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Abstract

In most applications, because of numerous advantages it offers, digital technol-
ogy (computer, PLC, microcontroller etc.) is used to control industrial plants.
These types of systems, where the process under control is continuous-time
but the controller is digitally implemented, are called sampled-data systems.
Faults can occur in sampled-data systems like any other control system. In
order to prevent performance degradation, physical damage or failure, faults
should be promptly detected. In this thesis fault diagnosis in sampled-data
systems is studied. The sampled-data design can be carried out using direct
or indirect design approaches. Direct design, emphasized in this research, does
not involve any approximations.

Normally, to design a robust fault detection and isolation (FDI) scheme, a
performance index which is a measure of the sensitivity of the FDI to faults and
its robustness to unknown inputs and disturbances is defined and optimized.
Different performance indices based on H, and H; norms are considered.
Using the direct design approach and the so-called norm invariant transfor-
mation, it is shown that a sampled-data FDI problem can be converted to an
equivalent discrete-time problem. This will form the foundation of a unifying
framework for optimal sampled-data residual generator design.

Multirate systems are also abundant in industry. Here, several methods

of residual generation based on multirate sampled data are developed. The
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key feature of such residual generators is that they operate at a fast rate for
prompt fault detection. The lifting technique is used to convert the multirate
problem into an equivalent single-rate discrete-time problem with causality
constraints.

It is generally believed that the optimal multirate design performs better
than the optimal slow-rate and worse than the optimal fast-rate designs. This
conjecture is theoretically proved in this thesis for general multirate control
systems with norms of the closed-loop system as performance indices. How-
ever, it is shown that the common performance indices in FDI design do not
satisfy this property. To resolve this, an alternative performance index is de-

fined after formulating the FDI problem as a standard control problem.
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Chapter 1

Introduction

1.1 Background

By definition a fault is a nonpermitted deviation of a characteristic property
which leads to the inability to fulfil the intended purpose [7, 30]. Faults can
occur in all of the components of a closed-loop control system including sen-
sors, actuators, communication network and the process under control. Such
faults disturb the normal operation of the control system and may result in un-
satisfactory performance, instability, failure (complete breakdown of a system
component or function) or even dangerous situations. Due to the increasing
complexity of modern control systems and the growing demands for quality,
cost efficiency, availability, reliability and safety, it is important that faults be
promptly diagnosed and appropriate remedies be applied.

A monitoring system which is used to detect faults and determine their
type, location, time of occurrence and significance is called a fault diagnosis
system [7, 30]. The overall concept of fault diagnosis consists of the following
three tasks [7, 19]:

e Fault detection: determination of the presence of a fault in a system
and the time of its occurrence.

e Fault isolation: determination of the location of different faults, e.g.,

which sensor or actuator has become faulty.

¢ Fault identification: estimation of the type, magnitude and cause of
the fault.
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d(t) f()

t t
u(®) Process y(t)
Controller
fault information FDI

Figure 1.1: A typical fault detection and isolation scheme

Depending on the type of fault and the acceptable performance of a control
system, these three tasks can be relatively important. However, fault detection
is an absolute must for any practical system and fault isolation is almost
equally important. On the other hand, fault identification may not be essential
if no reconfiguration action is involved [7]. Hence, in the literature, fault
diagnosis is often considered as fault detection and isolation (FDI). Research
in fault diagnosis has been gaining attention during the past three decades
in both theory and application, and numerous results are available in the
literature. Many books, tutorial papers and surveys have also been written on
the subject 7, 18, 19, 21, 22, 23, 24, 25, 41].

A typical scheme of fault detection and isolation in a control system is
illustrated in Figure 1.1. In this scheme, besides the control signal u(t), there
are two other inputs to the process: unknown disturbance d(t) and fault to
be detected f(t). The FDI uses process input u(t) and process output y(t) to
detect the faults. Based on the information obtained from the FDI one can
decide how to deal with the faults.

Various methods of fault diagnosis have been developed in the literature.
These methods have also been categorized in various groups based on different

criteria [19, 41]. Here, three main categories of fault detection methods are
briefly introduced:

Hardware redundancy is a traditional approach to fault diagnosis. The

method is based on using multiple lanes of sensors, actuators and computer

2
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hardware/software to measure and control a particular variable. A voting
scheme is then applied to decide if a fault has occurred and its likely location
[31, 43, 47]. The use of hardware redundancy is common in highly sensitive
systems like flight control [17]. While this method is very reliable, extra equip-
ment and maintenance cost and the additional space required to accommodate
the redundant hardware could be serious problems.

Signal based fault detection is the most frequently used diagnosis method
in practice [4, 44]. The idea is to monitor the level of a particular signal and
raise alarm when the signal reaches a certain threshold. This method is easy
to implement but it has some serious drawbacks. Firstly, the method is not
robust, i.e., in the event of noise, input variation and change of operating
point, false alarms can possibly be raised. Secondly, a single fault can cause
many system signals to exceed their limits, which makes fault isolation very
difficult. In view of these drawbacks, some techniques have been recently
proposed that combine the signal based approach with statistical methods, in
order to improve the robustness and accuracy of fault detection [26].

Model based fault detection can be defined as detection and isolation
of faults by comparing the systems’ available measurements with a priori in-
formation represented by a mathematical model of the system (analytical re-
dundancy). The difference between real measurements and estimates of these
measurements are used to generate a residual quantity. Fault is then detected
by setting a threshold on this residual quantity. A number of residuals can be
designed for faults occurring in different locations of the system. The analysis
of each individual residual leads to fault isolation. The main focus in this
thesis is on model based methods of fault detection, which will be discussed
in more details in Chapter 2.

Because of numerous advantages that digital technology and computers can
offer, nowadays most of control and fault detection algorithms are implemented
by computers. A combination of a real world continuous-time process and a
digital controller is called a sampled-data system. Extensive research has been
carried out on sampled-data systems and various approaches for controller
design have been introduced [9]. Processes that are controlled in a sampled-
data framework are also susceptible to faults. So the question that naturally
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comes to mind is that how faults can be detected in a sampled-data framework.
This question and other related issues in sampled-data fault detection are
addressed in this thesis.

A relatively easy approach to the sampled-data FDI problem is to use the
known continuous-time or discrete-time techniques. This is known as indirect
design, and can be accomplished in two ways:

e One can first design a continuous-time FDI for the continuous-time sys-
tem and then approximate it by a discrete-time FDIL.

e Alternatively, one can first approximate the continuous-time system by
a discrete-time one and then design a discrete-time FDI.

Because of the approximation involved in both designs, one might not get a
satisfactory result [54]. In control system design, there exists another approach
that enables us to directly design a discrete-time controller for the continuous-
time system without making any approximations (9], known as direct design.
The direct approach for controller design motivates us to investigate a direct
method of FDI design for sampled-data systems. Some work has been re-
cently done on this subject and interesting results are available [53, 56, 58].
In this thesis, a unifying and general approach is developed for FDI design in
sampled-data systems by using the so-called norm invariant transformation.
The approach is based on converting the original sampled-data problem to a
discrete-time one.

In the study of sampled-data systems, an essential assumption is that all the
inputs/outputs are generated/sampled synchronously at a single rate. How-
ever, this is not the case in many industrial situations where different control
signals are generated at different rates and/or different process outputs are
measured at different rates. These systems, known as multirate sampled-data
systems, are again susceptible to faults. The next problem discussed in this
thesis is how to design an FDI for multirate sampled-data systems. Some
methods are already available in the literature {14, 15, 16, 49, 55, 57, 59]. In
most of these methods, detection of faults can be substantially delayed be-
cause the fault information (residual) is generated at a slow rate. To reduce
or eliminate the detection delay, an FDI scheme needs to generate the fault
information at the fastest rate possible. The approach adopted here guaran-
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tees that anytime a new piece of information arrives from the process, the FDI
updates the residual.

One of the important properties of an FDI is that it should be insensitive to
disturbance, noise and other unknown inputs in order to lower the false alarm
rate. Meanwhile, the FDI should be adequately sensitive to faults so that it
can properly detect even very small faults. Therefore, the most challenging
trade-off in FDI design is to increase sensitivity to faults and robustness to
other unknown inputs. Researchers try to address this trade-off by introducing
and optimizing a performance index. Therefore, selection of an appropriate
performance index and developing analytical or numerical optimization meth-
ods are fundamental steps in any robust FDI design. But what is exactly
meant by an “appropriate” performance index? This is another subject that
is investigated in this thesis.

One of the properties that is intuitively expected from an “appropriate”
performance index is that: if more information (from the system) is available
then better performance can be achieved. The precise mathematical statement
of this property will be provided later in the thesis, but what is important for
now is that, the popular and commonly used performance indices in FDI design
do not satisfy this property. This will be shown via some examples. It will also
be proved that the performance index used for controller design (some norm
of the closed-loop system) is in fact “appropriate” in the sense that it satisfies
the aforementioned property. Therefore, if one can formulate the FDI design
problem as a controller design problem, then the control performance index
can be readily used. In this thesis an approach is proposed to implement this
idea and convert the sampled-data FDI problem to an equivalent sampled-data
control problem.

1.2 Outline of the thesis

The rest of this thesis is organized as follows:

In Chapter 2, model based methods of fault detection are reviewed. Af-
ter a brief discussion of how faults are modelled in dynamical systems, the
concepts of residual and residual generation are introduced. The three main
methods of model based residual generation which are: observer, parity space
and factorization, are briefly reviewed. The issue of robust residual generation
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and its methods are also addressed. Finally, the decoupling of residual from
disturbance is discussed.

Chapter 3 is about fault detection in sampled-data systems. After review-
ing the concepts of direct and indirect designs in sampled-data systems, the
techniques to convert a continuous-time model to a discrete-time one are dis-
cussed. Generalizations of the concepts of Ho, and Hs norms to sampled-data
systems are given next. These concepts are then used to address the robustness
of residual generators in sampled-data systems. The important contribution of
this chapter is to provide a general formulation of the robust residual generator
for sampled-data systems. This will be achieved by converting the sampled-
data problem to a discrete-time problem, which can be solved using existing
methods of discrete-time FDI design.

Chapter 4 is dedicated to fault detection in multirate systems. A multirate
sampled-data system is converted to a single-rate discrete-time system using
the lifting operation and direct design. This will form the basic framework
for fault detection in multirate systems. Methods of residual generation are
directly applicable to the equivalent discrete-time model. However, the re-
sult will be a slow-rate residual generator. Two methods of fast-rate residual
generation are then proposed based on parity space and factorization (with
Ho optimization) techniques, and the optimality and causality issues are ad-
dressed.

In Chapter 5, an analysis of the performance index in sampled-data control
systems is given. H, and H; performances of sampled-data and linear peri-
odically time-varying systems (LPTV) are defined. Then the theorems that
compare the performances of slow-rate, fast-rate, and multirate systems are
proposed and proved.

In Chapter 6, motivated by the results of Chapter 5, the performance
indices used for sampled-data fault detection are studied. It is shown, through
some examples, that the expected properties do not hold for these performance
indices. To address this, the sampled-data FDI problem is converted to a
standard control problem which can be solved using known techniques.

A summary of the thesis, final conclusions and some directions for future
work are given in Chapter 7.
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Chapter 2

Model Based Fault Diagnosis

The model based fault diagnosis approach makes explicit use of a mathematical
model of the process. It has been receiving considerable attention during the
past decades, both in research and application. A great variety of methods
of model based FDI have been developed based on the use of mathematical
models and modern control theory.

Two main steps in a successful model based FDI algorithm are:

¢ Residual generation: A residual generator uses the available input and
output information of the process to generate a fault indicating signal
(residual). The residual should be normally zero or close to zero when
no fault is present, but different from zero when a fault occurs. This
means that in ideal conditions, the residual is independent of the input
and output of the system.

¢ Residual evaluation (decision making): The residuals generated
by residual generators are examined for the likelihood of faults and a
decision is made based on that. An evaluation process may consist of a
simple threshold test on the instantaneous values or moving averages of
the residual. Alternatively methods of statistical decision theory (e.g.,
generalized likelihood ratio testing or sequential probability ratio testing)
may be used to evaluate the residual.

Most of the work in the field of model based FDI is focused on the resid-
ual generation problem. The reason is that residual evaluation and decision
making are relatively easy on well designed residuals. However, this does not
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imply that the research on residual evaluation is not important. This thesis
concentrates on model based residual generation.

Ideally the residual should only be sensitive to faults. If no modelling
uncertainty is present, the dependency of the residual on the input and output
of a system can be removed by proper design. In addition to the controlled
input of a system (control signal), other unknown inputs (e.g., disturbance,
measurement noise, etc.) can change the output of the system and hence the
residual. This may cause a false alarm even when a fault has not occurred. A
model based FDI has to be sensitive with respect to faults in order to detect
incipient faults, but robust with respect to unknown inputs and modelling
uncertainties in order to avoid false alarms. Thus, an important property
of a model based FDI is the robustness against modelling uncertainty and
disturbance. Robust FDI has become a central research issue over recent
years.

2.1 Modelling of faulty systems

From the fault diagnosis point of view, it is useful to divide the faults into
three categories [19]:

o Actuator faults
¢ Component faults

o Sensor faults

In model based methods, faults are commonly modelled as input signals. In
addition, there are always other (unknown) inputs in the system due to dis-
turbance, noise, etc. Model uncertainty, which always exists in real world
problems, is also modelled by unknown input. So, in general, apart from the
actual controlled input to the process, two other sets of inputs are considered:
vector of faults to be detected and vector of unknown inputs (which represents
disturbance, noise, model uncertainty, etc.).

In this research, linear time-invariant (LTI) multiple-input multiple-output
(MIMO) dynamical systems are considered. A dynamical system with a pos-
sibility of fault occurrence can be modelled both by state space or transfer
function equations.
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State space model
The state space model of a faulty system is given as

{ #(t) = Az(t) + Bu(t) + Eqd(t) + Ey, fa(t) + Ey. fe(t)
y(t) = Cx(t) + Du(t) + Dad(t) + Dy, fa(t) + Dy, fo(2)

where z(t) € R" is the state vector, u(t) € R™ the vector of control signal,
y(t) € R™ the vector of plant output, d(t) € R™ the vector of unknown inputs
(e.g., disturbance, noise, model mismatch, etc.), f.(t) € R™= the vector of
actuator faults, f.(t) € R™- the vector of component faults and f,(t) € R™%
the vector of sensor faults. A, B, C, D, Ey, Dy, Ey,, Dy,, Ey, and Dy, are
known matrices of appropriate dimensions.

Combining all possible faults together, a general faulty system can be mod-

elled as { 8(8) = Az(t) + Bu(t) + Ead(t) + E; f(£)
y(t) = Cz(t) + Du(t) + Dqd(t) + Dy f(2)

where f(t) € R™ is the fault vector. Each element of the fault vector f(t)

corresponds to a specific component/actuator/sensor fault. Ey and Dy are
known as fault entry matrices and represent the effect of faults on the system.

Transfer function model

Transfer functions may also be used to model a faulty system:
y(t) = Guu(t) + Gad(t) + G4 f(t), (2.1)

where u(t) € R™ is the input vector, y(t) € R™ the output vector, d(t) € R™
the vector of unknown inputs and f(t) € R™ the vector of faults to be detected.
Gu(8), Ga(s) and Gy(s) are transfer functions of appropriate dimensions.

Discrete-time systems

Similar to the continuous-time models, one of the following models for discrete-
time faulty systems might be used:

z(k + 1) = Az(k) + Bu(k) + Eqd(k) + E; f(k)

Stae space model { y(k) = Ca(k) + Du(d) + Dad(k) + D £ (k)

Transfer function model:  y(k) = Gyu(k) + Gqd(k) + Gsf(k)
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Here, z(k) € R, u(k) € R™, y(k) € R™, d(k) € R™ and f(k) € Rv
are the state, control signal, plant output, unknown input and fault vectors
respectively. A, B, C, D, E4, Dy, Ef and Dy are known matrices of appropriate
dimensions. G,(z), Ga(z) and Gy(z) are discrete-time LTI transfer functions
of appropriate dimensions.

2.2 General structure of residual generator

In this section, the general structure of a residual generator in model based
methods of FDI design is derived. The information used for residual generation
in a continuous-time system is the measured output from sensors y(t) and the
control signal u(t). A residual generator is a linear time-invariant process; its
input consists of both input and output of the system under monitor and its
output is the residual. A typical residual generator is then described by:

=10 ]| %] =m0+, (2.2

where r(t) € R is the residual. Qy(s) and Q,(s) are stable LTI transfer function
matrices.

First the simple case when no unknown input is present in the system is
considered, i.e., d = 0. By definition the residual is designed to become zero
for the fault free case and nonzero for the faulty case:

Z€ro f=0,

residual = { nonzero f #0.

In other words r = 0 if and only if f = 0. To satisfy this condition, after
substituting system model (2.1) in (2.2), @, and @, must satisfy the following
constraint:

Qy(s)Gu(s) + Qu(s) = 0. (2.3)

This condition parameterizes all linear residual generators. Satisfaction of
condition (2.3) guarantees that the residual is independent of the controlled
input of the process. Design of a residual generator is now summarized in the
selection of @, and Q.

If the process is affected by unknown inputs (i.e., d(t) # 0), then in addition
to condition (2.3) other constraints are raised. One now needs to generate a

10
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residual that is as sensitive as possible to faults and as robust as possible to
unknown inputs, which introduces the concept of robust FDI.

Different model based methods of residual generation vary in how they
parameterize the residual generator (i.e., @, and Q,) and how they tackle the
robustness problem. Various methods have been developed in the literature,
most of them belong to one of these main categories:

observer based approach,

parity space approach,

factorization approach,

e parameter estimation approach.

Although these methods have been developed independently over decades,
several researchers have pointed out that there are close relationships among
the different approaches {19]. In this chapter, some of the methods that are
emphasized in our research are briefly reviewed.

2.3 Observer based methods

A wide class of linear residual generators are observers. The idea is to use an
observer to estimate the output of the plant and then compare the estimated
output with the actual output to generate the residual. A typical observer
based residual generator is formulated as:

{ w(t) = Fw(t) + Ky(t) + Ju(t)
r(t) = Lyw(t) + Loy(t) + Lau(t)

w(t) € R™ is the state vector of residual generator and (t) € R is the residual.
Matrices F', K, J, Ly, Lo and L3 are designed to guarantee stability of the
residual generator, satisfy the general condition (2.3) and make the effect of
d(t) on r(t) zero or as small as possible. To do so different approaches are
available: unknown input observers, fault detection filters and eigenstructure
assignment, to name a few [21, 28, 42]. The methods are readily extendible to
the discrete-time case (7).

11
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2.4 Parity space approach

The parity space approach was originally introduced for discrete-time sys-
tems [11]. However, some attempts have been made to generalize it to the
continuous-time case [40]. Here, the original form of parity space as intro-
duced in [11] is considered for the following discrete-time system

z(k +1) = Az(k) + Bu(k) + Eqd(k) + Es f(k)

y(k) = Cz(k) + Du(k) + Dqyd(k) + D; f (k)
It is assumed that (C, A) is observable.

A parity space based residual generator is formulated as:

7(k) = s (ys(k) — Hystis(k)), (2.4)
where
[ y(k — s) u(k — s)
ua(k) = y(k —:3 +1) () = u(k —:s +1) ,

| y(k) u(k)

[ D 0 0 0
CB D 0 0

Hy, = : : : :
| CA*'B CA*™B .. CB D

Here, r(k) € R is the residual and s is the order of parity relation. The design
parameter v, € R*™+1) js known as the parity vector. To satisfy the general
residual generator condition (2.3), the parity vector v, should satisfy

C
CA
vaHa,s =0, Ho,a = . (25)
CA?
The set of all parity vectors that satisfy condition (2.5) is known as parity
space P,

P, = {vs|vsH, s = 0}.

Substituting y(k) from the plant model in (2.4) and using the condition
(2.5), the dynamics of the residual generator is expressed by

r(k) = vs(Hd,sds(k) + Hf,afs(k)), v, € P,

12
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where

[ d(k—s) f(k—s)
dk—s+1) flk—=s+1)
da(k) = : . Sk = : ,
| d(k) f(k)
[ D, 0 -0 0
CE, Dy o0 0
Hys= : : : : J
i CA"_IEd CA"—2Ed -«+ CEy Dy
[ Dy 0 e 00
CEy Dy e 0 0
Hy, = : : : :
| CAS—IEf CA3_2Ef CEf D_f
Now, the problem is how to find v,. If there exists a parity vector v, € P,
such that
Ust,s = 0)
'U.-;Hf,s ?é Oa

then the residual r(k) can be perfectly decoupled from the unknown input
d(k). Otherwise, the effect of d(k) on r(k) can be minimized by solving an
optimization problem. A common choice of performance index for optimization

1S
_ ”'Ust,s”2 _ vSHd,SHg:st

 NvsHggllz — veHp HF 0T
The numerator of J in (2.6) reflects the effect of unknown input d(k) on the
residual while the denominator reflects the effect of fault f(k). By minimizing

J

(2.6)

J a compromise is made between sensitivity to the fault and robustness to the
disturbance. v, is then designed by solving the optimization problem

min J. (2.7)

vsEP,

The complete analytical solution of this optimization problem can be found
in {11]. Here the optimal solution is given without proof.

Assume that Np is the basis vector for parity space P, (or the null space
of H,,), i.e., for any parity vector v, there exists a vector p, such that v, =

13
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psNp. Also assume that Ap, is the minimum generalized eigenvalue of the pair
(NpHy H] ,N§,NgHy,H} ,NE) and p,min is the corresponding generalized
eigenvector, i.e.,

ps,minNBHd,ng:sNg = /\minps,minNBHf,sH}:sNg-
Then v; = psminNp is the optimal solution of (2.7) and J* = Ay, is the

optimal performance.

2.5 Factorization approach

As discussed earlier, any linear residual generator can be described as (2.2)
with @, and @, satisfying (2.3). Here, a parametrization of all linear residual
generators based on the coprime factorization of G, is given [20].

Consider the LTI continuous-time process described by the transfer func-
tion model

y(t) = Guult) + Gad(t) + G/ £ (1) (2.8)

Let (My(s), Nu(s)) be a left coprime factorization of G,(s), i.e., My(s) and
Ny(s) are left coprime and they satisfy

Guls) = M7 (s)Nu(s).
Then a parametrization of @, and @), is given as

Qy(s) = R(s)Mu(s),
Qu(s) = —R(s)Nu(s).

In other words all linear residual generators for the continuous-time system in
(2.8) can be parameterized as

r(t) = R(Muy(t) - Nou()), (29)

where R(s) € RH.™ is a designable post-filter. Let

o= [443]

14
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Assuming (C, A) is observable, the left coprime factorization (My(s), Nu(s))
can be parameterized as

My(s) = [_,4;:5_0% ,

A-LC|B-LD
Nu(s)zl: C D :l’

where L is a free-to-choose matrix which ensures that A — LC is Hurwitz.
Note that when G,(s) is stable, one can choose L = 0 and thus M,(s) = I
and Ny(s) = Gy(s). In this case the general form of the residual generator is

r(t) = R(y(t) — Guu(t)).

Design of the residual generator is now summarized in finding the sta-
ble transfer function matrix R(s). Substituting the system model (2.8) into
the residual generator (2.9), the dynamics of the residual generator can be
expressed by

r(t) = RM,Gad(t) + RM,G,f(t)
= RM,(Gud(t) + G £(t)).

This equation shows how the fault f(¢) and the unknown input d(t) affect the
residual. In the ideal case, the residual should only be sensitive to f(t) which
means that d(t) should have no effect on the residual. If a post-filter R(s) can
be found such that

R(s)M.(5)Gals) =0,
R(s)Ma(5)G(s) # 0.

then perfect decoupling of the residual from the unknown input is possible (this
case will be discussed later in Section 2.6). Otherwise, in order to compromise
between the sensitivity of the residual to the fault and its robustness to the
unknown input, one should design R(s) to make R(s)M,(s)G4(s) as small
as possible (in some sense) while keeping R(s)M,(s)Gs(s) reasonably large.
Using some definition of norm as a measure of the size of a system, R(s) is to
be found such that || R(s)M,(s)G4(s)|| becomes small while || R(s)M,(s)G¢(s)]|

15
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remains large. This is usually achieved by solving an optimization problem. As
a widely accepted approach the following optimization problem is considered

min MR()Mu(s)Ga(s)|
Rsermx™ | R(s)My(s)G¢(s)|

The solutions of this optimization problem for the common H,, and H; norms
are briefly review next.
2.5.1 H, optimization

In the M, approach the performance index is

1 IREMA)Ga(s)llo
2/ = R(5)Mu(s)G1(5) oo’

and the optimization problem becomes

R(sr)rel‘il?’l'(m Joo/oo. (2.10)
The analytical solution of this optimization problem is given in (13, 20] which
is briefly reviewed here.

Assume that G4(s) has no transmission zeros on the imaginary axis and at
infinity (i.e., G4(jw) does not lose rank for all w [5]). This assumption ensures
that there exists a so-called co-inner-outer factorization of M,(s)G4(s) such
that

M, (5)Ga(8) = Ggo($)Gai(s).

The co-inner Gy (s) satisfies G4 (jw)GL(—jw) = I. The co-outer Gg,(s) has a
left inverse G} (s) € R such that G7}(s)Gyo(s) = I. Now define a change
of variable as

R(s) = Q(s)Gg, (),

where Q(s) € RH is the new parameter. The performance index in terms of
Q(s) will be

1Q(5)Gai(s)]| oo
1Q(s)Gg, () Mu(5)G(s)lloo”

Joo/oo =

Using the fact that
1Q(s)Gai(s)lloo= |Q()loo,

16
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and the submultiplicative property of Ho, norm
1Q(5)G3, (8)Mu(8)G 5(5)lloo < Q) ool G, (8)Mu(8)G 5 (5)l oo

imply that

_ 1Q(3) oo > 1Q()lleo
Q)G (5)Mu(5)Gr(8)lleo ~ 1Q(ollG () Mul5)G1(8)lloo
1

Joo/oo

G2 (5)Mu(8)G(8)lloo”
Therefore, the optimal performance index is
. 1
2/ G () Mu(8)Gi(5) oo

This optimal performance index can be achieved by selecting any stable Q(s)
that satisfies

(2.11)

1Q(s)G% () Mu(5)G ()= Q)| G (5)Mu(5)G s (8)loo-  (2.12)

Conventionally Q(s) = I is chosen, but in this thesis the general form of Q(s)
is considered.

In summary, the family of optimal solutions of the optimization problem
in (2.10) is given as

R'(s) = Q)G (),
where the parameter Q(s) € RH,, satisfies (2.12). The optimal value of the
performance index Jy,o is given in (2.11).

This solution is obtained under the assumption that G4(s) has no trans-
mission zeros on the imaginary axis and at infinity, which is too restrictive.
For example if G4(s) is strictly proper, then it has zeros at infinity and Gy,(s)
does not have a left inverse in RH. An approach was delivered in [13] which
extended this result to the case that Gg,(s) is not left invertible. There is
also another parametrization of the solution in [20} that does not require the
assumption that G4(s) has no zeros at infinity.

2.5.2 'H, optimization

For the Hs approach, the following performance index is considered

o _ IR(9)Mu(s)Ga(s)Il3
2/2 |R(s)My(s)Gs(s)|13”

17
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Thus, the optimization problem becomes

i Jaso. .
LT (2.13)

Using the definition of H; norm, the performance index J;/2 can be written as

/ " R(ju) Ma(ju0) Gal )G (=) MT (= o) RT (— jo) do

Jap2 = :
|| RGIM30)G 1 10)6 (=) ME (=) BT (=)

The analytical solution of this optimization problem is proposed in [12]. Here
the optimal solution is given without proof.
Assume that f,,(s) is an ideal frequency selector at frequency wy, i.e.,

Yq(s) € RHL™,
fuo(Jw)q(jw) =0, wF#wo

/_ " Fan(0)a ()" (=) £T.(— jw)doo = q(jewo)qT (=),

Also assume that Ayin(w) is the minimum generalized eigenvalue and v, (jw)
is the corresponding generalized eigenvector of the following generalized eigen-
value problem

Vain(jw) Mu(jw) Ga(jw) GG (—jw) M (= jw) =
Amin (@0)Vmin(jw) Mo (jw) G £ (jw) G F (= jw) My (= jw).
Also assume that A\yin(w) has its minimum at frequency w*, i.e.,
Amin(W*) = inf Amin (w).
The optimal solution of the optimization problem in (2.13) is
R*(5) = fur(5)Vmin(s),
and the optimal value of the performance index is
J3/2 = Amin(w").

The ideal frequency selector f,,(s) is not practically implementable. In
practice usually a bandpass filter with a narrow frequency bandwidth is used
to approximate the ideal frequency selector.

18
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2.5.3 Discrete-time systems

The factorization approach for discrete-time systems is very similar to the
continuous-time case. Consider the LTI discrete-time process described by

y(k) = Gyu(k) + Gad(k) + G £ (k). (2.14)

Let (Mu(z), Nu(z)) be a left coprime factorization of G,(z), i.e., M,(z) and
N,(2) are left coprime and they satisfy

Gulz) = M1 (2)Nu(2).
Then all linear discrete-time residual generators can be parameterized as
r(k) = R(Myy(k) — Nyu(k)), (2.15)

where R(z) € RHL™ is a designable post-filter. Substituting the system
model into the residual generator (2.15) the dynamics of the residual generator
is expressed by

r(k) = RM,G4d(k) + RM,G;f(k).

If a post-filter R(z) can be found such that

R(2)M,(2)Gq4(2) = 0,
R(2)M,(2)Gy(z) # 0,
then perfect decoupling of the residual from the unknown input is possible.
Otherwise similar to the continuous-time case, R(z) is designed by optimizing
a performance index. Performance indices based on H,, and H; norms are
widely accepted.
In the Ho, approach the performance index is described by
o = JROMEICl
|1 R(2) Mu(2)G(2) |00’

and the optimization problem becomes

i . 2.1
R(zI)IEl%le Joo/oo ( 6)

Assume that G4(z) has no transmission zeros on the unit circle, then there
exists a co-inner-outer factorization of M, (z)G4(z) such that

Mu(Z)Gd(Z) = Gdo(Z)Gdi(Z).
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The co-inner Gy(2) satisfies Gy; (e7")G%(e7#“h) = I. The co-outer G4,(2) has
a left inverse G)(z) € RHy such that G3}(2)Gao(z) = I. In Appendix A
a method for calculating the co-inner-outer factorization of a discrete-time
system is given.

Similar to the continuous-tim case, the optimal solution of the optimization
problem in (2.16) is parameterized as

R'(2) = Q(2)Gg, (2),
where the free parameter Q(z) € RH, satisfies
1Q(2)G3, (2)Mu(2)G1(2)llo= |Q(2)looll G35 (2) Mu(2)G £(2) | oo-
The optimal value of the performance index is

.o 1
o0/00 G2 (2) Mu(2)Gf(2)||oo

There is a major difference between this solution and the solution in the

continuous-tim case. In continuous-time, the solution was obtained under the
assumption that Gy(s) has no transmission zeros on the imaginary axis and at
infinity. The no-zero-at-infinity assumption is quite restrictive for the method
can not be directly applied when G4(s) is strictly proper. In the discrete-time
case, however, the only assumption required is that G4(z) has no transmission
zeros on the unit circle. Therefore, G4(2) can be strictly proper, which will
always be the case in sampled-data systems.

For the H, approach, considering the following performance index
_ IR(x)Mu(2)Ga(2)|3
 IR(2)Mu(2)G ()3’

Jas2
the optimization problem is
in  Jys. 2.1
AR T2 (217)
Let f,,(2) be an ideal discrete-time frequency selector defined as
Vq(z) € RHLX™,
fuo(€“M)g(e") =0, w # wo
an/h jwhy ¢ jwhy\ T (,—jwhy ¢T ( —jwh jwohy T —jwoh
J R e T G VN TR G T Ct)
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Assume that Amin(w) is the minimum generalized eigenvalue and v, (e7*) is
the corresponding generalized eigenvector of the following generalized eigen-
value problem

Ummin (") My (677) G (€M) G (™M) M (e79%) =
Mo ()i () M (€) G (9) G (e HH) M (€73
Also assume that
Amin(w*) = inf Apin(w).

Then the optimal solution of the optimization problem in (2.17) is

R*(Z) = fw" (z)vmin(z),

and the optimal value of the performance index is
;/2 = Amin(w")-

2.5.4 Norm based residual evaluation

As mentioned before, after the residual is generated it has to be evaluated
(usually by comparing to a threshold) before a decision about fault occurrence
can be made. In practice the instantaneous value of the residual is rarely used
to produce an alarm signal. Instead, some norm of the residual is chosen as the
residual evaluation function and based on that, the threshold is selected [13,
22|. The mostly used norm for this purpose is the £, norm of the continuous-
time residual r(¢) or the #2 norm of the discrete-time residual r(k), for these
norms indicate the energy level in a signal. Considering the continuous-time
residual, the residual evaluation function is

lrllo= ( /0 T ) dt) "

Since the evaluation over the whole time domain is unrealistic, the norm is
often calculated over a limited window, i.e.,

lIrll2= (/t: rT(t) - r(t) dt) 1/2.

Now, based on this evaluation function, a threshold can be determined.
In the most common logic for decision making, if the norm of the residual is
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below threshold, then the system is fault free. Therefore, it is reasonable to
select the threshold, denoted by Ji, as the maximum norm of the residual
when no fault is present:

Jun = sup lIrfl2-
f=0
Considering the general form of the residual generator in continuous-time, the
threshold is then given by

Jin = Sl;p |RM,Gad)2-
Now, assuming the disturbance is bounded by ||d||2< 1, it follows that

Jin = | R(s)Mu(s)Ga(5)lloo-

2.6 Perfect disturbance decoupling

Perfect disturbance decoupling is the ideal case in FDI design. This happens
when a residual can be made independent of the unknown input (namely,
disturbance). If this is true then the residual is only sensitive to the fault, so
there is no chance for false alarms. In this section, the necessary and sufficient
conditions for perfect disturbance decoupling are discussed.

Consider the continuous-time process in (2.8). As seen earlier, perfect
decoupling of the residual from the unknown inputs is possible if a stable
post-filter R(s) can be found such that

R(s)M,(s)G4(s) =0,
R(s)M,(s)Gg(s) #0.

It is easy to check that such a post-filter exists if and only if (notice that M,(s)
is full rank) [20]

rank [ G4(s) Gy(s) | > rank [ Ga(s) |- (2.18)

Here, rank { G4(s) | denotes the normal rank or rank for almost all values of
s. A necessary condition for (2.18) as shown in [20] is

rank [ Gu(s) | <m,
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which means that for perfect disturbance decoupling, the number of inde-

pendent unknown inputs (rank | G4(s) ]) should be less than the number of
measurements m [20, 22].

Similarly, for the discrete-time process in (2.14), perfect disturbance de-
coupling is possible if and only if

rank [ Ga(z) Gg(z) | >rank [ Ga(2) ]. (2.19)

In the formulation of the parity space approach (Section 2.4), perfect distur-
bance decoupling is possible if there exists a parity vector v, such that

VsHo s =0
’U_.;Ifd,,J =0
vsHy s #0

Therefore, the necessary and sufficient condition for perfect disturbance de-
coupling is

rank[ Ho,s Hd.s Hf,s ] > ra.nk[ Ho.s Hd‘, ] . (2.20)

It can be shown that conditions (2.19) and (2.20) are equivalent [22].

2.7 Summary

In this section, model based methods of fault detection were briefly reviewed.
Two of the most common of these methods, namely parity space and fac-
torization approaches, were discussed with more details. These methods are
extensively used in this thesis. A fundamental step in robust residual gen-
erator design is the selection and optimization of a performance index. The
performance index is a measure of robustness of the residual to disturbance
and its sensitivity to fault. Analysis of the performance index in FDI design
will be given in Chapter 6.
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Chapter 3

Fault Detection in
Sampled-data Systems

3.1 Introduction

In control systems, the signals of interest (reference input, error, control signal,
actuator output, etc.) are usually continuous-time signals. The performance
specifications (bandwidth, overshoot, settling time, steady state error, etc.)
are also formulated in continuous time. Also the plants under control generally
operate in continuous time and are modelled by differential equations. But
since digital technology offers many benefits, modern control systems and fault
detection algorithms are usually implemented by digital technology. Control
systems with continuous-time plants and digitally implemented controllers are
called sampled-data systems.
A sampled-data controller performs three functions:

o It samples and quantizes a continuous-time signal (measured output or
tracking error) and produces a digital signal (A/D converter);

e it processes the digital signal using a digital computer and generates a
digital control signal (digital controller);

e and it converts the digital control signal back into a continuous-time
signal (D/A converter).

Some materials of this chapter has been published in:

I. Izadi, T. Chen and Q. Zhao, “Norm invariant discretization for sampled-data
fault detection”, Automatica, vol. 41, pp. 1633-1637, 2005.
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Figure 3.1: FDI in a sampled-data scheme

Similarly a sampled-data FDI processes the digital signals from A/D converter
using a digital computer to produce the appropriate alarm signal. Sampled-
data systems operate in continuous time, but they involve both continuous-
time and discrete-time signals and systems and thus are hybrid systems [9].
Figure 3.1 illustrates a typical FDI in a sampled-data framework, where u(t) is
the control signal, y(t) the plant output, d(t) the unknown input (disturbance),
and f(t) the fault to be detected. A/D and D/A converters are modelled
by ideal synchronized sampling (S) and hold (H) operators with sampling
period h.

During the past decades, the topic of sampled-data systems has been in-
tensively studied [9]. The achieved results show a significant improvement
in control performance when the so-called direct design of digital controllers
for continuous-time plants is adopted [9]. Consequently, because of the inti-
mate relationship between control and FDI problems, research of FDI design
in sampled-data systems has received increasing attention. Similar to the con-
trol problem (9], there are essentially two approaches to the FDI synthesis for
sampled-data systems: indirect and direct. Many developed methods suggest
the indirect design, which can be carried out using two approaches [9]:

Analog design and sampled-data implementation In this approach,
a continuous-time FDI is first designed for the continuous-time plant. The
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design can be performed using one of the numerous approaches available in
the literature for continuous-time FDI design, some of which were introduced
in Chapter 2. The continuous-time FDI is then digitally implemented. In
other words, it is approximated by a discrete-time system using a method of
continuous-to-discrete conversion (or discretization). For example one can use
the bilinear or step invariant transformations.

Discrete-time design based on a discretized plant In this approach,
the continuous-time process is first approximated by a discrete-time system
(discretization). The discretization however, can only be done using the step
invariant transformation. A discrete-time FDI is then designed for the discrete-
time model of the process. This discrete-time FDI will be implemented on the
actual continuous-time system.

Approximations exist in both approaches. They also ignore what is happen-
ing between the sampling instants (intersample behavior). Thus, the FDI may
not work properly. In an example shown in [54], perfect disturbance decou-
pling is possible for both continuous-time and discretized processes. But, the
FDI designed by neither of the indirect approaches can detect the fault when
implemented in a sampled-data framework, let alone decoupling it from the
disturbance. Motivated by the direct design approach in sampled-data control
problem [9], recently a direct design approach was introduced for sampled-data
FDI [53, 56, 58]. In [53, 56, 58] the parity space, Ho, and Hy methods were
adopted to design optimal residual generators for sampled-data systems. All
the methods were based on introducing appropriate operators that capture the
intersample behavior which is a well known technique in controller design for
sampled-data systems [9].

All the above methods are successful extensions of the known design tech-
niques to the sampled-data case. Unfortunately, introducing one individual
operator for each approach makes those methods complicated and difficult to
follow. In this chapter a unifying framework for sampled-data fault detection
is developed which offers a convenient tool for both design and analysis. By
clearly defining norms of sampled systems and the so-called norm invariant
transformation, this framework allows us to easily extend any known (H; or
H) norm based method of fault detection to sampled-data systems.
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v(k) u(t) y(?) b(k)

Figure 3.2: Step invariant transformation

3.2 Discretization of continuous-time systems

The process of converting a continuous-time system to a discrete-time system
is called discretization. In this section three different methods of discretization
are briefly reviewed: step invariant, impulse invariant, and bilinear transfor-
mations. Step invariant and bilinear transformations are the most common
methods of discretization and are widely used in indirect controller/FDI de-
sign. The norm invariant transformation, a useful tool in solving sampled-data
FDI problems, is also introduced.

3.2.1 Step invariant transformation

The step invariant transformation of a continuous-time system G is defined as
Gp = SGH (Figure 3.2). This method of discretization has the property that
step responses of G and Gp have the same values at sampling instants, hence
the term step invariant transformation [9]. In other words, Gpl4(k) = SG1(t),
where 1(t) and 14(k) are continuous-time and discrete-time unit step functions
respectively. To show this, note that 1(¢) = H14(k), then

Gply(k) = SGH14(k) = SG1(t).
Assume that the state space representation of the continuous-time system

co-[248]

then it is well known that [9]

G is given as

where
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3.2.2 Impulse invariant transformation

Consider a continuous-time strictly proper system G. The impulse invari-
ant transformation of G, denoted by Gy, is a discrete-time system with the
property that impulse responses of G and G; have the same values at sam-
pling instants. In other words Gdq(k) = SGé(t), where 6(t) and (k) are
continuous-time and discrete-time unit impulse functions respectively. As-
suming G has the state space representation as

oo-[43]

then it can be shown that [9)

Gi(z) = [ATDI’%‘} , (3.1)

Ap =e?*, B;=e¢*"B, D;=CB.

where

There is a relationship between the frequency responses of the continuous-
time system G and its impulse invariant transformation G;, known as the
Poisson Sampling Formula [6]:

: =
Gt = : Y Gliw + jkw,), (3.2)
k=—00
where w; = 27” This expression is also known as the Impulse Modulation

Formula.

The following lemma states another property of the impulse invariant trans-
formation:

Lemma 3.1 A state space representation of z71G(z) is given by

e [

Proof Using the state space representation of G;(z) in (3.1), the impulse
response of Gy can be written as the following sequence

impulse response of G(z) = {Dr, CB;, CApBy, CA2DBI e}
= {CB, Ce*"B, Ce*4"B, Ce**B, ... }.
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Then,
impulse response of 27'G(z) = {0, CB, Ce**B, Ce*4hB, - ..},

Using this impulse response, the state space representation of z7*G/(z) can
be derived and the lemma is proved.

O

3.2.3 Norm invariant transformation

Another method of discretization, with extensive applications in sampled-data
FDI design is the norm invariant transformation {32]. Consider the continuous-
time strictly proper system G with the following state space model

6 = |5t (33)

The norm invariant transformation of G, denoted by G, is defined as a
discrete-time system with

6o = 23] (3.4)

where

AD=6

and By is a full rank matrix satisfying
h T
B;BT = / eA"BBT e "dr.
0

The mathematical details on how to compute B are given in Appendix B.
An interesting and useful relationship involving the norm invariant trans-
formation is given in the following lemma [27).

Lemma 3.2 The following statement holds
(G(s)G™(=9)) ,(2) = Gs(2)GT(z7"),
where (G(s)GT(—s)),(z) denotes the impulse invariant transformation of

G(s)GT(~s).
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Proof Starting with the state space representation of G in (3.3), it easily
follows that AT T
Ti_o\— |—
G (—s) [_ BT 0 ]
Using the formulas for the state space representation of the product of two
transfer functions [9], it follows that

-AT 0]CT
G(s)GT(-s)= | —BBT A| 0
0 Clo

Now, using Lemma 3.1, a state space representation of z~!(G(s)G"(—s)),(z)
can be constructed as

2 (G(5)GT(~9)) () = {e"p d oo 31] 'h) l %
0 C | 0

By using the matrix exponential formulas, the above equation is further sim-

plified
e—ATh 0o |lcT
2 (G(s)G"(=s))(z) = | =ByBIe4"™h 4h| 0 |. (35
0 C | 0

On the other hand, starting from the state space representation of G; in (3.4),

Gy(2) =C(zI — Ap)™'B;

= G =BT - AT ICT
= 2BY(I - zAD)"'1CT
= zBTART(AGT — 2D)71CT

= 27 'GY(27Y) = =BT AT (21 — AFT)7ICT
B ABT l CT
L -BJAR | 0 |

Again, using the state space representation of the product of two transfer

AT 0 |CT
271G,(2)G%(zY) = | =B;BTA;T Ap| 0 |. (3.6)
0 clo

functions,
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Comparing (3.5) and (3.6), the lemma will be proved:
2 G(5)G" (=5)) (2) = 27'Gu(2)GT(=7")
= (G(s)GT(-s)),(2) = Gs(2)GT(z7).

O
The next lemma states an interesting relationship between the frequency

responses of a continuous-time system and its norm invariant transformation.

Lemma 3.3 The following statement holds

] ) 1 +00
G (e*M)GE (e77m) = - Y G(jw + jkwe)GT (—jw — jkw,),
k=—00
where w, = 2,15

Proof Evaluating the result of Lemma 3.2 at z = e/ yields
(G(8)GT(=9)) (") = Gu(eM)GT (7). 3.7

On the other hand, using Poisson Sampling Formula (3.2), it follows that

+oo
(GO (=s) () =1 3 Gl + k)G (~ju — ko). (38)
k=—00
Comparing (3.7) and (3.8) proves the lemma.
0O

Note that, unlike the step invariant and impulse invariant transformations,
the inputs of the discrete-time system G are not related to the actual inputs
of the original continuous-time system G.

Another important point to notice is the number of independent inputs of
G;. In the step invariant and impulse invariant cases, foh e7dr and eA are
full rank square matrices (assuming h is non-pathological). Therefore Bp and
By have the same dimension and rank as B. Thus the number of indepen-
dent inputs of the original continuous-time system is equal to the number of
independent inputs of its step invariant and impulse invariant transformations.

This, however, is not the case in the norm invariant transformation. The

number of independent inputs of G; can be generally greater than the number
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of independent inputs of G [53, 58]. To show this, note that:

number of independent

inputs of G, = number of independent columns of B

= rank (B,BY)
h
= rank [ / e""BBT e " dr]
0

= dimension of the controllable subspace of (A, B)
=rank [ B AB -]
> number of independent columns of B

= number of independent inputs of G

As a matter of fact, the norm invariant transformation introduces some fic-
titious inputs which are used for design purposes only but carry no physical
meaning.

3.2.4 Bilinear transformation

Another method of discretization is the bilinear transformation, also known
as the Tustin’s method [9]. The bilinear transformation of a continuous-time
system is obtained by simply using the following bilinear relation between s
and z (hence the term bilinear transformation)
2 2-1

TRyl
Therefore, the continuous-time system G is transformed to the discrete-time
system GgT, where

z—-1
z+1

The inverse bilinear transformation from the discrete-time system Gy into

the continuous-time system G is given by

GBT(Z) = G(S) o

Ll

1+ %s
2= ho
1-—- QS
G(S) = GBT(Z) by
z=%§§—a

In this thesis, the fact that the bilinear transformation preserves the H,
norm of a system is used [9]:

1G($)lloo= 1GBT(2) lo0-
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3.2.5 Summary

In this section four methods of transforming a continuous-time system to a
discrete-time one were briefly introduced. The step invariant and norm invari-
ant transformations will be extensively used in this research to address the
FDI problem in sampled-data systems. Throughout the thesis, the upper-case
subscripts p, ;, s and gt are used to denote the step invariant, impulse invari-
ant, norm invariant and bilinear transformations of a continuous-time system
respectively. Notice that the state space realizations of the step invariant and
norm invariant transformations are the same except for the B term (i.e., they
have the same A, C and D terms).

3.3 Norms of sampled systems

As seen in Chapter 2, in a variety of fault detection methods, a suitably chosen
norm (e.g., He, or Hy norm) is used to design and analyze residual generators.
In sampled-data systems, we also require norms to extend the known design
techniques. To define appropriate norms for sampled systems we generalize the
concepts of Ho and H, norms. Assume that G : £o(R) — £5(R) is a stable
and strictly proper continuous-time system with p inputs and m outputs, and
the following state space realization

oo~ [4f2]

The operator SG : L3(R) — £3(Z) maps continuous-time signals to discrete-
time signals and is called a sampled system.

3.3.1 H, norm of SG

For continuous-time system G the Ho, norm is

IG(s)llo=sup ||Gullz.

[heliz<1

Similarly, the Ho norm (also known as £, induced norm or simply induced
norm) of SG is defined as [9]

|ISGllee= sup ||SGul|,.

fleli2<1
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Note that ||-||2 in ||u||2 is defined for continuous-time signals in £5(R), while
-l in ||SGu|ls is defined for discrete-time signals in ¢5(Z). To compute
| SG|l the following lemma is useful:

Lemma 3.4 [9, 58] The Ho norm of SG is given by

[15Glleo= 1G(2)llco-

3.3.2 H, norm of SG

For a continuous-time SISO system, the Hg norm is

o0

IG(s) 3= 1G5 (2) 2= [ g(t)dt,

-0

i.e., the H; norm of the transfer function G(s) equals the £, norm (total
energy) of its impulse response. In the multivariable case the H; norm is

P
IG(s) 3= D _lIGs(@)eil3,
i=1

where e;, 1 =1,...,p, denote the standard basis vectors in R? and 4(t) is the
continuous-time unit impulse function. Thus, d(t)e; is an impulse applied to
the i*" input channel.

To generalize the definition of Hs norm to sampled systems, notice that
SG is a time-varying but h-periodic system. Hence, the H, norm of SG is
defined as the total energy of the outputs when impulses are applied in one
period (sampling interval) to the input channels. Therefore, in the SISO case,
the H, norm of SG will be

h
1SG|i2= / 1SGs(t - 7)|2dr,
and in the multivariable case it is
P h
1SGIE=S" ( /0 1SG6(t — el dr) . (3.9)
=1

Similar to the H,, norm, the H,; norm of SG is related to the Hy norm of
discrete-time system G; as shown in the following lemma:
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Lemma 3.5 The Hy norm of SG is given by

15Gllz= 1G,(2)]l2.

Proof We know that
Go(t) = g(t) = CetB 1(t),
where 1(t) is the continuous-time unit step function. Then,
Gé(t — ) = CeA-DB1(t — 1),
= SG&(t—71)={0,Ce**B,... Cet*h-Tp ...}

p oo
= Z ISGS(t — 7)e;l|2= trace (Z CeA(kh_T)BBTeAT(kh~T)CT) ,

i=1 k=1

hf P
— / (}  ISGs(t - T)eiug) dr =
0 \i=1
hod h T T
trace E CeAkh(/ e A"BRBTe 4 Td'r)eA k"CT) ,

k=1 0

where trace(-) denotes the trace of a matrix. A change of variable (k—1) — k
and (h — 7) — 7 will yield

-}: (/oh“SG‘s(t ~7)eill3 d'r)

i=1
% h
= trace <Z CeAkh(/ eA"BBTeATTdT)eATth’T> (3.10)
0

k=0

(o]
= trace (Z OeAkhBJBfeATthT) .

k=0

On the other hand [9]

G (2)|2= trace (Z oAgBJBz(AIT,)kCT> . (3.11)
k=0

Comparing (3.10) and (3.11) and using definition (3.9) complete the proof.
O
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3.3.3 Norm of SG and norm invariant transformation

Lemmas 3.4 and 3.5 show that the H,, and H; norms of sampled system SG
are equal to the H,, and H; norms of discrete-time system G, the norm
invariant transformation of G. In other words, the norm invariant transfor-
mation preserves the H., and H; norms of sampled systems, hence the term
norm invariant. Lemmas 3.4 and 3.5 play a significant role in developing norm
based residual generators for sampled-data systems.

3.4 Residual generation in sampled-data sys-
tems

Consider the sampled-data system in Figure 3.1. The continuous-time system
under consideration has the following input-output description

y(t) = Guu(t) + Gqd(t) + G¢f(2), (3.12)

where y(t) € R™ is the vector of plant output, u(t) € R™ the vector of
control signal, d(t) € R™ the vector of unknown input (disturbances) and
f(t) € R™ the vector of fault to be detected. Gy, G4 and Gy are LTI strictly
proper systems. The assumption of strictly properness of Gy, G4 and Gy
is standard in the sampled-data literature and necessary for boundedness of
involved operators. In practice, because of antialiasing filters that are used
before sampling, the systems are always strictly proper.

The output vector is sampled and discretized using an A/D converter mod-
elled by

¥(k) = y(kh),

and the control signal is generated by a computer and sent to the actuator
using a zero-order hold D/A converter modelled by

u(t) =v(k), kh<t<(k+1)h.

- Hence,
Y(k) = Sy(t), (3.13)
u(t) = Hu(k)
36
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3.4.1 General form of the residual generator

In the sampled-data scheme, the residual generator uses the discrete-time
process input v(k) and output (k) to generate the residual p(k), which is
also a discrete-time signal. So the residual generator is a (LTI and stable)
discrete-time system. The general form of a sampled-data residual generator
is

p(k) = Rap(k) + Rou(k), (3.14)
where R; and R; are stable LTI discrete-time systems. Substituting ¢ (k) =
Sy(t), u(t) = Hu(k) and using the system model in (3.12), it follows

plk) = RiSy(t) + Ryv(k)
— RS(Guu(t) + Gad(t) + G, £(1)) + Rav(k)
= RiSGu(t) + RiSGad(t) + RiSG, f(t) + Ryv(k)
= RiSGad(t) + RiSG;f(t) + RiSG Hu(k) + Ryu(k).

Using the step invariant transformation G,p = SG,H, the residual generator
can be further simplified

p(k) = RlSGdd(t) + R15fo(t) + (R1GuD + Rz)’U(k) (315)
Let (My(2), Ny(2)) be a left coprime factorization of G,p(z), i.e.,

Gup(z) = M7 (2)Ny(2).

u

Using the factorization approach (similar to the continuous-time case in Sec-
tion 2.5) and by choosing

Rl(z) = R(Z>Mu(z),
Ry(2) = —R(2)Nu(2),

the residual will be independent of the input. The design parameter R(z) €
RHLX™ is a stable LTI discrete-time system. Substituting R;(z) and Ry(2) in
(3.14) yields

p(k) = R(M(K) — Noo(k)), (3.16)

which is the general form of residual generator in sampled-data systems.
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Also by substituting R;(z) and Ry(z) in (3.15), the dynamics of the residual
generator with respect to the continuous-time signals d(t) and f(t) is

p(k) = RM,SGd(t) + RM.SG;f(2). (3.17)

Here R and M, are discrete-time systems while G4 and G are continuous-time
ones. RM,SG, and RM,SGy are two operators that map continuous-time
signals to discrete-time signals. Equation (3.17) shows how continuous-time
signals d(t) and f(t) affect the discrete-time residual p(k).

If a discrete-time post-filter R(2) can be found such that

RM,SG4=0,
RM,SGy # 0,

then perfect decoupling of the residual from the unknown input is achievable.
The conditions of perfect disturbance decoupling will be discussed later in
Section 2.6. If perfect disturbance decoupling is not possible, design of a
robust residual generator is carried out by solving an optimization problem.

3.4.2 Robust residual generation

Consider the dynamics of the sampled-data residual generator in (3.17). If
perfect decoupling of the residual from the unknown input is not possible
(which is most of the times the case), then a robust residual generator is
designed by solving an optimization problem. The idea is that the discrete-
time residual p(k) remains as sensitive as possible to the continuous-time fault
f(t), and as robust as possible to the continuous-time disturbance d(t). In
other words, RM,SG, should be made as small as possible while keeping
RM,SG/ reasonably large. From previous discussions, one method to quantify
this requirement is to form the following optimization problem

min o |RM,SGdll,

- IMyobrally 3.18
R#)ERHw " R(:)eRHan |RM,SGyll,, (3.18)

where 7 = 2 or n = 0o0. The performance index in (3.18), is the generalization
of similar performance indices introduced in Section 2.5 for continuous-time
systems.

The norm preserving property of the norm invariant transformation makes
it appropriate to approach the optimization problem given in (3.18). Lemmas
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3.4 and 3.5 show that the (Ho, and H2) norms of a sampled system are equal
to the norms of its norm invariant transformation. Similarly, the following
theorem can be stated and proved:

Theorem 3.1 For the sampled-data residual generator given in (8.17), the
following equations hold

|RMuSGilly = || R(2)Mu(2)Gas(2)lln

|RM.SGilln = || R(2) Mu(2)Ga(2)lIn

forn=2 and n = co.

Using this theorem, the performance index in (3.18) is further simplified
to

. | R(2) Mu(2)Gas(2)ll5
R I R IROM)C D)

n=2orn=o00. (3.19)

This is a pure discrete-time optimization problem.
Now consider the following fictitious discrete-time system

Y(k) = Gupu(k) + Gas¥(k) + Grsd(k). (3.20)

Note that this discrete-time system is obtained by discretizing the original
continuous-time system in (3.12). The step invariant transformation is used
to discretize (G, as in indirect method. However, the norm invariant transfor-
mation is used instead to discretize G4 and Gy.

Suppose that we want to design a residual generator for the discrete-time
system in (3.20). Then the general form of the residual generator is

plk) = R(Mu"/j(k) - Nuv(k))
= RMqu']’?(k) -+ RMquJ(}_S(k)

If perfect disturbance decoupling is not possible, for robust design the following
optimization problem should be solved

. _ . R()Mu(2)Gas(2)]ls
RSB, = S TREM.()C )l

n=2o0rn=o00.

which is exactly the same as the one in (3.19) for sampled-data system.
This discussion suggests that to design a residual generator for the sampled-
data system in (3.12) and (3.13), as far as the norms of the operators relating
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the fault and disturbance signals to the residual are concerned, one can replace
the sampled-data system with the discrete-time system in (3.20). Any optimal
(Hy or Hy) norm based residual generator designed for this discrete-time
system will be optimal for the original sampled-data system as well. This
will lead us to a unifying approach to (norm based) robust FDI design for
sampled-data systems.

Considering the performance index in (3.18), for n = co this result is the
same as the one given in [58]. For n = 2, this approach provides an alternative
solution to the optimal design given in [56]. The performance index considered
in [56] for the sampled-data system is

e / ™ R(e) M, (M)

0 D)
* R(ejwh)Mu(ejwh)
0

+00
> (Galjw + jkw,)GY (—jw — jkw,)) MT (7" RT (7" )duw
k=—00
b

> (Gl + jhws) GF (—juw — gkws)) My (€M) BT (774" du

k=—00

where w, = 27 /h. It is easy to show that this performance index is equal to
the Hy performance index (as in (3.19) for = 2). Using Lemma 3.3,

- o L= o
Gas(€*")Go ™) =+ 37 Galjw + jkw)GF (~jw ~ jhwa),

k=—o0
- ' 1 X, o
Gra(@ MG e ) = 2 3 Gyl + jhun) G (g — jhus).
k=-00

Substituting these values in the expression of J? yields

[ RN M () R (o)
2 __ JO

J

RN M) G (€M) G (") M (e ) RF (e ) o
0
Now, by the definition of Hs norm for discrete-time systems, it follows that

(notice that R(z) is a row matrix)

s _ IRG)Mu(2)Gur(2)13
IRG) MG )
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This proves that the performance index in [56] is equal to Jz, the H, perfor-
mance indexed in (3.19). Nevertheless, this approach is simpler and requires
less numerical computations.

3.4.3 Other methods

There are some other types of norm based performance index used in the
literature to address the robustness problem in FDI design. For example in
[13] the following norm based performance index is considered

- RM,SGalles — IRMuSGy]lus).
o alloo = 1l #lleo)

Now using the unifying approach, one can replace the original sampled-data
system by the discrete-time system in (3.20). Then the following discrete-time
optimization problem can be solved instead, whose solution is known [13]

min (||R(2) Mu(2)Gas(2)lleo — 1R(2)Mu(2)Gs(2) o0 )-

R(z)ERHLZ™

In the parity space approach, although the performance index does not
involve norms of transfer functions, the unifying approach can still be used [53].
So, to design an optimal parity space based residual generator for a sampled-
data system, one can apply the method to the equivalent discrete-time system
in (3.20). The designed optimal residual generator is also optimal for the
original sampled-data system.

3.4.4 Perfect disturbance decoupling

As seen in Section 2.6, for the original continuous-time system in (3.12), perfect
decoupling of the residual from the unknown input is achievable if and only if

rank [ Ga(s) Gy(s) | > rank [ Ga(s) |. (3.21)
A necessary condition for (3.21) is
rank [ Ga(s) | <m,

which means that for perfect disturbance decoupling, the number of indepen-
dent unknown inputs should be less than the number of measurements.
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Using the norm invariant transformation, the necessary and sufficient con-
dition for perfect disturbance decoupling in sampled-data system is obtained
from the equivalent discrete-time model in (3.20) as

rank [ Gas(z) Gys(z) | > rank [ Gay(z) ].

G4s(2) and Gg(s) have the same number of outputs m, but G4;(z) has more
inputs than G4(s). Therefore, the number of independent unknown inputs in
the equivalent discrete-time system in (3.20) is greater than the number of
independent unknown inputs in the original continuous-time system in (3.12).
Hence, perfect disturbance decoupling is more difficult in the sampled-data
case than in the continuous-time case [56, 58]. In other words, since in the
equivalent discrete-time system, the number of independent unknown inputs
has increased, the chances that this number is less than m decreases. There-
fore, if perfect disturbance decoupling is possible for the original continuous-
time system, it may not always be possible for the sampled-data system.

3.5 Indirect sampled-data design

In this section, the second method of indirect FDI design is briefly reviewed, for
it is closely related to the direct design method. Again consider the sampled-
data system in Figure 3.1, described in (3.12) and (3.13). In indirect approach,
the original continuous-time system in (3.12) is discretized using the step in-
variant transformation

Y(k) = Gupv(k) + Gapy(k) + Gspé(k), (3.22)

where v(k) = Sd(t) and ¢(k) = Sf(t). The discrete-time system obtained from
step-invariant transformation is usually equivalent to the original continuous-
time system at the sampling instants. Here because of the presence of an
actual zero-order hold, the control signal u(t) is constant over a sampling
interval. Therefore, v(k) carries all the information of u(t). But unlike u(t),
the unknown input d(t) and the fault f(¢) can arbitrarily take any value during
the sampling interval. This means that (k) and ¢(k) are only approximations
of d(t) and f(t) and carry only the information of d(t) and f(t) at ¢t = kh.
Therefore, the discretized model (3.22) is not accurate even at the sampling
instants.
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The indirect design procedure can be carried out for the discrete-time
model in (3.22). As before, if (M,(z), N,(2)) is a left coprime factorization of
G.p(2), the general structure of a residual generator can be given as

p(k) = R(Myy(k) — Nyu(k))
= RM,Gapv(k) + RM,Gfpd(k).

Notice that here the residual p(k) is only affected by the values of the dis-
turbance and fault at t = kh (e.g., v(k) and ¢(k)). This is in contrast to
the direct design, where the value of disturbance and fault during the whole
sampling period affected the residual.

Another point worth mentioning is that in both indirect and direct designs,
the original continuous-time system is replaced by a discrete-time model and
the design is performed in discrete-time. The only difference is that in the
indirect design the step invariant transformations Ggp and Gp are used, while
for the direct design, the norm invariant transformations G4y and Gy are used.
So direct design does not involve more design steps or computation loads than
the indirect design.

The necessary and sufficient condition for perfect disturbance decoupling
in the discrete-time system in (3.22) is

rank [ Gap(z) Gyp(2) | > rank [ Gap(2) |. (3.23)

Notice that if G4(s) has no poles and (transmission) zeros at the origin and
G4p(#) has no (transmission) zeros at z =1 then

rank [ Gy(s) | =rank [ G4(0) | = rank(CA™'Ey),

and

rank [ Gup(z) | = rank [ Gap(1) | = rank(C(I — Ap)™"Eup)
= rank(C({ — e*)™}(e* — I)A™'E;) = rank(CA™'Ey).
Therefore, rank [ G4(s) | = rank [ Gap(z) ] This means that (3.21) implies
(3.23) and vice-versa. In other words the perfect disturbance decoupling of
the continuous-time system in (3.12) and the discrete-time system in (3.22)

are equivalent. If the sampling is pathological or G4(s) has a zero at the origin
or G4p(z) has a zero at z = 1, then perfect disturbance decoupling can be
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achieved for one of the continuous or discrete-time systems but not for the
other one. In fact Gy(s) and Ggp(z) can have different ranks even though
they have the same dimensions.

Also note that

RM,S5G4=0 =— RM,SG4H = RMquD =0,

which implies that if the sampled-data residual generator (direct design) can
be perfectly decoupled from the disturbance, the same post-filter R(z) can
achieve perfect disturbance decoupling in indirect design.

3.6 Summary and conclusions

In this chapter, it was shown that in order to design a robust norm based
residual generator for the following sampled-data system

y(t) = Guu(t) + Gad(t) + G£ f(2)
p(k) = Sy(t)
u(t) = Hu(k),

it is enough to replace the system with the equivalent discrete-time system
¥(k) = Gupv(k) + Gasy(k) + Grsé(k).

Any optimal norm based residual generator for the equivalent discrete-time
system will be optimal for the original sampled-data system as well. The pro-
posed framework unifies Hoo, Hz, parity space and some other robust sampled-
data FDI design methods. The results are consistent with the previous results
in sampled-data FDI, but the framework developed here is simpler and more
general.
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Chapter 4

Fault Detection in Multirate
Sampled-data Systems

4.1 Introduction

In most industrial process applications, the elements of the control system
may be structured distributively, i.e., sensors, actuators and controller are con-
nected via standard networks. In such applications D/A and A/D converters
often work at different sampling periods, introducing the so-called multirate
sampling [1, 9]. It is also well known that introducing multirate sampling can
improve the performance of control systems [9]. Although there are many re-
sults available in the literature for multirate sampled-data systems [1, 9}, there
are very few pieces of work on fault detection for these systems.

One of the earliest results was reported in [49]. For the multirate sampled-
data systems considered therein, all control inputs were updated at a single
slow rate while the outputs were sampled at different fast rates. Three differ-
ent fault detection schemes including parity space based, observer based and
detection filter based were developed. In that approach it was assumed that
no unknown disturbance would affect the system. Therefore, the robustness

The materials of this chapter has been published in:

I. Izadi, Q. Zhao and T. Chen, “An optimal scheme for fast-rate fault detection
based on multirate sampled data”, Journal of Process Control, vol. 15, pp. 307—
319, 2005.

I. Izadi, Q. Zhao and T. Chen, “An H, approach to fast-rate fault detection for
multirate sampled-data systems”, Journal of Process Control, vol. 16, pp. 651~
658, 2006.
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issue was not considered.

In [14, 16], the well-known lifting technique was used, and residual gen-
erators based on parity space and observers were proposed respectively. It
was assumed that there is a single input sampling period and all of the out-
put sampling periods are integer multiples of the input sampling period. In
[55, 57, 59|, the direct design approach was utilized to design parity space,
Hoo optimal and H, optimal residual generators respectively. In all of these
approaches the fault can only be detected at the end of the repetition period
yielding a slow-rate fault detection scheme. In many cases this detection delay
is unsatisfactory.

A technique to improve the detection speed was proposed in {15]. An
observer was designed for each set of synchronous measurements resulting in
a bank of observers that run simultaneously at different rates, which yields a
fast-rate fault detection scheme. Another method to design a fast-rate residual
generator was developed in [59]. An observer based residual generator with a
static weighting matrix was constructed. The H, performance index is used
to design the optimal observer gain and weighting matrix.

In this chapter, the design of fast-rate residual generators for multirate
sampled-data systems by adopting the norm invariant transformation and di-
rect design is studied. The objective is to achieve fast-rate residual generation
without losing performance. The lifting technique is used to convert the orig-
inal multirate sampled-data system to an equivalent single-rate discrete-time
one (but of higher dimension). Any available technique can be recruited here
to design a residual generator for the equivalent discrete-time system. But
regardless of the method used, the designed residual generator will be a slow-
rate system for the equivalent discrete-time system works at slow rate. To
overcome this, two methods are developed to generate a lifted (vector) resid-
ual rather than a scalar one. This lifted (vector) residual is also a slow-rate
signal but applying the inverse lifting operation will render a scalar residual
at the fast rate. The methods used here are parity space approach and fac-
torization approach with H,, optimization. For both problems, the complete
analytical solution of the optimization problem is given. Very large degrees
of freedom in the solutions allow us to impose some constraints, amongst the
most important of which are causality constraints.

As for the sampling periods, although the methods can be used for any
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Figure 4.1: FDI in multirate sampled-data scheme

input sampling period, it is assumed that the inputs are available (but not
necessarily updated) at the fast rate. This assumption may seem restrictive,
but it is acceptable by the fact that input (control) signal is generated by the
computer and so is known at any time instant. The output sampling periods
are integer multiples of the single input sampling period.

4.1.1 System description

The continuous-time process under consideration (Figure 4.1) has the following
state space description

&(t) = Az(t) + Bu(t) + Eyd(t) + Ef f(t) »
yi(t) = Ciz(t), i=1,2,---,m (4.1)

where z(t) € R™ is the state vector, u(t) € R™ the vector of control signals,
vi(t) € R the i*" scalar plant output, d(t) € R™ the vector of unknown inputs
(disturbances), f(t) € R™ the vector of faults to be detected. A € R™*",
B € R™™ E; € R™™ E; € R and C; € R¥™™", ¢ = 1,2, ,m, are
known matrices. One may alternatively consider the transfer model form of

the process
y(t) = Guu(t) + Gad(t) + G5 £ (t),
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where

A |B E; E
G

(Guls) Gals) Crls)l=| 0
Crm

As discussed in Chapter 2, the residual is independent of the control signal
u(t) if there is no uncertainty in the process model. Since this is the case in
our research, the control signal and its sampling period has no effect on the
residual. On the other hand, as mentioned earlier, although the control signal
may be generated at any rate, it is known at any time instance. Therefore, for
simplicity and without loss of generality, it is assumed that the control signal
is available at the fast rate. So the D/A converter in the input channel can be
described by

u(t) = v(k), kh<t<(k+1)h (4.2)

Herein h corresponds to the fast-rate.
Each output channel is sampled at a different rate. The A/D converters in
the output channels are then described by

1/)i(k'i) = yl(kin)) 1= 1) 27 M. (43)
T; = n;h, n; € N is the sampling period of the scalar output y;(t). Hence,

u(t) = Huo(k),
'(/Ji( i) = Sn.-hyi(t)w 1= 1)2v e, M.

Notice that since the sampled outputs are available at different rates, different

time indices k;, i = 1,2,--- ,m, were used.
Also let
N =lcm.(ny,ng, - ,nm)
N
gGg=—, 1=12---'m (4.4)
n;

(=@ +@++im

where l.c.m. stands for the least common multiple. Nh is the repetition period,
the length of one frame of data and is corresponding to the slow rate. g; is the
number of it* output data in one frame. ¢ is the total number of all output
data in one frame.
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4.1.2 Lifting

Let 7 be a discrete-time signal

n = {n(0),n(1),n(2),...}.
The lifted signal 7 is defined as

n(0) n(n)
IR R
nn-1) | | nen-1)

The (n-fold) lifting operator, Ly, is defined to be the map 7 ~— 7. Note that
the dimension of the lifted signal n = L,n is n times that of 7, and the period
of n again is n times that of . The inverse lifting operator, L, ! maps n back
to 7. A system with the lifted input and/or output is called a lifted system.

4.2 Slow-rate residual generator

A residual generator in multirate sampled-data systems uses the discrete-time
input v(k) and outputs ¥;(k;), i = 1,2,--- ,m, to generate a residual. In this
section it will be shown how to use the lifting technique to design a slow-rate
residual generator for multirate sampled-data systems (i.e., it generates the
residual at slow rate). In the following sections the methods will be improved
to design a fast-rate residual generator.

The first step to design a residual generator is to convert the multirate
sampled-data system to a single-rate (but of higher dimensions) system (called
lifted system) using the lifting technique. To obtain a lifted model of the
process, assume that Ey =0 and E; = 0 in (4.1). Only one output channel is
considered first. Let G, denote the continuous-time system from input u(t) to
output y;(¢):

yi(t) = Gru(t),

Consider the discrete-time input v(k) and the discrete-time output (k).
Then,

'l,[)l(k?l) = S’nlhyl(t) = Sthlu(t) = Sthth’U(k).
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Therefore, the multirate system from v(k) to ¢1(k;) is S,,nG1Hy. Define the

slow-rate lifted model G, as the discrete-time system from lifted input v(k,)
to the lifted output 9 1(Ics,), where

v(Nk,)
ulk) = Lok | DD
v(Nk,+ N - 1)

Y1(qrk,)
")l’l (QIks + 1)

Ny x1

_Il)_l(ks) = L¢h¢1(k1)
hi(qks + @1 — 1) axl

Here, k; is used for the time index of slow-rate signals. Then G, will be

Ql = Lq1 Sml‘zGIHhLI—\I1

) (4.5)
= Do, LNShG1HwLy .
Dy, is the operator of downsampling by ¢; described by
ni mn ni
10+ 0:0---0ivevn 30 -
Dm: 0001000
00 ... 0(] () 1 . 0 XN
As shown in [9)
(LNShGthLI_Vl)(Z) =
[ AY | A37'Bp  AY®Bp - ApBp Bp |
C1 0 0 0 0
CiAp CiBp 0 <o 0 0 (46)
I ClAg_l ClAg_2BD C}Ag_BBD -« CiBp 0 J NxNm
where Ap and Bp are as usual obtained from the step invariant transformation
of Gl(s)
Ap = eAh’
h 4.7
Bp = / eA"drB. (4.7
0
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Substituting (4.6) in (4.5), G, becomes

Gi(2) =
[ A} A¥-1Bp AN%Bp -+ Bp]
Cl 0 0 0
CLAY C1A% ™' Bp CiAp™Bp -+ 0
C A(qll—l)m C A(QI'i)"l_lB C A(ql—i)"l‘zB 0
| Y14p 11p D 141p D d gy xNny

For the other outputs v¢;, i =1,2,--- ,m, G, can be derived similarly. Using

the fact that
Gi1(s)
G
Gu(s) = | | 2(s)

Cm(s)

define G, p(z) as
Gi(2)
Gup(2) = ?Q2(Z)
Go()
The slow-rate lifted model G, p is thus described by

Gup(z) = (4.8)
AY A¥'Bp AY*Bp .-« Bp]
C 0 0 e 0
1A CAp ™ Bp CiAp™Bp -+ 0
oA | g TmTg, AT, L o
- O — e —
Cn ATy CnAp™'Bp  CnAx™Bp - 0
] CmAgm_l)nm CmA(DQm‘-l)nm—lBD CmAg()lm—l)nm—zBD e 0 J gxNone
Define

Gl = |5
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G, p is the slow-rate lifted system from the slow-rate lifted input v(k,) to the
slow-rate lifted output 1(k,) where

v(Nk,)
Q(ks) = ?)(Nk-’ M 1) )
Nk, +N-1) |,
[ 1(q1ks) ]
¢1(QIks + 1)
k, :
%Eks; ok ta -1
%(ks) = |2 =1:
O A —
ym(kS) wm(q"tks + 1)
L ;pm(kas + gm — 1)

dgx1
The input and output of G, are slow-rate signals, thus G, represents a
slow-rate LTI system.

It is known that the lifting does not change the (Hs or Ho) norm of a signal
or a system. Using the method of Chapter 3, the norm invariant transforma-
tion can be used to replace the original SISO/MIMO multirate sampled-data
system with the following MIMO discrete-time system

:Bz(ks + 1) = Am(ks) + Bzy(k:s) + Edl’i(ks) + Eﬂi(k,) (4 9)
Y(ks) = Cizi(ks) + Dw(ks) + Day(ks) + Dy (ks) '
Or alternatively the transfer function form
Y(ks) = Gupu(ks) + GasT(ks) + Gy (ks)- (4.10)

(Ea, Da) and (Ej, Dgy) have the same structure as (B, D;), replacing Bp
with E4; and Ey; respectively. Ey and Ej are as usual obtained from the
norm invariant transformation

h
EdJEgJ =/ CATEdEgeATTdT,
% (4.11)
EqEf, = / eATE(EF e T dr,
0
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G,y and Gy ; are defined as

_ A1 Edz _ Al Efl
cu- (48] oo [415]

Now, any norm based optimal residual generator designed for the discrete-
time system in (4.9) or (4.10), is also optimal for the original sampled-data
system. But because the discrete-time system in (4.9) or (4.10) is essentially
a slow-rate system (updated every Nh sec), any residual generated by this
model will be slow rate. In other words, the slow-rate residual generator waits
for one complete frame of data before proceeding with any calculations. So,
the updated residual is available every Nh sec, even though the information
from the system is received by the computer more often. This can cause a
substantial delay in the process of fault detection. In the next two sections
two methods are developed to generate a fast-rate residual for the multirate
sampled-data system to eliminate any unnecessary delays.

4.3 Fast-rate residual generator: Parity space

Consider the equivalent slow-rate discrete-time model in (4.9). Following the
discussions in Chapter 3, an optimal parity space based residual generator for
the discrete-time lifted model in (4.9) is also optimal for the original multirate
system. Applying the parity space approach (Section 2.4) to the lifted model
(4.9), the residual generator is

p(k_.,) = Vs (ﬁ (ks) - H-u,sys(ks))a

8
where

[ v(Nk; — Ns) A
v(Nks— Ns+1)

v(ks — ) v(Nks — Ns+ N - 1)

Volks) = | =1 . (412)

N-ny(s+1)x1
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Yi(qiks — q18) 1
qiks —qis+q1 — 1)

_lé(ks - 3) ;,Dm(kas — QS+ qm — 1)
Y, (ks) = | ¢ =|: ., (4.13)
ﬂ(ka) Y1(qrks)

wm(qus)
| Ym(gmks + gm — 1) 4 g(s+1)x1
D, 0 ce 0 0
CIBI Dl A 0
H,, = : : : . (4.14)
CA™'By CA™®B, -+ CB; D,

s+1 is the number of data frames used to generate the residual. In this residual
generator, v, is a 1 X g(s + 1) vector. Therefore, the residual is a scalar (slow-
rate) signal. It can be shown that this slow-rate residual generator is equivalent
to the one that was developed in [55] by properly choosing s.

To make sure that a residual is generated as soon as new information from
the system is received, a fast-rate residual generator has to be designed. Let
us consider v to be a N x ¢(s + 1) matrix, denoted by V,. This will result
in a vector (or lifted) residual p(k,) which is still a slow-rate signal. But
after applying the inverse lifting operator to this vector signal (during the
implementation of the residual generator), a scalar fast-rate residual will be
obtained. This scheme is illustrated in Figure 4.2. So the residual generator
becomes

plks) = Vi (v, (ks) — H, 2 (ks)), (4.15)

and the fast-rate residual is

p(k) = Ly p(ks). (4.16)
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Figure 4.2: Proposed fault detection scheme for multirate systems

Assuming perfect disturbance decoupling is not possible, to make a trade-
off between sensitivity of the residual to faults and its robustness to unknown
inputs, a performance index is defined as

_ WVaHuald _ Ame(VoHo o Hi, V)
Vi B ™ A (VeH g JHG V)

Eh

Jps

Thus V is a solution of the following constrained optimization problem

min  Jp
Vi Nxq(s+1) (417)
st. ViH,,=0.
In the definition of Jg,
i Dy 0 e 0 0
CiEa Dy 0 0
ﬂd,s = : . : : ’
| QA 'Ey GAI™Ey - CiEgq Dy
[ Dy 0 e 00
ClEfl sz ce 0 0
ﬂf,s - : : : . ’ (418)
i C;Als._lE'ﬂ CzAi_zEﬂ - CiEn Dg
e
-ﬂo,s = CI.AI )
] ClA]
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and Amax(+) represents maximum eigenvalue. Unlike the single-rate case, here
V.H, H3, VT and V,H; H7 VT are two Nx N positive semi-definite matrices.
Note that the design parameter V; is a matrix instead of a vector, so standard
methods can not apply directly. In the next section the analytical solution to
the problem in (4.17) will be proposed.

4.3.1 Analytical solution

If Np is the basis matrix of parity space (i.e., Np is the basis of Null(H,,))
then V; can be expressed in this basis as

Vs =UsNpg. (4.19)

The optimization problem (4.17) will then be simplified to

min Jp,
Us: Nx¢'
_ ”UsNBﬂd,s”% _ Amu(UsNBﬂd,sﬂzsNgUg) (4:20)
* NUsNpHpil3  Amax(UsNpHy Hp NEUT)'

where ¢’ = dim (Null(H,,,)) and U, is the new design parameter. If NgH,, is
singular then there exists a nonzero matrix U] such that

U;NgH,,=0.
In this case perfect disturbance decoupling is achievable and
Jps = 0.

The solution is trivial. Since it is assumed that perfect disturbance decoupling
is not possible, then NgH,, is nonsingular. First several steps of singular
value decompositions (SVD) are performed

UTU, = UUT = I
NBﬁd,sﬂZ‘,sNg = UﬂEGUg‘ Ea = diag{dal, e ’an’}
Oq Zaag > "'Zo'aq/ >0
1 1 UTUy = UyUF = I
Y. *UINpH; H} NEUTE.? = USyUT Ly = diag{oy,, - , 00, }
Op 20y 2+ 204,20
(4.21)
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Consider a change of variable from U, to W, defined by
U, = W,UFsa U7, (4.22)

—1
which always exists since UTE,2UT is nonsingular. Then the optimization
problem in (4.20) is further simplified to

min  Jp,
W,: Nxq'
oW (W) (423)

T AeeVEID)
This problem is easier to solve. The following two lemmas are useful in finding
the solution.
Lemma 4.1 The minimal value of Jp, defined in (4.23) is

1
*
Ty =—.
Ob1

Proof Submultiplicative property of the induced 2-norm states that for any
matrices A and B of appropriate dimensions [5]

[ ABll2< || Bllzll Allz-

Using this property, it follows that

W53
T
WsZ¢ 113

S w11

Tps = - sz SN2 b1
IWellIEE N IIZgl3 “b

The above lower bound can be achieved by appropriate choice of W, (see
Lemma 4.2 later). This completes the proof.
d
The optimal performance index Jj,, does not actually depend on the size
of W,. Whether a parity matrix V, or a parity vector v, (as in the slow-rate
case) is used, the optimal performance index does not change. Therefore, using
a lifted residual instead of a scalar one does not degrade the performance of
the residual generator. In other words, the slow-rate and fast-rate residual
generators have the same performance.

The next lemma parameterizes a class of optimal solutions of Jps.

o7
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Lemma 4.2 Any matriz W} of appropriate dimensions with a SVD of the
form

Wy =UyZy

8

is an optimal solution of (4.23), where

{%%:mﬁ:z

Yy = diag{gwl>aw2; T ,Uum}y Owl 2 0wy 2 *** 2 Oy,

Proof It follows easily from the fact that a unitary transformation preserves
the induced 2-norm of a matrix:

goo WRIE _ IUSulf 1%l _ ol 1 _

P 2 . T = 2 s
IWrS2l3 (ULZWZZ3 (IZWEZ)3  Owif b

a
This lemma states that every matrix with a SVD of the form U,Z, V)
(which is the general form of SVD) for which V,, = I is an optimal solution of
(4.23). The optimization problem in (4.23) has an infinite number of optimal
solutions. The available degree of freedom is later used to impose additional
constraints (e.g., causality constraints) on the solution. The class of solutions
introduced herein does not encompass the whole optimal solutions as can be
shown by a counter example, though it is enough for considering causality
constraints.

4.3.2 Causality constraints

Recall the fast-rate residual generator in (4.15)
p(Nk,)

Nk, +1
B(ks) = p( = = VS(ys(ks) - .Iiu,sgs(ks)))

p(Nk, + N —1)
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where

[ 1(qiks — q18) 1

Yi(qks —q1s +q1 — 1)

el

"/’m(kas = qmS + qm — 1)

Yrm(Gmbs + gm — 1) 1 g(s+1)x1

This residual generator is generally noncausal (and hence can not be imple-
mented), for some elements of p(k,) can depend on the future values in ¥ (k).
This noncausality is caused by the lifting operation. To make p(k,) causal
the dependency of p(Nk, + i — 1)(the i** entry of p(k,)), i = 1,2,---, N,
on the future values in 9 (k) should be removed. Note that because of the
lower triangular structure of H, ,, p(k,) is already independent of the future
values in v, (k). This causality issue enforces some of the entries of V; to be
zero. If p(Nks + i — 1) depends on ;(g;ks + m;) for some 1 = 1,2,.-- | N,
j=1,2,---,m,and

(Nks +1— l)h < ((]jks + mj)njh == nym; > 1—1

(which implies noncausality), then the corresponding entry of V, should be
zero. Since only the last ¢ entries (the last block) of ¥ (k) contain future
values, zeros only appear in the last ¢ columns of V.

Let us first consider causality constraints caused by the future values of
the first output ¢; only. The entries of Qs(k,) containing the future values
of v, are only the first g, elements of the last block. Therefore, a necessary
condition for V ;; to be zero due to ¥ is:

gs+1<j<qgs+q. (4.24)
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Now, the j* entry of ¢ (k,) for j = g5+ 1,95+ 2,--- ,gs + qu, is Y1 (qks +
j —gs — 1). Following the above discussion Vj;; = 0 if p(Nk, + 1 — 1), the ¢**
entry of p(ks), depends on ¥;(g1ks +j — gs — 1) and
n(i—gs—1)>i-1,

or

i< (j~gs—-1n,. (4.25)
Combining (4.24) and (4.25), in order for p(k) to be causal in regards of the
output 1, V;,;; should be zero if

i<(f—¢gs—1nm and gs+1<j<gs+aq.

Similar results can be derived for other outputs. Furthermore, since the latest
future value in Y (ks) corresponds to t = Nksh + maxi(qr — 1)nih, the search
on ¢ can be done only in the interval

1 S 1 < m;;;\x(qk - l)nk

In summary causality constraints can be formulated as: The entry V; ;; of
V, is zero if the pair (¢, j) satisfy

1<iL mfx(qk —1)n; and

(

(iS(j—qs—l)m
and gs+1<j<gs+a),
or (iS(j—qs—ql—l)nz
j and q5+Q1+1Sj§qs+q1+q2>, (4.26)
or

or (iS(j_qs_QI—"'—qm—l—l)nm

\

and qs+q1+'--+qm-1+15j§q(s+1)).

Let M denote the set of all (z, j)-pairs satisfying (4.26). The causality con-
straints are
‘/s,ij = Oa (1'7]) eEM.
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And the original optimization problem (4.17) with the causality constraints

will be
min  Jpe
Va: Nxq(s+1)
st. V.H,, =0, (4.27)

s.t. Vs,ij =0, (’L,]) € M.
In the next section, a method is developed to find an optimal solution of this
problem.
4.3.3 Optimal solution with causality constraints

In Section 4.3.1, a class of solutions to the optimization problem were proposed.
Now, it is enough to find an optimal solution within the proposed class that
satisfies the causality constraints as well. To do so, constraints on V; are first
translated to constraints on W,. Combining (4.19) and (4.22) yields

V. = W,UF . %U,,T Ns. (4.28)

-1
Assume that w; is the i** row of W, and v; is the j** column of UT £, *UT Ng.

V4,i; = 0 implies that w;y; = 0. Thus, causality constraints on W, are
wiY; = 0, ('L,]) € M. (429)

The optimization problem to be solved now is

min J
W,: Nxq’ ps

st wiy; =0, (4,5) €M,

A A
Jos = 2 = 2
(Wi e WeR W)

To find a solution for this problem, the idea is to apply the causality constraints
to the general solution given by Lemma 4.2. For simplicity assume that N < ¢/
(i.e., Wy is a fat matrix). The procedure for a tall matrix is similar. Recall
from Lemma 4.2 that a general solution can be given as

W, = UypZy.
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Let

Then,
We=[Uy, 0]=] : :]. (4.30)

Partition v; as

| Mt
7 [7]'2 ]

according to (4.3.3). Then the causality constraints in (4.29) could be simpli-

fied to
Uwirn =0, (5,5) e M. (4.31)
Since U, is a unitary matrix, it satisfies
0 1#7
T _
U‘w.‘ij - { 1 Z:-] (4.32)

To find vectors Uy,,...,Uw, that satisfy (4.31) and (4.32) is a standard algo-
rithm in linear algebra. When U,,,...,U,, are selected, W, will be known,
and using (4.28) V, can be calculated. This V, minimizes the performance
index and satisfies causality constraints. This is summarized in the following
theorem:

Theorem 4.1 A parity matriz V, calculated in (4.28), where W, is obtained
from (4.80) and solving (4.31) and (4.32) for U,, is an optimal solution of
(4.27).

Proof The proof is clear from previous discussions.
a
From the above theorem, an optimal residual generator with practical
causality constraints is designed that generates the lifted residual vector p(k,)
at a slow rate as in (4.15). By applying the inverse lifting operation when
implementing the residual generator, a fast-rate residual (scalar-valued) is ob-
tained as in (4.16).
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4.3.4 Design procedure and implementation

The procedure of designing an optimal fast-rate parity space based residual
generator for multirate sampled-data systems is summarized in the following
steps:

Consider the multirate sampled-data system in (4.1), (4.2) and (4.3):

1. Compute N, ¢;, i =1,2,--- ,m, and ¢ according to (4.4).

2. Compute Ap, Bp, Eq4; and Ej; according to (4.7) and (4.11).

3. Construct the discrete-time lifted model in (4.9).

4. Compute the matrices H, ,, Hy,, H;, and H ,as in (4.14) and (4.18).
5. Compute Np and SVDs in (4.21) and construct ;.

6. Determine the set M for causality constraints from (4.26).

7. Find vectors Uy,,...,Uy, from (4.31) and (4.32) and compute W, accord-
ing to (4.30) and subsequently V; from (4.28).

8. Implement the lifted fast-rate residual generator in (4.15) with v,(k,)
and ¥ (ks) as in (4.12) and (4.13). Each entry of the residual p(k,) is
calculated and implemented at one time instant: The first entry p(Nk,)
is calculated at t = Nk,h, the second entry p(Nk, + 1) at t = Nk;h + h,
..., and the N** entry p(Nk, + N — 1) at t = Nk,h + Nh — h. Hence,
the residual can be calculated in real-time at each time instant.

4.4 Fast-rate residual generator: H,, optimi-
zation

In Section 4.2, it was shown that designing an optimal residual generator for
the multirate sampled-data system in (4.1), (4.2) and (4.3) is equivalent to
designing an optimal residual generator for the following discrete-time system

¢(ks) = QuDy(kS) + QdJi(kS) + QfJ_'—Z(kS)v (4'33)
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where

A |B E4q Ey

[—G-uD(z) Gyy(2) Qf.l(z)]= Cz|Dz Da Dsi |-

(4.34)

A, By, Eg, Eg, Ci, Dy, Dg and Dy, are defined in Section 4.2. In this sec-
tion, a fast-rate residual generator is designed based on the equivalent discrete-
time model and H, optimization technique.

4.4.1 Residual generator

Applying the factorization approach in Section 2.5 to the equivalent discrete-
time system given in (4.33) yields the general form of the residual generator

as
p(ks) = R(M,3(ks) — Nu(ks)), (4.35)
where
[ Y1(qiks) ]
wl(QIks + 1)
: v(Nk,)
ok ta-1) w(Nk, +1)
LA e o ulk) =} (4.36)
1) YNk AN =)
L :wm(kas + Qm — 1) "

Here R(z) € RHy is a designable post-filter and (M,(2), N, (2)) is a left
coprime factorization of G, (z) satisfying

Gup(?) = MG (2) N, (2).

U

M, (z) and N, (z) can be parameterized as

_[A-LG|L
- [ RN ] | (4.37)
A - LC | B - LD '

Assume that perfect disturbance decoupling is not possible. Therefore, in
order to compromise between the sensitivity of the residual to the faults and
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its robustness to the unknown inputs, the following H, optimization problem
is considered

min J,
R(z)eRHo0 - &/

7 IR@M (2)Gay(2)lleo (4.38)
welee |R(2)M,(2)Gs(2) 0

Assuming that M, (2)G,;(z) has no transmission zeros on the unit circle, it
has a co-inner-outer factorization as

M. (2)Gyy(2) = Gyo(2)Gsi(2)-

For details of computing the co-inner-outer factorization see Appendix A. The
general solution of the optimization problem in (4.38) can then be parameter-
ized as (Section 2.5.1)

R*(2) = Q(2)Gg, (2),
where the parameter Q(z) € RH, satisfies

1Q(2)Gg, ()M, (2)G s (2)loo= Q2 ol G, (2) M., (2)G () lco-

Conventionally Q(z) = I is chosen, but here the general form of Q(z) is con-
sidered. The degree of freedom available in Q(z) is used later to satisfy the
causality constraints. The optimal value of the performance index J is

. 1

/2 G ()M (2)G (D)oo
The residual generator in (4.35) is a slow-rate system resulting in a slow-
rate residual. It means that the residual is updated at the end of each repe-
tition period. This may cause substantial delay in detection of the faults, for
new information is also available during the repetition period. To update the

residual whenever new information arrives (no matter during the repetition
period or at the end of it), a fast-rate residual generator has to be designed.
This can be achieved by introducing a set of N slow-rate residual generators
as

p(Nks) = Ry (M 3(k,) — N u(k.)),

p(Nky + 1) = Ry(M,3p(ks) — N, u(ks)),
(4.39)

p(Nk, + N — 1) = Ry (M (k) — Ny (k,)).
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To calculate the residual at the fast rate, each of the residual generators in
(4.39) is used at one time instant during the repetition period. Notice that all
the post-filters R;(z), i = 1,---, N, in (4.39) optimize the same performance
index in (4.38). Also all the residual generators in (4.39) use the same lifted
input and output vectors in (4.36). But since these lifted vectors carry the
future values too, some of the information needed for the earlier residual gen-
erators in (4.39) may not be available at the calculation time. In other words
all the N residual generators in (4.39) may not be causal. So to accommodate
these causality constraints, appropriate post-filter R;(z) should be chosen for
each residual generator. Fortunately the degree of freedom available in the
optimal post-filter R;(z) (notably the free-to-choose Q(2)) allows us to satisfy
the causality constraints.

Suggested by the general solution, the optimal post-filters R;(z) are given

as
Ri(2) = Qi(2)Gg)(2), i=1,-+-,N.
Qi(z), i =1,---, N, are stable transfer function matrices satisfying

1Q(2)G3, (2)M.(2)G s(2)loo= QoG (D)Mo (2)Gps(2)lloo-  (4.40)

4.4.2 Causality constraints

To discuss the causality constraints of the residual generators in (4.39), let us
focus on the i** residual generator

PNk, +i = 1) = Gz (M, (k) ~ N,u(k,)). (4.41)

Observing the lifted input and output vectors in (4.36), future values of ¥(k)
and v(k) only appear in the current values of 9(k,) and u(k,). In other words,
P(ks, — 1) and y(k, — 1) do not contain any future values. Therefore, the
causality problem in the residual generator in (4.41) is caused only by the
current values of ¢(k,) and u(k,). This means that the causality constraints
only affect the direct feed-through term of the residual generator. Let D;, and
D;, denote the direct feed-through terms from (k) and v(k,) to p(Nk,+i—1),

respectively. Then,

Dy = Dq,Dg,,Dum.,,

(4.42)
Div = _DQ"DGdoDNu)
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where Dg,, Dg,,, Dum, and Dy, are the direct feed-through terms (D-term in
a realization) of Q;(2), Gz} (2), M, (2) and N, (z) respectively. It follows from
(4.37) that Dy, = I and Dy, = D;. Then, (4.42) can be simplified to

Dy = Do, Dg,,
D, = =Dg, D¢, D.
Because of the lower triangular structure of D, the future values of v(k)

in v(k,), does not appear in the calculation of the residual. So causality of the
residual generator in (4.41) depends on D;y, only. Define

Diy = Do, Dg,, = [ du dia - dy].

To calculate the residual p(Nk, +4 — 1) in (4.41), if the j* entry of ¥(k,)
is a future value then the corresponding column in D;y (i.e., d;;) should be

zero. This guarantees that p(Nk, + ¢ — 1) is independent of any unavailable
information.

Corresponding to the i*" residual generator in (4.41), define M; as the set
of all indices j for which d;; = 0. Similar to the steps in Section 4.3, it can be
shown that

Miz{j: 1<j<q and ig(j—l)nl}u
{J': a+1<j<a+g¢ and is(j—ql—l)nz} U
(4.43)
{J’: g-gn+1<j<g and is(j—q+qm—1)nm}-
For the residual generator in (4.41), the causality constraints on D;, are
d; =0, jeM,

Now, the causality constraints on Djy, = Dg,Dg,, are translated to con-
straints on Dg, (Dg,, is a known matrix). Let Dy, be a matrix constructed
from the corresponding columns of D¢, determined by M; (e.g., if M; =
{1,3} then Dg, contains the first and third column of D¢, ). Then the causal-
ity constraint on Dg, is

Dq, D, =0.

If N4, denotes the orthonormal basis of Null(Dyy, ), then Dg, can be written
as Dg, = X;Nu, where X; is arbitrarily chosen. Therefore, the problem is
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simplified to finding stable transfer function matrix Q;(z) that satisfies (4.40)
and Q;(o0) = Dg, = XN, for some X;. One method to find such Q;(z) is
presented in Appendix C. Notice that @Q;(z) has q columns, but the number of
its rows can be chosen freely. Once Q;(z) is calculated, the residual generators
in (4.39) can be implemented.

4.4.3 Design procedure and implementation

The procedure of designing an H,, optimal fast-rate residual generation scheme
for multirate sampled-data systems is summarized in the following steps:

Consider the multirate sampled-data system in (4.1), (4.2) and (4.3):
1. Compute N, ¢;, i =1,2,--- ,m, and q according to (4.4).
item Compute Ap, Bp, E4y and Ey; according to (4.7) and (4.11).

2. Construct the lifted models G, G4; and G, as in (4.34).

3. Find the left coprime factorization G,p(2) = M;'(2)N,(z) and the

co-inner-outer factorization M, (2)G,;(z) = G4,(2)G4(z) and calculate

G2 ().

4. Determine the sets M;, i = 1,-.- | N, for causality constraints as in
(4.43) and find Dpy, and Npy,.

5. Compute the transfer function matrices Q;(z), ¢ = 1,--- , N, according
to Appendix C.

6. Construct the N residual generators in (4.39) with ¢ (k,) and v(k,) as in
(4.36) and Ri(z) = Qi(2)G7 (2), i=1,---,N.

Each residual is sequentially calculated and implemented at one time in-
stant to render a residual signal at the fast rate:

p(NkS) = nggol (Mu_’(/_)(ks) - ]—V—uy(ks))’ at ¢ =Nk8h'7
p(Nk, + 1) = Q:G71 (M ¥ (ks) — Nyu(ky)), at t=Nksh+h,

p(Nks + N = 1) = QnG3} (M ¥(k,) = Nu(ks)), at t =Nk + Nh— h.
(4.44)
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Implementing this residual generation framework will result in a sequence of
residuals as

{ vp(Nks)rp(Nks+1)a"' ,P(N’Cs-{-N—- 1)
1P(N(ks + 1))1P(N(ks + 1) + 1)) e }

Different evaluation algorithms may be used, the simplest of which is

lo(k)|l= zero or very small  f(¢) =0,
PEII=\ nonzero or large f(t) #0.

4.5 Example

To illustrate the proposed methods an example is given. The system is adopted
from [55]. The continuous-time process model is:

{ i(t) = Az(t) + Bu(t) + Eud(t) + Eff(t)
n(t) = Ciz(t)
y2(t) = Cax(?)

e[ 2] =[] w2 me 1]

Gi=[10], CG=[01].

Define
A|B E; E
[Gu(s) Gals) Gy(s)] = [Cl 0 0 0]
Cyl0 0 O

The sampling period of the D/A converter is h sec and the sampling periods
of the A/D converters are T, = 2h sec and T}, = 3h sec (Figure 4.3).

Matrices Ap, Bp, E4; and Ey; are computed according to (4.7) and (4.11),
respectively. For h =1 sec,

0.368 1.163 0.999
AD‘[ 0 1.135]’ BD‘[0.432]’

1.108 0 [ 1.052 0
Ei = [ } .

0.351 0.350]’ Err=1 0339 0361
Let

Ap|Bp Eyq; Eyy
[Gup(z) GdJ(Z) Gf_](z)]= Cl 0 0 0
Co| O 0 0
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YL Sop |- » Y1(k1)

Y2 San |- - - - = oky)

Figure 4.3: Multirate sampled-data system

As it can be seen, Bp has the same dimensions as B. Hence, G(s) and G,p(z)
have the same number of inputs, which is expected because the step invariant
transformation does not change the number of inputs. In contrast, dimensions
of E; and E4; are different. Consecutively G4(s) has only one input while
Ggs(2z) has two inputs. So, the norm invariant transformation has introduced
an extra disturbance input (also an extra fault input).

Using the following values

n1=2, n2=3, N=6,
q1=37 q2=27 q=5’

the lifted model in (4.8) can be calculated as

A B
QuD(z) = [ Cvi DI[ }

T AS | ALBp A%Bp  AYBp A%LBp ApBp Bp ]
Cy 0 0 0 0 0 0
_ | c14% | C14pBp  C1Bp 0 0 0 0
= | 1AL | C1ALBp C1ALBp CiApBp CiBp 0 0
Cs 0 0 0 0 0 0

| C,A3 | CRALBp CyApBp ChBp 0 0 0 |

G,;(z) and G;,;(z) have the same structure as G, p(z), replacing Bp with Fy;
and Ey; respectively. The input and output of G, are

v(6ks)
w1(3k3)
viOks + 1) (3K, + 1)
ko) = | YEE DNy = | i3k +2)
v(6ks + 3) £ b (2k,)
ohs) | al2h + 1)
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Notice that G, p has 6 inputs and 5 inputs, while G;; and G, have 12 inputs
and 5 outputs. This is because G4; and G;; have twice the number of inputs
as GuD-

4.5.1 Slow-rate residual generator

For a slow-rate residual generator, the parity space method can be applied to
the lifted model. As mentioned before, this slow-rate residual generator is the
same as the one developed in [55] with appropriate choice of s. In fact by
setting s = 1 (which uses two frames of data to generate the residual), the
obtained residual generator is identical to the one designed in [55] for s = 11.
Using the approach in [55] the slow-rate residual generator is given by

plks) = 0, (Bulks) = Huss(Ks)),

where
[ 1(3ks — 5) ]
Va(2ks — 3)
¥1(3ks — 4)
v(6k, — 11) ¢2E2ks - 2;
. _1. > | ¥(3ks -3
Us(k-’) - k ) djs(ks) - ¢1(3k3 _ 2) )
v(6ks) 1x1 ba(2k, — 1)
1 (3ks — 1)
¢2(2k3)
| $1(3k,) d10x1
[0 0 0 0 0 00 ]
0 0 0 0 0 00
C\ApBp C\Bp 0 0 0 00
g,,= | CoAbBp CApBp  CyBp 0 0 00
CzASDBD C2A7DBD O2A%BD C2A5DBD 0 0 0
i C14%,Bp CA Bp C1ALBp CiASBp -+ Ci\Bp 0 0 |
The performance index is defined as
_ 0Hy H 0T
* 0 Hp AT 0T

The optimal parity vector 7, is a 1 x 10 vector and is the solution of the
following optimization problem
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min J,
Be: 1x10 P°

s.t. UsH,, =0,

where

Gy
Co
Cr A2,
Cord
N s

! C, AGD
CyAS
CL AL
CoAS
AR

I:Id,s and H s have the same structure as f{u,s replacing B by Ey; and Ey;
respectively. The optimal solution for 7, is:

v;=[0 0 001 007 —0.06 021 -1 0 0 0],
and the optimal performance index is:

J3, = 0.9575 (4.45)

4,5.2 Fast-rate residual generator: Parity space

Again choosing s = 1 (i.e., two frames of data are used) and applying the
method in Section 4.3, the fast-rate residual generator is

[ 1(3ks — 3) ]
] ¥y (3ks — 2)
[ p(6k,) P1(3ks — 1)
,0(6163 + 1) 1/12(2193 - 2)

plks) = ggg; N 3 =V, zjg’;:)‘ D ZH k) |, (46)
p(6ks + 4) Y1(3ks +1)
| p(6k, + 5) 1 (3ks +2)
V2(2k,)
\ L va(2k, +1) ]

where v,(k;) and H,, are given in (4.12) and (4.14). It is now obvious that
some entries of V; can cause dependence on the future values of outputs. For
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instance r(6ks) depends on ¥, (3ks + 1), ¥1(3ks +2) and 12(2ks + 1) which are
not available at t = 6k,. Therefore, causality constraints enforces V; to have
the following structure

* % x x x x 0 0 * 0

* x % % % x 0 0 % 0

*x x x *x x x x 0 x 0
Vo= ,

* ok x * x *x *x 0 * *

* ok ok ok ok k k k k %

x ok ok Kk ok ok kx k %k %

where * means a designable value. Hence
M={(1,7),(1,8),(1,10),(2,7),(2,8),(2,10), 3,8),(3,10), (4,8)}.

To calculate an optimal V;, one should find a unitary matrix U, satisfying
(4.31) and (4.32). In other words, orthonormal vectors U,,, - , Uy, should
be found such that:

Uw177,1 = 0) Uw{)’S,l = 07 le’YlO,l = 07
Uwg'y’f,l = 07 Uw278,1 = Oy Uw{ylo,l = 07
UW378,1 = Ov Uwa’ylo,l = 0) U‘(U478,1 = 0'

Combining these equations with (4.32), normal vectors Uy, ,...,Uy, can be com-
puted as follows:

Uy, € Null ([ Y71 Y81 Y01 ]),
Uy, € Null

Us, € Null

771 Y81 Mot le]),
Y81 mop Us UL ])

Uy, € Null

Uy, € Null

(1
(1
U € Null( [, UL, UL, ULY),
((us,
((us,
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One optimal solution for V; is

001 001 001 0 0.0l 01"
-0.05 —0.06 —0.08 0.09 —0.08 —0.04
0.02 —001 023 004 007 021
002 004 003 —006 004 001
ye_ | 032 -035 -063 —021 037 -057
J 014 015 -037 027 007 —014 | °

0 0 004 —015 0.19 —0.08

0 0 0 0 -020 —0.10
—099 -1.03 066 —0.88 —0.57 1.05

0 0 0 -031 035 —0.12

and the optimal performance index is
Jpe = 0.9575

Note that this performance index is equal to the optimal performance of the
slow-rate residual generator in (4.45).

To generate the residual one should use the calculated V" and evaluate the
residual generator in (4.46) one row at a time. For example the first row of
(4.46) will be

p(6ks) = 0.01 9,(3k, — 3) — 0.05 1, (3ks — 2) + 0.02 91 (3k, — 1)
+0.02 a2k, — 2) — 0.32 a2k, — 1) + 0.14 ¢ (3k,)
- 0.99 ¢2(2k‘3) - vlﬁu,ays(ks),
where v, is the first row of V*. As it can be seen, no future data is needed to
compute p(6k;).
4.5.3 Fast-rate residual generator: H,, optimization

Since G,(s) (and subsequently G,p(2)) is stable, M,(2) = I and N, (2) =
G,p(2) can be selected as a left coprime factorization of G,5(z). The co-

inner-outer factorization M, (2)G,;(2) = Gy4;(2) = G4,(2)G4(2) can then be
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calculated as

[ 0.003 0.012]0.007 0.054 0377 0.003 —0.089 ]
0O 0] ©0 0 0006 0 -0.003
1 01450 0 0 0 0
Gyu(z) = | 0.135 0.585[0.377 1.453 0 0 o1,
0.018 0.090|0.054 0.377 1.453 0 0
0  1{0309 0.062 —0.007 0.388 0
| 0 0003|0001 0042 0.303 —0.001 0.395 |

[ —0.824 —0.174|-0.002 0.036 —0.306 —0.006 0.224 ]
-0.014  0.027 0 0.001 —0.005 0 0.007
0.690 0] 0.690 0 0 0 0
Gl (z)=| —0.086 0.403|-0.179  0.689 0 0 0
0.009 -0.043| 0.021 -0.179 0.688 0 0
—0.535 2511 -0520 —0.114 0.012 2576 0
| 0 0| 0.001 0.064 —0528 0.004 2.529 |

Now the slow-rate residual generator can be obtained by simply applying the
Ho optimization method to the slow-rate lifted system. The slow-rate residual
generator is

p(ks) = Q;ol (_‘é(kS) - QuD(z)Q(kS))'
The optimal performance achieved by the slow-rate residual generator is

1
oo = T = (0.978.
% G2 (G2l
For a fast-rate residual generator, the causality constraints has to be con-
sidered first. The sets M;, i = 1,---,6, for causality constraints can be

determined as in (4.26)

M =M, = {2,3,5}, My = {3,5},
My = {3} Ms = Mg = {}

The direct feed-through term (D-term in a realization) of G} (2) is

0.690 0 0 0 0

-0.179  0.689 0 0 0

Dp = 0.021 -0.179 0.688 0 0
—-0.520 —0.114 0.012 2.576 0

0.001 0.064 -0.528 0.004 2.529
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Corresponding to the sets M;, i = 1,---,6, matrices Dpq,, 1 = 1,--- ,6, can
be constructed as

0 0 0
0.689 0 0
Dy, = Dp, = | —0.179  0.688 01},
-0.114 0.012 0
0.064 —0.528 2.529
0 0 0
0 0 0
Dpy, = 0.688 0], Dm,= 0.688
0.012 0 0.012
—0.528 2.529 —0.528
The basis matrices of the null spaces of Dpy,, ¢t =1,--- ,6, are
Noi = Nui = —0.137 0.157 -0.017 0.978 0
M= Mz = 0.991 0.022 -0.002 0.135 0!’
[ —0.793 —0.608 0 -0.017 0
Nm, = | —0.013 -0.010 -0.017 104,
| 0.609 -0.794 0 00
i 01 0 0 0
Nu — —0.793 0 0.370 -0.011 0.483
M= 1 —0.013 0 —0.011 1 0.008 |’
| 0609 0 0483 0.008 0.630
Npy = Ny = 1.
Qi(z), i =1,---,6, can now be calculated. For example by choosing X; =

[0.6166 0.1133], ¥ = 100 and Pi(s) = (s +0.1)3, Q:1(z) is obtained as (w, is
determined to be 0.1)

0.0282% — 08722+ 152054 17
0.0992% —9.622+16.02 —6.1
x| —00112342622-38z+1.2
0.62 2% — 60.02%2 4+ 100.0 z — 38.0

2222-312+1.0

1
Ql(z) T 23 —-16224+087z—0.16

The residual generators in (4.44) can now be implemented. The optimal per-
formance index is J7, Joo = 0.978 which is the same performance achieved by
the slow-rate residual generator.
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4.5.4 Simulation

For simulation let A = 1 sec, and since the input signal u(¢) has no effect on the
residual, it is assumed that u(¢t) = 0. d(t) is white noise with variance 1 and
f(t) is a step function with amplitude 10 and step time at 20 sec. The results
of simulation for slow-rate, parity space based fast-rate and H., based fast-
rate residual generators are illustrated in Figures 4.4, 4.5 and 4.6 respectively.
The figures show that the fast-rate residual is actually updated 6 times faster
than the slow-rate residual, which significantly improves the detection speed.
For the slow-rate residual in Figure 4.4, the effect of the fault appears in the
residual after 4 sec. But for the fast-rate residual generators in Figures 4.5
and 4.6, the fault can be detected after 1 sec.

45}
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Figure 4.4: Parity space based slow-rate residual

Absolute value of the residual signal
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Figure 4.5: Parity space based fast-rate residual
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Figure 4.6: H, based fast-rate residual

4.6 Discussions and conclusions

In this section two design approaches to optimal fast-rate residual generation
for multirate sampled-data systems were developed. The fast-rate residual
generation schemes ensure the detection of a fault at the earliest time possible
preventing the system from any undesirable operation caused by the fault. Fur-
thermore, using the norm invariant transformation and direct design ensures
that the intersample behavior of the faults and unknown inputs is captured.
So no approximation was made during the derivations.

Of course the fact that the residual generator operates at the fast rate does
not necessarily mean that the fault is always detected at the fast rate. The
reason is that the new information (from the outputs) does not necessarily
become available at the fast rate. However, the proposed fast-rate residual
generators can guarantee the detection of a fault at the earliest time possible.
Let T, denote the detection delay which is the difference between the time the
fault occurs and the time its effect appears in the residual, then

0 .<_ Td S nminh’

where
Nmin = Minn;
1

and n;h is the sampling period of the i*" output. npgi,h is the maximum gap
between the sampled outputs. So the new information from outputs will be
available no later than n,,h sec, and as soon as the residual generator receives
the new information the residual can be updated.
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It is also notable that introducing the multirate sampling will improve the
detection speed. For example if all the outputs are sampled synchronously with
T = nminh sec, again the maximum delay in fault detection would be ny,h sec.
But the multirate sampled-data scheme would probably detect the fault earlier
because of the inherently redundant information available at different sampling
rates. This improves the chance of early detection of the fault which means
that the multirate scheme is usually better than the (synchronous) single-rate
scheme in terms of detection speed.

As an example, consider a system with two outputs. If both of the outputs
are sampled at a single rate with 7' = 2 sec, then the maximum delay in fault
detection is 2 sec. Now for the same system if the two outputs are sampled at
two different rates, e.g., 73 = 2 sec and T = 3 sec, again the maximum delay
in fault detection is 2 sec. But in the latter case, there are some periods of time
(for example 6k+2 < t < 6k+3) that if a fault occurs during this period, it can
be detected within 1 sec, while the same fault will be detected between 1 sec
and 2 sec in the single-rate scheme. So the probability of early detection of
the fault is improved in the multirate fault detection. In case of asynchronous
sampling, the same methods can be applied with minor modifications.

Two different methods were used for fast-rate residual generation: par-
ity space approach and factorization approach with H,, optimization. For
both methods, the design is carried out by converting the original multirate
sampled-data system to an equivalent discrete-time system. This discrete-
time system is a slow-rate model, thus the residual generator designed for this
method will also work at the slow rate. The idea used to yield a fast-rate resid-
ual generator was to generate a lifted (vector) residual rather than a scalar
one. Applying the inverse lifting operator to the lifted slow-rate residual will
result in a fast-rate residual. In the parity space approach, this is achieved by
introducing a parity matriz rather than the known parity vector. For the H,
approach, a bank of optimal residual generators was introduces, each working
at one time instant.

To deal with multirate sampling, the lifting technique is used. It enables
us to replace the multirate system with a MIMO single-rate one. Using lifting
also helps in developing a more general and systematic formulation. In both
approaches, to compromise between the sensitivity of residual to the fault
and its robustness to other unknown inputs, a performance index was defined.
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Analytical solutions were proposed to minimize the performance indices for
both cases. The analytical solutions, involve many degrees of freedom, which
help us consider more constraints on the solution. The use of lifting operator
arises the issue of causality. This issue is dealt with properly using the degrees
of freedom available in the optimal solution. The degrees of freedom might
also be used to involve more useful constraints, optimize other performance
criteria or accommodate issues of evaluation and isolation of faults.
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Chapter 5

Performance Analysis in
Sampled-data Systems

5.1 Introduction

As discussed in previous chapters, sampled-data systems are widely used and
accepted in industry because of the numerous advantages of digital technol-
ogy. In these types of systems the actual process is continuous-time while the
controller is digitally implemented by computer (Figure 5.1). Thus a sampled-
data system is a hybrid system involving both continuous and discrete-time sig-
nals. Multirate sampled-data systems, in which digital-to-analog and analog-
to-digital converters work at different sampling rates, are also abundant in
industry. In a variety of industrial process applications, the elements of the
control system may be structured distributively, i.e., sensors, actuators and
controller are connected via standard networks. Moreover, in many chem-
ical engineering systems, measurements are not available at the same rate
and practical constraints may exist on the sampling rates of several physical
variables. Extensive research on development and analysis of single-rate and

The materials of this chapter has been submitted for publication in:

I. Izadi, T. Chen and Q. Zhao, “Performance analysis in multirate sampled-
data control systems”, submitted to IEEE Transactions on Automatic Control,
November 2005.

Some materials of this chapter has also been published in:

1. Izadi, T. Chen and Q. Zhao, “H, performance comparison of single-rate
and multirate sampled-data systems”, Proceedings of the American Control
Conference, Minneapolis, MN, pp. 183-187, 2006.
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y(t) G u(t)
W(k) v(k)
I { K(z,h) |- A

Figure 5.1: The standard single-rate sampled-data system.

multirate sampled-data control systems has been carried out during the past
decades (1, 9].

Most of the existing sampled-data control techniques are based on the
availability of all the measurements at a single rate. These techniques can not
be directly used to design controllers for multirate systems. To resolve this
drawback, one approach is to downsample the multirate measurements to a
lower sampling rate. In other words the multirate system is replaced with a
single-rate system whose sampling period is the least common multiple of all
the sampling periods of the multirate system. This particular single-rate sys-
tem is known as the slow single-rate or simply slow-rate system. One expects
that the single-rate controller designed based on the slow-rate system would
not necessarily be an appropriate controller for the original multirate system.
The reason is that the slow-rate controller does not use all the information
that is available through feedback. To use all the information present in the
multirate data one would need to design a multirate controller. A well known
approach for treating a multirate system is to convert it into a single-rate
system (with slower sampling rate and higher dimension) using the lifting op-
erator. The concept of lifting involves stacking of fast-rate measurements of
a signal during one repetition period to form a slow-rate signal. An intuitive
reason for changing to multirate controller from slow-rate controller is that,
hopefully the former gives better performance than the latter. However, there
has been very few theoretical results to support this intuition.

On the other hand, it is intuitive too, that if all the signals were available
at a faster rate than that in the multirate system, one could expect better
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performance. For this purpose, another single-rate system, known as the fast
single-rate or simply fast-rate system is introduced. The sampling period of
the fast-rate system is the greatest common divisor of all the sampling periods
of the multirate system. In the fast-rate system, control signals are generated
at the fast rate assuming that all the signals are available at that rate. There
have also been very few theoretical results to support the intuition that the
fast-rate controller offers better performance than the multirate controller.

A theoretical comparison of multirate and single-rate systems was reported
in [48]. The lifting method was adopted to transform a multirate system into
an LTI single-rate system. The performance index used was the continuous-
time LQR cost function. It was shown that multirate control performs no worse
than slow single-rate control. It was also shown that the fast-rate controller
yields the same LQR performance as the multirate controller. However, it was
assumed that all measurements are sampled at one rate and all the control
signals are generated at another rate (i.e., a dual-rate concept). In addition,
it was assumed that the input is generated at a faster rate than the measured
output. These assumptions limit the application of the results.

Another result was recently presented in [50]. The performance index used
in this paper was the variance of the fast sampled output. It was shown that
the optimal dual-rate controller (in the sense of minimum variance) performs
better than the optimal slow-rate controller but worse than the optimal fast-
rate controller. The lifting technique was used and a linear matrix inequity
(LMI) approach was developed to calculate the optimal controller. The system
under investigation was single-input single-output and the controller was dual-
rate. In addition, only the case when the sampling frequency of the controller
output is an integer multiple of the sampling frequency of the controller input
was considered. These assumptions are restrictive.

In this section, the following questions are studied:

e Do multirate controllers give better performance than slow-rate con-
trollers?

e Do fast-rate controllers give better performance than multirate con-
trollers?

For a fair comparison, the choice of the performance index is very impor-
tant. A discrete-time performance index is not suitable because of the differ-
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ent sampling periods involved. Since the input and output of the closed-loop
system are continuous-time signals (Figure 5.1), a performance index defined
in continuous-time is more appropriate. Here the H,, and H, norms of the
closed-loop system are considered as measures for quality of control. However,
the approach presented in this chapter is general and with little modification
can be used for a variety of performance indices including the £, induced norm
of the closed-loop system and the LQR performance.

The approach followed in this chapter is different from the previous ones in
[48, 50]: Firstly, the lifting technique is not used to prove the theorems. This
makes the proofs fairly simple and easy to follow. Secondly, no assumption is
made on sampling periods of inputs and outputs. The results hold for general
multirate systems and are not limited to dual-rate systems or systems with fast
output sampling. Furthermore, no assumptions are made on the systems ex-
cept that the optimal controller exists. Finally, as stated before, the approach
is general and paves a way for further analysis using a wide range of perfor-
mance indices. As a byproduct, an analysis of H, performance of sampled-data
systems with linear periodically time-varying (LPTV) controllers is presented
in this chapter. It is shown how to convert a sampled-data system with LPTV
controller to a pure discrete-time system with the same controller. It is also
proved that for sampled-data systems, the optimal LTI controller performs
better than any LPTV controller.

In the rest of this section, descriptions of the single-rate and multirate
sampled-data systems under consideration are given. Some useful lemmas are
also introduced.

5.1.1 Single-rate sampled-data system

A standard single-rate sampled-data control system is shown in Figure 5.1.
Here G is a continuous-time causal finite order linear time-invariant (LTT)
plant, w(t) the exogenous input, z(t) the controlled output, y(t) the measured
output of the plant and u(t) the control signal. Since G has two inputs and
two outputs, it can be partitioned into four components

Gu Gn
G= .
[ Ga1 Gz }

The plant output is sampled and discretized using an A/D converter mod-
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elled by
P(k) = y(kh),
where h is the sampling period. The control signal is generated by a computer
and sent to the actuator using a zero-order hold D/A converter modelled by
u(t) =v(k), kh<t<(k+1)h.
Hence,
P(k) = Swy(t),
u(t) = Hyu(k).
K(z, h) is the discrete-time controller with sampling period h (since differ-
ent sampling periods are used in this section, the dependency of the discrete-

time transfer functions on the sampling period is explicitly indicated). Con-
secutively, the sampled-data control rule is

u(t) = HoK (2, h)Sh y(2).

It is assumed that K(z,h) belongs to the set of all admissible (i.e., discrete-
time, causal, finite order and LTI) controllers.
The closed-loop system from w(t) to z(t) is denoted by F(G(s), K(z,h));
thus
z(t) = F(G(s), K (2, h)) w(t).

F(G(s),K(z,h)) is a linear and periodic operator with period k. It can be
derived that [9]

F(G(s),K(z,h)) =
Guu(s) + Grals) HuK (2, 1)Sw (I ~ G(s) HAK (2, h)Sh>—lG21(s).

In this chapter, LPTV controllers are considered as well. Let g~! be the
standard delay operator for discrete-time signals, i.e.,

¢ ta(k) = a(k - 1).

A discrete-time system K(z, h, N) is linear periodically time-varying (LPTV)
with period N if it is linear and

K=q¢"Kq",
K #¢Kqg?t, 0<i<N-1.
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Figure 5.2: The general multirate sampled-data system.

Notice that the dependency of an LPTV transfer function to its period is
explicitly denoted. For a discrete-time LPTV controller K(z, h, N), the closed-
loop system F(G(s), K(z,h, N)) is a linear and Nh-periodic operator. The
LPTV controller K(z,h, N) belongs to the set of all admissible LPTV (i.e.,
discrete-time, causal, finite order, linear and N-periodic) controllers.

5.1.2 Multirate sampled-data system

A general multirate sampled-data control system is shown in Figure 5.2. Here
each output channel is sampled at a different rate. The first output () is
sampled every mih seconds, the second output y,(t) is sampled every myh sec-
onds and so on. If p is the number of plant outputs then,

Y1(km,) = Sminy1(t),
wz(kmz) = szhy2(t)7

wp(kmp) = Smphyp(t)-

Note that since the discrete-time signals v;, ¢ = 1,--- | p, are available at

different time instants, they have different time indices k., i =1, - ,p.
Different control signals are also generated at different rates; the first con-

trol signal is generated every n,h seconds and so on. If r is the number of
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Smh ...... ] K |- > th

Figure 5.3: The standard dual-data sampled-data system.

control signals then,

ul(t) = Hnlhvl(knl),
uZ(t) = HthUZ(knz)a

ur(t) = Hp,nvr(kn, ).

Discrete-time signals v;, ¢ = 1,--- 7, also have different time indices k,,, i =
1,---,r. Assume that the greatest common divisor and the least common
multiple of m;, ¢ =1,--- ,p, and n;, ¢ =1,--- ,r, are 1 and [ respectively

gcd.(my, -+ ,mp, g, ,0y) =1,
l.c.m.(ml, My, Ny, e ,TL-,-) =1

Then the sampling periods of the corresponding fast-rate and slow-rate con-
trollers are h and lh respectively.

The multirate controller is generally an l-periodic time-varying discrete-
time system. But if considered in one repetition period (lh seconds) with
lifted input and output, the multirate controller can be regarded as a (higher
dimension) discrete-time LTI system with sampling period lh. Let K(z,!lh)
denote this LTI multirate controller with lifted input and output, which be-
longs to the set of all admissible (i.e., discrete-time, causal, finite order and
LTT) multirate controllers. For definitions of periodicity and causality of multi-
rate systems see [10]. In Figure 5.2, F(G(s), K(z, lh)) denotes the closed-loop
system from w(t) to 2(¢t) which is a linear lh-periodic operator.

Dual-rate systems, a common subcategory of multirate systems, are defined

whenm; =---=mp, =mandn; =--- =n, = n. In a dual-rate sampled-data
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control system (Figure 5.3), all the plant output channels are sampled every
mh seconds while all the control signals are generated every nh seconds (hence
the term dual-rate). So,

"/)(km) = Smhy(t ’
u(t) = thv(kn)'

With the assumption that m and n are coprime, the sampling period of the
fast-rate and slow-rate controllers are h and mnh respectively. K(z, mnh)
denotes the dual-rate controller with lifted input and output. Therefore, the
dual-rate control rule is

u(t) = Hop L7 K (2, mnh) LoSmp y(t).

Let F(G(s), K(z,mnh)) denote the closed-loop system from w(t) to z(t),
which is a linear mnh-periodic operator.

For every multirate (dual-rate) system, corresponding slow single-rate and
fast single-rate systems can be defined. When confusion may arise, subscripts
MR (DR), SR and FR are used to distinguish amongst the signals in multirate
(dual-rate) and corresponding slow-rate and fast-rate systems. For instance
upmr and ugg denote the control signals in the multirate and its corresponding
slow-rate systems respectively.

5.1.3 Two lemmas

Two lemmas involving sampling, hold and lifting operators, which will be used
later in this chapter, are stated here.

Lemma 5.1 [9] The following statements hold:

i. HpSpHnn = Hpp,
ii. SppHpSh = S,

I
iii. SpHu=L7'|: n,
I
iv. SwHy=[10 --- 0] L.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 5.2 For any discrete-time system G(z,nh), the following identity
holds:

thG’(z, nh)thHh = thG(Zn, h)

Proof For simplicity, the proof is given for n = 2. The proof for general n
follows the same steps. Let n be a discrete-time signal:

n = {n(0),n(1),n(2), ...}
and define

v = {0(0), 0(1), 9(2), ...} = {n(0),n(2),n(4), ...},

hence ¢(k,) = 1(2ks) = SanHpn(k). Assume that G(2,2h) = ap + a127! +
a2z %2 + ... Then,

G(q, 2h)SanHpn(k) = G(g,2h)(ks)
= aO()O(ks) + al‘p(ks - 1) + a2<p(ks - 2) +-
On the other hand
G(g® h)n(k) = (a0 + a1g7> + azg™ + - - )n(k)
= aon(k) + ain(k — 2) + apn(k - 4) + -+

The former and the latter equations are evaluated every 2h and h seconds re-

spectively, but they are equivalent at t = 2kh. Therefore HypG(z,2h)Sop Hy, =

thG(Zz, h)
a

5.2 Performance of sampled-data systems

To compare the performance of sampled-data systems with different controllers
(e.g., single-rate with different sampling periods or multirate), the performance
index should be defined in continuous-time. In this section, two well-known
performance indices for single-rate sampled-data systems are defined and then
a generalization to the multirate case is given. An appropriate performance in-
dex also has the property that if two systems (continuous-time, sampled-data,
multirate, etc.) have the same input-output relation (i.e., for any input they
generate the same output) they have the same performance. This is an intu-
itive property and essential for the theorems given later. All the performance
indices used throughout this chapter satisfy this property.
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5.2.1 H, performance of sampled-data systems

In Section 2.5.1, the definition of H, norm was generalized to sampled-
systems. Here the same concept is used to define the Hy, norm of sampled-
data systems. Recall that for a continuous-time LTI system G, the H,, norm
is defined as

IGlleo=sup [|Gwll2,

Jlwllz<1

i.e., the Ho norm (also known as the £, induced norm) is related to the max-
imum £, norm of the output over all bounded inputs. For sampled-data sys-
tems, because of the sampling and hold operators which are time-varying, no
transfer function can be defined in the normal sense. But the above definition
is still valid. Thus, the H,, norm of a sampled-data system is defined as the
L, induced norm of the related operator. The Hy, norm of F(G(s), K(z, h))
in Figure 5.1 is defined as

IF(G(s), K(2, h)) o= | Shlglllf(G(S), K(z,h)) wl.
wi25
Similarly, for the multirate sampled-data system in Figure 5.2, the Ho, norm
of the closed-loop operator F(G(s), K(z,1h)) is then defined as

I (GU6), K2 1) = sup I(GH6), K2 ) il

The Ho control problem is to find the admissible stabilizing controller
that minimizes the Ho, norm of the closed-loop system. Solution of the Hy,
control problem for sampled-data systems is well established in the literature
[2, 9]. Let K% (z,h) be the optimal H, discrete-time controller for single-rate
sampled-data system in Figure 5.1. Therefore, for any admissible controller
K(z,h),

IF(G(s), Kol ) oo IF(G(5), K (2, 1)) e

Solution of multirate H, control problem is also known [10]. If K% (z,[h)
denotes the optimal H., controller for multirate sampled-data system in Fig-
ure 5.2, then for any admissible multirate controller K(z, lh),

1F(G(s), Koz, 1h)) o< IF(G(s), K (2,1h)) llco-
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Similar to the Ho, norm, the £, induced norm of the sampled-data system
in Figure 5.2 is defined as

|7 (G(s), K (2, W) llc,= ”:ﬁlglllf(G(S), K(z,h)) wll.

It is obvious that if for any input, two systems generate the same output, their
L, induced norms (including the H,, norm) are equal. Another important
fact that is extensively used in this chapter states that: for any given LPTV
controller, an LTI controller can be constructed to give better £, induced
norm of the closed-loop system [51]. An instant result is that the optimal
LTT controller is better than any admissible LPTV controller in the H, norm
sense. So if K(z,h, N) is an admissible LPTV controller then,

IF(G(s), Ko(2, k) loo< I F (G(5), K (2, by N)) lloo-

5.2.2 'H; performance of sampled-data systems

In Section 2.5.2, the H; norm of a sampled system was defined. Here the
sam concept is generalized for single-rate and multirate sampled-data systems.
Recall that for a continuous-time SISO LTI system G, the H, norm is

o0

IGI2= G8(t) 2= / g0,

—00
where (t) is the continuous-time unit impulse function. In other words, the
‘H2 norm of G equals the £, norm of its impulse response. In the multivariable
case the Hy norm is

ICI3= > _IGé(t)eill3,
i=1

where e;, 1 = 1,...,n,, are the standard basis vectors in R™ and n,, is the
number of inputs of G. Thus, §(t)e; is an impulse applied to the i** input
channel.

To generalize the definition of H; norm to sampled-data systems (Fig-
ure 5.1), notice that F(G(s), K(z,h)) is an h-periodic time-varying system.
Therefore, the H, norm of F(G(s), K(z,h)) is defined as the average norm
of the outputs when impulses are applied in one sampling period to the input
channels, i.e.,

17 (Gls), K (z W) 3= 1 / (Zuf >)s<t-T>e,.ug)dT.
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If a N-periodic LPTV controller is used for the single-rate sampled-data system
in Figure 5.1, the closed-loop system will be Nh-periodic and the averaging
is over a period of Nh seconds. Therefore, the H; norm of the closed-loop
system with the LPTV controller K(z,h, N) is

IF(G(s), K(z,h, N)) 3=
Nh
Nh/ <Z”‘7: K(z,h,N))é(t - T)e,llz) dr.

Similarly, for the multirate sampled-data system in Figure 5.2, the averaging
is over a period of Ih seconds and the Hy norm is defined as

IF(G(s), K (2, Im) 2= —/ (ZII}" K(z lh))J(t—T)eill"fi) dr.

The solution of H, control problem (namely, finding the admissible sta-
bilizing controller that minimizes the H; norm of the closed-loop system) is
known for sampled-data systems (3, 9, 39] and multirate systems [45, 46]. Let
K3(z,h) and K;(z,lh) be the H;y optimal controllers for single-rate and multi-
rate sampled-data systems respectively. Then for any admissible sampled-data
controller K(z,h) and for any admissible multirate controller K (z,lh),

IF(G(s), K3 (2, W)ll2 < |F(G(s), K (2, h))l2-
IF(G(s), K3(2,1h))ll2 < | F(G(s), K (2,1h))]l2.

It is easy to verify that if two sampled-data systems (single-rate or multirate)
generate equal outputs for the same input, their H, performances are equal.
As mentioned before, for the H, norm, the optimal LTI controller performs
better than any admissible LPTV controller. In the rest of this section the
proof of the same property for the H; norm is given. Consider the single-rate
sampled-data system in Figure 5.1. Let G have the following state-space model

A|B B,
G(S)= Cl 0 D12 .

G| 0 0

Assume that

(A1) (A, By) is stabilizable and (Cs, A) is detectable;
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(k) Ga v(k)

...... N K(z’h)

Figure 5.4: The associated discrete-time system.

(A2) the sampling period A is non-pathological with respect to G [9].

Now bring in an associated pure discrete-time feedback system (Figure 5.4)
with the same controller K(z,h) and generalized discrete-time transfer func-
tion G4(z, h), where

Ap | Biy Bap
Gy(z,h) = | Cia| 0 Dag
Cy| O 0
AD, Bl_], BQD, Cld and Dlgd are obtained from
AD — eAh,

h
BlJB{] =/ CATBlB{CATTd’T,
0
h
BQD=/ CATdTBz,
0

h
[Cu Dua)"[ Cua Daa]= [ 4" [Ci Du)T[C Du)ear

0

_[A B,
s-10 %)

It is a well known result that under assumptions (A1)-(A2), for any LTI
controller K(z,h) (3, 9, 39],

1(G) K (2,1) IB= 3 I (Galau ), Kz, h) B + 3 L,

where F(Gg(z,h), K(z,h)) denotes the closed-loop transfer function of the
associated discrete-time system in Figure 5.4 and

h ph—t
L = trace (01 / / e*" B, BT e " drdt Cf) :
0 0
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The following theorem generalizes this result for LPTV controllers.

Theorem 5.1 Under assumptions (A1)-(A2) and for any admissible LPTV
controller K(z,h, N),

IF(G(s), K (2 b, N)) 2= % IF(Galz, b), K (z, b, N)) | + % L

Proof By the definition of the H; norm
IF(G(s), K(2,h, N))|I3

Nh
= Nh / <lef (G(s), K(2,h, N))4(t —r)eillé) dr
G+1)h
=N Z ( / (Z”f(G(S),K(z,h,N))J(t _T)eing) d'r) .

Following the same steps as in the proof for LTI controllers in {8],

G+Dh
/ (Zﬂf( (s), K(z,h,N))é(t _T)eiug) dr =

jh
Zwllf (Galz, k), K(2,h,N))d(k — j)eill3 + L.

Therefore

F(G ()K(z ))

Nw

an (Ga(2, h), K(2,h, N))o(k — j)es||2 + ,ll L

1
h

2=

2|»~ A'DM

SN——

=n

1 N-1 ny X
E I]: Gd (z,h), K(z,h, N))(S(k ])ei“2> : L
j=0 i=1
1 1
= 3 IF(Gulz 1), K (2, NI + 5 L.
O

Theorem 5.2 Under assumptions (A1)-(A2) and for any admissible LPTV
controller K(z,h,N),

|IF(G(s), K3(z, h) |2 < | F(G(s), K(z, h,N))|l2.
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Proof

. 1
IF(Galz, h), K3(z, b)) |13 + 7L

17 (Gate, h), K, by N))IE + 3 L

The inequality used here is based on the fact that in pure discrete-time systems,

the optimal LTI controller performs better than any LPTV controller [52].
a

17 (G(s), K3 (2, B) |2 = flz
<1
=h

5.3 Performance comparison

In this section a comparison of the performance of sampled-data systems with
different controllers (slow-rate, fast-rate and multirate) will be given. The
performance measures used are H; or Ho, norm of the closed-loop system as
well as any other £, induced norm. Let J(K(z,h),h), J(K(z h,N),h,N)
and J(K(z,lh),mh, - - ,mph,nih,--- ,n.h) be the performances of single-
rate sampled-data system (Figure 5.1), single-rate sampled-data system with
LPTV controller. and multirate system (Figure 5.2) respectively. Also let
K*(z,h) and K*(z,lh) be the optimal sampled-data and multirate controllers
respectively and J*(h) and J*(mqh,--- ,myh,nih, - - ,n.h) their correspond-
ing optimal performances. Hence,

J*(h) = J(K*(2,h), h),

J*(myh, .- ,mph,mhb, - n.h) = J(K*(2,lh),mih, - - ,mph,nyh,--- ,n.h).
Throughout this section, it is assumed that for the related sampled-data prob-
lem an optimal controller exists.

5.3.1 Slow-rate vs. fast-rate performance

Here it is shown that the optimal performance of a sampled-data system with
a fast-rate controller is better than the optimal performance with a slow-rate
controller. This fact is not only theoretically important but also introduces
the method that is used to prove the theorems. Note that the sampling period
of the slow-rate controller is always an integer multiple of the sampling period
of the fast-rate controller.

First the following lemma is proved:
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Lemma 5.3 In the standard sampled-data system in Figure 5.1, for any ad-
missible slow-rate controller, there exists an admissible LPTV fast-rate con-
troller with the same performance.

Proof Assume that K(z,Nh) is an admissible slow-rate controller. Using
Lemmas 5.1 and 5.2 yields

HNhK(Z, Nh)SNh = HNhK(Z, Nh)SNhHhSh
= HypK(2V,h)S)
= HyShHniK (zV, h)Sh

I
= HhLI_vl K(ZN, h)Sh
I
Now define the LPTV fast-rate controller
I
K(z,h,N)=L3' | : | K(zV,h).
I

Based on the above result, for any input w(t),

usr(t) = HynK (2, Nh)Snn y(t)
u}s:i(t)=H]hv}((z,h,z\/)s,:V :Z(t) } = usr(t) = urr(t),

i.e., the slow-rate LTI controller K(z, Nh) and the fast-rate LPTV controller
K(z,h, N) generate the same control signal u(t) for all time. This implies
that zsp(t) = 2pr(t). Therefore, the closed-loop systems with the slow-rate
controller K(z, Nh) and the fast-rate controller K (z, h, N) are equivalent

F(G(s), K (2, Nh)) = F(G(s), K(2,h, N))

and subsequently

~

J(K(z,h,N),h,N) = J(K(z, Nh), Nh).

O

To understand the idea behind the proof of this lemma, notice that the
slow-rate controller updates the control signal every kNh seconds. Therefore,
if one can find a fast-rate controller that generates the same control signal
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at t = kINh and then maintains it for a period of Nh seconds (i.e., does not
update the control signal at ¢ = kNh+h, ..., and t = (k+1)Nh—h), then the
two systems are equivalent. That is the reason why the fast-rate controller has
to be time-varying. Lemma 5.3 shows how to construct a satisfying fast-rate
LPTYV controller. For n = 2, the fast-rate controller is

. _ [ K(2%h) k even,
K(zh,2) = { 21K (2%, h) K odd.

Theorem 5.3 For the standard sampled-data system in Figure 5.1 and for

any N € N,
J*(h) < J*(Nh).

Proof Assume that K*(z, Nh) is the optimal slow-rate controller. Using
Lemma 5.3 there exist an LPTV fast-rate controller K (2, h, N) such that

J*(Nh) = J(K*(z, Nh), Nk) = J(K(z, Nh), h, N).
Now, using the fact that the optimal LTI controller performs better than any

LPTV controller (this is proved for the £, induced norm in [51] and for the
Hs norm in Theorem 5.2) yields

J*(h) < J(K(z,h,N),h,N) = J*(Nh).

5.3.2 Multirate vs. single-rate performance

In this section, the main theorem is presented and the proof is given: the
optimal performance of a system with a fast-rate controller is better than the
optimal performance with a multirate controller; and the latter is better than
the optimal performance with a slow-rate controller. At first two useful lemmas
are given. Consider the multirate sampled-data control system in Figure 5.2
and the corresponding slow-rate and fast-rate systems.

Lemma 5.4 For any admissible slow-rate controller K(z,lh) there ezists an
admissible multirate controller K (z,1h) that yields the same performance

J(K(z,1R),1h) = J(K (z,lh), mih, - - mph,nih, - n.h).
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Proof For simplicity, the proof is given for the dual-rate case (it is similar
for general multirate systems). Consider the dual-rate sampled-data system
in Figure 5.3 and let K(z,mnh) be a slow-rate controller. The objective is to
construct an admissible dual-rate controller K(z,mnh) that satisfies

A~

J(K(z,mnh),mnh) = J(K(z,mnh),mh,nh).
Using Lemma 5.1
HmnhK(Za mnh)smnh = HmnhK(Z, mnh)smnhHthmh

= ,,mhK(z,mnh)[I 0o - O]L,,Smh

= HonSnnHmnn K (z,mnb) [ I 0 -+ 0] LySpm
1

=HuL;' | i | K(zymnh)[1 0 --- 0] LaSpa
I

Now define the dual-rate controller
I
K(z,mnh)= | : | K(z;mnh)[I 0 --- 0].

For any input w(t),

usr(t) = HumnnK (2, mnh)Spnn y(t) _
upr(t) = Hun L7 K (2, mnh) Ly Smp y(t) = usr(t) = upr(t).

This means that the slow-rate controller K(z, mnh) and the dual-rate con-
troller K (2,mnh) generate the same control signal u(t) for all time. Thus
zsr(t) = zpr(t). Therefore, the closed-loop systems with the slow-rate con-
troller K (z,mnh) and the dual-rate controller K (z,mnh) are equivalent

F(G(s), K(z,mnhk)) = F(G(s), K(z, mnh))
and thus they have the same performance

J(K(z,mnh),mnh) = J(K(z,mnh), mh,nh).

a
The slow-rate controller K (z, mnh) receives the information every mnh sec-
onds and also updates the control signal every mnh seconds. On the other
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hand, the dual-rate controller receives the information every nh seconds, but
updates the control signal every mh seconds. So for a dual-rate controller to be
equivalent to a given slow-rate controller it should: First, uses only the infor-
mation that it receives at ¢ = kmnh and ignores the other information (those
at t = kmnh+nh, ..., t = (k+1)mnh—nh), hence theterm [I 0 --- 0].
Second, maintains the control signal that is generated at t = kmnh for a pe-
riod of mnh seconds, hence the term [I --- I]T. Lemma 5.4, illustrates
the method of construction of the equivalent dual-rate controller. For m = 3,
n = 2 and the slow-rate controller K(z,6h), the equivalent dual-rate controller
is

I K(z,6h) 0
K(z,6h) = [I]K(z,Gh)[I 0]= [K(z,ﬁh) o]
I K(z,6h) 0

Lemma 5.5 For any admissible multirate controller K(z,lh) there ezxists an
admissible LPTV fast-rate controller K(z,h,l) that yields the same perfor-
mance

~

J(K(z,lh),mh,--- ;mph,nih,--- n.h) = J(K(2,h,1),h,1).

Proof Again for simplicity, the proof is given for the dual-rate case with the
assumption that n = 1. In the dual-rate system in Figure 5.3, consider the
dual-rate controller K(z,mh). The goal is to construct an admissible LPTV
fast-rate controller K(z,h,m) such that
J(K(z,mh),mh, h) = J(K(z, h,m), h,m).
Using Lemmas 5.1 and 5.2 and the fact that S,,s Hyn = I yield
HhL;llK(Z, mh)S’mh = HhL;lK(Z, mh)S’thhSh
= HhL;ll SthmhK(Z, mh)SthhSh
= HhL;ISthmhK(z’", h)Sh
= HhLT_an(Zm, h)Sh
Now define the LPTV fast-rate controller
K(z,h,m) = L7'K(z™,h).
For any input w(t),
uDR(t) = HhL;th(z’ mh)Smh y(t) }
- =  uprlf) = uprl?).
urr(t) = HaK (2, h,m)Sh y(t) or(t) = urn(t)
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In other words, the control signals generated by the dual-rate LTI controller
K(z,mh) and the LPTV fast-rate controller K(z, h,m) are equal at all time.
Which in turn implies that zpr(t) = zpr(t). Therefore, the two closed-loop
systems are equivalent

F(G(s), K(z,mh)) = F(G(s), K(z,h, m))
and thus they have the same performance
J(K(z,mh),mh, k) = J(K(z, h,m), h,m).

O
For m = 3 and n = 2 assume that K(z,6h) is an admissible dual-rate
controller, i.e.,

Ki(z,6h) K(z,6h)
u= K(z,6h) ¢ = [ K3(2,6h) K4(z,6h) }
Ks(2,6h) Kg(z,6h)

v(0) v(6h)
AL ] )
-{[van |- [Van ]}

Then the equivalent LPTV fast-rate controller is

[ K(2%, h) + 23K,(25, h) k = 61,
YK (28, h) + 23K, (28%, )  k=6i+1,
z‘z(Kg(zs, h) + 22K4(2%,h)) k=6i+2,
(K3(26 h) + 23K4(26, h)) k =6+ 3,
%,h))
%,h))

where

e

KFR(Z, h, 6) = 4

—4(K5( 6 h) +Z3K6(Z k=6i-+4,
| (o ) 1 2K P R) k=it

Now the main theorem that compares the performances of multirate, slow-
rate and fast-rate controls can be stated:

Theorem 5.4 For the multirate sampled-data system in Figure 5.2, the fol-
lowing inequalities hold:

J*(h) < J*(myh, - ymph,nih, -+ neh) < J*(IR).
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Proof

Part 1:  J*(mih,- - ,muh,mbh,--- ,n.h) < J*(lh).
Assume that K*(z,lh) is the optimal slow-rate controller. By Lemma 5.4 there
exists a multirate controller K (z,1h) such that

J*(Ik) = J(K*(z,1h),1h)

= J(K(z,lh),mih, - ;mph,n1h,-- - ,n.h).

Since the optimal multirate controller is better than any admissible multirate
controller it follows that
J*(Ih) = J(K(z,1h),mih, - ,moh,nyh, -+ m.h)
> J*(mah, -+ ,mph,nqh, - nh).

Part 2: J*(h) < J*(mih,--- ,myh,mh, - ,n.h)
Assume that C*(z, lh) is the optimal multirate controller, and C(z, h, 1) is the
corresponding LPTV fast-rate controller from Lemma 5.5. Thus,

J*(myh, - - ,mph,nyh, - - nch) = J(C*(2,lh), mih, - - ymph,nyh, - -+ n.h)
= J(C(z,h,1),h,1).

Using the fact that the optimal LTI controller performs better than any LPTV
controller

J*(mah, -+ ymph,mh, - nh) = J(C(z, by 1), b, 1) > J*(h).

5.4 Conclusions and remarks

In this section it was theoretically proved that the optimal performance of a
system controlled by a multirate controller is better than the optimal perfor-
mance achieved by a slow-rate controller, and worse than the optimal perfor-
mance achieved by a fast-rate controller. To prove this, it was shown that
for any admissible slow-rate (alternatively multirate) controller, one can find
a multirate (alternatively LPTV fast-rate) controller with the same perfor-
mance.
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The performance measures used here are the Ho, and H, norms of the
closed-loop system. The proofs are based on the fact that for these perfor-
mance measures, the optimal LTI controller is better than any LPTV con-
troller. In other words, the optimal LTI controller is the optimal controller
over the set of LTI and LPTV controllers. As a matter of fact, the results
given in this chapter hold true for any performance index that satisfies this
property (optimal LTI controller is better than any LPTV controller), e.g., £,
induced norm of closed-loop system and LQR performance.

Throughout this chapter no regularity assumption is made on the matri-
ces defining the state space form of G or on the sampling period. The only
assumption made is the existence of the optimal controller.
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Chapter 6

Fault Detection in Sampled-data
Systems: Revisited

6.1 Introduction

As mentioned before, among the most important properties of an FDI system
is that, it has to be sensitive with respect to faults in order to detect incipient
faults, but robust with respect to unknown inputs, such as noise and distur-
bance, in order to avoid false alarms. This objective is usually achieved by
defining a performance index and optimizing it. In Chapter 3, it was shown
how to define different performance indices for a residual generator in sampled-
data systems. A method was also developed to optimize those performance
indices by converting the sampled-data problem to a discrete-time one with
the same performance. Intuitively one expects that the performance will be
improved by increasing the sampling frequency (a special case of this conjec-
ture was proved in Theorem 5.3 for standard sampled-data control problem).
The reason is that by faster sampling more information can be provided to
the FDI or control algorithm. In this chapter, it is shown that this property
is not true for the performance indices defined in Chapter 3 for sampled-data.
systems (e.g., in (3.18)).

In Chapter 4, two well known methods of FDI design (parity space and
Ho optimization) were generalized to multirate sampled-data systems. Two

The materials of this chapter has been submitted for publication in:

I. Izadi, Q. Zhao and T. Chen, “Analysis of performance criteria in sampled-
data fault detection”, submitted to Systems & Control Letters, February 2006.
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performance indices, similar to the ones used in sampled-data FDI design, were
defined and optimized. Recall that to study the performance of a multirate
system, the following single-rate systems are defined:

o slow single-rate or simply slow-rate system whose sampling period is
the least common multiple of all the sampling periods of the multirate
system;

¢ fast single-rate or simply fast-rate system whose sampling period is the
greatest common divisor of all the sampling periods of the multirate
system.

Another intuitive conjecture is that the slow-rate system with a slow-rate
residual generator would not necessarily achieve the level of performance that
can be achieved in the multirate systems with a multirate residual generator.
The reason is that the slow-rate residual generator does not have access to
all the information that is available to the multirate residual generator. On
the other hand, it is expected that a fast-rate residual generator designed for
the fast-rate system can yield better performance than one designed for the
multirate system. Again the reason is the excess information available from
the fast-rate system. However, it will be shown that these two properties do
not hold for most of the performance indices defined for residual generator
design.

Nonetheless, it was shown in Chapter 5 that the aforementioned properties
are in fact true for the performance indices used in controller design, i.e.,
the Ho, and Hy norm of the closed-loop system in the standard framework
(Theorem 5.4). In order to take advantage of this, the sampled-data FDI
problem is converted to a standard sampled-data control problem. This allows
us to use the H,, and H; norms of the closed-loop system as measures of
performance of the FDI and hopefully achieve the properties that were missing
in the conventional sampled-data FDI. The idea of using the standard control
problem to design an FDI system is not new and has been introduced in the
literature (e.g., see [7] and the references therein). In this chapter however,
the extension to the sampled-data and multirate cases is developed.
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r(t H, | p(k) | FDI |..:

Figure 6.1: FDI in a sampled-data scheme

6.1.1 System description

Consider the sampled-data system in Figure 6.1. As usual, the continuous-time
process has the following input-output description

y(t) = Guu(t) + Gdd(t) + fo(t)» (61)

where y(t) € R™ is the vector of plant outputs, u(t) € R™ the vector of
control signals, d(t) € R™ the vector of unknown inputs or disturbances and
f(t) € R™ the vector of faults to be detected. G, G4 and Gy are linear time-
invariant strictly proper systems of appropriate dimensions. In this chapter,
for simplicity it is assumed that G, is stable.

The output vector is sampled and discretized using an A/D converter mod-
elled by

¥(k) = y(kh), (6.2)

where h is the sampling period. The control signal is generated by a computer
and sent to the actuator using a (zero-order hold) D/A converter modelled by

u(t) =v(k), kh<t<(k+1)h. (6.3)
Hence, (k) = Spy(t) and u(t) = Hyu(k).
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6.1.2 Residual generation

In the sampled-data scheme, the residual generator uses discrete-time process
input v(k) and output (k) to generate a discrete-time residual p(k). As
seen in Chapter 3 (equation (3.16)), by applying the factorization approach,
the general form of residual generator for the sampled-data system described
above is

p(K) = R(Y(K) — Gupv(k)), (6.4

where R(z) € RH is a designable post-filter and G, p(2) is the step invariant
transformation of G,(s). Note that since G,(s) (and subsequently G,p(z)) is
stable, the coprime factorization of G,p(z) would be (I, G,p(2)). Substitut-
ing ¥(k) = Spy(t), u(t) = Hpu(k) and the system model (6.1) in (6.4), the
dynamics of the discrete-time residual with respect to continuous-time signals
d(t) and f(t) is

p(k) = RSRGqd(t) + RSxG f(t).

RS,G4 and RS,Gy are two operators that map continuous-time signals to
discrete-time signals. Assuming that perfect disturbance decoupling is not
possible (which is almost always the case), the goal is set to make RS,G,4 as
small as possible (in some sense) while keeping RS,G s reasonably large. This
is done by designing R(z) to optimize a certain performance index.

In this chapter the objective is to compare the performance of different
sampled-data FDI designs (e.g., single-rate with different sampling periods or
multirate). Similar to the control problem, for a fair comparison, the per-
formance index is preferred to be defined in continuous time. So let 7(t) be
the continuous-time residual obtained by holding the discrete-time residual
(Figure 6.1)

r(t) = Hap(k).

It is easy to check that r(t) € Lo(R) if and only if p(k) € £2(Z). Moreover
Irli3= h lloli3. (6.5)
The dynamics of the continuous-time residual is then given by

T‘(t) = HhRSthd(t) + HhRSthf(t). (66)
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Let I',4 and I, denote the operators from continuous-time signals d(¢) and
f(t) to r(t) respectively

U'ra = HoRSKGa,

F,-f = HhRSth.
The design objective in terms of the new operators is to make ||['y4]| as small
as possible while keeping ||T'yf|| large, for some definition of operator norm.
The H,, and H; norms of the operators are defined in Section 3.3.1 and Sec-

tion 3.3.2 respectively. As a matter of fact, using the relationship between the
norms of p(k) and 7(t) in (6.5), it is easy to see that

“Frd”oo = sup ||Frqdlo
ldl2<1
= sup ||HyRShGyd||2

ldlj2<1
=Vh sup ||RS,G4dll2

lidflz<1

= Vh | RSyGalleo

ITrallz = (2 (/Ohnl‘rdé(t — 7)ei||2 d7)>1/2
_ (i; ( /0 RS, Gt — 7')6,~||§d7‘)>1/2

- vh (‘; ( /0 | RSHGabl(t — T)e,-nng)) "

= ﬁ “RSth"2

and

As usual, the following performance indices are defined

Joo/oo —_ ”Frd”oo — ”RSth“oo
“Frf”oo ”RSth”oo,
_ Inalls _ [IRSAGalla
ITfllz |RSGallz

(6.7)

Jaj2 (6.8)

In Chapter 3, these performance indices were optimized by using the norm

invariant transformation and equivalent discrete-time model.
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A similar performance index can also been defined based on the parity
space approach (Section 2.4)

T,T
_ 'Ust,st’svs

= S H, HToT H, HI T (6.9)

where the parity vector v, belongs to the parity space P,. Hy,, Hy, and P,
are defined in Section 2.4, for the equivalent discrete-time system.

Later in this chapter, it is shown through some examples that the above
performance indices are not appropriate choices for comparison and analysis
of performance in sampled-data FDI design. This study, however, focuses on
the most common performance indices, i.e., (6.7) and (6.9). Let J}, (k) and
Jys(h) denote the optimal values of the performance indices in (6.7) and (6.9)
which are functions of the sampling period h. As shown in Chapter 3

1
1G% (G2l

where Ggs(z) and Gy;(z) are the norm invariant transformations of G4(s) and
Gy(s) respectively, and G4 (2) is the co-outer of G4;(z). Also for the parity
space performance,

J;s(h) = /\mim

where Amin is the minimal generalized eigenvalue of the pair (NgHqsHj ,NE,
NpH; Hf ,NE) and Np is the basis vector for parity space P;.

6.1.3 Residual generation in multirate systems

A multirate sampled-data system is illustrated in Figure 6.2. The input-output
description of the continuous-time process is given in (6.1). In the case of no
uncertainty in the system model, the control signal and its sampling rate have
no effect on the residual. So without loss of generality, it is assumed that the
inputs are available at the fast rate; u(t) = Hpu(k). The output channels,
though, are sampled at different rates. The first output y;(t) is sampled every
n1h seconds, the second output y,(t) is sampled every n,h seconds and so on.
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Figure 6.2: FDI in multirate sampled-data scheme

Therefore,
"/)l(km) = S"lhyl(t))
Y2(kny) = Snynya(t),
(6.10)
wm(knm) = Snmhym(t)-
Note that since the discrete-time signals 9;, ¢ = 1, -+, m, are available at
different time instants, they have different time indices k,,, i =1,--- ,m.
Assume that the greatest common divisor and the least common multiple
of (n1,-+ ,nm) are 1 and N respectively. Then the sampling periods of the
corresponding fast-rate and slow-rate systems are h and Nh respectively. The
residual generator uses the discrete-time signals v and ¢;, ¢ = 1,--- ,m, to

generate the residual. In order to pass the fault information as often as pos-
sible, the residual is generated at the fast rate, i.e., every h seconds. An H,
performance index similar to (6.7) can now be defined for the multirate system
in Figure 6.2 (as in Section 4.4). A parity space performance index similar to
(6.9) can also be defined (as in Section 4.3).
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6.2 Performance analysis

It is generally accepted that the optimal performance of sampled-data control
systems will be improved by faster sampling. In other words decreasing the
sampling period will reduce the optimal performance in control problem. A
special case of this (when the sampling period of the slow sampled system is
an integer multiple of the sampling period of the fast sampled system) was
proved in Theorem 5.3. Similar results are expected in the sampled-data FDI
design. However, this is not the case with the performance indices in (6.7)
and (6.9). The following examples show that decreasing the sampling period
actually impairs the optimal performance.

Example 1. Consider the continuous-time system given in (6.1) with

4 2

Gu(s) =0, Gqy(s) = TG0 Gy(s) = GOt

For h = 1 sec, J},,,(1) = 0.96 and for h = 2 sec, J3,/,(2) = 0.57.
Example 2. Consider the continuous-time system given in (6.1) with
-2 8 I 0 01 0
0 =200 11
[ Gu(s) Gd(s) Gf(s) ] = 1 0l0 0 0
0 110 00

For h =1 sec, Ji,(1) = 4.57 and for h = 2 sec, J;,(2) = 1.34.

Moreover, it was proved in Theorem 5.4 that the optimal performance of a
system with a fast-rate controller is better than the optimal performance with
a multirate controller. And the latter is better than the optimal performance
with a slow-rate controller. One intuitively expects that this is also true for the
multirate FDI problem. But again this is not the case with the performance in-
dices in (6.7) and (6.9). Examples show that multirate design can sometimes
work better than both fast-rate and slow-rate design, and sometimes work
worse than both of them. Similar examples (but of higher order/dimension)
can be constructed for the H; performance index in (6.8). Therefore, it seems
that the aforementioned performance indices for FDI design are not appropri-
ate at least for comparison of different design techniques.
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Now it is desirable to choose a performance index for the sampled-data
FDI design so that:

e the optimal performance of a fast-rate sampled-data residual generator
is better than the optimal performance of a slow-rate residual generator;

e the optimal performance of a multirate residual generator is better than
that of a slow-rate residual generator and worse than that of a fast-rate
residual generator.

The above properties hold for the performance indices defined for the standard
sampled-data control problem (Ho, and H norm of the closed-loop system) in
Figure 6.3. Here G is a continuous-time linear time-invariant (LTT) plant, w(t)
the exogenous input, 2(t) the controlled output, y(t) the measured output of
the plant, u(¢) the control signal and K(z) the discrete-time LTI controller.
Partition G according to its inputs and outputs as

G = :
[ Gy G ]

Let F(G(s), K(z)) denote the closed-loop system from w(t) to z(t), then as
shown before
F(G(s), K(2)) =
-1
Gu(s) + Gra(s)Hak (2)S (I = Ganl(s)HAK(2)S4)  Gn(s). (6.11)

If the sampled-data FDI problem can be converted to a standard sampled-
data control problem, the control performance indices can be readily used as
appropriate choices of FDI performance index.

6.3 FDI design as a standard control problem

For the residual generator in (6.6), the goal is to make I',; small while keeping
I',s large in some sense. As an alternative, the latter can be replaced by
a new objective which is making I'yy as close to I as possible. If achieved,
this means Hpp(k) = r(t) ~ f(t), which guarantees fault estimation as well as
fault detection. More importantly, the alternative problem can be converted to
the standard control problem of Figure 6.3. Therefore the residual generation
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y(t) G u(t)

Figure 6.3: The standard sampled-data system.

problem is redefined as designing R(z) € RH to minimize ||,q|| and ||T,s— I
for some definition of norm. Or in a more conservative form, the two goals
can be combined together as minimizing

J= “[ F,-f -1 Frd ] ||= ”[ HhR(Z)Sth(S) -1 HhR(Z)Sth(S) ] “
(6.12)
Assume that the state space representation of Gy(s) and G4(s) are given

[ Gs(s) Gals) ] = [_g_i—%] _

where A, E¢, Eq and C are real matrices of appropriate dimensions. After
some calculations, the problem can be reformulated in the standard form as
in Figure 6.4, where

A | [Ef E4q 0O
_ | = o I7_ 2
o) = [ [G1(s)  Ga(s)] 0} - [g, {o I 8{ é } , (6.13)

Let F(G(s), R(2)) be the closed-loop operator from w(t) to e(t) in Figure 6.4.
Then using (6.11) and the partition of G given in (6.13) it follows that
F(G(s), R(2)) = [ HnR(2)ShGs(s) —= I HnR(2)ShGa(s) |

and therefore
J = ||F(G(s), R())|I.

The common Hy or He norms might be used here. In the H, case, since
F(G(s), R(2)) is not strictly proper (in (6.13), notice that Dy; = [-I 0] # 0),
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et) = r(t) (1) w(t) = [
s(t) = Gad®) + C,f()] G | r)

Sy b i R(z) |- | H

Figure 6.4: The standard sampled-data FDI problem.

| F(G(s), R(2))|l2 is not finite. Therefore the problem is not regular for the
‘H, norm.

For the Ho norm, because Dy; = [0 0] does not have full row rank, the
problem is also not regular. However, it can be regularized with minor modi-
fications (e.g., by replacing D2, with = [e eI}, where € is a small number).
Nevertheless, for the Ho, norm, the optimal solution is zero, i.e., R*(z) = 0.
The reason is that due to Dg, = 0 and Dg, =0,

I[ HaR(2)ShGy(s) = I HAR(z)ShCa(s) | 1o
2 Omax [ DRDGf -1 DRDG,i ] = Umax[_I 0] = 1.

where Dp, D¢, and Dg, are direct feed-through terms (D-terms in a realiza-
tion) of R(z), G¢(s) and G4(s) respectively and oyax(-) denotes the maximum
singular value. Note that the assumption of strictly properness of G¢(s) and
Ga(s) is required for boundedness of the operators. So for the H,, norm,
the lower limit of the optimal performance is 1. And this lower limit can be
achieved when R(z) = 0, which means that R*(z) = 0 is the optimal solution
of the Hy, problem.

To use the H, and Hs norms effectively, the performance index has to be
modified. Different modifications may be proposed here:

1. In one approach, instead of using r(t) ~ f(¢), the objective is set as
r(t) ~ T f(t), for some strictly proper T'(s) € RH, with the following
state space representation

T(s)=[é,; %T]‘
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In that case

[T o1
Gr()= | (G,(e) Gulo) o]
" Ar O|[-Br 0] 0
_ 0 A [Ef Ed] 0
T | Cr 0f[0 o 7|’
L0 o 0 o

and the performance index is

Jr = | F(Gr(s), R(2))||

(6.14)
= ||[ HnR(2)ShGs(s) = T(s) HwR(z)SnGa(s) ] |-

2. Alternatively, a weighted version of the performance index in (6.12)
might be used, i.e.,

Jw = |7 (Gw(s), R(2))|

(6.15)
= ||| W(s)(HnR(2)ShGy(s) — I) W(s)HnR(2)ShGa(s) ] |,

where W(s) € RH is a strictly proper weighting function with the
following state space representation

Cwl| O
and
_[ =W 0 wes)
6= | G Gaa) 0 ]
" Aw 0 |[-B 0] B
_ 0 Al[EfW E4] 0 (616)
T | Cw O '[0 0] 0
| 0 C|[0 0 0
This is equivalent to making Wr(t) ~ W f(¢t).

The good point is that, since in both Gr(s) and Gw(s), D11 = 0, the
H, norm of the closed-loop operator is finite and the problem is regular.
Known methods of the sampled-data H» design can be used here to convert
the sampled-data problem to an equivalent pure discrete-time one [3, 9, 39].
As an example, the solution of the H; problem for generalized plant Gw(s)
and the performance index in (6.15) is stated in the following lemma
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0{1: R(z) |- | H,

Figure 6.5: The general multirate sampled-data FDI problem.

Lemma 6.1 Consider the generalized plant Gy/(s) in (6.16) and the perfor-
mance indez in (6.15). The following equality holds

IF(Gw(s), R(2))l2= | F (Gwa(2), R(2))]l2-
Gwa 1is the equivalent discrete-time plant given by

Awp 0 B

0 Ap | Bra BVD
Ga(z) = 2 ,
Cwy 0 0 0
0 C 0 0
where Ap, Awp, Bwp, Cwy and B, 44 are defined as
AD = 6Ah,
Awp = e,
h
Bwp = / e*""dr By,
0
h T
C&JCWJ = / eAWTCg'VCWeAWTdT,
0
h Awr g BT eATv;/"' —eAwTR ETeAT-r
B T — € wLw w f 3
l,ddB1,dd A [ _eATEfB%;/eATV;'T eAr(EfE}"+EdEg‘)eATT dr
a

The Ho, norms of the performance indices in (6.14) and (6.15) are also well
defined. To optimize the two performance indices, the well-known methods of
sampled-data Ho, optimization can be readily used (2, 9].

In the multirate case, the approach is quite similar. The block diagram of
the multirate FDI problem in the standard form is illustrated in Figure 6.5.
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Notice that, since the residual is generated at the fast rate, there is only one
hold operator with sampling period h. This makes the multirate FDI problem
fairly simpler than the general standard multirate control problem. The same
performance indices in (6.14) and (6.15) are still valid with the appropriate
definitions of H., and H; norms to accommodate the multirate sampling.
Again the established methods of multirate sampled-data optimization can be
readily used (10, 45).

The sampled-data FDI problem is hence converted to a standard sampled-
data control problem. Now the main theorem can be stated: Consider the
single-rate sampled-data system in (6.1), (6.2) and (6.3). The goal is to design
a residual generator which optimizes the FDI performance index in (6.14) or
(6.15). Let Jpp;(h) be the optimal sampled-data FDI performance (H; or Heo
norm of the closed-loop operator).

Also consider the multirate sampled-data system described by (6.1), (6.10)
and (6.3). The FDI performance index for the multirate sampled-data problem
is similarly defined as the Hy or Ho norm of the closed-loop operator. Let
Jgpi(nih, -+ ,nyh, h) denote the optimal multirate FDI performance.

Theorem 6.1 For the sampled-data system described above and the FDI per-
formance indices in (6.14) and (6.15), the following statements hold

1. Jip(R) < Jipi(nh), V¥n €N,
2. Jipi(h) < Jgpr(nih, -+ nmh, B) < Jip(NVR).

]
The two parts of this theorem are special cases of Theorems 5.3 and 5.4
and the proofs are similar.

6.4 Conclusions

In this chapter the choice of appropriate performance index in the sampled-
data FDI problem was studied. In residual generator design, it is always
desired to generate a residual which is only sensitive to the fault not distur-
bances and other known or unknown inputs. The design is usually carried out
by solving an optimization problem, hence the importance of a well-selected

performance measure. The common performance criteria consider the norms
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of two transfer functions (from fault and disturbance to residual) separately.
The problem with these type of performance criteria is that they do not satisfy
the properties that one expects when dealing with sampled-data systems. One
intuitively expects that the performance of a sampled-data system is improved
by increasing the sampling frequency, and the multirate controller can work
better than a slow-rate controller and worse than a fast-rate one.

Since in the standard sampled-data control problem, the H, or Hy, norm
of the closed-loop system satisfies the expected properties, it is reasonable to
convert the sampled-data FDI problem to the standard form. This is done
by combining the two transfer functions (from fault and disturbance to resid-
ual) and considering the norm of one single transfer function rather than two
transfer functions individually. Some modifications are required to regulate
the standard problem and eliminate the trivial solutions. These modifications
are performed by introducing appropriate weighting. The result is a standard
control problem, which can be readily solved by any known technique for both
single-rate and multirate systems.
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Chapter 7

Conclusions and Future Work

In this thesis, some fundamental problems of fault detection and isolation
in sampled-data systems have been investigated. This chapter summarizes
the results reported in this thesis and proposes some possible future research
directions.

7.1 Conclusions

In sampled-data systems, the process under control is a real world continuous-
time system, while the controller and the FDI are digitally implemented by
a computer. So, sampled-data systems involve both continuous and discrete-
time signals and systems and hence are hybrid. Two traditional approaches of
controller/FDI design for sampled-data systems are known as indirect designs.
In one approach the continuous-time process is approximated by a discrete-
time one and then a discrete-time controller/FDI is designed for this system.
In the other approach first a continuous-time controller/FDI is designed for
the continuous-time process and then is approximated by a discrete-time con-
troller/FDI. Since both approaches involve approximations, the results might
not be very satisfactory. In the FDI case, examples have been proposed in
the literature to show that the indirect designs are in fact unsatisfactory [54].
This motivated us to switch to direct method of FDI design.

To design an optimal robust residual generator for a sampled-data system,
it was shown that one can simply replace the sampled-data system with a
certain discrete-time one. Any optimal norm based residual generator for the
equivalent discrete-time system is also optimal for the sampled-data system.
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This approach, unlike the indirect design techniques, does not involve any
approximation. That is because the norm invariant transformation guarantees
that the norms of the operators relating the fault and disturbance to the
residual are equal in the original sampled-data and its equivalent discrete-
time systems. Moreover, this approach is as simple as the indirect design,
both mathematically and numerically. It was also shown that, based on the
direct design in a sampled-data setup, it is generally more difficult to perfectly
decouple residual from disturbance. In other words, even if perfect decoupling
is possible for the continuous-time model, it may not be possible in a sampled-
data configuration.

The idea of direct design was then generalized to multirate sampled-data
systems. Similar to the single-rate case, it was shown that in order to design
an optimal residual generator, one can replace the original multirate system
with a discrete-time (slow-rate) one. The equivalent discrete-time system was
obtained using the norm invariant transformation and the lifting operation.
Any norm based method of residual generator design can be used. However,
directly applying the methods will result in a slow-rate residual signal, for the
equivalent discrete-time system is a slow-rate model. To reduce the detection
delay the residual has to be generated at a faster rate. For this purpose,
the concept of lifted residual was introduced which yields fast-rate residuals
after applying the inverse lifting operator. Two methods of generating the
lifted residual were developed. The first method was based on the parity
space with the difference that instead of a parity vector, a parity matrix was
used. The second method was based on the factorization approach with H,
optimization. Both methods involve optimizing a performance index subject
to a set of causality constraints. For both methods, the analytical solutions of
the optimization problems with constraints were proposed.

Most techniques of robust residual generation rely on a performance index
to measure the compromise between robustness to disturbance and sensitivity
to fault. So, selection of the performance index is a fundamental stage in FDI
design. There are some properties that one expects a suitable performance in-
dex to satisfy. One of this properties is that for a suitable performance index,
the optimal multirate design works better than the optimal slow-rate design
but worse than the optimal fast-rate design. Unfortunately, this property does
not hold for the performance indices traditionally used for FDI design (in par-
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ity space, H optimization and H, optimization methods). In contrast, it
was proved that the property is indeed true for the performance indices used
in control system design, i.e., H., and Hs norms of closed-loop systems. This
means that for the standard control problem, the optimal fast-rate controller
performs better (i.e., yields smaller closed-loop norm) than the optimal mul-
tirate controller, which in turn performs better than the optimal slow-rate
controller. In order to take advantage of this, the FDI design problem was
formulated as a standard control problem. This was accomplished by combin-
ing the two requirements of the FDI problem (robustness to disturbance and
sensitivity to fault). Any method of sampled-data controller design (e.g., Hoo
or H3) can then be readily applied to the converted FDI problem.

7.2 Future work

The research on fault diagnosis in sampled-data systems, supported by the well
developed sampled-data control theory, has received great attention recently.
Nonetheless, there are still many unanswered questions, some of them are
proposed herein:

o Considering properties of a performance index for a sampled-data optimi-
zation problem, and how the optimal performance changes by varying
the sampling period, there are many important questions to answer.
For example, it is almost certainly believed that increasing the sam-
pling frequency improves the performance of a sampled-data system (at
least in a neighborhood of the origin). That is one reason why elec-
tronic manufacturers try to introduce faster and faster analog-to-digital
and digital-to-analog converters in the market. Surprisingly, as far as we
know, no theoretical work has been done in this regards. This conjecture
was proved for a special case in this thesis (Theorem 5.3). However, how
changing the sampling period affects the optimal performance in general
is still unknown. The above conjecture is most likely true, but if it is
not, then it would be interesting to investigate under what conditions
and for what type of performance index it holds.

o The selection of performance index is a basic step in robust FDI design.
In this thesis, it was shown that the common performance measures that
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are used in the literature are not appropriate for this purpose. As an
alternative, the performance measures in controller design (Ho, and Hs
norms of closed-loop systems) were used for FDI performance. But as
mentioned before, this will add some conservatism to the solution. So
another topic for research is to find a performance index that is not con-
servative, and in addition satisfies expected properties (proper behavior
with respect to sampling period).

e In Chapter 3, the norm based methods of residual generation were gener-
alized to sampled-data systems using the norm invariant transformation.
It would be interesting to investigate if other methods of residual gener-
ation (e.g., observers) can be generalized for sampled-data systems via
some direct design approach.

o Two methods of fast-rate residual generation for multirate sampled-data
systems were developed in Chapter 4. The solutions of the corresponding
optimization problems in those methods have the advantage that many
parameters can be chosen freely. The freedom was used in this thesis
to accommodate the practical causality constraints. One direction for
research is using the free parameters to involve other useful constraints,
to optimize other performance criteria or to isolate the faults. It would
also be interesting to investigate other methods of residual generation
for multirate systems.

o Fault detection process usually consists of different steps. In this thesis,
however, only residual generation was considered. Residual analysis is
also an important process in an FDI system which is carried out after the
residual is generated. Residual analysis in sampled-data systems would
be an interesting research topic. For instance, one can investigate how
to select a threshold for residual and how the sampling period affects the
threshold.

e Fault diagnosis is an essential part of any industrial control system.
Moreover, most of the control systems are implemented in a sampled-
data framework in industry. So another important research topic is to
investigate the practical issues of fault diagnosis in (single-rate and mul-
tirate) sampled-data control systems.
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Appendix A

Co-inner-outer Factorization for
Discrete-time Systems

In this appendix the method of calculating the co-inner-outer factorization of
a discrete-time system is given. The results are adopted from [29]. Notice
that there is a duality between inner-outer factorization and co-inner-outer
factorization. If G;(z) and G,(z) form an inner-outer factorization of G(z) (i.e.,
G(z) = Gi(2)G,(z)), then GT(2) and GT (2) form a co-inner-outer factorization
of G*(z), and vice versa. Therefore, here only the calculation of the inner-outer
factorization for discrete-time systems is given.

Assume that G(z) € RH is an LTI discrete-time system with sampling
period £ and has no transmission zeros on the unit circle. Then there exists
an inner-outer factorization of G(z)

G(z) = Gi(2)G,(2).
The inner matrix G;(z) € RH,, satisfies
GT(e™#M)G(e?") = I.
The outer matrix G,(z) € RH has a right inverse G;1(z) € RH such that
Go(2)G;1(2) = I.

Assume that G(z) has the following stat space realization

o= 4]

The procedure for obtaining the inner-outer factorization of G(z) is given
below:
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1. Define

R=CTC,
L=C"D,
R=DTD.

2. Solve the following discrete-time algebraic Riccati equation
X =ATXA—- (ATXB+ L)(B*XB+ R)™(ATXB+ L)T +Q.

3. Define
F=(B'XB+R)™Y(ATXB + L)".

4. Find the Cholesky decomposition

HT'H =BTXB+R.

5. The inner and outer matrices G;(z) and G,(z) are given as

Gu(o) = | A+ BF | BH#
%) =\ DF | DEF |’

vl

where H# is the right inverse of H satisfying HH# = I.

6. In addition right inverse of G,(2) is given as

o

1, _ | A+BF|BH*
G (z)—[ T
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Appendix B

Computation of B

Assume that the matrices A and B (usually from a state-space realization)
and the sampling period h are given. The objective is to calculate the full
rank matrix B; satisfying

h
B,;BT = / e "BBTeA  dr.
]

The procedure is given below [9):

1. Define
P B -A BBT
= exp 0 AT .
2. Partition P accordingly

_Pu P2
P_I:O Pzg}'

3. Then,
B,BT = PTP;,.

To compute By, if PL P, is full rank then the Cholesky decomposition can
be used and B; would have the same dimensions as Pf};Plg. But if P27§P12 is
rank deficient, then the number of columns of a full rank Bj is less than that
of PLPyy. In this case the simple version of Cholesky decomposition is not
applicable. So using the singular value decomposition of PL Pis

v 0] [Uf
PEra =0 v |5 o [74]

Bj can be calculated as
By = U, TV
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Appendix C

Calculation of the Causal
Optimal Solution in
Section 4.4.2

Assume that G(2) € RH is a given g X p transfer function matrix. In this
appendix, the objective is to solve the following problem:

Problem 1: Find a n x g transfer function matrix Q(z) € RHwo
that satisfies the following conditions

i. Optimality Condition  [|Q(2)G(2)]lo= [|Q(2)lleo[|G(2)ll
ii. Causality Condition Q(o0) = X Ny
The number of columns of Q(z), g, is given (since G(z) is known). But the
number of rows of Q(z), n, can be chosen freely. Also N4 is a given fat matrix
satisfying NyyNT, = I, but X can be arbitrarily chosen.
It is first shown that a constant matrix (not a transfer function matrix)
can not solve the problem. Let Q(z) = Q(o0) = XNy = Q. Since Q(2) is

constant, the H,, norm of the transfer function matrix @(z) will be equal to

the induced 2-norm (spectral norm) of the constant matrix @

1Q(2)llo= [IQll2-

The optimality condition implies that

1QG(2)]leo= | Qll2l|G(2)lloo= |1 X Nall2l|G(2)lo= | X [l2/| G(2)l o-
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Now it follows that
1QG(2)loo= I X NMG(2)]loo < | X2l NatG(2)]l oo
< XNl NmlizllG ()l oo= 1 X N2l G(2)loo-

For the optimality condition to be satisfied, all the inequalities in (C.1) should
be converted to equalities. This is possible when ||[NpG(2)[loo= [|G(2)]lco-
But since N4 and G(z) are independently given this is not always true. As
a matter of fact, by submultiplicative property of Ho, norm, most of the
times | NuG(2)loo< I|G(2)||oo- In this case a constant matrix can not solve

the problem. So the general form of the transfer function matrix has to be
considered.

(C.1)

To simplify the calculations, the problem, originally in discrete-time, is
transferred into continuous-time. Notice that the frequency response of a
continuous-time transfer function is a polynomial function of frequency, while
it is an exponential function in discrete-time case. Recall that the bilinear
transformation preserves the H, norm of a transfer function (Section 3.2.4).
So, the bilinear transformation is used as a change of variable to convert the
discrete-time problem (exponential function of frequency) to an equivalent
continuous-time problem (polynomial function of frequency). Let Qpr(s)
and Gpr(s) denote the bilinear transformations of Q(z) and G(z) respectively.
Also note that z — oo is equivalent to s — 2 in the bilinear transformation (h
is the sampling period of Q(z) and G(z)). Then the equivalent Continuous-

time problem is:

Problem 2: Find a n x g transfer function matrix @pr(s) € RHw
that satisfies the following conditions

i. Optimality Condition
1Qe7(5)GB1(s)llo= | @BT(5) |0l GrT(5) |0 (C2)
ii. Causality Condition
QBT(%) = XNpm (C.3)

Qp(s) is chosen to be a 1x g transfer function matrix (note that he number
of rows of @pr(s) can be selected freely). To construct a Qgr(s) that solves
the problem, the following lemmas are useful:
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Lemma C.1 Assume that G1(s),G2(s) € RHe and

IGi(8)lloo= Omax(Gi(jwo)) = |Gi(jwo)ll2s 4 =1,2,

and also

1G1(3wo)G2(jwo)llz= [|G1(jwo) |2l G2 (jwo) 2,
then

1G1(5)Ga(8)l|oo= 1G1(8) |0 |G2 () | co-

Omax(-) represents the maximum singular value. w, is the frequency where
the Hoo norm of G1(s) and Gy(s) is calculated. This lemma states sufficient
conditions for which the submultiplicative property of Ho, norm is converted
to an equality.
Proof By submultiplicative property of Hy, norm

1G1(8)G2() o< [|G1(8) lollG2(8) ] o
On the other hand

1G1(5)G2(8)lloo = [|G1(jws)Ga(jws)ll2 (by definition of He, norm)
= [|G1(jwo) 2l G2(jwo)ll2= |G 1(8)llcol|G2(5) llo-

Comparing the two equations will complete the proof.

a
Lemma C.2 Assume that Gi(s) € RHe, 1 =1,--- ,n, and
1Gi(s)loo= Omax(Gi(jwo)) = IGi(jwo)ll2, i=1,---,n,

then the following identity holds

l[Gi(s) Ga(s) -+ Gu(9)lllo=l[G1(iws) G2(jwo) -+ Gn(jwo)] l2-
Proof Assume that

[[Gi(s) Ga(s) -+ Ga(s)lllwo# IG1(jws) Ga(jws) -+ Galjwo)] |l2-
Then there should exist some frequency w; # w, such that

IGi(s) Ga(s) -+ Gul(s)lllo = [[G1(jw1) G2(jwi) -+ Gn(jwr)] 2

> ”[Gl(jwo) GZ(jwo) e Gn(jwo)] ”2
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This implies that for at least one of the G;’s, the following statement holds

G:(Gwr)ll2> [|Gn(jwo)ll2,

which subsequently implies that

1Gi(s)lo> IGi(Gwi)ll2> [|Gn(5wo)ll2-

This is a contradiction and the proof is complete.

O

Let [|Ga1(3)]loo= [|GBT(jws)||2 (i-€., w, is the frequency where the H,, norm

of Gpr(s) is calculated). Also assume that the singular value decomposition
of Gpr(jw,) is

Gpr(jw,) = UZV, (C4)

where U and V are complex unitary matrices and U = [u; up -+ 1ugl
Then,

|Ger(iwo)ll2= IZ]2-
Define the row vector ¥ as
U= 0 --- 0JUT =yn], (C.5)

for an arbitrary positive number . Thus

1¥ll2= ¥.
Then
19Gar(jwo)lls = I 0 - OUTUSV[lo= [ 0 - O}
= Y[IZ]|2= | ¥]l2lGBT(jwo)ll2-
Therefore, if a stable Qpr(s) satisfies
Qer(jw,) =¥,
1QB1(s)leo = |@BT(5ewo) 2,
then according to Lemma C.1, optimality condition (C.2) holds. Let

@Re1(s) = [@BT,1(5) @BT2(5) -+ @BT¢(S)]
U =[uy+jvi up+jvy - ug+ 3y
XNy =[dg1 dga -+ dogl
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If SISO transfer functions Qpr(s), i = 1,-- - , g, have their maximum gain
at frequency wo (ie., ||@Br.i(s)llo= |QBT,i(jwo)]) and Qprs(jwo) = ui + ju;
then according to Lemma C.2 the equations in (C.6) will be true and optimality
condition (C.2) holds. If in addition Qpr,(2) = dgj;, the causality constraint
(C.3) also holds. Now the problem is simplified to finding stable SISO transfer
functions Qari(s), i =1, - ,q, that satisfy

{ |@BT.i(s)|l 0= |@Br,:(Jwo)l,
@pT,i(Jwo) = u; + ju;,
Qeri(2) = dg.
These conditions can be further simplified to

2|Qpr;i(jw)[? e 0,
Qi (jwo) = u; + jui, (C.7)
Qsr.i(2) = dgg.
A candidate transfer function is chosen in the form
3 2
Quri(s) = 0;s8° + b,;(:; c;s + d;
where P(s) is an arbitrary Hurwitz polynomial of order at least 3. The 4 free
parameters in Qg :(s) are enough to satisfy conditions (C.7). In fact, it is easy
to show that conditions (C.7) will be simplified to a set of linear simultaneous
equations in terms of a;, b;, ¢; and d;
Bailwo)  Brilwo)  Beilwo)  Bai(wo) a;
w3 (Wo) —wiXw,) woY (Wo) X(wo) b;
~w3X(wo) Wi (wo) woeX(we) —Y(wo,) G |
(#)? (3)? (%) 1 d;
(uf +v7)e’ (wo)
;o (w,)
Uia(wo)
P (%)dQ,i

, (C8)

where

= -2 X' (W)u; — 2wX (W)u; + WY (W)Y ~ 2wY (W);
= wX'(w)v; + X(w)v; + wY'(w)u; + Y (W)

)
)
Bai(w) = =B X' (W)v; — 3w X (W)v; — WY (W)u; — 3w?Y (w)u;
)
)
) = X'(Whui =Y (w)v;
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The determinant of coefficients matrix of linear equations in (C.7) is

2 ) (5 +2) (ot = 20X ) + Gt + F0¥ (w0))

which is always nonzero. Therefore, this set of linear equations always have a
unique solution. The first condition in (C.7) does not always guarantee that
@pr,i(s) has its maximum gain at frequency w, (it can be a minimum or a
local maximum). This can be resolved by changing P(s) with one or two steps
of trial and error. After calculating Qgpr4(s), j =1,---,g, one can construct
Qpr(s) and use the bilinear transformation to calculate Q(z).

The procedure of finding Q(z) is summarized below

—

. Calculate Gpr(s) the bilinear transformations of G(z).
2. Find w, and perform the singular value decomposition in (C.4).
3. Arbitrarily select 1 and compute ¥ according to (C.5).

4. Choose P(s) an arbitrary Hurwitz polynomial of order at least 3 and the
1 %X ¢ matrix X.

5. Construct and solve the set of linear simultaneous equations in (C.8) to
obtain a;, b;, ¢;, d; and subsequently Qgr(s).

6. Perform the bilinear transformation on @Qgr(s) to find Q(z).
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