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\ 's{a;:proach where1n surface f1e1ds are postulated 1nstead of be1ng

e

1vanuously vary1ng dens1t1es 1w thewhrans1t1on zone, 1n conform1ty

| 3*;:,~-W1th modern stat1st1ca] mechan1ca1 theor1es of the equ111br1um

'."‘.’ .

In th1s work the 1nterface of a non equ111br1um two--~‘

"i:it; phase system 1s v1ewed as a three d1mens1ona1 zone The usua] ap-r_}ff?_f

: ”'ffder1ved, is. f1rst cr1t1ca11y rev1ewed A theory assum1ng cont1~;;r‘jl]:nf

"7-[1nterface, 1s then constructed An exact surface ba]ance equat1on -;;f3

"Q',f1s obta1ned wh1th 1s 5onma££y 1dent1ca1 w1th that found 1n the

’Lusual approach Comp]ete correspondence w1th the 1atter obta1ns

| '§n1n a su1tab1e zeroth order approx1mat1on A h1erarchy of ba]ance

‘ 3~jare ana]yzed

"f_fiequat1ons perta1n1ng to norma1 moments of order z 1 1s next 0b-~w'

J'”i7ta1ned F1na11y the spec1f1c cases of mass momentum and energy

'(‘.'

—i



e _15‘the extens1on of th1s method 1n

‘:iﬁ;thereby prov1d1ng epr1C1t 1nterpre

"~;:ftu1ated 1n the comnon approaCh t° t

"V_f1n/equ111brlum and then a survey of
:'f;;mat1c tooIs and then proceed to a’s

| ’attheory that foIIows may be conven1e

”}":l',;For Iack of a better word and not

In Chapter Ii‘ e;g1ve a sh

?etthat has been done on the non-equ1l

In Chapter II, we f1rst S

ii

fﬁdevelopment of the emp1r1ca1 aPP"Oa

"<sTh1s pr0V1deS us withfa[backghff!

In the equ1I1br'um dome1n

;o the*rea]m of non-eqU1I br1um,,

tat1on _for'the _uant1t1es posA

there ex1sts weII known

I

he "OH'EQU1I1br1um 1nterface:' o
ort rev1ew of the G1bbs method S
Pert1nent theoret1ca1 work fijf{f;/“

1br1um probIem.»,;-;urf“V'“i» SRS
ecure somE»geometrwc and kine-ﬂ tf*f’7f7
omewhat or1g1na1 and'systemat1c |

ch to 1nterfac1a1 dynamics& 5

"Taga1nst wh1ch the moredgeneral

ntIy compared in aII deta1ls

In‘a derogatory sense, we use ?nff,wf




2 N
‘j;t'f. thé adJect1ve "emp1r1ca]" 1n/refer1ng¢to any theorJ in wh1ch the .

:35;§}:ﬂf:f%three d1mens1ona1 nature of the trans1t1on zone 1s not exp11c1te1y }"

frecogn1zed, and 1n wh1ch surface excess densit1es_are therefore

’7tftpostu}ated 1nstead of be1ng der1ved In present ng the emp1r1ca1

.;”57?;theory, we str1ve to isolate a m1n1ma] number/of bas1c concepts

S :-.-'b j‘:_iaﬂd

?ssumpt1ons and to de&\ve the rest from them, appea11ng oc-

B "

.';tl;i, cas1ona11y to we]? estab11shed genera] pr;nc1p1es Th1s enab]es us .

e 3

whereTn the Gibbs scheme 1s ext nded 1nto the rea]m of non equ1-':£€};;f,"

11br1um._We f1rst def1ne appdopr1ate surface norma] moments that

| ':77'fp1ck up the 1nformat1on n'cessary for a macroscop1c two d1men- : 95?3‘;*f

ﬁfs1ona1 descr1pt1on of_h e m1croscop1c three d1mens1ona1 tran51-ﬁfﬁ:'fx‘"'

/

::Tt1on zOne we then ’er1ve an exact surface ba]ance equat1on that

"th 60hma££y 1dent1ca1 w1th the one used 1n the emp1r1ca1 approach,.

:and exp1a1n why th1s forma] 1dent1ty 1s remarkab]e Next we under—:» S

ﬂ’ftake a’ systemat1c compar1son of the results obtained with those ;fa?erk:i

57.fn;{£used 1n the emp1r1ca1 approach It appears that fu]l correspon-'?af;* 3
ﬁ’ndcdence obta1ns on1y 1n a. we]TZdef1ned zeroth order approx1mat1on,ftfiitff'

'f;adfdw1th a W1de range of va11d1ty i h’ ': | d_d " . 1'“." -

Ti p In Chapter IV we der1ve ba]ance equat1ons for h1gher }ffff}-jrj

""'eiorder momehts and g1ve an app11cat1on to the transversal1ty con-}?i.;Affﬁ'

::;ihﬁd1t1on der1ved 1n a (emp1r1ca1) theory of Bedeaux A]bano and ‘5f;jfffc-r

B YT SR S



| ;mentum and energy Wh11e complete correspondence w1th the emp1r1ca1T

;'”{«approach obta1ns for the f1rst two - at least 1n the zeroth order

o

7:;‘some re51dua1 terms of a k1nd not met 1n the case of mass and mo-',;,

“,mentum, can be neg]ected These res1dua1 terms arwse from the non-=:;;

"7t~fii,prob]em 1s re]ated to our 1dent1f1cat1on, 1n Chapter II of the

1

"'llffffktreatment of energy as a weak spot or ]ess conv1nc1ng part,v1n

J"fﬂthe emp1r1ca1 approach'”“fv

o

R :-": i

: ”-ﬂLgQW1th1n a g1ven chapter are 1abe1ed accord1ng to the SeCt1°" 1” 7
: f~3h}twh10h they appear a d to the order of appearance 1n that sect1on

"’FiffgffFor 1nstance eq (2 3) means the th1rd equat1on of Sect1on 2 of

'“t~}fthe number of that chapter is added before the other two numbers :tq}ifr”

o =~(e g eq (1 z 3))

R |

In Chapter V, we ana]yze the spec1f1c cases of mass mo_‘ft-

‘:;',]tapprox1mat1on - d1screpano1es appear 1n the case of energy, un]ess-?.j;'

rii“}_,]1near1ty of some energy re1ated express1ons._Interest1ng]y, th1s L

FwnaI]y a word about the 1abe11nq of eouat1ons Equat1ons; L

‘t"?:,ff;that chapter When refer1ng to an equat1on in’ a preced1ng chapter, f'f?ff

I
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R S CHAPTERE . L

- FLUID' INTERFACES IN AND OUT OF EQUILIBRIUM

- '

1) Reyjew Of.Gibbs equilibrium interfaCial thermodynamics.
* e ¥ . :

S1nce fhe obJect of the presént work 1s the extens1on of
the Gibbs approach (G1bbs [1961]) to 1nterfac1a1 systems into the -
realm of non- equ111br1um it Ts appropr1ate to start W1th a br1ef_
"rev1ew of that approach A thorough expo§1t1on may. be found in the 2
book by Defay et al (19661 AIt-w111 ?F suff1C1ent.for our present\
111ustrat1ve purposes to consider an equ111br1um two- phase. system '

‘~w1th a flat 1nterface The- systemat1c extens1on of . the theory to

ﬂ:equ111br1um euaved interfaces has been carried out by Buff (19561,

- whose contr1but1ons have been nicely rev1ewed by Me]rose £1968, 1970]
| "The work of Buff has in’ turn been extended by Boruvka and Neumann
[1977] Curvature effects are a]so d1scussed by Sanfe]d [1971]

- For s1mp11c1ty, we sha]] first consider a one- component l

system When surface effects are neglected a]l the thermodynam1c

~information concern1ng the system is conta1ned in any one. of the

- : thermodynam1c potent1als (u,s, H F +G) provided these are known as

funct1ons of their natura] var1ab1es For examp]e know1ng the "“‘ |

Helmho1tz free energy F(T,V) we get the equat1on of state v1a

p = -9F and al] thennal propert1es v1a S -3F. The 11qu1d-vapor
R | A | v ' .

. transition is also accounted_for'by F through flat portions of

N



£
. S S . : oy _ :
. isotherms be]ow the‘critical temperatUre and thewva]ues of'S'at‘
~ both ends of these f]at port1ons give the 1atent heat of vapor-
1zat1on Complete]y m1551ng 1n th1s descr1pt1on however are thet
surface effects But the fu]] p1cture may be restored by 1ncorpo-»
- rating- the 1nterfac1a1 area among the extens1ve var1ab1es on wh1ch
| '_the free'energy depends Denot1ng by U the tota] energy and in-"
%c1ud1ng for conven1ence the mo]e number N amonu the 1ndependent

S var1ab1es the bas1c re]at1ons are

| dU- TdS - pdV + YdA + udN
F = U - TS . o oL B
'f:‘dF=-5dT-pdV+YdA+udN e o (‘ S

where p 1s the chem1cal potent1a1 and Y 1s by def1n1t1on the sur—‘\‘

face tens1on It fo]lows that

e [ i

To v1sua11ze such a system one may cons1der a conta1ner whose wa]]s S B

N - may be deformed SO as to perm1t var1at1on of 1nterfac1a1 area A

at constant volume 1f S0 de51red Effects of the grav1tat1ona1 g

\‘g

, field. other than that of prOV1d1ng a flat hor1zonta1 1nterface Vh}

(away from edges) are neg]ected Far away from the 1nterface, the

e frf1u1d<1s homogeneous Extens1ve propert1es of bulk f1u1d reg1ons

\

are then given by vo]ume 1ntegrals of un1form densit1es (neg]ect1ng |

externaJ f1e1ds) Upon cross1ng the 1nterface or trans1t1on zone, -

“the values of the den31t1es change from those appropr1ate to one
%

phase to those appropr1ate to the other phase Desp1te macro-

scopic appearances, these var1at1ons are_not Jump d1scontinu1t1es



~ but are- s1mp¥ the resuTt of very steep grad1ents In sxmp]e
fTu1ds, far f> m the. cr1t1ca1 po1nt the th1ckﬁess of @hé trans1-

'3 tion zone is oi\the order of a few moTecuTar d1ameters (Lekner,‘

'h and Henderson [1978] Good1sman [1979]) The dgterm1nat1on of the -

.;den51ty prof11e 1ns1de this reg1on is ‘one- of the ma1n probTems con— o

s1dered 1n the equ111br1um stat1st1ca1 mechan1cs of f1u1d 1nter--

) faces deveToped eSpec1a11y 1n the Tast two decades (Navascués [1979],:.,

v"Croxton [19781) Exper1mentaT 1nvest1gat1ons based on T1ght eTT1p--»"
"jt1c1ty have been reported (BeagTehoTe [19793) but computer exper-
“‘1ments are the more usuaT test1ng ground g‘ﬂ' ,:ﬂf- ?y1 ;' |
R . The d1ffuse nature of the trans1t1on zone 1mp11es that |

"*the part1t1on1ng of fTu1d attr1butes 1nto contr1but1ons from

' ‘5fboth phases and from the 1nterface 1s not un1que Now, 1n macro-, )

‘=t_scop1c phys1cs, one 15 not 1nterested 1n the deta11ed structure

Ni.of the 1nterface, and G1bbs has 1ntroduced a beaut1fu11y s1mp1e 2,T7l5.74”ﬁ7

' "15 and yet r1gorous way of keep1ng track of the. 1nterfac1a1 contr1bu- :Jlt'

Q‘-Trt1ons wh11e d1scard1ng 1rreTevant m1croscop1c 1nfonnation It con-'

"-us1sts flrst in 1ntroduc1ng a d1v1d1ng surface (s1mp1y an abstract dff{¢f7i:°‘

"'fpmathemat1ca1 surface) Tocated somewhere 1n the trans1t1on zone

| and in extrapoTat1ng the constant va]ues of the buTk dens1t1es'
‘1n e1ther phase up to th1s surface Z Inasmuch as the trans1t1on

- _zone, desp1te its extreme th1nness, is dlffuse, the computatlon,

"’j with such extrapo]ated dens1t1es of the totaT amount of an attr1- L

'bute in a reg1on V encompass1ng a/patch from the 1nterface w111

o usuaTTy be in error. The second aspect of the G1bbs scheme cons1sts 7

N

N,
N



‘5,Atn“correCting these errors'by-compensating sUrface‘eXcess quantities, |

d;wh1ch are ‘the surface 1ntegra1s of superf1c1a1 dens1t1es def1ned on

"'v-”theedJy1d1ng surface Z Th1s method is very attract1ve and w1de1y

| l'i1mat1on" 1n the 11terature

' ‘-used because 1t 1s in tune with macroscopxc 1ntu1t1on and yet ex-v
'ftremely general and exact Th1s 1ast feature 1s not a]ways appre-"

¥ ic1ated as the scheme is. now . and then refered to as the "G1bbs approx-

The g1st of the approach can be,c]ear]y 111ustrated

v thnough G1bbs def1n1t1on of adsorpt1on Con'1der a two phase f1u1d

."7,f;;two subsets V and v and N (V) 1s wr1tten a‘fﬁ{ji;7tr |

-.._fffjwhere X(V) z Zn V 1s that part of Z conta1ned 1n V and F 1s by/r

'1m1xture W1th bu]k mo]e number den44ixea nl, L

-5scr1pt [ 1dent1f1es the phase Le us. denote by N (U) the\exact

nn . where the super- 2

| ,umo1e number of spec1es L conta1ned 1n a cub1cL1 reg1on V wlth two

' fifaces para]le] to z The d1v1d1ng surface sp]its th1s reg1on V 1nto ;1,h_,_, k

';U-Nt(".‘/){ f_v,n&.‘ 9"1*:’[’:% _dy,_f f r dA Sy
RO "‘-V,‘.V*f U‘ 1‘ zw) R RN '

-

n V it n V + F A SR
f”“f; i

'f7def1n1t1on the adaonptton of component & It 1s an 1ntens1ve sur-~\f ,;

| 'hface variab1e Denot1ng by ; the coordwnate on an ax1s perpend1_ ;_ﬂf_;);,;i;

e cu]ar t° b (C 0 on Z) and by n the exact mole number den51t1es, ;fbfi

'vf3wh1ch vary cont1nuous]y across the transxt1on zone, it fol1ows i |

i :iimmedlately that \:jt :f*f;\;if‘”b1f B | ': ' e :
ST f (n (C) 1 ) dc + I%(ni(ﬁ?, ;aia_d;,_furij _§154)e., f

.y



zeThe drffuse nature of the trans1t1on zone confers a degree of arbx-'
trar1ness to the choice of the d1v1d1ng surface and the values of
"the surface dens1t1es usual]y depend on th1s ch01ce Th1s dependence :
v"on the 10cat1on of L is ea511y understood 1n the case of the adsorp-
?vt1ons def1ned above Let us assume for example that n ' n > ‘and’
‘»that n, (c) 1s monotonous across the trans1t1on zone. If the d1v1d1ng
':surface is 1ocated at a va]ue of c where n has reached the va]ue n

1t is c]ear that F wlll be negat1ve because the sum of the 1ntegra]s

llof the bu]k den51t1es then overest1mates N ( ).v0n the contrary, put--

- :l;t1n§\z at a va]ue of c where n has reached the va]ue n 1eads to an o

o underest1mat1on of the mole number and thus to a pos1t1ve va1ue of F ;}

”'Th1s case prov1des a dramat1c 111ustratlon of the poss1ble sens1t1ve-_fffi-»“

Af'ness of surface dens1ty values on the locat1on of the d1V1d1ng sur--»

::d:face by mOV1ng Z w1th1n the extreme1y narrow marg1n de11m1ted by thel7t7fff:f

"'"ugutrans1t1on zone, the adsorpt1on F can even be made to change 51gn ?f%; {f_ﬁf

f'fThere are however noteworthy except1ons to th1s type of behav10r

Vif'Let a denote the exact dens1ty of some attr1bute w1th Correspond1ng g;i~f”"’

haiaabulk dens1t1es a’ and a It 1s c]ear that the assoc1ated surface ex-1}lff_?5d

?fif;fcess a> w111 be 1ndependent of the d1v1d1ng surface Pos1tion 1f a ?;f;?”f*ftu

One case in po1nt 1s the surface tens1on of a f1at 1nterface

v »h:(Green [1969]) Another example of a]most comp]ete 1nvar1ance 1s that ;5'rftf'

e of a d11ute solut1on of a strong surfactant (Lucassen~Reynders [1976],fuf

h,p 282) Th1s invar1ance exp1a1ns why surface chem1sts can refer 1oose-“;:.:;_.

Av77f1y tO the adSOFPtlon as "number of molecules per un1t area of ad-. o) 8

B sorbed f11m" w1thout running 1nto incons1stencies



o \*Fﬂ. k Even 1n cases where the surface dens1ties depend sens1b1y

' var1ab1es (whose va]ues

on the cho1ce of the dTV1d1ng surface, the theory can be fu11y deve]-__l,‘

oped 1eav1ng that cho1ce open The cho1ce of a part1cu1ar d1v1d1ng
surface becomes then Targely a matter of conven1ence and varies w1th

the context UsuaTTy spec1f1c ch01ces are formulated in terms of

adsorptlons, for 1nstance by requ1r1ng the adsorpt1on of a certawn

- cmnponent to van1sh (Defay et a] [1966]. p 27)

To further 111ustrate the work1ng of the equ111br1um theory“

component system Once the values of T V A N are’ g1ven assum1ng

:‘fathat some convent1on (wh1ch need not be Spec1f1ed) has been made on

ten as

energ1es F F refer to the two buTk phases and F 1s the surface

excess The pressure 1n the system 1s known and so are the moTe num- &

ber dens1t1es n and n” 1n the bu]k reg1ons Now Tet us at f1xed 1n-}igli'i*'

terfac1a1 area, change thA mole numbers 1n the bu]k phases by add1ng

1sotherma11y amounts AN + nd AN and changlng the voTumes so as: to

accomodate th1s new mate 1a1 wtthout chang1ng any of the 1ntens1ve

mined by T along the 11'u1d-vapor coexistence 11ne) This may be

achieved by tak1ng AV ‘=4l—AN and AV '=’l—AV The new overa]l

o vo]ume and moTe numbels are denoted by V' and N",CTear]y‘the,variaéit:f

e

| l'l we. shaTl br1ef1y cons1der the surface Helmho]tz free energy 1n a one-{f‘3""

"'f the cho1ce of the d1V1ding surface z the totaT free energy 15 wr1t--.;:?%fff"'
F(T v N) F (T V N ) * F (T'“V N ) + FS(T v, A N) . 5);”','5;*, o

_A:__fi where the vaTues of V N V N depend on the cho1ce of I, The free gjfug,"
N Lk

accordlng to the phase ruTe are aTT deter- 'r;ff‘e,f



| ‘At1on F(T V A N ) - F(T V A N) will be-fully accounted'for"by the‘i e
N; var1at1ons of the f1rst two terms on the r1ght hand s1de of (1 5) '

5:ywe have {f-‘

R fquhere, s1nce n o n Ex the above 2x2 matr1x is- 1nvert1b1e It fo]lows R R

‘:that V and N cah be var1ed 1ndependent1y w1thout affectwng the va]ue

k e of the 1ast term 1h eq:( 1 5) whence FS is actua]ly 1ndependent of

T th and N and depends on]y on A and T Furthermore, 1t fo]lows by homo- fffi'A~¥

;.:*ﬁ:genexty that at f1xed T F 1s proport1ona1 to A that 1s F (T A)

Sl

g 1’;Af (T) Ne may thUS f1na11y write f;'g;lgﬁffrff ;i];fe;i{;.;; ~ffifhfhi;'t"
F(TVNA) F(TV N) (TV N)+Af(T) (16) |

:fffwe emphas1ze that the exp11c1t fonn of th1s funct1on f ( ) depends

'V“foi]on the cho1ce of the d1v1d1ng surface As we shal] see below, 1ts

"'}“}iphys1ca1 mean1ng 1s most transparent when the d1vid1ng Surface 1s

a 5g;rt5chosen S0 that the adsorpt1on, thCh in the PFESGNt case 15 g1ven by :

i r-ﬂi NN f (1 7)
R ‘———'— TR L L R »

’\

{’ff¥chan1shes we note 1nc1denta1ky that the 1eft hand s1de of eq (] 5)

,,'hmakes no reference whatsoever*to a d1v1d1ng surface, whach 1m- ’

,;,p11es that the surface tens1on (see eq. (1 2)) 15 1ndependent of 1ts‘jff L

"Fajf;locatton In pr1nc1p1e we could work w1th th1s thennodynamlc potena;f

iritial E on]y But the decomposit1on effected 1n eq (1 6) 1s more ef-fvf?hihf'”ﬁ
ufffective 1n assess1ng surface behavior The 5uncttona F and F “are ;:fh e

1::17also 1ndependent of the choice of Z but V+ V 4 N and N are notijd;h'ivzf'n




'f?,ﬁwh1ch is why the va]ues of the f1rst twq terms on the rxght-hand

._is1de of eq (1 6) do depend on the 10cat1on of I. _ | |
PRI A number of thermodynam1c relations may now be 8351]y ob«

t'ta1ned we f1rst decompose the energy and the entropy 1n the same

T',»manner as. the free energy '.;f:'};{v‘ . &;‘_e,

g.;[t U(T v A N) ; U (T V N ) +{fiXT V';N ) + U (T A) ':?1155- ;_tfdjr_,,‘
Z (T V N*) + ST V '( + S (T A) RS ‘

w
’.\
-?'1

RS

RS T
=
e
!

- [Féﬁ?%ﬁéﬁﬁffff5iffffe1fffw77itﬂ e7'“‘
’tf§f<{A:D1fferent1at1ng eq. (1. 6) we getlf?:';{f«fﬁel;_ii:;if:“‘}‘” ERRI T

“ )

f&gﬁentgfiff-'.._

t?-sm-pW+YM+um gsdT-mw L i
ffiffwhen Coﬁ?{ﬁéd w1th eqs (] 8) and (1 9) th1s g1ves ff}»;{:f:hffi.;K:;?etﬁitiii{'(h
eef”iﬁéff‘-Sdr+ydA+um ,g)fﬂ;ff:fftd“m

5 h57ifdu$f i ;_3;f;;f_(1 1])

TdS + YdA + udN

fﬁﬁs°jf0ne must be careful not to m1s1nterpret these re]at1ons

i ,:NS are noz 1ndependent var1ab1es e a -

:t ‘,,; Integrat1ng eq (1 11) at constant temperature y1e1dsl> by
“““,u,rs+yA+uN “;fstfif*ff n1m
tf:éfrom wh1ch ‘us1ng}eq (1 9),,=',, - b:‘p}_s}p‘h.fﬂh‘}ngtheﬁv’ X
R ;"°-FS YA+ uNs (Y+uUA péffhffﬁ,f: | (113) -
lilhh;UPOH d1fferentiat1ng the 1ast relat1on and compéring with eq (I ]0)"}”,&-;l.ftﬁ”

xwhtiifwe obtain a Surface ana]ogue of the Gibbs Duhem re]at1on, knpwn TR E A

Coy




Uhen thé 1= 0 comention 1 adoptad for the chotce of the dividing |
"f<ﬁ,surtéce;-eq.(1;13)‘redu65§at°~""f o eh'f.s"'ﬂ.t,.\' b
| wi_°Th1s 1s in agreement W1th the fact that Y depends °"1¥ on temperan f";‘
/fs;o“ture ina one component system we note that the 1dent1f1cat1on :

' hbetween y and surface free energy per un1t area obta1ns only Whe"

| the F 0 convent1on 1s adopted D1scuss1ons of the temperature #;gat

'“«ﬁ=fdependence of y may be found 1n Defay et al [1966] Gugenhe1m [1965],;dff,f""

113;' Buff [1968] and B1kerman [1970] Equat1on (1 14) a]so pr0V1deS an -;,,

i"v1j11nterest1ng re]at1on between y and the surface entrOpy per un1t

:“i*area in the r 0 convent1on | ““’7*‘*'"' -

g {rf i.a%;‘J}ipﬁlltﬁniiféf;;1;?€iief:.:ye;:. e

“ “:EffNatura]]y.Szi

is. re]ated to therma] effects Let us cons1der a change T

o w

| :”ﬂ,ff;of the area A at f1xed T V N In pr1nc1p1e, a var1at1on of A at f1xedffpffj3;?r

‘*7ffe+T and. N 1mp11es a certa1n redlstr1but1on of matter from bu]k to 1n-‘ffff€.x’f;%

'"fff“terface and may thus enta11 some var1at1on of V. But un]ess a very'tfpih”} =

b‘if;:;]arge amountvof area is created such a change w111 obv1ous1y be S°

»1jsma11 as to be comp1ete1y negl1g1b1e The heat absorbed by the Sys- :;.,'s

”"j,tem 1n the course of such a revers1b1e 1sotherma1 expans1on 1s ngen ]jjf}q:fig

J

0 {gﬂ[ :

"fs;.Qwhere SP denotes the tota] entropy at f1xed N Ne thus have

}T V N

C fmerey



"ufilt;Together w1th eq (1 16) th1s 1mp11es that wcth the F 0 eonuehtion;fa“'

:f;fﬂfg?adOpted may be genera11zed 1n stra1ghtforward fash1on to mu1t1-asff7:~'"

:l-ifcomponent systems s1mp]y by rep]ac1ng tenns 1nvo1v1ng P and u by

0

.~;Since'Sﬁ5 : 'EE“ o :"f;‘it:foT1oWS<from‘eq.(]QZ) that

-

i g R dy

SR ‘KéT R £ )

v~_;so that

Q.Q.

»1:;In the genera] tase, th1s 1s rep]aced by ELIP ST S
iﬁ‘ | -7 (s + I‘d )‘ " x e .(1.;:1!9‘)5;‘ LA

- ?All the above re]at1ons 1n wh1ch the r 0 convent1on 1s not

o “dfsums of tenns 1nvolv1ng the 1ndiv1dual adsorpt1ons F and chem1ca1

. /

“K?j7potent1als u, (K1rkwood and Oppenhelm [1961])

The equ1ﬁ1br1um stat1st1ca1 mechan1cs of the f1u1d 1nter-“f:7ﬁ'7="f

.a

dﬁfﬁ;face has undergone s1gn1f1cant deve]opments in thexLast two deca-v~tg"ffqyf?5i

:'5ii;2des (Navascues [1979] Croxton [19781) It makes eﬂten51ve‘use

”'??3;Lof reduced d1str1but1on funct1ons and is based on the

.:féfswhose mean1ng 15 based on probab111ty The theory of Chapter III
'Azj;rests 1n part on the assumpt1on that such mean1ngfu1 dens1t1es

*~f}f;also ex1st out of equ111br1um

E.

‘dea of

'fcontinuously vary1ng exact dens1t1es 1n the trans1t1on ﬁone,‘f'_ftf;iﬁf‘f7<




: 2)f§§EQiﬁ§_pf-non?eq0i1ibrium'TnterfaﬁiaT systems R

In th1s sect1on we present 2 br1ef survey of stud1es
.,flh devoted to the non equ111br1um f1u1d 1nterface 1n an attempt to put ~
the present work 1nto proper perspect1ve In v1ew of the over- |
o whe]m1ng abundance of related 11terature, we sha]] restr1ct our- u.;"“'
| se]ves tO a narrow path that w111 1ead us - to the more recent stu-:p'
d1es to wh1ch the present work 15 connected For rev1ews, the reader s

"s refered to Lev1ch and Kry]ov [1969] Lucassen Reynders and Lucas-_;

y sen [1977] Defay,Pr1gog1ne and Sanfeld [1977] Ostrach [1979] An ex-‘ _f;’
"“‘ tens1ve b1b11oqraphy cover1ng o]der work, part1cu1ar1y 1n connect1on

| wdth free th1n 11qu1d f11ms may be found 1n Mysels []959] |
B The most we11 known phenomena 1n re]at1on w1th 1nterfac1a]

| mot1on are probab]y the G1bbs and Marangon1 effects (K1tchener [1964])
The G1bbs effect 1s 1n rea11ty a stat1c type of elast1c1ty operat1ve
1n th1n thu1d f11ms (Krotov and Rusanov [1972]) Nhen a th1n f11m ;;1f'a§:f%h
of a surfactant so]ut1on 1s stretched the 1nterfac1a1 area on both >.fiffifﬁ¢:
of 1ts faCes 1ncreases As a result add1t1ona1 surface act1ve so]u--tdt,;jflhif;
te m1grates frun the 1nterna1 so]ut1on wh1ch 1s thus depleted w1th e

v

| ghrespect to the so]ute In the new equ111br1um that 1s estab]1shed

1t f011ows that the Surface tens1on ’5 h1Qher Compress1on of the
f11m naturally produces the oppos1te effect It 1s obV1ous that th1sepifit;tfhire
effeCt must dePend on the fllm th1CK"ess A thermOdynamm theory hangt;gft;jfift
| been glven by van de" Tempe] Lucassen and Lucassen-Reynders [19653 . o
i The Marangon1 effect (Scriven and Stern]1ng [1960]) 15 re-*i{;;kipan:t
lated to the thbs effect but does not hinge UPon the th?nness of QIR

N



E .thase, as opposed to the G1bbs\effect The best known ear]y theo-_v

'.bu1k substrate When the 1nterface of a so1ut1on of a surface—ac ive

E agent 1s rap1d1y expanded there results an 1mpover1shment in so1ute -

*:t"tens1on The reestab11shment of equ111br1um 1s delayed by the d1 - 7
| fus1on/of solute 1n the bu1k Th1s explains why a trans1ent h1gh r | j‘

' surface tens1on may ex1st w1thout the requ1rement of a th1n bulk SR

o nFurther s19n1f1cant deve]opments were made by Baret [1968] WhOSE Workfh‘
':.}:contalned a m1stake 1ater corrected by Petrov and M111er [19773 A |
ijmodern reV1ew of dynam1c surface tens1on has been g1ven by Defay

'fVand Petré [1971]

Another 1mportant concept An re]at1on w1th the f1u1d 1n-:

'w'ﬁffterface lS the so ca]]ed surface v15cos1ty Th1s concept was 1ntro-<. .

fi}jduced apparent]y for the fwrst t1me by Bouss1nesq [1913] and 1ater

'5fhffThe theory accomodates shear as we]] as d11atat1ona] V15C051tv

2

“'"7=f¥(Add1son and Schechter [1978]) ReV’eWS have been g1ven by J°1y

In 1959 Stern11ng and Scr1ven made the f1rst attack on the;hﬂ;gaff

'v&ﬁf:jproblem has been recent]y rev1ved (Hennenberg et a] [1980] and

'h‘:g]refs there1n)

2

4near the 1nterface wh1ch is accompan1ed by an 1ncrease 1n surfa e

'-ﬁfret1ca1 1nvest1gat1on in that f1e1d 1s that of Ward and Tordai[1946]c}”a7i '

”55h§fforma11zed by Er1cksen [1952] Oldroyd [1955] and Scr1ven [1960] hf??r 3

'n"ﬂgf(Slattery [1078]) Non newton1an behav1or has a]so been cons1dered ~;f3th97

:~37;[1964] and Goodr1ch [1973] Another phenomenon that has been stu- j¥ﬁﬁ5?f17?l

id'f;fd1ed 1s surface d1ffus1on (Brenner and Leat [19783 and refs there1n) ;;?ﬁfjfﬂ

| ﬁfh;fftproblem of 1nterfac1a1 1nstab111ty and turbu]ence Interest 1n th1s ';htfiﬂ:*



Certa1n1y a Tandmark in the subJect of , 1nterfac1a1 dyna-

‘hm1cs was the paper by Scr1ven [1960] It was fo]]owed by a ser1es'

"',‘of 1nvestigat1ons by var1ous authors 1ead1ng to recent systemat1c"=' .

;,applfcat1ons of non- equ11ibr1um thermodynam1cs H1s work made nojn R

| 'fexp11C1t reference to the G1bbs approach and was 1n the sp1r1t of o

f the. emp1r1ca1 approach dtscussed in Chapter II of. th1s thesﬁs

o2 f‘VSt Step, Scr1ven took an 1ntr1ns1c V1ew of the 1nterface w1th- o

o out reference to the adJacent buTk phases and wrote down equat1ons -

by Ar1s [1962]
7; d1ff1cu1t1es wh1ch were po1nted out and corrected 1n a genera]1za_,5?.

'*3”g4;rs1attery [1964]

?Ti;;fca1 1eVe1) was der1ved second]y, 1t was the f1rst tlme (to our i?’ffﬁ
»ﬁ5p;know1edge) that the standard methods of 11near 1rrevers1b1e thermo-:-»:"‘~

L i;tijdynam1cs were brought to bear on the prob1em (though 1t was only';;f dfivgff;t
}j‘f?i?1ater that they were fully explo1ted) Bu11d1ng upon the work of.i;ifft;ff'
.hftfffftﬁhez’ Georgescu [1969] cons1dered momentum ba1ance at an 1nterface ‘
| '"fflfw1th fntern 1 angular momentum Ghez a]so made spec1f1c app11cat10nsv

”'"”fof his theory (Ghez [1970]) ﬁf;ti;nt_rﬁggz;5,{f~f?'fr{;53;};»£;5x‘i;}f{§f:

}iﬂ_of mot1on w1th1n th1s two d1mens1ona1 wor]d In a: second step, he
iﬂhgcons1dered the connect1on w1th the bu]k phases A pedagog1ca1 and -

“h.deta11ed expos1t1on of the scheme 1nvented by Scr1ven has been g1venff»;;a,“ :

Scrlven dertvat1ons however entaxled some conceptual

r“,;ft1on tak1ng proper accountaof mass transfer across the 1nterface by fd {V;ig[f

NEXt came a paper by Ghez [1965] conta1n1ng two 1nnoya- ff-'l;ﬂ'ﬁ”

"’:£t1ons F1rst the gener1c surface ba]ance equat1on (at the emp1r1-‘ff;f.;fu;tf

=




‘ waldam [1967] a]so app11ed the methods of 1rrevers1b1e ‘iv - ;:u»_
thermodynam1cs, though w1thout cons1der1ng surface energy, to the ;.fa R
boundary cond1t1ons at the 1nterface of two 1mm1sc1b1e f1u1ds H1s
work was genera11zed in a paper by Bedeaux A]bano and Mazur []976], .
who 1nc1uded surface energy thus br1ng1ng 1n surface tens1on These |
authors set up a fonna11sm (hereafter refered to as the BAM theory) -

d’pi¥ that has s1nce then been used 1n several other 1nvest1gat10ns f;ffy'if¥}'
The1r work has been extended f1rst by Kovak [1977] and by Vodak i:;,f]ff,t R
11978 b to a multicomponent system w1th what they call 51ngu1ar.;;-nat
mass dens1t1es at the 1nterface The entropy product1on at the 1n- ;hﬂ: o
terface 1n such systems has a rather 1nvolved structure and there
resu]ts a r1ch supp]y of phenomeno]og1ca1 coeff1c1ents The theory

was further genera11zed by w01fv and ATbano [1979] to accommodate !ﬁ*xb o

eTectrbmaghet1c f1elds

.f;f: by Pop1e1awsk1 [1970} and ahcarefuT treatment of d1ffus1on related

J;Tg matters by Keh]en and Baranowsk1 [1977I

s;Otber approaches, 1n the sp1r1t of rational thermodynam1cs,;;ffjfgfjf

_fhave a]so been made (Moecke] [19753 Murdoch [1976])

“yfafj ' A cunnon feature of the above theor1es 1s that 1n the1r ;fifffftfaﬁ

context, surface densvt1es are postuzated 1nstead of be1ng der1ved

and that they at beSt °"1¥ 1mp11c1te1y acknowfedge the three dJmen-~~f5 oy
s1onaT nature of the 1nterface Interfac1a1 balance equat1ons were o

, ‘:;1nvest1gated by S1atteryt[1967] from a more fUndamental p01nt Of

,"*’f, v1ew accord1ng to whichvtheﬂtrans1tion zone 1s three-dimensional




"’

.3‘.?

o

Th1s is in agreement w1th modern equ111br1um stat1st1ca1 mechan1cs
i theor1es of. surface tens1on and re]ated matters (Navascues [1979])
| )Slattery presented h1s work'as a genera11zat1on of the work of Buff
‘ .[19563 on equ111br1um two phase systems (further devetopments in

<

th1s equ111br1um theory were. made by Boruvka and Neumann [19771).
3

: In the present study, spec1f1ca11y from Chapter III onward we

!
start from the same bas1c prem1ses that were neatly formu]ated in

th1s paper of S]attery and carry the theory cons1derab1y further
| so that a11 the aspects of the emplrical approach may be 1nterpreted
"1n terms of appropruate surface norma] moments Some of our resu]ts
.have been reported 1n a paper wh1ch w111 appear in Phys1ca A The
~ same. prob]em has been approached d1fferent1y by Ron1s Bedeaux
‘and 0ppenhe1m £1978] and by Albano Bedeaux and V11eger [1979] An
approx1mate der1vat1pn of the surface ba]ance equat1on was also )

»g1ven by Deemer and Slattery [1978]

I

In the next chapter, we sha]l ]ook at 1nterfac1a1 ba]ance e

’ equat1ons from the emp1r1ca1 point of v1ew, ‘that is w1thout refer1ng
to the d1ffuse nature ‘of the trans1t1on Zone. Th1s w111 provide us
»w1th a background agamst wh1ch the Wuent theory ‘may be com-

:pugdv - ’i, o, T

Y



__CHARTER»II“

s

* THEORIES POSTULATING SURFACE DENSITIES

" .. 1) Geometric preliminaries

In thlS sectlon we set up the notatlons used throughout
th1s work d1scuss some key geometr1ca1 concepts and der1ve some -

, k1nemat1c results needed in the subsequent d1scuss1on The flrst
7__part is concerned with.the. ca]cu{us and geometry of surfaces and
the second part is concerned with th:)r momxons Ne sha]] v1ew a

"surface as a two d1mens1ona] subman1fo]d of the three d1men51ona1

~

space Ea, w1th or without boundary Surfaces w1th self- 1ntersec- Cx
tions are thus excluded A ¢ " L

. The tangent p]ane to a surface z at a p01nt p of E 15
a two d1mens1ona1 vector space denoted by T+(Z) To Lndccate t
| a uecton A8 tangent to E we Wikl put a ban over it.. Any vector

X e E3 may  be decomposed 1nto its normal and tangent1a1 components :
. . .f = P*(71,+ Xnn (n P+(Y) ) o o .‘>(1.1)
" where PE is the proaector on T4(Z) and n is the un1t norma] vector
to ¢ at p. ‘The d1rect1ona1 der1vat1ve at p, with respect to j
K ﬁ € T+(2) of a funct1on f (resp a vector f1e1d f) def1ned onZ

«

" s defined by -




“where £ » E(£) ‘s any:cnnve on I snch that E(O) p “and dc(O)
AR ‘ : ‘ R S dE

R

If K(Eigéz) is a parametr1zat1on of T around p € Z and

.u BR + U aﬁ then

3€ g “{f
and likewise ‘.“ :i o -
gk (,‘5-) Sty (RR) (B) + uzd (RoR) (B)
' B 5’51 _ - oF

“;where the symbolt?o stands for the compos1t1on of funct1ons Note

. that u need not be a un1t vector and that both D— F(p ) and D-X p)\a[e

“11near in 4, at f1xed p Thus the vector Gradf’(p) € TE ) s def1ned\\\

T

by “

- -The couantant dentvaixue az p, uuxh neApecz to U e TE( ), of a

w‘;tangent vector f1e1d X’def1ned on z X (P), 15 def1ned as the pro-;;'- -

‘ V-Ject1on on the tangent p]ane of 1ts d1rect1ona1 der1vat1ve

"f_At flxed p, the map- e V;Y(p) 1s c1ear]y a 11near operator on’f[,

'05 X at p Hence by def1n1t1on,.

a [vx]+(u) (p) for every Ue T+(Z) A (1 5) | )

(p) - U Gradf (p) on‘ every U ‘e T"*(Z) o (].3) v oo

QR0 B am

‘F".,‘T+(2), 1t 1s denoted by (vx)a- and ca]]ed the covantant dentuatxve L

| ‘,G1ven a 11near operator A T+(z) > T+(z), 1ts trace wi]l be denotedj:"

jby T’T ) (The bar emphas1zes that we are dea11ng w1th a two d1men-

As1ona1 vector space ) G1ven a tangent vector f1e1d X on z, the d1ver— .



al]g

_gence of X at p e £ is defined as the trace Of’?ts_coVariant deriva-

->_‘tiye at'E:'

'Let A be a f1e1d of 11near operators on I, wh1ch to each p asso--

c1ates a 11near operator A§ that maps T+(Z) 1nto 1tse1f The cova-

r1ant der1vat1ve of A at p, w1th respect to ue TB( ), 15 def1ned by

”mvx() TWVX% RRTUREE .:;fslf .' (1.6)

7 A)x = Pa(DAP) (restricted to T+(Z)) L

PP P-
At f1xed [J and 0 this s, Just 11ke Ass @ 11near operator on Tﬁ(z)

‘A and it s eas11y seen that (V- )% = (V A )3 ;;(where A ﬂenotes the |

adJ01nt of A. ) and that V- [A(—)] = (T A)(XD ( -_) . where X is -

any vector f1e1d on Z F1na11y the d1vergence of A at p is a vector

e

‘-}D1vA‘(p) € T+(Z) def1ned by

DWA(E) [V-A]-ﬁ u1 T+ [V-A]+(u2) ,‘ i = »(1.8)

P

.“where (ul,uzf is any orthononna] ba51s of TE( ) If X’1s a- tangent R

vector f1e1d on Z the fol]ow1ng 1dent1ty ho]ds

Dan'n XDivA- +TNAVX) ,c6f1ﬁgf-;h;(d§y§n;ﬁ;

7fwhehe¥7x is. the covar1ant der1vat1ve of X (see eq (1 5))

O" each tangent plane T*( ) of a surface Z is def1ned a ;FAAW:j" -

P.

S 111near 0Perator 55 TE( ) + T+(Z), ca]]ed the Ahape apeaaton 06 3

(O Ne111 [1970]), wh1ch tel]s how the un1t normal n to Z chan-.h1?7eﬁﬂﬂa

- ;'ges in the ne1ghborhood of p Spec1f1ca11y, 1f u € TE( £), we have :if_t.,”

" nw oA ﬂ imnnW)?Oﬁ
. gs1nce n n is constant ( ); It fo]]ows that D- n( ) € T+(Z) The

VKsthape operator at p, 53 s 1s the 11near operator on. T+(Z) def1ned by_if‘ L
n(p

‘KS+(u) D

) L for every u € T+(2) ;h:"'f (1 10)A;7n1 ;



(The operator LE~‘-S$ is usual]y cal]ed the- we1ngarten map, whereas :
1the tw1ce covar1ant tensor assoc1ated to SE is ca]]ed the second |
' fundamental form ) It may be shown (H1cks [1965]) that the shape oper-’i.
ator is se]f adJo1nt that is el R |

' | U S+(v) S+(u) for every ['F v € TE( )jt' _ri ,;2(1;11)?i‘-
‘G1ven a un1t vector Ue TB( ) the plane through p, spanned by n(p) wi,if.
and @, cuts I along a curve r-ca]]ed a norma1 sectwon at P, The nor-
‘-'mal curvature of z at p in the u d1rect1on, "E(u)’ 1s by def;n1t1on R
equa] to the curvature of the norma] sect1on r-.at p, counted as

5xpos1t1ve when ru bends toward n(p) It;may}bevshown_that (0 Ne111

@ sﬁ(a)’ (112)
‘tbS1nce 53 1s self adJo1nt, 1t has two rea] elgenvalues kl,kz, ca]]ed‘-iptf'
- the. pr1nc1pa1 curvatures of L at p From eq (] 12) these are the ;;b'
“jfextreme values of the normal curvature at p The mean and Gauss1an o

'f.curvatures of Z are def1ned respect1ve1y by

“- *(kl’sz) 4TS and K= kiky ‘*dets . B

z'f:‘ffThe s1gn of K(p) te]ls much about the shape of z in the ne1ghborhoodff{}fwfir

p (0 Ne111 [1970] p 204)
‘ If Ue T+(Z) and X s’ a tangent vector f1e1d on z, A
D_Y'— -X D ﬁ X‘S(u), a resu]t wh1ch comb1ned w1th eq (1 4) im- 'f-“ﬁifyf

’“;xssiip11es the Gauss equat1on |

D Y = V-X + U S(Y) n. o 1 | (1 14).* N

'3.JAn 1mmed1ate consequence of thlS equat1on is that 1f A 1s a cona- B

u-jfﬁ”tant vector and K’1s the tangent vector fie]d def1ned on z by



e :.‘+

‘)'_; and that

' .1s g1ven by

T Txﬁ__’ T ey

‘- P+(A) then the covar1ant der1vat1ve of K'(def1ned by eq (1 5))

F1na11y we cons1der a mov1ng surface Th1s w111 be V1ewed;’4

20

as a one- parameter famlly of surfaces Zt’ one for each t1me t, such SR

| >.that there ex1sts a reference conflgurat1on Z° and a d1fferent1ab1e‘ -

';,funct1on R( ,p), p € z° ,W1th the property that the map R z o+ zt '-5':

[fLZ° need not co1nc1de w1th any of the surfaces of the fam11y More-

-

H;'fp > ﬁ p) = ﬁ(t p) is a d1ffeomorph1sm The reference conf1gurat1on e

)flover g1ven the one parameter fam11y zt and the reference conf1gura-lh,-'f"= ;

”'ftlon z“, the parametr1zat1on R(t p) is not un1que we w11J return to ). _f;

'~:2rth1s po1nt shortly The normal speed v of the mov1ng surface at

?(t) € zt 15 def1ned by

"wahere 3 1s the traJectory def1ned by 3(t =P, (t ) 3 Zt' and

e _;:n % dP 3 for every t'- If a funct1on f 1s def1ned on the

dt

'1_ma1 t1me der1vat1ve of f d f N 1s def1ned by
. : _ df“ o LR

dt aT
iy at

'ji:where the traJectory ? 15 as above G1ven any traJectory q(t) such

'7§Q»~ that q(t) ¢ zt for each t, 1t may be shown (Treusde11 []960]) that

S ?fpmov1ng surface (that 1s a funct1on f s, ngen on each Zt) the nor--»,-7'7]]f

[

¢ f(ﬁ),- = df s G eGradf @ 2P ). (L9r T



B ~where use has been made of eq (1 15) Together w1th eq‘(l 19) th1s i

g,1mp11es g‘> f,fai?

‘ 2]‘

! .'ﬂ“..

'-If a tangent vector f1e1d Y'1s def1ned on the mov1ng surface and

Xa 1s the vector vaJued funct1on of t1me Xa ~)+(t)’ and 1f

.(el,ez,ea) is a f1xed orthonorma] frame then -

q”-Grad(e -X) 'g‘°V+ X'+ X'V+ e1 | i-[V X+-X156¢ﬂ)*7”
UG g Y

e dY—» j::.dX+V+Y+qS(Y)n
a’t‘q dt . q// .//

we sha]] f1na11y der1ve expreSS1ons for the rate of

' change of ‘the un1t normal and local area of a mov1ng surface 1n c:[:‘l

' ?Ifterms of 1ts norma] veloc1ty f1e1d G1ven two" surfaces ) and z , SR

L ‘and a’ smooth map M 2 > Z between them\mthe d1fferent1al of M at

. flﬁ?fwhere (u ’u ) 1s any orthonorma] bas1s of TB(X) such that v{g;f;f

';-p € Z denoted by M*ﬁ,‘ls the 11near map between T+( ) and TB (T );c:'hWTE

p.

“%( ' M(p)) def1ned by ,,ﬁfffklf;ﬂf,,.ifff'ff,§57l.if;fj§7#“17)‘“ L

Mﬁﬁ(u) ( ) for eVery Ue Tﬁ( )‘{'tu;i:fjw (] 21)

hff;jG1ven Pe Z the Jacob1an of M at p, J(pr, 1s def1ned by | f};}friﬂ}

J(p) —-n -(M (ul)XM B(uz))

- fj“n (U1XU2) 1 and n' is the un1t norma] to I at p M( ) The

S f 1 dA f RERES e (e

;Vfg1ntu1t1Ve mean1ng of the Jacob1an 1s revea]ed by the change of

B var1ab1e formula

o

'»ft”}where dA and dA"are the area. elements on z and Z and f 15 any

~1ntegrab1e funct1on on Z' i

Com1ng back to a; mov1ng surface Zt’ we assume that 1ts ‘ff_é§f7v

.!1



Ifh‘_vmot1on may be descr1bed w1th the he]p of a reference conf1gurat1on N )

| z = th and of a smooth funct1on R(t )P e Z°.; such that at
o [ R .
. f1xed t the map Rt z° - zt p -+ R (p) ﬁ( ,p) 1s a d1ffeomor--<--

e ph1sm between Z° and Zt Th1s br1ngs up a. subt]e po1nt w1th 1nc1- 11 S

Avbg‘dence on the theory that fo]]ows If the mov1ng surface z were a o

“t

';7'f_mode] of say a membrane, there wou]d be a natural ch01ce of the

funct1on R t p) as a "mater1a1“ parametr1zat1on, in the sense that :
';_ﬁ(t ?) wou]d be the pos1t1on at t1me t of the membrane "part1c]e“- |
wh1ch occup1ed the pos1t1on p 1n the reference conf1gurat1on '

at t1me to But when Z 1s of an abstract nature W1th no

Zto t i
bf_"materlal" ex1stence,‘as is the case w1th the d1V1d1ng surfaces 5;ﬁ°

: f¥;~:cons1dered be]ow, therea1s no such natura] cho1ce In fact 1t 15;3.d@571t‘"’

t‘:gsjclear that g1ven a mov1ng urface Z and a part1cu1ar parametr1-"‘f'g;p_fh.;vi

"‘};f23t10n R{t, p); we can f1nd 1nf1n1te1y many other d1fferent para--fapfc .

k j"fhmetr1zat1ons s1mp1y by superpos1ng 1nterna1 "mot1ons" w1th1n thefgf? o

’°‘1ffffthese d1fferent parametr1zat1ons have 1n common the nonna] com-
”-'Uf];ﬁ; Ponent of the1r ve]oc1ty f1e1d for, accord1ng to eq (1 18), we j;ffffﬁ?"af'fﬂv;

"f}fhave

o fff;where vl 1s def1ned by eq (1. 16) G1ven some reference conf1gura- 'f if;"i
”'l];t1on Zt ¥ thvs 1eads us. to def1ne the norma] parametr1zat1on ﬁl(t,p)
el ;based on Et as that parametr1zat1on for wh1ch each po1nt of the

..f m0v1ng surface has at each t1me 1ts ve]oc1ty perpend1cu1ar to the

35femov1ng surface HOWever, g1ven the one parameter famlly Zt’ a]l

| r ;E .1a'V¥fl::{'ifi{;.ﬁaf“-"
ot )

“*Q:;isurface on which }t 1ies at that t1me Th1s 1s tantamount to the



. 23t1
(’Vrequirements that ﬁl(to;p)'=-3 fOr_evehyAE s'zto and that aR (t p)}_

3be perpend1cular to Zt at R (t p) for every t and p € z (Natu- B

'rally in genera] ﬁ t p . p when t 2 to ) We w111 now study the -
&

5{1;;rate of change of the un1t normal and Iocal area in the normal para-L;-

‘meetr1zat1on For s1mp11c1ty we'’ put to =0. Let u € TB( 5) and’ def1ne f;}‘~‘

'7'a “norma]]y convected" tangent vector U(t) by

T(t) (t)* @ R 23)
%,there ﬁlL;* is the d1fferent1a] of ﬁ at the po1nt D (see eq |

f‘; (] 2])) G1ven a coord1nate system (51,5 ) on a ne1ghborhood of p

R =, - SR
p.v1n L 0’ wath i h §E1(0 p + U gEz(Q p} f we ' have“p L

'(°:?Td:ﬁi?t'. z D—(V n) 'f ﬁ?GfAdy?THl??v*SKG)‘fﬁ.abf{73(1{24)?;fj}ﬁ;1

"*fﬁtfjwhere use has been made of eq (1 10) Th1s 1s the bas1c re]at1en

"":aﬂggffrom wh1ch 1oca1 rates of defonnat1on 1n the norma] parametr1zat1on

| *'7e?;may be extracted Let(ul,uz) be an °Vth°“°rma] bas1s at p W1th

| "'%ff?gn = ulxuz and U}(t) and U}(t) be def1ned by "norma] convect1on" of -

niul and uz as U(t) 1n eq (1 23) If J (t,p) is the Jacob1an of R

‘ ;fat p e zo and n+(t) 15 the un1t normal to z at ﬁl(t p), we haVe

- }p}from wh1ch us1ng eq (1 24) and J (O,p) =1, we get a”:f“"r

m(t) J"(t 3) U;(t xUz(t)



TS

A | o= ad!
.\dtﬂqg t:O‘fﬂt at

S

h - VES(T) )%, + Ty S(T0) ]
t=0 . . ) . . B ) . L

(ﬁliGradv ) HXU2 + uz-Gradv ulxntfj

- 'aJL v 2H n- Gradv
Jt=0. -

. ;51nCe d n+ l 15 tangent to Zo, 1t follows that
| tO ‘ o

l ; _._2Hv ‘[ivd ‘ h dw ’;;;.: = ih_ . ﬂ:(]°25); L
Cand . f‘“dly; . -~'G,~adﬂ_§,l T )
R "'.,at"”t R Ll SR "p{ :-"t~ .

. These two formu]as are remarkab1y sxmp]e The f1rst one glves the

h’adl

‘;'1nstantaneous rate of change of area of a sma]] p1ece of surface j},f:'ﬁ”' :
52':whose po1nts are Propagat1ng\accord1ng to the normal parametr1zat1onli,57
Th]S fo]]ows from the geometr1ca1 1nterpretat10n of the Jacob1an

- derlved from eq (] 22) The second one re]ates the rate of change

\

L tfof the un1t norma] a]ong a "norma]" trajectory to the norma] ve]o- f_;_:ﬁtr o

zv*\ifejc1ty grad1ent 1n a most d1rect and 1ntu1t1ve1y sat1sfy1ng way

F1na]]y 1f r( ) 1S any traJectory such that r(t) « z for‘t*di3~ﬁ :

hf:*?‘ifevery t, and n+(t) 1s the un1t normal to Zt at r(t), 1t f0110WS»ﬂi

| ’ﬁf{erom eqs (1 19) and (1 26) that

'”}ff};g__ | :f'- Gradv - S( ) where w = P(r) s;dff(ifZZY?;~ffhfrftd

:_%;:;13_ o

”:”'ffHereafter the symbo] "Prad" w111 be used exc]us1ve1y for funct1ons PP

e ;difon z, 1n the sense of eqs (1 3) and (] 6)

w'-f‘?-'_'defmed on L and the svmbol "D1v" on1y for tangent vector f1e1ds




2) A minimalfempirica] theory of‘the generic surface balance -

equatiofi-.

Th1s sect1on w1]1 serve as a reference frame for subse- _—
) *”quent d1scuss1ons Its purpose 1s to estab11sh a genera] surface

~ba1ance equat1on for a. two phase f1u1d system at a complete]y emp1r-- R

:’_1ca1-1eue1 w1th the m1n1mum number of assumpt1ons The essent1a1

"u~yresu1ts are summar1zed 1n eqs (2 19)- -(2. 24) The EVENfU61 0V191-‘

_na11ty of th1s der1vat1on 11es Tn the economy of assumpt1ons and
:3:1n the obta1nment of a funct1ona1 form of the 11ne f1ux (eq (2 18))
>~wh1ch to our knowledge 5 has not been reported before o
| | It 1s assumed that the lnterface can be - mode]ed by a =
.regfon of zero th1ckness, a true surface ; on wh1ch surface den--h

’ ;s1t1es and current dens1t1es are postu]ated The theory is tenned

':;a”m1n1ma]" for two reasons F1rst because we do not adopt any spe- 3‘ .
o ‘c1f1c 1nterpretat1on for the surface quant1t1es 1n terms of the '
E ffd]ffuse structure of a rea] 1nterface (Th1s w111 come 1ater )

”7a41d5”Second1y because we attr1bute a pr1or1 no tangent1a1 ve]oc1ty to

'°ff;»w1th any other surface the moment we assume that 1t ex1sts (be

”:'Hfﬁ1t on]y conceptua]]y) and that 1t moves, 1t fo]]ows from the

25

o :ﬁ?the surface Zt represent1ng the 1nterface But of course, Just as -ﬁ]ffjf_fmf

.:'"COQS1derat1ons of the preced1ng sect1on that at each tlme 1t has,i:m;ttzi'?'”

u:ﬁfijfat each of 1ts po1nts a un1que1y def1ned norma1 SPEEd v 0" the
'71;fffother hand to accept a pr1or1 a not1on of tangent1a1 ve]oc1ty

" t*“ﬁnff(with presumed phyS1ca1 meanlng) fOP the POT"tS °f Zt W°“]d amount

E ;?to attr1but1ng more or less permanent 1abels to them Although ob-’ ,' 5



\ -»v1ously noth1ng prevents such Tabe11ng in a pure]y formal or mathe- ,

_ mat1ca1 sense,,1n order to have phyA&caﬂ mean1ng 1t wouId have to
be based on some. phys1ca1 p1cture such as Zt be1ng mater1aI or be1ng :‘
“a membrane. But since our aim 1n th1s sect1on is prec1se1y to 1so- |

J .
late or- def1ne a genera] emp1r1ca1 framework free of any such spec1a1.i

1' assumpt1ons, we must refratn from us1ng the concept of a phys1ca1 L
tangent1a] veToc1ty of Zt as a- pr1m1t1ve concept So 1t w111 ggt |
'ffenter into our formuTat1on of the baswc assumpt1ons beIow

| ( Because of the smaTT number of assumpt1ons, the resuIts
ny1der1ved in th1s sectlon w111 be qu1te general They w111 serve as a-

'?k1nd of frame of reference for our d1scuss1on of ex1st1ng phenomeno— 3

'h“log1ca] theor1es in the next sect1ons as weTT as for the deve]op-.\

" he theory of Chapter III where a spec1f1c 1nterpretat1on
‘ ace quant1t1es w1]1 be adopted and 1nvest1gated in con- |
e't‘a.iT, : ‘ AR L
[Cons1der a non equ111br1um two phase system The 1nter- o
; trt1me t) 1s represented by a- surface zt co1nC1d1ng w1th the
E'!';.boundary wh1ch W111 be assumed to be macrosﬂop1ca11y sharpIy

d The surface Z d1v1des the mater1a1 1nto two reg1ons M

l
L")

the symbol o stands for the 1ntersect1on of two po1nt sets, .f'i-

\»'.2,7'

~i;rffthat 1s the set of aTI po1nts that 11e 1n both sets) and the un1t |

, E

h'ﬂ;fnonnal n to Zt Po1nt1ng towards Mt Accord1ng to the cont1nuum ngf.f"‘”

:‘tlﬁﬁhfor "smoothed" descr1pt1on of matter, the qu1d 1s endowed w1th

~'""IH{Y':;‘ﬂ‘various extens1ve attr1butes the amount fTow and 1nterna1 PrOdUC ﬁ?

'effft1on of wh1ch may'be computed us1ng appropr1ate dens1t1es, 1n the




iabu1k reg1ons If V is a. reglon f1xed in, space not ﬁnter- ‘

: sect1ng Et’ the tota] amount of attrlbute A in U A( )}, 1ts flow

v

',(BU) through thgvboundary BV and its 1nterna1 product1on rate P(V) -

'?are‘glven»by | -~.,1 if"i f' h'f f-if N :. |
, ‘A(V)frth*j a’dy | ;; o f Ife‘f;f : . X ,,_f(?;i)nﬁ
| }BV.‘-. B I RS
»-~where a 3 and g are the bu]k dens1ty, current dens1ty and 1nterna]

.'nproduct1on den51ty respect1ve1y These three quant1t1es w111 be fff<:‘

+

*5<1fhereafter co]]ect1ve1y refered to as’“dens1t1es" At the’ 1nterface o

fthe dens1t1es assoc1ated w1th some attr1butes may havg d1scont1-...: L
ﬁ,nuit1es in the form of Jumps We w111 denote by a (resp .a ) the f:ﬂ;
‘Q!'funct1on def1ned on M+ (resp ME ) and equa] to a 1n M (resp M{{l]
7Edepr1ved of Zt and to the 11m1t1ng va]ue of a from the + (resp =

rd“the _,) 51de of zt’ at each po1nt of Z when the dens1ty a has a

Er’f;EJump at a P01nt p Df Zt, the cho1ce of the value a(p) 1s qu1te arb1-.?fp;ﬂ‘;a

if{zdtrary and 1n any Case 1stphys1ca]1y 1rre1evant we shal] adopt the

5fftéconvent1on that a(p) ;(35 at every pe Z The same notations
t

"%*and convent10n w111 be adopted for 3 and o Fo]low1ng the notat1ons

'““tinfiiiof Vodak [1978] the Jumps ?t the 1nterface W11] be denoted by

' 'V‘ﬁf;fdoubie square brackets

: "[al ( 3) 5 :
w1 = +(p) EERORE

LR R

) () s



:for every p evzt Next we postu]ate that when a 6Lxed reg1on V
-;1ntersects the 1nterface the tota1 amount of attr1bute A in U de-rft:fit wit
.‘noted_byJA,( ), is express1b1e as , ‘ | pE .'v | " R
| '_..';A*.;(l'/_)-\‘z" j a dv+ J aSdn N T
o f*7f”:siuj ‘a‘  t(V) .'; S el T e
'f,where a “is the same bu]k A- dens1ty as above aS 1s ‘a surface excesse‘
.»1dens1ty def1ned on zt, and zt(v) --U n Zt 1s the patch of Zt con- .

| .‘17ta1ned in the f1xed reg1on V at t1me t Equat1on (2 5) may be- con-h“g"".

v;ﬁt.s1dered as" the genera] express1on for the tota] amount of A va11d. __,“'”T
| whether V 1ntersects E or not,A1f the surface 1ntegra1 1s sgt by

';*v'def1n1t1on equal to zero when U n zt 15 empty L1kew15e the rate

.»tf”j:of 1nterna1 product1on 1s assumed to be express1b]e as fftti":;”"""°‘f o
o “” f st f aA S (2 6) gt

v

F1na]1y We postulate a surface current dens1ty J def1ned on Et and»:taff

such that when a 5txed surface S w1th un1t norma1 vector f1e1d N

.“h@frmeets z at atght angle all a]ong the curve SnZt then the net rate ;;ffffr‘iffi;

’j”“fff?of transfer of A‘through 5 ’S

o (s) j J ﬁ dA + J J N dA

[

'Vftiw_where 3 1s;the bulk current dens1ty and dA 1s the arc 1ength e]e- V*flilﬂf%iﬁ:fi‘

”ﬁrﬁf;ﬂment on the curve Snzt If the surface S meets Et, but not at

r1ght angle then we wrwte vvgt’zg;f.a"f;_ﬁ. y,a,:‘:**‘

e j:s Tons G a <> §
"*'*-<”fyf;5; s S?Ftragt;,{,jﬁfiffﬂf'gJ'Viﬁfr SR AT N




'where at any p ¢ Snzt, U is the normalized projection of f on‘TB(Zt)
. (see Fig. 1), “and the exp11c1t form of A has yet to be found. A1l
that is assumed at this po1nt is. that A vanishes at any po1nt of

where [ van1shes, or equ1va1ent1y where N =

- Sn):t .

The general balance-equat1on postu]ated readssnaturally

- .in nonloca] fonn s :‘n R +

(v) + o (av) PH(V) i=~‘0-‘ ; - (2.9)

CLIQ.

~_Where V. is-any.region‘fixediin space For this to ho1d for every
region V not 1ntersect1ng the 1nterface at time t, it'is necessary

- and sufficient that the usual bqu balance equat1on

at

: vbevsatisfied at'every point not‘on Et We nnte that spatia1 or

: time der1vat1ves are nowhere meant in the sense of d1str1but1on
'theory in th1s work 50 that eq (2. 10) Aas used on]y at po1nts not _}

.1y1ng on Zt' It W111 happen that express1ons 11ke Ve J wh1ch may.

S

be undef1ned on Xt’ appear as parts of 1ntegrands in 1ntegra3s over
\ . "P
reg1ons containing part of Ly . Their 1ack of def1n1t1on oVerﬁthese

sets is however c]ear]y 1mmater1a1 because these sgts are .of (three-

J
) . . s»:,. D .
-‘d1mensaona1) measure zero. , o 8 | o

Cons1der a mozLonLQAA region V 1ntersect1ng the. 1nterface,

'Zt at tlme t and extend1ng into M and Mt’ as 111ustrated in F1g 1.
Our task is now to evaluate the terms of eq.(2.9) for this type of

region. First it is eas11y.seen that"

&t { | | :£'< 'V)~

'

3a + Ve J -0 = 0 . '_" | . (2.]0’k

dfadv-Jaa v+ [-3-1 dV—I[[a]]vl(dA" (2.11)

29
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N

N r ! . {7 . \
- . . .- L R
« N o . N )
. . - .
5.

‘where V‘ = UnM‘ , [a] is def1ned by eq (2. 4); and’v 1s the normaT

t

speed of £, defined by eq. (1 16) To compute d A (V) we also need

t

tthe time derivative of the second 1ntegra1 in eq (2. 5) At the end

of th1s section we sha]] prove that 1t is g1ven by

d - d a® _ olvtaS _; L.Se o J
dtj a dA J I ZHv a ]vdA ty a’ dx | ‘(2,12)
t(U') Zt(V) I ¥1¢:1) s

The meaning of the various terms occuring 1n this equat1on are as

follows (see E1g. ):-zt(v) = Vnztv15‘the part of Et conta1ned in v -

.and dA is the areé element 0n7zt The der1vat1ye ¢t 15 the normal.

dt-

. t1me der1vat1ve def1ned by eq. (1 17), H 1s the mean curvature func-‘

t1on of z (def1ned by eq (J 13)), and v is. the normal speed of zt

defined by eq (1. 16) L (av) is the curve bound1ng the patch zt(v)‘

:or equ1va1ent1y is the curve a]ong wh1ch v meets W1th Zt At each

point p of th1c curve the geometr1ca1 factor T is. def1ned by |

i
e

=

34

[ ]
N

——
A |

PR

: where R 1s the outward un1t normal to av, v is the norma11zed

~ % ‘
..)

prOJect1on of N ongL+(zt), n is the un1t norma] to Zt’ (N,n) i

“the ang]e between [ and 7, and dx is the arc- length e]ement on

1:(a‘v). ‘ | R PR
Now accord1ng to eq (2 8) the second‘term.in_eg;(Z;Q) E

is given by

o) = [ 3 s J Gt o

W o L)

- [ gd* v + [ Ny dv1+_f (3 -7+ Div I} dA + J Adh

Vt_ . VZ o -_Ztgau) . ""%t(au)

cotan(N,ﬁ) e - b ‘%" (2. lé)'.

(2.18)
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1ntersecting a three d1mens1ona1

Figure 1: The dividing surface I,
‘ ' reg1on v f1xeé‘in space with boundary av and outward :
R unit nonnal vector . ' | o

t




‘ where use has been made offthe divergence theohemfin:thhee and two -

, d1mens1ons

eq.(2.9) may be.rewritten as’

- J i—g—% '+‘v-??+s- R J (g—% f ve 3 -T) v
+;_J {%fi - 2Hv as + D1v,]-- o +‘E3- av%m}.dA, :
AU S
| . J*(A et = 0
L (8V) 3

Combmmg this with eas. (2.5), (2.11), (2.12) and (2.6) , - _

3"But the f1rst two 1ntegrals van1sh because of eq (Z.Toj’and;the_eqUa;’?: B

p t1on reduces to
‘ .L

{dt

é 2HvlaS { D1V‘J - c + Eﬁ “N- avt ]} dA
. t(v) ‘ L L ’

L<3V>
*c-When V 1s 'S0 chosen that 8U meets Zt at r1ght ang]e al] a]ong the

' f,'ccurve L (av), the second 1ntegra1 van1shes and the arbltraPTHESS

5rema1n1ng 1n the cho1ce of V suff1ces to 1mp1y the van1sh1ng of
”f1 the f1rst 1ntegrand Th1s g1ves the surface ba]ance equat1on
di 5 2Hv a } D1VJ -t EUtnaav.] = :0.;,{'5 (2 16)

. .'v~\.\‘

”fCOMing back to equatibn (2 15) we'hQW'have,{th ah}drbitrdryffiXedf_c

\

region. V 1htersect1ng Zt

L (BV)

::+ (A - Ta’ vl) dA ;jjo_}}'f_' . (2.15) :

f (A : Tasvl) dx ' 0 ‘fh{: {iv“;; e;  cilbe'.iff(2;17ieff o



BV S o o ) . C ) . .

t.The'functiOn A occurring ih eq‘(218) could*aapriori‘depend on‘any j:‘

' property of" the surface S def1ned a]ong the curve Snz .HOWever

.“,‘subst1tut1ng for U 1n eq. (2 17) a spec1a1 reg1on such that part ot |

: v co1nC1des W1th S and ‘the rest meets Et at r1ght ang]e we get
FJ (A -;Tasv )_dh-‘Q‘VOIT' .

: fwhere P = Sn):t A 11tt1e thought revea]s that the same equat1on must c:

1‘h01d for any arb1trar1]y sma]l port1on of P so that A must equa]

a*v* _Hence.eq.(z.a) becomes

For future reference we w111 col]ect the 1mportant equa_ e

tions

o dh - 2Hv a4 U‘x{ ,.-,‘cs_j+'*r‘£3”~‘ﬁ-av¥1.jﬁ;[=770' e :'(2';24')[

A far as we. know, the contr1but1on rj S vioto the 11ne VT

f]ux 1ntegrand in eq (2 2]) has not been reported before

3 - Uf? D,:(atfpdints;net an:tf)'_' f;fﬂf[slf(2;23)f.f1'5"“



h .&

- and,(2 20) st111 hold for: vector dens1t1es The flux dens1ty in the

Equat1ons (2~23)5and;(2:24) express the ba]ance of a sca]ar :

quantity The genera] balance equat1ons for a vector quantlty may be

‘ eas1]y deduced from them Con51der a vector va]ued extens1ve attr1bu-

te K w1th bu]k and surface dens1t1es 3, 0, a and o Equat1ons (2'19)‘

34

'bu1k w111 as’ 1n the sca]ar case 3 N), be a 11near but th1s time vector-{f

S v11near operator M§ p ) - T+(Et) SUCh that

',.'for ‘every

va]ued funct1on of ﬁ so that the bulk contr1but1on to the flux W1T] be-ﬂ71

'f,’where M 1s a f1e1d of 11near operators and the adJo1nt has been taken:
"rrfor subsequent notat1ona1 conven1ence In eq (2 2]) the term
‘ :TTJ = vt a wll1 be rep]aced by Tv As 1n the scalar case (j.v) T
ﬂ ':’;fthe 11ne flux den51ty W111 be a 11near but th1s t1me vector va]ued |
| ‘fjffunct1on of v v, (v), so that the surface contr1but1on to the f]ux S

1icef’w111 be f'gl*"“:'“vifz

1, (BV) T e

P.

'ﬁ~;p € Z there ex1sts a un1que vector FB € T+(Zt) and a,un1que_1ﬂ’f’

“:1:Q;( ) (M+) (u) + PB (2 26)

'U

1'as been taken for 1ater L

Cl

F+(zt), where the adJoin

:vnotat1ona1 conven1ence Comb1'1ng'th1s with eq (2 25) we see that

| :nthe genera] expression for thezflug in. the vector case 1s,- ep_;'"

.

T Lt(all)
el :

'Jﬁff3[fAt each p01nt p € 2 Q+ 1s a 11near map from T+(Et) 1nto E3 Decom-ff;h@pf‘:' ‘

t'fffpos1ng Q+(u) 1nto normal and tangent1a1 parts 1t fo]]ows that at‘eachf’;;{ff?g:f

:“::",1'3*(3V> e j o ® ‘+ T5% ; e @)



, where aga1n the second 1ntegra1 van1shes by def1n1t1on when Zt and o
B av do not 1ntersect It fo]]ows that, 1f Y 1s a constant vector the
f]ux assoc1ated to the sca]ar attr1bute es K W111 be

3 6*(av) f M (R) dA +“j [e!(MS),(ﬁ) + E'ﬁ?‘t +Tv:éf353 d
stavu_',}»t - '*L»(BV) T T

| = J_M(E),ﬁ dA_+ f [(M (e)+e n')d v + TV e a ] dl
W e

"twhére.'-"l (e), so that the bulk current dens1ty assoc1ated to the ‘ 0- N

.~'; sca]ar dens1ty e 2 is M(e) and the surface current dens1ty asso- -

"“3fff d*(+ +S) 2Hv e 35 4 D1v[M (e)+e n ] 3 3 ; Eﬁ Z'GVLB R
| Now We. have from eqs (1 9) and (1 15) ) o

c1ated to. &.3° is M (e) + e-nF It fol]ows that the bu1k ba]ance 1-’tl;

oy

3 e
at

- s LA
. equat1on for e-a 1s:rpt"
+
)

wh1ch since v [M( )J (V M) eff;fr(ﬂvg)tgﬂ(V;M),gVéﬁdhsfh¢é’3;{§_ff, L

arb1trary, 1mp11es that

Bt

Thls 15 the genera] ba]ance eQuatmn for a bu]k vector va]ued den-i?ffify*ur"'

f

s1ty It fo]]ows a]so that the surface ba]ance equat1on for the Sca'fffirfiifffi

1ar’e- S i

dt

-(va)-e-+TMM Ve)
(D1vM )-e + n eT’TM S)

: .D1 y._[M ;(e) ]»

:0’*-V~‘?'-"

e [D1vM + T’XSMS)nJ

- wh11e on the other hand

+

.f D‘V(e n_7 e s D1vr + F- Grad esn . "'." o



ST Y SR

But'in genehal h e

7’nso that

-;fjfrom wh1ch

'Vfafas e + 0, then ‘3§[;?[5g"”

‘DU

= -'5 S(G)i='-;,

;"G{Grad(eenf (& h) = 807 = ;‘e.s(i}
S .

3::where" = P(E) and use has been made of eqs. (Tt3);](1;10) and (j.ll);

T Grad( ; )""‘;_?'-f 'r's(é)S(ﬂeS(F)Z --

uhcj ness of e, we get 2 #,ﬁ’:: :
fd* s _2Hv a° ‘%DWM + Tr(SMS)n £ (Dw‘)n RPN
: -S(F) + IIM ( ) v a]] 6 .' (2 3])

”ff~s¢}lTh1s 1s the general surface ba]ance equatlon for vector valued den-?cfffff'

.‘”'?f?;and P, we note that if y is a fam11y of s1mp1e c]osed arcs traced

L‘fout on Zt around a po1nt p, w1th enclosed area s such that s '+ 0

11m 1 J Q(v) dA
et e

. 36

It fonows that ' e R

MV@nj Etsr) wwjn] h%dfffff~fff~”-

o ;Subst1tut1ng these resu1ts 1n eq (2 29) and 1nvok1ng the arb1trar1-t'a

"f5fs1t1es To get an 1ntu1t1ve understand1ng of the terms 1nvo]v1ng M :fﬂ;ffuij'5:5

Vim 1 f[(Ms)*(Gn 'fs F]dx
j.f;g}iD1vM + T—TSMS)n + (D1v'7 n -,5(“) _,171.* ‘

'dﬂ f(th1s Iast express1on be1ng evaluated at p)

Equat1on (2 25) may be rewmtten as Q ( s')'*;_-f 7o F, w7,



o dt

37

N

o I ey o . :
' where 1n genera] given two vectors A,B , Ke>B 1s the 11near oper-
I > sl O .
-.\»ator def1ned by Ae>B(u) (B u)A s for»every u e_Eg For convenience -
we br1ng together a]] equat1ons perta1n1ng to the vector case
LEavs f N dA L) - f G dv + f 3° dA _‘ _1,'(2.32)f_ﬂ
v Ly AR, RN
) ;-f"'M (N) dA + f~cQ( ) +Tv'Es ] o (2.33)

>4

*
L

. o
Sy
ﬁ’+

T2

T

bn.;Qi;}(MS)f'% nei‘ (PMS M, L .

;dl 3 2Hv B D1vMS + Tr(SMS)n ¥ (D1v_7 n - 5(—)t +S - 1 . _
th: +- HM (n) v a] = »6,5' _:‘ (2'36)}‘1,»"

In conclud1ng th1s sect1on we w111 prove eq (2 12) wh1ch

""_15 1nstrumenta1 1n many of our der1vat1ons A]though related equa- T

‘Edpuft1ons appear 1n the 11terature as for 1nstance in (Moecke] r1975])

' "1fﬁj ]we cou]d not f1nd a proof nor even a statement of the spec1f1c

'Hﬁlt,f;faresuit embod1ed 1" eq (2 ]2)

Let z“ be a. surface f1xed 1n space and S be a p1ece of B

| d'fnsurface mov1ng about 1n Z° Given at t1me dependent funct1on p > f(P t)

‘ f7}:;f:*def1ned on. Z°, 1t is easy to show that

' dt ‘g o s, , GS‘:C e L TR e T e

':~¥h;,where v 1s the outward norma] ve10c1ty of the boundary curve

”*':;*d;bas (th1s veloc1ty 15 the obv1ous analogue, for a curve mov1ng 0"

*?;_1;a surface, of the norma] ve]oc1ty of a_surface—mov1ng 1n~space, 35



Jifj:trlzat1on based on 2

t“LﬁFZrecall that 1t 1s def1ned by

- defined‘fn.Sectipnvl) We sha11 obta1n a resu]t actual]y s]1ght1y
~“more genera] than‘eq (2 12) in that we shal] f1nd the rate of

;: change of the 1ntegra1

':where a ]S a funct1on def1ned on the mOV1ng surface 2 (that 1s a

. funct1on at 1s def1ned on each ) ) ut 1s a poss1b1y chang1ng vo-

'move accord1ng to 'some- spec1f1ed ve]oC1ty d1str1but1on Vt’- d]*

e

;;_v 1ume conta1ned w1th1n some c1osed /yrface aU the po1nts of whlch‘,

 UpnZ 1s the patch of z conta1ned in u The po1nts in the 1nte-”'

rior of Ut need not be attr1buted any spec1f1c ve10c1t1es as th1si o

s comp]ete]y 1rre1evant to the 1ntegra] i eq. (2 38) It is a]soxfu I

"';51ntu1t1ve1y obv1ous that only the component °f V norma] to. 8ut -

at

t’
'Rl' '2 +z ﬁ*(p ﬁ*(r )
t* T P

"'fpjwhere the funct1on ﬁ r,p) 15 such that Kl 0 p p for every

ar . t

"n}[to use th;s parametr1zat1on we: start by notlng the obv1ous equa-j,iffﬁifiepff;

i ;w

,f o dA

| 9_ l |

Q.

ut+tnzt+r

7'1:f;fLet us depote by S the patch ut T t . at t1me t+T and hy 5 v#h_: i

"UEf fshou]d be 1nvo1ved 1n comput1ng dI We w11] use the norma] parame-'tf i

§+ ) 1ntroduced at the end of Sect1on ] wect~'.' o

"5ffﬁfp € Z ;- and aﬁ T, 1s perpend1cu1ar to Z at:ﬁl In order [f:f SR
: 't P S



. pomt 15

&

reg1on of Zt wh1ch is mapped 1nto S by ﬁl, that 1s S (ﬁi)"(si);

,_From eq (1 22), 1t fol]ows that

j (t+r p) dA = J (t+T Rt (q))J \r,q) dA E,
'where.J 1s the Jacob1an of the norma1 parametr1zat1on Comb1n1ng

“this with eqs.(2.37),(2. 38) and (2.39) yields

o dA + J av, dA
T=0: 350 _

e %ij &t RED) I, (1,8)

&2 2Hv Lol A+
"_vu i, ey -

‘—-ﬁ

'--where use has been made of eq (] 25) fogether With'the fact.that-“

'_:f‘-Ro is the 1dent1ty map: on Zt’ SO that So = Ut”zt A]1 that rema1ns
bflto be dg%e 1s to compute the norma] veloc1ty v 1n the second 1n-‘

fgtegra] 1n eq (2 40) The curve BS° 15 a c]osed curve mov1ng, as T

'J”’fkﬁtevolves,bwn the f1xed reference conf1gurat1on Z Let E - q(g )

"{gbe a: parametr1zat1on of th1s curve at t1me T4 By the very def1n1—id79h'}i5""

.ir;itIOH of the normal veloc1ty v we have ft-ff;,iff*""

e

‘t;*dfggiwhere 3 has 1ts zaual mean1ng (outward un1t norma] to 3S ,.tangentff‘fﬁqb

ﬂ"4f5;ffto I ) and V'qu:ﬁ 0. At flxed E, R ( ,q(t,r)) 1s a p01nt of tthefff”7fff
U ,n»‘ ) & ’;:__ R I

9T

L

'".{f;curve on wh1ch ﬁ? and Z 1ntersect and the veloc1ty of th1s _";;{f;f o

g h’ (T,q(E r) ]l aR (T,q(i r)) + (R ) (1(5 r))
T _ g S )

-39




40
L l L | '
r (B) [ 1o, (8, 9)
R
”}e d1fferent1a] of R (see. q; (1 21))

1f N 1s the outward un1t norma1 to aut t
ﬂfw,q(g,r)) and V is the norma] ve]oc1ty of the surface
i ;{hat p01nt then from eq (1f18)?,

| [RL( ,q(E,T)) ;'*vl'_i_'.
; _.‘ BT 3 ,"v f\ v“' t » . . o
;fth1s together with' the prev1ous equat1on eva]uated at t1me
i‘zat which Rl is s1mp1y the 1dent1ty map on Zt, we get :

*f;V+7£ vi N~n + VS N-v

have ‘used the geometr1ca11y ev1dent equat1on N [—% = 00
: . o o , ﬂ -

1s the geometr1ca1 factor 1ntroduced 1n eq :5i5-2ff f;

’:2¥
‘er

(2 13) and has noth1ng to do w1th the t1me parameter used above

Insert1ng th1s expressswon for vv 1n eq (2 40) y1e1ds the des1red

.
\ resu1t

e Im a = | 0 -'2Hv a] @ J o ) V st d)\ (e
’ t t t foff a(u t) *?;_i{hfig';fseef;;fg .

| :‘f?ffﬁj ' where a(utnzt) is the curve bound1ng the patch Utnz When u, does f?tT}ffdiﬁf

t SR
not depend on t1me, that 1s, 1s a reglon v f1xed in space, V¥7%?Qf7fﬁ*{37; i

d: and eq (2 41), with our previous notations, reduces to eq (2 12)

e fa dAJ (4 - ot JdA frv o dn s (2 42)_’___;f._{.‘j_-;l__-:’fif
afitw) t(V) t(aw e e



' tthe TocaT'Stretth1ng or contract1on of the surface )

o was g1ven perhaps for the f1rst t1me by Ghez. [1966], aTthough h1s ver--lf":

",[1960] and STattéry [1964], wh11e Jump cond1t1ons 1n a more restr1cted - |
- sense have Tong been known (Truesde]] []960]) Der1vat1ons of the gen- 3
o eraT\surface baTance equat1on at the emp1r1ca1 Tevel have aTso been |
t};ffg1ven by Moeckel []975], Deemer and Slattery [19783 Bedeaux et aT

2 i‘a[1976] and Vodak [1978] The nove] feature of the derivat1on g1ven 1n
‘3térf€th1s sect1on is that no reference whatsoeyer 15 made to tangen—%f,5:fj7?
.:T:it1a1 ve]oc1t1es on the d1v1d1ng surface, 1n arr1v1ng at eq (2 24)
‘.t:f;;To our knowTedge, the result embod1ed§1n eq (2 42) has not been re-l f;ji§7nf5<~m
‘;fftported before From Our more generaT standp01nt, we may 1f we w1sh
T:szirecover the fonnulatvons of other authors but odr formu]atlon can

ftfrfa150 perfect]y accomodate the concept1on of the d1v1d1ng surface

'37£fffas merely a conceptual dev1ce, 1n the sp1r1t of the Gibbs approach

'rstadescr1bed in Sect1onr1 of Chapter 1. Though of Tesser Unportance,‘,p;?fﬁf;[gkg_7j.5

”'f:‘ﬁfi}the fonna11sm for ve%tor den51t1es embodled in, eqs (2 32-36) aTSO }gf}; L

- ffffuappears to be or1g1na1

-4

. The three terms on the r1ght hand s1de correspond to the three }' B ,

',‘causes respons1b4e for the’ var1at1on of the 1ntegra1 on the Teft

A

~first the time yar1at1on of o aTong a normaT traJectory, second]y

\‘.

t(see eq (1 25))

'__'and th1rd1y an’ edge effect due to add1t10n or remova] of str1ps

. ,of I ( ) to the 1nteirat1on doma1n as 1ts border 1s de11m1ted by "gff'

vary1ng port1ons of. ay when zt moves
The gLneraT surface ba]ance equatlon at the emp1r1ca1 Teve] _7-7 aep~?

s1on is. not qu1te correct because he forgot a contr1but1on from the

S o S 5 g 2

bulk dens1ty Jump Spec1a1 vers1ons were g1ven earT1er by Scr1ven

SRR Eﬂ'ﬁ\ﬁg:‘ﬁ'g: A A

\

'''''

l ‘d




3) Mass, momentum and angular momentum balance .
Lo T o

Agatn for:the'purpOSehoftfuture reference~-We shall'aopiy“

the general equat1ons obta1ned 1n the prev1ous sect1on to the cases"“i’””'

j'7.of mass, momentum and angu]ar momentum The system consxdered w111

. ﬁ"f‘be one made of n. chem1ca11y non- reactrng const1tuants and devo1d of” jlff“ o

;, we. could argue as’ 1f the d1v1d1ng surface were mater1a] and 1ntro-»§[-f'*

,{'1nterna1 angular momentum (De Grott and Mazur [1969], p 305) Here' ;mffl \
'ft:‘tooawe are carefu] to 1ntroduce the 1east poss1b1e number of assump-er f:.

‘:ift1ons For examp]e, in’ cons1der1ng the balance of 11near momentum, . :

dfduce a surface stress tensor 1n terms of surface forces We cou]d

\ f}fthen wr1te down at once an equat1on look1ng Just 11ke Newton s sec;;égtff,v““

"=i[‘ond law In contrast to th1s, we mere]y assume the ex1stence of a ;Q,:a*~

'1Q f181d (see eqs (2 33) and (2 34)) that g1ves the surface contr1-ftfﬁf'"

":f_but1on to the flow of momentum Th1s 1s c]ear]y the 1east that one ﬂtiaffff}ﬂ;f

R ’;,;can assume The resu1t1ng surface momentum balance equat1on then ge;‘f'

"¥1”Zi{more remfnuscent of Newton s second law, we need some propert1es

”fftlooks rather abstract TO proceed further a"d obtaln an equat10n tha“‘

'hﬁt“fhof the momentum Q f1e1d They could be wr1tten down heur1st1ca11y ff;ihf‘"if“

‘N*’{fon the bas1s of an. 1ntu1t1ve "mater1al" p1c%yre of the d1V1d1ng

e F

‘rf?fsurface However 1t turns out that they fo]1ow from the balance ofl;;fciyf;r;:

".?~f;h"angular momentum we are thus ab1e to show that the 1ntu1t1ve1y ap‘dg_f-ﬁ{jzhi7

‘jfijf‘pea]1ng form of the surface momentum balance equat10§§}ol]ows from ffﬁf‘7'3”f'h

’"”tffgeneral phys1ca1 pr1nc1p1es and m1n1ma1 assumpt1ons wh1ch_do not

- 'lfifdepend on any speciflc 1nterpretatioh of the surface f1e1ds 1n '}iﬁ}fff,fgft

‘/htﬁbrjfterms of the defuse structure of the 1nterface

: '»ci B



- The bulk and'surface densities of the constituant o of
\
the m1xture W111 be denoted by Py and p ; ‘with correspond1ng bu]k
.and surface current densft1es J and J . The mass ba]ance equat1ons

" are then s1mp1y from eqs. (2 23) and (2.24)

3p_ + Vs J -0 8 | (3;1)
g Tt 0 D
Ls T - A (TR :
eg.%fea - ZHV,Qa + DJVJaf+ Hﬂa-n.- pavl] = 0'., 3 (3.2)

~ Summation over a = 1,2,...,n gives

" where

§%_+ Ve G = 0 ‘ ‘ | : | S (3?3)
- %fps 20vipS + Divg + R - v D = 0. (3.4)
T ° AR | .
n h o, n ) . n IR

. S S T _ v S :
p = E P s P = z P. G = E J » 9 = z J, - : (3-5)
. o1 & a=1 & a=1 & a=1 o ‘ .

We now cons1der the case of linear momentum Ingthe bulk
reg1ons, the momentum dens1ty co1nc1des w1th ‘the tota1 mass current ﬁ
,def1ned -in, eq (3.5). The assoc1ated balance equat1on 1s then o
> : . : : )
aG + V. I - F =0 : " (3.6)
3t o ' - | o
where T i$ the momentUm‘f1ux density»tensor (Landau and Lifshitz
[1966]) and F the body force per - un1t volume The fu]] express1on
*for i 1n terms of’the bulk stress tensor T wou]d be (Samohy1

: [19693, Kehlen and Baranowsk1 [1976])

M= =T+ ) p WOW.
. . as1 o o a ° . e
= . -T+ n oW+ % weu ) t3 7
= p Py Wy® O | (3.7) -



where w is the bulk ve]oc1ty of constituant a (J = p W ), W is

a aa
the bulk barycentric velocity (ow G), and ;a = W - W . In the

fo]]owing we shall neglect the last (diffusional) term in eq.(3.7)
as is done in the second chapter of (De-Groot and Mazur [1969]).
The complete equation3 could be-recouered by considering that the
last term in eqi(3.7) has been absorbed’in - T, So we shall write
T = -TeoWaw . C (3.8
The question is now: what 1s the surface momentum den-
sity GS ? An obvious cand1date would be g + p Syt N, where p and g
- are g1ven by eq. (3 5). But this requ1res some Just1f1cat1on e

will f1nd it in the fo]]ow1ng genera] pr1nc1p1e Given, a cube C
: g o
that is a set of po1nts X = xo +: lek i (e*;ej,é.dij) W1th«

; € [O,d] , let ¢ (A) denote the total mass current through the

surface Sis consisting of a]] points xo + AeL +1§LA . A j € [0 d] .

(s, O"and7Si " are the two faces of the cube perpend1cu1ar to e

and Si,i (0 < X < d),is an,1ntermed1ete ‘sTice" para]]e],to theseA
. two faces). Then thex'th component PL of the_tota]-amount of momen-

tun contained in the cube is given by |
" e | SRR
R e
| 0 R o |

v
w

' App1y1ng this to a cube C the center of wh1ch co1nc1des with a

po1nt p of Ly and no face of which is parallel to T+(Zt). it may

.th

~ bé shown, using ‘eq.(2,18); that the,t-a component of the total mo-

0

“mentum wcontainedfinic is given by

[enan = 3. o] (@ o) ah + [Eavs

RL(F) ' | von)
| 0 » £,(C) - - C



o i

~ where Zt(¢5 is the.patch'ofzt contained‘in‘the.cube C. The progf
is somewhattechnical‘andwill\not be reproduced here.- Hence the
; surface}momentum densfty._éS is indeed given by‘ | ’ |
B
The surface}contribution to the momentum flux follows
"from eqs;(2 33) and.(2’34) putting in}the Q'field appropriate to
‘l1near momentum which w1ll be denoted by QC The assoc1ated M5 and
T def1ned by eq.(2. 34) w1ll be denoted by s and pe so that

0 = (n-s.)*+ne1"£ Sl T . 10)__

From eq. (2 36) the momentum surface balance equat1on then reads

’gi(g + P v n) - 2Hv (g tp Sy n) + D1vH + Tr(SH X
t , -

r»"',+(D1v1“£)n-S(P£) -f+EII n)-v*lEJJ =0 (311)

swhere f is the surface momentum source wh1ch may be 1nterpreted

as an. external surface force per un1t area. Th1s equatlon 1s hard-'
fly suggest1vé of a surface vers1on of Newton s second Jaw. In that
,respect the essent1al element m1ss1ng 1s an expre551on of I‘£ in -
N terms of already deflned quant1t1es The des1red expre551ons w1ll &i
Lfollow from the balance of angular momentum In the follow1ng, g1-:v
Vén A ¢ E3, we shall denote by Z the l1near operator def1ned by v
Kx(u Ax U. The symbol [ will stand for a f1eld of l1near oper- o
ators, the one assoc1ated to a given po1nt of space ro be1ng ro . ‘V
The bulk dens1ty of angular momentum is r><§ and 1ts surfaceden-v,,
ls1ty w1ll, accordlng to eq. (3 9) be given by '; ’ " } B
N | } ES'=? §+pv-ﬁ)._v." (312)



-

' and 1t fo]lows that

’rf;“fsymmetry of & )

Tr(IIe ) = Tr ('nx +_x).'= -2 '7?-1'5",,.

7. [H?‘]--rxvn+2n 5.

1,Hence the balance equat1on for angu]ar momentum becomes .

=

_Q‘xG)+r'><V]I-r><_IE-21T 0}

r’which_in View of‘the"ba]ancedof”momentUm‘(eq.(3.6)); reduces. to-

F b

Thus the antisymmetk{c”part'of I vanishes and

. O v
_ : S .
. ’ L . N .
, A . R
. T PR -
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' The'tlow of angu]an‘momentum,thrOUQh‘the boundaky'avoof a regfon. v
lbftxed‘in_space wiT]wbe'giVen by"' R } |
o= f rxH (N) dA + J [erE(\)) + LS 1 d (3.13)
, oV B L, (BV) - :
It fo]]ows that the operator f1e1d M of eq. (2'27) wh1ch in the
3 'case of angu]ar momentum W111 be denoted by M . may be wr1tten as S
| f\Ma E (?«"‘,n*)*v - ‘-n :
:since (?x)*‘a'--?XA; Equation (2. 35) then becomes o
N _jr><§ - v *):— r)s?- = 6»..-
Q n : B .
:In order to eva]uate the m1dd1e term we note that 1f e is a cons- ‘
.tant vector then o | | : B : _ |
o ‘e-[_v-(,‘nr;) - v tn(?x &)1= (v n)-( xE)‘+ Trin v( x\é)
s E @) |
v Now‘the"antfsymmEtnic paht of H may be wr1tten as ﬂ -for a certa1n 1,;d_iﬁ o
j-vector f1e1d n and the 1ast tenn above becomes (because of the ant1-.;h-a



e (3.14)

In the end the bu1k angular momentum ba]ance equat1on 1s seen to be»r

equ1va1ent to the symmetry of the momentum f]ux den51ty tensor

7'Th1s is well-known and simply ref]ects the absence of local torques‘,~

due to the absence of a Tocal 1ntr1ns1c angu]ar momentum ders1ty to;-

;fstore up the1r effects To der1ve the consequences of the corres- '

'.47,

"_ pond1ng Aunﬁace ba]ance equat1on requ1res 2 11tt1e more work but is - 3

qu1te stra1ghtforward The f1na1 resuTt 1s expresged 1n eqs (3 24) :f~

'and (3 26) be]ow F1rst we. must f1nd the standard decompos1t1on

‘; ( (2 34)) Of Q ,lthe surface Q f1e1d perta1n1ng to angu]ar momen-.'..;

~tum. From eq.(3. 13), 1t fol]ows that

S
4 ,'Accord1ng]y, for any tangent vector u, i
| n Q ( ) = n- r "(.H.\S{)*”(U')i-: e |
= —(Fxﬁ) (n ) (u) ?’ﬁ('ﬁx;);"‘ﬁ-_...._

"1?‘50 that the r surface vector f1e1d for angular momentum 1s

T H5<nxr) R (3 16)

a

;;_L1kew1se from eq (3 15) 1t fo]]ows that for any tangent vector U, ;é;aej’s;:,

‘ftﬁﬁéqh PQ(u) [Pr (H) tt(rxn) ](u);{,”“'

- ’i'wh1ch means that M A the M operator for angular momentum, 15 91ven:_jV£7' IR

";_5by =

: N
' here use has been made of the genera] def1n1t1on of MS expressed

‘,';_vby eq (2 34) The above equation is equ1va1ent to

a

“‘Q '.§ (H ) + r ruo]k .y;a‘:gfhﬁij ‘ht"',?;?¢“(3;15).

(Mﬂ h=' ? UI) +(rx")°r 'f}‘nf, ;y (317)}11

LK = II PP 4 I‘le (rx n) R - | vi.(“3‘._18)‘., e



Y

In order to wr1te down the surface angu]ar momentum ba-.

el .
1ance equat1on we must first evaluate the terms 1nvo]v1ng M and T

~in eq (2. 36) w1th the part1cu1ar M end g1ven by eqs (3 16) and

(3 18) To’ eva}uate D1vM at a po1nt p of zt’ we cons1der 1ts sca-

1ar product w1th a constant vector e s TE( t) If e 1s the surface :

vector f1e1d def1ned by €= P(e), we know from eq (1 ]5) that
Ve'-'e “n S wh1ch at p reduces to (Ve 3= 5 s1nce e € TB( t)__fIn
the calcu]at1ons that 1mmed1ate1y fo]low, the base po1nt p, at -
» which e s tangent to zt, 15 om1tted but 1t 1s understood that

a]l the expre551ons are eva]uated at that po1nt F1rst we have

B D1v[H Pr ] = D1v[n Pr (e)]-'h{n Pr Ve] :
= pivin® ?PQ(_;_ )J . V i
2 (DWT?) P(rx e) + Tr‘{II VFP(rxe)]}
; e pmmvn)xr]+TrUIV[ereH}

S But for any tangent vector u we have from eqs (1 4), (1 IO)
(1 14) and (1.18) '_ L e R
| PO EP(FxE)]

e v_[P(r xE)J = L
s ; PD-[rxe-n(rxe)]'fffef'”
| | | ;fu s(e)P(rxn)+fn-(r#e)S(u)

ch(r xe)J P(rx n)oS(e) +8 (nx r) SN\ o

x*zf;and';‘-': o B s |
Tr{II vtP(rxe)J} & [Srf‘(rxn) + Tr(Sns)ner
Insert1ng this 1n the previous equation for Div[H Pr'] we get

D_i_y[n 1P,r ] ; _p[.(Djivns) xr] + Sn (rxﬁ) + T“(Srf) nx F (3 19)



‘ 'f5]fwh11e us1ng eqs (3 16) and (3 21)

:”If':Comb1n1ng th1s w1th eqs (3 22) and (3 23) we f1na]1y QEt v_ififsf”°';i.v :

'i”f-iﬁ';angular momentum aCCQrdlng t0 eq (2 36)’ W1]] read

- while -

"*[fdl[VX(9+-p v n)] 2Hv [rx(gi-p v n)] + Q
i3 ,‘ S

T‘Next we: need the d1vergence of the last surface tensor in eq (3.18).

,’On not1ng that in genera]

D1v(ﬁhV)¥-'(Djyu)_ ff(VVS(?).he’f:t_] 5 _pf _dkd}ZO)g'

, ' “'1t fo]]ows 1mmed1ate1y that :. P eij
}ft ) D1vCI‘ e (rxn)],- (D1VF£) rxn - nXRC - P[rXS(TZ)]
'f'Comb1n1ng th1s w1th eqs (3 18) and (3 19) ‘gives
‘ DWMS' P{rx[DivH -S(I‘I_) + (D1v1‘£+ Tresn® ))nJ} ) L

D1vr D1v[H (nxr)]

H

e [rXDlvH T+ Tr(SHSPr ) + Tr(HSnx) .

'H. .

R _‘;’_DivM PTY‘(SM ) n + (D1VI‘ ) n - S( )

Fx {D1vII - s( ) + [D1vI‘£+Tr(SII )]n} - L'%»’T*F('Hsh’:"')‘ ]

o - rx'f +. IIr II (n) v rxall | 3
o

| ’7'1However, when 1t is. noted that & et and use is made of eq

e

49

L G R X IR

:From the general re]at1on'T—(uo v) V. and eq (3 18) we then get : ; o

T.‘.._(SM .) % Tn(snSP?") + 5(%) (rxn) (3 23).['; e

'f.?JFor briefness 1et us denote th1s express1on by 9 Nith the surface ,f_tiffft7‘

g fsource term rx? (see eq (3 11)) the surface ba]ance equat1on for :ﬁeifﬁw'.'



'}‘ﬂspart of HS and by af®

c '-'?SO that

,(3{115,:thts'comoiicatedjequation'reduCes_tbfﬁk.
g -8

| ;iwh{Ch 1sfg§u1951en£:£o&nﬁ |

| | T |

Y7Y'Now, any ant1symmetr1c 11near Operator on Tﬁ( t) may be w 1tten

| f-as an for some : number a so that denot1ng by Ho the symmetr1c

K n

a'f—[n ;i aTr( I) = -Za R

‘:'ﬂiﬂfpa1r of equat1ons (3 24) and (3 26) These equat1ons 1mp1y that

T,o=vg o (e

_.-‘Tr( R - oo __'l (3 25)

ant1symmetr1c part eq (3 25) becomes ,3'

S50

"7'ffThus the surface angu]ar momentum ba1ance equat1on when comb1ned

"1~j;;;w1th the surface momentum balance equat1on, 1s equ1valent to the ;;ﬂf f»f*V"‘

ahrr’the Q f1€ﬁd assoc1ated to 11near momentum may be rewr1tten as tf{;;m5{fffffi7f

i’ ei_QZ H +v nog

‘ i'lp and g by wr1t1ng

= ;ge; psgt';;; ;,_,5¢5.1€;,ﬁ.d;jic;;;; ;€s}€:;;;f'ff(;?g?);’ e

: "b_The above equation then becomes

”75Q£~ il + pv nov v-n;?]f?fbiffi;ifiu (328)

?jwhereas the surface quantities p and g may. be considered t°

”?:e-have operationa1 definit1ons conta1ned in eqs (2 19) and (2 21)

4l‘v

”"»ffwe now deﬁtne a surface tangent1a1 veloc1ty fie]d v 1n terms of 'f"ff’"“'””
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e DT zﬁb,_ . |
with'a® = p° and J $‘§; the'tangential ve]ocity V’has"no ﬁndepen—
ftdent operat1ona1 def1n1t1on w1th1n the present "m1n1ma1" framework
V',f It 1s flrst 1ntroduced 1n eq (3 27) as a deatved quant1ty In an
:’-hf 1ntu1t1ve "mater1a1" plcture of the d1v1d1ng surface th1s equa-
"-t1on would seem phys1ca11y obv1ous and we would tend to cons1der 1
1.v as a ' pr1m1t1ve observabTe" we w1]1 now see th3$ the” surface
fmomentum ba]ance equat1on der1ved 1n the m1n1ma1 theory may be -
ais‘cast in Just the same form as one wou]d expect on the bas1s of
‘”:1such 1ntu1t1ve 1nterpretat1ons of the d1v1d1ng surface and of v,‘
'“;To th1s end a non tangent1a1 veloC1ty d1stribut1on V is def1nedii'5t b
h;}iwhere vt ts the norma] veloc1ty of zt and v is. def1ned by eq (3 27)
3?}Nhen th1s 1s 1nserted in eq (3 11) and use 15 made of eq (3 4) to:
“idj«iﬁﬁmove p to the Ieft of the time derzvat1ve, the fo]]owtng equa-;“f-‘l;iftffﬁe

"{,t1on 1s obta1ned

p [dl""' V-", e (V) K* (d‘LV'L + v Grad Vl) n 3 vJ‘(Gradv ‘ S(v))] -

T

s B S + [[]'[(n) ; v"‘G i (E-K . pV'L)V]] .6 /“

| hLet us denote by D the t1me der1vat1ve along the traJectory Q(t)
e o -,;’ Dt L SRR
'h:t;def1ned by a(t) € Z and Q(t)v- V(a(t)) for each t where V 1s de-u~’ EORR
| ";‘f1ned by eq (3. 29) It fo]lows from eqs (1 19) (1 20) and (l 27)
| "prthat the complicated expression mu]t1p1ying p 1n the above equa- f'5 R
5";tt1on 1s simply equal to D V Introducing a surface stress tensor f.aqfff-
S Rt Dt L , S

AR .



T 2. (1 - of V' )y o Eae)

. the momentum ba]ance equat1on becomes

0 DV"D1VT + Tr(ST )n-f? * E[T-p(V w)o(V w)J(n)B (3,31) |

Dt
/

fwe may 1f we‘w1sh g1ve a very 1ntu1t1Ve 1nterpretat1on of th1s equa{ﬁy
y-twon ‘The term on the left may be V1ewed as mass (per un1t area)
"”t1mes acce]erat1on By ana]ogy w1th bu]k cont1nua the surface
: rj‘stress tensor can be 1mag1ned as represent1ng 1nterna] surface for—‘
”j:;ces accordlng to the prescr1pt1on that the total force F act1ng on
a patch of surface S c Zt bounded by the closed curve aS due to the

- the surround1ng "1nterfac1a1 matter“ is g1ven by

St

E ?Th15 TNtegra1 is: eas11y transfonned 1nto e

AR f f”‘” *T"(ST) hlahs .o 3.3

ey fhdfshow1ng that the f1rst two terms on the r1ght hand s1de of eq (3 31)

| 37f;may be 1nterpreted as the"resu]tant per un1t area of 1oca1 surface f~f?,8-7~“

n'ry:ffcontact forces The term>f may be v1ewed as externa] surface force

,;.rifper un1t area and the 1ast term as ar1s1ng form the 1nteract1on
,r;fn{zbetween the 1nterface and the adJo1n1ng phases Th1s 1nforma1 p1c-u;;.,, A
;f5hsf'ture 15 qu1te sat1sfy1ng Intuitlvely It 1s good to know that 1t
,t_fmay be developed from the m1n1ma1 assumpt1ons 1ntroduced 1n Sect1ons
s and 3, wh1ch are themse]ves 1ndependent,of such 1ntu1t1ve repre-;"vi(fﬂiee
'nﬁyhf?tsentat1ons The cruc1a1 step 1n deduc1ng the 1ntuitive1y appea11ng e

"ffi*f"eq (3 31) form the abstract eq (3 11) was the obtention of eq (3 24),5-¢,y1,j<




)/‘ R ‘
-

forpy

~via the balance of angu]ar momentum

’ '5_ At equ111br1um, T reduces to yI where Y is the surface

h<’or 1nterfac1a1 tens1on (Aveyard and V1ncent [1977]), and from the

genera] 1dent1ty D1v(aA) A (Gra\a) + aDivA vaT1d for any sca]ar
e and ]1near operator f1e1ds a and A on L we get | |

mvT mvyl 'Gmdy.

"~ On the other hand, it fo]]ows from eq (II 1. 13) thaq Tr(ST );3

'_"T (SyI) 2y+1 wh11e T

‘fvb>whose tangent1a1 and nonna] progect1ons are

| i °i~:fthat of the surround1ng vapor

| - pU (U s the ’dentity on Ea), 5o that
:;'f eq. (3 31) reduces>to _{{;;jr f' ‘,» ’rh"b e

. .“b Grady + ZYHn + f‘ .(p.; p “)# . 6 -

o ,“ Grady1—f 0 =

| ._fr_P+" P ‘f% + 2yH - o o |
'fthhe second of these re]at1ons is the. wel] known LapTace equat1on"b;i{j
{°rhwh1ch 1mp11es that the pressure 1ns1de a 11qu1d drop is. h1gher than Jfffl['.“'

The balance of 11near momentum at the emp1r1ca1 Tevel has

‘;:ihfnaturaTTy been cons1dered by a]l authors who worked 1n th1s fleld

'”Chff},we may quote in’ part1cu1ar Scr1ven [1960], Slattery [1964] Ghez [};ff1¥5’“jtf

T :[1966], Moeckel [1975] Murdoch []976}, Bedeaux ATbano and Mazur

o 5;;f[]975], Kovac [1976] and Vodak [1978 a,b] The der1vatwon g1ven

"J'“4f3711n this sect1on dlstingu1shes 1tself by the mlnimal amount of assump-» =

“fi‘t1ons made about the d1vid1ng surface Thus no appea] was made to

"_”§1ntu1t1ve not1ons of surface mater1a1 ve]oc1ty or of surface con-_riffq

| i:m‘tact forces As a resu]t the forma11sm which is inc1denta11y com-‘- ?,f;etfg



1y 1ncreased comp]ex1ty of the der1vat1on

?ffffSUme), and the surface ba]ance of angular momentum

| “kpatib1e with av"materia1" conception”of the dividing surface, is

also fu]]y compatfble w1th the Gibbs’ approach though ne1ther po1nts

of V1ew were re11ed*upon in. the der1vat1on Th1s confers a h1gh de-
,‘gree of genera11ty to the equat1ons To stress thlS po1nt we note
f that, 1f the G1bbs approach were adopted the surface excess mass
4"dens1ty p wou]d be 1nterpreted as an adsorpt1on (1n mass un1ts) and:_
R as such w1th certa1n cho1ces of the d1v1d1ng surface s 1t could
' rvery we]] be negattue. Yet our. momentum ba]ance equat1ons wou]d ho]dzr

'true Just as we]] The pr1ce pa1d for th1s genera11ty 1s the sl1ght—

Y

, B The surface ba]ance of angu1ar momentum as g1ven for 1n- 8

Q‘stance by Scr1ven [1960] and S1attery [1964] and other authors quoted
‘,above is used only to estab11sh the symmetry of the surface stress
f:ljtensor..In the new formu]at1on g1ven here, 1t serves the add1t1ona1
iff_;hpurpose of: br1ngtng the very genera] but abstract momentum balance

'ﬁ»ffequat1on (eq (3 11)) 1nto the more fam111ar form expressed 1n eq

“f'fi;5,can be arr1ved at on the so]e ba51s of a postu]ated Q f1e1d for the

“':7F‘fthe{’ 1'1c'1 approach to 1nterfacia1 dynamlcs that w111 serve

b compar1son w1th the more fundamenta] theory developed
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'»"=;g(3 31) we cons1der 1t of some 1nterest that this 1ntu1t1ve form &U ﬁ“fﬁf;;?f

"”5~fﬁfsurface f10w of momentum (wh1ch 1s the very 1east that one can as- ;lgyﬁif;,fﬁ

';f; Our a1m 1n thts chapter has been to g1ve an account of | 1;;}135"



5igand momentum dens1ty (see the argument preced1ng eq (3 9))

“in subsequent chapters, In order to get as clear as poss1b1e a p1c-
e ture of what can be sa1d at a str1ct1y emp1r1ca1 1eve1 we have

str1ved to m1n1m1ze the number of assumpt1ons and to Just1fy a]] re-"“

su]ts not by 1ntu1t1ve arguments but by deduct1ons from genera]

}_h pr1nc1p1es A]l our assumptxons are conta1ned in: eqs (2 5 2 .9). So ’-f
the consequences der1ved so. far must hold 1n any theory that con-,_‘
ta1ns these assumpt1ons, 1rrespect1ve of the spec1f1c 1nterpretat1on7”~‘

‘1t makes of the surface Z or of the surface f1e1ds deflned on 1t

R

'v},terms of the d1ffuse structure of the trans1t1on zone A good example
"of th1s 1s the way we arr1ved at eq (3 9) for the momentum surface -
- 'fexcess den51ty, or at eq (3. 31) Us1ng eqs (3.27) and (3 29), eq

o (3. 9) may be rewr1tten as

A]though a prlor1 ev1dent or S0 1t seems (note that in. the G1bbs f R

r}‘approach 0 cou]d be negatlve), we nevertheless showed how th1s re- L

Comwng now to the k1net1c energy surface excess noth1ng;;~
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: ff.su]t cou]d be der1ved from 2 genera1 pr1nc1p1e relat1ng momentum f]ux.a¢7'~l7‘

’,,fcou]d seem more natura] than sett1ng 1t equa] to ip V2 At the em-idkg::’ L

lﬁﬁlj?;p1r1ca1 level one would 1ndeed be hard pressed to suggest anythIng;'fiﬁafjf,f
llft"else To make the po1nt as clear as possib]e, the question 1s thls‘fﬁ.lffi'j'[
B Eff;tUnder the assunptlon that the tota1 mass M(V) and the tota] momentum ”Fffnq“fif



B = Jpw v +f o7 A,
Sy zw)
: can we argue from some genera] pr1nc1p1e that the tota1 macroscop1c
"1 k1net1c energy (neglect1ng d1ffus1on k1net1c energy 1f present)

. V K(V), 1s g1ven by

| K(U)- J&pwz dV ¥ J"}'psvz A 7 S (e L

N (]

fnf;»Surprts1ngly the answer 1s no. Th1s s1mp1y cannot be proved and must
L be cons1dered as an addttlonal assumpt1on As we shall see 1n Chap- __"
irter V, when mass and momentum densit1es are cons1dered more funda-. faf,~-

~:v,menta11y as cont1nuous]y vary1ng f1e1d 1n the trans1t1on zone, and

surface excess densxt1es are g1ven expl1c1t def1n1t10ns 1n a gen- S

o

"fp}era11zed G]bbs approach the above expression for the k1net1c energyﬁ{ff‘f»
; ‘c”'h surface excess is found to hold only when certa1n res1dua1 tenhs |
" can be neglected even 1n a context where eqs (2 19-24) are fU1]¥ .?i'fﬁt;=f,l1
v.;-'fjJust1f1ed In contrast to this, the genera] theory w111 confxrm ttt. P e

:}2gfthat eq (4 2) holds true 1n such a context ThlS pOSSﬂ’]e comp11ca-1£m}j“’
}‘**;értIOn w1th the k1net1c energy 1s Just a partlcu1ar 1nstance of a gen-tfla*
thtfferal s1tuation when we construct some bu1k dens1ty a by a~§on11nearibff;’b
"7timtb;expressionqa = f(a 5 .f,a ) 1nv01v1ng other bulk dens1t1es a1,‘... iiitm

‘“i**la ,.it cannot be said that the surface excess density 3 355°C‘ated -

"'“if;gto a 1s necessar11y equal to the same expression wherein the bulk—

5;'dens1t1es al,

- VJ'fffcess densitles as | (In the case of k1net1c energy. the bulk

s 00
e dens1t1es 1nvolved are mass and momentum dens1ties p and E and
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.a are replaced by their associated surface ex-5¥§a7;“,fbfﬁ°f



the nonlinear expression is p"E-E). This complication, to which
~ we shall return in Chapter V, does not seem to have been explicit-
1y recognized in the 11terature\\ .

The balance equation for o V2 fo]lows naturally from -

" the momentum ba]ance equat1on From the def1n1t1on of the %f-t1me

der1vat1ve g1ven after eq. (3.29)‘and from eq.(1.19), it follows

that : g ;
' . N . ',
Dp% = d*p° + Ve Gradp®
Dt ‘dt
whlch combined with eq. (3 4) g1ves . SN
oD (V5 =D y_ - 2Hv L+V_p DivV + VE[Gen - ovi .
ot (70 'ﬁf( T2 B AR

;Tak1ng the dot product of eq. (3;31)_with_V and replacing the left-

hand side by the above expression for psg_(y§) yields the desired
o ’ Dt* 2’ . o
result:
b pSV2 -—2Hv*p5v2 + DivEp TS()7 + TFL TS(VV v 5)1
att 7 T ‘z— | |
-V+ VT(n)+( %)(V.W-y;_m 0. (43 ©

»

\Comparlng this resu]t with eq.(2.24) enab]es us to ident1fy the

E surface current dens1ty and source tenn associated with p V2 as
. ' e ,
! sV‘v - T5(v) and - T"[TS(Vv— vis)] + ?-V . There is no question,
7.

-that eq.(4. 3) is the correct balance equat1on for the quant1ty
%T' But if this quantity is indeed the kinetic energy surface

excess,*its balance equat1on must‘also follow from the general

f 3



“surface baiance‘equation (2.24), feeding in the appropriate bulk

kinetic energy tenns for the Jump EJ o0 -avt ] The bulk current
< ,
denSity J associated to kinetic energy is py_y-T( ) while av
Py : . - & =

becomes pgfyl. From the above identification of'sUrface current .

density and surface source term for psyi, there'follpWS an alter-

| native surface baiance equation for p°V? : S
d pSV2, - 2SIV +‘Div [p?vzv-TS(V)] + TP LT (T - vis))
L o7
- oV + [pw2 (W)J - oW?VtD = 0. (4.4)

It is'compatible with eq.(4, 3)>on1y if

VTR & @R ovt) (Ve - v2)1: o2 - T(w)] R - owy 1y
2 7 >

¥

~ which may be cast into the simpler form

.n-_l,I(T-pgf,LU)(W,L)J] =0 | (4.5)
where .
: > > - : -
W,L:W-V : o 1(46)

and U is the identity operator on Es;. This conclusion seems
~ inescapable inasmuch as we accept firstva%;_as the correct ex-
pression~for~the kinetic energy‘surface excess and‘secondly the

._surface current density and source terms p Vzv - T (v) and
2

- Tr [T’(Vv vis)1 + 4 v as those appropriate for the kinetic

,energy By virtue of the generality of our fonnulation, it follows

that this state of affairs obtains no matter what 'specific inter-~

R o
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pretation is g1ven to the dividing surfacs\and to the surface
fields. But 1t has been overlooked in all the stud1es that we

know of where the surface balance of-k1net1c energy was consid-

ered..

Equation (4.5) is satisfied-if WhR=wen = v on Ly

nd either 1 or both wn and w are e1genvectors of T and T

on Zt This is a suff1c1ent but of course not necessary cond1—_ p

t1on Another suff1C1ent but not necessary condition is that .
dﬁ_»W* = W '--V on I, we shall get better 1ns1ght 1nto th1s matter
_when we. consider it agaln 1n Chapter v from the po1nt of v1ew

__of the general theory developed 1n the next ‘two chapters

' | The balance of k1net1c energy 1s of course an 1nter-
med1ate step towards the balance of. 1nternal energy wh1ch in
\ turn leads to the balance of entrOpy and to the express1on
\for the entropy product1on, wh1ch 1s the start1ng po1nt for the
derivat1on of l1near constitut1ve relat1ons in phenomenolog1cal
non- equ1l1br1um thermodyﬂﬁm1cs S1nCe the results thereby ob-

talned are rather 1nvolved ‘and since we shall not nead them

in subsequent developments, the reader 1s refered to the litera-

ture quoted in Sect1on 2 of Chapter I, part1cularly\to the works

'of Bedeaux et “al [19751, Kovac {19783 and Voddk (1978 b3.
In bulk phases the balance equat1on for comb1ned
’kinetic\and internal energy e = u +'ipw y 1gnor1ng external

fields for simplicity, is-

ot

e+ Vo(ew - T(W) +'3q)'="0 S N (%))

59



60
On substracting from this the baTance‘equation.for kinetic energy

_a_(p_wi) + Ve (pWW-T(W)) + Tr(TVw) =0,
at | 2 . co

; there follows the balance equat1on for internal energy

du + Ve (uw+-Jq)}- Tr(TVw) .h, - ~ '(4.8)

Q>

‘In writing down the correSponding surface ba]ance equations,.all
"~authors 'proceed by ana]ogy? In our notations; this means that the
]ba]ance equat1ons for the energy surface excess is wr1tten as

fg_i_es 2Hvles D1v[e Y - T (v.)+3q ) R ‘,(4..9),
. o . | +'l[(eW-7T(~W>+~d )+h. - ev'l= 0
| wh1ch, comb1ned w1th eq. (4 3) ylelds the fo110w1ng surface ba-
lance equat1on for 1nterna1 energy L _h
.}_%%iS‘ 2Hv u + u1y(u V*.J ) - Tr[Tc(VV -ylS)j’ f':y~x 1:‘(4.10):;dt,
tl A :‘\._”+[[n[(u+}p§,,_)'v7 -(-T(w 5]]-0

'"dNow 1t shou]d be stressed that. eq. (4 9) is obta1ned on the bas1s

| of analogy and analogy alone Once we ‘have 1dent1f1ed e as the
“surface energy excess and Jq as the‘surface excess heat current
dens1ty, there is in princ1p1e no freedom left in the cho1ce of
the surface excess energy current density That it may be written
ase 571 (v)+Jq is an add1t1ona1 aAAumpt&on We emphas1ze that
: contrary to eq. (4 1), we have not deduced this express1on from a
'-general prjnciple. If the surface.z were a‘mode] of avfree‘11qu1d '
ti]m, we ‘could in fact justify this choice on the basis'of~a'work ‘\\
‘princ1p1e But in the present case we, at least, cannot thvnk

_of any way of doing this. ‘,’ o .
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CHAPTER III

;THE DEVIATION APPROACH -

o

1) Towards a more general theOry

In the prev1ous chapter we have a1med at present1ng the,
phenomeno]og1ca1 approach by start1ng W1th a set of m1n1ma1 assump-

tions. and try1ng to deve]op the rest e1ther as d1rect consequences o

"of these assumpt1ons or of these assumpt1ons coupled with wel]—

’-~estab11shed genera1 pr1nc1p1es Th1s proved poss1b1e except for .

cvthe energy re]ated equat1ons wh1ch requ1red add1t1ona1 specha] ‘1r

\assumpt1ons whose sole ba51s was the1r p1aus1b111ty The approach A

'-‘followed throughout Chapter II was fu]]y phenomeno]og1ca1 1n the 3’”

“sense that no reference whatsoever was made about the 1nterpre-

"Iﬁfltat1on of the surface f1e1ds in terms of the m1croscop1c d1ffuse fh e

K ,structure of” the 1nterface

“1In Chapter I, we saw that the G1bbs approach prov1ded vt

a beautnful]y s1mp1e and yet exact rat1ona1 bas1s for exp11c1te1y

\ 1nterpreting the equ111br1um surface excess dens1t1es In v1ew of -

_ 1ts attract1veness, 1t is worth study1ng the poss1b1e extens1on f

'of this method 1nto the realm of non-equ111br1um It 1s to th1s ‘

,matter thatlthe rest of th1s work is devoted whi1e the flrst

: part wi11 prov1de us w1th J background against wh1ch the forth-‘

}coming resu]ts may be conven1ent1y compared we shall now describe :

‘ 1n broad tenns what these results are a11 about vf‘




The obJect of our con51derations is a non;equiiibrium ,vf-

n- component two phase fluid system Ne now exp]ic1te1y recognize

:uthe three dimenSionai character of the tran51t10n zone, and 1et

' the system be described by den51t1es current den51t1es and source 't

4

' den51t1es, typical ones being denoted by a , J and o ;- that vary
ucontinously across the 1nterface W1th the he]p of these den51t1es

- one may compute the total amount A (v) of attribute a' in a region N

a,=f1xed 1n space V, 1ts f]ow through v, ¢ (BV), and 1ts rate of pro-.f;d

hduction in U P (V) These quantities obey the balance equation

": ».1ng surface 1bcated somewhere 1n the tran51tion zone, and in extra-i"fj.}TfEfJ;f‘
rfpolating the bu]k dens1ties in both phases up to this d1v1d1ng sur-v‘l" D

: ;}r.face Th]S means that they are subJect to the usual ba]ance eQUa-Z‘V‘. R

| %_A ;(.v')_ (av) - ( ) o Sl (1 1) S

v"qu 1n equ111brium, the first step con31sts 1n 1ntroduc1ng a d1v1d--i}

}ftions and that they obey the bu]k constitutive relations right up

‘x>to the div1d1ng surface we ca]] these denSities which in genera]

o

N

A

| L1d1ffer from the exact densitiesgin the tranSition zone and may pre-j?v -

sent y&np discont1nu1t1es at the divwding surface the schematic

den51t1es The fields equal to the difference between exact and

bulk den51t1es, we cal} dev1ations They vanish outside the transi-:gvf‘~

tion zone

:‘vahe first is to introduce surface excess quantities that w111 com-

. _'pensate for the errors foliowing the use of schematic den51t1es in

;computing the total amount of an attribute in a region v encompass-joi7

Ne next come to the second step which inVOIVes thQParts L



j_inglpart ofvthe diyiding-Surface“The exact re1ations obtained in .
,th1s context d1ffer from those used 1n the emp1r1ca1 approach but.A

-icomp]ete agreement obta1ns in a certa1n we]] def1ned zeroth order

e approx1mat1on The second part concerns the dynam1cs Equat1on (1 ]) :

“ ,&‘5 sat1sf1ed for any reg1on V not 1ntersect1ng the trans1t1on zone
*“'prOV1ded that the bu]k dens1t1es obey the usual d1fferent1a1 ba]ance
“i}jequat1ons In the trans1t1on zone the exact dens1t1es are the sum |
.of the schemat1c dens1t1es and of the deV1at1ons We w1]1 obta1n ;;_'

a necessary and suff1c1ent cond1tion 1n order that eq (1 ]) sha]l

;7_jtta150 ho]d for any reg1on V conta1n1ng part of the d1v1d1ng surface o

 ‘Q‘meh1S exact re]atton 1nvo]v1ng the bu]k f1e1d Jumps and appropr1ate ,ﬂ]ﬁf.*

’i}‘,»surface munents of the deV1at1ons is 5anma££y 1dent1cal w1th the

o 17_”surface balance equat1on used in. the emp1r1ca1 approach we shall

'ﬂ'f;ffexplatn why this formal 1dent1ty 1s remarkab]e and see how the dwf-x;.v}

:'7"1itferences that rematn 1n the detatled 1nterpretat}en””f'the surface ﬂ’fg '

A'A“ﬁ:;rfwelds d1sappear in a su1tab1e zeroth order approx1mat1on

A basic premise of our theory is that the deta1led struc-h'»:h'e.fs'fe

"i ture of the tranS1t1on zone may be descrtbed by exact denslt1es a ,‘1'_}', -

;ffj* and o obeying the relatlon

at

"":'ﬂ};everyWhere 1nc1ud1ng 1n51de the 1nterface This type of re]at1on :tk’?f*f”

‘57E}r1s one ba51c 1ngred1ent 1n the phenomenological treatment of bu]k

ulﬂyfluids As 1s well known (Kreuzer and Beamish [1977]), such re]a- -t*‘

': _7flt1ons may be derived from m1croscopic theory using reduced distri—, _:f‘ivt;



y.bution functions and'the‘first equation of the BBGKY"hierarchy ’in” ;
the present context, the status of eq (1. 2) is somewhat d1fferent
“For the phenomenolog1ca] approach to 1nterfac1a?<aynam1cs makes no -

'use of exact dens1t1es and consequently of eq . 2) in the tran51- i

R tlon zone It rather poatuﬁazea surface excess dens1t1es and der1ves

o a Auﬂﬂace balance equat1on (eq (II 2 24)) So our Just1f1cat1on for '

| :] us1ng eq (1 2) 1n the 1nterface rests d1rect1y on the m1croscop1c

;--theory Spec1f1ca11y, what we assume 1s that the m1croscop1c theorys -

-'.of reduced d1str1but1on funct1ons can prOV1de (proba11st1c) ex-i’

o press1ons for mass momentum and energy dens1t1es and current den-

'f:f“s1t1es, vai1d 1n the trans1t1on zone, and sat1sfy1ng ba]ance equa-vz

} ffdtions 11ke eq (1 2) The use of reduced d1str1but1on funct1ons 1n

#pthe 1nterface 1s 1n fact common pract1ce in the stat1st1ca1 mecha-syﬁi”;;fni :"

'":f{“;nn1cs of the equ111br1um 1nterface (Navascues [1979]), and there is F'j~{;i}ff,a

"x[»xﬁno need here to go through an eXp11c1t m1croscop1c der1vat1on of

',fthe ba]ance equat1ons, because the calcu]at1ons are essent1a11y

= the same as fOf b01k phases The only d1fference 1s that 11near1za-5“jfiin* .

1@t1on of the pair dwstr1but1on dependence on the center of mass _fi;;;;;

Cof two molecules (Green [1969J.p 36) cannot be made 1n the trans1- S

‘uht1on zone But that does npt prevent one from af "ving at the ba- i
T g

'f.flance equatlons (see for 1nstance Gray [1968],p 514 520) In a ,?f,gffe,;,fgfg'

‘%-E.paper malnly devoted to equ1l1brium questions Carey, Scr1ven

'f~lfffand Dav1s [1978] have given such a der1vat10n for the case of mo-'[f o

‘ij;mentun




By

| [[but compTete agreement is obtawned in‘a su1tab1e zeroth order

| ”h7hrapprox1mation that w111 be d1scussed Tater However as. we. shalT

_2)‘Densitxgjntegrals,:CUrrents andfsurface’norma]-moments N

In th1s sect1on - we g1ve the. exp11c1t c0nstruct1on of

© . the surface quant1t1es 1n terms of thCh the theory is formulated
‘e 1ntroduce "surface norma] moments" as conven1ent bu1Td1ng
j‘beocks These are used to def1ne surface excess den51t1es wh1ch
o are the exact analogues of the "adsorpt1ons" def1ned 1n the - equ1-h:
v’11br1um G1bbs approach (Defay et aT [1966]), and surface current :;'
'haf‘fdens1t1es which are not present in the equ111br1um theory The |
'ﬁr}gourous express1ons for the total amount of an attr1bute 1n a ;
| .;5regton U or its f]ow through the boundary ev are not 1dent1ca1

";WTth those found 1n the emp1r1ca] approach (eqs (2 19)and (2 21)),,4.

3

| °3f;see in sect1on 3 a. r1gorous surface ba]ance equat1on 1s arr1ved
”"]at wh1ch 1s 6onma££y und1st1ngu1shab1e from that obta1ned 1n the

':'1h~ff”empir1ca1 approach Th1s 1s qu1te remarkab]e

| Many notat1ons are. carrwed over from Sect1on 2 of Chap-ji]?fftf?“itj

‘”f-ter II The d1v1d1ng surface at t1me t 1s denoted by z s 1ts un1tpfet’5'~

'”:frinormal by n and the reg1ons M and Mo have the same def1n1t1ons

't

"‘?as in the previous context The dens1t1es a, ¢ and 3 defined "2‘
| ‘fr;everywhere in the mater1a1 1n terms of the extrapolated buTk den-thif,ﬁf“; ti:'
n éi:fSTtieS by a(F) *(?) if € M+ and'a(r) g (r) 1f r € M"- zt,ﬁ:,i]nf::rr-

"fr(with simi]ar def1nit1ons for o and 3), wil] be ca]led achematccjl'

"denAthea Their jumps at the dividing surface are aga1n def1ned e

r

by eq (II 2 4) The name deV&atLOn W1TT be given to the functionsjfffgfff;j =
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ddefined eVerywhere 1n the material by

. a' =a-a , 6!-: 0 -0 and Jr = 3* 3 S Qi (2.1).
LIt follows from the dEf1n1t10nS that .'_ R “ S
' a_a_ +V3* _0 = 0 B RUREE . (22)

everywhere 1n the material whi]e

aa +: V 3 o‘- 0 and aa + V 3
at s at

o

(2.3)

fi_‘in the. 1nterior of M and of M’ The same comments that were made

"‘f;;r:after eq (II 2 io) about the meaning of derivatives stili ho]d

| A convenient and phy51ca11y reasonabie hypothe51s about -
"e'the dev1at10ns a’ ,o‘ and 3 1s that they vanish everywhere except
Llin a very thin ]ayer enve]oping the d1V1d1ng surface Strictly

‘fspeaking this hypothe51s might not be verified 1n an exact solu- f;.

‘R]fftion For 1nstance, 1f for some p € Zt, the fU"Ct1°“ C > a! (p+cn(p))

d':fffhappened to be analytic on the 1nterva1 (0 w), 1t COU]d not VaHTSh

- gifon some subinterval (Co,m) w1thout vanishing on ( sCo] as we11

o y:Granted that.such a p0551b111ty definitely exists, 1t is never- :[51;-,

':”V"iﬁtheiess certainly stiil safe to assume on phy51cal grounds that ;E?J;fsftffh

5 5?[1Lfor T out51de some very short interval ( 6 6), al (p+cn(p)) 1s

| "’;completely negligib]e Should that not be the case, this whoie

ff‘f'scheme wou]d be of no interest 1n the first p]ace For the sake

ljfxi[of techn1ca1 51mp11c1ty then, the convenient hypothesis of strict

Ufivanishing of the deviations at a very short distance from the d1v1-'1 f[rf?gf'ﬂ°

| ifding surface w111 be réﬁiined
Ce

Given a surface I with unit norma] vector n and a num- :f R




| ber c, the surface para]]el to L at distance c ZC s is by def1n1-l
| tion the set of po1nts p+cn(p), where p ranges over L (0 Neill »
[]970]) The above hypothes1s on the dev1at1ons may be reformulated
thus: it s assumed that there ex1sts a sma]] d1stance 6 such that
outS1de the trans1t1on reg1on I (I for 1nterface) sandw1ched bet-

Ween the surfaces ztd and Zt para11e1 to- Et’ the three dev1at1ons

a', o and 3 van1sh The same value of 6 _may be*assumed to work .

throughout any t1me 1nterva1 of 1nterest

Naturally the d1v1d1ng surface is. chosen so that it bends ::

sens1b1y on]y on a macroscop1c sca]e that- 1s the norma] curvature

R KE(U) 1n any d1rect1on (see eq (II. 1 12)) 1s neg]1gib1e compared°~“

_f-to 1/6 Its 1ocat1on 1s further restr1cted by the requ1rement thatn f:'

"-the var1at1ons of the exact dens1t1es along the d1v1d1ng surface |

"; must be sma]l compared to those a]ong the norma] var1at1ons alongh,;'
. 3the d1v1d1ng surface are on a spat1a11y s]ow, that 1s macroscop1c,rhh
"T,;SCale Th1s 1s tantamount to the requ1rement that the d1rect1on of’ﬁr[:
B) be close to those of the grad1ents of the exact dens1t1es at p;;;f]

The fol]ow1ng symbo]s for dens1ty 1ntegrals w111 be adOpffff":{ffff:f

oy f“v s Ja LRXCE J o (24)
S ,,.v. S e 'f’*ﬁJV*fL;;,f;gTi?”*ff?'

S ”w1th s1m11ar obv1ous def1n1t1ons for the 1ntegrals of the source

.:iitfiterms P(U) P (V) and P (V) L1kew1se we sha]l wrlte SRR e
"7}__;¢(av) [ 3 ﬁ dA o (aV) J 3* ﬁ dA Lo (aV) _‘Jnﬁ,-n aA . (2 5) fh;;;tif{,? :

: BV L x,8 CLAS
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To avoid repeated circum]ocutions, we sha11 further agreeftef;;



ﬂ'.fby e(r) -1 1f ¥ 1s 1n51de I (V) and @(r)

' on a set of notations used throughout the rest of th1s work Some

'of the obJects deflned are aTready 1TTustrated in F1g 1 of Sect1on

.2 of Chapter II~'wh11e the others are‘111ustrated in F1g 2. Con51-

‘der a 64xed reg1on v 1ntersect1ng 2 and extend1ng beyond the tran-
s1t1on reg1on I, (def1ned above) into Mt and M. The outward un1t

"'anonnaT to av is denoted by N the patch of Zt conta1ned in v, by '

Lo (V); the boundary 3Lz, (v )] of th1s patch which may be descrtbed o
t .

vas the curve aTong wh1ch 3V meets w1th Zt, by L (aV) and the str1p |

=6 3

“'; of the surface v 1y1ng between the paraTTeT surfaces Zt
(év) The "beTt" cons1st1ng of all p01nts p+cn(p) w1th p e L (av)

| ,and e [ 6 6], is denoted by BI(QV)’ and the part of It c1rcum- o

| ‘scr1bed by and 1nc1ud1nd th1s belt by I (V) " The un1t norma] to f~T

-st(av) po1nt1ng away from I ( ), 1s denoted by ﬁ* The reg1on boun—"‘

-

b!‘ded on- top and bottom by zt and z and on the s1des by A, (3V) and

and Et’ by

68

N Bt(av), 1s denoted by xt(av), 1ts cross sect1on Tooks T1ke the un1onf D

“1jfy;of the t0p and botton surfaces compr1sed between the bars of the

'_;;letter x A funct1on 0 1s def1ned f1rst 1n the 1nter10r of X (av),v .

”¢ff §%1s outs1de

y;-[h}; t(av) by cont1nu1ty (The function 6 usual]y has a jump when r
_‘._fi;goe5£§ﬁmn the + to the -,part of xt(av) ) The outward un1t normaT
7ﬂﬂ]‘to the. curve Lt(av) 1s denoted by v, th1s vector 1s tangent to zt

svahe direction of T, un1t tangent vector to L (aV) 1s chosen so that

'T“7Qv2251 (v), 1t 1s then extended to the boundary of X (av) depr1ved of ,ff:ﬁ;ttuﬂ

’;,vxT’- n S1nce the curve Lt(av) Ties 1n av, it foTlows that N is i;”’»'~-:7”f”"

;}perpend1cu1ar to T' so that ﬁ Ties 1n the p1ane spanned by n and—v

: }r_J.
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:,,Fwnally the geometrlc factor T 1s def1ned on L (3V) as in equat1on .
"(II 2. 13) From the def1nitions, it is obv1ous that . -
- ( ) A(U) ¥ J‘a dv + f oa’ v ];e,_ R :fgz;g)llt: ‘
| S R x<av> o ot
‘,The 1ntegra1 over I (v) may be done. by 1terat1on f1rst a]ong the }; "ﬁvlt L
- nonnal and then over the surface L (V) sLet r(g‘,é“) be a parametr1- Lf”.d

S zat1on of Et or part thereof such that n (ar X ar ) >, 0 The ne1ghﬁ
o a& 3E? e

'bor1ng three-d1men51onal space may be parametr1zed by

ﬁ(s*.sz,c) < r(&‘,s ) + ch(s .&2) o

'ann terms of u; gg and Uz -~§zz, the area e1ement on Zt may be ex-.ﬂ' i*"ﬂ’

f a~a,fpressed as dA = n U,xuz) d&‘d&;2 On the other hand it fo]lows from

e eq (11 1. 10) tha

'{*~5where ;;

“'~=rx~;;izat19n;f:$,ﬁ?5fj“y;';z,»-.;ev,fv S
;"':iﬁ}that will' be. cailed naamal.momenta Given a function f defined

’]TQf?der m of f‘ <f> 1sathe function defined on zt by

\:

ok, =’-.ﬁ~ cs(u”i'.while =7, so. that the! Jacob1an
—-a b
(aﬁxaﬁ ) 1s gwen by "

35 36 '-~~.”

'f»f::,:o?

n-{ulxuz-c[u1xS(Uz) szS(u,)]+;25(u1)XS(uz)}

L sREaGeafp ey o
hh'ffwhere use has been made of eq (II 1 ]3), and the volume element ’thﬁféf*;a.i:
| dv B J‘dgldgzd‘ e (1‘2‘”“5%!‘) dch e 7)',1.f:_1}f‘_-; PR

\ is the area e1ement on. Z Th1s 1s the requ151te factor1-i3;f _,enﬂgJ

. 1'-3'

'wh;At this stage it is convenient to 1ntroduce quant1t195

'7d-throughout the material at each 1nstant t, the normal moment of or.ﬁ}fﬁf[,-?‘

h*7’iifi,: k> (v) [ d“f(p+cn<3>) dc | ;;;ﬁ_jfe » gz 8)2?f;?;.;:f:{

i




'parts,:

| where m=0,1,2,....15 any pos1tlﬂb 1nteger apd p € Zt The: normal

moments of the deviations a' » o'y J (def1ned by eq.(2.1)) turn out i

~ to be natural bu1lding blocks for the theory. They will be attri-

J ) Ciee

- buted spec1al symbols

a, = <a'§".i qn = <6'§" sy E 3' N 'w (2 9)

- The vector jm will be decomposed into 1ts normal and tangent1al

\

Ne emphas1ze that 3 ' O and 3 are functions def1ned onk, N
only -Many equat1ons will be s1mplif1ed by 1ntroduc1ng the fol-
- Towing functions atso defined onf,:

2 - 2Ha, + Ka; ® (2.11)

Hi

1

c’s

For a reason that will be clear shortly, they will be called

] Aundace denb&ixzb -. n -

Us1ng eqs (2 7) and (2. 9) it follows 1mmed1ately that

: %i”i" I a' dv = [ (ao-ZHa1+Kaz) dA ] a_ dA

B M e A/ N Zt(V)
$0 that eq (2.6) may be reurltten as’
o &(V)\&Ia dA+jea- v . (@)
| (B NCD A o

} Anidenticalequati::v2yv1ously holds for the 1nternal productiOn

. (V) t(aw

»; *hus the total amount of an attr1bute in V is seen to be -

jm EhoGee0) . ""‘(‘2.10)‘"

0o - 2oy + Koz | o (2a2)

f“ “"*Je"' W oo ‘2"“"»,‘4
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v

0
the sum of a bulk contribut{on-from the schematic density,‘of a sur-
face‘excess and of a fringe effect. The latter, which is represented
by the last_integrél in eq.(2.13),‘depends}dn the‘shabe o} At(av);  w
it vanishes when A (3V) st(av) . | |

| An equation similar to eq. (2 13) will now be obtained for
‘the f]ux ( V). The stert1ng po]nt'1s the obv1ousvre]atjon‘
e(av) = e(av) + ot (av) . (. 15)
Since the deviation J' van1shes everywhere on a3V except on the y

‘str1p A (av)ﬁ the Jast term may be rewr1tten as |

o(av) = J Il

e -4,03V)

In order'to,extract a line flux through Lt(av), this equation is

"~ rewritten as

- o' (V) = J JR e [ TR TR . (2.8
B*(ava a0 "**B*(aw '

“The f1rst term on- the r1ght can be expressed in terms of the f1rst

two nonnal moments of J'. Let r(A) represent ﬁhe arc- length para- |

' metrization of L (av), with or1entat1on such that dr = T, where T

, dA . «
has been def1ned previously An obvious parametr1zation of st(av)
is then | '_ . . _ o y
| gy = ‘F('A-)’ + 2h() . B (2 17)
It fo]]ows from eq (II 1.10) that gg_ T- cS(—), while 3p = 1
| / 1 . 2N ‘ I ac
_ S0 that S - o |
| po_ i3 3 T I
ﬂ* = | apx ac-l M > 52

A |
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| CT-eS(Mp| ™ (TGS 1x7

or | | ‘. ‘ ﬂ
PooogLmsm o g
lT-cS(’)I S e
¥ Us1ng dA = [_Qg_gj dkdc |T CS(_)I dkdg together with eqs (2 9)
oA 9g A
i'and (2.]0); we then get : _‘ ':; o wf | : | /
Sias [ o [ Tosm {axﬂs—@
Bty L0 -8 | IT-eS(T)]
= f JoV A + J Jl-cnxst)J o '._(2‘.‘1‘9)v '} s
Ltuwy, t(au) T I | a
Now if U is any vector tangent to L, ata po1nt of L (av),H{t foi—.' o
V]OWS,"USIng the self—adao1ntness of S, that | o
"%ﬁfﬁxs(’ﬂ} = §(T)- (uxn) (uxn) :
i;‘ = ?k%_) [nxS(uxn)] Ve [nxS(uxn)J )

It 1s eas1ly seen that the 11near operator S 3 u - -nxS(uxn) has
~ the same elgenvectors,as S but w1th;e1genva1ues,permuted and multi-
Q ,plied.by'-g.nHenoe, from éQ;(II.];1§);. | | |
'3_ s-zm o o (220)'
where 1 is the ident1ty operator The above equat1on may then be - o
rewritten as ‘ | . 'A o |
T [nxS(')] = v §(u) . {;~' '_‘.f o ',' (2. 21)

R The operator S wi]l occur frequently in the following developments ;i'

\

_'v:Its physical dimens1on 1s that of a curvature We note that since .

sisa Zero of 1ts characteristic po]ynomia] S? - 2H§m? RL = 0

R



S0 that o _
fs§-='¢ KI. = e - (2.22)

Combining eqs.(2.19),(2.21) gives

[-#a - [Ged@roan . (2.23),

B*(av) t(at/)

ALet us. now return to eq. (2 16) By cons1der1ng separately . the parts}
R

of X (av) conta1ned in M and alv1d1ng each if necessary into

! .
a finite number of regions throughout wh1ch the functlon @ is cons-v

Ltant, and remember1ng that the dev1at10ns van1sh on Etd 78

”{-v1s eas1ly shown that :

B T (TR A = |0V dv .
B(30) B‘(BV) X

‘~Insert1ng this together w1th eqs (2 l6) and (2 23), 1nto eq. (2.l5), o

| __ylelds , | , _ S |
et (an) P o(an) f~[30-+§(31)3-3 dx7+:J 0 v-ﬁ?rdvv;'(z,24)
- o L X£(au)
| Th1s equat1on is an 1ntenmed1ate result to be used in der1ving the
"_ surface balance equat1on in the next section In preparat1on for
‘ this, one last calculation will be made From a well known theorem
: about 1ntegrals over mpv1ng volumes (Prager El973] p.75), 1t fol-
_lows that S o ‘ o
g J oat v - l[ v j ca'w dh
Hfﬁ t(aV) e X‘(BV) o 0Ky (aV)J S e/(“ |

"j h re W 1s the normal velocity of the surface a[xt(av)J, counted as :‘
po c

1tive when the enclosed volume expands The surface atxt(av)]

and Zt,s1t.A |

| (2}25) =

7.



W ‘.

i

~is made up of 4,(3v) and st(av) on its?sides,'and of parts of Zi<and

Zza,on its top,and bottom.-On the latter parts a“vanishes, while on

»At(éV)'w~vaniShes because V.is fixed in?space;‘This implies thatf
Ga'wdA = | oa'wdd . Ll; S L (2.26)
aEXt(BV)J Bt(3V) o T

In order to express this 1ntegrai 1n terms of nonna] moments we

'the “be]t" et(av) Intuitively one wou]d expect to; see g_n
4 t

o ( = -Gradv ) coming in. But the fina] result 1s not at all obv1ous

| Let to be a given instant at~which ‘the integral of eq (2 26) is to

be evaluated and introduce a parametrization x(A,n) of the strip

:."‘At (av) such that r(A) = x(A 0) is the arc- iength parametrization '
~ of Ly (av) and T- (A 0) = 0 for every:\. Nhen A is he]d fixed

’and n varies. x(x,n) traces out an v a curve meeting L (aV) at

| must first find ‘an exp11c1t expre5510n for the normal veloc1ty W of -

75

right andﬁe This curve w111 be calied the A-curve Now as t proores- o

ses. in a smail 1nterva1 (to-e to+e) the curve Lt(av) moves on av\

' For each va]ue of A, the point of 1ntersection of Lt(av) with. the
f;A curve w111 be denoted by Qx(t) At any fixed t in (to-e t°+e),A;‘

the map A+ 6 (t) is a parametrization of Lt(V) from which we may

. ,construct a parametrization of the "belt" Bt(av)

, p(t A.c) = Q (t) + Cn(QA(t) t) L (2 27)
Tb proceed further, we need the velocity at t = to of the point o

{d‘QA(t) (with. fixed A) To this end we momentarlly abstract ourseives

'k"from our present caiculation and consider the fol]owing question 91-

s

PR

ven a moving surface zt and a mozxanleaa curVe r always piercing the



.':iT:It fo]]ows 1mmed1ate1y from th1s that v

’mov1ng surface zt at on]y one po1nt what 1s the ve]oc1ty of th1s
: /
- P int of 1ntersect1on ? To answer th1s quest1on 1et us ﬂntroduce

ﬂthe arc- length parametr1zat1on r(s) of r and assume that the mov1ng

ﬂ'usurface z at t1me t is represented 1oca11y as the set of po1nts y :;H;'

, such that :l;" ﬂﬂﬁu"”‘*’ - f.iﬂl c'_ﬁ e ;if"“ -,g.""
-3f/‘at'
IVfl

'.S

B Let us denote by s(t) the F -arc- 1ength parameter assoc1ated to

v.‘;fthe p01nt of 1ntersection of I‘ and zt Since r(s(t)) 1s on’ zt

. f’ i i ﬁ (ﬁxr) "‘ |

k }Vat each t1me t, it fo]]ows Qpat f(r(s(t)) t)-- 0 for each t from n;_i o
= gd* Vf* 3f =0 LT s MR e

pwh1ch, together w1th the above express1on for vt g1ves s e v j'gff;f7v

; 31%

o

‘The ve]oc1ty of the point of 1ntersection is then s1mp1y

f'n4dr" il A I D
3 Com1ng back to our problem, the curve r is now the A-ef f;dr*~rf.1“
;‘curve and the moving point of 1ntersection 1s 6 (t) we want its;f, G

"",veloc1ty at time t° The vector g:_of the genera1 s1tuat1on above
' (R s R ,

\is now clearly ﬂa(T'and 1t follows from the above equation that "§§g753‘3"

_§ (to ) ﬁ T L o

Now we have N (ﬁ n)n + (N-v)y frqn which N£T, g -n)?;fw
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ahd flnally IEEEER R T T R

| ag (to ﬁ-’ l(n-w) SRR X ; (2 28)
‘where T 1s def1ned by eq. (II 2 13) From eqs (II 1 27) (2 27)

‘.3and (2 28) it foIIows that e IR

_gﬂto,x,c);-‘v (ﬁ-rv) ¥ c[-Gradv +-rvlS(v)] s[_i(z;éé)*

V'xijt is evident that, when t -,to. the parametr1zat1on p co1ncides

::'f.'w1th that def1ned by eq (2 17), so that the outward unlt normaI on. Z‘gfhffﬁ

"ﬁt xcafthe part Bt (aV) of a[x (av)] 1s -eN where ™ is given by

,(2.]8) It fol]ows;that W may be wr1tten as

) . N

-@N QQ_(tO’ 95)

_;;:;9___ [TV (1 2CH+c2K)+-v-(;I+cZS)(Gradvl)] , jth'jﬁ"
T- cS(T)I R |

| t.‘:where use has been made of éqs (2 29) (2 21) and (II I 13) Insar-.¢’;f N

‘i.'t1n9-th1s in eq (2 26), whlle remembering that dA |T-S(_)|dxdc on lftvﬁlI .

"7"17fgy1e1ds the desired result:

(av), and comb1h1ng the resuIting equation with eq (2 25)
A el

\

,.I‘:IIEI%_ [ ea dV I '5— dV + J {rv‘a +-v-[a,Gradv + aZS(Cradvl)]}dA
S | X (8”) o ,xt(aV) ?v t(3V) | I;fiihyf??“fi: (2 30)

- .ﬂ) .“, B . "
A SRR -

- ;13)'The5fir§t‘§uFfaéeIhajahcé”éQQatthh;*j,;'-J

As the titIe implies. the ba'lance equatﬁn derived in hah:

r ’"7iythis section is not the only one °f 1ts. ki"d However it is the




N : . .
V. most 1mportant one. because 1t connects the Jumps of the schemat1c ;‘_ﬂce :
B dens1t1es w1th the surface excess dens1t1es ‘The' ba]ance equat1ons _vh bs‘i
der1ved 1n Chapter &v do not invo]ve the schemat1c dens1t1es and
they apply to h1gher order norma] moments It is. remarkable that.;-' '
the f1rst surface ba]ance equat1on, eventhough 1t 1s obta1ned -
wvthout mak1ng any approx1mation, 1s 60&ma££y 1dent1ca1 W1th eq
(II 2 16) obta1ned 1n the "emp1r1ca1" approach The dwfferences ;ifuf*”t’L
that rema1n concern the physica] 1nterpretat10n of the surface
dens1t1es enter1ng 1nto the equat1ons,;they d1sappeaF 1n a su1t-'a4'5‘f:'“*ﬁ
LT able zeroth order approx1mat1onﬂwh1ch w111 ]ater be d1scussed at f};ﬁﬁf‘?\f
'f;:“;"f“ ‘1ength - o s . | Q h.. : ‘,,y ... .. 'f }lt-
D 'ﬁefdf The f1rst of eqs (2 3) guarantees that the balance equa-iﬁs:iff:ff5
t,on ;:f.:» ST R =
| d A (v)*a (av) - P (v) ' (31) .
| ho]ds for any reg1on v fixed 1n space, not 1ntersect1hg the tran-ﬂ,':
sxt1on region I The f1rst surface balance equat1on 1s essen--‘ d
N t1a11y a boundary condition equ1va1ent to the requirement that‘ {f{%f};»{e
:'f.“fff eq (3 1) sha1l also hold for any region V fixed in space and en- ff}ffffft
compass1ng part of the div1ding surface :" B '_ g _ft : '--rhhfi;h
" The first term,in eq (3 l) may be computed-with the help jj}iuig

o

r;wihfrv;;;é of eqs (2 13) and (2 30) together with the two re]ations

R I a: dV I ] 2 dv " J L
S _a‘f gt




J a dA = J [E-s - 2Hv a ] dA - J‘t\')'l‘a- a ‘ (..3.'2;)

d
at Z(V) oo Lt(BV)

,_where a-l— stands for the norma] tune derwatwe defmed by
eq (II 1 17) and T 1s defmed b_y eq (II 2 13) The f1rst of these
" ‘«.».two equat1ons 1s ob\pous and the second one foHows from the gen-',
eral 1dent1ty expressed by eq (II 2 42) Usmg eqs (2 3) and |
f‘(2 23), the flux ¢ (av) may be. wr1tten as ~» ,_f':\'jf-? %

e (av) JVIi*dv + [v - dV kT {[[-J n]l +D1v[Jo+S(Jx)]} dA

SERCRE x (aV) Lo l' : ”}.'.” ;-f’if;‘if ST

| Subst1tutmg the last three equatmns together w1tﬁ eqs (2 14)
and (2 30) 1nto eq (3 1) y1e1ds e [t

L -’"-.:: a——s ZHV a+ DW ﬁo+S(J1)+aIGradv +§(a2Grad vl)]‘i,'. -
3'0 +[[Jn-av1!}dA 0

»‘ff'where we have set [[3]1-% [[a:Bv" z lﬂon-av ]l In v1ew of eq (2 3)

,T'and of the arbitrariness of v this equation is equwalent to

d* .- zuv*a + Div rBo+ 5(3 )+axGradv +§(azﬁ"ad VL)]




it takes the more compact fonn “'

; "fg;_equations does not mean however that everything 1s thh Same’ ‘“,,
o fff‘both descriptions For one thing, if ve iook at the surface'cur- ok
: e-.'__l .

'on.rent density 3 appeariﬁg in?;he surface balance equation of Chap-
ﬁiifvter II (eq (g'lj;_f}

3230+ §(31) ¥ alGradv }§(a2Gradvl).‘,; o (3.4)

2

_ d ag - - 2Hvt aS + DiVJ - o + Eﬁ n- av ] - ‘,(3;5)

""We note that th]S equation 1s 50&ma££y 1dent1ca1 With the sur-.; "
| gface balance: equation obtained in the empiricaT approach discussed
':‘rtin Chapter II (eq (II 2 24)) That a ba]ance equation of exactiy
l7the same fonn as that found in the empirical approach shouid hoid
A_vérigourousiy 1n the present theory 1s qu1te remarkabie For 1t must
tirffbe remembered that eqs (II 2 19 22) which define the surface den-'xfjl
2:1€°i{i51t1es 1n the empiricai approach do not rigourousiy hoid 1n our |
v; 1J¥d?theory, they are @epiaced by the more complicated eqs (2 13), ;:;5,:V.
Atjf_;:i(z 14) and (2 24) The cruciai step in the derivation was the de-.uffm
,_,{_afcomp051tion effected 1n eq (2 16), ieading to eq (2 24) ‘the 1astf;i;,f

This weicomed formal identity of tﬁe surfac baiance

_;1_1 }1eq (II 2 21) But in the present theory, things are not so 51mple
'5nf1hThe surface current denSIty J occuring:in eq (3 5) contains four

- i:7f[terms explicited in eq (3 4), and these do pot at ai] appear 1n

80

"'f}term of which had just the right fonn to cancei the frgnge 1nte- ffffi:f:h

‘**ffﬁggrais (1ntegrals over. xt<av3) appearing Jn egs (2 14)' nd (2 30) fffirffhfr

P pe noféfthat it is the same one. that s 777*‘;“ji |
"ﬁ;i;’used in computing the Surface tontribution to the fiux ¢ (av) in ﬁp__ﬁg-tv

'ﬂf;eq (2 24) which moreover has a more compiicated structure than }rff;?;f;t
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: eq (II 2. 21) To make a def1n1te compar1son we cons1der a reglon
ffv f1xed in space, such that at some 1nstant t,A, (av) (av)
i(1n general, v be1ng mpt1on1ess, this re]at1on cannot be preserved

&
in the course of t1me) From eq (2 24) we have 604 auch a pa&t&

th_fculan negton at that pa&t&sjﬁﬂn txme z
L (aV) o(au),,+ J (3o + S(J1)]°v d)\
S Ly (av> ‘

3 ;[w1thout any approx1mat1on On the other hand the surface current ’
) " dens1ty i wh1ch occurs in. the f1rst surface ba]ance equat1on | f'j‘yji"
qV{ (eq (3 5)) 1s, accord1ng to eq (3 4) g1ven by o B

: j:E- Y S(J,) + alGradv + S(azGradv )

- ’e;¥WhICh d1ffers from the above 1ntegrand by the tenn aIGradv { e;l_b;vv,.,.:-

: "fhfs(azGradv ) Th1s 1s 1n marked contrast w1th the emp1r1ca1 approach

% L

V =zj1:where1n the surface current dens1ty used 1n comput1ng the flux

"i-f?)7fiand that occurr1ng 1n the balance equat1on are one and the saﬁe

' cff,tThe physxcal 1nterpretation of the tenn a1Gradv 1- g(&zGradVl)

{’“”*‘Hifis eas11y obtained At a g1ven 1nstant to, let us trace a s1mp1e

'Y‘J?fclosed curve I‘t on z

t Next let th1s curve be carr1ed a1ong

"}efw1th the divad1ng surface 1n such a way that the veloc1ty of each

755;Q70f 1ts points be always perpend1cu1ar to the d1v1d1ng surface

“ffi:ﬁA new closed curve Pt is thus obtainéd on each zt Let. B (Ft) be

v C QC
;the "belt" constructed along the curve rt in the same way that

| ’7ffst(av) was in sect1on 2 and let I(rt) be the port1on of the tran- ﬁib‘7-"

'2'.;-ffs1tion zone I c1rcumscribed by th1s "be]t" The region I(P )

§ f”1s not a f1xed reg1on By cons1der1ng the ba]ance of the dev1atlon 5y??fh
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i-1n it, we f1nd by a s]ight mod1f1cat1on of the argument that

: Ted;to'eq.(2,30), a-contributjon I [alGradv + S(azeradv )]-\»dx

thCh represents the rate of change of "the amount of a'" conta1ned ;

1n I(P ) due to the t11t1ng of the “be]t" B (Ft), as zt moves and

“~5ph 15 deformed The occurrence of -the tangent vector Gradv in th1s o

= d

the next sect1on

context is natural, s1nce accord1ng to eq (II 1. 26) Gradv =':h

dt” fﬁfl?u'.rlyr.A ;f“;."fﬂki“[i,a=fz :f%f.'-erf:;"h_;,;} o Lo
The relat1on between eqs (II 2 19 22) and eqs. (ZJ]3’5 5 R

(2 ]4) and (2 24) of the present chapter w111 be e14£1dated in f;pff-

. C o

>*;']=:4)175é[ﬁofmatimom¢n;‘expsasiaa'5f.riuxeséana*aehsf¢y=fa£égﬁang<;;;;;;;{1;;.5

The purpose of this sect1on 1s to 1nvestiqate the StatusrﬂffifeﬁI::

S 0 e
of eqs (II 2 19 22) 1n the context of the present theory Our dis-;ftr;;"ui o

cussion w111 proceed from the exact re]at1ons

’IJV7_,T ; Zt(V) t(8V)

,ffrﬁﬁrr IJNM+13 Ao ffﬁ}“ﬁjt&ﬂﬁgitfi
e e ,,;;itgfaa S A

B : :,;‘.‘ g

Y

that were obtained 1n section 2 The flux equation will be treated
f1rst Let A be the arc—]ength parameter on L (av) At a p01nt p(A)

of this curve. the plane spanned by N and n, or equivalenﬂy b)hn : S

.Eﬁ{ftf and v, euts z (V) along a normaT section:”ﬁlj
e ey 3 ¥



| vff;[wwth n(x

' ‘—tfﬂgib1e error s 1ntr0duced by writing

arc- 1ength a]ong th1s curve w1th n 0 at p(A) and p051t1ve va]ues

-of n in the ¥ d1rect1on The two parameters A,n g1ve a parametr1- .

zat1on r( ,n) of a reg1on of xt(v) conta1n1ng L (av) wh1ch may

83

: ;be extended to a parametr1zat1on t,'v“ h’,‘ : ,h : ."\g;;n* | iv;:,“

_ K(X,n. = r(A,n) + cn(A,n) | :;:*,F' |
of the adJacent three-dlmensiona] space G1ven (A c) let n(k.c)

*“be that va]ue of n such that R(A,n,c) € av (It 1s assumed.that

; _5the geometry of av 1s s1mpTe enough -no fo]ds-.that a single n is fa.“[ T

“-flj»so def1ned ) An obv1ous parametrizat1on of A (8q1\1s then

p(k’c)._ R(A,n(k.c),c) ipiﬁiﬁlp},{g*\*i (4 4);,f_ffhhhrff

"fggfin terms of whtch the area element on A (BV) 1S“UA Q(A,;)dxdg,

,C) It follows immediately that - SR
ax ac ST A ”h?:,_ .

A= i momAT S e b
J 3: | Ivd J dc 3 (pcx.c)) N(A,;)Q(A,;) (4 5’127?[T‘"

(BV) L (3V) 6

,hwﬁlt must now be remembered that av is a “macroscopic object" Givenfﬁffcf“a;[h"
"Tffthe thinness of the transition zone, a first order appvoximatton

'7rtof n(x,;)N(A,c) about c 0 will thus be very accurate Next note

&

"”~-{f;§;n(x.c) will differ very little from o as c ranges OVer E-G»GJ-'»~

”"ffeiwhile for any sensible choice of the dividing surface; the varia-,-v':

‘:if,tion of 5 ﬁ(x,n,c) at fixed (A.C) is slow (macroscopic) Hence,

an. P e

S

R

f H":ft*gthat un1ess N is excessively close to n or —n at p, the function v;\ NRAEE)

T

A_’fﬁf'with great accuracy,_j'?”(A.C)) may be replaced by 3“ ﬁ(A.O.c) + iﬁ"vlldt'y,
lfﬁif;n(x,c)a (3 E)(A.o,;) for C € [-6,63 Hence ft appears that a negli-u;s f;:fff»
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L un mn N-w) Gw Jw)

Ty L(av> T R L

giDtsearding tenns of order z ?sin c, this may be rewr1tten as JTZNQ:;R[;JT“

o N IR
6

I ;dx_' f t:f- ﬁ(x o,c)+n<x c)a 3" if)(A 0 c)J' ] o

4

. 4, m(x O)N(A 0)+ca {QN)(A 0)] dz;
o ST ac S

gf&

I J‘ N dA I {o"N Jo+-a (QN)(A 0) 3,.!;-1T~.D_Jl } dA %rfgégj:f”f'*

8, (8V) Ltcaw CRR L R T
where a‘- N'“’ T z N‘"/ﬁ’v and 30 and 3 are as def1ned by‘eq (2 9)
He sha]] see be]°" that this eQuation represents the zeroth and
first order contributions form a systematic expansion of the ]eft
hand Side 1n tenns of nonna] moments of 3, S . .. | ol
Us’"g eq (2 10) and remembering that N 1ies in the plane sp*gned ';3;33"f7
by K and v. we’ find | O L v MR TS AT

waa Nkv
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o 3
' of eq,(LI 2_22) wh1ch degtned gt as betng egual to a vl We w111 ]

retdtn to th1s po1nt 1n the next chapter

S {l,-f ; Equat1on (4 Z\ 1nvolves actual])kvery 11tt1e 1nformaﬁ\on
' ' S~

N

o \ .
conCern1ng the geometry of the surface av in the v1c1n1ty of Zt A
. \ ; B

the‘finer deta115 must be 1nv01ved 1n an exact evaluat1on of the’
5 1eft-hand s1de of eq (4 6) the contr1but1ons stemm1ng from the R
h1gher order moments of Jr c1ear1y cannot all have th1s 51mp1e '

form \It is: 1nterest1ng to f1nd the nature of the flrst order\cor-

1rect1on \wh1ch is conta1ned 1n the 1ast two terms of eq. (4 6) Un-f
\

fortunately the1r computat1on is surpr1s1ng]y 1nvolved the comp]1-eee

cattons ar1s1ng from the term aQ(A“U) we g1ve an out]1ne of the
. TR | L
der1vat1on Tead1ng to the f1na1 result eq (4 15) Ne start from o

|aaar, \/+

oA

BC A 8§

To eva]uate an(x 0) we need on]y knqw _ij c) and a ( ,c) to ‘.5j
f1rst order 1n . From eq (4 4), it fo]1ows that ' S

_g(x 2) = ak( (A, o 0,0)- + cfgﬁazﬁ . ok +32?i azﬁ )

ax B az;anax 33\ BLIABTAN ng‘o

N, .
.and - C :

r
- .

_g(x c) _n(x 0) aﬁ(x 0 0) + aR(A 0 0) Lo |
8; A »., T an , C S

R aanR ik 2R+ 2an32§ § az'ﬁJ -
B Tk TR 19 m* 3L andg 352' nCO

‘.

pole) ., 10)

[N

[_p_ 3)*  _<('4__‘.‘8}) -»ﬁ“;’\\

aThe partial der1vat1ves of ﬁ are eas11y eva]uated Denot1ng hy ‘.(:--



S and thence :

3 =
7 N

B

y . K the curvature funct1on of Zt ( q*(II'l 12))‘andiuSingfthe Gauss

equatton (eq (II 1 14)) We. f1nd from eq (4. 3)

RO 0,0) =T, aﬁ (1,0,0) =5 S aﬁ (X,0, 0
a ”,_ L TN
2E(A'o 0) = '1-T' ‘(Tw'ﬁ , 27R(1,0,0) = k(%) # ,,5?§(x,o, )= B
o T L 23
,¢yﬁaom-vﬁntu)ﬁ,gmtmm-<uﬂ,gguom--ﬂw
R G N ‘,A;”;.TBXBC' T dman N

't“The part1a1 der1vat1ves of ﬁ are a b1t tr1ck1er to evaluate Let . N \j'

"?jbe descrlbedxlocally by the equat1on F( ) 0. Then for any\A,c

’v\atF(ﬁ ,ﬁ<A,c),c)).-.0 from Wh1ch | f"',«: 55* dt.dr‘ .‘!'-3-' T

AL VF [an(x 0)8R(A 0 o) ¥ 8R(A 0 0)3 -0
RECEE B aiioe

_ﬁ(x 0) o Ah ;?ff;%vlj":
B f;»N-G e A

.»‘ﬂTo compute __ﬁﬁx 0), we\use eq (4. 4) to get -

32 s - '
o __gjx,;)- . z_ﬁjx c)__E( n(A.C),c) i
g2 x el 3?;31’1 _\\' : g |
Sy ‘\\ . ‘
¥ ﬁ ASTiC ,C),c) aR(A,n(A,c) c)
| Bc anz A Bczan s
e azR(A,ﬁ(A,C) c)
, ac . i »
», \

o ifrom whlch

ac2 ac2

’ .'v ‘An 1ndependent express1on for g_gjx 0) w111 allow us to so1ve for

. g2
"__gﬁx 0).- Let~us denote the cqvar1ant derivat1ve on av by V' and(’

"taz;2

\the shape\operator of av by S'; and write u _ﬁ_ From the Gauss

N e }



\\\nn;equation it follovs that

ZVUfSubstltut1ng a]] these express1ons in eqs (4 9) and (4 10), we. f1nd

u

gfﬁ -\7_'33 + US'(U)-IG

i',fBut_ﬁxo = Tha n__U_ e way
?where U= N T'f"‘? = 'fv ) :“' S )

50 ﬁhat

"fComb1n1ng th1s 1ast resu]t w1th eq (4 11) and tak1ng the dot prod- _

"ﬂh‘uct w1th N y1e1ds 'hJ

'; .cw)- 2cke s< ) + 1he(®) R PRS00y L

'-:from wh1ch j“ir

g2 o (N~v)

B

f-ﬁthat the right hand s1de of eq (4 8) 1s, to flrst order 1n c, g1ven 'j
alasz) =‘ﬁ1.h; ﬁEFF -K(T) -1 K(v)-T T VTv -'4——-K (U)j Q-hO(;?)”i”f
R - BRI SN T T

5,'{0n the other hand we' have fran eq (II 1 10)

S | 3C ”-{”? ' ,}3, |

W where u _QIA 0). {1 that from eq (4 12) ",“ R ih;'
B K13 | e
aNﬂ o) s (u)
ngétheh\wjth'thefabove-expressidn,forvn;fthis’giVes R
o NGt T L R T

SN

RN

©3%(,0) = b-i—nc(u) ‘ N.’ﬁ'(l;-(ﬁ;\;)'.).z)""!2.(..\_)_}).]"',‘.'{:‘.,:_ _(4_.»{4)? R



. a?where

S
P

’ B SR Ly T
| _19N 3 o '(ﬁ ) ! [-K(T)<f TZK(§)1+‘f§‘V%;TF‘ T(N) "' ()T N
(ﬁ 9750 -

’ .':;Insert1ng th1s in eq (4. 6) and deve]op1ng the 1ast term in the 1at-

"ﬂfter we f1na11y obta1n
[Fda < [Geseuhar
Ay (aV) L (av) |

,+. [Y(Jx’\’+TJx) 'rv°(91(v)+w1) -\( ) 2S (0)- (31+Jfﬁ)1 dk

88

+ terms of order > 2 B A ;° B R (4 1) B

» o B v s

Y “H-K(‘)i-T K(V) + T %fT -‘T( 'v)" (U)

| Q1 = VJ1 -‘N]l S};,: 031 = S(Jl) + GradJl | A

' :;ahThe f1rst term of the f1rst order correct1on 1n eq (4 15) (1ast 1n- h.:

‘tegral) has a structure rem1n1scent of the zeroth order contr1bu- : ;.,.ff‘“

‘t1on but the analogy 1s 1ost in the other two terms Hence from
: \
the: po1nt of v1ew of the present theory, the express1on (equat1on

;1s a zeroth order approx1mat1on

The der1vat1on of eq (4 6) presented above was meant to

ﬁ:show clearly the phys1ca1 1deas that Just1fy a f1rst or zeroth asffiff--¢~'

' '.’(II 2 21)) used 1n the emp1r1ca1 approach to compute the 11ne flux f o

order approx1mat1on It 1s poss1b1e to take a more forma] approach }sa .

",and obta1n a systemat1c expans1on of eq (4 5) 1n terms of the nor- : ’} g

| 'ﬂivmal moments of the deviatwn 3 The rt sz,

o lzi'J'J-fN @ =] |3 3 a 11, ‘-,.,’..:"ﬁe;_‘i(4}j6)7*::

B it oy
aen ML (aV) S

.V L -



. where J, is given by q.(2.9) and the differential operator &'is .
s déf{hedfby{ff,>, BT R

Cowitn Ro 1o P'E 0,

o ”Vf;;f, _ ;-‘ s ».-!;,,5;
N(A«:)-Zc (A) w
The zeroth and f1rst order tenns 1n eq (4 16) agree w1th eq (4 15)

s1m11ar 11nes Us1ng the same parametrlzat1on as above' let fqu;ﬁfi”“

SR GRS Kﬁ(p

" k0 _A-[v“

vﬁ.\m q+£+n—m'?‘

The express1ons occurr1ng 1n th1s sum are def1ned through the N

~ . : R IR 4

fo]10w1nq equat1ons

[n(x c “ 2 %4 rﬁ o for £<k)

The fr1nge 1ntegra1 1n eq (4 1) may be analyzed a]ong

)_A 3?‘ 37‘

r(x aA

Cooeas)

b oo L

)hﬁ" ,*u/'fff_:j"ﬁ_i'f?ft‘”z;; S47) 0 f

It 1s then a s1mp1e matter to show that ,
o f 0a' :dV = ,;dx ’CI dg J dn. F(A.n)A(X,n, )a (X,n,C)
X (30) 1 (3v) 5 ,o_.e.~ L L

'”f_ It follows from th1s equat1on that_;,,;t:?:' =

.X (BV) S L (BV)

z-.

S with a a -tay + .7 [D‘“P D(2 1’ﬂ o“ 2‘RJ az ‘ (4 21)

d —‘ﬁt%.n,c) 1 - ch(A,n) + cZK( .n) ;f}?at:*ftftfffh{éﬁffifﬁfifaﬁfg




" '=5uhfby eq (4 20) 1nvolves only the normal moments of a of order 2 1 Q}~“”

“*'Ifi;f:Thus, to Zeroth order the fr1nge 1ntegra1 van1shes

":*'i"yiJFWh1ch has exact]y the same structure as the express1on (eq

: s‘f“(II 2 21)) used 1n-the~emp1r1ca1 approach to compute the 11ne ‘

It fo]]ows from eq (4 21) tbat the fr1nge effect expressedi 3_

The conc]us1on that may be drawn at thlS p01nt 1s that

"‘“;fgix,when a11 norma1 moments of order 1 can be neg]ected :afiompiete

H”*fIndeed on retain1ng on]y the zeroth order‘term 1n eq (4 16) the tfﬂif

B

'f?*;;l;correspondence 1s ach1eved W1th the emp1r1ca1 approach For not g ff_f]?i;

iw]Eft hand s1de 1s approx1mated by the r19ht hand 51de of eq (4 7)ifijfﬁl;x~a~,*

y‘“jgﬁsflf1ux Ltkewise on neg]ect1ng a]] moments of order 1 the 1ast

T L i
*;;7'term in: eq 4 1) van1shes and we are

”?*,7lito represent the surface contr1butuonfto A (V)

l,

ftAW1th an eXpress1on of

'ﬁffipthef.ame form as that used 1n the“em 1r1ca] apProach (eq (II 2 19)) *5ff:ﬁ“‘£”_?

i ?In s1tuat1ons where thef'irst Cor h1gher.;order norma]

;gmoments wou]d p1ay airp]e, the correspondence wou]d no 1onger be

;sifcomp]etetfehtd" "irsurface balance equat1ons wou]d sti]]

""’:gf[be forma]ly 1dent1ca1 thehexpre551ons used to compute A (V) and

‘ibfo (av) would then be different in both approachesg and the surface

Ry fcurrent dens1ty j appearmg 1n the surface{ ba]ance equatwn would

'_ri ',.'



;fw%;rgfmat1on conta1ned

R, "

‘ lgdi1n the emp1r1ca1 approach (eq (II 2 21)) SRR
S To round up the connect1on w1th the emp1r1ca1 approach

v we’ sha]l aIso have to 1ook for an 1nterpretat10n of eq (II 2 22)

SR b no 1onger haVe as s1mp1e a phys1ca1 1nterpretat1on as that found R

“c;nj:1n the context of the genera1 theory We w111 f1nd 1t when we con-i“gQ'ff

9

"‘i”f}s1der bahance equat1ons for thher order moments 1n the next chap-ffjfefif{f*gﬂ

" '5) The informationcontained fﬁithe>ﬁbrmatemoméntg.sﬁﬁ;zr L

- ':alp::Change}of”vartab]es X /6 9( ) (X5)’ 0. that <f>

','1_/.

~fﬁij;1be]ongs to th1s Space ) Know]edge of a]] the moments <g> enab]es

'"3fff;;mat1on conta1ned 1n the ful] sequence (<9> )

" :h,} on the H11bert space L2[ -1, 1] (REEd and S1m0n []972]) we have
':'fkf‘<g> (g, ) (The funct1on g. be1ng bounded on [ 1,1], c]ear]y

| ‘77f5?;nom1a1 and therefore determ1nes g un1que1y Hence know1ng 311 the

":fi7moments <g> is equ1va1ent to know1ng g 1tse1f However the infor- i'.ﬁhlift"

m meN

= ;fredundant For 1t 1s easily deduced from the Muntz theorem

.‘.': S X

the nonna] moments We wr1te f(;) (p+cn(P)),

sect1on, we sha]l br1ef1y comment on the 1nfor—_ff;g.f;ff°f.7
1sjthe dev1at1on def1ned by eq (2 1) and 1ntroduce the 1?;;5}:c;i
In terms of the scalar product ( ,L)c;}cf;j}fi"f

‘ ’j&'.one to compute the scalar product of g w1th any Legendre poly-f,'~'f,

sz athemat‘ CaUy e

H:}7'el.h(Schwartz [1959]) that g1ven any fixed integer mo z 0 the sequenceii‘ e



; “iffgfft1on about the exact dens1t1es But w1th mere knowledge of the

Lo . o T e ~ . N -
. Lo . : R . B ».o 4 o . . RS

'f;ftuaITy 1n 1nf1n1te1y'many ways

f'zfeatures of‘the 1nterfac1a1 structure':
?'F;cr1be 1ts 1nfTuence on the bulk f1e1ds The f1rst few normal mo- 'prA§-3
*r:fments of the dev1at1ons are adequate for that As stated above, ‘Afﬂjf

'nbih7f?the fuI] sequence of moments conta1ns a11 the deta11ed 1nforma--s: o

5'}f1rst few moments, 1t 1s to be expected that some quest1ons can-.‘!-:

‘1ndependent 1n Lz[ 1 1],“1n the sense that any one of them canvbe

iihtof funct1ons (x );Z%; is. totaT 1n the Space Lz[ 1 1] It %6110w§3f”i'

; “rﬁﬁat mere knowledge of a]] moments <g> w1th m: mo Suff1ces to
5g}detenﬂ1ne S U"1qU61y An 1mmed1ate consequence 1s that if a func-,df o
;f;£t1on g-€ L2[ 1,tJ sat1sf1es <g> s o for every m mo, then g 0‘ |
Vfﬁand th‘é "0 matteu how Eange mo tb Th1s state of affaTrs resu]ts u_,':b"

~f°-;;"-f.from the fact that the vector\x a e not topolog"caﬂy “""—‘aﬂy

. ,.()

at}are suff1c1ent to des-v-i S

AR

| _,_.t not be answered cOns1der for‘example a flat d1v1d1ng surface Zt’ fﬁ}?;gf?;fffi

| :jhl_tand suppose that we w1sh to compute a fTux o (S) through a fTat e

| !’Tf;fiisurface s panatzez to Zt As long as S T1es outs1de the trans1t1on ot
"{efg;?;fzone It’ th1s flux may be*computed us1ng the bu]k current dens1ty
'7"):7TJ But- w1th mere know]edge of the f1rst few moments 30,31, ‘

"fﬁmf1t is str1ct1y 1mposs1b1e to compute this fTux when S 11es 1n- t?b";f:tﬂtﬁf?;jg

'7'ﬁh:5’de the transit]Oﬂ zone It The most favorable s1tuat1on 1s at

"s}vfthe other extreme when S meets zt at r1ght,angle everywhere, that

1s when N v or equ1va1ent1y ﬁ- 0 a]T along the curve Snzt

S , v f“;fVL’J”T‘
v'jwertten as a Lz-converg1ng ser1es 1n terms of the others and ac- ,_;»,,-vw

The atm of the G1bbs approach is to extrac gross ilﬁkcf”jﬂ_i;?f'p'*



"“IThe more I receeds away from v the Iess accurate becomes the

ﬂ 'z eroth order approx1matlon expressed by eq (4 7) ThIS fa11ure of
h:fnhrthe approx1mat1on 1s aIready man1fest 1n the behav1or of the fac-. Tf-',*wpc;}
.?vator T wh1ch goes to 1nf1n1ty as N-approaches n Note that the same - = |
‘"-gldtvergence is present 1n éhe emp1r1caI approach (eq (II 2. 21))

' er;In thaﬂbcontext 1t may be understood 1n Qure]y geometr1ca1 tenns
C:J:Cons1der for 1nstance a fIat d1v1d1ng surface Zt and take for the ;;'%
"if; reg1on V A cone f1xed 1n space, w1th ax1s perpend1cu1ar to zt I‘ii,TV't'
“fi;f.the emp1r1ca1 approach the term Ta v ar1ses from a purely con- hxa;,,_m

I

m:'ifvect1ve effect 1t represents the f]ow of the surface excess asv

hvcf& hrough BU as th1s excess 1s carr1ed anng W1th the d1v1d1ng

‘ffffsurface Zt It 1s cIear that the rate“ofﬁth1s conuectlve trans- 5 ~di;5%tﬁfrﬂg

; Ffjﬁport becomes greater as’ t,_iaperture of the cone, 1ncreases When .‘;lt§:f3i;

'7f}fthe aperture 1s cIose to 180 'y a smaII d1sp1acement of Zt can 1n-':1~
éfbadeed produce a dramat1c change of the area of the enclosed patch
';fijzt(v), mean1ng that a Iarge amount of surface excess has crossed

: V“fffffathe boundary BU, in a very short t1me In fact for a gtven nor-"h‘

‘*a;mal ve]oc1ty of Zt, 1t 1s geometr1ca]1y obvious that the rate of

7ftransport through the boundary v1a th1s mechanism goes to 1nf1-feff}"bf“

if55fn1ty as the aperture of the cone goes to 180 w1thout reach1ng
'tu?i?1t Th1s dtvergence 1n the emp1r1ca1 approach 1s embod1ed in the ffa‘fi~hfﬁf
Ai"}geometr1ca1 factor appear1ng fn eq (II 2 21) It is a by product}?hﬁuftyfﬁt
'fl*wof the' 1dealization 1mp11ed in, using excess dens1ties concen- 5Pf]';a;‘"f’fi7
fﬁ“fitrated on a surface, In a rea] system th1s d1vergence cannot oc- :ffi:ff,fffﬁf

.fii]cur Tﬂe fact that 1t 1s also present 1n the zeroth order approx-fig“f };51"7
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]

"TATQE§°,VT[:-1b ‘f" R:;;‘_ _{,:‘_.;:_et .  .7_::_ | ;_ k‘fvt o
B T B S G :.‘.94.
1mat1on of the r1gorous theory 1n eq.(4.7) s1mp1y means that th1sﬁ -
] . approx1mat1on is no 10nger good enough to compute the fTux when N fai'i’\ ‘
"iff:;lf.‘Q— becomes too c]ose to 7. The nature of the approx1mat1on is best L
b L understood by COns1dertng p]ane suniaces The s1tuat1oni1s 11-:J:i;%fﬁ e
Tustrated in F1g\3 wh1ch shows a sect1on of‘the surfaces Zt and’
S The d1stance perpendxcu]ar to the p]ane of the f1gure 1s mea-f SRR,
sured by k,:and the un1t nonna] to th1s pTane 1s T nx v The ?J
curve Snzt 1s denoted by r The p051t10n vector of a p01nt of‘the j:‘f*»"

- 8

part of S compr1sed between zt and z may be wr1tten as e

AT + cn < ccotanev

pu,r,)

AT+ cn —'ch

and the area element on S is c]ear]y da i‘f‘“

= If ‘fﬂﬂows that R

e o

The Tast term 1n eq (5 T) represents a d1sp1acement para]Te] to

Its Targest nonn 1n the reg1on of 1nterest 1s t& If the
varlat1on of 3 along that d1rect1on and over th1s d1stance may

'tff. be neglected. we have'f »j_ﬂf7ff~~







| Th1s is 1dent1ca1 w1th our zeroth order approx1mat10n Hence we ,
SR S I
RN see that, 1n th1s case, the zeroth order approxtmat1on conS1§;s '

| f's1mp1y 1n neg}ect1ng the varlatnon of J‘ para]]el to Zt over a’ 111 s REEA
S g T
"*1>dlstance Td The smaTTer e the smaTTer 1s th1s d1stance and the SRR

O

‘t;f7better 1s the approx1mat1on The smaTTness of 6 enSures zts va-

izfllgltvgwhen N 1s not excess1ve]y cTose to n Th1s s1mp1e argument

I R
Py e

}'would break down for a-curved d1v1d1ng surface However 1t foTTows

.

;;from eq (4 15) that the curvature effects Teave the zeroth order

\_

tfcontr1but1on unaffected and make\the1r f1rst appearance 1n the

‘dlf1rst order correct1on Thts correct1on takes 1nto account the ”.f;hf ;{)ff}:

curvatures of both z and S but aTso keeps track to f1rst grder,V‘.ﬁ

3; ~of the Tateral var1at1on of J‘ th1s may be seen through the ex- 3;6;$
}T}ffpress1ons of w1 and Qx fo]low1ng eq (4 15) It 1s clear from F1g 3

that as e decreases or equ1va1ent]y as r 1ncreases, the Tateral o

;%fvar1at1on of J' may pTay a greater role, wh1ch means that h1gher 3»1;5?"5”“”

‘{iorder terml 1n eq (4 16) begln to contr1bute, and hfgher order

:?moments are needed The structure of the f1rst order COFFECtTO" T;Zfilffaff?faﬁ

e

finn eq (4 15) 1s however aTready qu1te comp11cated so that hlgherE}ft,*ffff*

J;order correyt1ons are not worth cons1der1ng | ‘ _
The purpose of th1s d1scuss1on was not to cast a doubt 52{d”

'{:u;*';on the va11d1ty of the express1ons obtained 1n the prev1ous sec-r'fjf;fflff'f}fv

"‘fﬁh:ﬁt1on In fact the th1nness of the trans1t1on zone ensures them :;37" T

”5:i.,5a w1de range of va11d1ty Instead we de]iberate]y cons1dered

't;'an extreme sztuat1on - probabTy devo1d of any pract1c81 1nterest‘::5733'>;fii_f1

a"T.iJust to show what k1nd of 1nformat1on cannot be extracted from R



T

the f1rst few moments In conc]us1on we emphas1ze that 1t 1s on]y
the approx1mate expre551ons used to compute fluxes or" den51ty ‘

fY; 1ntegrals that are subJect to poss1b1e 11m1tat1ons, the f1rst sur-f}"%ﬂ"

face ba]ance equat1on (eq (3 3)) 15 exact and app11es w1thout quai"

11f1cat1ons ST ; ’

obey the ftrst surface balance equat1on (eq (3 3)) If the sche- va7;?” e

‘fjmatfc dens1ty 1s denoted by a and the exact dens1ty by a 3 thefffijvg;,

f_var1ous moments a are deftned by aPP1y1ng eq (2 9)‘ a" be1ng Ve-~tiiii
— - RSTING

placed by 3 7§i3fi¥;a;7As noted in Sect1on 2 of Chapter II the

bu]k current dens1ty assoc1ated‘to e a may be wr1tten as M(e)

;;for some 11near operator f1e1d M;fThe dev1at1on between exact M

*’;:wh1ch we denote by M and not M to avo1d confus1on w1th the ad--:

ii Jo1nt of M, 1s th ,v;f- M and 1ts norma] moments M are def1ned :3fﬁn\ ,lﬁj
m: 1n the usual fash1on Denot1ng by J+ the surface current/dens1ty {,~¢]5~»"“
_y’s L T et

assoc1ated to e a S we have from eq (3 4)

jéP;;PM (e) + SPMl(e) +'e:al Gradv + e a2 S(Gradvl)

DN

PRI S s



-

o I

By = MOE) ¢ AT | e
,-‘Where %;;}i:' S R
»M PMOP + SPM;P + Gradv $5 + S(Gradv )@ 3, ’ “ : (5}2)
’ “f - (PM.§ ““‘smli)(?‘\),. + “af Grad vt Taﬁ g(Grad}vl) . (6.3) )
f W1th -* Em 5>$(3ﬁ)‘hand~ a; = K.'gh‘, ST : :
>

At each pdint P of Iy | thé Tinear operatohs 6n the. right-hand
s1de of eq (6.2) must of course be understdod as restr1cted to
T+(zt), From_eqs.(3.3) and (6 1), 1t follows that the ba]ance

P y
. > > ‘ o :
*equation for é:3° reads -

44835 - HviEE] + DiviMS(8) + 8RTY - 85
at 5 | | o

N o

e

+ ﬁ-M('é) - AV '11_ g,o o

a Th1s equatlon is 60&ma££g 1dent1ca1 w1th eq\(2 29) SO that the
steps that Ted from the latter to q. (2 31) may be repeated,y1e]d-

i

1ng the vector surface ba]ance equat1on in the. genera] theory

.o

- d as 2Hv a + D1vM + Tr(SMS)n + (D1vI‘)n
o dt | : S
‘ > .

- S(_) - o o+ [M (n) -vidp = 0. (6. 4)

~ This is 5qnma££y 1dent1ca] with eq. (2 31) One d1fference is
| natural]y that we now have deta1led 1nterpretations for as, °s
. e - S

»and MS and r (eqs (6 2) -and (6. 3)) o "



. CHAPTER IV .

BALANCE EQUATIONS OF HIGHER NORMAL MOMENTS
. . - R |
In Chapter III we'obtained.the tirst‘surface baIance} |
equat1on which was. formaIIy 1dent1ca1 with that uset 1n the emp1-§ﬂ5‘
r1ca1 approach Th1s prOV1ded us with a deta1]ed 1nterpretat1on .
of the surface f1eIds used- ;n~tﬁe emp1r1ca1 approach in terms of
.tnormal moments of the deV1at1ons It is 1nterest1ng to know that |
- the h1gher order moments also obey exact baIance equat1ons of a -
.s1m11ar nature, though not 1nv01v1ng the bqu f1e1ds It is the
| obJect of the present chapter to der1ve these equat1ons and d1s-
- cuss the terms that enter them Desp1te the fact: that these equa-
- t1ons, un]rke the f1rst surface ba]ance equat1on have no equ1-!
xvaIent in_the emp1r1cal approach the f1rst of them will prov1de
us. w1th an 1nterpretat1on of the transversa11ty cond1t1on (eo
't(II 2. 22)) in the ‘context of the genera] theory Th1s W1II be
) d1scussed in Sect1on 3. o ‘ |

l
1) Balance eguatﬁons'for individualtnormal moments .

\_.v.

.; The goal of th1s sectaon is to obta1n baIance equat1ons
for the normal moments am ; 1, def1ned by eq. (III 2.9)
A cartes1an frame gixed in Apace is 1ntroduced whose

origin:colncides with‘a p01nt of the d1vid1ng surface zt at t1me

[ I , -~

9.
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to and whose z ax1s is parallel to the unit normaI nacat that p01nt
:~From eqs (III 2. 10) and (I11.2 8) we have, at t1me to, w1th @»z 1,

W1 e U ! ‘ . -). >‘ . m- 1 . T | .
@ - 103, ) [y )bz

.

-00

-;l_sz 9J 3 (zno,to) dz = -1 J ‘(6) .
m_ Bz : m 3

\»"The I1m1ts of 1ntegrat1on have been pushed to 1nf1n1ty in v1ew of’
E Iater s1mp11f1cat1ons 1n the notat1ons The Jump in .J} at 6
i makes no contr1but1on in the 1ntegrat1on by parts, thanks to the & }I”"‘

factor z (m z"~) F1na11y the fact that aJ3 is: not def1ned af’
- ‘ 3z -

0 is obv10us]y 1rre]evant W1th the he]p of eq (III 2 3) the Iast o

equatlon may be rewr1tten as..

. ;‘f‘g . '

TR o 3a’ gg} §g; S S 'l\:
.@Qm;;,f. b + <at >m + <ax *'By >m SRR (]’]).fv-
_1'.we f1rst concentrate on <gi To br1ng out the moment a ; we' l:t'hl_f:a ﬁ:.y
._'wmte R | e - o
oAt [ | f:h: ) | .
L <5¥-> = Jm z 3’ (zno,to) dz.= d [w z'a (zno,t) dz {’v,,

_i"'Here aga1n thanks to the factor z . the Jump in a' makes no con- L
,‘tr1but1on At t1me t the d1v1d1ng surface cuts the z axis at
| Z(t), in part1cu1ar Z(t ) = 0' W1th 6 def1ned by 5(t)

‘Z(t)no s 1t is easy to see that Q(to) = vt no, ‘where v* is the

T

' normaI veloc1ty of z at 0 The difference B no - n(Q(t)) Will be

Zts e
'denoted by An(t) After mak1ng the change of var1ab1e z= Z(t) L .;y,_\S\\\\g



E‘in'the_Tost:integraT, we get :

' . m . L ) . . v
fmzma (zno,t) dz =) . .m Za_fécm -, [(Z+;)no,t] dc L
‘ < o(m—n) Ve ' "x~ o

<0 . B | -0
- 1

4wh1ch on account of Z(to) 0, and Z( to) = y s g1ves : h T _::~

-d_'fwz 2 (dot) dz | - ;mv*a‘;l rd fmc a [(2+c)no,t3 dg
dt L et m-lo. 4t ST

O

ety

J =00

o

- Now at any p01nt q not on Z we may wr1te o

t

(q+h t)‘_ a'(q,t) + h -va' (q,t) + lhl2 'q £ h) -

:;'where the funct1on @\15 bounded on any bounded doma" of var1at1on '”

t

‘of its arguments App1y1ng th1s to the 1ntegrand in 'q (1. 3) g1ves

1_;;fm¢ma D(Z+C)no,t] dc Jmc a [Zno+cn+cAn t] dc

fwc {a' (Zno+Cn t)+CAn Va (Zno+Cn t +|cAn|2 an*Qﬁ;iicAﬁ)_"

L el 5 - o

n

a (Q(t)) + An(t) [<Va > ; (Q(t)]-+|An Iffpm+2R(Zno+cn t cAn)dc
I SRS -,ff'*l . 4) ,ﬁcti\

:ﬂBut from eq. (11 1 19) 1t fo]]ows that d a oQ(to) ¢ a (o to)~
: L dt REER: LA

’[;?wh11e;.from eq. (11 1.26),d An(tg) Gradv 6), and f1na11y the ft,‘iﬁiﬁ"'7'

dt

"ff t1me der1vat1ve of the 1ast term in eq (1‘4) van1shes at to s1nce

~on account of‘IAnl2 2[1 - no n(a)], both lAnl2 and its t1me de-jf
’.jr1vat1ve van1sh at. to There resu]ts the fol]ow1ng express1on for .

: ‘<§-f—>m' T R ‘ , -'\'ff:\:\‘.;j\‘_.\ ‘
<<t >m = dt m + mv a 1.fvbhedy :<Vat>m+1\ru0nz ;?tt’(ItS)

01

\



The Iast tenn’1n eq (1. I) w1II now - ‘be rewr1t§én ina man1-
",ifestIy 1nvar1ant form From the def1n1t1on of the d1rect1ona1 der1-a,

;ﬁvat1ve, 1t foIIows that for any u € Ta( t)"-;‘

-

05>, ("5) o f cE(s)+;n Ecmd; s

where C is any curve 1n Zf.such that c(0) =
‘ f_f‘ r1ght hand s1de may be rewr1tten as } :
: / \&[D‘csa“ ?5+cn(p> I

- I <D_J > | D-<3 > ¥ <DS( )

| »‘-so that -

j_ mtiJ fi“”

“‘;Introduc1ng the covaruant der1vat1ve VJ def1ned by eq (II I 4)

v't’a"d USI"Q eqs (III 2 10) and (II I 14) the f1rst ‘term on the r1ght D

‘?v;may be rewr1tten as

D-<3' [VJ -JLSJ( )'+ [u (S(J )+Gradal)]n . (I 7)

”:{:eIntroduc1ng I1kew1se the covarlant der1vat1ve (DJ )+ wh1ch for

1 ‘7;‘each f1xed q not on Zt’ IS a I1near operator onIR3 def1ned by

« : Bx g By

: f(DJ )+ Dﬁj (q the second tenn 1n eq (I 6) may be rewr1tten

S "<Ds( )3|> _{_» <(D§

S | m+1
»vIt foIIows that *fff,- i

- B ot

- -"\:‘ o <§-‘-J—1+ ?i% = DIVJ - ZHJ o+ T——<P Dj m+1 -

' I'where use has been made of eq (II I 13) and where P 1s the pro- ‘f_ i;;],



:whfcomput1ng the moments (Der1vat1ves are noz meant 1n the sense of R

'.yterms The f1rst one may be rewr1tten as : '.;{fiﬁ?. uf‘f"ef}-ﬁﬂ:"'

' 'ff‘f1nvolved//t1kew1se the term T"kP(Dj )

- ip1cked up

Q.lo.
ot

| _rJector on TE(.to)’t‘\”"f' BT R T R
' Comb1n1ng this equation w1th eqs (1 1) and (1.5) finally

3 yle]ds the requ1s1te b”Tance equat1on | f ;f_g_;":a{' I

u ' ‘ fn»:. L. i 3 ‘t,;‘
a = 2HJ + D1VJ - om_e‘.bm(am_ly«v ) + Grad VJ) .a >m 1

mtl

¥ 1;ﬂ;wh1ch needless to say, app11es on]y when m21. Some comments
._'1about the last two terms are 1n order Clear]y, the fact that Va

h'and 03 are not def1ned on the d1v1d1ng surface 1s 1rre1evant 1n

",A—c

‘ed1str1but1on theory;) Next we sha]l con51der the size of these

“

Gradv <va >

| 1ﬁf Gradv -P(<Va > i?fiffnf"

Gradv -<P(Va )>m+1 {ff?*h A

:,fWhence thlS sca]ar product actual]y 1nvo]ves on]y the tangent1a1

;ffaces para]le] to Zt aré comparat1ve1y s]qw, 1t fo]]ows that

J'hef'Gradv -<Va >‘? shou]d be small compared to the other tenn§

m+1'.

°”4ffijof order m_1 and m appear1ng 1n eq (1 8) T 1s wou]d c]ear]y not

i ST (R
s have been the’ case, had the norma] componen ‘Of <Va >m bee" Tf;" B

m+1 oughtjto be sma]]

t

”'xi‘compared to. terms of order m-1 and m, than s to the factor f fi_i f{V.eh:'

| f'S wh1ch 1nsures that on]y tangent1al der1'at§ves of J' are

An apparent drawback of eq (1 ‘

R Tr<P DIE | =j d (1% :

)1sthatthe1asttw0
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zifje“ part of <Va >m:i Because var1at1ons of the dev1at10ns a1ong sur-5f7f;'7?f7f°'



1445,1p(<va >k) . Grédékjf S(Gradak

o

o tennS‘inv61ve‘qUantities*whiCh-are nOtJexpreSSed'tnltenns'offthe:

‘nnormal moments used h1therto (the ak ,Jk s a&f J -This can“1’;'
x'iisbe 1arge1y remed1ed thh the he]p of conven1ent récurrence re]a-_;f
| ”f'5’t1ons that w111 be der1ved present]y By an. argument 1dent1ca1 to';}it~”f

» the_one wh1ch_]ed to eq (1 6),_1t fo]lows that for any u € T+( {5:’.-,

'U",%Vét'si’>fz_.. o G\radak . g( ).'<Va >’“1

u Gradak + U SP(<Va >k+1);;h. | |

o wh1ch, s1nce i is an arb1trary VeCtOr in Tg( t)’ 1mp11es that

'f*tgfrough1y of the order of G/R t1mes that of the f1rst where I/R s

S

) "i,QThe 1ength of the second vector on the r1ght hand S]dé:w111 be ,}f:iﬂflf;“d-% ;

"?the Iargest norma] curvature of Zt at the po1nt where these vec-.,"i'3*->5

'“';i'@jtors are evaluated Under usua1 PhyS1C3] cond1t1ons, R ‘5 enor- ifdd‘i»bltr"» :

'gf'mously greater than 6 so that the second vector may be safe]y ne-~-}jﬁffji7tfft

"-‘fff?ig]ected Hence com1ng back to eq (1 8) we may wrlte ;?ﬂ{f‘fiwb175~3*'

Gradv f<Va >Mt;m, Gradv T Qrada fii&r;jvr-st:-

"v"7i~3w1th a h19h degree of prec1s1on Should that not Prove good enough ke
lifg,for 1nstance 1f Tt were necessary to con51der norma1 moments of
';5fsevera1 orders at the same tlme, a more ref1ned approx1mat1on _{!;ﬂ’}’

5 f?i;hcou]d be obta1ned by not;ng that f°r any 1nteger re 1

) + S«(Gradak )d'th;ﬂ%f

1

G+,
S P(<Va >k+n+1

) (1 10)." PRES
;urhThis relation fo]lows by 1terat1ng eq (1 9) In fact it 1s obv1ous , ;'T"*\t"
“'bifﬂthat the last tenn goes to 0 as n goes to =50 that eq (1 10) gen- 5d,;i*v*’>7&



}“_;aerates a ser1es converg1ng to P(<Va >k)

ey g,

‘ 'But under: usua] phys1ca1 cond1t1ons th1s ser1es w111 converge so

Co0s

“»rap1d1y that the f1rst tenn w111 a1ready be an exce]lent apprOX1-',j_ o

LR mat1on In any. case, eq (1 10) prov1des an exp]1c1t express1on

v“;"_"z'of the rema1nder at any order of truncat1on
A s1m11ar recurrence re]at1on can be der1ved for

" ff, (DJ )S> Fromveqs (1 6) and (1 7) 1t fo110ws that for any

]
::2,,“,
'4 lé
oy
v

[nY
]
—
o
C
~~
i
[ )
o~
73
v
A
=y
V
- N +
A
T
. r\
| —oe I
&
v
‘o
v
n-
;_x
—
=
v

1fe[Mu1t1p1y1ng on the r1ght 51de by S g1ves the requ1s1te recurrence

(DJ )S> (VJk;- JkS)S ¥ <P(DJ )S>k i :%;':-. (1 13)

'”'“;f;”Upon wr1t1ng Qk = VJk'-,JkS, 1t fo]lows that for any 1nteger Zl,:=ffffff@ff

AR >' e :

;,tih7{37f¢>é?1;§?1,ﬁ =

| '57??The comments that were made about the next to 1ast term in

iff‘eq (1 8) apply verbatim to the last term Tr<P(DJ )S> Thus tfv ;ﬂf;?ff553

- orm eq (1 14) we havegl with a h1gh degree of preciswn
mhhfrj r<P(DJ‘)S> ‘~ Tr(QkS) = T"lSth) Z JkTr(Sz) S

| Sl l(.+1 n+2 S
<P(DJ )S>k,- QkS + .,thﬂs 1-<P(DJ )S k_ (1 14)

*?-.-ji}w- Jks - <P<DJ Mﬂ St
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i Tr[(S-rZHI)VJk] - Jk(4H2 2K)
= Tr[SVJh] + 2HD1VJk + Jk(ZK 4sz:f

1

H

| | D1vS(Jh) } 2HDlVJk‘+-Jk(2K 4H2)'ifsf7' |

_where 1n the~1ast step we have used eq (II 1. 9) together w1th the ; T_’;;f% |
vti1dent1ty D1vS = 0 wh1ch is equ1valent to '}u, f R c»v'xt }f;]dfif~'”
mvs =;2ede ’”}#r’yffijff'fa' (1.15) e

) L:The proof of th1s equat1on w11] be g1ven in the«next sect1on

| "'i[rﬁEBetter approx1mat1ons couId be obta1ned 1f necessary from eq (1 14)

:7i?§The procedure for obta1n1ng baIance equat1ons for norma] moments . I_J ;i'r;,

PRI

"';of any order is now cIear one starts w1th the ba51c re]atlon ex-f;_if R

f‘;ipressed by eq (I 8) and uses eqs (I 10) and (I 14) to reexpress :"tﬁ“--'lt

fff:the last two terms 1n eq (1 8) 1f necessary One thereby obta1ns«ft};;'j§§ifizi

:.ff::a h1erarchy whose truncat1on can. be based on c]ear phys1ca1 argu-fffyﬂf;:lz 5

':‘ljfments

... 2).Balance equations for combined hormal moments = . e

The ba]ance equat1ons der1ved in the prev1ous sect1on e T

I ‘sth‘(eq (1 8)) 1nvo]ved tenns (the Iast two) thCh were not expressedf‘[jnie75f7:?

'”f°5~,7yd1rect1y 1n tenns of the moments used up to that p01nt (ak, Jk and}iy::”n**

';}ﬁer ) we showed”how th1s could be remed1ed at the expense Of very

'1"f,m11d approx1mat1ons In th1s sect1on we shaII see that the balance f'hf S

"ifgfequat1ons for the nonna] moments of order 2 1 can be comb1ned

”b:';three at a t1me to obta1n exact equat1ons very s1m11ar t° the f1rst,?f;‘j[?hft

1”5tfsurface baIance equat1on of Chapter III and involving only moment$¥j§71:,f*"



'.'1.1f‘.P(<Va 5\\:\Zﬂ§Va >h+1 + kvl >k e)u:agfai’htlitll
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Iof the type ak, Jk and Jk

From ed. (1. 11) together w1th ~2HL --51-5 and ss - s3 =
' :'gKIi (see eqs (III 2 20) and (III 2 22)), we: have |

. | ﬁﬁi. ndﬁng:h: -
' Z

Z S.(Gradak n) (Grada,2 n+1) S

;}ﬁ   o | - o "f;? ff_
: +n§OSS (Gradak &+1 ZOS S (Gradah n+2)

*'1Ide1kew1se w1th j;fdgﬁi;:;‘;:“ajf:j;k,.;‘- B

'“*tfika~

__<P(DJ )s> - 2H<P(DI NS5y, 4 K<P(DJ )5>k (2 2) ’*;;fgg

ugﬁhi;igwe have, us1ng Eq (] ]4)’ :,f3?f;ef'fﬁéiﬁgi;Idi;:hhi;;z'flgit.h;2;

: fff.fQWe calculated Tr(QkS) at the end of the prev1ous sect1on and

f:afTr(Qk 1).- I”(VJk,1 Jk+15) D1ka 1 2HJk+1 Comb1n1ng these
”n‘results we f1nd that = - . v

'~g_§;f;Ter D1v[§(3k)] + 2HD1ka KDWJk+1

':ff7i:tLet us- define the fOIIow1ng comblned moments 1n terms of the ‘

'""-:§:7norma1 moments def1ned by eqs (III 2 9 10)

Sh+1

.2 n+2 e
z Qk+n z Qk+n+1 * 2 Qk+n+1 2 S

Z Qk+/L+2

+ (2K - 4H2)Jk

: o,'- T
. ' L

"un*

.n;ifaaS;- .i- 2Ha ‘ + Ka 2.{:;:? ?gil¢g'x;;w¥.'i%f e et

s '3 zua -‘:+KJ

m§i

331“ 3

5._



) v

o Nhen m -AO s these are the surface excess dens1t1es (see eqs
*“ (III 2. ]1 12)) Ne now p1ck three of the balance equat1ons (eq (1 8))
| of order m,m+1 m+2 (m 2 1), mu1t1p1y the second one. by -2H and the |
th1rd one by K and add up a11 three to get (us1ng eqs (2 1) and g
(2 2)) : V : c : : o

_‘gi_m : 2HJ :_? gtH thK + D1VJ }_ZHDamefi

+ KD1VJ g a m(am 1 Jm 1) .2H(m+1)( - J ) :

+ K(m+2)( m+1 L_‘ j;;l) Gradv [Grad a S(Grada )J + TrMm.*.i; 0

Now we sha11 show at the end of th1s sect1on that

: ”'.“v’ o - , (2H2- K)v . %Lap v 3’(Lapv »-'D1vGrad vt ) '(2 7)nt7 P
‘*f-’fﬁ’fefbﬁ,dt:f S N ,,'-~a--.}-. B

:;%f”;}f;?nswafff;c)-iﬁlvf."“”

"'7e5ftiUs1ng the se]f adJo1ntnéss of S we have

. _;.Gradv -[Grad a + S(Grada )] D1v (a Grad % ) ;';_,:_. Lap v :"f >
. Lo + DTV [a S(Grad v'l')] - a D]V [S(Grad V )] ' i, n

e 77ff1nsert1ng th]S together w1th eqs (2 4) (2 7) and (2 8) 1nto :ﬂdﬁ;

(2 6), the 1atter reduces to , o L
s e an.,,;< R RS S
m-"' 2Hv a + D1v[3 + S(Jm+1) “ Gradv + a S(Gradv )]

. :Leg T

oy %{ Um * m(am_iy; Jm 1) 9:, (2 9)

(m z 1)

"f‘Thls equat1on 1s exact and has a remarkab]e s1m11ar1ty of struc-":;f}“fo.ff»_
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o ture WIth'the"tfrst’surface baﬂanCe'eqUation ‘eq‘(III 3. 3) ThlS
'1suggests that the same techn1que cou]d be used to der1ve ‘the f1rst

g surface ba]ance equat1on Indeed eq (1 8) may be shown to ho]d

e , 5 .
me O prov1ded that the tenn m( m_iy;“f'J; ) be rep]aced N

?byf:~¢31¢ ﬁf-ga‘rlﬁ EJ-n -+ av Bu, and the same ca]cu]at1ons as .

:',a]so for

‘ljp,dabove may be’ repeated Iead1ng eventua]Iy to eq (III 3 3) But .‘_"'
}h;tdth1s procedure wou]d on]y establlsh the flCSt surface ba]ance equa-
_ _bc_t1on as ‘a neceaaany cond1t10n for the forma] ba]ance equat1on fjfz
mif'fi“(eq (III 3 1)) to ho]d whereas the der1vat1on g1ven 1n Chapter IIIA1
| :‘f;,hshows c]ear]y that 1t 1s both a necessary and Auﬂﬁ&c&ent cond1t1onv' '
3 .‘ _,. we W111 now. g1ve the proofs of eqs (2 7) and (2. 8) and _
:“nh'next of eq (1 15) wh1ch were used in der1v1ng eq (2 9) We take ]”hk.‘
i ,“Zt at a f1xed t1me t as a reference conf1gurat1on If ul,uz are i5;_5;h1>a'“"
:Tijltwo tangent vector f1e1ds, 11near1y 1ndependent on each tangent f{jd
°':ﬁiip1ane ‘we, have.' bR B ,] o b; 'i '.." A:”vh_“h} ‘.M S | |
: ?;ZH ;‘. S(u,) i Uz‘ S(uz)”;?fmiiygjjlt-aiaig-i’ (2 ]O)fxffii L
K = [ul . S(u;)][uz - 5(12)] - Ho S(ul)][uz s  ) (2. ‘])’E‘f»‘j';j?’l e

,v;_;akxfwhere (ul,uz) 1s the bas1s rec1proca1 to (u1,u2) that 15 ;i‘fffhh”"

77?fawhere Q—n (ulxuz) Now we ]et ul and u2 be "norma]ly convected"viff;;jff]?}}f}j

' Rtfﬁfﬁdon I according to the def1n1t1on of Sect1on 1 of Chapter II I '{flﬁ;f?:ﬂmfji

i t
f;ﬁf1s then a s1mp1e matter to show that

o fSN ) V-Gmdv + ﬁu) madv i



while from egs (I1.1.24) and (1I.1.25)

_".gfﬁ&" R vts(ﬁa) +'Ed-’Gradw4'ﬁ'.f‘
~oodt T |T=0 gk : X

and s
Q | = - ZHVL‘Q ,
”"]fComb1n1ng these resu]ts w1th the nonma] tlme der1vat1ves of eqS

z"fo 1) and domg some %1gebra, we get eqs (2:7). and (2 8). The
}calculatlon 1is much s1mp11f1ed 1f u;, uz are chosen to be e1gen- ‘" ’:lﬁllf_“
L Vectors of S on the reference conf1gurat1on zt, Wh1ch 15 a1ways : L
x n | We»now come t° eq (] ]5) Although it 1ooks very s1mp1e,. S
Q1ts proof 1s not s0. stra1ghtforward The formu]a is 11ke1y to be s
‘77known to some d1fferen:%al geometers, but we cou]d not trace 1t

g }pé1n any of the severa1 standard references we looked through The ‘

'*5f”,cruc1a1 1ngred1ent 1n the proof 1s the Codazz1-Ma1nard1 1dent1ty

R Let p be a p01nt of a surface I and ul, uz be Wo orthogona] un1t L

'.,J:fftangent vector f1e1ds def1ned on a ne1ghbor”'od of p 1n Z w1th

nx From eq (II 1 8), we have BT s R
TS s e (V- ,_,>< 1)+ (v- 5)("2)] oem

| TPgwg.;The f1rst term on the r1ght may be developed as fo]lows' 4ﬁigf;:i£;jfgﬁ‘{if§f7n

@S E)

III

ul-V- [S(Ui)] - ul-s(v- ux)

V- ful's( 1)j - 25(“1) V-,Ux

5‘-"n -

R TGrads- T EUz-S(Uz)] - 25(@) T, 0y

: :'f, ux'GradZH --S(uz) V- 02 "UZ'V‘ [S(UZ)



;M:Vf_f

‘ -‘4l : L= S(Uz) (Vﬁ Uz*rfulauzl)" 25(”1)
- o e

In the Tast’step, use has been-made of the Codazzi-Nainardi-equa-+
mt{¢n A:_J .;l,, : .v>,.n J - :': | ~1., ;.;' t,i.'. tui.1. B
fﬁn}ﬂvvxé *)- v—S(“) ([X Y])  tff‘ffﬂi"j;l,,,d'7<ffg#ﬁ-"”
A f;T-QWhere [X Y] is the L1e bracké% of the tangent vector f1e1ds X and Y
“:"i't(H1ckS [1955] p 8 28) The second term 1n eq (2 13) may be rewr1tten

?“; Ty (v_3 )( )f- T {v— [S(uz)] 5 s(v- uz)

;{;fﬁang(ul) u2] + uz V- [S(U1)J

U2 v~ [S(Ul)] Q'S( ‘)

e n:

R~ ST .
o 7

u' R

Uz V- [S(ul)]»- S(uz) (VL uZa-[dz;ulj)

e e

“ﬁlwhere 1n the 1ast step, use has been made of the 1dent1ty }

- f7,V- U2 & V_ Ul _.[u1,02] (H1ckS [1965], p 26) Insert1ng th1s,
'*'_i..;;:._together w1th eq (2 14) m eq (2 13) yields : R
“”’“dee w111 now show that the express1on 1ns1de the square brackets "'f-HT;*Tzv

”vanishes S1nce uz'“ ﬁ 'U’ we have

H _;,',..fv—,nl"ﬁ P[D- (nx ux)'_-:"-;_;.u Pf(D‘ ")"“1 +hx D' “‘]

.\.'___' .

Lfrom wh1ch




. v = - T Gy IRx S(T,)]
and" - S(uz) V~ \u2+S(u1) = [N x S(Uz)+5(u1)] V- u .

- But s1nce ul is everywhere a un1t vector, it foIIows that V- u1
is perpend1cular to ul, that 1s V— Ul = auz, and the last, expres-

: 51on may be rewrrtten as

[-ngS(uz) 1;.5.(01)]“0‘5: = a[(?\*xﬁz‘)‘s(- ) + S(Uy)+ Uy ]

1

| | al - UI S(Uz)+S(u1) u2] = 0
v? trmnithe se]f—ad301ntness of S. Equat1on (2.15) thus reduces to -

| 0-DivS =, Oy CGrad2H . . o . -
‘The Same reIat1on obv1ous]y ho]ds for Uz, so that

Dws Grad2H. .,

~« 3) ‘Application to'the tranéversality condition of the BAM theory
| ! . ‘ .
In the preV1ous chapter we have proV1ded the br1dge '

vbetween most of the equat1ons under1y1ng the emp1r1ca1 approach

"i_ (eqs (I1.2.19- 24)) and the genera] theory based on deviations.

Equation (II 2. 24) was g1ven a r1gorous exact ana]ogue whereas

eqs (11.2. 19 21) (espeC1a11y the Iast one) were recovered in the ‘

,'context of a zeroth order approx1mat1on ) fver one last gap

-rema1ned to be f111“?ﬁeq,(11.2.22)..

. (3.1)
: jlwhat we. found in Sect1on 4 of Chapter IIT was that the zeroth

order contr1but1on din ‘eq. (I11.4.16) gave

12



Mty
o .

) J'ﬁ'-ﬁ dA (Jo-S+tin) 4 (3.2)
a AUy LY . i

i

This has the same structure. as the 1ine integra1 in eq. (II 2 21)
except that in the genera] theory Jo 1s accord1ng\to eqs
(111.2.9,]0), given by | | | | |
| it =~ﬁ.<3'>0 - 3-3 | h o n (3.3)
and not by an ana]ogue of eq. (3 1). Since'eq.(3.2) was ohtained
_‘1n the context of the zeroth order approx1mat1on we m1ght expect
that eqs (3.1) and (3 3) cou]d be reconc11ed W1th1n the same, con--
text. Th1s is conf1rmed by the ba]ance equa\1ons derived 1n Sec-
 t1on 1. Indeed the balance equat1on for thet;>rst\prder norma] mo;
ment obta1ned by sett1ng m 1 1n eq (1 8) reads o o

d a, - 2H31 + D1VJ1 = 01 + (aov - Jo)
. dt T , e
| 4+ Gradv -<va' >2 + Tf<P 03 :;2 = 0.

CIn the zeroth order approx1mat1on we neg]ect a]] moments of order.

21 . The above equat1on_then reduces to - - o
| L Y S

Jo-aoV . : . 4)

Since in the zeroth order approx1mat1on the surface excess a’ is
- set equa] to ap (see eq.(III.2. 11)) we have reconC11ed eqs (3 1)
| and-(3.3) The who]e set of equatlons (11. 2 19-24) wh1ch expresses

the‘Struéture~of the emp1r1ca1 approach~has this been g1ven a f1nn‘

'bas1s in the context of the genera] theory Equat1on (3.4) agrees |

w1th the transversa11ty cond1t1on derived in the theory of Bedeaux,

~ Albano and Mazur, as may be found for examp]e in (Vodék [1978],
-eq. .(13)).

113



1 “114
'Havihg obtained exact'balancé equations'ih'terms of nor-
mal moments, our' main concern has been to interpret the emp1r1ca1
- forma]wsm in ten%s of normal moments of the dev1at1ons Th1s cou]d
be ach1eved in the zeroth order approx1mat1on It is to be ex- ~
‘pected that h1gher order approx1mat1ons cou]d be used to hand]e
,s1tuat1ons where very h1gh curvatures are present or where the ; .
'1nterface is not 50 th1ns Buff [1956] has thus stud1ed curvature
effects in equ111br1um . The theory deve]oped Tnvth1s chapter

and 1n Chapter II1 cou]d prov1de the bas1s for such an. 1nvest1-»

" gat1on 1n non equ111br1um s1tuat1ons However at th1s early stage, :

- flwe restr1ct our attent1on to features present in the emp1r1ca1

‘ ,framework descr1bed 1n Chapter II o ‘u".r_: PV



CHAPTER V -

- MOMENTUM AND ENERGY

.xT)*MaSS'and'momentum ba]ance :

' Let us con51der an n component system w1thout chemxcal

: react1ons w1th schemat1c (1 e bqu) and surface excess mass den- S

; s1t1es‘p,, ,p and p t ,ps Ue-recal] from Chapter IIT ?hat

m-nQ

po . 2Hp1 +Kp2 o T (] ])

. Q\.‘

*_',w1th - -'pm_:

h
Y~
O

The assoc1ated current dens1t1es are denoted by J .,,jn’and 3,,.,.; ,

"_J where

Cso i
J 3

“‘
’ II :

e R e eed),

:'lL:The totaI dens1t1es are;>:f;s;}_-.*"““-i*

Z P Z . X pa.;"and g- Z ki :Qf’frffiif(ﬁ;35.f'*"“‘“'

S

'an;oThe generaI baIance equat1on of Chapter III together w1th the usuaI

t.ngqu baIance equat1on become

o

ajo - @
_c-tl-c-t-

~ “and, on summin9 overa, -

Cns

Joor §(J1) + p,Gradv + pZS(Gradv )fs, - - (1.2)



T

é’ -0 R (1.6)

_._a:}o o

d'p; —-,ZHVLQS- +,oiv§+"[1:§rﬁ:,pvl»1] =0. (L
af s . o g . SRR

Equat1on (1 5) ]ends 1tse1f to a s1mp1e 1ntu1t1ve 1nterpretat1on

On rewr1t1ng the 1ast tenn as Ep & W 7 -V )] » We see that ﬁh

' - mﬁ“ n -,p Vil may be 1nterpreted as tha rate of transfer of

. const1tuant o 1nto the 1nterface from the + phase minus- the rate "‘1'

'-dd,of transfer of const1tdant o from the 1nterface to the - phase

f*Th1s together w1th the 1atera] : ansfeh w1th1n the 1nterface em-

tbodxed 1nwD1VJ y glves the netag'te bf change of 1oca1 adsorp-\fff

\

;t1on of const1tuant a. In the zeroth order approx1mat1on on]y the

,f1rst tenns on the r1ght hand s1de of eqs (1al) and (1 2) are re-;h

L ;ta1ned

The bu]k tota] mass current dens1ty G and the bu1k mo- ‘fat'
':'ementum den51ty are one and the same If H denotes the momentum f:;,}:

‘"fp-flux dens1ty tensor (Landau and L1fsh1tz [1966] and ? the body

| 1;hffor$§ per un1t vo]ume, the bulk momentum balance equat1on reads

BG + V H -:F:‘;O:v!“fbt;';:” 7‘1,:}fd'fb.-:h’?:s (-I 8):ihkl.ﬁv%fi”ﬂ

d"fﬁf‘As before we 1gnore the subt]et1es assoc1ated w1th d1f us1on par-hfj.?ga?;«},V-

""»fft1a1 stress tensors,etc (Keh]en and Baranowsk1 [1977]) The momenfijftz%c*f

: *TTtum surface excess dens1ty G 'ffjh}'J;if“lsff:[f(_il%:;f__;‘j:’;_}V'* S

->.

o Reheabed o ae

- ‘where: -},:Z-]"_*" '?"ff af‘iixf}fjh” RO CR

e LS
-. Gm = <G'> = Z



a ,f.i‘adlﬁ 2Hvl§ + D1vII + Tr(SH )n + (D1vlk)

»"whereas, accord1ng to eq. (I 9)

'.then both reduce to go

*Jfgjlance equat1on 1s

- where

'3_

*Note that its. tangent1aI paLt P(G ) is not equaI to the vector g
of eq (1.3). For on def1n1ng A N i‘ ..' o -
m —JQ J = P((G > )“H _f | v;t f.. - : "f'l(]f]Q)e |

: axl

.L".weihaye'fnom egs. (I 2) and (1 3) o | L |
| g go + S(gl) g plGradv + pzS(Gradv ) ;31_ rf_ I(I}II)“?f»

i

SRR Y.

PR -5 - 2 v G R 12) i

"_Th1s is 1n marked contrast w1th what we had 1n the emp1r1ca1 ap-

'f‘proach (eq (II 3 9y) The d1fference d1sappears aga1n in the zeroth

7

wﬁorder approx1mat1on for the r1ght hand s1des of eqs (I II) and (1 12)

Let us denote by H the mth

0

7v:dev1at1on H' of the momentum qux dens1ty tensor e

fmx'

oMy ",H,,-m

'ifihdhdiWr{teij O

0 R

o

S

S L

= (Pmo+ 3,0 () + giGradvt + giS(6radvt) . (1.18)

order nonnaI moment of the ft}15jf'4 g

'7’nfThen 1t foIIows fran eqs (III 6 1-3) that thé momentum surface ba-*w::fdr

',\; S(P ) - f + EH (n) - V*EII f?t»3 i[f'”ffff¥1(iiiiffff?fiftit77f7

PSP trvten, S h (19



'5r;;fgtheory (compare eqs (1 11) and (1 15))

:_‘Equation'(1'13) 1s 6oama££g 1dent1ca1 w1th the abstract emp1r1ca1

, momentum ba1ance equat1on (II 3. 11) provxded that g+-p v n s wr1t- '

“-‘ften as E$ 1n the 1atter But the ana]ogy 1s not comp]ete F1rst 1n“

".the emp1r1ca1 approach, we had E ga—p v n (see eq (II 3 9))

"}l”that PQES) was equa] to g, or in other words the tangent1a1 com- -

-'ponent of the surface momentum dens1ty was equa] to surface mass

current dens1ty I"tU1t1°“ based on exPer1ence w1th bulk dens1t1estjfl S
N fwou]d certa1n1y suggest such an equa11ty However on compar1ng eqsti“,_',
- (1 11) and (1 12) we come to the conclus1on that 1t does ot ho]d; ‘f‘u i

- 'f*71n the present context Not surpr1s1ng]y 1ntu1t10n 1s v1nd1cated

d'h‘“ the zeroth order apprOX1mat1on because P Es) aﬂvfg
't.equal to go B T SR, ' R

Secondly,1t fo]]ows from the exact ba]ance equat1on |

',,”‘%f:(IV 2 9) that 1n genera] G -n is not equa1 t0 p V ; as was the case
'Tfffhwn the emp1r1ca1 theory (eq (II 3 9)) Yet another d1fference 15
f'fﬁrhthat the re]at1on £ v g obta1ned 1n the emp1r1ca1 approach on

"Jif?j_5the bas1s of angu]ar momentum ba]ance does not ho]d 1n the genera1 |

Now 1t w111 be reca]]ed that the re]at1ons n 3 V,;k?&ﬁfff"f*ﬁ:”

'rf_and rt v g were essent1a1 1n go1ng from eq (II 3 1) to eq

v‘f(II 3. 31) Consequent]y the 1atter 1ntu1t1ve1y appea11ng form of mo-

L jdmentum balance equat1on has no exact ana]ogue in- the genera] theory

It w111 come as no surpr1se now that complete analogy 1s

‘[}fffhowever restored 1n the zeroth order approx1mat1on In th1s approx1- :

= f‘jmat1on a11 norma] moments of order 21 are neg]ected’ The surface

are then both

s




e

'excess mass dens1ty p 15 thuS-reblacedfby-p%'whi1é 3“-is rep1aced:_15“ :

by 3% (see eas. (1.1 and 1. 2)) Likewise eqs. (1. 9) (1.14) and.
‘*f(]'15) are rep]aced by i}=~ ‘ I e .

47=:1 T
1

T Pno(’ﬁ) : o (] 18) S

L'.I‘t;

In the zeroth order approx1mat1on eq. (IV 1 8) also fvfaoh'

‘f‘prov1des us w1th the genera] BAM transversa11ty cond1t1on

:ff*wh1ch we w111 now put to work S1nce G 1s the current dens1ty

“lsassoc1ated to p, th1s cond1t1on g1ves us

”~order approx1mat1on

E Eo : go ® pov n .H"Hgﬁfft.*tfgfeiié if' (] 21)'s§;f};f{ri;

'x“ihffg}Wh1Ch 15 1n agreement thh eq (II 3 9) we w111 now see that from

l'*f;ffComb1n1ng th1s w1th eqs (] 16) and (] 10) we: f1nd that 1n the zeroth;'ftfffhf;

Ah”r"tthe transven§a11ty cond1t1on and from eq (1 18) we recover the re-clffjf- -

j":.:'.1at1on Fﬂ R% g ‘which was, obtained on the baS1s of angular momen-t--5aeffi""'

B i’tfigimat1on, 1s e Eo, wh11e the zeroth order norma] moment assoc1ated

””-ef‘{tum ba]ance in the emp1r1ca1 approach Let e be a constant vector 7‘>’ s
'”J:fjand cons1der the scalar den51ty e E w1th assoc1ated current dens1ty ﬂ};;:”v"

| hsz(e) The correspond1ng surface dens1ty, An the zeroth order aPPFOX"fﬂt;*?iiaf

,1to the current dens1ty n(e) 15 Ho(e) <H >°(e) The genera] trans- f,-ﬁ{f"*tf

‘lﬁﬂtakes the form

:’:riversality cond1t1on (eq (1 19)) for these partlcular quant1t1es.=;_fg*?z*“”'



]20 |

R '_ﬁ".no(g) :_'g.»‘é.o ¢ PRI g '_ (1 2)
_VNow we sha11 assume that H and H are symmetr1c, so that so 1s Ho, g

ﬂ«from wh1ch n'Ho(,)-ﬁ e-no(n) S1nce e 1s arb1trary, 1t fo]1ows that

(1 23)

,;/?////nh1ch comb1ned w1th eqs (1 18) and (1 21) g1ves ‘ |
'~7The ba]ance of angu?hr momentmn 1s used here 1mp11c1t1y through the ;{

‘-_'fassumed symmetry of Ho, wh1ch enab]es us to go from eq (1 22) to ]”ﬂ,

‘equ(1. 23) Subst1tut1ng the zeroth order express1ons for G and PL
"‘lj~1nto eq (1 13) g1ves the momentum ba]ance equat1on 1n the zeroth '

".Iyi rder approx1mat1on

| _'v;-__.._ﬁ__g_‘.g_(go», pov n) - 2Hv (go+ pov n) + DwII + Tr(SII )n L

;:a.

| o+ D'iV(V Qo) n : S(V 90).:.-- fo + [UI( ).— v GIl 6 o A
Ti::ffije may now of course rewr1te 1t as e f'ﬁ : ." o LR

.'»"‘po%\i D'lvT + Tr(ST )n + f0 + (I(Tl'- pw w,t) (ﬁ)] o 25)
OBt e | B, ‘3“;3‘,;5;;13;5:n;_,__,’ ‘

"’ia:f]wherefl;}ja;ii'p”

-
©
(=]
Conie o
=)
-

. <l.‘ e

+
"++"1 vy
V

on Zt

”,and D 1s def1ned as prev1ously 1n terms of V
Dt e - -

e . o ':;g _J7f' Vo TR
The zeroth order express1on for the surface stress tensor

T fo]lows from eqs (1 25) and (1 17) /l%. L

.ll

) TS ;- 1 + povav

. "_u ]

- PnoP + PoVOv



C = = PI(=T+ oNOW)'>oP 4 poVe T
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vvr:_'where v Q%hFﬂgL The absence of any curvature term in th1s expres--

S 51on 15 a consequence of the zeroth order approx1mat10n (contrast ‘

-V,w1th eq (I 14)) Natura]]y at each po1nt p € Zt,.T s a 11near

‘j,_‘operator on T+(Z ), so that the terms on the r1ght hand SIde of

q. (1. 27) (or for that matter of eqs (I 14) (I 17) and (I 26))

"ff_'actually stand for the restr1ct10n to T+(Z ) of the correSpond1ng

vr11near operators 0ur f1na1 expresswon for the surface stress ten- ;_hi”

7<sor shows that 1t ar1ses from excess forces (PT P) and from a rather

1 f”{i;fpecu11ar k1net1c tenn, to wh1ch we sha]] return when we take up the f?

'“’.ﬂtthuest10n of k1net16 energy from where we had Ieft 1t 1n Sect1on 4 of

| 7_;ffChapter II *.,~ B

}:“f'f h1ch we had closed Chapter II Th15 quant1ty, as weI] as re]ated

: *fgtlones wh1ch w111 be cons1dered beIow. 1ntroduces some comPhCations

'f}]fé)fReIatIve?veToéftyfrég{auajgffh;~‘s

In th15 sect1on, we return to the quest1on of energy w1th N

6

5 :fbecause of‘1ts non11nearity in other quant1t1es For the f1rst t1me f[“.'ﬁ S

'If-_we meet w1th express1ons that, even 1n the zeroth order approx1ma--- s
'ﬁf;?tion may be at varlance w1th those used 1n the emp1r1cal approach

-f’f‘Interestineg enough the quant1t1es or re]ations 1nvo]ved are precise-- ;

LW

'e~_?f'5y those wh1ch we couId not just1fy on the baSIS of general pr1n- jf;-f"

:;'c1p1es 1n our attempted deductive approach to the empir1ca1 for- ff{fff_lf;vcriii
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; mallsm 1n Chapter II. Interest1ng too, is the fact that al] the
-"potent1a1 d1screpanc1es can be reduced to terms haV1ng the same
i'_bas1c structure and 1nt1mate1y connected w1th the behav1or of the klgfifv*

-‘veloc1ty d1str1but1on 1n the trans1t1on zone In v1ew of the com-

E ;_p]ex1t1es 1nvo1ved we restr1ct the d1scuss10n to the zeroth order

";.tt1on '“'.'fjff]{,“tﬁj”n'f{;@“:ihff}ffif -

at
japproximat1on at the outset

| We start w1th the k1net1c energy excess The tangent1a1
n“surface ve1OC1ty f1e1d 1s def1ned as before by 9s = pov where f"‘
P(Go) Moreover, 1n the zeroth order approx1nat1on the BAM
j hltransversa11ty cond1t1on ho]ds so that we may wr1te n §o --pov "".s{"
l"jiWe then def1ne a non tangent1a1 ve10c1ty f1e1d on Z by the re]a-. ;if _ZT

‘fVVi?:VA+ v n',f,-f7j;ff¥'ﬂ}i&,]ffﬁt{;tﬁ‘;;;;f" (2 1)

”Afr;fand extend 1t to the ne19hbor1ng three-d1mens1ona1 space by de—*“ff,h..:’f’” e

”*lff;;f1n1ng 1t as constant a]ong the nonmal at each po1nt of the d1V1d- _tt_iLftui [1

. e/syfff1ng surface F1na11y we def1ne a re]at1ve ve10c1ty w in th1s re-»w.77{finhlifff

',?:df“f:fg1on by

o or br1ef1y

i "~;f,fThe Ve1oc1ty W, 1s the bulk or "schemat1c" ve1oc1ty In tenns of the .i'TIVT B

(p + cn) W(p+ cn) - V('E) 36

| “%j?wn'=",¥; TR T (2 2)

o )

'isrfexact ve]oc1ty w > we def1ne another re]at1ve veloc1ty

’*ffe,and denote the dev1at1on w

"¢5”i51'From eqs (2 2) and (2 3)’ 1t f°]]°ws that

n w by w we are now ready to start
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,p*(W*-V) 2 . o(W e w
xikgl . Cokerk

oW b= ow o+ (p --p)V2 '2(9‘, 'DW)

wz)' P V2 & 2(pw)

L~
°©
X
N
~—
B | 1H

| 'Takind the>2eroth order nonnal moment of both §1des and denot1ng

fby Ko the zeroth ordef energy surface excess <(pz >o, we get

%pov2 4 &<(pw )’ | -]1 - '_;f“h{ljf E,,j»' - (2 3)

'3-¢‘Thus on top of the expected 4pov2; we f1nd a res1dua1 term wh1ch

A”_“can be e1ther pos1t1ve or negat1ve we note 1nc1denta11y that the

' :~='1ast two tenns in the zeroth order express1on for the surface stress'f'

: ‘tensor can be comblned 1nto an express1on S1m11ar to the above re-r S

;?its1dua1 US1ng the same tr1ck we wr1te

‘;;iknOWn to be

S (p b z) v V [p W zw f T?(Wﬁ)ﬁ‘¥Fft(T?VWfX;¥fof”f’f}ﬁr17‘75fh7ff}:f*n
-.1Tt;sat "?f e : g .,t,s*ra.jﬂjj%fﬁ,ffflg-iﬁ;;i_y;;*sffffitezus’>~:

ot e W ST @) s 0
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' 'afore g1ven by

':" »from wh1ch i .f-T -

5.,ffTo th1s end we 1ntroduce a parametr1zat1on r(gl,g ) of zt and ex-

73_91fftend 1t to a parametr1zat1on Jifgff"

"'?}ffof the ne1ghbor1ng three d1mens1ona1 space The'extens on'of V to '

if;:f*that Space 1s of course g1ven by

L
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-where, as we reca]] the notat1on T for exact T 1s used 1nstead

I

‘iof T to avo1d confus1on w1th the adJo1nt of T. Iﬂhthe zeroth order ,5;

L

: ,i/pprox1mat1on the surface source term for 1nternal energy is there- _f -

<Tr[(TVw)'J>o = Tr[<(TVw) >o]

h f,iLet us see how th1s compares to the souree term cons1dered 1n Sec- P ".,';7“

qu't1on 4 of Chapter II St111 us1ng the same tr1ck we wr1te

IV

(“Tw T V(w -V) - TV(w V)
(va) SRR L vv Qo

. Il'e

PR

Tr[<(TVw) >0] Tr(<T VV> ) + Tr[<(TVw ) > ] ,T- (2 6) :

";f;_In order to wr1te the f1rst term on the r1ght hand s1de 1n terms of

: f'i;"known nonna] moments we must f1nd an exp11c1t expre551on for VV o 7\‘?ﬁ3 .

(ElsgzsC) = T(El,€2)1+ Cn

V(zl,sz,c)-— V(sl.&: 0) 'z (s‘,az) ShRT

hf“so'that (n-v) 0 Now restrxct1ng the d1scu551on to one part1c-k}fjff;€}gfeif

f?fu1ar po1nt p of zt, we may choose the parametr1zat1on r(&‘,sz) 1n ifif!li{tff{fp

:ﬂtiffSuch a way that at a po1nt p, ar 1s a un1t e1genvector e of the;;:;fgdﬁf;ﬁri”

| "::"*_-'j'v::"'-"':-shape operator 53 It 'B‘en fo]]ows from eq (11 1 10) that at
»;_..__»_pomt 3 R S A T e e




where k 1s the pr1nc1pa1 curvature in d1rect1on e

s .

NOW'We,haVé1; f
on the one hand

Al (ghe, d'-,§§5(é’,a?)é=ing b

‘:;\5g?¥ah

';'n and on the other hand o

Q
P
Il

EVEY =V ey Vo s L

.

(vvm r,s) 2y .

Compar1ng these two relat1ons, we conclude that
S (VV)(I-I;S) DVo o
from wh1ch (s1nce (n V)V (VV)(n) : 3)“ . "b

where,_as 1s eas1]y checked

(I CS) L

-7;.\;;:ﬂj“ii i

|

[(1 2Hc)I + cS]

7< >
L~
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S

w1th A(c) ~'1 2Hc +

{fThe c dependence of vv comes through the .df*iff:

ff?iﬁz faCtOF (I CS) g To zeroth order in t. we- then obta1n 3;f;ijfj;jf?“

"ﬁ'*JiTr(<T VV>u) = Tr[To(9+-n@U)PJ | fff9hilj». (2 7) |




e ﬁT"F“TW) >0 =,

J1Whéfe
Q= '\'_7'7- v's
 ang
| U= S(V)'+:Gradv+ .
“Now we have \
B 'Tk(qupi = TreToPR) :
=T Q) + Tr(PNPQ) ,
" here

W= <(ane'W&)'>o‘-

@) = vid A
}ana}from. 4 \ | B
| Ho= T4 (oW eW) "> - - To o+ <(pWoi) >
| | | = -To+p'o‘V®.\7+N“
i ﬁeigef I |
<.fv }" V%Eo =n-FTo(ﬁ)‘+;y+Eo'+.W(ﬁ),’ |
that:fsnk"‘ | - |
o 7"To(n) = W(R) .
It follows that _
; ‘,T;\r(To el P) = Trl(To () @ U)P3
- = TeL(PTo(h)) 0 0]
= PH(R)-U = D-W(R)

[SXv)+-Gradv ] N(n)

£0mb1ning this ith eqs (2 6- 8) finally gives . |
T'[T (Vv - v*s)z + T‘[Pwp(vv - vlS)]

4 [S(v)+Gradv ] N(n) + TY‘R(TVW )! >o]

.

'(?.8)

(2.9)

1 and use has been made of eq.(2.5). Frbm_tqé zeroth order relation

'(2.11) |

—_—
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as the surface source term,for internal energy and -i times that
for the kinetic energy. }‘ | |
| | The other surface dens1t1es and current dens1t1es re]ated
to energy may be treated in s1m11ar fash1on we on1y quote the re- |
su]ts The convective k1net1c energy current dens1ty is
. P[<(py2_w) >0l = %DoVZV + &(TY‘N) .
R + Pw(V) R <<pg,{ﬁ,t)'>;' L (2.12)

b and the corresponding conductiue current denstty'is : L
| + PL<(T(@) 200 = - TS'(‘)-- P[w(V)+<(T<w ))'>1 . (2.13)
F1nal1& the 1nterna1 energy convect1ve current dens1ty is
‘ P[<(uw) >0] = UpV + P[<(uwk) ];._-" ,,lt'3(2.14)
~ 0p compar1ng‘eqs (2.3) and (2.11- 14) w1th eqs (11.4. 3) '
';and‘(II;4.9,10), we f1nd that the general zeroth order theory em-
boaies}additional contr1but1ons, all of a s1m11ar nature to the
energy- re]ated surface dens1t1es and current dens1t1es It m1ght
" be thought that the presence of these res1dua1 tenns is a pathologyf
peculiar to a G1bbs type of gef1n1t1on of the surface excess
\,den51t1es, and that some other kjnd‘of averaging would w1pe them
out. This is:howeVer most un]ike]y as their source is'a nonlinear-
ity that cannot be e]uded The cons1stenqy requ1rement (eq (II 4 5)), o

wh1ch to our know]edge, has h1therto been oven]ooked a]ready

_points to a difficulty even at the purely emp1r1ca1 ]eve] Th1s
prob]em w11] requ1re further 1nvest1gation but at the present

time, we can only leave the matter as 1t stands
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