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Abstract

This thesis investigates the applicability to image compression of a flexible wavelet
decomposition in conjunction with a simple human visual system (HVS) model. Sev-
eral strategies for a computationally-light, top-down, wavelet packet decomposition
are developed and compared. Techniques are examined for modeling three primary
HVS sensitivities. Gamma correction is investigated to model luminance sensitivity.
An anisotropic model of the the contrast sensitivity function is used to design a pre-
processing filter. Uniform and non-uniform quantizers are designed based on HVS
frequency sensitivity experiments and the HVS masking effect, respectively. Quality
assessment of the reconstructed image is examined. emphasizing the importance of
applving quantitative and qualitative assessment mechanisms. Compression results
are reported on a large variety of images. The performance of this scheme is found to
be competitive or yield better visual results than ‘other wavelet-based techniques on
many images. With certain image classes, this flexibile scheme can yield significant

improvements in quality.
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Chapter 1

Introduction

1.1 The Increasing Applicability of Digital Images

The use of digital images within computer software is becoming increasingly prevalent.
Modern multimedia programs are being developed which contain hundreds or perhaps
thousands of images. sometimes requiring more memory space than that available on a
single CD-ROM. Many medical (e.g.. CAT scans) and industrial applications require
the analvsis of digital images. The explosive growth of the World Wide Web has also
propagated the use of digital images to a much wider audience.

Since digital images are composed of hundreds of thousands of pixels, each pixel
needing a certain amount of memory space, data for the entire image can grow to
significant amounts (i.e.. upwards of 1 megabyte). As the number of images also
grows, more disk space is required for their storage. and the time to transmit these
images across a network also increases. The ability to compress the images to take
up significantly less space and transmission time would be valuable.

Anyone who has browsed the World Wide Web with a standard personal computer
modem connection can relate to long download times associated with large images.
However, with respect to storage capacity, it appears that hard disk space is rapidly
plummeting in cost. Is it really valuable to have the capability to compress images in
order to conserve storage space’

Some applications involve the acquisition of large quantities of digitized images
that have been previously stored as photographs or on paper. The Federal Bureau of
Investigation (FBI) in the United States, for example, has over 200 million fingerprint
records stored in the form of paper cards. Additionally, this database is growing by
approximately 30 thousand new fingerprints every day [5]. Having the fingerprints in
electronic database form could dramatically increase the efficiency of file searching.



Once the fingerprint cards have been digitized, the database of uncompressed images
would require on the order of thousands of terabytes of storage space. Disk space of

that magnitude is still fairly costly.

1.2 Redundancies in Images

In order to significantly reduce the size of an image file. a compression scheme in
which some information is irreversibly lost is needed. Without losing information.
existing compression techniques can achieve approximately 2:1 to 5:1 compression
ratios. Methods which approximate the image by losing some data in the process can
achieve from 10:1 to 30:1 compression while maintaining decent image quality. There
are certainly some cases, perhaps involving legal issues associated with a medical
application. in which losing information would not be acceptable, even if the com-
pressed image “looks the same” as the original. However, the majority of applications
involving digital images can accept images which are not visibly different from the
original uncompressed image. The main problems in designing an image compression
scheme are determining how best to approzimate image data which is less visually
significant. and determining which data is less significant.

Fortunately, most natural images have been found to contain a great deal of re-
dundant information. Traditionally, the redundancies have been classified into three

tvpes [28]:

1. Interpixel Redundancy. Significant regions of an image may contain pixels
of similar color. For example, a landscape scene may have a large expanse of
clear blue sky. It should not be necessary to record each individual pixel of such
a region. Even without large expanses of unchanging color, most images have
significant correlation between pixels. Digitizing an image by sampling it at the
minimal Nyquist rate produces small interpixel changes on average, leading to

high correlation.

!\D

Coding Redundancy. In uncompressed images, each pixel is typically repres-
ented by a fixed-length code. The inherent redundancy in this representation can
be removed by using shorter codes for more likely pixel values, or colors. This
strategy is not unlike the well-known Morse Code, in which frequently used let-
ters (e.g., “e”) are represented with much shorter codes than those infrequently

used (e.g., “z").

(8]



3. Psychovisual Redundancy. The human eye is not capable of discerning all
possible colors which can be produced by modern computer hardware. The
amount of available colors or gray levels can be reduced without significantly

impacting the visual quality of an image.

Items 1 and 2 above have been well studied. Many researchers agree that aspects of
the human visual system (HVS) need to be more thoroughly examined and incorpor-
ated into image compression schemes. This examination may lead to the discovery of
more psychovisual redundancies (item 3 above) in images than with traditional tech-
niques. Experiments have found that the HVS has variable sensitivity to luminance
(“brightness™) level. the frequency of an image signal, and to the actual content of the

image.

1.3 Image Quality

Since image compression usually involves the loss of some information, each compres-
sion technique should be judged on the quality of the image it produces, as compared
to the original image. The final user of a compressed image will be the best judge of
its quality, but this person is not always available for comment when developing new
image compression methods. Even if a user were available, each would have her own
subjective opinion of image quality. Developing experiments involving many human
observers is time consuming and expensive. Traditionally. quantitative analysis has
been applied to examine the amount of errors or distortion in the reconstructed im-
age, but one number representing image quality does not indicate where the distortion
occurs or the degree of perceptible distortion.

Again, aspects of the HV'S can be incorporated into judging image quality. Quant-
itative measures can weight errors in different parts of the image based on their content
to calculate a more representative number. Additionally, distortion “maps” can be
created which show exactly where the errors are in the image. If these maps are
developed involving HV'S characteristics, they can even indicate whether or not the

distortion is visible to an “average” user.

1.4 Project Scope and Motivation

The work presented in this thesis is part of a larger project involving several research-
ers at the University of Alberta, Canada, working with a grant from Motorola Canada.



The purpose of the project is to develop efficient and secure image compression tech-
nologies which can be used to transmit images over wireless networks to and from
portable computers or hand-held video equipment.

Any new technique developed during this project should be elegant and compu-
tationally simple. Desktop computers are constantly becoming more powerful, but
hand-held units do not offer the same computational speed. nor the same memory
capacities.

It is possible that certain users would require the ability to transmit images se-
curely. preventing any person but the indicated recipient from viewing the image.
Since wireless networks are publicly accessible, encryption technology will have to
be used. so that any potential “intruder” would have to attempt to unscramble the
image information. One of the main thrusts of the Motorola project is investigating
the combination of image compression and encryption. However, we will not directly
deal with encryption herein, since other members of our research team have already
examined this issue [11]. '

Another goal of the project is to design compression schemes which are capable
of supporting progressive iransmission. That is, the viewer should be able to see an
approximation of the final image. which constantly becomes more precise as more com-
pressed data is downloaded. Some compression schemes require the user to download
the image file in its entirety before viewing is possible.

We will be attempting to design a new image compression system which is com-
putationally light. incorporates a model of the human visual system, and is amenable

to both progressive transmission and encryption.

1.5 The Approach

Recently, so-called wavelet mathematical techniques have been demonstrated by many
researchers to achieve high performance in image compression, ty transforming the
image pixel information into coefficients of compact basis functions. Few researchers
have attempted to take advantage of the power of wavelets coupled with certain aspects
of what is known about the workings of the human visual system. We propose that
more research and experimentation is required into this coupling and the interactions
between the two methods.

In this thesis, we investigate the applicability to image compression of a flexible
wavelet decomposition (i.e., wavelet packets) in conjunction with a simple human

visual system model. We also examine image quality issues using both quantitative



and qualitative analysis. Before building and testing a final image compression system,
we examine many different parameters and configurations of such a system in an
attempt to find the “optimal” system. This analysis is thorough, in that a relatively
large number (54) of images from a variety of applications is used.

The final compression scheme developed within is potentially computationally
light, flexible and adaptable to image signal content, user-friendly, and more suit-
able to H\'S sensitivities than many standard techniques. The performance of our
scheme is found to be competitive or yield better visual results than other wavelet-
based techniques on many images. With images of certain types. the flexibility of our
scheme can vield significant improvements in quality, assessed both quantitatively and

qualitatively.

1.6 OQOuthine

What follows is an organizational outline of the remainder of the thesis.

Chapter 2. Here we present a general overview of image compression and quality
assessment techniques. with emphasis on wavelet methods and human visual

system characteristics.

Chapter 3. A newly developed image compression framework is presented, involving
wavelet packet decomposition and human visual system modeling. We call this
system a WP/HVS framework due to the fact that several processes are optional
or have more than one implemented approach.! This framework is designed
to facilitate independent testing of and experimentation with the compression

components.

Chapter 4. The components and parameters of the WP/HVS framework are ana-
lyzed in detail in order to design the “best” possible image compression system.
Within this chapter, we introduce and apply a relatively large. categorized. ex-

perimental image library.

Chapter 5. This chapter takes the newly developed WP/HVS image compression
systemn and compares its performance on images of many types with other sys-
tems available today. The results are analyzed both quantitatively and qualit-

atively.

IWP/HVS is an abbreviation for wavelet packets / human visual system characteristics.



Chapter 6. The thesis is concluded with a comprehensive summary, a list of spe-
cific contributions to the image compression body of knowledge, and several

proposals for further research.



Chapter 2

An Overview of Image Compression

2.1 Introduction

Image compression is an extremely active area of signal processing research. This

chapter presents a general overview of image compression systems and techniques.

including:
e a model image compression system;

e specific methods relating to each component of the model with emphasis on

wavelet compression techniques;

e characteristics of the human visual system and its relation to image quality

assessment and new directions in compression research;

e and a brief mention of several image compression industry standards.

2.2 Codec Model

In order to maximally reduce the redundancies found in images, most compression
schemes involve the combination of several processes. The system which is formed
by this combination is often called a compressor-decompressor or codec. Figure 2.1

depicts the simple codec model which will be described here.

Original Image. The image to be compressed, denoted f(z,y), is input into tke
system. Normally this is described as a sequence of bytes, which, in the case
of standard grayscale images, yields a possibility of 28 = 256 intensities. Color
images require extra bytes to represent chrominance information. Most com-
pression techniques (including those in this thesis) are developed using grayscale
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Figure 2.1: Block diagram of the image codec model.

images. It is easy to extend grayscale codecs to compress color images by treat-

ing the chrominance information separately.

Mapper. The intensity correlation among neighboring pixels in an image can be
significant. depending on the geometric structure of the objects within the image.
The correlation is termed interpirel redundancy since the value of a single pixel
can be reasonably predicted from its neighbors. The mapper is used to perform
a reversible transform on the pixels to a non-visual format, decorrelating the
pixels as much as possible. This transform may be performed in the spatial
domain. directly calculated from the image pixels, or in the transform domain,

mapping the pixels to transform coefficients of basis functions.

The amount of information in an image signal can be measured by the en-
tropy. The theoretical minimum codeword length can be estimated by a first
order approximation of the entropy in bits per pixel (bpp),

H =~} p(i)log, p(i) bpp, (2.1)

where i is the pixel intensity and p(i) is the probability of intensity i. Larger
entropies are associated with higher information content and, therefore, lower
redundancy. If it were equally probable to find each intensity in a grayscale
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image (i.e., the intensities had a uniform probability distribution). the entropy
would be 8 bpp. The main purpose of the mapper is to modify the intensity
distribution to be more peaked, decreasing the entropy of the signal.

Quantizer. The human visual system (HVS) perceives certain visual stimuli as less
important than others. To achieve significant image compression, the psycho-
visually redundant information can be removed by quantization (i.e., represent-
ation with less precision). Quantization should be accomplished with minimal
loss in perceived quality. since it is not reversible. Codecs incorporating quant-
ization are termed lossy since some information from the original information is

permanently lost.

Note that lossless codecs (i.e., without quantization) will not be dealt with
here. The majority of compression research is done in the area of lossy codecs.
since lossless schemes can only achieve around 2:1 compression [13]. Lossy

codecs can often achieve 20:1 or greater compression ratios.

Symbol Encoder. In most images, the occurrence probabilities of different intens-
ities vary. especially after passing through the mapper. This trend can be used
advantageously by applying a variable length code, assigning longer codes to
low probability symbols. and shorter codes to higher probability symbols. This
reversible process reduces the coding redundancy and is often termed entropy

coding since the goal is to have an average code length near the entropy.

The two most popular coding techniques are Huffman coding and arithmetic
coding (see [13], Appendix 1). Huffman designed a code in 1952 which assigns a
variable length code to each symbol based directly on that symbol’s probability.
Arithmetic coding represents a string of symbols by a single codeword indicating
an interval on the real number line. Both coding methods can approach the
entropy of a source. but arithmetic coding often has superior performance and

can be adaptive with varying source statistics.

Entropy coding schemes will not be examined in more detail, due to the

proven success of the standard techniques.

Channel. Images are usually compressed in order to take up less storage space. to
reduce required transmission bandwidth, or both. The channpel in the model co-
dec represents offline storage or a network. In the specific scope of the Motorola
research project, the channel is a publicly accessible wireless network. It may



be desirable in such a situation to encrypt the compressed image to facilitate
privacy of the image transmission. The portable computers deployed in con-
junction with the wireless network will have relatively small storage capacities,

making it especially important to have high compression rates.

Symbol Decoder and Inverse Mapper. Once the compressed image needs to be
viewed again. either by retrieving it from storage or from across the network. the
symbol decoder and inverse mapper convert the codes back to visual information.
The variable length entropy code is translated to the quantized symbols by the
symbol decoder. These quantized values are then transformed back into pixel

information by the inverse mapper.

Reconstructed Image. The reconstructed image is reproduced from the now de-
compressed data. This image is usually denoted f(z,y) to show that it may not

be identical to the original (i.e., lossy compression was used).

Quality Assessor. The quality of the reconstructed image is often assessed by the
user in order to determine its acceptability in a particular application. Quality
assessment is an important component of image compression research, because
some measure is needed to determine if a new method yields any improvement
in performance. The assessor may range from qualitative judgments of humans

to a quantitative mathematical calculation leading to a quality number scale.

A quantitative measure is preferable, since qualitative human trials can be
costly and time consuming. Experiments involving humans may also be unin-
tentionally affected by environmental factors like ambient light. quality of the
display device, vision accuracy of the human subject, or even the emotional
state of the subject. Unfortunately, it is very difficult to develop a quantitat-
ive measure which truly reflects image quality as agreed upon by a substantial

proportion of the population.

The mapper, quantizer, and quality assessor are the main focus of this thesis. The
remainder of this chapter will examine these components in more detail.

2.3 Spatial Domain Mapping Techniques

There are many established techniques for mapping the original pixels into some form
more amenable to compression. As previously stated, some methods are applied in
the spatial domain, in which the original pixels can be directly manipulated.

10



2.3.1 Predictive Coding

Perhaps the history of image compression began in 1950, with the patent of predict-
ive coding [13]. The idea was born from the observation that many images contain
sequences of similar intensities. i.e., interpixel redundancy.

Historically, images have been scanned, transmitted, and displayed in a linear left
to right, top to bottom fashion. The coder can therefore predict (or estimate) the
value of the current pixel from those previously seen in a neighborhood to the left
and above. In general, the predicted value S(i) of the current pixel S(7) is a weighted

linear combination of past pixels.
Si)=aS(i—1)+aS(i—2) + ... + a,S(i — n). (2.2)
where n is the order of the predictor or the count of past pixels. The prediction error
(i) = S(i) = 5(2) (23)

is then coded. The probability of small errors is usually high, which leads to a very
“peaked” distribution of symbols to encode. This is the precise goal of the mapper as
described in Section 2.2. The errors can then be quantized, yielding lossy compression.

In an image. there is no true “causal™ relationship of previously seen pixels to
the current pixel. Some researchers have looked into non-causal predictive coding. in
which both the “past™ and “future” neighboring pixels are used to predict the current
pixel [67]. Using future pixels adds theoretical and implementation complexity. since
future pixels are not available when decoding. An iterative decoding procedure can
be used to increase the precision of the values at each iteration (i.e., the future pixels
can be initially assumed to be the mean of the input image).

Basic predictive coding by itself cannot compete with the performance of more
modern lossy methods, compressing down to about 2 bpp [13], but it is still the
standard technique for lossless coding. The Graphics Interchange Format (GIF) is a
lossless image compression standard which originated with CompuServe and is based
on predictive coding [45). GIF is often used to encode small icons and images on the
World Wide Web.

2.3.2 Segmentation-Based Compression

Given a certain minimum quality constraint, images with low detail content can
be compressed more than those containing large amounts of intensity changes (i.e.,
edges). This simple fact has lead researches to what is dubbed “second generation”
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or image content-based compression [34]. This approach is based on the premise that
the future of image compression lies in taking advantage of the content and structure
of the image.

From one point of view, the image can be segmented into regions according to
the amount of detail content. This step could be considered as part of the mapper
in the codec model of Figure 2.1 since its goal is to reduce the interpixel redundan-
cies. The segmentation can be extracted and recorded separately. Aside from this
structure. the remaining information describes the fine details of each region. which
can be compressed using traditional (“first generation”) compression methods. such
as predictive or transform coding. Figure 2.2 depicts the second generation image

COmpression process.

]
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Figure 2.2: Segmentation-based image compression.

In order to efficiently store the image segmentation, a data structure must be
designed that can minimize the space required while maximizing the amount of stored
image content information. There are many different techniques for decomposing or
segmenting an image into non-overlapping spatial regions. Each method has associated
with it a certain amount of “overhead”™ information which describes the structure of
the segmented image. Several of these techniques will now be described.



Quadtree Segmentation

The amount of extra information required is, in general, proportional to the level of
segmentation and the amount of detail in the individual image to be compressed. The
quadtree (QT) method takes into account the image content, albeit in a small amount.
by recursively decomposing an image into four sub-images if 2 homogeneity measure
is not met [61, 16].

El-Sakka and Kamel looked into developing a better splitting criterion for QT,
using the mean-square deviation from a neighborhood mean [21]. This facilitated seg-
mentation into smooth. textured, and edge blocks in order to allew the allocation of
more bits to perceptually important areas. Vaisey and Gersho used a QT splitting
technique and coded smaller. more perceptually important blocks with a classified vec-
tor quantizer (see Section 2.5.3). and larger “random texture” blocks with a transform
coder [56]. This computationally intensive algorithm produced high quality results in
the 0.35-0.7 bpp range. In general. the highly regular structure of QT is extremely
easy to store in a very small space, but the decision to split each sub-block is inflexible.
This does not necessarily treat the image content in a realistic way.

Some modifications to QT have been explored to provide a more flexible seg-
mentation approach in which siblings in the tree may be merged if they meet certain
criteria [24]. This technique effectively increases the descriptive power of the QT by
allowing non-square (i.e., rectangular) segments. However, it was found that on real
images this extra descriptive power had little overall effect on compression efficiency

because of the increased overhead required for storage of the modified quadtree.

Polygonal Segmentation

Another approach that examined alternatives to QT found that the power of using a
more adaptive segmentation scheme, i.e., using rectangles or polygons, also did not
offset the additional cost required for the new data structure [14].

Wu and Fang developed a method which recursively partitions an image into poly-
gons whose edges can be oriented horizontally, vertically, at 45%, or 135° [62. 63].
This information is stored in a binary tree. The authors proposed that the method is
particularly suitable to progressive transmission. since the polygons can store more
structure information than squares. According to the authors, “Compression ratios
from 100:1 to 20:1 were obtained for fair to excellent image reproductions.” The
authors decline to quote any quantitative measure, perhaps due to the addition of
Gaussian white noise to the polygons which is added to increase the realism.
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Irregular Segmentation

More extreme segmentation-based methods involve detecting highly irregular regions
in images. Cortez et al. examined some techniques for using morphological operations
in split-and-merge segmentation [17]. The boundaries of these regions are often coded
using efficient contour coding [41]. Once the boundaries are represented, the region
interiors can be coded using predictive coding, a transform coder, vector quantiza-
tion [55] (see Section 2.5.3), or texture modeling and polynomial expansions (35].

Challenges

Second generation compression schemes require that an image be intelligently segmen-
ted into its component parts, and that these segments be modeled with extremely high
accuracy and reliability. With the current “state of the art” in image-understanding
technology. Ryan et al. proposed that second generation metheds would not be feas-
ible in the foreseeable future [50]. Second generation methods involve an intrinsically
high computational overhead, especially if the segmentation and modeling is to be
both reliable and accurate.

To obtain good compression rates, image content-based methods require prior
knowledge of the image content. This knowledge facilitates minimization of the model
information to be transmitted to the receiver, since it has prior indication of what
kind of model to use, e.g., a face model. The knowledge-based approaches have
been predictably termed “third generation™ image compression. In general, when the
image scene is unknown. or when the image data is a poor fit to the model, these
methods yield poor performance. In other words, these techniques are unable to
effectively represent general, unmodeled objects. In addition, the boundary coding
techniques can yield a fairly artificial-looking image, since the boundaries and regions
are compressed in such different ways, leading to objectionable contours and borders.

The strong performance of wavelet compression, a transform domain mapping
technique. makes it difficult for second generation methods to be competitive [13].
This fact has inspired some researchers to incorporate wavelet decomposition into
second generation coding techniques [50]. However, Ryan et al. found that texture
modeling in the wavelet domain on polygonal segmentations only worked effectively
on highly textured images. Stand-alone wavelet techniques are also computationally
light and require no image understanding or segmentation.

In conclusion, as more complex segmentation schemes are used, the improvement

in compression performance usually does not compensate for the increased overhead
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of boundary encoding. For this reason, our research will concentrate on wavelet

compression, which will be discussed in Section 2.4.2.

2.4 Transform Domain Mapping Techniques

Thus far we have only discussed mappers which deal directly with the image pixels.
Another mapper architecture involves a linear reversible transform, mapping the pixels
into transform coefficients in order to alter the distribution of symbols. For most
natural images, significant portions of higher spatial frequencies (see Section 2.4.2)
will have very small coefficients, and can be coarsely quantized or discarded without
noticeable image degradation.

A transform will represent the signal as a combination of basis functions. The
Fourier transform. for example, uses sine and cosine basis functions. If the input
signal is a single frequency. the output will be a single coefficient of the basis func-
tion corresponding to that frequency. Multiple input frequencies produce multiple

coefficients. In a 1D case. the transform coefficients C can be found by
C = Tlxw (2-4)

where T, is the basis matrix and X is the original signal data vector. In order to

retrieve the reconstructed image, the inverse transform,

is used. where Ty = TII. In order to extend the transform to the 2D case of images,
the rows can be transformed first, followed by the columns.

Two important aspects of transforms should be noted here: orthogonality and
orthonormality [13]. Orthogonality refers to the fact that each coefficient can be
found independently of all others. The transforms should be orthonormal. that is
energy conserving. so that the energy in the original data may be rearranged but will
equal the total energy of the transform coefficients. The rearrangement is important,
however. since it modifies the symbol distribution, allowing more efficient quantization
and coding.

The two most popular transforms used in image compression are the discrete

cosine transform and the wavelet transform.
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2.4.1 Discrete Cosine Transform

The discrete cosine transform (DCT) was developed in the early 1970s [13]. It has
been found to be far more efficient in representing real images than the discrete Fourier
transform, and has the added benefit of not using complex numbers. DCT uses only
cosine basis functions and has been used extensively in image compression.

The Joint Photographic Experts Group (JPEG) developed a standardized spe-
cification for an image compression system based on the DCT, quantization, and a
variable length code [57]. Small 8 x 8 sub-blocks are first transformed using the DCT.
Larger sub-blocks can decrease the distortion as measured by the mean-square error
(MSE. see Section 2.6). but also increase computation demand exponentially. The
JPEG standard uses a custom 8 x 8 quantization table which is designed to take into
account which coefficients are perceptually more important than others. JPEG is

widely used in lossy compression applications. including the World Wide Web.

2.4.2 Wavelet Transform

Like the Fourier transform, the wavelet transform represents input signals in terms of
basis functions, however these functions are more complex than sines and cosines [20].
Since sine and cosine functions are infinite in support, the Fourier transform, in theory.
requires the integration of a signal over infinite time and frequency. As a result, an
isolated impulse signal results in an infinitely wide energy distribution in the Fourier
domain.

It has been found that wavelet coefficients can more efficiently code image sig-
nals than Fourier coefficients, particularly high-contrast areas like edges. due to the
compact-support wavelet basis functions (i.e., “short filters”).! Another benefit is that
the blocking artifacts associated with DCT methods like JPEG are not evident using
wavelet transforms, since there is no need to split the image into smaller sub-blocks
before transforming. The wavelet decomposition has been shown to be similar in some
respects to the functionality of the human visual system [36] and is very well-suited
to progressive transmission, as will be shown.

Compression schemes based on the wavelet transform appear to be moving into
direct competition with industry standards. The FBI standard for compressing fin-
gerprint images uses the wavelet transform [6]. Analog Devices (a company that
produces digital signal processors) is reportedly producing a wavelet codec chip for

‘See 47], PE- 604 for a direct comparison of the representation power of wavelet versus Fourier
g
coefficients.

16



only $50 [12].
We will now present some background theory on wavelets, report on several re-
search developments in wavelet compression, and describe a modification called wave-

let packets.

Sub-band Coding and Wavelet Theory

This section presents a brief summary of wavelet theory and is not intended to be
complete. For more detailed overviews see [13. 47].

In general. most images have areas of quickly varying signals and areas of slowly
varying signals. The rate of signal variation can be described in terms of spatial
frequency. Images often have very strong signals in their low-pass spectra which
contain very little redundancy, but the high-pass signals can be highly repetitive.
These facts have inspired a technique called sub-band coding, in which the image
signal is filtered into several different frequency bands to facilitate efficient coding
of areas of varying spatial frequency, and to concentrate compression effort in high-
pass bands. Using a mapper of this structure will result in several different, peaked
distributions of coefficients.?

If the image were to be filtered into a set of separate sub-bands. the number of
data elements would multiply by the band count. It turns out, however, that the
individual sub-bands may be sub-sampled in proportion to the reduction of detail
from the filtering operation. Signal processing theory states that any signal can be
reconstructed accurately as long as it is sampled at greater than the Nyquist rate [23].
The Nyquist rate is twice the highest possible spatial frequency. Sub-sampling allows
the total number of elements in all sub-bands to remain the same as the original image.
The reconstruction operation at the decoder uses interpolation to reverse the effect of
sub-sampling. Transform coding technigues like Fourier and DCT are really specific
cases of sub-band coding where one coefficient is used to represent an entire sub-band
(i.e.. they do not incorporate spatial localization).

The wavelet transform is a type of sub-band coding system which uses basis func-
tions with highly compact support, which are also scalable and translatable, facilit-
ating multiresolution decomposition.® The wavelet transformation matrix T; (recall
equation (2.4)) holds the coefficients of the filters L and H. L is the low-pass filter
which outputs a “smoother™ version of the image and H is the high-pass filter which

2Gignificantly, the inspiration for sub-band coding appears similar to that of second generation
coding (see Section 2.3.2).
3Note that given the fixed input image resolution, only lower resolutions can be generated.
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generates a detail signal.® The detail signal represents the differences between the
smooth images at adjacent levels of resolution.

The matrix can be constructed so that low-pass filtering, high-pass filtering. and
sub-sampling are done in one matrix multiplication. As a simple example of a wavelet
basis function we consider one developed by Daubechies [47]. This wavelet consists

of only four coefficients.

o = (1+VE)/aV3. (2.6)
o = (3+V3)/4V2, (2.7)
¢ = (3-V3)/4V2 (2.8)
e = (1-V3)/4V2. (2.9)
Applying a transformation matrix of the form (where blanks represent zeros)
(co a ¢ a ]
¢z —C ¢ —0C
Co 51 c2 C3
¢z —C2 G —C
(2.10)

¢ <€ ¢C €3
cz3 —C2 € —Q

c2 @3 G C
L1 —Co c3 —Cz |

to an input data vector performs a convolution and sub-sampling operation. The
results from the filters are sub-sampled 2:1 (the Nyquist rate) which yields the wavelet
coefficients—the final output of the mapper. The coefficients can then be quantized.
symbol encoded, and sent to the channel.

Reconstruction of the image is accomplished by interpolating the sub-sampled
coefficients and then using the inverse of Ty, normally being equal to T*® since the
matrix is designed to be orthogonal.

The entire wavelet compression process is represented in Figure 2.3. The wavelet
transform has been described as a 1D operation, but like other transforms, 2D images
can be transformed by rows first and then columns, resulting in low-pass and high-pass
sub-bands in both directions at each level.

The decomposition algorithm can be recursively repeated on the low-pass result.

giving a multi-resolution, pyramidal decomposition. Figure 2.4 represents the result

4Gince the filtering involves a convolution operation, the sides of the image can cause problems
due to a lack of data. Symmetric extension or “padding” of the image can eliminate this problem.
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Figure 2.3: Block diagram of a wavelet transform.

of a 2-level wavelet decomposition on an image. In the figure, each sub-band is labeled
with a letter pair representing the horizontal (H) and vertical (V) band-pass result.
Additionally, the symbol S(},8) indicates the level A and orientation § of each sub-
band. The result is one low-pass representation of the image with several high-pass
frequency sub-bands containing peaked distributions of wavelet coefficients. This
image representation contains the same number of elements as the original image.
The decomposed image is particularly well-suited to progressive transmission due
to its multi-resolution nature. The sub-bands may be transmitted from lowest- to
highest-resolution sub-band, while the decoder reconstructs each sub-band to form an

image which becomes progressively more precise.
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Figure 2.4: Representation of a 2-level wavelet decomposition of an image.

Wavelet Compression Techniques

Wavelet compression is a very active area of image compression research and many
techniques have been developed based on the standard wavelet transform. Due to the
multi-resolution nature of a wavelet decomposition, the sub-bands at adjacent levels
in the pyramid have a parent-child relationship, with each coefficient in one resolution
having four child coefficients in the next higher resolution, and so on. Lewis and
Knowles used this relationship to build a tree structure of coefficients [36]. It was
found that insignificant coefficients at a low resolution had a high correlation with
insignificant coefficients in higher resolutions. Recognizing this relationship, an entire
branch in the tree of coefficients can be sent by one zero element to indicate that no
coefficients in that branch need to be coded due to their insignificance.

The tree-structured idea was furthered by Shapiro to yield an embedded zerotree
wavelet algorithm (EZW) [53]. This technique requires the encoder and decoder
to agree on a specific transmission order of the coefficients from more significant
to less significant. The embedded nature of the coded image allows the decoder to
stop retrieving coefficients at any point to yield an image of a certain detail, which
facilitates flexible progressive transmission. Said and Pearlman enhanced the EZW
algorithm to use set partitioning in hierarchical trees (SPIHT) [51]. In addition,
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the general idea of EZW has been placed in a rate-distortion optimizing framework
(which. of course. adds computational complexity) in order to produce the minimnum
quantitatively-measured error for a given bit-rate [64].

Other compression schemes using the wavelet transform involve vector quantization
of the coefficients [3. 33] or texture modeling [50]. Some researches have also examined
the use of human visual system characteristics (HVS) in conjunction with wavelet
compression. which will be discussed in detail below.

All of the above algorithms apply the wavelet pyramid decomposition scheme.
which has been shown to work well on most natural images. But what about images
which exhibit an unusual spatial-frequency distribution. in which more information
may be contained in particular sub-bands? A more flexible and adaptive scheme might
dynamically choose which sub-bands should be decomposed at run-time. rather than
always decomposing the LL sub-band. Such a technique exists and is called wavelet

packets [15. 48. 65].

Wavelet Packets

The pyramid-structured wavelet transform is a specific case of the wavelet packet
transform in which oniy the LL sub-band is decomposed at each level. The packet
transform allows the decomposition of any sub-band and. therefore. also requires that
the decomposition structure be recorded. Perhaps the most sensible way to represent
the decomposition is with a quadtree. An example decomposition and its correspond-
ing quadtree are shown in Figure 2.5.

[t has been expressed that variations on sub-band splitting techniques have an
insignificant impact on image compression according to bit-rate and quantitative
error measures [13]. Nevertheless. some people have examined wavelet packet de-
composition with the hypothesis that some types of images might benefit from its
use [13. 48. 65].

Xiong et al. have extended their work in wavelet compression {64] to include the use
of wavelet packets. again in a rate-distortion optimizing framework [65]. They found
that packets can yield superior performance to a pyramid decomposition with certain
tvpes of images. including an FBI fingerprint image. The packet transform used is
a bottom-up approach in which all sub-bands are decomposed to a certain level and
then branches of the quadtree can be pruned to yield the minimal distortion for a given
bit-rate [48]. Bottom-up techniques can be computationally intense, since the wavelet
transform must be performed until every sub-band reaches a certain resolution. The

rate-distortion optimization can require a high degree of computation as well.
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Figure 2.5: A 3-level wavelet packet decomposition and its quadtree representation.
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Chang and Kuo used wavelet packets to analyze and classify various textures [10].
The multi-resolution wavelet transform is excellent for distinguishing textures of dif-
ferent scales. Packets add the benefit of allowing further decomposition of specific
band-pass frequencies which is effective because “a large class of natural textures can
be modeled as quasi-periodic signals whose dominant frequencies are located in the
middle frequency channels” (10]. Their technique involves a top-down decomposition,
in which the decision to decompose a sub-band is based on a calculation of its energy.

We will be delving further into wavelet packets in subsequent chapters. The wavelet
packet decomposition may be more flexible than a pyramidal technique in taking
advantage of the human visual system, since visually significant sub-bands can be

further decomposed.

2.5 Quantization

In order to be digitally processed, the original continuous signal of the image must have

its amplitude and spatial extent digitized into discrete values. Amplitude digitization

is known as intensity quantization and produces the digital image f(z,y) [28].
Digital images can be further quantized during compression. As mentioned in

[SV]
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Chapter 1, images can require large amounts of storage space. For example, a 512 x
512 image with the standard 2% intensities requires 256 kilobytes of memory. The
same image quantized to 2° intensities would use 192 kilobytes. Note that by simply
quantizing the intensities we can already achieve some compression, but by using a
quantizer as part of an image compression system we can achieve far superior results.

The image resulting from quantization will no longer be equal to the input image.
i.e.. some unrecoverable errors will be introduced. An image can be quantized to a
certain precision before the errors are perceptable, but if the quantization 1s too coarse
(i-e., not enough distinct intensities are used), the reconstructed image may exhibit
false contours, which can be visually annoying.

Quantization is simply a form of “rounding off” and therefore can be applied to
whatever form the signal information is in after it has passed through the mapper. be
it predictive coding errors or transform coefficients.

There are several forms of quantization used in image compression. ranging from

simple uniform scalar quantization to vector quantization.

2.5.1 Uniform Scalar Quantization

The process of quantization rounds off values in the range between zx and zx4; to
output value g;. (This range is often called a quantization bin.) Given a probability
distribution of values to be quantized, we can choose to make all quantization bins
equal-sized. This quantization strategy is called uniform quantization and is depicted
in Figure 2.6.

The technique is very popular due to its computational simplicity and decent per-
formance. Uniform quantization is used in some of the top-performing methods report-
ed in the literature. including the embedded zerotree wavelet algorithm (EZW) [53].
the space-frequency quantization algorithm (SFQ) [64], set partitioning in hierarchical
trees (SPIHT) [51], the FBI fingerprint image compression standard [6], and in the
standard JPEG scheme [57].

One drawback of this method, however, is that the same quantization error will be
introduced on higher probability values as on lower probability values (unless the input
probability distribution is uniform, which is highly unlikely after passing through the
mapper). This fact has lead to variable-bin-size, non-uniform quantization.
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Figure 2.6: Uniform scalar quantization given an input probability distribution.

2.5.2 Non-Uniform Scalar Quantization

In order to minimize the mean-square error resulting from the process of quantization.
the bin sizes should be optimally calculated based on the probability distribution of
the input values as shown in Figure 2.7.

For a quantizer of A output levels, the bin boundaries can be calculated as

zk=ﬂ‘:§ﬂ for k=23.....K, (2.11)

and the output values are then

k41

 zp(z)d:
qkz—z—"——— for k=1,2,...,K, (2.12)

Zk41

z{ p(z)dz

where p(z) is the probability density function of the input value z.°> Note that the
optimal non-uniform quantizer will have its bin limits halfway between each output
level, and its output levels will be in the centroid of each bin.

It is difficult to find a solution that simultaneously satisfies both equations (2.11)
and (2.12). Given z; and z, one technique involves estimating ¢ and calculating the
remaining values using equations (2.12) and (2.11). This trial-and-error method will

5For a complete derivation of these formulae see [49].
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Figure 2.7: Non-uniform scalar quantization given an input probability distribution.

be successful if the final output level lands in the centroid of the last bin. Max used
this technique to find the optimal non-uniform quantizer for an input with a Gaussian
distribution [49].

In order to avoid this complicated solution, one can use the technique called com-
panding [26]. Using companding, the input values are first mapped to new values
by a compressor function G(z). This function normally has large slope for small
magnitudes and small slope for large magnitudes, which results in “spreading out™
the distribution of the input values. Once this is accomplished, a simple uniform
quantizer can be used. During decompression, an ezpandor is used, namely G~!(z),
to recreate the rounded off original values. Logarithmic companders are often used

because

for low signal power levels, most samples are small in magnitude and
therefore small step sizes are desirable for an adequate SNR. For high
signal levels, a large fraction of the samples have very large magnitude
and a larger step size can be used to maintain a given SNR objective. [26]

A typical compressor and expandor function pair used in speech coding is the
u-law characteristic,

In (1 + pl=zl/V)
In(1 + )

Guz) = V gn(z) for [z| <V, (2.13)
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- Lexp (InQl + p)lz|/V) — 1)
U
where u controls the amount of companding. An example G,(z) and the corresponding

sgn(z) for |z| <V, (2.14)

Gl(z) =

-1 i B 2
G;!(r) are shown in Figure 2.8.

Output values
Output values

Input values Input values

() Gu(z) (b) Gil(2)

Figure 2.8: Example (a) compressor and (b) expandor functions for companding with
p o= 253.

2.5.3 Vector Quantization

The quantizer can be built using a different technique called vector quantization (VQ).
in which vectors, or blocks of values are rounded off together. For detailed analysis
of different VQ techniques. see {29, 44. 26, 1, 13]. The process can be described with
the following steps.

1. Extract vectors from training images. Normally the training images should

be a representative sample of the images one plans to compress.

2. Generate a VQ codebook. The codebook can be constructed from the training
vectors by choosing the most representative vectors from the training images.
This step can often be accomplished through clustering techniques to minimize
the distortion. The codebook must be stored at the encoder and decoder and
usually contains from 28 to 2° vectors of size 2 x 2 to 8 x 8.

3. Quantize image. Extract vectors from the input image. Quantize these vectors
to the “closest” (e.g., in a mean-square error sense) codevectors in the codebook.
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4. Transmit vector indices. Send the codebook indices of the codevectors
through the channel. This step achieves compression since the vectors them-

selves need not be sent.

5. Reconstruct image. The decoder simply executes a table look-up on the
codevector indices and rebuilds the image from the vectors.

The VQ encoding (step 3 above) and decoding (step 5 above) steps are shown in
Figure 2.9, which is adapted from [18]. Note that the reproduced vector may not be

identical to the input vector.

Encoder

l

Decoder

Figure 2.9: Vector quantization.

The first VQ codebook generation procedure was presented by Linde, Buzo. and
Gray and is known as the LBG algorithm [37]. The algorithm is described as follows.

1. Initialize codebook. The codevectors could be populated by random sampling

vectors from training images.

o

Cluster training vectors. Label each training vector as belonging to a cluster
associated with its nearest neighbor codevector, as calculated by a suitable dis-

tortion measure.

3. Recalculate codevectors. Manipulate each codevector in the codebook in
order to minimize the average distortion of all the training vectors in its cluster
(i.e., find the centroid of the cluster).
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4. Iteration. Repeat steps 2 and 3 until the change in the codebook is small. The
number of iterations of this algorithm, therefore, cannot be predicted.

Despite the fact that VQ has been shown to be theoretically superior to scalar
quantization 8], there are several practical difficulties associated with the tech-

nique [43]. including:

e high computational complexity (at the encoder) which grows exponentially with

vector dimension;

e sensitivity of the codebook to training images, i.e., it is difficult to get a repres-

entative sample. especially of edges;

e noticeable errors in the reconstructed image (e.g.. false contours) due to the

limited size of the codebook:

o and edge degradation. especially when VQ is applied directly to the image pixels.
The reconstructed image can exhibit a staircase-like effect since it is built from

VQ blocks.

Many researchers have attempted to address the above problems. Several different
techniques have been suggested to reduce the complexity of the codebook generation
process [22, 30, 1. 9]. In most cases. the new methods can decrease the complexity sub-
stantially from the LBG algorithm without significantly increasing distortion. Lattice
VQ techniques can produce VQ codebooks algebraicly and do not require codebook
storage or complex procedures for its generation [52], but codebooks designed specific-
ally for a certain type of image will always perform better than lattices {1]. Generally
the codebook generation procedure only needs to be executed once, however, so redu-
cing the generation time may not be significant.

One way to attack the edge degradation problem is to use more than one codebook.
classified into different types of vectors. Mohamed and Fahmy [43] treat high-detail
and low-detail portions of the image separately by designing multiple codebooks. An-
other way to deal with the limited size of the codebook is to use adaptive techniques in
which the codebook can change over time by introducing new codevectors and sending
them to the decoder [27).

The VQ encoding process can also be time consuming because a best-fit codevector
must be found for each input vector. Rather than using a linear search technique on
a codebook, a tree-structured VQ (TSVQ) could be used [18]. The TSVQ codebook

is often a binary tree with a codevector placed at each node. In this case the search

28



begins at the root of the tree. The encoder compares the distortion of the current node
with the children and follows the path with the minimum distortion. This procedure
continues until a leaf node is hit and is essentially a binary search. The sequence of
binary decisions is sent to the decoder as an index so that it can look up the proper
codevector. The storage requirement is increased over other codebooks since leaf
nodes are the only true codevectors, but the remainder of the tree containing the test
vectors must also be stored.

Work has been done in using VQ in conjunction with second generation meth-
ods [55] and with characteristics of the HVS [8] by using filter preprocessing of color
images to model the impulse response of the eye.

Many researchers (and image compression standards, including the FBI finger-
print and JPEG specifications) have found that in practical applications. the more
complicated methods of non-uniform or vector quantization do not produce improve-
ments in image quality over simple uniform quantization [57, 5, 2, 64. 63]. The good
performance of uniform quantizers may be due to the fact that an optimally designed
uniform quantizer coupled with an entropy coder will perform similarly to a non-
uniform quantizer [28]. We will be looking into the trade-offs of using a non-uniform
quantizer in more detail, specifically examining its efficacy in modeling a portion of

the human visual system.

2.6 Image Quality Assessment

Once the image has been quantized and reconstructed for viewing, the quality should
be measured in order to assess the performance of the image compression scheme.
The most popular measure used to assess the quality of the reconstructed image is
the peak signal-to-noise ratio (PSNR),

2

PSNR = 10log,, Kfﬁ, (2.15)

where P is the peak signal (usually 255 for a grayscale image) and MSE is the mean-
square error. The MSE for an M x N image f(z.y) and its reconstruction flz.y)
is

M N

MSE = m;k}_j( f(J,k)) (2.16)

PSNR gives an objective mathematical measure of image quality, but is well-known
to poorly correlate with subjective human evaluation of quality [26, 56, 23, 13, 31].
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Since human observers are the final recipients of the reconstructed image. some
experiments involve the use of large groups of expert and non-expert users to judge
image quality by rating the image on a given distortion scale (e.g., 1 = not notice-
able, 2 = just noticeable, ..., 7 = extremely objectionable) [23]. These experiments
are costly and time-consuming. Perhaps a better approach would be to incorporate
known characteristics of the human visual system (HVS) into the development of a

quantitative image quality measure.

2.7 Relevant Aspects of the Human Visual System

The human visual system (HV'S) is mainly sensitive to changes in three qualities:
luminance or light level, spatial frequency, and signal content [19].° An important
point is that modeling the HVS requires separation of these sensitivities. but their

interactions can be complex.

2.7.1 Luminance Sensitivity

It has been shown that the eve is non-linearly sensitive to changes in amplitude, due
to the retina adapting to ambient light changes [13]. The eye is much more capable of
distinguishing intensity variations in a dark area,” which is due to certain physiological
characteristics of the eye [54].

Light is transmitted through the iris onto the retina, where it meets two types of
photoreceptors, rods and cones. Rods are very sensitive to luminance and distinguish
shades of gray. The cones see color and provide greater discrimination of details.
Cones quickly lose their ability to sense any signal with decreasing brightness. There-

fore. in low-light levels. the cones provide minimal color or detail discrimination.

2.7.2 Spatial Frequency Sensitivity

Experiments have shown that the HVS responds like a Fourier analyzer to a first
approximation [54]. Assuming this statement is true, we can find out what frequencies
the eye is sensitive to. To determine the frequency sensitivity, experiments have been
conducted by displaying sine waves of varying spatial frequencies (and. therefore.
of varying contrast) on a monitor and having a subject indicate whether or not the

6The HVS also exhibits variable sensitivity to color and motion, but these do not apply to this

research.
"For example, we can see the stars at night but not during the day [4].
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cycles of the wave can be discriminated. The spatial frequency is measured in cycles
per degree, which is the number of wavelengths of a sine wave in terms of an angle

subtended from the eve (see Figure 2.10).

le Viewing
D Distance (d) (
I . I > s ngage
Angle Subtended <  Height (h)
Observer's From Horizontal vSJ:::c
Viewpoint < v
Grating
Display

Figure 2.10: Spatial frequency sensitivity experiment setup.

The visibility threshold can then be plotted as a function of spatial frequency,
termed the contrast sensitivity function (CSF). Any signal of frequency below this
threshold will not be visible. It has been found that the eye has a band-pass frequency
response peaked around 4-8 cycles per degree. The orientation of the image signal is
visually important as well. The spatial frequency sensitivity is anisotropic, that is,
humans are more sensitive to horizontally- and vertically-aligned signals than to those
in the diagonal [46]. Figure 2.11 shows one quadrant of a typical CSF [42]. Note that

the sensitivity is normalized.

2.7.3 Signal Content Sensitivity

The actual content of the image also affects the sensitivity of the HVS. In general.
portions of an image which are highly active with detail can be degraded with larger
amounts of distortion (with the restriction that the noise be of the same spatial-
frequency and orientation of the signal) than smoother regions before this distortion
is visible. This process is referred to as masking since high-pass signals can “mask”
the distortion. The existence of masking actually suggests that the accuracy of the
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Figure 2.11: Example anisotropic contrast sensitivity function.

contrast sensitivity function does not always hold while in the presence of a non-
uniform signal. This should not come as a surprise, however, since the CSF was
arrived at through experiments with uniform sine gratings.

In general, the masking effect increases with signal intensity, but the specific shape
of this function in real images is not known [19]. Another complication is the effect
of facilitation [32]. Constructive interference between the content and noise signals
can actually facilitate, i.e., increase, the visibility of distortion. This effect can make
it difficult to take advantage of the masking effect in a codec.

2.7.4 The Human Visual System and Quality Assessment

Understanding some qualities of the HVS should aid in developing superior com-
pression systems and quality measures. People have only begun to understand and
incorporate HVS characteristics into compression schemes and have had fairly limited
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success thus far {13].

There have been many attempts to develop a quality measure which correlates well
to human perception [40. 60]. Xu and Hauske develop a measure by identifying several
types of image distortion: noise in smooth areas, artificial blocking structures, false
contouring. edge blurring, and ringing [66]. Miyahara et al. develop a picture quality
scale (PQS) with a similar technique based on several error factors, including random
errors. end-of-block disturbances, correlated errors, and edge errors [42]. The factors
are then weighted and joined in a manner which results in a high correlation with
observers” opinions. PQS was used to judge the reconstructed image quality from
various wavelet-based codecs by separately examining the steps of wavelet transform.
quantization. and entropy coding [39]. Kim et al. developed a weighted mean-square
error taking into account human sensitivity to different spatial frequencies [31}.

The idea that one number should be capable of expressing the quality of an image
may be unrealistic, considering the variables of display monitor, human viewer, ambi-
ent lighting, and image content. Daly developed a visual difference predictor (VDP)
which produces a “map” image indicating the location and detection probability of
visible image distortion {19]. A system like this would allow more focused research

into what qualities of a quantizer are causing the most visible errors.

2.7.5 The Human Visual System and Image Compression

Some researchers have attempted to use a weighting system, in which perceptually
important areas are weighted highly and are therefore finely quantized. As previously
discussed, second generation techniques attempt to segment the image into perceptu-
ally important and unimportant regions in the spatial domain. Each region can then
be weighted and quantized accordingly.

Experiments by psychophysicists and visual psychologists have determined that
the HVS “filters the image into a number of bands ...[and that] the image should
be considered to be composed of information at a number of different scales.” [36].
This observation suggests that the wavelet transform already models the HVS in its
manner of decomposing an image, which inspired Kim et al. to @se HVS weighting
in conjunction with wavelet coefficients [31].

O'Rourke and Stevenson also use the wavelet transform and then weight the sub-
bands according to orientation and contrast sensitivity of the HVS [46]. Using a
given desired bit-rate, an adaptive VQ scheme is applied to efficiently allocate bits
to the coefficients. allotting larger codebooks for highly-weighted sub-bands. The
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computational complexity is high since a2 new VQ codebook must be designed and
transmitted for each sub-band. Their method is found to work better than JPEG on
smooth regions, but exhibits more aliasing at edges. The aliasing may be due to one of
the problems with VQ already mentioned—significant end-of-block errors can occur.
In addition, this horizontally- and vertically-aligned distortion can be annoying due
to the orientation sensitivity of the HVS.

Watson et al. have done controlled experiments to determine a visible wavelet
quantization error threshold for each frequency sub-band in the presence of a uniform
background signal [38, 59]. Lewis and Knowles design their uniform wavelet coeffi-
cient quantizers by attempting to model the effects of “the background luminance. the

proximity to an edge. the frequency band, and texture masking.” [36].

2.8 Summary

This chapter has presented an overview of image compression and has covered the
fundamentals of general image coding systems. This discussion has included tech-
niques which have been used to reduce the redundancies found in images. Mapping
techniques including predictive coding, transform coding (stressing the wavelet tech-
niques), and second generation approaches were discussed. To achieve significant
compression, the mapped values must be quantized by some variation of uniform.
non-uniform. or vector quantization. Understanding some characteristics of the hu-
man visual system can increase our ability to focus on important aspects of the image
compression process and also to develop more accurate image quality measures.
The stage is now set to determine the scope of the the work done in this thesis and
the justification for those boundaries. The following chapter details the methodology

and areas explored.
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Chapter 3
Design of the WP /HVS Framework

We have seen in the previous chapter a subset of the myriad approaches to the image
compression problem. Proponents of second generation techniques suggest that the
future of image compression may lie in image understanding and modeling. However.
second generation methods face a large number of challenges, as discussed in Sec-
tion 2.3.2. Wavelet-based compression is less computationally intense than most
second generation schemes and has been able to achieve high compression rates (e.g.,
20:1) while maintaining good image quality. Most researchers do agree that aspects
of the human visual system (HVS) need to be incorporated into compression, but how
should this be done. and what effects might it have?

We propose an image compression framework incorporating HVS characteristics
in conjunction with a flexible, computationally-light, wavelet packet decomposition.
This framework will be referred to as the WP/HVS framework, since wavelet packets
and HVS modeling are core components. This chapter discusses that framework in

detail by providing:
e 2 high-level blueprint of the framework;
e justification for the choice of each component in the framework;

e and in-depth design and implementation details for each component.}

1Some fundamentals of the basic components (e.g., uniform quantizer, wavelet transform, and so
on) will be left out, since this information can be found in Chapter 2.
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3.1 Blueprint of the Framework

This section presents a brief overview of the proposed WP/HVS framework and the
processes carried out within it. Figure 3.1 is a detailed block diagram of the frame-

work.

[ Quality 1
Assessor
Pixels | Reconstructed
(11) PSNR
and/or Image
Weighted PSNR
and/or
Distortion Maps
Pixels Pixels '
HVS Post- \
HVS Pre- Processor
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(2) CSF Filtering ) Filtered
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Filtered (9) Reverse
Pixels Wavelet Packet
Transform
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I Wavelet Packet agvele
Qua.da'u Coeﬁaalu
Transform

Wavelet : Quadiree
Coefficients (8) "Dequantizer” Structure
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[ HVS Quantizer\ . Indices
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. Indices (5) Adaptive (7) Adaptive
(4) Uniform | Arithmetic Arithmetic
Qua:lrtxzcr Encoder Decoder
Non-Uniform (6) Channel
Quantizer

Figure 3.1: Block diagram of the WP/HVS framework.

The diagram depicts a series of steps executed throughout the WP/HVS framework.
In the following list, the numbered steps correspond to the numbers in brackets in

Figure 3.1.
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. Forward gamma correction. Optionally gamma correct the pixels of the

input image to model the luminance sensitivity of the HVS.

CSF filtering. Optionally filter from the original image the frequencies to which
the HVS is insensitive, as represented by the contrast sensitivity function (CSF).
This step is lossy since the filtering permanently removes some frequencies.
However, this process is designed to be visually lossless in that the output image

should not be visually different from the original.

Wavelet packet decomposition. Perform the forward wavelet packet trans-
form using a top-down decomposition approach. The quadtree (QT) represent-

ation of the wavelet sub-band structure is entropy coded separately.

. Wavelet coefficient quantization. This step can be accomplished using uni-

form or non-uniform quantization, both being designed with HVS sensitivity in
mind. A quantizer with unique parameters is designed for each wavelet packet
sub-band. The output from the quantizer is the bin index calculated for each

coefficient.

Coefficient symbol encoding. Entropy code quantization bin indices with
an adaptive arithmetic coder. The coder can adapt to the source statistics of
the quantized coefficients in each sub-band. This step signals the end of the

compression process.

. Channel. The encoded information can be stored on disk or transmitted across

a network.

. Coefficient symbol decoding. Decompression begins by using the adapt-

ive arithmetic decoder to retrieve the quantization bin index of each wavelet

coefficient.

Wavelet coefficient “dequantization”. Once quantization has occurred, it is
not possible to retrieve the lost information, but each rounded wavelet coefficient

must be calculated from its bin index.

. Wavelet packet reconstruction. The reverse wavelet packet transform is

performed on the coefficients to return to the image domain defined by pixel
intensities. The exact order of sub-band reconstruction is dictated by the QT

structure.
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10. Reverse gamma correction. If gamma correction was performed on the

original image, the reverse process must now be executed.

11. Quality assessment. At this point we are left with the reconstructed image.
The quality assessor can be used to judge the reconstructed image in comparison
with the original using the peak signal-to-noise ratio (PSNR), a PSNR weighted
by the frequency sensitivity of the HVS (W PSNR), or distortion maps showing

the location of information loss.

The remainder of this chapter will focus on each significant framework component.
explaining its inner workings and the justification behind its use. We will concentrate
on the HV'S pre-processing steps which model the luminance and frequency sensitivity.

the wavelet packet decomposition, the quantizers, and the quality assessment tools.

3.2 Modeling Luminance Sensitivity

Distributing the available gray levels evenly over the range from black to white ignores
the fact that the HVS is sensitive to ratios of intensity as opposed to absolute differ-
ences. For example, we perceive the difference in brightness between gray levels 10 and
11 to be the same as that between 50 and 35 {25]. The amplitude non-linearity of the
HVS can be compensated for by a “gamma correction” pre-processing step, in which
the gray levels are assigned approximately logarithmically rather than linearly [25].

Each input pixel f(i,;) is changed to a new value,
g(i.j) = kf(i.5)7. (3.1)

where k is a factor used to hold constant the dynamic range of the image. If m is the

<

maximum value of f(r,y) then
m

k= (3.2)

ot
The range of v is normally 2.2 < v < 2.5 [25]. Since most computer display hardware
is manufactured in a manner that compensates for the HVS luminance sensitivity, we
need to reverse the process in the image reconstruction phase. Otherwise, the image
will appear to be twice gamma corrected.? Figure 3.2 presents example graphs for
forward and reverse gamma correction functions using v = 2.2. Implementing the
gamma correction as a pre-processing step provides the flexibility to assess compres-

sion results with or without it.

2However, applving gamma correction in software would likely be required only when it is not
supported in hardware. We shall examine this aspect in more detail in Chapter 4.
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Figure 3.2: Example (a) forward and (b) reverse gamma correction with v = 2.2.

3.3 Modeling Frequency Sensitivity

Recall from Section 2.7.2 that experiments have shown that the HV'S has varying sens-
itivity to different spatial frequencies, as modeled by the contrast sensitivity function
(CSF). We have chosen to implement a pre-processing filter to model this HVS char-
acteristic using the fast Fourier transform (FFT). Similar to the gamma correction
option. this modular approach will facilitate experimentation using different HVS char-
acteristics. It will also make it easier to determine what portions of the framework
have what effects on the reconstructed image. Most researchers do not report on the
same codec with and without modeling certain HVS effects (36, 46, 31]. The WP/ H\V'S
framework has been designed to support such research.

Another reason for not embedding the CSF filter into the mapper is the difficulty
associated with accurately representing it in the wavelet domain. The Fourier domain
directly represents image signals with sine and cosine basis functions, which is exactly
the type of experimental data used in determining the shape of the CSF.

Please refer to Figure 2.11 on page 32 showing one CSF model for the HVS fre-
quency sensitivity.3 How was this model designed? Let us look in more detail at how

to model the HVS frequency sensitivity.

3The CSF model used here is simply one model. Other models have been developed by other
researchers [54, 19].
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3.3.1 Modeling an Isotropic CSF

According to the model used by Miyahara et al. [42], the isotropic spatial frequency

sensitivity CSF,(«) can be approximated by
CSF,(w) = 1.5exp(~02c?/2) — exp(—20%w?), (3.3)

where ¢ = 2 and « is the angular expression of the frequency. This conversion is
defined as

(V]

S :
w=t (3.4)

where
f = VETH, (35

in which u and v are respectively the horizontal and vertical spatial frequencies in the
Fourier domain. '

Finding the spatial frequencies from the Fourier transform, given a viewing dis-
tance from the image, is a fairly simple process. As an example, consider the problem
of calculating the maximum spatial frequency in one dimension given a viewing dis-
tance d stated in terms of multiples of image height A. The viewing angle ¢ (see
Figure 2.10 on page 31) can be found by

é = tan™! (%) = tan™! (512) . (3.6)

The number of pizels per degree of the viewing angle é can then be calculated with

h
pixels/degree = 25" (3.7)

where h is the image height in pixels. This quantity is actually the sampling rate for the
displayed image. Signal processing theory states that any signal can be reconstructed
accurately as long as it is sampled at greater than the Nyquist rate [25]. The Nyquist
rate is twice the highest possible spatial frequency, which yields the simple relation
pixels/degree
—_—
Figure 3.3 shows the resulting CSF based on the model of equation (3.3). Recall
from Section 2.7.2 that the orientation of the image signal is also visually important.

cycles/degree = (3.8)

since humans are less sensitive to signals on a diagonal. Miyahara et al. show how to
extend the CSF model to take this orientation sensitivity into consideration {42].
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Figure 3.3: Surface plot of a quadrant of the isotropic CSF model CSF;, viewed at a
distance of three times the picture height.

3.3.2 Extending the Model to an Anisotropic CSF

The HVS spatial frequency sensitivity is anisotropic. that is, humans are more sens-

itive to horizontally- and vertically-aligned signals than to those in the diagonal [46].

The anisotropy is mainly present in higher-frequencies beginning at about f, = 11

cvcles per degree. This effect can be modeled by a filter of the form

CSF (. 0) = 1 + exp (B(w — w,)) cos* 20
1 4+ exp (3w — wa))

where 8 = 8 and.¢ is the angle between the horizontal and vertical frequency com-

, (3.9)

ponents.

6 = tan™! (1) . (3.10)

u

Figure 3.4 depicts CSF.(w,®). Notice that this filter has unit value for all spatial
frequencies f < f,. This band-pass response facilitates forming the overall anisotropic
CSF model through multiplying by the isotropic model,

CSF(u,v) = CSF;(w) x CSFa(w, ¢). (3.11)
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Figure 3.4: Surface plot of a quadrant of the anisotropic CSF model CSF,, viewed at
a distance of three times the picture height.

The result of the model of equation (3.11) was already presented in Figure 2.11 on
page 32. and now its origin should be clear. However, we still have not explained how

the CSF is applied in the HVS pre-processing filter operation.

3.3.3 Applying the CSF Model in the WP/HVS Framework

The CSF model is implemented in the framework by an FFT filtering operation.
We have chosen not to directly use CSF(u, v) for designing the filter, since this model
assumes that the observer is viewing the image at one exact distance from the monitor.
which may be unrealistic. We can allow more flexibility by accepting a range of
viewing distances [19].

Allowing the viewing distance to be set within a range suggests that we have two
CSF filters, one for the near viewing distance dy,, and one for the far viewing distance
dy, again expressed in terms of the picture height A. The overall CSF can be defined as
the envelope of the two filters which will yield a band-pass filter like that in Figure 3.5
(shown using d, = 2h and d; = 4h). Note the flat portion at the peak of sensitivity,
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Figure 3.5: Example surface plot of the CSF filter used in the WP/HVS framework
with near viewing distance 2h and far viewing distance 4h.

which is where the envelope of the two CSF filters is formed. The power of the spatial
frequencies in this area will not be modified by our CSF filter.

Once the image has passed through the HVS pre-processor, which deals with the
luminance and frequency sensitivity, the result is ready to be transformed by the

mapper, using a wavelet packet decomposition.

3.4 Wavelet Packets

The mapping architecture we have chosen to use is a wavelet packet transform. We
have avoided second generation approaches due to the problems associated with seg-
mentation, modeling, and structure overhead. One of the main thrusts behind second
generation techniques is that they attempt to compress the image in an HVS-relevant
manner, by segmenting the image into its component parts in the spatial domain.
However, using wavelet decomposition can efficiently mimic the HVS in the transform
domain. Experiments have found that the human eye actually filters image data into
several frequency sub-bands and treats the image as if it were composed of information
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at many different resolutions [36]. In addition, recall from Section 2.4.2 that wavelet
compression facilitates simple progressive transmission, whereas it is unclear how to
accomplish such transmission with second generation techniques.

Typical wavelet packet use involves full decomposition of all sub-bands, followed
by back-tracking to a point where a rate-distortion criteria is met. This may yield
an optimal packet decomposition (in a rate-distortion sense) but incurs a great deal
of computational overhead. We attempt to simplify the process by using a recursive
decomposition with a stopping criterion.

Wavelet packets are adaptive to the signal content of the image, since the de-
cision to decompose a sub-band is made dynamically, unlike with the standard forced
pyramidal decomposition. Using wavelet packets also offers more flexibility for in-
corporating HVS characteristics since the significant frequency sub-bands are clearly
defined. However, we will also explore the traditional pyramid decomposition since it
1s a special case of the packet transform.

This section describes the functionality of the wavelet packets, including the de-
composition algorithm, the options for determining when a given sub-band should not
be decomposed, and a description of the quadtree (QT) structure.

3.4.1 Decomposition Algorithm

What follows is a detailed representation of the wavelet packet decomposition al-
gorithm. Let S(A,8) be the sub-band at decomposition level A (where A = 1, ..., Amax)
orientation # (where § = 1,...,4). The original image is then denoted S$(0,0). The
stopping criterion calculated on a sub-band is C(5(A,0)). Note that the maximum
depth of decomposition is also set and is denoted Apay.

1. Initialize. Find ¢ = C(S5(0,0)). Create empty QT. Send cq and S(0.0) to step
9

e

2. Decompose. Store a copy of the given sub-band, which will be called S(,4).
Convolve the rows and then the columns with the low- and high-pass sub-

sampling wavelet filters L and H,

S(A,8) = L =*rows(S(A,0))+ H xrows(S(A,9)),
S(A,0) = L *columns(S5(A,8))+ H * columns(S(A, 8)).

Split the sub-band S(A,#) into four quadrants S(A +1,t), wheret =1,...,4.
3. Stopping criterion. Calculate ¢; = C(S(A+ 1,1)) fori =1,...,4.
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4. Returning condition. f "%, ¢; > ¢; then S(), 8) should not be decomposed.*
Reinstate the original S(A, ) from the stored copy. Add a QT node indicating

that decomposition did not occur. Return from this level of recursion.

5. Recursion. Since execution passed through step 4, S(A,8) should be decom-
posed. Add a QT node indicating that decomposition occurred. If A > Ana
return from this level of recursion. Otherwise, recursively call step 2 with new
sub-bands S(A 4+ 1.7) fori=1,...,4.

The above algorithm details only the wavelet packet decomposition. which is part
of the compression phase. During decompression, the inverse wavelet packet transform
can be performed by doing a depth-first traversal of the QT, convolving the columns
and then the rows of sub-bands with the inverse wavelet basis matrices.

An important step in the algorithm (and that which distinguishes wavelet packets
from the standard wavelet transform) is step 3 in which the stopping criterion is calcu-
lated. This step represents the decision to further decompose a sub-band. We develop

several measures which can be used to calculate decomposition stopping criteria.

3.4.2 Stopping Criteria

Recall from Section 2.2 that the purpose of the mapper is to produce a distribution of
wavelet coefficients with minimal entropy. One inspiration for using wavelet packets
is to allow a more flexible decomposition that will result in significantly more small
coefficients. on average. than with regular pyramidal wavelet decomposition. The
decomposition algorithm must know when not to decompose a sub-band and this is
the responsibility of the stopping criterion.

We develop four related criteria which attempt to measure the effectiveness of
packet decomposition: energy, entropy, kurtosis, and insignificance. All measures
are based on the values of wavelet coefficients in a given sub-band. Note that in the
following discussion “parent™ will represent the sub-band being examined for possible
decomposition and “children” will represent the four resulting sub-bands from such a

decomposition.

Energy

Suppose that ¢(7, k) returns the wavelet coefficient at location (j,k) in a given M x N
sub-band. The energy of a sub-band E(S(A,8)) is simply the sum of the absolute

4The comparison operator may actually be < depending on the stopping criterion used. See
Section 3.4.2 for more details.
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values of the transform coefficients [10]:

E(S(A.0)= 3l k)l (3.12)
7.k 1N S(A.8)
A small energy will correspond to a large number of small coeflicients which suggests
a highly-peaked coefficient distribution. Decomposition should halt if the sum of the
energy in the children is greater than or equal to the parent’s energy.

Entropy

Recall from equation (2.1) on page 8 that the entropy H of a source which has a
fairly uniform spread of values will be high. Transforming the source into a highly-
peaked distribution will imply minimizing the entropy. This stopping criterion is
calculated on each sub-band by first building a coefficient histogram which counts
the occurrence of each coefficient rounded to its nearest integer. This histogram is
then normalized based on the total number of coefficients in the sub-band to yield a
probability histogram. The entropy H can then be calculated. In order to be able
to compare the parent’s entropy with that of the children, H is first normalized by

multiplying by the coefficient count.

H=MN x (—Zp(i)logzp(i)) : (3.13)

Again. decomposition should halt if the sum of the entropy in the children is greater

than or equal to the parent’s entropy.

Kurtosis

Kurtosis is a statistical measure of a probability distribution’s similarity to the normal
distribution.® In our case, we want each sub-band to be as dissimilar to the normal

curve as possible to maximize compression efficiency. Kurtosis A’ is defined as

R(S().0)) = Tffl_'\ ) (M)_’fi) -3, (3.14)

. log
2k 1N S5(A.6)

where p is the sample mean and o is the standard deviation of S(A, #). Using kurtosis,
decomposition should halt if the average kurtosis of the children is less than or equal

to the parent’s kurtosis.

5No assumption of normality need be met to calculate the kurtosis.
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Insignificance

The final stopping criterion is based on the insensitivity of the HVS to small wavelet
coefficients. Such coefficients are considered to be insignificant. This measure is a
simple count of the number of wavelet coefficients below a certain magnitude. The
insignificance [ of a sub-band is then

[(SA0)= ¥ {1* if le(J. k)| <er (3.15)

. 0. otherwise
jk 10 S(A9)

where ¢/ is the minimal significant coefficient magnitude. The value c; is set using
experiments conducted by Watson et al. [38. 59] on the HVS sensitivity to errors in
wavelet coefficients. which is described in Section 3.5.1 with quantization.

The less significant a sub-band is. the easier it will be to compress. Therefore. our
goal is to maximize the insignificance of each sub-band. In this case. decomposition
should halt if the insignificance of the children is less than or equal to the parent’s
insignificance.

Regardless of which stopping criterion is used. the decision to decompose a sub-
band must be recorded so that the inverse wavelet packet transform will be performe:d
in the correct order on the appropriate sub-bands. This information is stored in the

QT data structure.

3.4.3 Quadtree Structure

The QT structure used in the decomposition algorithm explained in Section 3.4.1
deserves more examination. The QT can actually be easily stored as a bit string built
dvnamically from the recursive wavelet packet decomposition. A sub-band being
decomposed could be represented by a =17 flag and a sub-band that does not need
further processing could be indicated by a “0” flag. Note that the wavelet packet
decomposition will build the QT in a depth-first traversal. Hence both the encoder
and decoder know that the order of decomposition is depth-first and at any given level
the four sibling nodes are recorded in the order of the sub-bands (8 = 1..... 4).

As an example. the QT structure shown in Figure 3.6 would be represented as the
bit string

I 110000 1 0000 00 I 001 0000 O 00.

The spaces are added for clarification to indicate a change in level A. Recall that

the maximum depth of the tree. which is specified as Anay, is also known a priori.



Figure 3.6: An example wavelet packet decomposition quadtree structure.

Therefore. there is no need to record the leaf nodes at the bottom level of the tree. So

our example can be shortened to
111100 1 0010 Q0.

The number of sub-bands S, in the decomposition can be simply calculated using the

decomposition flags (*17) count.

Sn=( Z {(1) if bit flag is a 1‘)x3+1. (3.16)

el otherwise
Bit string

The maximum length of the QT bit string will occur when all sub-bands are de-
composed to the maximum depth Anax. In this case we will have a string consisting
of

Amax—1
4} (3.17)
A=0
ones. since each increase in A decomposes each sub-band into four new bands. For
example. Amax = 4 will produce a string of 85 ones. This bit string requires a QT
structure “overhead” of approximately 4.1 x 10~° bpp for a 512 x 512 pixel image.
The extra bits needed to describe the QT structure are negligible, but there is com-
putational overhead involved in using a packet decomposition. Additionally, as the
number of sub-bands grows, the number of quantizer parameters which need to be
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stored also increases. We shall see in Chapters 4 and 5 if the increased compression
capability of more sub-bands will outweigh the extra bits required for describing each

quantizer.

3.4.4 Complexity Issues

The wavelet packet decomposition incurs additional computational load over the typ-
ical pyramidal transform. The stopping criterion must be calculated for each sub-band
(except for when Amax is reached) and the convolution operations will be performed
more often. However, this extra computation is not nearly as much as would be
required for a typical bottom-up wavelet packet approach, in which the “optimal”
decomposition is found [48, 65].

In an optimizing wavelet packet decomposition, the convolution operations must be
performed until Ayax is reached for every orientation #. Next, an optimality parameter
will have to be re-calculated for every possible change in the “pruned” decomposition
tree. This step will also entail possible inverse wavelet transforms to reconstruct
certain sub-bands. unless extra memory is used to store all possible decompositions.

Once the wavelet packet transform has been completed, the next stage in the
WP/H\'S framework is to quantize the wavelet coefficients. This stage involves loss

of information, but also the greatest increase in compression.

3.5 Quantization

The framework includes the ability to quantize the wavelet coefficients using either a
uniform or non-uniform scalar quantizer. Vector quantization (VQ) is not supported

for two main reasons:

1. The wavelet transform is designed to remove as much of the second-order correl-
ation as possible. A VQ scheme may not produce improved results over a scalar
technique since it examines blocks of wavelet coefficients. The FBI rejected VQ
from their wavelet-based codec since it did not improve performance over scalar

quantization [5].

o

Codebook-based VQ is computationally-intensive and requires extra memory
for storing the codewords. Recall from Chapter 1 that simplicity is one of our
final goals. We need to produce a system that would not require copious hard-
ware support, since our proposed platform will be mobile computers. Lattice
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vector quantization does not require codebook design, and this technique used
in conjunction with wavelet compression has already been examined by other
research members involved in the Motorola project [33]. It was found that LVQ
could provide a small increase in PSNR. However. visible quality decreased.

particularly in “smooth” image areas.

In order to take advantage of the different coefficient distributions and the varying
sensitivity of the HV'S, a quantizer with unique parameters is used on every sub-band.
All sub-bands excepting the LL band S(Amax, 1) use quantizers centered on zero, since
this is the most common coefficient. Both uniform and non-uniform scalar quantizers
used in the WP/HV'S framework incorporate HVS characteristics. However, the non-
uniform quantizer has the added capability of directly modeling visual masking (see
Section 2.7.3). There are certain characteristics which both quantizers share.

3.5.1 A Quantizer Stop-Band Based on the HVS

As mentioned in Section 3.4.2 in relation to the wavelet packet decomposition stopping
criteria. very small wavelet coefficients represent image regions of low activity. and
are insignificant to the HVS. Watson et al. conducted experiments to determine an
error threshold for wavelet coefficients below which the distortion is invisible to a
human observer {58, 59]. They propose that the visible distortion thresholds could be
used in designing a wavelet codec such that no quantization errors are visible. In this
case. they dub the reconstructed image to be “perceptually lossless” indicating that
the results are numerically different but visually the same as the original image.

The experiments were conducted using images of uniform intensity. Uniformly
sampled errors in the interval [—1,1] were added to the wavelet coefficients in an
individual sub-band, with all other coefficients being held at zero. The reverse wavelet
transform was then applied to vield an image with quantization noise stimulus. Images
with and without noise stimulus were shown to human observers for a specific length
of time. The observers were instructed to select which image contained quantization
noise. The amplitude of the noise signal could be scaled, so that a visibility threshold
could be found.

After recording the sensitivity of observers to certain amplitudes of quantization
noise, Watson et al. use their experimental data to construct a mathematical model of
the visibility thresholds based on level A and orientation 6 of the wavelet sub-bands.
The model can be used to calculate a set of uniform quantization factors. These
quantization factors indicate how wide the uniform bins can be without producing
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noticeable distortion. For our uniform quantizer, the insignificance threshold ¢; can
be found by halving the Watson quantization factors, since this would be the maximum
error introduced by a uniform quantizer. Table 3.1 lists the insignificance thresholds

for the wavelet sub-bands.

Orientation 6
Level A | 1 2 3 4
7.0 11.5 29.4 11.5
56 7.3 122 73
. 6.4 9.8 64
7.3 7.1 89 7.1

B =
ot
-

Table 3.1: Values of the insignificance threshold c; for varying level A and orientation
6 in the wavelet packet decomposition.

Notice that the HV'S is most sensitive to errors in orientation 8 = 1, less sensitive in

— 92 or 4. and least sensitive in orientation § = 3 which holds the diagonally-oriented

signals. These results concur with what we would expect from such an experiment,
given our discussion of the contrast sensitivity function (CSF) in Section 2.7.2.

We can use c; in setting all coefficients c(j, k) in a sub-band to zero if their mag-
nitude is less than ¢;. Therefore. £c; sets the limits of the quantizer “stop-band™. We
can also use cj to set the size of the remaining quantizer bins (i.e., the width of each
will be 2¢;) since this distortion should not be visible.

Recall, however, that the quantization factors were found by Watson et al. using
quantization noise in otherwise uniform images in experiments, which ignores the
effects of visual masking. The bin sizes for coefficients reflecting active signal content

may be set larger without introducing perceptual distortion.

3.5.2 Modeling Signal Content Sensitivity

We can attempt to take advantage of the HVS characteristic that errors are harder to
see in areas of greater signal content by using a non-uniform quantizer. In this case,
as the wavelet coefficients get larger, they can be quantized more coarsely, since the

greater distortion will be masked by the more intense signal .®

6The masking effect will not be modeled in the highest decomposition level S(Amax, 1,...,4)
since these sub-bands are low-resolution approximations of the image, showing large-scale changes in
intensity.
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Significantly. the main design goal of a non-uniform quantizer is to minimize the
mean-square error (MSE). To do so with wavelet coefficients requires larger quantizer
bins in areas of larger coefficient magnitude, since these values have lower probabil-
ity than smaller values. This characteristic is perfectly-suited to take advantage of

masking, since larger coefficients imply a busier signal.

Designing the Quantizer

As mentioned in Section 2.5.2, it is difficult to design an optimal non-uniform quantizer
under most circumstances. Qur situation is unique, however, in that we know a priori
what the output levels and bin limits should be around the zero value by using the
stop-band discussed in Section 3.5.1. Non-uniform quantizers are usually implemented
using companding. otherwise the first output level g must be found by a trial-and-error
process. In our case. the entire companding process is unnecessary since the optimal
(in an HVS-relevant sense) value for the first output level ¢; is known. The minimum
bin size is also known and the bins should increase in size with increasing coefficient
magnitude to take advantage of the masking effect. The non-uniform quantizer is
therefore guaranteed to result in fewer output levels than the uniform quantizer.
Examine Figure 3.7. The non-uniform quantizer can be designed by symmetry.
That is. the output levels and bin limits can be found on one half of the distribution
and mirrored on the other half. The values z; and z; are known, since they are defined
to be %c;. The first output value g, is zero. According to equation (2.11), g, can also

be immediately found since

G = 221: — Qk-1, (318)
@ = 2z —q. (3.19)
@ = 2. (3.20)
The remainder of the design process requires the determination of gs....,qx and

2309 TR +1-
Calculating the remaining bin limits can be done indirectly using a discrete (i.e.,

non-continuous) version of equation (2.12),

G = ; %27). (3.21)

In this case, we first need to build the probability histogram p(i) of the wavelet
coefficients in this sub-band. Every variable in equation (3.21) is known except for
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Figure 3.7: Designing the non-uniform quantizer.

zk+1- Therefore, the summation should be performed until g; is reached. at which
point 24, has been calculated. Finding the next output level is then a simple matter
of applying equation (3.18) with the newly found zi4; in place of z;. Once ziy, is
found to be equal to or beyond the maximum coefficient zyax, We set zx4) + zmax and
stop the procedure. Note that the final gy from this process is an unreliable value,
due to the truncation of zx to zmax and is not used for the modeling step explained
below.”

All z; and ¢ are now known. Sending all of these parameters to the decoder for
each sub-band would amount in a significant amount of overhead. It is a better idea to
model g; with a simple polynomial, reducing the required overhead to the polynomial

coefficients.

TIf the design procedure produces three or fewer valid output levels, a default uniform quantizer
is used instead.
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Modeling the Quantizer Parameters

We have chosen to model gz with a parabola,®
gk = Bo + Bk + B2K>. (3.22)

Only two parameters are then required to model the output levels of each quantizer.
Is a quadratic a polynomial of too low an order to precisely represent the changing
bin size? Recall that all gx are already approximates, due to the discrete nature of
the algorithm finding g;. Rounding is involved in building the probability histogram
and for the summation finding each z;. In addition, the exact shape of the masking
function is not known. so as long as we have increasing bin size with increasing signal
content, we can attempt to model masking {19].

The implementation of the parabolic model uses curve-fitting in a least-squares
sense. This process can be accomplished through simple matrix operations. First. we

set up the matrices Q and K,

)| 0 O
g2 1 1
Q=|4 K=|2 4 (3.23)
LN v 9k
Then we solve the equation
8= (K'K)'K'Q (3.24)
in which 3 is the matrix holding the model coefficients,
~ B .
312 3.2
3 [ 32] (3.25)

The parameters B, and B, will have to be sent to the decoder so that it can properly
assign the quantized coefficients.

An example set of quantizer output levels and the computed model function is
shown in Figure 3.8. There are 7 output levels. Notice how the 7th value is far off the
trend, as was discussed above. This value was ignored in the modeling process. We
therefore have a conservative model in the sense that we introduce less error in the
largest coefficients than allowable, according to the data points. It is obvious that the
model does not precisely fit all data points, but the trade-off of not having to send all

the output levels is in our favor.

8Note that we will always assume fo = 0 in equation (3.22) because the y-intercept (i.e., q1) is
always 0.
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Figure 3.8: Example non-uniform quantizer output levels and their parabolic model.

The modeling process may require the number of quantizer bins A’ to be increased
in order to cover the full range of wavelet coefficients. (For example, note that the
model in Figure 3.8 would predict gx to be about 420 when it was calculated to be
550.) The new A can be easily found by setting the parabolic model equal to the
previously found gz,

BiK + BR? — g =0, (3.26)

and then solving for A" using the quadratic formula,

— 2 —
_Hh+ V0B +48ux (3.27)
20,
For the example in Figure 3.8, the new K’ is found to be 8, yielding gr = 547, which

is more accurate than our previous calculation. Recall that we are dealing only with

the positive coefficient range, so the number of bins is actually 2K — 1.

%

55



Quantization and Dequantization

The quantization process using the non-uniform quantizer is slightly more complicated
than with the uniform quantizer. First, we have to calculate each output value gx
given the quadratic model. Then, each wavelet coefficient is assigned to its closest
gk (in an absolute difference sense), also recording whether the value is positive or
negative. Dequantization. or finding the quantized values of the wavelet coefficients
during decoding. is a simple process of calculating equation (3.22) with each decoded

qgr and the quantizer’s parabolic model parameters.

3.5.3 Acceptable Distortion Factor

The application of either scalar quantizer of the WP/HVS framework will result in a
“perceptually lossless” image at a minimum possible bit-rate. There may be occasions
upon which noticeable distortion in the reconstructed image will be tolerated by the
user in order to further reduce the bit-rate. To facilitate greater compression. an
acceptable distortion factor (ADF) is introduced.

The ADF is implemented as a quantity which modifies the quantizer stop-band size
and. therefore. the remaining bin sizes. This factor is multiplied by the insignificance
threshold c; of each sub-band. That is.

c1(A.8) « ADF x ¢;(A,6). (3.28)

Applving the ADF in this manner ensures that perceptually less-significant sub-bands
will increase in distortion faster than more important bands.

The default is ADF = 1.0 and if the user chooses to increase it, the result will
be larger distortion and greater compression. Note that this system is arguably more
user-friendly than setting the exact bit-rate, which many codecs enforce (53, 51, 64],
and is superior to some schemes which do not allow flexible compression rates at all.
The ADF is analogous to the quality factor in the JPEG standard [57), but is better
than JPEG in that it mirrors HVS characteristics. Incorporating the ADF also eases
the process of maximally compressing an image without noticeable degradation, since
the ADF would not have to be modified by the user in this case.’

9 “Perceptually lossless™ coding could possibly be the most practical codec application. For ex-
ample, most World Wide Web applications require high-quality images free of noticeable distortion.
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3.5.4 Complexity Issues

The uniform quantizer presents the minimal computational complexity requirements.
The bin limits (and therefore the output values) are set by a simple table look-up for
the insignificance values. The quantization process must divide each wavelet coeffi-
cient by the number of bins A". Using the values from Watson et al., along with the
ADF, allows efficient quantization, especially compared with rate-distortion optimiz-
ing frameworks. The space overhead for each uniform quantizer consists of sending
the maximum output level gx and the number of bins K. Since the coefficient distri-
bution for the S(Amax.1) sub-band is not zero-centered, the minimum output level g
must also be sent.

Applying the non-uniform quantizer increases the complexity. in both time and
space overhead. Each gx and z; must be calculated, which involves creating the prob-
ability histogram and performing the summation of equation (2.12). The parameter
modeling step requires several matrix operations and then the re-determination of gx.
Actually quantizing the coefficients will also take more time since each g needs to be
calculated from the model. The parameters to be sent are gx, B:, and 3,. Note that
& does not need to be transmitted because the dequantizer does not use it.

The complexity of the non-uniform quantizer is greater than that of the uniform
quantizer, but is far smaller than most vector quantization schemes or rate-distortion

optimizing scalar quantizers.

3.6 Quality Assessment Tools

Once the image has been compressed and reconstructed using a configuration of the
WP/HVS framework, we need a set of techniques to assess the quality of the results.
The WP/HVS framework supports three different methods for examining and com-
paring image quality, including peak signal-to-noise ratio (PSNR). frequency weighted
PSNR, and distortion maps.

3.6.1 Peak Signal-to-Noise Ratio

Since PSNR is still the de facto standard for quality assessment, it would be irrespons-
ible to not use it to report results.!? Applying PSNR also gives one way to directly

compare with most other results in the literature, since it is such a popular measure.

10Gee equation (2.15) in Section 2.6 for the definition of PSNR.
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3.6.2 Frequency-Weighted Peak Signal-to-Noise Ratio

As discussed in Section 2.6, most researchers agree that PSNR is not a particularly
accurate quality measure as it is normally defined. A simple improvement involves
weighting spatial frequencies to concur with the HVS sensitivity, yielding a measure
which should correlate more to an observer’s experience.

Kim et al. have used a weighted mean-square error measure with HVS-based
wavelet compression [31]. A picture quality scale (PQS) incorporates two factors
based on weighted frequency errors [42].1

One of the factors is the CCIR 567-1 standard for quality analysis used by the
television industry. To implement this factor, the first step is to find the error image

e(z,y) from the original and reconstructed images,

e(z.y) = f(z,y) - flz.y). (3.29)

Then the error image is weighted according to its spatial frequencies by convolving it

with a filter w,(z,y) in the Fourier domain,
ew, (T,Yy) = €(z,y) * wi(z,y)- (3.30)

The CCIR standard defines the weighting filter to be

1

1 (EE)”

where u and v are the horizontal and vertical spatial frequencies, respectively. The
CCIR standard is implemented as a low-pass filter with cutoff frequency f. = 5.56

wy (3.31)

cycles/degree.

PQS uses e,,(z,y) to form a normalized MSE for one of the error factors. In
order to form a more useful error measure when used independently, we can define a
weighted PSNR (WPSNR) by using the weighted error image ey, (z,y),

1 M
WMSE;, = — ew, (7. k)%, (3.32)
7V & &
2552
'PSN = ———. .
WPSNR, 10log,, WMGSE, (3.33)

A second PQS factor also examines random errors, but the convolution is per-

formed with a filter w, which takes into account the anisotropy of the CSF and is

1The other PQS factors deal mainly with end-of-block errors and errors on edges, which are not
particularly important when judging wavelet codecs, but may be more important with spatial domain
techniques or Fourier-based transforms due the their non-compact support.
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modeled with CSF(u,v) of equation (3.11). Distortion which is below a perceptual
threshold T is ignored.!? In addition, the original and reconstructed images are gamma
corrected. We can develop another WPSNR using this technique by the following.

-~

e(z,y) = (f(z,y))—1(f(z,y)), (3.34)
sz(l',y) = e(z,y)*wg(a:,y), (335)
; 1 E & fenGk)p?, ifewn(i k) 2T
WMSE, = MN J__Zl ,; { 0, otherwise ' (3.36)

Then WPSNR; is defined similarly to equation (3.33).

3.6.3 Distortion Maps
The three quality measures (PSNR. WPSNR,, and WPSNR3) can give a quantitative

judgment of reconstructed image quality. However, these measures do not indicate the
location of any image distortion. Knowing the location of errors is important, since
the HVS is sensitive to image signal content. The weighted PSNR measures weight
errors based on their spatial frequencies, but the observer may weight errors based
also on their location in the image.

We can use the three error measures to produce distortion maps. The maps are
simply the squared error images resulting from the different measures. Pixels with
larger errors will be displayed with greater intensity.!®* Using PSNR, the distortion

map m will indicate each pixel’s error by,

-~

mpssn(z.y) = (f(z.9) ~ flz.9))"- (3.37)

Similarly, the weighted distortion maps will be composed of the pixels,

mwpsnr(Z.Y) = ew(z,y)?, (3.38)

where e, is a pixel’s weighted error calculated from either equation (3.30) or (3.35).

12The developers of PQS set T = 1.0.
13We will display each distortion map by its inverse, since printing larger errors darker on paper
yields more clarity.
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3.7 Summary

Within this chapter, we have examined many of the components of the proposed
WP/HVS framework, including:

e modeling the luminance and spatial frequency sensitivities of the HVS through

pre-processing;
e the wavelet packet decomposition and proposed stopping criteria;

e the structure of both uniform and non-uniform scalar quantization. including
our proposed method of modeling the signal content sensitivity of the HV'S:

e and the quality assessment tools.

There are many decisions that need to be made about the WP/HVS framework in
order to choose one configuration to form the WP/HVS ‘codec. In the subsequent
chapter, we will independently test each major framework component in the process
of designing the new WP/HVS codec.
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Chapter 4

Component Testing and Design of
the WP /HVS Codec

4.1 Introduction

We will now attempt to design a high-performance, practical, general-purpose codec
configuration based on the WP /HVS framework presented in Chapter 3. We will ap-
proach this task using a “greedy” design method, in which we analyze each significant
component of the framework to find its most appropriate use. The steps in the design
process will analyze:

e the experimental environment, including test images;

human visual system (HVS) luminance sensitivity modeling;

HVS spatial frequency sensitivity modeling;

wavelet packet decomposition schemes;

e and quantization using uniform and non-uniform quantizers, the latter of which
attempts to model the HVS masking effect.

The “best” components will then be assembled to form the new WP/HVS codec.}
Certainly the resulting codec cannot be described as optimal. However, this design
method will allow the staggered production of a codec without juggling all changeable
parameters at once.

The three objective quality measures (PSNR, WPSNR,, and WPSNR:) presented
in Section 3.6 will be applied to assess the results of each component during the

1The performance of the WP/HVS will be tested against other standard methods in Chapter 5.
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design phase. Though the human observer is the most relevant quality assessor, it
would be difficult to subjectively assess the results of all possible component parameter
combinations. We would therefore like to choose the configuration of each component
based on objective measures so the final codec has a solid theoretical foundation. The
experimental results will also be easy to present and should be repeatable by other
parties.

4.2 Implementation and Testing Environment

All experiments were run using C++ and C programs developed on the UNIX operat-
ing system. The experiments were executed on a 75SMHz Pentium-based PC running
Linux. Please see Appendix A for a brief description of the software implementation
details. The wavelet packet transform employs filters used by Antonini et al. which

have been shown to have high performance in image compression [3].2

4.2.1 Test Images

The image set used in the WP/HVS component experiments consists of 34 grayscale
images grouped into five categories: Natural (18), Random Texture (8), Structured
Texture (8), Fingerprint (10), and Ultrasound (10). All but the Ultrasound images
have a 512 x 512 resolution. This categorization is for the convenience of discussing
experimental results.

The 18 Natural images consist of a set of frequently used images in the image
compression literature. The set includes scenes of people, food, animals, landscapes,
and some aerial photographs. Four examples of this type of image are shown in
Figure 4.1.

The texture images are 512 x 512 cropped versions of images scanned from the
Brodatz texture album [7]. Examples of Random Texture and Structured Texture images
are shown in Figure 4.2.

The Fingerprint category is a set of ten, rectangular, publicly available FBI fin-
gerprint images. The original fingerprint images have been cropped to a 512 x 512
resolution in order to exert greater control and consistency over the experiments. We
also have a set of ten Ultrasound images taken from live pigs. All Ultrasound images
have a resolution of 234 rows x 260 columns. Example Fingerprint and Ultrasound
images are shown in Figure 4.3.

2Exploring the design and application of different wavelet filters is beyond the scope of this thesis.
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Figure 4.1: Example Natural test images.
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Figure 4.2: Example (a) Random Texture and (b) Structured Texture test images.

(a) Finger03 "~ (b) Ultrasound05

Figure 4.3: Example (a) Fingerprint and (b) Ultrasound test images.
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It should be stressed that our experimental image library contains a great variety
and number of images, more than normally used for reporting image codec testing
results [13]. Most of the image compression literature reports on results from very
few images of one type (e.g., natural). Applying and reporting on a more thorough
examination is more illustrative of strengths and weaknesses of a codec.

4.2.2 A Technique for Results Analysis

In subsequent sections, we will be analyzing experimental results of several config-
urations of the WP/HVS framework by comparing the performance based on the
quantitative quality measures. This analysis will involve examining the average per-
formance over categories, as opposed to individual images. It would be difficult to
judge the relative efficacy of the various configurations based only on quality values.
since we will be analyzing images compressed at similar but not identical bit-rates.
One could not apply a standard statistical test to this data to check for significant
performance differences, since both bit-rate and quality vary. We need to manipulate
the data to give one dependent variable. We can attempt to “normalize” the bit-rate
and quality by finding the average quality @ to bit-rate R ratios for all N images in
a given category. That is,

_1Je
Q/R—X?z_

‘. (4.1
=1 R‘ )

This method will allow us to compare results of different WP /HVS framework config-
urations on a level playing field, but we do not claim it to be optimal in distinguishing
the performance differences.

The Q/R ratio was inspired by the fact that a scheme with minimal bit-rate
at marimal quality yields the best performance. To illustrate the Q/R ratio, Fig-
ure 4.4 shows a rate-distortion graph used to compare four fictitious results. It is
clear that Technique 2 (Q/R = 27.675/0.205 = 135) is better than Technique 3
(Q/R = 24.15/0.21 = 115), since Technique 2 yields a higher PSNR and a lower
bit-rate. Although it is not immediately obvious, Techniques 1 and 4 have similar
performance (Q/R = 19.5/0.15 = 28.6/0.22 = 130).
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Figure 4.4: Example results from four fictitious compression techniques, used for
demonstrating the @ /R ratio.

4.3 Gamma Correction Component Testing

A simple experiment was performed to assess the effects of applying gamma correction
in the image compression process. Recall from Section 3.2 that gamma correction can
be used to model the non-linearity of the HVS luminance sensitivity. Testing this
component involved using the WP/HVS framework without CSF filtering and with
uniform quantization.

It was found that incorporating gamma correction decreases the bit-rate at a given
acceptable distortion factor (ADF). To achieve similar bit-rates when compressing
with or without gamma correction, we used ADF = 1.0 with gamma correction and
ADF = 1.7 without. The bit-rate is decreased by gamma correction since this process
modifies the distribution of the original image pixel intensities. For example, Fig-
ure 4.5 shows the histograms of the Airfield image before and after gamma correction
using v = 2.2. Notice that gamma correction transforms the distribution, making it
more peaked with a smaller dynamic range. On Airfield, gamma correcting decreases
the entropy from 7.12 to 6.77 bpp, indicating that greater compression will likely be
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Figure 4.5: Normalized pixel intensity histograms from (a) original and (b) gamma-
corrected (y = 2.2) Airfield images.

achieved on the gamma-corrected image.
All test images were compressed with and without gamma correction and a sum-

mary of the results is shown in Table 4.1.

Image

With Gamma Correction

Category | Bit-Rate || PSNR/R | WPSNR,/R | WPSNR,/R
Natural 0.636 50.20 54.24 65.67
Random Texture 1.647 13.20 14.36 19.82
Structured Texture 1.018 27.48 32.04 39.41
Fingerprint 0.617 39.78 42.26 53.51
Ultrasound 0.338 98.04 109.80 109.93
Without Gamma Correction
Bit-Rate || PSNR/R | WPSNR,/R | WPSNR,/R
Natural 0.531 67.87 87.46 86.34
Random Texture 1.653 16.13 24.44 26.35
Structured Texture 0.938 33.18 46.59 48.46
Fingerprint 0.646 52.44 65.87 68.15
Ultrasound 0.307 107.62 121.48 119.25

Table 4.1: Experimental results from compressing images with and without gamma

correction pre-processing.

The table shows the Q/R ratios for PSNR, WPSNR,, and WPSNR;, averaged
over image category. The superior results are shown in bold. When compressed to
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similar bit-rates, Table 4.1 shows that the quantitative quality measures indicate that
the gamma-corrected results are worse than without gamma correction. From visual
inspection, the quality of the reconstructed image with or without gamma correction
appears to be insignificantly different.

This experiment supports Clarke’s statement that the effects of incorporating the

HVS non-linearity into the codec

tend to be over-ridden by the major non-linearity in the processing chain,
and this is the conventional display monitor, where the light output / elec-
trical signal input relationship has an ezponent of something like 2.5. [13].

In other words, most computers already incorporate gamma correction in displaying
graphical information, either in the video buffer or the monitor itself. The video buffer
can be inverse-gamma transformed, which will appear correct to the HVS using a
monitor which is not gamma-corrected. Another strategy is using an electron gun in
the monitor which has an inverse-gamma response. The forward-gamma response of
the HV'S will compensate. In either case, the intensities are sampled such that each
pixel’s gray level is approximately proportional to perceived brightness.

In conclusion, incorporating gamma correction into compression is a waste of
computation, unless the display hardware is not built to compensate for the non-
linearity of the HVS. It would be challenging to find modern hardware lacking this

compensation.
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4.4 CSF Filtering Component Testing

The WP/HVS framework supports another optional pre-processing step, which at-
tempts to filter out data of spatial frequencies to which the HVS is insensitive. This is
a lossy procedure, but the purpose is to yield an image which is perceptually lossless
(see Section 3.5.1). However, any quantitative quality measure will indicate a differ-
ence from the original image.

The anisotropic model of the contrast sensitivity function (CSF) filter reported in
Section 3.3 can be directly applied. We can set the near and far viewing distance range
to be a typical d, = 4h and d; = 6h, where A is the image height. This procedure
applied to the Goldhill image vields the result shown in Figure 4.6 (b).

As suggested from the figure, using this band-pass filter reduces the image mean
significantly. Note that while the CSF filtered image is recognizable as Goldhill, the
PSNR is a low 14.81. For comparison, a uniform image of intensity 113 would vield
the same PSNR!? The drop in image mean is caused by filtering out some of the low-
pass energy. which is highly concentrated in most images. The 1D averaged power

spectra of both images are shown in Figure 4.6 (c)-

3Certainly this result supports the critics of PSNR.

69



(b) Goldhill after CSF Filtering
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Figure 4.6: Applying the CSF filtering operation to Goldhill with d,, = 4h and d; = 6h.
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Experiments have found that the HVS frequency sensitivity falls off rapidly in the
low-pass spectrum (i.e., less than 4 cycles/degree). These experiments were carried
out to find a threshold of semsitivity. However, applying the CSF directly in image
compression can cause problems, since we need to compare the results with the original
image. This comparison would not be involved in experiments to determine the shape
of the CSF. Some high-pass details (e.g., edges) are noticeably missing from Figure 4.6
(b). This result implies that this CSF model also decays too quickly from the peak
to higher frequencies when dealing with real images, as opposed to experimental sine
waves.

In order to apply the CSF filter to yield a more desirable result, we can adjust the
viewing distance parameters. Using values of d, = 3h and d; = oc results in a low-
pass filter response and will yield images without perceptual distortion. Figure 4.7
depicts the Goldhill image filtered with the adjusted viewing distance parameters. Note
in Figure 4.7 (c) that the low-pass signal is unaffected after filtering.

In a sense, we are no longer using a near and far viewing distance, but rather a
“minimum” viewing distance. Viewing the image at less than this distance may cause
some distortion to be evident. The main purpose of the CSF filter is to remove per-
ceptually irrelevant details. Recall. however, that quantization is done on a sub-band
basis, in which higher spatial frequency bands are coarsely quantized, and therefore
there is some functionality overlap between the CSF filter and the quantizer.
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(b) Goldhill after CSF Filtering
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Figure 4.7: Applying the CSF filtering operation with d, = 3k and df = co.
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Another experiment was performed with the CSF filtering component to discover
if its incorporation into the WP/HVS codec is desirable. All test images were com-
pressed and reconstructed with and without CSF filtering and the results were as-
sessed using average Q/ R ratios of the three quantitative quality measures.* Table 4.2

presents the results. Again, the superior results are shown in bold.

Image With CSF Filtering
Category | Bit-Rate | PSNR/R | WPSNR,;/R | WPSNRa./R
Natural 0.585 57.05 79.17 79.11
Random Texture 1.527 14.81 24.81 28.45
Structured Texture 0.934 31.21 47.55 51.54
Fingerprint 0.830 41.88 54.42 57.04
Ultrasound 0.606 58.96 67.35 65.90

Without CSF Filtering
Bit-Rate || PSNR/R | WPSNR,/R | WPSNR»/R

Natural 0.593 61.80 80.00 78.79

Random Texture 1.776 15.28 23.24 25.14
Structured Texture 1.054 29.79 41.96 43.76
Fingerprint 0.946 39.29 50.29 52.89
Ultrasound 0.620 57.46 65.72 64.21

Table 4.2: Experimental results from compressing images with and without CSF filter
pre-processing. using d, = 3h and d; = oc.

On average. it is clear that incorporating the CSF filtering into the WP /HVS frame-
work can increase the quantitatively judged image quality in most cases. However. it
was found that applying the CSF filter did not significantly affect compression results
for images with little high-pass energy (e.g., the Ultrasound images). Applying the CSF
filter while compressing images with more details and edges (e.g., the Natural image
Barbara) did improve the results, at least according to the weighted PSNRs. The
standard PSNR measure often decreases with the application of CSF filtering, due to
increased distortion. The improvement in weighted PSNRs should be expected, since
we introduce distortion only into high-frequency signals. The WPSNR,; and WPSNR,
measures put less weight on high-frequency distortion. Rate-distortion curves for Ul-
trasound05 and Barbara for the three quality measures are shown in Figure 4.8.

We conclude that CSF filtering should be incorporated into the final WP/HVS
codec. Results on images with many high-frequency signals can be improved.

4To achieve similar bit-rates with and without CSF filtering. the ADF was set to 1.5 when com-
pressing the Natural, Random Texture, and Structured Texture images without CSF pre-processing.
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Figure 4.8: Comparing the compression performance with and without CSF filtering.
Rate-distortion curves (using PSNR, WPSNR,;, and WPSNR,) are shown for (a) an
image lacking high-frequency information and (b) an image with significant high-

(b) Compression results on Barbara

frequency information.
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4.5 Wavelet Decomposition Component Testing

Once the input image has passed through the HVS pre-processor, the next step is to de-
correlate the image using the wavelet packet transform. Recall that we have developed
four possible stopping criteria for the packet decomposition (see Section 3.4.2). We
need to examine the efficacy of the four different stopping criteria, and the appropriate-
ness of using wavelet packets versus strict pyramidal decomposition. Most researchers
have found that wavelet packets do not perform significantly better than pyramidal
transform, except perhaps on images with unusual power spectra [65]. However, it
is possible that combining wavelet packets with HVS modeling will yield different
results.

An experiment was designed to independently test the wavelet packet decomposi-
tion component. No gamma correction or CSF filtering was done on the input images.
The maximum depth of decomposition was set to Anax = 4. Setting Amax > 4 yields a
large number of sub-bands, takes more computation time, and increases the overhead
required for the quantizer parameters. For example, setting Apax = 5 would decom-
pose the image to an unreasonable maximum of 4° = 1024 sub-bands. Overhead of
this magnitude would prevent a coding gain, since the overhead increases more quickly
than wavelet decorrelation efficiency.

The five categories of images (Natural, Random Texture, Structured Texture, Finger-
print, and Ultrasound) were used. giving 54 test images. Each image was compressed

using five possible wavelet decomposition schemes. These schemes are:
e wavelet packets, enfropy stopping criterion;

wavelet packets, insignificance stopping criterion;

wavelet packets, kurtosis stopping criterion;

wavelet packets, energy stopping criterion;

e and the standard wavelet transform, pyramidal decomposition.

The quality of the reconstructed image was then assessed by the three quantitat-
ive measures: PSNR, WPSNR,, and WPSNR,. The experiment therefore yields
54 x 5 x 3 = 810 different results. All images were compressed using the acceptable
distortion factor ADF = 1.0 to enable grouping and comparing results. The wave-
let decomposition step will not be affected by different acceptable distortion factors
(ADF's) so this restriction is justified.



The wavelet decomposition time, the number of sub-bands, the bit-rate, and Q/R
ratios from the three quality assessments were recorded for each combination of image
and decomposition scheme. Results from this experiment are shown in Table 4.3.
Note the table shows the results averaged over image category. Again, the maximum
Q/R ratios are shown in bold.

Image Stopping Time | Band | Bit-~ Quality/Bit-Rate Ratios
Type Criterion (s) Count | Rate || PSNR/R | WPSNR,;/R | WPSNR./R

Natural Entropy 9.21 75.8 0.980 39.41 50.61 50.15
Insignificance | 6.80 16.3 0.845 44.96 58.76 58.55
Kurtosis 12.14 35.0 0.944 41.12 53.38 53.14
Energy 7.80 32.0 0.924 41.72 54.03 53.73
Pyramid 3.86 13.0 0.846 44.8R 58.84 58.68
Random Entropy 9.32 128.5 | 2.600 11.80 17.59 19.27
Texture | Insignificance | 6.79 20.9 2.287 12.75 19.29 21.05
Kurtosis 11.82 23.5 2.403 12.29 18.68 20.51
Energy 7.05 16.4 2.344 12.54 19.01 20.80
Pyramid 3.87 13.0 2.288 12.75 19.36 21.19
Structured Entropy 8.02 58.4 1.491 22.40 31.52 33.25
Texture | Insignificance | 7.04 27.3 1.423 23.23 32.79 34.54
Kurtosis 11.39 21.6 1.470 22.70 32.13 33.93
Energy 7.15 23.5 1.445 2297 32.43 34.14
Pyramid 3.89 13.0 1.445 22.85 32.42 34.23
Fingerprint Entropy 11.37 | 183.7 | 1.072 36.83 45.43 48.02
Insignificance | 6.93 81.1 0.918 40.83 52.08 54.65
Kurtosis 11.63 49.6 0.969 38.67 49.17 51.91
Energy 9.41 105.1 | 1.075 36.56 45.00 47.42
Pyramid 3.88 80.6 0.946 39.29 50.29 52.89
Ultrasound Entropy 2.33 185.8 | 0.734 51.61 57.15 56.47
Insignificance | 1.46 32.2 0.611 57.91 65.94 64.59
Kurtosis 2.71 49.0 0.730 52.28 57.38 57.11
Energy 1.89 85.3 0.728 52.41 57.83 57.40
Pyramid 0.82 13.0 0.620 57.46 65.72 64.21

Table 4.3: Average compression results for different image categories and wavelet
decomposition schemes.

It is clear that the pyramid decomposition scheme takes the least computation,
followed by wavelet packets using the insignificance stopping criterion. Applying the
entropy stopping criterion yields a large sub-band count, since the entropy decreases
with almost every decomposition. The overhead of the extra sub-bands is obvious
from the increased bit-rate of this scheme compared to the others.

Before we further analyze the results, we direct our attention to those who may be
critical of the broad image categories, the Natural type in particular. It is important
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to emphasize that we are only testing the wavelet decomposition schemes, which are
mainly affected by the distribution of power in the frequency spectrum. Most natural
images have been shown to exhibit a smoothly decaying power spectrum. A brief
experiment to investigate the appropriateness of the image categories was executed.
The variability of decompositions of images within the same category was examined
using the wavelet packet decomposition with the insignificance stopping criterion. The
results are shown in Table 4.4.

Image | No. of | No. of Different
Category | Images | Decompositions

Natural 18
Random Texture 8
Structured Texture 8

Fingerprint 10
Ultrasound 10

0o n

Table 4.4: Variability of wavelet packet decompositions in different image categories.

It was found that Natural images produced relatively few different decompositions.
Intuitively, it is correct to group the fingerprint images into the same category, and
yet 8 unique decompositions were produced from 10 images. This result is probably
due to the varying rotation and depth of field in the FBI fingerprint images. We found
that the 8 different decompositions for the fingerprints are “similar” to each other, in
that each image exhibits extra decompositions in the sub-bands in levels A = 2,3 and
orientations 8 = 2,4, i.e., the horizontal- or vertically-oriented signals.

Continuing our analysis, from a first glance at Table 4.3 it would appear that using
wavelet packets with the insignificance stopping criterion is the best decomposition
scheme on Structured Texture, Fingerprint, and Ultrasound images by a small margin.
The Q/R results are mixed for Natural and Random Texture images. In all cases,
the entropy, kurtosis, and energy stopping criteria perform worse than the other two
methods.

It is interesting to note that using the insignificance stopping criteria leads to better
performance (even according to PSNR) when applied to Fingerprint or Structured
Texture images. These types of images have unique power spectra, quite different
from that of most Natural images. Using a flexible wavelet decomposition can take
advantage of the unusual distribution of energy in the wavelet sub-bands.
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Figure 4.9 depicts the 1D power spectra of four Natural images and compares these
with one Fingerprint spectrum. Note the bump and spike in the Fingerprint spectrum
and the relatively smooth decay of all four Natural images.
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Figure 4.9: Example power spectra of (a) four Natural images and (b) a Fingerprint
image.

A simple statistical test based on the T statistic was applied to discover whether
there was a significant difference between the results from the wavelet decompositions
using pvramid or the insignificance measure. The test revealed that there was no
statistical difference between the two methods at an alpha level of 0.1. However, it
may be more helpful to further test these two decomposition schemes, subjectively and
objectively measuring the compression results of individual images. We shall examine
both in more detail in the subsequent chapter when comparing the WP /HVS codec

to other codecs.
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4.6 Quantization Component Testing

Once the image has been decomposed into sub-bands by the wavelet transform, the
resulting coefficients will be quantized by the WP /HVS codec. The framework sup-
ports both uniform and non-uniform quantization (see Section 3.5). Experiments were
performed in order to determine which quantizer should be applied in general applic-
ations. No HVS pre-processing was done and only pyramidal wavelet decomposition

was used during the experiments.®

4.6.1 Uniform Quantization Component

The uniform quantizer sets each coefficient whose magnitude is below an insignificance
threshold ¢; to zero. All 54 test images were compressed using the default highest
perceptual quality setting (i.e., ADF = 1.0). The quantizer stop-band is therefore at its
narrowest. The percentage of coefficients set to 0 by the stop-band was recorded. The
average results are shown in Table 4.5 along with the time required for quantization

and dequantization.

Image || Quantization | Dequantization Total c< ¢

Type Time (s) Time (s) Time (s) | (%)

Natural 2.62 2.23 4.85 83.4

Structured Texture 2.87 2.54 5.41 67.9
Random Texture 3.43 3.17 6.60 46.7
Fingerprint 2.42 2.08 4.51 80.6
Uitrasound 0.56 0.48 5.06 85.4

Table 4.5: Time required and percentage of wavelet coefficients set to zero using
uniform quantization.

There is a trend to the percentage of insignificant coefficients. If an image has lower
average energy. a larger percentage of wavelet coefficients will have small magnitude.
Many of these small coefficients will be below the insignificance threshold ¢; and can
be set to zero. This phenomenon is demonstrated in Figure 4.10. The Airfield image
resulted in the lowest percentage (73.9%) of zero coefficients out of all Natural test
images. The well-known Lena image resulted in the highest percentage (90.2%) of

5Using wavelet packet decomposition with the insignificance stopping criterion was also carried
out with the two different quantization schemes. This decomposition did not appear to modify the
results significantly from using pyramidal decomposition, so we only report the pyramid results here
for simplicity.
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Figure 4.10: The (c) power spectra of (a) Airfield reconstructed with 73.9% of wavelet
coefficients set to zero and (b) Lena reconstructed with 90.2% of wavelet coefficients
set to zero.
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zero coefficients over all categories.® As can be seen from Figure 4.10 (c), Lena has
less energy on average throughout most of the frequency spectrum. Therefore, it is
easier to compress Lena without introducing perceptible error. In fact, to yield similar
quality, Figure 4.10 (a) is compressed to 1.29 bpp (PSNR = 32.12) and Figure 4.10
(b) to 0.33 bpp (PSNR = 36.24). In this case, Lena can be compressed more and
yield a higher quality rating.

Recall from Section 3.5.3 that the acceptable distortion factor (ADF) can be set
to higher than 1.0 to facilitate greater compression. Results with different ADF's will
be discussed in the next chapter. in which we compare the WP/HVS codec with other

codecs.

4.6.2 Non-Uniform Quantization Component Testing

The non-uniform quantizer in the WP /HVS framework was designed with the purpose
of modeling the HVS masking effect. More distortion can be accepted in areas of
intense signal content, which translates to wavelet coeflicients of larger magnitude.
Figure 4.11 shows quantization errors taken from level A = 3, orientation § = 2 of the
Barbara image. The number of quantizer bins was 63 for uniform quantization and
17 for non-uniform quantization. As can be seen by this figure, the masking effect is
being modeled to a degree, since the non-uniform quantizer results in larger errors for
larger coefficients.

As mentioned in Section 3.5.4. non-uniform quantization has a more complex
quantization algorithm and a less complex dequantization algorithm than uniform
quantization. Table 4.6 gives empirical evidence for this complexity difference. Non-

Image || Quantization | Dequantization Total Time Increase
Type Time (s) Time (s) Time (s) {| Over Uniform (%)
Natural 3.15 1.98 5.12 5.6
Structured Texture 3.89 2.31 6.20 14.6
Random Texture 5.08 2.93 8.01 21.5
Fingerprint 3.15 1.91 5.06 12.2
Ultrasound 0.65 0.44 1.09 5.5

Table 4.6: Time required for non-uniform compared to uniform quantization.

SThe fact that over 90% of the wavelet coefficients can be set to zero without perceptual image
distortion suggests that Lena is quite easy to compress. This fact is perhaps more significant than
first assumed due to the incredibly prevalent use of the Lena image in reporting codec results in the
literature.
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Figure 4.11: Absolute quantization error resulting from (a) the uniform quantizer
with 63 bins and (b) the non-uniform quantizer with 17 bins applied to a sub-band of
wavelet coefficients from Barbara.

uniform quantization requires more total computation. The small increase in compu-
tation will only be worthwhile if non-uniform quantization can produce consistently

higher quality results than uniform.
All test images were compressed using uniform and then non-uniform quantization.

Table 4.7 shows the average Q/ R ratios for each test image category.” From this table,

it is clear that the uniform quantizer will usually outperform the non-uniform quantizer

in terms of @/ R ratios.

Quality with Quality with
Image Uniform Quantization | Non-Uniform Quantization
Type | WPSNR,/R | WPSNR2/R || WPSNR;/R | WPSNR2/R

Natural 58.84 58.68 56.95 55.69
Structured Texture 32.42 34.23 3117 32.26
Random Texture 19.36 21.19 19.04 20.44
Fingerprint 50.29 52.89 46.03 47 .44
Ultrasound 65.72 64.21 51.51 51.15

Table 4.7: Comparing the compression performance using uniform versus non-uniform
quantization.

7The PSNR/R quality measure is not shown for simplicity, but its results are similar.
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Why does applying the non-uniform quantizer not improve the results? We sug-
gest it is primarily due to interactions with the entropy coding procedure. A brief
experiment was executed to compare the input to the arithmetic coder from both the
uniform quantizer and the non-uniform quantizer. This input is simply the quantizer
bin indices. Using a sub-band from the Barbara image, the uniform quantizer had 63
levels and the non-uniform had 17. The bin indices from the uniform quantizer had
an entropy of 3.58 compared to 3.17 from the non-uniform quantizer. The average
absolute quantization error increases from 2.28 per coefficient with the uniform quant-
izer to 4.85 per coefficient with the non-uniform. Figure 4.12 depicts the normalized
histograms of the output of both types of quantizers. Both histograms are plotted

using the same zr-axis scale to allow direct comparison.
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Figure 4.12: Distribution of quantization symbols (i.e., bin indices) from (a) the
uniform quantizer and (b) the non-uniform quantizer when applied to a sub-band of
wavelet coefficients from Barbara.

Notice how similar the distributions are in shape and in entropy, even though the
uniform quantizer has 46 more possible bins. This empirical evidence suggests that
the small decrease in entropy from the non-uniform quantizer cannot make up for the
larger increase in error. It appears unlikely that the non-uniform quantizer could beat
the uniform quantizer in the trade-off between entropy and error.

Our experiments with non-uniform quantization support the research results found
by others, that the increased complexity incurred from incorporating non-uniform

quantization does not yield improvements in image quality over simple uniform quant-
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ization in practical applications [57, 5, 2, 64, 65]. Additionally, we have examined the
interactions between the non-uniform quantizer and the adaptive arithmetic coder.
and have confirmed that an optimally designed uniform quantizer coupled with an

entropy coder will perform similarly to a non-uniform quantizer [28).

From the analysis of our experimental results, we conclude that non-uniform quant-
ization should not be used in the WP/HVS codec.

4.7 Summary

The experiments conducted in this chapter have enabled us to draw conclusions about
the WP/HVS framework components. We can use this information to outline the

structure of the proposed WP/HVS codec.

1.

[
.

Gamma correction will not be used. It may be important to use when the

hardware does not implicitly do gamma correction, but this is a rare case.

The CSF filter can be applied using near distance d, = 3h and far distance
d; = oc. The filter will only have a significant impact on images with high-

energy high-pass spectra.

The only stopping criterion kept for the wavelet packet transform is the coeffi-
cient insignificance. Entropy. energy, and kurtosis have been eliminated. The
standard pyramidal decomposition scheme will also be kept as an option in the

codec.

The non-uniform quantizer has been eliminated. Only uniform quantization will
be used in the WP/HVS codec.

Now that some WP/HVS framework components have been discarded, the result-
ing WP/HVS codec configuration can be tested and its results compared with other

codecs in the next chapter.
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Chapter 5

Performance Analysis of the
WP/HVS Codec

5.1 Introduction

The previous chapter has stream-lined the WP/HVS framework to two main config-
urations. Each configuration uses contrast sensitivity function (CSF) filtering and
uniform quantization to reduce high-frequency signals to which the human visual sys-
tem (HVS) is less sensitive. The two final configurations differ only in the wavelet
decomposition stage. in which either wavelet packets with the insignificance stopping
criterion or standard pyramidal decomposition can be applied. We will henceforth
call the two codecs WP/HVS Insignificance and WP/HVS Pyramid. WP/HVS codec
will refer to either configuration.

This chapter examines the results of compressing several representative images
with the WP/HVS codec and two other techniques. Presented herein are:

e a quantitative performance analysis using rate-distortion curves;

e a qualitative performance analysis using original and reconstructed images and

distortion maps;

e and a brief treatment of codec complexity differences.

5.2 Images and Codecs Involved in the Comparison

The image compression performance of the WP /HVS codec may now be compared
to techniques developed by others. In so doing, we will use several representative

images taken from our experimental image library (see Section 4.2.1). The Lena and
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Barbara images are Natural images with insignificant and significant amounts of high-
frequency details, respectively. We will also test the Natural image Airfield during
the qualitative analysis. The two texture images shown in Figure 4.2, Texture08 and
Texturel5, will be used as examples of Random Texture and Structured Texture images.
Finally. the Fingerprint and Ultrasound images shown in Figure 4.3 will also be used
for comparisons.

We have chosen two other codecs to compare with the WP /HVS codec results. The
wavelet compression algorithm using set partitioning in hierarchical trees (SPIHT)
developed by Said and Pearlman has been shown to perform strongly when results are
assessed using PSNR [51]. This algorithm uses the wavelet transform but does not
attempt to model any aspects of the HVS, so it will be instructive to compare with
the WP/HVS codec. SPIHT incorporates embedded trees of zero-magnitude wavelet
coefficients, a quantization technique the WP /HVS codec does not yet support. The
results of the standard JPEG algorithm will also be examined since it is still heavily
used in applications and performs well when compressing for high quality at medium-~
high bit-rates [57]. The JPEG standard uses a quantization matrix which is based on
HVS sensitivity (see Section 2.4.1).

5.3 Quantitative Comparison Analysis

We have stressed that qualitative analysis of compression results is the most revealing
quality assessment technique, since the human observer is the final judge of any recon-
structed image. However, a quantitative comparison of the three codecs (WP/HVS,
SPIHT. and JPEG) is not subjective and therefore offers repeatable, theoretical proof
of results.

To quantitatively compare the performance of the codecs, we compressed the
sample images to several different bit-rates and recorded the resulting PSNR and
WPSNR, values. We have chosen to be conservative and have not used the WPSNR,;
measure in this experiment. WPSNR, is designed using the same filtering mech-
anism as our CSF filter, and the critical reader might suspect that WPSNR; could
be optimized in favor of the WP/HVS codec. The WPSNR, measure is also some-
what of a standard based on a quality analysis factor of the television industry (see
Section 3.6.2).

It should be emphasized that the weighted PSNR measurements are more reliable
quality assessors than the standard PSNR, since they are designed to better correlate
with human judgment. The WPSNRs are limited in that they do not attempt to
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model the HVS masking effect, but they do take into consideration the variable HV'S
sensitivity to distortion of different spatial frequencies. PSNR does not explicitly
mode] any HVS characteristics.

The WP/HVS codec was set to compress the sample images to nine different bit-
rates by setting the acceptable distortion factor (ADF) to values in the interval [1, 5]
in increments of 0.5. Each resulting bit-rate from the WP/HVS Pyramid codec was
then recorded. The SPIHT codec was then used to compress and reconstruct the
images at the identical bit-rates. The bit-rate cannot be set with the J PEG codec, so
a trial-and-error method was used, setting the JPEG quality factor to different levels
to attempt to mimic the bit-rates of the WP/HVS codec.

The bit-rate versus PSNR and WPSNR, results were then plotted on two separate
graphs for each test image. These graphs are shown in Figures 5.1 through 5.6. Before
discussing the individual rate-distortion curves, we will comment on some noticeable

patterns in the results.

e The SPIHT codec is designed to be optimized for achieving maximal PSNR,
since it encodes the largest wavelet coefficients first. Not surprisingly, SPIHT
performs the best on all but Structured Texture and Fingerprint images, according
to PSNR. Once again, PSNR is not a good quality assessor, so optimizing for

it is a questionable goal.

e On the PSNR rate-distortion graphs, the WP/HVS codec reaches a maximum
PSNR (as the bit-rate increases) more quickly than the other codecs. That is,
the WP/HVS curves level-off faster than those for SPIHT and JPEG. This phe-
nomenon is caused by the contrast sensitivity function (CSF) pre-processing
stage, which effectively sets a threshold for the PSNR before any activity by the
uniform quantizer. This trend does not occur on the WPSNR, charts since the
weighted PSNR measure takes into account the HVS spatial frequency sensit-

vity.

e The WP/HVS Insignificance codec yields superior performance on Structured
Texture and Fingerprint images, even beating SPIHT according to PSNR. This
significant performance increase is due to the flexible wavelet packet decompos-
ition scheme used in the WP/HVS Insignificance codec. Incorporating wavelet
packets allows our codec to be adaptable to image content, rather than forcing a
pyramidal decomposition. Our top-down implementation of the packet decom-
position can provide better performance on images with unusual power spectra
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with little increase in computation. On images with more typical power distribu-
tions, the WP /HVS Insignificance codec does not incur significant performance
loss (compared to SPIHT) and in most cases it wins according to the weighted
PSNR, which is a better quality assessor.

We now discuss specific details of the results from each test image, referring to the
Figure in which the graphs are subsequently presented.

Lena—Figure 5.1. The Lena image is a Natural image which is fairly smooth, that is,
it has little energy in its high-frequency power spectra. SPIHT consistently beats
all other codecs when measured by PSNR. However, it is difficult to visually
discern the differences between the two WP/HVS codecs and SPIHT, and this
result is supported by the WPSNR, measure.

Barbara—Figure 5.2. Barbara has much more energy in high frequencies than Lena.
The WP/HVS codecs can exploit this different energy distribution, since sub-
bands of higher frequencies are quantized coarsely due to the wider HVS stop-
band. Again, SPIHT is shown to be superior to all other methods from a PSNR
point of view. As suggested earlier, JPEG does well at compressing this image
at higher bit-rates. However, the more important WPSNR, measure shows the
WP/HVS codecs to beat SPIHT at bit-rates below 0.4 bpp. There does not
appear to be any significant difference in results between the WP /HVS codec
using packets or pyramidal decomposition.

Texture08—Figure 5.3. The Random Texture image Texture08 yields results similar
to that of Barbara, most likely due to its preponderance of high-frequency signals.
In this case, note that WP/HVS and SPIHT produce similar PSNR at rates
below 0.6 bpp. It is also interesting to see that JPEG again shows its strengths
at higher bit-rates when it beats all other methods at 1.7 bpp according to
WPSNR,.

Texturel5—Figure 5.4. Recall from Chapter 4 that using wavelet packet decompos-
ition with the insignificance stopping criterion appeared to perform better than
straight pyramidal decomposition on Structured Texture images. The compres-
sion results of Texturel5 support that conclusion, from both PSNR and WPSNR,
measurements. This method is only beaten by SPIHT at high bit-rates according
to PSNR.
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Finger03—Figure 5.5. The Fingerprint images were another image category in which
wavelet packet decomposition appeared appropriate to use. Applying the WP/HVS
codec with packet decomposition using the insignificance stopping criterion beats
all other codecs at every bit-rate according to PSNR and WPSNR;. Our ex-
perimental results provide evidence that it is correct that wavelet packets are
particularly successful when applied to images with unusual power spectra, like

Structured Texture and Fingerprint images.

Ultrasound05—Figure 5.6. The Ultrasound05 image has even less high-frequency in-
formation than the Lena image discussed above. The results of the three wavelet-
based codecs do not appear to be significantly different from one another with
this image based on PSNR or WPSNR;. The JPEG method appears to yield

much worse results.
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5.4 Qualitative Comparison Analysis

We stress that the final recipient, that is the user, of the reconstructed image after
compression is the most important quality assessor. It is therefore prudent to sub-
jectively examine some results from the various codecs. For this stage of analysis
we have dropped JPEG from the comparison. This decision was made for two main
reasons. The first is for simplicity, since presenting the subjective results requires a
great deal of space. The second reason is that JPEG produces significant blocking
artifacts at low-medium bit-rates. The quantitative quality assessors do not reflect
the “blockiness™, but subjectively this distortion is annoying.

Distortion maps (produced using a viewing distance of four times the picture
height) will be shown with the squared error in each pixel. Note that the maps depict
the greatest distortion in black. That is, darker pixels represent more distortion. Qur
subjective judgments of image quality have been carried out by viewing the results on
a high quality. 17" color monitor. Some details of results will be unavoidably changed
in the process of printing the images on a laser printer using dithering.

We have chosen to look at the test images from the previous section at a “me-
dium” bit-rate for each image, that is, we use ADF = 2.5 for each image. This
ADF introduces enough distortion to be visible to facilitate visually examining the
reconstructed images and distortion maps. Using this ADF allows each image to be
compressed without introducing unacceptably annoying distortion. In other words,
this is probably a usable ADF. However, due to the printer dithering problem, we
increase the ADF to 3.0 for Structured Texture and Fingerprint images to emphasize

differences in results.
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The reconstructed Lena images from SPIHT and the WP/HVS Pyramid codec are
shown in Figure 5.7. The results show that the two images are difficult to visually
distinguish. Again, this phenomenon is most likely due to the lack of significant edges

and high-frequency details in Lena.

(2) (b)

Figure 5.7: Reconstructed Lena image at 0.214 bpp from (a) SPIHT and (b) WP/HVS
Pyramid.

We present all four distortion maps for Lena in Figure 5.8. Upon close inspection,
especially of the WPSNR, distortion maps, it is evident that the WP/HVS codec
introduces more distortion in the feather in Lena’s hat. However, SPIHT reconstructs
the image with greater distortion around the mouth and nose. Recall that distortion
is more visible to the HVS in smooth image areas, so concentrating the distortion in
the “busy” region of the feather like the WP /HVS does is desirable.
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Figure 5.8: Distortion maps from the reconstructed Lena image at 0.232 bpp: (a)

PSNR of SPIHT result; (b) PSNR of WP/HVS Pyramid result; (c) WPSNR; of
SPIHT result; and (d) WPSNR,; of WP/HVS Pyramid result.
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The WP/HVS codec was shown to achieve lower PSNR than SPIHT with the
Natural image Barbara. Figure 5.9 depicts the reconstructed images for each technique.

(a) (b)

Figure 5.9: Reconstructed Barbara image at 0.232 bpp from (a) SPIHT and (b)
WP/HVS Pyramid.
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Notice in the cropped images in Figure 5.10 that some high-frequency details in
the pants and scarf have been eliminated from the WP/HVS result. However, the
pants are artificially detailed and “noisy” using SPIHT. The WP/HVS codec is able
to reconstruct the image with less distortion in the face, arms, and table cloth.

(c) (d)

Figure 5.10: Cropped regions from the reconstructed Barbara image at 0.232 bpp from
(a, ¢) SPIHT and (b, d) WP/HVS Pyramid.
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Figure 5.11 shows the distortion maps from the WPSNR, measure. The lower
distortion at the edges of the arms and in the face is particularly noticeable in the
WP/HVS codec WPSNR; map. The edges in an image are perhaps the most import-
ant constituent, since boundaries define the shape and size of objects. The fact that
the WP/HVS can preserve edge detail is a strong benefit over SPIHT. Additionally,
image processing techniques exploring comprehension and understanding often rely
on strong edge information. If these techniques are applied to compressed images, it

is important to have clear edges.

(a) (b)

Figure 5.11: Distortion maps from the reconstructed Barbara image at 0.232 bpp: (a)
WPSNR, of SPIHT result and (b) WPSNR,; of WP/HVS Pyramid result.

Ideally, distortion should be just below the visible threshold at each location in
the image. Note in the Barbara image that this threshold should vary throughout
the image due to the structures present. In order to take advantage of the HVS
masking effect, distortion should be placed in a high-frequency region, like Barbara’s
scarf. Figure 5.11 (b) shows that the distortion in the scarf under the face is in a
similar frequency and orientation to the original scarf signal and should therefore be
masked to the HVS. This effect demonstrates that the WP/HVS codec can model the
masking effect implicitly through the use of CSF pre-processing, which removes some
high-frequency details. Therefore, more distortion will be placed in these areas.
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Figure 5.12 presents the compression results for the Natural image Airfield.! The
figure contains reconstructed images and WPSNR, distortion maps for Airfield using
both SPIHT and WP/HVS Pyramid codecs. Again in this Natural image, it is clear
from the distortion maps that the WP/HVS codec has concentrated distortion in the
highly active image region containing many airplanes, in the bottom left portion of
the image. SPIHT, in contrast. appears to have spread distortion almost equally over
the entire image. In an image with distinct objects, this strategy is not in concordance
with the HVS sensitivity.

We have shown that applying wavelet packets to Structured Texture images can
produce performance gains over pyramidal decomposition. Figure 5.13 shows the re-
constructed Texturel5 image and distortion maps from the WP/HVS Pyramid and
the WP/HV'S Insignificance codecs for direct comparison. The pyramid codec intro-
duces more artifacts into the reconstructed image than using packets, even when the
pyramid result is compressed at a slightly higher bit-rate. It is evident from Fig-
ures 5.13 (c) and (d) that the WP/HVS Pyramid codec introduces more distortion
which is distributed evenly throughout the image. This even distribution of errors is
in contrast to the Barbara or Airfield images, but is desirable in Texturel5 since the
visible threshold of distortion would not change drastically throughout the image.

Wavelet packets have also been shown to increase the compression performance
over pyramidal decomposition when applied to fingerprint images. Figures 5.14 (a)
and (b) depict the reconstructed Finger03 image from the SPIHT and WP/HVS In-
significance codecs. The SPIHT result exhibits substantially more blurring than the
WP/HVS Insignificance result, particularly on the left half of the image. The distor-
tion maps in Figures 5.14 (c) and (d) show the SPIHT image to have generally more
error distributed throughout the image.

IFigures 5.12 through 5.14 are presented after the discussions of results for the Airfield, Texturel5,
and Finger03 images.
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(c) (d)

Figure 5.12: Reconstructed images and distortion mapé from the Airfield image at
0.415 bpp: (a) reconstructed image from SPIHT; (b) reconstructed image from
WP/HVS Pyramid; (¢) WPSNR,; of SPIHT result; and (d) WPSNR,; of WP/HVS

Pyramid result.
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Reconstructed images and distortion maps from the Texturel5 image: (a)
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from WP /HVS Insignificance at 0.187 bpp; (¢) WPSNR, of WP/HVS Pyramid result;

reconstructed image from WP/HVS Pyramid at 0.195 bpp; (b)
and (d) WPSNR,; of WP/HVS Insignificance result.

Figure 5.13:
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Figure 5.14: Reconstructed images and distortion maps from the Finger03 im-
age at 0.177 bpp: (a) reconstructed image from SPIHT; (b) reconstructed image
from WP/HVS Insignificance; (c) WPSNR; of SPIHT result; and (d) WPSNR, of
WP/HVS Insignificance result.

105



5.5 Complexity Comparison

An experiment was conducted to assess the differences in computational time require-
ments for the JPEG, SPIHT, WP/HVS Pyramid, and WP/HVS Insignificance codecs.
The six test images involved in the quantitative analysis (see Section 5.2) were com-
pressed and decompressed using all four codecs. The times required to accomplish
these tasks were recorded and averaged and are presented in Table 5.1.

Compression | Decompression Total

Codec Name ” Time (s) Time (s) Time (s)
JPEG 0.75 0.43 1.18
SPIHT 2.97 2.72 5.69
WP/HVS Pyramid 22.49 5.25 27.74
WP/HVS Insignificance 25.46 5.93 31.39

Table 5.1: Computational complexity comparison of compression/decompression time
for the JPEG. SPIHT, WP/HVS Pyramid, and WP/HVS Insignificance codecs.

There are several points to note about these results. The JPEG code has been
optimized by hand by programmers from the Joint Photographic Experts Group. The
other codecs are being tested using un-optimized “research code”. All four codecs
require more time to compress than to decompress the input images. It appears at
first glance that the WP/HV'S codecs require substantially more time. It is important
to note that approximately 75% of the WP/HVS compression time is taken by the CSF
filtering process, which requires that the forward and reverse fast Fourier transforms
be performed. Even with the CSF filtering, the WP/HVS codec is substantially faster
than many second generation approaches [56].

5.6 Summary

This chapter has focused on comparing the performance of two configurations of the
WP/HVS framework (i.e., WP/HVS Pyramid and WP /HVS Insignificance) with two
other codecs, JPEG and SPIHT. JPEG is a popular compression industry standard
and the wavelet-based SPIHT algorithm is well-known from the compression literature
to have high performance.

Images of each category were compressed and the results were reported both quant-
itatively and qualitatively. The WP/HVS Insignificance codec appears to out-perform
the other codecs on Structured Texture and Fingerprint images, based on both quant-
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itative and qualitative analysis. On other types of images it is difficult to distinguish
any difference in the results from the two WP/HVS codecs. Considering the minimal
difference in complexity between the two approaches, it would most likely be safe
to always use the WP/HVS Insignificance codec, which may actually end up with
a pyramidal decomposition. The flexible wavelet packet decomposition approach is
adaptive to image signal content and will therefore not restrict any image to a forced
pyramidal decomposition. The adaptivity can take advantage of images with unusual
power spectra.

For Natural and Random Texture images, SPIHT out-performs the WP/HVS codec
according to PSNR measurements. However, the weighted PSNR measure WPSNR,
indicates that the WP /HVS codec is similar or superior to SPIHT with these images.
We again stress that the weighted PSNR measure is designed to correlate more with
the HVS and therefore results measured with WPSNR,; are more indicative than those
measured with PSNR. In fact, when comparing the WP /HVS codec to SPIHT, PSNR
can actually increase with decreasing perceptual quality.

On images with insignificant high-frequency energy, e.g. any Ultrasound image.
the results from the various codecs are not visually distinguishable from each other.
However. with some images with significant high-frequency energy, e.g. Barbara, the
WP/HVS results are subjectively better. The contrast sensitivity function (CSF) pre-
processing built into the WP /HVS codec removes some high-frequency image signal
details. We found that this stage implicitly allows the WP /HVS codec to model the
HVS masking effect, by distributing more distortion in detailed image regions and
less distortion in smooth regions. The WP/HVS codec was also found to retain more

of the important edge information that the SPIHT technique.
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Chapter 6

Conclusions and Future Directions

6.1 Introduction

This final chapter is dedicated to clearly pinpointing the contributions of this thesis to
the research area of image compression. We present a brief summary of each chapter,

a list of specific contributions. and several ideas for further research.

6.2 Thesis Summary

The following is a brief review of the entire thesis, summarizing each chapter’s main

discussion points.

Chapter 2. A general overview of image compression and quality assessment tech-
niques was presented. including a model codec (compressor-decompressor). We
discussed spatial- and transform-domain mapping techniques which have been
used to decorrelate the input image. including a critical review so-called second
generation methods. The wavelet transform and wavelet packet generalization
were also presented. We discussed the advantages and disadvantages of three
different quantization techniques: uniform, non-uniform, and vector. A model of
the human visual system (HVS) incorporating sensitivity to luminance, spatial

frequency, and image signal content was also presented.

Chapter 3. Building upon the fundamental background information discussed within
Chapter 2, Chapter 3 presented the core ideas behind the research of this
thesis. The ideas were presented in the context of an image compression frame-
work, supporting HVS pre-processing, several different wavelet decomposition
strategies, both uniform and non-uniform quantization, and tools for quality
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assessment. This system has been named the WP/HVS framework (i.e., image

compression using wavelet packets and human visual system characteristics).

Chapter 4. The options and parameters of the WP/HVS framework needed to be

restricted in order to design a fully-functioning, general-purpose WP/HVS co-
dec. In Chapter 4, we report on a “greedy” approach to designing the codec
by independently examining each framework component. The relatively large.
categorized, experimental image library was also introduced. The experiments
executed and reported on within this chapter provided the necessary data for
designing the WP/HVS codec from the framework.

Chapter 5. Having determined the final two configurations of the WP /HVS codec

(i.e.. WP/HVS Pyramid and WP/HVS Insignificance), Chapter 5 applied these
codecs and compared their performance to two other well-known codecs on sev-
eral different images of varying type. The other systems used were the JPEG
(Joint Photographic Experts Group) and a wavelet-based algorithm using set
partitioning in hierarchical trees (SPIHT).

6.3 Thesis Contribution

This thesis has provided several core contributions to the body of research literature

on image compression. The following points clearly define the contribution.

1.

o

Overview. A critical overview of image compression techniques concentrating
on wavelets and incorporating HVS characteristics was provided. The review
indicated that more research is needed on wavelet packets and modeling the
HVS, and on the possible benefits of applying them in tandem. We also provided
justification for not concentrating on second generation compression methods by

presenting many challenges faced by these approaches.

Wavelet Packets. We have examined wavelet packets and have developed
and compared several stopping criteria for a computationally-light, top-down
decomposition approach. An efficient quadtree representation of wavelet de-
composition was developed. We have examined the power spectra of different
images and image types to determine how and why wavelet packet decomposi-
tion yields different results from the pyramidal wavelet transform.

. HVS Modeling. Several critics have suggested that attempts to incorporate

HVS characteristics into compression have not been particularly successful thus
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far [13]. This point is precisely one of our inspirations for further investigation
of HVS modeling. We have examined techniques for modeling the sensitivities
to luminance, spatial frequency, and signal content (i.e., the masking effect).

Gamma correction was investigated as one method of modeling luminance
sensitivity. It was quickly found to be unnecessary due to the built-in gamma

correction in most hardware, which supported previous research.

An anisotropic model of the the contrast sensitivity function (CSF) was used
to design a pre-processing filter, which can eliminate some visually less signific-
ant details from the input image. Through experiments, we found that the CSF
model could only be applied in the WP/HVS codec after some modifications.
The changes made force the CSF filter to pass all low-frequency signals. The
previously defined CSF model could not be directly applied in the codec, which
probably suggests that HVS threshold experiments using sine waves can only
approximate the effects of viewing real images.

A quantizer “stop-band” was designed based on HVS frequency sensitivity
experiments performed by Watson et al., which sets small-magnitude wavelet
coefficients to zero, and also sets the default uniform quantizer bin size (58, 59].
The original Watson experiments were carried out using the wavelet transform
and their results could be directly incorporated into our codec. Other tech-
niques presented in the literature use an arbitrarily set global threshold below
which wavelet coeflicients are set to zero {53, 51]. Our method is based on ex-
perimental evidence of the HVS sensitivity to wavelet coefficients and gives a
unique threshold to each wavelet transform sub-band. This is extremely im-
portant considering the fact that humans are less sensitive to errors in higher
frequencies and diagonal orientations.

A non-uniform quantizer was designed to take advantage of the masking
effect, that is, the effect that greater distortion is visually acceptable in more
active areas of an image. We were able to develop the non-uniform quantizer
in a unique way, without requiring companding or an exhaustive trial-and-error
method. However, it was found that applying the non-uniform quantizer did
not improve compression results. We discussed this result in the context of
supporting other researchers’ findings and in examining the interaction between
the non-uniform quantizer and symbol encoder.
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Combining Wavelet Packets and HVS Modeling. The research done in
this thesis made a particularly important contribution in investigating the effects
of combining wavelet packet decomposition with HVS characteristic modeling.
These two areas are often treated as separate techniques. Incorporating them
into one codec has important implications for quality assessment due to the
interactions between the wavelet transform and HVS modeling. Among these
implications is the fact that measured PSNR can actually decrease with increased

perceptual quality.

Quality Assessment. We have examined the area of quality assessment of
the reconstructed image, particularly the application of HVS modeling in as-
sessment tools. We have stressed throughout that it is important to apply both
quantitative and qualitative assessment mechanisms. Two frequency-weighted
peak signal-to-noise ratio (WPSNR) quality measures were introduced. The
squared-error distortion maps derived from quality measures were also used in

presenting and comparing compression performance.

Thorough Experiments. We have investigated and reported the compression
results on a large variety of images of different types. Our experimental image
library contained 54 images, which is much larger than most reported experi-
ments. This variety of images was used to examine the performance differences
from varying the WP/HVS components, including an unusual direct compar-
ison of uniform and non-uniform quantization within the same codec. We used
a unique “greedy” design methodology to stream-line the WP/HVS framework
into the “best™ possible codec. The performance was compared to other codecs
using both quantitative and qualitative analysis. We categorized the test images
in order to form constructive generalizations of framework results.

. A Quality Codec. The final product of this research work includes a prac-

tical, general-purpose image codec, which incorporates a model of the HVS. The
development of an acceptable distortion factor (ADF) system facilitates a user-
friendly product. Many systems require the user to set a desired compression
bit-rate, which is not convenient since, as we have seen, compressing different
images at the same bit-rate can yield very different qualities. The codec, by de-
fault, maximally compresses an image without introducing perceptual distortion.
This convenience is a strong benefit of the WP/HVS codec. Higher compression
rates can easily be achieved by specifying a higher ADF, in which case distortion
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will be added more quickly into higher-frequency, diagonally-oriented signals,
which is less noticeable to the HVS than distributing the error evenly over all
frequencies. The ADF technique is also far superior to using a global threshold

based only on wavelet coefficient size.

The flexible, computationally-light, wavelet packet decomposition scheme al-
lows greater compression on certain types of images with unusual power spectra,
and also performs well on more typical images. Wavelet packets are adaptive to
image signal content and yet still can support the standard pyramidal wavelet

decomposition scheme.

6.4 Thesis Limitations

There are a few limitations of the research and development approach taken in this

thesis which need to be specified.

1.

o

Codec Design Methodology. Our greedy codec design approach was one
practical technique that could be used to proceed from the WP/HVS framework
to 2a WP/HVS codec. It allowed independent experimentation with framework
components. Without independently testing components, there would be far too
many parameters to examine at once. However, this approach ignores possible
interactions between components and therefore cannot guarantee an optimal
codec. Note that we did examine the interactions between the non-uniform

quantizer and the symbol encoder.

Result Comparison Technique. We developed a simple quality over rate
(@/R) ratio which could be averaged over image category to compare results
with different framework configurations on a level playing field. The results
from such a comparison were used to make decisions about which WP/HVS
components should be kept. The /R ratios could only be considered reliable
for comparing techniques at similar bit-rates due to the nature of the changing
slopes of rate-distortion curves. Even under this restriction, “close™ @ /R ratios
should not be assumed to represent a significant performance difference between

techniques.

Masking. We have not been able to explicitly model the HVS masking ef-
fect. The non-uniform quantizer was designed to do so, but its results were
not encouraging. However, when using qualitative assessment tools to examine
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the codec results, we found indications that the masking effect was being impli-
citly modeled by interactions between the CSF filtering pre-processing and the
uniform quantizer designed with HVS sensitivity in mind.

. Quality Assessment. The weighted PSNR quality measures presented in

this thesis are a definite improvement over PSNR, since they do attempt to
incorporate aspects of the HVS. More comprehensive measures could be and
have been developed, but often these require drastic increases in computational
complexity without complementary improvements in correlation with the HVS.

6.5 Suggestions for Future Research

The image compression research and results presented in this thesis are certainly

limited, and represent only a small fraction of possible work in the area of wavelet

packets and human visual system characteristics. There are many areas in particular

which deserve further attention.

1.

o

CSF Filtering. The WP/HVS codec applies CSF filtering as a fast Fourier
transform pre-processing step. Filtering in this manner is convenient for re-
search experiments and also due to the fact that the CSF itself was developed
from experiments in the Fourier domain. We have found that approximately
75% of compression time is taken by the CSF filtering stage. The ability to
incorporate the CSF into the wavelet packet transform itself should reduce com-
putational requirements significantly and be a more elegant solution to modeling

HVS spatial frequency sensitivity.

Zero Trees. One of the most powerful ideas used in many wavelet-based
compression systems is the zero tree [53, 51]. A tree or sub-tree in the wavelet
sub-band decomposition consisting entirely of zeros or insignificant coefficients
can be represented extremely efficiently by one symbol using this technique.
Incorporating zero trees into the WP/HVS codec could increase performance
substantially, without a significant increase in computational load.

Modeling Masking. Our attempt to model masking with a non-uniform
quantizer was not particularly effective, probably due to interactions with the
arithmetic coder. It is possible that visual masking could be modeled more suc-
cessfully with a method other than non-uniform scalar quantization. Perhaps the
use of vector quantization should be explored in this realm, since dealing with
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vectors or blocks of wavelet coefficients may be a more reliable way to detect

how the presence of a certain signal may mask the visibility of distortion.

. Human Observer Experiments. To better judge the qualitative results of

the WP/HVS codec, experiments involving human observers could be conducted.
These experiments may involve groups of people, a large variety of images (e.g..
50), and different codecs. The mean opinion score (MOS) could be found to
judge the various codecs [42]. The results from such an experiment may indicate
which portions of the WP /HVS codec require more work and also could be used

to test the eficacy of the weighted PSNR measures.

Progressive Transmission. We have not examined the applicability of the
WP/HVS codec to progressive transmission. As briefly discussed in Chapter
2, wavelet-based techniques are well-suited to progressive transmission due to
their multiresolution sub-band nature. It is likely that incorporating wavelet
packets and HVS characteristics may improve progressive transmission, allowing
a higher quality image to be retrieved more quickly.

Other Test Images. Fingerprint and Structured Texture images were found to
benefit from the use of a flexible wavelet packet decomposition as opposed to
the pyramidal wavelet transform. It may be worthwhile to examine other special

types of images to which wavelet packets would be successfully applied.

. Encryption. One final item for future research involves the incorporation of

encryption technology into the WP /HVS codec. Some situations may require
the secure transmission of images over an otherwise insecure network.
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Appendix A
WP /HVS Framework

Implementation Summary

A.1 Introduction

This appendix contains a brief description of the WP/HVS compression framework

implementation, including the source code, C++ classes, and executable programs.

A.2 Source Code

The framework has been implemented using C++ on the UNIX operating system.
It is based on the “Baseline Wavelet Transform Coder Construction Kit” written by
Geoff Davis (gdavis@cs.dartmouth.edu), John Danskin, and Ray Heasman. The code
for the construction kit can be found at

http://www.cs.dartmouth.edu/~gdavis/wavelet /wavelet.html.

Additionally, the weighted PSNR measures are based on the Picture Quality Scale
code, entitled “CIPIC PQS version 1,” which can be found in the

ftp://info.cipic.ucdavis.edu /pub/cipic/code/pqs/

directory. It was written by Robert Estes (estes@cipic.ucdavis.edu) and V. Ralph
Algazi (vralgaziQucdavis.edu).

The above code was modified and extended (by about 3 000 lines) to implement
wavelet packets, non-uniform quantization, and CSF filtering, bringing the total close
to 10 000 lines of documented C++. The documentation is also available in HTML
format, thanks to the cxx2html program written by Darrell Schiebel (drs@nrao.edu),
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available from

ftp://aips2.cv.nrao.edu/pub/aips++/RELEASED /cxx2html/.

A.3 C++ Classes

The most important classes relevant to the framework are shown in Figure A.1.!
The following summarizes the functionality of the depicted classes.

Image. Handles manipulation of grayscale images and representations of wavelet coef-
ficients. Support for file I/O, CSF and weighted PSNR filtering operations, and
calculation of wavelet packet decomposition stopping criteria. The file type used
by default is PGM (portable graymap) developed by Jef Poskanzer.

Quantizer. Abstract class, top of the quantizer hierarchy.

UniformQuant. A single-layer, non-embedded quantizer. Maps each coefficient to a
single symbol which is later entropy coded. The fineness of the quantization can

be controlled.

MaskingQuant. Handles incorporation of HVS sensitivity, including the masking ef-
fect, into the quantization process. The MaskingQuant class inherits from the
UniformQuant class. but is extended to set the stop-band and the acceptable
distortion factor (ADF). Another important purpose of this class is to allow
experimentation with using a non-uniform quantizer to take advantage of the

masking effect.

Matrix. This class implements a simple matrix data structure and includes some oper-
ations useful to matrices, including least-squares fitting of polynomials. Within
the WP /HVS framework, this class is only relevant for attempting to fit a func-
tion to model the non-linear quantizer bin-size parameters.

WaveletTransform. High-level wavelet transform implementation. Breaks wavelet trans-
formed images up into sub-bands. This makes post-processing more convenient
and also independent of the method of transform.

Packet Transform. Analogous to the WaveletTransform class, but using wavelet packet
decomposition.

1The Object class is included only for conceptual reasons and could be implemented as an abstract
base class.
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Figure A.1: Subset class hierarchy of the WP/HVS framework.

Quadtree. Handles manipulating the quadtree structure representation of wavelet packet
decomposition.

Wavelet. Low level wavelet transform routines; performs the actual transform of the
image into coefficients of basis functions.

Packet. Analogous to the Wavelet class, but using wavelet packet decomposition.
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A.4 Executables

There are three executable programs associated with the WP/HVS framework. All
three have thus far been implemented as text-based, command-line programs.

Encode. Takes an input image in raw PGM format and compresses it using the frame-

work.

Decode. Takes an input file of compressed data and decompresses it, yielding the

reconstructed image in PGM format.

Quality. Implements the quality assessment stage. Given the original and reconstruc-
ted images (both in PGM format), Quality outputs the PSNR, the two weighted
PSNRs, and the scaled error images from all three quality measures.

123



