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Abstract

This thesis focuses on determining innovative computer vision algorithms suit-

able for progress tracking and forming them into automated visual progress tracking

framework. The main concept of this approach is reconstruction of an as-built 3D

point cloud model of the object of interest based on the spatial information ex-

tracted from photographs or videos. The reconstructed as-built model is then com-

pared to the as-planned model, and the progress is reported based on correlation

of the as-built and the as-planned models.

The perspective framework key components are Structure from Motion, Multi-

View Stereo, Coherent Point Drift or Iterative Closest Point, and the Hausdorff

distance. At the initial phase, Structure from Motion takes a set of images as an

input, estimates camera parameters for each image and produces a sparse point

cloud. Next, the obtained data passes to Multi-View Stereo and the dense point

cloud is generated. At this stage, the acquired point cloud is the as-built model.

The next phase is aligning of the reconstructed as-built model to the corresponding

as-planned model. The alignment transformation is calculated with either Coherent

Point Drift or Iterative Closest Point. Finally, having the point cloud aligned, the

progress is estimated. This phase is performed in three steps. First, the Hausdorff

distance is calculated. Second, the as-planned model is color coded with a binary
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palette, where one color corresponds to the completed parts of the construction

object and another corresponds to the parts that are to be built. Third, the ratio

of completed points to the number of all points is computed. Finally, the color-

coded progress model and percentage of completion are reported to the end user.

The perspective cutting edge libraries for Structure from Motion are COLMAP,

OpenMVG, VisualSFM, TheiaSFM, and MVE. The chosen libraries for Multi-View

Stereo are COLMAP, OpenMVS, CMVS, CMPMVS and MVE. The libraries se-

lected for point cloud alignment are CPD (Coherent Point Drift) and libpoint-

matcher (Iterative Closest Point). Finally, the Hausdorff distance is computed

with Meshlab.

The chosen libraries are integrated into frameworks and tested on real case study

data obtained from a construction company. The case study experiment indicated

successful performance of the following frameworks: COLMAP-COLMAP-CPD-

Meshlab, COLMAP-COLMAP-libpointmatcher-Meshlab, and OpenMVG-OpenMVS-

CPD-Meshlab. These pipelines demonstrated their capability of performing reliable

and fast progress identification. Thus, the specified software combinations are sug-

gested for construction progress tracking. The proposed frameworks improve the

cutting-edge computer vision construction project progress monitoring approaches

in terms of reconstruction quality and computation time. In fact, the suggested

progress monitoring approach allows to reduce progress identification time from a

few hours to a few minutes.
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Chapter 1

Introduction

1.1 Background

Project progress monitoring is a crucial section of project management (Zubair,

Zaimi, Majid, and Mushairry (2006)). It undermines capturing an actual project

completion phase, comparing it to the schedule and reporting project performance

(Marr (2007)). Progress monitoring of construction projects traditionally includes

daily and/or weekly foremen handwritten progress reports. Then, these reports

are typed in to planning software such as Primavera P6, Microsoft Project or even

Microsoft Excel. The updated project information is later reviewed by project man-

agers along with as-planned 3D model or 2D drawings, initial schedules and other

construction documentation. Finally, project managers analyze project progress

and develop a plan for further work. Hence, the limitation of manual monitoring is

that it is an approximate, subjective, slow and time-consuming method of progress

tracking (Turkan, Bosche, Haas, & Haas, 2012).

Because of the manual progress monitoring nature, the ongoing progress is also

often reported with delays and errors. These circumstances make it difficult to

identify possible schedule delays and estimate overruns in advance (Sacks, Navon,

Brodetskaia, and Shapira (2005)). About 12.4 % of construction cost is determined

to be due to the delays in problem identification (Leung, Mak, and Lee (2008)).

1



Chapter 1. Introduction 2

Hence, project monitoring is critical for in-time and on-budget project comple-

tion. As such, progress monitoring is considered to be one of the most demanding

problems of the construction industry (Jin and Le (2014)).

Effective project monitoring (or project tracking) can be achieved by establish-

ing and pursuing the following practices: meaningful performance metrics at the

planning phase, well-defined milestones, rigorous tracking of the project perfor-

mance, achievements reward schemes and reviews and audits (Jin and Le (2014)).

While manual project tracking struggles with accomplishing the above mentioned

programs, automated progress tracking can be a key solution for making project

monitoring more efficient.

Automated progress monitoring is a mechanism allowing minimization of site

visits, up-to-date more precise control of project schedule and earned value, and

even quality control in some cases (X. Zhang et al. (2009a)). It also permits early

correction of human errors, decreases the number of man-hours needed for progress

control and eliminates project monitoring delays (Ahmed et al. (2012)). Further,

automated progress monitoring can be extended to the following features:

• automated warning alarms (for required/constrained parameters);

• continuous risk analysis;

• continuous updating and improvement of schedules, estimates, and processes;

• control of human recourses allocation;

• equipment administration (especially heavy equipment);

• keeping supply chain informed;

• updating as-built model;

• quality control;

• safety control;
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• supplied/used/required materials quantity control.

There are many technologies allowing automated or partially automated progress

tracking: bar coding, Radio Frequency Identification (RFID), Global Positioning

Systems (GPS), multimedia and pen-based computers, 3D laser scanning, and com-

puter vision (El-Omari and Moselhi (2011), Turkan, Bosche, et al. (2012)). These

technologies have some similarities as well as some differences. Thus, Figure 1.1

shows the automated progress tracking approaches schema organized based on their

similarities. The benefits and limitations of each of these methods are discussed

below.

Figure 1.1: Automated technologies for progress tracking

Bar coding, RFID, UWB and GPS is one group of methods for progress moni-

toring based on their similarity of logic of employment. These methods may assist

with materials, tools and equipment tracking.

Bar coding stands for optical machine-readable data representation correspond-

ing to an object of interest. Bar coding uses one and two dimensional codes (QR

codes). Bar codes scanners require a close contact to a sticker. The procedures

of this approach are typically labor intensive. Bar coding is very simple to use;

furthermore, it is even compatible with most modern mobile phones.

RFID involves tags data representation which is also to be scanned. However,

RFID tag scanning does not require close contact. Its distance range is generally
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up to 10 m. RFID uses magnetic tags with integrated chips. Chips are capable of

containing much more information than bar codes, and they are easily traceable

and might be encrypted. Finally, RFID requires specific equipment, which is much

more expensive and difficult to install and use.

GPS is quite similar to the RFID tracking approach. It involves employing

special tags, but in contradistinction to RFID this approach does not demand any

special tag-reading equipment. The limitation of GPS is that it possesses moderate

location accuracy and works only out-of-doors.

Multimedia and pen-based methods are used to facilitate other project tracking

approaches either manual or automatic. Multimedia data acquisition supplements

project information with all possible types of multimedia files. One example of

the multimedia approach might be setting up on-site web-cameras for construction

project surveillance. The pen-based method implicates using tablets on site. In the

mentioned scenario, the pen-based method could be potentially used for making

notes on the photos obtained from these cameras. The indicated data acquisition

technologies are likely to go along with the specially designed software.

Computer vision and 3D laser scanning can be combined in one group of methods

as they both acquire data in point cloud format. The first step of these methods

with respect to progress tracking is 3D point cloud reconstruction. After the point

cloud is obtained, the rest of the steps are similar. However, the computer vision

and 3D laser scanning data acquisition techniques are entirely different as well as

point clouds obtained by these methods have contrasting properties.

3D laser scanners capture real-world objects and/or environments to collect

spatial data by the use of laser light. Collected information is stored as a 3D

point cloud with three dimensional coordinates assigned to each point. The point

clouds produced by a laser scanner are dense. The scanning equipment uses a

high-speed laser scanner that, for example, is capable of scanning 360◦ view around

the horizontal axis and about 270◦ around the vertical axis (Golparvar-Fard et al.

(2011)). Laser scanners make quick and precise measurements. However, they are
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extremely high priced, quite heavy, not able to correctly handle moving objects

and do not recognize colors unless combined with a camera. Laser scanners also

require elaborated logistics for scanning medium and large size objects, likewise

combining scanned point clouds afterwards. Thus, laser scanning is not likely to be

used on construction sites in working hours and is not likely to be used for materials

structure identification or any kind of visual analysis.

Computer vision (also referred to as photogrammetry in this context) captures

real-world objects and/or environments to extract spatial information from photo

and video camera data. To clarify the terminology, computer vision is an interdisci-

plinary field that attempts to duplicate the effect of human vision by understanding

digital images (Sonka, Hlavac, and Boyle (2008)). In turn, photogrammetry is the

science of obtaining quantitative data form photos (Linder (2009)). Because these

two subjects intersect, they commonly implicate the same thing in terms of progress

measurement.

The photos or videos might be taken by static cameras, a drone, a worker with

his smart-phone or any combination of those. As such, the photogrammetry data

is easily obtainable. Hence, it is a legitimately affordable and flexible approach

to progress monitoring. Nevertheless, regardless of all the advantages, computer

vision method is based on complex mathematics and extremely demanding on com-

putational resources. Lastly, a point cloud produced by computer vision algorithms

are sparser than the ones obtained with laser scanners and they are prone to have

some noise.

To conclude, each described method of progress tracking is convenient for spe-

cific purposes (El-Omari and Moselhi (2011)). RFID/bar-coding/GPS might be

good for tracking materials or labor hours. Multimedia and pen-based methods are

convenient for facilitating construction processes by, for example, taking progress

photos of the construction site and making notes on these photos. Finally, computer

vision and laser scanning are capable of rapidly tracking changes of the amount of

work completed. In fact, a combination of some or all of these methods can be an
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effective way of progress monitoring.

The focus of this work is on tracking the amount of work completed automat-

ically. Computer vision and laser scanning have a good fit to the stated purpose.

These approaches flow is reconstructing an as-built construction object point cloud

model, comparing it to the corresponding as-planned model and identifying the

progress based on the models matching. These progress tracking techniques devel-

opment, upsides and downsides are identified in Chapter 2.

Finally, considering the technology potential, equipment price, and feasibility

of fast embedding of new progress tracking approaches to the actual construction

industry, I chose to investigate the potential of visual progress tracking of con-

struction projects. In this way, visual project tracking can be done without any

considerable investment. Likewise, this approach is hypothetically easy and quickly

embeddable to construction processes.

1.2 Computer Vision Applications

Computer vision is a powerful tool with various application. For example, computer

vision algorithms have been used in the following industries other than construction:

• archeology, for heritage data documentation, reconstruction and visualization

(Brutto and Meli (2012), Remondino, Del Pizzo, Kersten, and Troisi (2012));

• clothing industry, for virtual try-on application (Hauswiesner, Straka, and

Reitmayr (2011));

• food industry, for external quality inspection of fruits and vegetables (B. Zhang

et al. (2014), Saldaña, Siche, Luján, and Quevedo (2013)), for quality and

freshness control of fish and meat (Huang et al. (2016), Jackman, Sun, and

Allen (2011));

• manufacturing, for visual inspection, production process control, parts iden-

tification (Jain (2011));
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• medicine, for surgery trainings and preparation (Kolivand, Tomi, Zamri, and

Sunar (2015)), for detection of tumors or other divergence (Beneder, Fuechsel,

Krause, Kuhn, and Mueller (2008));

• meteorology, for snow depth estimation and snow-melt high flows prediction

(Miziński and Niedzielski (2017));

• security, for visual surveillance (Kale and Sharma (2012), Patrick and Bour-

bakis (2009)), for measurement of the human individual (Das and Meher

(2013)), Sansoni, Trebeschi, and Docchio (2009));

• topography, for terrain modeling (Fonstad, Dietrich, Courville, Jensen, and

Carbonneau (2013));

• wildlife management, for identification of animal species (Yu et al., 2013);

• wood industry, stock pile inventory assessment (Gibelli et al. (2016)).

In fact, computer vision has many prospective applications in the construction

industry other than progress tracking:

• asset monitoring and risk management (Tsoulkas, Kostopoulos, and Leven-

takis (2014));

• damage assessment (Zhou, Gong, and Guo (2015));

• equipment tracking (Zhu, Ren, and Chen (2016), J. Kim and Chi (2017),

Yuan, Li, and Cai (2016));

• interior finishing monitoring (Kropp, Koch, and König (2014), Hamledari and

McCabe (2016));

• safety assessment (Seo, Han, Lee, and Kim (2015));

• tracking workers (Yang, Arif, Vela, Teizer, and Shi (2010));
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• visual inspection of structures (Ellenberg, Branco, Krick, Bartoli, and Kontsos

(2014), Eschmann and Wundsam (2017), Kropp et al. (2014), Yan, Guldur,

and Hajjar (n.d.)).

This diversity of computer vision applications is an additional argument in sup-

port of investigating additional computer vision progress tracking approaches. A

cutting-edge visual progress tracking tools in construction is proposed by Golparvar-

Fard et al. (2010) and Golparvar-Fard, Peña-Mora, and Savarese (2012). The details

of this approach are described in Sections 2.2 and 2.5. While existing approaches

provide a variety of benefits, existing tools are associated with certain deficiencies

described as follows.

1. Existing visual progress tracking approaches do not take advantages of top-

notch computer vision algorithms.

2. As-built and as-planned model registration still requires manual input.

3. The existing computer vision progress tracking tools are not available in the

public domain.

The solutions to the listed issues are delivered in this research work.

1.3 Goal and Objectives

The hypothesis underlying this work is that that recent development of computer

vision techniques can be used to enhance progress tracking framework performance

by targeting the following advancements:

1. Improving 3D reconstruction speed and quality by using top-notch computer

vision algorithms.

2. Automation of an as-built and an as-planned model registration using appro-

priate techniques.
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3. Repositioning a cutting-edge computer vision progress tracking implementa-

tion to the public domain by utilizing open-source software packages.

The accomplishment of the identified objectives is expected to result in the

establishment of an open-source, refined progress tracking tool capable of providing

reliable and fast construction progress identification.

1.4 Research Methodology

The multiphase investigation was carried out for reaching the declared goal and ob-

jectives. Initially, the current approaches to progress tracking in construction were

reviewed in the existing body of knowledge, focusing on the employed algorithms,

methods’ merits and shortcomings, and experiment data. The gap for improve-

ment in current techniques was identified. Afterwards, the existing approaches to

progress tracking algorithms were reviewed in the computer vision domain. At this

stage, the modern state of the art techniques for point cloud reconstruction and

alignment were analyzed.

The identified computer vision algorithms were tested and debugged for correct

compilation and stable work. Next, the algorithms combinations were integrated

into frameworks for as-planned model point cloud reconstruction, as-planned and

as-built models alignment, and progress identification.

Finally, the proposed frameworks were examined on a real case data obtained

from the Ledcor construction company. The experiments filtered out slow and un-

stable algorithm combinations. Eventually, the remained frameworks demonstrated

fast and reliable progress tracking performance.

1.5 Thesis Organization

The following chapters are organized in the presented below manner.
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Chapter 2 provides insights into the state of the art of the spatial automated

progress tracking techniques. More specifically, it describes laser scanning and com-

puter vision approaches to construction progress tracking as well as development

of theirs concepts. Then, the key aspects of computer vision and laser scanning are

compared. Afterwards, the chapter closes with the computer vision research gap.

Chapter 3 introduces specific computer vision algorithms underlying the con-

struction visual progress tracking concept. It focuses on the algorithms for point

cloud reconstruction, registration and progress identification.

Chapter 4 presents the practical experiments with the cutting-edge computer

vision algorithms on a real construction case data. It describes all the conducted

experiments either they produced meaningful results or not as well as the chal-

lenges behind them. The effective algorithms are organized into progress tracking

frameworks. Finally, the proposed framework results are reported and summarized

in this chapter.

Chapter 5 finalizes the proposed computer vision progress tracking approach.

It compares the obtained results to the existing approaches; as well, this chapter

discusses the proposed method limitations and perspective developments.



Chapter 2

Literature review

2.1 Introduction

The principal approaches to visual progress monitoring in the construction domain

are computer vision and laser scanning. These approaches are reviewed in this

chapter. Particular attention however is paid to the computer vision technique as

this is principally relevant to this work.

2.2 Computer Vision

Early computer vision approaches to progress measure in the construction industry

are based on comparing photographs from static cameras to corresponding views

of the as-planned model. Detailed description of these approaches are presented in

the “Early approaches to photogrammetry progress tracking” section of this work.

The modern approaches start to appear. Their core is based on reconstruction

of an as-built 3D point cloud model and comparison the obtained model to the

corresponding as-planned model. These approaches are conditionally split into

three main streams: proprietary, commercial and open source software. Each of

the streams is presented in the following subsections of this work.

11
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2.2.1 Early Approaches to Photogrammetry Progress Track-

ing

Some early approaches to visual progress monitoring are presented in the research

work of Rebolj, Babič, Magdič, Podbreznik, and Pšunder (2008). They proposed

and implemented Automated Construction Activity Tracking System (4D-ACT), a

progress analyses tool based on the 4D model and photos of construction site. The

progress is reported by superimposing site images on corresponding 2D views of the

time framed 3D models (as parts of the 4D model data structure). The images are

segmented with the user’s help. Then the images are iteratively compared based

on the minimum differences between element features, and if the the difference is

under a certain threshold, then the 3D model at this point of time is determined to

be an actual construction progress state. In addition to the 4D-ACT, this research

team proposed to facilitate their progress tracking approach with supply chain

coordination and communication enhancement tools.

Around the same time, Ibrahim, Lukins, Zhang, Trucco, and Kaka (2009) pre-

sented an approach to visual automated determination of work breakdown structure

(WBS) stages. This approach to automated progress monitoring compares photos

from static cameras to the corresponding 3D model. At first, the WBS structure

is automatically generated. Then, the photos are taken at different points of time,

and the pairs of successive images are compared to each other. The difference

under a certain threshold is considered to be a segment of one of the work pack-

ages. Subsequently, the recognized component identifies the current work package

by comparing the acquired segment to different parts of the 3D model. Finally, the

system reports progress based on the ongoing WBS stage.

Similarly, X. Zhang et al. (2009b) proposed the semi-automated work progress

quantification method based on comparing the consecutive images form static cam-

eras. The researchers used a comprehensive threshold system for change detection.

As a result of this detection, altered regions are identified to be newly constructed
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components. The new components are then semi-automatically tied to the corre-

sponding work package, estimate, and schedule, and the work progress is evaluated.

The scientists also suggested that the newly constructed components can theoreti-

cally be automatically compared to the as-planned 3D model for automatic progress

identification.

One more related research was conducted in Y. Wu, Kim, Kim, and Han (2009).

The researchers monitored concrete column activities via comparing static camera

photos to a corresponding perspective view of a 3D CAD model in the AutoCAD

environment. The on-site photos were manually aligned to the matching 3D model

perspective view, preprocessed with a canny edge detector (Canny (1986)) and

watershed transformation (Beucher et al. (1992)) in parallel, then filtered using the

image mask created from a 3D model perspective view of the concrete columns and

finally fused. Having only columns information in the image, the columns were

allocated and quantified. However, the proposed method indicated low accuracy,

likely due to different lighting conditions.

The next part of this section continues development of the approaches to com-

puter vision progress tracking in three streams based on the software application

copyright.

2.2.2 Proprietary Software Approach

The modern baseline approach was introduced by Golparvar-Fard et al. (2009). A 4-

four dimensional augmented reality (D4AR) environment was proposed for progress

monitoring based on unordered progress photos of a construction site. The focus

of this approach is on large sites. This approach acquires casually taken images

on a construction site and generates a sparse 3D point cloud with an incremental

Structure from Motion (SfM) algorithm. In this research, a Scale Invariant Feature

Transforms algorithm (SIFT, Lowe (2004)) is used as the foundation of the photo

features detection for the SfM algorithm. Random Sample Consensus (RANSAC,

Fischler and Bolles (1981)) is used for choosing the correspondent features with
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a consistency under different view points. Then, when the SfM point cloud is

reconstructed, it is aligned with the as-built model with human input by employing

the closed-form solution of absolute orientation using unit quaternions. Finally, the

progress is determined visually by overlaying the as-planned model to the as-built

point cloud.

In a later study by Golparvar-Fard et al. (2010), constantly improving and more

affordable technologies allowed a drastic improvement of the D4AR tool with com-

prehensive computer vision and machine learning algorithms. The as-built and

as-planned clouds alignment were improved; the first as-built model is aligned to

the as-planned model with the same closed-form solution of absolute orientation

using unit quaternions, whereas each of the posterior as-built models is aligned to

the previous as-built model with an Iterative Closest Point (ICP, Besl and McKay

(1992)) algorithm. This approach to the alignment requires the user to determine

corresponding points only for the first iteration, thus all the rest of the iterations

are performed automatically. Further, the volumetric reconstruction of a construc-

tion object was added by applying the Multi-View Stereo (MVS, Furukawa and

Ponce (2010)) package and voxel coloring and labeling algorithm. And lastly, the

progress evaluation is implemented by a Bayesian probabilistic model with dynamic

thresholds learned through a support vector machine (SVM) classifier.

In the successive research by Golparvar-Fard et al. (2012), the D4AR environ-

ment was complemented with a dense reconstruction module and slightly improved.

However, the proposed pipeline still requires some minor user input. The computa-

tional time was reported to be more than a few hours, and the researchers suggested

that this computational time was adequate as the progress monitoring is generally

expected to be no more than one report per day.

Similar to D4AR, Karsch, Golparvar-Fard, and Forsyth (2014) developed a prod-

uct called ConstructAide. ConstructAide based on the same main principles as

D4AR. The Karsch et al. (2014) paper describes the overall product concept as

well as makes a comparison of the product to contemporary computer vision tools



Chapter 2. Literature review 15

such as VisualSFM (C. Wu (2013)) and Potosynth4. For the first time, the domain

expert evaluation was given; the participants described automated project moni-

toring as a desired tool, but criticized the current approach for being not scalable

and exhausting.

The concept of D4AR was further enhanced in the Bae, Golparvar-Fard, and

White (2014) paper. The D4AR environment was supplemented with the mobile

augmented reality subroutine allowing field personnel to have access to the project

monitoring data and make some notes to the construction 3D models with their

mobile devices. To allow these data manipulations, the computation power is relo-

cated to a server. The upgraded system name is a hybrid 4-dimensional augmented

reality (HD4AR). Similar to HD4AR, Zollmann et al. (2014) presented augmented

reality tool for visualization of construction progress.

The later works by Dimitrov and Golparvar-Fard (2014) and Han and Golparvar-

Fard (2014) emphasized importance of materials recognition and classication for

improving D4AR progress monitoring reliability. Han, Cline, and Golparvar-Fard

(2015) proposed a theory of construction sequence rules for more stable progress

tracking under limited visibility or fewer detailed 4D models and WBS. The re-

search by Han and Golparvar-Fard (n.d.) proposed to register construction object

photographs over the corresponding 3D model. This improvement produced more

dense output point cloud, although required more manual work in the reconstruc-

tion process. Lin, Han, and Golparvar-Fard (2015) suggested to perform visual

progress monitoring data collection for construction projects via Unnamed Aerial

Vehicles (UAV). The interest to UAV was also expressed in the review by Ham,

Han, Lin, and Golparvar-Fard (2016) and the 3D mapping for surveying earthwork

research by Siebert and Teizer (2014).

Rashidi, Brilakis, and Vela (2014) proposed determining as-built point cloud

scale automatically. The research study recommends adding a specic size plywood

cube for outdoor and a letter-size piece for indoor visual data acquiring scenar-

ios. As the dimensions of the artificial object is known, the further point cloud
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reconstruction is performed in absolute scale. The reported average length error

for outdoor and indoor applications are 0.27 and 0.14 cm/m respectively.

The most current progress monitoring advancements are labeling of the con-

struction object parts as walls, floor and ceiling (Perez-Perez, Golparvar-Fard, and

El-Rayes (n.d.)), static occlusions filtering (Han, Muthukumar, and Golparvar-Fard

(n.d.)), facilitating construction project staff communication via web-based inter-

face (Lin and Golparvar-Fard (2016)) and improving HD4AR localization process

(Bae et al. (2016)).

2.2.3 Commercial Software Approach

Son and Kim (2010) proposed using Bumblebee XB3 stereo vision system along with

Triclops commercial software to acquire 3D data. The specified approach produced

a point cloud output from each location. Next, the produced models are combined

using ICP algorithm. Finally, the as-built model is compared to the corresponding

CAD model. The results are presented visually in the form of an as-built 3D CAD

model and quantitatively in the form of a number of built elements out of total

element quantity. The proposed approach has been tested on a steel structure, and

the researchers reported 100% accuracy.

In another paper, C. Kim et al. (2011) suggested that the existing progress

tracking methods lack automated as-built and as-planned models alignment. The

researchers proposed using two stage alignment. In this scenario, a point cloud

model was acquired by the commercial photogrammetric software PhotoModeler

Scanner based on 12 photos. After acquiring the point cloud, the first alignment

step Principal Component Analysis (PCA) is used for coarse registration. The sec-

ond ICP is used for fine registration. The scientists reported that the proposed

two-step alignment approach successfully determined the transformation parame-

ters on the experiment data set.

The consecutive work, Son, Kim, and Kim (2011) advanced the proposed previ-

ous method with concrete detection features in the photos based on its color. The
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scientists suggested a few methods based on combinations of different color spaces

and machine learning algorithms. Ultimately, the combination of Support Vector

Machine (SVM) and Hue Saturation Intensity (HSI) color space was proposed as

outperforming all the rest of the approaches in the performed experiment.

In Ahmed et al. (2012), the researchers suggested using photogrammetry for

piping works monitoring. The researchers have done much research with laser

scanners equipment; however, they had great motivation to continue their research

with photogrammetry because of:

• small initial investment required;

• possibility to use a photo-camera on an unstable platform;

• prospect of using photogrammetry for texture identification;

• camera distance to an object of interest is flexible; in fact, it is in the range

of an inch to thousands of feet;

• no logistic challenges as with laser scanners (easy repeatable);

• no eye safety or health issues;

• working temperature range of photo-cameras is much higher than that of laser

scanners;

• no intervention with workers or machines;

• easy transferable;

• smoothly upgradeable equipment over time.

The basic concept is reconstruction of the pipes based on specially coded tar-

get tags. The tags are to be manually marked. Then, they are to be identified

using commercial software such as PMScanner, and ultimately, the pipe network is

reconstructed and compared to a 3D CAD model.
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An alternative tool for progress monitoring was presented in Braun et al. (2015).

The researchers proposed to use the combination of VisualSfM (C. Wu (2013))

and SURE Semi-Global Matching (SGM) commercial software (Rothermel, Wenzel,

Fritsch, and Haala (2012)) for an as-built model reconstruction. The proposed

concept is almost fully automated, although it still requires manual input of control

points for scale identification.

2.2.4 Open Source Software Approach

A full open source approach to progress tracking of construction project progress has

not been introduced to the best of the author’s knowledge. However, “Comparison

of Laser Scanning, Photogrammetry and SfM-MVS Pipline Applied in Structures

and Artificial Surfaces” by Skarlatos and Kiparissi (2012) suggested using open-

source software for surface reconstruction, including surfaces of existing buildings.

In the proposed open source reconstruction pipeline, the researchers used Bundler

and PMVS software packages. Bundler (Snavely, Seitz, and Szeliski (2006b)) is a

SfM tool for reconstruction based on unordered image collections. It takes a set of

images as an input, estimates camera parameters, detects feature correspondences,

and ultimately produces a sparse point cloud as an output. PMVS (Patch-based

Multi-view Stereo software, Furukawa and Ponce (2010)) is a multi-view stereo

(MVS) tool. In the proposed pipeline, it takes the Bundler output and produces a

dense point cloud output. Thus, the result of the proposed method is a dense point

cloud.

The researchers tested their method on three different data sets taken by a

Nikon D90 camera: 5 photos of a sphere of 300 mm diameter, 75 photos a facade

approximately 13 m wide and 5.5 m height, and 212 photos of an electricity power

station approximately 180 m2 and 25 m in height. The Bundler-PMVS surface

reconstruction pipeline demonstrated impressive results on these datasets. More

information about the results is in Section 2.4.
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2.3 Laser Scanners

Simultaneously with the computer vision approach to progress tracking, the laser

scanning method was proposed for progress tracking automation. Bosche and Haas

(2008) introduced approaching automated progress tracking with a laser scanner.

The researchers suggested comparing laser scanned as-built 3D point cloud models

to the as-planned ones. According to this concept, the as-planned point cloud

model is created out of a geo-referenced 3D CAD model. At the same time, the

as-built model is to be geo-referenced while scanned. Ultimately, the point clouds

are aligned using the corresponding geo-referencing and compared to each other.

The given approach is considered to be fully automated but with only one man-

ual step, point set registration. To be more specific, each as-built model and the

as-planned model are to be registered in the mutual coordinate system using a

standard n-point registration algorithm. The scientists conducted an experimented

with progress tracking on a laboratory column-slab structure. The laboratory ex-

periment results indicated 80% accuracy on object recognition, less than 30mm

of dimensional accuracy and 5 min processing time of one scan. In Bosche and

Haas (2008), the researchers proposed to using a specified approach for automated

project control in terms of Quality Assessment (QA) and Quality Control (QC).

The proposed project control method was later advanced with a couple of ma-

jor enhancements (Bosché (2010)). The first enhancement is implementation of

the ICP algorithm instead of the standard n-point registration. This improved the

accuracy, robustness and efficiency of the laser scanning method. Furthermore, this

enhancement allowed a decrease in the number of manual steps required for the pro-

posed project control approach. Only the initial registration should be performed

manually at this point, as it still requires n-point registration. The second enhance-

ment is adding a dimensional compliance checkup to the project control algorithm.

The reported Mean Square Error (MSE) is reported to be lower than 40 mm2. The

performance of the developed approach was tested on the construction of an in-
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dustrial steel structure building. Following this study, semi-automated plane-based

coarse registration accompanied by ICP-based fine registration software processing

of laser scanned point clouds was proposed in Bosché (2012).

In Turkan, Bosche, et al. (2012), the proposed progress monitoring tool was

improved utilizing a 4D as-planned model. The updated algorithm was tested on a

superstructure construction and achieved up to 98% of precision recognition rate.

The proposed approach was updated with an earned value tracking feature (Turkan,

Bosché, Haas, and Haas (2012)). This function was added as a spreadsheet and the

earned value is computed based on the project monitoring control tool output.

In C. Kim, Son, and Kim (2013), the complex hybrid approach to structural

components progress monitoring was proposed. The researchers are used a laser

scanner for coordinate detection and a camera for color detection. In this way,

the as-planned model is a 4D BIM model and all the structural components are

pre-specified in this as-planned model. Furthermore, this study assumes that the

construction process is performed strictly according to the specified BIM model

plan with certain logical association. Following the assumptions, the obtained as-

built model is aligned to the corresponding as-planned 3D CAD model according to

the researchers’ previous work on computer vision progress tracking (C. Kim et al.

(2011)). Then, matching an as-built model to an as-planned one is performed via

a comprehensive matching three steps pipeline; segmenting the as-planned model

into corresponding structural components of the BIM model, feature extracting

from both models, and verifying each component’s as-built status by classifying

the corresponding 3D data set as a column, a beam, a slab or other. Thus, the

as-built status is identified for each pre-specified structural component.

Nahangi and Haas (2014) suggested using an updated automated progress ap-

proach for pipe spool fabrication quality control. The defects methodology in this

paper is two-stage PCA-ICP alignment. Noticeably, in such an approach noise is

filtered by manually adding desired objects to the region of interest. Only the

region of interest is further analyzed; the other regions are ignored. Testing of
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this approach was performed on a laboratory set. The researchers reported more

than 90% accuracy. The scientists also reported difficulties with identification of

symmetrical geometries as a limitation of the proposed method. Further, this con-

cept was improved for more robust detection of incomplete spool point clouds in

Czerniawski, Nahangi, Walbridge, and Haas (2015).

The further work of Bosché and Guenet (2014) proposed automated surface

flatness control as the development of the idea introduced by Bosché (2012). The

researchers examined their approach on two actual concrete slabs and reported

that the proposed approach is comparable and even very likely outperforms the

commonly used manual control practices. The latest studies on this topic by Bosché

and Biotteau (2015) and Valero and Bosché (2016) expanded the surface flatness

control approach with the surface waviness analysis and automatic detection of any

area of concern having unusual flatness.

Biswas, Bosché, and Suna (2015) presented an approach of smart planning of

the scanner locations for optimization of the number of scans required to fully cover

a construction object.

Bosché, Ahmed, Turkan, Haas, and Haas (2015) proposed a circular cross-

section (e.g. pipes) object detection technique integrating the Hough transform

based circular cross-section detection approach.

The further development of the C. Kim et al. (2013) concept resulted in au-

tomated schedule update product by Son, Kim, and Kwon Cho (2017). The re-

searchers proposed to update the project schedule in Microsoft Project tied to

Autodesk Revit. The 4D BIM model was made in the Syncro software package.

The alignment of as-built and as-planned point cloud is performed by Cyclone from

Leica Geosystems utilizing the user’s manual point selection. The ongoing project

status is analyzed by each model component status, and the activities plan (the

start and finish dates) in Microsoft Project are updated.
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2.4 Computer Vision vs Laser Scanners

In Golparvar-Fard et al. (2011), the image-based SfM 3D reconstruction approach

is compared to laser scanning in terms of accuracy, data processing time, equip-

ment price and additional features. The experiments were based on four objects:

a masonry block indoors, a masonry block outdoors, an exterior column at a con-

struction site, and an interior column at a construction site. The obtained by laser

scanning and computer vision as-built models were superimposed over each other

and compared. The computer vision approach is sufficiently accurate but still has

slightly less precision than the laser scanning approach. The computer vision data

processing time is indicated to be somewhere in the range form 10 min to 7 hrs

whereas the laser scanning data is processed in 1.5 - 2 hrs (Golparvar-Fard et al.

(2011)). Also, the researchers pointed out that the laser scanning method requires

8 - 16 labor-hours for equipment set up versus 0 - 1 labor-hours required for tak-

ing photographs. The equipment price for photogrammetry was estimated to be

in the range of 100 - 500 USD versus the laser scanning equipment cost of 10,000

- 130,000 USD (Golparvar-Fard et al. (2011)). Regarding the additional features,

the scientists indicated that both methods are capable of the progress monitoring

data collection, quality control, static progress visualization and safety analysis as

well as comprehensive emergency building assessment. Other than that, computer

vision possesses the options of remote visualization inspection, remote decision mak-

ing, dynamic progress visualization and safety analysis, site logistics visualization,

construction crew and machinery analysis and rapid emergency building assess-

ment. In contrast to all the advantages of computer vision, laser scanning’s unique

features are only alignment and defect inspection (Golparvar-Fard et al. (2011)).

Furthermore, the laser scanning approach requires special training to operate as

well as adds new project management tasks for project tracking when in fact the

computer vision approach requires neither of these. As the conclusion of the above

mentioned comparison, the computer vision approach to progress tracking of con-
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struction projects is likely to be more applicable on a construction site than laser

scanning.

One more study by Skarlatos and Kiparissi (2012) compared the point clouds

produced by lasers scanning versus the ones produced by photogrammetry SfM-

MVS pipeline in term of data density, quality, registration and methodology. The

experiments were based on three sets of spatial data: a small sphere, a facade

and an electricity power station. There were three approaches tested: commercial

software for point cloud acquisition through digital camera Zscan, free software

packages for point cloud acquisition through digital camera Bundler-PMVS, and

laser scanning (or terrestrial laser scanning, TLS). In conclusion, Bundler-PMVS

combination is comparable with laser scanning in terms of point cloud density,

accuracy and processing time as well as allowing a higher degree of automation

in cases of small and medium reconstruction size, whereas on large scale objects

laser scanning performs better in terms of quality and processing time. In turn,

Bundler-PMVS and laser scanning certainly outperformed Zscan. Furthermore, the

scientists noticed that Bundler-PMVS is open-source software, giving a dramatic

cost upside to this method. At the same time, the main drawbacks of laser scanning

are the high price, lack of portability, noise from moving objects and poor color

acquiring.

The research by Nahangi et al. (2015) compared applying photogrammetry and

laser based approaches for quality control and quality assurance (QA/QC). Au-

todesk 123D Catch was used for the image-based as-planned model reconstruction.

The experiment was held on a multi-spool laboratory installation. The reported ac-

curacy of the photogrammetry model is 0.369◦ and 0.184 cm versus 0.237◦ and 0.02

cm of laser scanning. Thus, photogrammetry tolerance is a legitimate method for

quality control and quality assurance, although the laser based approach is more

accurate. Additionally, the researchers defined the image-based technique to be

significantly cheaper than the other one as well as it requires only basic prior famil-

iarity. Based on this research, the computer vision versus laser scanning comparison
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summary is represented in Table 2.1.

Table 2.1: Main characteristics of the visual progress tracking approaches

Properties Laser scanning Computer vision

Price of the required
equipment, USD

10,000 - 50,000 100 - 500

Extensive personnel
training required

yes no

Dedicated personnel
required

yes no

Accuracy high high enough, but
less than TLS

Computation time, hrs 1.5 - 2 0.2 - 7
Equipment set up time,
labor-hours

8 - 16 0 - 1

Equipment transferability laborious easy
Temperature sensitivity yes almost no
Handling dynamic objects
and occlusions

no yes

Visual inspection no yes
Easy upgradeable no yes

The table reveals that the computer vision excels laser scanning in almost all

the major categories of comparison. At the same time, computer vision is not as

accurate as laser scanning, although it is accurate enough for progress identification

and even quality control.

2.5 Research Gap

The cores of modern computer vision approaches to construction progress tracking

were dramatically developing and evolving in the 2009 - 2012 years (Golparvar-

Fard et al. (2009), Golparvar-Fard et al. (2012), Y. Wu et al. (2009), C. Kim et

al. (2011), Skarlatos and Kiparissi (2012)). Later on, the existing approaches were

complemented with advanced features such as materials recognition (Dimitrov and
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Golparvar-Fard (2014), Han et al. (n.d.), Son, Kim, Hwang, Kim, and Kang (2014)),

progressive WBS sequencing (Han and Golparvar-Fard (n.d.)), construction objects

labeling (Perez-Perez et al. (n.d.)), and filtering of static occlusions (Han et al.

(n.d.)). However, the cutting edge computer vision technologies have greatly im-

proved during the recent years, such that, the core technologies of computer vision

progress tracking could be potentially upgraded to more stable and fast point cloud

reconstruction and alignment methods. In addition, the computer vision approach

has not been integrated in much of the working processes of construction companies,

to the best of the author’s knowledge.

A lack of testing of the computer vision approach on a variety of construction

objects and in different weather conditions might cause companies to be cautious,

patiently waiting until the proposed approach is better tested. Furthermore, the

fact that this software is proprietorial or commercial in most of the cases makes

visual progress tracking expensive or even impossible to try on actual construction.

A summary of all major reported computer vision datasets is reported in Table 2.2

along with the software and algorithms employed for analysis.

According to the literature review, only 14 data sets have been used for as-

built model reconstruction with only 6 of these sets used for full progress tracking.

All the data sets from the literature review are shown in Table 2.2. Notably,

6 full progress tracking data sets were employed for progress tracking using only

proprietary and commercial software. Overall data sets size is from 5 to 288 photos.

The construction objects captured in the reported data sets are mostly of large and

small sizes and of simple geometry. Some of the examples of the computer vision

data are presented in Figures 2.1-2.10.

All the algorithms for alignment but the one proposed by C. Kim et al. (2011)

require manual input of reference points for correct as-built and as-planned point

clouds scaling and coordinate alignment. The approach to alignment introduced by

C. Kim et al. (2011) is two step PCA-ICP registration. Noticeably, the proposed

two steps registration has not been referenced in the later research.
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Regarding the progress identification algorithms, there are three main streams:

overlaying as-built models, point cloud density overlaying CAD model elements and

the Bayesian probabilistic model with SVM binary classifier. The first algorithm

iteratively superimposes as-built models over each other. The second algorithm

determines number of points of as-built model overlaying surfaces of the corre-

sponding as-planned model and makes a decision based on the point density on

different elements. In details, if the overlaying point cloud density is higher than

the specified threshold, the element is considered to be built, otherwise the element

is considered not in place. The third approach is the advanced version of the second

one. The threshold here is iteratively determined by SVM, and the final decision is

made on probability statistics.

To conclude, the author of this work is motivated to pursue computer vision

progress monitoring of construction projects based on the following reasons:

• existing progress tracing approaches employ outdated algorithms;

• existing approaches are likely to fail in complex geometry objects reconstruc-

tion or work extremely slow.

The existing computer vision progress tracking techniques could be improved

in terms of reliability and computational speed and tested on industrial modules

assembling process.
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Figure 2.1: Construction progress registration over a photograph (Golparvar-Fard
et al. (2009))

Figure 2.2: As-built point cloud example (Golparvar-Fard et al. (2010))

Figure 2.3: Examples of an interior and an exterior column photographs (Golparvar-
Fard et al. (2011))
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Figure 2.4: Point cloud of pipes resulting from registering several stereo-pairs to-
gether (Ahmed et al. (2012))

Figure 2.5: TLS model (left), PMVSall (right) (Skarlatos and Kiparissi (2012))

Figure 2.6: Power station reconstructed model with Bundler-PMVS (Skarlatos and
Kiparissi (2012))
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Figure 2.7: Construction-site scene example (Son and Kim (2010))

Figure 2.8: Matching of as-planned model to as-built one (Son and Kim (2010))

Figure 2.9: Examples of as-planned and as-built models (C. Kim et al. (2011))
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Figure 2.10: As-built point cloud (Braun et al. (2015))



Chapter 3

Proposed Methodology

3.1 Introduction

The concept of computer vision progress tracking is organized by employing a se-

quence of algorithms. The proposed framework is demonstrated in Figure 3.1.

The system requires construction object photographs and an as-planned 3D

model as an input. The on-site photographs are passed to the point cloud recon-

struction algorithm for an as-built point cloud creation. Meanwhile, the corre-

sponding as-planned 3D model is sampled to a point cloud. The next step after

having as-built and as-planned point clouds ready is their registration. This step

implicates aligning point clouds in terms of scale and coordinate system. Next,

the progress identification is performed based on the correspondence between the

as-built and as-planned point clouds. Ultimately, the framework output is progress

a report.

The final results are reported in the form of an as-planned point cloud or 3D

model with parts color coded corresponding to the current progress phase. The

report might additionally include the current WBS stage and the percentage of

completion.

34
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Figure 3.1: Computer vision progress monitoring flowchart

3.2 Point Cloud Reconstruction

Point cloud reconstruction creates a spatial object consisting of points, a 3D point

cloud, based on 2D images. Considering that visual progress tracking input data is

on-site photographs, and output is as-built point cloud model. Point cloud recon-

struction is a fundamental part of computer vision progress monitoring.

A pair of Structure from Motion (SfM) and Multi-View Stereo (MVS) algorithms
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are commonly used for point cloud reconstruction from multiple photos in different

domains such as robotics, medicine, gaming, archeology and construction. SfM

is used for sparse point cloud reconstruction of an object of interest and camera

parameters estimation based on a series of photographs. The SfM output is passed

to MVS. The MVS algorithm produces a final dense point cloud. The produced

point cloud is an as-built model. The SfM and MVS algorithms are covered in

details later in this chapter.

3.2.1 Structure from Motion

Structure from Motion (SfM) is a computer vision method for three-dimensional

object (the “structure”) reconstruction from multiple two-dimensional images of a

static scene (Hartley and Zisserman (2003)). This algorithm also computes camera

position and orientation (the “motion”) corresponding to each of the images. The

SfM problem is not trivial because the image capturing process is not normally

invertible. A point in space captured with a camera has two known parameters,

which are its projected 2D space coordinates and one unknown parameter, its dis-

tance from the camera. For that reason, additional information is required to solve

the 3D from 2D reconstruction problem. One of the solutions of the stated problem

is to use geometric information from multiple views, which is done using structure

from motion method.

SfM ultimate output is sparse point cloud along with camera parameters which

commonly includes rotation and translation matrices, focal length and lens distor-

tion coefficients for each image. This algorithm can be considered as a skeleton for

the MVS dense point cloud reconstructed. It is crucial to have a legitimate cam-

era parameters, as failure to acquire a proper skeleton will result in poor accuracy

and completeness of MVS dense point cloud reconstruction. In the context of this

work, poor dense point cloud quality implies deficient as-planned model. Subse-

quently, this results in an inadequate progress report and in unwanted product for

the industry. That is why particular attention is paid to the structure from motion
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algorithm in this work.

Snavely et al. (2006a) presented an Structure form Motion tool for 3D recon-

struction of a scene based on large unstructured collections of photographs. This

approach produced accurate reconstructions in scenarios with hundreds and thou-

sands of randomly captured photographs. An example of some of the steps of the

proposed method is shown in Figure 3.2. This concept provoked colossal interest

in the further development of SfM among researchers (Özyeşil, Voroninski, Basri,

and Singer (2017)).

Figure 3.2: Collection of photographs, reconstructed point cloud and photo browser
(Snavely et al. (2006a))

The novel approach embodies three major developments: image-based modeling,

image-based rendering, and image browsing, retrieval, and annotation. Considering

the focus of this thesis, image-based modeling is the object of interest in Snavely

et al. (2006a), as it uses SfM (Hartley and Zisserman (2003)) for recovering camera

parameters, pose estimation, and sparse point cloud reconstruction. A general

pipeline flowchart for the incremental SfM is demonstrated in Figure 3.3. More

information on SfM and each of its step can be found in Baeza-Yates, Ribeiro-

Neto, et al. (1999), Hartley and Zisserman (2003), Nkanza (2005), Snavely et al.

(2006a), Beder and Steffen (2006), Ko and Ho (2016), Schonberger and Frahm

(2016), Özyeşil et al. (2017).

The first group of processes in the incremental SfM flowchart (Fig. 3.3) is cor-

respondence search. This part is common for various computer vision applications

such as SfM, image alignment, object recognition, motion tracking, indexing and
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Figure 3.3: Incremental Structure from Motion flowchart
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content-based retrieval and robot navigation. The second group of processes is

incremental reconstruction, and it is specific to the SfM approach.

In the correspondence search step, the distinctive key points (or features) in each

image are detected with the Scale Invariant Feature Transform (SIFT) algorithm

(SIFT, Lowe (2004)). Several thousand points that are normally identified in a

photograph. The detected features are invariant to image transformation. Next,

the features are matched with the Random Sample Consensus algorithm (RANSAC,

Fischler and Bolles (1981)) for the accuracy of the correspondence. At this stage

matches are detected and the features without matches are discarded. A simple

example of SIFT-RANSAC features detection and matching on a pair of images is

demonstrated in Figure 3.4.

Figure 3.4: SIFT-RANSAC features detection and matching example

The features are matched based on appearance only, which is not enough for

detecting actual point matches on different images. That is why geometric verifi-

cation is required. Geometric verification reviews feature matches on potentially

overlapping images. Hence, transformations that map features between all image

pairs are sequentially computed based on projective geometry. If a transformation

maps a tolerable number of features between an image pair, then the images are

geometrically verified. In this case, the mapped features are considered to be in-

liers, and the features which are failed to map are outliers and they are dismissed

for feature computation. The output of this stage is a set of geometrically verified

image pairs with corresponding inlier matches.
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A visual explanation of geometric verification on a simple one point scenario is

shown in Figure 3.5. Two cameras are illustrated with their camera centers OL and

OR, and left and right image views correspondingly. The point X is an arbitrary

point in 3D space. The camera centers and the point X create a plane OLXOR.

XLX and XRX are back-projected rays of a 3D point X to the left and right views

respectively. Thus, if after transformation the point OL maps to OR then this this

match is geometrically verified. Otherwise, if the transformed OL point maps to

any other place in space such as an X? point then this match is rejected.

Figure 3.5: Point correspondence geometry

Then, the incremental reconstruction phase takes place. The reconstruction

is initialized from a pair of images with vast number of inlier matches and many

overlapping views. Choosing an appropriate initial image pair is vital for robustness,

accuracy, and performance of the reconstruction. Failing to choose a proper pair of

images might result in increasing the reconstruction time, decreasing point cloud

density, or even failing of the overall reconstruction process.

Image registration spatially align images from different viewpoints. This process

is required because photographs captured from different points are distorted with

respect to each other. More specifically, optimal transformation for image alignment

is estimated at this stage.

Having estimated the image transformation, triangulation determines the loca-
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tion of 3D points by forming triangles to their projections on 2D multiple pho-

tographs. Triangulation creates a triangle between camera centers or the point

projections and a 3D point. Visual example of triangulation is the plane OLXOR

in Figure 3.5. New scene points are triangulated and added to the point cloud if

at least one more image covers these new points from a different angle. In ideal

scenario, triangulated 3D point locations should lie at the intersection of the back-

projected rays as it shown in Figure 3.5. However, practically this is not generally

the case. The back-projected rays do not exactly intersect because, for example,

geometric noise from lens distortion or point detection error, which leads to inac-

curacy in 3D points coordinates. Hence, only 3D points which optimally fit their

projection points should be found. Error optimization algorithms are employed for

error minimization of the measured and predicted point positions in all views where

a point is visible. Triangulation is an essential part of the overall SfM pipeline, as

it raises the stability of a point cloud through repetition and allows registration of

new photographs by providing more corresponding points.

The next stage is bundle adjustment, it refines a visual reconstruction to jointly

produce optimal 3D point cloud and viewing parameters. To be more specific,

bundle adjustment is used for simultaneous refining of all the 3D point coordinates

and all the camera parameters by minimization of an appropriate reprojection er-

ror cost function. In other words, this mathematical optimization minimizes the

discrepancy between actual image measurements and their predictive models. A

visual example of the bundle adjustment effect is illustrated in Figure 3.6. The

left part of the figure represents a reconstruction stage before bundle adjustment,

and the right part of the figure is the scene after bundle adjustment. The camera

centers with their photographs are lying approximately on the circle line and a

point cloud is inside the circle. The difference between the left and right parts of

Figure 3.6 indicates that the bundle adjustment algorithm aligns the point cloud

along with the camera views. This stage heavily depends on a proper initialization.

A failure to appropriately choose the initial image pair is likely to result in the
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bundle adjustment cost function convergence to a local minimum. Consequently,

this leads to a decrease in accuracy, an increase in computation time or even to

bundle adjustment failure.

Figure 3.6: Bundle adjustment effect

The removing statistical outliers ends an image pair processing loop. Next,

the remaining views are added incrementally into a merged representation. After

all photographs have passed the incremental reconstruction loop, the structure

form motion algorithm is terminated. The ultimate SfM output is a sparse point

cloud. Additionally, SfM provides camera parameters data for further point cloud

processing. Overall illustration of the incremental SfM pipeline is shown in Figure

3.7.

The maximally efficient algorithm performance is achieved by adhering to the

following recommendations:

• images should have high visual overlap;

• each object of interest should be seen on multiple images;

• images should be captured from different viewpoints;

• images should be captured at identical illumination conditions. This advice

includes avoiding capturing photographs against the sun as well as capturing
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Figure 3.7: Illustration of SfM reconstruction

shadows;

• the objects of interest should be properly textured. Otherwise, if the objects

are of similar texture, transparent, or shiny, it will reduce the number of

identified unique points. Consequently, these circumstances will decrease the

number of correspondences and the number of points in a point cloud.

To demonstrate the SfM algorithm, an experimental set of photographs of a

soda can was taken. This data set included 90 photographs with a pixel resolution

of 3264 x 2448, and it was taken by a simple iPhone 5s camera. The photographs

were then passed to the SFM algorithm for sparse point cloud reconstruction and

camera parameters estimation. Ultimately, a sparse point cloud of 8,562 points was

reconstructed. An example photograph from the photo set is shown in Figure 3.8.

Figure 3.9 indicates a sparse point cloud of the soda can, which is the ultimate

output of the SfM algorithm.
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Figure 3.8: Soda can photo from the
soda can experimental dataset

Figure 3.9: Sparse point cloud of the
soda can

3.2.2 Multi-View Stereo

Multi-view stereo (MVS) is a group of methods for reconstruction of an entire 3D ob-

ject model from an unstructured collection of photographs using images stereo cor-

respondence (Furukawa, Hernández, et al. (2015); Seitz, Curless, Diebel, Scharstein,

and Szeliski (2006)). MVS takes the output of SfM, which is a sparse point cloud

and camera parameters, along with the photographs and outputs a dense point

cloud.

The MVS part of the overall reconstruction process is as important as the SfM

part. If we metaphorically represent structure from motion output as a skeleton,

than multi-view stereo output is a body. Having the best superior sparse point

cloud and camera parameters does not mean having an accurate and complete

ultimate dense point cloud if there is no efficient MVS algorithm available. That is

why an MVS technique is significant for having adequate final results.

There are over 50 different approaches to Multi-view stereo available today

(Bailer, Finckh, and Lensch (2012)). One of this techniques is based on multiple
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depth maps. This approach demonstrated superior reconstruction results on its own

as well as in comparison to different cutting edge techniques (Bailer et al. (2012);

Schönberger, Zheng, Frahm, and Pollefeys (2016); Schöps et al. (n.d.)). A general

multiple depth maps MVS algorithm is described in this section. An example of a

depth maps MVS algorithm pipeline is illustrated in Figure 3.10.

Having SfM output, an image for further depth map computation is selected.

For each photograph a proper corresponding image is chosen. This image is chosen

based on the list of specific requirements, such as similarity to the first image scale,

large enough view angle difference, and a big overlap of the scene of view. Having

an image pair, the depth map is computed. The depth map is an image that

contains information related to the distance from the objects on a photograph to

the corresponding viewpoint.

Depth map calculation is possible because an image pair provides sufficient

information to estimate the distances of interest. This is demonstrated in Figure

3.11. Two points with distinctive depth in space X and Y have the same projection

XL and YL onto the left view image. Simultaneously, XR and YR have different

positions, which is to say that the second camera resolves the ambiguity, enabling

measurement of depth via triangulation.

Having OLXOR and XLXXR similar triangles, the distance values can be com-

puted. Figure 3.12 shows the computation geometry. OL and OR are left and right

views camera centers correspondingly, B is the baseline distance between the cam-

era centers, X (x, z) is the real world point and XL (xL, f) and XR (xR, f) are its

projections to the corresponding views, f is the focal length, and z is the distance

from X to the baseline. Finally, there are the algebraic equations of the depth map

computation:

xL = f
x

z
(3.1)



Chapter 3. Proposed Methodology 46

Figure 3.10: Multi-View Stereo flowchart

xR = f
B − x
z

(3.2)
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Figure 3.11: Triangulation from a stereo image pair

Figure 3.12: Depth calculation

xR + xL = f
B

z
(3.3)

z = f
B

xR + xL
(3.4)

The obtained value of z in the Equation 3.4 is the distance from the real world

point X to the baseline (or depth). The ultimate depth map consists of the com-

puted depth for each pixel. xR + xL is called disparity (d) and implies a point

displacement in different images. Taking disparity into account, there is the final

depth equation:
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Figure 3.13: Left image, Tsukuba
Scharstein and Szeliski (2002)

Figure 3.14: Right image, Tsukuba
Scharstein and Szeliski (2002)

z = f
B

d
(3.5)

Firstly, the coarse depth map is built based on unique points in the SfM output.

Next, the depth computation is propagated onto adjacent points. When the depth

is computed, it is stored as an image. The example of a stereo pair and a depth

map image is shown in Figures 3.13, 3.14, 3.15, 3.16. The first two images (Figures

3.13 and 3.14) are the left and right views, correspondingly. Figure 3.15 is an image

with left and right views overplayed; the left image is represented with red channel,

and the right one is represented with blue channel. Figure 3.16 is the depth map.

In this image, the closer objects look brighter and the farther objects look darker.

The next stage of the MVS algorithm is filtering of the depth maps from outliers.

Filtering outliers implies rejecting the points with erroneous depth values and the

points which do not form a surface. This is done by segmenting the images by

depth discontinuities. The points form a depth segment if they have similar depth

and their segment area does not overlap with other segment areas. Then, all the

regions with a small number of points, less than 15 for example, are deleted. The

points discrepant with all the segment depth values are discarded. Once the depth

maps are refined, they are compared against each other and the points in the depth

maps that have inconsistent or corrupted depth matches are rejected. Figure 3.17
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Figure 3.15: Stereoscopic image with the left image coded in red channel and the
right image coded in blue channel

Figure 3.16: Grayscale depth map, Tsukuba Scharstein and Szeliski (2002)

illustrates some resulting cases of depth maps comparison to each other. Depth

map for the point X is consistent, whereas the depth maps for the points Y and Z

are inconsistent.

The optimal depth values are transformed into 3D points. The non-optimal

points might be used for improving the optimal points location. Ultimately, the

final output of the MVS algorithm dense point cloud is formed.

The schematic effect of the MVS algorithm on a sparse point cloud is illustrated

in Figure 3.18. There are three images of one structure from different angles in the

top of the figure. Also, there is a fragment consisting of 3 points on a sparse point
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Figure 3.17: Some cases of multiple depth maps comparison

cloud which is shown in the left bottom rectangle; as well, these points projections

on the input images are demonstrated. Eventually, the right bottom rectangle

illustrates the densified sparse point cloud fragment obtained by employing the

MVS algorithm.

Figure 3.18: MVS densification effect on the fragment of a sparse point cloud

To demonstrate the effect of MVS on an actual point cloud, the already men-

tioned dataset of the soda can photos and SFM output are used (see subsection

3.2.1). A dense point cloud of 145,150 points is reconstructed, and it is illustrated

in Figure 3.19. For contrast, the sparse point cloud of this soda is shown close to
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the dense point cloud figure.

Figure 3.19: Dense point cloud of the
soda can

Repeated Figure 3.9: Sparse point
cloud of the soda can

3.3 Point Cloud Registration

At the current progress tracking stage, there are a reconstructed as-built point

cloud model and a corresponding as-planned 3D CAD model. The next logical step

is comparing these models.

There is a list of common difficulties, that should be dealt with for proper models

comparison:

• the models are in different format (a point cloud and a 3D model);

• the models are in distinct coordinate systems;

• the models are of different scale.

Considering the stated problems, the initial step is transforming an as-planned

model into the same format. Two options are considered for proceeding with this
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task: converting the as-built model to the CAD model or converting the as-planned

model to point cloud. The first option is quite challenging because the points on

reconstructed point cloud surfaces are scattered with some tolerance because of the

nature of the algorithm as well as these points always have some amount of noise.

There a separate research is devoted to this topic. The second option which is

converting a CAD model to a point cloud is straightforward. In this scenario, a

CAD model is sampled to a point cloud. Thus, considering all the aspects of models

format conversion this research work proposes using point cloud as a primary models

format.

Having two models in the same format, the point clouds can be aligned and

scaled to be the same size. The required transformation problem is commonly re-

ferred to as similarity transformation. Similarity transform addresses all the trans-

formations of interest of this thesis work, including rigid transformation (translation

and rotation) and uniform scaling.

Rigid transformation is commonly aligned with the original Iterative Closest

Point method (ICP, Besl and McKay (1992)). However, similarity transform re-

quires more enhanced ICP modifications, as, for example, described in Pomerleau,

Colas, and Siegwart (2015). These extensive methods have been widely used in ob-

ject recognition, different kinds of inspections, medical imaging and mobile robotics.

One more comparatively new approach for similarity and rigid transformations

is Coherent Point Drift (CPD, Myronenko and Song (2010)). This method has

been successfully used for medical applications and for geographic change detection

(Gadomski (2016)). At the same time, CPD has not been used in the construction

industry to the best of the author’s knowledge.

Both ICP and CPD approaches are promising for the construction progress

tracking pipeline for both computer vision and laser scanners data registration;

hence, they are presented in this section.
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3.3.1 Iterative Closest Point

Iterative Closest Point (ICP) is an iterative registration algorithm. In computer

vision, ICP associates data sets into a common coordinate system by minimizing

the alignment error. Herein, the general ICP framework is described according to

Besl and McKay (1992); Pomerleau et al. (2015); Pomerleau, Colas, Siegwart, and

Magnenat (2013); Pomerleau, Magnenat, Colas, Liu, and Siegwart (2011).

The goal of ICP is to align two point clouds, where the one called reading is to

be aligned with the one called reference in the reference coordinate system. This

is the same as finding a proper transformation of the reading to the reference. The

ICP underlying mathematics is presented in below in accordance with Pomerleau

et al. (2015). The optimization function for these point clouds looks as follow:

A

BT̂ = argmin
T

(
error

(
T (AP ), BΘ

))
(3.6)

where AP is the shape of reading point cloud in the coordinate system A, BΘ

is the shape of reference point cloud in the coordinate system B, and T (AP ) is the

geometrical transformation of the reading point cloud. The goal of this loss function

is to find the best estimate of the transformation
A

BT̂ of the P from its original

coordinate system A to the reference one B by minimizing the transformation

error.

More specifically, the loss function is computed based on pairs of points from the

reading and the reference point clouds. Commonly, the points are chosen based on

their distance, such as the closest two points from different point clouds forming a

pair. This approach does not usually guarantee the best optimal results. Therefore,

the transformation results might be improved by using extra information from

descriptors and/or features as well as by applying filters.

There are two main characteristics in a point cloud potentially influencing the

transformation results. The first one is features. A feature represents point geomet-

ric information. The second is descriptors. A descriptor describes point non-spatial
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information, such as color for example.

Most ICP approaches provide data filters prior to starting algorithm iterations.

There are generally two strategies for applying such filters. The first one is reduc-

ing computational complexity. This is usually achieved by removing points with

weak influence on the optimization function. The second strategy is improving

registration by making the optimization function more precise through adding ex-

tra information to points. For instance, the points might be complemented with

normal or local shape properties.

Knowing the features, descriptors and having different filters, the L1 loss func-

tions is developed as below.

error(P,Q) =
∑
p,q∈M

d(p, q) (3.7)

where, M = match(P,Q) = (p, q) : p ∈ P, q ∈ Q is the set of matches between

the reading and the reference point clouds, and d(p, q) is the distance between

points p and q.

In order to enhance this function the weights might be assigned to each match.

This potentially decreases the outliers and the noise influence on the final results.

error(P,Q) =
∑
p,q∈M

w(p, q)d(p, q) (3.8)

where W = w(p, q) : ∀(p, q) ∈M .

Having this condition set up, in an ideal case scenario the bast estimated trans-

formation is A
BT. However, this is not the case in the real world. This is where

employing ICP comes in useful. The concept of ICP is minimizing the error for all

points, that is why each ICP iteration leads to a better transformation estimate

even having bad matches. Thus, ICP consists of a transformation series of the read-

ing point cloud. New matches are iteratively computed with each transformation.

This loop is terminated when the error threshold is reached or when the maximum

specified number of transformations is reached. This optimization process looks
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like this:

i+1
iT← argmin

T

(
error

(
T (iP ),Θ

))
(3.9)

Finally, the ultimate transformation estimate is a combination of all the iteration

transformations:

A

BT̂ = (O
i

i
i−1T) ◦ Tinit (3.10)

where Oi
i

i−1T = ... ◦ 3
2T ◦ 2

1T is the composition of transformations and Tinit is

an initial transformation.

The algorithm is summarized in a flow chart in Figure 3.20.

3.3.2 Coherent Point Drift

Coherent point drift is an iterative probabilistic method for point cloud registration

(Myronenko and Song (2010)). This is an alternative to the ICP approach. The

point cloud alignment in this method is considered as a probability estimation

problem. The Gaussian mixture model (GMM) centroids of the reading point

cloud (as-built model) are fit to the reference point cloud (as-planned model) by

maximizing the likelihood. During each iteration the probabilities for all GMMs

are computed and the transformation is estimated, which allows the points to move

coherently as a group to maintain the point cloud structure. Considering that

both point clouds have significantly more good points than outliers, CPD is more

invariant to outliers than ICP. The difference of the methods underlying ideas is

presented on a simple example in Figures 3.22 and 3.21.

CPD underlying mathematics is presented below according to the original paper

by Myronenko and Song (2010).

The principal CPD probability density function is shown in the Equation 3.11.
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Figure 3.20: ICP flowchart
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Figure 3.21: Closest points simple
concept illustration

Figure 3.22: Gaussian mixture
model simple concept illustration

p(x) = ω
1

N
+ (1− ω)

M∑
m=1

1

M

1

(2πσ2)
D
2

exp

(
||x− ym||2

2σ2

)
(3.11)

where

• ω is the weight given to points to account for outliers and noise, such as

0 ≤ ω ≤ 1. The weight is generally distributed uniformly;

• D is the dimensionality of X and Y (D = 3 in this particular case with point

clouds);

• XN×D = (x1, x2, ..., xN)T is the reference (as-planned model) point cloud;

• YM×D = (y1, y2, ..., yM)T is the reading (as-built model) point cloud or the

GMM centroids;

• σ2 is the bandwidth of the GMM.

Next, GMM centroids are characterized by Θ and σ2. The number and types of

parameters of Θ depends on the type of performing transformation (rigid or affine

transformation, for example). The objective function Q is defined in Equation 3.12.

Q(Θ, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)||xn − T (ym,Θ)||2 +
NPD

2
log σ2 (3.12)
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where

NP =
N∑
n=1

M∑
m=1

P oldP old(m|xn) ≤ N (3.13)

P old(m|xn) =

exp

(
− 1

2

∣∣∣∣∣∣xn−T (ym,Θold)
σold

∣∣∣∣∣∣2)
∑M

k=1 exp

(
− 1

2

∣∣∣∣∣∣xn−T (yk,Θold)
σold

∣∣∣∣∣∣2)+ c

(3.14)

and

T (y,Θ) - is transformation of the point y with the Θ parameter

c = (2πσ2)
D
2

ω

1− ω
M

N
(3.15)

Subsequent iterations minimize Q. The iterations are terminated when the error

threshold is reached or when the maximum specified number of transformations is

reached.

The algorithm is summarized in a flow chart in Figure 3.23.

Nevertheless, although the CPD algorithm looks simpler than ICP, it is really

effective. Likewise, CPD might be complemented with special data and outliers

filters.

3.4 Progress Identification

The next and final stage after having as-built and as-planned models aligned and in

the same scale is progress detection. For this stage, the already built construction

object parts should be identified. Based on the available data, one possible effec-

tive and computationally inexpensive method is the Hausdorff distance. According

to the literature review, this method has not been used for progress tracking of

construction objects, although the Hausdorff distance is commonly used in com-

puter vision for point cloud comparison. Hence, the progress identification stage is

implemented with the Hausdorff distance.



Chapter 3. Proposed Methodology 59

Figure 3.23: CPD flowchart

3.4.1 Hausdorff Distance

The Hausdorff distance is “the maximum of the distances from a point in any of

the sets to the nearest point in the other set” (Rote (1991)). Mathematically, given

two point sets A and B, the Hausdorff distance is a maximum function (Rucklidge

(1996)), defined as:



Chapter 3. Proposed Methodology 60

h(A,B) = max
a∈A

min
b∈B
||a− b|| (3.16)

Thus, each point of A is associated with its closest surrounding point from B,

and the most distant of these links is h(A,B). This implies, that each point from

A is located within the h(A,B) distance from B (or its nearest neighbor form B).

The general concept of the Hausdorff distance is pretty obvious from the illus-

tration in Figure 3.24. The picture shows three main stages of the computation

(from left to right):

• measuring distances from each point of one set of points to each point of

another set of points;

• selecting the closest points neighbors;

• choosing the maximum distance among ones selected in the previous step.

Figure 3.24: Step by step Hausdorff distance computation stages

Thus, the next step after aligning the as-built and the as-planned models is

calculating the Hausdorff distance between them. When the distance is calculated

the results are visualized in the form of a point cloud with meaningful colors assigned

to each point. Figures 3.25 and 3.26 are examples of two 3D models comparison.

Figure 3.25 demonstrates two 3D models and the their Hausdorff distance model

visualization. Figure 3.26 shows some details of the Hausdorff distance model vi-

sualization. Noticeably, the Hausdorff distance is visualized with a red-green-blue

map, thus red is the minimum, green is the medium distance, and blue is the

maximum distance.



Chapter 3. Proposed Methodology 61

Figure 3.25: Hausdorff distance models (Cignoni (2010))

Figure 3.26: Fragments of hausdorff distance model (Cignoni (2010))



Chapter 4

Experimental Study

4.1 Introduction

The object of interest of the case of study is industrial modular construction. The

industrial modules are of complex geometry with various tiny elements, which makes

them challenging to reconstruct. More specifically, the proposed computer vision

reconstruction core consists of an SFM-MVS algorithms pair, where the first al-

gorithm tends to identify distinctive points and the second one densifies the area

around unique points. Hence, this method performs exceptionally well for solid

surfaces such as civil buildings or groundwork but not necessarily for sophisticated

spatial structures. Thus, if the proposed computer vision progress tracking tech-

nique demonstrates high performance for modular construction then it is most likely

to perform well for other construction sub divisions such as civil, infrastructure and

industrial construction. To find the optimal project tracking approach, a case study

was performed in partnership with the Ledcor construction company focusing on

modular construction. The object of the case study of interest is one module of a

modular gas plant construction project in Canada.

This chapter follows up the theoretical concepts introduced in Chapter 3 with

practical applications.

62
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4.2 Input Data

Data acquisition was performed on an actual modular construction yard. The photo

and video data of a module construction was taken with a rudimentary camera of

an iPhone 5S. The photos resolution is 8 MP (3264 x 2448 pixels). The video is

captured with a resolution of 2 MP (HD or 1920 x 1080 pixels) with a frequency of

up to 30 frames per second. The examples of some acquired data are presented in

Figures 4.1 - 4.6.

Some challenges of taking photographs on an actual construction site are as

follows:

• a person who is taking pictures should be wearing personal protective equip-

ment;

• a person who is taking pictures should have gone through safety trainings;

• a construction site is usually congested that’s why it is sometimes difficult or

unsafe to take pictures from all desirable angles;

• there are no workers allowed to be in the photographs because of possible

privacy issues; thus, all the photos should be taken outside of regular working

hours or during breaks;

• some images around a module data set are usually taken against the sun

which might potentially affect 3D reconstruction quality.

4.3 Point Cloud Reconstruction

Point cloud registration is a core of construction project monitoring approach. The

quality of reconstructed point clouds significantly affects progress control precision.

Simultaneously, the timing of a point cloud reconstruction might potentially be a

major progress monitoring limitation. Reconstruction time of more than one day is
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Figure 4.1: Construction module
photograph example 1

Figure 4.2: Construction module
photograph example 2

Figure 4.3: Construction module
photograph example 3

Figure 4.4: Construction module
photograph example 4

Figure 4.5: Construction module
photograph example 5

Figure 4.6: Construction module
photograph example 6
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not reasonable given the current level of high technologies and the degree of people

interacting with them. Hence, the point cloud reconstruction experiments were

performed focusing on point cloud quality and reconstruction time. Furthermore,

there is a limited amount of information available on existing computer vision

progress tracking approaches in constriction; as well, no tools were found to be

available for progress tracking out of the box. Thus, this section is extensively

focuses on experiments.

This section is organized in the way that it starts from the very first experi-

mentation, then it describes the best tested solutions, and finally proceeds to the

proposed point cloud registration approach for progress monitoring and discusses

encountered challenges.

4.3.1 Initial Experiments

The very first experiments were based on self-written reconstruction code in Mat-

lab on a synthetic data set. This approach required knowing camera parameters

before proceeding with actual reconstruction. That is why camera calibration was

performed with a Matlab Camera Calibrator for camera parameters estimation.

The initial step of camera calibration is to create a checkerboard with black and

white cells of a constant known size. The 10 x 10 cells checkerboard was created

with a cells size of 10 x 10 cm. Then, the photos of this board were taken from

different angles. Some photos of the checkerboard are presented in Figures 4.7

and 4.8. The Matlab Camera Calibrator detects cells corners for each image and

knowing the actual size of these cells it computes camera parameters and camera

locations. Figure 4.9 shows the Matlab Camera Calibrator visualization results

based on 15 photographs. The histogram plot indicates projection errors for each

image as well as the mean error in pixels. The projection error is defined as the

error between an actual image and mean image projected to the camera matrix.

In this particular example the mean error is less than one pixel, which is likely

caused by that the camera’s inability to capture more explicit pictures than one
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Figure 4.7: Checkerboard for camera
estimation photograph example 1

Figure 4.8: Checkerboard for camera
estimation photograph example 2

pixel. The other three plots in Figure 4.9 indicate camera locations in reference to

the checkerboard.

Figure 4.9: Matlab Camera Calibrator results visualization

After having the camera calibrated, the reconstruction of an android puzzle bot

was attempted based on artificial data sets. These data sets were chosen for an

initial test of the proposed approach, because its reconstruction is supposed to be
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Figure 4.10: Android puzzle bot ex-
ample 1

Figure 4.11: Android puzzle bot ex-
ample example 2

easier and faster than industrial model reconstruction. Thus, the reconstruction of

the android puzzle bot was tested on the data sets of different sizes starting from

15 to 40 images. Some examples of these data sets are presented in Figures 4.10

and 4.11.

The reconstruction attempts using self-written code with the Matlab Computer

Vision System Toolbox failed. There were very few spatial points detected and the

reconstruction took many hours. Hence, this method did not work and the search

for a better solution started.

Next, the reconstruction of the same data sets was approached with VisualSFM

structure from motion software package (C. Wu, n.d.) proposed by C. Wu (2013).

The VisualSFM demonstrated better performance in terms of point cloud quality

and reconstruction time. However, the output models were still very sparse and

of weak quality. In fact, increasing the number of images did not grow the model

density after some point.

After going through more computer vision papers and talking to computer vision

researchers I realized that the android puzzle bot dataset is not suitable data for

proper testing of SfM algorithm performance. SFM requires the object of interest

to be of various textures, which is mentioned as a suggestion to a data set for

SfM in subsection 3.2.1. However, the puzzle bot texture is very similar all around

the object. This almost uniform structure of the puzzle bot resulted in a small
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number of distinctive points and consequently in a poor point cloud. In fact, data

bases like the puzzle bot data one could be potentially reconstructed with different

computer vision algorithms such as Shape From Silhouette. More information on

this reconstruction method can be found in Cheung, Baker, and Kanade (2005).

This new realization forced me to test available algorithms with an actual mod-

ule photo set (the same as shown in Figures 4.1 - 4.6). The first reconstruction

was performed based on one hundred 8 MP photographs. The Matlab code im-

plementation was terminated after a day of running. VisualSFM demonstrated

acceptable computational speed (less than a day) and point cloud density. The

investigation of possible enhancements revealed that the VisualSFM computation

time can be improved by enabling the VisualSFM CUDA option. CUDA technol-

ogy (C. Nvidia (2010)) dramatically increases computer performance by employing

computation on a graphics processing unit (GPU) instead of a central processor

unit CPU, although the CUDA option can be enabled only if an Nvidia is available

for computation. That is why a special computer was purchased for this research.

This computer characteristics are Intel i7-7700K, Nvidia GTX Titan X with 12 GB

GDDR5X and 16 GB DDR4 2400 MHz. Therefore, computation on 3584 cores of

Nvidia GTX Titan X (Nvidia (n.d.)) instead of computation on a processor such

as Intel i7-7700K with its 8 threads decreased computation time significantly.

Having an effective computer, the industrial module reconstruction was per-

formed based on different numbers of photographs for determining optimal data

set size. One hundred photos reconstruction indicated an adequate point cloud

density. Four hundred photos demonstrated better density, but it took consider-

ably more time than the first experiment. A two thousand images VisualSFM test

run was forcibly terminated after running for more than one day. One day+ compu-

tation time is not considered to be acceptable within the framework of this research.

Ultimately, an empirical approach demonstrated that the input of two to four hun-

dred images in 8 MP resolution is optimal for VisualSFM module reconstruction of

an industrial module.
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In addition, a video around an industrial module was recorded. The video

length is about 2.5 minutes. Using the iPhone 5s camera’s capturing frequency

of up to 30 frames per second, around 4,000 frames were extracted out of this

video. The frame extraction was written and performed in Matlab. This photo

set has lower resolution images, whereas the transition between the subsequent

images is very smooth. Noticeably, the smooth transition has favorable effects

on the reconstruction result as it helps to detect more consequent matches, which

subsequently densifies a point cloud. Thus, the reconstruction of the same industrial

module was performed based on various numbers of frames. Ultimately, the input

of four to six hundred video frames produced much denser point cloud than the one

based on photos.

The resulting point cloud models are saved in the ply format. The ply models

are viewed with the Meshlab software (Meshlab, n.d.) presented by Cignoni et al.

(2008). The resulting screenshot of the VisualSFM sparse point cloud is shown in

Figure 4.12.

Figure 4.12: Sparse industrial module point cloud produced by VisualSFM

Then the sparse point cloud model was densified with the CMVS multi-view

stereo software (Furukawa (n.d.)) proposed by Furukawa and Ponce (2010). This

approach radically increased the point cloud density as can be seen in Figure 4.13.
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Figure 4.13: Dense industrial module point cloud produced by CMVS based on
VisualSFM output

Later, the sparse reconstruction results was improved by using the CMVS soft-

ware package (Jancosek (n.d.)) presented in Jancosek and Pajdla (2011). This

software creates a mesh by covering segments of densified points with rectangular

patches taken from the input images. CMVS was tested on previously produced

sparse point clouds of the industrial module. Notable, CMVS improved the model

visual quality, although its performance indicated that the increasing number of

points in the sparse point cloud does not always guarantee better mesh model

reconstruction results. Presumably, the reason for this “unexpected” mesh recon-

struction depending on the number of images is that the large number of photos

increases the projection error, which is likely to add extra noise to the model. This

extra noise then increases the number of incorrect clusters. Ultimately, the best

performance on the tested data sets was achieved with four to six hundred video

frames.

The schematic effect of the CMVS package on a point cloud is illustrated in

Figure 4.14. There are three images of one structure from different angles in the

top of the figure. Also, there is a fragment consisting of 4 points on a point cloud

that is shown in the left bottom rectangle; as well, its points projections on the
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input images are demonstrated. The right bottom rectangle illustrates the same

fragment on a mesh model obtained by employing the CMVS algorithm.

Figure 4.14: CMPMVS effect on a point cloud fragment

The mesh model of the industrial module which was produced by the CMPMVS

tool based on the sparse point cloud is presented in Figure 4.15.

Figure 4.15: Mesh of the industrial module produced by CMPMVS based on Visu-
alSFM output
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4.3.2 Experiments with the Newest Software

Although the previous results were quite impressive at first glance, the compu-

tation time was still somewhat slow and some important structural parts were

missing. The VisualSfM-CMVS and VisualSfM-CMPMVS require at least four

hundred video frames, and the computation time is more than four hours. The re-

sulting point clouds size are 1,400,000 and 86,000 points, respectively. Also, Figure

4.16 demonstrates the largest piece which is missing in the reconstructed models

and this structural part is marked in red. Figures 4.17 and 4.18 are the screenshots

of the CMVS and CMPMVS. The place where the specified piece should have been

is marked in red. Having finished VisualSfM-CMVS and VisualSfM-CMPMVS re-

construction, I concluded that the reconstruction results were not good enough as

well as not fast enough and I proceeded to looking for a better reconstruction tool.

Figure 4.16: Industrial module photograph with the missed in the reconstruction
models piece marked in red

Keeping the quality and time issues in focus, I started searching for other top-

notch software packages and libraries available for 3D reconstruction. What I came
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Figure 4.17: CMVS reconstruction
model with the missing piece marked
in red

Figure 4.18: CMPMVS reconstruc-
tion model with the missing piece
marked in red

across were the following products:

• COLMAP (Schnberger (n.d.)) SfM-MVS software presented by Schonberger

and Frahm (2016) and Schönberger et al. (2016);

• OpenMVG (Moulon, Monasse, Marlet, and Others (n.d.)) SfM library pre-

sented by Moulon, Monasse, Perrot, and Marlet (2016);

• TheiaSfM (Sweeney (n.d.)) SfM library presented by Sweeney, Hollerer, and

Turk (2015);

• MVE (Fuhrmann (n.d.)) SfM-MVS library presented by Goesele, Snavely,

Curless, Hoppe, and Seitz (2007);

• OpenMVS (OpenMVS: open Multi-View Stereo reconstruction library (n.d.))

MVS library presented by Moulon, Monasse, and Marlet (2013).

All the previously mentioned tools such as VisualSFM, CMVS and CMPMVS

are free for research purposes; however, they are closed source. In contrast, all the

discovered solutions such as COLMAP, OpenMVG, TheiaSFM, MVE, OpenMVS

are open source C++ tools.
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Considering that this thesis work requires an as-planned model to be a dense

point cloud and that the described software proposes SfM or MVS or SfM-MVS

reconstruction options, these tools are used as stand alone tools as well as in com-

binations of different libraries. Figure 4.19 indicates all the combinations of the

software packages tested in this work.

Figure 4.19: Combinations of software tested in this work

Experimenting with different reconstruction techniques demonstrated that the

optimal data set for the majority of libraries is of 100 - 200 video frames. Adding

more images does not make a big difference in terms of point cloud density whereas

it somewhat increases computation time.

TheiaSfM did not produce a proper reconstruction with any of tested data sets.

This library considered the tested datasets as combinations of small sets. This

issue led to reconstruction of each dataset as separate two or three point clouds.

Hence, each separate point cloud was of low density with some parts missing. Many

different reconstruction options have been tested, but they did not help. Because

of this, the experiments with Theia library stopped at this point. Similarly, the

reconstruction of large datasets with VisualSfM takes a lot of time and still lacks

quality. Thus, the experiments with CMVS and CMPMVS stopped at this point

too.

For all the other libraries, a data set was formed for testing their performance
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on the actual construction project. This test data set was organized consisting of

138 video frames obtained by uniformly sampling a 2 min 19 sec video at a 1 frame

per second sampling rate. The specified dataset was passed to each reconstruction

algorithm combination. The reconstruction results are reported herein. All the

experiments were conducted on the Intel i7-7700K, Nvidia GTX Titan X, 16 GB

DDR4 computer running Ubuntu 16.04 LTS.

Ultimately, the clouds are reconstructed by the following libraries or libraries

pairs:

• MVE, where SfM and MVS reconstruction parts are performed fully by MVE;

• OpenMVG-MVE, where SfM is performed by OpenMVG and MVS is per-

formed by MVE;

• OpenMVG-OpenMVS, where SfM is performed by OpenMVG and MVS is

performed by OpenMVS;

• COLMAP, where SfM and MVS are performed fully by COLMAP with de-

fault reconstruction parameters;

• COLMAP-adjusted, where SfM and MVS are performed fully by COLMAP

but the image maximum size (height or width) is set to 800 pixels inside the

program.

COLMAP-adjusted was chosen as a “light” version of the COLMAP approach.

It is faster than COLMAP but has lower point cloud density.

The numbers of points in each point cloud are presented in Figure 4.20 and the

reconstruction time for each cloud is shown in Figure 4.21.

Based on the statistics, one might think that the MVE and OpenMVG algo-

rithms produced the best point clouds in terms of density. However, these point

clouds possess the biggest amount of blue noise. The output point clouds screen-

shot of the presented software packages are demonstrated in Figures 4.22 - 4.26. In

fact, the blue noise is caused by the sky in photographs.
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Figure 4.20: SfM-MVS algorithms number of reconstructed points

Figure 4.21: SfM-MVS algorithms computational time

In conclusion, the COLMAP and the OpenMVG-OpenMVS reconstructions are

able to demonstrate the module silhouette, whereas the rest of the models are

completely noisy.

4.3.3 Filtering Noise

Although the noise caused by blue sky should be easy distinguished from the module

part of point clouds based on its color, I did not find any out of the box solution for

this problem. That is why I wrote the code for separating the sky and the module

based on my logical understanding of the red-green-blue (RGB) color space.

There are two lessons I learned while testing different approaches to noise filter-
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Figure 4.22: MVE reconstructed
point cloud

Figure 4.23: OpenMVG-MVE recon-
structed point cloud

Figure 4.24: OpenMVG-OpenMVS
reconstructed point cloud

Figure 4.25: COLMAP reconstructed
point cloud
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Figure 4.26: COLMAP-adjusted re-
constructed point cloud

ing. First, there are no module parts similar to the sky color. Second, filtering the

points with maximum value of blue channel and not considering the values of the

red and green channel does not guarantee filtering actual blue points. For example,

a high value of blue and a high value of red gives a purple color which is not the

color of interest at this point.

Here is the best empirical found formula for noise filtering based on the recon-

structed point clouds. The value of interest might be called blue concentration and

its formula is the following:

blue concentration = blue−max(red, green) (4.1)

where blue, red and green are values of corresponding color channels in the

scale [0, 255]

The concept of this equation is that it calculates concentration of “poor” blue

relatively to the rest of the colors. In other words, if the value of blue is high and

the values of the red and the green are low, than this color is blue. Thus, blue

concentration is calculated for each point in the point cloud and then the values

higher than a certain threshold are filtered out. In this work, the blue concentration

threshold of 35 is used. This number was obtained experimentally based on the
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Figure 4.27: MVE filtered point cloud Figure 4.28: MVE noise point cloud

Figure 4.29: OpenMVG-MVE fil-
tered point cloud

Figure 4.30: OpenMVG-MVE noise
point cloud

author’s visual perception.

After filtering the MVE and the OpenMVG-MVE, the reconstruction was still

left with a considerable amount of nose. The filtered versions of these point clouds

along with their noise point clouds are shown in Figures 4.27 - 4.30 for demonstra-

tion of the noise filtering algorithm performance. At the same time, the COLMAP,

COLMAP-adjusted and the OpenMVG-OpenMVS point clouds were significantly

improved. Their filtered versions are show in Figures 4.31 - 4.33.

The filtering process takes less than a minute on 584,000 - 3,632,000 points point

clouds, which is why the filtering time has modest effect on the overall progress
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Figure 4.31: OpenMVG-OpenMVS filtered point cloud

Figure 4.32: COLMAP filtered point cloud

tracking time. Simultaneously, the numbers of points in the clouds are changed

substantially. The updated numbers of point as well as the contrasting initial

numbers of points are presented in Figure 4.34. Around 20% of the points are

removed as outliers in the MVE and OpenMVG-MVE point clouds, and about

10% in the rest of the point clouds.
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Figure 4.33: COLMAP-adjusted filtered point cloud

Figure 4.34: SfM-MVS algorithms number of reconstructed points. The orange
color implicates the number of points in the filtered point clouds. The blue indicates
the numbers of points in the original point clouds

4.3.4 Proposed Reconstruction Software

The MVE and the OpenMVG-MVE filtered point clouds still have too much noise,

which is likely to affect progress measurement results. Because of this, the experi-

ments with these libraries were stopped at this point.

Thus, the there are two libraries combinations, COLMAP and OpenMVG-

OpenMVS, that produced good quality point cloud models in a reasonable time. In

the case of industrial modules reconstruction, COLMAP and OpenMVG-OpenMVS
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clearly outperformed VisualSFM-CMVS, VisualSFM-CMPMVS, and TheiaSfM

and somewhat outperformed the points number forerunners the MVE and the

OpenMVG-MVE because these libraries results are excessively noisy. Consider-

ing the properties of the reconstructed point clouds, COLMAP makes the most

visually precise reconstructions with a minimum amount of noise. At the same

time, OpenMVG-OpenMVS is the fastest presented approach to the reconstruc-

tion with time of modules reconstruction of 11 min versus 110 min of the stan-

dard COLMAP reconstruction, although it creates notable amount of noise. The

COLMAP-adjusted approach is located somewhere in between the already men-

tioned approaches in terms of point cloud quality and time. The COLMAP-adjusted

produces less dense point cloud than COLMAP as well as less amount of noise than

OpenMVG-OpenMVS whereas its computation time is 40 min.

All three approaches demonstrated similar progress tracking performance, which

are discussed later in this chapter. Selecting a particular reconstruction technique

depends on the circumstances. When high attention to details is desired, it is

recommended to use COLMAP; when fast reconstruction is required, OpenMVG-

OpenMVS would be preferable, and the COLMAP-adjusted is the trade-off be-

tween attention to details and computation speed. These and all the rest of the

approaches’ characteristics are presented in Table 4.1.
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Table 4.1: Fundamental characteristics of the presented reconstruction software

Properties COLMAP
COLMAP
-adjusted

OpenMVG
-OpenMVS

Type open source open source open source
Platform Windows/Linux Windows/Linux Windows/Linux
Compilation required no for Windows,

yes otherwise
no for Windows,
yes otherwise

yes

SfM computation
time, min

4 4 2.5

MVS computation
time, min

106 36 8

Number of points in
filtered cloud, thousand

2,258 514 3,237

User interface yes yes no
Command line interface yes yes yes
Documentation yes yes yes

There is not much literature comparing the reconstruction libraries, however

Schonberger and Frahm (2016) reported the SFM part of COLMAP to significantly

outperform VisualSfM and ThieaSfM in terms of completeness. Likewise, Schöps et

al. (n.d.) reported the MVS part of COLMAP substantially surpassing CMPMVS

and PMVS (which is based on CMVS) in terms of accuracy and completeness on 2

cm evaluation threshold. These paper confirm the obtained results in this work.

There are also some interesting computation parts which might be accessed

through the COLMAP user interface. They are presented in Figures 4.35 - 4.45

which demonstrate different algorithm parts performance on the actual data set.

This part follows up the flow presented in Chapter 3.

The first COLMAP step is reconstruction of a sparse point cloud with SfM.

The resulting sparse point cloud is shown in Figure 4.35. Also, camera centers with

their views and orientations are illustrated around the point cloud in red. Thus, it

can be seen where the photos were taken relatively to the object of interest itself.

I chose to demonstrate the COLMAP flow on on one main image and two
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Figure 4.35: COLMAP sparse point cloud reconstruction

axillary ones. The main image was chosen randomly and it is the main one only

for presentation purposes, not for reconstruction. The main image with distinctive

points computed with SIFT and marked in red is presented in Figure 4.36. This

photograph is number 130 in COLMAP. Figure 4.37 demonstrates the number of

putative matches of the image 131 with the other images. Image 131 was chosen

to be one of the axillary images as it has the maximum matches with the main

image. Likewise, image 137 was chosen as the one having a medium number of

matches with the main image. Images 131 and 137 are shown in Figures 4.38 and

4.39, correspondingly.

The visualization of putative matches between the main and the axillary images

are shown in Figures 4.40 and 4.41.

The next reconstruction step is depth map computation. The examples of depth

maps are shown in Figures 4.42 - 4.44. In these images the closer something is in

space to the camera the more it is deep blue, whereas light blue indicates further

distance, and other colors show great distance of objects from the camera.

Finally, the resulting dense point cloud is shown in Figure 4.45.

Having the as-built point cloud ready allows us to move on to the next section

after specifying the challenges faced experimenting with point cloud reconstruction
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Figure 4.36: COLMAP distinctive points detection in image 130

Figure 4.37: COLMAP number of matches of image 131 with other images

software. Here is the list of encountered difficulties:

• vision limitations. Not all of the parts can be captured with a hand held

camera because of accessibility limitation. An example of such in this work are
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Figure 4.38: COLMAP distinctive points detection in image 131

Figure 4.39: COLMAP distinctive points detection in image 137

module bottom or “floor” parts which are almost unseen in the photographs.

An example of this issue can be seen in Figure 4.46. However, this figure

clearly shows the second level structural part that was missing in the CMVS

and CMPMVS reconstruction (referenced in Figures 4.17 and 4.18);
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Figure 4.40: COLMAP putative matches between images 130 and 131

Figure 4.41: COLMAP putative matches between images 130 and 137

Figure 4.42: COLMAP depth map of image 130

• technical issue of having blue noise in the photographs;

• bad documentation and lack of tutorials. These kinds of issues make library
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Figure 4.43: COLMAP depth map of image 131

Figure 4.44: COLMAP depth map of image 137

use very difficult or even impossible in some cases;

• all the tested libraries which required compilation have their own depen-

dences, which might have even their own dependences. Occasionally, it is



Chapter 4. Experimental Study 89

Figure 4.45: COLMAP dense point cloud reconstructed

difficult to find proper dependences for stable work of a library of interest.

Furthermore, sometimes dependences linking or setting up environment vari-

ables is required. Again, this requires at least a basic understanding of Linux,

Cmake and C++;

• dealing with code mistakes, bugs and poor support. Code mistakes and bugs

slow down the experimenting process. A combination of code mistakes or/and

bugs and the lack of libraries support makes these libraries impossible to

use. In fact, there were some such libraries encountered in this work that

are unreported, untested and thus did not provide any contribution to this

research work. At the same time, some bugs were found in the presented

libraries which were subsequently corrected with their authors’ support.

4.4 Point Cloud Registration

The first part of point cloud registration is to separate as-built models from the

environment. This is done manually in Meshlab. Figure 4.47 demonstrates the

number of points in the as-built point clouds without environment in comparison
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Figure 4.46: Bottom of the COLMAP as-built model

to initial and filtered point clouds. An example of the as-planned model cut from

its environment is presented in Figure 4.48.

Figure 4.47: SfM-MVS algorithms number of reconstructed points. The gray color
denotes the number of points in the as-built module point clouds excluding the
environment. The orange color implicates the number of points in the filtered
point clouds. The blue indicates the numbers of points in the original point clouds

The as-planned 3D model which represents a completed module is shown in

Figure 4.49. Some examples of difference in the as-planned and the as-built point

clouds location and scale are indicated in Figures 4.50 and 4.51. The difference in

models size is caused by the algorithms’ specific approaches to the reconstruction.
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Figure 4.48: COLMAP point cloud cut from its environment

Figure 4.49: As-planed 3D model

Noticeably, the as-planned and as-build models in Figure 4.50 are close to each

other, whereas the ones in Figure 4.51 are located fairly far away from one another.

A good registration tool should successfully deal with these and other scenarios.

Having the as-planned point clouds ready, registration starts to be specific to

the applicable registration approaches. This work proposes using ICP and CPD

registration methods and they are described below.
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Figure 4.50: As-built COLMAP point cloud (large) and as-planned 3D model
(small)

Figure 4.51: As-planned 3D model (large) and as-built OpenMVS-OpenMVG point
cloud (small)

4.4.1 Iterative Closest Point

As was stated in Section 3.3, the required transformation for as-planned and as-

built point cloud registration is similarity transform. The similarity transform is

required because these point clouds are located in different coordinate systems and

are of different scales. It was challenging to find an ICP algorithm for not only

point clouds alignment but for finding a scale factor as well. There are a large
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number of ICP implementations available on the Internet; however, almost all of

them only account for rigid transformation but not for scale. For example, Matlab

has only rigid implementation of ICP.

Only one ICP implementation was found able to keep up with similarity trans-

form, and it is libpointmatcher (Pomerleau (n.d.)) presented by Pomerleau et al.

(2011). This library is not only capable of performing similarity transformation but

has a number of various filters for transformation results improvements. Initially,

the software was designed for use with robotics with computer vision and laser

scanning point clouds (Pomerleau et al. (2015)) for such tasks as:

• search and rescue;

• power plant inspection;

• shoreline monitoring;

• autonomous driving.

Experimentally, the best performance of libpointmatcher is achieved when as-

built and as-planned point clouds are of about the same size. Thus, it is desirable

that the as-planned model is sampled to be of a similar number of points to as-built

point cloud. The actual as-planned point cloud sampling is performed with Cloud-

Compare software package (CloudCompare - 3D point cloud and mesh processing

software Open Source Project (n.d.)) presented in Girardeau-Montaut (2011). Next,

testing ICP transformation with different configurations revealed the best libpoint-

mathcer performance on the industrial modules datasets and these configurations

are presented in Appendix A Part 1c.

Ultimately, the libpoitmatcher produces the output in form of vtk monocol-

ored reading point cloud transformed to the reference point cloud in vtk format.

Additionally, it reports interim iteration point clouds and the final transformation

matrix. In the context of this work, the main ICP output is the transformation

matrix. The resulting transformation matrices are reported in this work as they

allow us to see the difference in transformations proposed by the various methods.
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The produced OpenMVG-OpenMVS point clouds ultimate transformation ma-

trix is


−0.0136 0.0040 0.0077 0.1479

0.0058 −0.0064 0.0136 −0.0207

0.0064 0.0143 0.0039 −1.1218

0 0 0 1.0000


The COLMAP-adjusted point clouds transformation matrix is


0.4616 0.0503 −0.1734 0.3956

−0.0515 0.4929 0.00595 −0.3427

0.1730 0.0125 0.4643 0.1271

0 0 0 1


The COLMAP point clouds transformation matrix is


0.4658 0.0713 −0.1355 0.3794

−0.0713 0.4850 0.0105 −0.3505

0.1356 0.0097 0.4711 0.1278

0 0 0 1


The point clouds were aligned correctly only in the case shown in Figure 4.55.

The COLMAP point clouds transformation computation was terminated by

the number of iterations which is 80 by default. The transformation likely needed

so many iterations because of the large number of points. Large point clouds

iterative transformation steps are usually smaller because the difference between

the consecutive optimization function values is smaller relatively to the overall

optimization function. The COLMAP transformation results are shown in Figure

4.53

OpenMVG-OpenMVS also did not work out correctly, which can be seen in

Figure 4.54. The as-built model here transformed in almost a dot.
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Figure 4.52: COLMAP-adjusted as-planned and as-built point clouds ICP registra-
tion. The as-planned model is pink and the as-built model is green

Figure 4.53: COLMAP as-planned and as-built point clouds ICP registration. The
as-planned model is pink and the as-built model is green

The experiments with the COLMAP and OpenMVS-OpenMVG ICP trans-

formed models were stopped at this point because of incorrect transformations.

4.4.2 Coherent Drift Point

CPD is a comparatively new approach to point cloud registration. The algorithm

was initially introduced for serving medical imaging purposes in Myronenko and
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Figure 4.54: OpenMVS-OpenMVG as-planned and as-built point clouds ICP reg-
istration. The as-planned model is pink and the as-built model is green (a dot in
the front of the green point cloud)

Song (2010). The algorithm proposes options of rigid, similarity and non-rigid

registrations. The initial implementation was written in Matlab. Later on the

algorithm was further developed for geographic mapping in Gadomski (2016). More

specifically, this work is devoted to measuring glacier surface velocities with an

airborne LIDAR. Because this work required comparison of vast amounts of points,

the CPD implementation was rewritten in C++ for boosting its performance. One

more computation speed advancement was achieved by partitioning glacier maps

on the segments of 20,000 points and registering each of these pieces separately.

In this thesis work, the CPD implementation (Gadomski, n.d.) proposed in

Gadomski (2016) is used. Experimenting with this implementation revealed that

the algorithm performs well for a point cloud size of 8,000 - 20,000 points. Calculat-

ing transformations on larger point clouds increases the computation time signifi-

cantly. At the same time, the proposed as-built models consist of 246,000 - 1,500,000

points. Attempts to divide as-planned models onto smaller pieces and computing

transformation of each piece do not seem feasible because of the complex geometry

of the industrial modules. Testing various approaches to CPD implementation indi-

cated that as-planned and as-built point clouds can be successfully registered based
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on their sub-sampled models of about 9,000 points size. Because of the algorithm

nature discussed in subsection 3.3.2, registration of the downsampled point clouds

produces reasonable results. Ultimately, the transformation results are applied to

the original point clouds.

Thus, the preparation step before proceeding with registration is subsample as-

built and as-planned point clouds. This is done with Matlab sampling functions.

The random 9,000 points are sampled from each point cloud and converted in the

matrix format of 3 × number of points size with spreadsheet software. In fact,

testing ICP on 9,000 points did not produce meaningful transformation estimates.

The CPD output is a transformation matrix. Additionally, CPD is able to

produce transformed point cloud but as the CPD point clouds are downsampled

they do not apply to this research. Finally, the estimated transformation is applied

to the reading point cloud in Matlab.

In contrast to libpointmatcher, the CPD transformation results are reported

in the format of rotation matrix, scale parameter and transformations vector. For

example, the OpenMVG-OpenMVS reported results (as-planned to as-built models)

are presented below.

OpenMVG-OpenMVS rotation matrix:


0.9626 0.1507 −0.2249

−0.1467 0.9886 0.0347

0.2276 −0.0004 0.9738


OpenMVG-OpenMVS translation vector:


−0.02628

0.13336

−3.96266


OpenMVG-OpenMVS scale: 0.51548

For the sake of having comparable with the ICP transformation results, CPD
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estimated transformation is converted to a full transformation matrix.

OpenMVG-OpenMVS full transformation matrix (as-planned to as-built):


0.4962 −0.0756 0.1173 −0.0263

0.0777 0.5096 −0.0002 0.1334

−0.1159 0.0179 0.5019 −3.9627

0 0 0 1


During the experimentation it was noted, that the downscaling transformation

is estimated with the lower scale than it should be almost all the time. The result-

ing downscaling transformation tolerances are not acceptable for further progress

detection. At the same time, the upscaling transformation estimate is just fine.

According to the author’s opinion, this might be caused by an algorithm specific

reaction on industrial model point clouds or an implementation bug. Whatever

the problem is, for the sake of this work it was solved by using only the upscaling

transformation. In case if the required transformation is downscaling, the upscaling

transformation matrix is estimated and inverted. Notable, the inverted upscaling

transformation matrix represents downscaling transformation. The experiments

indicated good performance of the algorithm with such “adjustment.”

OpenMVG-OpenMVS full transformation matrix (as-built to as-planned):


1.8675 0.2924 −0.4364 −1.7191

−0.2845 1.9178 0.0673 0.0035

0.4415 −0.0008 1.8890 7.4973

0 0 0 1


COLMAP-adjusted full transformation matrix (as-built to as-planned):
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
0.4607 0.0472 −0.1774 0.3986

−0.0513 0.4932 −0.0022 −0.3417

0.1762 0.0204 0.4631 0.1236

0 0 0 1


COLMAP full transformation matrix (as-built to as-planned):


0.4620 0.0712 −0.1599 0.3991

−0.0714 0.4887 0.0113 −0.3416

0.1598 0.0126 0.4673 0.1351

0 0 0 1


An example of the point clouds registration is shown in Figure 4.55.

Figure 4.55: COLMAP-adjusted as-planned and as-built point clouds CPD regis-
tration. The as-planned model is pink and the as-built model is green

4.4.3 Registration Conclusion

Based on three proposed reconstructions, the CPD and libpointmatcher transfor-

mations were estimated for each model. Having the transformation matrices, the

as-built point clouds are aligned with the as-planned models in Matlab. Four out of
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six transformations were successful. The transformations are considered to be suc-

cessful when they are well aligned visually as it can be seen in Figures 4.52 and 4.55.

The counterexamples of a successful transformation are the OpenMVS-OpenMVG

ICP transformation (Figure 4.54) and the COLMAP ICP transformation (Figure

4.53). The computation time for each scenario is presented in Figure 4.56. The key

properties of the presented approaches are presented in Table 4.2.

Figure 4.56: Registration run time. The CPD time is orange and the libpoint-
matcher is blue

Table 4.2: Fundamental characteristics of the presented reconstruction software

Properties libpointmatcher CPD

Algorithm ICP CPD
Type open source open source
Platform Windows/Linux Windows/Linux
Compilation required yes yes
Input format vtk csv
Embedded data filters open source open source
Computation time, min Figure 4.56
Number of points, thousand Figure 4.47 (gray)
User interface no no
Command line interface yes yes
Documentation yes yes
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Challenges:

• ICP tendency to converge in local minimum. The OpenMVG-OpenMVS

model ICP transformation demonstrated in Figure 4.54 is an example of ICP

convergence in a local minimum. This theoretically can be dealt with by

applying different data filters. However, the author did not find special al-

gorithm parameters to make libpointmatcher produce correct transformation

estimates for the tested scenarios;

• using proper ICP data filters. The COLMAP ICP transformation results

shown in Figure 4.53 can also be potentially improved within the default

number of iterations by applying more proper data filters.

4.5 Progress Identification

Having as-planned and as-built models aligned and in the same scale, the con-

struction progress can be identified. The proposed approach employs Meshlab for

computing the Hausdorff distance. At this stage, either a 3D model or a point

cloud can be used as an as-planned model. In terms of this work, the as-planned

point cloud is compared to the as-built point cloud. The output of the Hausdorff

distance estimation is in the form of processed as-planned model color coded with

the Hausdorff distances for each point. This research work proposes to use double

color coding, as according to the authors opinion this clearly states the progress

status of the as-planned model parts. In this fork the red-black color coding is

proposed, where black indicates completed parts and red shows the parts that are

to be completed. The Hausdorff distance computation takes less than a minute for

all of the presented point clouds. Some key properties of the presented approach

are indicated in Table 4.3. The example of the resulting model reported to the end

user is shown in Figure 4.57.
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Table 4.3: Fundamental characteristics of the presented progress identification soft-
ware

Properties Meshlab

Type open source
Platform Windows/Linux
Compilation required no
Input format ply
Computation time, min < 1
Number of points, thousand 246 - 1,469
User interface yes
Command line interface yes
Documentation yes

Figure 4.57: COLMAP progress model based on the Hausdorff distance. The black
parts are in place and the red ones are not in place

For computation of the final results, the black points are considered to belong

to already completed parts of the module, and the red points are considered to

belong to unbuilt parts of the module. Thus, the ratio of the black points number

to the overall number of points is calculated. This value is the progress completion

percentage. The detected progress completion for each reconstruction registration

approach is reported in this list:
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• COLMAP-adjusted-ICP: 61.05%;

• COLMAP-adjusted-CPD: 61.87%;

• COLMAP-CPD: 63.50%;

• OpenMVS-OpenMVG-CPD: 62.61%.

The obtained results prove that the proposed frameworks are valid, because

they individually reported almost the same results based on the same set of pho-

tographs. Furthermore, comparing the progress models to the input photographs

shows legitimate completed parts identification.

Additionally, the obtained results might be presented visually in the form of

RGB red channel histograms. The histograms for each of the models in this section

are presented in Figures 4.58 - 4.61. All the histograms are skewed to the right,

which means that that there is less work to be done than that which has been

completed. This corresponds to the reported progress completion numbers.

Figure 4.58: COLMAP-adjusted ICP
transformed point cloud red channel
histogram

Figure 4.59: COLMAP-adjusted
CPD transformed point cloud red
channel histogram



Chapter 4. Experimental Study 104

Figure 4.60: COLMAP CPD trans-
formed point cloud red channel his-
togram

Figure 4.61: OpenMVS-OpenMVG
CPD transformed point cloud red
channel histogram

4.6 Progress Tracking Summary

The case study was conducted on automated progress tracking of an industrial

module by applying top-notch computer vision algorithms. For the sake of differ-

ent approaches comparability, a 138 photograph set of the industrial module taken

by a rudimentary camera was chosen as initial data input. Next, the data set was

passed to SfM, MVS, and registration algorithms implemented by different software

packages. Thus, the progress tracking was performed based on various combina-

tions of the cutting edge software libraries. The case study allowed finding the

methods capable of progress tracking of complex geometry objects as an industrial

module for example in congested area. It also helped to compare and test the com-

binations of different computer vision libraries and select the effective ones. Each

software combination which led to the progress identification based on the initial

dataset input is considered to be a progress tracking framework. The tested data

frameworks along with the algorithms which did not lead to the progress tracking

reports are presented in Figure 4.62. A full step-by-step computer vision progress

tracking framework configuration and application guide is presented in Appendix

A.

Four effective frameworks are proposed in this work. The progress result point
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clouds produced by these pipelines are very similar visually as well as the progress

completion phase identified by all the proposed methods are in a close range (61.05%

- 63.50%). These circumstances make the proposed frameworks almost indistin-

guishable in terms of reported results. However each pipeline has it’s own specific

properties which are summarized here:

• COLMAP-COLMAP-CPD is the approach which produces the best as-built

point clouds in terms of accuracy and completeness. This framework is likely

to be someone’s choice in cases when the progress tracking of small details

is required. However COLMAP-COLMAP-CPD computation time is about

a couple of hours which makes it undesirable in cases where fast progress

identification is required;

• OpenMVG-OpenMVS-CPD is the fastest progress tracking approach. The

computation time of less than a quarter-hour makes it attractive to any con-

struction project. At the same, OpenMVG-OpenMVS-CPD has the highest

amount of noise. However, the case study progress identification results show

that the OpenMVG-OpenMVS-CPD noise did not have much effect on the

finial results;

• COLMAP-COLMAP-adjusted-CPD and COLMAP-COLMAP-adjusted-ICP

are equally good intermediary frameworks between COLMAP-COLMAP-

CPD and OpenMVG-OpenMVS-CPD. They demonstrated medium compu-

tation time as well as medium point completeness and accuracy.

To conclude, all the proposed frameworks demonstrated good performance, and

the choice of employing one of them to a real construction project should be made

considering their specific properties.
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Figure 4.62: Progress tracking experiments schema. The green color demonstrates
approaches finished to the final stage, the red color indicates incomplete approaches
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Conclusion

5.1 Proposed Frameworks Real Live Standing

The proposed frameworks for automated progress tracking are not completely new.

They follow the logic of the existing progress tracking techniques proposed by

Golparvar-Fard et al. (2010) and Golparvar-Fard et al. (2012). Although the exist-

ing tools are not available to the public and there are no ways to directly compare

the new frameworks to the existing ones, there are reasons to think that the ap-

proaches proposed in this research outperform the previous ones:

1. Computation time: the OpenMVG-OpenMVS-CPD resulting time is 12 min

on the 138 image dataset versus a few hours on the 160 image dataset reported

by Golparvar-Fard et al. (2012), a few hours on unknown dataset size reported

by Ahmed et al. (2012) and tree hours on the 75 image dataset reported by

Skarlatos and Kiparissi (2012). In fact, SfM timing of the proposed algorithm

for the whole industrial module reconstruction is 2.5 - 4 mins on the 138

image dataset versus 10 mins - 7 hrs on the 53 - 242 image datasets for the

reconstruction of a columns or a masonry block reported by Golparvar-Fard et

al. (2011). In addition, the proposed registration and progress identification

techniques are believed to work faster than the existing ones because they are

simple and straightforward.

107
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2. Point cloud quality. The proposed pipelines are believed to outperform the

existing approaches in:

(a) SfM:

i. COLMAP. Schonberger and Frahm (2016) reported COLMAP to

improve the state of the art in terms of completeness, robustness,

accuracy, and efficiency. COLMAP clearly surpasses such libraries

as VisualSfM and Bundeler. Whereas, the approach proposed by

Golparvar-Fard et al. (2012) is reported to be of similar or slightly

better performance than VisualSfM (Karsch et al. (2014)) and the

one proposed by Skarlatos and Kiparissi (2012) is based on Bundler;

ii. OpenMVG. Moulon et al. (2013) reported OpenMVG to consider-

ably exceed VisualSfM and Bundler in terms of accuracy. Hence,

the proposed pipeline is likely to outrun the progress tracking ap-

proaches proposed by Golparvar-Fard et al. (2012) and Skarlatos

and Kiparissi (2012).

(b) MVS. The experimental results showed that both COLMAP and Open-

MVS exceed CMVS in terms of point cloud quality. One example of this

is that a large structural part of a module was missing in CMVS recon-

struction (Figure 4.17), whereas the same piece was well reconstructed

with COLMAP (Figure 4.46) and OpenMVS. Furthermore, Schöps et al.

(n.d.) reported COLMAP outrunning PMVS and CMPMVS in terms of

accuracy and completeness. Based on this, the proposed frameworks

surpass the progress tracking approaches proposed by Golparvar-Fard et

al. (2012) and Skarlatos and Kiparissi (2012), which are based on lagging

libraries.

3. Registration automation. Almost all of the existing techniques require some

manual steps for point clouds alignment such as manually defining the same

points on the as-build and as-planned point clouds (Golparvar-Fard et al.
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(2012)) or setting up color-coded targets before taking photos of a construc-

tion object (Ahmed et al. (2012)). Only one automated solution was found in

the literature review (C. Kim et al. (2011)). The C. Kim et al. (2011) approach

to registration is a sophisticated two steps PCA-ICP which is computation-

ally intense. Furthermore, all the subsequent papers of these researchers do

not report PCA-ICP registration to be a part of their methods. In contrast

to existing approaches, this thesis work presents automated one step ICP as

well as a novel one step super fast CPD registration approach.

4. Progress identification. The proposed Hausdorff progress identification tech-

nique is very simple. Because the Hausdorff distance demonstrated reliable

results of progress identification it is believed to be at least of the same per-

formance as the complicated Bayesian probabilistic model with SVM classier

(Golparvar-Fard et al. (2010)) and graph progress identification (Braun et al.

(2015)). Hence, the proposed technique advantages is that it is simple and

straightforward.

5. Data acquisition. All the existing approaches are tested based on photographs

obtained by professional cameras such as Nikon D80 (Golparvar-Fard et al.,

2011) or Canon XSi 450D (Ahmed et al. (2012)), or even Bumblebee XB3

stereo vision system (Son and Kim (2010)). In contrast, the proposed in this

research frameworks demonstrated efficient results based on the photographs

from a rudimentary iPhone 5s.

6. Construction object. Contrasting with all the existing approaches, this re-

search proposed frameworks were tested on an object of complex geometry

on a congested construction site.

7. Software type. According to the literature review, the pipelines proposed in

this thesis are only free and open source techniques for automated progress

tracking. The first advantage of such software is that anyone can download
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a product and test, use, check, and/or modify it for their special needs. The

second advantage is that open source products are easily accessible for many

construction companies and researchers without any considerable investment

of money. This in turn makes the product to be more attractive to the public,

which might consequently boost automated progress tracking real application

and scientific development.

5.2 Contributions

The proposed frameworks for construction progress tracking are believed to outper-

form existing approaches in terms of progress identification time and quality. The

following scientific contributions are achieved in this research:

1. Cutting-edge automated construction progress tracking approaches are im-

proved in terms of time and quality by employing top-notch computer vision

algorithms.

2. Algorithms for automatic registration have been incorporated into proposed

frameworks. The presented ICP registration is the first ICP implementation

proposed for the construction progress monitoring that can be used for simi-

larity transformation on its own. Additionally, this work is the first to propose

the novel CPD approach for use in the construction domain.

3. The proposed frameworks are the first comprehensive, free and open source

automated construction progress tracking solution.

The industrial contribution of this research is that it provides construction com-

panies with an effective tool for progress tracking. This tool is able to perform

progress identification in 10-15 minutes which is almost “instantly” in comparison

to existing approaches.
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5.3 Limitations and Future Work

The proposed frameworks for automated progress tracking in construction still have

limitations. Some of the limitations are caused by the nature of visual data and

should be addressed on site, whereas the other limitations may be solved trhough

future research endeavors. The following suggestions are made for dealing with the

current automated progress tracking framework restraints:

1. Visual object detection: the automated project tracking techniques are only

able to detect objects that are visible in photographs. This is also true for

construction workers, as humans are generally not able to make a conclusion

about the status of an object if they cannot see it. In the case where a portion

of an object of interest is hidden, there are two possible solution to detect

it:(1) move a camera to a location where the object is visible or (2) integrate

a work breakdown structure as a part of progress tracking. Having a WBS as

a part of progress tracking framework will allow for the detection of hidden

object progress status by their position in WBS. In other words, if work that

proceeds installation of the hidden object is complete, then the hidden objects

are assumed to be installed.

2. Unnecessary environment reconstruction: the visual approach to construction

object reconstruction implicates reconstruction of not only the objects of in-

terest but also the environment around them. Consequently, the environment

outside the object of interest must be manually removed. The problem of fo-

cusing on construction objects may be addressed by employing a drone. A

drone has a much greater range, and is, therefore, more likely to place itself at

a more appropriate angle and distance, allowing it to focus only on objects of

interest. This advancement will potentially decrease the amount of unwanted

environment, the content of noise, as well as improve reconstruction quality.

3. Reconstruction accuracy: the proposed frameworks may potentially be used

to verify whether or not proper elements are installed and if they are placed



Chapter 5. Conclusion 112

correctly. The main factors affecting accuracy are camera resolution and

distance between the camera and the object of interest. Specifically, the

greater the resolution of photograph and the closer the camera to the object

of interest, the more precise the reconstruction. Notably, determination of

measurement accuracy was not required to conduct the proposed work and

is, therefore, beyond the scope of this project.

4. Progress measurement: the proposed frameworks determine progress as a

percentage of completed area relative to the overall area to be completed.

Notably, percentage-based completion measurements may not be the most

representative progress metric. For example, setting up a large element may

not represent a large amount of progress, as it may be a simple procedure

and may not require a lot of time and equipment. At the same time, erect-

ing a special small pipeline may represent a small area of progress but may

account for a considerable amount of progress with respect to labour-hours

and time. Furthermore, certain temporary work, such as assembly and dis-

assembly of scaffolding, should also be accounted for. Thus, the proposed

frameworks progress identification logic should be further developed. Poten-

tially, it may be improved by utilizing a 4D as-planned model on the planning

side and classifying as built model parts with machine learning techniques on

the construction side. This development will help to tie as-built construction

elements directly with project schedule, subsequently allowing for detailed

progress measurement.

Additionally automated progress tracking research can be conducted in the fol-

lowing directions:

• planning and simulation of construction operations associated with indus-

trial modular projects: the current method of planning construction of an

industrial modular plant involves experienced people estimating the amount

of work from 3D models based on personal experience. This estimation type
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is subjective, prone to error and time-consuming. However, it is possible to

create a tool not only for automated progress tracking but for automated es-

timation. The first step for this tool development is learning from automated

progress tracking results. Then, data are collected and passed to a simulation

engine, which could rapidly produce a probabilistic estimate based on actual

construction performance data. These results are objective, comparatively

precise and rapidly obtainable;

• framework algorithm improvement: this is essential for long-term automated

progress tracking development. This development branch should include re-

porting progress tracking results to the algorithms authors, improving the

algorithms performance and sharing the results with the research community.

Simultaneously, it is worth examining new computer vision algorithms that

may potentially improve the automated progress monitoring framework;

• hardware: the proposed progress tracking frameworks are sensitive to hard-

ware in terms of time. The computer used for this research is equipped with

an Nvidia GTX Titan X GPU which is expensive compared to general gam-

ing graphics cards. Thus, someone on a tight budget can test computation

timing on, for example, Nvidia GTX 1070 or Nvidia GTX 1060. At the same

time, someone with good budget looking for the fastest reconstruction time

can try performing calculations on multiple Nvidia GTX 1080, Nvidia GTX

1080 ti, or Nvidia GTX Titan X connected by an SLI bridge.



Appendix A

Computer Vision Progress

Tracking Framework

Configuration and Application

Guide

A.1 Software Installation

This guide assumes that the software installation is performed on a clean install of

Ubuntu 16.04 with a CUDA 7.0 or higher capable GPU*.

* GPU CUDA compatibility can be verified at https://developer.nvidia

.com/cuda-gpus web-page.

1. Download and Install CUDA Toolkit 8.0:

(a) install the latest Nvidia graphics card driver;

(b) install CUDA Toolkit.

2. Install COLMAP:
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https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
http://www.webupd8.org/2016/06/how-to-install-latest-nvidia-drivers-in.html
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(a) checkout source code:

$ g i t c l one https : // github . com/colmap/colmap

(b) install dependencies from default Ubuntu repositories:

$ sudo apt−get i n s t a l l \

cmake \

bui ld−e s s e n t i a l \

l i bboo s t−a l l−dev \

l i b e i g e n 3−dev \

l i b s u i t e s p a r s e−dev \

l i b f r e e ima ge−dev \

l i b g o o g l e−glog−dev \

l i b g f l a g s−dev \

l i bg l ew−dev \

f r e e g l u t 3−dev \

qt5−d e f a u l t \

libxmu−dev \

l i b x i−dev

(c) install Eigen3:

i. download the latest version form http://eigen.tuxfamily.org/

index.php?title=Main Page;

ii. compile Eigen3 according to https://eigen.tuxfamily.org/dox/

GettingStarted.html.

(d) install Ceres Solver:

$ sudo apt−get i n s t a l l l i b a t l a s−base−dev l i b s u i t e s p a r s e−dev

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://eigen.tuxfamily.org/dox/GettingStarted.html
https://eigen.tuxfamily.org/dox/GettingStarted.html
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$ g i t c l one https : // cere s−s o l v e r . goog l e sou r c e . com/ cere s−s o l v e r

$ cd cere s−s o l v e r

$ mkdir bu i ld

$ cd bu i ld

$ cmake . .

$ make −j

$ sudo make i n s t a l l

(e) compile COLMAP:

$ cd path/ to /colmap

$ mkdir bu i ld

$ cd bu i ld

$ cmake . .

$ make −j 4

3. Install OpenMVG:

$ g i t c l one −b develop https : // github . com/openMVG/openMVG. g i t

$ cd openMVG

$ g i t submodule i n i t

$ g i t submodule update

$ mkdir openMVG Build $$ cd openMVG Build

$ cmake −DCMAKE BUILD TYPE=RELEASE −DOpenMVG BUILD TESTS=ON

−DOpenMVG BUILD EXAMPLES=ON . . . / openMVG/ s r c /

$ make −j 4

4. Install OpenMVS:

(a) install OpenCV:
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$ sudo apt−get −y i n s t a l l l ibopencv−dev

(b) install CGAL:

$ sudo apt−get −y i n s t a l l l i b c g a l−dev l i b c g a l−qt5−dev

(c) install VCGLib:

$ g i t c l one https : // github . com/ cdcseacave /VCG. g i t v c g l i b

(d) compile OpenMVS:

$ g i t c l one https : // github . com/ cdcseacave /openMVS

$ mkdir openMVS build && cd openMVS build

$ cmake . . . / openMVS −DCMAKE BUILD TYPE=Release −DVCG DIR=”$main path / v c g l i b ” −DBUILD SHARED LIBS=ON

$ make

5. Install CPD:

(a) install jsoncpp:

$ sudo apt−get i n s t a l l l i b j soncpp−dev

(b) compile CPD:

$ g i t c l one https : // github . com/gadomski/cpd

$ cd cpd

$ g i t checkout benchmark

$ mkdir bu i ld

$ cd bu i ld
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$ cmake . . −DCMAKE BUILD TYPE=Release −DWITH JSONCPP=ON

$ make

$ sudo make i n s t a l l

$ cd . . / examples

$ mkdir bu i ld

$ cd bu i ld

$ cmake . .

$ make

6. Install libpointmatcher:

(a) install libnabo:

$ g i t c l one https : // github . com/ ethz−a s l / l ibnabo

$ cd l ibnabo

$ mkdir bu i ld $$ cd bu i ld

$ cmake . .

$ make

$ sudo make i n s t a l l

(b) compile libpointmatcher:

$ g i t c l one https : // github . com/ ethz−a s l / l ibpo intmatcher

$ cd l ibpo intmatcher

$ mkdir bu i ld && cd bu i ld

$ cmake . .

$ make

$ sudo make i n s t a l l

7. Install Meshlab:
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$ sudo apt−get i n s t a l l meshlab

8. Install ParaView:

$ sudo apt−get i n s t a l l paraview

9. Install Matlab.

10. Install CloudCompare:

$ sudo snap i n s t a l l cloudcompare

A.2 Software Versions

Software versions used at the time of writing this guide are as follows:

CUDA ToolKit 8 . 0

COLMAP 3.1

Cmake 3 . 5 . 1

Build−e s s e n t i a l 12 .1

Libboost−a l l−dev 1 .58

L ib su i t e spa r s e−dev 1:4 .4 .6−1

Libfree image−dev 3 . 1 7 . 0

Libgoogle−glog−dev 0.3 .4−0.1

L ibg f l ag s−dev 2.1.2−3

Libglew−dev 1.13.0−2

Freeg lut3−dev 2.8.1−2

Qt5−d e f a u l t 5 . 5 . 1

Libxmu−dev 2:1 .1 .2−2



Appendix A. Computer Vision Progress Tracking Framework Configuration and Application Guide120

Libxi−dev 2:1 .7 .6−1

Eigen 3 . 3 . 4

Ceres So lve r 1 .13

OpenMVG 1.2

OpenCV 3 . 2 . 0

CGAL 4.10

VCGLib 1 . 0 . 1

OpenMVS 0 .7

Jsoncpp 1 . 8 . 1

CPD 0 . 5 . 1

Libnabo 1 . 0 . 6

Libpointmatcher 1 . 2 . 3

MeshLab 2016

Paraview 5 . 4 . 1

MATLAB R2017a

Cloudcompare 2 . 8 . 1

A.3 Software Application

The overall progress tracking pipeline is demonstrated for a reader convenience

in Figure A.1. The demonstrated pipeline is imaginary grouped into three compo-

nents: reconstruction, registration and progress detection. The underlying software

application steps are presented below in the same manner.
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Figure A.1: Progress tracking software application schema for the proposed frame-
works

The further steps assume that on-site photographs are stored in the following

folder structure:
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/path/ to / p r o j e c t / . . .

+−− images

| +−− image1 . jpg

| +−− image2 . jpg

| +−− . . .

| +−− imageN . jpg

A.3.1 Reconstruction

1. OpenMVG-OpenMVS:

(a) run OpenMVG commands:

∗ run the f o l l o w i n g commands from the openMVG Build

l i nux r e l e a s e d i r e c t o r y assuming the p r o j e c t path

$PROJECT PATH=/path/ to / p r o j e c t

$ . / openMVG main SfMInit ImageListing − i $PROJECT PATH/

images −d $path/ to /openMVG/ s r c /openMVG/ e x i f / s e n s o r

width database / sensor width camera database . txt −o

$PROJECT PATH/matches −f 1649

$ . / openMVG main ComputeFeatures − i $PROJECT PATH/

matches/ sfm data . j son −o $PROJECT PATH/matches

$ . / openMVG main ComputeMatches − i $PROJECT PATH/

matches/ sfm data . j son −o $PROJECT PATH/matches −g e

$ . / openMVG main GlobalSfM − i $PROJECT PATH/matches/

sfm data . j son −m $PROJECT PATH/matches −o
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$PROJECT PATH/ out Globa l Recons t ruc t i on /

$ . / openMVG main ComputeSfM DataColor − i $PROJECT PATH/

out Globa l Recons t ruc t i on / sfm data . bin −o $PROJECT

PATH/ out Globa l Recons t ruc t i on / s fm d ata co l o r . p ly

$ . /openMVG main openMVG2MVE2 − i $PROJECT PATH/

out Globa l Recons t ruc t i on / sfm data . bin −o $PROJECT

PATH/ out Globa l Recons t ruc t i on /

$ . / openMVG main openMVG2openMVS − i $PROJECT PATH/

out Globa l Recons t ruc t i on / sfm data . bin −o

$PROJECT PATH/ out Globa l Recons t ruc t i on /openMVS/

scene . mvs

$ . / openMVG main openMVG2openMVS − i $PROJECT PATH/

out Globa l Recons t ruc t i on / sfm data . bin −d $PROJECT

PATH/ out Globa l Recons t ruc t i on /openMVS/ −o $PROJECT

PATH/ out Globa l Recons t ruc t i on /openMVS/ scene . mvs

(b) run OpenMVS commands:

∗ run the f o l l o w i n g commands from the OpenMVS build bin

d i r e c t o r y

$ cd path/ to /openMVS build/ bin

$ . / Densi fyPointCloud − i $PROJECT PATH/ out Globa l

Reconstruct ion /openMVS/ scene . mvs −w $PROJECT PATH/
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out Globa l Recons t ruc t i on /openMVS/ −o $PROJECT PATH/

out Globa l Recons t ruc t i on /openMVS/ point−cloud−

d e n s i f i e d−openMVS . ply

2. run COLMAP commands:

∗ run the f o l l o w i n g commands from the COLMAP bui ld

d i r e c t o r y assuming the p r o j e c t path i s

$PROJECT PATH=/path/ to / p r o j e c t

$ . / s r c / exe / f e a t u r e e x t r a c t o r \

−−database path $PROJECT PATH/ database . db \

−−image path $PROJECT PATH/ images

$ . / s r c / exe / exhaust ive matcher \

−−database path $PROJECT PATH/ database . db

$ mkdir $PROJECT PATH/ spar s e

$ . / s r c / exe /mapper \

−−database path $PROJECT PATH/ database . db \

−−image path $PROJECT PATH/ images \

−−export path $PROJECT PATH/ spar s e

$ mkdir $PROJECT PATH/ dense

$ . / s r c / exe / image und i s t o r t e r \

−−image path $PROJECT PATH/ images \

−−input path $PROJECT PATH/ spar s e /0 \
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−−output path $PROJECT PATH/ dense \

−−output type COLMAP \

−−max image s ize 800

$ . / s r c / exe / d e n s e s t e r e o \

−−workspace path $PROJECT PATH/ dense \

−−workspace format COLMAP \

−−DenseStereo . max image s ize 0 \

−−DenseStereo . geom cons i s tency true

$ . / s r c / exe / d e n s e f u s e r \

−−workspace path $PROJECT PATH/ dense \

−−workspace format COLMAP \

−−i nput type geometr ic \

−−output path $PROJECT PATH/ dense / point−c loud . ply

3. Filtering and Cutting

(a) run Noise filtering Matlab code:

∗ run the f o l l o w i n g code on the d e s i r e d dense r e cons t ruc t ed

model

% Reading as−b u i l t po int c loud

ptCloud = pcread ( ’ your r e cons t ruc t ed po in t c l oud name . ply ’ ) ;

%pcshow ( ptCloud ) ;

% F i l t e r i n g blue no i s e

ptCloudRGB = ptCloud . Color ;

ptCloudRGB int = int64 (ptCloudRGB ) ;
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sortB = [ ptCloudRGB int ( : , 3 ) , ( ptCloudRGB int ( : , 1 )+

ptCloudRGB int ( : , 2 ) ) / 2 , [ 1 : numel ( ptCloudRGB int ( : , 1 ) ) ] ’ ] ;

blueS = [ ptCloudRGB int ( : , 3 ) − max( ptCloudRGB int ( : , 2 ) ,

ptCloudRGB int ( : , 1 ) ) , z e r o s ( numel ( ptCloudRGB int ( : , 1 ) ) , 1) ,

[ 1 : numel ( ptCloudRGB int ( : , 1 ) ) ] ’ ] ;

% Blue c o l o r histogram

f i g u r e ; histogram ( blueS ( : , 1 ) )

% Se t t i ng up th re sho ld

blueC = blueS ( f i n d ( blueS ( : , 1 ) > 35 ) , : ) ;

% Forming blue o u t l i e r po int c loud

ptOUT = pointCloud ( ptCloud . Locat ion ( blueC ( : , 3 ) , : ) ) ;

ptOUT. Color = ptCloud . Color ( blueC ( : , 3 ) , : ) ;

%pcshow (ptOUT ) ;

% Forming f i l t e r e d i n l i e r po int c loud

blueOK = sortB ;

blueOK( blueC ( : , 3 ) , 3 ) = −5;

blueOK = blueOK ( f i n d ( blueOK ( : , 3 ) >= 0 ) , : ) ;

ptIN = pointCloud ( ptCloud . Locat ion (blueOK ( : , 3 ) , : ) ) ;

ptIN . Color = ptCloud . Color ( blueOK ( : , 3 ) , : ) ;

%pcshow ( ptIN ) ;

% Saving i n l i e r and o u t l i e r po int c louds

pcwr i te ( ptIN , ’ y o u r f i l t e r e d p o i n t c l o u d n a m e . ply ’ )

pcwr i te (ptOUT, ’ your no i s e po in t c l oud name . ply ’ )

(b) Cutting model out of environment (Meshlab):

i. launch MeshLab;
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ii. click Import Mesh from the toolbar and select the filtered point

cloud .ply file;

iii. remove unwanted points from the point cloud:

A. click the Select Faces in a rectangular region icon and select

points on the point cloud which are desired to be removed;

B. press the Delete key.

iv. save the file as point-cloud-clean.ply in ASCII format.

A.3.2 Registration

For the following steps, ensure an as-planned 3D mesh model availability. For the

purpose of this tutorial, the complete 3D model will be referred as as-planned.ply.

1. run libpointmatcher (ICP) transformation:

(a) sample the as-planned model:

i. run CloudCompare from the corresponding directory:

$ . / cloudcompare . CloudCompare

ii. select File →Open, select point-cloud-clean.ply, hit Apply;

iii. record the number of points in Properties;

iv. select File →Open, select as-planned.ply, hit Apply;

v. select the Sample points on a mesh icon from above, enter the

recored number of points from the previous step, under Points Num-

ber;

vi. save the resulting Mesh.sampled entity as-planned-pt.ply in ASCII

format.

(b) convert point clouds from .ply files to .vtk:

i. open the as-planned-pt.ply file in MeshLab click Export Mesh;
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ii. uncheck Binary encoding, click OK;

iii. perform the following steps for both as-planned-pt.ply and point-

cloud-clean.ply files:

A. open file in ParaView;

B. click Apply;

C. File →Save Data;

D. save as .vtk and click OK.

(c) create a configuration file for libpointmatcher called icp cfg.yaml:

r ead ingDataPo in t sF i l t e r s :

− RandomSamplingDataPointsFilter

r e f e r e n c e D a t a P o i n t s F i l t e r s :

− Sampl ingSurfaceNormalDataPointsFi l ter :

knn : 10

matcher :

KDTreeMatcher :

knn : 1

o u t l i e r F i l t e r s :

− TrimmedDistOut l i e rFi l te r :

r a t i o : 0 .75

er rorMin imizer :

Po intToPointS imi lar i tyErrorMin imizer
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trans format ionCheckers :

− CounterTransformationChecker :

maxIterationCount : 80

− Di f f e r en t i a lTrans f o rmat i onChecke r :

minDiffRotErr : 0 .001

minDif fTransErr : 0 .001

smoothLength : 4

i n s p e c t o r :

VTKFileInspector :

baseFileName : pointmatcher−run1

dumpPerfOnExit : 0

dumpStats : 0

dumpIterat ionIn fo : 0

dumpDataLinks : 1

dumpReading : 1

dumpReference : 1

(d) run libpointmatcher:

i. run the following command:

$ path/ to / l ibpo intmatcher / bu i ld / examples /pmicp −v −−c o n f i g

i c p c f g . yaml as−planned−pt . vtk point−cloud−c l ean . vtk

ii. record the resulting transformation matrix;

iii. visually check overlap of the resulting transformed .vtk models in

ParaView.

(e) perform as-built model transformation based on the libpointmatcher

resulting transformation matrix in Matlab:
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c l e a r v a r s ;

p t t a r g e t = pcread ( ’ as−planned−pt . ply ’ ) ;

pt = pcread ( ’ point−cloud−c l ean . ply ’ ) ;

T f u l l = [∗ l i bpo intmatcher r e s u l t i n g t rans fo rmat ion

matrix ∗ ]

p t t r a n s f o r m e d L o c a t i o n f u l l = T f u l l ∗ cat ( 1 ,

pt . Location ’ , ones ( s i z e ( pt . Location , 1 ) ,1 ) ’ ) ;

p t t r a n s f o r m e d f u l l = pointCloud ( pt t rans fo rmed

L o c a t i o n f u l l ( 1 : 3 , : ) ’ ) ;

% Visua l comparison o f the as−planned

% and transformed as−b u i l t models

pcshowpair ( p t ta rge t , p t t r a n s f o r m e d f u l l ) ;

% Ass ign ing o r i g i n a l c o l o r s and sav ing

% the transformed po int c loud

p t t r a n s f o r m e d f u l l . Color = pt . Color ;

%pcshow ( p t t r a n s f o r m e d f u l l ) ;

pcwr i te ( p t t r a n s f o r m e d f u l l , ’ point−cloud−clean ICP−

transformed . ply ’ ) ;

2. run CPD transformation:

(a) sample the as-planned model in CloudCompare:

i. follow step 1a and create a full point cloud model if it is not done

yet;

ii. follow step 1a and create a downsampled 9000 points cloud;

iii. save the resulting point cloud as as-planned-pt-9K.ply.
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(b) sample the as-built model in Matlab:

pt = pcread ( ’ point−cloud−c l ean . ply ’ ) ;

pcshow ( pt ) ;

p t t a r g e t = pcread ( ’ as−planned−pt−9K. ply ’ ) ;

pcshow ( p t t a r g e t ) ;

pt downsample = pcdownsample ( pt , ’ random ’ , round (

p t t a r g e t . Count/pt . Count , 3 ) )

pt downsample . Count

pcshow ( pt downsample ) ;

pcwr i te ( pt downsample , ’ point−cloud−c lean−9K. ply ’ ) ;

(c) converting the as-built and as-planned models in matrix format suitable

for CPD with LibreOffice Calc:

i. open a .ply file in LibreOffice Calc;

ii. on the Import Dialog, under Separator Options, check Space click

OK;

iii. delete rows 1-17;

iv. delete columns D-J;

v. select File →Save As →Edit Filter Settings;

vi. change the Field delimiter and Text delimiter fields to a single space;

vii. click OK.

(d) run CPD commands:

$ cd path/ to /cpd/ examples / bu i ld
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$ . / cpd−r i g i d point−cloud−c lean−9K. csv as−planned−

pt−9K. csv

(e) record the obtained rotation matrix, the translation vector and the scale;

(f) transform the as-built point cloud according to the output recorded in

the previous step in Matlab:

c l e a r v a r s ;

p t t a r g e t = pcread ( ’ as−planned−pt . ply ’ ) ;

%pcshow ( p t t a r g e t ) ;

pt = pcread ( ’ point−cloud−c l ean . ply ’ ) ;

%pcshow ( pt ;

s c a l e = ∗CPD r e s u l t i n g s c a l e ∗

T r i g i d r o t a t i o n = [∗CPD r e s u l t i n g r o t a t i o n

matrix ∗ ]

T r i g i d t r a n s l a t i o n = [∗CPD r e s u l t i n g t r a n s l a t i o n

vec to r ∗ ] ’

% Inve r s e t rans fo rmat ion

T f u l l = cat ( 1 , cat ( 2 , s c a l e ∗T r i g i d r o t a t i o n ’ ,

T r i g i d t r a n s l a t i o n ) , [ 0 0 0 1 ] )

T f u l l = inv ( T f u l l )

p t t r a n s f o r m e d L o c a t i o n f u l l = T f u l l ∗ cat ( 1 ,

pt . Location ’ , ones ( s i z e ( pt . Location , 1 ) ,1 ) ’ ) ;

p t t r a n s f o r m e d f u l l = pointCloud ( pt t rans fo rmed

L o c a t i o n f u l l ( 1 : 3 , : ) ’ ) ;
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% Visua l comparison o f the as−planned

% and transformed as−b u i l t models

pcshowpair ( p t ta rge t , p t t r a n s f o r m e d f u l l ) ;

% Ass ign ing o r i g i n a l c o l o r s and sav ing

% the transformed po int c loud

p t t r a n s f o r m e d f u l l . Color = pt . Color ;

%pcshow ( p t t r a n s f o r m e d f u l l ) ;

pcwr i te ( p t t r a n s f o r m e d f u l l , ’ point−cloud−clean CPD−

transformed . ply ’ ) ;

A.3.3 Progress identification

1. Compute Hausdorff distance in Meshlab:

(a) open as-planned-pt.ply and either point-cloud-clean ICP-

transformed.ply or point-cloud-clean CPD-transformed.ply, depending

on the chosen registration method;

(b) click Show Layer Dialog;

(c) select the as-planned-pt layer;

(d) select Filters →Sampling →Hausdorff Distance →Apply;

(e) view only the as-planned-pt layer;

(f) select Quality Mapper;

(g) in the Quality Mapper Dialog, under Preset Ramps, select Red Scale;

(h) Click Apply (at this stage color distribution might be corrected if re-

quired);

(i) select Export Mesh As and save the point cloud as final.ply (this is a

resulting visual progress tracking model).
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2. Compute project completion percentage in Matlab:

pt = pcread ( ’ f i n a l . ply ’ ) ;

% Red c o l o r d i s t r i b u t i o n histogram

histogram ( pt . Color ( : , 1 ) , 2 5 )

% Choosing th r e sho ld

thre shho ld = ∗ chosen THRESHOLD∗

% Progres s percentage c a l c u l a t i o n

p t p r o g r e s s = sum( pt . Color ( : ,1)< thre shho ld )/ l ength (

pt . Color ( : , 1 ) )
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Bosché, F. (2012). Plane-based registration of construction laser scans with 3d/4d

building models. Advanced Engineering Informatics , 26 (1), 90–102.
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