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ABSTRACT 

In this thesis, we discuss two separate topics from the theory of abstract 

harmonic analysis. The first topic revolves around a locally compact group 

(Part I), the second one deals with the more abstract setting of a Lau algebra 

(Part II). 

Part I is primarily concerned with the study of Dunford-Pettis operators 

related to the group algebra ^(G) and the Fourier algebra A(G) of a locally 

compact group. We provide simpler proofs of known results relating to Ll(G) 

when G is first countable. We then investigate the corresponding properties 

for A(G) when G is non-abelian. A new Banach space DP(G) associated to G 

is introduced and we investigate some of its properties. We compare DP{G) 

to important subspaces of A(G)*. In addition, it is shown that DP(G)* has a 

natural multiplication, turning it into a Banach algebra. Stronger properties 

are developed for discrete groups, where weak convergence implies multiplier 

convergence for sequences. Afterwards, we investigate the tensor product of 

two abstract Segal algebras and subsequently introduce the concept of a vector-

valued Segal algebra. 

Part II is of a more abstract nature and relies heavily on the powerful prop­

erties of von Neumann algebras. We prove several fixed point theorems charac­

terizing the left amenability of a Lau algebra. We also prove several hereditary 

properties for left amenable Lau algebras, with applications to semigroups. 

The notion of operator left amenability for a Lau algebras is discussed and 

it is shown to be equivalent to left amenability. To finish, we introduce several 

new notions of amenability for a Lau algebra. 
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Part I 

Dunford-Pettis Operators and 

the Fourier Algebra 
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Chapter 1 

Introduction - Abstract 

Harmonic Analysis 

The phenomena of locally compact groups and their associated algebras has 

attracted many researchers over the years. A locally compact group is a group 

which is equipped with a locally compact Hausdorff topology which is com­

patible with the group operations, i.e., both the multiplication and inversion 

operations are continuous. In addition to the usual spaces of functions associ­

ated with a topological space, the group structure plays an essential role in the 

construction of the almost periodic functions AP(G), the weakly almost peri­

odic functions WAP(G), and the left uniformly continuous functions LUC(G) 

over G. 

Arguably, the most important feature of a locally compact group is the 

existence of a positive, regular, Borel measure that is invariant under left 

translation by group elements. This allows us to employ tools from measure 

theory and functional analysis to study both the topological and geometrical 

properties of a locally compact group. This thesis will continue with that 

trend. 
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Compact and weakly compact operators are very important notions in 

functional analysis. They can be used to characterize the spaces AP(G) and 

WAP(G). A Dunford-Pettis operator, also known as a completely continuous 

operator, is very closely related to a compact operator. In fact, these two 

classes of operators coincide on reflexive Banach spaces and originally com­

peted for popularity. However, compact operators have much nicer hereditary 

properties and applications. 

Chapters 2 and 3 of this thesis will deal with how Dunford-Pettis opera­

tors can be applied to abstract harmonic analysis. The first appearance of a 

Dunford-Pettis operator relating to abstract harmonic analysis appears to be 

Crombez and Govaerts [9]. They attempted to characterize when convolution 

maps from Ll(G) into L°°(G) are completely continuous. They succeeded in 

finding a measure theoretic condition to describe this situation for metrizable 

groups. In chapter 3, we use the notion of a Dunford-Pettis operator to define 

a new function space associated to G. We provide new proofs to several re­

sults found in [9] for metrizable groups from functional analytic point of view; 

this provides new techniques for developing the theory in a noncommutative 

setting. 

In chapter 4, we turn our focus to the noncommutative analogue of chapter 

3. For abelian groups, the Fourier transform allows us to identify LX(G) with a 

subspace of CQ(G), where G is the dual group of G, called the Fourier algebra of 

G. In [22], Eymard defined the Fourier algebra for an arbitrary locally compact 

group. Its dual space, denoted by VN(G), is a noncommutative von Neumann 

algebra whenever G is non-abelian. By using functional analytic techniques 

to identify various subspace of ^(G), researchers have nicely developed a 

parallel non-commutative theory of function spaces. In section 4.1, we define 
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a new subspace of VN(G), which we call DP(G). We show that its dual 

space has a natural multiplication turning it into a Banach algebra and make 

comparison with other non-commutative function spaces. In section 4.2, we 

investigate certain ideals of A(G), whose geometrical properties appear to be 

essential for a deeper understanding of DP(G). In section 4.3, we look at 

discrete groups in order to obtain some stronger results. 

Chapter 5 deals with the study of Segal algebras. In section 5.2, we provide 

a technique to merge two abstract Segal algebras. This technique is then used 

in section 5.3 to construct a vector-valued Segal algebra. 
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Chapter 2 

Preliminaries 

2.1 Geometric Properties of Banach Spaces 

Let X be a Banach space and let X* denote its dual Banach space. The 

closed unit ball of X will be denoted by Bx- Given a subset Y of X*, the 

a(X,Y) topology on X is the weakest topology on X which renders each 

linear functional in Y continuous. As usual, we will call the a(X,X*) the 

weak topology on X. A sequence which converges to 0 in weak topology will 

be called weakly null. When we regard X as naturally embedded into X**, 

the a(X*,X) topology is called the weak star topology on X*. When we do 

not mention a topology, we always refer to the norm topology. For duality 

reasons, we will normally denote <j>(x) by (4>,x) whenever x E X and 4> E X*. 

Definition 2.1. Let X and Z be Banach spaces and let T : X —• Z be a 

bounded linear operator. Then: 

(i) T is weakly compact if the closure of T(Bx) is weakly compact in Z. 

(ii) T is compact if the closure of T(Bx) is compact in Z. 
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(iii) T is a Dunford-Pettis operator if T maps weakly convergent sequences 

to norm convergent sequences. 

It is clear that each compact operator must also be weakly compact. Less 

obvious is the fact that each compact operator is a Dunford-Pettis operator. 

In general, there is no relation between a weakly compact operator and a 

Dunford-Pettis operator. However, for some Banach spaces each weakly com­

pact operator from X into any Banach space Y is a Dunford-Pettis operator; 

when this happens X is said to have the Dunford-Pettis property. An impor­

tant equivalent definition was shown by Grothendieck in [36]; he proved that 

a Banach space X has the Dunford-Pettis property if and only if for every 

weakly null sequence (xn) in X and weakly null sequence (<£„) in X*, we have 

{<j)n, xn) —• 0, as n —> oo. 

Another geometric property, which we are interested in, is the Schur prop­

erty. A Banach space is said to have the Schur property whenever each weakly 

null sequence is norm convergent. This is much stronger condition than the 

Dunford-Pettis property. For instance, LX(G) has the Dunford-Pettis property 

for any locally compact group, while it has the Schur property only when G is 

discrete, see [36]. 

2.2 Banach Algebras 

A Banach algebra is an algebra A equipped with a complete norm such that 

||o6|| < ||o|| ||6||, a,b£A. 

An involution on A is a map ai->a* from A to A that satisfies 

(i) (a + by = a* + b* 

6 



(ii) (Ao)* = Act* 

(iii) (ab)* = b*a* 

(iv) a** = a 

for all a, b e A and A G C. A Banach algebra equipped with an isometric invo­

lution, i.e. ||a*|| = ||a||, is called an involutive Banach algebra. An involution 

Banach algebra which satisfies 

II * n II n2 

\\a a\\ — \\a\\ 

for all a € A is called a C* — algebra. 

Let H be a Hilbert space, whose inner product will be denoted by (•{•). The 

Banach algebra of all bounded linear operators on H is denoted by B(7i). With 

the involution operation defined by (T*ri\£) = (??|T£), for T G B(H),v,Z G H, 

B(H) is the prime example of a C*—algebra. In fact, every C*—algebra can be 

thought of as a C*—subalgebra of some B(H). When a unital C*—subalgebra 

of B(H) is closed in the weak operator topology it is called a von Neumann 

algebra. A W*—algebra is a C*—algebra M which can be identified as a dual 

Banach space; in this case, the predual of M is unique. A famous theorem 

of Sakai states that each von Neumann algebra is isometrically isomorphic to 

a W*—algebra, and vice versa. Thus, W*—algebras are always unital; the 

identity of a W*—algebra B will always be denoted by 1B-

Given a Banach algebra A, we let A act on A* in the natural way. For 

a, b € A and ip e A*, define 

(2.1) (a'ip,b) = {<p,ba), {(p-a,b) = {tp,ab}. 

We say that a subspace X of A* is topological^ left (resp. right) invariant if 

x • a £ X (resp. a- x E X) for each a £ A and x G X. X is called topologically 

invariant when it is both topologically left and right invariant. 
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Let X be a topologically left invariant subspace of .4* and m E X*. We 

define the operator TTIL from X into A* by 

(rriL{x),a) = (m,x -a), x G X,ae A. 

X is called topologically left introverted if mi{X) C X. 

In [1], Arens defined a product on A** given by 

{m®n,<p) = (m,nL{(fi)) 

for each m,n £ A** and </? G A*. When equipped with this multiplication, 

A** becomes a Banach algebra. In fact, whenever X is a topologically left 

introverted subspace of A*, the Arens product construction still makes sense 

on X* and renders it into a Banach algebra. 

2.3 Locally Compact Groups 

Let G be a locally compact group with a fixed left Haar measure A and let A 

denote the modular function associated to G. For a Borel measurable function 

f on G and a measurable subset X of G, we denote the Lebesgue integral of 

/ over X by 

/ f(x)dx. 
Jx 

For each 1 < p < oo, let {LP{G), ||-|| ) denote the usual Banach spaces asso­

ciated with G and A. When p = 2, we will denote the inner product of the 

Hilbert space L2(G) by (-|-). The characteristic function of a subset H of G 

will be denoted by XH- For a complex valued function f on G and y € G, 

define 

(i) Ly/(a;) = /(yx), 
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(ii) Ryf(x) = f(xy), 

(iii) /(a:) = / (x- 1 ) , 

(iv) /»=7(F1)-

There are several important subspaces of L°°(G). Let CB(G) denote the 

space of all bounded complex valued continuous functions on G. For / € 

CB(G), we identify / with its equivalence class in L°°(G). Let CQ(G) and 

CC(G) denote the set of all / G CB(G) which vanish at infinity and have 

compact support respectively. Let AP(G) and WAP(G) denote the subspaces 

of CB{G) for which the left orbit of f 

LGf = {Lyf \yeG} 

is relatively norm compact and relatively weakly compact in CB(G) respec­

tively. Lastly, let LUC(G) denote the space of all / G CB(G) for which the 

map x i—> Lxg from G to CB(G) is continuous. 

In general, the following inclusions hold 

AP(G) 0 C0(G) C WAP(G) C LUC(G) C CB(G) C L°°(G). 

Moreover, with pointwise multiplication and involution given by / i—> / , each 

of these spaces is commutative C*-algebra. 

2.4 Harmonic Analysis 

The algebraic structure of a locally compact group enables us to add more 

structure to Ll{G). With the convolution product 

(2.2) f*g(x) = f f(xy)g(y-1)dy f,g G Ll{G), 
JG 
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Ll(G) becomes a Banach algebra. Moreover, with the involution 

LX(G) becomes an involutive Banach algebra, called the group algebra. 

The convolution product and translation by group elements behave nicely 

when combined. For instance, see [37, 20.11], we have 

(2.3) (LJ)*g = Lz(f*g), 

(2.4) f*(Rzg) = Rz(f*g), 

(2.5) f*(Lzg) = A(z)(Rzf)*g. 

A continuous unitary representation of G is a group homomorphism ir from 

G into the group Uiji^) of unitary operators on some Hilbert space H that 

is continuous with respect to the weak operator topology. That is, for each 

£,r] G 7iT, the coefficient function 

is a continuous function on G. Two representations TT\ and 7r2 of G are called 

unitarily equivalent if there is a unitary operator U : H^ —» H^2 such that 

UTCI(X) = 7r2(x)C7 for all x G G. The collection of all equivalence classes of 

continuous unitary representations of G will be denoted by Eg. 

As an example, we will consider the left regular representation of G on the 

Hilbert space L2(G), which is given by 

p(x) = Lx-i 

for XGG. The C*-subalgebra of B(L2(G)) generated by p(G) - {Lx | x G G} 

is denoted by C|(G). 
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Each continuous unitary representation -K of G on a Hilbert space H can 

be lifted to a non-degenerate ^representation of Ll{G), still represented by TT, 

in the following way. For / e Ll(G), 7r(/) is defined on H via 

W)Z\r})= [ {K(x)t\v)f(x)dx 
JG 

for each £,r] eH. Remarkably, each non-degenerate ^representation of LX(G) 

can be derived in this manner. 

Returning to the example of the left regular representation p of G. Let 

/ € £X(G), then p(f) can be identified with the left convolution operator 

induced by / . That is, for each g G L2(G), we have 

P(f):g^f*geL2(G). 

The C*-subalgebra of B(L2{G)) generated by p{L\G)) is denoted by C*p{G) 

and called the reduced group C*-algebra of G. 

Note that each ir e EG satisfies 

H/)ll < ll/lli 

for all / G L1(G). Therefore, we may define a new norm on Ll(G) by 

ll/llc*(G)= SUP \W)\\-

It turns out that ||-||G*(G) *S a G*—norm, thus the completion of Ll(G) with 

respect to |H|C»(G) is a C*—algebra. It is called the group C*-algebra and it is 

denoted by G*(G). 

The dual space of C*(G) will be denoted by -B(G). It can be identified 

with space of all coefficient functions from EG. That is, 

B(G) = - K ^ ) | 7T e EG, £,T; €H*} . 
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Let |HIB(G) denote the norm on B(G) induced by C*(G) under the duality 

formula 

(u,f) = f u(x)f(x)dx, u e B(G), f e L\G). 
JG 

With this norm and pointwise operations, B(G) becomes a commutative, reg­

ular, semisimple Banach algebra. It is called the Fourier-Stieltjes algebra of 

G. 

The collection of all coefficient functions of the left regular representation 

is denoted by A(G). That is, 

A(G) = {u{x) = oj{Mth) \g,he L2(G)} 

= {u(x) = f (p(x)g)(y)h(yj dy\g,he L2(G)} 
JG 

= {u(x) = (g*hy(x)\g,heL2(G)}. 

Alternatively, A(G) can be defined as the norm closure of B(G)f]Cc(G) in 

B(G), thus it is also a closed ideal of B(G). With the norm inherited from 

B(G), it becomes a commutative, regular, semisimple Banach algebra whose 

Gelfand spectrum is homeomorphic to G. A(G) is called the Fourier algebra 

of G. 

The left regular representation is also intimately related to the dual space of 

A(G). Let VN(G) denote the von Neumann subalgebra of B(L2(G)) generated 

by either {p(x) | x G G} or {p(f) \ f e L^G)}. Then VN(G) can be identified 

with dual space of A(G) via the formula 

(T,(g*hy) = (Tg\h) 

for T G VN(G) and u(x) = (g * h)\x) e A{G). 

When G is abelian, Ll(G) is a commutative Banach algebra. In this case, 

the Gelfand spectrum of LX(G) can be identified with set of all continuous 
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group homomorphisms from G into the unit circle T of the complex plane; it 

is denoted by G. With pointwise multiplication and the weak star topology 

inherited from L°°(G), G becomes an abelian locally compact group; it is called 

the dual group of G. The Fourier transform 

r ( / ) (a) = / f(x)a(x~1)dx, aeG, 
JG 

embeds Ll(G) into Co(G). The image of LX(G) is precisely A(G) and the 

Fourier transform is an isometric isomorphism. For more information about 

Fourier analysis on abelian groups, we refer the reader to [66]. 

The Fourier and Fourier-Stieltjes algebras are two of the central objects 

in modern abstract harmonic analysis. The definition for these algebras are 

due to Eymard in [22]. For a comprehensive journey into abstract harmonic 

analysis, we refer the reader to Hewitt and Ross [37]; for a more friendly 

introduction, see Folland [24]. 

2.5 The Projective Tensor Product 

Let X and Y be Banach space and let X<S>Y be their algebraic tensor product. 

The projective tensor product norm on X <g> Y is defined by 

\\u\\v = inf {£™=1 \\xi\\x WyiWy \u = T^^XiftyuXi G X,yt e Y} . 

The completion of X ® Y with respect to U'Ĥ  is called the projective tensor 

product of X and Y, it is denoted by X®Y. 

The projective tensor product has many attractive properties. For instance, 

it is the largest cross norm, i.e. a norm satisfying ||aj ® y\\ = \\x\\x \\y\\Y , on 

X®Y. When A and B are Banach algebras, the natural multiplication induced 

by 

(2.6) ai (8> 6i « a 2 ® 62 = 01^2 <2)&i&2, 
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turns A®B into a Banach algebra. 

One of the most useful features of this norm is the following theorem, see 

[69, Theorem 2.9]. 

Theorem 2.2. Let T : X xY —>• Z be a bounded bilinear mapping. Then there 

exists a unique linear operator T : X®Y —»• Z satisfying T(x ® y) = T(x, y) 

for every x € X,y EY. Moreover, \\T\\ = 

Our interest in the projective tensor product arises from the following ex­

ample. 

Example 2.3. Let G be a locally compact group and let A be a Banach 

algebra. The Bochner-Lebesgue space Ll{G,A) is the Banach space of all 

equivalence classes of Bochner integrable functions / : G —> A, with the norm 

JG 
x)\\Adx. 

'G 

The convolution product given by (2.2) still makes sense on LX(G, ̂ 4) and 

turns it into a Banach algebra. 

The map 

/ ® a H - + / ( > 

induces an isometric isomorphism from ^(G^A onto LX(G, ̂ 4). Moreover, 

if ^(G^A is equipped with the convolution product and L1(G)§)A has the 

multiplication induced from (2.6), then this map is also an algebraic isomor­

phism. 

For more information about tensor products in Banach spaces or the Lebesgue-

Bochner space Ll(G,A), we refer the reader to the book [69]. 
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Chapter 3 

Dunford-Pettis Operators on 

the Group Algebra 

3.1 Introduction 

Each of the classical functions spaces defined in Section 2.3 are intimately 

related to the convolution product. It is shown by Dunkl and Ramirez in 

[18] that WAP(G) is precisely the set of all functions g G L°°(G) for which 

the map />—>/* g from Ll{G) into L°°(G) is a weakly compact operator. 

Similarly, AP(G) is the collection of all functions g G WAP(G) for which the 

map / i—» / * g from LX{G) into L°°(G) is actually a compact operator. Also, 

it follows from the Cohen Factorization Theorem that LUC(G) = {/ * g | / € 

L\G) and g G L°°(G)}. 

In section 3.2, we will use the notion of a Dunford-Pettis operator and the 

convolution product to introduce a new function space DP(G) related to a 

locally compact group G. Closely related to this space is the class of uniformly 

measurable functions, which was introduced by Crombez and Govaerts in [9]. 
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Definition 3.1. Let U be a measurable subset of G and let il = (C/j)j=i be 

a measurable partition of U. A function on U is called an it-step function if 

h is constant on each Uj. The set of all il-step functions will be denoted by 

Step (il). 

Definition 3.2. A function g € L°°(G) is called uniformly measurable if for 

each e > 0 and each compact K of G, there exists a measurable partition 

8. = (Kj)'j=1 of if such that to each x G G, there corresponds a function 

gx € Step (£) with JK \g(a~lx) — gx{a)\ da < e. The space of all uniformly-

measurable function will be denoted by UM{G). 

In their paper [9], Crombez and Govaerts showed that UM(G) is al­

ways a Banach space. We will demonstrate that this space is actually a 

C*-subalgebra of L°°(G). 

In section 3.3, we will use Dunford-Pettis operators in conjunction with 

the Dunford-Pettis property to provide new, less measure theoretic, proofs of 

several nice theorems found in [9] for a first countable group. 

3.2 Convolution Maps from Ll(G) into L°°{G) 

As we mentioned earlier, the convolution operation can be used to identify 

various important function spaces related to a locally compact group from a 

functional analytic viewpoint. 

Definition 3.3. Let G be a locally compact group. Let DP(G) denote the 

set of all g e L°°(G) such that the map f t-+ f * g from Ll(G) to L°°(G) is a 

Dunford-Pettis operator. 

Equivalently, a function g 6 L°°(G) lies inside DP(G) if and only if /„ * g 

converges uniformly to zero whenever fn is a weakly null sequence in LX(G). 
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Proposition 3.4. Let G be a locally compact group. 

(%) DP(G) is a norm closed subspace of Lco(G). 

(ii) Ifg G DP{G) and z e G, then Lzg and Rzg are also in DP(G). 

(Hi) Ifge DP(G), then g e DP(G). 

(iv) The constant functions are inside DP(G). 

Proof, (i) Since the convolution product is bilinear, we see that DP(G) is a 

linear subspace of L°°(G). Suppose that gn is a sequence in DP(G) which 

converges uniformly to function g G L°°(G). We must show that g G DP(G). 

To this end, let /„ be any weakly null sequence in L1(G). A simple application 

of the Banach-Steinhaus theorem shows that the /n 's are uniformly bounded. 

That is, there exists an M > 0 such that \\fn\\i < M for every n. Let e > 0 

be arbitrary and choose no so that \\gno — gW^ < e/2M. Since gno G DP(G), 

there is an N G N such that n> N implies that \\fn * <7n0|loo < e /2- Thus for 

n > N we have 

H / n * 0 l L = l l / n * ( 0 - 0 n o + 0 n o ) l l o o 

< l l / n* (p -^no) l loo + ll/n*^nolloo 

< | |/n|li \\9-9n0\L+e/2 

< £. 

(ii) Let /„ a weakly null sequence of Ll(G). Notice that the sequences Lzfn 

and A(z)Rzfn are also weakly null in L1(G). Thus, it follows from equation 

(2.4) that 

ll/n * (^z^)lloo = \\Rz(fn * ^ I L ~+ 0, as U -»• OO. 

Similarly, it follows from equation (2.5) that 

ll/n * (Lzg)\L = \\A(z)(RJn) * s L - 0, as n - oo. 

17 



Hence, DP(G) is translation invariant. 

(iii) Let /„ be a weakly null sequence of ^(G). Note that its conjugate 

sequence fn is also weakly null in LX(G). Therefore, we have 

| | /n*0 | fn*9 0, a sn -> oo. 

Thus, DP(G) is a conjugate closed subspace of L°°(G). 

(iv) It will suffice to show that the constant function XG lies inside DP(G). 

Again, let fn be a weakly null sequence in LX{G). Then for any x G G, we have 

fn*XG(x)= / fn(y)XG(y'1x)dy = / fn(y)dy=(XG,fn)-
JG JG 

Thus, we have 

ll/n*XG||oo = \(XG,fn)\ - • 0, as n -»• cx>. 

D 

This space is actually quite large. Since L1(G) has the Dunford-Pettis 

property, we can see that WAP(G) C DP(G). When G is discrete, we know 

that ^(G) has the Schur property. In this case, we have DP(G) = £°°(G). 

The following example is taken from [9]. It demonstrates that there can be 

continuous and bounded functions which fail to lie inside DP(G). 

Example 3.5. Consider the additive group R. Define g G C(R) C L°° 

by git + 2irm) = eimt for 0 < t < 2ir, m € Z. Conceptually, g is winding 

around the unit circle m times on the interval [m,m + 1]. We will show that 

the convolution operator Tg : L
J(R) —> L°°(R) is not completely continuous. 

For each n e N set fn(t) = eintX[o,27r](t). Then each fn e LX(R) with 

| |/n | | i = 2TT. Moreover, fn ->• 0 weakly in L^R). Indeed, let /i G L°°(R) be 

arbitrary and set k = /IX[O,2TT] • By viewing A; as a bounded continuous function 
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on the unit circle T, its Fourier transform k lies inside Co(Z) by the Riemann-

Lebesgue Lemma. Thus, we have 

[ fnit)k{t)dt = f eintk(t)dt = Jfe(-n) ->• 0. 
JR JO 

To finish, let xn = 2n(n + 1). For 0 < t < 2n, xn - t = (2ir - t) + 2TTU. 

Thus for 0 < t < 2TT we have g(xn — t) = e1™^-^; hence this holds almost 

everywhere on the interval [0,27r]. Consequently, 

J
/-27T 

f eintein(2*-t)dx = 2 ^ e 2 « n _ 
0 

This shows that Tg{fn) — fn* g G C(M) does not converge uniformly to zero. 

As a result, we see that CB(R) <£ DP(R). 

We will now show that the space UM(G) is always a commutative C*—algebra. 

First, we will need the following lemma. 

Lemma 3.6. Let g be a uniformly measurable function. For each x G G, the 

step function gx from Definition 3.2 can be taken such that Hfl̂ Ĥ , < 2 {{gW^ • 

Proof. Let e > 0 and let K be a compact subset of G. Choose a measur­

able partition ^ = (jf£j)"=1 of K which satisfies Definition 3.2. Let x G G 

be arbitrary and choose a function gx = T,\JXKJ £ Step (£) such that 

SK b( a~ l a0 _ 9x(a)\da < e. 

For each j such that |Aj| > 2 WgW^, we have 

IblU < b(a-^)-^(a)| 

for almost all a G Kj. It follows that 

/ \g(a~lx)\da< IMITO da < / \g(a^x) - gx(a)\ da. 
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To finish, set 

U , i f | A , . | < 2 i m i 0 O , 

0, otherwise, 

for each j . Now take the function hx = YifijXKj € Step (8). D 

Proposition 3.7. Let G be any locally compact group. Then UM(G) is a 

C*—algebra. 

Proof. It was shown in [9] that UM{G) is a Banach space. Based on Definition 

3.2, it is trivial to see that UM.(G) is conjugate closed. Thus, we only need 

to show that UM.(G) is closed under multiplication. 

Let / , g e UM(G) be nonzero, e > 0, and let K be a compact subset of G. 

For Sf = e/(41151 |oo), there exists a measurable partition 51 = {̂ 4j} of K such 

that for each x G G, there is a function fx G Step 21 with 

L \f(a 1x) - fx(a)\ da<ef. 
'K 

Similarly, for eg = e/(2||/||00), there exists a measurable partition 93 = {£??} 

of K such that for each x € G, there is a function gx € Step 23 with 

/ Igia^x) - gx(a)\ da<eg. 
JK 

Apply Lemma 3.6 to ensure that \\gx\\oo < 2| 

Combine 21 and 23 to get a new partition € — {Ai f)Bj}. Then for any 

x £ G we may take hx = fxgx € Step <£.. It follows that, 
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/ \f(a 1x)g(a lx) - fx(a)gx(a)\ da 
JK 

< I \f(a'1x)g(a'1x) - f(a~1x)gx(a)\ + \f(a~1x)gx(a) - fx(a)gx(a)\ da 
JK 

= / \f{a-lx)\\g{a~lx) - gx(a)\ + \gx(a)\\f(aTlx) - fx(a)\ da 
JK 

< ll/lloo / \g{a~lx) - gx(a)\ da + y ^ / \f{a~lx) - fx(a)\ da 
JK JK 

< eflll/Hoo+e/||^x||oo 

< e. 

• 

Amongst other things, Crombez and Govaerts were able to show that for 

metrizable groups, DP(G) is the same space as UM(G). This allows us to use 

the tools from measure theory to gain some insight on the algebraic structure 

oiDP(G). 

Corollary 3.8. Let G be a metrizable locally compact group. Then DP(G) is 

a translation invariant C*'—subalgebra of L°°(G). 

3.3 Multiplier Convergence in Ll(G) 

In this section, G is always assumed to be first countable. This will allow us 

to use properties of the space DP(G) to provide a new more direct proof of a 

very nice theorem found in [9]. Our proof takes a functional analytic approach. 

Proposition 3.9. CQ(G) is a subspace of DP(G). 

Proof. It will suffice to show that C00(G) C DP(G). Let g £ C00(G) and 

suppose that g £ DP(G). Then there exists a weakly null sequence fn in 
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Ll(G) such that /„ * g does not converge uniformly to zero. By passing to a 

subsequence if necessary, we can find an e > 0 and a sequence (xn) in G such 

that \fn * g(xn)\ > e, for each n e N. 

First suppose that the sequence xn has a cluster point. Again, by passing 

to a subsequence if necessary, we may further assume that xn —• x in G. 

However, we also know that 

\fn*g{Xn)\ = / fn(y)g(y lxn)dy 
JG >G 

= | ( / « > L x ^ ) | 

^ \(fn,Lx-ig-Lx-ig)\ + \(fn,Lx-ig)\ 

^ l l / J l l l A ^ - ^x-i^lloo + \(fn,Lx-ig)\ . 

Which converges to zero since fn —> 0 weakly in Z/^G), and g is uniformly 

continuous. Thus, our sequence cannot have a cluster point. 

Now suppose that xn has no cluster point. Since the support of g is 

compact, for any fixed y G G we must have that y~xxn $. supp (g) even­

tually. In other words, the sequence of functions Lx-%g converges point-

wise to 0. Since HL^-i^loo = Halloo, w e see that sup^^ HZ -̂î Hoo is finite. 

Whence, Lx-\g —> 0 weakly in Co(G), see [19, Theorem 4.10.2]. Moreover, 

it is well known that Co(G) has the DPP, see [19, Theorem 9.4.4], so that 

\fn * g(%n)\ — \(fn,Lx-ig)\ —> 0 contradicting our assumption. • 

Corollary 3.10. Let G be a first countable locally compact group and let fn be 

a weakly null sequence in Ll{G). Then for any g E L1 (G) we have \\fn*g\\i —• 0 

inL\G). 

Proof. Since CC(G) is dense in L^G), we may assume that g e CC(G) C 

DP{G). Let e > 0 be arbitrary. It is not hard to see that fn * g is also weakly 
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null in Ll(G). Thus, we may apply [19, Proposition 4.21.1] to get a compact 

subset K of G such that JG,K \fn * g(x)\dx < e. Thus we have ||/n * g\\i = 

IG\K \fn*g(x)\dx+JK \fn*g(x)\dx < |-K1ll/n*0||oo+e- Lastly, since g € DP(G), 

we have ||/n * g\\oo —> 0. From which it follows that \\fn * <?||i —> 0. D 

Corollary 3.11. Let G be a first countable locally compact group. Then 

LUC(G) C DP(G). 

Proof. Recall that LUC(G) = L^G) * L°°(G). Thus, for any weakly null se­

quence (/„) in L1(G) and u = f*g e LUC(G), then we have ||/„ * (/ * ^ H ^ = 

||(/n*/)*^IL<||/n*/|lilML-»0. • 

Remark 3.12. By using an intense measure theoretic argument, Crombez and 

Govaerts have proved Corollary 3.10 for any locally compact group in [9]. 

Remark 3.13. Convolution operators relating to LP(G) have also attracted the 

attention of researchers in recent years, see for instance [15]. At first glance, 

it might be interesting to investigate when convolution map into other LP 

spaces is a Dunford-Pettis operator. Let 1 < p < oo. Since LP(G) is reflexive, 

each continuous linear operator from L1(G) into LP{G) is weakly compact. 

Furthermore, since L?-{G) has the Dunford-Pettis property, each continuous 

linear operator must then be a Dunford-Pettis operator. Consequently, for 

any weakly null sequence /„ in JC1(G) and h e LP{G), we have ||/„ * h\\p —* 0. 

When p = 1, Corollary 3.10 implies that each convolution operator from i1(G) 

into Li^f^G) is also a Dunford-Pettis operator. As a result, there is nothing to 

investigate in these settings. 
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Chapter 4 

Dunford-Pettis operators on the 

Fourier Algebra 

When G is abelian, the adjoint of the Fourier transform allows us to identify 

L°°(G) with VN(G). By taking a functional analytic approach to the sub-

spaces of L°°(G) defined in Section 2.3, researchers have been able to develop 

their non-commutative analogues. 

Let AP(G) denote the set of operators T € VN(G) such that the linear 

operator TA : u t-+ U • T from A(G) to VN(G) is compact. Similarly, let 

WAP(G) denote the set of operators T £ VN(G) such that the linear u (->• u-T 

from A(G) to VN(G) is weakly compact. Lastly, let UCB(G) denote the norm 

closure of the linear span of A(G)-VN(G) = {u-T : u G A(G),T € VN(G)} in 

VN(G). Each of these spaces are norm closed self adjoint subspaces of VN(G). 

It is known that UCB(G) is always a C*—algebra, see [31, 43]. However, it 

remains unknown precisely when AP(G) and WAP(G) are C*—algebras. 

For an abelian group G, AP(G) and WAP(G) are the usual C* —algebras 

of almost periodic and weakly almost periodic functions on the dual group 

G. Meanwhile, UCB(G) can be identified with the left uniformly continuous 
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functions on G. 

For more information on these spaces, we refer the reader to [3, 7, 8, 18, 

31, 32, 39, 43, 46, 47]. 

4.1 Actions from A(G) into VN(G) 

In this section, we will look at the natural analogue of DP(G) as a sub-

space of VN(G). Our main goal is to investigate how it relates to other non-

commutative function spaces. 

Definition 4.1. Let G be any locally compact group. By DP(G) we will 

denote the set of all T G VN(G) such that the map « H U-T from A{G) into 

VN(G) is a Dunford-Pettis operator. 

As we saw with DP(G), the space DP(G) is also a Banach space. 

Proposition 4.2. Let G be a locally compact group. Then DP(G) is a closed 

subspace ofVN(G). 

Proof. It is trivial to see that DP(G) is a linear subspace of VN(G). Suppose 

Tn G DP(G) is a sequence which converges to an operator T G VN(G). Let 

un be a weakly null sequence in A(G). It follows from the Banach-Steinhaus 

theorem that the un's are uniformly bounded. Let M G N be such that 

\\un\\ < M for each n € N. Let e > 0 and choose no so that ||Tno - T\\ < 

e/2M. Since Tno e DP(G), there is an JV G N such that n > N implies that 
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\\un -Tno\\ < e/2. Thus for n > N we have 

\\un-T\\ = ||u„-(r-Tno+rno)|| 

< | | u n - ( T - T n o ) | | + | K - r n o | | 

< IKH ||(T-Tno)||+e/2 

< e. 

It now follows that T G DP(G). 

n 

Proposition 4.3. Let G be a locally compact group. Then DP(G) is a topo-

logically invariant and topological^ left introverted subspace of VN(G). In 

particular, DP(G)* is a Banach algebra when it is equipped with the Arens 

product. 

Proof. Suppose that T G DP(G), u £ A(G) and vn is a weakly null sequence 

in4(G). Then\\vn-(u-T)\\ = \\u-(vn-T)\\ < ||u|| \\vn-T\\ -* 0. Thus, DP(G) 

is topologically invariant. 

Now let 4> G DP(G)* and let T G DP(G). We must show that </>LT G 

DP{G). We remind the reader that <f>LT G VN(G) is defined by (</>LT,u) = 

{<f>,u-T). 

Suppose un —• 0 weakly in A(G), and let v G A(G) have norm one. Then 

|<u„-^2>>| = \(<f>LT,unv)\ = \(<i>,unvT)\ < \\<j>\\ \\v\\ \\un-T\\ = \\<j>\\ \\un-T\\. 

Whence, \\un • <j>LT\\ < \\<j>\\ \\un • T\\ -»• 0 for each n G N. Thus, <j>LT G 

DP(G). D 

Remark 4.4. Since A(G) is a closed ideal of B(G), the previous proof can be 

easily modified to show that DP(G) is a Banach B(G)—bimodule. 

We will now take a brief look at how DP(G) compares to some of the non-

commutative function spaces. Recall that a locally compact group is said to be 
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a Moore group whenever every irreducible continuous unitary representation 

of G is finite dimensional. 

Proposition 4.5. For any locally compact group G we have AP(G) C DP(G). 

Moreover, when every irreducible unitary representation of G is finite dimen­

sional, we have WAP(G) C DP(G). 

Proof. Recall that any compact operator is a Dunford-Pettis operator. This 

yields that AP(G) C DP(G) instantly. 

It follows from a theorem of Lau-Ulger [47] and Bunce [5] that G is a 

Moore group if and only if A(G) has the Dunford-Pettis property. Thus, it 

follows that every weakly compact operator from A(G) is a Dunford-Pettis 

operator. • 

It was shown in [47] that G is compact if and only A(G) has the Schur 

property. This yields the following proposition. 

Proposition 4.6. Suppose G is a compact group, then DP(G) = VN(G). 

Proof. When G is compact, A(G) has the Schur property. Thus, every contin­

uous operator from A(G) into any Banach space is a Dunford-Pettis operator. 

In particular, we have DP(G) = VN(G). D 

Proposition 4.7. Let G be a locally compact group. Then C$(G) C DP(G) 

Proof. Recall that Cg(G) is generated by the left translation operators on 

L2(G) by elements of G. Thus, it will suffice to show that p(x) G DP(G) for 

each x G G. To this end, let un be a weakly null sequence in A(G) and let 

x G G be arbitrary. Notice that u • p(x) = (p(x),u)p(x) for each u G A(G). 

Thus, we have ||wn-p(z)|| = ||(/£>(a:),Un)p(aOII = \(p(x),un}\ \\p(x)\\ -> 0. Hence, 

p(x) G DP(G). • 
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The following lemma will be useful for us to show that the reduced group 

C*-algebra lies inside DP(G). 

Lemma 4.8. CC(G) * CC(G) is norm dense in A(G). 

Proof. Let f,g G L2(G) and let fn,gn £ CC(G) be such that that /„ -+ / and 

gn —> g in L2(G). Since for any u G A(G) we have ||M|U(G) = inf ||£||2|M|2, 

where the infimum is taken of all £,77 G L2(G) such that « = £ * 77. Thus it 

follows t h a t | | / *g- fn * 0n |U(G) < | | / * {g ~ SOIU(G) + | | ( / ~ fn) * 0n|U(G) < 

imi2||ff-^n||2+||/-/«||2W2-^0. • 

Proposition 4.9. Le£ G be a locally compact group. Then C*(G) C DP{G). 

Proof. Since p(Cc(G)) is dense in C*(G), it will suffice to show that p(Cc(G)) C 

DP(G). Let f £ CC(G) and suppose that wn G -4(G) is a weakly null sequence. 

Since any weakly convergent sequence is norm bounded, we may assume that 

\\un\\ < 1 for each n G N. Also, since the left translation operators lie inside 

VN(G), we see that un —> 0 pointwise. We will now show that \\un -p(f)\\ —• 0. 

Let e > 0. By viewing / as an element of M(G), we may apply Egoroff's 

theorem to obtain a measurable set E such that fE \f\d\ < e/2 and un —>• 0 

uniformly on G\E. Now choose N so that |zxn(a;)| < e/(2||/||1) for each n> N 

and each x ^ E. Then for n > N we have 

I l ^ n - P ( / ) I I = SUp \{un- p(f),v)\= SUp \{p(f),Unv)\ 
II«II<1 I M I < 1 

= sup 
II«II<1 /

/itnu dA < sup / \funv\ dX 
\Moo<lJ 

[\fun\d\= f \un\\f\d\+ [ \un\\f\d\ 
J JE JG\E IG\E 

< e/2 + e/2 

= e. 

• 
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4.2 The Ideal AK(G) 

Examining the structure of certain ideals of the Fourier algebra can help to 

achieve a better understanding of geometric properties of some subspaces of 

VN(G). This was demonstrated by Belanger and Forrest in [3]. In this sec­

tion, we will look at various topologies on A(G) that are related to geometric 

properties relating to the following class of ideas. 

Definition 4.10. Let G b e a locally compact group and let K be a closed 

subset of G. We let AK(G) denote the subspace of A(G) consisting of all 

functions whose support lies inside K. That is AK(G) = {U E A(G) | supp u C 

K}. 

Since the multiplication of two elements of A(G) is simply their pointwise 

product, it is trivial to see that AK(G) is an ideal of A(G). For our pur­

poses, we are only interested when K is a compact subset of G with nonempty 

interior. Geometric properties of AK(G) in this situation has already been 

initiated by Granirer and Leinert in [34]. By viewing AK{G) as a subset of 

B(G) = C*(G)*, we can identify AK(G) with the dual space of the quotient 

space C*(G)/AK(G)±, where AK(G)± = {<j> E C*{G) \ (</>,«) = 0 for all u e 

AK(G)}. For more general results concerning various topologies on the Fourier-

Stieltjes algebra we refer the reader to [14]. 

Before we begin our inquest about the geometric properties of AK(G), we 

will first identify the Gelfand spectrum of these ideals. 

Lemma 4.11. Let B be a commutative Banach algebra and let A be a closed 

ideal of B. Then the Gelfand spectrum of A is the set T,A = {<J>\A '• 4> € 

S B and 4> <£ A-1}. 
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Proof. Clearly, {<J)\A : 0 € £# and <f> £ AL} C £4. To show that these are 

all of them, suppose 0 6 S^. Since 0 is nonzero, there is an ao G i such 

that (0, a0) = 1. For b E B, define (0,6) := (0, a06), note that this is well 

defined since A is an ideal in B. Since 0 is multiplicative, linear and B is 

commutative, we have 0 G Ss- We will include the details for the sake of 

completeness; let b,c € B and A e C, then (0, A6 + c) = (0, a0(A6 + c)) = 

(0, Aao6)+(0,aoc) = A(0,6)+(0,c), and (0,6c) = (<f>,a0bc) = (0,ao6c)(0,ao) = 

(0, ao&aoc) = (0, ao6)(0, aoc) = (0,6)(0, c). Lastly, for each a e A, we have 

have (0, a) := (0,aoo) = (0, ao)(0, a) = (0, a). Thus, 0 is an extension of 0 

which lies inside Eg.. • 

Proposition 4.12. Let K Q G be closed. Then the Gelfand spectrum of 

AK(G) is homeomorphic to the interior of K. 

Proof. It was shown by Eymard in [22] that the map, x i—> 5X, is a homeomor-

phism from G onto £A(G)- Applying the previous lemma to the ideal AK (G) 

of A(G), we see that IUK(G) = {Xa : Xa ^ (A&rCG))1}. To finish the proof, we 

will show that these are precisely the characters induced by elements of the 

interior of K. 

Let a € int K, and let U C K be a neighborhood of a. It now follows from 

[22, Lemma 3.2] that we can find an element u E AK(G) such that u(a) — 1. 

In particular, Xa(u) = 1^0. Thus, Xa £ ^AK(G) for each a € int if. 

Now suppose that a £ int if, that there is a net xa € Kc such that xa —> a. 

Since each u e AK(G) is continuous, we have w(xa) —• u(a). Thus, xa(w) = 

w(a) = 0 for every u 6 AK(G). Hence, Xa & ^AK(G) for each a 0 int K. • 

We now turn our attention to a geometric property of AK(G) which would 

have nice applications to DP(G). When G is an abelian, compact, or discrete 

group, then it can be shown that AK(G) has the Schur property whenever K 
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is compact. We conjecture that this should be the case for all locally compact 

groups. However, we have not yet succeeded in finding a proof. The rest of this 

section will take steps towards a possible technique for attacking this problem. 

The following proposition shows the link between the ideals AK(G) and 

different topologies on A(G). 

Proposition 4.13. Let G be a locally compact group. The following are equiv­

alent: 

1. For each compact subset K of G. The ideal AK(G) has the Schur prop­

erty. 

2. For each weakly null sequence un in A(G) and for each u e A(G) we 

have \\uun\\ —> 0. 

Proof. Note that it follows from the Hahn-Banach extension theorem that the 

a(AK(G),AK(G)*) and the o{AK{G),A{G)*) topologies coincide. 

(1) =$• (2). Suppose that there exists a weakly null sequence un in A(G) 

and an element v £ A(G) for which vun does not converge to 0. Then there 

exists an e > 0 such \\vun\\ > e frequently. By passing to a subsequence if 

necessary, we may assume that \\vun\\ > e for each n EN. 

Let v0 e A(G)f]Cc(G) be such that ||v — v0|| < e/(2sup{||wn|| : n G 

N}). This can be done since weakly null sequences are norm bounded and 

A(G)f]Cc(G) is dense in A(G). Let K = supp VQ. Then the sequence unvo 

is weakly null inside AK(G). Thus, ||?/ni>o|| —• 0, as n —> oo. Thus, we may 
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choose n0 E N such that ||itnVo|| < e/2. This leads to 

\\unv\\ = \\unv - unv0 + unv0\\ 

< \\unv - unv0\\ + \\unv0\\ 

< ||Mn||||u-v0|| + ||tx„t;o|| 

< £. 

However, this contradicts our earlier assumption. 

(2) => (1). Suppose that there is a compact subset K of G for which AK(G) 

does not have the Schur property. Then we can find a weakly null sequence 

Un G AK{G) such that ||un|| = 1 for each n. It follows from [22, Lemma 3.2] 

that there exists an element u e A(G) such that u(x) = 1 for every x G K. In 

particular, we have unu = un. Thus, (2) cannot hold. • 

Proposition 4.14. Let un be a weakly null sequence of positive definite func­

tions in A(G). Then for any v € A{G) we have \\vun\\ —* 0. 

Proof. It is well known that any continuous positive definite function u on 

G can be written as u{x) = (7r(a:)£|£) for some unitary representation 7r and 

some £ G H^, see [17, Theorem 13.4.5]. Then for any x G K we have \u(x)\ = 

\{K{X)£\£)\ < ||£||2 = {i\i) — u(e). Thus, in this situation, we have ||wn||oo = 

un{e) = (Se,un) —> 0. The result now follows from [6, Proposition 5.1]. • 

Although the positive definite functions span a dense subspace of A(G), 

we are unable to use the previous proposition to pass to the whole space. A 

more promising direction is to exploit the geometric properties of AK(G). 

Our goal is to eventually apply the following theorem, which can be found 

in [16]. 
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Theorem 4.15. Let X be a Banach space, then X* has the Schur property if 

and only if X has the Dunford-Pettis property and does not contain a copy of 

e1. 

Proposition 4.16. Let K be a compact subset of G. C*(G)/(AK)± does not 

contain a copy of £i(N). 

Proof It will suffice to show that each weak*-compact convex subset of AK(G) 

is the norm-closed convex hull of its extreme points, see [16, pg. 215]. 

It is shown in [34] that the weak* topology coincides with the norm topol­

ogy on the unit sphere of AK(G). Thus, we may apply a result of Namioka, 

[54, Proposition 4.11], to see that each norm-closed, bounded, convex subset of 

AK(G) is the norm-closed convex hull of its extreme points. To finish, note that 

each weak*-compact subset of AK{G) must also be closed and bounded. • 

To summarize, we have proved the following. 

Proposition 4.17. Let G a locally compact group and let K be a compact 

subset ofG. Then AK(G) has the Schur property if and only it has the Dunford-

Pettis property. 

The Dunford-Pettis property is a much weaker condition then the Schur 

property. We hope that in the future, this progress will help to show that the 

equivalent condition for 4.13 are true. If this is indeed true, the technique used 

in Proposition 4.20 would carry over verbatim to all locally compact groups. 

4.3 Discrete Groups 

In this section, we take a brief look at the setting of discrete groups. When G 

has the discrete topology, each compact subset of G consists of finitely many 

elements. This bring us to the following lemma. 
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Lemma 4.18. Let K be a compact subset of G. Let un be a sequence in 

AK(G). Then the following are equivalent: 

(i) un —> 0 weakly, 

(n) IKIloo -* 0, 

(Hi) |K|U(G) - ^ 0 . 

Proof. Since G is discrete, AK(G) is finite dimensional. D 

Corollary 4.19. Let G be a discrete group and suppose that un —> u weakly 

in A(G). Then for any v G A(G) we have unv —• uv. 

Proof. This follow directly from the previous lemma and Proposition 4.13. • 

Applying this to DP(G) yields the following. 

Proposition 4.20. Let G be discrete group. Then UCB(G) C DP(G). 

Proof. Let u G A(G),T G VN(G), and let un be a weakly null sequence in 

A(G). Then \{u • T,un)\ = \(T,uun)\ < \\T\\\\uun\\ -»• 0. This shows that 

u • T G DP(G). Since UCB(G) is generated by operators of this form and 

£>P(G) is a Banach space, it follows that UCB(G) C DP(G). • 

By using the Fourier transform and the results from [9], we have the fol­

lowing result for discrete abelian groups. 

Proposition 4.21. Suppose that G is a discrete abelian group, then DP(G) = 

VN{G). 

Proof. It was shown in [9] that DP(G) = L°°(G) for all compact groups. In 

our situation, the adjoint of the Fourier transform allows us to identify DP(G) 

with the function space as defined in 3.3 on the dual group G of G. It is well 

known that G is compact whenever G is discrete. • 
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The following proposition should be helpful for determining when DP(G) 

is a proper subspace of VN(G). 

Proposition 4.22. Let G be any locally compact group. Then DP(G) = 

VN(G) if and only if whenever un is a weakly null sequence in A(G) and vn 

is any sequence on the unit sphere of A(G) we have unvn —> 0 weakly. 

Proof. (=>•) Let un —• 0 weakly in A(G) and let vn E A(G) all have norm one. 

Then for each T € VN{G) we have 

\(T,unvn)\ = \(un • T,vn)\ < | K • T| | |H| = | K • T|| -+ 0. 

(<=) Suppose that there is an element T e VN(G) which is not in DP(G). 

Then there is a weakly null sequence un such that | K • T|| does not converge 

to zero. Thus, there is a sequence vn in the unit sphere of A(G) such that 

(T, unvn) = {un • T, vn) does not converge to zero. D 
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Chapter 5 

Vector-Valued Segal Algebras 

5.1 Segal Algebras 

As we mentioned earlier, the Lebesgue space Ll(G) and the Fourier algebra 

A(G) of a locally compact group are the central objects of study in abstract 

harmonic analysis. The intersection of these two spaces Ll(G) n A(G), with 

the norm |||w||| = Wu^ + IMI^/Q) , is called the Fourier-Lebesgue algebra of G 

and it is denoted by JCA(G). It turns out that CA(G) is a Banach algebra when 

it is equipped with either pointwise multiplication or convolution. Moveover, 

is a dense left ideal in both Ll(G) and A(G). This space was intensely studied 

by Lau and Ghahramani in [28]. 

The Fourier-Lebesgue algebra is an important example of two related con­

cepts. The first was introduced by Reiter in [63]. 

A dense subspace S1(G) of ^(G) is said to be a Segal algebra if it satisfies 

following conditions: 
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(SAi) S1(G) is a Banach space under some norm ||-||s, and for each 

s e 5X(G) we have: 

Nls> Iklli! 
(SA2) S1(G) is left translation invariant and the map x 1—• Lxs from 

G into S1(G) is continuous for each s E S1(G); 

(SA3) For each s e S1{G) and x e G we have 

II T oil — Hell ll-^x^Hs — 1MI5 • 

The second one, which is a generalization of Reiter's work, is due to Burnham 

[4]-

An abstract Segal algebra B with respect to a Banach algebra A is a dense 

left ideal that satisfies the following conditions: 

(ASAi) B is a Banach space with respect to a norm ||-||B; 

(ASA2) 3 C > 0 such that for each b € B we have 

l |6|U<C||6| |B; 

(AS As) 3 M > 0 such that for each a, b G B we have 

We will say that S is a contractive abstract Segal algebra with respect to A 

when we can take C < 1 and M < 1. 

Reiter proved that every Segal algebra of LX(G) is an abstract Segal algebra 

with respect to ^(G). However, as the next example illustrates, the converse 

is not true. 

Example 5.1. Consider B = L^R) n L°°(M) with the norm ||-||B := W^ + 

||-1|oo- Then B is an abstract Segal algebra of LX(M), however it is not a Segal 

algebra of L^M). 
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Proof. Since CC(R) C B, it follows that B is a dense in L^M). Let /„ be a 

Cauchy sequence in B, then fn is Cauchy in both L^R) and L°°(R). Thus there 

exists / e L\R) and g e L°°(R) such that ||/n - / ^ - • 0 and ||/n - g]^ -» 0. 

Consequently, there is a subsequence /„fc of fn such that /„fc —» / pointwise 

almost everywhere. This means that / = g almost everywhere. As a result, 

we have f e B and ||/„ - f\\B -> 0. 

Since L^R) * L°°(R) = LUC(R) C L°°(R), it easily seen that S is a ideal 

in L1(R). Lastly, we must show that B is a L1(R)-module. To this end, let 

/ e L2(R) and g e B. Then 

11/ * 9\\B = 11/ * Sill + 11/ * fflL < H/lli IMIi + ll/Hi IML = ll/lli IHIB • 

Thus B is an abstract Segal algebra of a LX(1R). However, there are many 

functions in B which are not left uniformly continuous. As a result (SA2) 

cannot hold for B. • 

Segal algebras and abstract Segal algebras have been studied by several 

authors including Reiter [63], Burnham [4], Feichtinger [23], Dales and Pandey 

[10], Zhang [75], Ghahramani and Lau [28, 29], Granirer [33], Forrest, Spronk 

and Wood [25], Spronk [70], and many others. 

In this chapter, we will provide a constructive technique for merging two 

abstract Segal algebras. Using the identification of L1(G, A) with L1(G)®A, 

we will also develop the notion of a vector-valued Segal algebra. 

38 



5.2 Tensor products of Abstract Segal Alge­

bras 

In this section, we will investigate the projection tensor product of two abstract 

Segal algebras. These results will be applied in the next section when we 

investigate the notion of a vector-valued Segal algebra. 

Let (B, \\-\\B) and (*B, ||-||<g) be an abstract Segal algebras of A and 21 

respectively. Set CB = snp{\\b\\A : b e B, \\b\\B < 1} and Mg = sup{||a6||B : 

aeA, beB, \\b\\B < 1, ||a||^ < 1}. Define C s and M® similarly. 

We are interested to know when (5®03, IHIgga) can be viewed as a abstract 

algebra of ,4<g)2l. The main problem to overcome is to determine when B<g)*B 

can be embedded into A<8>$L- However, by passing to a quotient space, we can 

avoid this downfall. 

Lemma 5.2. Let X and B be dense subspaces of Banach space Y and A, 

respectively. Then X ®B is dense in Y®A 

Proof. It will suffice to show that Y <g> A C X ® BHy®A. To this end, let 
z = YJi=\ Vi <S) a,i E Y ® A wad let e > 0. Set M = max{||yj||y , \\ai\\A} + 1. 

Now choose Xi G X such that \\xt — yi\\Y < e/(2nM) and fy E B such that 

IK - h\\A < min{l,e/(2nM)}. Then we have 
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^2 Vi ® ai ~ S Xi ® 6v 
i = i i = l 

< 

y®\4 

= 

= 

< 

< 

< 

Ei 
i = l 

Ei 
t = l 

Ei 
i = i 

n 

Ei 
t= i 

Ei 
4=1 

£. 

|l/i®o i-a;<®&i||y§ i / t 

yi®ai-yi®bi+yi®bi-xi® bi\\Y^A 

Vi <8> (a* - hi) + (yi - Xi) <g> bi\\Y§)A 

\Vi\\Y \\(ai - MIL + Ufa - xi)\\Y I N L 

Vi\\Y W(ai ~ MIL + Ufa ~ xi)Wr ( I N L + !) 

a 

Lemma 5.3. The identity map 

/ « . : ( B ® ® > | | - | | B g ! B ) - ( ^ ® S l > | | . | | i 4 8 a ) 

zs a continuous linear map which extends uniquely to a continuous multiplica­

tive map 

$ : £®23 -* A®% with | |$ | | < CBC^. 

Proof. First suppose that « 6 S ® 5 J , then we have 

u 4̂®a 
= inH^2\\yi\\A\\aih:u = Ylyi®ai' Vi€A<k£*\ 

i 
i = i j = l 

< milsjrj\\xi\\A\\bi\\(}i:u = ^2xi®bi, XiGB,biG& 
U=i t = l 

< inf lj2CB\\xi\\BC<B\\bi\\x:u = '*riXi®bi, xt E B, k E <8 
j = i i = l 

CgC® IMI^g® • 
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Thus the identity map 

^:(^®»,|H|Bg58)-^(^®2l)|HUga) 

is a continuous linear map and therefore it extends uniquely to a continuous 

map 

$ : B®<& -»• A®% | |$|| < CBC<&-

Now for each u,v £ B®*&, we have <&(m;) — uv = $(u)$(v). Now suppose 

that u, v € <B<§><8. It follows for Lemma 5.2 that we can find sequences (un) 

and (vn) in # ® 23 such that un ^ u and i>n —> t>. The continuity of $ implies 

that 

$(m;) = $(llmunvn) = lim$(unvn) = lim$(u„)$(ura) = $(u)$(v). 

Thus, <& is multiplicative. • 

Consider Z = $(£c§>23) C A®2L. Then Z is linearly isomorphic to B®*8/Ker(§). 

We will equip Z with the quotient norm inherited from this identification. That 

is, Z is isometrically isomorphic to B^^B/Ker($). Moreover, Z is a subalgebra 

of ,4®2l since $ is multiplicative. 

The following useful theorem, which can be found in [50], will help us to 

show that Z is an abstract Segal algebra with respect to *4®2l. 

Theorem 5.4. Suppose X and Y are normed spaces and T : X —> Y is a 

bounded linear map. Let M be a closed subspace of X such that M C Ker(T) 

and let -K : X —> X/M be the quotient map. Then there is a unique function 

T : X/M —> Y such that T — T OTT, that is, such that the following diagram 

commutes. 

X/M 

41 



Moreover, T is linear and T = \\T\\ • 

For our purposes, we will regularly have X = B<g>*8, Y = A<8>% and 

M = Ker($). 

Lemma 5.5. For each w € A<g>$l. Then the map 

extends to a continuous linear map 

with \\LW\\ < MBM<s HHLgsr 

Proof. Since A <8> 21 is dense in A<S)%i, it will suffice to only consider w = 

YA=I fi ® ai e A ® 21. In this case, the map 
n 

L™ : B x <8 ̂  #®93, (s,b)^^2fiS®aib, 

is a bilinear map. Moreover, we have 

4=1 

\Lw(s,b)\\ 
B®<8 

IS 

] T fiS <g> cub 
»=i 

n 

^ ^2 WfM\B WaM 

< ^M B Ma| | / i | | ^ | | 5 | | B | | a i | | a | | 6 | 

n 

= MBM* |MU&||B£||/«|Ma« 

09 

la-
» = i 

Thus, it is also continuous. By taking the infimum over all possible repre­

sentations of w, we also see that \\LW\\ < MBM<s HHUga-

Now by the universal property of the tensor product, i.e. Theorem 2.2, Lw 

factors uniquely through to a linear map 

Zw : B®<& -* H§<8, 

42 



while preserving the norm. • 

In order for us to show that Z is a abstract Segal algebra of »4<g)2l, it will 

be necessary for us to show that the following diagram commutes: 

B®<& ^~A®% 
Lw Lw 

B ® 2 3 — ^ . A § 2 t 

This is indeed the case. 

Lemma 5.6. For each w G .4(8)21 and u G B®*& we have $>(Lwu) — Lw$(u). 

Proof. First suppose that w G v4<g>2l and u G i3<g>93. Then we have Q(Lwu) = 

$(w • u) = w • u = Lwu = Lw$(u). Now let w G .4<8>2l, u G 5<g>25 and choose 

sequences wn G .A® 21 converging to tu and Mn G £® 93 converging to u. Since 

The $ is continuous, we have 

$(Lwu) = §(lim LWniin) = \im$(LWnun) = \imLWn$(un) = Lw$(u). 

D 

We may now use the notation Lw for both spaces. We are now ready to 

look the associated abstract Segal algebra of *4(g>2l. 

Theorem 5.7. The space (Z, \\-\\z) is an abstract Segal algebra of *4<g>2t. 

Proof. Since $ is a continuous algebra homomorphism, (Z, \\-\\z) is isomet-

rically isomorphic to B®%$/Ker($), thus it is a Banach space. It follows 

directly from Lemma 5.2 that Z is a dense subspace of A®%. Moreover, for 

each w G .4.021 and z £ Z, there exists u G B®*B with z = <&(w). Applying 

Lemma 5.6 yields 

wz = w$(u) = $(wu) G Z. 
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Thus (ASAi) holds. 

Combining Lemma 5.3 with Theorem 5.4 we see that 

is valid for each z € Z. Therefore, (ASA2) holds. 

Similarly, for w G A®% and the map Lw : #<g)93 —> #<g)<B we may apply 

Lemma 5.5 and Theorem 5.4 to conclude that 

\\wz\\z < \\LW\\ \\z\\z < MBMv \\w\\Am \\z\\z . 

D 

5.3 Vector-valued Segal Algebras 

In this section, we will further develop the results of the previous section when 

one of our abstract Segal algebras is a Segal algebra of LX(G). Recall that there 

is an isometric algebraic isomorphism between L1(G, .A) and L1(G)®«4. 

Throughout this section, let S1(G) be a Segal algebra of L1(G) and B a 

contractive, i.e. CB = M& — 1, abstract Segal algebra of A. Let (Z, \\-\\z) 

denote the corresponding abstract Segal algebra of Ll(G,A) with respect to 

the multiplicative contraction $ : SX(G)®B —>• Ll(G,A). 

The following is a natural vector-valued analogue of a Segal algebra for 

L\G,A). 

Definition 5.8. A linear subspace Sl(G,.4) of Ll(G, A) is said to be an 

vector-Segal subspace of Ll(G,A) if it satisfies following conditions. 

(VSA0) S^A) is dense in Ll{G,A); 
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(VSAi) S1(G,A) is a Banach space under some norm ||-||s, and for 

each u G S1(G,A) we have: 

Hli ^ His; 

(VSA2) S1(G,A) is left translation invariant and the map x (->• Lxs 

from G to S1(G,A) is continuous for each s G ^ ( G , *4); 

(VSA3) For each s G S1(G, A) and a; G G we have 

ll^xs||s= | |s | |5; 

(VSA4) S1(G,A) is a Banach left .A-module under the action induced by 

a- f®b = / <g> (ab) 

for / G Z/^G) and a,b e A. 

The following lemmas will help us to show that Z satisfies these axioms. 

Lemma 5.9. For each a G A, the map 

La:S
1(G)®B->S1(G)®B, s®b^s®ab, 

extends to a contractive map from S1(G)<S>B into S1(G)®B. Moreover, the 

following diagram commutes: 

S\G)®B—^— L\G)®A 

La La 

S\G)®B — 5 _ ^ L\G)®A 

and 

\\La\\<\\a\\A. 

Proof. Consider the contractive bilinear map 

La:S\G)x<&^S\G)®B, {s,b)^s®ab, 
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then we have 

\\s ® ab\\sHG)^B = \\s\\s \\ab\\B < \\s\\s \\a\\A \\b\\B . 

Thus, La factors uniquely to a continuous linear map 

La: sm -> sm, 

with ||L0|| < ||a||^. To see that the diagram is commutative, we can use a 

technique similar to that in Lemma 5.6. • 

Lemma 5.10. For each x e G, the map 

Lx :S1{G)®B-> S^G^B, s®b^ (Lxs) <g> b, 

extends to an isometric map 

Lx : S ^ G J S B -> SX(G)®B. 

Moreover, the following diagram commutes. 

S^G^B—^-^L\G)®A 

J-ix L/x 

S\G)®B—*-+L\G)®A 

Proof. Note that the map 

Lx:S\G)xB^S\G)®B, (s,b)^Lxs®b, 

is continuous and bilinear with \\LX\\ < 1. By the universal property of the 

tensor product LX factors uniquely through to a contractive map 

Lx : S\G)®B ^ SKty&B. 

Since for any u G S1(G)®B we have 

\\Lxu\\ < \\u\\ = \\Lx-iLxu\\ < \\Lxu\\, 
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it follows that Lx is an isometry. 

We will now show that Lx<& = $LX. First suppose that u G Si <g> 6, G 

S^G) ® B. Then we have $(Lxu) = LBu = £*$(«). Now let u G S^GjSB, SO 

that we can find a sequence un G S1(G) <g> B converging to u. In this case we 

have 

$(Lxu) - $(limLxun) = \im$(Lxun) = \imLx$(un) = Lx$(u). 

D 

Lemma 5.11. For each u € S1(G)®B the map from G —> S1(G)%B, x i—> Lx« 

is continuous. 

Proof. Fix u = X)"=i si ®bi G ^ ( G ) <g> H. Since the map rr i-+ LxSj from 

G —• ^ ( G ) is continuous for each Sj, we see that the map 

x i-> Lxv from G -»• SX(G)®£ 

is continuous. We are now in a position to prove the general case. Suppose 

u G S1(G)®B is arbitrary. Let xa —> x and let e > 0. Then we can choose a 

v G S1(G) <g> 5 such that ||w - f||5i(G)gB < e/3. Since t ) e 5 ' ( G ) ® f i we can 

find a /? such that for each a > (3 we have ||LXcit; - Lxv\\Si,G^B < e/3. Hence 

for each a > fl we have 

+ \\LXV — LxU\\si^G^B 

— Il-^xa(w — t ' ) l l51(G)§S + l l ^ x a v ~ - ^ | | , s l ( G ) § B 

+ | |L x (v-w) | | 5 1 ( G ) g B 

= Ilw _ v\\s1(G)^B + ll^c,^ ~~ ̂ ulisi(G)®B 

+ \\v ~ wIUi(G)§B 

< e. 
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• 
Theorem 5.12. Let S1(G) be a Segal algebra of L1(G) and let B be a con­

tractive abstract Segal subalgebra of A. Then Z = §(Sl(G)®B)/ker(§) is a 

vector-Segal subspace of L1(G,A). Moreover, Z is also a dense left ideal of 

L\G,A). 

Proof. (VSA0) and (V&Ai) follow directly from Theorem 5.7. 

We can see from Lemma 5.10 that Z is left translation invariant and an 

application of Theorem 5.4 shows that each Lx is an isometry on Z. For each 

fixed z 6 Z, the map z i-* Lxz from G —> Z is continuous since is it the 

composition of two continuous maps. Therefore, (VSA2) and (VSA3) hold. 

Lastly, (VSA4) follows directly from Lemma 5.9 and 5.7. • 

This provides us with an ample amount of examples of vector-valued Segal 

algebras of L1(G,A). We will finish this chapter with a few analogues of the 

some classical Segal algebras. The proofs are similar to the classical cases, 

which can be found in [64]. 

Let CB(G, A) denote the Banach space of all bounded complex valued 

continuous functions from G into A, equipped which the supremum norm. 

Example 5.13. Let Co(G, A) denote the Banach space of all continuous func­

tions from G into A, vanishing at infinity and equipped with the supremum 

norm. Consider S := L1(G,A)r\C0(G,A), with the norm ||/|| = H/Hi + H/IL . 

Then S is a vector-valued Segal algebra of Ll{G, A). 

Example 5.14. Let LUC(G,A) to be the Banach space of all / G CB(G,A) 

such that the maps x 1-* Lxf from G into CB(G,A) is continuous, equipped 

with the supremum norm. Set S := L1(G,A)f]LUC(G,A), with the norm 

11/11 = jl/l^ + Il/H^ . Then S is a vector-valued Segal algebra of Ll{G,A). 
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Part II 

Lau-Algebras, Amenability and 

Fixed Points 
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Chapter 6 

Introduction, Lau Algebras 

This part of the thesis is devoted to the study of certain amenability conditions 

pertaining to Lau algebras. 

As we saw in Part I, it is often convenient to use the powerful tools from 

functional analysis to study Banach algebras associated to a locally compact 

group instead of the group itself. 

The group algebra I/1(G), the measure algebra M(G), the Fourier algebra 

A(G), and the Fourier-Stieltjes algebra B(G) are prime examples of how the 

structure of the Banach algebra can be used to retrieve information about 

the underlying group, as each of these Banach algebras determines G; see 

[72, 40, 73]. 

In his monograph [41], Johnson introduced the notion of an amenable Ba­

nach algebra. He had discovered a homological condition on the group algebra 

that was equivalent to the underlying group being amenable. In some sense, 

amenability can be considered its own branch of analysis. It is very broad and 

found in many unexpected places. For more references on this remarkable sub­

ject, we refer the reader to Pier's book [61], A. Paterson's A.M.S. monograph 

[60], or Runde's book [68]. 
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In his pioneering paper [44], Lau noticed that many of the important Ba-

nach algebras arising in abstract harmonic analysis shared a common structure: 

each of them is the unique predual of a W*—algebra and the identity of the 

W*—algebra is a multiplicative linear functional on the Banach algebra. Lau 

called algebras of this form F—algebras; the term was later changed to Lau 

algebras by Pier in his monograph [62]. This broad class of Banach algebras 

includes the group algebra and the Fourier algebra of a locally compact group. 

In fact, it includes all Hopf-von Neumann algebras (see [21]). 

Lau algebras have been the center of attention by many researchers. For 

instance, see[2, 27, 45, 48, 51, 52, 53, 55, 56, 57, 58, 59]. 

We will now briefly describe the layout of the rest of this thesis. The rest 

of this chapter will be used to give a brief introduction into the basic notations 

and terminologies about Lau algebras and left amenability that will be used 

throughout the rest of the thesis. 

In Chapter 7, we study left amenability of Lau algebras as well as several 

new notions of amenabilities for this class of Banach algebras. In section 1, 

we characterize left amenability in terms of various fixed point properties. 

Section 2 is devoted to hereditary properties of left amenable Lau algebras, 

using in part our fixed point theorems established in section 1. In section 

3, we investigate the notion of operator left amenability in the setting of a 

Lau algebra. We show that a Lau algebra is left amenable if and only if it is 

operator left amenable. In the final section, we introduce a new concept of 

amenability, which fits naturally in the setting of Lau algebras. 
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6.1 Amenability 

Let G be a locally compact group. A mean on L°°(G) is an element M E 

L°°(G)* such that 

M(XG) = 1 = ||M||. 

A mean is called left invariant if 

M(Lx(f)) = M(f) 

for all / E L°°(G) and x E G. A locally compact group G for which there is a 

left invariant mean on L°°(G) is called amenable. 

Let .4. be a Banach algebra. A left Banach A-module is a Banach space X 

equipped with a bounded bilinear map from A x X —• X, (a, x) i—• a • x, such 

that for any a,b E A and s e l w e have a • (b • x) = (ab) • x. A n^/ii Banach 

A-module is a Banach space X equipped with a bounded bilinear map from 

X x A -> X, (x,a) >-> x • a, such that for any a, b E A and x E X we have 

(x • a) • b = x • (ab). By a Banach A-bimodule we mean a Banach space X 

which is both a left and right Banach ^.-module such that for any a,b E A 

and x E X we have a • (x • b) = (a • x) • b. 

The dual space X* of a Banach A-bimodule X becomes a Banach A-

bimodule with 

(6.1) (a- f,x) = (f,x-a) and (/ • a,x) = (f,a- x) 

for all a E A, x E X, and f E X*. For obvious reasons, we will often denote 

/ • a by £af. 

A derivation from A into X* is a linear map D : A^> X* such that 

D(ab) = a • D{b) + D(a) • b 
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for all a, b G A. Each / G X* gives rise to a continuous derivation adf : A —• X 

defined by 

adf (a) = a- f — f • a. 

Any derivation of this form is called inner. 

A Banach algebra A is called amenable if every bounded derivation from 

A into X* is inner, for any Banach ^4-bimodule X. The justification for this 

terminology comes from the following theorem. 

Theorem 6.1 (Johnson [41]). Let G be a locally compact group. Then G is 

amenable if and only if L1(G) is amenable as a Banach algebra. 

Two other important algebras to abstract harmonic analysis that have not 

been discussed in this thesis include the measure algebra M(G) of a locally 

compact group, see [37], and the convolution algebra ll{S) of a semigroup S 

as defined in [11] or [13]. Unfortunately, Johnson's theorem does not hold 

for neither P-(S) nor M(G). For instance, the measure algebra M(M) of the 

topological group R and the semigroup algebra ^(N) on the additive semigroup 

of positive integers both fail to be amenable as Banach algebras. 

6.2 Lau algebras 

When A is the pre-dual of a von Neumann algebra, we will let A+ denote the 

set of all a G A which induce positive functional on the W*-algebra A*. That 

is, A+ = {aeA: (a,<j)*<f)) > 0, V(f> e A*} = {a <E A : (a, 1A.) = \\a\\}. SA will 

denote the set of all a £ A+ whose norm is equal to one. In the terminology 

of C*— algebras, SA is set of all normal states on A*. 

A Lau algebra is a pair (.4., M) such that A is a Banach algebra, A* = M. 

is a W*-algebra, and the identity of M is a multiplicative linear functional on 
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A. When there is no confusion, we will simply refer A as a Lau algebra. Note 

that the multiplicativity of \x* implies that Sj, is a topological semigroup. 

Examples of Lau algebras in abstract harmonic analysis include the Fourier 

algebra A(G), the Fourier-Stieltjes algebra B(G), the group algebra ^(G), 

and the measure algebra M(G), as well as the semigroup algebra ^(S) of a 

semigroup. 

In the paper [44], Lau noticed that, with minor variant to Johnson's defini­

tion, there would be a generalization of Theorem 6.1 that includes the measure 

algebra of a locally compact group, as well as the semigroup algebra of a dis­

crete semigroup. 

Definition 6.2. [44, Lau] A Lau algebra A is called left amenable if for any 

Banach .A-bimodule X such that a • x = (a, 1A*)X for all x G X and a £ A, 

each bounded derivation from A into X* is inner. 

From this definition, it is clear that any amenable Lau algebra is left 

amenable. In some situations these two notions coincide. For instance the 

group algebra of a locally compact group G is amenable if and only if it is 

left amenable. In general, though, left amenability is a much weaker condition 

than amenability. For example, it follows from the Markov- Kakutani fixed 

point theorem that commutative Lau algebra is left amenable. In particular, 

for any locally compact group G, the the Fourier and Fourier-Stieltjes algebras 

are both left amenable. 

Parallel to the theory of locally compact groups; left amenable Lau algebras 

can be characterized by the existence of special invariant means on A*. An 

element m £ A** is call a topologically left invariant mean provided that 

1. ||ra|| = 1 = (m,!^*) 

2. (m^^x) = (m, x) for all ip E SU and all x e A*. 
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Similar to the study of amenable locally compact groups, it is sometimes 

useful to know when various subspaces of A* admit a topological left invariant 

mean; see [35, Section 2.2] for the situation when A = ^1(G). Given a topo-

logically left invariant subspace X of A* that contains 1A* , a topological left 

invariant mean on X is an element m e X* such that 

1. ||m|| = 1 = (m, 1,4*) 

2. (m, tvx) = (m, x) for all ip € £4 and all i £ l 

We will need the following useful characterization of left amenability. 

Theorem 6.3 ([44] A. T.-M. Lau). Let A be a Lau algebra. Then the following 

are equivalent: 

(1) A is left amenable. 

(2) A* has a topologically left invariant mean. 

(3) There exists a net ipa € <SU such that \\ip<pa — fa\\ —* 0 for each ip G S^. 

In this setting, there is a natural analogue of Theorem 6.1. A semigroup S 

is left amenable if and only if £i(S) is left amenable as a Lau algebra. Also, a 

locally compact group G is amenable if and only if the measure algebra M(G) 

is left amenable as a Lau algebra. 
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Chapter 7 

Left Amenability and Fixed 

Point Properties 

7.1 Left Amenability and Fixed Points 

Fixed point theorems have far-reaching applications, both in mathematics and 

the social sciences. For example, the Banach fixed point theorem is used 

to prove the Picard-Lindelof theorem about the existence and uniqueness of 

solutions to certain ordinary differential equations; the Brouwer fixed point 

theorem has important application to advanced economics and game theory; 

the Ryll-Nardzewski fixed point theorem can be used to show the existence of 

a left invariant mean on the space of weakly almost periodic functions on any 

locally compact group; the Markov-Kakutani theorem can be used to show 

that all abelian semigroups are left amenable; and of course, there is Day's 

fixed point theorem [12] which extends the Markov-Kakutani theorem to all 

left amenable semigroups. For information about fixed point theorems and 

their applications, we refer the reader to [30]. 
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The motivation for this section arises from various fixed point theorems 

relating to the group algebra of a locally compact group; see for instance Wong 

[74], Ganesan [26], and Lau-Wong [48]. For more recent results concerning 

relationships between amenability and fixed point properties, see Lau and 

Zhang [49]. 

Throughout this section, let E be a separated locally convex vector space, 

i.e., E is a complex vector space equipped with a compatible Hausdorff topol­

ogy, which is generated by a family of semi-norms on E. A representation of 

an algebra A is an algebra homomorphism T of A into the algebra B{E) of all 

continuous linear operators on E. Given a £ A and x G E, we will normally 

denote (T(a),x) by either Ta(x) or simply a • x when there is no confusion. 

A subset S of E is called S^—invariant if 4> • s G S for any <f> G SA and any 

s G S. In the special case that S is convex, each representation induces an 

affine action of SA on S, that is, 

s • (Ayi + (1 - A)j/2) = As • yi + (1 - A)s • y2, 

whenever s G <SU> Vi,2/2 €. S, and 0 < A < 1. 

Let r be any topology on A. A representation T on A is said to be r-

separately continuous if the map A x £• —>• £7 is separately continuous when .4. 

has the topology r. Whenever we do not mention a topology we always refer 

to the norm or usual topology. 

Lemma 7.1. Let A be a Lau algebra and X be a topologically left invariant, 

topologically left introverted subspace of A* that contains 1A* • Then X has a 

topological left invariant mean if and only if there exists a net ipa € SA such 

that ((fxpa — <pa) —»• 0 in the a(Ax, X) topology for each 4> G SA, where Ax 

denotes the restriction of A to X. 
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Proof. Suppose that m is a topological left invariant mean on X. Since m £ X* 

is a mean, we have 

m(lA*) = 1 = ||m||. 

Thus we can apply the Hahn-Banach theorem to extend m to a state rh on 

A*. Moreover, it was shown in Lau [44] that SA is weak*-dense in the set of 

all states on A*. Thus we can find a net ipa e SA which converges m in the 

weak star topology. To see that this is our desired net, let <f> € SA and x £ X 

be arbitrary. Then we have 

(<f)tpa -tpa,x) = (</xpa, X) - (ipa, X) 

= (<pa,£<t>x) - (<pa,x) 

—• (fh, £j,x) — (m,x) 

= (m, £<f,x) — (m, x) 

= 0. 

This last step follows from the fact that m is topological left invariant. 

Conversely, let ipa € SU be a net which satisfies the hypothesis. The 

Banach-Alaoglu theorem tells us that the closed unit ball of .4** is weak*-

compact. Since the set of means on .4* is weak*-closed and lies inside the unit 

ball of A**, we may pass to a subnet if necessary and assume that (pa —> m e 

P1(A**). We claim that m is our desired topologically left invariant mean. To 

verify this, let a € SU and x G X, then 

m(x • a) — lim(a; • a, (pa) = lim(£, a<pa) = lim(x, ipa) = m(x). 
OL OL (X 

• 

We are now in a position to characterize the left amenability of a Lau 

algebra A in terms of a fixed point theorem for the topological semigroup SA-
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Theorem 7.2. Let A be a Lau algebra and let X be a topologically left invari­

ant, topologically left introverted subspace of A* which contains 1A* • Then the 

following are equivalent: 

(1) X has a topological left invariant mean. 

(2) For any a'(Ax, X)-separately continuous representation T of Ax on a sep­

arated locally convex space E and any compact convex S^-invariant subset S 

of E, the induced action T : SU x S —> S, (<j>,s) i-» cf>- s, has a fixed point. 

Proof. (1) =>• (2). Suppose Xhas a topological left invariant mean. By Lemma 

7.1, there is a net <pa G <SU such that ((p<pa — <pa) —»• 0 in the a (Ax, -X)-topology 

for each ip G SA- Fix s G S and consider the net <pa-s G S. Since S is compact, 

by passing to a subnet if necessary, we may assume that <pa • s —• so G S. We 

claim that s0 is the desired fixed point. Indeed, let <j> G S4, then 

</> • so = <t>- (lim <pa- s) = lim </> • (<pa • s) = lim(<^a) • 5 
a a a 

= l i m ( ^ a - ipa) • s + ipa • s = lim ipa • s = s0. 
a a 

(2) =>• (1). Let E = X* with the weak* topology. Since X is topologically 

left invariant, for each a G A we may define the map £a : X —> X, x t—> £ax. 

Now define T : A x E —> E by Ta(ra) = ta(m), where £* is the adjoint operator 

of £a. Since £aia2 = ia2tax, T is clearly a representation of A. Moreover, T is 

a(A, .X)-separately continuous. Indeed, let aa —• a in the a(Ax, X)-topology 

on A and let m G E — X* be fixed. We must show that TOQ(m) —• Ta(m) 

weakly* in X*. To see this, let <j> G Xbe arbitrary, then 

(TaQ(m),^} - <Ta(ro),$ = <C»,</>> - <C(™U> = (mMt)) - (m,LM) 

= (m,eaa((t>)-ea(<p)) = (m,eaa-a((t>)) 

= (mL(4>),aa-a), 

which converges to zero since X is left introverted. 
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Now suppose that a e A is fixed and let mp —> m in X*. We need to show 

that Ta{mp) ^ Ta(m) in X*. To this end, let x £ Xbe arbitrary. Then 

(Ta(m0),x) = {ta{mp),x) 

= (m/3,£a(x)) 

-> {m,£a(x)) 

= (rtt(m),x) 

= (Ta(m),a;>. 

To finish, take S to be the set of all means in X*, then S is weak*-compact, 

convex, and ^-invariant under the induced action from T. Consequently, the 

restriction of T to S^ x S —> S has a fixed point, say ra0. It is clear by our 

construction that m0 is a desired topological left invariant mean on X. D 

Theorem 7.3. Let A be a Lau algebra. Then the following are equivalent: 

(1) A is left amenable. 

(2) For any a {A, A*)-separately continuous representation T of A on a sepa­

rated locally convex space E and any compact convex S^-invariant subset S of 

E, the induced action T : S^x S -* S has a fixed point. 

(3) For any separately continuous representation T of A on a separated lo­

cally convex space E and any compact convex S^-invariant subset S of E, the 

induced action T : SU x S —• S has a fixed point. 

Proof. (1) 4^ (2) follows directly from Theorem 7.2. 

(2) => (3) holds since any separately continuous representation of A is 

automatically a o(A, ,4*)-separately continuous representation. 

(3) =* (1) 
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Let E = A** with the weak* topology. Let T : A x .4** -»• .4** be the 

first Aren's product. Recall that the Aren's product actually yields A** into a 

Banach algebra and it is also weak*-continuous in the second variable. Hence, 

T is a separately continuous representation of A. 

Now take S to be the set of all means in A**, then S is weak*-compact, 

convex, and ^-invariant under the induced action from T. Consequently, the 

restriction of T to S^ x S —> S has a fixed point, say m^. Again, it is clear 

by our construction that mo is a desired topological left invariant mean on 

A*. • 

We will now turn our attention to the additively uniformly continuous 

functions on S^. The importance of this space was demonstrated by Lau-

Wong in [48], where they showed that it could be used to characterize left 

amenability. Using their result and techniques similar to those introduced 

by Ganesan in [26], we will derive another fixed point characterization of left 

amenable Lau algebras. 

Definition 7.4. A continuous and bounded function / on SA is called addi­

tively uniformly continuous if for each e > 0, there is a 8 > 0 such that when­

ever a and b are elements of <SU with ||o — b\\ < 8 we have \f(a) — f(b)\ < e. 

We will denote the set of all additively uniformly continuous functions on Sjy 

by AUC{SA). 

Then AUC(Sj) is a C * —subalgebra of CB(SA) which is translation in­

variant and contains the restriction of any bounded linear functional on A. A 

very interesting property about the space AUC(SX) is that it is independent of 

the multiplication of A, thus it only depends on the Banach space structure of 

A. However, it always lies inside the space of uniformly continuous functions, 

which is normally denoted by UCB(Sj). Recall that a function / G CB(Sj) 
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is uniformly continuous if whenever sa converges s in SA, then RSaf converges 

uniformly to Rsf and £Saf converges uniformly to £sf. 

Lemma 7.5. Let A be a Lau algebra and f E AUC(SA)- Then for any e > 0 

there is a corresponding S > 0 such that a,b G SA and \\a — b\\ < 6 imply that 

| |C/ — 4/||oo < £- In particular, any additively uniformly continuous function 

is uniformly continuous function. That is, AUC(SA) C UCB(SA)-

Proof. Let / e AUC(SA) and let e > 0. Choose 5 > 0 so that |/(o) - /(6)| < 

e/2 whenever a, b e SA and \\a — b\\ < 5. Then for any t G SA we have ||i|| = 1, 

so that \\at — bt\\ < \\a — b\\ \\t\\ = \\a — b\\ < S. Prom which it follows that 

114/ - 4/IL < e. 
Now suppose that aa —»• a in £4. Then ||aa - a|| < 5 eventually. Thus 

IKaa/ — 4/Hoo < ^ eventually. The proof for right translation is similar. • 

Remark 7.6. The size of UC(Sj) depends on the multiplication of A. For 

example, when A is the pre-dual of any W*-algebra and we define the multi­

plication on A by ab — (a, 1A*) b, then we have UC(SA) = CB(SA)-

Whenever Q is a family of seminorms which generates the topology of E, 

there is a natural notion of a Q—unform action. We will say that an action of 

SA on a convex subset Y of E is Q—uniform if for each j / e F and p £ Q, the 

map from SU into Y, given by s (-»• s • y, is uniformly continuous with respect 

to p. More precisely, for each e > 0 there is a corresponding S > 0 such that 

p(a • y — 6 • y) < e for all a and 6 in SA for which ||a — 6|| < S. 

Theorem 7.7. Let A be a Lau algebra. Then TFAE: 

(1) A is left amenable. 

(2) AUC(SA) has a LIM. 
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(3) Let E be a separated locally convex space, and let Q be a family of semi-

norms which generates the topology of E. Whenever SA acts affinely on a 

compact convex subset Y of E, where the action S^xY^Yis separately 

continuous and Q-uniform, Y has a fixed point under the action of S^. 

(4) Let E be a separated locally convex space, and let Q be a family of semi-

norms which generates the topology of E. Whenever SA acts affinely on a 

compact convex subset Y of E, where the action Sj,xY —> Y is jointly con­

tinuous and Q—uniform then Y has a fixed point under the action of S^. 

Proof (1) o (2) is due to Lau-Wong [48]. To see (1) => (3). Suppose A is 

left amenable, then there is a net ipa e «SU such that \\ip(pa — v>a|| —* 0 for 

each cp e SA [44, Theorem 4.6]. Fix y e Y and consider the net ipa • y G Y. 

Since Y is compact, by passing to a subnet if necessary, we may assume that 

Pa • y —* Vo- We claim that yo is the desired fixed point. Indeed, let <j> E <SU 

be arbitrary. Since the topology of E is generated by Q and the action is 

Q—uniform, we know that ipipa • y — ipa • y —• 0 in E. Thus, it follows that 

<j>-yQ = (j)-(\imipa-y) 
a 

= l im (j> • (ipa • y) 
a 

= lim(<^a) • y 
a 

= l im <pa • y 
a 

= yo-

(3) =>• (4) is obvious. To finish the proof, we will show that (4) =$• (2). 

Let E = AUC(SX)* with the weak* topology, let Q the set of seminorms 

induced by elements of AUC(Sj), and let Y equal the set of all states in E. 

63 



Then Y is compact and convex in E. Define an action of SA on Y by 

a • m = £*a{jn), for a G SA and m G Y, 

where £*a is the adjoint operator of £a : AUC(SA) —> -A[/C(SU). Since ^aia2 = 

£02£ai, this action is clearly affine. It follows from Lemma 7.5 that this action 

is Q—uniform. Moreover, the action is jointly continuous. To see this, let 

aa —> a in 5,4 and let mp —» m in Y, and let / G AC/C^SU) be arbitrary. Then 

0 < \im\(aa-mp,f}-(a-m,f}\ 

= lim {(rap, iaaf) - (m, £af)\ 

= lim |(m/3, £aJ) ~ {mp, £af) + (mp, £af) - {m, £af)| 
a,P 

< lim |(m/3, £aJ - £af) + (mp - m, £af)| 

< lim \\£aJ - £af\L + lim \(mp - m,£af)\ 
a p 

= 0. 

Thus, for any / G ^^7(7(5^) we have lima^ao, • mp, f) — (a- m, / } , which 

means that aa • mp —> a • m weakly* in AUC(SA)*, i.e., aa • mp —> a • m in Y. 

Consequently, the action SA x Y ^ Y has a fixed point, say mo G Y. 

Again, by our construction it is easily seen that that mo is a left invariant 

mean on AUC(SA). • 

We will finish this section with a few miscellaneous results related to 

AUC(SA). 

Proposition 7.8. Let A be any Lau algebra. Then the space AUC(SA)* has 

a natural multiplication which renders it into a Banach algebra. 

Proof. Let n,m G AUC(SA)*, f G AUC(SA). Since AUC(SA) is stable under 

translations, we can define the functional n © / G AUC(SA) 

(n 0 / , s) := (n,£sf), where s G SA. 

64 



To see that n 0 / is indeed additively uniformly continuous, let e > 0 and use 

Lemma 7.5 to choose a 5 so that \\£af — 4/||oo < ^/IMI whenever a, b E <5U 

with ||a — &|| < 6. Then we have 

| < n 0 / , a ) - ( n 0 / ) 6 ) | = | < n , 4 / - 4 / ) | < I H | | | 4 / - 4 / | | o o < e . 

It now follows easily that (m © n, /} :— (m, n 0 /} renders AC/C(5U)* into 

a Banach algebra. D 

Corollary 7.9. Let .4 be any Lau algebra. If AUC(S^) has both a left in­

variant mean and a right invariant mean, then it has a two-sided invariant 

mean. 

Proof. Suppose that mi is a left invariant mean and mR is a right invariant 

mean for AUC(S^). Then mi 0 mR a two-sided invariant mean. 

Indeed, (mL 0 mR, 1) = {mL, mR 0 1) = {mL, 1) = 1. Since \\mL © mR\\ < 

ll^i/llll^flll, fn>L © mH is a mean. To see invariance, note that mR © 4 / = 

4 ( ^ H © / ) and that mR © rsf = mR © / . • 

In many situations a Lau algebra, A, is also an involutive Banach algebra. 

In the event that S^ is self-adjoint, we will call A an involutive Lau algebra. 

Theorem 7.10. Suppose A is an involutive Lau algebra such that SA is self-

adjoint. Then A is left amenable if and only if the space AUC(Sj) has a 

two-sided invariance mean. 

Proof. Since every left amenable Lau algebra is equipped with a left invariant 

mean, it will suffice to show that a left invariant mean can be used to produce 

a right invariant mean on AUC(Sj)-

To this end, let m be a left invariant mean on AUC(SA). Define m G 

AUC(SAy by 

(m,f):=(m,r), 
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where /* G AUC(SA) is defined by 

f*(t):=f(t*),teSA. 

It is clear that m is also a mean on AUC(SA). Moreover, since {raf)*(t) = 

raf(t*) = ea.f(t), we have {m,raf) = <m, (rj)*) = (m,4-/*> = (™, f*) = 

(m, / } . Thus m is a right invariant mean. • 

7.2 Hereditary Properties 

In the study of amenability, researchers are often interested with various hered­

itary properties, see [11, 13, 35, 37, 41, 60, 61, 68]. As pointed out by Lau 

[44], the theory of left amenable Lau algebras contains that of semigroups. 

Unfortunately, due to the abstractness of semigroups, there is lack of strong 

hereditary properties for amenable semigroups. In fact, Hochster [38] showed 

that it is possible to embed the non-amenable free semigroup on two generators 

in a solvable, hence amenable, group. Thus, one cannot expect Lau algebras 

to have hereditary properties paralleling those to locally compact groups or 

Banach algebras. For instance, ^1(F2) is not left amenable since the free group 

on two generators is not left amenable as a semigroup. However, as Lau [44] 

demonstrated, C © ̂ (¥2) is left amenable. 

Occasionally one Lau algebra can be embedded into another one in a nice 

way. In order to investigate this phenomena, we will need to define a suitable 

notion of a Lau-subalgebra. Once this is done, we will develop some hereditary 

properties that are analogous to the theory of amenable Banach algebras. 

Suppose that B is a complemented subalgebra of a Lau algebra A That is, 

B is a closed subalgebra of A and there is a continuous projection QB • A —»• A 

such that B = QB(A). In this situation, we will let V denote the topological 
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complement of B, and Qy its projection. We will call B an admissible subal-

gebra of A when B is non-trivial, A = B 0 i V, £* = <2B^* a n d ^* - Qv-4* 

are both W*-subalgebras of A* such that A* = B* ©<» V*. The identities of 

B* and V* will be denoted by Is* and ly. respectively. In this case (B, B*) 

is also a Lau algebra, while V need not be a Lau algebra. It will often be 

convenient to regard both B and V as their own Banach space as well as a 

subspace of A. 

At times we will be dealing with up to three Banach spaces simultaneously, 

as well as their dual spaces. In order to keep track of variables more easily, 

we will adopt the following notation. Let X be a Banach space. Elements of 

X will be denoted by x, elements of its dual space X* will be denoted by x*, 

and elements of its bidual space X** will be denoted by x**. 

Lemma 7.11. Let A be a Lau algebra and B be an admissible subalgebra of 

A. If m is a positive linear functional on A*, then the functionals Qy*m and 

Q*gm are also positive. Moreover for any positive normal functional b on B, 

the functional b 0 Qy m G .4** is positive. 

Proof. Since projections between C*-algebras preserve positivity (see [71, III.3.4]) 

we see that the maps Q*B and Qv preserve positivity. Thus for any positive 

elements a* e A* and b* G B* we have (Qv*m, a*) = (m, Qva*) > 0. Similarly, 

(Q%m,b*) = (m,Q*Bb*)>0. 

Now let b be a positive element of B, viewed as an element of A. Let aa 

be a net in P(A) converging weakly* to Qy m in A**. Then baa G P(A) and 

baa ^ b 0 m in A**. Since P(A**) is weak* closed, we are done. • 

Corollary 7.12. Let A be a Lau algebra and B be an admissible subalgebra 

of A. Then PX(A) = conv{P1(B),P1(V)}. 
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Proof. Let b G P^B), v G P^V), and A G [0,1]. Then ||A6+ (1 - A)w|| < 

A||6|| + (1 - A)||v|| = 1. We also have, (1B, + l v . , \b + (1 - A)v) = A(1B.,6) + 

(1-A)(l v . , i ; ) = l. 

Now suppose a G Pi(-4), then by Lemma 7.11 we see that b := QB{CL) > 0 

and v := (Jy(a) > 0. Without loss of generality, we will assume that neither b 

nor v are zero. Since a G Pi(A) it follows that 1 = (1B* + l y , 6 + w) = 

(lfl.,6) + ( lv. t ; ) = ||6|| + \\v\\. So that a = \\b\\(b/\\b\\) + \\v\\(v/\\v\\) G 

corau{Pi(B),Pi(y)}. D 

Lemma 7.13. Let A be a Lau algebra and B be an admissible subalgebra of 

A. Then for any b G P\(B) and b* G B* we have 

{QBb*)-b = QB{b*-b)®Q*v[{Q*Bb*).~b}. 

Proof. Let a G Abe arbitrary and choose b G B, v G V with a = b + v. Then 

({QBb*)-~b,b + v) = (QBb*,bb + ~bv) 

= (b*,bb) + (QBb*,bv) 

= (b*-~b,b) + ((QBb*)-b,v) 

= <%(&*• 6).&+ «) + <QM(QB&*) •&].& + «> 

= (Q*B(b*- b) ®Q*v[(QBb*)-b],b + v). 

D 

Lemma 7.14. Let A be a Lau algebra and let B be an admissible subalgebra 

of A. If rn is a topological left invariant mean on A*, then 

(m,Q*v[(QBlB.)-b}) = 0 

for each b G P\(B). 
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Proof. By applying Lemma 7.13 to the element 1B* £ B*. We have, 

(m,Q*BlB.) = (m,(QBlB.)-b) 

= {m,QB(lB.'b)®Q*v[{QBlB.)-b]) 

= (m,QBlB.®Cfr[(QBlB.)-b]) 

= {rn,QBlB.) + {m,Q'v[(QBlB.)-b]). 

Whence it follows that (m, Q*V[(Q*B1B*) • 6]) = 0 . • 

Lemma 7.15. Let A be a Lau algebra and B be an admissible subalgebra of 

A. If m is a topological left invariant mean on A*, then 

{m,Q'v[(QBb*)-b]) = 0 

for each b e Pi{B) and b* eB*. 

Proof. Notice that 

(m,Q*v[(QW)-b}) = (Q*v*™,(QBb*)-b) 

= (bQQ*v*m,QBb*) 

= (QB*[bQQvrn},b*). 

By viewing our equation this way, we can apply Lemma 7.11 and see that 

QB*\b®Qv'm] is a positive linear functional on B*. Moreover for any positive 

element b* € B*, we have b* < ||6*||1B«. Using this fact and Lemma 7.14, we 

get 

0 < (QB*[bQQ*v*m],b*) < (QB*[bQQ*v*m], ||&*||1B.) = 0. 

Since any element in a C*—algebra can be written as a linear combination of 

positive elements we are done. • 
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Theorem 7.16. Let A be a left amenable Lau algebra and let B be an admis­

sible subalgebra of A. Suppose that there is a topological left invariant mean m 

on A* such that Q*Bm ^ 0. Then B is left amenable. 

Proof. Since Q*Bm is a non-zero positive functional, it will suffice to show 

that it is topologically left invariant. Let b e P\{B) and b* e B* be arbitrary. 

Applying Lemma 7.13 and Lemma 7.14, we have 

(Q*B*m,b*-b) = (m,QB(b* • 6)> 

= (m,(QBb*)-b)-{m,Q*v[(QBb*)-~b}) 

= (m,(QBb*)-b) 

= (m,Q*Bb*) 

= (Q*B*m,b*). 

Thus Q*B m is a non-zero positive topologically left invariant linear functional 

on B*. By normalizing it, we obtain a topological left invariant mean on 

B*. • 

We mentioned earlier that, in general, sub-semigroups of a left amenable 

semigroup need not be left amenable. Day in [11] gave sufficient conditions in 

order to preserve amenability. Next we show that Theorem 7.16 can be used 

to achieve the same result. 

Corollary 7.17 (Day). Let S be a sub-semigroup of a left amenable semigroup 

T. If there is a left invariant mean m on £°°(T) such that (m, xs) ¥" 0 then S 

is also left amenable. 

Proof. First note that any left invariant mean on £°°(T) is also a topological 

left invariant mean. To see this, it will suffice to show that for each t € T and 
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/ G £°°{T), we have £tf = £SJ. To this end, let w G £\T) be arbitrary. Then 

we have 

(£sj,w) = (f,6t*w) 

= Yl f(v) 5t * w(v) 

= £/(«)£M*MV) 
v£T xy—v 

v€T ty=v 

- EE/w^) 
v£T ty=v 

= £/fo,)«;(y) 
y&T 

= <4/»-

Since the convex hull of {5t \ t G T} is dense in the set of all normal means on 

£°°(T), we see that m is topological left invariant. We may now apply Theorem 

7.16 to see that S is left amenable. • 

To finish this section, we will derive a few more miscellaneous hereditary 

properties, using in part our fixed point theorem established in section 7.1. 

Proposition 7.18. Let A be a left amenable Lau algebra and let B be an 

admissible subalgebra of A. If B is a left ideal in A then B is also left amenable. 

Proof. Let B** be equipped with the weak* topology. Let A act on B** via 

the relative Arens product, i.e., for a G A and b** G B** define 

{a©&**,b*) = (b**,b* -a) 

where 

(b*-a,b) = (b*,ab). 
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Then we get a separately continuous representation on the separated locally 

convex space (B**,w*). 

Now set K = {m € X**) : (m, 1B*) = 1 = ||m||}. Then X is a weak*-

compact and convex subset of B**. Moreover, it is SA invariant under the 

action defined above. Consequently, by Theorem 7.3, the induced action SA X 

K —+ K has a fixed point, say m0. It is clear by our construction that m0 is a 

topologically SA invariant. Since P\(B) C 5^ are done. • 

Proposition 7.19. Let Abe a left amenable Lau algebra and let B be an ad­

missible subalgebra of A. If B is a right ideal in A then B is also left amenable. 

Proof. Let b G Pi(B), then Q*B1B* • b = I A* • b. Indeed, for any b + v e A we 

have 

(Q*BlB,-~b,b + v) = (Q*BlB*,b(b + v)) 

= (lB*,QBkb + v)]} 

= {lB* + lv*,QB[b(b + v)}) 

= (lA.,b(b + v)) 

= {lA..b,(b + v)). 

Thus we have 

(<%*m,lB*) = {m,QBlB*) 

= (m,(QJlB.)-6> 

= (m, 1A. • b) 

= (m,lA.) 

= 1. 

So we may apply Theorem 7.16 to finish the proof. • 
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Proposition 7.20. Let A be a left amenable Lau algebra, let B be another 

Lau algebra, and let n : A —> B be a continuous homomorphism with dense 

range such that K*1B* = IA*- Then B is is left-amenable as well. 

Proof. Let X be a Banach .B-bimodule such that b • x = (b, 1B*)X, and let 

D : B —> X* be a bounded derivation. We must show that D is inner. In 

order to do this we will filter D through A. 

Note that X can be viewed as Banach .A-bimodule with operations defined 

by 

a-x = ir(a)-x and x • a = x • ir(a), 

for a G A and x E X. By looking at the left modulo action closer, we see that 

a • x = 7r(a) • x 

= (7r(a),lB»)x 

= {a,n*(lB*))x 

= {a,lA*)x. 

Since D : B —> X* is a bounded derivation, we can see that the map Don: 

A —> X* is also a bounded derivation. Thus there is an #* € X* such that for 

any a £ A we have D o 7r(a) = a • a;* — af* • a. Thus for any b e Ran{n) we 

have D(&) = D(ir(a)) = a- x* — x* • a = 7r(a) • or* — x* • 7r(a) = b • x* — x* • b. 

Lastly, since 7r(̂ 4) is dense in B and TT is continuous we see that for any b G B, 

D(b) = b • x* - x* • b. D 

Proposition 7.21. Let A be a Lau algebra and let B be an admissible sub-

algebra of A. If B is a right ideal in A which is left amenable, then A is left 

amenable. 

Proof. Let P\(A) act affinely on a compact convex subset Y of a separated 

locally convex space E, where the action Pi (A) x Y —> Y is jointly continuous 
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and uniform. Then induced action P\{B) also acts affinely of Y and of course 

is jointly continuous and uniform. By Theorem 7.7, we see that there is a 

yo EY which is a fixed point for P\{B). We claim that y0 is also a fixed point 

for P\(A). Indeed let b £ Pi(B), then for any a <E Pi pi) 

a-y0 = a- (b • y0) = ab • yQ = y0. 

Thus it follows from Theorem 7.7 that A is left amenable. • 

7.3 Operator Left-amenability 

The importance of operator space theory to abstract harmonic analysis was 

illustrated by Ruan in 1995. In the paper [65], Ruan introduced a notion of 

operator amenability and proved that the Fourier algebra of a locally compact 

group is operator amenable if and only if the underlying group is amenable. 

This result is very important since Johnson had demonstrated in [42] that the 

amenability of the Fourier algebra was not a suitable match for the amenability 

of the underlying group. 

In this section, we investigate the natural extension of left amenability to 

the category of operator spaces. We will not attempt to give a survey on a 

subject as deep as operator space theory, but merely outline the concepts which 

are necessary. For a more detailed approach and any concepts not thoroughly 

defined, we refer the reader to the excellent book of Effros and Ruan, [20]. 

More applications of operator space theory to abstract harmonic analysis can 

be found in the survey paper [67]. 

An operator space is a linear space V together with a matrix norm, || • || = 

(II' IU}; where || • ||n is a norm on the matrix space Mn(V), (V, || • ||i) is complete 

and 
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(Ml) ||u©u;||m+n = max{||u||m, ||H|„}, 

(M2) | | o ^ | | < ||a||H|m | |/?|| 

for all v e Mm{V), w e Mn(V) and a € Mn,m(C),/3 e Mm,„(C). 

Let 7i be a Hilbert space, then any closed subspace of B(H) is an operator 

space in the natural way. In fact, all operator spaces occur in this fashion. 

Also any dual space of an operator space is an operator space. Thus, the 

pre-dual of a von Neumann algebra is an operator space in the canonical way. 

Given two operator spaces V and W and a linear mapping T : V -» W, 

the n-th amplification T(n) : Mn{V) - • Mn{W) of T is given by 

T{nKlvk,i\) = ITKi)]. 

If sup„eN | |r(n)|| is finite, then T is called completely bounded and 

imu = suP||rW|| 
raGN 

is the completely bounded norm of T. 

Definition 7.22. Let V and W be operator spaces and let T : X —> Y be a 

linear map. Then: 

(a) T is completely bounded if ||T||c6 < oo. 

(b) T is completely contractive if I IT^ < 1. 

(c) T is a complete isometry if each T^n^ is an isometry. 

An associative algebra A with multiplication m is called a completely con­

tractive Banach algebra if .4 is an operator space such that the multiplication 

m : A®op A —> A is completely contractive. Where A<g>0p A is the operator 

space projective tensor product. 
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Equivalently, A is a completely contractive Banach algebra if 

II fa A d II ^ Nlll&ll 

for all a = [aitj] E Mm(A) and b = [bk,i] E Mn(A), where m, n € N are 

arbitrary. 

Let A be a completely contractive Banach algebra and V an ^4-bimodule. 

Then V is called an operator A-bimodule if V is an operator space and the 

v4-bimodule operation 

A®op V —>• V; a®v \—>• a • v, 

and 

V<g>0p A —>• V; a®v \—> v • a 

are completely bounded. Equivalently, there exists a C > 0 such that 

IlkrvwHI <CNIN 

and 

IIKra^ll^ClblHIall 

for all a = [a,ij] € Mm(A) and v — [vk,i] € Mn(V), with m,n 6 N arbitrary. 

Let V be an operator .4—bimodule and F* the operator dual of V. Then 

the A—bimodule operations on V* given by (6.1) are completely bounded. 

A completely contractive Banach algebra A is called operator amenable if 

for any operator A—bimodule X, every completely bounded derivation from 

A into X* is inner. 

Now each Lau algebra is the pre-dual of a von Neumann algebra. Thus, 

each Lau algebra A comes with an operator space structure via the inclusion 

A c-> A**. Examples of completely contractive Lau algebras include each pre-

dual of a Hopf-von Neumann algebra. In particular, the group algebra and 
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the Fourier algebra of a locally compact group are examples of a completely 

contractive Lau algebra. 

Definition 7.23. A completely contractive Lau algebra A is called operator 

left-amenable if for any operator .4,-bimodule Xsuch that a- x = (a, 1A*)X for 

all x G X and a G A, each completely bounded derivation from A into X* is 

inner. 

It is not hard to see that any completely contractive Lau algebra that is 

left amenable must also be operator left amenable. Surprisingly, we will see 

that the converse is also true. 

Lemma 7.24. Let A be a completely contractive Lau algebra that is operator 

left amenable. Then there is a nonzero n G A** such that n(x • a) — CL(1A*)X 

for each a G A and x € A*, where a • x is the usual action of A on A* and 

1A* is identity of A*. 

Proof. Let X = A* and set 

(x • a,b) := (x, ab) and a • x := (a, 1A* )x 

for each a,b E A and x £ X. Then X is an operator A-bimodule. 

To see this, note that the right action is the dual left action of multiplication 

of A on A which is completely bounded. Also for any a G Mn(A) and x G 

Mm(X) we have 

IIKr3fc,j]|| = HKa^iA.)^]!! = Hi^Kj]®^]!! < Hî lUlalllMI = NIIMI-

Since 1A* is a multiplicative linear functional on A, for any a, b G A we 

have 

(1A* -a,b) = (1A*,ab) = (1A*,a)(1A.,b) = ((1A*,a) 1A.,b) = (a- 1A*,b). 
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Thus Y = Cl^* is a closed operator ^4-submodule of X. Put Z = X/Y 

and let iv : X —> Z be the complete quotient map (see [20]). Then the dual 

mapping 7r* : Z* —* X* is a completely isometric [20, Corollary 4.1.9] A-

bimodule homomorphism. We remark that the range of n* is precisely the set 

Y1- = {x* G X* : (x*,y) = 0, Vt/ G Y} = {z* G X* : (x*, 1A.) = 0}. 

Choose av E X* with (1^*, t>) = 1 and let Dv be the inner derivation from 

A into X*, at-> a- v — v • a. Then for any a G .4 we have 

(A,(a),lA*) = (a-u - f -a, 1 .̂) 

= (a-u, 1 .̂) - {v-a, U.) 

= (U,1A* -a) - (v,a- U.) 

= (v,lA* -a-a-lA*) 

= 0. 

So that Dv(a) G 7r*(Z*). NOW since IT* is injective there is a unique Da G Z* 

such that Dv(a) = -K*Da. Moreover, since IT* is completely isometric module-

homomorphism, the map D : A —»• Z*, a (-»• Da is a completely bounded 

derivation. 

Since A is operator left-amenable and Z* is an admissible dual operator 

*4-bimodule, there is an z* G Z* with 

£)a — a- z* — z* • a 
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for each a E A. Thus for any o e i w e have 

a • n*z* - n*z* • a = n*(a- z* - z* • a) 

= ir*(Dz.{a)) 

= Tr*(Da) 

= Dv(a) 

= a-v — v • a. 

Or in other words we have 

a • (v — 7r*z*) = (v — iv*z*) • a. 

Finally, set n = v — TT*Z* € 4̂**. Then we have TI(IA*) = V(1A*) — 

(ir*z*, 1A») = 1 - 0 = 1 and for any a € A we have n • a = a • n. and 

x E X we have 

n(x • a) = n(a • x) = (a, lA*)n(x). 

D 

Theorem 7.25. Let A be a completely contractive Lau algebra. Then A is 

left amenable if and only if A is operator left amenable. 

Proof. It is shown by Lau in [44] that each Lau algebra that admits a non-zero 

topologically invariant functional on its dual space must left-amenable. The 

existence of such a functional when A is operator left amenable follows from 

Lemma 7.24. The converse is trivial. • 

7.4 P-amenability 

We will end this chapter by exploiting the semigroup structure of S^. The 

study of topological semigroups and invariant means on various function spaces 
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is very difficult and has drawn the attention of many researchers. Unlike in 

the group setting, the existence of invariant means on one subspace relative 

to another is not pleasant. For this reason, the notion of a left amenable 

topological semigroup is not universal. We will call a topological semigroup S 

amenable when the space of continuous and bounded functions on S admits 

a left invariant mean. We are also interested in the spaces of left uniformly 

continuous functions on S, as well as the space of all bounded functions on S. 

When equipped with the supremum norm and pointwise operations, each of 

these spaces is a left translation invariant C*-algebra. 

The notion of a P-amenable group was introduced by Ganesan in [26]. He 

was interested to study when Pi(G) was amenable as a topological semigroup. 

Although there are still many unsettled problems for group algebras, we will 

take a brief look at the Lau algebra setting. This will allow us to discuss 

several other plausible notions of amenability that one might be interested in 

when studying a Lau algebra. All of which are interesting roads for future 

research. 

Definition 7.26. Let A be a Lau algebra. 

(i) A is called P-amenable whenever CB(S^) possesses a left invariant 

mean. 

(ii) A is called weakly P-amenable whenever LUC(SA) possesses a left in­

variant mean. 

(iii) A is called strongly P-amenable whenever °̂°(<SU) possesses a left invari­

ant mean. 

It is not hard to see that any strongly P-amenable Lau algebra is P-

amenable, and any P-amenable Lau algebra must be weakly P-amenable. 
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Moreover, it follows from Lemma 7.5 and Theorem 7.7 that any weakly P-

amenable Lau algebra must be left amenable. 

Example 7.27. It follows from the Markov-Kakutani Fixed Point Theorem 

that any abelian semigroup is left amenable. Hence, any commutative Lau 

algebra is strongly P-amenable. 

Example 7.28. Let M be any W*-algebra and A = M*. If we define the 

multiplication on A by ab = (a, 1̂ «) b for a, b € A, then A is strongly P-

amenable. Note that in this case, for any / € £°°(SA), and a € SA we have 

laf — /• From which it follows that any mean on £°°(SA) is left invariant. 

Since the norm is multiplicative on the set A+ of all normal positive func­

tional on A*, it may be interesting to also study A+ as topological semigroup. 

However, in many situations this larger semigroup does not provide any new 

information about the left amenability of A. 

Proposition 7.29. Let A be a Lau algebra with a bounded approximate iden­

tity for A+ lying inside Sj,. Then A is P-amenable if and only if A+ is left 

amenable. 

Proof. Suppose A+ is left amenable. Let $ : A+ —> S1^ be defined b y a ^ 

a/||a||. Then $ is a continuous surjective homomorphism and thus <SU is left 

amenable (see Day [13]). 

Now suppose that m is a LIM on CB(SA). Let / € CB{A+) and define 

(7.1) f(a):=(m,(£af)\SA), a e A+. 

Then we have 

(7.2) f'(ab) = f'(a), (£af)' = £af aeA+,be SA. 
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Now let ea be a bounded approximate identity for A+ in S^. Then for any 

a G A+ we have 

f'(a) = lim/'(eaa) 
a 

= lim/'(||a||eaa/||a||) 
a 

(7-2) .. , , , , , M . 
= hm/( | | a | e a ) . 

a 

Thus, f{ui) := lima f'(coea) is well defined for any u> G M.+. Also note that we 

have f(a) = /(||a||) for any a G A+. 

Let M be a LIM on CB(R+, •) and define /* e OB(,4+)* by 

{fi,f) :={Mj). 

Then // is our desired LIM. We will included the details for completeness sake. 

Clearly we have (cf+g)' — cf+g, so that /t is indeed linear. Also ||/||<x> < 

ll/'lloo < ll/lloo shows that ||/z|| < 1. Since 1 = 1, we have (//, 1} = (M, i) = 1. 

So that ||/i11 = 1 = (/i,l) and /* is a mean. We now proceed to show that /t is 

left invariant. First note that for a, 6 € A+ we have 

(U)'(b) = £J'(b) = f(ab) = /( |H|) = /(||a||||6||). 

Thus for a G *4+ and w 6 R+ we have: 

(eaf)-(u) = l i m ( 4 / ) V « ) = lim/(||o||||wea||) = /(||a||a,) = £w / (a ; ) . 
a a 

i.e. ( 4 / ) ' = %»||/- Thus for any / G CJ5(^4+) and a G A+ we have (fi,£af) = 

(M,(4/)-> = <M,^||0||/> = <M,/) = (//,/). D 

Minor changes to the proof above shows that a similar result holds for 

strong and weak P-amenability. The relationship between the various forms 

of P-amenability still needs to be investigated. Currently, we do not know of 

any left amenable Lau algebras which are not P-amenable. 
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Chapter 8 

Open Questions 

Problem 1. For which groups is DP(G) = UM{G)1 

It was shown by Crombez and Govaerts that DP(G) = UM.{G) for all 

metrizable groups. It would be interesting to know whether this relation holds 

for non-metrizable groups as well. 

Problem 2. When is DP(G) a C*-algebra? 

It was shown in Proposition 3.7 that UAi(G) is always a C*—algebra. 

Consequently, for metrizable groups, DP(G) is a C*—algebra. 

Problem 3. 

(a) For which groups is UCB(G) contained in DP(G)? 

(b) For which groups is WAP(G) C DP(G)1 

(c) For which groups is DP(G) closed under multiplication and involution? 

In particular, when is DP(G) a C*—algebra. 

Our results from Section 4.3 tells us that (a) is true for at least discrete 

or compact groups. An affirmative answer to (a) for amenable groups would 

imply that (6) is also valid for amenable groups. Our quest to solve (a) has 

led us to the next problem. 

83 



Problem 4. Let G be a locally compact group and let K be a compact subset 

of G. Does -AA-(G) have the Schur property? 

We have shown that this is actually equivalent to asking whether AK(G) 

has the Dunford-Pettis property. An affirmative answer would imply that 

UCB(G) C DP(G) always. A deeper understanding of weak convergence in 

the Fourier algebra would be beneficial for tackling this problem. 

Problem 5. What are necessary and sufficient conditions for weak conver­

gence of sequences in A{G)1 

Problem 6. Are vector Segal subspaces always Banach algebras? 

We feel that some technical computations still need to be worked out to 

ensure that each vector-Segal subspace is always a left Banach-L^G, A) mod­

ule. 

Problem 7. Are the different forms of P-amenability introduced in section 

7.4 equivalent? 

For a topological semigroup, the conditions of Definition 7.26 are not equiv­

alent. However, for Lau algebras, the topological semigroup is more pleasant 

than many other topological semigroups. 
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