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Abstract

This thesis presents a theoretical study of columnar films, fabricated by glanc-

ing angle deposition (GLAD), as photonic bandgap structures and metamateri-

als with predictable dielectric and magnetic response. Glancing angle deposition

(GLAD) employs extremely oblique vapour incidence and computerized substrate

motion to produce nanocolumns with a variety of shapes. Columns grow in ran-

dom or periodic arrays and may be periodic in one, two, or three dimensions.

The films’ optical properties were studied using finite-difference time-domain and

finite-difference frequency-domain methods, as well as effective medium theories,

with support from experimental research.

A large part of the thesis is devoted to column arrays with subwavelength in-

tercolumnar distance and periodically modulated column shape. Among them,

s-shaped columns were designed as polarizers for linearly polarized light. Simu-

lations have shown a competitive effect from two structural anisotropy sources,

causing a band gap suppression for one of two linear polarizations, and high po-

larizing ability. Simulations were compared to the measurements with a very good

agreement in spectral response. Subwavelength column arrays were further ex-

plored as anisotropic interference mirrors with omnidirectional reflection bands.

Index graded vertical post films were designed, having up to four times wider

reflection bands than in the isotropic analogs.

Band gap properties of 3D periodic GLAD columns were studied on the ex-



ample of square-spiral photonic crystals. A significant influence of column cross-

section was shown, that currently prevents fabrication of square spirals with a 3D

band gap in the visible range. Inverted square-spiral films have better performance,

which is further improved by material redistribution along the spiral.

Lastly, this work studies the effective dielectric response of porous columnar

films with metal particles. Characteristic matrix formalism was combined with

finite-difference modelling to explicitly calculate their permittivity and perme-

ability, and to study the band gap formation in periodic layers of porous metal.

Anisotropic magnetic response was observed in silver columns away from the

plasma resonance. Combined with a large permittivity in the infrared, this has

potential for future refractive index engineering.
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Chapter 1

Introduction

1.1 Motivation

Porous nanostructures attract interest in science and industry by having properties

that are not normally present in the materials they are composed of. Examples are

found in solar cell technology [79, 29, 9], energy generation and storage [153, 88,

96, 136], coatings [13], and optical interconnects [121]. In the field of photonics,

nanoporous materials are used to engineer films with functional refractive index

profiles [147], and to manipulate the flow of light with the aid of photonic band

gaps. Photonic band gaps are inherent to the periodically structured materials

and appear in one, two or all three dimensions. They are expressed as spectral

bands where light cannot propagate through the material. 1D band gaps occur

in the interference mirrors, where periodicity is in only one direction. Films and

slabs perforated with 2D periodic array of holes or made of a 2D periodic array of

posts exhibit 2D band gaps, for the light propagating in the plane of the slab. 3D

band gaps appear in a limited number of 3D periodic structures, such as spheres

arranged in a diamond lattice [44], woodpile arrangement of rods [76] or square

spiral arrays [122]. In the majority of 3D architectures, however, the band gap

changes its spectral position considerably as a function of propagation direction,

and no single frequency is covered by the band gap in all directions.

Nanoporous materials have high surface area, which makes their properties sen-

sitive to the environment [112, 113, 85]. For example, water adsorption and des-

orption from nanoporous interference mirrors changes the refractive index enough
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for a visible change in the photonic band gap spectral position, and can be used to

measure humidity [40]. The surface of porous materials can be functionalized to

absorb some specific compounds, such as hazardous gases, for detection purposes.

Some of the most sophisticated porous nanostructures are fabricated by glanc-

ing angle deposition (GLAD). GLAD is a variation of physical vapour deposition

that employs extremely oblique deposition angles with computer-controlled sub-

strate motion to make arrays of isolated columns bent into various shapes. The

columns grow towards the vapour source, and, as the substrate is rotated, form

zig-zags, spirals, variable diameter vertical posts, and their combinations. Arrays

of these columns are one, two, or three dimensionally periodic, potentially having

2D and 3D photonic band gaps [33, 63].

The goal of this PhD work was a theoretical study of columnar GLAD struc-

tures aimed to define the areas where optical GLAD films are most useful, and

to investigate opportunities for novel applications in these areas. The columnar

films were studied in the following aspects: (i) as anisotropic index-graded films,

(ii) as three dimensional photonic crystals, and (iii) as matrices for ordered arrays

of metallic nanoparticles.

Columnar films can be treated as anisotropic index-graded films, when illumi-

nated by light of wavelength much longer than the intercolumnar distance. Column

arrays then have optical properties of a uniform but effectively bianisotropic ma-

terial. Such a material is fully characterized by three principal refractive indices

and orientation of two optical axes. In GLAD films, each of these five variables

can be changed throughout the deposition. A large part of presented work will be

devoted to anisotropic GLAD films. Chapter 2 will explore the anisotropic polar-

izers, where band gaps are sensitive to a light polarization state, and Chapter 3

will discuss the role of anisotropy in omnidirectional reflection from graded index

interference mirrors.

At wavelengths comparable to the intercolumnar distance, GLAD films cannot

be treated as effectively uniform, but rather express themselves as photonic crystals

[142]. Theoretically it was shown that square spiral columnar films can have a true

3D band gap (range of wavelengths covered by the band gap in all directions) for

a limited range of column geometries [122]. The band gap has been observed

experimentally in silicon square spirals, but not for all propagation directions. In

Chapter 4, GLAD square spiral photonic crystals will be considered, with the
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band gap in the visible spectral range. The column nanoscale geometry will be

studied in detail showing the limitations and opportunities of GLAD in making

these crystals.

Many opportunities appear when metal particles are included into the structure

of periodically ordered GLAD films. As opposed to suspensions in solids or liquids,

metal particles in GLAD columns can form periodic arrangements combining plas-

mon resonance with the band gap phenomena. It was shown both theoretically

and in experiments that metal nanoparticle arrays can have negative magnetic

permeability and negative refractive index [53, 35]. GLAD films as templates for

the ordered metal particles will be discussed in Chapter 5.

The work presented here is focused on theoretical investigation and design of

columnar GLAD films for novel optical applications. The work has been largely

carried using finite-difference time-domain and frequency-domain numerical tech-

niques. These methods have been known for several decades and are currently

used to simulate many complex scattering geometries. The goal of my work was

to systematize the optical properties of GLAD films, outline their strengths, and

develop new photonic materials with the knowledge gained.

In the following sections, GLAD technique will be reviewed and finite-difference

numerical methods will be described.

1.2 GLAD technique

1.2.1 The method

GLAD technique uses physical vapour deposition at extremely oblique vapour

incidence and computer-controlled substrate motion to engineer porous columnar

films with various column shapes [102, 111, 38, 63, 54]. The substrate is kept at

relatively low temperatures during the deposition to limit the mobility of deposited

molecules, and let them settle close to the sites of their first impact. Geometrical

shadowing is the dominant factor governing the microstructure of the deposited

film.

As vapour arrives at grazing incidence, protruding features of the surface in-

tercept more molecules than the valleys, and accumulate more material. Gradu-

ally these protrusions extend into columns tilted towards the vapour source (Fig-
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Figure 1.1: Due to the shadowing and material accumulation on the high points
of the surface, the film differentiates into the tilted columns.

ure 1.1). The initial substrate roughness, causing film differentiation in columns,

can be created artificially by substrate seeding, but in the absence of seeding, the

vapour itself tends to form nanodroplets on the surface. These nanodroplets form

an initial roughness needed for the column growth. Deposition is performed at low

gas pressures, at which molecules travel from the source to the substrate in straight

lines, and form a distinct shadowing pattern on the rough substrate surface. As

the substrate orientation is changed, the shadowing pattern changes and so does

the direction of column growth. This change in the growth direction ultimately

gives the main degree of control over the nanoscale film structure.

The typical GLAD deposition setup is shown in Figure 1.2. Molecules of evap-

orated material travel along straight lines in a high vacuum chamber, and impinge

on a tilted substrate. The plane of substrate tilt is called the deposition plane and

the tilt angle is called the deposition angle α. This angle can be varied during the

deposition by computer controlled step motors. The substrate orientation is also

characterized by the rotation angle φ. To ensure a proportional size of column seg-

ments, that grow at fluctuating deposition rate, this rate is measured by a crystal

thickness monitor and synchronized with substrate motion speed.

GLAD deposition is typically performed by evaporation or sputtering. In E-

beam evaporation, material is placed in a crucible and continuously scanned by an

electronic beam. The beam melts the material and heats it to a high temperature

at which it evaporates [60]. The composition of the deposited film is determined

by the molecular composition of evaporated material, ability of components to
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Figure 1.2: Glancing angle deposition apparatus.

condense as a film, and the background environment that molecules have to pass

while travelling to the substrate. Many GLAD materials are multi-atom molecules,

and different atoms in these molecules have different deposition efficiency. For

example, titanium dioxide forms the films with a lower oxygen content than in the

evaporated material. This is usually corrected by introducing more oxygen into

the deposition chamber [72].

Several evaporants can be deposited simultaneously from separated sources

to make composite materials. Such deposition may not produce a film of a new

chemical composition, but form a film with one material suspended in another.

For example, simultaneous deposition of metal and dielectric produced a dielectric

columnar film with metal nanoparticles suspended in the columns [42].

1.2.2 Basic GLAD Architectures

Based on the substrate motion algorithm, GLAD architectures can be split into

several classes shown in Figure 1.3. The simplest motion algorithm has both the
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d) e)
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f)

Figure 1.3: Typical column architectures grown by GLAD technique: a) slanted
posts; b) zig-zags; c) polygonal (square) spirals; d) helices; e) vertical posts; f)
variable radius vertical posts, forming an index-graded interference mirror.

deposition angle α and rotation angle φ fixed throughout the deposition. The film

grows as an array of slanted posts tilted at an angle β towards the vapour source.

This angle is lower than the deposition angle α and determined mainly by the

deposition angle and by the deposited material. Several relationships between these

two angles were derived based on empirical data fitting [92, 45, 139], geometrical

analysis [120], and column growth simulations [75]. One such relationship, that

empirically accounts for the deposition angle and deposited material is [139]:

tan

(

β

C

)

=
1

2
tan(α), (1.1)

where C is a material dependent constant, which which was found to be C = 0.53

and C = 0.78 for titanium dioxide and magnesium fluoride respectively in the

deposition angle range 0o < α < 80o.

In slanted post films, shadowing occurs in the deposition plane, but not per-

pendicular to it. As a result, columns fan out in the direction normal to the

deposition plane, and often merge to form ribbon-like structures. The example
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Figure 1.4: SEM image of slanted post film showing how columns fan out in the
direction normal to the deposition plane (From [74]).

is shown in Figure 1.4. The column coalescence can be further promoted if the

substrate is patterned with narrow lines normal to the deposition plane, leading

to highly ordered ribbons [114].

In more sophisticated motion algorithms, the rotation angle φ is varied during

the deposition. Discrete rotations by ±180o produce zig-zag structures, in which

column growth direction alternates between two opposite azimuths, but the average

column growth remains vertical. This substrate motion algorithm is known as a

serial bideposition technique (SBD), and has been previously used to produce

biaxial films of high optical birefringence [47, 48, 98, 49].

When the substrate is rotated at a constant speed (φ(t) = ω · t) vertical helices
are formed [50, 130, 102]. The turn radius of these helices is smaller at fast rotation

speeds and larger at slower speeds. At very high rotation speed, the helix radius

becomes smaller than diameter of the column and helix degenerates into a vertical

post.

An important class of columnar films is formed when vertical posts are de-

posited at a variable deposition angle. The column radius then becomes a function

of the vertical coordinate, and so does the film’s effective refractive index. Index-

graded vertical posts were thoroughly studied as rugate interference filters and as

nanoporous gas sensors [113, 40], and will be addressed in detail in Chapter 3 of

this thesis.
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Figure 1.5: SEM image of square spiral film that shows a substantial column
broadening in a vertical direction (From [55]).

If the substrate is periodically turned by ∆φ = 2π
n , where n = 2, 3, 4, 5... etc.,

polygonal spirals form [128]. Zig-zag columns (n = 2) and helical columns n = ∞
can be classified as particular cases of this class of architectures. One frequently

studied type of the polygonal spiral is a square spiral, with n = 4. It has been

proven to have 3D band gaps at least in theoretical research [122, 123]. Square

spirals will be addressed in Chapter 4 of this thesis, where the importance of

column cross-section will be shown and a search will be undertaken for column

geometries with 3D band gaps in the visible spectral range.

1.2.3 Substrate Patterning

Whatever the substrate motion algorithm is, the film’s architecture is influenced

by an initial arrangement of seeds on the substrate. If film is deposited on a

clean substrate without seeds, adsorbed atoms of evaporated material either form

monolayers or nucleate, depending on their attachment strength to each other,

binding energy to the substrate, and substrate temperature [91]. The initial nuclei

of deposited material then create shadowing pattern needed for columnar growth.

Columns are randomly distributed on a substrate and usually tend to increase

their diameter as they grow. This column broadening creates a competition, in

which some columns stop growing, while other continue to grow and broaden even

more (see Figure 1.5). The film porosity, however, remains constant with the
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column height [63, 38]. If films are deposited on a seeded substrate, the initial

shadowing pattern is created by an existing array of seeds. Each seed produces

a single column if it has the same radius as an equilibrium radius of the columns

grown on an unseeded substrate [54, 115]. The spatial density of seeds also needs

to be comparable to the equilibrium column density. If seeds have a much larger

diameter than the average column in the unseeded film, multiple columns will

sprout from each seed, and if intercolumnar spacing is too large, columns will

grow between seeds.

Seeds are most often prepared by e-beam lithography, photolithography or

nanoimprint lithography, depending on the seed specifications, size of seeded area,

and potential application [54, 114]. E-beam lithography [60] is often used in the

research work, being the most precise lithographic method currently available. The

disadvantage of e-beam lithography is that it only can cover small substrate areas,

as it is a time consuming nonparallel method. Larger seeded areas are prepared

by e-beam lithography to be used as matrices for other lithographic methods, for

example for nanoimprint lithography.

Photolithography is suitable for large area seeding and used both in laboratory

and industrial scales [60, 52]. This method is the dominant one in CMOS micro-

fabrication, with the resolution approaching 10 nm. These resolutions have been

achieved by decreasing the wavelength of projected light and by using sophisti-

cated optical systems. As a result, the projecting equipment for high resolution

lithography is exceedingly costly for research purposes.

Nanoimprint lithography [36, 101] uses a stamp, fabricated once (using e-beam

lithography for example), and applied multiple times to seed the substrates. The

stamp is prepared as an array of protruding dots, and then mechanically impressed

into a layer of nanoimprint resist. Substrate nanoimprint seeding has been reported

for seed sizes and lattice constants below 100 nm, which makes the method useful

both for industry, and for research.

1.2.4 Advanced Substrate Motion Algorithms

Sections of GLAD films deposited at fixed azimuth and deposition angle tend to

fan out and increase diameter as they grow. Advanced substrate motion algorithms

prevent these effects, and reduce column bifurcation, merging and other deviations
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from the ordered arrangement. Several techniques were developed to control the

column diameter, cross-section shape, and the amount of broadening along the

vertical direction. One of these techniques, called PhiSweep, is often employed

during square spiral film fabrication [55, 63]. Instead of depositing each arm at a

constant azimuth φ, this angle is quickly alternated between two values φ−γ and

φ+ γ. Provided that the frequency of angle alternations is high enough, columns

grow in vanishingly small increments at an average azimuth φ. The PhiSweep has

a profound impact on a film’s morphology. With PhiSweep, a column’s diameter

significantly decreases, while the mean film density remains the same as in the film

deposited at a constant azimuth. Due to a more uniform shadowing distribution,

the column horizontal cross-section becomes closer to circular. Also, less column

broadening is observed, making the columns more uniform along their length.

The positive effect of PhiSweep disappears when the PhiSweep growth increments

become comparable to or smaller than the typical column radius.

Another motion algorithm, used to control column cross-section and improve

the morphology, is a variable-alpha post (VAP) method [63]. Here both substrate

rotation φ and deposition angle α precess around a certain fixed axis. The method

brings column’s cross-section closer to that of a tilted cylinder, and minimizes the

cross-section distortions at abrupt column turns.

The spin-pause method is another algorithm used to alter the column tilt and

porosity [103]. Usually one needs to decrease the deposition angle to reduce column

tilt. Film density is changed, however, when deposition angle is decreased. With

spin-pause method it is possible to vary column tilt while keeping a film density

fixed. The deposition angle is fixed, and substrate motion quickly alternates be-

tween two modes — fast continuous substrate rotation and fixed angle deposition.

The columns grow in vanishing increments of tilted and vertical posts, with the

average tilt β′ determined by the ratio of spinning to stopped time. If the rotation

is stopped all the time column tilt is at maximum β, defined by the deposition

angle and by the type of the deposited material. If the substrate is rotated without

stopping, the column will grow vertically. The spin-pause technique thus allows

one to control the film’s anisotropy and optical axis tilt in birefringent columnar

films. The value of β′ relative to β is determined by the fraction of spinning time

δ during the tilted segment deposition as tan β′ = (1 − δ) tan β. The spin-pause

technique affects the column’s cross-section, which is elongated normally to the
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Figure 1.6: Templating process with GLAD thin films: a) the original film; b) film
infiltrated with PMMA; c) inverted porous structure composed of PMMA; d) the
original structure restored by electrochemical deposition.

deposition plane if β′ > 0, and circular if β′ = 0. The cross-section anisotropy is

the highest when β′ → β.

1.2.5 Film Inversion Techniques

Inverted columnar films are composed of air columns a dielectric matrix, and some-

times have enhanced optical properties, such as wider 3D band gaps in inverted

square spirals. Film templating is used to invert GLAD columns (see Figure 1.6).

In the templating process films are fabricated using material, which can be later

etched away. Silicon dioxide, for example, readily forms columns, and can be selec-

tively etched away after filling with PMMA (polymethyl methacrylate) polymer.

The polymer is infiltrated into the film, and then part of it is etched back to expose
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silicon dioxide columns. The columns are chemically removed, leaving a polymer

membrane perforated with pores copying the architecture of GLAD film. Instead

of polymer, other materials such as metals can be used [11].

In a double templating, the porous polymer membrane is infiltrated again with

a third material, and then the polymer is etched away. This method brings back

the original template, but made of a different material. The method is useful when

columns need to be made from materials that cannot be directly or easily deposited

by GLAD. Some metals for example, have relatively low melting temperatures

and high atom diffusion length preventing efficient column differentiation when

deposited directly by GLAD.

1.3 GLAD films as photonic materials

Photonic band gaps form due to the destructive interference of light on periodic

structures, when their spatial period is close to the wavelength of light. The band

gap spectral position and width depend on the propagation direction and, in most

cases, a given wavelength is not covered by the band gap in all directions in 3D

space. If it does, the periodic structure is regarded as 3D photonic crystal due to

the similarity between the photonic band gaps and electronic band gaps in crystal

lattices. If the condition holds only in a plane, the structure is considered as

a 2D photonic crystal, and in index-graded waveguides and interference mirrors

band gaps exist only in one dimension. The latter are often studied using analytic

theories, such as coupled mode and transfer matrix theories [22, 145].

GLAD films can be 3D, 2D or 1D periodic, depending on the motion algorithm

and substrate seeding. If deposited on a periodically seeded substrate with ap-

propriate periodic motion algorithm, they potentially form a 3D photonic crystal.

Among columnar architectures only square spiral structure is known to have a

3D band gap so far. 2D photonic crystals are easier to fabricate, due to fewer

restrictions. GLAD vertical post arrays can can be an example of these, but are

easily outperformed by similar structures fabricated by deep reactive ion etching

in silicon and silica slabs. Structures obtained by etching form arrays of air posts,

which have larger band gaps than dielectric posts in air. The walls of etched pores

are also smoother than the GLAD column surface, therefore GLAD fabrication of

2D crystals does not seem practical at this time.
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Figure 1.7: Principal indices of the columnar film.

1D periodic GLAD films, however, deserve attention. In a special case, when

the intercolumnar spacings are much smaller than the wavelength of light, GLAD

columns transfer light as an effectively uniform, but anisotropic medium with three

principal refractive indices n1, n2 and n3, as shown on a Figure 1.7. When all

three indices are different, the material is bianisotropic (having two optical axes)

and its optical properties are fully characterized by three indices and three angles

describing the optical axes’ orientation. GLAD columns are generally bianisotropic

except vertical posts, which are rotationally symmetric and uniaxial. If the film is

deposited without rotation, one optical axis is normal to the deposition plane (due

to mirror symmetry relative to this plane), and the other one is oriented along the

columns. The effective refractive indices can be calculated approximately with an

effective medium theory, but accurate dispersion relations are obtained only with

numerical methods. If the refractive index and principal (optical) axis orientation

varies along the column length, the film becomes a 1D graded-index interference

mirror.

1.3.1 Interference mirrors

A GLAD film, if deposited on unseeded substrate at a constant rotation, forms as

a closely spaced array of vertical posts, with intercolumnar distances of an order

of 100 nm [39]. The density of these films can be varied by the deposition angle,

causing corresponding variations of the refractive index. In the visible spectral

range, titanium dioxide is often used, as it is a high index material which is trans-
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parent in this range and may be deposited by GLAD. A high refractive index is

needed to produce wide photonic band gaps.

Vertical posts are rotationally symmetric and films can be characterized by two

indices: n1 = n2 = no (ordinary index) and n3 = ne (extraordinary index). The

ordinary index is measured in the substrate plane, and the extraordinary index

along the column axis. The measured relationship between no and deposition

angle covers the range 1.16 ≤ n0 ≤ 2.23 [39] for TiO2 vertical posts. Birefringence,

defined as a difference between ordinary and extraordinary indices ∆n = ne − no,

has also been studied for several metal oxides [47], with the maximum value for

titanium dioxide of ∆n = 0.15 at deposition angles α ∼ 65o.

With the relation between the deposition angle and refractive index known,

one can program the film’s refractive index profile as desired. Discrete profiles,

with step-wise index variation, and sinusoidal (“rugate”) profiles were studied

previously and band gaps were shown in the infrared and visible regions [37, 118].

If defect layer is inserted in a periodic sequence, the defect mode appears in the

band gap as a narrow transmission line. Interesting gas and humidity detecting

opportunities were shown for the films with defect layers [113]. The resonant mode

is narrow compared to the band gap, and even small changes in refractive index

cause a detectable shift. In humidity sensors the response is fast, and can be cycled

repeatedly without noticeable film degradation [40].

Defect modes in the columnar films are also interesting by their optical bire-

fringence, since their spectral position may be polarization-dependent, even if the

band gap itself is insensitive to the polarization of light. By infiltrating the de-

fect with liquid crystal it may also be possible to make the defect mode position

sensitive to an external electric field.

1.3.2 Chiral Films

Anisotropic materials with a helically twisted optical axis form a class of struc-

turally chiral materials. Naturally, these materials occur as a chiral nematic phase

of liquid crystals. They are classified as left-handed or right-handed depending on

the direction of axis rotation. In right-handed materials, the rotation is clockwise if

the imaginary plane is moved away from the observer looking along the helix, and

left-handed in the opposite case. Accordingly, right-hand circularly polarized light
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(RCP) has an electric vector rotating clockwise relative to the observer looking

into the beam, and left-hand circularly polarized light (LCP) has counterclockwise

electric vector rotation. Chiral materials selectively reflect light of one handedness,

while transmitting the other one.

GLAD helical films are chiral because their optical axis is helically twisted along

the substrate normal. They are deposited at a constant substrate rotation, with

the deposition angle α fixed. The helix pitch is defined by the rotation frequency

and deposition rate, while the degree of anisotropy is determined by deposition

angle and deposited material.

The optical response of chiral films is characterized by the difference between

the RCP and LCP transmittance ∆TRCP−LCP . It has been shown, both theo-

retically and experimentally, that helical GLAD films have polarization-selective

band gaps for circularly polarized light [130, 131, 50]. Both band gaps also can

exist simultaneously with one band gap much weaker than the other one. The

right-handed films have an RCP band gap, while LCP band gap is either weak or

not observed. In a trigonal (3-sided) spiral, which is also chiral, band gaps were

observed for both LCP and RCP light, but were located at different wavelengths

[128].

1.3.3 Photonic Crystals

Only a limited number of spatially periodic dielectric structures have three dimen-

sional photonic band gaps, and their fabrication on a microscale is challenging. 3D

band gaps were reported in “woodpile” structures, and in diamond-like structures

formed by drilling crossed pores in the solid. The widest band gaps were found in

the diamond lattices of overlapping spheres (and even wider in their inverted form)

[44]. Smaller band gaps were found in FCC (face centered cubic) and hexagonal

close packed (HCP) lattices of aspherical particles, and in a cubic lattice of spheres

[143].

A series of theoretical studies [123, 122] have shown that wide band gaps can

exist in the square-spiral columnar structure where column arms connect nodes of a

diamond lattice. This structure can be fabricated by GLAD, because nodes of the

lattice, when projected on FCC lattice, form a series of parallel layers, connected

by a series of parallel lines. In each layer, nodes form a square array, identical to
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arrays above and below, but shifted in relation to them. The deposition is started

from a square array of seeds to form slanted posts. As column tips reach the

next plane, substrate is turned by 90o either clockwise or counterclockwise. The

column tips always stay in the plane parallel to the substrate, and preserve the

initial square arrangement, determined by the substrate seeding.

As arms pass from one layer to the next, they do not necessarily connect the

nearest nodes. Square spirals connecting the nearest neighbours (diamond:1), ev-

ery third neighbour (diamond:3) and every fifth neighbour (diamond:5) of diamond

lattice were theoretically considered in works of Toader et al. [123, 122]. Band

gaps larger than 10% were found in all configurations, if columns were made of

silicon (refractive index of silicon is n ≈ 3.5 in the near infrared). The widest

3D band gaps were observed for diamond:5 spirals, and the smallest for the dia-

mond:3 architecture, indicating that wide band gaps of square spiral films are not

necessarily due to their connection with the diamond lattice. This conclusion was

supported by the fact that in the optimized square spiral geometries, arms pass

relatively far from the diamond lattice nodes.

The same studies have also shown that the cross-section shape influences the

photonic band gap. Rectangular cross-sections showed wider band gaps than cir-

cular. Inverted structures also had wider band gaps than the direct ones, which is

a well known trend among photonic crystals.

Only one of the geometries described in the work of Toader et al. is within

the potential reach of GLAD technique: the diamond:1 structure. Arms of the

optimized diamond:1 column are tilted at 64o from the substrate normal, which is

close to the limit of GLAD method. Diamond:5 columns have even larger tilt, and

therefore not considered in the experiments.

1.4 Finite-difference methods for simulation of light

propagation

Numerical modelling occupies a significant niche in nanomaterial research, and its

popularity continues to increase. While analytical methods give deep insight into

the physics of the processes, their predictive ability is limited to a small number

of models. Numerical methods give an approximate solution with a high accuracy,
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yielding results similar to experimental. In electromagnetics, several families of

numerical methods are used, depending on the problem which is being solved. All

of these methods are based on one or another form of Maxwell’s equations. In

the differential form, the equations link electric and magnetic fields and their time

derivatives:

[~∇× ~E] = − ∂

∂t
~B − ~K, (1.2)

[~∇× ~H] =
∂

∂t
~D + ~J , (1.3)

~∇(ǫ ~E) = ρ/ǫ0, (1.4)

~∇(µ ~H) = 0, (1.5)

where ~E and ~H are electric and magnetic field vectors, ~D = ǫǫ0 ~E is an electric

displacement vector, ~B = µµ0 ~H is a magnetic induction, ǫ and µ are the relative

permittivity and permeability, ~J and ~K are electric and magnetic current densities,

and ρ is the electric charge density. Magnetic charges, as well as magnetic currents,

have not been found in the nature, but an artificial system of surface magnetic

currents is often used in numerical simulations to represent a complex scattering

body by a closed surface with certain distribution of electric and magnetic currents.

Numerical techniques, such as the finite-difference time-domain method

(FDTD), finite element method (FEM), and finite volume methods discretize these

equations in one or another way in space and propagate the solution in time using

some set of initial and boundary conditions [119, 71]. These methods calculate

the time dependence of a spatial field distribution, which is further used to find

transmittances, absorption and other parameters directly compared to the experi-

ment. The disadvantage of time-dependent methods is high demand on computer

memory and time, because all points of a simulated domain have to be stored, and

the fields are evolved through a large number of time steps.

In many instances, it is possible to find a steady state solution by solving a

frequency dependent Helmholtz equation:

[~∇× 1

ǫǫ0
[~∇× ~H~k

]] = −
(ω

c

)2
~H~k
. (1.6)

The Helmholtz equation is obtained from Maxwell equations by representing
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electromagnetic waves as a series of harmonic plane waves in the form

~H =

∞
∑

ω=1

~Hω exp[i(ωt+ ~k · ~r)]. (1.7)

The finite-difference frequency-domain (FDFD) method is often used to solve

this equation. In FDFD, the problem is discretized with finite differences in space

and represented as an eigenproblem Ax = λx. The solution is a set of eigen-

modes and eigenfrequencies for the system. The method is thus useful for the

problems that involve waveguiding, or light transport in periodic structures. The

Method of Moments (MoM) is another method that solves Helmholtz equation

using Green’s functions and discretizes the problem over the object’s surface. Nu-

merical techniques that use surface discretization, such as Method of Moments,

are better suited for the problems with low surface-to-volume ratio. In scattering

problems, involving a single scattering body these methods are preferred [140].

GLAD films have high surface-to-volume ratios, therefore volume discretization

methods, such as finite-difference or finite-volume methods are more suitable for

them. The current work is based on finite difference methods, which are described

below.

1.4.1 FDTD Method

In the finite difference methods, space and time are discretized with a grid of points

and derivatives are calculated based on the field differences between the adjacent

points. In the time domain, Yee discretization method is used for the spatial

coordinates [146]. In this method two staggered rectangular grids are used, one

for the electrical field values, and the other one for magnetic fields, as shown on

Figure 1.8. The grids are displaced relative to each other in such a way that each

electric field point is surrounded by six magnetic field points. Similarly each point

carrying the magnetic field is surrounded by six electric field points. The magnetic

points surrounding each electric field point form three magnetic contours, naturally

satisfying Ampere’s Law for each electric field component. The electric points,

accordingly, form three closed contours around each magnetic point, satisfying

Faraday’s law. By discretizing the equations into two staggered grids, the method

automatically takes into account the integral form of Maxwell’s equations.
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Figure 1.8: Schematic representation of Yee staggered grid, and magnetic contour
for the Ez field component belonging to one of the electric grid points.

Fields are updated in time in a leapfrog manner, with the magnetic field being

updated in one half step, and its new value used to update the electric field in the

alternate half-step. With Yee discretization and leapfrog time stepping FDTD has

a second-order numerical accuracy. Computational cost grows as a fourth order of

the grid resolution in 3D space, because the number of cells increases cubically and

the number of time steps grows proportionally to the resolution. The maximum

time step is defined by a Courant-Friedrichs-Lewy (CFL) stability condition:

∆t ≤ ∆nm

c
√
N

,

where ∆ is a spatial grid step (if equal in all dimensions), N = 1, 2, and 3 for

one, two and three-dimensional space, and nm is a minimum refractive index that

occurs in the computational domain. This condition is a mathematical expression

of the fact that the information on a Yee grid does not propagate further than by

one spatial cell in a single simulation step.

In the time domain, Maxwell’s equations require both initial and boundary

conditions. The initial field distribution is usually set to zero and the boundary
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conditions are most often either Bloch periodic, or open. With Bloch periodic

conditions, fields on the one side of computational domain are equal to the fields

on the opposite side with a phase shift: ψ(~R) = ψ(~R − ~L) · exp(i~k~L), where L is

domain size along the axis normal to the given boundary, and ~k is the propagation

vector of light at a given frequency. Most often, the vector ~k is chosen in such a

way that (~k ~L) = 0, then multiple frequencies can be simulated simultaneously.

Almost all problems involve open boundary conditions along one or more spa-

tial coordinates. Open boundaries are most often simulated by absorbing non-

reflective layers of artificial material, called perfectly matched layers (PML). PML

layers have the same impedance value as the adjacent space to ensure the absence of

reflection, and a finite conductivity to absorb passing light. PML layers are placed

adjacent to cell boundaries while the boundary can be either Bloch periodic, or

have all fields suppressed to zero (perfect metal boundary). As a consequence any

fields that are not absorbed by PML either appear on the opposite domain side or,

reflected by perfect metal boundary return on the same side. These fields decrease

the simulation accuracy, but usually to a very little extent [119].

Light sources are added as current sources ~J(~r, t) in the point or in the plane.

The sources defined in this way are transparent to radiation, and do not interfere

with the scattered field. A wavefront of any shape can be assigned using a planar

source with a functional dependence ~J(~r, t). This is used to define plane waves

with arbitrary propagation angles originating in planes parallel to the grid mesh.

Due to a conceptual simplicity and versatility, the FDTD method has found

many applications. Radar cross-sections for airplanes [119], scattering from dust

and snow particles [144], and scattering in biological cells [107] are only a few

examples which encompass scales from micrometers to several meters. Systems

studied in the present work are in the nanoscale range and will be considered at

infrared, visible and ultraviolet wavelengths.

Many dispersive, anisotropic, and nonlinear materials can be simulated with

FDTD. Permittivity and permeability are functions of coordinates and time if the

equations are written in the time domain. Frequency-dependent approximations

are Fourier transformed to be simulated in FDTD and, since the transformation has

to be analytical, only a limited number of such approximations can be used. The

Lotentz dielectric model is frequently used and accurate enough to simulate many

practically important dispersive materials, including metals and semiconductors.
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If the material’s dielectric function is too complicated to be fitted by the Lorentz

model, the exact values of complex ǫ can be assigned for every frequency, but then

simulation is carried for one frequency at a time.

FDTD has several disadvantages, one of which is a staircase surface discretiza-

tion. The staircase discretization occurs when surfaces are not parallel to grid

lines. Where two materials fall into the same grid cell, the refractive index of the

more abundant one is assigned, and the smooth surface becomes stepped. The av-

erage of two refractive indices is often used, calculated using the effective medium

approximations. Staircase surface discretization does not cause significant errors

in dielectrics, as long as wavelength is significantly larger than the grid step (at

least 20 times is usually sufficient). On metal surfaces however, simulations must

be carried out with care, because plasmons are confined to the surface and there-

fore sensitive to its shape. One approach that is sometimes used to improve the

resolution of FDTD method on such boundaries, hybridizes FDTD method with

other methods using non-orthogonal computational grids. Finite volume or finite

element methods, for example, can be employed in the vicinity of the metal sur-

face. Solutions obtained in this sub-domain are then extrapolated to the boundary

of FDTD grid. The second approach is to carry FDTD integration on non-uniform

or conformal meshes. Non-uniform meshes have a variable grid step, and if this

step is varied slowly in space, the overall accuracy will be high enough, as long

as time step satisfies CFL condition for the smallest cell in domain [90]. In the

conformal-mesh approach, cells containing metal boundary are subdivided into a

finer grid. Because the time step on this sub-grid can be much smaller than that

required in the rest of computational domain, the simulation here is carried sepa-

rately with small time-steps and then extrapolated to the boundary of the course

grid [17]. FDTD algorithms with non-rectangular adaptive grids were also pro-

posed for more accurate surface treatment, and successfully employed in a number

of research tasks [2].

An interesting variation of the FDTD method is a pseudo-spectral time-domain

(PSTD) technique. It partially transfers the differential equations into a frequency

domain, which allows one to treat large systems with relatively limited computa-

tional resources. In PSTD, instead of calculating spatial derivatives as finite dif-

ferences one uses their Fourier transform. With only two grid cells per wavelength

this method achieves similar accuracy to FDTD with 10 to 20 grid cells per wave-
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length. Benefits of this method become less significant, however, when the feature

size of the scattering body is comparable to the wavelength, because the grid step

still has to be much smaller than the feature size.

1.4.2 FDFD Method

The FDFD method, like FDTD, uses finite differences to calculate spatial deriva-

tives, but has the time-independent Helmholtz equation as an equation of state.

This gives rise to an eigenvalue problem in the form Ah =
(

ω
cB h

)

where h is a

magnetic field eigenvector, Aij is the matrix operator:

Aij = 〈bi| Â~k
|bj〉 , (1.8)

Â~k
=
(

~∇+ i~k
)

× 1

ǫ

(

~∇+ i~k
)

× ,

and Bij = 〈bi| bj〉 forms an identity matrix, if basis functions 〈bi| and |bj〉 are

orthonormal. This problem is solved approximately, using a truncated set of basis

functions and an iterative approach to find eigenvalues ω and eigenfunctions h.

Eigenfrequencies attain a discrete set of values for a given wavevector ~k, while the

wavevector can be varied continuously [58]. Each eigenfrequency is characterized

by an integer number n, and at a given n the function ωn(~k) is called n-th photonic

band.

The FDFD method assumes periodic boundary conditions in all directions, and

is suitable for photonic crystal analysis. It also requires a relatively small amount

of computer memory, since the volume is limited to a single periodic cell. The

computation expense is proportional to [ p · i ·N · log(N)], where N is number of

grid points, i is number of iterations used when solving matrix problem, and p

is number of bands calculated. The number of photonic bands, similarly to the

number of states in quantum mechanics, is infinite, but only a few of the lowest

bands are usually calculated. In most periodic structures, practically useful band

gaps appear within the first nine photonic bands. Band gaps between 1st and 2nd

bands are usually considered in one-dimensional periodic structures, and 4th and

5th bands in square spiral photonic crystals and diamond and FCC lattices.
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1.5 Finite-difference modelling in this work

FDTD and FDFD methods were used extensively in the present work for the follow-

ing reasons. GLAD films form either periodic or random column arrangements,

and often are also periodic in the vertical dimension (normal to the substrate).

While light transmission through the whole film would be an impossible task to

calculate, in a periodic array only a single column needs to be considered in the

FDTD method, and a single period of the 3D structure is sufficient to describe the

photonic properties in FDFD. With current computer capabilities, many FDTD

and FDFD simulations can be performed on desktop computers with only a few

requiring more than 8GB of computer memory.

Random column arrays can be also simulated as periodic structures, if the light

wavelength is much larger than the intercolumnar distance. At long wavelengths

their optical response becomes similar to that of a uniform anisotropic material.

The dielectric constant of this material may be a sophisticated function of column

geometry, but it is invariant to the scale of the structure, and to the column

distribution on the substrate. Indeed, if random columns are characterized by

a dielectric tensor with diagonal values ǫ1, ǫ2 and ǫ3, the same columns can be

arranged into a periodic array that will yield the same dielectric tensor. Therefore

two arrays can have an identical optical response as long as the column spacing is

much smaller than wavelength.

A convenient way to represent random columns is a square lattice. Incident

light is then treated as a linear combination of two orthogonal polarizations ori-

ented along the lattice axis: ~E = ~e1 ~Ee1 + ~e2 ~Ee2 , where ~e1 and ~e2 are unit vectors

of the square lattice. The square lattice has the same column spacing in these two

orthogonal directions, making it physically similar to the random column arrange-

ment.

MPB (MIT Photonic Bands) andMEEP (MIT Electromagnetic Equation Prop-

agation) open-source software were used for all FD simulations done in this work

[94, 58]. This software developed in Massachusetts Institute of Technology cur-

rently incorporates a wide spectrum of abilities, including simulation of dispersive,

anisotropic and nonlinear materials. It can be used in C or in Scheme programing

environments, with the first one suitable for development tasks and the second one

convenient in research. The packages carry a limited number of basic geometrical
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objects and material models, which can be used as a base to create more complex

structures.

For the work described here an in-house library of dispersive materials and

columnar objects has been produced to cover the wide range of GLAD architec-

tures. Dispersive materials were characterized by the Lorentz approximation:

ǫ(ω) = ǫ∞ −
f0 ω

2
p

ω(ω − jγ0)
+

k
∑

l=1

fl ω
2
p

ω2
l − ω2 + jωγl

, (1.9)

where ǫ∞ is a dielectric constant at ω → ∞, ωp is plasma frequency and k is a

number of Lorentzian relaxations with frequencies ωl, strengths fl, and lifetimes

1/γl. Lorentz approximations for metals were taken from [99], while for silicon and

titanium dioxide they were obtained using the experimental data from references

[126] and [65].

FDFD was used to analyze the photonic band structure of periodic GLAD

films, and at long wavelengths to calculate their effective dielectric tensor. FDFD

method was also used to calculate the mode structure of periodic films with defects.

In this case, a super-cell including both defect and the surrounding periodic film

was considered.

The model of a GLAD film used in FDTD simulations is shown in Figure 1.9.

The cell is periodic along the X and Y axes, with pitch Px and Py. Open boundary

conditions are implemented along the Z axis through the PML layers. The domain

is occupied by a stack of identical geometrical objects, each representing a single

period of a GLAD film. A defect layer was often inserted between any of these

periodic layers. Each periodic layer was constructed to satisfy column continuity

across the film.

A plane wave source is placed normal to Z axis below the structure, and fields

are collected in horizontal planes, above (transmittance) and below (reflectance)

the film. When needed, a substrate was attached to the film and submerged into

one of two PML layers, representing an infinitely thick layer of substrate material

(which is usually thicker than the coherence length). Transmission and reflection

are calculated by dividing the Fourier transforms of transmitted and reflected fields

by the Fourier transform of a source field (measured in the absence of scattering

structure).
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Figure 1.9: The structure of FDTD simulation domain used to model periodic
columnar films.

If light is incident normally on the film, the wavevector ~k is parallel to Z axis

(kx = ky = 0), and multiple frequencies can be propagated simultaneously. The

film is then illuminated by a Gaussian pulse:

E(t) = Emax · eiωt+φ0 · ∆ω
√

(2π)3/2
e∆ω2(t−tm)2/(8π2), (1.10)

where ω is a centre frequency, ∆ω is frequency dispersion, and tm is a point of

time when the pulse amplitude is at maximum. The value tm has to be sufficiently

high, so that source field at the beginning of simulation is negligibly small.

An obliquely incident plane wave can be generated by the source plane aligned

normally to Z axis, if the complex phase of the wave is varied along the plane.

For example for the plane wave with wavevector in the XZ plane at an angle γ

with the Z axis, the electric field distribution on the source plane is: ~E(x, t) =

~E0 sin(ωt+φ0) exp(ikxx), where ~E0 = x̂Ep cos(γ)+Esŷ+ ẑEp sin(γ). Here Es and
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Ep are the amplitudes of s and p polarized electric fields. Simulation is more time

demanding at oblique incidence, because kx or ky are no longer equal to zero and

only a single frequency can be simulated at a time. Oblique incidence simulations

were also limited to closely packed thin columns of subwavelength sizes, because

larger columns scatter light, so that kx and ky are no longer preserved.

Finite-difference
time-domain (FDTD)

Finite-difference
frequency-domain
(FDFD)

Simulation
output

transmission and reflection
spectra; field dynamics

dispersion relations; mode
structure

Boundary
conditions

open (PML) or Bloch-periodic Bloch-periodic in all direc-
tions

Advantages finite size and aperiodic struc-
tures can be simulated; di-
rectly related to the experi-
mental data via transmittance
and reflectance

computationally inexpensive
and fast; effective dielectric
properties are easily found
from the slope of dispersion
curve

Disadvantages computationally expensive;
maximum time step is limited
by the CFL condition

not very useful for aperiodic
structures and structures with
defects; results do not directly
relate to measured transmit-
tance and reflectance

Table 1.1: Comparison of the FDTD and FDFD methods.
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Comparison of the frequency-domain and time-domain methods is given in Ta-

ble 1.1, outlining the advantages and disadvantages of each. In practice, periodic

GLAD structures were often studied using both FDTD and FDFD methods to

fully describe their optical properties. Simulations were carried using a high-end

processing workstation with two dual-core AMD Opteron processors and 8GB of

operating memory. A typical time-domain simulation, involving normal-incidence

Gaussian pulse transmission through 3 µm long dielectric columns with 100 nm

intercolumnar distance, lasted up to 5000 seconds, and occupied 1.4% of available

memory at 5 nm spatial resolution. Simulations for obliquely incident light, reso-

nant mode transmission, and dispersive materials were larger and longer, occupying

up to 40% of memory and lasting more than one day in some cases. Frequency

domain calculations consumed only a fraction of memory taken by time-domain

simulations, and calculation times ranged from minutes to several hours, depend-

ing on the resolution and simulation tasks. Post-processing of the simulated data

and accompanying analytical calculations for this thesis were performed in Octave

[25], a specialized programming language for numerical computation, which is

compatible with MATLAB.

1.6 Summary of the following chapters

The next two chapters - Chapter 2 and Chapter 3 will be devoted to the bire-

fringent films formed by dense column arrays, where the intercolumnar distance is

much smaller than the light wavelength. Such arrays often can be regarded as an

effectively uniform but optically anisotropic slabs with the refractive index varied

only an the direction normal to the film’s surface. In Chapter 2, the film’s birefrin-

gence is used to design nonabsorptive thin film polarizers, and in Chapter 3 we will

see how optical anisotropy affects the angular response of the interference mirrors,

and creates an path for the omnidirectional reflector design. Chapter 4 will address

the optical performance of square spiral photonic crystals in the visible spectral

range. The challenge of low refractive index contrast at these wavelengths will be

addressed with geometry optimization, extending the knowledge already collected

in literature. The rest of the thesis will be devoted to metal-dielectric composites

based on the columnar structure of GLAD films. Ordered metal particles and the

refractive index engineering will be discussed.
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Chapter 2

Polarization selectivity in

s-shaped columnar films 1

2.1 Motivation

Optical anisotropy in GLAD films may arise due to their columnar structure, even

when they are composed of an isotropic material. This anisotropy is expressed

when the wavelength is substantially longer than the intercolumnar distance. The

structure then behaves as an optically uniform, but anisotropic index-graded mate-

rial. Because the anisotropy is structural, it can be manipulated during fabrication

through changes in the column tilt, spatial orientation, and density. Such a degree

of freedom is not available in naturally anisotropic materials, which are usually

described by a fixed set of principal refractive indices, and a rather inflexible ori-

entation of the optical axes in the crystal. Below we discuss the application of

anisotropic GLAD films in the role of nonabsorptive polarizers.

Nonabsorptive polarizers are useful due to their ability to polarize light without

loss, contrary to the polarizers based on selective absorption of light. Nonabsorp-

tive polarizers are employed, for example, in high power laser systems, where even

partial absorption may cause damage in the polarizing element. Traditionally

they are implemented as reflective dielectric stacks, tilted at the Brewster angle

to the incident beam [24]. Brewster stacks polarize in a wide spectral range, but

have to be positioned at an angle to the beam, and therefore occupy relatively

1A version of this chapter has been published in Ref. [74].
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large space. Due to this tilt, they also can not be easily integrated in micro-

optical devices. Thin film polarizers operating at normal incidence are, on the

other hand, compatible with microfabrication, which enables their integration in

optoelectronic devices. They are often designed as anisotropic interference mir-

rors [46], and as metal wire gratings [149]. Anisotropic interference mirrors, due

to the film’s anisotropy, have a polarization dependent refractive index profile.

Their band gap position is, therefore, sensitive to the light polarization, making it

possible to selectively reflect certain polarizations within a narrow spectral band.

Among different fabrication approaches, the serial bideposition technique [46] has

been used to make alternating layers of two anisotropic dielectrics. The anisotropy

was achieved due to the porous columnar microstructure of the film. The method,

however, involved multiple materials, which complicated the fabrication.

The GLAD technique uses more general substrate motion algorithm than serial

bideposition and therefore allows one to vary anisotropy without changing the

material. A single-material columnar film can be designed to selectively reflect

light of one polarization and transmit the other one. The polarizing properties are

achieved within the photonic band gap, and therefore the polarizer has a limited

spectral width, similarly to the other interference-based thin film polarizers. The

structure proposed and discussed here is composed of s-shaped dielectric columns.

The film’s refractive index and optical axis tilt are periodically varied by means

of the variation of the column tilt. The whole film can be fabricated in a single

deposition session and with only one evaporant source. Constant porosity is then

maintained, making it easier to infiltrate the film with other materials, for example,

liquid crystals [108].

The architecture of s-shaped columnar film is described by a number of vari-

ables, such as film density, column profile, and cross-section shape; therefore, the

design is open to many possibilities. While the experimental analysis of all these

possibilities may be lengthy and expensive, numerical simulation provides a fast

and efficient way to do it. Finite-difference methods are well suited for this task

because the analysis is focused on transmittance and reflectance from a planar

film.
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2.2 Theoretical model of s-shaped columnar polarizer

The planar nonabsorptive thin film polarizer is realized by a periodic variation of

the column tilt along the film depth. It is known that the periodic refractive index

variation gives rise to band gaps, where light is completely reflected. Here the

band gap forms due to the optical axis tilt variation in the bianisotropic material

(see Section 1.3 of Chapter 1). Column tilt can be varied either continuously or

in discrete steps, with both ways having some advantages.

The discrete s-shape architecture realized by GLAD is shown on Figure 2.1.

The film is composed of alternating layers A and B with different principal refrac-

tive indices and optical axes orientations. Layer A, formed by vertical posts, is

uniaxial with optical axis parallel to Z axis. Its ordinary refractive index is in the

substrate plane, and extraordinary index normal to it. Layer B is composed of

slanted posts tilted in XZ plane. It is bianisotropic with one optical axis along Y

axis and the other one in the XZ plane. Assuming that the column cross-section

is constant and circular in both layers A and B, the effective index parallel to

the Y axis will be nearly the same in these layers. Then light polarized along

Y axis (Ex = Ez = 0) will be subjected to the same index no both in A and B

sections, and will be transmitted without reflection. Light polarized along the X

axis (Ey = Ez = 0) will be subjected to a variable refractive index, equal to no

where the axis is vertical, and to no < n′ < ne, where the axis is tilted. Thus, the

x-polarized light will experience multiple reflections leading to a photonic band

gap.

Each vertical period of the film consists of a four layer sequence. Layers A

and A’ are vertical posts, and layers B and B’ are slanted posts tilted in the XZ

plane. To ensure that the average column growth is vertical, the tilt direction

in sections B and B’ is opposite. Layers A and A’, in turn, are identical. The

column geometry is characterized by the height of vertical posts hv and slanted

posts ht, and by the slanted post tilt β′. The column’s vertical pitch is defined

as P = 2(ht + hv). In the following discussion the column profile will be specified

in the terms of pitch P and the ratio η = ht/P = ht/(hv + ht), rather than in

terms of heights hv and ht. The angle β
′ is closely related to the deposition angle,

and can be varied by a spin-pause technique without influencing the mean film’s

density [103].
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Figure 2.1: The model of the s-shaped columnar film.

Columns in the layers A/A’ and B/B’ have different horizontal cross-sections.

In the vertical segments the cross-section is approximately circular in a substrate

plane, because these segments are fabricated at a fast continuous substrate rota-

tion, and are therefore rotationally symmetric. The column cross-section in tilted

segments has been approximated as elliptical in the substrate plane. Because the

columns are tilted in the XZ plane the major axes of ellipses are oriented along

X and Y axis, and characterized by two widths wx and wy. Again, in the fol-

lowing discussion, instead of using the absolute values for these widths, the ratio

e = (wy − wx)/D will be used, where D is a diameter of a circle with surface

area S = πD2 = πwxwy/4. The area S is constant throughout the film assuming

that the deposition angle is not changed, and there is no column extinction and

broadening due to competition in their growth. Due to rotational symmetry, in

the vertical sections A/A’ the cross-section is circular: wx = wy = D. In the

tilted sections, due to the lack of shadowing along Y-axis, column cross-sections

are elongated in Y-direction and the relation wy > wx usually holds. By modi-

fying the substrate motion algorithm, for example, with the PhiSweep technique,

this relation can be reversed, therefore both positive and negative values of e were
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considered.

Based on SEM image analysis, fabricated s-shaped TiO2 columns formed ran-

dom arrays with an average intercolumnar distance close to 60 nm and average

column diameter slightly less than 55 nm. Close column spacing allowed us to

model these films as an ordered rectangular array of columns, since the wavelength

of interest (in the visible range) is much larger than the intercolumnar distance.

The structure was simulated as a square array, with lattice constant a = 60 nm.

Because the effective medium optical properties are scale invariant, the exact value

of a is not important and only the material to void fraction f = S/a2 has to be

known. The simulated film is thus characterized by a vertical pitch P , fraction of

tilted segments η, cross-section elongation in tilted segments e, slanted post tilt

β′, column volume filling f , and material refractive index n = 2.4, corresponding

to the electron beam evaporated titanium dioxide. In practice, the TiO2 refrac-

tive index varies with wavelength (increasing on a blue side) and depends on the

crystalline structure [65]. Rutile form has the highest index ranging from n ≈ 2.65

to n ≈ 3.0 across the visible spectrum, and anatase form has the index ranging

from n ≈ 2.5 to n ≈ 2.9. Electron beam evaporated material has somewhat lower

index values, ranging from n ≈ 2.25 to n ≈ 2.65, due to the presence of voids in it.

Annealing brings it closer to the anatase, and we chose the value in-between to ac-

count for the voids that possibly remain after annealing. The material was treated

as nondispersive, because the refractive index variation across the typical band gap

(less than 30% of the centre wavelength) is relatively small. Also we considered it

nonabsorptive, since any significant absorption starts at wavelengths smaller than

350 nm, in the ultraviolet, and films were designed for the visible range. Therefore

with the transmission T calculated in the simulation, the reflection was determined

as R = 1− T .

Due to the periodic column arrangement, Bloch periodic boundary conditions

were used in FDTD for the X and Y directions, and open boundary conditions

(PML layers) in Z direction. In frequency domain calculations, the computa-

tional cell was 3D periodic with the size in Z and X/Y dimensions equal to P

and a respectively. The resolution of the Yee grid was increased until no fur-

ther significant transmittance change was observed, and eventually the grid step

∆ = a/32 = 1.875 nm was chosen for all calculations.
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2.3 Optical properties of s-shaped films and polarizer

design

The structure’s symmetry determines symmetries of the electromagnetic modes it

carries. Discrete translational symmetry, for example, is responsible for the band

gap formation while continuous translational symmetry leads to a continuous light

transmission. S-shaped columns have mirror symmetry with respect to the XZ

plane (plane of the column tilt), which is responsible for polarization dependence

of their optical response. The electromagnetic modes can be split in two orthogo-

nal polarization states: one with the electric vector oscillating in the XZ plane, and

the other with the electric vector aligned along the Y axis. Considering normally

incident light, where the vector ~k is parallel to the Z axis we can treat light as

a superposition of x-polarized and y-polarized orthogonal modes. It is important

that the intercolumnar distance in the film is much smaller than the light wave-

length. While in three-dimensional photonic crystals, where column separation is

comparable to the wavelength and the mirror plane can be placed only in a dis-

crete number of points, densely spaced s-shaped columns have mirror symmetry

in a continuum of points along Y-axis. X and y-polarized transmittances were

considered and the polarization dependent band gaps were sought.

FDFD calculations were carried for column geometries similar to those experi-

mentally realized. The starting model was chosen with pitch P = 295 nm, η = 1/2,

volume filling f = 64%, slanted post tilt β′ = 30o, and circular cross-section (e = 0)

throughout the film depth. The band gap of interest is located between the sec-

ond and third photonic bands, because the layers B and B’ are optically identical

at normal incidence, and effectively one pitch P contains two sub-pitches AB and

A’B’. Band gap edges are, therefore, determined as the highest frequncy of the sec-

ond photonic band ω2(k) and lowest frequency of the third photonic band ω3(k)

respectively (see Section 1.4.2 for definition of photonic band and method of cal-

culation). Figure 2.2 shows the band gap edges for x and y-polarized band gaps

as a function of column tilt β′. At β′ = 0 the band gap is absent regardless of the

polarization, because the whole column is a vertical post, lacking the refractive

index variation. At increasing angles, the x-polarized band gap appears, but the

y-polarized band gap remains closed because the effective refractive index for y-

polarized light is the same in vertical and in tilted segments. The x-polarized band
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Figure 2.2: FDFD calculated location of the band gap edges as a function of
slanted post tilt in s-shaped columns (column horizontal cross-section is circular
in all segments).

gap also redshifts slightly, indicating that the average refractive index experienced

by x-polarized light increases.

The result is different when cross-section anisotropy is taken into account.

Band gap edges are shown on Figure 2.3 for the structure with a Y-elongated cross-

section in tilted segments (e = 0.167). Both x- and y-polarized band gaps exist

even at β′ = 0, because of the column cross-section variation between segments

A and B. The y-polarized band gap weakly depends on β′, since changing the tilt

does not change the Y component of the effective refractive index. The x-polarized

band gap, however, decreases with growing β′, and vanishes at β′ ≈ 30o. At larger

angles, the x-polarized band gap reappears again.

The collapse of the x-polarized band gap is caused by the competitive influence

of the two anisotropy sources. A structural anisotropy is expressed in the column

tilt, and a cross-sectional anisotropy is expressed in the cross-section elongation.

Increasing column tilt leads to an increase of the x-polarized refractive index in the

tilted segments. The larger the difference, the wider the band gap becomes. Cross-
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Figure 2.3: FDFD calculated location of the band gap edges as a function of
slanted post tilt in s-shaped columns (column horizontal cross-section is elongated
in slanted post segments with e = 0.167).

section broadening in the Y direction has the opposite effect, because it makes the

film more porous in the X direction and denser in the Y direction. This lowers the

x-polarized refractive index in the tilted segments. The counteracting influence of

the column tilt and cross-section broadening thus suppresses the x-polarized band

gap for a certain combination of these parameters. Figure 2.4 shows the cross-

section broadening needed to suppress the x-polarized band gap as a function of

β′.

While structural and cross-sectional anisotropies act competitively when the

cross-section is elongated along the Y axis, their influence becomes synergistic when

the cross-section is broadened along X. Figure 2.5 shows the x- and y-polarized

band gap edges as a function of cross-section broadening for both negative and

positive e values. As expected, the x-polarized band gap gradually widens in the

negative domain of e values. The y-polarized band gap disappears only at e = 0

and steadily increases with both positive and negative cross-section elongations.

Spectral positions of the x- and y-polarized band gaps have the opposite trends.
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Figure 2.4: Relation between the cross-section broadening e, needed to close the
x-polarized band gap, and slanted segment tilt β′

The x-polarized band gap blueshifts with increasing e indicating that the film, on

average, becomes more porous in X direction. The y-polarized band gap redshifts,

because the average amount of voids in the y-direction decreases.

The competitive effects of the two kinds of form anisotropy and band gaps

spectral shift create three distinct design opportunities for the narrow band non-

absorptive polarizers. The option which is the easiest to fabricate, labelled as (III)

on Figure 2.5 exploits the cross-section broadening along Y axis to suppress the

x-polarized band gap, and achieve polarization selective transmittance. Due to the

lack of shadowing in the direction normal to the deposition plane, GLAD columns

naturally tend to broaden in this direction. Therefore no special substrate motion

techniques need to be employed to achieve this cross-section shape. Figure 2.6

shows the FDTD simulated transmission spectra and normalized Stokes parame-

ters s1 = S1/S0 and s3 = S3/S0 for the x- and y-polarized light passing through

20 periods of s-shaped columnar structure with cross-section elongation e = 0.17.

Stokes parameters S0 to S4 were calculated for the 45o polarized incident light to

show the polarizing strength of the film, and phase retardation between the x- and
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Figure 2.5: FDFD calculated location of the band gap edges as a function of
cross-section broadening e (P = 295 nm; β′ = 30o; η = 0.5; f = 64%; n = 2.4).

y-polarized beams. Stokes parameters are defined as:

S0 = |Ex|2 + |Ey|2,

S1 = |Ex|2 − |Ey|2,

S2 = 2ℜe(Ex E
∗
y),

S3 = 2ℑm(Ex E
∗
y),

where Ex and Ey are the field intensities of x- and y-polarized light. The S0

is the intensity, and since we are interested only in the relative intensities, it is

convenient to divide all other parameters by S0. The S1 represents the degree

of linear polarization with the value s1 = S1/S0 = 1 corresponding to entirely

x-polarized light, and s1 = −1 corresponding to y-polarized light. The parameter

S3 shows the degree of circular polarization in the transmitted light and for a 45o

polarized incident beam, it shows the phase difference between the two orthogonal
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Figure 2.6: FDTD simulated transmittance (left) and Stokes parameters (right)
for 20 periods of the s-shaped columns with e = 0.15 and all other parameters
same as on Figure 2.5 (design option III).

polarizations on the transmitted side.

We can see on the figure that the y-polarized band gap is centered around

510 nm, and is strong enough to reflect close to 95% of the light, but the x-

polarized spectrum has only a very slight dip, marking the location of the vanish-

ing x-polarized band gap. The x-polarized transmittance is relatively constant and

slightly below unity due to the reflection loss on the film surface. Stokes parame-

ters show the normalized selective transmittance (s1) and the degree of elliptical

polarization of the transmitted light (s3). The graph shows that the film acts as a

narrow band polarizer with high x-polarized transmittance sx > 0.95 in the band

501 < λ < 523 nm, and sx > 0.98 within 504 < λ < 520 nm.

The second option, labelled (II), uses a constant circular cross-section through-

out the film, in which case the y-polarized band gap does not form. Slight blueshift

of the x-polarized band gap further favours high polarizing ability of the film.

Figure 2.7 shows the transmittances and Stokes parameters for isotropic cross-

section e = 0. The reflection in the x-polarized band gap centre exceeds 95%,

while the y-polarized band gap is vanishingly small. The Stokes parameters show

the presence of the y-polarized transmittance band with a selective transmittance

sy = −s1 > 0.98 in the band 500 < λ < 523 nm.

The last option, labelled as (I), exploits cross-section broadening in the depo-

sition plane, leading to two separated polarizing bands (Figure 2.8). The band

located on the red side selectively reflects x-polarized light, while the band lo-
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Figure 2.7: FDTD simulated transmittance (left) and Stokes parameters (right)
for 20 periods of the s-shaped columns with e = 0 and all other parameters same
as in Figure 2.5 (design option II).
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Figure 2.8: FDTD simulated transmittance (left) and Stokes parameters (right)
for 20 periods of the s-shaped columns with e = −0.2 and all other parameters the
same as on Figure 2.5 (design option I).

cated on the blue side reflects y-polarized light. The transmission spectrum and

Stokes parameters are shown for 25 periods of film with cross-section elongation

e = −0.17. We can see that two band gaps of the opposite polarization exist and

are completely separated. The y-polarized band gap is smaller than the x-polarized

one, and transmitted light is not completely polarized in this band (s1 < +1) at a

given film thickness of 20 periods. A larger number of vertical pitches will increase

the x-polarized band gap strength. This design option is the most challenging

for fabrication, since current versions of PhiSweep method are barely capable of
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Figure 2.9: FDFD calculated location of the band gap edges as a function of slanted
post fraction η (P = 295 nm; β′ = 30o; e = 0.11; f = 64%; n = 2.4)

bringing the e value below zero. This option is interesting, however, because two

polarizing bands exist simultaneously for the opposite polarization states.

The polarizing ability of the filter is maximized when (a) one of the two band

gaps closes or band gaps are completely separated, and (b) the spectral width

of the remaining band gap is large. One more parameter that is easily changed

besides column tilt and cross-section shape is the fraction of tilted segments η.

Figure 2.9 shows the FDFD calculated positions of the band gap edges as a function

of parameter η for the film with pitch P = 295 nm, tilt β′ = 30o, cross-section

anisotropy e = 0.11, and volume filling f = 64%. Both x- and y-polarized band

gap widths are largest when η ≈ 0.5, favouring the structure with equal fractions

of vertical and tilted segments. However, the bands separate more spectrally as

the η increases, therefore values of η slightly larger than η = 0.5 may be optimal

for fabrication.
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2.4 Experimental realization and measured data

The experimental part of this work has been done by Nicholas Wakefield at the

University of Alberta Nanofabrication Facility. The discrete s-shape structure

was realized with the following substrate motion algorithm. Each vertical column

segment of columns was deposited at a constant substrate rotation φ(t) = ωt+φ0.

Film thickness was monitored by a quartz crystal microbalance and the rotation

speed was computer controlled to maintain a vertical growth speed at 5 nm per one

substrate rotation. During the deposition of tilted segments, the substrate rotation

was stopped completely to maximize the structural anisotropy of the film.

Titanium dioxide films were deposited using reactive e-beam evaporation at

elevated oxygen pressures ranging from 8 mPa to 12 mPa. Films were deposited

on silicon substrates for the structural characterization with SEM, and on glass

substrates for the optical characterization. A series of s-shaped films, 6 pitches

each, were fabricated at the deposition angles ranging from α = 60o to 83o. The

vertical post height was equal to the height of slanted post segments (η = 0.5).

Deposition angles between 70o and 75o yielded the highest polarization selectivity,

therefore angle α = 70o was chosen for subsequent depositions. This angle gives

a column tilt β′ = β = 36o according to equation (1.1) and tilt close to 30o was

measured on the SEM images.

A set of fourteen films was prepared with number N of s-bends ranging from

2 to 30. Each film’s transmission was measured and the normalized selective

transmittance s1 was calculated for the band gap centre as
Tx−Ty

Tx+Ty
. The SEM

image of the fabricated film is given in the Figure 2.10.

Figure 2.11 shows the experimentally measured and simulated transmittances

for the 25-period discrete s-shaped film. The geometrical parameters for the simu-

lation were determined from the SEM image and adjusted by fitting the simulated

spectra to the experimental. Vertical pitch was determined from SEM P = 295 nm,

as well as the tilt β′ = 30o. Film density and cross-section shape could not be de-

termined from the SEM data, and were found by comparing simulated and exper-

imentally measured transmittances: e = 0.18 and f = 63.6%. With this column

geometry the experimentally measured spectra are in a good agreement with the

simulated: both in simulation and in the experiment the y-polarized band gap is

centered at λ ≈ 510 nm, and a much narrower and weaker x-polarized band gap
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Figure 2.10: SEM photograph the s-shape columnar film (courtesy of Nicholas
Wakefield).

Figure 2.11: FDTD simulated (left) and experimental (right) transmission spectra
for the experimentally realized film (P = 295 nm; β′ = 33o; e = 0.184; f = 64%;
n = 2.4).

is at ≈ 490 nm. Measured transmission decreases at λ < 450 nm, not in agree-

ment with the predictions. Because the absorption coefficient of titanium dioxide

at wavelengths larger than ∼ 400 nm is vanishingly small [65], this decrease can

be attributed to the increasing scattering loss at shorter wavelengths. Scattering

occurs on irregularities of film density, resulting from the randomness of column
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Figure 2.12: FDTD simulated Stokes parameters s1 and s3 for the experimentally
realized film.

distribution on the substrate and from any geometrical deviations of the individ-

ual columns. Scattering loss is not substantial at the band gap wavelength of

the fabricated film, but it may have to be taken into account in films with larger

intercolumnar distance or at shorter wavelengths.

On Figure 2.12, FDTD simulated Stokes parameters are given for the exper-

imentally realized film showing high polarization selectivity, with s1 → 1. The

x-polarized band gap is blueshifted relative to the y-polarized band gap, and lays

almost entirely outside of it.

Due to the relatively low refractive index contrast in the s-shape columns

(which is due the variation of film anisotropy, rather than density), a large number

of vertical periods is needed to achieve high reflection in the band gap. Fourteen

films were fabricated with the numbers of vertical pitches ranging from N = 2 to

N = 30, and Figure 2.13 shows the normalized selective transmittance as a function

of number of periods in the discrete s-shape film with the experimentally realized

architecture. Dots with error bars show the measured selective transmittance and

the dotted line gives the FDTD simulated result for the centre of the y-polarized
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Figure 2.13: Normalized selective transmittance s1 of the experimentally realized
s-shaped film as a function of number of periods, measured and simulated at
λ = 515 nm.

band gap. Computational error in the simulated graph at N < 5 is most probably

due to the truncation of time series of the collected field amplitudes. While at

sufficiently large N the transmission photonic band gap dominates the spectrum

at a given wavelength, with small N the transmission spectrum is governed by

Fabry-Perot resonance. Truncating the simulation in time limits the number of

reflections that can be captured in Fabry-Perot resonance.

According to Figure 2.13, at least nine periods of the s-shape profile are needed

to get polarization selectivity larger than s1 = 0.5, but at more than 20 periods

the transmitted light is almost completely polarized. With the vertical pitch of

295 nm, this results in a total film thickness close to 6µm.

The usefulness of the polarizing film has to be also judged in terms of its optical

response as a function of the incidence angle. The band gaps of interference mirrors

are known to blueshift with the increasing angle of incidence, and this limits their

application to narrow-angle beams. Figure 2.14 shows FDFD calculated x- and
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Figure 2.14: FDFD calculated location of the band gap edges as a function of
incidence angle for the s-shaped columnar film realized in the experiment. The XZ
plane is an incidence plane and the incidence angle is measured from the Z axis.

y-polarized band gap positions for the experimentally realized film as a function

of incidence angle. Both band gaps blueshift by ∼ 100 nm between i = 0o and

i = 90o, and the x-polarized band gap falls within the y-polarized one at incidence

angles i > 19o. However, at least up to i = 30o it stays close to the edge of

the y-polarized band gap. The red edge of y-polarized band gap blueshifts, and

coincides with the corresponding normal incidence blue edge at i = 29o. This

means that the polarizer can be used for a beam up to 58o wide, if the beam is a

single frequency mode.

2.5 Continuous s-shape

In continuous s-shaped columns, shown in Figure 2.15, the column tilt is varied

gradually as a function of the vertical coordinate. This column architecture has

both advantages and disadvantages, compared to the discretely bent one. Fabri-

cation of continuously bent columns is obviously more complicated than that of a
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Figure 2.15: SEM image and theoretical model for the continuous s-shaped
columns.

discrete shape, while the polarizing properties might not be better. The continuous

architecture, however, does not have a discontinuity in the refractive index profile,

and therefore may produce less diffuse light scattering by having fewer defects. In-

deed, abrupt changes in the substrate motion pattern during the discrete s-shape

deposition might cause splitting and merging among some of the adjacent columns,

though these effects were not studied experimentally. Fabrication of continuous

s-shape columns involves a spin-pause substrate motion algorithm.

The model approximated the column profile as sinusoidal with swing S, and

period (pitch) P . The column’s horizontal cross-section varies continuously along

the column length, becoming circular at points where column is vertical, and max-

imally elongated where the column tilt is highest. Since the relation between

column tilt and cross-section is complex and poorly studied, in the model the

broadening e was assumed to vary harmonically along the vertical coordinate,

with pitch equal to P/2. The maximum cross-sectional anisotropy em is observed

at points of the maximum column tilt, and the minimum is e = 0.

Figure 2.16 gives the FDTD simulated and measured transmittances for six

periods of continuous s-shaped columns with vertical pitch P = 510 nm, arm

swing S = 60 nm, cross-sectional anisotropy em = 0.22, and material to void
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Figure 2.16: FDTD simulated (left) and experimentally measured (right) trans-
mission spectra for the continuous s-shape film. The film parameters used in the
simulation are: P = 510 nm; S = 60 nm; em = 0.22; f = 62%.
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Figure 2.17: FDTD simulated transmission spectra for the the same geometry as
in Figure 2.16, but with 19 vertical periods.

ratio f = 62%. Pitch and arm swing were found from SEM images, while cross-

section anisotropy and film density were determined by comparing simulated spec-

tra with the experimentally measured one. The optical response of continuously

bent columns is qualitatively the same as the one of the discretely bent columns.
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The x-polarized band gap is suppressed due to the competitive influence of struc-

tural and cross-sectional anisotropies because the cross-section is broadened in YZ

plane. The y-polarized band gap is redshifted relative to the x-polarized one and

is substantially stronger. As shown in Figure 2.17, at a large number of s-shaped

periods (N = 19), the y-polarized band gap is slightly weaker than the one of the

discrete s-shape, because of the lower variance (r.m.s. deviation from average) of

the refractive index in the continuously bent s-shaped film.

A summary of the column geometries considered in the discussion above is

presented in Table 3.2.

P (nm) e f (%) β′ (deg.) Swing (nm)

Model I 295 −0.2 64 30 -
Model II 295 0 64 30 -
Model III 295 0.15 64 30 -
Experiment - discrete 295 0.184 64 33 -
Experiment - continuous 510 0.22 62 - 60

Table 2.1: Simulated parameters for the designed and fabricated geometries of
s-shaped polarizers.

2.6 Liquid crystals in polarizing film: polarizing switch

Porous thin film polarizing elements fabricated by GLAD may be electronically

switched when filled with liquid crystals [108, 134]. Liquid crystals (LC) share the

fluidity of liquids with the crystalline organization that depends on the external

conditions. LC molecules transition from the ordered to randomly oriented states

under the influence of temperature, concentration, or external fields. When in the

organized state, they form an anisotropic material.

As we have seen above, the columnar thin film has distinct polarizing prop-

erties on its own. After infiltrating this film with liquid crystal, these polarizing

properties can be further tuned by the external field. As the LC is switched be-

tween random and ordered states, the film anisotropy can be either enhanced or

suppressed.

Consider the discrete s-shape columns filled with a liquid crystal. One common

LC that can be used for this purpose is the E7 mixture, made of cyanobiphenyl

molecules with long aliphatic tails. In the addressed state, this material is uniaxi-
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Figure 2.18: FDFD calculated location of the band gap edges as a function of cross-
section broadening for the discrete s-shaped columns infiltrated with E7 liquid
crystal. Crystal molecules are aligned along the columns and the column geometry
is defined by: P = 288 nm; β′ = 35o; η = 0.5; e = 0.17; f = 50%; n = 2.5.

ally anisotropic with ordinary and extraordinary indices no = 1.52 and ne = 1.75

respectively. In the absence of the external field, LC alignment in GLAD films de-

pends on the type of the columnar structure [135]. For slanted posts, LC alignment

is preferentially along the columns, but if their cross-section is highly broadened,

and the columns form a ribbon-like structure, LC molecules align along the grooves

between ribbons. Because s-shaped columns have a moderate cross-section broad-

ening and do not form nanoribbons, we can assume that LC molecules conform to

the the s-shaped profile in the absence of the field, aligning parallel to the columns

axes.

When an electric field is applied, this alignment is switched depending on the

field direction. Polarized chains of LC molecules form the optical axis along the

electric field lines, and have an extraordinary refractive index in this direction. For

example, if the field is aligned along the Z axis, the latter becomes an extraordinary

axis for the LC, and the ordinary index is observed in the substrate plane.

FD simulations revealed interesting properties of the LC filled film. When an

X or Y field is applied, the film presents two separated polarizing bands, and as
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Figure 2.19: FDFD calculated location of the band gap edges as a function of cross-
section broadening for the same structure as on Figure 2.18, and liquid crystal
(extraordinary index) aligned along X axis (left) and Y axis (right).

the field is switched between these two directions, the polarizing state changes to

the opposite. Figure 2.18 shows the x- an y-polarized band gaps as functions of

cross-section broadening e for discrete s-shape film with E7 liquid crystal aligned

along the columns. The column geometry is defined by pitch P = 288 nm, tilt

β′ = 35o, tilted segment fraction η = 0.5, column refractive index n = 2.5, and

column material fraction in the film f = 50%. Compared to the air filled columns,

discussed before, the effect of cross-section broadening is weak in the LC filled film.

X-polarized band gap still slightly decreases in width as the cross-section broadens

along Y axis, but not as much as without the LC. Furthermore, the y-polarized

band gap is now sensitive to the cross-section geometry, because the material

surrounding the column is no longer isotropic. Both band gaps are relatively

narrow and both are centered at about the same wavelength.

Qualitative change occurs when the field is applied in X or in Y direction, as

shown on Figure 2.19. If the field is applied along the X coordinate, the extraordi-

nary axis aligns parallel to it. The y-polarized band gap experiences a little change,

since the Y direction is still occupied by an ordinary axis, but the x-polarized band

gap redshifts by about 40 nm, and decreases in width. The decrease in the band

gap width indicates smaller refractive index contrast perceived by the x-polarized

light, and band gap redshift is due to the average effective index increase. The

opposite change happens when the LC extraordinary axis aligns along the Y co-

ordinate (Figure 2.19b). The y-polarized band gap redshifts by about 40 nm, and
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Figure 2.20: FDTD simulated transmission spectra for 29 periods of discrete s-
shape columns infiltrated with liquid crystal. On left image the extraordinary
index of LC is aligned along the X axis, and in the right image it is aligned along
the Y axis. The column geometry is defined by: P = 288 nm; β′ = 35o; η = 0.5;
e = 0.17; f = 50%; n = 2.5.

becomes slightly narrower, while the x-polarized band gap does not significantly

change. It is important that while one band gap redshifts with the electric field

applied, the other one remains at the original spectral location. The film acts as

a polarizing switch, capable of transmitting either x or y-polarized light.

The transmission spectra for these two cases (X- and Y-aligned extraordinary

axis) are given on Figure 2.20. The transmission minimum is observed either for

x or for y-polarized light at λ ∼ 560 nm. The other polarization has a smaller

transmission minimum at λ ∼ 610 nm.

To keep the model simple, the LC optical axis in the absence of field was

assumed to follow the column axis ragardless of how far the molecule was from the

column surface. Equivalently in presence of the electric field the molecules were

asumed to be parallel to the field even if located close to the column suface. In

practice, intermediate states can be anticipated, where in the absence of external

field only molecules nearest to the surface will be parallel to this surface, and

the external field will only rotate molecules located sufficiently far away from the

surface. In this case spectral separation of the x and y-polarized band gaps in the

presence of field can be smaller than shown.

The optical response described here is given for only one particular geometry

of s-shaped columns. It will change if the model parameters are adjusted and
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Figure 2.21: The same as on Figure 2.20 but for slightly different column geometry:
P = 288 nm; β′ = 35o; η = 0.5; e = 0.15; f = 50% and n = 2.5.

modified, but the general trend will remain similar: LC molecules oriented along

the X axis will redshift the x-polarized band gap by increasing the effective refrac-

tive index in this direction. Alignment along the Y axis, accordingly, will redshift

the y-polarized band gap, marginally changing the x-polarized one. The band

gaps may not stay aligned in the unaddressed state for different combinations of

geometric parameters, as for an air-filled film, for example, the band gaps were

completely separated. The band gap width also can be modified and potentially

enhanced by optimizing the geometry of the film. In Figure 2.21 the transmis-

sion spectra are shown for the LC filled film with slightly larger column radius

(f = 0.64) than in the previous case. The y-polarized band gap in the x-addressed

state is considerably deeper here than that seen on Figure 2.20a.

The obvious disadvantage of LC filled columnar films is low refractive index

contrast, which requires a large number of vertical periods for substantial filtration.

The spectra shown above were calculated for the films with 29 vertical periods,

and still the polarization selectivity is small. As we have seen in the previous

section similar numbers of vertical periods in air filled films produced well defined

transmission minima, and polarization selectivity close to 100%. This makes the

LC filled filter better suited for slight modulation of light polarization rather than

for filtering purposes.
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2.7 Resonant mode narrow band polarizers

Films described above use polarization-dependent band gap properties to filter two

orthogonal linear polarizations. The same physical effects can be used to create

polarization dependent resonant modes [37]. Resonant modes have very low group

velocities of light, and therefore the interaction time of light with the structure is

large. For this reason, a noticeable polarization splitting of resonant modes can be

expected if even a thin layer of anisotropic defect is inserted into the interference

film.

Consider rotationally symmetric vertical post columns with a variable column

radius. Columns of this kind are fabricated by GLAD deposition at a continuous

fast substrate rotation [129, 113, 41, 37]. Variable column radius is achieved by

periodic change in the deposition angle, and if the relation between the effective

refractive index and deposition angle is known, one can make a film with a de-

sired refractive index profile. Due to the rotational symmetry these index-graded

interference mirrors have a polarization-independent band gap. These band gaps

are wider than in s-shaped columns, because film density is varied, rather than its

anisotropy.

The defect layer is added as a disturbance in a periodic refractive index profile,

either in a form of phase shift, or in a form of additional layer with a constant

refractive index. A resonant mode then appears within the band gap, with position

depending on the defect layer depth and refractive index.

Since the resonant mode is sensitive to the defect layer refractive index, one

can expect two distinct orthogonally polarized resonant modes if the layer is

anisotropic. The experimental realization of the interference mirrors with polariza-

tion dependent resonant modes has been described in a reference [37]. Figure 2.22

shows the SEM image and the model of a slanted post defect in the rotationally

symmetric index-graded film. The simulated transmission for a 16 period index-

graded interference mirror with a slanted post defect between 8th and 9th periods

is shown on Figure 2.23. Spectra were calculated for a TiO2 interference filter with

sinusoidal refractive index profile defined as n(z) = 1.96+0.43 · sin(2πz/P ), where
P = 132 nm. The 100 nm thick slanted post defect layer consists of columns with

circular cross-section, tilted by 45o. The band gap width is close to 40% and it

depends only slightly on the polarization. The resonant mode is split into two well
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Figure 2.22: SEM image and simulated columns for the index-graded rugate filter
with anisotropic defect layer (micrograph courtesy of Matthew Hawkeye).

defined resonant modes. The mode polarized parallel to the defect tilt plane is

redshifted relative to the mode polarized perpendicular to this plane.

Similar effects as in the s-shaped columnar polarizers are seen for the defect

modes. Figure 2.24 gives FDFD calculated mode positions as a function of col-

umn tilt. Two resonant modes overlap if the defect is rotationally symmetric and

vertical, and become separated as the defect tilt increases. Both modes increase

their spectral width with increasing tilt, indicating the decrease in the quality fac-

tor. Resonant mode positions as functions of cross-section broadening are shown

on Figure 2.25 for the defect tilted at 45o. As in the s-shaped polarizers, a com-

petitive influence of the column tilt and cross-section anisotropy suppresses the

polarization splitting at e = 0.29. It is, therefore, beneficial to bring the cross-

section of the experimentally realized defect layers close to circular, in order to

have a wide resonant mode separation.

2.8 Chapter summary

This chapter presented GLAD fabricated thin film polarizers, employing the con-

cept of periodic anisotropy variation in index-graded interference films. Finite

difference electromagnetic modelling methods provided a valuable tool for the in-

depth analysis of the relationship between nanoscale architecture and the films’
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Figure 2.23: FDTD simulated transmission spectra for x- and y-polarized light
passing through the index-graded columnar film with anisotropic defect.
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Figure 2.24: Resonant mode spectral location as function of defect tilt β′ for the
slanted post defect with circular cross-section (left), and y-elongated cross-section
with e = 0.2 (right).

optical responses. The unobvious connection between cross-section anisotropy and

polarizing properties of the thin film were studied and presented. In previous the-

oretical studies, including those based on numerical simulation techniques, the
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Figure 2.25: Resonant mode spectral location as a function of defect cross-section
broadening (defect tilted at β′ = 45o).

GLAD geometries were oversimplified by treating the columns as tilted cylinders

rather than variable cross-section posts. Cross-section broadening in GLAD is

an additional source of anisotropy, which interacts competitively with the struc-

tural anisotropy, programmed by the column shape. The x-polarized band gap

suppression is a consequence of this suppression.

Due to the combined influence of periodically varying structural and cross-

sectional anisotropies, polarizers have either a single polarizing band or two sep-

arate bands. These bands can be further manipulated if the film is filled with a

liquid crystal and placed in an external electric field.

Good agreement between theoretical predictions and experimental measure-

ments indicates sufficient model detail, even though the random column distribu-

tion was approximated with an ordered array. As mentioned before, this approx-

imation can be safely extended to circularly polarized light since the latter is a

linear combination of two phase shifted linearly polarized modes. For the same

reason the model is suitable for linearly polarized light incident at any azimuth,

other than along the column array lattice vectors.
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In the next section, we will continue to analyze the anisotropic GLAD films

by considering a model of the columnar interference filter with an omnidirectional

reflection band.
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Chapter 3

Omnidirectional reflection

from vertical post index-graded

films 1

3.1 Motivation

Interference coatings have found niches in many areas of human life. They are

used in the laser industry, astronomical instruments, measuring equipment and

consumer products. Classical examples are narrow-band interference filters to

observe solar atmosphere, and mirrors of laser resonators [15, 141, 142]. Depending

on the application, interference mirrors have different arrangements of high and

low index layers, determining the spectral response. Distributed Bragg Reflectors

(DBR), for example, are made as an alternating sequence of dielectric layers n1

and n2, with constant refractive index throughout each layer. The refractive index

profile of these mirrors is described by a pulse function. Rugate index profiles,

on the other hand, have a continuous refractive index variation. They produce

smaller band gaps than the DBR mirrors, but also have fewer satellite oscillations

around the band gap. Continuous index profiles can also be modulated to create

a film with an arbitrary spectral response [147].

Transmission and reflection spectra of interference mirrors change with the

incidence angle i. As this angle increases, the band gaps typically blueshift and

1A version of this chapter has been published in Ref. [73].
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reduce their width, therefore at a given frequency the mirror usually can be used

only in a limited range of incidence angles. Often, however, it is useful if a certain

frequency is covered by the band gap at all incidence angles. For example, vertical

cavity surface emitting lasers (VCSEL) have flat wide resonant cavities, where

radiation can pass through the mirrors at high incidence angles [19, 138]. These

lasers will benefit from the resonator mirror’s high reflectivity in a broad angular

range. Planar waveguides also may have reduced radiative loss if their surfaces are

reflective at all incidence angles.

Metal films reflect omnidirectionally in a broad range of wavelengths, but they

are inherently lossy. Their refelectivity is high at the long wavelengths of far

infrared and microwave, but at the near infrared and optical wavelengths, a large

fraction of light is lost to absorption. Photonic crystals present a lossless alternative

and reflect light coming from all directions if its frequency falls within their band

gaps. For this reason they are used to line waveguides, and small resonant cavities.

Some waveguide solutions are ingenious and very practical, such as waveguides

stretched from a macroscopic bundles of cylinders to such an extent that pores

between cylinders became comparable to the wavelength and form a 2D photonic

crystal [66, 105]. In many cases, however, there are no simple ways to line the

surface or waveguide with a photonic crystal.

About a decade ago, a group of researchers showed theoretically and experi-

mentally that the omnidirectional reflection is possible from 1D periodic interfer-

ence mirrors, at least in a narrow spectral range [28]. Even though the band gaps

blueshift with the increasing incidence angles, this blueshift can be minimized if

the range of propagation directions within the film is small. Light entering the film

at an arbitrary angle is refracted into a smaller cone, limited by an angle of total

internal reflection. If the band gap covers some frequency within this smaller cone,

the light at this frequency will be reflected at all incidence angles. The narrower

the cone is, the easier it is to preserve the band gap within it, therefore films with

sufficiently high average refractive index may exhibit omnidirectional reflection

bands. Band gaps become wider when the refractive index contrast of the mirror

is high, therefore high index material together with high refractive index contrast

were suggested for omnidirectional reflection [19].

Interference mirrors with omnidirectional reflection bands have been fabricated

both in the infrared and in the visible spectral ranges [19, 89, 61, 8, 16]. In the
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infrared, silicon is transparent and was often used. It has the one of the highest

refractive indices occurring in nature (n = 3.5 in the near infrared), therefore

readily produces high-index films needed for the omnidirectional reflection.

Omnidirectional band gaps were reported in porous silicon interference mirrors,

fabricated by electrochemical etching of silicon wafers with a variable current [4].

The material removal occurs most rapidly on the boundary where bulk crystal

is exposed to the electrolyte, because porous silicon has much higher resistivity

to current. The boundary moves into the depth of the wafer, leaving behind

porous structure, filled with the electrolyte. The higher the current is, the higher

the porosity of this structure, allowing one to make variable density films. The

porosity cannot be very small, because the electrolyte has to diffuse through the

pores and remove material from the film depth. Therefore, highest refractive

indices of porous silicon mirrors are relatively small, in the range of 1.22 to 2.43

[81]. Larger average index and index contrasts were achieved with GLAD where

the maximum film density was close to the bulk density of silicon [61]. The mirrors

were fabricated, and had a maximum index n = 3.6 in the near infrared, and an

omnidirectional reflection band.

In the visible spectrum, the selection of high index materials is more limited

than in infrared. Omnidirectional reflection was achieved on the distributed Bragg

reflectors composed of the alternating silica (glass) and tin sulfide, deposited by

thermal and by electron beam evaporation [89]. Besides this work, successful

realizations of omnidirectional mirrors in the visible are scarce. It is interesting,

therefore, to study the potential of GLAD films as omnidirectional mirrors in the

visible range. The highest index material available to GLAD and transparent in

the visible, is titanium dioxide. Because GLAD produces films in a wide range

of porosities and maximum densities close to the bulk material, titanium dioxide

could be used to form mirrors with a maximum index close to 2.4. Experimentally

it was shown that in titania vertical post films, a refractive index range from nmin =

1.16 to nmax = 2.23 is possible [39]. The advantage of GLAD as a single-material

fabrication method is obvious, but the optical anisotropy of the columnar structure

is also important. Researchers that employed GLAD for silicon omnidirectional

mirrors indicated that the film’s anisotropy positively affects the omnidirectional

bandwidth [61], but did not study the extent of the associated improvement and

the limits where it is substantial.
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The goal of this chapter is to analyze the role of film’s anisotropy in omnidirec-

tional reflection, and to define the limits for refractive indices and film porosities.

In the following sections, the model of a rugate columnar filter will be described

and simulation results will be discussed and compared to experiment. Similarly

to the previous chapter, a focus will be on the films with intercolumnar distances

small compared to the light wavelength, and optical response similar to that of a

uniform anisotropic index-graded film.

3.2 Interference mirrors and omnidirectional reflection

Interference mirrors are designed as multilayer films, normally composed of trans-

parent dielectrics. They can have various refractive index profiles described by

either harmonic or aperiodic functions. Distributed Bragg Reflectors are the

simplest of them. Each period is made of two quarter wave plates with iden-

tical optical thickness. The ratio between their linear thicknesses is defined as:

n1 d1 = n2 d2 = λ/4, where λ is the band gap centre wavelength. The profile of

the DBR mirror is shown on Figure 3.1 together with sinusoidal and Gaussian

profiles considered in this work.

The approximate width of the DBR mirror band gap at normal incidence can

be found using a coupled mode theory [145]:

(

∆ω

ωc

)

DBR

=
|ǫ1|
ǫ0

=
4

π

|n1 − n2|
n1 + n2

(3.1)

where ωc is a centre frequency of the band gap, and ǫ0 and ǫ1 are the first two

Fourier coefficients of the refractive index profile. The band gap of these mirrors

is among the widest, but as we will see further it may collapse faster than in

rugate films at high incidence angles, and usually is surrounded by strong satellite

reflection peaks.

In rugate films, the refractive index varies continuously through the film, with-

out abrupt changes present in the DBR. The classical examples of rugate films are

mirrors with a sinusoidal index profile. Their obvious difference from the DBR

films is the absence of the high order terms in the Fourier expansion of their index

profile. This reduces both satellite oscillations and higher order band gaps, and

therefore helps one to avoid the unwanted reflections. The lowest band gap width
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Figure 3.1: Refractive index as a function of position for a single period of sinu-
soidal, DBR and Gaussian interference mirrors.

is also slightly smaller than in the DBR film:

(

∆ω

ωc

)

SIN

=
|n1 − n2|
n1 + n2

(3.2)

Rugate film with profiles other than sinusoidal can avoid high order band gaps

entirely, as for example, in an exponential-sinusoidal profile described by the fol-

lowing function:

ln[n(z)] = Q+ T · sin
(

2πz

P

)

(3.3)

where

Q =
ln(nmax) + ln(nmin)

2

T =
ln(nmax)− ln(nmin)

2
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and P is the index variation pitch.

When looking for the omnidirectional band gaps, the DBR profile may be the

most obvious choice, because it has a wide normal incidence band gap, but rugate

films may have a lower blueshift with incidence angle, as we will see later.

3.2.1 Omnidirectional band gap

The omnidirectional band gap is defined as a spectral distance between the blue

band gap edge at normal incidence and red edge at grazing incidence. Interference

mirrors are usually rotationally symmetric in the substrate plane, therefore the

band gap is polarization independent at normal incidence. At higher incidence an-

gles, the band gap position and width change differently for s- and p-polarizations.

The s-polarized light has an electric vector parallel to the film surface, and p-

polarized light has the electric vector in the tilt plane, as shown on Figure 3.2.

Both band gaps blueshift with increasing angle, but the p-polarized band width

decreases faster than the s-polarized, and the gap disappears at the Brewster angle.

Because the p-polarized band gap collapses and shifts faster than the s-polarized,

it determines the presence or absence of the omnidirectional reflection band.

The following conditions were defined in prior research as requirements for

omnidirectional reflection [20, 21]: (i) large refractive index contrast |n2 − n1|
helps keep the gap open by making the band gap wide, and (ii) large average

refractive index is required to minimize the band blueshift with angle, and to keep

the propagation angle in the film smaller than the Brewster angle. The Brewster

angle poses a fundamental limit on the lowest refractive index of the film but the

conditions are also restricted by a band gap blueshift. We can also show that the

omnidirectional band width does not increase continuously increasing refractive

index contrast, and disappears when this contrast is large. The simplest example

where the restrictions posed by the Brewster angle are seen is a DBR mirror. At

the Brewster angle p-polarized light passes from one layer of the film to another

without reflection, and no interference occurs. For a DBR mirror composed of the

alternating layers n1 and n2 and submerged in cladding n0 this angle can be easily

calculated:

iB = arcsin

(

n1n2

n0
√

n21 + n22

)

(3.4)
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Figure 3.2: The model and SEM image of the index-graded columnar thin film.

.

Figure 3.3 shows the product n0 sin(iB) as a function of n1 and n2 for DBR film.

The value sin(iB) = 1 corresponds to grazing incidence. Modes with n0 sin(i) > 1

exist in the film but do not have corresponding modes in the incident light. To have

an omnidirectional reflection one would like, thus, to have n0 sin(iB) > 1. Clearly,

if either of the two layers has a refractive index too close to n0, omnidirectional

reflection will not be observed.

Experimentally, with high refractive index materials, up to 50% wide omni-

directional reflection bands were observed in the infrared on alternating layers of

PbTe (n = 5.27 at 6.969µm wavelength) and EuTe (n = 2.29) [8]. Materials

available in the visible range, however, produce omnidirectional reflection bands

that are usually less than 10%. Stacks of multiple mirrors are sometimes used

to increase the reflection band width. For example, two mirrors that have 10%

wide omnidirectional band gaps overlapping by 10% will have a combined reflec-

tion band 19% wide. Stacking many mirrors one can get a very large band width,
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Figure 3.3: Brewster angle in a DBR film as a function of n1 and n2.

covering potentially the whole visible or spectrum and more [148, 89, 57, 84]. The

disadvantage of such a stacking approach is a large total film thickness, and high

fabrication cost and complexity. Absorption in these thick films can also be an

issue. Therefore it is important to maximize the reflection band width in a single

mirror, if possible.

Mirrors with a DBR profile generally tend to outperform rugate index profiles

in the films composed of isotropic layers, as can be seen from expressions (3.1)

and (3.2). Several authors claimed, however, that the Gaussian index profile may

produce even wider omnidirectional reflection bands, at least in the range of pa-

rameters they used [3, 4, 27, 26]. It is not clear why these authors restricted the

total optical thickness of the film to a constant value while optimizing the film in

[3]. If they did not, the performance of DBR films would obviously be better than

shown. By keeping the optical thickness constant, and increasing the maximum

refractive index, they pushed the minimum index of DBR films below the limit

defined by equation (3.4), and suppressed the omnidirectional band gap.

Even though performance of the Gaussian films may not be better than that of

DBR films, as it was claimed, the Gaussian profile still worth investigating, because
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it can produce larger refractive index variance (r.m.s deviation from average) than

sinusoidal profile with the same index contrast, but has no discontinuities like

the DBR profile. In the Gaussian profile, the refractive index varies continuously

following the Gaussian distribution. This function is aperiodic, and has to be

truncated at some distance from the peak. When this truncation distance is smaller

than the half-pitch of the film, the rest is filled with the low index material close

to the refractive index at the truncation point. The derivative of the function is

discontinuous, but the function itself is not, therefore fewer defects and scattering

can be expected in Gaussian GLAD films than in DBR GLAD.

3.2.2 Modelling and simulation

Angle resolved band gap positions and reflection spectra were simulated using

FDTD and FDFD methods. Bloch periodic boundary conditions were used only

in the film plane, when simulated in FDTD, and in all directions when simulated

in the frequency domain. Because the wavevectors kx and ky are not equal to zero

at oblique incidence, time-domain simulation is restricted to a single frequency at

a time, and multiple simulations must be carried to cover a range of wavelengths.

Time-domain simulations are therefore time consuming at oblique angles.

The frequency-domain method is much faster than FDTD at oblique incidence

and therefore has been preferred, except for the simulations of transmission spectra

at normal incidence. To calculate the band gap positions as a function of the

incidence angle, in the frequency domain we need to relate the incident angle and

wavevector direction inside the film. At normal incidence the wavevector obviously

has the same direction inside and outside the film, and if substrate is in the XY

plane, the band structure is calculated as a function of the vector ~k = (0 0 kz)
T .

If the film is a uniform isotropic slab, the relation between the incidence angle and

refracted angle is also easily found using Snell’s law, but in columnar films this

relation is not obvious. To find it, we can use the fact that the film is composed of

the densely packed columns, with the intercolumnar distance much smaller than

the light wavelength. Such a film can be treated as a stack of infinitely thin

layers of a uniform anisotropic material, with different dielectric constants in each

layer. The wavevector component tangential to the surface then remains constant
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throughout the film satisfying the boundary condition for electric field:

n̂× ( ~E1 − ~E2) = 0,

where n̂ is a unit vector normal to the surface. Because the tangential wavevec-

tor component is the same outside and inside the film, any internal propagation

wavevector can be related to the incidence angle.

To calculate a band gap position as a function of incidence angle, consider an

infinitely periodic film with unit cell dimensions sx = a, sy = a, and sz = P ,

where sx, sy ≪ λ. Let also consider the light incident in the XZ plane, so that

ky = 0. Because sx and sy are small we can assume that the wavevector component

tangential to film’s surface remains constant throughout the film: kτ = kx = const.

The reciprocal lattice has unit vectors ĝz = 2π/sz, ĝx = 2π/sx, and ĝy = 2π/sy.

A set of dispersion relations along the directions k̂(0)...k̂(m) from the point Γ

(~k = 0) to the edge of the unit cell (see Figure 3.4) is then calculated. Each

dispersion relation shows the band structure along a given direction k̂(l). If band

gap exists in this direction, the band gap edges ω
(l)
1 and ω

(l)
2 are located at the

corresponding k
(l)
x1 and k

(l)
x2 . The amplitude of the open space wavevector k0 is

easily determined as k0 = ω/c, where c is speed of light, and the incidence angle is

related to k0 as kx = k0 sin(i). With k
(l)
x1 and k

(l)
x2 known, this gives two incidence

angles, corresponding to band edges ω
(l)
1 and ω

(l)
2 :

i
(l)
1,2 = arcsin(k

(l)
x1,2/ω

(l)
1,2). (3.5)

For each direction k̂(l) in the film, a pair of frequencies indicating the band gap

position and the associated incidence angles are obtained. It is important that

these positions are calculated in the assumption of small intercolumnar distances.

The method will be invalid for the films where columns stand far apart from each

other, such as for square spiral photonic crystals, discussed in the next chapter.

3.2.3 Transfer matrix method

The method described above accurately predicts the band gap position as a func-

tion of incidence angle for densely packed columns, as well as for the isotropic and

anisotropic uniform index-graded films. Another method used to analyze band
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Figure 3.4: FDFD model for the oblique incidence band gap calculations.

gap positions and calculate transmittances/reflectances of the isotropic films is

the transfer matrix (TM) method [10]. This method gives the exact solution for

multilayer films and has been used to verify the simulated results.

Consider a multilayer film consisting of a series of uniform isotropic slabs sep-

arated by planar boundaries {1 · ·N,N + 1, · · ·}. The incident plane wave is

characterized by the incidence angle i, amplitude Ei and polarization (s or p). On

each boundary, the wave is partially reflected, and partially transmitted, and its

propagation angle changes according to the Snell’s law, as shown on Figure 3.5. For

the s-polarized light (transverse electric) the boundary condition for the electric
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Figure 3.5: Field notations on the periodic boundaries in the transfer matrix
method.

field at each boundary N can be written as:

EN = EiN + ErN = EtN +E′
r(N+1), (3.6)

where EiN is the amplitude of tangential component of light incident on the bound-

ary from above, ErN is the reflected amplitude, EtN is the transmitted amplitude,

and E′
r(N+1) is the reflected amplitude from the next boundary, phase-shifted after

travelling the distance between these boundaries:

E′
r(N+1) = Er(N+1)e

−jkh

and

EiN = Et(N−1)e
−jkh.

If the medium is nonmagnetic, the s-polarized magnetic field tangential com-

ponents satisfy the following condition:
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HN =

√

ǫ0
µ0

· (EiN − ErN ) · n(N−1),N · cos(θ(N−1),N ) =

=

√

ǫ0
µ0

·EtN · nN,(N+1) · cos(θN,(N+1)),

where n(N−1),N is the refractive index (complex in general) of the slab between

boundaries (N − 1) and N , and θ(N−1),N is propagation angle in this slab.

By solving these boundary equations with respect to E(N+1) and H(N+1) we

can relate fields on N -th and (N +1)-th boundaries through the matrix equation:

(

EN

HN

)

=

(

cos(φ) j sin(φ)
YN

YNj sin(φ) cos(φ)

)

·
(

EN+1

HN+1

)

=MN ·
(

EN+1

HN+1

)

, (3.7)

where YN =
√

ǫ0/µ0 ·nN,(N+1) ·cos(θN,(N+1)), and φ = k0 ·nN,(N+1) ·cos(θN,(N+1)).

The matrix MN is called a characteristic matrix. This matrix is written for s-

polarized (TE) light. Using the duality of the electric and magnetic fields, for the

p-polarized (transverse magnetic) light characteristic matrix it can be obtained by

simply swapping all occurences of E with H and ǫ with µ in the above equations.

If the film has K layers, the characteristic matrix of this system is defined as a

product of the matrices:

M =M1M2...MK−1. (3.8)

This matrix contains information about transmittance, reflectance, and phase shift

of the transmitted light. The transmittance and reflectance are found as T = t · t∗

and R = Ys
Y0
r · r∗, where

t =
EtK

Ei1
=

2Y0
Y0m11 + Y0Ysm12 +m21 + Ysm22

(3.9)

and

r =
ErK

Ei1
=
Y0m11 + Y0Ysm12 −m21 − Ysm22

Y0m11 + Y0Ysm12 +m21 + Ysm22
(3.10)

Y0 =
√

ǫ0/µ0 · n0 · cos(i) and Ys =
√

ǫ0/µ0 · ns · cos(θs) are the admittances of the

material that covers the film and of the substrate, respectively. Here n0 and ns are

the refractive indices of the substrates above and below the film, i is the incidence
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angle, and θs is the refraction angle for the substrate.

The transfer matrix method provides an analytical solution for isotropic index-

graded thin films including those made of dispersive and absorptive materials. Due

to the ease of implementation, it will be often employed in this thesis where the

isotropic index-graded films are considered. This method can be extended for

anisotropic materials, but then it becomes much more complicated. FD simula-

tions accurately describe anisotropic dielectric films, therefore we will limit the

transfer matrix calculations to isotropic cases, and use finite-difference modelling

to describe anisotropic columnar films.

3.3 Columnar interference filters: the model

GLAD-fabricated columnar interference filters usually have intercolumnar dis-

tances smaller that 100 nm; therefore, in numerical simulations the random array

can be replaced with a square array of columns. The model of the vertical post

structure is shown on a Figure 3.2. The array basis vectors are aligned with X

and Y axes, and the incident light is split into two orthogonal polarizations: p-

polarized with the electric vector in the XZ plane, and s-polarized with the electric

vector parallel to the Y axis. The incidence angle i is measured from the Z axis,

in the XZ plane.

The column geometry is characterized by a variable radius R, vertical pitch of

radius variation P and the intercolumnar distance a. The intercolumnar distance

can be chosen arbitrarily as long as it stays much smaller than the wavelength of

light. It has been fixed at a = 100 nm in the simulations. To verify the validity

of the effective medium assumption, the dispersion relations were calculated for

the whole range of column radii from R → 0 to R → a/
√
2 corresponding to

the bulk material. The effective refractive index was calculated from the slope

of the dispersion curve ω(k) in the long wavelength regime: neff = k/ω. FDFD

calculations have shown that the dispersion relations are linear at wavelengths

larger than approximately 2.5a for all possible column diameters, and the effective

refractive index in the long wavelength limit does not depend on a. The principal

refractive indices and film density (f) were calculated for each columnar array and

approximated with the Maxwell-Garnett approximation [86] complemented with

the correction terms as follows:
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f(n) = fMG(n) + f0 +

7
∑

m=1

fm sin(mπ(n− 1)/nT iO2 − 1) (3.11)

fMG(n) =
(2n20 + n2T iO2

)(n2 − n20)

(n2T iO2
− n20)(n

2 + 2n2T iO2
)

where fm are the coefficients of the expansion, listed in the Table 3.1, and n0 = 1

is refractive index of air.

m fm
0 3.25 10−3

1 0
2 3.56 10−2

3 −8.97 10−3

4 3.16 10−3

5 2.69 10−3

6 −7.34 10−4

7 −1.20 10−3

Table 3.1: Coefficients for the series expressing TiO2 film density as a function of
the effective refractive index.

Figure 3.6 shows FDFD calculated principal refractive indices for the TiO2

columns arranged in a square lattice as a function of film relative density f . The

extraordinary refractive index ne is higher than the ordinary no, and the anisotropy

(ne − no) peaks at f ≈ 47%. At very small and large densities the refractive

index becomes close to that of air and of the TiO2 respectively, and the anisotropy

decreases. The Maxwell-Garnett approximation is plotted together with the FDFD

calculated indices, and appears very close to the ordinary refractive index. Good

agreement between the approximation and simulated ordinary refractive index

is expected, because the Maxwell-Garnett approximation describes an array of

spheres or cylinders, and the GLAD film is composed of such an array.

At normal incidence, only the ordinary refractive index affects the light passing

through the film; therefore, both in the experiment and in simulations the ordinary

refractive index was used to design an index profile. The extraordinary index is not

proportional to the ordinary one as a function of film density, and therefore does

not merely represent a scaled copy the ordinary index profile. Three index profiles

were considered, shown on Figure 3.1. The DBR profile consists of an alternating
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Figure 3.6: FDFD calculated ordinary and extraordinary refractive index for the
vertical post film as a function of the relative film density.

sequence of high and low index layers with a fraction of high index material

δ = P
nmin

nmax + nmin
. (3.12)

The sinusoidal profile was the one fabricated in the experiments, defined as:

nsin(z) =
nmin + nmax

2
+
nmin − nmax

2
sin(

2πz

P
), (3.13)

In the Gaussian profile, following the approach of previous authors [4, 26, 27],

each period of the film was divided into two sections A and B, one described by a

Gaussian function, and the other one occupied by a constant index material. The

index profile in a section A is defined as

nA(z) = n0 +∆n · e−
(z−P/2)2

(4qPσ)2 , (3.14)

where q is a fraction of pitch P occupied by the Gaussian function. In section B,

the refractive index is constant nB(z) = n0 + ∆n · exp[−1/(16σ)2], equal to the
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index in the Gaussian profile on the edge of section A [4]. This is slightly different

from the definition in the prior research, where this index was up to 5% lower than

on the edge of the section A, giving slightly higher index contrast, but introducing

a small discontinuity into the profile.

In the frequency domain, a single period of the film was considered and a

simulation cell size was (dx, dy, dz) = (a, a, P ). In the time domain, the same cell

was repeated 16 times along the Z axis. The glass substrate was taken into account

in the time-domain simulations, but shown very little difference compared to a free

standing film. A grid size with resolution ∆ = 5 nm yielded accurate results, and

even lower resolution could be used.

3.4 Omnidirectional band gap in isotropic and in colum-

nar films

The band gap properties of the isotropic index-graded films can be easily calculated

with the transfer matrix formalism. Therefore, first we consider the isotropic index-

graded films to see the limits, where the omnidirectional reflection is observed.

Figure 3.7 shows s- and p-polarized band gap edges as a function of incidence

angle for the DBR profile with the maximum index nmax = 2.4, minimum index

nmin = 1.5, and pitch P = 200 nm. Band gaps of both polarizations coincide at

normal incidence and blueshift with the increasing incidence angle. Approaching

the Brewster angle, the p-polarized band gap shrinks faster than s-polarized, but

remains within its boundaries. The 3.8% wide omnidirectional reflection band

exists between 643 nm and 668 nm where the band gap covers both polarizations

at all incidence angles. The data for the isotropic films were obtained using both

transfer matrix formalism and FDFD, and both methods gave nearly identical

results, with the observed difference in the positions of band gap edges less than

0.7%.

Figure 3.8 shows the omnidirectional reflection band width for the isotropic

DBR, sinusoidal and Gaussian films as a function of the minimum refractive index

nmin. The maximum refractive index of the films is nmax = 2.4 and Gaussian

profile is optimized for the maximum band width (σ = 0.22 and q = 1). In all

refractive index profiles, the omnidirectional reflection band width increases with
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Figure 3.7: FDFD/TM calculated band gap positions for s- and p-polarized light
in isotropic DBR film as a function of incidence angle (nmin = 1.5, nmax = 2.4).

the refractive index contrast (nmax − nmin) to a certain point and then decreases.

The index contrasts higher than optimal suppress the omnidirectional reflection at

nmin < 1.28 for the DBR profile, and nmin < 1.17 for the sinusoidal profile. This

result has not yet been pointed out in the literature, where high index contrasts

were usually pursued but low index values close to that of air were not considered.

We can see, however, that even the isotropic index profiles lose their omnidirec-

tional reflective properties when the index contrast is high. This band gap collapse

is caused by the decrease in the Brewster angle at low values of nmin.

Gaussian and sinusoidal profiles have almost the same omnidirectional band

width, peaking at about 2%. The DBR profile outperforms them, but still the

omnidirectional band width does not exceed 4%. The DBR profile band width

peaks at larger nmin than Gaussian or sinusoidal, and with increasing index con-

trast (decreasing nmin) collapses much faster. In rugate films, the Brewster angle

is larger than in the DBR with the same index contrast. Therefore, their band

gaps shrink less with the incidence angle. Despite a smaller normal incidence band
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Figure 3.8: FDFD/TM calculated omnidirectional band width as a function of
nmin for the isotropic films with nmax = 2.4.

gap at normal incidence, the omnidirectional reflection is achieved.

For the larger maximum refractive index values, the omnidirectional band

width increases, while qualitative relationships remain unchanged. Figure 3.9

shows the reflection band width as a function of nmin for nmax = 2.5. The peak

band width increased to 6.5% for DBR profile, and almost to 5% for the Gaussian

and sinusoidal profiles. The Gaussian profile still peaks slightly lower than the

sinusoidal one, and both are outperformed by a DBR profile.

In the anisotropic thin films, as Figure 3.10 shows, the omnidirectional band

gap is substantially wider. The figure shows the reflection band width for the vari-

able radius titanium dioxide columns (nT iO2 = 2.4). The film’s ordinary refractive

index varies from nmin to nmax = 2.4 following DBR, sinusoidal and Gaussian

index profiles. Even though these profiles are the same as those used for the

isotropic films, the DBR mirror now has the omnidirectional band width 14.5%,

while sinusoidal and Gaussian profiles peak at nearly the same, 10.5%. The band

width increased by a factor of three to four compared to the isotropic films. Gaus-

sian and sinusoidal profiles still have an almost identical optical response, and the
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Figure 3.9: FDFD calculated omnidirectional band width as a function of nmin for
the isotropic films with nmax = 2.5.

DBR profile still peaks at higher nmin than the rugate profiles. Compared to the

isotropic analogs the band width is maximized at lower nmin (nmin ≈ 1.22 with si-

nusoidal/Gaussian profiles and nmin = 1.3 with the DBR profile). In the isotropic

films these values were nmin = 1.35 and nmin ≈ 1.5 correspondingly.

The better performance of the anisotropic thin films is achieved due to the high

extraordinary index affecting p-polarized light at oblique incidence. At oblique

incidence, the effective index for p-polarized light increases and the band gap

blueshift slows down. The s-polarized band gap, however, remains the same as

in the isotropic film because the s-polarized effective film’s index does not change

with the incidence angle.

3.5 Experimental realization of the columnar mirror

Theoretical work presented here has been done in collaboration with Matthew

Hawkeye, who fabricated and characterized the films. The film which is described

below had sixteen periods and its SEM image is included on the Figure 3.2. The
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Figure 3.10: FDFD calculated omnidirectional band width as a function of nmin

for the GLAD columnar films with nmax = 2.4.

film was fabricated at a continuous substrate rotation and variable deposition angle

to imprint sinusoidally variable refractive index. To relate the effective refractive

index to the deposition angle, a series of vertical post films were prepared at

deposition angles ranging from 40o to 86o, and their ordinary refractive index was

measured using a variable angle spectroscopic ellipsometer (V-VASE) [39]. This

relation was then used to create a sinusoidal refractive index profile. Films were

deposited at a background pressure of 8 · 10−5 Torr and then annealed for 12 h

at 70o C in air to ensure a stoichiometric film composition. The angle resolved

transmittance of s- and p-polarized light was measured from 400 to 900 nm at

incidence angles between 0o to 70o in 5o intervals. The collimated output from a

fibre-coupled tungsten-halogen lamp (Ocean Optics LS-1) was passed through a

∼ 1 mm wide aperture, polarized and after passing through the sample, collected

by a fibre coupled spectrometer (Ocean Optics USB2000). The measured spectral

intensity was normalized to the intensity with the sample removed.

Figure 3.11 shows the FDTD simulated and measured normal incidence trans-

mittance spectra for sixteen periods of the columnar rugate filter with the ordinary
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Figure 3.11: Experimentally measured and FDTD simulated normal transmission
through sixteen periods of the columnar film with sinusoidal index profile on quartz
substrate (from SEM data: nmin = 1.54 and nmax = 2.32).

refractive index varying between nmin = 1.52 to nmax = 2.32. The pitch of index

variation was determined from the SEM image: P = 178 nm. Transfer-matrix

calculated spectra for 16 periods of this index profile show ∼ 2.7% transmission on

the band gap edges at normal incidence. Using this value we can locate band gap

edges in the measured spectrum at 648 nm and 778 nm respectively. Simulated

data are in good agreement with the experiment both in terms of the band gap

width and position, and the Fabry-Perot oscillations surrounding the gap. At short

wavelengths the simulated Fabry-Perot oscillations stand slightly wider apart than

measured, because the simulated film material was assumed to be nondispersive

and nonabsorptive, while in practice the titania refractive index increases at short

wavelengths, and makes film’s optical thickness slightly larger.

In Figure 3.12, FDFD calculated and experimentally measured band gap po-

sitions are given as a function of the incidence angle. The experimental data were

measured only up to a 70o incidence angle, but simulated band gaps cover the

whole range of angles and show the omnidirectional reflection band from 648 nm
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Figure 3.12: Experimentally measured (dots) and FDFD calculated (lines) band
gap positions as a function of incidence angle for the same film as on Figure 3.11.

to 684 nm. The relative width of this band is 5.4% of the centre wavelength. The

omnidirectional reflection band does not appear in the analogous isotropic film, as

shown in Figure 3.13. This figure shows p-polarized band gaps for the sinusoidal

film with nmin = 1.52 and nmax = 2.32, one for the columnar film and the second

for the isotropic one. In the columnar film, the p-polarized band gap remains

relatively wide at large incidence angles, and also blueshifts slightly slower.

Good agreement between theory and experiment indicates the validity of the-

oretical assumptions and gives some confidence in the simulated results at angles

exceeding the measured range. Also the good agreement between theory and ex-

periment provides grounds for a theoretical optimization of thin film architecture,

which will be discussed next.

3.6 Band gap optimization

We have seen already that the omnidirectional reflection band is maximized at a

certain value of nmin, depending on nmax and on the choice of function describing
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Figure 3.13: P-polarized band gap positions as a function of incidence angle com-
pared between the isotropic and columnar films with the identical sinusoidal index
profile (nmin = 1.54, nmax = 2.32)

the index profile. With this in mind, achieving the highest omnidirectional band

width is not just a question of maximizing the refractive index and index contrast,

but a question of finding their optimal combination. The choice of the index profile

also matters. The DBR profile outperforms rugate profiles both in uniform and in

anisotropic films, but in GLAD deposition, abrupt changes in the deposition angle

may induce column growth defects, which will increase the diffuse scattering. The

sinusoidal profile has no discontinuities but also has a relatively small band width,

and the same can be said about the Gaussian profile.

A number of parameters that can be optimized to improve the filter varies

for different profiles. However, all of them are characterized by a vertical pitch

P , and maximum and minimum indices. Among these parameters, pitch does

not influence the relative band width. Maximum index is defined by the choice

of deposited material and in the visible range titanium dioxide gives one of the

highest values.
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Figure 3.14: FDFD calculated omnidirectional band width as a function of nmin

and nmax for the columnar films with sinusoidal index profile. Star indicates the
position of experimentally fabricated film.

Figure 3.14 shows the omnidirectional band width as a function of nmin and

nmax for the columnar film with the sinusoidal index profile. The width increases

linearly with the maximum index nmax and peaks at nmin ≈ 1.22 regardless of the

nmax value. The experimentally fabricated film is shown with a star on this dia-

gram, shifted rightwards with respect to the optimal index contrast. The highest

refractive index in the fabricated GLAD film is close to the one of bulk TiO2, but

the minimum refractive index is still high. If nmin is optimized, the band width

can increase by least 50% of the present experimental value.

The Gaussian profile provides more freedom for optimization, since one can

vary the pulse width together with the minimum and maximum index values. The

Gaussian rugate film described by Figure 3.10 was optimized for the maximum

band width in the isotropic index-graded films. The values of q and σ in that

configuration were q = 1 and σ = 0.22 and they become different in the optimized

columnar film. Because q and σ stand in the equation as a product, each of them

affect the pulse width in the same way, with the only difference that reducing
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Figure 3.15: FDFD calculated omnidirectional band width as a function of the
parameter q for the Gaussian index-graded columnar film (nmin = 1.25, nmax =
2.4, σ = 0.22, points are interpolated with cubic splines). See Section 3.3 for the
description of the Gaussian profile model.

q moves the truncation points closer to the pulse centre. Figure 3.15 shows the

omnidirectional band width as a function of pulse width q, while the variance

is fixed at σ = 0.22. The band width improves with q decreased and peaks at

q = 0.72, smaller than optimal in the isotropic film. This is caused by the nonlinear

dependence of film anisotropy on density. At very low and high refractive indices,

the anisotropy is small, as the index approaches that of the bulk material or of the

air. A decreased pulse width, however, improves the reflection band by increasing

the film’s anisotropy. The reflection band width as a function of σ is also described

by a bell curve as shown on a Figure 3.16. From this graph we can see that the

optimal parameters of the Gaussian TiO2 columnar mirror are q = 1, and σ = 0.15

if nmin = 1.25 and nmax = 2.4. This structure gives a relative band width of 12.1%,

which falls almost in the middle between the sinusoidal rugate films (10.5%) and

DBR films (14.5%).
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Figure 3.16: Omnidirectional band width as a function of σ the Gaussian index-
graded columnar films (nmin = 1.25, nmax = 2.4, points are interpolated with
cubic splines).

Isotropic uniform Anisotropic columns

DBR 3.8% (nmin = 1.52) 14.5% (nmin = 1.28)
Sinusoidal 2.3% (nmin = 1.36) 10.5% (nmin = 1.22)
Gaussian 2.0% (nmin = 1.34) 12.1% (nmin = 1.20)

Table 3.2: Maximum reflection band widths for isotropic and anisotropic index-
graded mirrors with nmax = 2.4.

3.7 Chapter summary

The anisotropy of columnar films substantially enhances omnidirectional reflection

from 1D periodic index-graded films. In titanium dioxide columnar films, the re-

flection band width is more than three times larger than in the isotropic analogs for

the DBR index profile, and up to four times larger for the sinusoidal and Gaussian

profiles. In this light, GLAD provides a unique opportunity to create anisotropic

index-graded films with arbitrary index variation, significantly improving the an-

gular dependence of the reflection spectra. Currently the fabricated index-graded

mirror with a sinusoidal profile has a 5.4% wide omnidirectional band gap as the
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refractive index contrast is only ∆n = 0.8. The optimal index contrast ∆n = 1.15

would show reflection bands up to 10.5% wide. With the DBR profile the band

width is further improved up to 14.5%. Potentially it can be even larger if multiple

materials are used in the deposition. For example, titanium dioxide can be used

to deposit a high index layer with relatively low anisotropy but high index, and

columnar silica deposited as an anisotropic low-index layer.

The findings of this chapter are rather general and not limited to the GLAD

technique. Any anisotropic material with high values of the extraordinary index

used in the interference film will stabilize the band gap spectral position and

potentially improve the omnidirectional band gap. The GLAD method, however,

provides the most straightforward fabrication base for anisotropic thin films. The

spectral range of these films is limited by the intercolumnar distance, which has

to be small compared to the wavelength of interest. In GLAD-deposited titanium

dioxide films, these distances usually fall below 100 nm, making films usable from

near ultraviolet to any longer wavelength where the material is transparent.

At shorter wavelengths, the interference of light scattered from individual

columns comes into play, and approximations made for rugate mirrors and for

s-shaped polarizers are no longer valid. Randomly distributed columns at short

wavelengths produce excessive scattering, but if columns are ordered on the sub-

strate, new properties arise because of this periodicity. The following chapter

will address films with widely spaced periodically arranged columns, which serve

as photonic crystals. Specifically, the chapter will be about square spirals, which

have been known for a decade as one of the effective photonic crystal architectures.
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Chapter 4

Square spiral photonic crystals

with a visible band gap 1

4.1 Motivation

The square-spiral photonic crystal was first proposed and simulated by Toader

at al. in 2001 [122, 123]. This structure utilizes crystallographic symmetry of a

diamond lattice, which is known to produce wide 3D photonic band gaps, with the

widest band gaps observed in the network of cylindrical bonds, connecting the ad-

jacent nodes of the diamond lattice [43, 44]. The square spiral arms connect nodes

in the diamond lattice, which do not necessarily have to be the nearest neighbours.

If the spiral arms connect n-th nearest lattice nodes, such an architecture is clas-

sified as a diamond:n square spiral. The original and subsequent works by Toader

considered diamond:1, diamond:3 and diamond:5 square spirals, concluding that

diamond:5 architecture produces the widest 3D photonic band gap among those

three types.

Diamond:1 square spiral is the easiest to fabricate by GLAD, since the struc-

ture’s column tilts fall into the range attainable with the GLAD technique. The

GLAD fabrication method has certain advantages over other techniques of square

spiral fabrication: fabrication speed, long range order of columns, and the ability

to cover large areas in a single deposition step. Among the other methods, direct

laser writing also produces high quality square spiral crystals. This method covers

1A version of this chapter has been published in Ref. [68].
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an almost unrestricted range of column tilts and allows one to include point and

line defects into the crystal, but remains time consuming and therefore not suitable

for mass-production [106].

In theoretical works by Toader, it has been shown that any transparent material

with refractive index larger than n = 2.2 is suitable for fabrication of square spiral

photonic crystal with full 3D band gap. The larger the refractive index is, the wider

this band gap will be. For this reason in early fabrication works silicon was used as

column material, since it has high refractive index n = 3.6 at telecommunications

wavelengths [62, 63, 56]. Fabrication of square spiral photonic crystals becomes

more challenging in the visible spectral range, where the lattice constant of the

crystal is around the one third of that in the telecommunications range. Design

tolerances also become more stringent as the selection of transparent materials is

limited to dielectrics with relatively low refractive indices. One of the best suitable

materials in this range is titanium dioxide (TiO2).

This chapter investigates the influence of a number of geometrical parameters

of GLAD fabricated square spirals on 3D band gap formation, with a goal of opti-

mizing the crystal architecture but staying close to the limits of GLAD fabrication

technique. Issues which have not been addressed in previous theoretical works,

such as effects of column cross-section geometry and potential of column density

variation, will be discussed. The work was done as a collaboration between the

author of this manuscript on a theoretical side and researchers in the GLAD labora-

tory at the University of Alberta. Substrates were prepared and square spiral film

was deposited by Joshua Krabbe, and then optically characterized by Dr. Michael

Taschuk. The author, on his side, theoretically investigated the experimental re-

sults, and developed the recommendations on the square spiral optimization in a

framework of the current deposition capabilities.

4.2 Fabrication procedure

In square spiral photonic crystals, the columns are arranged on a substrate in a

square array. This requires substrate patterning, to create the initial array of pro-

trusions, from which columns grow. Several seeding methods can be mentioned,

such as electron beam lithography, self assembly of nano-spheres, photolithogra-

phy, or nanoimprint lithography [64, 63, 151, 23, 36]. Electron beam lithography
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Figure 4.1: The process flow for nanoimprint lithography

provides good quality arrays, but prohibitive in fabrication speed and not suitable

for mass production. Self-assembly techniques, on the other hand, can cover large

substrate areas, but lack long-range seed order, and usually produce hexagonal

seed arrays, while square spiral photonic crystal requires a square array. Laser

direct write method produces good results, but like the e-beam lithography, it is

limited to small scales and costly.

In this work, nanoimprint lithography was used. It is among the best candi-

dates for square seed arrays, since it is able to cover large substrate areas with

good long range order, and it can produce the lattice of seeds with spacings on

the order of hundreds of nanometers, needed for the band gap in the visible range.

This choice has been motivated not only by the large substrate areas covered by

nanoimprint, but also by the economical advantage over photolithography, since

nanoimprint method does not use costly projection equipment.

Figure 4.1 shows the process flow for the nanoimprint stamp fabrication and

subsequent imprinting process. Nanoimprint stamps were fabricated on quartz

plates using a Raith 150 electron-beam lithography system. One-eighth inch thick

(3.18 mm) quartz plates were diced into 20 mm squares, cleaned, and coated with
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Figure 4.2: Deposition of a single square spiral period.

polymethyl-metacrylate (PMMA). A square array of dots was then patterned on

the resist using the Raith 150. One 5 mm wide circular area was patterned with

lattice spacing 320 nm and a number of 1 mm wide square stamps were produced

with the lattice spacings from 80 to 400 nm. This range of lattice constants

potentially can be used to deposit square spiral crystals with band gap centered

anywhere between ∼ 150 nm and ∼ 750 nm.

The pattern of dots was transferred onto the quartz plate through 25 second

etch process using a Surface Technology Systems reactive ion etch system. After

cleaning and drying, the nanoimprint stamps were treated with perchlorsilane

vapour, to make them highly hydrophobic and limit resist adhesion during the

imprint process.

The arrays of seeds were later imprinted onto silicon wafers coated with ther-

moplastic NanoImprint lithography resist (NXR-1025 2.5%) using a Nanonex uni-

versal imprinter system.

After the substrate was patterned with the square array of seeds, each period of
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square spiral was deposited in four sequential steps, between which the substrate

was rotated by δφ = 90o, as shown in a Figure 4.2. Four periods of TiO2 square

spiral were deposited on the array of seeds with 320 nm spacing. To prevent

column broadening and bifurcation, the PhiSweep technique (see Chapter 1) was

employed with 8 sweeps per one square spiral arm. Sweep angle of 26.5o was used

as it maximizes shadowing between the columns and was shown to be optimal

for the square spiral fabrication [115]. The deposition angle was kept constant at

α = 86o.

4.3 Simulation and structure optimization

4.3.1 The model

Theoretical results described here are based on diamond:1 architectures, since they

can be readily fabricated by GLAD method. Square spiral photonic crystals po-

tentially exhibit a full 3D band gap between 4th and 5th bands, but if the column

geometry is not optimal or the refractive index is too low, these bands overlap.

We studied both direct and inverted structures, since the direct structures were

experimentally fabricated, and inverted architectures have the material distribu-

tion more favourable for a 3D band gap formation. Inverted structure fabrication

requires filling the porous film with a desired material and then etching away the

columnar matrix that has originally been deposited by the GLAD method. In the

model, the direct structures were represented by TiO2 columns surrounded by air

(or vacuum), and the inverted structures were built as arrays of air columns in a

TiO2 matrix.

The film’s geometry was characterized by the lattice constant a, arm swing

A, film volumetric density fv and the column cross-section shape, as shown on

Figure 4.3. It is also convenient to introduce the dimensionless parameters Ã =

A/a, P̃ = P/a, since for the optimized column geometry they will remain constant

even when the seed lattice constant is changed. The volumetric density fv is

defined as a fraction of the crystal volume occupied by the column material, or

as a ratio of crystal density to the bulk material’s density. In simulations, the

column cross-section was approximated as elliptical in the substrate plane with

the ratio of major to minor axis η = w‖/w⊥, where w‖ is a cross-section width in
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Figure 4.3: The model of square spiral

the column tilt plane, and w⊥ is a cross-section width normal to this plane. The

cross-section in the plane normal to the column axis is then elliptical too, with the

ratio of major to minor axis ζ = h‖/h⊥, where h‖ and h⊥ are related to w‖ and

w⊥ as:

h‖ = w‖/

√

16A2

P 2
+ 1; h⊥ = w⊥.

GLAD columns tend to have a cross-section elongated normally to the column

tilt plane, but since square spirals were deposited with PhiSweep motion, cross-

sections closer to circular can be expected. For this reason, when investigating the

experimental film, we considered the column’s cross-section to be circular. Silicon

substrate and hemispherical seeds were taken into account, because the reflectivity

is considerably affected by substrate presence, and the dielectric function for crys-

talline silicon [126] was approximated with the Lorentz approximation in FDTD.

Both in the deposited film and in simulated columns, the spiral arm adjacent to

the substrate was tilted in YZ plane, and spiral arms on the film’s surface were

tilted in XZ plane.
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Figure 4.4: FDFD calculated band gap width as a function of cross-section elon-
gation in the substrate plane for a direct square spiral optimized at w‖/w⊥ = 2.3
(ζ = 1)

4.3.2 The role of column cross-section

In Ref. [122, 123] it was shown that photonic band gaps as wide as 5% can be

produced in TiO2 square spirals with diamond:1 architecture and circular arm

cross-section in the plane normal to the column arm (ζ = 1). Taking into account

that the geometry in this work has been optimized for the silicon columns, TiO2

columns can be further adjusted to produce even larger band gap. Wider 3D band

gaps were found, for example, for columns with rectangular cross-sections and for

the inverted columns [123]. These results, however, hold only as long as ζ = 1.

Figure 4.4 shows the simulated relative width of 3D photonic band gap (and band

overlap, where this value is negative) as a function of cross-section broadening η for

the TiO2 spiral optimized for η = 2.3 (ζ = 1). At η = 2.3 the band gap is close to

3.3% according to our simulations and with decreasing η its width decreases, and

3D band gap closes at η < 2.04. High value η = 2.3 can not be directly fabricated

by the GLAD technique so far, and column cross-sections typical for GLAD films

will not produce a complete 3D band gap unless more powerful techniques are

developed to modify the cross-section geometry.

Inverted photonic crystals present much wider band gaps than their direct

counterparts, therefore, the 3D band gap is easier to achieve. The dependence

of the 3D band gap width on η in inverted square spirals is shown in Figure 4.5.
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Figure 4.5: FDFD calculated band gap width as a function of cross-section elon-
gation in substrate plane for direct and inverted square spirals optimized at
w‖/w⊥ = 1.5

Like in the direct architecture, the band gap width increases as the cross-sections

become more elongated in the direction of the arm tilt. This structure has been

optimized at η = 1.5, and characterized by the relative arm swing Ã = 0.59;

vertical pitch P̃ = 1.5, relative film density f invv = 28%, and column refractive

index n = 2.4. The lowest value of η, needed for the full 3D band gap is then

η = 1.22, much lower than that in the direct structures. The relative density

of the corresponding direct structure is fv = 72%, is substantially larger than

the density of the film described by the previous figure. However, the reduced

arm swing Ã in the inverse columns requires lower deposition angle, which will

increase the deposited GLAD film density. It is also possible to adjust the film’s

volume density after deposition, which was experimentally demonstrated for silicon

microstructures. When silicon columns were oxidized, the total volume of the solid

increased, because of the lower density of silicon dioxide [116].

4.3.3 Reflectivity of the square spiral films: comparison to the

experiment

FDTD-simulated reflection spectra were compared to the experimental measure-

ments for the film prepared by GLAD deposition combined with nanoimprint

lithography of seeds. SEM image of TiO2 square spiral, presented on Figure 4.6,
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Figure 4.6: SEM image of the square spiral (courtesy of Joshua Krabbe)

was used to determine the experimental column geometry. From the SEM image,

and by comparing simulated and measured reflectivity, the following values were

found for the fabricated square spirals: vertical pitch P = 470± 5 nm, arm swing

A = 170 ± 7 nm, lattice constant a = 315 ± 5 nm, and titania volume fraction

fv = 26± 2%. S- and p-polarized reflection spectra were measured using variable

wavelength spectroscopic ellipsometry for incidence angles ranging from 20o to 70o,

and azimuth angles from 0o to 90o from the tilt plane of the arm nearest to the

substrate.

Figure 4.7 shows the FDTD-simulated and experimentally measured p-polarized

reflectance for four periods of square spiral deposited on a silicon substrate. The

incidence angle is 20o from substrate normal, and the azimuth is 0o as measured

from the tilt plane of the nearest to the substrate arm. The cross-section elongation

η = 1 has been taken, based on the SEM image analysis, and on the assumption

that PhiSweep deposited columns have a cross-section close to circular.

The simulated reflectance for nonabsorptive TiO2 columns is substantially

higher than the measured one, but all peak positions are in a good agreement

with the measurements. This indicates that while geometry in the model accu-
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Figure 4.7: Simulated and experimental reflection spectra at 20o angle of incidence
for p-polarized light.

rately represents the fabricated one, columns have a source of extinction, other

than absorption in the column material, or in the substrate. The reflectivity loss

can be explained by high scattering losses in the square spiral columns. Indeed, the

intercolumnar distance is comparable to the wavelength, therefore random devia-

tions in column positions will cause a diffuse scattering. As SEM image indicates,

the column surface is also far from smooth, and may cause substantial diffuse

scattering. The equipment used during the film characterization measured a spec-

ular reflectivity, and did not detect the diffusely scattered light, which ultimately

reduced the measured reflection.

Accounting for the column roughness and growth disorders can be a very chal-

lenging task in simulations, but it is possible to describe the diffuse scattering losses

by an artificial absorption coefficient, using the following considerations. The film’s

measured reflectance gradually decreases with the decreasing wavelength, therefore

we can suggest that the dominant scattering mechanism is the Rayleigh scattering.

In the GLAD square spirals, it occurs on the column surface roughness, as well
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as on the density fluctuations inside the columns. Scattered light follows random

paths in the film; therefore, we can consider that it does not participate in the

formation of specular reflection spectrum.

Assuming that the light is scattered on the refractive index fluctuations, and

that the characteristic scale of these irregularities is substantially smaller than light

wavelength, one can introduce an artificial absorption coefficient as a measure of

scattering loss [78]:

αs =
8π3

3λ4
〈(∆ǫ)2〉vǫ

where 〈(∆ǫ)2〉 is a dispersion of the dielectric constant ǫ, and vǫ is fluctuation

correlation volume. The constants 〈(∆ǫ)2〉 and vǫ are not known, but their product
can be found by fitting the experimental data. The material’s refractive index is

then expressed as n(λ) = n0(λ)+ jσ/λ3, where σ is an unknown coefficient, found

by fitting the experimental data.

Because scattering occurs in the photonic crystal it is worth discussing the

validity of the given approximation. On macroscopic level, scattering probabil-

ity depends on the density of photonic states in the crystal: within photonic band

gaps scattering is forbidden in some or in all directions, while on their edges, where

group velocity is small, scattering probability is high. We introduce scattering ex-

tinction on the microscopic level, and in this way, its dependence on the density of

states is naturally accounted for in the simulation. For example, in the directions

where density of photonic states is low, light propagation is not supported, and

scattering will be small. Conversely, where group velocity is small, scattering loss

will be strong due to longer light interaction with the photonic crystal. The key

assumption here is that any scattered light has an extremely small probability of

being returned into specular reflected component, detected in observations. Differ-

ent methods and expressions were developed for situations, where scattered light

does not escape detection, such as in photonic crystal waveguides [51, 97].

Figure 4.8 shows the FDTD simulated reflectance at s- and p- polarizations

for the columns with σ = 0.175 [eV−3]. The reflectance is in a good agreement

with the experiment except for the shortest wavelengths, where the scattering fea-

tures become comparable to wavelength and Rayleigh approximation is inaccurate.

Simulated p-polarized reflectance in the band gap is approximately equal to the

experimentally measured, while the simulated s-polarized reflectance in the band
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Figure 4.8: Simulated and experimental reflection spectra at 20o angle of incidence
for p-polarized (a), and for s-polarized light (b)

gap is higher than the measured one.

Silicon seeds on the substrate also influence the reflection, but to a much smaller

extent than diffuse scattering. Simulations with seeds have shown that silicon seeds

slightly reduce the reflectivity as a whole, but their influence is strongest at longer

wavelengths. At long wavelengths, the layer of seeds acts as an antireflective buffer

between the columns and the substrate, since its refractive index is between the

refractive index of porous titania, and bulk silicon. It reduces the reflection from

the substrate and, consequently, increases the absorption in it. At wavelengths of

the photonic band gap and shorter, Rayleigh scattering is so strong that relatively

little light reaches the substrate after the first pass, therefore seeds have almost no

impact on the blue end of the reflection spectra.

The reflectivity from the fabricated square spirals is relatively small in the

band gap, because only four periods of the spiral were grown. The band gap

development is shown on a Figure 4.9 with the increasing number of spiral turns.

This figure shows the FDTD simulated x- and y-polarized reflectances for 4 and 10

turns of the square spiral at normal incidence. To see the picture unobscured by

scattering, the simulations were done for nonabsorbing titania columns with the

refractive index n = 2.4. We can see that at four turns, the band gap is poorly

defined and severely distorted by Fabry-Perot resonances.

Despite the rotational symmetry of the square spiral columns and normal inci-

dence, the x- and y-polarized reflectance spectra have different patterns of Fabry-

Perot resonances. The difference is due to the film’s anisotropy on the boundaries
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Figure 4.9: FDTD simulated p-polarized (a) and s-polarized (b) reflectance at
normal incidence from 4- and 10-period square spiral film. Column geometry is
fitted to the experimentally fabricated structure.

with the substrate and air. Working as polarization-dependent antireflective coat-

ings, these portions of the crystal create different patterns of Fabry-Perot reso-

nances for x- and y-polarized light. The x-polarized reflection band is suppressed

by the resonant mode around λ = 600 nm, while the y-polarized mode has reflec-

tion above 80% even with four spiral turns. At 10 turns, band gaps are much better

defined and the difference between the x- and y-polarized reflectances decreases.

Besides having a distinct band gap at normal incidence, the structure needs

to preserve this band gap at all other propagation directions to be considered

a true photonic crystal. Figure 4.10 shows simulated and measured p-polarized

reflectivity as a function of altitude (angle measured from substrate plane to the

incident beam) and wavelength, and Figure 4.11 shows simulated reflectivity for

the s-polarized light. The simulated reflectivity is given for the film with the

scattering strength σ = 0.175 eV −3. We can see that the band gap does not cover

any single frequency in the whole range of altitudes, indicating that it is not a

full 3D band gap. The FDFD calculated band diagram of the same square spiral,

shown on Figure 4.12, confirms this. The gap between the 4th and the 5th bands

exists in the directions ΓZ, ΓR and ΓX, but in all of them it is centered at different

frequencies. Also there is no band gap between 4th and 5th bands for the ΓA and

ΓM directions.
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Figure 4.10: Measured (a) and FDTD simulated (b) p-polarized reflectance as a
function of incidence angle and wavelength. Pitch P = 468 nm, lattice constant
a = 314 nm, arm swing A = 164 nm and filling fraction fv = 25% (circular column
cross-section).
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Figure 4.11: FDTD simulated s-polarized reflectance as a function of incidence
angle and wavelength for the fabricated film.

4.3.4 Band gap optimization and inverted square spirals

The fabricated structure can be still optimized in terms of column cross-section

and density to improve the band gap. A series of frequency domain calculations

were performed to optimize the titanium dioxide square spirals, and for the circular

cross-sections the overlap between the 4th and 5th bands was minimized at the

volume fraction of TiO2 fv = 35%. However, this overlap is still as large as 12% of

the wavelength. Therefore, with circular cross-sections, titania square spirals do

not possess a 3D band gap.

As we have seen in Figure 4.5, the inverted square spirals require much less

elongated cross-sections, therefore fall closer to the range accessible with GLAD

method. Figure 4.13 shows the band structure for the optimized inverted square

spirals at cross-section broadening η = 1.5. These columns with optimized relative

pitch P̃ = 1.5, arm swing Ã = 0.59 and volume fraction of titania f invv = 28%, have

a 5.3% wide 3D band gap, limited by the 5th band in ΓR direction, and by the 4th
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Figure 4.12: FDFD band structure for the experimentally fabricated square spirals.

band in ΓA direction. Inverse square spirals were previously produced from silica

by oxidizing silicon columns [116]. This process has not been used for TiO2, and

neither have the titanium square spirals ever been fabricated. However, the ability

of silicon columns to change volume, as they are oxidized, can be potentially used

wherein the direct structure of the optimal density will be produced by oxidizing

silicon columns, and then filled with titanium dioxide to form the inverted crystal.

4.3.5 Improving the 3D band gap by density redistribution in the

film

A diamond lattice of closely packed spheres and its inverse derivative have band

gaps up to 27.3% wide (for the inverted diamond lattice of spheres in the matrix

with dielectric constant 11.9) [123], which is wider than the band gap in the opti-

mized square spirals made of the same material. Material in square spirals is evenly

distributed along the column, but if it is redistributed and concentrated around

lattice nodes, one may expect that the photonic crystal performance will be close
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Figure 4.13: FDFD band structure for the inverted titania square spiral optimized
for η = 1.5.

to the one of diamond lattice of spheres. The structure’s band gap properties, thus

may improve. Exploiting such a material redistribution to improve the 3D band

gap in the TiO2 square spiral is of particular interest, since band gap width in this

structure is narrow, and even small deviations of spiral geometry from the optimal

lead to the band gap closure.

Film density can be varied by varying the deposition angle. But if the deposi-

tion angle is varied, the column tilt angle also changes following the equation (1.1).

The slow-corner method may be used to build up material at the corners of the

spiral without altering the column tilt. In this method, the transition from one

arm tho the other in the square spiral corner is done gradually, rather than as an

abrupt 90o turn, allowing for a more gradual transition and resulting in fewer de-

fects [63]. Larger material accumulation at the spiral corners comes as a side effect

of this technique. For simplicity, let consider straight column arms regardless of

the variable column density, assuming that (i) if density variation is small, column

tilt will not significantly vary; (ii) if density variation is large, the main influence
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structure

on the band gap would be from dense parts, thus changing the tilt of connecting

bars will not change the result qualitatively. In the model, the film’s volumetric

density was varied along the substrate normal as f(z) = fv[1+ δf cos(
8πz
P )], where

z is vertical coordinate in nanometers.

Figure 4.14(a) shows the relative band gap width as a function of δf for the

direct square spiral with cross-section elongation factor η = 2.3 (ζ = 1). At positive

δf values, the material is concentrated around the arm joints, which correspond to

the nodes of the diamond lattice. At negative values of δf , material is concentrated
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in the arms, rather than on the joints. The 3D band gap width increases with

positive δf , and decreases when δf < 0, indicating that material concentration

around the spiral bends is favourable for 3D band gap formation. The band gap

width saturates at 7.3% for the higher positive values of δf ≈ 0.5.

In general, the optimal combination of arm swing, pitch, and film density

depends on the distribution of material along the arms. Therefore, the square spiral

geometry was optimized for each δf value shown on Figure 4.14. Figure 4.14(b)

shows the optimized values of arm swing, pitch and density as a function of δf .

The average optimized film density remains approximately constant, close to 40%

of a bulk TiO2 density, and the pitch P̃ is increasing both at positive and negative

δf values. The relative arm swing Ã on the other hand, gradually decreases with

increasing δf , becoming close to Ã = 0.9 at δf = −0.5 and Ã = 0.6 at δf = 0.5.

Smaller values of Ã may be more favourable for the GLAD fabrication, since with

smaller column tilt one can have a wider control over the film density and cross-

section shape. PhiSweep and spin-pause techniques are most capable of modifying

the cross-section geometry and film density at smaller column tilts.

The dependence of 3D band gap width on the column density variation was

also calculated for an inverted square spiral with a cross-section elongation η = 1.5.

The result is similar to the one obtained for the direct structure, but here with the

increasing δf the band gap width reaches maximum at δf = 0.22 and decreases

at higher values.

4.4 Chapter summary

As we can see from the discussion above, design and fabrication of the square

spiral photonic crystal in the visible spectral range is challenging due to the small

refractive index contrast and inability of modern fabrication techniques to reach

the optimized parameter range, especially with respect to the column cross-section

geometries. Focusing on the inverted architectures, and varying the film’s density,

however, allowed us to optimize the architecture further and to bring it close

to the fabrication capabilities of GLAD technique. Films with variable density

have nonzero 3D band gaps even at small cross-section elongations falling into

the range of PhiSweep technique. The GLAD method is armed with a number

of techniques, that allow to control fine features of the column geometry. These
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would allow one to further adjust the material distribution and cross-section shape.

By combining the advanced GLAD methods and numerical modelling we can now

foresee successful realization of square spiral photonic crystal with the band gap

in the visible range.
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Chapter 5

Metals in GLAD films and

refractive index engineering

5.1 Motivation

In chapters 2 and 3, dense column arrays were used to design films with anisotropic

effective dielectric constant, and polarization dependent band gap properties. Since

these films were made with dielectrics, the values of their principal refractive in-

dices occupied the range between the refractive index of column material and the

refractive index of air, and the films did not have any magnetic response.

The motivation of this chapter was to consider a three-dimensional GLAD ar-

chitecture as a support for ordered metal particles, and to extend their dielectric

and band gap properties beyond the range that can be attained with solely di-

electric columns. Metals have a negative real part of the dielectric permittivity,

characteristic of systems with free electrons in their crystal lattice. When they are

mixed with dielectrics the composites may have a wide range dielectric constants –

from negative to positive, allowing one to engineer a desired refractive index. Un-

bound electrons, which move freely in response to the applied electric field, are

also responsible for the composite’s magnetic response.

Such composites might be used, for example, as transparent conductors, the

demand for which increased with advent of touch screen and flat panel displays.

The electrical circuitry of these displays inevitably absorbs part of the passing light

and reduces the image brightness. Conductive materials that are transparent to
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the visible light solve this problem. Several conductive oxides were discovered in

the last decades of the twentieth century, such as indium tin oxide (ITO), fluorine

doped tin oxide (FTO), and indium zinc oxide (IZO) [32]. A growing problem

with them, however, is high price and scarcity of indium.

Conductive nanowire networks emerged recently as a cheaper alternative to

ITO films [83]. They are built of silver or carbon nanofibres loosely covering the

substrate surface. With an appropriate surface density of conductive filaments

most of the light is transmitted, and the conductivity is sufficiently high. In

other applications, such as solar cells, current travels normally to the surface,

and three-dimensional transparent networks may be required. Here, GLAD films

have a potential due to their columnar structure. Mixed with metals they may

be conductive and transparent at the same time. It was shown both theoretically

and experimentally that arrays of metallic posts can be highly transparent in the

infrared and red visible frequencies [31]. The conductivity of metal posts can be

much higher than that of randomly linked networks, because they create direct

current pathways from top to the bottom of the film. This can be used to collect

and transport electric charges in relatively thick solar cells without losing too much

incident light to absorption.

Another interesting role for the 3D structured metals is metamaterials with a

negative refractive index. In these materials, both dielectric permittivity ǫ and

magnetic permeability µ are negative. The refractive index, defined as a square

root of their product n = −√
µǫ, is then real but negative. The negative sign

appears due to a negative direction of the energy flow, since with negative ǫ and

µ, the Poynting vector is antiparallel to the wavevector ~k [133, 132]. Due to

the negative refraction, light rays coming from a point above a planar surface

are focused on the opposite side of this surface. Thus, negative index slab acts

as a superlens, free of many optical aberrations. These lenses are promising for

photolithography where they can transfer an image to the photoresist at a high

resolution [95].

Metamaterials have nonzero magnetic susceptibility due to the current loops

in structured metal arrays. Metal particles act as magnetic atoms that are able to

polarize magnetically in response to time-varying electric field. The first experi-

mental realization of metamaterial with negative refractive index has been made

at microwave frequencies in a form of a 3D array of metal loops mixed with the
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array of straight wires [109]. The loops acted as magnetic atoms, leading to a neg-

ative permeability, while wires ensured a negative dielectric permittivity. Negative

permeabilities were later shown in the visible frequencies [77].

Refractive index engineering with metal-dielectric composites can definitely go

beyond these examples, and can be used either to design high index materials,

materials with wide flat absorption spectra [70, 7], or other materials with unusual

values of permittivity and permeability. For this reason, metallic nanocomposites

lately received a lot of attention from researchers. Numerous works study the res-

onant transmission and absorption in metamaterials [30, 31, 6], but relatively few

address the effective dielectric properties and derive the effective permeability and

permittivity explicitly. In [35], for example, dielectric constants were calculated by

matching the impedance of uniform slab with known dielectric properties to the

nanocomposite structure, and showed negative permeability at visible frequencies

for one layer of periodically arranged metal particles. Their method requires a pres-

ence of strong magnetic response (µ 6= µ0) in the composite, and therefore cannot

be used for all nanostructured materials. The explicit values for µ and ǫ were

also theoretically calculated for metallic photonic crystals using complex-band-

structure calculations [125], as well as characteristic matrix formalism combined

with transfer matrix scattering calculations [110].

Recently, negative refractive index was reported in GLAD deposited silver

slanted posts [53]. These results, however, were given for only three wavelengths

and therefore provide little information about any trend. It is also hard to judge

the accuracy of these results from only three data points, and therefore they need

both theoretical and experimental verification.

In this chapter, the FDTD simulation is combined with the characteristic ma-

trix formalism to explicitly calculate the effective µ and ǫ for GLAD architectures.

Simulations were used here to show the existence of the magnetic response in

vertical post metallic structures and to analyze them in the prospect that these

nanostructures can be fabricated in future as columnar GLAD films. Also, mul-

tilayer GLAD films were considered as band gap materials and as polarizers, and

their experimental realization is discussed here and compared to the simulated

results.
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5.2 Dielectric properties of materials from transmis-

sion and reflection

Composite materials are characterized by effective dielectric permittivity ǫ̃ = ǫ0ǫ

and magnetic permeability µ̃ = µ0µ (where ǫ0 and µ0 are permittivity and per-

meability of free space), if the elements of the composite and spacing between

them are much smaller than the wavelength of interest. For spherical or elongated

particles in a dielectric medium, the relative permittivity ǫ can be approximated

with effective medium theories. These theories express the material’s polarizability

as a function of components’ polarizabilities and their volume fractions. One of

the most popular is the Maxwell-Garnet theory [86], giving a dielectric constant

for a dilute arrangement of monodispersed spherical particles (or a square lattice

of cylinders). Newer and more sophisticated theories, such as Bruggerman [12]

and other approximations describe polydispersed systems and elliptical particles

[82, 93]. All approximations, however, are limited to relatively simple particles

such as spheres, ellipsoids and tubes. Complex geometries including helices, coils

or combinations of different shapes are best described numerically.

In Chapter 3, FDFD calculated dispersion relations were used to find the re-

fractive index of columns as a function of their volume fraction in the film. The

dispersion relations only gave information about the refractive index
√
µǫ, but did

not allow us to separate µ and ǫ. In dielectric structures, we can always assume

µ = 1, therefore, the information provided by dispersion relations is sufficient.

In structures with metals, however, the magnetic permeability is not necessarily

unity, because of the induced currents.

It is possible to find both ǫ and µ from the transmittance and reflectance of

the slab of known thickness. Suppose we have a slab of a composite material

of thickness d. A plane wave of frequency ω is passing normally through this

slab. FDTD simulation gives transmitted t = t′ + j t′′ and reflected r = r′ +

j r′′ amplitudes for this plane wave, which can be used with characteristic matrix

formalism (Chapter 3) to find the slab characteristic admittance:

Y =

√

ǫ0ǫ

µ0µ
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and refractive index:

n =
√
µǫ.

Assuming that the slab is surrounded by air on both sides the characteristic

matrix expressions for transmittance and reflectance are written as:

t =
2Y0

Y0 cos(φ) + j
Y 2
0
Y sin(φ) + jY sin(φ) + Y0cos(φ)

(5.1)

r =
Y0 cos(φ) + j

Y 2
0
Y sin(φ)− jY sin(φ)− Y0cos(φ)

Y0 cos(φ) + j
Y 2
0
Y sin(φ) + jY sin(φ) + Y0cos(φ)

, (5.2)

where φ = k0 · d ·
√
µǫ, and Y0 =

√

ǫ0/µ0. We can regroup the variables to write

these expressions as:

2Y0
1

t
= Y0

√

1− s2 + j
Y 2
0

Y
s+ jY s+ Y0

√

1− s2 (5.3)

2Y0
r

t
= Y0

√

1− s2 + j
Y 2
0

Y
s− jY s− Y0

√

1− s2, (5.4)

where s = sin(φ). They have common terms with different signs, and can be

substantially simplified by taking their sum and difference:

Y0γ = Y0
√

1− s2 + jY s (5.5)

σ =
√

1− s2 + j
2Y0s

Y
(5.6)

where:

γ =
1− r

t
and σ =

1 + r

t
.

Variables Y and s are now easily separated, giving a biquadratic equation for

the slab characteristic admittance:

Y 4 · (1− σ2) + Y 2 · 2Y 2
0 (σ

2 + γ2 − γσ − 1) + Y 4
0 (1− γ2) = 0. (5.7)

With known Y , the parameter s can be calculated as:

s = j
Y Y0

Y 2
0 − Y 2

(γ − σ). (5.8)
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Figure 5.1: Solutions of characteristic matrix equations for a 200 nm thick slab
with refractive index n = 2.

The admittance Y is a material property, therefore it is uniquely determined

and does not depend on the slab thickness. The refractive index, however, has a

spectrum of solutions:

neff =
arcsin(s) + 2πm

k0d
,

only one of which is a true solution. The solution for neff can be refined if two

slabs of different thickness are considered. The true index is the one that does not

change with slab thickness d, as illustrated on Figure 5.1. Also when the dielectric

function is calculated as a function of wavelength, the true solution will often (but

not always) converge to a constant value at λ → ∞. In practice, the value of m

cannot always be found from numerical solutions, due to simulation inaccuracy,

especially where the dielectric function does not converge to a constant at λ→ ∞.

Instead of determining neff from the transfer matrix equations, it is sometimes

practical to find it from dispersion relations, as a slope of the dispersion curve:

√
ǫµ = c k/ω.
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The later is uniquely defined, and can be used in conjunction with Y to determine

ǫ and µ. When used only for the admittance Y , the characteristic matrix equations

are simplified by considering the reflection from a planar slab of infinite thickness.

The equations then reduce to a well known formula:

Y = Y0
1− r

1 + r
. (5.9)

In FDTD, the reflection from such a slab can be simulated if the slab boundary

opposite to the light source is submerged into the absorbing PML layer. The wave

is then suppressed before reaching this boundary, and does not participate in the

reflection.

Submerging the boundary in PML layer, however, has its own disadvantages.

PML has a numerical reflection coefficient, which is lowest at normal incidence. If

the slab is uniform and continuous, the wavefront remains planar, but if the slab

consists of particles, they scatter light at angles to the PML surface, increasing

the numerical reflection. Especially where fields change abruptly, such as near the

surface of metal particles, this causes a significant numerical error. The problem

is alleviated if the PML absorption coefficient is turned on gradually over a long

distance. In the limit where PML increases over an infinite distance the numerical

reflection vanishes according to the adiabatic theorem. This, however, requires

very thick PML layers.

5.2.1 Effective medium approximations

A number of theories exist that express the effective dielectric properties of com-

posite materials in terms of their components’ fractions, and the particle aspect

ratio. These theories are based on an assumption that the composite material

can be divided in cells much smaller than the wavelength of light. Then if the

composite around any of these cells is replaced with an effective medium with an

appropriate dielectric constant, light will pass through this cell without scattering.

Mathematically, this means that the scattering amplitude from a single particle

surrounded by ǫeff has to be equal to zero in the direction of the incident beam.

Two frequently used effective medium theories are Maxwell-Garnett and Brug-
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geman approximations. The Maxwell-Garnett approximation can be derived1 if a

unit cell is treated as an ellipsoidal particle of medium A coated with a shell of

medium B [93], and surrounded by a uniformmedium ǫeff . The fraction of material

A in the particle is equal to its fraction in the mixture. In a small particle limit,

the effective dielectric constant satisfies an equation:

ǫB − ǫeff
ǫeff + L(ǫB − ǫeff )

+ f
ǫA − ǫB

ǫB + L(ǫA − ǫB)
= 0 (5.10)

where f is a fraction of material A in the composite, and L is a depolarization

factor, depending on the particle aspect ratio. For spherical particles L = 1/3,

while for thin discs L = 1/2. This formula is asymmetric with respect to materials

A and B, and works well only in a small particle limit, where particles A are sus-

pended in the host material B. The approximation becomes invalid when particles

A are large and partially overlap with each other.

In the Bruggeman approximation, the unit cell is also represented as an el-

lipsoidal particle, but it is entirely composed of either material A or material B

[12, 34, 93]. Scattering amplitudes S for the particles A and B are added, multi-

plied by the fractions of corresponding materials S = fS(A) + (1 − f)S(B), and

their sum is equated to zero:

f
ǫA − ǫeff

ǫeff + L(ǫA − ǫeff )
+ (1− f)

ǫB − ǫeff
ǫeff + L(ǫB − ǫeff )

= 0. (5.11)

This approximation is symmetric with respect to materials A and B, and sometimes

describes dense composites better than MG approximation.

These two approximations can produce considerably different results, pointing

to the limitations of effective medium theories. Today, they are often replaced

with numerical simulations, but remain popular as simple predictive tools, which

help one design composite materials with desired dielectric properties.

Theories involving more complex particle shapes emerged in the later decades

of the 20th century, including approximations for slanted post arrays [18]. It is

worth mentioning here the approximation for hollow tubes, which was written

for carbon nanotubes, and may be used for coated GLAD columns. The tube is

1A number of derivations exist for the Maxwell-Garnett approximation including the original
one by J. C. Maxwell Garnett [86, 104]
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replaced with a uniform column that has an effective dielectric constant:

ǫt = ǫ3
1 +K

1−K
, (5.12)

where

K =
(ǫ2 − ǫ1) · (ǫ2 + ǫ3)ρ

2 − (ǫ2 − ǫ3) · (ǫ2 + ǫ1)

(ǫ2 − ǫ1) · (ǫ2 − ǫ3)ρ2 − (ǫ2 + ǫ3) · (ǫ2 + ǫ1)
,

ρ = Rin/Rout is the ratio between inner and outer tube radius, and ǫ1, ǫ2, and ǫ3 are

the dielectric constants of tube core, tube wall, and tube surroundings respectively

[82].

5.3 Refractive index engineering in the columnar metal

films

At sufficiently long wavelengths, the material dispersion remains nearly constant

in a wide spectral range. In dielectrics, only permittivity can be controlled at these

frequencies, and magnetic susceptibility is nearly zero. In metals, we can expect

that the magnetic response will present itself as well. At shorter wavelengths,

light diffraction and interference come into play, but dielectric properties still can

be described in terms of effective values. In principle, it is possible to assign an

effective permittivity and permeability to a periodic structure, even within the

band gap [1]. Because the dispersion relations are not continuous there, the struc-

ture may have a non-zero effective magnetic susceptibility, and negative refraction

[117]. It is hard to admit these structures as true metamaterials, however, because

at band gap frequencies, the wavefront of a plane wave is not preserved, and re-

fracted light in photonic crystal represents Bloch waves rather than refracted plane

waves. Therefore, it is desirable to observe the magnetic response at wavelengths

exceeding the interparticle distance.

To analyze the effective dielectric and magnetic properties of closely packed

metalodielectric composites, light transmission was simulated through the compos-

ite slabs of various thickness, and the characteristic matrix formalism was employed

to find the permittivity and permeability. We can anticipate several possibilities

depending on the combination of ǫ and µ. When both ǫ and µ are positive, the

material is a conventional dielectric, but by changing the imaginary part of per-
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Figure 5.2: FDTD simulated transmission and reflection from the silver vertical
posts in square array, with a lattice constant a = 100 nm and column diameter
D = 0.5a.

mittivity and permeability, it is possible to control the absorption spectrum. The

reflectivity becomes small if the real part of the composite’s characteristic admit-

tance is close to the free space admittance. If Y ∼ Y0 over a wide spectral range,

and absorption is large, the structure will have a wide flat absorption spectrum,

needed in black body emitters. The real part of the dielectric constant in these

materials is typically close to, or below unity: Re(ǫ) = n2 − k2 . 1. When both ǫ

and µ have a negative sign, a negative reflection is possible.

5.3.1 Vertical posts

The simplest structure that can be considered as a metallic metamaterial, and

accessible with GLAD technique, is an array of posts – tilted or vertical. Resonant

absorption in arrays of vertical metallic posts has been considered in a number of

works previously, since various methods exist that can be used to fabricate these

structures [6, 31]. Therefore, it is well known that these arrays can be highly

transparent in the infrared, and have an absorption band in the visible range. In
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Figure 5.3: FDTD calculated dielectric permittivity for silver vertical posts in
square array with lattice constant a = 100 nm and diameter D = 0.5a.

this thesis, the source of this absorption is addressed through the effective dielectric

properties of these films.

Figure 5.2 gives the transmission and reflection from a 1µm thick vertical post

film arranged in a square array with a lattice constant a = 100 nm. The film has

high transmittance and low absorption in the infrared, but in the mid-visible and

ultraviolet range the absorption increases. These properties can be understood

if we take a look at the effective dielectric constant of silver posts. Figure 5.3

gives the real and imaginary parts of the effective dielectric constant, calculated

using the equations (5.7-5.8). The real part of the permittivity asymptotically

approaches a constant value ǫ∞ = 1.63 at long wavelengths, and its imaginary

part is then vanishingly small. In the infrared, it is a weakly absorbing dielectric

with a nearly constant refractive index n =
√
1.63. The dispersion increases at

shorter wavelengths, and has a resonance absorption peak at 430 nm. At even

shorter wavelengths the real part of the permittivity becomes smaller than one and

smaller than the imaginary part, leading to high total absorption in this range. The

resonance peak redshifts as the vertical posts become thicker and almost touching,
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Figure 5.4: FDTD calculated dielectric permittivity for silver vertical posts in
square array with lattice constant a = 100 nm and diameter D = 0.9a.

as shown in Figure 5.4. Here the column diameter is D = 0.9a and we can see

that the dielectric function briefly becomes smaller than zero on a blue side of the

resonance, but positive further in the ultraviolet. In the dielectric limit (λ → ∞)

the permittivity is ǫ∞ = 5.64.

5.3.2 Effective medium approximation

To analyze the origin of the resonance, consider the dielectric function calculated

with the effective medium approximation. As we can see in Figure 5.5, the effective

medium theory agrees well with the simulation of Figure 5.4, therefore, we can use

this model to analyze the resonance. The effective permittivity here was calculated

using a Maxwell-Garnett approximation, and the same dielectric function of silver

as in the FDTD simulation. The permittivity swing near the resonance is larger in

the effective medium approximation than in the simulations, but in the dielectric

limit, the permittivity is relatively close to the simulated: ǫ∞ = 6.40. As in the

simulation, the permittivity on a blue side of the resonance becomes negative, and
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Figure 5.5: Effective medium approximation for the dielectric permittivity of silver
vertical posts in square array with lattice constant a = 100 nm and diameter
D = 0.9a.

then gradually “recovers” at shorter wavelengths.

The resonance is located close to the spectral band where silver loses its metallic

properties due to the inter-band absorption. It is, therefore, not obvious whether

the peak is produced by the plasma resonance, or by silver bound charges. To

eliminate this ambiguity, consider the effective dielectric function of the vertical

posts made of nonabsorbing metal with the same plasma frequency as in silver

(dielectric function, shown on Figure 5.6(b)). The dielectric function of this metal

is described by a Drude model:

ǫm = ǫ∞

(

1−
ω2
p

ω2 − jγω

)

, (5.13)

where ωp is plasma frequency, ǫ∞ is the dielectric constant at infinitely high fre-

quency, and γ is the relaxation frequency.

Figure 5.7 shows the effective medium approximation for the real part of the

dielectric function of vertical posts, made from this nonabsorbing metal. Since
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Figure 5.6: Dielectric function of silver (a), and of the Drude metal with the same
plasma frequency ωp = 9.01 eV (b) (dielectric function for silver is taken from Ref.
[99])
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there is no absorption, the imaginary part of the dielectric function is not shown.

The real part of the effective permittivity has a distinct discontinuity, which red-

shifts with the increasing post diameter. On the red side of this discontinuity, the

derivative dǫ/dλ is negative, and permittivity converges to a constant value. For

all post diameters the infrared permittivity stays above ǫ = 1. On the blue side

of the resonance, the permittivity is strongly negative near the discontinuity, and

converges to ǫ = 1 from below, as λ decreases.

The resonant peak is representative of the absorption by bound charges in the

dielectric media, but here charge is bound by the nanoparticle (column in our

case). Effectively, the ordered array of columns responds to light as a dielectric

composed of atoms with a certain inter-band frequency ω1. Substituting (5.13)

into (5.10) we can express the effective permittivity for columns or spheres made

of a Drude metal:

ǫcol = ǫcl

[

A+
B

ω2
1 − ω2 − j γ ω

]

, (5.16)

where

A =
1 + 2f − ǫcl (2f − 2)

1− f + ǫcl (2 + f)
,

B =
9 f ǫcl ω

2
p

(1− f + ǫcl (2 + f))2
,

ω1 =
ωp (1− f)

1− f + ǫcl (2 + f)
,

ǫcl is a relative permittivity of material that fills space between the columns, and

f is the columns’ volume fraction in the film. The damping constant γ in the

composite remains the same as in the Drude metal, but the dielectric function does

not have terms describing the unbound electron cloud. The resonance frequency

ω1 is proportional to the plasma frequency ωp and depends on the columns’ volume

fraction. In the limit f → 0, the resonance frequency approaches ω1 →
√

ωp

1+2ǫcl
,

which is
√
3 times smaller than ωp if ǫcl = 1. When λp = 138 nm, this gives

λ1 = 2πc/ω1 = 238 nm, as seen on Figure 5.7. When f → 1, the approximation

(5.16) gives ω1 → 0, but the Maxwell-Garnett approximation is only accurate at

small fractions f . Simulations show no resonance when columns overlap with each

other, as surface plasma excitations can no longer travel between them.

The columnar metallic structure presents many opportunities for refractive
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Figure 5.8: FDTD calculated magnetic permeability for silver vertical posts in
square array with lattice constant a = 100 nm and diameter (a) D = 0.5a, and (b)
D = 0.9a.

index engineering. At long wavelengths (ω → 0), it has a response of a nearly

nonabsorbing dielectric with adjustable permittivity, while at wavelengths smaller

than the resonance (ω ≫ ω1) the material is highly absorptive and nearly non-

reflective, and can be used as a black body absorber. In the limits ω → 0 and

ω → ∞, the effective dielectric constant becomes purely real:

lim
ω→0

ǫcol = ǫcl
1 + f (1− 2f) + ǫcl [ 2 (1 − f)2 + 9 f ωp]

(1− f) [ 1− f + ǫcl (2 + f)]

and

lim
ω→∞

ǫcol = ǫcl
1 + 2f + 2 ǫcl (1− f)

1− f + ǫcl (2 + f)

and the absorption vanishes even if γ 6= 0. At small f this dielectric constant is

close to ǫcl in both frequency limits.

5.3.3 Magnetic response

FDTD simulations go beyond the effective medium theory, as they predict the

effective medium response even at large densities f → 1, and describe the material’s

magnetic permeability. Figure 5.8 shows the magnetic permeability of a silver

vertical post film as a function of wavelength for the same geometry as in Figures

5.3 and 5.4. The magnetic response oscillates near the resonance frequency, and

at long wavelengths slowly increases, remaining below unity (µeff < 1).
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Figure 5.9: Permittivity and permeability of vertical posts as a function of inter-
columnar distance (column diameter is D = 0.9a).

Unlike the effective medium approximation, simulations show that both permit-

tivity and permeability depend on the intercolumnar distance, even if the volume

fraction of metal in the film remains constant. Figure 5.9 shows the real part of the

permittivity and permeability at λ = 2000 nm as functions of the intercolumnar

distance a, while the column diameter is proportional to the intercolumnar dis-

tance: D = 0.9a. The smaller a is, the weaker is the magnetic response (µ → 1).

The permittivity also decreases, whereas in the effective medium approximations

it did not depend on scale. The parameter that remains constant, at least in a

wide range of scale factors, is the refractive index n =
√
µǫ. At λ = 2000 nm, it

remains close to n ∼ 2.3 in the whole range between a = 30 nm and a = 150 nm.

The change in the permittivity and permeability is due to the scale dependent

magnetic response of the material. The magnetic response of the vertical post

film can be interpreted as a result of circular currents in a shallow layer below the

column surface. The electric field has time varying gradients both normal to the

surface (due to the dipole interaction between columns) and parallel to the column

(due to the field oscillation along the wavevector). These currents are similar to
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Figure 5.10: Permittivity [real (a) and imaginary (c)], and permeability [real (b)
and imaginary (d)] for silver post tilted at β = 0o (vertical) and β = 30o. Columns
are arranged in a square array with lattice constant a = 100 nm, and column
diameter d = 0.9a.

those responsible for a skin effect in metal wires. When the array is dense, the

magnetic contours are too small to cause a significant magnetic response, but in

large scale structures, or at high frequencies the magnetic susceptibility increases.

The dielectric and magnetic response of the columnar films is anisotropic, there-

fore it is polarization dependent in the arrays of slanted posts. Figure 5.10 shows

µ and ǫ for vertical and slanted posts in two polarizations: Ex, where the electric

vector is in plane of the column tilt; and Ey, where the electric vector is normal

to this plane. Dielectric constant were calculated here at normal incidence for

the columns arranged in a square array with lattice constant a = 100 nm, and

column diameter D = 90 nm. The column cross-section is circular in a substrate

plane for both vertical and slanted posts. Both, x- and y-polarized resonances are

redshifted in slanted posts compared to the vertical columns, but the y-polarized
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Figure 5.11: Permittivity (a) and permeability (b) of slanted posts as a function
of column tilt at λ = 1500 nm (a = 100 nm, D = 0.9a).

dispersion is affected less by the column tilt. Near the resonance, the magnetic

permeability decreases, but remains positive. It is smaller in tilted columns, as

well as in columns of larger size (see Figure 5.9), suggesting that sufficiently large

structure, consisting of highly tilted columns may have a negative permeabilty in

a narrow spectral band. Such a large system was not simulated here due to its

larger demand on computer memory and simulation times.

In the infrared, both ǫ and µ asymptotically converge to constant values. Fig-

ure 5.11 shows the real permittivity and permeability as functions of the column

tilt β at wavelength λ = 1500 nm. In Ex polarization, the permittivity ǫ increases

strongly with the column tilt, while in the orthogonal Ey polarization its change

is relatively small. The infrared permeability is similar in both light polarizations,

slightly increasing with the column tilt (since it is below unity, this means that

the magnetic response decreases). As a consequence of a strong polarization selec-

tivity in tilted columns, we can expect that the helically twisted columnar films

will exhibit a circular Bragg phenomena, similarly to the dielectric films. The

transmission and reflection from these structures is an interesting problem, apart

from the effective dielectric properties of metallic composites, because their optical

response depends not only on the effective dielectric constant of the film, but also

on the surface roughness and plasmon excitation on the column tips. This question

deserves a separate study, going beyond the limits of this chapter, and effective

medium theories. Helical columns also may have a strong magnetic response and
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were studied in the literature as candidates for negative index materials [30, 80].

5.4 Ordered particles in GLAD films

GLAD columns form an excellent matrix for three-dimensional arrays of metal

particles. Because columns can be both vertical or tilted, and the tilt is easily

varied during the column growth, particles can form various three-dimensional

grids. As it was shown above, the array of metallic columns can have a very large

refractive index values, therefore if it is included into the dielectric film in periodic

layers, the film may produce strong band gaps. The optical anisotropy of metallic

columns can also be used to design thin film polarizers.

Consider a model of a vertical post film with metal nanoparticles inserted in

equidistantly spaced layers, as shown on a Figure 5.12. Such layers can be added

into the film if the evaporant material is briefly switched from dielectric to metal.

The whole deposition can be performed in a single deposition step, if two evaporant

sources are employed, or in several deposition steps, if only one source is available

at a time.
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Figure 5.13: FDTD simulated transmission and reflection through four layers of
nonabsorptive metal particles suspended in air (Vertical pitch P = 500 nm, in-
plane particle separation a = 120 nm, particles are discs with radius r = 50 nm
and height h = 70 nm).

5.4.1 Arrays of the ideal metal particles

To analyze these particle arrays it is convenient to consider a nonabsorptive “ideal”

metal described by eq. (5.13) with plasma frequency much larger than any fre-

quency of interest, and damping constant much smaller than plasma frequency.

Then the transmission and reflection spectra are not affected by wavelength-

dependent absorption. For the visible (and infrared) spectral range a plasma wave-

length 2πc/ωp = 40 nm was chosen with γ = 10−5ωp. It is several times smaller

than in realistic metals and damping constant is at least two orders smaller, there-

fore the visible spectral response of this material is similar to the mid-infrared

response of silver or gold.

Figure 5.13 shows the transmission and reflection spectra in the visible spectral

range for the four layers of nonabsorbing metallic particles arranged in arrays with

lattice constant a = 120 nm. The distance between layers is 500 nm, and each

particle is a disc with radius 50 nm and thickness 70 nm. Because the particles are
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Figure 5.14: Transfer matrix calculated transmission and reflection through four
layers of effective medium with dielectric constants obtained with Maxwell-Garnet
approximation for the metal cylinders 50 nm in radius, separated by a = 120 nm
(each layer is 70 nm thick and distance between layers is P = 500 nm).

nonabsorbing, the difference between the transmission and reflection intensities

shows a simulation error, which was less than two percent along the simulated

spectral range – highest near the band gap edges, where the group velocity is

small. The spectrum shows a series of distinct band gaps, separated with a series

of sharp transmission peaks. The peaks are Fabry-Perot resonances, and their

number between each two gaps is N − 1, where N is a number of metal layers.

The notable difference between dielectric interference mirrors and periodic se-

quence of porous metal layers is a large width and depth of photonic band gaps

achieved with a small number of reflecting surfaces. However, each layer of porous

metal can be effectively represented as a dielectric slab. Figure 5.14 shows the

transmission and reflection spectra for the four 70 nm thick layers of material with

the refractive index calculated using the Maxwell-Garnett approximation. The

spectra on Figures 5.13 and 5.14 are very similar. Because the nonabsorptive

metal was used, imaginary part of the effective refractive index is close to zero,
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Figure 5.15: The model of multilayer nanoribbons, infinitely long along the Y axis.

and optical response of porous metal film is very close to that of a nonabsorptive

dielectric.

Particle shape affects the transmission and can be used to design interesting

polarizers with 3D nanoribbon arrays. Metallic nanoribbon arrays are well known

for their polarizing properties: the ribbons do not support y-polarized light because

they do not polarize in the Y direction. Consequently the y-polarized light is

selectively reflected. They were considered previously in a form of a single layer

polarizers, but in GLAD multilayer structures are possible [137].

Figure 5.16 shows the transmission for the x and y polarized light passing

through four layers of nanoribbons made of nonabsorptive metal. The model

of this geometry is given on Figure 5.15. Ribbons are stretching along the Y

axis, have height h = 70 nm, width d = 20 nm, and pitch Px = 120 nm and

Pz = 300 nm. High transmission of the x-polarized light is contrasting to a total

reflection the the y-polarized one, which is expected. However, when more than

one layer of nanoribbons is present, narrow peaks of resonance transmission appear

in y-polarization, surrounded by a wide bands of reflected frequencies. Peaks are
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Figure 5.16: FDTD calculated transmission through four layers of nonabsorptive
metallic ribbon arrays suspended in air (vertical pitch is P = 300 nm, horizontal
pitch Px = 120 nm, ribbon width 20 nm and height 70 nm).

closely spaced, and their number is equal to (N −1). In the current example three

peaks are present because the film has four layers of metal.

The resonance in nanoribbon arrays is linked with a strong absorption. While

the ribbon width remains small the peak transmittance in the resonances is high –

provided the material is nonabsorptive. When the ribbon width increases, as we

can see from Figure 5.17, the resonant y-polarized transmittance decreases, and

eventually becomes undetectable. The distance between the resonant modes also

decreases with the increasing d. Absorptive metals, such as silver, will strongly

absorb light within the resonance peaks, therefore they can be exploited only in

the far infrared, where they are nearly nonabsorptive. In the visible range, such

ribbon arrays can be used as narrow band resonant absorbers.

The x-polarized transmission through the metal ribbons is high when the rib-

bons are thin in the x-direction, but the band gap forms as the ribbon width in-

creases. Figure 5.18 shows the x-polarized transmission for ribbon widths d = 20,

40 nm and d = 100 nm. At large ribbon widths the band gap extends over the most
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Figure 5.17: Y-polarized transmittance through four layers of nonabsorptive metal-
lic ribbons of various width d.

of the spectrum, leaving only narrow bands of transmitted light. The y-polarized

light at these geometries is completely reflected, and the resonant transmission lines

are vanishingly small. Consequently with the large ribbon widths the structure

acts as a narrow pass filter, exhibiting (N −1) transmission lines in x-polarization.

In a more realistic case, when the particles are supported by a dielectric ver-

tical post column, the band gap positions redshift due to the increased optical

thickness, but do not change qualitatively as shown on a Figure 5.19(a). Also, in

practice, metals absorb visible light and the particles can deviate from the idealized

cylindrical (or ribbon-like) shape. In GLAD columns, it is also possible that the

particles can have a shape of a semispherical “cap”, because they are deposited on

the column tops. Figure 5.19(b) shows the transmission spectra for semispherical

inclusions in a titania vertical post film (nT iO2 = 2.4), with the intercolumnar

distance a = 120 nm, vertical pitch P = 500 nm and column radius r = 50 nm. At

long wavelengths, the spectrum is relatively similar to that of cylindrical inclusions,

but at short wavelengths, the band gaps for curved particles become irregularly
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Figure 5.19: Transmittance through four layers of nonabsorptive metallic cylinders
(left) and hemispherical caps (right) supported by TiO2 columns.

spaced and transmission bands do not coincide with those of the cylindrical parti-

cles. The changes in the transmission spectrum can be associated with excitation

of the surface modes on the curved particles, which are absent on the planar discs.

At long wavelengths, particles polarize as a whole in the external field, and their
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Figure 5.20: Transmittance through four layers of silver cylinders (left) and hemi-
spherical caps (right) supported by TiO2 columns.

shape is less significant, but at short wavelengths shape becomes important. The

band gaps tend to be even slightly stronger when particles are curved, and the

pass bands are slightly narrower than for cylindrical particles.

With idealized nonabsorbing metal the plasma wavelength is much shorter than

any wavelength considered in simulation (λp = 40 nm in our model), therefore,

the role of surface modes is not significant. This model is representative of noble

metals at low frequencies of the infrared spectral range. In the visible, the plasma

wavelength of many metals is still shorter than the shortest visible wavelength

(λp = 138 nm for silver), but absorption is already strong. Figure 5.20 shows the

transmission, reflection and absorption in titania vertical posts with four layers of

50 nm thick silver inclusions – the same geometry as presented on Figure 5.19.

Absorption was defined as a difference between the incident flux and sum of the
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Figure 5.21: Transmission and absorption spectra for TiO2 columns with four
layers of silver inclusions at material to void ratio f = 78.5% (above) and f =
54.5% (below).

transmitted and reflected fluxes: A = 1 − T − R. The band gap at 800 nm is

smaller than for the nonabsorbing metal, and the transmission is suppressed by

absorption at wavelengths below 600 nm. The transmission band at 700 nm is

still divided in separate resonant peaks if particles are cylindrical, but these peaks

are washed out when particles are curved. The most significant difference between

planar and curved particles is in the absorption rate. In the film with planar cylin-

drical particles, the absorption gradually increases with the decreasing wavelength,

showing local maxima at transmission bands, and minima in the band gaps. The

curved inclusions, however, have a different absorption spectrum with a series of

peaks and valleys, extending into the infrared. This increased infrared absorption

indicates a stronger light coupling to the surface plasmon modes, compared to the

planar inclusions.

The unwanted absorption in silver arrays is less prominent at the near infrared.
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Figure 5.21 shows the near infrared spectra for the same model as above for two

different in-substrate lattice constants: a = 100 nm; and a = 120 nm. At a =

100 nm columns are touching each other, filling most of the space. Clearly at

infrared wavelengths the absorption inside the band gap is much lower than in

the visible, while absorption in the resonant transmission peaks remains relatively

high. Also we can see that the band gap width depends inversely on the inter-

particle distance.

The vertical post films with layers of metal are among the easiest to fabricate,

and rotational symmetry is readily transferred to the metal islands. Already in

the case of metallic ribbons the fabrication results may not be consistent with pre-

dictions, because randomly positioned slanted posts do not form infinite ribbons,

but irregularly spaced short ribbons. With these considerations GLAD columnar

resonators were fabricated in the vertical post architecture, as will be described in

the following section.

5.4.2 The experiment and transmission loss in granular metals

Vertical post films were fabricated by Douglas Gish in the Microfabrication fa-

cility of the university of Alberta. The film was numerically designed to have

a resonant transmission/absorption line in the telecommunication range, close to

λ ∼ 1400 nm. The column radius was 100 nm, lattice constant of a square array

a = 240 nm, and h = 100 nm thick metal cylinders were included in each column

at a constant vertical interval 1µm.

The deposition was started with titanium dioxide and after reaching 1000 nm

film depth, the deposition system was vented and the film was optically charac-

terized. The metal film was deposited on the top, then the film was removed from

deposition system, and transmittances were measured again. Then the process of

dielectric deposition was repeated. Three layers of metal were deposited in to-

tal, and SEM image of the structure is shown beside the measured transmission

spectrum on Figure 5.22.

Theoretical spectra were calculated for the film with geometry defined from

SEM image and they are shown on a Figure 5.23. The filling fraction of the struc-

ture is f = 35.2%, average distance between metal layers P = 1065 nm, average

column diameter D = 226 nm, and intercolumnar distance a = 315 nm, as pro-
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Figure 5.22: Experimentally measured transmission spectrum for the film with
two and three layers of silver.
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Figure 5.23: Simulated transmission through the experimentally fabricated film
(geometry defined from SEM data).
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jected on a square lattice. From SEM the thickness of metal layers is approximately

115 nm. The peak positions are in a relatively good agreement between theory

and experiment, but the experimentally measured peak transmittances are much

lower than simulated. Also, the film with three layers of porous metal does not

show the predicted splitting in the resonance peak.

The transmission loss in the fabricated columns can be expected from the

granular structure of the PVD deposited metal films. It was previously shown

that electrochemically deposited gold nanorods have a granular nanocrystalline

structure, which limits the electron mean free path and reduces the plasmon as-

sisted transmission [6]. The same effect can be expected in the GLAD deposited

metal films.

Assuming that the metal nanoparticles have a nanocrystalline structure with

the domain size R the dielectric function of metal can be written as [14]:

ǫg = ǫm +
jγ(L−R)

ωR− jLγ
ǫD (5.14)

where

ǫm = 1 + ǫD + ǫB

ǫD = −
ω2
pf

ω(ω − jγ)

ǫB =
k
∑

i=1

fiω
2
p

(ω2
i − ω2) + jωγi

L =

√

2EF

meγ2

ǫg is a dielectric function of granular metal with bulk dielectric function ǫm; γ and

L are the relaxation frequency and mean free path of free electrons in the bulk

metal; R is the nanocrystalline domain radius; ǫD is free electron contribution

into the bulk metal dielectric function, where f is an effective fraction of free

electrons in bulk metal; ǫB is a contribution of bound electrons, where k is a

number of Lorentzian relaxations of bound electrons with frequency ωi, strength

fi, and relaxation frequencies γi. Mean free path L is determined by the energy of

Fermi level in a given metal EF , electron massme and relaxation frequency γ. With

the Fermi energy levels EF = 5.49 eV [5] and relaxation frequency γ = 0.048 eV
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Figure 5.24: Simulated transmission through the experimentally fabricated film,
taking into account granular crystalline structure of metal particles.

[99] bulk silver would have electron mean free path L = 39 nm.

In FDTD, this dielectric function has to be approximated with a Lorentz series,

which can be done by fitting (5.14) with a new Lorentz approximation. The

expressions can also be simplified for R << L. The relaxation frequency of free

electrons in noble metals is much smaller than frequency of light in the visible and

infrared spectrum, therefore in the limit γ → 0 and R << L the formula simplifies

to:

ǫg = 1 + ǫ̃D + ǫB , (5.15)

where

ǫ̃D = −
ω2
pf

ω(ω − jγ′)
,

γ′ = γ
L

R
.

The dielectric function (5.15) has been previously successfully used to describe

the optical properties of golden nanorod arrays [6], and the grain size determined

there was ∼ 3 nm, much smaller than the mean free path (L = 36 nm for gold).
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X-ray diffraction and transmission electron microscopy of uniform metal films give

a larger (often much larger) values of mean grain diameters [150, 67], but as the

grain diameters decrease with both film thickness and temperature [67], it will not

be surprising to see small grains in the films that are composed of small metal

particles, deposited at low temperatures.

Figure 5.24 shows the FDTD simulated transmittance for the film with the

same geometry as in the experiment (figures 5.22 and 5.23) and nanocrystalline

metal particles with domain radius R = 2.5 nm.

The simulated transmittance is now in much better agreement with the mea-

sured one, and the resonant peak does not split when three metal layers are used.

The absence of resonant peak splitting is caused by increased loss: while resonance

between the adjacent metal planes is strong enough to cause a small resonance

peak, the long range interaction between layers that are not immediate neighbours

is too weak. The resonant transmittance can potentially be improved by annealing

the film, as it usually increases the size of nanocrystalline domains [6, 67, 150].

Granular structure of the metal particles can express itself in the other GLAD

films composed of metals or containing metals as inclusions. The effects of metal

nanocrystallinity gradually diminish at long wavelengths, but at the visible and

near infrared, they have to be considered.

5.5 Chapter summary

Effective dielectric response of metal composites creates various possibilities for op-

tical engineering even with a simple vertical post structure. The resonant absorp-

tion on metal particles, as well as their magnetic response near the Mie resonance,

are well known and studied using both analytical and numerical methods. Here it

has been shown that arranging these particles in 3D composites leads to spectral

properties, that are usually not found in 2D structured metallic films. Metallic

columns can be considered as metamaterials, with a relatively stable dielectric

response over a wide infrared spectrum, and feature scales much smaller than

wavelength. Each column responds to light as a large-scale atom, with its elec-

tronic properties determined by the geometry rather than by quantum-mechanical

properties of atomic orbitals. The properties of these “atoms” can be tailored,

rather than selected from a limited set of naturally existing species. As we have
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seen, they can often be described by effective medium theory, and the same re-

sults can be expected from the Mie theory [152], as it is used in the derivation

of effective medium approximations [93, 87]. Numerical models further predict

the magnetic properties, and facilitate material design. Here we have shown how

the magnetic and dielectric properties can be altered in simple columnar nanos-

tructures, and supported our observations with analytical approximations. The

magnetic response decreases with the decreasing scale of the structures, therefore

many interesting phenomena, such as negative refraction, will fall close to the

band gaps where scattering is strong. The complexity of the column can be fur-

ther increased either to produce negative index materials, or materials with high

absorption, or high index materials.

Interesting electromagnetic phenomena arise also due to long range interactions

between ordered metal particles, if they are inserted as periodic layers in GLAD

columnar films. Multiple layers of metallic strips have a prominent polarization

selectivity, with wide band gaps in both polarizations and a number of resonant

transmission peaks in one or another polarization, depending on the strip width

and volume filling. Multiple resonant absorption (transmission) lines are also ob-

served in rotationally symmetric vertical posts with metallic inclusions. One such

vertical post structure, consisting of periodic layers of porous silver, sandwiched

between layers of columnar TiO2, was fabricated and measured data were com-

pared to simulations.
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Chapter 6

Conclusions

6.1 Summary of findings

In this thesis, GLAD films were considered from three different perspectives: (i)

as anisotropic index graded interference mirrors; (ii) as photonic crystals; and (iii)

as metamaterials. Most of the applications, discussed here, were based on the

band gap properties of periodic column arrays. When densely packed, columns

were treated as effectively uniform anisotropic films, and their refractive index was

determined from FDFD-calculated dispersion relations. Tilted GLAD columns are

usually bianisotropic meaning that all three principle refractive indices are different

in the film, and two optical axes can be introduced. This property was used to

design birefringent thin film polarizers.

The polarizers were designed on the basis of s-shaped TiO2 columns and simu-

lated transmittances were compared to the transmittances of fabricated films. The

column tilt was periodically varied in vertical plane, so that columns had mirror

symmetry relative to this plane. Due to mirror symmetry, the band gap widths

and positions were different for two orthogonal linear polarizations. Two forms

of the anisotropy variation exist in these films: one is provided by an s-shaped

column profile, and the other one by the column cross-section broadening in the

substrate plane. Two sources of the anisotropy variation are competitive in their

influence on the x-polarized band gap (x-polarized light had an electric vector os-

cillating in the mirror plane of s-shaped columns), and at a certain combination of

tilt angle and cross-section elongation, the x-polarized band gap was completely
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suppressed. This created a narrow band polarizer, transmitting the x-polarized

light and reflecting the y-polarized one within the y-polarized band gap. The col-

umn geometry with the suppressed x-polarized band gap forms naturally due to

the lack of shadowing in the Y direction, as was observed in the experiment.

Polarizing properties can be actively switched if the film is infiltrated with a

liquid crystal, which makes its optical properties sensitive to the applied exter-

nal field. Liquid crystals reduce the refractive index contrast and the band gap

becomes considerably smaller than in the air-filled film. The porous nature of

s-shaped polarizers, however, can be exploited not only with liquid crystals. We

can expect that ambient changes, for example in humidity, will also affect the

polarizing state of the film, which can be used for detection and measuring pur-

poses. Band gap shift in response to the ambient conditions has been previously

used for humidity sensing [40]. The spectral change has been detected either by

spectroscopic measurements, when the defect mode was used, or by eye, when the

gap shift was substantial enough to change the film’s colour. With the polarizer,

detection can be performed by measuring the polarization state of the transmitted

light.

In Chapter 3, vertical post columns were considered that lacked polarization

selectivity due to their rotational symmetry, but had high anisotropy. In the

anisotropic films, where the extraordinary index is aligned normally to the film’s

surface and higher than the ordinary index, the band gap position becomes less

dependent on the incidence angle than in the isotropic films. This was used here

to create interference mirrors with omnidirectional reflection bands in the visible

spectral range, based on TiO2 columnar films. Three refractive index profiles were

considered: (i) distributed Bragg reflectors, known to have the widest band gaps at

normal incidence; (ii) sinusoidal - a classic index profile used in rugate interference

filters; and (iii) Gaussian - the index profile that was recently claimed as a source

of wide omnidirectional band gaps [4]. Anisotropic films have omnidirectional re-

flection bands up to four times wider than their isotropic analogs. Simulations

performed in this thesis did not confirm the extraordinary properties of Gaussian

index graded films, which had an omnidirectional reflection band comparable to

that of sinusoidal profiles, and smaller than in the DBR profiles (in the works intro-

ducing Gaussian omnidirectional mirrors it was claimed that they perform better

than DBR). It was further shown in this thesis that the refractive index contrast
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has to be optimized to achieve the widest omnidirectional reflection, and with op-

timized index contrast the maximum omnidirectional band widths are 14.5% for

DBR TiO2 columns, 12% for Gaussian and 10.5% for sinusoidal profiles.

A different application of GLAD columnar films was studied in Chapter 4.

Square spirals were considered as 3D photonic crystals with the band gaps in the

visible spectral band. While the original design of square spiral photonic crystals

by Toader et al. [123] indicated that the 3D band gap is possible with column

refractive indices as low as ncol ≈ 2.2, simulations carried in this thesis have shown

that the column cross-section shape prevents the 3D band gap from forming in

currently fabricated GLAD square spirals. Both simulations and the experiment

have shown the presence of pseudogap, but not a three-dimensional band gap.

The overlap between 4th and 5th bands is currently as large as 18%, as was shown

in theoretical analysis of the fabricated film. When the column geometry was

optimized, TiO2 spirals with a circular cross-section showed a smaller overlap of

12%. The 3D band gap forms only when the in-substrate column cross-sections

are elongated parallel to the column tilt plane. The cross-section broadening has

to be as large as w||/w⊥ > 2.03, which cannot be achieved with currently existing

substrate motion algorithms.

Much smaller cross-section anisotropy (w||/w⊥ > 1.21) is required in the in-

verted square spirals. Such an architecture was realized previously with silicon

dioxide, and with templating techniques it may be fabricated in the future based

on the titanium dioxide. The 3D band gap is also improved by material redis-

tribution, increasing when the material concentrates around the nodes of square

spiral. This assumes a periodic change in the film density during its vertical devel-

opment. It may require a variable deposition angle and possibly cause non-optimal

shadowing during column growth. Therefore, in practice, material redistribution

in square spirals needs substantial experimental development.

Chapter 5 addressed the GLAD films as metamaterials carrying ordered arrays

of metal nanoparticles. It was shown here that periodic layers of porous metal

create a series of wide band gaps, and the effective refractive index of these layers

can be described by a real positive dielectric constant of high value. The value of

their effective permeability may significantly exceed the permeabilities of naturally

occurring materials and weakly depend on wavelength. If metal particles in these

layers are elongated they may exhibit interesting polarizing properties. The light
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passing through long metal strips is usually not transmitted, if polarized parallel to

them, but due to the capacitive coupling between multiple layers of strips, resonant

transmission occurs. By changing the width of metallic strips and separation

between them the geometry can be adjusted so that one polarization is transmitted

and the other one reflected, except for a number of closely spaced transmission

lines. These effects provide an opportunity for the various polarizer designs.

If the distance between metal particles is much smaller than the wavelength

then, like dielectrics, they transmit light as effective media. Metallic vertical posts,

studied here, have a response of an artificial material with a resonant absorption

band located at frequency smaller than the plasma frequency for the metal they are

made of. They have a nearly constant refractive index in a broad infrared spectral

range, and a resonant peak typically in the mid visible band. Metallic vertical

posts also have a noticeable magnetic response, with the magnetic permittivities

smaller than unity. This magnetic response decreases (µ → 1) as the columns are

scaled down. Larger magnetic response can be also expected in other nanoparticle

geometries, such as helices, where better defined magnetic loops can be formed by

induced currents, and these architectures should be considered in future research.

6.2 Challenges and future research

6.2.1 Scattering in GLAD films

A number of areas in GLAD research are yet not studied and can be addressed

with numerical simulations. Scattering, for example, has been poorly studied due

to its complex statistical nature. Scattering was encountered in this work in square

spirals, where it reduced specular reflectivity at short wavelengths. The decline of

reflectivity with wavelength suggested that the dominant process was the Rayleigh

scattering on the irregularities in column density, and column surface roughness.

It was taken into account in the form of an artificial extinction coefficient, which

showed the loss in the intensity of specularly reflected light.

Scattering extinction depends on the root mean square fluctuation of the dielec-

tric function, and on the correlation length of its fluctuation. If these statistical

values can be derived from the column morphology, scattering strength can be

calculated analytically for the densely packed anisotropic GLAD films. On Fig-
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ure 2.11 of Chapter 2, the measured transmission declines at wavelengths where

TiO2 absorption is small, suggesting that taking scattering into account may be

a valuable addition to the optical simulation of s-shaped columnar films. Studies

of column morphology have already been done for vertical posts in a work of K.

Krause et al. [69].

Scattering on GLAD films can be useful where light has to be deflected, or

coupled to a waveguide. Since GLAD films have large flexibility in their column

geometry, it may be possible to use them for designing such scatterers. Theoreti-

cally the angular distribution of the transmitted light can be calculated by a far

field transform, following from the equivalence principle [127]. The challenge of

such a study is in the statistical nature of the column spatial distribution, which

cannot be directly accounted for in the numerical simulation. Simulations for

large arrays of randomly standing columns currently require large computational

resources, especially memory. Therefore theoretical formalism is needed which

will take into account the random distribution of GLAD columns but limit the

simulated domain to as few columns as possible.

6.2.2 Multiscale and multiphysical simulations

Many practical applications, such as solar cells and lasers, involve current trans-

port, light emission, and heat transfer besides the transmission and absorption of

light. To completely describe these systems a number of physical processes often

have to be simulated simultaneously. Therefore the electromagnetic propagation

problem has to be coupled with a number of others, describing the electron trans-

port and possibly a spatial charge distribution. The electromagnetic simulation

proved to be very efficient as applied to GLAD films therefore it looks promising to

extend these simulations to multiphysical problems. Many examples of software

that address such multiphysics problems already exist, such as the well known

ANSYS software.

6.2.3 Nonlinear processes

Nonlinear materials were not considered in this thesis, because historically they

are not often used in GLAD films. However, it is interesting to look at light

emission and nonlinear conversion in defect layers of GLAD mirrors, especially
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as they were proven here to have relatively wide omnidirectional reflection bands.

Large enhancement of second harmonic generation has been previously reported

for band gap materials [100, 124] and photonic crystals were also used to produce

single mode lasers, emitting the frequency of the photonic crystal resonant mode,

and on the edge of photonic band gap. Therefore, in the future it will be inter-

esting to study gain and nonlinear materials both in isotropic and in anisotropic

omnidirectionally reflecting films, and compare these architectures. Nonlinear and

gain materials can be simulated with FDTD if nonlinear susceptibilities are added

to the dielectric response of studied materials [119]. FDTD allows one to include

nonlinear susceptibilities without additional assumptions, and therefore it is appli-

cable to structures of any geometric complexity. It has also been shown to remain

stable for hundreds of thousands of timesteps, describing nonlinear materials as

accurately as nondispersive dielectrics [59].
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