the solution. The class of solutions 

introduced herein does not encompass the whole optimal solutions as can be 

shown by a counter example, though it  is enough for considering causality 

constraints.

4.3 .2  C ausality  constraints

Recall the fast-rate residual generator in (4.15)

P(ks) =

p(N ks) 
p (N k3 +  1)

p (N ks +  N -  1)

=  v . ( ^ ( f c , ) - Ja Uiav s(fc.)),
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where

i p ( k s) -

ipi(qiks -  qxs)

ipi(qiks - q i s  +  qi -  1)

'^mi.Qmks 9m^)

‘4>m{qmks qmS ~F 9m 1)

i> i(qika)

ipi(qik„ +  qi - 1)

m(Qmks)

i > m { q m k s  +  q m  ~  1) Jg(s+l)xl

This residual generator is generally noncausal (and hence can not be imple

mented), for some elements of p(ka) can depend on the future values in ip (ks). 
This noncausality is caused by the lifting  operation. To make p(ka) causal 

the dependency of p (N ks +  i  — l)( th e  i th entry of p(k3)) , i  =  1 ,2 ,••• ,N ,  

on the future values in ipa(ks) should be removed. Note that because of the 
lower triangular structure of H_u s, p{ks) is already independent of the future 
values in va{ks). This causality issue enforces some of the entries of Vs to be 

zero. I f  p (N ks +  i  — 1) depends on ipj(qjks +  rrij) for some i  =  1,2, • • • , N ,  

j  =  1,2, • • ■ , m, and

(N k s +  i  — 1 )h < (qjks +  m j)r i jh T l j T T l j  > i  — 1

(which implies noncausality), then the corresponding entry of Vs should be 

zero. Since only the last q entries (the last block) of ips(ks) contain future 
values, zeros only appear in the last q columns of Vs.

Let us first consider causality constraints caused by the future values of 
the first output ipi only. The entries of ip_s(ka) containing the future values 
of ipi are only the first qi elements of the last block. Therefore, a necessary 

condition for VSiij  to be zero due to ipi is:

qs +  1 <  j  <  qs +  qi. (4.24)
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Now, the j ttl entry of ip (ka) for j  =  qs +  1, qs +  2, ■ • • , qs +  qu is ipi(qika +  
j  — qs — 1). Following the above discussion Vĝ j =  0 i f  p(N ks -F i  — 1), the i th 

entry of p{ka), depends on ipi(qika +  j  — qs — 1) and

n i { j  - q s  -  1) >  i  -  1,

or

i  <  ( j  ~  qs -  l) n i.  (4.25)

Combining (4.24) and (4.25), in order for p{ka) to be causal in regards of the 

output V'i , Vs,ij should be zero if

i  <  ( j  — qs — l ) ^ i  and qs +  1 <  j  <  qs +  q\.

Similar results can be derived for other outputs. Furthermore, since the latest 

future value in ip_s(ks) corresponds to t  =  N k ah +  max.k{qk — l)^fch, the search 

on i  can be done only in the interval

1 <  i  <  max(qk — l)n*;.
k

In summary causality constraints can be formulated as: The entry Vs,ij of 

Va is zero i f  the pair ( i , j )  satisfy

1 <  i  <  max(qk — l)rifc and 
k

( i  <  (j  -  qs -  l ) n i

and qs +  1 <  j  <  qs +  q^j, 

or ( i  <  (j  - q s - q i -  l ) n 2

and qs +  qi +  1 <  j  <  qs +  qi +  q2̂ , (4-26)

or

or ( i < ( j  - Q S - q i  qm- 1 -  l) n m

and qs +  qi-l b qm- i +  1 < j  <  q(s +  1) j .

Let A4 denote the set of all (i, j)-pa irs satisfying (4.26). The causality con

straints are
VSiij =  0, (i , j ) 6 M .
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And the original optimization problem (4.17) w ith  the causality constraints 
w ill be

min Jpa
V , :  N x q ( s + 1)

s.t. V s ^ s  =  0, (4.27)

s.t. VSii j  — 0, (i , j ) e M .

In the next section, a method is developed to find an optimal solution of this 

problem.

4 .3 .3  O ptim al so lu tion  w ith  causality  constraints

In Section 4.3.1, a class of solutions to the optim ization problem were proposed. 

Now, i t  is enough to find an optimal solution w ith in  the proposed class that
satisfies the causality constraints as well. To do so, constraints on Vs are first
translated to constraints on Ws. Combining (4.19) and (4.22) yields

V, =  WaU l  E l*  U j  Nb . (4.28)

_ 1
Assume tha t Wi is the i th row of W3 and 7j  is the j th column of U^T,a 2U jN B. 

Va,ij =  0 implies that w ^ j  =  0. Thus, causality constraints on W3 are

^ i7j  =  0, (4.29)

The optim ization problem to be solved now is 

min JpS
W,-. N xq ' F

s.t. Wi'Yj =  0, (i , j ) e M ,

J \ \w . \ \ l  _ X n u x jW 'W ? )

” IIW.sJlll

To find a solution for this problem, the idea is to apply the causality constraints 

to the general solution given by Lemma 4.2. For simplicity assume that N  <  q' 
(i.e., Ws is a fat matrix). The procedure for a ta ll m atrix is similar. Recall 
from Lemma 4.2 that a general solution can be given as

W  =  U  SV Y  g  -----
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Partition 7j as

according to (4.3.3). Then the causality constraints in (4.29) could be simpli

fied to

Uw.'Yji =  0, (i, j )  € M .  (4.31)

Since Uw is a unitary matrix, it  satisfies

= \ t jj  <4-32)
To find vectors UWl,...,UWN that satisfy (4.31) and (4.32) is a standard algo
rithm  in linear algebra. When UW1,...,UWN are selected, Ws w ill be known, 

and using (4.28) Va can be calculated. This Vs minimizes the performance 

index and satisfies causality constraints. This is summarized in the following 
theorem:

T heorem  4.1 A parity matrix Vs calculated in (4-28), where Ws is obtained 
from (4-80) and solving (4-31) and (4-32) fo r  Uw, is an optimal solution of 

(4.27).

P ro o f The proof is clear from previous discussions.

□
From the above theorem, an optimal residual generator w ith  practical 

causality constraints is designed that generates the lifted residual vector p[ks) 

at a slow rate as in (4.15). By applying the inverse lifting  operation when 

implementing the residual generator, a fast-rate residual (scalar-valued) is ob

tained as in (4.16).
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4.3 .4  D esign  procedure and im plem entation

The procedure of designing an optimal fast-rate parity space based residual 

generator for multirate sampled-data systems is summarized in the following 

steps:

Consider the multirate sampled-data system in (4.1), (4.2) and (4.3):

1. Compute N , qit i  =  1,2, • • • , m, and q according to (4.4).

2. Compute A d , B d , EdJ and E f j  according to (4.7) and (4.11).

3. Construct the discrete-time lifted model in (4.9).

4. Compute the matrices H_u,si Kd,s, K f , s “ d H c cas in (4.14) and (4.18).

5. Compute N b and SVDs in (4.21) and construct 7,.

6. Determine the set M  for causality constraints from (4.26).

7. Find vectors UWl,...,UWN from (4.31) and (4.32) and compute Ws accord
ing to (4.30) and subsequently V3 from (4.28).

8. Implement the lifted fast-rate residual generator in (4.15) w ith  vs(ks) 

and V^(A:S) as in (4.12) and (4.13). Each entry of the residual p(k3) is 
calculated and implemented at one time instant: The first entry p(Nka) 

is calculated at t =  N k sh, the second entry p(Nk3 +  1) at < =  N k sh +  h, 
..., and the N th entry p(Nk3 +  TV — 1) at t  — N k ah +  N h  — h. Hence, 

the residual can be calculated in real-time at each time instant.

4.4 Fast-rate residual generator: T ioo  optim i
zation

In  Section 4.2, i t  was shown that designing an optimal residual generator for 

the multirate sampled-data system in (4.1), (4.2) and (4.3) is equivalent to 
designing an optimal residual generator for the following discrete-time system

±(k ,)  =  GuDv(k3) +  Q u Z ik . )  +  GfJx(ks), (4.33)
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where

[ & £ > «  £ u M  G /j W ]
Bt Em E/i

I Cl Di D f i
(4.34)

Ai, Bi, Edi, E /i,  Ci, Di, Ddi and D /i  are defined in Section 4.2. In this sec

tion, a fast-rate residual generator is designed based on the equivalent discrete

time model and Hoo optim ization technique.

4.4 .1  R esidual generator

Applying the factorization approach in Section 2.5 to the equivalent discrete- 
time system given in (4.33) yields the general form of the residual generator 

as

p(ks) =  R ( M u±{ks) ~  N uv(k3) ) , (4.35)

where

i>i{qiks + 1 )

^ 1(91^  +  91 - 1)

lftm(Qmks)
'4)m{.qmka "F 1)

iftm^qmks “b 9tti I)

v(ks) =

v (N k a) 
v (N k s +  1)

v (N k s +  N - 1 )

(4.36)

Here R(z) € TZHoo is a designable post-filter and (M j z ). N_u(z)) is a left 
coprime factorization of GuD(z) satisfying

GuD{z ) = M Z \ z)N u{z).

M v(z) and K u(z) can be parameterized as

Mu(z) =

Ku(z) =

[  A ‘
— LCi L  ‘
-C i I 5

r a - L C i Bi - L D i  '
Ci Di

(4.37)

Assume that perfect disturbance decoupling is not possible. Therefore, in 

order to compromise between the sensitivity of the residual to the faults and
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its robustness to the unknown inputs, the following l i .00 optim ization problem 
is considered

, =  l | f i M A t . ( * ) £ » ( * ) I L  ( 4 '3 8 )  
I l f l t i J i L W f i / j W I U '

Assuming tha t M u(z)Gd](z) has no transmission zeros on the unit circle, it  
has a co-inner-outer factorization as

M « ( * ) ^ ( * ) = ^ ( * K k ( * ) .

For details of computing the co-inner-outer factorization see Appendix A. The 
general solution of the optim ization problem in (4.38) can then be parameter

ized as (Section 2.5.1)
R '{z ) =  Q {z )G ^{z ) ,  

where the parameter Q(z) € TZHoo satisfies

\\Q(z)G^0\ z ) M u(z)GfJ (z)\\00=  ||Q(z)||00||G i1(z )M u(z)G /J (z)||00.

Conventionally Q(z) =  I  is chosen, but here the general form of Q{z) is con

sidered. The degree of freedom available in Q(z) is used later to satisfy the 
causality constraints. The optimal value of the performance index J  is

j -  i

The residual generator in (4.35) is a slow-rate system resulting in a slow- 
rate residual. I t  means that the residual is updated at the end of each repe

tition  period. This may cause substantial delay in detection of the faults, for 

new information is also available during the repetition period. To update the 

residual whenever new information arrives (no matter during the repetition 

period or at the end of it), a fast-rate residual generator has to be designed. 

This can be achieved by introducing a set of N  slow-rate residual generators 

as

p(Nka) = R i ( M u±(ka) -  N uv(ks)), 

p(N ka +  1) =  R2{ M J }{ka) -  N uv(ka)),
. ~  (4-39)

p(N ka +  N  -  1) =  RN { M ul ( k a) -  N uv(ka)).
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To calculate the residual at the fast rate, each of the residual generators in 

(4.39) is used at one time instant during the repetition period. Notice that all 
the post-filters Ri(z), i  =  1, • • • ,N ,  in (4.39) optimize the same performance 
index in (4.38). Also all the residual generators in (4.39) use the same lifted 

input and output vectors in (4.36). But since these lifted vectors carry the 

future values too, some of the information needed for the earlier residual gen
erators in (4.39) may not be available at the calculation time. In other words 

all the N  residual generators in (4.39) may not be causal. So to accommodate 

these causality constraints, appropriate post-filter Ri(z) should be chosen for 

each residual generator. Fortunately the degree of freedom available in the 

optimal post-filter Ri(z) (notably the free-to-choose Q(z)) allows us to satisfy 

the causality constraints.
Suggested by the general solution, the optimal post-filters Ri(z) are given

as
Ri (z) =  Qi (z)G^01(z), i  =

Qi(z), i  — 1, • • • , N,  are stable transfer function matrices satisfying

IIQ(^)fflo1(^)M »(^)fi/^(^)lloo=  (4.40)

4.4 .2  C au sality  constraints

To discuss the causality constraints of the residual generators in (4.39), let us 

focus on the i th residual generator

p(N ks +  * -  1) =  Q iG £  { M u± {k s) -  N uv(ks)). (4.41)

Observing the lifted input and output vectors in (4.36), future values of ip(k) 
and v(k)  only appear in the current values of i i { k s) and v(ks). In other words, 

ip(ks — 1) and v(ks — 1) do not contain any future values. Therefore, the 

causality problem in the residual generator in  (4.41) is caused only by the 
current values of 4>(ka) and v(ks). This means that the causality constraints 

only affect the direct feed-through term of the residual generator. Let and 

Div denote the direct feed-through terms from V̂ (fcs) and v(ka) to p(N ka+ i —l) ,  

respectively. Then,

Du, = D QiD GdoD Mu, 

Div = - D Qx D GdoD Nu, 
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where D q0 D Gdo, D m u and D/vu axe the direct feed-through terms (D-term in 

a realization) of Qi{z), M J z )  and N_u{z) respectively. I t  follows from

(4.37) that D mu =  I  and D nu =  Di. Then, (4.42) can be simplified to

Ay. =  D QiD Gdo,

DiV =  -D Q iD a ^ D i.

Because of the lower triangular structure of Di, the future values of v(k)  

in v{ks), does not appear in the calculation of the residual. So causality of the 
residual generator in (4.41) depends on D ^  only. Define

D i t p  =  D Q i D G d o  =  £ d n  d %2  • • ■ d i g  j .

To calculate the residual p(Nkg +  i  — 1) in (4.41), if  the j th entry of ip(ks)

is a future value then the corresponding column in D ^  (i.e., d^) should be

zero. This guarantees that p(Nks +  i  — 1) is independent of any unavailable 
information.

Corresponding to the i th residual generator in (4.41), define M i  as the set 

of all indices j  for which dij =  0. Similar to the steps in Section 4.3, it  can be 

shown that

M i  = { ;  : 1 <  j  <  qi and i  <  ( j  -  l ) n i  j  U

■ qi +  1 < j  < q i  +  q2 and i  <  { j  -  qi -  l ) n 2|  U
1 J (4.43)

{ j  : Q ~  Qm +  1 <  j  <  Q and i  <  { j  -  q +  qm -  l ) n m| .

For the residual generator in (4.41), the causality constraints on D ^  are

d ^  — 0, j  ̂ G .Adj.

Now, the causality constraints on — DQi D Gdo are translated to con

straints on D Qi (D cdo is a known matrix). Let D m , be a m atrix constructed 

from the corresponding columns of D Gio determined by M x (e.g., i f  M i  =  
{1 ,3 } then D Gi contains the first and th ird  column of D Gdo). Then the causal
ity  constraint on D q{ is

D q ^ M i  =  0.

I f  N m , denotes the orthonormal basis of N u ll(D x J , then D Qi can be w ritten 

as D q{ =  X iN m , where X l is arb itrarily chosen. Therefore, the problem is
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simplified to finding stable transfer function m atrix Qi(z) that satisfies (4.40) 

and Qi(oo) =  D q{ =  X iN m { for some X t . One method to find such Qi(z) is 
presented in Appendix C. Notice that Qi{z) has q columns, but the number of 

its rows can be chosen freely. Once Qi(z) is calculated, the residual generators 
in (4.39) can be implemented.

4.4 .3  D esign  procedure and im plem entation

The procedure of designing an Hoo optimal fast-rate residual generation scheme 

for m ultirate sampled-data systems is summarized in the following steps:

Consider the multirate sampled-data system in (4.1), (4.2) and (4.3):

1. Compute N , qi, i  =  1,2, • • • , m, and q according to (4.4).

item Compute A d , B d , EdJ and E f j  according to (4.7) and (4.11).

2. Construct the lifted models GuD, Gj j  and G f j  as in (4.34).

3. Find the left coprime factorization GuD(z) =  M ~ 1(z)N v(z) and the 

co-inner-outer factorization M.u(z)Gdj(z) =  Gdo(z)Gdi(z) and calculate

4. Determine the sets M i ,  i  =  1, • • ■ , N ,  for causality constraints as in 

(4.43) and find D m { and N m

5. Compute the transfer function matrices Qi(z), i  =  1, • • • , N,  according 

to Appendix C.

6. Construct the N  residual generators in (4.39) w ith rp(ks) and v(k3) as in 
(4.36) and Ri{z) =  Q i{z )Q ^ {z ) ,  i  =  1, • • ■ , N.

Each residual is sequentially calculated and implemented at one time in
stant to render a residual signal at the fast rate:

p(N ks) =  Q iG ^  (M J ) { k s) -  N uv(ks) ) , at t = N k sh, 

p{N ks -I-1) =  Q2G^g (M uV>(fcs) -  N uv(ks)), at t = N k sh +  h,

p (N ks +  N  -  1) =  Qn G ^I  {M.vM.ks) -  N uv(ka) ) , at t = N k sh +  N h  -  h.
(4.44)
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Implementing this residual generation framework w ill result in  a sequence of 

residuals as

{• • • , p (N k3) ,p (N ks +  1), • ■ • ,p(Nks +  N  -  1)

,p(N(ka +  l ) ) ,p (N (k s +  1) +  1), ■ • • }. 

Different evaluation algorithms may be used, the simplest of which is

||p(k)||_ |  zer° °r ver̂  smâ  s

4.5 Exam ple

nonzero or large f ( t )  ^  0.

To illustrate the proposed methods an example is given. The system is adopted 

from [55]. The continuous-time process model is:

x ( t ) =  A x(t ) +  Bu(t)  +  Edd(t) +  E f f ( t ) 
y i( t)  =  C ix{t)
2/2 (t) =  C2x(t)

where

’  - 1  5 ' ' 0 ' ' 0.1 ‘ ' 0 ‘

0 - 2 » B  = 1 , Ed = 1 . Es = 1A  =

C i = [ l  0 ] ,  C2= [ 0  1 ] ,

' A B Ed E f
[Gu(a) Gd(s) Gf (s)) = C i 0 0 0

c 2 0 0 0

Define

The sampling period of the D /A  converter is h sec and the sampling periods 
of the A /D  converters are Tyi =  2h sec and TV1 — 3h sec (Figure 4.3).

Matrices A d , B d , E^j and E j j  are computed according to (4.7) and (4.11),

A d =  

Edj =

1 sec,

0.368 1.163
0 1.135

1.108 0
0.351 0.350

B d =

E / j  =

0.999 
0.432 j

' 1.052 0
0.339 0.361

Let
A d B d Edj EfJ

[GuD{z) Gdj(z) GfJ (z)} = C i 0 0 0
.  c 2 0 0 0
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v(k)

d(t) f ( t )

- ip i(ki)

- i>2{k2)

Figure 4.3: M ultira te sampled-data system

As it  can be seen, B d  has the same dimensions as B. Hence, G(s) and G u d ( z ) 

have the same number of inputs, which is expected because the step invariant 
transformation does not change the number of inputs. In  contrast, dimensions 

of Ed and Edj  axe different. Consecutively Gd(s) has only one input while 
Gdj{z) has two inputs. So, the norm invariant transformation has introduced 

an extra disturbance input (also an extra fault inpu t).
Using the following values

n i =  2, n2 =  3, N  =  6,
Qi =  3, q2 =  2, q =  5,

the lifted model in (4.8) can be calculated as 

G u d ( z )  =
r  ^ Si

Ci A  J

---
1

0® A 5d B d A%Bd A%Bd A \ B d A d B d S D
Cx 0 0 0 0 0 0

C x A l C \A d B d C \B d 0 0 0 0
CiA% CxA*d B d CxA 2d B d C \A d B d CxB d 0 0

c 2 0 0 0 0 0 0
G2A d C2A 2d B d C2A d B d C2B d 0 0 0

G_dj{z) and Gf j ( z )  have the same structure as GuD(z), replacing B d  w ith Edj 

and E jj  respectively. The input and output of GuD are

v(ks) =

v(6ka)
v(6ks +  1)
v(6k„ +  2) 
v(6 k3 +  3) . ± (k s) =

v(6ks +  4)
v(6ks +  5)

i/>i (3ks) 
ij j i(3ka +  1) 
ipi(3ks +  2) 
i>2{^ks) 
il>2(2k3 +  1)
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Notice that G_uD has 6 inputs and 5 inputs, while Gdj and G / j  have 12 inputs 

and 5 outputs. This is because Gdj and G f j  have twice the number of inputs 

as GuD.

4.5.1 Slow -rate residual generator

For a slow-rate residual generator, the parity space method can be applied to 
the lifted model. As mentioned before, this slow-rate residual generator is the 

same as the one developed in [55] w ith  appropriate choice of s. In  fact by 

setting s =  1 (which uses two frames of data to generate the residual), the 

obtained residual generator is identical to the one designed in [55] for s =  11. 
Using the approach in [55] the slow-rate residual generator is given by

p{kg) -- va(i>3(ks) -  H UiSvs(ks) ) ,

where

i p i  (3k s  -  5)
M 2k s  -  3)
- i p i { 3k s  - 4 )

M U *  -  2)
-01 (3k s  -  3) 
t p i ( 3k s  —  2) 
i p 2 { 2 k s  -  1) 
xpi{3ks -  1)
0 2(2A:,)

.  ^ i ( 3 ^ )  J 10X1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

C ^ d B d c xb d 0 0 0 0 0
c 2a 2d b d c 2a d b d c 2b d 0 0 0 0

c 2a *d b d c 2a 7d b d C2A 6d B d c 2a \ b d  •• 0 0 0
C i A 9d B d C i A 8d B d c xa 7d b d c xa %b d •• • c xb d 0 0

The performance index is defined as

vsH d,sH lsvJ

PS vsH f , s H j X

The optimal parity vector va is a 1 x 10 vector and is the solution of the 
following optim ization problem
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where

min Jpg
v„: 1x10 *

s.t. vsH 0,s =  0,

Ci
C2

C i A l
C2Aj)
C i A*d
C \A 6d
c 2a % 
C i a sd 
c 2a %

L Cl J
Hd,s and H / iS have the same structure as H Ui3 replacing B  by EdJ and E / j  

respectively. The optimal solution for v3 is:

v* =  [ 0 0 0.01 0.07 -0 .06 0.21 - 1  0 0 0 ] ,

and the optimal performance index is:

j ; s =  0.9575 (4.45)

4.5 .2  F ast-rate residual generator: P arity  space

Again choosing s =  1 (i.e., two frames of data are used) and applying the 
method in Section 4.3, the fast-rate residual generator is

p(ks) =

( ' ^ i( 3 k3 -  3) " \
-0i(3fcs -  2)

p(6k3) if>i (3ks -  1)
p(6k3 +  1) ip2{2k3 -  2)
p(f)k3 +  2) 
p(6ks +  3) =  v.

^ 2(2ks -  1) 
ipi(3ks) -  H UtSv s(ks)

p(6ks +  4) ipi(3ks +  1)
p(6ks +  5) ipi(3k3 +  2)

M 2 k s)

\ ip2{2k3 +  1) /

(4.46)

where Vg(ks) and H_us are given in (4.12) and (4.14). I t  is now obvious that 

some entries of V„ can cause dependence on the future values of outputs. For
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instance r(6ka) depends on 4>i(3ks +  1), 0i(3fcs +  2) and 02(2ka + 1) which are 
not available at t =  6ka. Therefore, causality constraints enforces Va to have 

the following structure

0 0 
0 0 
* 0 
* 0 
* * 
* *

where * means a designable value. Hence

M  =  {(1 ,7 ), (1,8), (1,10), (2,7), (2,8), (2,10), (3,8), (3,10), (4 ,8 )}.

To calculate an optimal Va, one should find a unitary m atrix Uw satisfying 

(4.31) and (4.32). In other words, orthonormal vectors UWl,---  , UW(j should 
be found such that:

UWi 77,1 =  0, 

Uw2'y7,i =  0) 

Uws'y&yi bi

U W l 78,1 = 0, 

£Au278,1 = 

UW3 7io,i =  0,

t / ^ 710,1 — 0) 

Uw 27 io ,i  =

Uw478,1 0.

Combining these equations w ith (4.32), normal vectors UWl,...,UW6 can be com

puted as follows:

UW1 E Null ( [  77,i 78,i 7 io , i ] ) ,

UW2 E Null

Uw3 E N ull 

UWi E Null

Uw5 € Null

UW6 E N ull

[ 77,1 78,1 7 io , i t C j ) .

[ 78,1 7 io , i U ^ U%2 ] j ,

[78 ,1  u *  U l2 t £ ] ) ,

[£&  ul2 ul3 t/J4]),
T  t t T  t t T  t tT  t tTu1 u‘ ul u‘ )).W \  W2 1^3 ^  W4 U>5 J /
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One optimal solution for Vs is

0.01 0.01 0.01 0 0.01 0
-0 .05 -0.06 -0.08 0.09 -0.08 -0.04

0.02 -0.01 0.23 0.04 0.07 0.21
0.02 0.04 0.03 -0.06 0.04 0.01

-0.32 -0.35 -0 .63 -0.21 0.37 -0.57
0.14 0.15 -0 .37 0.27 0.07 -0.14

0 0 0.04 -0.15 0.19 -0.08
0 0 0 0 -0.20 -0 .10

-0 .99 -1 .03 0.66 -0.88 -0 .57 1.05
0 0 0 -0.31 0.35 -0 .12

and the optimal performance index is

J^  =  0.9575

Note that this performance index is equal to the optimal performance of the 

slow-rate residual generator in (4.45).

To generate the residual one should use the calculated V* and evaluate the 
residual generator in (4.46) one row at a time. For example the first row of 

(4.46) w ill be

p(6ks) =  0.01 V'i(3A:s -3 ) -0 .0 5 V ' i ( 3 A :s - 2 )  +  0 .0 2 ^1(3fcs - l )  

+  0.02 i)2{2ks -  2) -  0.32 ks -  1) +  0.14 ^ i ( 3 k3)

-  0.99 ^ 2(2ks) -  V iH ^v^ iks ) ,

where vx is the first row of V*. As it  can be seen, no future data is needed to 

compute p(6ks).

4.5 .3  F ast-rate residual generator: Tioo optim ization

Since Gu(s) (and subsequently GuD(z)) is stable, M u(z) =  I  and N_u(z) =  
GuD{z) can be selected as a left coprime factorization of GuD(z). The co- 

inner-outer factorization M n(z)Gd, (z) — Qdj(z) — Gdo(z)Qdi(z) can then be
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calculated as

' 0.003 
0

0.012
0

0.007
0

0.054
0

0.377
0.006

0.003
0

-0.089
-0.003

1 0 1.450 0 0 0 0
0.135 0.585 0.377 1.453 0 0 0
0.018 0.090 0.054 0.377 1.453 0 0

0 1 0.309 0.062 -0.007 0.388 0
0 0.003 0.001 0.042 0.303 -0.001 0.395

' -0.824 
-0.014

-0.174
0.027

-0.002
0

0.036
0.001

-0.306
-0.005

-0.006
0

0.224 ' 
0.007

0.690 0 0.690 0 0 0 0
-0.086 0.403 -0.179 0.689 0 0 0

0.009 -0.043 0.021 -0.179 0.688 0 0
-0.535 2.511 -0.520 -0.114 0.012 2.576 0

0 0 0.001 0.064 -0.528 0.004 2.529

Now the slow-rate residual generator can be obtained by simply applying the 
Hoc optim ization method to the slow-rate lifted system. The slow-rate residual 

generator is
p{ks) =  G ^ { ip {k s) -  GuD(z)v(ka) ) .

The optimal performance achieved by the slow-rate residual generator is

r °°/00 =  I =  ° ' 9 7 8 '

For a fast-rate residual generator, the causality constraints has to be con

sidered first. The sets M i ,  i  =  1, - - - ,6, for causality constraints can be 

determined as in (4.26)

M i  = M 2 =  {2 ,3 ,5 } ,  M $  =  {3 ,5  j ,

M i  = { 3},  M*> = A46 = { } .

The direct feed-through term (D-term in a realization) of G ^ (z )  is

0.690 0 0 0 0
-0.179 0.689 0 0 0

0.021 -0.179 0.688 0 0
-0.520 -0.114 0.012 2.576 0

0.001 0.064 -0.528 0.004 2.529
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Corresponding to the sets M t> * — 1) ■• • ,6, matrices D m ,, i  =
be constructed as

0 0 0 ‘
0.689 0 0

IISQIIi -0.179 0.688 0 >
-0.114 0.012 0

0.064 -0.528 2.529 _
' 0 0 ' 0 '

0 0 0
Dm3 = 0.688 0 , Dm4 = 0.688

0.012 0 0.012
-0.528 2.529 —0.528

, 6, can

The basis matrices of the null spaces of DM i, i  =  1, • • • ,6, are

^ M i  N M2

N m 3 =

N.

-0.137 0.157 -0.017 0.978 0 
0.991 0.022 -0.002 0.135 0

-0.793 -0.608 0 -0.017 0
-0.013 -0.010 -0.017 1 0

0.609 -0.794 0 0 0

00 1 
-0.793 0 
-0.013 0 -0.011 

0.609 0 0.483

0 0 
0.370 -0.011 0.483 

1 0.008 
0.008 0.630

^M s =  N m 6 =  I-

Qi(z), i  =  1, • • • ,6, can now be calculated. For example by choosing X \ =  

[0.6166 0.1133], ip =  100 and .Pi(s) =  (s +  0.1)3, Q i(z ) is obtained as (ua is 

determined to be 0.1)

Qi (z)  =
1

z3 — 1.6 z2 +  0.87 z — 0.16

0.028 z3 -  0.87 z2 +  1.5 z -  0.54 
0.099 z3 — 9.6 z2 +  16.0 z — 6.1 
-0.011 z 3 +  2.6z2 - 3 . 8 z  +  1.2 

0.62 z3 -  60.0 z2 +  100.0 z -  38.0 
2.2 z2 — 3.1 z +  1.0

The residual generators in (4.44) can now be implemented. The optimal per

formance index is =  0.978 which is the same performance achieved by
the slow-rate residual generator.
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4 .5 .4  S im ulation

For simulation let h =  1 sec, and since the input signal u(t) has no effect on the 

residual, it  is assumed that u(t) =  0. d(t) is white noise w ith variance 1 and 

f ( t )  is a step function w ith  amplitude 10 and step time at 20 sec. The results 

of simulation for slow-rate, parity space based fast-rate and Tioo based fast- 
rate residual generators are illustrated in Figures 4.4, 4.5 and 4.6 respectively. 

The figures show tha t the fast-rate residual is actually updated 6 times faster 
than the slow-rate residual, which significantly improves the detection speed. 
For the slow-rate residual in Figure 4.4, the effect of the fault appears in the 
residual after 4 sec. But for the fast-rate residual generators in Figures 4.5 

and 4.6, the fault can be detected after 1 sec.

6i----   1-------------------------      1-1---- ----------

4.5 -

g 3.
I  » -O
J s-gg  1.5 • .3

16 18 20 22 24 26 26 30 32

tim e (sec)

Figure 4.4: Parity space based slow-rate residual

s.S>U»753
1/3
£

£O
Mn
>

S
M<

tim e (sec)

Figure 4.5: Parity space based fast-rate residual
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Figure 4.6: Tioo based fast-rate residual

4.6 D iscussions and conclusions

In this section two design approaches to optimal fast-rate residual generation 
for multirate sampled-data systems were developed. The fast-rate residual 
generation schemes ensure the detection of a fault at the earliest time possible 

preventing the system from any undesirable operation caused by the fault. Fur

thermore, using the norm invariant transformation and direct design ensures 

that the intersample behavior of the faults and unknown inputs is captured. 
So no approximation was made during the derivations.

Of course the fact that the residual generator operates at the fast rate does 
not necessarily mean that the fault is always detected at the fast rate. The 

reason is that the new information (from the outputs) does not necessarily 
become available at the fast rate. However, the proposed fast-rate residual 

generators can guarantee the detection of a fau lt at the earliest time possible. 
Let T& denote the detection delay which is the difference between the time the 

fault occurs and the time its effect appears in the residual, then

where
nmin =  min n,

i

and nth is the sampling period of the i th output. nm\nh is the maximum gap 
between the sampled outputs. So the new information from outputs w ill be 

available no later than nmmh sec, and as soon as the residual generator receives 

the new information the residual can be updated.
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I t  is also notable that introducing the multirate sampling w ill improve the 

detection speed. For example if  all the outputs are sampled synchronously w ith 

T  =  nmmh sec, again the maximum delay in fault detection would be nmmh sec. 

But the m ultirate sampled-data scheme would probably detect the fault earlier 

because of the inherently redundant information available at different sampling 

rates. This improves the chance of early detection of the fault which means 
that the m ultirate scheme is usually better than the (synchronous) single-rate 
scheme in terms of detection speed.

As an example, consider a system w ith  two outputs. I f  both of the outputs 

are sampled at a single rate w ith T  — 2 sec, then the maximum delay in fault 
detection is 2 sec. Now for the same system if  the two outputs are sampled at 
two different rates, e.g., T \ = 2  sec and T% =  3 sec, again the maximum delay 

in fault detection is 2 sec. But in the la tter case, there axe some periods of time 

(for example 6fc+2  < t <  6A;+3) that if  a fault occurs during this period, it  can 
be detected w ith in  1 sec, while the same fault w ill be detected between 1 sec 

and 2 sec in the single-rate scheme. So the probability of early detection of 
the fault is improved in the multirate fault detection. In case of asynchronous 
sampling, the same methods can be applied w ith  minor modifications.

Two different methods were used for fast-rate residual generation: par
ity  space approach and factorization approach w ith  Hoo optimization. For 

both methods, the design is carried out by converting the original multirate 

sampled-data system to an equivalent discrete-time system. This discrete
time system is a slow-rate model, thus the residual generator designed for this 

method w ill also work at the slow rate. The idea used to yield a fast-rate resid

ual generator was to generate a lifted (vector) residual rather than a scalar 

one. Applying the inverse lifting  operator to the lifted slow-rate residual w ill 
result in a fast-rate residual. In the parity space approach, this is achieved by 

introducing a parity matrix rather than the known parity vector. For the H 00 
approach, a bank of optimal residual generators was introduces, each working 

at one time instant.

To deal w ith  multirate sampling, the lifting  technique is used. I t  enables 
us to replace the multirate system w ith  a M IM O  single-rate one. Using lifting  
also helps in developing a more general and systematic formulation. In both 

approaches, to compromise between the sensitivity of residual to the fault 

and its robustness to other unknown inputs, a performance index was defined.
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Analytical solutions were proposed to minimize the performance indices for 
both cases. The analytical solutions, involve many degrees of freedom, which 
help us consider more constraints on the solution. The use of lifting  operator 

arises the issue of causality. This issue is dealt w ith  properly using the degrees 
of freedom available in the optimal solution. The degrees of freedom might 

also be used to  involve more useful constraints, optimize other performance 

criteria or accommodate issues of evaluation and isolation of faults.
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Chapter 5

Performance Analysis in 
Sampled-data System s

5.1 Introduction

As discussed in previous chapters, sampled-data systems are widely used and 

accepted in industry because of the numerous advantages of d igital technol

ogy. In these types of systems the actual process is continuous-time while the 

controller is d ig ita lly implemented by computer (Figure 5.1). Thus a sampled- 

data system is a hybrid system involving both continuous and discrete-time sig
nals. M ultira te  sampled-data systems, in which digital-to-analog and analog- 

to-digita l converters work at different sampling rates, are also abundant in 

industry. In a variety of industrial process applications, the elements of the 
control system may be structured distributively, i.e., sensors, actuators and 

controller are connected via standard networks. Moreover, in many chem
ical engineering systems, measurements are not available at the same rate 
and practical constraints may exist on the sampling rates of several physical 

variables. Extensive research on development and analysis of single-rate and

The materials of this chapter has been submitted for publication in:

I. Izadi, T . Chen and Q. Zhao, “Performance analysis in multirate sampled- 
data control systems”, submitted to IE EE  Transactions on Automatic Control, 
November 2005.

Some materials of this chapter has also been published in:

I. Izadi, T . Chen and Q. Zhao, “H 00 performance comparison of single-rate 
and multirate sampled-data systems”, Proceedings of the American Control 
Conference, Minneapolis, MN, pp. 183-187, 2006.
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w(t)

u{t)

v(k)
K(z ,  h)

Figure 5.1: The standard single-rate sampled-data system.

multirate sampled-data control systems has been carried out during the past 
decades [1,9].

Most of the existing sampled-data control techniques are based on the 

availability of all the measurements at a single rate. These techniques can not 

be directly used to design controllers for multirate systems. To resolve this 

drawback, one approach is to downsample the m ultirate measurements to a 
lower sampling rate. In  other words the m ultirate system is replaced w ith  a 

single-rate system whose sampling period is the least common multiple of all 

the sampling periods of the multirate system. This particular single-rate sys
tem is known as the slow single-rate or simply slow-rate system. One expects 

that the single-rate controller designed based on the slow-rate system would 

not necessarily be an appropriate controller for the original multirate system. 

The reason is that the slow-rate controller does not use all the information 

that is available through feedback. To use all the information present in the 

multirate data one would need to design a m ultirate controller. A  well known 

approach for treating a multirate system is to convert it  into a single-rate 

system (w ith  slower sampling rate and higher dimension) using the lifting  op
erator. The concept of lifting  involves stacking of fast-rate measurements of 

a signal during one repetition period to form a slow-rate signal. An intuitive 

reason for changing to multirate controller from slow-rate controller is that, 
hopefully the former gives better performance than the latter. However, there 
has been very few theoretical results to support this intuition.

On the other hand, i t  is intuitive too, that if  all the signals were available 

at a faster rate than tha t in the multirate system, one could expect better
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performance. For this purpose, another single-rate system, known as the fast 
single-rate or simply fast-rate system is introduced. The sampling period of 

the fast-rate system is the greatest common divisor of all the sampling periods 

of the m ultirate system. In the fast-rate system, control signals are generated 

at the fast rate assuming that all the signals are available at that rate. There 

have also been very few theoretical results to support the in tu ition  tha t the 
fast-rate controller offers better performance than the multirate controller.

A  theoretical comparison of multirate and single-rate systems was reported 

in [48]. The lifting  method was adopted to transform a m ultirate system into 
an LT I single-rate system. The performance index used was the continuous
time LQR cost function. I t  was shown that multirate control performs no worse 

than slow single-rate control. I t  was also shown that the fast-rate controller 

yields the same LQR performance as the multirate controller. However, it  was 

assumed that all measurements are sampled at one rate and all the control 

signals are generated at another rate (i.e., a dual-rate concept). In addition, 

it  was assumed that the input is generated at a faster rate than the measured 
output. These assumptions lim it the application of the results.

Another result was recently presented in [50]. The performance index used 
in this paper was the variance of the fast sampled output. I t  was shown that 

the optimal dual-rate controller (in the sense of minimum variance) performs 

better than the optimal slow-rate controller but worse than the optimal fast- 
rate controller. The lifting  technique was used and a linear m atrix inequity 

(LM I) approach was developed to calculate the optimal controller. The system 

under investigation was single-input single-output and the controller was dual
rate. In  addition, only the case when the sampling frequency of the controller 
output is an integer multiple of the sampling frequency of the controller input 

was considered. These assumptions are restrictive.

In this section, the following questions are studied:

•  Do multirate controllers give better performance than slow-rate con

trollers?

•  Do fast-rate controllers give better performance than m ultirate con
trollers?

For a fair comparison, the choice of the performance index is very impor

tant. A  discrete-time performance index is not suitable because of the differ-
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ent sampling periods involved. Since the input and output of the closed-loop 

system are continuous-time signals (Figure 5.1), a performance index defined 

in continuous-time is more appropriate. Here the Hoo and H i  norms of the 

closed-loop system are considered as measures for quality of control. However, 
the approach presented in this chapter is general and w ith  litt le  modification 

can be used for a variety of performance indices including the Cp induced norm 

of the closed-loop system and the LQR performance.
The approach followed in this chapter is different from the previous ones in 

[48, 50]: Firstly, the lifting  technique is not used to prove the theorems. This 

makes the proofs fa irly  simple and easy to follow. Secondly, no assumption is 

made on sampling periods of inputs and outputs. The results hold for general 

multirate systems and are not lim ited to dual-rate systems or systems w ith  fast 
output sampling. Furthermore, no assumptions are made on the systems ex

cept that the optimal controller exists. Finally, as stated before, the approach 
is general and paves a way for further analysis using a wide range of perfor
mance indices. As a byproduct, an analysis of H 2 performance of sampled-data 
systems w ith  linear periodically time-varying (LP TV) controllers is presented 
in this chapter. I t  is shown how to convert a sampled-data system w ith  LPTV  

controller to a pure discrete-time system w ith the same controller. I t  is also 
proved that for sampled-data systems, the optimal LT I controller performs 
better than any LP T V  controller.

In the rest of this section, descriptions of the single-rate and multirate 

sampled-data systems under consideration are given. Some useful lemmas are 

also introduced.

5.1.1 S ingle-rate sam pled-data sy stem

A standard single-rate sampled-data control system is shown in Figure 5.1. 

Here G is a continuous-time causal finite order linear time-invariant (LTI) 
plant, w(t) the exogenous input, z(t) the controlled output, y(t)  the measured 

output of the plant and u(t) the control signal. Since G has two inputs and 
two outputs, i t  can be partitioned into four components

G =
G\\ G\2 
G21 G22

The plant output is sampled and discretized using an A /D  converter mod-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



elled by

ip(k) =  y{kh),

where h is the sampling period. The control signal is generated by a computer 

and sent to the actuator using a zero-order hold D /A  converter modelled by

u(t) =  v(k), kh <  t < (k +  1 ) h .

Hence,

tp(k) =  Shy{t), 

u(t) =  Hhv(k).

K (z ,  h) is the discrete-time controller w ith sampling period h (since differ

ent sampling periods are used in this section, the dependency of the discrete- 
time transfer functions on the sampling period is explicitly indicated). Con

secutively, the sampled-data control rule is

u(t) =  H hK (z ,h )Sh y(t).

I t  is assumed that K ( z , h ) belongs to the set of all admissible (i.e., discrete

time, causal, finite order and LTI) controllers.
The closed-loop system from w(t) to z(t) is denoted by J-(G{s), K(z,  h)); 

thus

z(t) =  T {G (s ) ,K (z ,  h)) w(t).

Jr {G (s ) ,K (z ,h ) )  is a linear and periodic operator w ith  period h. I t  can be 

derived tha t [9]

F { G ( s ) ,K ( z ,h ) )  =

G n {s) +  Gn {s)HhK {z ,h )Sh( l - G 22{s)HhK { z , h ) S ^ ~ l G2l{s).

In  this chapter, LPTV  controllers are considered as well. Let q~l be the 
standard delay operator for discrete-time signals, i.e.,

<7_1a(fc) =  a(k — 1).

A discrete-time system K ( z , h , N ) is linear periodically time-varying (LPTV) 
w ith  period N  i f  i t  is linear and

f K  =  qNKq~N,
\  K  ±  qi Kq~i , 0 < i < N - l .
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z(t) ------------------  w(t)

nih

Figure 5.2: The general m ultirate sampled-data system.

Notice that the dependency of an LP TV  transfer function to its period is 
explicitly denoted. For a discrete-time LPTV  controller K(z ,h ,  N ),  the closed- 
loop system J7{G{s ) ,K {z^h ,N) )  is a linear and 7V/i-periodic operator. The 

LPTV  controller K ( z , h , N ) belongs to the set of all admissible LP TV  (i.e., 
discrete-time, causal, finite order, linear and iV-periodic) controllers.

5.1.2 M u ltira te  sam pled-data  sy stem

A general multirate sampled-data control system is shown in Figure 5.2. Here 

each output channel is sampled at a different rate. The first output yi (t )  is 

sampled every m \h  seconds, the second output y2{t) is sampled every m2h sec

onds and so on. I f  p is the number of plant outputs then,

V,l(^'mi) =  SmxhVlifyi 

^ 2(^012) ~  |S'm2/>y2(t),

^p(^rrip) =  Smphyp(t).

Note tha t since the discrete-time signals i  =  I , -  -  ,p, are available at 

different time instants, they have different time indices kmi, i  =  1, • • • , p.

Different control signals are also generated at different rates; the first con

tro l signal is generated every n ih  seconds and so on. I f  r  is the number of
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z(t) w(t)

u(t)

'mh n h

Figure 5.3: The standard dual-data sampled-data system, 

control signals then,

u i { t ) =  H nihv i ( kn i ), 

u2(t) =  H n2hv2(kn2),

'U'riP)

Discrete-time signals Vi, i  =  1, • • ■ ,r ,  also have different time indices kni, i  — 

l , - - -  , r .  Assume that the greatest common divisor and the least common
multiple of m*, i  — 1, • • • ,p, and nu i  — 1, • • • , r , are 1 and I respectively

g.c.d.(mi, • • • ■ ■ • ,n r ) =  1,

l.c.m.(mx, • • • , top, nx, • • • , nr ) =  I.

Then the sampling periods of the corresponding fast-rate and slow-rate con

trollers are h and Ih respectively.

The multirate controller is generally an /-periodic time-varying discrete- 
time system. But i f  considered in one repetition period (Ih seconds) w ith 

lifted input and output, the multirate controller can be regarded as a (higher 

dimension) discrete-time LT I system w ith  sampling period Ih. Let K ( z , l h ) 

denote this LT I m ultirate controller w ith lifted input and output, which be
longs to the set of all admissible (i.e., discrete-time, causal, finite order and 

LTI) multirate controllers. For definitions of periodicity and causality of m ulti
rate systems see [10]. In Figure 5.2, ^ r (G(s), K(z,  Ih)) denotes the closed-loop 

system from w(t) to z(t) which is a linear Z/i-periodic operator.

Dual-rate systems, a common subcategory of multirate systems, are defined 

when m i =  ■■■ =  mp =  m  and rii =  ■ ■ ■ =  nT =  n. In a dual-rate sampled-data
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control system (Figure 5.3), all the plant output channels are sampled every 

mh seconds while all the control signals are generated every nh seconds (hence 
the term dual-rate). So,

W ith  the assumption that m  and n are coprime, the sampling period of the 
fast-rate and slow-rate controllers are h and mnh  respectively. K(z ,m nh)  

denotes the dual-rate controller w ith  lifted input and output. Therefore, the 

dual-rate control rule is

which is a linear mn/i-periodic operator.
For every m ultirate (dual-rate) system, corresponding slow single-rate and 

fast single-rate systems can be defined. When confusion may arise, subscripts 

MR (DR), SR and FR are used to distinguish amongst the signals in multirate

slow-rate systems respectively.

5.1.3 T w o lem m as

Two lemmas involving sampling, hold and lifting  operators, which w ill be used 
later in this chapter, are stated here.

Lem m a 5.1 [9] The following statements hold:

ip(km) — Smhy(t), 

u(t) =  H nhv(kn).

u( t ) =  H nhL j K ( z , m n h ) L nSmh y(t).

Let tF(G(s), K (z ,m nh) )  denote the closed-loop system from w(t) to z(t),

(dual-rate) and corresponding slow-rate and fast-rate systems. For instance 

umr and usr denote the control signals in the multirate and its corresponding

i. H h StL I l nft H nft

11- SnhHhSh =  Snh,

iii. ShH nh =  L,

n

iv. SnhH h =  [ I  0 • • • 0 ] L n.

□
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Lem m a 5.2 For any discrete-time system G(z,nh),  the fol lowing identity 

holds:

H nhG(z,nh)SnhH h =  H nhG(zn,h).

P ro o f For simplicity, the proof is given for n =  2. The proof for general n 

follows the same steps. Let 77 be a discrete-time signal:

rj =  {r?(0), t?(1), t?(2),...}

and define

ip =  M O ), <p( 1), i f {2),...}  =  { 77(0), t?(2), 77(4),...} ,

hence ip(ks) =  r){2ks) =  S2hH hT](k). Assume that G(z,2h)  =  ao +  a iz -1 +  
a2z-2 +  • • •. Then,

G(q,2h)S2hH hrj(k) =  G(q,2h)ip(ks)

=  ao<p(ks) +  aM fcs -  1) +  a2(/?(A;s -  2) H-----

On the other hand

G(q2, h)ri(k) =  (a0 +  axq~2 +  a2g-4 H )r](k)

— a0r)(k) +  ait](k -  2) +  a2i](k -  4) -I-----

The former and the la tter equations are evaluated every 2h and h seconds re

spectively, but they are equivalent at t =  2kh. Therefore H ^ G iz ,  2h)S2hHh. =  

H 2hG(z2,h).

□

5.2 Perform ance of sam pled-data system s

To compare the performance of sampled-data systems w ith different controllers 

(e.g., single-rate w ith  different sampling periods or multirate), the performance 

index should be defined in continuous-time. In  this section, two well-known 

performance indices for single-rate sampled-data systems are defined and then 

a generalization to the m ultirate case is given. An appropriate performance in

dex also has the property that if  two systems (continuous-time, sampled-data, 
multirate, etc.) have the same input-output relation (i.e., for any input they 

generate the same output) they have the same performance. This is an in tu
itive property and essential for the theorems given later. A ll the performance 
indices used throughout this chapter satisfy this property.
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5.2.1 T̂ oo perform ance o f sam pled-data  system s

In Section 2.5.1, the definition of Hoo norm was generalized to sampled- 

systems. Here the same concept is used to define the Hoo norm of sampled- 
data systems. Recall that for a continuous-time LTI system G, the Hoo norm 

is defined as

\\G\\oo= sup ||Gu>||2l IMk<i
i.e., the Hoo norm (also known as the £2 induced norm) is related to the max

imum £2 norm of the output over all bounded inputs. For sampled-data sys

tems, because of the sampling and hold operators which are time-varying, no 
transfer function can be defined in the normal sense. But the above definition 

is s till valid. Thus, the Hoo norm of a sampled-data system is defined as the 

£2 induced norm of the related operator. The Hoo norm of F(G(s) ,  K (z ,h ) )  

in Figure 5.1 is defined as

||.F(G(s),tf(z,fc))||oo= sup \\Jr (G (s ) ,K (z ,h ) )w \ \2.
IMU<i

Similarly, for the m ultirate sampled-data system in Figure 5.2, the Hoo norm 

of the closed-loop operator Jr {G{s) ,K{z , lh ))  is then defined as

||JF (G (s),i( '(z ,i/i))||00=  sup \ \F (G(s ) ,K (z , lh ) )w \ \2.
IMl2<i

The Hoo control problem is to find the admissible stabilizing controller 

that minimizes the Hoo norm of the closed-loop system. Solution of the H 00 
control problem for sampled-data systems is well established in the literature 
[2, 9]. Let K ^ z ,  h) be the optimal Hoo discrete-time controller for single-rate 

sampled-data system in Figure 5.1. Therefore, for any admissible controller 

K(z ,h ) ,

||^ (G (s ), K ^ z ,  h)) ||oo< r  (G(s), K(z ,  h)) Hoo-

Solution of multirate Hoo control problem is also known [10]. I f  K ^ z ,  Ih) 
denotes the optimal Hoo controller for multirate sampled-data system in Fig

ure 5.2, then for any admissible multirate controller K(z , lh ) ,

||^(G (s), K ^ z ,  Ih)) Hoo^ \\T{G(s), K(z,  Ih)) |U .
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Similar to the Hoo norm, the £ p induced norm of the sampled-data system 
in Figure 5.2 is defined as

I t  is obvious that i f  for any input, two systems generate the same output, their 

£ p induced norms (including the Hoo norm) are equal. Another important 
fact tha t is extensively used in  this chapter states that: for any given LP TV  

controller, an LT I controller can be constructed to give better £ p induced 

norm of the closed-loop system [51]. An instant result is tha t the optimal 

LT I controller is better than any admissible LPTV  controller in the Hoo norm 
sense. So i f  K(z ,  h, N ) is an admissible LPTV  controller then,

5.2 .2  H .2 perform ance o f  sam pled-data  system s

In Section 2.5.2, the H 2 norm of a sampled system was defined. Here the 
sam concept is generalized for single-rate and multirate sampled-data systems. 

Recall tha t for a continuous-time SISO LT I system G , the H 2 norm is

where 5(t) is the continuous-time unit impulse function. In other words, the 

H 2 norm of G equals the £2 norm of its impulse response. In the multivariable 

case the H 2 norm is

where ei, i  =  1, . . .  , nw, are the standard basis vectors in Rn"  and nw is the 

number of inputs of G. Thus, S(t)ei is an impulse applied to the i th input 

channel.

To generalize the definition of H 2 norm to sampled-data systems (Fig
ure 5.1), notice that Jr {G {s ) ,K {z ,h )) is an /i-periodic time-varying system. 

Therefore, the H 2 norm of Jr {G {s ) ,K {z ,h )) is defined as the average norm 

of the outputs when impulses are applied in one sampling period to the input 

channels, i.e.,

|| F (G (s ) ,K (z ,h ) ) \ \ c =  sup ||^ (G (s ),A :(2, h)) u>||p.

||^ (G (s ), K ’J z ,  h)) |U <  r  (G(»). Ktz ,  h, N))  I L
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I f  a /V-periodic LP TV  controller is used for the single-rate sampled-data system 
in Figure 5.1, the closed-loop system w ill be IV/i-periodic and the averaging 

is over a period of N h  seconds. Therefore, the H 2 norm of the closed-loop 

system w ith  the LP TV  controller K ( z , h , N )  is

\ \F(G{s) ,K{z,h,  A^))|||=

_ L  [Nk (
N h J 0 ^

Similarly, for the multirate sampled-data system in Figure 5.2, the averaging 
is over a period of Ih seconds and the H 2 norm is defined as

|| F { G ( s ) , K ( z , l h ) ) \ \ l = - ^ J o ^

The solution of H 2 control problem (namely, finding the admissible sta

bilizing controller that minimizes the H 2 norm of the closed-loop system) is 
known for sampled-data systems [3, 9, 39] and multirate systems [45, 46]. Let 

K 2 (z, h) and K 2 (z, Ih) be the H 2 optimal controllers for single-rate and m ulti
rate sampled-data systems respectively. Then for any admissible sampled-data 
controller K(z ,h)  and for any admissible multirate controller K(z, lh) ,

\\F{G(s),K*2 (z,h))\\2 <  \ \F{G(s) ,K(z,h)) \ \2. 

||Jr(G(s),KS(z, lh))\ \2 <  \ \F(G(s) ,K(z, lh)) \ \2.

I t  is easy to verify that i f  two sampled-data systems (single-rate or multirate) 
generate equal outputs for the same input, their H 2 performances are equal.

As mentioned before, for the Hoo norm, the optimal LTI controller performs 
better than any admissible LP TV  controller. In the rest of this section the 

proof of the same property for the H2 norm is given. Consider the single-rate 
sampled-data system in Figure 5.1. Let G have the following state-space model

' A Bx b 2 1
G(s) = Ci 0 D\2

c2 0 0

Assume that

(A l)  (A, B2) is stabilizable and (C2, A) is detectable;

92

T \ \ F { G ( s ) , K ( z , l h ) ) 6( t - T ) e i \\22 )dr.

g ||^ (G (a), K(z,  h, N ) ) 5 (t -  rfcWl  I dr.
i=1
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Zd{k)-------------------wd{k)
I........  4.......

ij){k) Gd v(k)

K {z ,h )

Figure 5.4: The associated discrete-time system.

(A2) the sampling period h is non-pathological w ith  respect to G [9].

Now bring in an associated pure discrete-time feedback system (Figure 5.4) 
w ith the same controller K (z ,h )  and generalized discrete-time transfer func

tion Gd{z,h),  where

A d B xj B 2d
Gd(z,h) = C u 0 D \2d

c2 0 0

A d , B \ j , B 2d , C \d  and D \ 2d are obtained from 

=  e * 1.

B i j BJj  =  f H e ^ B . B j e ^ d r ,
Jo

f h
B 2D=  /  eATd r B 2,

Jo

[ Cu  D i 2d }T [ C ld D l2d } =  f  e ^  [ C x D n  ] T [ Cx D l2 ] e ^ d r ,
Jo

with

A =
A B 2 
0 0

I t  is a well known result that under assumptions (A1)-(A2), for any LT I 

controller K (z ,h )  [3, 9, 39],

||T (G (s ) ,K (z ,h ) ) \ \ l =  i  \ \?(Gd(z ,h ) ,K {z ,h ) ) \ \ l  +  i  L,

where !F(Gd(z,h), K (z ,h ) )  denotes the closed-loop transfer function of the 

associated discrete-time system in Figure 5.4 and

L  =  trace ( c x  J *  J *  * eAr B l B j e ATTdrdt  C f
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The following theorem generalizes this result for LPTV  controllers.

T heo rem  5.1 Under assumptions (A1)-(A2) and fo r  any admissible L P T V  

controller K (z ,  h, N),

\ \F (G (s ) ,K (z ,h ,N ) ) \ \ l=  i  \ \F(Gd(z ,h ) ,K (z ,h ,N ) ) \ \ l  +  ±  L.

P ro o f By the definition of the Tt2 norm

\ \F (G(s ) ,K (z ,h ,N) ) \ \
r N h  (  n *>

d r  .

1 pisn /  'mu \

=  N h l  ( D ^ 5) ’ K ^  h ' ) dT

K ( z X  N))6{t -  r)€i\

Following the same steps as in the proof for LT I controllers in [8],

Mj+l)h /  \
l  dr =

Tltu
Y , \ \ F { G d(z, h ) ,K (z ,  h, N ))5 (k  -  M l  +  L.
i=l

Therefore 

JF (G (s ) ,K (z ,h ,N ) )

h)> k ( * ’ h ’ N M k -  + 1  l )
j=0 \  i= l /

1 /  1 \  1
=  T h v  T , T , ^ ( G d( z ,h ) ,K (z, h, N ) ) 6 { k - j ) e i \\l \ +  -r L

V j =0 i= l /

=  ± \ \ T { G d(z ,h ) ,K (z ,h ,N ) ) \ \ l  +  ± L .

□

T heo rem  5.2 Under assumptions (A1)-(A2) and fo r  any admissible L P T V  
controller K(z ,  h, N),

\\F(G(s),K*2(z,h))\ \2 <  \\Jr (G(s) ,K(z,  h, N ) )  ||2.
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Proof

\ \F {G(s ) ,K ; (z ,h ) ) \ \ l  =  i  \ \F{Gd(z ,h ) ,K ; ( z ,h ) ) \ \ l  +  ±  L

< i | |  F ( G li( z ,h ) ,K (z ,h ,N ) ) \ \ *  +  ± L  

=  \ \F ( G (s ) ,K (z ,h ,N ) ) \ \ l  

The inequality used here is based on the fact tha t in pure discrete-time systems, 
the optimal LT I controller performs better than any LPTV  controller [52].

□

5.3 Performance comparison

In this section a comparison of the performance of sampled-data systems w ith 
different controllers (slow-rate, fast-rate and multirate) w ill be given. The 

performance measures used are H 2 or Hoo norm of the closed-loop system as 

well as any other Cv induced norm. Let J (K (z ,h ) ,h ) ,  J ( K ( z , h , N ) , h , N )  
and J (K (z , lh ) ,m ih ,  - ■ ■ , mph, rq/i, • • ■ ,n r h ) be the performances of single
rate sampled-data system (Figure 5.1), single-rate sampled-data system w ith 

LPTV  controller, and multirate system (Figure 5.2) respectively. Also let 

K * ( z , h) and K*(z,  Ih) be the optimal sampled-data and multirate controllers 

respectively and J*(h)  and , mph, n\h,  • • • , nrh) their correspond

ing optimal performances. Hence,

J*(h)  =  J(K* (z ,h ) ,h ) ,

J * {m \h , • • • ,m ph,nih,  ■ ■ ■ ,n rh) =  J(K*(z ,  lh ) ,m ih ,  ■ ■ ■ ,mph,n\h,  ■ ■ • ,n rh). 

Throughout this section, i t  is assumed that for the related sampled-data prob

lem an optimal controller exists.

5.3.1 Slow -rate vs. fast-rate perform ance

Here it  is shown that the optimal performance of a sampled-data system w ith 
a fast-rate controller is better than the optimal performance w ith a slow-rate 

controller. This fact is not only theoretically important but also introduces 
the method that is used to prove the theorems. Note that the sampling period 
of the slow-rate controller is always an integer multiple of the sampling period 

of the fast-rate controller.

First the following lemma is proved:
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Lem m a 5.3 In the standard sampled-data system in Figure 5.1, fo r  any ad

missible slow-rate controller, there exists an admissible L P T V  fast-rate con

troller with the same performance.

P ro o f Assume that K ( z , N h )  is an admissible slow-rate controller. Using 
Lemmas 5.1 and 5.2 yields

H NhK(z ,  Nh)Sm  =  H NhK(z ,  Nh)Sm H hSh 

=  H NhK ( z N ,h)Sh 

=  H hShH NhK ( z N,h)Sh 

I

lh^ jv"=  H hLTl K ( z N,h)Sh.

Now define the LP T V  fast-rate controller

K(z ,  h , N )  =  L - l
N K ( z  , h).

Based on the above result, for any input w(t),

uSR(t) =  H m K (z ,N h )S m  y(t) 1 
« fr ( * )  =  H hK(z ,  h, N )Sh y(t) J ^

USR (t) =  UFR.(f),

i.e., the slow-rate LT I controller K ( z , N h ) and the fast-rate LP T V  controller 

k ( z , h , N )  generate the same control signal u(t) for all time. This implies 

that zs rM  =  zFR(£). Therefore, the closed-loop systems w ith  the slow-rate 

controller K(z ,  N h ) and the fast-rate controller k ( z ,  h, N ) are equivalent

F(G(s) ,  K(z ,  Nh))  =  F(G(s) ,  K(z ,  h, N ))

and subsequently

J (K{z ,  h, N),  h, N )  =  J (K (z ,  Nh) ,Nh) .

□
To understand the idea behind the proof of this lemma, notice that the 

slow-rate controller updates the control signal every kNh  seconds. Therefore, 
i f  one can find a fast-rate controller that generates the same control signal
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at f  =  k N h  and then maintains i t  for a period of N h  seconds (i.e., does not 

update the control signal at t =  k N h + h , . . . ,  and t =  ( k + l ) N h  — h), then the 
two systems are equivalent. That is the reason why the fast-rate controller has 

to be time-varying. Lemma 5.3 shows how to construct a satisfying fast-rate 
LPTV  controller. For n =  2, the fast-rate controller is

K ty  h 9 1 - 1  K (z2' h) k even,
' h ' ] ~ \  z~l K { z 2,h) A; odd.

T heo rem  5.3 For the standard sampled-data system in Figure 5.1 and for  

any N  E  N,
J*(h ) <  J*(Nh).

P ro o f Assume that K * (z ,N h )  is the optimal slow-rate controller. Using 

Lemma 5.3 there exist an LPTV  fast-rate controller K ( z , h , N )  such that

J* (N h) =  J ( K * ( z ,N h ) ,N h )  =  J (K (z ,N h ) ,h ,  N).

Now, using the fact that the optimal LT I controller performs better than any 

LP TV  controller (this is proved for the Cp induced norm in [51] and for the 
H 2 norm in Theorem 5.2) yields

J*(h)  <  J ( K ( z , h , N ) , h , N )  =  J*(Nh).

□

5.3.2 M u ltirate  vs. single-rate perform ance

In this section, the main theorem is presented and the proof is given: the 

optimal performance of a system w ith  a fast-rate controller is better than the 

optimal performance w ith a multirate controller; and the latter is better than 

the optimal performance w ith a slow-rate controller. A t first two useful lemmas 

are given. Consider the multirate sampled-data control system in Figure 5.2 

and the corresponding slow-rate and fast-rate systems.

Lem m a 5.4 For any admissible slow-rate controller K ( z , l h ) there exists an 

admissible multirate controller K (z , lh )  that yields the same performance

J (K (z , lh ) , l h )  =  J (K (z , lh ) ,m ih , -  • • ,m ph,nih, -  ■ ■ ,n rh).
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P ro o f For simplicity, the proof is given for the dual-rate case (it is similar 

for general m ultirate systems). Consider the dual-rate sampled-data system 

in Figure 5.3 and let K (z ,m nh)  be a slow-rate controller. The objective is to 
construct an admissible dual-rate controller K  (z, mnh)  that satisfies

J (K (z ,m n h ) ,m n h ) =  J(K (z ,m nh) ,m h ,nh ) .

Using Lemma 5.1

HmnhK(tZ) ‘ITl1rlh')Smnh =  H mnhK{z,TTlTlh')Srnn)iHmhSrnh

~  HrnnhK(zymnh) [ / 0 * 0 j LnSmfi

~  Hji^SnhHjnnhK^Z^fnnK) £ I  0 • 0 j Ln&mh

=  H n hL - '

Now define the dual-rate controller

I
K ( z , mnh)

K ( z , m n h ) [ l  0 0 ] L nSmh-

K (z ,m nh)  [ I  0 • • • 0 ] .

For any input w(t),

^ sr(0  — 2/(0
u D r ( 0  =  H nhL ^ K ( z ,  mnh)LnSmh y(t) } USR (t) =  Udr(0 -

This means that the slow-rate controller K (z ,m n h ) and the dual-rate con

troller K (z ,m n h ) generate the same control signal u(t) for all time. Thus 

2sr(0  =  zd r(0 - Therefore, the closed-loop systems w ith  the slow-rate con
troller K (z ,m nh)  and the dual-rate controller K(z ,m nh)  are equivalent

Jr (G(s) ,K(z,  mnh))  =  F(G(s) ,  K(z,  mnh))  

and thus they have the same performance

J(K (z ,m nh ) ,m nh)  — J (K (z ,m nh) ,m h ,nh ) .

□
The slow-rate controller K  (z , mnh)  receives the information every mnh  sec

onds and also updates the control signal every mnh  seconds. On the other
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hand, the dual-rate controller receives the information every nh  seconds, but 

updates the control signal every mh  seconds. So for a dual-rate controller to be 

equivalent to a given slow-rate controller it  should: First, uses only the infor

mation tha t it  receives at t  =  kmnh  and ignores the other information (those 

at t  =  kmnh +  nh, . . . ,  t =  ( k +  l )m nh  — nh), hence the term [ I  0 ••• 0].
Second, maintains the control signal that is generated at t =  kmnh  for a pe
riod of mnh  seconds, hence the term [ I I ]  . Lemma 5.4, illustrates
the method of construction of the equivalent dual-rate controller. For m =  3, 

n =  2 and the slow-rate controller K(z ,  6/i), the equivalent dual-rate controller 

is
' I  ' ' K{z ,  6/i) 0 ‘

K(z ,6h)  = I K(z,6h)  [ I  0 ] = K (z ,6h ) 0
I K (z ,6h ) 0

Lem m a 5.5 For any admissible multirate controller K ( z , l h ) there exists an 
admissible L P T V  fast-rate controller K ( z ,h , l )  that yields the same perfor

mance

J { K { z , l h ) ,m \h , • • • ,mph,nih,  ■ ■ ■ ,nTh) =  J (K (z ,  h, I), h,l ).

P ro o f Again for simplicity, the proof is given for the dual-rate case w ith the 

assumption that n =  1. In the dual-rate system in Figure 5.3, consider the 
dual-rate controller K(z ,mh).  The goal is to construct an admissible LP TV  
fast-rate controller K (z ,h ,m )  such that

J ( K (z ,m h ) ,m h ,h ) =  J (K (z ,h ,m ) ,h ,m ) .

Using Lemmas 5.1 and 5.2 and the fact that SmhHmh =  I  yield 

H hL ^ K { z , m h ) S mh =  H hL ^ K { z , m h ) S mhH hSh

=  LIh L m L>mh Lt-rrih LL ( Z, 771 h ) STnfl I I  h Sh 

=  H hL - 1SmhH mhK ( z m,h)Sh 

=  H hL~1K ( z m,h)Sh.

Now define the LP T V  fast-rate controller

k ( z , h , m )  =  L~1K ( z m,h).

For any input w(t),

uDR(t) =  H hL ^ K ( z , m h ) S mh y(t)
uFR(t) =  H hK (z ,h ,m )S h y(t)

U D R  ( t )  —  U F R ( t ) .
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In other words, the control signals generated by the dual-rate LT I controller 

K(z ,m h )  and the LPTV  fast-rate controller K ( z , h , m ) are equal at all time. 

Which in turn  implies that ^dr(^) =  ^ f r (t)- Therefore, the two closed-loop 
systems are equivalent

F(G{s) ,  K(z,  mhj)  =  F(G{s) ,  K { z , h, m))

and thus they have the same performance

J (K (z ,m h ) ,m h ,h )  =  J (K (z ,h ,m ) ,h ,m ) .

□
For m =  3 and n =  2 assume that K (z ,6h ) is an admissible dual-rate 

controller, i.e.,

v =  K(z ,  6/1) i ) —
K i(z ,  6h) K 2(z,6h) 
Ka{z, 6h) K 4(z, 6h) 
K 5{z,Qh) K 6{z,6h)

where

[ v(0) v(6h)
v =  i v(2h) J v(8h)

I u(4 h) v(10h

t  = {
V>(0) ip(6h)

xp(3h) > ip(9h) 1

Then the equivalent LP TV  fast-rate controller is

K f k (z , h, 6) =  <

K i ( z 6, h) +  z3K 2(z6, h) 
z~l (K i ( z 6, h) +  z3K 2(z6, h )) 
z~2( K 3(z6,h) +  z3K 4{z6,h)) 
z ~3( K 3{z6, h) +  z3K 4{z6, h)) 
z~ \K $ (z3, h) -I- z 3K 6(z6, h))  
z - 5( K b(z6,h) +  z3K 6{z6,h))

k =  6i, 
k =  Qi +  1, 
k =  6i +  2, 
k =  6i  +  3, 
k =  6i - f 4, 
k =  6i  +  5.

Now the main theorem that compares the performances of multirate, slow- 

rate and fast-rate controls can be stated:

T heo re m  5.4 For the multirate sampled-data system in Figure 5.2, the fol 

lowing inequalities hold:

J* (h ) <  J* {m \h , • • • ,mvh,n\h, ■ ■ ■ ,n r h) <  J*(lh).
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P ro o f

P a r t 1: J*(mih ,  • • • , mph, n ih,  ••• , nTh) <  J*{lh).

Assume that K*(z,  Ih) is the optimal slow-rate controller. By Lemma 5.4 there 
exists a m ultirate controller K (z , lh )  such that

J*(lh) =  J (K * (z , lh ) , lh )

=  J (K (z ,  lh ) ,m ih ,  ■ ■ ■ ,mph,n ih ,  ■ ■ ■ ,n r h).

Since the optimal m ultirate controller is better than any admissible m ultirate 

controller it  follows that

J*( lh ) =  J (K (z , lh ) ,m \h ,  • ■ ■ ,mph,n\h,  • • • , nrh )

>  J*(mih,  ■ ■ ■ , mph, n\h,  ■ • • , nr h).

P a r t 2: J* (h ) <  • • • , mph, n ih , • • • , nrh)

Assume that C*(z, Ih) is the optimal multirate controller, and C(z, h, I) is the 

corresponding LP T V  fast-rate controller from Lemma 5.5. Thus,

J*(mih,  • • • , mph, nih,  ■ ■ ■ , nTh) =  J(C*(z, Ih), mih,  ■ ■ ■ , mph, n ih,  ■ ■ ■ , nr h)

=  J {C (z ,h , l ) ,h , l ) .

Using the fact tha t the optimal LT I controller performs better than any LPTV  

controller

J*(mih ,  ■ ■ ■ ,mph,n ih ,  ■ ■ ■ ,n rh) =  J (C (z ,h , l ) ,h , l )  >  J*(h).

□

5.4 Conclusions and remarks

In this section i t  was theoretically proved that the optimal performance of a 
system controlled by a multirate controller is better than the optimal perfor

mance achieved by a slow-rate controller, and worse than the optimal perfor
mance achieved by a fast-rate controller. To prove this, i t  was shown that 
for any admissible slow-rate (alternatively multirate) controller, one can find 
a multirate (alternatively LP TV  fast-rate) controller w ith the same perfor
mance.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The performance measures used here are the Hoo and H 2 norms of the 
closed-loop system. The proofs are based on the fact that for these perfor

mance measures, the optimal LT I controller is better than any LP TV  con
troller. In  other words, the optimal LT I controller is the optimal controller 

over the set of LT I and LPTV  controllers. As a matter of fact, the results 

given in this chapter hold true for any performance index that satisfies this 

property (optimal LT I controller is better than any LP TV  controller), e.g., Cp 

induced norm of closed-loop system and LQR performance.
Throughout this chapter no regularity assumption is made on the m atri

ces defining the state space form of G or on the sampling period. The only 
assumption made is the existence of the optimal controller.
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Chapter 6

Fault D etection in Sampled-data 
Systems: Revisited

6.1 Introduction

As mentioned before, among the most important properties of an FD I system 

is that, it  has to be sensitive w ith  respect to faults in order to detect incipient 

faults, but robust w ith  respect to unknown inputs, such as noise and distur

bance, in order to avoid false alarms. This objective is usually achieved by 

defining a performance index and optimizing it. In Chapter 3, it  was shown 
how to define different performance indices for a residual generator in sampled- 

data systems. A  method was also developed to optimize those performance 
indices by converting the sampled-data problem to a discrete-time one w ith 

the same performance. In tu itive ly one expects that the performance w ill be 
improved by increasing the sampling frequency (a special case of this conjec

ture was proved in Theorem 5.3 for standard sampled-data control problem). 

The reason is tha t by faster sampling more information can be provided to 

the FD I or control algorithm. In this chapter, it  is shown that this property 
is not true for the performance indices defined in Chapter 3 for sampled-data 

systems (e.g., in (3.18)).
In Chapter 4, two well known methods of FD I design (parity space and 

Hoo optim ization) were generalized to multirate sampled-data systems. Two

The materials of this chapter has been submitted for publication in:

I. Izadi, Q. Zhao and T. Chen, “Analysis of performance criteria in sampled- 
data fault detection” , submitted to Systems & Control Letters, February 2006.
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performance indices, similar to the ones used in sampled-data FDI design, were 

defined and optimized. Recall that to study the performance of a multirate 
system, the following single-rate systems are defined:

•  slow single-rate or simply slow-rate system whose sampling period is 

the least common multiple of all the sampling periods of the multirate 
system;

•  fast single-rate or simply fast-rate system whose sampling period is the 

greatest common divisor of all the sampling periods of the multirate 
system.

Another intuitive conjecture is that the slow-rate system w ith a slow-rate 

residual generator would not necessarily achieve the level of performance that 
can be achieved in the multirate systems w ith  a multirate residual generator. 

The reason is that the slow-rate residual generator does not have access to 

all the information that is available to the m ultirate residual generator. On 
the other hand, it  is expected that a fast-rate residual generator designed for 
the fast-rate system can yield better performance than one designed for the 

m ultirate system. Again the reason is the excess information available from 

the fast-rate system. However, i t  w ill be shown that these two properties do 

not hold for most of the performance indices defined for residual generator 

design.
Nonetheless, i t  was shown in Chapter 5 that the aforementioned properties 

are in fact true for the performance indices used in controller design, i.e., 

the Tioo and H? norm of the closed-loop system in the standard framework 

(Theorem 5.4). In order to take advantage of this, the sampled-data FDI 
problem is converted to a standard sampled-data control problem. This allows 

us to use the Hoo and H 2 norms of the closed-loop system as measures of 
performance of the FD I and hopefully achieve the properties that were missing 
in the conventional sampled-data FDI. The idea of using the standard control 

problem to design an FDI system is not new and has been introduced in the 

literature (e.g., see [7] and the references therein). In this chapter however, 
the extension to the sampled-data and m ultirate cases is developed.
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d(t) f { t )

u(t)

v(k) ip{k)

FDI

Controller

Process

Figure 6.1: FD I in a sampled-data scheme 

6.1.1 S ystem  descrip tion

Consider the sampled-data system in Figure 6.1. As usual, the continuous-time 

process has the following input-output description

y(t) =  Guu(t) +  Gdd(t) +  G j f ( t ) ,  (6.1)

where y ( t ) € Rm is the vector of plant outputs, u(t) e Rn“ the vector of 
control signals, d(t) E Rn<< the vector of unknown inputs or disturbances and 

f ( t )  E Rn/ the vector of faults to be detected. Gu, Gd and G f  are linear time- 
invariant s tric tly  proper systems of appropriate dimensions. In this chapter, 

for simplicity i t  is assumed that Gu is stable.

The output vector is sampled and discretized using an A /D  converter mod

elled by

ip{k) =  y(kh), (6.2)

where h is the sampling period. The control signal is generated by a computer 
and sent to the actuator using a (zero-order hold) D /A  converter modelled by

u(t) =  v(k), k h < t < ( k  +  l)h.  (6.3)

Hence, ip(k) =  Sh.y{t) and u(t) =  Hhv{k).
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6.1.2 R esidu al generation

In the sampled-data scheme, the residual generator uses discrete-time process 

input v(k)  and output ip(k) to generate a discrete-time residual p(k). As 
seen in Chapter 3 (equation (3.16)), by applying the factorization approach, 

the general form of residual generator for the sampled-data system described 

above is

p(k) =  R ( ^ ( k ) - G uDv(k)),  (6.4)

where R (z )  G TZHoo is a designable post-filter and G uq {z ) is the step invariant 

transformation of G u(s). Note that since G u(s) (and subsequently G ud {z )) is 
stable, the coprime factorization of G ud (z ) would be ( I , G ud ( z )).  Substitut

ing ip(k) =  Shy(t), u{t) — Hhv(k)  and the system model (6.1) in (6.4), the 
dynamics of the discrete-time residual w ith  respect to continuous-time signals 

d(t) and /(< ) is
p(k) =  RShGdd{t) +  RShGf f( t ) .

RShGd and RS^Gf  are two operators that map continuous-time signals to 

discrete-time signals. Assuming that perfect disturbance decoupling is not 

possible (which is almost always the case), the goal is set to make RShGd as

small as possible (in some sense) while keeping RShG/  reasonably large. This

is done by designing R{z) to optimize a certain performance index.
In this chapter the objective is to compare the performance of different 

sampled-data FD I designs (e.g., single-rate w ith  different sampling periods or 
multirate). Similar to the control problem, for a fair comparison, the per

formance index is preferred to be defined in continuous time. So let r ( t )  be 

the continuous-time residual obtained by holding the discrete-time residual 

(Figure 6.1)
r ( t )  =  H hp(k).

I t  is easy to check that r ( t )  G £ 2(®0 i f  and only if  p{k) G ^ ( Z ) .  Moreover

I M l 2=  h l l p l l i  ( 6 - 5 )

The dynamics of the continuous-time residual is then given by

r ( t )  =  H hRShGdd(t) +  H hRShGf f { t ) .  (6.6)
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Let r rd and Tr/  denote the operators from continuous-time signals d(t) and 
/ ( f )  to r ( f)  respectively

IVd =  HhRShGd, 

r r/  =  HhRShGf.

The design objective in terms of the new operators is to make | | r rd|| as small 

as possible while keeping | | r r / | |  large, for some definition of operator norm. 

The Hoo and H 2 norms of the operators are defined in Section 3.3.1 and Sec
tion 3.3.2 respectively. As a matter of fact, using the relationship between the 
norms of p(k) and r ( t)  in  (6.5), i t  is easy to see that

||r rd||oo =  sup | | r rdd||2 
Mla<l

=  sup \\HhRShGdd\\2
\\dh<l

=  V h  sup ||i?5hGdd||2 
Mil2<i

and

1/2

(
 /  ph
£ ( j (  \\Trd8 { t-T )e i\ \ ld T ^

=  [ J * \ \H hRShGd8(t -  T)ei\\ldT^ 

=  V h  \\RShGd5(t -  T ) e i \ \ l d r

=  V h  I I^ G r f l la .

As usual, the following performance indices are defined

HTrrfHoo _  \\RShGd\\

1/2

1/2

Joo/o°  | | r r / | U  \\RShGd\\c ’ (6‘7)I 0 0

\\Trdh  ||A5fcG„||2
J2/2 “  TiTvTlU “  f R S ^ h '  (6'8)

In  Chapter 3, these performance indices were optimized by using the norm 
invariant transformation and equivalent discrete-time model.
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A  similar performance index can also been defined based on the parity 
space approach (Section 2.4)

where the parity vector vs belongs to the parity space Ps. Hds, Hf,s and Pa 

are defined in  Section 2.4, for the equivalent discrete-time system.

Later in this chapter, i t  is shown through some examples that the above 

performance indices are not appropriate choices for comparison and analysis 

of performance in sampled-data FD I design. This study, however, focuses on 
the most common performance indices, i.e., (6.7) and (6.9). Let and
JpS{h) denote the optimal values of the performance indices in (6.7) and (6.9) 

which are functions of the sampling period h. As shown in Chapter 3

= I IG i 'W G / jW IU ’

where Gdj(z) and G f j (z )  are the norm invariant transformations of Gd(s) and 
Gf(s)  respectively, and Gdo{z) is the co-outer of Gdj(z). Also for the parity 
space performance,

Jps{h) Amjn,

where Am,n is the minimal generalized eigenvalue of the pair (N BH d>3H jsN B) 

N b H /,sH j sN g ) and N B is the basis vector for parity space Ps.

6.1 .3  R esidu al generation  in m ultirate system s

A m ultirate sampled-data system is illustrated in Figure 6.2. The input-output 
description of the continuous-time process is given in (6.1). In the case of no 

uncertainty in the system model, the control signal and its sampling rate have 
no effect on the residual. So w ithout loss of generality, it  is assumed that the 

inputs are available at the fast rate; u(t) =  Hhv(k). The output channels, 

though, are sampled at different rates. The first output yx{t) is sampled every 
n \h  seconds, the second output y2(t) is sampled every n2h seconds and so on.
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Figure 6.2: FD I in multirate sampled-data scheme

Therefore,

fa (k n i) =  Snihy i(t) , 

fa  (k n j =  Sn2hy2{t),
(6.10)

Ipmiknm) =  Sn mhym{t)-

Note that since the discrete-time signals fa, i  =  I , - -  - , m, are available at 

different time instants, they have different time indices kno i  =  1, ■ ■ • ,m .

Assume tha t the greatest common divisor and the least common multiple 

of (n i, • • • ,n m) are 1 and N  respectively. Then the sampling periods of the 
corresponding fast-rate and slow-rate systems are h and N h  respectively. The 

residual generator uses the discrete-time signals v  and fa, i  =  1, • • • ,m , to 

generate the residual. In  order to pass the fault information as often as pos

sible, the residual is generated at the fast rate, i.e., every h seconds. An H 00 

performance index similar to (6.7) can now be defined for the multirate system 

in Figure 6.2 (as in Section 4.4). A  parity space performance index similar to 

(6.9) can also be defined (as in Section 4.3).
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6.2 Perform ance analysis

I t  is generally accepted that the optimal performance of sampled-data control 

systems w ill be improved by faster sampling. In other words decreasing the 

sampling period w ill reduce the optimal performance in control problem. A 

special case of this (when the sampling period of the slow sampled system is 

an integer multiple of the sampling period of the fast sampled system) was 

proved in Theorem 5.3. Similar results are expected in the sampled-data FDI 
design. However, this is not the case w ith the performance indices in (6.7) 

and (6.9). The following examples show that decreasing the sampling period 
actually impairs the optimal performance.

E xam p le  1. Consider the continuous-time system given in (6.1) w ith

4 „  , . 2
Gu(s) — 0, Gd(s) — :■ Gf {s) =

'  - 2 8 0 0.1 0 '

0 -2 0 0 1 1
1 0 0 0 0
0 1 0 0 0

(s +  2)(s +  6) Jy '  (s +  l) (s  +  27) 

For h =  1 sec, ^ / ^ ( l )  =  0.96 and for h =  2 sec, J<̂0/00(2) =  0.57.

E xam p le  2. Consider the continuous-time system given in (6.1) w ith

[ G u(s) Gd(s) G /(s ) ]  =

For h =  1 sec, .7^(1) =  4.57 and for h =  2 sec, JpS(2) -  1.34.

Moreover, i t  was proved in Theorem 5.4 that the optimal performance of a 

system w ith  a fast-rate controller is better than the optimal performance with 

a m ultirate controller. And the latter is better than the optimal performance 
w ith a slow-rate controller. One intuitively expects that this is also true for the 
multirate FD I problem. But again this is not the case w ith the performance in
dices in (6.7) and (6.9). Examples show that multirate design can sometimes 

work better than both fast-rate and slow-rate design, and sometimes work 

worse than both of them. Similar examples (but of higher order/dimension) 
can be constructed for the H 2 performance index in (6.8). Therefore, it  seems 
that the aforementioned performance indices for FD I design are not appropri

ate at least for comparison of different design techniques.
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Now it  is desirable to choose a performance index for the sampled-data 
FDI design so that:

•  the optimal performance of a fast-rate sampled-data residual generator 
is better than the optimal performance of a slow-rate residual generator;

•  the optimal performance of a multirate residual generator is better than 
that of a slow-rate residual generator and worse than that of a fast-rate 
residual generator.

The above properties hold for the performance indices defined for the standard 
sampled-data control problem (Hoo and H 2 norm of the closed-loop system) in 

Figure 6.3. Here G  is a continuous-time linear time-invariant (LT I) plant, w(t) 
the exogenous input, z(t) the controlled output, y(t) the measured output of 
the plant, u(t) the control signal and K (z )  the discrete-time LT I controller. 

Partition G according to its inputs and outputs as

G =
G a G12 
G 21 G22

Let Jr (G (s ),K (z ))  denote the closed-loop system from w(t) to z(t), then as 
shown before

F (G (s ) ,K (z ) )  =

G n(s) +  G12(s)HhK (z )S h( l  -  G22(s)HhK (z )S hy 1G2l(s). (6.11)

I f  the sampled-data FDI problem can be converted to a standard sampled- 

data control problem, the control performance indices can be readily used as 
appropriate choices of FDI performance index.

6.3 FD I design as a standard control problem

For the residual generator in (6.6), the goal is to make r r(i small while keeping 
Yr f  large in some sense. As an alternative, the la tter can be replaced by 
a new objective which is making Trj  as close to I  as possible. I f  achieved, 
this means Hhp(k) =  r ( t ) ~  / ( f ) ,  which guarantees fault estimation as well as 

fault detection. More importantly, the alternative problem can be converted to 

the standard control problem of Figure 6.3. Therefore the residual generation
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z(t) w(t)

u{t)

v {k )
K (z )

Figure 6.3: The standard sampled-data system.

problem is redefined as designing R(z) € TZHoo to minimize | | r r(j|| and | | r r / —7|| 
for some definition of norm. Or in a more conservative form, the two goals 

can be combined together as minimizing

J  =  II [ r r /  -  7 r rd ] ||= II [ H hR(z)ShGf (s) -  I  H hR(z)ShGd(s) ] ||.

(6.12)
Assume that the state space representation of G /(s) and Gd(s) are given

as
' A E f Ed

C 0 0
[G /0 0  Gd(s ) ]  =

where A, E f, Ed and C are real matrices of appropriate dimensions. A fter 

some calculations, the problem can be reformulated in the standard form as 

in Figure 6.4, where

G(a) =
[ - 7  0] 7
[G f(s) Gd(s)] 0

' A [Ef Ed] 0 ■
0 [ -1 0] 7
C [0 0] 0

(6.13)

Let E (G (s ),R (z ))  be the closed-loop operator from w (t) to e(t) in Figure 6.4. 
Then using (6.11) and the partition of G given in (6.13) it  follows that

E (G (s ),R (z )) =  [ H hR(z)ShGf (s) -  I  H hR(z)ShGd(s) ]

and therefore

J =  r ( G ( 5),i? (*))||.

The common H 2 or Hoo norms might be used here. In the H 2 case, since 

^■(G(s), R (z)) is not strictly proper (in (6.13), notice that D u  =  [ - 7  0] ^  0),
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m
d{t)e{t) =  r {t) ~ f { t )  

s(t) =  Gdd(t) +  G jf { t )

w (t) =

r ( t )

cr(fc) p(k)
R(z)

Figure 6.4: The standard sampled-data FD I problem.

is not finite. Therefore the problem is not regular for the

H 2 norm.
For the H<x> norm, because £>21 =  [0 0] does not have fu ll row rank, the 

problem is also not regular. However, i t  can be regularized w ith minor modi

fications (e.g., by replacing D 21 w ith =  [el el ] ,  where e is a small number). 

Nevertheless, for the Hoo norm, the optimal solution is zero, i.e., R*(z) =  0. 
The reason is that due to D G{ — 0 and D Gd =  0,

|| [ H hR(z)ShGf (s) -  I  H hR(z)ShGd(s) } |U

>  ^max [ D RD Gj - I  D RD Gd ] =  CTmax[—-f 0] =  1.

where D R, D Gf and D Gd are direct feed-through terms (D-terms in a realiza

tion) of R(z), Gf(s) and Gd(s) respectively and <7max(-) denotes the maximum 

singular value. Note that the assumption of s tric tly  properness of G/(s) and 
Gd(s) is required for boundedness of the operators. So for the 'H(X> norm, 

the lower lim it of the optimal performance is 1. And this lower lim it can be 
achieved when R(z) — 0, which means that R*(z) =  0 is the optimal solution 

of the Hoo problem.

To use the Hoo and H 2 norms effectively, the performance index has to be 
modified. Different modifications may be proposed here:

1. In one approach, instead of using r ( t)  ~  / ( f ) ,  the objective is set as 
r( t)  ~  T f ( t ) ,  for some strictly proper T (s ) € I^Hoo, w ith  the following 
state space representation

Ay* Bt
_ CT 0
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In that case

Gt (s) = [ - T ( s) 0] I
IG/O5) GdW] 0

0 [—B t 0 0 '

0 A [E f Ed 0
Ct 0 [0 0 I
0 C [o 0 0

(6.14)

and the performance index is

Jt  =  \ \ ? { G t (s) , R ( z ))  ||

=  || [ H hR(z)ShGf (s) -  T(s) H hR(z)ShGd(s) ] ||.

2. Alternatively, a weighted version of the performance index in (6.12) 
might be used, i.e.,

J w  =  ||J T (G w (s ),^ ))|| 

-  || [ W (s)(H hR(z)ShGf (s) -  I )  W (s)H hR(z)ShGd(s) } ||,

where W (s) € R'Hoa is a strictly proper weighting function w ith  the 

following state space representation

W (s) =

and

Gw{s) =

Aw Bw
Cw 0 >

) 0] W {s) '
. [<?/(*) Gd(s)} 0

Aw 0 [—Bw 0] Bw
0 A [E f Ed\ 0

Cw 0 [0 0] 0
0 C [0 0] 0

(6.16)

This is equivalent to making W r( t) ~  W f( t) .

The good point is that, since in both Gt (s) and Giy(s), D u  =  0, the 

7^2 norm of the closed-loop operator is finite and the problem is regular. 
Known methods of the sampled-data 'H i design can be used here to convert 

the sampled-data problem to an equivalent pure discrete-time one [3, 9, 39]. 

As an example, the solution of the H i  problem for generalized plant G w (s) 
and the performance index in (6.15) is stated in the following lemma
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m
d ( t )

w (t) =

m p(k)

'ni/i
R(z)

Figure 6.5: The general multirate sampled-data FDI problem.

Lem m a 6.1 Consider the generalized plant Gw(s) in (6.16) and the perfor

mance index in  (6.15). The following equality holds

\ \ f { G w (s),R (z)) ||2=  ||F {G Wd(z), R(z)) ||2.

Gwd is the equivalent discrete-time plant given by

Gd(z) =

A w d
0

0

A d
B \ tdd B w d

0

C w j 0 0 0
0 C 0 0

w h e r e  A d , A w d > B w d > C w j  a n d  B \ dd & re  d e f in e d  a s

- eA d

A w d

B w d

Cw jGw j — 

B \ ,ddB{tdd =

Ah

aAwh
rh

/  eAwTd rB w ,
Jo

rh
/  eAwT C(vCweAwT dr, 

Jo
rh r eA*TBw 

Jo [ - e ArE f

h [ eA* TB w B ^ e AwT - e AwTB w E je ATT
B ^ e AwT eAT(E f E j  +  E dE j)e ATT

dr.

□
The Hoo norms of the performance indices in (6.14) and (6.15) are also well 

defined. To optimize the two performance indices, the well-known methods of 
sampled-data Hoo optim ization can be readily used [2, 9].

In the multirate case, the approach is quite similar. The block diagram of 

the multirate FD I problem in the standard form is illustrated in Figure 6.5.
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Notice that, since the residual is generated at the fast rate, there is only one 
hold operator w ith  sampling period h. This makes the multirate FD I problem 

fairly simpler than the general standard multirate control problem. The same 

performance indices in (6.14) and (6.15) are still valid w ith  the appropriate 
definitions of Hoo and H 2 norms to accommodate the multirate sampling. 

Again the established methods of multirate sampled-data optim ization can be 

readily used [10, 45].
The sampled-data FD I problem is hence converted to a standard sampled- 

data control problem. Now the main theorem can be stated: Consider the 

single-rate sampled-data system in (6.1), (6.2) and (6.3). The goal is to design 
a residual generator which optimizes the FD I performance index in (6.14) or 

(6.15). Let JpDi(/i) be the optimal sampled-data FD I performance (H i or H x  
norm of the closed-loop operator).

Also consider the multirate sampled-data system described by (6.1), (6.10) 

and (6.3). The FD I performance index for the multirate sampled-data problem 

is sim ilarly defined as the H i  or Hoo norm of the closed-loop operator. Let 

Jpm (n ih , • • • , nmh, h ) denote the optimal multirate FD I performance.

Theo rem  6.1 For the sampled-data system described above and the F D I per

formance indices in  (6.14) and (6.15), the following statements hold

1. Jpm (h) <  JpDi(nh), Vn <E N,

2. <^FDl(^) — ,-^FDl(^l^,> ’ ‘ ‘ >nmh, ti) <  Jpjji(AfZl).

□
The two parts of this theorem are special cases of Theorems 5.3 and 5.4 

and the proofs are similar.

6.4 Conclusions

In this chapter the choice of appropriate performance index in the sampled- 

data FD I problem was studied. In  residual generator design, i t  is always 

desired to generate a residual which is only sensitive to the fault not distur
bances and other known or unknown inputs. The design is usually carried out 

by solving an optim ization problem, hence the importance of a well-selected 

performance measure. The common performance criteria consider the norms
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of two transfer functions (from fault and disturbance to residual) separately. 
The problem w ith  these type of performance criteria is that they do not satisfy 

the properties that one expects when dealing w ith  sampled-data systems. One 

intu itively expects that the performance of a sampled-data system is improved 

by increasing the sampling frequency, and the multirate controller can work 
better than a slow-rate controller and worse than a fast-rate one.

Since in the standard sampled-data control problem, the H 2 or Hoo norm 

of the closed-loop system satisfies the expected properties, i t  is reasonable to 

convert the sampled-data FD I problem to the standard form. This is done 

by combining the two transfer functions (from fault and disturbance to resid

ual) and considering the norm of one single transfer function rather than two 

transfer functions individually. Some modifications are required to regulate 
the standard problem and eliminate the triv ia l solutions. These modifications 

are performed by introducing appropriate weighting. The result is a standard 

control problem, which can be readily solved by any known technique for both 
single-rate and multirate systems.
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Chapter 7 

Conclusions and Future Work

In this thesis, some fundamental problems of fault detection and isolation 

in sampled-data systems have been investigated. This chapter summarizes 

the results reported in this thesis and proposes some possible future research 
directions.

7.1 Conclusions

In sampled-data systems, the process under control is a real world continuous

time system, while the controller and the FD I are dig itally implemented by 
a computer. So, sampled-data systems involve both continuous and discrete
time signals and systems and hence are hybrid. Two traditional approaches of 
contro ller/FD I design for sampled-data systems are known as indirect designs. 

In one approach the continuous-time process is approximated by a discrete

time one and then a discrete-time controller/FDI is designed for this system. 

In the other approach first a continuous-time controller/FDI is designed for 
the continuous-time process and then is approximated by a discrete-time con- 

tro lle r/FD I. Since both approaches involve approximations, the results might 

not be very satisfactory. In the FD I case, examples have been proposed in 
the literature to show that the indirect designs are in fact unsatisfactory [54]. 

This motivated us to switch to direct method of FDI design.
To design an optimal robust residual generator for a sampled-data system, 

it  was shown that one can simply replace the sampled-data system w ith  a 
certain discrete-time one. Any optimal norm based residual generator for the 
equivalent discrete-time system is also optimal for the sampled-data system.
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This approach, unlike the indirect design techniques, does not involve any 

approximation. That is because the norm invariant transformation guarantees 
that the norms of the operators relating the fault and disturbance to the 

residual are equal in the original sampled-data and its equivalent discrete

time systems. Moreover, this approach is as simple as the indirect design, 

both mathematically and numerically. I t  was also shown that, based on the 

direct design in  a sampled-data setup, i t  is generally more difficult to perfectly 
decouple residual from disturbance. In other words, even if  perfect decoupling 
is possible for the continuous-time model, it  may not be possible in a sampled- 

data configuration.
The idea of direct design was then generalized to m ultirate sampled-data 

systems. Similar to the single-rate case, i t  was shown that in order to design 

an optimal residual generator, one can replace the original m ultirate system 

w ith a discrete-time (slow-rate) one. The equivalent discrete-time system was 
obtained using the norm invariant transformation and the lifting  operation. 
Any norm based method of residual generator design can be used. However, 

directly applying the methods w ill result in a slow-rate residual signal, for the 
equivalent discrete-time system is a slow-rate model. To reduce the detection 

delay the residual has to be generated at a faster rate. For this purpose, 

the concept of lifted residual was introduced which yields fast-rate residuals 
after applying the inverse lifting  operator. Two methods of generating the 

lifted residual were developed. The first method was based on the parity 
space w ith  the difference that instead of a parity vector, a parity m atrix was 
used. The second method was based on the factorization approach w ith  1-Loo 

optimization. Both methods involve optim izing a performance index subject 

to a set of causality constraints. For both methods, the analytical solutions of 

the optim ization problems w ith  constraints were proposed.

Most techniques of robust residual generation rely on a performance index 

to measure the compromise between robustness to disturbance and sensitivity 

to fault. So, selection of the performance index is a fundamental stage in  FD I 
design. There are some properties that one expects a suitable performance in
dex to satisfy. One of this properties is that for a suitable performance index, 
the optimal m ultirate design works better than the optimal slow-rate design 

but worse than the optimal fast-rate design. Unfortunately, this property does 

not hold for the performance indices traditionally used for FD I design (in par-
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ity  space, Hoo optim ization and H 2 optimization methods). In contrast, it  
was proved that the property is indeed true for the performance indices used 

in control system design, i.e., Hoo and H 2 norms of closed-loop systems. This 

means tha t for the standard control problem, the optimal fast-rate controller 
performs better (i.e., yields smaller closed-loop norm) than the optimal mul

tirate controller, which in turn performs better than the optimal slow-rate 
controller. In  order to take advantage of this, the FD I design problem was 
formulated as a standard control problem. This was accomplished by combin

ing the two requirements of the FD I problem (robustness to disturbance and 

sensitivity to fault). Any method of sampled-data controller design (e.g., Hoo 
or H 2 ) can then be readily applied to the converted FD I problem.

7.2 Future work

The research on fault diagnosis in sampled-data systems, supported by the well 

developed sampled-data control theory, has received great attention recently. 

Nonetheless, there are s till many unanswered questions, some of them are 

proposed herein:

•  Considering properties of a performance index for a sampled-data optim i

zation problem, and how the optimal performance changes by varying 
the sampling period, there are many important questions to answer. 
For example, i t  is almost certainly believed that increasing the sam

pling frequency improves the performance of a sampled-data system (at 
least in a neighborhood of the origin). That is one reason why elec

tronic manufacturers try  to introduce faster and faster analog-to-digital 
and digital-to-analog converters in the market. Surprisingly, as far as we 
know, no theoretical work has been done in this regards. This conjecture 

was proved for a special case in this thesis (Theorem 5.3). However, how 
changing the sampling period affects the optimal performance in general 

is s till unknown. The above conjecture is most likely true, but i f  i t  is 

not, then it  would be interesting to investigate under what conditions 
and for what type of performance index it holds.

•  The selection of performance index is a basic step in robust FD I design. 
In  this thesis, it  was shown that the common performance measures that
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are used in the literature are not appropriate for this purpose. As an 

alternative, the performance measures in controller design (Hoo and 7 i2 

norms of closed-loop systems) were used for FD I performance. But as 

mentioned before, this w ill add some conservatism to the solution. So 

another topic for research is to find a performance index tha t is not con

servative, and in addition satisfies expected properties (proper behavior 
w ith  respect to sampling period).

•  In Chapter 3, the norm based methods of residual generation were gener
alized to sampled-data systems using the norm invariant transformation. 
I t  would be interesting to investigate i f  other methods of residual gener

ation (e.g., observers) can be generalized for sampled-data systems via 

some direct design approach.

•  Two methods of fast-rate residual generation for multirate sampled-data 

systems were developed in Chapter 4. The solutions of the corresponding 

optim ization problems in those methods have the advantage that many 
parameters can be chosen freely. The freedom was used in this thesis 

to accommodate the practical causality constraints. One direction for 

research is using the free parameters to involve other useful constraints, 

to optimize other performance criteria or to isolate the faults. I t  would 

also be interesting to investigate other methods of residual generation 

for m ultirate systems.

•  Fault detection process usually consists of different steps. In this thesis, 
however, only residual generation was considered. Residual analysis is 

also an important process in an FD I system which is carried out after the 
residual is generated. Residual analysis in sampled-data systems would 

be an interesting research topic. For instance, one can investigate how 

to select a threshold for residual and how the sampling period affects the 

threshold.

•  Fault diagnosis is an essential part of any industrial control system. 
Moreover, most of the control systems are implemented in a sampled- 
data framework in industry. So another important research topic is to 
investigate the practical issues of fault diagnosis in (single-rate and mul

tirate) sampled-data control systems.
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Appendix A  

Co-inner-outer Factorization for 
D iscrete-tim e Systems

In this appendix the method of calculating the co-inner-outer factorization of 
a discrete-time system is given. The results are adopted from [29]. Notice 
that there is a duality between inner-outer factorization and co-inner-outer 
factorization. I f  Gi(z) and G0(z) form an inner-outer factorization of G(z) (i.e., 

G(z) =  G i(z)G 0(z)), then G f (z) and G%(z) form a co-inner-outer factorization 
of GT(z), and vice versa. Therefore, here only the calculation of the inner-outer 

factorization for discrete-time systems is given.

Assume that G(z) E TZHoo is an LT I discrete-time system w ith sampling 

period h and has no transmission zeros on the unit circle. Then there exists 
an inner-outer factorization of G(z)

G(z) =  G i(z)G0(z).

The inner m atrix Gi(z) E 'R.'Hao satisfies

G j (e~juh)Gi (ejuh) =  / .

The outer m atrix G0(z) E TVHoo has a right inverse G ^ lz )  E TZHoo such that

G0{z )G - \z )  =  I .

Assume that G(z) has the following stat space realization

' A B  '
C D

The procedure for obtaining the inner-outer factorization of G(z) is given 

below:
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1. Define

Q = CTC,

L  =  Ct D, 

R =  D t D.

2. Solve the following discrete-time algebraic Riccati equation

X  =  At X A  -  (At X B  +  L )(B t X B  +  R ) - \ A t X B  +  L f  +  Q.

3. Define
F  =  (B t X B  +  R ) - \ A t X B  +  L )t .

4. Find the Cholesky decomposition

H t H  =  B t X B  +  R.

5. The inner and outer matrices Gi(z) and G0(z) are given as

Gi(z) =  

G0(z) -

where H # is the right inverse of H  satisfying H H *  =  I .

6. In addition right inverse of G0(z) is given as

' A +  B F B H *  '
C +  D F D H *

A B  '
- H F H

’ A +  B F B H *  '
F H *  \
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Appendix B  

Com putation of B j

Assume tha t the matrices A  and B  (usually from a state-space realization) 

and the sampling period h are given. The objective is to calculate the fu ll 
rank m atrix B j  satisfying

B j B Tj  =  J  eArB B TeATTdr.

The procedure is given below [9]:

1. Define

P  =  exp ( h
—A B B T 

0 A T

2. Partition P  accordingly

3. Then,

P  = P\1 Pi 2
0 P22

B j B j  — P 2 2 -Pi2-

To compute B j , if  P j2P \2  is fu ll rank then the Cholesky decomposition can 

be used and B j  would have the same dimensions as P&P1 2 . But i f  P22P12 is 
rank deficient, then the number of columns of a full rank B j  is less than that 

of P ^P n-  In this case the simple version of Cholesky decomposition is not 

applicable. So using the singular value decomposition of P22P12

P&P 12 =  [Ui U2
'£  O' U f
0 0 u i .

B j  can be calculated as
B j  =
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Appendix C

Calculation of the Causal 
Optimal Solution in 
Section 4.4.2

Assume that G(z) € TZHoo is a given q x p transfer function matrix. In this 

appendix, the objective is to solve the following problem:

P ro b le m  1: Find a n x q transfer function m atrix Q(z) € VSH.00  

that satisfies the following conditions

i. O ptim ality Condition ||Q(-z)G(^)||oo= ||Q(-2)||oo||G(i:)||oo

ii. Causality Condition Q(oo) =  X N m

The number of columns of Q(z), q, is given (since G(z) is known). But the 

number of rows of Q(z), n, can be chosen freely. Also N m  is a given fat m atrix 
satisfying N m N'm  =  I ,  but X  can be arb itrarily  chosen.

I t  is first shown that a constant m atrix (not a transfer function m atrix) 

can not solve the problem. Let Q(z) — Q (00) =  X N m  =  Q- Since Q(z) is 
constant, the Hoo norm of the transfer function m atrix Q(z) w ill be equal to 
the induced 2-norm (spectral norm) of the constant m atrix Q

I l 0 ( * ) l l o o =  11411a -

The optim ality condition implies that

W Q G i z ) ^  ||Q||2||G(z)||oo= H A A ^ y G ^ i u ^  u x y G C O iu .
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Now it follows that 

||Q G (z)||00=  \ \ X N M G ( z ) \ \o o  <  W X U N M G i z ) ^

<  I I X I I a l l A ^ H a l l G W I l o o -  | M | a | | G ( * ) | | o o .

For the optimality condition to be satisfied, all the inequalities in (C .l) should 

be converted to equalities. This is possible when ||iYMG(2)||oo= ||G(z)||oo- 

But since Nm  and G(z) are independently given this is not always true. As 

a matter of fact, by submultiplicative property of H o o  norm, most of the 

times ||iVxG (2)||oo< ||G(z)||oo- In this case a constant matrix can not solve 
the problem. So the general form of the transfer function matrix has to be 
considered.

To simplify the calculations, the problem, originally in discrete-time, is 

transferred into continuous-time. Notice that the frequency response of a 

continuous-time transfer function is a polynomial function of frequency, while 

it is an exponential function in discrete-time case. Recall that the bilinear 
transformation preserves the H o o  norm of a transfer function (Section 3.2.4). 
So, the bilinear transformation is used as a change of variable to convert the 
discrete-time problem (exponential function of frequency) to an equivalent 
continuous-time problem (polynomial function of frequency). Let QBT,i(s) 
and Gbt(s) denote the bilinear transformations of Q(z) and G(z) respectively. 
Also note that z —► oo is equivalent to s —► j[ in the bilinear transformation (h 
is the sampling period of Q(z) and G(z)). Then the equivalent Continuous
time problem is:

Problem  2: Find a n x q  transfer function matrix Qbt(s) € 1ZHoo 

that satisfies the following conditions

i. Optimality Condition

||Qbt(s)Gb t (s)||oo=  ||Qbt(s)||oo||Gbt(s)||oo (C.2)

ii. Causality Condition

Q b t(^ ) =  X N m  (C.3)

Qbt(s) is chosen to be a 1 x q transfer function matrix (note that he number 
of rows of Qbt(s)  can be selected freely). To construct a Qbt(s) that solves 

the problem, the following lemmas are useful:

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lem m a C . l  Assume that Gi(s), G2(s) E HHoo and,

||Gt(s)||oo= crmax(G i(jw 0)) =  ||G i(ja;0)||2, i  =  1, 2,

and also

\\Gl(j0Jo)G2(jUo)\\2= l l ^ i  ||211̂ 2 O't^o) ||2>

then

IIG iM G aM lleo- HGiWllcollGaWIU.

o’max(-) represents the maximum singular value. ui0 is the frequency where 
the Hoo norm of G\(s) and G2(s) is calculated. This lemma states sufficient 
conditions for which the submultiplicative property of Hoo norm is converted 
to an equality.
Proof By submultiplicative property of Hoo norm

||G1(S)G2(5)||oo<  II^WIIoollGaWlloo.

On the other hand 

||Gi (s)G2(s)||oo >  ||Gi(jw0)G2(jw0)||2 (by definition of Hoo norm)

=  ||G1(;w0)||2||G2(iu;0)||2=  11^ (S) ||oo|| G2(5> ||oo-

Comparing the two equations will complete the proof.
□

Lem m a C.2 Assume that G i(s) 6 HHoo, i  =  1, - - • ,n , and

||Gj(s)||oo crmax(Gj(jw0)) \\G i(ju0)||2, i — 1, • • • , 72,

then the following identity holds 

HfGxOO G2(s) ••• G „(S)]||oo=||[G1(;a;0) G2( ju 0) ••• Gn( ju 0)} ||2.

Proof Assume that 

HfGxW G 2(s) ••• Gn(S)]||oo^l|[Gi(ja;o) G2( ju 0) ••• Gn(jw 0)} ||2.

Then there should exist some frequency uj\ ^  u Q such that 

||[G i(s) G 2(s ) ••• Gn(s)]||oo =  ||[G i( jw i) G2(ju ;i) ••• Gn(ju ;i)] ||2

>  llt^ iO ^o ) G2( ju 0) ■■■ Gn( ju a)] ||2.
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This implies that for at least one of the G ,’s, the following statement holds

| |G i ( j ( J i ) | | 2>  ||G n ( jo ;0)||2 , 

which subsequently implies that

||G i(s )H o o >  ||G!i( jc < ; i) | |2 >  ||G n ( jw 0) | |2 .

This is a contradiction and the proof is complete.
□

Let ||Gbt(s)||oo= ||Gbt(j^o)||2 (be., w0 is the frequency where the Hoo norm 
of Gbt(s) is calculated). Also assume that the singular value decomposition 

of GBt0'u;o) is
GbtUuo) =  UEV, (C.4)

where U and V  are complex unitary matrices and U = [u\ u2 • ■ ■ u,].
Then,

||G?B T ( iw 0) | |2=  ||S ||2 -

Define the row vector T  as

V =  [ip 0 0 }UT =  ipuJ, (C.5)

for an arbitrary positive number ip. Thus

1 1 *1 1 2 = ^ .

Then

II^G btC M ,)^  =  \\[ip 0 ••• 0]Ut U'EV\\2= ||[0O 0]E||2

=  ■0112112= ||^||2||GBT(jWo)||2- 

Therefore, if a stable Qbt(s) satisfies

Qb tU ^ o) =  'L,

||Qbt(s)||oo =  ||Qbt0’wo)||2, 

then according to Lemma C .l, optimality condition (C.2) holds. Let

Qbt(s) =  [<5bt,i (s) Qbt,2(s) ••• <2bt,9(s)]

^  =  K  +  j v  1 u2 +  jv 2 ■■■ uq +  jv q]

X N M  =  [ d Q , \  d ,Q t2 ■■■ d Q tq]
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I f  SISO transfer functions <5bt,i(s)) * =  1, • • • , Q, have their maximum gain 

at frequency ui0 (i.e., ||Qbt,»(s)||oo= |Qbt,<(M>)|) and QbtA J ^ o) =  Ui +  j v t 
then according to Lemma C.2 the equations in (C.6) w ill be true and optim ality 

condition (C.2) holds. I f  in addition <3bt,»(!) =  dg.i, the causality constraint 
(C.3) also holds. Now the problem is simplified to finding stable SISO transfer 

functions <3bt,«(s), i  =  1,• • • ,q, that satisfy

1IQbT,»(<s)||oo=  |QbT,»(JWo)|,
Q bt.iC M ) =  U i+  jv u
QbtA D  -  dQ,i-

These conditions can be further simplified to

£;|QBT,i(jw)|2 = 0,
Wo

Qbt, i ( ju 0) =  Ui +  jV i,
„ QbtA D  =  dQ,i■

A candidate transfer function is chosen in the form
H- b{S2 “I- fys -\-

(C.7)

QbtA s) = P{8)

where P (s ) is an arbitrary Hurwitz polynomial of order at least 3. The 4 free 

parameters in Qbt,i(s) are enough to satisfy conditions (C.7). In fact, i t  is easy 
to show that conditions (C.7) w ill be simplified to a set of linear simultaneous 

equations in terms of at, bi, Ci and d*

Pai (k’o) P b i i j ^o ) P J U o ) P d iA ^o ) ' <n '
- k i m ) - u 20X u 0) v 0Y  (w0) X (u 0) bi

- K ]X (u 0) u lY {u j0) u 0X  (u>o) ~Y(uo) Ci

. ( ! ) 3 (D 2 ( ! ) 1 _ d i

(u2 +  v2)a ’ ( Uo) 
Uia(u0)
Via(u>0)

2̂
(C.8)

where
P ( ju )  =  X ( u ; ) + jY (u )  

a(u ) =  X { u f  +  Y {u )2 =  1-PO'tcOI2 

P a i (cu) =  — o j3 X ' ( u ) v i  — 3c<j2X ( u j ) v i  — u>3 Y '( u > ) u i  — 3 u 2Y ( < j j ) u i  

Pbi(u) =  —u 2X '(u )u i — 2uX(u i)u i +  u>2Y '(u )v i — 2 u Y (u )v i 

Pci(u)  =  uX'(<jj)vi +  X(u>)vi + ujY'(uj)ui +  Y  (ui)ui 

Pdi(ui) =  X '(u )u i -  Y '{u )v i
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The determinant of coefficients matrix of linear equations in (C.7) is

2 / 2  2 \
2uj20a ( u 0) ( ( - ) 2 +  u 20) f {u0Vi -  - U i ) X { u 0) + (w0Ui + - V i ) Y { u 0) \  ,

which is always nonzero. Therefore, this set of linear equations always have a 

unique solution. The first condition in (C.7) does not always guarantee that 
<5bt,<(s) has its maximum gain at frequency l j 0 (it can be a minimum or a 

local maximum). This can be resolved by changing P(s) with one or two steps 

of trial and error. After calculating Qbt,»(s), j  =  1, • • • ,q, one can construct 
Qbt(s) and use the bilinear transformation to calculate Q(z).

The procedure of finding Q(z) is summarized below

1. Calculate G b t ( s) the bilinear transformations of G(z).

2. Find cj0 and perform the singular value decomposition in (C.4).

3. Arbitrarily select ip and compute according to (C.5).

4. Choose P(s) an arbitrary Hurwitz polynomial of order at least 3 and the 

1 x g matrix X .

5. Construct and solve the set of linear simultaneous equations in (C.8) to 

obtain an b*, q, di and subsequently Qbt^s)-

6. Perform the bilinear transformation on Qbt (s) to find Q(z).
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