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Abstract

With the development of modern technology, researchers in various fields

are equipped with powerful tools to collect ultrahigh dimensional data, where

the number of features p could grow exponentially with the sample size n. It is

challenging to extract useful information due to the huge number of features.

To tackle this challenge, Fan and Lv [14] proposed the two-scale approach

where variable screening procedure is applied first instead of traditional one-

scale variable selection. The purpose of variable screening is to eliminate as

many noisy features as possible while keep all the important features. There

are many variable screening methods that work well with various assumptions.

However, most of them are not stable in a sense that a small perturbation in

the sample may result in very different selected features. On the other hand,

it is difficult to verify all the assumptions in reality. Therefore, a generic

guideline is desired to select appropriate screening methods that fit different

applications. A natural choice is to combine multiple screening methods to

adapt more general assumptions. In this thesis, we propose a group of en-

semble methods to aggregate results from multiple screening methods. Our

methods are capable of providing stable results and work well even if some

of the candidate screening methods fail. In particular, we propose three en-

semble approaches to encourage stability, namely, parallel ensemble screening,

quantile ensemble screening and multi ensemble screening. We show that each

of the proposed procedure has the sure screening property, which means the

selected set contains the true active variables with a probability tending to
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one provided each of the method combined shows sure screening property. We

validate our methods through both simulation studies and real data analysis.
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Chapter 1

Introduction

1.1 Variable Screening

With the developing of modern data collecting techniques, researchers in var-

ious fields are equipped with powerful tools to collect high dimensional data

more efficiently. For example, the gene expression microarray data [20, 44],

single nucleotide polymorphism (SNP) [19, 25] data, magnetic resonance imag-

ing (MRI) [48, 57] data are considered as high dimensional. Those data in

general have very high dimensions which makes it difficult to extract useful

information. For example, we may try to discover a candidate biomarker from

the microarray gene expression data which is derived by measuring gene ex-

pression levels of thousands of genes simultaneously. Due to the cost of data

collection or the difficulty to find enough volunteers for some specific diseases,

the sample size n will not be large. To handle model selection or variable se-

lection with high dimension in a situation of p > n, various methods have been

proposed. To name a few, the LASSO [50], Adaptive LASSO (Adalasso) [58],

SCAD [13], Danzig Selector (DS) [7] and MCP [54] are frequently used in

variable selection scenarios.

The existing variable selection methods, although proved to be useful in

high dimensional setting of p > n deteriorate when the dimension goes to ul-

trahigh. The word “ultrahigh” here means a scenario that the dimension p is

much larger than the sample size n or p even grows exponentially with n. In
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MRI studies for example, depending on the scanner used, image quality could

have a resolution as high as 1690 × 1744 [49]. Given the MRI scan results,

researchers are typically interested in finding certain pixels or regions that are

related to certain phenotypes. Because of the high cost of the MRI scan, we

only have limited sample size which may be about 100, thus leading to a sit-

uation of p >> n. Another example could be found in the analysis of gene

expression data in which the sample size sometimes is around one hundred

and the number of candidate genes is more than 10, 000. The researchers will

usually be interested in finding some specific genes relating to some diseases

which are usually less than or around 10 [2, 9]. In the above situations, the

aforementioned variable selection methods will perform poorly or even fail to

work due to the simultaneous challenges of computational expediency, statis-

tical accuracy and algorithm stability [15].

To overcome the issues associated with ultrahigh dimensionality, Fan and

Lv [14] introduced the sure independence screening (SIS) based on correlation

learning. A two-scale approach proposed by Fan and Lv [14]works as follows:

Firstly, we decrease the dimension p by large scale by applying variable screen-

ing methods such as SIS to reduce the dimensionality to a moderate scale d

that is usually below the sample size n. Secondly, we apply lower dimensional

variable selection approaches to select the truly important features. As a re-

sult, the variable screening methods could be considered as a prior step to

analyze ultrahigh dimensional data in order to make it applicable for the rela-

tively low dimensional variable selection methods to work. The sure screening

property proposed by Fan and Lv [14] is desired in the screening process, that

is, with probability approaching 1, the screening algorithm keeps all of the

true active variables. Motivated by SIS, a large number of variable screening

methods have been proposed. See [12, 21, 56] and their references.

In the following, we introduce some of the variable screening methods

which are closely related to our methods. Considering the problem of vari-

able screening in ultrahigh dimensional feature space, we have a random sam-

ple {Xi, Yi}ni=1 from the population (X, Y ) in which Y is the response and

X = (X1, . . . , Xp) is the associated covariate vector. Without loss of general-
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Figure 1.1 Methods of model selection with ultrahigh dimensionality [14]:
Variable screening methods such as SIS work when the dimension p is
ultrahigh. After applying SIS, the dimension is decreased to a relative low
dimension d which is suitable for the low dimensional variable selection
methods to work in the second step.

ity, we assume X are standardized column-wisely. We adopt the same setting

in the following. Fan and Lv [14] introduced the sure independence screen-

ing (SIS) procedure by ranking all predictors using a utility measure between

the response and each predictor. Mathematically, the SIS procedure could be

summarized as follows: Suppose ω = (ω1, ω2, . . . , ωp) is a p-vector obtained by

component-wise regression of Y on X, that is

ω = XTY. (1.1)

Here ω is used as the screening utility which is a vector of marginal correlations

of predictors with the response variable, rescaled by the standard deviation

of the response. For any given γ ∈ (0, 1), the sorted p component-wise mag-

nitudes of the vector ω in a decreasing order is derived and a sub-model is

defined as

Aγ = {1 ≤ j ≤ p : |ωj| is among the first [γn] largest of all} . (1.2)

After this step, the original model size is shrank to Aγ with size d = [γn] < n.

The Sure Independence Screening, although works well in linear models,

is limited on the assumption that the variables are assumed to be linearly

correlated to the response. However, this is not always the case, since even

if the true model is linear, the marginal correlation can be highly nonlin-

ear. To overcome this problem, Fan et al. [12] proposed the Nonparametric
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Independence Screening (NIS) in which the screening utility is built nonpara-

metrically. Suppose we have a nonparametric model Y = m(X)+ ε, in which

m(X) =
∑p

j=1 mj(Xj) is some unknown additive structure which is not nec-

essary linear and ε is some unknown random error. Consider the marginal

nonparametric regression

min
fj∈L2(P )

E(Y − fj(Xj))
2, (1.3)

where P denotes the joint distribution of (X, Y ) and L2(P ) denotes the class

of square integrable functions under measure P . The screening utility is con-

structed as Ef 2
j (Xj), where fj = E(Y |Xj) is the minimizer of the above

regression problem. To implement, fj is approximated by B-splines with

fj = π(t)Tβ, where π(t) = (B1(t), . . . , BN(t))
T is B-spline basis function.

The sample estimate of fj is

f̂nj = π(Xij)
T β̂j, (1.4)

where β̂j = argmin
β∈RN

∑n

i=1(Yi − π(Xij)
Tβ). Given a threshold νn, the selected

variables are defined by applying the screening utilities ‖f̂nj‖2n = n−1
∑n

i=1 f̂
2

nj ,

j = 1, . . . , p as follows:

Â =
{
1 ≤ j ≤ p : ‖f̂nj‖2n ≥ νn

}
.

The Sure Independence Ranking and Screening approach (SIRS) intro-

duced by Zhu et al. [56] is another popular variable screening method. Unlike

SIS and NIS, SIRS is a model free method that does not impose any specific

model structure. Formally, define the support of Y as Ψy and the conditional

distribution of Y given x as F (y|x) = P (Y < y|x). Define the active and

inactive set as

A = {j : F (y|x) functionally depends on Xj for some y ∈ Ψy}
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I = {j : F (y|x) does not functionally depends on Xj for any y ∈ Ψy} .

Under the assumption that F (y|x) depends on x only through βTxA for some

p1 ×K constant matrix β, where p1 = |A| is the number of active predictors

and K is some positive integer which is usually less than or equal to 3. That is,

F (y|x) = F0(y|βTxA), where F0(y|βTxA) is an unknown distribution function

for a given βTxA. Define Ω(y) = E {xF (y|x)}, then followed by the law of

iterated expectations we have

Ω(y) = E[xE {1(Y < y)|x}] = Cov {x,1(Y < y)} . (1.5)

Let Ωj(y) be the j-th element of Ω(y) and define the population marginal

screening utilities by

ωj = E
{
Ω2

j(y)
}
, j = 1, . . . , p. (1.6)

Estimators of ωj, j = 1, . . . , p are:

ω̃j =
1

n

n∑

k=1

{
1

n

n∑

i=1

Xij1(Yi < Yk)

}2

, j = 1, . . . , p. (1.7)

The ranking utility is derived by measuring a scaled version ω̂j = n3ω̃j/n(n−
1)(n−2). By ranking the magnitude of {ω̂j, j = 1, . . . , p}, the selected variables

are defined as

Â = {1 ≤ j ≤ p : Rank(ω̂j) ≤ Tn} , (1.8)

where Tn is some threshold value we will discuss later on.

The screening methods such as SIS and NIS work well in homoscedas-

ticity setting, whereas deteriorate when heteroscedasticity is present. He et

al. [21] proposed the Quantile Adaptive Sure Independence Screening (QaSIS)

framework to deal with heteroscedasticity. Benefited from quantile regression

and by the fact that QaSIS allows the set of active variables to vary across

different quantiles, QaSIS is capable of dealing with heteroscedasticity. Em-

pirically they also demonstrated that QaSIS works well against heavy tailed
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error distribution. Under the assumption that

Y and Xj are independent ⇐⇒ Qτ (Y |Xj)−Qτ (Y ) = 0,

they define the set of active variables as

Aτ = {1 ≤ j ≤ p : Qτ (Y |X) functionally depends on Xj} . (1.9)

Consequently, a screening utility is built on the sample estimate of Qτ (Y |Xj)−
Qτ (Y ), where Qτ (Y |Xj) = inf {y : P (Y ≤ y|Xj) ≥ τ} is the τ -th conditional

quantile of Y given Xj and Qτ (Y ) = inf {y : P (Y ≤ y) ≥ τ} is the τ -th un-

conditional quantile of Y . Consider the marginal quantile regression of Y on

Xj and denote

fj(Xj) = argmin
f

E[ρτ (Y − f(Xj))− ρτ (Y )], (1.10)

where ρτ (u) = u {τ − I(u < 0)} is the quantile loss function. Similar with the

NIS approach, they use B-spline approximation to approximate fj by π(t)Tβ

for some β ∈ RN , where π(t) = (B1(t), . . . , BN(t))
T is B-spline basis func-

tion. Let β̂j = argmin
β∈RN

∑n

i=1 ρτ (Yi − π(Xij)
Tβ) and define the nonparametric

estimator of Qτ (Y |Xj)−Qτ (Y ) as

f̂nj = π(Xij)
T β̂j − F−1

Y,n(τ), (1.11)

where F−1
Y,n(τ) is the τ -th sample quantile function based on Y1, . . . , Yn. Conse-

quently, by ranking on the magnitude of screening utilities ‖f̂nj‖2n = 1
n

∑n

i=1 f̂
2

nj ,

j = 1, . . . , p, we can implement the independence screening by setting up an

appropriate threshold value Tn. The selected variables are defined as

Â =
{
1 ≤ j ≤ p : Rank(‖f̂nj‖2n) ≤ Tn

}
. (1.12)

Shi [47] proposed to implement variable screening by combing quantile

levels. By aggregating the information of multiple quantile levels, Shi’s meth-
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ods show more efficiency compared with QaSIS. Considering quantile levels

{τk ∈ (0, 1), k = 1, . . . , K}, Shi defines the Average Quantile Utility(AQU) as

fAQR
j = K−1

∑K

k=1[Qτk(Y |Xj)−Qτk(Y )], which is expected to be close to zero

if Xj is independent with Y with Qτk(Y |Xj) and Qτk(Y ) being estimated the

same way as in QaSIS. If Xj contributes to the quantiles of Y only at several

quantile levels, it can also be captured by fAQR
j . Similar with QaSIS, B-spline

approximation is applied to estimate fAQR
j by π(t)Tβ for some β ∈ RN , where

β̂j = argmin
β∈RN

∑n

i=1 ρτ (Yi − π((Xij)
Tβ)). Define the nonparametric estimator

of fAQR
nj as

f̂AQR
nj =

1

K

K∑

k=1

[
π(Xij)

T β̂j(τk) + b̂j(τk)− F−1
Y,n(τk)

]
. (1.13)

Consequently, the screening is implemented by ranking the magnitude of screen-

ing utility

‖f̂AQR
nj ‖2n =

1

n

n∑

i=1

[ 1

K

K∑

k=1

(
π(Xij)

T β̂j(τk) + b̂j(τk)− F−1
Y,n(τk)

)]2
. (1.14)

The selected variables are defined as

Â =
{
1 ≤ j ≤ p : Rank(‖f̂AQR

nj ‖2n) ≤ Tn

}
. (1.15)

To combine the information of multiple quantile levels, the composite quantile

regression (CQR) [59] is also an option. It uses the assumption that some of

the coefficients are constant across quantile levels in the model. Given the in-

tercept term bCQR
j (τk) and coefficient βCQR

j , the composite quantile regression

estimates them as follows

({
b̂CQR
j (τk)

}
, β̂CQR

j

)
= argmin

b,β

K∑

k=1

n∑

i=1

ρτk(Yi − π(Xij)
Tβ − b(τk)). (1.16)

Consequently, the Composite Quantile Utility (CQU) which is defined as
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fCQR
j =

∑K

k=1[Qτk(Y |Xj)−Qτk(Y )] is estimated by

f̂CQR
nj =

K∑

k=1

[
π(Xij)β̂

CQR
j + b̂CQR

j (τk)− F̂−1
Y,n(τk)

]
. (1.17)

The screening is implemented by ranking the magnitude of screening utility

‖f̂CQR
nj ‖2n =

1

n

n∑

i=1

[ K∑

k=1

(
π(Xij)β̂

CQR
j + b̂CQR

j (τk)− F̂−1
Y,n(τk)

)]2
. (1.18)

As a result, the selected variables are defined as

Â =
{
1 ≤ j ≤ p : Rank(‖f̂CQR

nj ‖2n) ≤ Tn

}
. (1.19)

In addition to the AQU and CQU, Shi also proposed the corresponding weighted

version of the above two methods which are WAQU and WCQU respectively.

Besides the variable screening approaches introduced, there are many screen-

ing methods available in the literature. For nonparametric models, Fan et

al. [15] extended ISIS, without explicit definition of residuals, to a general

pseudo-likelihood framework. Li et al. [31] developed a sure independence

screening procedure based on the distance correlation under more general set-

tings to carry out marginal screening (DC-SIS). Shao et al. [46] proposed a

martingale difference correlation variable screening method (MDC-SIS). Kong

et al. [27] proposed a screening procedure by ranking the canonical correlation

between the response and all possible sets of k variables which makes this

method more efficient in keeping variables who have joint correlations with

the response. Kong et al. [28] developed a variable screening approach based

on distance correlation. Fan et al. [16] proposed a sure independent screen-

ing procedure based on Pearson correlation (P-IT). Pan et al. [41] proposed a

generic nonparametric sure independence screening procedure on Ball correla-

tion (BCor-SIS). Ma and Zhang [36] proposed a sure independence screening

procedure based on quantile correlation [30] (QC-SIS). Ma et al. [35] used a

quantile partial correlation criterion to measure the association of each pre-
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single classifier on the whole training set, we could draw subsamples from the

training set and train multiple classifiers on each of the subsamples. Similar

with subsampling, an alternative approach is bootstrap sampling [11] when

the subsamples which have the same size of the original data are derived by

random drawing from the original data with replacement.

(a) A general bagging procedure (b) Stability selection procedure

Figure 1.3: Comparison of bagging and stability selection: (a) First, multi-
ple subsamples or bootstrap samples are generated from the sample. Second,
multiple learners are trained on those subsamples separately. Last, a combina-
tion function is implemented to produce the bagging learner. (b) Similar with
bagging, stability selection apply a variable selection procedure on multiple sub-
samples. Then by setting up a threshold πthr, the selected variables are defined
as those variables that have selection probability greater than πthr.

One example of bagging in variable selection problem could be found in

stability selection [37]. When facing high dimensional data, variable selec-

tion stability is always a problem. In reality we are more concerned about the

finite sample performance. In order to get a finite sample familywise error con-

trol and an improved structure estimation, Meinshausen and Buhlmann [37]

proposed the stability selection method which is based on subsampling in com-

bination with selection algorithms such as LASSO and SCAD. In detail, they

look at the probability of each variable selected

Π̂λ
K = P

{
K ⊆ Ŝλ(A)

}
, (1.20)
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where A is a random subsample of {1, . . . , n}, K ⊆ {1, . . . , p}, λ is the regular-

ization parameter and the subsample size of bn/2c is selected as it resembles

most closely to the bootstrap [17]. Furthermore, we can set a cut-off threshold

πthr with 0 < πthr < 1 and the set of stable variables is defined as

Ŝstable =

{
K : max

λ∈Λ
(Π̂λ

K) ≥ πthr

}
, (1.21)

where Λ is a set of regularization parameters. Given exchangeability assump-

tions on the underlying model and the original selection procedure is not worse

than random guessing, we have an upper bound for the number of falsely se-

lected variables

E(V ) ≤ 1

2πthr − 1

q2Λ
p
, (1.22)

where V is the number of falsely selected variables, qΛ is the average number

of selected variables and p is the number of variables.

Instead of combining base learners in parallel to construct a better learner

such as bagging, boosting [4, 5, 43] is a family of algorithms that uses iterative

approach to convert weak learners to strong learners. In a binary classification

approach where we are trying to classify an instance as positive or negative, a

general boosting approach could be illustrated by the following example [55]:

Given the training sample drawn from a distribution D and the ground truth

function f . Suppose the space X is composed of three parts X1, X2 and X3

each taking 1/3 amount of the distribution. Unluckily, we only have a weak

learner that can only make correct classifications in spaces X1 and X2 but has

wrong classification in X3. Consequently, our learner (learner 1) at hand only

has a classification rate of 1/3. The idea of boosting is to make the algorithm

concentrates more on the mistakes made by learner 1 and thus improve the

learning algorithm. In the next step, we derive a new distribution D′ from D

which makes the mistakes made by learner 1 more evident thus making the

algorithm focuses more on the instances inX3. Then we can train a new learner

2 from D′. Consequently, learner 2 will probably have better results on X1 and

X3 but unsatisfying result on X2. This procedure can be repeated multiple

times till certain stopping criterion is reached. By appropriately combing all
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the learners via some combination function, the combined learner may have

correct classifications in X1 and maybe some errors in X2 and X3 thus leading

to a lower classification error in total.

(a) A general boosting procedure (b) ISIS procedure

Figure 1.4: Comparison of boosting and ISIS: (a) In step one, learner 1 is
trained on sample 1 which is the original sample. In step two, sample 2 is ad-
justed based on the deficiencies made by learner 1 to highlight the deficiencies.
Learner 2 is then trained on sample 2. The procedure can be repeated multiple
times till stopping criterion is reached. Last, by combining the learners, a boost-
ing learner is generated. (b) First, a two-scale procedure is implemented on the
sample to selecte A1. Second, regress Y over A1 to get residual ε1 and treat ε1
as the new response. Another two-scale procedure is applied and A2 is derived.
The procedure can be repeated multiple times till the size or the union A = ∪Ai

reach a predefined threshold.

The approach of Iterative Sure Independence Screeing (ISIS) [14] is close

to boosting. The SIS works well when all the model assumptions are satisfied.

However, some potential issues will deteriorate the performance of SIS. First,

when some unimportant predictors are highly correlated with the important

predictors, those unimportant ones will usually have high priority to be sur-

vived after applying SIS, since SIS only looks at the marginal correlations of

the predictors and response. Secondly, when some important predictors are

marginally uncorrelated but are jointly correlated with the response, SIS will

tend to neglect these variables. Thirdly, collinearity of predictors is still an is-

sue and adds difficulty to the variable screening problem. In order to overcome

these issues, especially the first two, Fan and Lv [14] proposed the Iterative

Sure Independence Screening (ISIS), which is a stepwise screening procedure

that guarantees us getting a size d < n subset in the screening process. More
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specifically, ISIS works as follows: In the first step, we apply SIS on the data

set to get the selected variables. Then followed by a variable selection method,

a subset of variables A1 = {X11, . . . , X1k1} is selected. In the second step, we

regress Y over X11, . . . , X1k1 to get the residuals ε1. In step three, we treat ε1

as the new response, then the same approach could be applied to the remain-

ing p− k1 variables resulting in a subset of k2 variables A2 = {X21, . . . , X2k2}.
We could repeat the procedure until we get l disjoint subsets A1, . . . ,Al whose

union A = ∪l
i=1Ai reaches a predefined threshold value. By fitting the resid-

uals from the previous step, we can significantly weaken the priority of the

unimportant variables that are highly correlated with the response through

their associations with Xi1, . . . , Xiki . Also, we can make some important vari-

ables that are missed in the previous step have higher probability to enter the

model. Similar approach could be found in Fan et al. [12] in which they use

the same idea to add an iterative procedure to the NIS approach.

1.3 Contributions

Variable screening plays an important role in the two-scale approach [14] to

deal with ultrahigh dimensional data. It is crucial that all the important vari-

ables are kept by the screening method applied in the first step. There are

many variable screening methods that work well with various assumptions.

However, two issues are associated with the existing variable screening meth-

ods. First, given finite sample, the stabilities of variable screening methods will

be deteriorated when some perturbations are injected to the sample. Second,

it is difficult to verify all the assumptions in reality which means we lack of

generic guideline to select an appropriate screening method. A natural choice

is to combine multiple screening methods to adapt more general assumptions.

Motivated by the widely application of ensemble methods in machine learning,

it is interesting to see if the ensemble methods are capable of dealing with the

issues associated with variable screening approaches. Instead of choosing one

specific variable screening algorithm, we suggest to combine the information

generated from multiple screening algorithms to get a more stable and precise

result.
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In particular, the contributions of this thesis are multifold: First, we intro-

duce five ensemble functions to combine the screening methods, namely, the

mean, median, rank mean, rank median and mean voting ensemble. Second,

we develop three ensemble approaches which are parallel ensemble screen-

ing, quantile ensemble screening and multi ensemble screening. In addition,

we combine the three approaches to produce a mixture ensemble screening.

Third, we provide the sure screening property of the ensemble screening ap-

proaches. Last, simulation studies are conducted for our proposed methods.

We also apply the proposed methods to the ADHD-200 data set. The rest of

this thesis is organized as follows. In Chapter 2, we introduce our proposed

methods including parallel, quantile, multi and mixture ensemble screening

methods. In Chapter 3, the simulation studies are conducted as well as the

real data analysis. The last chapter is the summary and future work of my

research.
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Chapter 2

Ensemble Based Ultrahigh

Dimensional Variable Screening

In this chapter, we introduce our ensemble based ultrahigh dimensional vari-

able screening methods. First we introduce some preliminaries to proceed our

ensemble screening methods. We adopt five different ensemble functions to

aggregate the results of different screening algorithms. Second, we propose

our three main approaches to generate parallel or heterogeneous screening al-

gorithms, we then propose to combine all of the three approaches to improve

the performance. Last, we show some technical results for the sure screening

property and error control.

2.1 Preliminaries

In the following, we consider a random sample {Xi, Yi}ni=1 from the population

(X, Y ) in which Y is the response and X = (X1, . . . , Xp) is the associated

covariate vector. Without loss of generality, we assume X are standardized

column-wisely. We first define active variables in our ensemble screening ap-

proach. The definitions of active variables are slightly inconsistent between

current available screening approaches. Among those definitions, the most
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commonly adopted one is

A = {j : F (y|x) = P (Y < y|x) functionally depends on Xj}

I = {j : F (y|x) = P (Y < y|x) does not functionally depends on Xj} ,

where F (y|x) = P (Y < y|x) is the conditional distribution function of Y given

x. If j ∈ A, Xj is considered as an active predictor. Otherwise, Xj will be

considered as an inactive predictor. In quantile based screening approaches,

QaSIS for example, the j-th variable is considered as active: j ∈ A ⇐⇒
Qτ (Y |Xj)−Qτ (Y ) 6= 0. Otherwise, when j-th variable is an inactive predictor:

j ∈ I ⇐⇒ Qτ (Y |Xj) − Qτ (Y ) = 0. In our ensemble approach, if Xj is

considered active in any of the candidate screening methods in the ensemble,

it is an active variable in our ensemble screening method. Otherwise, Xj is

considered as inactive. Intuitively speaking, whenXj is considered as an active

predictor, any change in the information of Xj should change the information

of the response Y .

In the following we introduce the ensemble functions we employ to aggre-

gate the results. By applying number of K screening algorithms on a sample

of n×p, a K×p matrix W with entries wij where i = 1, . . . , K and j = 1, . . . , p

representing the corresponding screening utilities are derived. In the next step,

we find appropriate ensemble functions to aggregate the results. A general en-

semble function is a multivariate function that projects the screening utilities

in the j-th column of W to a real number, that is,

f(w1j, . . . , wKj) → R.

Mean Ensemble: Taking means of prediction results is a commonly adopted

approach in machine learning literature [40, 55]. In our approach, mean en-

semble combines the output of the screening algorithms by taking the mean

of each column in W . Provided the screening utilities associated with the j-th
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column as w1j, . . . , wKj, the mean ensemble function is defined as

f(w1j, . . . , wKj) =
1

K

K∑

i=1

wij, j = 1, . . . , p. (2.1)

Median Ensemble: Instead of choosing the mean of w1j, . . . , wKj, we use the

median [40, 53], which is more robust when those screening utilities are skewed

or with outliers. Formally we have

f(w1j, . . . , wKj) = Median {w1j, . . . , wKj} , j = 1, . . . , p. (2.2)

Rank Mean Ensemble: Besides the magnitude of the original screening statis-

tics, the ranks of the screening utilities are useful benchmarks for variable

screening [14, 21, 56]. More specifically, the ranks of the variables are derived

by sorting the screening utilities {wj, j = 1, . . . , p}, denoted as {rj, j = 1, . . . , p}.
Therefore, the mean of ranks for the j-th variable is defined as

f(w1j, . . . , wKj) =
1

K

K∑

i=1

rij, j = 1, . . . , p. (2.3)

We remark that when the “rank” operation is implemented on the screening

utilities obtained by the screening algorithms directly, “rank” operation means

sorting the magnitude of the screening utilities from largest to smallest and

the largest screening statistics will be assigned a rank of 1. However, when

the “rank” operation is implemented on a sequence of aggregated ranks, the

“rank” operation will have an opposite result. For example, a rank series of

1.2, 5.4, 3.5, 2, 4.6 after “rank” operation is 1, 5, 3, 2, 4.

Rank Median Ensemble: We could also choose the median instead of the mean

of ranks. The median of ranks for the j-th variable is defined as

f(w1j, . . . , wKj) = Median {r1j, . . . , rKj} , j = 1, . . . , p. (2.4)

Mean Voting Ensemble: Voting [6, 10, 40, 55] is also a commonly adopted

ensemble function. Specifically, voting is implemented by specifying an binary
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indicator

bj =




1, if j-th variable is selected

0, if j-th variable is not selected
. (2.5)

Given a threshold Tn, after we have appliedK screening algorithms to the data,

we can construct a matrix containing all the K × p binary votes. Denoting

the votes made by the i-th screening algorithm and the j-th variable as bij,

the mean of the votes for the j-th variable is

f(w1j, . . . , wKj) =
1

K

K∑

i=1

bij, j = 1, . . . , p. (2.6)

We remark that to apply the natural extension of the mean voting ensemble to

median may not be a good choice. For example, in high dimensional variable

screening setting especially when the marginal signals are not strong enough,

the votes in each column will end up with zero frequently which makes the

median to be zero with high probability. Consequently, median ensemble fails

to work in the voting scenario and we will not use the median voting ensemble

in our framework. In some machine learning approaches, using min or max

function [40] to aggregate the results also plays an important role. Another ex-

ample could be found in pooling [45] technique in convolutional neural network

(CNN) [29] where max pooling is applied to implement dimension reduction

and to evade overfitting. In this thesis, we will not discuss the application of

min or max ensemble in variable screening as they only use tail information

hence not working well in variable screening scenario.

The choice of threshold Tn is important since it not only affects the result of

our screening algorithm but also determines the generation of the votes. In the

variable screening studies, there are two different threshold rules. The most

widely adopted one is the hard threshold rule proposed by Fan and Lv [14]. The

hard threshold rule sets a fixed number bn/ log(n)c for the number of selected

variables which only related to the sample size. Considering a sample of size

200, the hard threshold will specify a subset of size 37 which is large enough

to guarantee all the active variables to be selected. Consequently, as proposed

18



by Fan and Lv [14], the variable selection step of the two-scale procedure

could be applied on this subset to select the truly important variables. On the

other hand, the soft threshold introduced by Luo et al. [34] is a data driven

approach. By adding random noise variables to the original data set, the soft

threshold is derived by finding the largest screening utility or its corresponding

rank among all the random noise variables. Specifically, we generate number

of d noise variables Z following Nd(0, Id) which is independent with both X

and Y . In the screening process, we treat (X,Z) as the predictors and Y

as the response. The reasoning is, since Z is generated randomly, the active

variables in X should always rank in front of those noise variables. In this

thesis, without special notification, we adopt the hard threshold rule. We

choose the hard threshold not only because it requires less computational time

but also because when applying all the combinations, hard threshold gives us

a consistent benchmark. Further more, in the following sections we denote

Tn = bn/ log(n)c as our hard threshold.

2.2 Ensemble Screening Methods

Parallel Ensemble Screening: We adopt the technique in bagging [3] to imple-

ment our ensemble screening. More specifically, we draw random subsamples

or bootstrap samples number of K times from the original data set A, leading

to a series of data sets A1, . . . , AK . The subsampling or bootstrap sampling

approach could be considered as manipulating the training examples in ma-

chine learning [10]. We remark here when the subsample size is chosen by

bn/2c in the subsampling approach, it resembles most closely to the boot-

strap [17, 37]. By applying the screening algorithm such as SIS on each of the

subsample or bootstrap sample, we can derive a matrix W of K × p where

the i-th row contains the screening utilities corresponding to the variables of

i-th subsample or bootstrap sample Ai. Consequently, all the five ensemble

functions could be applied to this matrix to get the combined variable screen-

ing result. Denote the result by applying the ensemble functions column-wise

to W as {R1, . . . , Rp}. By setting up the threshold value Tn and obtaining
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the corresponding ranks of the combined utilities {R1, . . . , Rp}, the selected

variables are defined as

Â = {1 ≤ j ≤ p : Rank(Rj) ≤ Tn} . (2.7)

Quantile Ensemble Screening: The Quantile Adaptive Sure Independence

Screening (QaSIS) [21], although provides us a powerful tool against heavy-

tailed distribution or heteroscedasticity, only considered one specific quantile

level and may miss some variables when the active variables differ in changing

the quantile level. More specifically speaking, at a certain quantile level τ , we

consider the following set of active variables

Aτ = {1 ≤ j ≤ p : Qτ (Y |X) functionally depends on Xj} . (2.8)

However, the active variables derived by considering only one quantile level

τ are only a subset of A, which is not desirable since when the sample size

is limited, variability will arise in the set of selected variables as τ changes.

Therefore, we may miss some variables simply because we did not consider a

specific quantile level. For the pursue of interpretation, such variability is not

preferable either, because we need a consistent variable set to build our model.

Instead of using one specific quantile level, we adopt heterogeneous ensemble

by combining different quantile levels. In this way, we can not only employ

the information of multiple quantile levels, but also make each screening algo-

rithm more diverse which usually promotes the performance of the combined

learners in machine learning. To formalize, considering a sequence of quantile

levels τ1, . . . , τT , for each quantile level we could apply QaSIS or any other

quantile based variable screening approaches to the whole sample and derive

a vector of screening utilities {qi1, . . . , qip, i = 1, . . . , T}. Combining all the

vectors horizontally, a matrix Q is derived with entries qij representing the

screening utilities of i-th quantile level and j-th variable. Similarly, denote the

result by applying the ensemble functions to Q as {R1, . . . , Rp}. By setting up

the threshold value Tn and obtaining the corresponding ranks of the combined
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utilities {R1, . . . , Rp}, the selected variables are defined as

Â = {1 ≤ j ≤ p : Rank(Rj) ≤ Tn} . (2.9)

Multi Ensemble Screening: In ultrahigh dimensional variable screening, we

often do not have enough prior knowledge about the data structures and the

model specification. To our best knowledge, if the data structure is linear,

SIS or NIS will have a better performance. However, when the data struc-

ture is with heteroscedasticity or heavy tail, QaSIS or SIRS tends to have a

stronger performance. In general, current variable screening methods behave

quite differently based on different simulation settings or real data sets. In

gene expression microarray data analysis for example, the result of applying

different variable screening algorithms will probably be different. Given lim-

ited prior knowledge, it is difficult to tell which result is the most reliable. If

we misuse the variable screening method which eliminates some of the under-

lying biomarkers, then it is impossible for us to make further discoveries. A

natural idea would be combining the advantage of multiple variable screening

algorithms which will lead to a safe situation. To implement, suppose we have

K different screening methods and by applying them to the sample, we get

a matrix M containing the screening utilities mij, where i denotes the i-th

method, and j denotes the j-th variable. As the screening utilities of differ-

ent methods may have very different magnitudes, we can not directly combine

them by simply using the mean or median ensemble. Otherwise some screening

methods that produce relative large screening utilities will tend to dominate

the combined result. To tackle this issue, only the rank mean, rank median

and mean voting ensemble are applied. Denote the result by applying the en-

semble functions column-wise to matrix M as {R1, . . . , Rp}. Then by setting

up the threshold Tn and obtaining the corresponding ranks of the combined

utilities {R1, . . . , Rp}, the selected variables are

Â = {1 ≤ j ≤ p : Rank(Rj) ≤ Tn} . (2.10)
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Mixture Ensemble Screening: We have shown the parallel ensemble screening,

quantile ensemble screening and multi ensemble screening methods. Then it

would be promising to combine them to produce a mixture screening method.

We propose to apply quantile ensemble to quantile based methods and parallel

ensemble to non-quantile based methods. In detail, suppose we have K screen-

ing algorithms and K1 of them are quantile based, for example QaSIS, and the

other K2 = K−K1 are not. For the i-th of the K1 quantile based methods we

apply our quantile based screening method with quantile levels {τ1, . . . , τT},
which results in a matrix Qi as in quantile ensemble screening. By applying

the ensemble functions, vectors
{
Ri1 , . . . , Rip , i = 1, . . . , K1

}
containing the

ensembled information of Qi are derived. For the k-th of the K2 non-quantile

based methods, for example SIRS, we draw B random subsamples or bootstrap

samples A1, . . . , AB from the sample and apply the corresponding screening

algorithm separately on each of the subsample or bootstrap sample, which re-

sults in a matrix Wk as in parallel ensemble screening. By applying the ensem-

ble functions, we then end up with vectors
{
Rk1 , . . . , Rkp , k = K1 + 1, . . . , K

}

containing the ensembled information of Wk. Consequently, by combining{
Ri1 , . . . , Rip , i = 1, . . . , K1

}
and

{
Rk1 , . . . , Rkp , k = K1 + 1, . . . , K

}
horizon-

tally, a matrix M containing the aggregated results is constructed. Denote

{R1, . . . , Rp} as the combined information by applying the ensemble functions

column-wise to matrix M . By setting up a threshold Tn and obtaining the cor-

responding ranks of the combined utilities {R1, . . . , Rp}, the selected variables

are

Â = {1 ≤ j ≤ p : Rank(Rj) ≤ Tn} . (2.11)

2.3 Technical Results

As variable screening only serves as the first step in high dimensional data

analysis, the most important property as far as practical application con-

cerned is the sure screening property. That is, with probability approaching

1, the screening algorithm keeps all of the true active variables. Regarding the

screening utilities, we require all the screening algorithms in the ensemble en-
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joy consistency of the screening utilities, that is, P (max
1≤j≤p

|ŵij −wij| > δn) → 0

for all 1 ≤ i ≤ K, where wij is the corresponding screening utility for screen-

ing algorithm i and variable j, δn is some threshold number that is usually

related to n. We argue that this requirement is reasonable as it is shown in

most variable screening literatures [12, 21, 56]. In addition we require that the

sure screening property holds for each screening algorithms. For the quantile

based variable screening algorithms, the QaSIS for example, we require the

sure screening property holds at each quantile level τk which means the se-

lected variables contain the true active set Ak with a probability tending to

one.

Lemma 2.3.1. (Consistency of aggregated screening utilities) Given num-

ber of K screening algorithms which are based on screening utilities wij, i =

1, . . . , K and j = 1, . . . , p. Denote f as the ensemble function. Assume the

following:

P (max
1≤j≤p

|ŵij − wij| > δn) → 0

|f(ŵ1j, . . . , ŵKj)− f(w1j, . . . , wKj)| ≤ max
1≤i≤K

|ŵij − wij|,

in which δn is some threshold constant related to n. We have the consistency

of the aggregated screening utility which is:

P (max
1≤j≤p

|f(ŵ1j, . . . , ŵKj)− f(w1j, . . . , wKj)| > δn) → 0.

Proof. Given |f(ŵ1j, . . . , ŵKj)−f(w1j, . . . , wKj)| ≤ max
1≤i≤K

|ŵij−wij|, for a fixed
δn, we have

P (max
1≤j≤p

|f(ŵ1j, . . . , ŵKj)− f(w1j, . . . , wKj)| > δn)

< P (max
1≤j≤p

| max
1≤i≤K

|ŵij − wij|| > δn).

As for all i, 1 ≤ i ≤ K we have:

P (max
1≤j≤p

|ŵij − wij| > δn) → 0.
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Hence,

P (max
1≤j≤p

|f(ŵ1j, . . . , ŵKj)− f(w1j, . . . , wKj)| > δn) → 0.

Theorem 2.3.2. (Sure screening property) Denote wj as the j-th aggregated

screening utility, and w∗
j as the sample estimate. Denote A as the active vari-

able set. Assume min
j∈A

wj > 2δn and our screening method select the variables

with w∗
j > δn. Given the assumptions of the previous lemma, we have the sure

screening property for our ensemble screening approach:

P (A ⊆ Â) → 1,

in which δn is some threshold number related to n.

Proof. Suppose A * Â, then there must be some j ∈ A such that w∗
j ≤ δn.

As min
j∈A

wj > 2δn, there must be some j ∈ A such that |w∗
j − wj| > δn. We de-

note those j as J∗. DenotingW =
{
j ∈ J∗ : A * Â

}
and M =

{
j ∈ J∗ : |w∗

j − wj| > δn
}
,

hence the above statement is equivalent to

W ⇒ M.

Hence,

WC ⊇ MC .

Therefore,

η = MC =

{
max
j∈J∗

|w∗
j − wj| ≤ δn

}
⊆

{
j ∈ J∗ : A ⊆ Â

}
.

Consequently,

P
{
j ∈ J∗ : A ⊆ Â

}
≥ P (η)

=1− P (ηC)

=1− P (
{
j ∈ J∗ : |w∗

j − wj| > δn
}
).
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For each j, we have: P (|w∗
j − wj| > δn) → 0 as was shown in Lemma 2.3.1.

Finally, as J∗ is a finite set, we have

P (A ⊆ Â) → 1.

Remark. For different variable screening methods, the threshold δn may differ.

For example, QaSIS requires δn to be c1n
−τ/8, where c1 > 0 is some positive

constant and 0 ≤ τ < 2d/(2d+ 1) with d > 0.5. In SIRS procedure, they only

require δn to be any small enough number ε. To guarantee the sure screening

property holds for our ensemble procedure, we just need δn to be the smallest

among all the thresholds we combined. Given n large enough, the magnitude

of δn could be a sufficient small number.

Lemma 2.3.3. (Lower bound for simultaneous screening probability) Denote

T̂1 and T̂2 as two selected sets by applying two different screening algorithms.

Define T̂ simu = T̂1∩T̂2 as the variable set selected by both of the screening algo-

rithms. Define Π̂1
K, Π̂

2
K, Π̂

simu
K as the probabilities of selected set of screening

algorithm 1, screening algorithm 2 and the simultaneous set containing a vari-

able set K, K ⊆ {1, . . . , p}. Then we have:

Π̂simu
K ≥ 2min

{
Π̂1

K , Π̂
2
K

}
− 1.

Proof. Denote s(1, 1) as the probability of P
[{

K ⊆ T̂1

}
,
{
K ⊆ T̂2

}]
. Note

that the two events are not independent as the probability is only with respect

to the screening algorithm chosen. Correspondingly, the probabilities s(0, 1),

s(1, 0) and s(0, 0) are defined as

P
[{

K * T̂1

}
,
{
K ⊆ T̂2

}]
, P

[{
K ⊆ T̂1

}
,
{
K * T̂2

}]
and

P
[{

K * T̂1

}
,
{
K * T̂2

}]
respectively. Note that:

Π̂simu
K = s(1, 1);

Π̂1
K = s(1, 0) + s(1, 1), 1− Π̂1

K = s(0, 1) + s(0, 0);
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Π̂2
K = s(0, 1) + s(1, 1), 1− Π̂2

K = s(1, 0) + s(0, 0).

As s(0, 0) ≥ 0, we have:

s(0, 1) ≤ 1− Π̂1
K , s(1, 0) ≤ 1− Π̂2

K .

Hence we have:

s(1, 1) ≥ Π̂1
K + Π̂2

K − 1.

Hence, Π̂simu
K ≥ 2min

{
Π̂1

K , Π̂
2
K

}
− 1.

Lemma 2.3.4. Let K ⊂ {1, . . . , p} be a set of variables and T̂i be the set of

selected variables by applying a variable screening algorithm i. If

max
{
P (K ⊆ T̂1), P (K ⊆ T̂2)

}
≤ ε, then

P (Π̂simu
K ≥ ξ) ≤ ε2/ξ.

Proof. Define H = 1
{
K ⊆

{
T̂1 ∩ T̂2

}}
and denote the data by X. Then the

simultaneous probability is Π̂simu
K = E(H|X).

Since max
{
P (K ⊆ T̂1), P (K ⊆ T̂2)

}
≤ ε, we have

P (H = 1) ≤ max
{
P (K ⊆ T̂1), P (K ⊆ T̂2)

}2

≤ ε2.

Therefore, E {E(H|X)} = E(Π̂simu
K ) ≤ ε2. By using a Markov-type inequality,

ξP (Π̂simu
K ≥ ξ) ≤ E(Π̂simu

K ) ≤ ε2. The case for more than two screening

algorithms follows analogously.

Theorem 2.3.5. (Error control) Denote S = |T | and N = |F| as the num-

ber of underlying true important and unimportant variables. Correspondingly,

denote Ŝ = |T ∩ T̂ simu| and N̂ = |F ∩ F̂ simu| as the number of estimated im-

portant and unimportant variables. In addition denote V = E(|F ∩ T̂ simu|) as
the expected number of falsely selected variables in T̂ simu. Assume exchange-

ablity which is P (k ∈ T̂ ) = E(N̂)/N , where k ∈ (1, . . . , p). Also assume that

the candidate variable screening process is not worse than random guessing.
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Given the screening threshold Tn and the threshold of selection probability πthr,

we have:

E(V ) ≤ 1

2πthr − 1

T 2
n

p
.

Proof. The expected number of falsely selected variables can be expressed as

E(N̂) = Tn − E(Ŝ). By the assumption that the original process is not worse

than random guessing, we have

E(Ŝ) ≥ E(N̂)S/N.

Putting them together, we have

(1 + S/N)E(N̂) ≤ Tn.

Hence, N−1E(N̂) ≤ Tn/p. By applying the exchageablility assumption, we

have

P (k ∈ T̂ ) ≤ Tn/p.

By applying Lemma 2.3.3 and Lemma 2.3.4, we have

P
(
min

i
Π̂i

k ≥ πthr

)
≤ P

([
(Π̂simu

k + 1)/2
]
≥ πthr

)
,

which implies

P
(
Π̂simu

k ≥ πthr

)
≤ 1

2πthr − 1
(
Tn

p
)2.

Therefore,

E(V ) =
∑

k∈N

P
(
Π̂simu

k ≥ πthr

)
≤ 1

2πthr − 1

T 2
n

p
.

Remark. If a variable is important, the underlying true ranking of the variable

is higher than the other unimportant variables. With a threshold Tn, the true

important variables are supposed to rank within Tn. If Tn is a relative small

number say 30, and the probability threshold πthr is decently greater than 50%,

given p = 1000 the expectation number of falsely discovered variables could be
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controlled within a small number. Intuitively, when each candidate screening

method is good enough and the threshold Tn is small, the number of falsely

selected variables could be controlled at a very low level.
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Chapter 3

Numerical Studies

3.1 Simulation Studies

In order to assess the finite sample performance of our methods, for conve-

nience, we make some notations as follows: (1) We denote the parallel ensem-

ble screening results of SIS, NIS, SIRS and QaSIS as PSIS, PNIS, PSIRS and

PQaSIS respectively. Regarding different ensemble functions, using PQaSIS

for example, we use PQaSIS mean, PQaSIS median, PQaSIS Rmean, PQa-

SIS Rmedian and PQaSIS Bmean to denote the mean, median, rank mean,

rank median and mean voting ensemble respectively. (2) Regarding the quan-

tile ensemble screening, we denote our method as QES. The mean, median,

rank mean, rank median and mean voting ensemble functions are denoted

same as in parallel ensemble screening. (3) For the multi ensemble screen-

ing, we denote it as MultiSIS. In this simulation study, we only use the rank

mean and rank median ensemble functions which are denoted the same way

as in parallel ensemble screening. (4) For the mixture ensemble screening, we

denote it as MixSIS. Same with multi ensemble approach, we only use rank

mean and rank median ensemble functions which are denoted the same way

as in parallel ensemble screening.

We consider the following distributions for the error term ε:

1. the standard normal distribution;

2. student-t distribution with degree of freedom one, which is also known
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as the Cauchy distribution;

3. mixture normal distribution: 0.9N(0, 1) + 0.1N(10, 1).

In the parallel and mixture ensemble screening approaches, we use boot-

strap samples and the number of bootstrap samples is set to be 30. The

quantile ensemble screening approach is implemented by combining 10 equally

spaced quantile levels {0.05, 0.15, . . . , 0.85, 0.95}. The multi ensemble screen-

ing is done by combining the results of NIS, QaSIS at quantile level 0.75 and

SIRS. We choose NIS over SIS since in most of the settings, these two have

similar performance but NIS is nonparametric and can handle nonlinear cases.

As in ensemble methods, the performance will usually be better when the

algorithms we combined show diversity. To compute QaSIS, NIS as well as

our methods, the number of B-spline basis functions is set to be 5. Regard-

ing the mixture ensemble screening, we also use NIS, QaSIS and SIRS as our

candidate methods. In the first step, for QaSIS, we adopt quantile ensem-

ble screening by combining the results on ten equally spaced quantile levels

{0.05, 0.15, . . . , 0.85, 0.95}. After getting the 10 × p matrix containing the

corresponding screening utilities, we employ our rank mean and rank median

ensemble functions to aggregate the results. For the other two methods, we

employ bootstrap sampling approach 30 times each and derive two 30× p ma-

trices containing the screening utilities. Then we apply the same rank mean

and rank median ensemble functions to aggregate the results. In the next

step, we further apply the rank mean and rank median ensemble functions to

combine the vectors containing the ensembled results of the first step.

In this study, we consider two criteria [56] for the evaluation of simulation

models. The first criterion is R which is the minimum model size to contain

all the true active predictors. The second criterion is the proportion of the

active predictors being included in the model after screening procedure which

is denoted by S. In this simulation study, each method is repeated 100 times

to exclude occasional bias. The median value of both R and S are reported in

our results. We use IQR(R) and IQR(S) to illustrate the spread of R and S in

the 100 runs. The number of true active variables is denoted as p∗. By looking

at these two criteria, we would except an effective screening procedure tend

to produce a reasonably small R that is as close to the total number of true

30



activate variables as possible and a relative large S that is close to or equal

to one. In addition, we would also expect an efficient screening algorithm to

have small IQR(R) and IQR(S) to show stability. In the following we use

boxplots to illustrate the results. The results of R showing in the boxplots

are preprocessed to remove extreme values. The detailed tables are shown in

appendices.

EXAMPLE 1: (n = 200, p = 2000). This example is adopted from Fan and

Lv [14] which is a linear model of the form

Y = Xβ + ε,

in which all the columns of X are generated from a standard normal distribu-

tion and ε is a standard normal random error term. There are in total eight

true active predictors which are generated as follows: set a = 4 log(n)/n
1

2

and the coefficients corresponding to the active predictors are derived by

(−1)u(a + |z|), where u follows a Bernoulli distribution with p = 0.4 and

z is drawn from a standard normal distribution.

Considering the results of quantile ensemble for Example 1 with normal

error (Figure 3.1, Table 4), we observe the following: The performance of our

candidate QaSIS at quantile levels 0.25, 0.5 and 0.75 are not satisfying. The

medians of R for the candidates are 354, 210 and 322 respectively. Compared

with the candidates, we observe some improvements in our quantile ensemble

methods, where we see decreases in the magnitudes of R with respect to all

our ensemble functions. Specifically, the medians of R drop to 89, 97, 69, 99.5

and 163 with respect to our five ensemble functions. Considering IQR(S),
all of our ensemble methods show smaller IQR except for the mean voting

ensemble. Regarding S, the medians all increase to 0.875 which is higher

than our candidates which have medians of 0.75. This fact shows that our

quantile ensemble method is capable of discovering more active variables than

the candidate QaSIS method.
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Figure 3.1: Example 1, quantile ensemble, ε =normal

EXAMPLE 2(a): (n = 400, p = 1000). This example is originally from Fan

et al. [12]. First, define the following functions

g1(x) = x;

g2(x) = (2x− 1)2;

g3(x) = sin(2πx)2/(2− sin(2πx));

g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)3 + 0.5 sin(2πx)3.

The random data are generated from:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) +
√
1.74ε,

whereX = (X1, . . . , X1000) follows a multivariate normal distributionN (µ,Σ)
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in which µ = 0 and Σij = ρ|i−j| with ρ = 0.8.

EXAMPLE 2(b): (n = 400, p = 1000). Same as Example 2(a), except that

ρ = 0.6.

Figure 3.2: Example 2(b), mixture ensemble, ε =Cauchy

Considering the results of mixture ensemble method for Example 2(b) with

Cauchy error (Figure 3.2, Table 32), we observe the following: Among three of

our candidate methods, SIRS shows the best result. QaSIS and NIS are decent

but fail to discover all the active variables in some occasional cases. Com-

pared with the candidates, our MixSIS Rmean and MixSIS Rmedian show

almost perfect performance regarding R with MixSIS Rmean performing ex-

actly the same with SIRS and MixSIS Rmedian performing even better than

SIRS. Regarding S, both of our methods show medians of 1. The IQR(S) of
MixSIS Rmean is 1 and MixSIS Rmean is 0. This example shows that when
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all the candidate work decently, our mixture ensemble method may lead to a

better performance.

EXAMPLE 3: (n = 200, p = 2000). This example is adopted from Zhu et

al. [56], where the random data is generated from

Y = 2(X1 + 0.8X2 + 0.6X3 + 0.4X4 + 0.2X5) + exp(X20 +X21 +X22) · ε.

X = (X1, X2, . . . , X2000) follows a multivariate normal distribution with the

same correlation structure described in Example 2. Being different from the

first two examples, this model is heteroscedastic with the number of active

variables 5 at the median but 8 elsewhere. Compared with other examples,

this example is more challenging hence deserves more discussion.

Figure 3.3: Example 3, parallel ensemble(PSIS), ε =normal

(1) For the parallel ensemble of SIS, we could observe the following (Figure
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3.3, Table 34): The performance of SIS is poor in a sense that it fails to discover

all the active variables. Our parallel ensemble screening method manages

to promote the performance of SIS. Specifically, the median of R for SIS is

above 1500. By applying our parallel ensemble method we observe decreases

in all our ensemble functions with all of them showing medians of R below

1500. In addition, we observe IQR(R) showing decreases in PSIS median and

PSIS Rmedian. Regarding S, our methods show slightly better result for mean

and mean voting ensemble functions.

Figure 3.4: Example 3, parallel ensemble(PSIRS), ε =normal

(2) For the parallel ensemble of SIRS, we could observe the following (Fig-

ure 3.4, Table 34): In this heteroscedastic example, SIRS performs decently

with a relative low R and a high S. Both the candidate SIRS and our par-

allel ensembles show similar medians of R. Considering the spread of R,

except for the mean voting ensemble, our methods show better results which
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means the screening results are more stable. Regarding S, our PSIRS median,

PSIRS Rmean and PSIRS Rmedian show similar results with PSIRS Rmean

slightly better.

Figure 3.5: Example 3, multi ensemble, ε =mixture normal

Considering the results of multi ensemble method for Example 3 with mix-

ture normal error (Figure 3.5, Table 42), we observe the following: Among the

three candidate screening methods, only SIRS is working well. NIS fails to

work with median of R more than 1500. QaSIS is better than NIS but still

fails to discover all the active variables in most of the 100 runs. With two of

the three candidate models working poorly, our MultiSIS Rmedian manages to

work well. Specifically, the median of R is around 25 and the IQR(R) is 25.75,

which means our method performs slightly weaker than SIRS but much better

than QaSIS and NIS. Regarding S, the performance of our MultiSIS Rmedian

is also much better than QaSIS and NIS. This example shows, as long as one
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method in our ensemble works, the result may be satisfying.

Figure 3.6: Example 3, mixture ensemble, ε =mixture normal

Considering the results of mixture ensemble method for Example 3 with

mixture normal error (Figure 3.6, Table 45), we observe the following: The

results are similar as in multi ensemble. However, benefited from parallel

ensemble and quantile ensemble, our MixSIS Rmedian outperforms SIRS. In

detail, the median of R is 10 for MixSIS Rmedian and IQR(R) is around 5.

Regarding the performance with respect to S, our MixSIS Rmedian also shows

the best performance compared with all candidate methods.

3.2 Real Data Analysis

In this section, we use the ADHD-200 data to illustrate the performance

of our proposed ensemble method. Attention deficit hyperactivity disorder
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(ADHD) is a brain disorder marked by an ongoing pattern of inattention and

hyperactivity-impulsivity that interferes with functioning or development. The

psychopathology of ADHD is marked by developmentally inappropriate and

pervasive expressions of inattention, overactivity and impulsiveness. ADHD

is the most commonly diagnosed mental disorder of children. Children with

ADHD may be hyperactive and unable to control their impulses, or they may

have trouble paying attention. ADHD is usually discovered during the early

school years, when a child begins to have problems paying attention. Adults

with ADHD may have trouble managing time, being organized, setting goals

and holding down a job. They may also have problems with relationships,

self-esteem. The understanding of the underlying pathophysiology of neu-

ropsychiatric illnesses remains unclear [32] and few biomarkers are discovered

to be related to ADHD [39]. Instead of biomarker detection approaches, re-

cent development of medical imaging such as functional magnetic resonance

imaging (fMRI) and diffusion tensor imaging (DTI) shows promising potential

in predicting patients outcomes and understanding the underlying pathophys-

iology of diseases [8, 18, 42, 52].

We use the ADHD-200 Consortium data which is a publicly available

resting-state fMRI (rs-fMRI) data [38] in this study. fMRI measures brain

activity by detecting changes associated with blood flow [24]. This technique

relies on the fact that cerebral blood flow and neuronal activation are cou-

pled. When an area of the brain is in use, blood flow to that region also

increases [33]. rs-fMRI is useful for exploring the brain’s functional organi-

zation and determining whether it is altered in neurological or psychiatric

diseases. Resting-state functional connectivity research has revealed a number

of networks which are consistently found in healthy subjects, different stages

of consciousness and represent specific patterns of synchronous activity [1, 23].

This data set contains 120 subjects (n = 120) from the NYU site (New York

University Child Study Center) of the ADHD-200 Consortium. The Anatom-

ical Automatic Labeling (AAL) atlas [51] was used for the parcellation.

In this study, our goal is to find which partial connectivity pair of ROIs

(region of interest) is contributing to the ADHD express levels hence each

partial connectivity is considered to be a variable. For each subject, there are
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172 time courses and the AAL has 116 ROIs. We use the suffixes .L and .R

to differentiate the left and right hemispheres for some bilateral regions. The

cerebra include 90 regions (45 in each hemisphere), and the cerebella include 26

regions (9 in each cerebellar hemisphere and 8 in the vermis). With respect to

the 120 subjects, 42 are typically developing children showing ADHD negative

and 78 are diagnosed as ADHD. For each subject, we obtain the mean time

series for each of the 116 regions by averaging the fMRI time series over all

voxels in the region, hence initially we have p = (116 × 116 − 116)/2 = 6670

predictors. The partial correlation coefficient which measures the degree of

the association between two interested regions are computed while controlling

the effect of the remaining regions.

In the first step of the analysis, because of the large p small n scenario

(n = 120, p = 6670), a variable screening procedure is necessary to remove

some noise partial connectivities in order to apply lower dimensional vari-

able selection approaches. For the same ADHD-200 data set, Karunamuni et

al. [26] also applied a two-scale approach. In the screening step, they applied

a Fisher’s r-to-z transformation to improve the normality. Then they applied

a two-tailed t test between the z values of the ADHD group and the control

group to determine whether the functional connectivities are different. The

selected significant functional connectivities between the ADHD subjects and

the controls must satisfy two criteria: (1) Significantly different z values at the

threshold of p < 0.01; (2) z values for the correlations that are significantly

different from zero between groups at the threshold of p < 0.01. After this

screening step, they selected p = 34 functional connectivities for the further

variable selection approach.

In the screening step of our approach, we apply our mixture ensemble

screening approach with the rank median ensemble function which is the best

performed method in the simulation studies. We adopt the same settings as

in the simulation studies to implement the screening. In the variable selec-

tion step, we employ both LASSO and SCAD by using R package glmnet

and ncvreg. The tuning parameters in LASSO and SCAD are selected by

five folds cross validation. The variable screening and selection results are

showed in Table 3.1. In the next step, we choose 19 variables that are si-
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multaneously selected by both LASSO and SCAD. For the classification, we

adopt the support vector machine classifier (SVM) [22] with linear kernel by

using the R package caret. The tunning parameter of SVM is selected by 10

folds cross validation. In order to get rid of occasional bias, firstly, the data

are split by a bootstrap procedure 100 times to produce 100 train and test

data pairs. Secondly, the SVM classifier are trained and tested 100 times on

those data pairs. Consequently, the prediction accuracies are collected for each

classification procedure.

(a) Boxplot for 100 prediction accu-
racies

(b) Histogram for 100 prediction ac-
curacies

Figure 3.7: Classification results for ADHD-200

By looking at the classification results, we reach a prediction accuracy of

around 81%, showing that the ROI connectivities we selected via the two-

scale approach are significant in predicting ADHD. This high prediction rate

therefore indicate we did not miss too many important predictors in screening

step.
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Table 3.1: Variable selection for mixture screening

ROI Connectivity LASSO SCAD

Frontal Sup Orb L.Rolandic Oper R -1.264142587 -1.886468375
Frontal Inf Tri L.Olfactory L -1.196284422 -1.949297171
Olfactory L.Insula R 0 0
Insula R.Fusiform L 1.680086247 1.936251836
Amygdala R.Postcentral R 0.869929748 1.426413766
Fusiform R.Postcentral R -0.986139105 -1.997351631
Occipital Mid R.Parietal Inf R -1.652724358 -2.195266055
Hippocampus L.Precuneus L -0.220848226 -0.40806945
ParaHippocampal R.Precuneus R -1.082784621 -1.750876231
Precuneus R.Caudate L -1.489974656 -2.158762855
Frontal Inf Tri L.Putamen R 0 0.025047932
Parietal Inf L.Temporal Pole Sup R 0 0
Thalamus L.Temporal Pole Mid R 1.432851072 1.765494134
Temporal Pole Sup L.Temporal Inf R 0 0
Temporal Pole Sup R.Temporal Inf R -0.606877197 -1.339274016
Temporal Pole Sup L.Cerebelum 3 L 0 0
Parietal Sup R.Cerebelum 4 5 L -0.372403171 -0.598690565
Frontal Sup Orb L.Cerebelum 6 R 1.542967614 1.974995426
Caudate L.Cerebelum 8 L -0.08231351 -0.206272823
Cerebelum 7b R.Cerebelum 8 L 1.35054048 1.563113485
Temporal Pole Mid L.Cerebelum 8 R 0.857221497 1.3822996
Frontal Sup Medial L.Cerebelum 10 R 1.655181645 2.163348383
Temporal Mid L.Vermis 8 1.444627193 1.765395888
Supp Motor Area L.Vermis 10 -0.022173236 0
SupraMarginal R.Vermis 10 0.612759358 1.470068916
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Chapter 4

Conclusions and Future

Research

By applying our ensemble screening approaches and employing the mean,

median, rank mean, rank median and mean voting ensemble functions, we

managed to implement ensemble techniques conveniently and efficiently in

the variable screening scenarios. Considering the performance of our ensem-

ble methods, we give a brief summary as follows: (1) The parallel ensemble

screening will generally improve the performance of poorly performed screen-

ing algorithms and increase stability. For the methods that are already well

performed, the effect may be minor. (2) The quantile ensemble screening will

improve the performance of the candidate quantile based screening algorithms.

In our simulations, the performance of ensembled QaSIS is boosted and some-

times outperforms other candidate methods. (3) The multi ensemble screening

by combining different screening methods is benefited from all the candidate

methods. (4) The mixture ensemble which is a hybrid of all our proposed

ensemble screening methods is very promising in a sense that it is benefited

from all of the three ensemble methods. Compared with other methods, it

performs the best most of the times.

In addition, regarding the performance of the five ensemble functions, we

have the following conclusions: (1) Mean voting ensemble seems the least

preferred ensemble function since in general it has the weakest performance

42



among all our ensemble functions. (2) In most of the settings, rank median

ensemble function is the best performed among the five ensemble functions we

adopted. Therefore, we recommend to use the rank median ensemble function

in most of the screening problems.

The following issues related to this thesis deserve further discussion: (1) A

natural extension of our mean, rank mean and mean voting ensemble is the

weighted mean ensemble. Variable screening is different with the classification

problem where we are offered training data that the true labels are given.

However, in variable screening setting, we do not know which variable is the

true active one. A tentative approach could be defining the weight as the

reliability of each individual screening algorithms in which the reliability could

be the variable reoccurrence. In our mixture ensemble screening for example,

if the same set of variables are kept by a certain screening method multiple

times based on different bootstrap samples, the variable reoccurrence would

be considered high hence this method will be considered stable and assigned

with higher weight. (2) We only adopted the hard threshold rule in this thesis

for the sake of convenience and saving computation power. However, the soft

threshold rule may be more applicable in weighted mean voting ensemble. The

hard threshold rule is set as a number bn/ log(n)c and this number will usually

be much larger than the number of active variables. When considering a larger

set of selected variables, it is more likely to have fluctuated sets instead of stable

ones. The soft threshold rule will be likely to produce a smaller selected set

which is more handy in distinguishing the stable methods from the unstable

ones. (3) In our multi ensemble and mixture ensemble approaches, we only

combined three screening methods. With a large amount of screening methods

available, it is possible to ensemble more methods to produce a better multi

ensemble or mixture ensemble screening method.
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nal of the Royal Statistical Society: Series B (Statistical Methodology),
72(4):417–473, 2010.

[38] Michael P Milham, Damien Fair, Maarten Mennes, and Stewart Mostof-
sky. The ADHD-200 consortium: a model to advance the translational
potential of neuroimaging in clinical neuroscience. Frontiers in Systems
Neuroscience, 6:62, 2012.

[39] Eric J Nestler and Steven E Hyman. Animal models of neuropsychiatric
disorders. Nature Neuroscience, 13(10):1161, 2010.

[40] Tien Thanh Nguyen, Xuan Cuong Pham, Alan Wee-Chung Liew, and
Witold Pedrycz. Aggregation of classifiers: a justifiable information gran-
ularity approach. IEEE Transactions on Cybernetics, pages 1–10, 2018.

[41] Wenliang Pan, Xueqin Wang, Weinan Xiao, and Hongtu Zhu. A generic
sure independence screening procedure. Journal of the American Statis-
tical Association, Doi: 10.1080/01621459.2018.1462709, 2018.

[42] Serge ARB Rombouts, Jessica S Damoiseaux, Rutger Goekoop, Frederik
Barkhof, Philip Scheltens, Stephen M Smith, and Christian F Beckmann.
Model-free group analysis shows altered bold fMRI networks in dementia.
Human Brain Mapping, 30(1):256–266, 2009.

47



[43] Robert E Schapire and Yoav Freund. Boosting: Foundations and Algo-
rithms. MIT press, 2012.

[44] Mark Schena. Microarray Analysis. Wiley-Liss Hoboken, NJ, 2003.

[45] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pool-
ing operations in convolutional architectures for object recognition. In
Artificial Neural Networks–ICANN 2010, pages 92–101. Springer, 2010.

[46] Xiaofeng Shao and Jingsi Zhang. Martingale difference correlation and
its use in high-dimensional variable screening. Journal of the American
Statistical Association, 109(507):1302–1318, 2014.

[47] Qian Shi. Variable screening based on combining quantile regression.
Master’s thesis, University of Alberta, 2014.

[48] John G Sled, Alex P Zijdenbos, and Alan C Evans. A nonparametric
method for automatic correction of intensity nonuniformity in MRI data.
IEEE Transactions on Medical Imaging, 17(1):87–97, 1998.

[49] Daniel Stucht, K Appu Danishad, Peter Schulze, Frank Godenschweger,
Maxim Zaitsev, and Oliver Speck. Highest resolution in vivo human brain
MRI using prospective motion correction. PLOS ONE, 10(7), 2015.

[50] Robert Tibshirani. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society. Series B (Methodological), (1):267–
288, 1996.

[51] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou,
Fabrice Crivello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and
Marc Joliot. Automated anatomical labeling of activations in SPM us-
ing a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage, 15(1):273–289, 2002.

[52] Liang Wang, Yufeng Zang, Yong He, Meng Liang, Xinqing Zhang, Lixia
Tian, Tao Wu, Tianzi Jiang, and Kuncheng Li. Changes in hippocampal
connectivity in the early stages of Alzheimer’s disease: evidence from
resting state fMRI. Neuroimage, 31(2):496–504, 2006.

[53] Faisal Zaman and Hideo Hirose. A robust bagging method using median as
a combination rule. 2008 IEEE 8th International Conference on Computer
and Information Technology Workshops, pages 55–60, 2008.

[54] Cun-Hui Zhang. Nearly unbiased variable selection under minimax con-
cave penalty. The Annals of Statistics, 38(2):894–942, 2010.

48



[55] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC, 2012.

[56] Liping Zhu, Lexin Li, Runze Li, and Lixing Zhu. Model-free feature
screening for ultrahigh-dimensional data. Journal of the American Sta-
tistical Association, 106(496):1464–1475, 2011.

[57] Alex P Zijdenbos, Reza Forghani, and Alan C Evans. Automatic pipeline
analysis of 3-D MRI data for clinical trials: application to multiple scle-
rosis. IEEE transactions on medical imaging, 21(10):1280–1291, 2002.

[58] Hui Zou. The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101(476):1418–1429, 2006.

[59] Hui Zou and Ming Yuan. Composite quantile regression and the oracle
model selection theory. The Annals of Statistics, 36(3):1108–1126, 2008.

49



Appendices

50



Table 1: Example 1, Parallel Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 210 514.5 0.75 0.25 8
PQaSIS mean(0.5) 170.5 497.25 0.75 0.125 8
PQaSIS median(0.5) 214 592.75 0.75 0.125 8
PQaSIS Rmean(0.5) 179 530.125 0.875 0.125 8
PQaSIS Rmedian(0.5) 204.75 535.875 0.75 0.125 8
PQaSIS Rmean(0.5) 381.5 858 0.75 0.125 8
QaSIS(0.75) 322 427.75 0.75 0.25 8
PQaSIS mean(0.75) 218 421.25 0.75 0.125 8
PQaSIS median(0.75) 275.5 568.5 0.75 0.25 8
PQaSIS Rmean(0.75) 211 445.5 0.75 0.125 8
PQaSIS Rmedian(0.75) 260 499.375 0.75 0.25 8
PQaSIS Bmean(0.75) 495.5 1065.5 0.75 0.25 8
NIS 43 115 0.875 0.125 8
PNIS mean 42.5 154.75 0.875 0.125 8
PNIS median 46.5 177 0.875 0.125 8
PNIS Rmean 47.5 159 0.875 0.125 8
PNIS Rmedian 50.25 162.375 0.875 0.125 8
PNIS Bmean 56 203.25 0.875 0.15625 8
SIRS 22 67.5 1 0.125 8
PSIRS mean 51 174 0.875 0.125 8
PSIRS median 45 220 0.875 0.125 8
PSIRS Rmean 42 178 0.875 0.125 8
PSIRS Rmedian 54 236.125 0.875 0.125 8
PSIRS Bmean 184.5 523.75 0.875 0.125 8
SIS 13.5 45.25 1 0.125 8
PSIS mean 16 36 1 0.125 8
PSIS median 15.5 29 1 0.03125 8
PSIS Rmean 18.5 36 1 0.125 8
PSIS Rmedian 15 31.125 1 0.125 8
PSIS Bmean 17 42.25 1 0.125 8

Table 2: Example 1, Parallel Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 327.5 423.75 0.75 0.15625 8
PQaSIS mean(0.5) 278.5 355.5 0.75 0.125 8
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PQaSIS median(0.5) 349 475.75 0.75 0.125 8
PQaSIS Rmean(0.5) 270 388.5 0.75 0.25 8
PQaSIS Rmedian(0.5) 323 412.25 0.75 0.125 8
PQaSIS Bmean(0.5) 840.5 1146 0.625 0.125 8
QaSIS(0.75) 581.5 675.25 0.625 0.125 8
PQaSIS mean(0.75) 522.5 509.5 0.5 0.25 8
PQaSIS median(0.75) 587 730.75 0.625 0.15625 8
PQaSIS Rmean(0.75) 451.5 613.5 0.625 0.15625 8
PQaSIS Rmedian(0.75) 492 663.5 0.625 0.15625 8
PQaSIS Bmean(0.75) 1230 1181.75 0.5 0.25 8
NIS 1291.5 1107.25 0.125 0.5 8
PNIS mean 1305.5 1096.25 0 0.375 8
PNIS median 1124 1170.75 0.125 0.5 8
PNIS Rmean 1130.75 1004.5 0.25 0.375 8
PNIS Rmedian 1172 1180.25 0.125 0.5 8
PNIS Bmean 1413.5 1361 0.25 0.5 8
SIRS 66 132.5 0.875 0.125 8
PSIRS mean 117.5 221.75 0.875 0.125 8
PSIRS median 128 263 0.875 0.125 8
PSIRS Rmean 121.5 215 0.875 0.125 8
PSIRS Rmedian 123.5 274.25 0.875 0.125 8
PSIRS Bmean 416.5 787.5 0.75 0.25 8
SIS 1198.5 1328.75 0.375 0.625 8
PSIS mean 682.5 848.5 0.5 0.5 8
PSIS median 962.5 1097.5 0.375 0.5 8
PSIS Rmean 842 880.75 0.375 0.5 8
PSIS Rmedian 967.5 1133.375 0.375 0.5 8
PSIS- Bmean 940.5 1408.5 0.5 0.625 8

Table 3: Example 1, Parallel Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 203.5 297.5 0.75 0.25 8
PQaSIS mean(0.5) 145.5 333.25 0.875 0.125 8
PQaSIS median(0.5) 177.5 353.25 0.75 0.125 8
PQaSIS Rmean(0.5) 168 375.25 0.875 0.125 8
PQaSIS Rmedian(0.5) 178.75 370.5 0.8125 0.125 8
PQaSIS Bmean(0.5) 334 492.5 0.75 0.25 8
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QaSIS(0.75) 318.5 341.25 0.625 0.25 8
PQaSIS mean(0.75) 210 342.25 0.75 0.15625 8
PQaSIS median(0.75) 238.5 435.75 0.6875 0.125 8
PQaSIS Rmean(0.75) 212.5 377 0.75 0.125 8
PQaSIS Rmedian(0.75) 219.5 402.125 0.75 0.125 8
PQaSIS Bmean(0.75) 340 490 0.625 0.125 8
NIS 65.5 153.75 0.875 0.125 8
PNIS mean 87 166 0.875 0.15625 8
PNIS median 95 169.5 0.875 0.125 8
PNIS Rmean 82.5 131.75 0.875 0.125 8
PNIS Rmedian 95.75 153.25 0.875 0.25 8
PNIS Bmean 101.5 315.5 0.875 0.15625 8
SIRS 36.5 74 0.9375 0.125 8
PSIRS mean 49.5 124 0.875 0.125 8
PSIRS median 51.5 123.5 0.875 0.125 8
PSIRS Rmean 57 117.25 0.875 0.125 8
PSIRS Rmedian 58 114.75 0.875 0.125 8
PSIRS Bmean 126 404 0.875 0.125 8
SIS 24.5 44 1 0.125 8
PSIS mean 27 44.25 1 0.125 8
PSIS median 27 53.5 1 0.125 8
PSIS Rmean 29 55.5 1 0.125 8
PSIS Rmedian 28.25 53.5 1 0.125 8
PSIS Bmean 29 53.75 1 0.125 8
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Table 4: Example 1, Quantile Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 354 429 0.75 0.25 8
QaSIS(0.5) 210 514.5 0.75 0.25 8
QaSIS(0.75) 322 427.75 0.75 0.25 8
NIS 43 115 0.875 0.125 8
SIRS 22 67.5 1 0.125 8
QES mean 89 179 0.875 0.25 8
QES median 97 224.5 0.875 0.25 8
QES Rmean 69 182.25 0.875 0.25 8
QES Rmedian 99.5 219.125 0.875 0.25 8
QES Bmean 163 1108.25 0.875 0.25 8

Table 5: Example 1, Quantile Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 546.5 628.75 0.5 0.125 8
QaSIS(0.5) 327.5 423.75 0.75 0.15625 8
QaSIS(0.75) 581.5 675.25 0.625 0.125 8
NIS 1291.5 1107.25 0.125 0.5 8
SIRS 66 132.5 0.875 0.125 8
QES mean 714.5 507.25 0 0.125 8
QES median 163.5 340 0.75 0.25 8
QES Rmean 164.5 263.875 0.75 0.25 8
QES Rmedian 201.75 263 0.75 0.25 8
QES Bmean 994 1403 0.75 0.25 8
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Table 6: Example 1, Quantile Ensemble, Error= Mix Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 340.5 461 0.625 0.125 8
QaSIS(0.5) 306.5 565.25 0.75 0.25 8
QaSIS(0.75) 594.5 686 0.625 0.25 8
NIS 111 251.5 0.875 0.125 8
SIRS 42 141 0.875 0.125 8
QES mean 173.5 367.5 0.875 0.125 8
QES median 190.5 308.75 0.875 0.125 8
QES Rmean 146 296.75 0.875 0.125 8
QES Rmedian 146.5 364.75 0.8125 0.125 8
QES Bmean 358.5 1203 0.75 0.125 8

Table 7: Example 1, Multi Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 322 427.75 0.75 0.25 8
NIS 43 115 0.875 0.125 8
SIRS 22 67.5 1 0.125 8
MultiSIS Rmean 45.5 101 0.875 0.125 8
MultiSIS Rmedian 29.5 79 1 0.125 8

Table 8: Example 1, Multi Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 581.5 675.25 0.625 0.125 8
NIS 1291.5 1107.25 0.125 0.5 8
SIRS 66 132.5 0.875 0.125 8
MultiSIS Rmean 339 331 0.625 0.375 8
MultiSIS Rmedian 242.5 480 0.75 0.25 8
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Table 9: Example 1, Multi Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 594.5 686 0.625 0.25 8
NIS 111 251.5 0.875 0.125 8
SIRS 42 141 0.875 0.125 8
MultiSIS mean 122.5 237.25 0.875 0.125 8
MultiSIS median 74 211.5 0.875 0.125 8

Table 10: Example 1, Mixture Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 210 514.5 0.75 0.25 8
QaSIS(0.75) 322 427.75 0.75 0.25 8
SIRS 22 67.5 1 0.125 8
NIS 43 115 0.875 0.125 8
MixSIS Rmean 21 65.25 1 0.125 8
MixSIS Rmedian 39.5 117.25 0.875 0.125 8

Table 11: Example 1, Mixture Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 327.5 423.75 0.75 0.15625 8
QaSIS(0.75) 581.5 675.25 0.625 0.125 8
SIRS 66 132.5 0.875 0.125 8
NIS 1291.5 1107.25 0.125 0.5 8
MixSIS Rmean 231 245 0.625 0.375 8
MixSIS Rmedian 133 266 0.75 0.125 8
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Table 12: Example 1, Mixture Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 306.5 565.25 0.75 0.25 8
QaSIS(0.75) 594.5 686 0.625 0.25 8
SIRS 42 141 0.875 0.125 8
NIS 111 251.5 0.875 0.125 8
MultiSIS Mean 55 130.75 0.875 0.125 8
MultiSIS Median 89 190.5 0.875 0.15625 8

Table 13: Example 2(a), Parallel Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 4 0 1 0 4
PQaSIS mean(0.5) 4 0 1 0 4
PQaSIS median(0.5) 4 0 1 0 4
PQaSIS Rmean(0.5) 4 0 1 0 4
PQaSIS Rmedian(0.5) 4 0 1 0 4
PQaSIS Bmean(0.5) 4 0 1 0 4
QaSIS(0.75) 4 1 1 0 4
PQaSIS mean(0.75) 4 2.25 1 0 4
PQaSIS median(0.75) 4 1 1 0 4
PQaSIS Rmean(0.75) 4 0 1 0 4
PQaSIS Rmedian(0.75) 4 0 1 0 4
PQaSIS Bmean(0.75) 4 0 1 0 4
NIS 4 0 1 0 4
PNIS-mean 4 0 1 0 4
PNIS median 4 0 1 0 4
PNIS Rmean 4 0 1 0 4
PNIS Rmedian 4 0 1 0 4
PNIS Bmean 4 1 1 0 4
SIRS 4 0 1 0 4
PSIRS mean 4 0 1 0 4
PSIRS median 4 0 1 0 4
PSIRS Rmean 4 0 1 0 4
PSIRS Rmedian 4 0 1 0 4
PSIRS Bmean 4 0 1 0 4
SIS 4 0 1 0 4
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PSIS mean 4 0 1 0 4
PSIS median 4 0 1 0 4
PSIS Rmean 4 0 1 0 4
PSIS Rmedian 4 0 1 0 4
PSIS Rmean 4 1 1 0 4

Table 14: Example 2(a), Parallel Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 4 0 1 0 4
PQaSIS mean(0.5) 4 0 1 0 4
PQaSIS median(0.5) 4 0 1 0 4
PQaSIS Rmean(0.5) 4 0 1 0 4
PQaSIS Rmedian(0.5) 4 0 1 0 4
PQaSIS Bmean(0.5) 4 0 1 0 4
QaSIS(0.75) 4 2 1 0 4
PQaSIS mean(0.75) 5 4 1 0 4
PQaSIS median(0.75) 4 1 1 0 4
PQaSIS Rmean(0.75) 4 0 1 0 4
PQaSIS Rmedian(0.75) 4 1 1 0 4
PQaSIS Bmean(0.75) 4 1 1 0 4
NIS 4 1 1 0 4
PNIS mean 4 2 1 0 4
PNIS median 4 1 1 0 4
PNIS Rmean 4 0 1 0 4
PNIS Rmedian 4 1 1 0 4
PNIS Bmean 4 1 1 0 4
SIRS 4 0 1 0 4
PSIRS mean 4 0 1 0 4
PSIRS median 4 0 1 0 4
PSIRS Rmean 4 0 1 0 4
PSIRS Rmedian 4 0 1 0 4
PSIRS Bmean 4 0 1 0 4
SIS 4 0 1 0 4
PSIS mean 4 0 1 0 4
PSIS median 4 0 1 0 4
PSIS Rmean 4 0 1 0 4
PSIS Rmedian 4 0 1 0 4
PSIS Bmean 4 1 1 0 4

58



Table 15: Example 2(a), Quantile Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 4 0 1 0 4
QaSIS(0.5) 4 0 1 0 4
QaSIS(0.75) 4 0 1 0 4
NIS 4 0 1 0 4
SIRS 4 0 1 0 4
QES mean 4 0 1 0 4
QES median 4 0 1 0 4
QES Rmean 4 0 1 0 4
QES Rmedian 4 0 1 0 4
QES Bmean 5 1 1 0 4

Table 16: Example 2(a), Quantile Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 4 0 1 0 4
QaSIS(0.5) 4 0 1 0 4
QaSIS(0.75) 4 0 1 0 4
NIS 4 0.25 1 0 4
SIRS 4 0 1 0 4
QES mean 4 1 1 0 4
QES median 4 0 1 0 4
QES Rmean 4 0 1 0 4
QES Rmedian 4 0 1 0 4
QES Bmean 5 2 1 0 4
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Table 17: Example 2(a), Quantile Ensemble, Error= Mix Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 4 0 1 0 4
QaSIS(0.5) 4 0 1 0 4
QaSIS(0.75) 4 0 1 0 4
NIS 4 0 1 0 4
SIRS 4 0 1 0 4
QES mean 4 0 1 0 4
QES median 4 0 1 0 4
QES Rmean 4 0 1 0 4
QES Rmedian 4 0 1 0 4
QES Bmean 5 1 1 0 4

Table 18: Example 2(a), Multi Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 4 0 1 0 4
NIS 4 0 1 0 4
SIRS 4 0 1 0 4
MultiSIS Rmean 4 0 1 0 4
MultiSIS Rmedian 4 0 1 0 4

Table 19: Example 2(a), Multi Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 4 0 1 0 4
NIS 4 0 1 0 4
SIRS 4 0 1 0 4
MultiSIS Rmean 4 0 1 0 4
MultiSIS Rmedian 4 0 1 0 4
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Table 20: Example 2(a), Mixture Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 4 0 1 0 4
QaSIS(0.75) 4 0 1 0 4
SIRS 4 0 1 0 4
NIS 4 0 1 0 4
MixSIS Rmean 4 0 1 0 4
MixSIS Rmedian 4 0 1 0 4

Table 21: Example 2(a), Mixture Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 4 0 1 0 4
QaSIS(0.75) 4 0 1 0 4
SIRS 4 0 1 0 4
NIS 4 0 1 0 4
MixSIS Rmean 4 0 1 0 4
MixSIS Rmedian 4 0 1 0 4

Table 22: Example 2(b), Parallel Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 12.5 1 0 4
PQaSIS mean(0.5) 5 4 1 0 4
PQaSIS median(0.5) 5 5.25 1 0 4
PQaSIS Rmean(0.5) 4.5 4.25 1 0 4
PQaSIS Rmedian(0.5) 5 7 1 0 4
PQaSIS Bmean(0.5) 5 9 1 0 4
QaSIS(0.75) 21.5 79.5 1 0.25 4
PQaSIS mean(0.75) 16 62 1 0.25 4
PQaSIS median(0.75) 18 54.25 1 0 4
PQaSIS Rmean(0.75) 13.25 42.75 1 0 4
PQaSIS Rmedian(0.75) 16 58.25 1 0.0625 4
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PQaSIS Bmean(0.75) 18.5 64 1 0.25 4
NIS 4 1 1 0 4
PNIS mean 5 3 1 0 4
PNIS median 4 1.25 1 0 4
PNIS Rmean 4 1 1 0 4
PNIS Rmedian 4 2.125 1 0 4
PNIS Bmean 4 1 1 0 4
SIRS 4 0 1 0 4
PSIRS mean 4 1 1 0 4
PSIRS median 4 0.25 1 0 4
PSIRS Rmean 4 0 1 0 4
PSIRS Rmedian 4 1 1 0 4
PSIRS Bmean 4 1 1 0 4
SIS 4 0 1 0 4
PSIS mean 4 0 1 0 4
PSIS median 4 0 1 0 4
PSIS Rmean 4 0 1 0 4
PSIS Rmedian 4 0 1 0 4
PSIS Bmean 4 0 1 0 4

Table 23: Example 2(b), Parallel Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 16.25 1 0 4
PQaSIS mean(0.5) 6 6.25 1 0 4
PQaSIS median(0.5) 6 9.75 1 0 4
PQaSIS Rmean(0.5) 5 10.25 1 0 4
PQaSIS Rmedian(0.5) 6 10 1 0 4
PQaSIS Bmean(0.5) 5 10.25 1 0 4
QaSIS(0.75) 33.5 92.25 1 0.25 4
PQaSIS mean(0.75) 29.5 102.5 1 0.25 4
PQaSIS median(0.75) 25 105.25 1 0.25 4
PQaSIS Rmean(0.75) 24 91.25 1 0.25 4
PQaSIS Rmedian(0.75) 26.5 93.5 1 0.25 4
PQaSIS Bmean(0.75) 26.5 135 1 0.25 4
NIS 7.5 35.5 1 0 4
PNIS mean 10.5 63.25 1 0.25 4
PNIS median 7.5 37 1 0 4
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PNIS Rmean 5 20.25 1 0 4
PNIS Rmedian 7 34.5 1 0 4
PNIS Bmean 7 30.75 1 0 4
SIRS 4 1 1 0 4
PSIRS mean 4 1 1 0 4
PSIRS median 4 1 1 0 4
PSIRS Rmean 4 1 1 0 4
PSIRS Rmedian 4 1 1 0 4
PSIRS Bmean 4 1 1 0 4
SIS 4 4 1 0 4
PSIS mean 4 3 1 0 4
PSIS median 4 4 1 0 4
PSIS Rmean 4 4 1 0 4
PSIS Rmedian 4 4 1 0 4
PSIS Bmean 4 4.25 1 0 4

Table 24: Example 2(b), Parallel Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 16.25 1 0 4
PQaSIS mean(0.5) 5.5 8.75 1 0 4
PQaSIS median(0.5) 6 12 1 0 4
PQaSIS Rmean(0.5) 5 10.25 1 0 4
PQaSIS Rmedian(0.5) 6 13 1 0 4
PQaSIS Bmean(0.5) 5 10 1 0 4
QaSIS(0.75) 35.5 99.75 1 0.25 4
PQaSIS mean(0.75) 25.5 70.75 1 0.25 4
PQaSIS median(0.75) 28 80.5 1 0.25 4
PQaSIS Rmean(0.75) 16 64 1 0.25 4
PQaSIS Rmedian(0.75) 27 72.625 1 0.25 4
PQaSIS Bmean(0.75) 27 71.25 1 0.25 4
NIS 4 1 1 0 4
PNIS mean 4 3 1 0 4
PNIS median 4 1 1 0 4
PNIS Rmean 4 0 1 0 4
PNIS Rmedian 4 1.125 1 0 4
PNIS Bmean 4 1 1 0 4
SIRS 4 0 1 0 4
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PSIRS mean 4 1 1 0 4
PSIRS median 4 1 1 0 4
PSIRS Rmean 4 0 1 0 4
PSIRS Rmedian 4 1 1 0 4
PSIRS Bmean 4 1 1 0 4
SIS 4 0 1 0 4
PSIS mean 4 0 1 0 4
PSIS median 4 0 1 0 4
PSIS Rmean 4 0 1 0 4
PSIS Rmedian 4 0 1 0 4
PSIS Bmean 4 0 1 0 4

Table 25: Example 2(b), Quantile Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 5.5 9.25 1 0 4
QaSIS(0.5) 6 12.5 1 0 4
QaSIS(0.75) 21.5 79.5 1 0.25 4
NIS 4 1 1 0 4
SIRS 4 0 1 0 4
QES mean 12.5 29.25 1 0 4
QES median 4 3 1 0 4
QES Rmean 4 1 1 0 4
QES Rmedian 4 2 1 0 4
QES Bmean 4 1 1 0 4
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Table 26: Example 2(b), Quantile Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 5 12 1 0 4
QaSIS(0.5) 7 16.25 1 0 4
QaSIS(0.75) 33.5 92.25 1 0.25 4
NIS 7.5 35.5 1 0 4
SIRS 4 1 1 0 4
QES mean 26.5 40.25 1 0 4
QES median 4 4.25 1 0 4
QES Rmean 4 2 1 0 4
QES Rmedian 4 1.125 1 0 4
QES Bmean 4 2 1 0 4

Table 27: Example 2(b), Quantile Ensemble, Error= Mix Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 5 5 1 0 4
QaSIS(0.5) 6 16.25 1 0 4
QaSIS(0.75) 35.5 99.75 1 0.25 4
NIS 4 1 1 0 4
SIRS 4 0 1 0 4
QES mean 16.5 29.75 1 0 4
QES median 4 5 1 0 4
QES Rmean 4 2 1 0 4
QES Rmedian 4 1 1 0 4
QES Bmean 4 1 1 0 4
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Table 28: Example 2(b), Multi Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 21.5 79.5 1 0.25 4
NIS 4 1 1 0 4
SIRS 4 0 1 0 4
MultiSIS Rmean 4 2 1 0 4
MultiSIS Rmedian 4 0 1 0 4

Table 29: Example 2(b), Multi Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 33.5 92.25 1 0.25 4
NIS 7.5 35.5 1 0 4
SIRS 4 1 1 0 4
MultiSIS Rmean 5 8.5 1 0 4
MultiSIS Rmedian 4 2 1 0 4

Table 30: Example 2(b), Multi Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 35.5 99.75 1 0.25 4
NIS 4 1 1 0 4
SIRS 4 0 1 0 4
MultiSIS mean 4 3.25 1 0 4
MultiSIS median 4 0 1 0 4
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Table 31: Example 2(b), Mixture Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 12.5 1 0 4
QaSIS(0.75) 21.5 79.5 1 0.25 4
SIRS 4 0 1 0 4
NIS 4 1 1 0 4
MixSIS Rmean 4 0 1 0 4
MixSIS Rmedian 4 0 1 0 4

Table 32: Example 2(b), Mixture Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 16.25 1 0 4
QaSIS(0.75) 33.5 92.25 1 0.25 4
SIRS 4 1 1 0 4
NIS 7.5 35.5 1 0 4
MixSIS Rmean 4 1 1 0 4
MixSIS Rmedian 4 0 1 0 4

Table 33: Example 2(b), Mixture Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 16.25 1 0 4
QaSIS(0.75) 35.5 99.75 1 0.25 4
SIRS 4 0 1 0 4
NIS 4 1 1 0 4
MultiSIS Mean 4 0 1 0 4
MultiSIS Median 4 0 1 0 4
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Table 34: Example 3, Parallel Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 2 1 0 5
PQaSIS mean(0.5) 8 2 1 0 5
PQaSIS median(0.5) 6 2 1 0 5
PQaSIS Rmean(0.5) 5 0 1 0 5
PQaSIS Rmedian(0.5) 6 2 1 0 5
PQaSIS Bmean(0.5) 5 1 1 0 5
QaSIS(0.75) 19 16 1 0 8
PQaSIS mean(0.75) 81 102.25 0.75 0.5 8
PQaSIS median(0.75) 19 14.25 1 0 8
PQaSIS Rmean(0.75) 12.5 13.25 1 0 8
PQaSIS Rmedian(0.75) 15 13 1 0 8
PQaSIS Bmean(0.75) 26 45 1 0.125 8
NIS 1739.5 455.75 0.25 0.25 8
PNIS mean 1568 668 0.25 0.25 8
PNIS median 1481.5 642 0.25 0.25 8
PNIS Rmean 1392 660.625 0.125 0.375 8
PNIS Rmedian 1484 694.125 0.25 0.25 8
PNIS Bmean 1628 669.25 0.25 0.25 8
SIRS 20.5 16.5 1 0 8
PSIRS mean 21.5 41 1 0.125 8
PSIRS median 15.5 22 1 0 8
PSIRS Rmean 12 9.5 1 0 8
PSIRS Rmedian 17 24 1 0 8
PSIRS Bmean 534 1019.25 0.75 0.125 8
SIS 1587.5 649.5 0.25 0.375 8
PSIS mean 1136 998.75 0.375 0.15625 8
PSIS median 1453 717.75 0.25 0.25 8
PSIS Rmean 1347.5 784.25 0.25 0.28125 8
PSIS Rmedian 1423 754.25 0.25 0.25 8
PSIS Bmean 1241 1514.5 0.375 0.15625 8

Table 35: Example 3, Parallel Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 2.25 1 0 5
QaSIS mean(0.5) 12 7.25 1 0 5
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QaSIS median(0.5) 8 3 1 0 5
QaSIS Rmean(0.5) 5 1 1 0 5
QaSIS Rmedian(0.5) 7.5 3 1 0 5
QaSIS Bmean(0.5) 7 5 1 0 5
QaSIS(0.75) 51.5 53.5 0.875 0.25 8
QaSIS mean(0.75) 363.5 339.25 0.375 0 8
QaSIS median(0.75) 45 70 0.875 0.25 8
QaSIS Rmean(0.75) 17.5 26.75 1 0.03125 8
QaSIS Rmedian(0.75) 35.5 68.25 1 0.25 8
QaSIS Bmean(0.75) 172 388.75 0.75 0.375 8
NIS 1772.5 400 0.125 0.25 8
PNIS mean 1731.5 444 0.125 0.25 8
PNIS median 1745.5 570.75 0.125 0.25 8
PNIS Rmean 1728.5 459.25 0.125 0.25 8
PNIS Rmedian 1747 412.5 0.125 0.25 8
PNIS Bmean 1759.5 334 0.125 0.25 8
SIRS 12 6.25 1 0 8
PSIRS mean 15 13.25 1 0 8
PSIRS median 13.5 10 1 0 8
PSIRS Rmean 10 3 1 0 8
PSIRS Rmedian 14 10 1 0 8
PSIRS Bmean 238 763.25 0.75 0.25 8
SIS 1756 487.5 0.125 0.25 8
PSIS mean 1586.5 532.5 0.125 0.375 8
PSIS median 1649 502.5 0.125 0.28125 8
PSIS Rmean 1611.5 539.25 0.125 0.25 8
PSIS Rmedian 1639.75 583.375 0.125 0.25 8
PSIS Bmean 1659.5 537 0.125 0.375 8

Table 36: Example 3, Parallel Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 3 1 0 5
PQaSIS mean(0.5) 10 6 1 0 5
PQaSIS median(0.5) 7 3 1 0 5
PQaSIS Rmean(0.5) 5 1 1 0 5
PQaSIS Rmedian(0.5) 7 3 1 0 5
PQaSIS Bmean(0.5) 7 4 1 0 5
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QaSIS(0.75) 68 71.5 0.875 0.375 8
PQaSIS mean(0.75) 384.5 335.5 0.375 0 8
PQaSIS median(0.75) 71 80.25 0.75 0.28125 8
PQaSIS Rmean(0.75) 30 44.75 1 0.125 8
PQaSIS Rmedian(0.75) 55.75 76.5 0.875 0.375 8
PQaSIS Bmean(0.75) 331 1129 0.5 0.375 8
NIS 1726.5 588.5 0.25 0.28125 8
PNIS mean 1610 606 0.25 0.25 8
PNIS median 1584 607.25 0.25 0.25 8
PNIS Rmean 1607 658.75 0.25 0.28125 8
PNIS Rmedian 1623.5 696.875 0.25 0.25 8
PNIS Bmean 1743.5 419.75 0.25 0.25 8
SIRS 15 8.25 1 0 8
PSIRS mean 17.5 16 1 0 8
PSIRS median 16 11.5 1 0 8
PSIRS Rmean 12 6 1 0 8
PSIRS Rmedian 16 12 1 0 8
PSIRS Bmean 127.5 383.5 0.875 0.375 8
SIS 1622.5 656 0.25 0.375 8
PSIS mean 1378.5 854.5 0.375 0.25 8
PSIS median 1523.5 688.75 0.25 0.25 8
PSIS Rmean 1418.5 708.5 0.3125 0.375 8
PSIS Rmedian 1477.5 654.5 0.25 0.25 8
PSIS Bmean 1673 679.5 0.375 0.25 8
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Table 37: Example 3, Quantile Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 19 22 1 0 8
QaSIS(0.5) 6 2 1 0 5
QaSIS(0.75) 19 16 1 0 8
NIS 1739.5 455.75 0.25 0.25 8
SIRS 20.5 16.5 1 0 8
QES mean 1248 598.25 0.25 0.125 8
QES median 9 2 1 0 8
QES Rmean 31.5 23.25 1 0.125 8
QES Rmedian 9 4 1 0 8
QES Bmean 10 3 1 0 8

Table 38: Example 3, Quantile Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 63 95.25 0.875 0.15625 8
QaSIS(0.5) 7 2.25 1 0 5
QaSIS(0.75) 51.5 53.5 0.875 0.25 8
NIS 1772.5 400 0.125 0.25 8
SIRS 12 6.25 1 0 8
QES mean 1621 464.75 0.125 0.25 8
QES median 14 7 1 0 8
QES Rmean 52 41.5 0.875 0.25 8
QES Rmedian 11 3.625 1 0 8
QES Bdmean 12 3 1 0 8
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Table 39: Example 3, Quantile Ensemble, Error= Mix Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.25) 33.5 123.5 1 0.125 8
QaSIS(0.5) 7 3 1 0 5
QaSIS(0.75) 68 71.5 0.875 0.375 8
NIS 1726.5 588.5 0.25 0.28125 8
SIRS 15 8.25 1 0 8
QES mean 1416 695.25 0.1875 0.125 8
QES median 11 5 1 0 8
QES Rmean 40 42 0.875 0.125 8
QES Rmedian 10 3.5 1 0 8
QES Bmean 10.5 4 1 0 8

Table 40: Example 3, Multi Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 19 16 1 0 8
NIS 1739.5 455.75 0.25 0.25 8
SIRS 20.5 16.5 1 0 8
MultiSIS Rmean 302 165.5 0.625 0.375 8
MultiSIS Rmedian 11 7 1 0 8

Table 41: Example 3, Multi Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 51.5 53.5 0.875 0.25 8
NIS 1772.5 400 0.125 0.25 8
SIRS 12 6.25 1 0 8
MultiSIS Rmean 319 159.5 0.5 0.25 8
MultiSIS Rmedian 16.5 13.25 1 0 8
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Table 42: Example 3, Multi Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.75) 68 71.5 0.875 0.375 8
NIS 1726.5 588.5 0.25 0.28125 8
SIRS 15 8.25 1 0 8
MultiSIS mean 305.5 200.75 0.5 0.25 8
MultiSIS median 25.5 25.75 1 0.125 8

Table 43: Example 3, Mixture Ensemble, Error= Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 6 2 1 0 5
QaSIS(0.75) 19 16 1 0 8
SIRS 20.5 16.5 1 0 8
NIS 1739.5 455.75 0.25 0.25 8
MixSIS Rmean 232 193.25 0.625 0.25 8
MixSIS Rmedian 11 6 1 0 8

Table 44: Example 3, Mixture Ensemble, Error= Cauchy

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 2.25 1 0 5
QaSIS(0.75) 51.5 53.5 0.875 0.25 8
SIRS 12 6.25 1 0 8
NIS 1772.5 400 0.125 0.25 8
MixSIS Rmean 310.5 152.75 0.5 0.25 8
MixSIS Rmedian 10 4 1 0 8
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Table 45: Example 3, Mixture Ensemble, Error= Mixture Normal

name R IQR(R) S IQR(S) p∗

QaSIS(0.5) 7 3 1 0 5
QaSIS(0.75) 68 71.5 0.875 0.375 8
SIRS 15 8.25 1 0 8
NIS 1726.5 588.5 0.25 0.28125 8
MultiSIS Mean 283 206.25 0.5 0.15625 8
MultiSIS Median 10 5 1 0 8
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