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ABSTRACT

In this thesis we consider second-order vector-matrix differential systems

of the form

(P()Y") +Q(t)y =

(PY'Y +Q(H)Y =0

where P(t) and Q(t) are real centinuous nxn symmetric matrix-valued functions
with P(t) being positivc  Jaiwe, y(t) an n-dimensional vector and Y(t) an
n X n matrix function. By making use of the behaviour of the eigenvalues of
the coefficient matrices, a number of oscillation results are proved. In addition,

some comparison results for the system are also obtaiped.
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CHAPTER I
INTRODUCTION

The oscillation theory for the second order scalar differential equation
(p(2)z") + q(t)z =0 (1)

where p(t) > 0, ¢(t) are continuous real valued functions on the interval [0, c0),
has been studied by many authors. The first fundamental result was the com-
parison theorem of Sturm. The Sturm comparison theorem in its restricted form
was first discovered by Sturm [51] in 1836. Starting with Picone [50] in 1909,
many researchers have since then improved Sturm’s theorem to include a wide
class of coeflicients. For the formally self adjoint second order scalar differential
equation

z" + q(t)z = 0, (2)

Kueser [30] proved in 1893 that if the limit

lim #2(¢) (3)

exists and is equal to a then equation (2) is oscillatory if a > % and nonoscil-

latory if @ < ;. In 1918 Fite [24] proved that q(t) > O together with

[ ate)ds = oo (4)

forms a sufficient condition for the oscillation of (2). Hille [27] generalized

Kneser’s results to obtain the foliowing:



o

(i) equation (2) is oscillatory if

o0 1
lim inf t/ q(s)ds > —, (5)
t—o00 ¢ 4

(ii) equation (2) is nonoscillatory if

oo
limsup t/ p(s)ds < l* (6)
. .

t—o0
It was in 1949 that Wintner [57] removed the condition ¢(t) > 0 in Fite’s result.

He proved that

T_.oo T/ / q(s)dsdt = +o0 (7)

implies the oscillation of (2). Later Hartman [26] proved that in the case of

nonexistence of the limit in (7), the following condition

1 T t 1 T /'t
—oo < liminf ;—/ / s)dsdt < lim su —/ s)dsdt 8
Tﬁoofooq() pogf [ o) (8)

T—o00
is also sufficient for the oscillation of (2). These results were turther generalized
by Olech, Opial and Wazewski [49] and by Willett [56]. Several researchers {26,
52, 55, 57] have obtained a number of results concerning the oscillation and
nonoscillation of equation (1). A well known and more practical result is that

of Leighton [39], who proved that equation (1) is oscillatory if

Many researchers were and still are interested in knowing the extent to which

the oscillation and nonoscillation criteria of the scalar equation (1) have ana-

logues for tlie vector-matrix differential system

(POY'Y + Q)Y =0 (10)
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where P(t), Q(t) are real continuous n by n symmetric matrix-valued functions
on [0,oc) with P{t) positive definite for all # > 0. As in the scalar case, par-
ticular attention was paid to the case when P(t) = I. namely. the formally self
adjoint differential system

Y" + Q(¢)Y = 0. (11)

Etgen [18] has shown that (11) is oscillatory if

lim AtTr Q(s)ds = oco. (12)

t—oo

This result was extended by Noussair and Swanson [48], which in turn was
further generalized by Allegretto and Erbe [1]. Etgen and Pawlowski [20] have
shown that equation (11) is oscillatory if there exists a positive linear functional

g such that
t
lim g[/ Q(s)ds| = +oo. (13)
t—o0 0 d

This resuit was generalized to the self adjoint equation (9). Etgen and Lewis
[19] have shown that equation (9) is oscillatory if there exists a positive linear

functional ¢ s.ch that the scalar equation
(g[P()]z") + 9[Q()]z =0 (14)

15 oscillatory. It has been conjectured [28] that equation (11) is oscillatory at

infinity whenever

t1_1*11010 /\1(/: Q(s)ds) = +o0
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where for any symmetric matrix A, A;(A) denotes the largest eigenvalue of A.
I the case of Q(t) positive semi-definite, the conjecture follows “ om condition
(13). Similarly, the conjecture was first estzblished under various additional
conditions by Mingareili [44. 45], Kwong et al. [38], Atkinson et al. [2], Kaper
and Kwong [36], Butler and Erbe [6, 7], before it was finally settled by Byers,
Harris and Kwong [10] and also by Kaper and Kwong [37]. It is clear that
the eigenvalues of the coefficient matrices P(¢) and Q(f) play a central role
in obtaining oscillation results for equation (10). By drawing more from the
intermediate eigenvalues, using a kind of “trade off”, one can obtain a number
of results for both equations (10) and (11).

In Chapter 2 we introduce notation, give some definitions and enumerate
some basic results which are used in the subsequent chapters. In Chapter 3 we
obtain oscillation criteria for the formally self adjoint system (11). Chapter 4
deals with oscillation criteria for the self adjoint equation (10), whicih can be
regarded as a generalization of Leighton’s result. In Chapter 5 we consider the
problem of multiplying the coefficient matrices by matrices which preserve the

oscillation property of the original systems.



CHAPTER II

PRELIMINARIES

2.1. Notation

The standard notations of differential and integral calculus are used through-
out. We recall the following definitions [49] which we shall use in the coming
chapters.

For any subset E of the real line R, mes(E) denotes the Lebesgue measure

of the subset F.

DEFINITION 2.1.1: Let F(t) denote a continuous real valued function and ¢ be

such that —oco < ¢ < 4+oc. Then

im atp-_;.)ggx inf F(t)=¢
if

mes{t: F(t) < ¢} < +oc0 forall ¢, <?¢
and

mes{t: F(t) < €} = +oo for all ¢, > ¢.

DEFINITION 2.1.2: Let F(t) denote a continuous real valued function and L

be a scalar such that —oco < L < 4+0c. Then
lim approxsup F(t) =1L
t—00

if



mes{t : F(t) > Ly} =+ forall L, < L

and
mes{t: F(t) > L} < +oc for all L, > L.

DEFINITION 2.1.3: For a continuous real valued function F(t) and a scalar m

we write

lim approx F(t) =m

t—oc

if

lim approx inf F(t) = limapprox sup F(t) =m.

t— o0 t—oo

From these definitions, we have, for a continuous real valued function F(t),
liminf F(t) < limapproxinf F(t) < limapproxsup F(t) <limsup F(t).
t—o0 t— 00 t—e o0 t— 0o

2.2. Matrix theory

Unless stated otherwise capital letters will be used to denote real square
matrices of order n xn. The transpose of a - atrix A is denoted by the matrix
A*. The symbcl I will denote the identity matrix. The dimension of I will be
c'ear from the context. The symbol O will denote the zero element. Again, it
would be evident from the context whether it is the zero matrix, zero vector or

a scalar. For n-tuples in R™ and scalars, lower case letters and Greek letters
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are used respectively, and will be mentioned at the beginning of their usage
from time to time if there is ambiguity.

Standard notations of matrix theory are also used throughout. Let A be
an n xn matrix. Then 47! will denote the inverse of A if 4 is nonsingular, i.e.,
det A # 0. A matrix valued function A(¢) = (a4;(t)) is said to be continuous if
each of its entries a;;(¢) is continuous. Similarly A(?) is said to have a property
from calculus if and only if its entries a;;(t) all have that property. For obvious
reasons, symmetric matrices will play an important role. We denote the set of
all symmetric matrices of order nxn by S. With the usual addition of matrices
and multiplication of a matrix with a scalar, S is a linear vector space over
the reals. For any real symmetric matrix A, its eigenvalues, all of which are
necessarily real, will be denoted by Ax(A4), 1 < k < n, and are assumed to be
ordered so that

A(4) 2 A(A) =

/S =

.2 A'z(“{)

As usual Tr A4 will denote the trace of the matrix 4. We huave

Tr A= En:/\,‘(fi).
=1

A symmetric matrix A € S is positive semi-definite (positive definite) if for
all £ € R*, = # 0, the usual inner product (z,Az) is non-negative (positive).
To say A is positive definite (positive semi-definite) the notation A > 0 (A > 0)

will be used throughout. For 4 and Bin S, A > B means A — B > 0.



A linear function ¢ : S — R satisfying

$(A+ B) = ¢(4) + é(B) and

O(AA) = Ao(A)

where a€ R, A,B € S, is called positive and normalized provided

p(A)>0 if A>0and

o(I) = 1.

A non-linear functional ¢ : S — R is called superadditive and (positively)

superhomogeneous if

g(A+ B) =2 q(A) +¢(B) and

g{ald) > ag(A) for a =0

where A,B € S, and is called positive and normalized if

g(A) >0 if 4>0and

o) =1.

Correspondingly, a functional p : S — R is called subadditive and (positively)

subhomogeneous if

p(4 + B) < p(A) +p(B) and

p(ad) < ap(A) for a > 0.
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Note that the conditions on ¢ imply that ¢ is concave and hence is continuous
on S. A sunilar remark is valid for p.

As a positive linear functional ¢ is continuous, we have for integrable A(t),
t t
¢(/ A(.s)ds) = / #[A(s)]ds, a,t€ R+

and

o[B'()] = (4[B(1)]), teR'
whenever B(t) is diiferentiable.

2.3. Results on symmetric matrices

The purpose of this section is to collect some basic results based on the
topics discussed in the previous section. These results will be used repeatedly in
the subsequent chapters. Discussion of undefined terms and detailed accounts
of the topics discussed here and in the previous section can be found in the
references [5, 41, 42]. In the following discussion, all matrices will be assumed

symmetric.

Let
ay a2 ... Qain
azy d2z ... d2q
A=
anl an2 P ann_'

be a symmetric matrix. The principal sub-matrices of 4 are

a1y ... Gk
a;1 a2 .
.41 = [all]1 A2= ....4k=
a1 a22
[279] ees Okk
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These matrices are all symmetric and we have

A1 (Akar) < 2A(AR) < A (Aker)

where Aj(Ax) denotes the 7t characteristic root of the principal submatrix

ayn ... Qaik
Ae=1} 1 1]
k1 -.- QGkk

LEMMA 2.3.1. If A >0 then all eigenvalues of A are non-negative.
LEMMA 2.22. IfA> B, then Tr A>Tr B.
LEMMA 2.33. If A>B and C> D, then A+ C > B+ D.

LEMMA 2.34. (i) If0< A and A£ I, then Tr A > i.

(ii) f A4 B and B>C, then A£C.
LEMMA 2.3.5. If A> B and C =C*, then CAC > CBC.

LEMMA 2.3.6. (i) If A(t) >0 for t € (a,b), then

/b A(t)dt > 0.

(i) If A(0) > O and A'(t) > 0, then A(t) > 0.
b
(iii) / Tr {A@®)TA (AR }dt = Tr {A(a)™'} = Tr {A(B) 7}
LEMMA 2.3.7. If A and B are positive semi-definite and A2 > B?, then A > B.

LEMMA 2.3.8. IL-¢ C and A be positive definite. If ACA > BCB, then A > B.



11

For 1 £k <n, and a symmetric matrix A, we define
O’k(A.) = /\1(:1) e R Ak(A)
and

Pi(A) = Aa(A) + Ans1(A) + -+ + An_krr(4)
where the n eigenvalues of A are ordered in descending order of magnitude.

LEmMA 2.3.9. If A and B are symmetric, then
(i) ox(A+ B) < ox(A) + ox(B);

(ii}) p(A) + px(B) < pr(A + B);

(1ii) |ok(A)|? < kor(A?);

(iv) |px(A)? = |lox(—A)? < kor(A?);

(v) Tr (A) <(n—k+1)oi(A4) < nor(A).

2.4. Definitions

There is a vast literature on the subject of the existence and location of
zeros of solutions of differential equations. In the absence of formal expressions
for the solution of a differential equation, attention is directed to the prob-
lem of obtaining essential characteristics of the solutions of the equation, by
directly analyzing the equation itself. One such qualitative study is the subject
of oscillation theory.

Consider the second-order scalar differential equation

(p(t)z')" + q(t)z = 0, (2.4.1)



12
where p(t) > 0, g¢(t) are continuous, real valued functions on the interval R+ =

[0,0c) and 7 denotes differentiation with respect to t. The oscillation theory

fo. the equation (2.4.1) has been studied by many authors [25, 51, 55, 57 and

continues to flourish.

DEFINITION 2.4.1: Equation (2.4.1) is sald to be oscillatory on the interval
R* = [0, 00) if one (hence all) solution z(t) # 0 of (2.4.1) has arbitrarily large
zeros. The equation is said to be momnoscillatory if it is not oscillatory. Oscil-
latory on the interval R* = [0, 00) and oscillatory at oo mean the same.

The beginning of such a qualitative study can be traced back to the classic
paper of Sturm [51], wherein his celebrated comparison theorem was proved.

We are mainly concerned with the self adjoint differential system
(P)Y") +Q(1)Y =0 (2.4.2)

where P(t),Q(t),Y (¢) are all n x n real continuous matrix functions. We also
assume that P(%), Q(¢) are symmetric and that P(t) is positive definite for

t € [0,00). Also, particular attention will be paid to the special case when

P(t) = I, that is, to the equation

Y" 4+ Q(t)Y = 0. (2.4.3)

We also have the vector systems associated with equations (2.4.2) and (2.4.3)

(P(t)y') +Q(t)y =0 (2.4.4)

and
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¥+ Q(t)y =0 (2.4.5)
where y = col(y;,v2,....y.) is an n-vector.

DEFINITION 2.4.2: Two distinct points to. ¢; € J = [a,b] are said to be (mu-
tually) conjugate relative to equation (2.4.4) if there exists a nontrivial solution

y(t) of (2.4.4) such that y(¢g) = y(t1) = 0.

DEFINITION 2.4.3: Equation (2.4.4) is said to be disconjugate on an interval

J if every nontrivial solution of equation (2.4.4) vanishes at most once in J.

DEFINITION 2.4.4: Equation (2.4.4) is said to be oscillatoryon J = [a, ), a >
0, if for each ty > a there exists a ¢; > ¢ such that equation (2.4.4) is not dis-

conjugate on [t;,c0).

DEFINITION 2.4.5: The system (2.4.5) is said to be right-disfocal on J if, for
every pair of points a, b€ J, a < b, the only solution y satisfying the condition

y(a) = y'(b) = 0 is the trivial solution.

DEFINITION 2.4.6: The system (2.4.5) is said to be left-disfocal on J if, for
every pair of points @, b€ J, a < b, the only solution y satisfying the condition

y'(a) = y(b) = 0 is the trivial solution.

For the first order system

¥ +Q(t)y =0 (2.4.6)

we have the following concepts [47].
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DEFINITION 2.4.7: A nontrivial solution y = col(y1,¥2,...,Yn) of (2.4.6) is

said to be oscillatory on an interval J if yx(tx) = O for some tx € J, k =

DEFINITION 2.4.8: The first order system (2.4.6) is said to be oscillatory if it

has at least one oscillatory solution vector.

DEFINITION 2.4.9: The first order system (2.4.6) is said to be suborthogonel

on J if, for any nontrivial solution vectc y and for any pair of points a, b € J,

the inner product (y(a),y(d)) = kzr_l;l yx(a)yx(b) > 0.

DEFINITION 2.4.10: A solution Y (¢) of the matrix differential equation (2.4.2)

is called nontrivial if detY(t) # 0 for at least one t € [0,00).

DEFINITION 2.4.11: A solutin Y(¢) of the matrix differential equation (2.4.2)

is said to be non-singular ai a € [0,00) if detY(a) # 0.

DEFINITION 2.4.12: A nontrivial solution Y(t) of the matrix differcntial equa-
tion (2.4.2) is said to be oscillatory at oo if det Y'(¢) has infinitely many zeros

in [0,00). If it is not oscillatory then it is called non-oscillatory.

If one hopes to develop an analogue of the classical theory of oscillation for
the scalar case, namely equation (2.4.1), for the linear system (2.4.2), one needs
to consider only certain class slutions of the equation of type (2.4.2). The
following example [48] clarifies the situation. We know that the linear scalar

equation

r 4= 0 (247)
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has ouly solutions of the form
2(t) = ¢ sint + ¢, cost (2.4.8)

where ¢),c; are arbitrary constants. As all these solutions are oscillatory,
equation (2.4.7) is oscillatory. Now consider the matrix analogue of the above

equation, namely the matrix differential equation
Y'"+Y(t)=0. (2.4.9)

As in the case of equation (2.4.7), one expects to see that equation (2.4.9) is

oscillatory (shortly we will give the precise definition). But the following matrix

Y(t) = (cost —sint)

sint cost

is a solution of the matrix differential equation (2.4.9). As detY(¢) =1, we
see that Y'(t) is a non-oscillatory solution of (2.4.9). Hence one has to consider
a subclass of the class of solutions of equations of type (2.4.2). This subclass

i1s that of all prepared solutions.

First, note that if Y = Y (t) is a solution of the equation (2.4.2), then
Y*()[P(t)Y'(t)] — [P()Y'()]'Y(t)=C (2.4.10)
where C is an n X n constant matrix.

DEFINITION 2.4.13: A non-trivial solution Y (¢) of the matrix differential equa-

tion (2.4.2) will be called prepared (or conjoined, or self-conjugate) if

Y(@) [P()Y'(t)] ~ [P())Y'(?)]"Y = 0. (2.4.11)
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Note that a non-trivial solution Y (t) of (2.4.2) is prepared if and ¢ ly if
[P(t)Y'(t)]'Y(t) is symmetric.

As a consequence of (2.4.10) and (2.4.11), Y'(¢) 1s a prepared solution of

(2.4.2) if and only if there exists a € [0,00) such that
Y*(a)[P(a)Y'(a)] — [P(a)Y'(a)] Y (a) = 0.

Thus, prepared solutions can be obtained by starting out with appropriate initial

values.

DEFINITION 2.4.14: The matrix differential equation (2.4.2) is said to be os-

ctllatory if the determinant of every nontrivial prepared solution vanishes on

[a, o0) for each a > 0.

Oscillation of the matrix differential equation (2.4.2) is equivalent to the
oscillation of the vector differential equation (2.4.4) since any solution of (2.4.4)
is of the form y(t) = Y (¢)a for some constant vector a and some nontrivial pre-
pared solution Y(¢) of (2.4.2). For this reason, very often, one studies equation
(2.4.2) to study the oscillatory properties of equation (2.4.4).

Two basic techniques used in studying oscillation and non-oscillation of the
scalar equation (2.4.1) have analogous approaches available for the differential
systems. These techniques are generally known as the nonlinear Riccati integral

equation approach and the variational approach [26].
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2.5. Riccati and Variational Methods
In this section we briefly recall the essentials of the aforementioned ap-
proaches in connection with the study of oscillation and nonoscillation of differ-
ential systems.
Riccats Method: Let Y = Y(t) be any solution {not necessarily prepared) of the

matrix differential equation
(P(OYY'(1)) + Q)Y (¢) = 0. (2.5.1)

Taking R(t) = —P()Y'(t)Y ~1(¢t) and using the fact that ¥ (¢) is a solution of

(2.5.1), we get the Riccati equation
R'(t) = Q(t) + R@®X)PY(t)R(¢). (2.5.2)
Equation (2.5.2) gives the Ricces ii integral equation
t t
R(t) = R(a)+/ Q(s)ds +/ R(s)P~Y(s)R(s)ds. (2.5.3)
1} a

If R(t) is any solution of (2.5.2), from (2.5.2) it follows that R(t)* is also
a solution of (2.5.2). From this observation and by the uniqueness theorem it
follows that R(t) is symmetric for all ¢ if R(t) is symmetric for some value of
t.

If Y = Y{(t) is a nontrivial prepared solution of the matrix differential
equation (2.5.1) with detY'(¢t) # 0 for t > a, then R(t) = —P(t)Y'(t)Y ~(t)
is a symmetric solution of (2.5.2) on the infinite interval [@,00). Thus the ma-
trix differential equation (2.5.1) is oscillatory if and only if the Riccati integral

equation (2.5.3) has no continuous soluticn in some neighborhood of infinity.
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Variational Method: As in the case of scalar equations, variational principles can
be employed to obtain oscillation criteria for the matrix differential system [26].

For any subinterval [a.b] of {0,o0), define

Ay(a.b) = {y:[a,b] > R", y(a) =y(b) =0, y € AC[a,b] and y' € L*(a,bd)},

as the admissible class of vector functions.

We recall the following oscillation criterion for the matrix differential equa-

tion

Y'+ Q)Y =0. (2.5.4)

THEOREM 2.5.1 [26]. The matrix differential equation (2.5.4) is oscillatory if

and only if there is a sequence of intervals [an,bn], with lim a, =oc, and a
n—oQ

sequence of functions Qn € A1(an,bn), such that

bn
/ {1Qn (D)7 — QL(1)Q(t)@n(t) }dt < 0.

Jan



CHAPTER IIX
3.1. Introduction
In this chapter we are concerned with the second order n x n matrix
differential equation

Y'"+ Q)Y =0, te€[a,o0) (3.1.1)

where Y (?), Q(t) are n x n real continuous matrix functions and Q(t) is sym-

metric. We know that the corresponding scalar equation
y'+4q(t)y =0, te€la, ) (3.1.2)

is nonoscillatory on [a, o0) if and only if the Riccati integral equation

t t
r(t):r(t0)+/ q(s)ds+/ r2(s)ds (3.1.3)

io to
has a continuous solution on [t;,o0) for some t5. If y = y(t) with y(t) # 0
for t > ty is a solution of the scalar equation (3.1.2) then r(t) = —y'/y is a

solation of the associated Riccati integral equation (3.1.3). Similariy, we have
seen that if ¥” = Y'(1) is a nontrivial prepared solution of the second order matrix
differential equation (3.1.1), then R(t) = —Y'Y ™! is a symmetric solution of the

corresponding matrix Riccati equation

R(t) = R(to) + Q.1(t) + F(¢) (3.1.4)

where
Ql(t)z[ Q(s)ds (3.1.5)

F(t) = [ R3(s). (3.1.6)

19
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For the scalar equation (3.1.2) Hartman [25] has shown that if equation (3.1.2)

is nonoscillatory on [a,oc), then a necessary and sufficient condition that

/00 (%,->zdt < 20

holds for a solution y # 0 is that

hmlnf —/ /q(s)dsdt> —00.

Hence when studying the oscillation behaviour of the scalar equation (3.1.2),
one has to consider the two distinct cases namely, (i) the above limit does hold,

and (ii) the above limit does not hold.

3.2. Recent results
From the above considerations it follows that one has to consider the

extended real-valued function L which is defined on the class of n xn continuous

real symmetric matrices defined on [a,>) by

T t
L(Q) =liminf %-/ L Tr Q(s)dsdt.

The value of L(Q) will play a central role in the discussion to follow. The
following lemma is due to Mingarelli [44] [see also Butler, Erbe and Mingarelli

[9]], and is the systems analogue of the scalar result of Hartman [25] mentioned

earlier in this chapter.
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LEMMA 3.2.1 [9]. Assume that the second order matrix differential equation

(3.1.1) is nonoscillatory on [a,c0). Then a necessary and sufficieat condition

that
T
lim / R?(s)ds
T—o0 ¢
exists for any solution R = —Y'Y ™1 of

t t
R(t) = R(to) +/ Q(s)ds +/ R?(s)ds
2o to
where Y'(t) is a prepared solution of equation (3.1.1) is that

T t
L(Q) = lim inf %, / / Tr Q(s)dsdt > —oo.

]

As in the scalar case, by considering the two distinct cases L(Q) =
—o0, L(Q) > —oo separately, Butler, Erbe and Mingarelli 9] obtained a number
of oscillation criteria for +he equation (3.1.1), some of which are generalizations

of the scalar results mentioned earlier.

THEOREM 3.2.2 [9]. Assume L(Q) > —oo. Then equation (3.1.1) is oscillatory

if any of the following conditions hold.

(A) Iij{n_.s;p % [;T A1 (‘/at Q(s)a’s)dt = +-o00;
(B) Iiyzzl_:sozip % /;T [Al (A:Q(s)ds)]zdt = +400;

T
(C) lim approx sup /\1(/ Q(s)ds) = +00;
T—‘OO a



[
o

T
(D) limapproxinf )\1(/ Q(s)ds) = —o20.

T—o0

THEOREM 3.2.3 [9]. Assume L(Q) = —oo. Then (3.1.1) is oscillatory if

T
lirn approx sup /\n(/ Q(s)ds) > —00. O

T—rco

As mentioned earlier, Wintner [57] showed that the scalar equation (3.1.2)

is oscillatory if

1 T t
7lim T_/ / q(s)dsdt = +oo.

A partial generalization of this result to systems is

THEOREM 3.2.4 [9]. Assume that

A (f Q(s)ds) >0

for sufficiently large t, and that

_ lAl(f: Q(s)ds)
lim -
=2 [ (f1Q(s)ds)

Then (3.1.1) is oscillatory if

1 T t
’Jh—r-réo -TL Al([z Q(s)ds)dt=+oo.
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Oscillation results for the equation (3.1.1), which involve the quotient of
t t

/\1(/ Q(‘s‘)ds) and A,,(/ Q(s)ds) with some other conditions, were also

given by Butler and Erbe [6].

3.3. Oscillation theorems

Consider the second order matrix differential equation
Y'"+ Q)Y =0, t€fa, o). (3.3.1)
Once again, by considering two different cases depending on the value of
1 T t
L(Q) =li_rrninf i;/ / Tr Q(s)dsdt,

and by using the behavior of the intermediate eigenvalues one can obtain the

following results.

THEOREM 3.3.1. The matrix differential equation (3.3.1) is oscillatory if

(1) L{(Q) > —oo, (3.3.2)
(ii) lim aEDproxinf ak(/ Q(s)ds) = —o0, (3.3.3)

k
for some 1<k < n, where ax(A) = 3 X\i(A4).

=i

THEOREM 3.3.2. The matrix differential equation (3.3.1) is oscillatory if
v/ L(Q) = —o00,

(ii) lim approx sup pk(/‘Q(s)ds) > —oo0, (3.3.4)

to—o0



k
for some 1 <k <n, where px(A) = > An_k+:(A).
i=1

Before we give the proofs of these theorems. we note that by taking

Q(t) = diag(q1(t)....,qn(t)), with suitable ¢;(t), one can construct examples to
illustrate that any one of the (ii) conditions may hold for some kg, 1 < &y < n,
but may fail for all 1 < k£ < k9. Thus each of the above results gives a sequence

of n tests for the oscillation of equation (3.3.1).

PROOF OF THEOREM 3.3.1: Assume that equation (3.3.1) is nonoscillatory

on [a,oc). Let Y

Y (t) be a nontrivial prepared solution of (3.3.1) with
detY(t) # 0 for ¢t > a. Then Z = —Y'Y ™! is a symmetric solution of the

Riccati equation

Z(t) = Z(a)+/.Q(s)ds+‘/ Z2(s)ds (3.3.5)

for t > a. From the assumption made at the beginning of this proof and

condition {3.3.2), we conclude, by using Lemma [3.2.1}], that

T —+c0

T
lim / Tr Z%(s)ds (3.3.6)
t

exists as a finite number. From (3.3.3), it follows that for M > 0,

mes{t : ak(/t Q(s)ds) < -M} = +occ.

From (3.3.6) and (3.3.5) we get

Z(t) + /t°° Z%(s)ds + C = /tt Q(s)ds



£0

where C = —Z(a)— [ Z%(s)ds. Since Z?%(s) > 0, we have
ok(Z(t)) < ok (Z(t) +/ 22(5)d5)
t
t
= ak(/ Q(s)ds — c).
The subadditive nature of ox gives
t
ox(Z(t)) < ak(/ Q(s)ds) + ok —C.

If M >1+4|ox(—C)|, then

L
ak\[; Q(s)ds) < -M
which implies ox(Z(¢)) < —1. Hence
mes{t: ox(Z(t)) < -1} = toc.
This in turn implies

/w (0x2(t))’dt = +oo.

Now using the fact that for a symmetric matrix A we have lok(A)? < kor(A?),
we arrive at

/°° kak(Zz(t))dt = 400

and whence

/ Tr Z*(t)dt = +o0,

which is a contradiction to (3.3.6). Hence equation (3.3.1) is oscillatory.
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PrOOF OF THEOREM 3.3.2: Assume L(Q) = —oo and (3.3.4) holds. If equa-
tion (3.3.1) is nomnoscillatory, then we may assume that there exists a solution
Y = Y(¢) of (3.3.1), with detY(¢t) # 0 on [a,o0). Then Z = Y'Y ! is a

symmetric solution of the Riccati equation

Z(t)=Z(a)+/: Z""(s)ds+/at Q(s)ds. (3.3.5)
Since
oo~ [ @wis) = [ "Qsyds),
we have
o1(200) - [ Qoas) < autzt) +on (- [ Qo))
= ou(20) — x| @ds).
Upon noting that for symmuéric matrices A we have  Tr(4) <

(n —k+ 1)ox(A) £ nog(A), we have

L1 [(220ds = 2 1r(200 - [ Qodds - 2(a)

< ok (Z(t) _ Z(a) — [ Q(s)ds)
< 0u(2() - pr(2(@) - o [ Qo)ds).

That is,

pu(z@) + = Tr( [ 22(01ds) < ox(2) - ([ Qo)ds).



t t
1 Tr / Z%(s)ds > 7—1—/ ox(Z%(s))ds,
n a a

we obtain

pe(Z(a)) + % / ox(Z3(s))ds < ox(2(t)) — pk(/ Q(s)ds). (3.3.7)

If

t
m = lim approx sup px (/ Q(s)ds),

t—no

then for any € > 0, it follows that

mes{t : pk(/j Q(s)ds) >m — e} = —+o00.

We observe that if

pk(/: Q(s)ds) = m — ¢,

then

p(2(@) + - [ ou(Z2(s)ds S ok(Z(1) ~ m + ¢

whence
1 t
mes{t : pr(Z(a)) + ;;/ ok(Z%(s))ds < ok(Z(t)) —m + €} = +oo.
Since L(Q) = —oo, it follows that
t
/ Tr Z*(s)ds — +oo
to

as ¢ — oo and therefore

ak(/atZz(s)ds) — +00



as t — +0o0. We note that if the set E is defined by

FE = {t €la+1,00): )in/ ak(ZQ(s))ds < crk(Z(t))},

a

then mes(E) = +o0o. By defining P(?) as

P@) = [ austis)ds,
we have
P'(t) + 0x(Z%(1)) = T(ox(Z(1))?

and for t € E we have

ox(2(1)) 2 o / ok(Z3(s))ds

which implies that
2 1 52
(ox(ZWN)? 2 5 PA(D).

That is,

1

! >
Pt 2 4n?k

P2(¢t).

Integrating over the set E gives

1 p'(t) 1
= dt > . =
D 2y et w M e
a contradiction. Hence equation (3.3.1) is oscillatory. 0

A simple modification of the above proof leads to the following result.
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THEOREM 3.3.3. The differential system (3.3.1) is oscillatory if
(1) L(Q)=—

t
(ii) limapproxsup Tr(/ Q(s)ds) > —o0. (3.3.8)

t—+00

3.4. More oscillation criteria.

For the scalar equation
¥ +q()y =0, (3.4.1)
Olech, Opial and Wazewski [49] proved that

T
h'mapprox/ q(s)ds = +0

T~—o0

or

T T
lim approxinf g(8)ds < lim approx sup / q(s)ds
a

T—oo a T—oo
implies oscillation of (3.4.1). As noted before, Wintner [57] established that

equation (3.4.1) is oscillatory in the case

1 T t
Tlim T,/ / q(s)dsdt = +oo.

In case the above limit fails to exist, Hartman [26] showed that

T t
—o0 < lxmmf / / g(s)dsdt < limsup -;,—/ / q(s)dsdt
T-—oc0 a a

guarantees the oscillation of the equation (3.4.1). We now concern ourselves

with the matrix equation

Y" + Q)Y = 0. (3.4.2)
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Recently Erbe [15] generalized the above mentioned oscillation criterion for the
scalar equation to derive an oscillation criterion for the second order differential
system (3.4.2). For this he exploited the behaviour of the largest eigenvalue

of the integral of the coefficient matrix Q(t) together with the value of L(Q).

More precisely, Erbe proved

THEOREM 3.4.1 [15]. The matrix differential equation (3.4.2) is oscillatory if
(i) L(Q) > —oo;

(ii) there exists § > 0 such that for all large to, we have

n(te) — pu(to) 2 6

where

1 T t

n(to) = qul:n_folip T /;0 A1 (-/;o Q_(s)dsdt)
S Y t

K(to) = Iglgglozgf T J[o A1 ( /to Q(s)dsdt).

We are interested in determining the extent to which the criteria given
by Olech, Opial and Wazewski mentioned earlier have analogues for the matrix

equation. In this direction, we have

THEOREM 3.4.2. The matrix differential equation (3.4.2) is oscillatory if
(i) L(Q) > —oo;

(ii) there exists § >0 and k, 1 <k <n, such that for all large to,

k(o) — pi(to) 2 6 (3.4.3)
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where

T ¢
nl(to) = lim <up —_1: / O'k(/ O_(s)ds)dt.
to

T—cc ./zo

(38

1 T t
palto) = lim inf 7/: Jk(/:o Q(s)ds)dt.

PROOF: Assume that the equation (3.4.2) is nonoscillatory. Let Y = Y(¢) be
a nontrivial prepared solution of (3.4.2) with detY (¢t) # 0 for t > ¢q. Then

Z = -Y'Y "1 is a solution of the Riccati equation

t t
Z(t):Z(to)+/ Q(s)ds+/ Z3%(s)ds
to to

for ¢ > 5. First we suppose that both ni(to) and ui(tg) are finite. By defining

Q1 (tito) = / Q(s)ds (3.4.4)
.4(t: t()) = Z(to) + /t Zz(S)dS (345)

and using Lemma [3.2.i], we see that lim A4(¢;¢p) exists and hence
t—oo

limi Tr A(¢;t0) exists. Take € > 0 such that ¢ < 2. Using the fact that

{—>c 3

T—o0

T

lim / Tr Z*(s)ds (3.4.6)
t

exists as a finite number, we may suppose that ¢, is sufficiently large so that

t
/ Tr Z*(u)du < € (3.4.7)
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for tp < s <t < +oo and also ox(Z%(t0)) < 5{- The Riccati equation takes the

form
Z(t)y = At  to) + Qu{ti to)- (3.4.8)
Using the subadditivity of ox we have

ok(Z(t)) < or(A(tst0)) + o {Q1 (85 t0))- (3.4.9)

Now, using px(A)+0x(B) < ox(A+ B) < 0k(A)+0k(B) for symmetric matrices,

we obtain
ow(Z(t)) = pr(A(tito)) + ox(Q1(t; t0))- (3.4.10)

From (3.4.5) we get
t Ly
7. (aitit0) S ou(Z(t)) +ou ([ Z%(s)ds).
to
Now using |or(A4)]? < kop(A4?) we get

o Z{to)D? < kow(2%(to)) < €2.

We also have

t t
ak(/ Zz(s)ds) < Tr/ Z%(s)ds < e.
to to

Hence from (3.4.9), it follows that

ox(Z(t, = 2€+ ox(Qr(t:to)) (3.4.11)

for t>t;. Now using the superadditivity of sx, we have that

pr(Altoi ) 2 pr(Z(t0)) + px( / Z%(s)ds) > e,
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so that from (3.4.10), we obtain

ox(Z(t)) > —e + ox(Q1(t:tg)) (3.4.12)

for t > ty. We let T, — oc and 7, — o¢ so that

. 1 [T ) .
limm ——/ O'k(Ql(t.', to))dt = T]k(to) (3413;
Th—oo 1n to
and
. 1 ™
lim / k(@1 (8 to)dt = pi(to). (3.4.14)
Th —00 n Jto
From (3.4.11) we see that
1 [ 2¢(rm — ¢ 1 (™
—/ o(Z(t))dt < —ELT————O-)— 4 —/ ox(Q1(t;t0))dt (3.4.15)
Tn to Ta Tn to
and from (3.4.12) we obtain
1 (T —eTa—ty) 1 [T
-1:‘: [Q O'k\Z(t))dt > _—_C_T_n——_ -+ ﬁ/;o Uk(Ql(t,to)dt. (3416)

Now by the Schwartz inequality
= [ " ou(z(nar]® < X / (on(z(ty2a
— Ok < = log
T J,, T/, °F -
E [T )
< — Z
< T~/;o ox(Z4(t))dt
k T
< —/ Tr Z%(t)dt — 0
T Je,

as T — oco. Hence taking limits in (3.4.15) and (3.4.16) as 7, — o0, T — oo

we get

—€+n(te) £ 0 < 2e + pu(to)
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which in turn gives
nk(to) — pi{to) <6,

a contradiction to (3.4.3), thus proving the theorem when both 7nx(io) and px(to)

are finite. Since ox(A) < kA (A) for all symmetric matrices A, in the case

— O

1 rT t
tg) = limsup — o / ds)dt = +o0,
melto) =limsup 7 | ([ Qs)ds)dt = +o
it follows that

T t
lim sup / A (/ Q(s)ds)dt = +o00.
T— 00 te to

In this case the theorem follows by Theorem [3.2.2]. Finally, we assume that

ni(te) < +oo and ur(tg) = —oo. That is,

Tn

1 b
lim ——/ or(Q1(t;tp))dt = —oo.
Tn Jeo
Hence, we get
—e 4+ Neto) €0 < 2e + pp(ty) = —¢

a contradiction. This completes the proof in its entirety. !

THEOREM 3.4.3. Assume L(Q) > —oc. Then the matrix differential equation

(3.4.2) is oscillatory if there exists § > 0 such that for all large to we have

£(to) + 6 < m(to)

where

£(to) = limapproxinf X;(Q:(t;t0));

t—o0

m(to) = limapproxsup A, (/tt Q(s)ds).

t—o0
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tl
We can now state and prove a more general result :
THEOREM 3.4.4. The matrix differential equation (3.4.2) is oscillatory if
(i) L(Q) > —oo;
(ii) there exists 6 > 0 such that for all large to, we have
m(to) — €x(te) = 6 (3.4.17)

for some 1 < k < n, where

t
2x(to) = lim approx inf ak(/ Q(s)ds);
to

t—oco

t
mi(to) = lim approx sup a’k( Q(s)ds);
to

t— oo

k
ae(A) =D A(A).
i=1

PROOF: Assume that equation (3.4.2) is nonoscillatory. As before let ¥ = Y'(¢)
be a nontrivial prepared solution of (3.4.2) with detY(¢) # 0 for ¢t > t;. Then

Z = -Y'Y ™! is a symmetric solution of the Riccati equation

Z(t) = Z(ty) + /t Q(s)ds +/tZ2(s)ds

for t > to. By defining Q,(¢;t0) and A(t;ty) as before and using Lemma [3.2.1]

it is easy to see that tlirn Tr A(t;to) exists. Taking € > 0 such that € < g,
—o0
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as in the proof of the previous theorem, we may suppose that to is sufficiently

large so that

/90 ox(Z%(s))ds < € (3.4.18)

lox(Z(to))| <€

and

lpe(Z(te))] < e

Now using the Riccati equation and the subadditivity of o we get
ok(Z(2)) < ak(A(tito)) + ox(Q1(t5t0))

< ox(Z(t)) + ou( [ 22(s)ds) + ae(@utito)

< €+ / ox(Z%(s))ds + ok (Q1(¢;t0))

< 2e 4+ o (Q:(2;t0)). (3.4.19)

Similarly, using that fact that px(A4)+0ox(B) < ox(A+B) for symmetric matrices

A and B, we get
t
ou(Z() 2 pe(2(t0)) + on ( [ Z3()ds + Qu(tito)
to
t
2 pu(2(t0)) + o ([ 22()ds) + oul(@utito))
to
> —e + ok (Q1(2; t0))- (3.4.20)
For a symmetric matrix A, we know that

lox(A)? = low(=A)® < koi(A?).
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Therefore it follows that ox(Z(t)) cannot be < —n on a set of infinite measure
and ox(Z(t)) cannot be > 7 on a set of infinite measure for any n > 0. Hence

we get

lim approx ox(Z(t)) =0
t—oc

= lim approxinf ox(Z(%))
t—oo

= lim approxsup ox(Z(t)). (3.4.21)

t—oo

Therefore, from (3.4.19) we have

0 < limapproxinf(ox(A(t; t0)) + ox(Q1(t; to))
t—oo

< 2¢ + limapproxinf ox(Q(¢;t0))

t—oo

= D¢ + ek(tg). (3422)

Similarly, it follows from (3.4.20) that

t
0 2 lim approx sup (px(Z(to)) + ok / Z%(s)ds + Qu(ti o) )
to

t—oo

> —e+ “ma?Rff.f" sup ox(Q1(t; t0))
= —e + mi(ty). (3.4.23)
Combining (3.4.22) and (3.4.23) we get
mi(to) — €x(to) < 6,

a contradiction. Hence (3.4.2) is oscillatory.



CHAPTER IV

LEIGHTON-TYPE RESULTS FOR SYSTEMS

4.1. Introduction

For the second-order scalar differential equation

(p(t)z') +q(t)z =0 (4.1.1)

where p(t) > 0, g(t) € Cla, +00), many oscillation criteria have been developed
[26, 532, 56, 58]. A well known result due to Leighton [39], generalizes the earlier

oscillation criterion of Fite-Wintner which states that the second order scalar

differential equation
" 4+ q(t)z =0 (4.1.2)

is oscillatory in case the coefficient g(t) satisfies the condition

/‘°° q(8)ds = +oco. (4.1.3)

LEIGHTON’S THEOREM. The second-order scalar differential equation (4.1.1) is

oscillatory if

/oo p Y(s)ds = /oo q(s)ds = +oo. (4.1.4)

O

It is of interest to look for analogues of these results for systems.

38
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4.2. An Example

Consider the corresponding self-adjoint matrix differential equation
(POYY'Y +Q()Y =0 (4.2.1)

where P,Q,Y are n x n real continuous matrix valued functions with P(t), Q(¢%)
symmetric and P(t) positive definite for ¢ € [a, +00). We also consider the

formally self-adjoint matrix differential equation
Y' Q@)Y =0 (4.2.2)

where Q(t) is as above.
We shall be interested in an analogue of Leighton’s theorem for equa-
tion (4.2.1). Consider the following simple example [7]): Let P(t) = Q(t) =

diag(e?®', e~2!) in (4.2.1). That is, consider the 2-dimensional system

(15 2] [a]) +[% o) [2] -

Then a nontrivial prepared nonoscillatory solution is Y(¢) = diag(e~*, e'). How-

ever, one can see that

t t
(i) Al(/ P—l(s)ds) and }\1(/ Q(s)ds) both tend to +oo as t — oo:
0 ‘ 0
t
(ii) / det(P~1(s))ds and fot det(Q(s))ds Loth tend to +oo as ¢ — +o00;
0

t t
(ii1) / Tr(P~1(s))ds and / Tr (Q(s))ds both tend to +o0o as ¢t — +oo.
0 0
In the light of the above example, it is not obvious what the analogous theorem

for system (4.2.1) should be.
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4.3. A Conjecture

Using positive linear functionals Etgen and Pawlowski [20] have shown that
¢4 1asion (4.2.2) is oscillatory at oo if there exists a positive linear functional ¢

on the set of all n x n real symmetric matrices such that

tgr&¢([)t Q(s)ds) = co. (4.3.1)

As the trace of a matrix is a positive linear functional, it immediately

follows that equation (4.2.2) is oscillatory at oo whenever

lim Tr( /0 t Q(s)ds) = +o0. (4.3.2)

There are several results dealing with the oscillation of the equation (4.2.1),
and they are largely based on the use of positive linear functionals 1, 7, 19,
20, 21, 28, 54]. The basic result obtained is that equation (4.2.1) is oscillatory
on [0,c0) in case there exists a positive linear functional ¢ such that the scalar
equation

(o(P())y") + ¢(Q(t))y =0

is oscillatory, where it is assumed, without loss of generality, that ¢ is normal-

ized so that ¢(I) = 1.

Although condition (4.3.2) implies the oscillation of equation (4.2.2), Min-

garelli [45], observed that the condition

lim inf Tr(/ot Q(s)ds) = —0 (4.3.3)

may or may not imply oscillation of the equation (4.2.2).
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It has been conjectured (see Hinton and Lewis [28]) that the equation

(4.2.2) is oscillatory at oo if
Jim MQi(8)} = +oo

where Q,(t) = fot Q(s)ds.
In the case of a non-negative definite coefficient matrix Q(z), using the

fact that for such Q(t),

Al([Q(s)ds) < Tr(/: Q(s)ds)

Mingarelli proved that equation (4.2.2) is oscillatory. He further showed that

the conjecture is also true in the case when Q(t) is a constant matrix, namely,

THEOREM 4.3.1. Let Q@ be a symmetric constant matrix. Then

(A) Equation (4.2.2) is oscillatory at oo if Q possesses at least one positive
eigenvalue.

(B) If \;(Q) <0, the equation (4.2.2) is non-oscillatory, and in fact, disconju-

gate on [0, c0).

O
Mingarelli [45] also proved that the conjecture is true under the additional

assumption that

t
liminf 1Tr('/ Q(s)ds) > —oo0.
0

t—o0 t

He [44] later replaced the above condition by

1 t 8
liminf ~ /o Tr( /0 Q(o)de )ds > —oo.
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These results were further generalized by Akiyama, Kaper, Kwong and Min-
garelli [38]. Butler and Erbe [6] showed that the conjecture is true cven if

(4.3.4) does not hold, provided a weaker condition than (4.3.4) holds. In fact,

they proved:

THEOREM 4.3.2 [6]. Let g(t) be a positive, absolutely continuous, real valued

function which is nondecreasing on [a,o0) and assume

. . . 1 t
(1) hmatp_;?;':xmf g(t)Tr(/; Q(s)ds) =£> —o0;
(i) lim approxinf %t)_ at ()\1 /: Q(a)da))2ds = +o00

t
and that tlim Al(/ Q(s)ds) = +4oo0.

Then (4.2.2) is oscillatory.

It was also shown by Butler and Erbe that the condition
t
tli.n;o /\1(,/., Q(s)ds) = 400

can also be weakened somewhat provided a certain relation holds between the

largest and smallest eigenvalues of f: Q(s)ds as t — oo.

THEOREM 4.3.3 [7]. Equation (4.2.2) is oscillatory if one of the following set

of hyvpotheses holds:

(1) (a) lim approxinf Al(/tQ(s)ds> = oo and

/\I(Ql(tv a))
/\n(Ql (ta a'))

(b) lim approx sup

t—oo

> 0;

or
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(2) (a) limapproxsup A1(Q;(t,a)) = co and
t—oo

/\I(Ql(ta a))

Qi ay|

(b) lim approx inf

t— 00

O
Using the behaviour of the other eigenvalues, Atkinson, Kaper and Kwong [2]

proved

THEOREM 4.3.4 [2]. Equation (4.2.2) is oscillatory at infinity if
t
lim ,\,-{/ Q(s)ds} =oco, i=1,2,...,n—1.
t—o0 a

O

Kaper and Kwong in [36] first gave an affirmative answer to the conjecture
when the dimension n equals 2. Finally, Kaper and Kwong [37] showed that the
equation (4.2.2) is oscillatory if the largest eigenvalue of the matrix fat Q(s)ds
is sufficiently large on a sufficiently large set of ¢-values, thus confirming and

strengthening the conjecture.

THEOREM 4.3.5 [37]. There exists a finite number T,, whose value depends

on the dimension n. such that equation (4.2.2) is oscillatory at infinity whenever

liminf{a mes Sala,00)} > T,

a—00
t
where S,(a,) = {t € (a,00) : A\ (/ Q(s)ds) > a} for any positive number

«.

Using the method of Kaper and Kwong [37], we can obtain a similar result for

the equation (4.2.1), in case P(¢) is diagonal such that P(t)< I
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Taking R(t) = —P(t)Y'(t)Y ~!(¢) and using the fact that Y'(¢) is a solution

of (4.2.1) we get the Riccati equation
t t
R(t) = R(a)+/ Q(s)ds +/ R(s)P™'(s)R(s)ds
which can be written as
t
R(t) = F(¢) + / R(s)P~1(s)R(s)ds (4.3.4)
where
F(t) = R(a) + Q:1(t) (4.3.5)
and @,(t) = f: Q(s)ds. For a > 0, define S, as
Sa(a,b) = {t € (a,b) : M{F(t)} > a}.
LeMMA 4.3.6. There exists T, such that
b 1
/ R(s)PY(s)R(s)ds > 1—6I (4.3.6)
whenever mes Si(a,b) > T,.

PRoOOF: Lemina 4.3.6 will be proved by using induction on the dimension n.

When n = 1, we are dealing with the scalar case. In this case A\ {F(t)} = F(t)

and we also have

b b
/ R(s)P_l(s)R(s)ds=/ P~ R?(s)ds.
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As P71(t) > 0, R?%(t) > 0, it follows from (4.3.4), using F{t) > 1, that R(¢) .> 1.
Hence
rb b
/ R(s)P™1(s)R(s)ds = / P~Y{s)R?(s)ds
b
> P'l(t.)j[ R?(s)ds

> P~ (t.)mes S;(a,b)

where t. € [a,b] such that P~1(¢,) = :rer[l};ﬁ]P—l(t)' We can take 7} = ;& and
the lemma is true.

Now assume that Lemma 4.3.6 is true for dimensions less than or equal
to n. For ¥ < n we can establish a number of results, some of which show
that the constant % can be dropped if the set S, is large enough and others
establish the relation between the size S,(u,b) and nomnexistence of continuous

solutions to Riccati equations. In fact. using change of variables and translation

we obtain

LEMMA 4.3.7. If mes Sa(a,b) > 2T, then

b
/ R(s)P~1(s)R(s)ds > al.

The connection between S,(a,b) and the nonexistence of a continuous

solution to the Riccati equation is established in the following
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LeMMA 4.3.8. The Riccuti equation (4.3.4) does not have a continuous solution

on [a,b) if mes Si(a,b) > 20T,.
It possible, assume the contrary. Taking a; = a and &, < b such that
mes Sy(a;,bh) =10 T, we get

b,
R(s)P~'(s)R(s)ds > 1I.

ay

Now let a; = b, and choose b, such that mes Si(as,b3) = %. Consider

t
R(t) = Fu(?) +/ R(s)P™Y(s)R(s)ds, t> a,
where Fy{t) = F(t) + [ R(s)P™'(s)R(s)ds. Note that [5, 42]

by
M{F(1)} zm{F(t>}+An{/ R(s)P~(s)R(s)ds }

> 2 for all t € S;(az,b2).

Hence by the previous lemma we get

b2
R(s)P~'(s)R(s)ds > 2I.

a2

Now let a3 = b; and choose b3 such that res S (a3,b3) = 2. Consider

R(t):Fg(t)-'r/ R(s)P~Y(s)R(s)ds, t> as,

where

b b2
Fy(t) = F(t) + R(s)P~1{s)R(s)ds + RP™(s)R(s)ds.

a) az



Note that A\;{F3(t)} > 4 for all t € Si(a3,b3). Hence we obtain

ba
R(s)P~Y(s)ds > 4I.

az
Note that b, — b < b where b is such that mes Sl(a,l_n) = 162-10 T, and
jat R(s)P~!(s)R(s)ds exceeds any multiple of I as ¢t — b. Hence lemma (4.3.8)

follows.

LEMMA 4.3.9. If mes Sq(a,b) > 22 Ta  then the Riccaii equation (4.3.4) does
[a ]

not have a continuous solution on {a,b).

Assume the contrary. That is, we assume that
t
R(t) = F(t) +/ R(s)P~(s)R(s)ds

exists as a continuous solution on [a,b). Using R(t) = %R(é) we get

t

R(t) = F(t) +/ R(s)P~*(s)R(s)ds

o«

exists as a continuous solution on [aa, ab), where F(¢) = %F(é) and P(t) =
P(,—;—) Letting _{aa,ab) = {t € (aa,ab) : A\;{F(¢)} > 1} note that mes S(aa,ab)
a mes S,(a,b) > 20 T,. Hence R(t) is not a continuous solution, a contradic-

tion.

LEMMA 4.3.10. If mes Sy(a,b) > 2_(1517:1* 6 >0, then

R(t) = ¢ [F(t) + /‘ R(s)P‘l(s)R(s)ds]
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does not have a continuous solution on [a,b).

To prove this, let R(t) = %R(é%) and note that R(t) satisfies

t

R(t) = F(t) + R(s)P7Y(s)R(s)ds. [6%a.8%b)

62a

where B(s) = P(#) and F(s) = F(%). if R(t) satisfy (4.3.4). Defining
S51(6%a,8%b) = {t € (62a,6%b) : M {F(t)} = 1}

note that mes 5;(6%a,6%b) = 62mes Si(a,b). As long as R(t) is a continuous
solution on [a,b), R(t) is a continuous solution on [62a, §2b). Hence we get the
conclusion.

Now we continue the proof of Lemma 4.3.6. Assume that Lemma 4.3.6
is not true for n + 1, where we take Th4; = 20007, + 40n?(n + 1). Hence
there exists a right neighborhood [a,b) of a where mes S1(a,b) > T,4,, but the

solution of (4.3.4) does not satisfy the ordering relation (4.3.6). Without loss

of generality we may assume that

b
/ R(s)P~'(s)R(s)ds = diag(61,62,...,6n+1)

where §; > 6, > --- > 6n41. Then 6,41 < 5. Using the following notation,

t
R(t) = [rijl(n+nx(n+ry, G(t) = / R(s)PT(s)R(s)ds = [pi;()nx1)(x+1)>
and using the fact that P’t) is diagonal and RT = R, we get

L

n+1 b
Ont1 = Z/ a1 (Opji(t)dt < T
j=1 71
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Hence we .

b
1 : -
/a r2 J(t)pul(t)ds < 0 for j=1,2,...,n+1. (4.3.7)

Using these inequalities which put an upper bound on the measure of the set

of points ¢ in (a,bd) where \/Iri_‘_l’j(t)p;jl(t) exceeds any given value we obtain

mes{t € (a,b) 1 \[r2,, (p5i(8) 2 T } < 40n?. (4.3.8)

If (4.3.8) is not true then we get

b
1 1

which contradicts (4.3.7). Thus, if we eliminate from S)(a,b) all those points t

where

\/ r2 1, (0)p5; (1) = 1

for some j and call the remaining set S#(a,b),

1
SHab) = {te(a,0): M{F®)} 21 and /r2,, ;(DP; ) < 55
j=1,2,...,n+1},
then, as mes Si(a,b) > T,4;, using (4.3.8) we get

mes S¥(a,b) > Tnyy — 40n%(n + 1) = 20007,.

We introduce the following partitions of R(t), G(¢) and P(t):

R¥ .(2) rea(t)] PE (1) Onx }
R(t) = T ) P — nxn n
( ) _( r# (t))lxn Q(t) ) (t) len p;—}—l,n—f-l(t)
_G#xn(t) g#xl(t)-
G(t) = T n
“ (0% () wn B@) |
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and noting that

Gty = / Rixn Thn [pf;,: 0 } Rixn(s) mha()] 4
a Tﬁm a(s) 0 Pn+l.n+1 rﬁm(s) a(s)

we have, in n x n dimensions

t t
G#(t)=/ R#P#-KR#(s)ds-}-/ r#p;_}_l'n+1r#rd3.

By taking
A(t) = [R - 10 f R¥# P#"~ R#d3+ i51n Onxl}
19
len 20

len lel

t -1 #T
U(t) = [ll—o.fa folpn-{-l,n-i-lrlxnds Onxl]

2

A G#* g# 3. —r#(t)
—_ 10 —_ 10
Vi = [g#’ =+ 6(t)] > W)= [—r#" 2 - a(t)]

we see that

F(t) = R(t) — G(t) = A(t) — U(t) — V(t) — W(2).

From the definition U(t) > 0 for all ¢t € [a,b]. Now from the definition of

S#(a,b) we have, on Sf#(a,b) that

1 :
\/ T+l ](t)pjjl(t) < Som 201’ J = 1,2,...,11

A / _ 1
rn+1v"+1\t)‘ < vr%+l.n+l(t)pnil,n+l(t) < 57 50m < 30

la(t)| =

t n+l !
B(t) = / r2 1 iPo ! = prrrasi(t) S p(b) = 0nyr < TR
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For any (n + 1)-dimensional vector r = {(Z1,Z2,-..,Tn41)? = (z#,2041)T we

have

9 o m o
(z,V(t)z) = E(I’*,G#(t)I"‘) +2(z¥, g7 (t)Tns1)

+ (55 + 8(0) 224,
> 2(z#,GH()z#) + 2%, g# ()2 nsa)

+98(t)z% 4, + 8(% - ﬁ(t))xi-n
= (4, G()) +8(55 — (1)) T

T
where y = (%:1:#,3:5,,4.1) . Also we have

9 3 .
(z.w(t)z) = Tlls* I = 2, r#znis) + (o5 — alt)) 224,

1 - 1 ,
2 Glel? =23 Irimaal 2l + (55 — a(9)) 234,
j=1 -

using the inequalities which hold on 5§ (a,b) we get V(t) > 0 and w(t) > 0 for
all t € S¥(a, b).

Taking Z(t) = U(t)+V(t)+W(t) we have Z(t) > 0 on S¥(a,b) and A(t) =
F(t)+ Z(t). Since A\{{F(t)} > 0 on the set S;(a,b), it follows that M {A@@)} =1
on S¥(a,b). From the definition of A(t), we see that any eigenvalue of A(%)
that is greater than 1 must also be an eigenvalue of the n x n submatrix in the

top left corner, in the definition of A(t). Hence for t € S#(a,b),

1 [t -1 9
#_ 1 # p#~ p# 2 > _
/\I{R 10/,, R*P* 'R (s)ds+10In} > 1. (4.3.9)



Let F# be defined in terms of R¥ by
F#(t) = 10[R# — 11—0 /at R#P#“R#(s)ds]. (4.3.10)
Then it follows from (4.3.9) that
M{F#(#)} > 1, te S#(a,b).

This leads to the contradiction. We can interpret the definition of F# as a

matrix Riccati equation for R¥,

R*(t) = Tlﬁ [F#(t) +/

a

t
R#P#“R#(s)ds] (4.3.11)

and then the existence of continuous solution R(t) of (4.3.4) on [a,b) implies the
existence of a continuous solution R#* of (4.3.11) on [a,b). On the other hand,
because mes S#(a,b) > 20007, (4.3.11) can not have a continuous solution on
[a,b). Hence the proof follows by induction. g

Now define

Sa(a,o0) = {t € (a,00) : A{Q1(t)} = a}
for any positive . We then have

THEOREM 4.3.11. There exists a finite number T(n) such that

(P(YY'(t)) + Q)Y (t) =0 (4.3.12)

is oscillatory at infinity whenever

lim inf{a mes S,(a,o0)} = T(n). (4.3.13)

a—0o0
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PROOF: Let T(n) = 807, where T, is the number guaranteed by Lemma 4.3.6.
From (4.3.13) we get that mes S,(a,oc) > (%)Tn for o sufficiently large.
Furthermore we also have, when « is sufficiently large and X\ {Q,(t)} > a for

some ¢, that A\ {R(a)+ Q1(t)} > & Hence

5.
40

mes{t € (a,0) : A1 {R(a) + Q1(?)} > %} > = T

But then by the results established as a consequence of Lemma (4.3.6), we get

that the equation (4.3.12) does not have a nomsingular conjoined solution on
[a,oc) and hence is oscillatory at infinity.

O

The above theorem expxiesses the fact that oscillation at infinity is possible

whenever A, {Q(t)} is sufficiently large on a sufficiently large set. The conjecture

guarantees this phenomenon in the case of the formally self-adjoint equation

Y'(#)+ C(s)Y (t) = 0. (4.3.14)

CCROLLARY 4.3.12. If there is a measurable subset J of [a,c0) of infinite

measure, such that
tlim M{@i(t)} =0
—oc

then (4.3.14) is oscillatory at infinity.

4.4. Different Proof of the Conjecture
In this section we are specifically concerned with the self adjoint matrix

differential equation

(P(HYY") + Q(3)Y =0 (4.4.1)
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where P,Q are real, symmetric, continuous matrix valued functions with P(t)

positive definite. In addition to the condition

t
lim ,\1(/ Q(s)ds) = oo (4.4.2)
Hm A

which comes from the corresponding formally self-adjoint system

Y" +Q(t)Y =0, (4.4.3)

various conditions on P(t) (namely on the eigenvalues of P(t)) are required, as
the following discussion will show, in order to conclude that the equation (4.4.1)

is oscillatory. The following are some such results by Butler and Erbe:

THEOREM 4.4.1. The equation (4.4.1) is oscillatory if
t
(i) tll’rg) /\1(/; Q(s)ds) = 0o;

(i1) tll’ngo /t An(P71(s))ds = oo;

and

(iii) liminf M (fc: Q(S)d3>
T A ( f; Q(S)ds)

>0

The following result extends a result due to Mingarelli [45]:

THEOREM 4.4.2 [7]. Let g(t) be a positive, absolutely continuous, nondecreas-

ing function on [a,oc0) and assume

(i) Ixmmf Tr /Q(s)ds —00;

t—o00

(ii) lim E;%S /a,\,,(p—l(s))[,\,/a Q(o)da]2d3=+oo;
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and
t t
(iii) lim ,\1(/ Q(s)ds) = lim / An(P~(s))ds = +o0;

then equation (4.4.1) is oscillatory.

O

Using principal submatrices [5] and functionally commutative matrices

[Chapter 5] Butler and Erbe also proved

THEOREM 4.4.3 [7]. Let g(t) be as in the above theorem and assume P(t) is

functionally commutative on [a,00). Assume further that there exists k, 1<
k < n such that
Sy 1 ‘ :
(i) btr_riégf(%—))rr(/a Qi(s)ds) > —oo;
(ii) lim —3—) t,\ [(P™1(s))k] [A( ‘Qk(a))}2d3=+oo'
t—oo g(t) a , a ’
and
t t
(iii) lim A,(/ Qu(s)ds) = lim / A[(P2(s))]ds = +oo.
Then equation (4.4.1) is oscillatory.
O

Recently Byers, Harris and Kwong [10] proved

THEOREM 4.4.4 [10]. The equation (4.4.1) is oscillatory if

lim sup A(L /\n(P_i(t))dt) >n

where

Sy = {t € [0, 00) : A,(/;Q(s)ds) > ,\}.
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The above Theorem also proves the conjecture.

Coles [12] gave some more oscillation criteria for (4.4.1) by using the
notiont of weighted means introduced by Byei.,, Harris and Kwong [10]. Let

f1, f2»..., fN be non-negative, locally integrable scalar-valued functions defined

on [0,c0). For a matrix-valued function H(t) and ¢ > a = a, define
t
htaH) = [ fils)Hs)ds
t
Jl(t,a;H)=/ fi(s)H(s)ds

t
iyt @) = / fu(s)ds.

For

(V)
IA
-
IA
=

Ik(t,a;H)=/ Fe()k~y(s,a; H)ds
Jk(t,a;H)=/ f,'f(s)f,:_ll(s)Jk_l(s,a;H)ds

ik(t,a)=/ fk(s)ik_l(s)ds.

Ik(t; H) = Ik(t» 07 H)
Je(t; H) = Ji(¢,0; H)

ix(t) = ix(t,0).
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Let
Si={tzon {7’ @ (s /0 Q(s)ds) } =}
Sa(t) = San[t,o0)

L(\) = limsup in(t)- Fn($)An {J5(s; P}ds.
t—o00 g)

Six(

Now we can state the results of Coles:

THEOREM 4.4.5. Equation (4.4.1) is oscillatory if

iN(OO) '

lim sup A/ IN(S)An{JI5'(s; P}ds >
Sa

A—oo

THEOREM 4.4.6. Equation (4.4.1) is oscillatory if

limsup AL(A) > n.

A—~—00

4.5. Leighton-type results for systems

By relaxing the stringent conditions on the smallest eigenvalue of P(t), by
going to some cther intermediate eigenvalue of P(t), and by strengthening the
conditions on the intermediate eigenvalues of Q(¢) one can obtain an oscillation
result for equation (4.4.1). This result can be viewed as a proper generalization
of Leighton’s result meniioned earlier in this chapter. The method of proof is
modeled along the techniques used in Byers, Harris and Kwong [10] and the

result obtained includes Theorem 4.4.4 as a special case when k = 1.
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THEOREM 4.5.1. The equation (4.4.1) is oscillatory if there exists k, 1 < k < n

such that

lim sup )\/ An—ks+1(P7H2))dt > n
A—o0 Sk

where

sk = {t € (0, 00); /\k(/ot Q(s)ds) > A}.

The proof of the above theorem will be based on the following notation and

lemmas.

On the set S of all symmetric n x n matrices we define a relation

>, 1 <k <n as follows:
k

DEFINITION 4.5.2: Two symmetric n X n matrices 4 and B are A > B if and
k

only if 0 _<_ (.4 — B) iff An_k+1(.4. - B) _>_ 0.
k
Note that in the case k = 1, the notion > is nothing but the notion of positive
3

semi-definiteness for symmetric matrices.

LEMMA 4.5.3. If A and B are positive semi-definite such that 4 > 0 and

A? > B?, then A > B.
2 %

LEMMA 4.5.4. If C and A are positive definite then for any symmetric matrix

B,

ACA > BCB implies A > B.
k k

Negating Lemma 4.5.4, we have
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wn

LEMMA 4.2.5. If C and A are positive definite then for a svmmetric matrix
B,

A% B=— ACA ¥ BCB.
k k

Proor or LEMMA 4.5.3. Taking X = 4 — B note that
AT =B =47 - (4 - X)?
=AY + X4 - X2
Hence we get
AY + XA =(4°-B%) + X2
As X* is positive and (A% — B?) % 0 we got
AX+ X4 % 0.

That is. there exists a subspace V,_x4; of dimension n — k + 1 such that, for u

n 17 . we have

Je 'm AT

u*(AX + X A)u > 0.

Suppose that the lemmma is false. This will imply that there exists an orthonor-

mal set uy, uy....,ux such that
u; Xu;, = A1 (X)) <0
for 1 <:<k.
Now for these u;, 1 <1< k. we have
u (AX Xy = 2ul AXuy;

= 2An_it1(X)ul Au; < 0.
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This contradicts the observation made earlier.

PROOF OF LEMAA 1.5.4. We have
ACA> BCB
k

if and only if

A—k1(ACA — BCB) = 0.
Let C!/?2 be a Hermitian square root of C. It fcllows that
An—i1(CY?ACACY? —CY2BCBC'/?) 2 0.

That is.

An_k“((ClﬁAC”?)z _ (C1/2BC1/2)2) > 0.
From the definition of % we have
(C1/2‘_1cl/2)2 > (Cl/chl/z)l_
k
Using Lemma 4.5.3, we get
ciltact? > cVzpCi/?
k

which in turn gives (since C'/? is nonsingular)

A > B.
k
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PROOF OF THE THEOREM +.5.1. We use the Riccati Technique to obtain a

coutradiction.

If (4.4.1) is not oscillutory we obrain
t t
R(t) = R(0) +/ Q(s)ds +/ R(s)P~'{s)R(s)ds

0 0

~t
= R(0) +Q1(t)+/ R(s)P~Y(s)R(s)ds (4.5.1)
0
where R(t) = —P(t)Y'(¢)Y ~!(¢) is symmetric. Defining

F{t) = R(0) + Q1(2)
A(t) = /tR(s)P"l(s)R(s)ds,
g

we note that 4(0) = 0. A(t) > 0, A’(¢) > 0. From the definition of Si¥ and

F(t). for é € (0,1). by taking A sufficiently large we obtain
Fit) £ 6Al for te S,
k
It follows that

F(t) + A{t) £ 6AT + A(t). (4.5.2)
k

Now

A'(t) = R(t)P~Y(t)R(¢)
= (F(t) + A@))P () (F(t) + A(t))

£ (8A] + A())(P™Ht))(OM + A(t)).
k



Ve have

(X + A() TA(1HEN + Ay < P,
k
That is

0 £ (P7H(t) - W(2)
3

where TW(t) = (6M] + A() T A ()N + A(t) ™

Hence we get

Anck+1(PTHE) — W()) <0
which implies that

k
> i (PTHEH) = W(@)) <O

=1

That is, px(P71(t) — W (t)) < 0 and hence

0<or(W =P )< op(W)+ ax(—P7H)

_.'in g

ox(W) > —ox(=P )= pe(P 1)
Therefore we get
pe(P71) < op(W) £ Tr(W) (as W 20)

=Tr(— %(5,\1 + A(t)) ).
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Integrating through SE\k) from 0 to T we obtain

Tr(6AI)™" — Tr((8AI + A(T))™') > /

mﬂk(P_l(s'))dd
s

Z/ An—k+1(P7H(s))ds.
si®)
It follows that

Tr(6A)™! > / A—x+1(P 7Y (s))ds.
s

That is

- -1
I3 > /Sf\h) /\n_k+1(P (S)ds.

Thus we get
A/( )An_k+1(P’1(s))ds < % for large A.
S,\k

By letting A — oc, we obtain a contradiction.

O

We remark that examples may be visualized to realize that Theorem 4.5.1

can be applied even when Theorem 4.4.4 is not applicabi



CHAPTER V

COMPARISON THEOREMS

5.1. Introduction

Consider the second order linear differential scalar equation
z' 4- kq(t)z = 0. (5.1.1)

The function ¢(t) is an oscillation coefficient if for all k¥ € (0,K), the solu-
tions to the above equation (5.1.1) are all oscillatory. This notion of oscillation
coefficient was introduced in the papers of Utz [53] and Waltman [53].

Clearly the function ¢(f) > 0 is an oscillation coefficient if and only if
equation (5.1.1) has oscillatory solutions for all & > 0.

For the linear second order differential scalar equation

LAY

(pt)z"y +¢t)e =0, te0,x) (s

(o1}
r—
o

where p(t) > 0 and p(t), ¢(t) are continuous, as anticipated by Hartman and
Wintner {27], Fink and St. Mary (23] have shown that to each ¢(t) one can

associate a number kg, 0 < kyp < 400 such that the equation

(p(t)y") + kq(t)y =0 (5.1.3)

is oscillatory provided the number k satisfies k > k¢, and nonoscillatory if

0 <k < ko

64
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THEOREM 5.1.1 [23]. If the self adjoint differential equation
(p(t)z') + kq(t)x =0, t € [0,00)

has zeroes at a and b, a< b, and j >k > 0, then

(p(t)z") + jq(t)r =0

has at least one zero in [a,b].

C
This is in the form of the Sturm comparison theorem, however jq(t) # kgq(t)
unless ¢(t) > 0. In fact, jg(t) > kq(t) on {t/q(t) = 0} and jq(t) < kq(t) on
{t/q(t) < 0}. It is not true that q; > q on {t/q(t) > 0}; ¢; < ¢ on {t/q(t) < 0}
implies

(P(H)z') +aqi(t)z =0 (5.1.4)

oscillates faster than

(pz') + g9z = 0. (5.1.5)

By taking qi(t) = q(t) on {t/q(t) > 0} and ¢i(t) = 2¢(¢) on {t/¢(t) < 0}
and by using the Sturm comparison theorem, one observes that equation (3.1.4)
oscillates slower than equation (5.1.5) and hence it can be concluded that the
above theorem is not valid for a non-constant multiplier of a given function, in
general. However, the result (Theorem 5.5.1) also follows easily from Sturm’s
First Comparison Theorem (cf. [26], p.334) by rewriting the equation and ob-

serving that -j-p(t) < ip(t) if 3 >k>0.
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But Erbe [16] showed that the constant k can be replaced by a class of
functions k(t). That is, multiplying the coefficient ¢(¢) by a certain class of

nonconstant functions also preserves the oscillation property.

-~

THEOREM 5.1.2 [16]. Let z(t) be a nontrivial solution of

(p(t)z") + q(t)z =0
sarisfving z(a) = z(b) = 0. Let k(t) € CV|a,bd] satisfving k(t) > 1 on [a,b] and
n .me pk' is nonincreasing on [a,b]. Then every solution of

(p(t)z') + E(t)g(t)z =0

has a zero on (a,b).

O
In [33] Kwong showed that Erbe’s result is still true for a much wider

class of functions.

THEOREM 5.1.3. [33]. Let k(t) € CV"" " o0) such that
(i) k(t)=1

¢ s)k'?(s) )
(i) ‘2p(t)k'(t)——3/ %ﬁ—lds is nonincreasing for large t. If the equation
0 ‘

(pz') + gz =0
is oscillatory, then so is

(pz")' + k(t)q(t)z = 0.
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5.2. Comparison problems for systems

Consider the second order n x n matrix differential equation

(POY'Y + Q)Y (1) =0, € [a,o00) (5.2.1)

where P,Q,Y are n x n real continuous matrix functions with P(t),Q(t) sym-
metric and P(t) positive definite for ¢t € [a,o0). We also have the associated
vector system

(P(t)y") +Q(t)y =0

—~~
(&1}
to
o

N’

where y =cc  jy1,Y2,-.-,Yn) IS an n-vector.
Our interest now is the following:
Assume that the equation (5.2.1) is oscillatory. What are the relations

between P and P;, Q and @, which ensure that the equation
(AY')Y +@,Y =0, tela, o)

1s also oscillatory?

In one direction, as we have seen, by imposing a partial ordering on the
set of Hermitian matrices, several authors have proved a number of results using
a direct relation between P and P;, Q and Q,; in terms of the partial ordering.
The other direction is the problem of determining for what matrices A(t) for

which the second order n x n matrix differential systems
(PY")Y + AQY =0

and
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(PY') + AQAY =0
are oscillatory? It is this latter problem we shall concentrate on in this chapter.

5.3. Functionally commutative coeflicients

First, we recall the definition of functional commutativity of a matrix.

DEFINITION 5.3.1: A continuous n X n matrix valued function Q(t) is said to

be functionally commutative on an interval J if

Q(s)Q(t) = Q(t)Q(s) for all s,t € J.

We need the following characterization of functionally commutative matrices

Freedman [22].

LEMMA 5.3.2. Let Q(t) be a diagonalizable n x n matrix which is functionally
commutative on an interval J. Then Q(t) has a constant set of eigenvectors
and therefore there exists a constant matrix P such that Q(t) = P~'D(t)P,

where D(t) is a diagonal matrix.

LEMMA 5.3.3. Let A,,...,An be a given set of n x n matrices. Then the

following statements are equivalent:
(i) A; is diagonalizable for each i, and A; commute pairwise;

(ii) A,,...,AN can be simultaneously diagonalized.

The above lemma 5.3.3 may be found in Drazin, Dungey and Greuenberg [14].

For a differential equation with functionally commutative coefficients, we have
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THEOREM 5.3.4. Suppose that
Y' 4+ Q)Y =0. teE|a.x) (5.3.1)

is oscillatory and assume that

(i) Q(t) is functionally commutative, symmetric and continuous;

(ii) A(t) and Q(t) commute;

(iii) A(t) 1s symmetric, twice differentiable such that A(t) > I, and A"(t) < 0.
Then

Y'+AR)QR)Y =0 (5.3.2)
is oscillatory.

PROOF: Since Q(t) is symmetric and functionally commutative on the interval

J = [a,00), we can use the above lemma [5.3.2] and write
Q(t) = P"'D(¢t)P (5.3.3)
where D(t) is diagonal and P is unitary. Using X(¢) = PY(t) in equation
(5.3.1) we obtain
X"(t)+ D(t)X(t) = 0. (5.3.4)
The above equation (5.3.4) is oscillatory. Actually, Y (¢) is a prepared solution
of (5.3.1) if and only if X(¢) is a prepared solution of (5.3.4), and in fact

both equations exhibit the same oscillatory or nonoscillatory behavior. Thus,

in particular the soltuion X;(t) satisfying

Xo(a)=0, Xgyla)=1 (5.3.5)
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is an oscillatory solution of (5.3.4). The solution of (5.3.4) satisfying the initial
condition (5.3.5) is diagonal for all ¢ > a, and so Xo(t) = diag{z,(t), z,(t),..., . (t)}.

For this solution, (5.3.4) can be written in the form
! +d;(H)zi(t) =0, i=1,2,...,n
where D(t) = diag{d,(t),d2(t),...,dn()}.

Since det Xo(t) = [] :(t), Xo(t) oscillates if and only if one of the func-

=1

tions z;(t) oscillates. That is, the equation
iy + 2io(B)Tio(t) = 0 (5.3.6)
is oscillatory for some 15, 1 < 73 < n. Therefore by Theorem 5.1.3, we get
iy + Nig(t)qioTio(t) = 0 (5.3.7)

is oscillatory for some iy and for every A;,(t) such that A;;(¢) > 1 and A} (¢) < 0.
Since Q(t) and A(t) are diagonalizable and commute, Lemma 5.3.3 shows that

Q(t) and A(¢) can be diagonalized by the same constant matrix P. That is
A(t)Q(t) = PT'ADP (5.3.8)

where A = P7!AP and A(t) = diag{A\i(¢),...,A.(t)}. Now taking X(t) =

PY(t), where Y () is a solution of 5.3.2, we get

X" + A(1)D{t}X = 0. (5.3.9)
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Now using the conditions on A(t) and observation (5.3.7) we conclude that
equation (5.3.9) is oscillatory. Hence Y(¢) is an oscillatory solution of equation
(5.3.2). a

In the case of a constant matrix 4 we have

COROLLARY 5.3.5. Suppose equation (5.3.1) is oscillatory and assume that
(i) Q Is functionally commutative;

(ii) 4 and @ commute;

(iii) A=A">1I,;

then (5.3.2) is oscillatory.

5.4. Comparison results
In the following we no longer require functional commutativity for the
coefficient matrix Q(t). Using the Variational Technique, for vector systems,

we have
THEOREM 5.4.1. Suppose

¥ +Q)y=0 (5.4.1)
is oscillatory. Then

'+ AQ(t)Ay =0 (5.4.2)

is oscillatory for all constant matrices A = A* > I,.

PROOF: Since A is symmetric and A > I, there exists an n x n real orthogonal

matrix P such that

PlAa-DNHP=T>0 (5.4.3)



-]
[

where T is a diagonal miatrix. Hence we have
P 'ap=I+T (5.4.4)

which says that P also diagunalizes 4. From ihe condiudons on A iv follows

that the eigenvalu=s of A2 are greater than or equal tc 1. whick in turn implies
g g q P

that the eigenvaliies of A2 are less than are equal (o 1.

From Theo-en: {2.5.1], for some interval [a,b] and for some u in A,(a,b)

we have
b
Jo(u) = / [Iu'[2 — u*Quldt < 0. (5.4.5)

Taking v = A~ we have, v is in the same space as u, and

o = (V)

=u""A"%. (5.4.6)

We also have

VAQAv = u" AT AQAA T I
= u"Qu. (5.4.7)

Using the above observations we get
b
Jaga(v) = / [[v'|? — v" AG Av]dt

a

&
:/ [u"A—Zu' —u'Qu]dt

b
< / [lu'|? — u*Qu]dt < 0 (5.4.8)
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and so by Theoremn {2.5.1]. the result follows.
A more general result is the following

THEOREM 5.4.2. Let
(PHy'Y + Q(t)yy =0 (5.4.9)
ber oscillatory.  Then
(Pit)y') + AQAy =0 (5.4.10)
1s oscillatory for all constant matrices 4 for which
i) A=4">1,:

{11) 4 and P(t) commute.

O
For matrix systems we have the following result for nonconstant matrix

multiplicative coefficients.

THEOREM 5.4.3. Suppose
(AD}’l>’ '% Q}’ — 0

is oscillatory. Ascume that B is syvmmetric and satisfies
(1) BB'=B'B, B>1I;

(i} P3B = BP%;

(iii) PB'= B'P;

(iv) (PH'YH >0 where H=B"".

Then

(PZ"y + BQBZ =0 (5.4.12)



is also oscillatory.

Proor: If equation (5.4.12) has a nontrivial prepared solution Z = Z(t) with

det Z{t) #£ 0 for + > ¢, then taking S(#) = —PZ'Z7! we have

S'itv=~iPZ'YZ '+ PZ'27'Z2' 27!}

= BQB + S(t)P7!5:t).
Thercfore S(t) is a symmetric solution of the Riccati integral equation
t t
S(t) = Sljto)-%/ BQBds +/ S(sYP71(s)S(s)dsx. (5.4.13)
to to
By taking R(t) = B~'S(t)B~! we note that

R *y=—-B 'B'B7'S(t)B"'+ B !S'(t)yB™' —B"'S)B~'B'B~!
=Q+ B 'S(t)P"'S(t)B~* — B"'B’B-'S(t)B~' — B~!S(t)B~'B!'B™!
=Q+ B '5()B"'!BP"'BB"'S(t\B™! ~B"'B'R—- RB'B™!

=(Q + RBP " 'BR - (RB'B™!' + B"'B'R). (5.4.11)

Integrating. we obtain

t t
R(t) = R(c) +/ Q(s)ds + / (RBP~'BR -~ B~ 'B'R— RB'B~")ds
t t
= R(c) + / Q(s)ds + / (RBP™'BR - B 'B'B-'BR— RBB~'B'B~')ds.

That is,

¢ t
R(t) =R(c>+/ Q(s)ds+/ (RB"'BR+ (B™'YBR + RB(B™'))ds.
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Now by taking Wity =R +~ PHH'. where H = B™!. we observe that

Wity H'PT'H'Wit)=iR+ PHH'YH 'P"'H"Y(R+ PHH')
=RH'P'H 'R+ RH ‘P 'H 'PHH'
+~PHH'H'P'H 'R+ PHH'H P 'H 'PHH'.

Using PB = BP and HH' = H'H we get
W((HH'PT'H™'W{t)=RBP'BR+ RH™'H' + PH'P"'H 'R+ P(H'}>.
Using PB' = B'P we get
W(t)H 'PT'H'W(t)=RBP'BR+RH 'H'+ HH 'R+ P(H').
'sing this in the above Riccati equation, we get
t t b4 ,
Wity = PHH' —/ P(H') + R(c) + / Q(s)ds +/ W(s)H *P T 'H ™ W(s)ds
) t t
=Q(#)+R(c)+/ Q(s)d5+/ W(s)BP 'BW(s)ds. (5.4.15)

~

We note that (5.4.15) is the Riccati equation corresponding to the matrix dif-
ferential equation

(B7*PZ") +(Q'+Q)Z = 0. (5.4.16)

Since Riccati equation (5.4.15) has a solution we get that equation (5.4.16) is
no: oscillatory. Since P has symmetric square root which commutes with B and

B > 1 we get B7*P < P. Since (PH')H > 0, we get

(PHH'Y > P(H")?.
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That is Q" > 0. Hence we get equation (5.14.11) is nonoscillatory. This contra-

diction implies that equation (3.4.12) is oscillatory.

5.5. IDisconjugacy

Consider the second order vector differential equation

(P(tyy') +Q(t)y =0. i(5.5.1)

In addition to the usual assumptions on P(t¢) and Q(t) we assume that P(t)
is functionally commutative on the iuterval J. Then there exists a constant
matrix T such that T7* = [ and P(t) = T-!'D(t)T where

Dit) = diac{d;(t).d2(t)..... da(t)), d.(¢) > 0. Taking r(t) = Tylt) we get that

r{#) satisfles the equation

(D(t)z') + Q:{t)z =0 (5.5.2)

where
Q,(t) = TQ(HT L. (5.5.3)
Let z(t) = col(z,,z2,...,zn) be a solution of (5.5.2). Taking z(t) = col(er, Dzx')

for some € > 0. we get

L= ex' . 0 eD™! €x .
T {-Qiz | |- 0 Dz’ |-
That 1s

' =C(t,e)z (5.5.4)



'.Vll“!'(-‘

0 eD™!
'—E—IQI 0

”
ot
Jt

C'(t,e) = [

Using a result of Nehari (47, we gor that equation (5.5.4) is nonoscillatory on

fHQW<

where  fC7| denotes the matrix norm  sup ||Bv| and lv|| is the Euclidean
\ .
Hull=1

y .
1'11. hiaf
L j

(5.5.6)

N

Lo~ of vector v.

Taking u = col(zy,z2,...,2x) and v = col(zp41.....22n) we note that
HCz||? =(C=2,C=)

_ eD 1ty ] [ eD™ 'y ]
- l—e‘lQlu- ’ t—e'lQlu

= EID7 ol + €2 Quulf?
< NPT + QP 2

< max (FUDTR, ¢ HIQ, )2zl

hence
ICIl < max (e]| D7, €7'|Qu]))- (5.5.7)
If = (z,,... ,zn)T 1s a solution of (5.5.2) then taking w = (th,) we can
reduce the second order equation (5.5.2) to the first-order system
w' +Ciw =0 (5.5.8)

where



0 -D-1
a=ll %]
If = =1(x1..... T,) is a nontrivial solution such that r(a) = r{b) = 0 then
r{a) =z;(b) =0 for 1=1.2...., n. By Rolle’'s theorem we get y,(t,) = 0 for

some t,, a <t <b.1=1..... n. This means that every component of u has

a zero and hence equation (5.5.8) is oscillatory. Thus nonoscillation of (5.5.4)

implies that equation (5.5.2) is right and left disfocal and hence

THEOREM 5.5.1. If

o] A

b

[ max (DML Qe <
for some € > 0, then equation (5.5.1) is nonoscillatory on the interval I = [a,b].
O

THEOREM 5.5.2. If for some € > 0,

b
[ max (D7 @it <

then equation (5.5.1) is disconjugate and right — and left - disfoc-] on [a,b).
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ABSTRACT

The mechanism of bilirubin toxicity to the central nervous
system has been the subject of numerous investigations over the
past decade. The results of several clinical and experimental
studies suggest that bilirubin is toxic to various cellular functions
with reversibility of early stages of bilirubin encephaiopathy. Yet,
the major biochemical defect underlying bilirubin toxicity has not
been completely elucidated. The difficulties in analyzing the
results and the inability to point to a primary target of bilirubin
toxicity stem from variatiors i exzerimental design, the use of
different animal models and cell systems, and the use of unstable
bilirubin mixtures. Specirophotometric measurements
demonstrated that bilirubin in tissue culture meria, at
concentrations of 35-125 uM and at bilirubin-to-albumin [B/Aj
molar ratios up to 3, is stable over a 24-hour period. The 15e of a
neural cell line and the presence of appropriate atbumin
concentrations are advantageous. We have measured the interaction
and toxic effects of bilirubin to N-115 cells, » murine
neurcblastoma cell line. The results obtained point to a multistep
interaction process between bilirubin and the plasma membrane.
Bilirubin binding is dependent on bilirubin concentration, B/A
molar ratios, temperature and pH conditions, and is partially
reversible with the addition of albumin. Under appropriate B/A
molar ratios, bilirubin was found to affect Na+/K+ ATPase
activity, [3H]-thymidine uptake, L-[35S]-methionine incorporation

into protein, and mitochondrial functions. The toxic effects seem

v



to be dependent again on B/A molar ratio, bilirubin concentration,
and length of exposure. However, it is not possible to single out
the primary target for bilirubin toxicity conclusively. In N-115
cells, once toxicity appeared, it was irreversible. Moreover,
toxicity appeared long after removal of the bilirubin-containing
media following a short-term exposure to bilirubin, during which
toxicity was not manifest. We conclude that, under appropriate
experimental conditions, the binding interaction between bilirubin
and the cell plasma membrane is complex, and that bilirubin is
toxic to several celiular functions in N-115 cells in a progressive

and irreversible process.
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CHAPTER 1

GENERAL INTRODUCTION



1. Introduction

Hyperbilirubinemia is a common occurrence in the newborn
period. Bilirubin encephalopathy (kernicterus) is a major
complication of the toxic effect of bilirubin on brain cells.
Originally described in jaundiced newborns, it has been seen in

recent years in premature infants suffering from a mild degree of

hyperbilirubinemia.

The protection of the newborn's brain from bilirubin has been
attributed to a number of factors, among them the capacity of
albumin to bind bilirubin, the integrity of the blood brain barrier,

and the integrity of the neural celis.

The mechanism of bilirubin encephalopathy has been
extensively studied over the past decade. However, the primary
target, the toxic manifestation and the nature of the interaction
between bilirubin and neural cells remains unclear. Studies
conducted on neural and on non-neural cells and tissues
demonstrate that bilirubin may impair a large number of cellular
functions. However, the use of bilirubin concentrations higher than
those usually encountered in clinical situations, and the use of
varying albumin concentrations may account for the multiplicity of

effects and inconclusive results.

The use of bilirubin without the addition of albumin or at
high bilirubin-to-albumin molar ratios causes rapid aggregation
and precipitation, auto-oxidation, and decomposition of the

pigment, as well as photoisomerization of the natural occurring

19



bilirubin IX-a isomer. Since bilirubin may be poisonous to cells,

clearly it is important to establish appropriate experimental
conditions under which bilirubin is maintained in solution

throughout the time the cells are exposed to bilirubin.

The purpose of the work herein described was to establish
the appropriate experimental conditions for studies related to
bilirubin and its cellular interaction and to define the following:

1) The interaction between bilirubin and the neural cell.

2) The target and mechanism of bilirubin toxic effects.

in the following sections a number of subjects will be
reviewed:

1) Neonatal jaundice.

2) Bilirubin metabolism, structure, and binding properties.

3) Bilirubin toxicity.

4) Kernicterus and bilirubin encephalopathy.

5) Studies on bilirubin toxic effects.



2. Neonatal Jaundice

Hyperbilirubinemia is a common occurrence during the
neonatal period. Clinical hyperbilirubinemia is defined as a serum
bilirubin concentration that exceeds 26 umol/L, and is common to
most newborn infants during their first week of life. In 10 to 15%
of all normal-term babies, hyperbilirubinemia becomes
sufficiently high to be visible as jaundice [1]. Although the
majority of jaundiced full-term babies appear completely healthy,
standard textbocoks of newborn medicine mandate diagnostic
investigation to rule out pathologic causes of jaundice in those
infants whose serum bilirubin concentrations exceed a level of 170
to 220 pmol/L [2,3]. The incidence of serum bilirubin
concentrations above 220 pumol/L ranges from 4.5% to 20% during
the first week of life [4,5]. Although the presence of
hyperbilirubinemia engenders some concern, 56% of infants whose
serum bilirubin concentrations exceed the above levels show no

cause for the jaundice [6].

There are many causes for neonatal hyperbilirubiremia unique
to the fetus and the newborn. During the last stages of fetal life,
removal of erythrocytes provides an increasing load of hemoglobin
for catabolism. This resuits in an increase in bilirubin production
[7]. The normal newborn produces more than double the bilirubin
production of 3.6 mg/kg/day observed in the adult. Moreover, no
rate-limiting step in hemoglobin catabolism and unconjugated

bilirubin formation is recognized in the mammalian fetus
(8,9,10,11].



The disposal mechanism for bilirubin in the fetus involves two
pathways. The vast majority of unconjugated bilirubin is cleared
via the placental circuiation into the maternal circulation, where
it is disposed of by the maternal liver [8,10]. The second pathway
involves excretion by the fetal liver. This pathway is iimited due
to several factors. Foremost among these is a marked deficiency
in hepatic uridine diphosphate glucuronyltransferase, noted in
human as well as other mammalian fetuses [7]. As a result, the
conjugating capacity of fetal liver is almost undetectable. Other
factors associated with decreased hepatic clearance of bilirubin in
the fetus are reduced hepatic blood flow and low levels of bilirubin
tinding proteins [9,11]. However, as a result of the different
gisposal processes, unconjugated hyperbilirubinemia is rarely
evident at birth, even in severe cases of hemolytic anemia in the

fetus.

The newborn infant, like the fetus, has several impairments in
bilirubin metabolism and transport. These include increased
bilirubin production [7], deficiency of hepatic bilirubin binding
proteins and decreased glucurcnyltransferase activity [12,13], as
well as increased enterchepatic circulation of bilirubin [14]. Taken
together, these factors usually result in the occurrence of
increased concentrations of serum unconjugated bilirubin during
the first days of life. Clinically, this is usually defined as
"physiologic jaundice of the newborn" [15]. Yet, in certain groups of
infants this phenomenon is exaggerated and the jaundice becomes

pathological. A variety of conditions may result in unconjugated



hyperbilirubinemia : hemolytic disorders, polycythemia, increased
extravasation of blood, increased enterohepatic circulation of
bilirubin, defects in bilirubin metabolism, breast feeding, inherited

metabolic disorders and prematurity [2,3].

There are two functionally distinct periods in physiologic
jaundice of the newborn . The first is observed during the first 5
days of life and is characterized, in the full term infant, by a rapid
rise in serum unconjugated bilirubin concentration to a peak of
100-120 pmol/L on the third day of life, and a rapid decline until
the fifth day. In the premature infant, the peak value is higher and
does not occur until the fifth to seventh day of life. The second
period of physiologic jaundice is characterized by a relatively
stable serum unconjugated bilirubin level of about 35 pmol/L that
lasts until the end of the second week, in term infants, or for more
than a month in preterm infants. After the second stage, serum
unconjugated bilirubin concentrations decline to levels observed

in normal adults [ 3,15,16,17,18,19].

Many studies of serum bilirubin concentrations in normal-
term and in premature babies have provided guidelines for the
diagnosis of "physiologic” and pathologic jaundice [4]. Pathologic
jaundice is suspected whenever the following criteria are present:
1) Clinical jaundice in the first 24 hours of life.

2) Total serum bilirubin concentration increasing by more than

85 umol/L per day.

3) Total serum bilirubin concentration exceeding 220 pumol/L in

term infant and 255 umol/L in prematures.

)



4) Direct serum bilirubin levels over 25-34 umol/L.
5) Clinical jaundice lasting more than a week in a term baby, or

two weeks in a premature infant [3].



3. Bilirubin Metabolism

Bilirubin is formed by the catabolism of different heme
proteins including hemoglobin, myoglobin and heme-containing
enzymes such as cytochromes, catalases and pyrolases [20].
Hemoglobin is the principal source of bile pigment in mammals,

accounting for approximately 80% of the daily bilirubin production
[21].

The metabolic pathway of heme catabolism has been
clarified to a considerable extent [22]. Heme (Plate 1) is
catabolized by a microsomal heme oxygenase localized primarily
in the reticuloendothelial system [23], in tissue macrophages,
and in the intestinal brush border membranes [24]. Inside the
microsome, the porphyrin iron - located within the cyclic
tetrapyrrole - is reduced, and %1 oxygen radicale is generated.

Radicale attack and subseque:: oxidation of the carbon atom at

the o.-methene carhon position, break the porphyrin ring. As a

result, biliverdin IX-a is formed with loss of the ircn atom and

release of carbon monoxide. In mammals, biliverdin undergoes
further reduction to bilirubin IX-a (Plate 2) [23]. The conversion

is catalyzed by biliverdin reductase located in the cytosol [23].



Plate ' Enzymatic oxidation of heme.
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Bilirubin is a waste product and has no appa-ent function.
Although the concentration of bilirubin in the serum is generally
low, its ccncentration in the bile is significantly higher [2C]. Five
steps are involved in the transport of bilirubin fro.i its s:tes of
formation to the intestinal tract:

1) Transport in the plasma firmly bound to albumin [25].
2) Carrier-mediated transfer of bilirubin into the hepatocyte and

binding to acceptor proteins located in the cytosol [26,27].

3) Hepatic conjugation that renders the pigment polar and water

soluble [28].

4) Excretion of conjugated bilirubin into the bile [28]

5) Transport and elimination in the intestine [29,30].

Once inside the liver cell, bilirukin is transported to the
smooth endoplasmic reticulum where the insoluble pigment is
conjugated, thus converted into a water-soluble monoglucuronide
pigment [29]. The final step in bilirubin metabolism, within the
hepatocyte, is a second glucuronidation which takes place in the
cytosol by a plasma membrane-bound enzyme [29]. Bilirubin mono-
and diglucuronide are then excreted into the bile. When conjugated
bilirubin reaches the sterile newborn intestine, the normal
reduction of bilirubin to fecal stercobilinogen does not occur.
Instead, a large proportion of the bilirubin is hydrolyzed by
B-glucuronidase located in the brush border of the small intestine
[29,30]. The resultant unconjugated bilirubin is reabsorbed in the

gut and taken up by the portal system to start the disposal process

10



again [29,30], giving the so called enterchepatic circulation of
bilirubin.

Disorders of bilirubin metabolism affect human beings from
birth. The detrimental effects appear to arise chiefly from the
virtual insolubility and instability of the pigment in aqueous
soiution at physiologic pH. Several bilirubin IX-o polar groups,
namely, two carboxyl, two lactam, and two pyrrol groups render
the substance soiuble in water (Plate 2). The actual insolubility is
explained by intra-molecular hydrogen bonding. In the hydrogen-
bondad molecule (Piate 3), the hydrophilic polar COOH and NH
groups are intimately associated and unavailable for interaction
with polar groups in the environment. The insolubility of bilirubin-
acid, with its two protonated _.arboxyl groups (Fig. 4), is
considered the basis for its neurotoxicity. Understanding the
conditions of bilirubin-acid formation is important for

understanding the mechanism of itz toxicity [31,32,33].

Bilirubin forms a saturated aqueous solution containing a very
low concentration of the acid and a higher concentration of the
dianion (Plate 4 & 5) [31,32]. Due to negative charges, the dianion
is present in equilibrium with its dimer. The degree of
dimerization is independent of pH, since hydrogen ions are not
involved. However, with increasing hydrogen ion concentration
some of the dimers and dianions take up protons from the medium,
forming acid anions with fewer negative charges. The decrease in
electric repulsion is followed by formation of large aggregates.

During this aggregation the solution usually remains ciear and

i1



Plate 2: Bilirubin 1X- &

CH

Y4 2
HC CHy
HC H
~C
NV /// COCH
N N
H H
047 CH, 0
nH Hy 7
HOOGC
V4 C/ V ,CH,
H HC
CH, CH,

Plate 3: Bilirubin IX-o. acid, intramolecularly
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Plate 4: Bilirubin {X-o acid.
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bright yellow when observed by the naked eye. The presence of
sirong light scattering indicates that a colloid suspension, and not

a genuine bili ubin solution, is present [31,32,33,34].



When colloid formation is expected but fails to take place, the
bilirubin solution is said to be in a supersaturated state. Under
acidic pH conditions, supersaturation with extensive aggregation
and precipitation of the insoluble protonated acid will occur [33].
Phospholipids accelerate the aggregation of bilirubin at acidic pH
conditions as well as co-precipitation of bilirubin and
phospholipids [34]. When a neutralized supersaturated solution of
bilirubin is mixed with a suspension of erythrocyte membranes or
mitochondria, and with liposomes or phospholipids in vitre , a
process of binding and aggregation of bilirubin starts immediately
and proceeds rapidly [33]. The end result is similar to colloid
aggregates with the aggregates remaining attached to the
membranes [34]. Since the same cellular structures are present in
intact cells, it is reasonable to assume that the same process will

occur in vivo.

Besides its insolubility and tendency tc aggregate and form
colloids, bilirubin is unstable in solution and tends to auto-oxidize
and decompose. Hydrogen-bonded bilirubin, dissolved in oxygenated
alkaline aqueous solution, is unstable and may undergo
rearrangement and auto-oxidation [35]. Furthermore, over a pH
range from 7.4 to 12 [36] or in the presence of acid [37], bilirubin

IX-a is cleaved at the central methylene bridge with subsequent

rearrangement of the separate units to give a mixture of bilirubin
IlI-a, and bilirubin Xlll-a in addition to the natural IX-o¢ isomer

(Plate 6) [36,37].

15
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Plate 6:- Bilirubin isomers.
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4. Bilirubin Binding to Albumin

In order to prevent bilirubin precipitation and toxicity, it is
necessary to bind the pigment toc a carrier. Serum albumin serves
as a universal carrier, reversibly binding a iarge number of
substances including bilirubin [32,38,3S]. The importance of ihe
interaction between bilirubin and albumin was deronstrated by
several investigators. Bowen et al, demonstrated the protective
role of albumin against unconjugated bilirubin injected into
puppies [40]. Mustafa gt al, found that one mole of albumin binds
one mole of bilirubin and detoxifies it [41]. Odell [42] and
Silverman et al [43] described increased bilirubin toxicity as a
result of a dissociation of the pigment from its albumin binding

site, caused by the use of different drugs.

In the blood, unconjugated bilirubin dianion is bound toc a high
affinity binding site on albumin with smaller amounts located at
one or two lower affinity sites [44]. The binding process is fast,
occurring in a matter of milliseconds [45], and is pH-independent

within a pH range between 7 and 9.

Nevertheless, the distribution of bilirubin, in vive , between
serum albumin and tisuues is highly sensitive to pH changes,
where acidosis favors a shift of the pigment from albumin to fat
[46]. The shift is readily explained by a change in the solubility of
the unbound pigment, formation of aggregates with lipoid
membranes and lipids, and a shift in the bilirubin-albumin binding

equilibrium [46]. Formation of the bilirubin-albumin complex is
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reversible and is associated with protection of the pigment from
degradation by various processes - e.g. photochemical degradation,

isomerization, auto-oxidation and enzymatic reduction [47,48,49].

The same type of binding takes place in vitro , when a
solution of albumin, at a slightly alkaline pH condition, is mixed
with a solution of bilirubin dissolved in sodium hydroxide. Another
type of binding occurs if a solution of albumin, in vitro , is mixed
with a molar excess of bilirubin at pH 7.4 or below. Under such
conditions a siow process of association takes place whereby large
aggregates, consisting of large numbers of albumin and bilirubin
acid molecules, are formed. This process results in co-
crystallization of albumin and bilirubin with little bilirubin left in
the solution [50]. Binding of bilirubin acid to albumin is pH-
dependenrt since a high number of hydrogen ions are involved.
Increasing the pH conditions of the solution towards an alkaline pH
disintegrates most of the aggregates, and an equilibrium of binding

of the anion is re-established [32,50].
5. Bilirubin Binding to Other Proteins

Although the only plasma protein with strong affinity for
bilirubin is albumin, bilirubin can also bind tc other blood
components [51]. Binding to non-albumin proteins in the serum is
important only when bilirubin concentrations exceed those of
albumin and when the available primary binding sites on albumin
are saturated. Bilirubin can bind to proteins such as serum

B-lipoproteins and a-globulin, but when bilirubin is present in
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the serum, the pigment distribution is always in favor of albumin

[51,52,53,54].

Of physiological importance is bilirubin binding to proteins
located in the cytosol, especially in hepatocytes. These proteins
probably function as carriers for bilirubin within the cell and
facilitate the uptake of the pigment [13]. Whether the binding is
necessary for protection of the cell content against the pigment is

unknown .

Other cellular and tissue components such as erythrocyte
membrane [55,56,57], pulmonary hyaline membrane [58,59],
mitochondria from heart and brain cells [60,61], glycolipids [62] ,
lipids and phospholipids [61,63,64] have been shown to bind
bilirubin. Binding of the pigment to non-albumin proteins and other
cellular components is of lesser importance and negligible when

albumin exceeds bilirubin molar concentrations.
6. Bilirubin Interaction With Lipids

The interaction of bilirubin with lipids has been studied by
several investigators. Mustafa and King [61] suggested that
bilirubin, in supersaturated solutions, is capable of binding to a
variety of native membrane lipids as inferred by spectral changes.
The changes observed were rapidly reversed by washing the
liposomes with albumin, suggesting a loose binding of bilirubin to
lipids. Weil and Menkes [62] have demonstrated that bilirubin
interacts with gangliosides in vitro . In another study [63]

bilirubin, at physiologic pH conditions, quenched a fluorescent

10



probe located within the lipid bilayer of membranes. Talafant [64]

has found different binding qualities between the pigment and

different phospholipids.

Of major importance is the knowledge of the interaction
between bilirubin and the lipid bilayer. Eriksen et al [34] and
Cestaro et al [65] demonstrated that bilirubin may be incorporated
within the hydrophobic hydrocarbon domains of the bilayers, but
migrate to the surface as equilibrium is achieved. On the other
hand, Tipping et al [66] and Hayward et al [67], in a more recent
study, were able to demonstrate that bilirubin is capable of
passive diffusion across the lipid bilayer into liposomes. However,
since no complete extraction of bilirubin from the liposomes was
demonstrated, an interaction between the lipid bilayer and the

pigment cannot be excluded.

The properties of bilirubin with regard to |its effect on
monolayers were demonstrated in two studies . In 1939 Stenhagen
and Rideal [68] explored the interaction between bilirubin and
various lipids and proteins. The results obtained suggest an
interaction of the carboxyl groups of the pigment with the primary
amide grocups of lipids and proteins. Another series of monolayer
experiments was carried out by Notter et al [69], exploring the
effect of bilirubin on dynamic surface tension forces. Under acidic
pH conditions, bilirubin-acid intercalates with the phospholipid
acyl-fatty acid chains. A% higher pH values, the more soluble
bilirubin interacts with water away from the hydrophobic core of

the lipid bilayer. Overall, it was shown that under acidic pH
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conditions bilirubin is a highly surface-active material at the
interface, and is capable of influencing the spreading behavior of

membrane lipids [69].
7. Bilirubin Interaction With Membranes

The interaction of bilirubin with the central nervous system
should consist of three steps: a) the entry of bilirubin into the
brain from biood, b) the binding of bilirubin to the neural cell
surface with or without subsequent internalization, and c) the
interaction of bilirubin with plasma membrane, leading to

alteration of membrane properties, or with intracellular targets.

Studying the interaction of bilirubin with synaptosomal
plasma membrane, Vazquez etal [70] proposed a three step model
for the interaction : 1) a rapid initial compiex formation between
anionic forms of bilirubin and the polar lipid head groups on the
membrane surface, 2) a slow inclusion of bilirubin into the
hydrophobic core cf the lipid bilayers, and 3) the formation of
bilirubin acid aggregates, by the remaining bilirubin molecules, on
the surface of the plasma membrane [70]. While Vazquez
demonstrated a multi-step interaction between bilirubin and the
synaptosomal membrane, Leonard et al [71] suggested a different
model for interaction. According to their results the interaction of
bilirubin with model or biological membranes depends on the sizes
of the free volumes, located within the membrane. These pools of
free volumes varied according to the lipid composition and the

presence or absence of proteins in the membranes. Bilirubin
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appears to interact with neither the polar nor the apolar regions of
the membrane but to partition with the free spaces in the apolar

region of the lipid bilayer [71].
8. Bilirubin Toxicity

Despite the extensive knowledge of the chemical and
biochemical properties of bilirubin, the question whether bilirubin
is poisonous or only potentially toxic to the living organism has
not been completely elucidated. While adults produce up to 250 mg
of bilirubin daily without any harm and large doses have been
injected intravenously into adults [72] and newborn babies [73]
with no apparent ill effects, hyperbilirubinemia in newborn infants
[44] and newborn rats [74] may cause bilirubin encephalopathy.
Furthermore, studies in experimental animals indicate that
unconjugated hyperbilirubinemia impairs liver mitochendrial
function [41]. In contrast, no toxic hepatic effects have been seen
in humans or Gunn rats suffering from prolonged unconjugated

hyperbilirubinemia due to hepatic glucuronyitransferase deficiency
[75,76].

A variety of pathologic conditions may result in severe or
prolonged jaundice characterized by increased serum concentration
of unconjugated bilirubin [77]. In several studies, bilirubin has
been shown to be poisonous to neural and non-neural cells and
tissues both in vitre and in vive [78,79,80]. Bilirubin toxicity
usually manifests as central nervous system damage which occurs

almost exclusively during the early neonatal period [77]. Passage of
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unconjugated bilirubin from the intravascular space - across the
blood brain barrier - into the brain is thought to be the cause of

kernicterus and bilirubin encephalopathy (see tzlow).
9. Kernicterus and Bilirubin Encephalopathy

In 1903 Schmorl [81] coined the term kernicterus to describe
the characteristic yellow staining of subcortical nuclei of the
brain, that was commonly observed in jaundiced infants who died
from severe erythroblastosis fetalis. The term was selected
specifically to differentiate it from a more diffuse yellow staining
of periventricular tissues and hemisphere surfaces, a condition
considered secondary to passive diffusion of bilirubin following
tissue necrosis [83]. Kernicterus, originally used as a pathologic
term, is now associated with a particular clinical picture which
varies from subtle neurologic changes such as high tone deafness
to more extreme forms of severe choreoathetosis, mental
retardation and, in some cases, to immediate death of the infant
[82,83,84,85,86]. Moreover, in infants who survive the acute
stages of hyperbilirubinemia but subsequently die, the staining
may no longer be present, yet the basal ganglia display
microscopic evidence of cell injury, neuronal loss and qiial
replacement [87,88,89]. Bilirubin encephalopathy is a more
appropriate term to describe the clinical picture associated with
the diffuse staining of the brain, the neuronal damage and the

neurological picture associated with hyperbilirubinemia.
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t is generally accepted that unconjugated bilirubin deposited
in the brain is responsible for the yellow staining and the
neurologic dysfunction characterizing bilirubin encephalopathy. To
be toxic to the nervous system, unconjugated bilirubin has to cross
the blood-brain barrier and specifically interact with vulnerable
neural cells. The blood-brain barrier is a complex structure
consisting of tight junctions cementing brain capillary endothelial
cells plus adjoining fcot processes of astroglial cells. Soon aftes
contact with the astrocytes, continuous tight junctions seal the
endothelial cells together and polar molecules no longer readily
enter the brain by simple diffusion. Essential molecules such as
glucose, organic acids and amino acids, therefore, require specific
transporters to mediate their passage into the brain. Functionally,
the blood-brain barrier comprises a series of carriers and
transport mechanisms for various substances [90]. Permeation of
the blood-brain barrier may result from changes in the anatomy

and/or the function of its constituents.

The blood-brain barrier of the neonate is immature and thus
may be more permeable [91]. Whether immaturity and increased
permeability are responsible for the passage of free bilirubin into
the neonatal brain is not clear. Many different factors, besides
immaturity of the blood-brain barrier, account for the development
of kernicterus. Among them are relative hypoalbuminemia, hypoxia,
acidosis, hyperosmolarity, hypothermia, sepsis and drugs
competing for bilirubin binding sites on albumin [92,93,94].

Endothelial cells of brain capillaries, as other cells, are



susceptible to injury by toxins and other abnormal metabolic
conditions. Most evidence supports a passage of free bilirubin
across the blood-brain barrier but a transfer of the albumin-
bilirubin complex has not been excluded [95]. In normal infants, the
restrictive nature of the blood-brain barrier is very well preserved
despite immaturity of thie endothelial cells composing the barrier.
In infants with an intact blood-brain barrier, bilirubin will leave
the blood to enter the brain only when the pigment is uncoupled
from albumin and other plasma proteins. However, if brain
endothelial cells are damaged, the altered barrier will then permit
bilirubin, uncoupled from or complexed with albumin, to enter and

damage the brain cells [95].

Another factor, the selective affinity of bilirubin for specific
brain sites, complicates the picture of bilirubin encephalopathy.
The wvulnerability of specific brain areas to bilirubin toxic effects
may be patterned by the blood flow to the brain [96,97,98] or
affected by the different bilirubin binding affinities to various

brain phospholipids [62,63,71).

Brodersen has suggested the possible existence of a bilirubin
oxidase enzyme within the neural cells, which might play a role in
protecting the cells by oxidizing the unbound bilirubin [98]. The

presence of such an enzyme remains speculative.

Thus, protection of the newborn's brain from bilirubin may be

attributed to a number of factors :
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1) The interaction of bilirubin with albumin and /or different
phospholipids [37,38,62,63,100].

2) The integrity of the blood brain barrier and of the brain cell
membrane [95,98,101,102,103,].

3) The possible presence of a bilirubin oxidase enzyme [99].

The classical form of bilirubin encephalopathy , which was
generally observed in term infants with hemolytic diseases, is
virtually unknown today. This is a result of an improved and
aggressive therapy directed at controlling hyperbilirubinemia with
phototh “rapy, exchange transfusion, and prenatal management of
the mother and fetus [104,105].

Unfortunately, kernicterus is still being observed at autopsies
[105]. Small premature babies are the population at greatest risk
for the development of bilirubin encephalopathy. Iin these infants,
kernicterus has been found at bilirubin levels that are considered
to be within the normal and "safe" range for the mature newborn
[10€,107,108]. Several potentiating factors that affect albumin
binding of bilirubin or enhance tissue uptake Of bilirubin have been
suggested. Among these are low birth weight, hypothermia,
asphyxia, acidosis, hypoalbuminemia, sepsis, meningitis and the
use of drugs that displace bilirubi~ from its aibumin binding sites
[109,110]. To date, there is no proof for a direct relationship
between the potentiating factors and the presence or absence of
kernicterus and bilirubi i encephalopathy [110,111,112]. The
question as to what is affecting the newborn infant, still remains

open. lIs hyperbilirubinemia per se toxic, or is hyperbilirubinemia



an associated factor with the compounding effect of the other risk
factors [113] ? Despite the uncertainty, measures have been taken
to reduce the risk of bilirubin encephalopathy by adjusting the
critical bilirubin concentrations to birth weight, gestational age
and clinical situations at which medical intervention is indicated

[114].
10. Studies on Bilirubin Toxicity

That bilirubin might be toxic to neural cells stems from the
clinical association between the neurclogical picture and
hyperbilirubinemia. However, despite a fairly detailed
understanding of the chemistry and biochemistry of bilirubin there
have been very few studies designed to define the interaction
between bilirubin and the central nervous system. The mechanism
by which bilirubin enters the cell has been studied in many non-
neural cells and subcellular fractions [78]. Specific kinetic studies
carried out in hepatocytes [115,116,117,118,119,120] and human
erythrocytes [121], have suggested the existence of saturable
bilirubin binding sites. In other studies, the effects of pH and
albumin on bilirubin binding to endothelial cells [122], fibroblasts
r48,123], and isolated mitochondria [124] have been demonstrated.
Our understanding of the interaction between bilirubin and neural
cells is based on studies in which either the brain was exposed to
bilirubin through opening of the blood brain barrier [95,98], or
brain slices were exposed directly to bilirubin [125]. Both
approaches present a relatively crude assessment of this

interaction. To have a clear understanding of the mechanism of
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bilirubin toxicity toc the neural cell, knowledge of the interaction

between bilirubin and the cell is critical.

Results of several studies indicate that bilirubin interferes
with various cell functions [78,79,80]. Bilirubin toxicity to non-
neural cells has been investigated extensively over the past years
in fibroblasts [126,127,128,129], hepatocytes [130,131],
erythrocytes [132,133,134,135], leukocytes [136,137], platelets
[138] and Ehrlich ascites cells [139,140]. Toxic manifestations of
bilirubin were demonstrated by non specific effects on cell
viability and growth [126,127,128,129], cell morphology [135], and
cell behavior [137,138]. More specific effects were observed when
ATP synthesis [127] and membrane enzymes [133,134,139,140]

were investigated.

Studies conducted on neural tissue demonstrated that bilirubin
may impair a large numbar of cell functions such as changes in
energy metabolism [41,141,142], alteration in the physical
structure and function of cell membranes [61,62,63,64,65],
changes in key intracellular enzymes [143,144,145,146,147],
inhibition of both DNA [148,149] and protein synthesis
[150,151,152,153], changes in carbohydrate metabolism [154,155]
and modulation of neurotransmitter synthesis [156] and release
[157]. Most of the work done on bilirubin toxicity in neural tissues
can be divided into two major groups. In one group, Gunn rats which
suffer from hereditary unconjugated hyperbilirubinemia, served as
a mode! [145,148, 150,151,152,153,1565]. In the other, brain cells

from normally developed animals were used
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[144,146,147,154,155,157]. There is a major difference between
the two. The use of the Gunn rat as a model for bilirubin
encephalopathy is based on the assumption that the damage seen is
primarily due to bilirubin. Although extensive damage to the
nervous system in the Gunn rat can be attributed to bilirubin, a
genretically determined bilirubhin-independent abnormality in these

animals cannot be excluded [158,159].

Bilirubin toxicity of the centrai nervous system is thought to
occur in two stages : 1) an early reversible stage, sometimes
referred to as subclinical and transient bilirubin-induced
neurotoxicity, and 2) a later stage initiated wha2n the sequelae
become irreversibie [80,160,]. Clinical studies in
hyperbilirubinemic neonates have shown reversibility of the acute
toxic bilirubin-induced changes in auditory nerve and brainstem
responses [161,162,163]. Cowger demonstrated that bilirubin
toxicity in an L-929 cell line was reversible with the addition of
albumin [127]. Recently, Hansen ef al demonstrated a similar
phenomenon in hippocampal slices [157], and Wennberg provided
evidence for the reversibility of bilirubin toxicity and
mitochondrial uptake of bilirubin in erythrocytes [164]. On the
other hand, working in a cell free system, Sanc et al demonstrated
that bilirubin inhibition of protein kinase C activity is irreversible
[147].

A major concern when experimenting with a bilirubin-to-

albumin molar ratio that exceeds one, is the instability of bilirubin
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leading to the formation of bilirubin aggregates and co-aggregates
of bilirubin and albumin [33,37,38,165]. Once aggregates are
formed, changes in free bilirubin concentration occur, giving rise
to experimental variability. This problem has not been fully
addressed in experiments dealing with bilirubin toxicity in vitro .
The frequent use of non-physiological bilirubin concentrations in
in vitro studies, the additi'on of varying albumin concentrations
with alteration of bilirubin-to-albumin molar ratios, and

variations in the cells investigated, are among the major reasons

for inconclusive results.

To date, few studies have been carried out in cultured neural
cells. The question as to whether bilirubin is indeed toxic to the
brain cell or whether the yeiiow staining of the brain is a
coincidental finding has been raised. Schiff et al [149], reported
recently that bilirubin toxicity in N-115, a murine neuroblastoma
cell line, was dependent on bilirubin concentration, bilirubin to

albumin molar ratio and time of exposure to bilirubin.

The present work will define the specific in vitro conditions
under which bilirubin, when added to celis in media, is stable and
remains so during the entire experiment. Working under these
conditions and using N-115, a murine neuroblastoma cell line in
culture, the present studies will attempt to characterize the
following:

1) The interaction between bilirubin and the cell.

2) The target and the mechanism of bilirubin toxicity at the

cellular level.
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3)
4)

The possible reversibility of the toxic effects.
The delayed bilirubin effects after short-term bilirubin

exposure during which no evidence of toxicity is manifested.
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Introduction

Hyperbilirubinemia and bilirubin encephalopathy are well
known occurrences in the newborn period [1,2]. It has been suggested
that the protection of the newborn's brain to bilirubin toxicity may
be due to a number of different factors. These include: a) the
interaction of bilirubin with albumin and/or different phospholipids
[3-9] and b) the integrity of the blood-brain-barrier and the brain
cell membrane [10-14]. The fact that bilirubin might be toxic to
neural ceil. stems from the clinical association of the neurologic

picture that has emerged and the associated hyperbilirubinemia [15].

In spite of a fairly detailed understanding of the chemistry and
biochemistry of bilirubin, there have been very few studies designed
to define the interaction of bilirubin with the nervous system. The
mechanism by which bilirubin enters the cell has been studied in
many non-neural cells and subcellular fractions. Specific binding
and kinetic studies carried out on hepatocytes [16-21] and human
erythrocytes [22] have suggested the existence of saturable bilirubin
binding sites. Other studies have demonstrated the effect of pH and
albumin on the binding of bilirubin to L-929 cells [4], endothelial
cells [23], fibroblasts [24] and isolated mitochondria [25].

The interaction of bilirubin with the central nervous system
should consist of tnree steps, (i) the entry of bilirubin into the brain
from the blood, (ii) the binding of bilirubin to neural cell surface
with or without a subsequent internalization, and (iii) the

interaction of bilirubin with intracellular targets (in the case of
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internalization) or the alteration of plasma membrane properties
leading to the toxic effect. There are two different views as to the
mechanism of bilirubin entry into the brain. Some studies suggest
that though bilirubin exists as a complex with albumin in the blood,
only free bilirubin crosses the blood-brain-barrier (free bilirubin
hypothesis) whereas othe: studies suggest that under certain
conditions such as hyperosmolality, the blood-brain-barrier will be
opened and bilirubin enters the brain as a bilirubin-albumin complex
[10,11]. Once bilirubin enters the brain, the toxic effects will be
determined by the interaction of bilirubin with the individua)

neurons.

Different approaches have been made tc study the interaction
of bilirubin with neural cells. There are studies that exposed either
the whole brain [10,11] or brain slices to bilirubin [26]. These
studies give a relatively crude assessment of the interaction
because the exposure as well as the washing after the exposure will
not be complete in a tissue and data are expressed in terms of total
bilirubin uptake per gram of brain tissue. Another approach has been
o characterize the interaction using membrane fractions and lipids
of nervous tissue including components like sphingomyelin and
gangliosides [9,27,28]. But these systems are far removed from the
actual physiological situation with respect to the target as well as
the form of bilirubin solution used. These studies employ
supersaturated solutions of bilirubin, whereas in plasma, bilirubin
is believed to be present predominantly as a complex with albumin.

A better approach to the problem is to use a neural cell line under
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the normal conditions of tissue cuiture in the presence of albumin as

a mode! system. Such studies are almest lacking in the literature.

The present study examines the nature of the interaction of
bilirubin with the murine neuroblastoma ce!l line N-115. The cells
were exposed to bilirubin at different concentrations and different
bilirubin to aloumin molar ratios ( B/A ). The cellular uptake of
bilirubin was characterized in terms of the kinetics, apparent
equilibration (limiting values) and the effect of pH and temperature
on the equlibration. The results indicate that the "free" form of
bilirubin is the :Tuctive species, and it interacts with the plasma

membrane through a multistep binding process.

Materials &nd Methods

Materials. All reagents were of analytical grade and were
purchased from Sigma Chemical Co. (USA). Bilirubin purity was

verified by high performance liquid chromatography (HPLC), as
indicated below, and was found to contain 92% IX-a isomer, 4.8%

Xlil-o. isomer, and 2.8% lll-a isomer. No other bile pigments were
detected. Since all measurements of bilirubin extracted from cells
were performed on HPLC, no further purification was carried out.
[3H]-bilirubin was prepared by in vivo labelling in rats using
S-amino [3,5(N)-3H] levulinic acid ( New England Nuclear ) as the
precursor [8]. [3H]-bilirubin was purified from the bile as described

by McDonagh [3], and was found to contain more than 98% bilirubin
IX-oo by HPLC (absorption at 454 nmj), with specific activity of 1710

CPM/nmole bilirubin.
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HSA (fraction V, Essentially Fatty Acid Free) obtained from
Sigma Chemical Co. (St. Louis, MO), Dulbecco’'s Modified Eagle Medium
(DMEM) and phosphate buffered saline (PBS) and fetal calf serum
(FCS) were obtained from GIBCO (Canada). Solvents used were of
HPLC grade (JT Baker Chemical Co.).

Bilirubin treatment of cells. The murine neuroblastoma
cell line N-115 was seeded at a density of 3 x 106 celis/plate in 10
cm culture dishes (Falcon) and grown in standard DMEM plus 10%
FCS, pH 7.4 at 37°C in a 5% CO2 humidified atmosphere for 10-12
hours. The media was then removed, the cells washed twice with
sterile PBS, and reincubated in 10 mL of protein-free media [29]
containing human serum albumin plus 25 mM N-2-hydroxy-
ethylpiperazine-N-2 ethanesulfonic acid (HEPES) to maintain a pH of
7.4 for another 12 hours, before the experiments with bilirubin were
started. The albumin concentration was varied in different
experiments to meet the required final B/A ratios. Three or four
culture dishes were used in each experimental condition. These
dishes were seeded with cells, as above, with bilirubin being added
to two or three of them. The remaining dish contained experimental
media plus bilirubin, but no cells - a measure of non-specific

binding of bilirubin to the plate.

A stock soiution of bilirubin was made by dissolving 2 mg
bilirubin i~ + 4L of Na-purged 0.1 N NaOH. Bilirubin was added to the
cuiture - .4 to achieve the appropriate experimental conditions,
followed immediately by the addition of an amount of 0.1 N HCI

equivalent to the amount of NaOH added to restore the pH of the



56
culture media to 7.4. Under the experimental condit-. . iirubin-
albumin mixtures were found to be stable when mMmeasured

spectrophntometrivally for a minimum of three hours and is reported

elsewhere [30].

All procecures involving addition, incubation and extraction of
bilirubin were carried out in a dimly lit room to avoid bilirubin

photodegradation.

Measurement of bilirubin uptake by cells. At the end of
the incubation period, the media was removed and saved for pH
measurement. The zells were washed four times with ice cold PBS
and then dislcdged from the plate with a rubber policeman in 1.5 mL
PBS and transferred into an Eppendorf Test tube. The cell suspension
was then vortexed and 0.1 mL aliquots were taken for DNA analysis
[31] and celi viability as measured by the nigrosin exclusion
ta~rhnique [32]. The remainder was <spun down in a microfuge
" ,pendorf) for 5 minutes and the supernatant removed. Bilirubin
wvas extracted from the pellet by adding 0.¢ mL of
methanol:chloroform (1:2, v/v) followed by sonication for 10
minutes, and centrifugation for 10 minutes in an Eppendorf
microfuge. The supernatant was dried under N> and kept at -20°C

untit APLC analysis was performed [33].

Bitirubin extracts from the cells were analyzed by reverse-
phase HPLC (Beckman Altex Ultrasphere 1P, 5 um, C-18, 25 x 0.46 cm
column with Beckman Altex IP precolumn 4.5 x 0.46 cm) using 0.1 M

di-n-octylamine acetate in methanol, pH 7.7, as eluant with a flow
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rate of 1.0 mlL/min - and the detector set at 454 nm [33].
Quantitation of peak areas was performed on a Gilson Data Master
reporting integrator, using preweighed bilirubin (Sigma, Lot No. 25F-

0584) as external standard.

The experiments with [3H] bilirubin were also performed as
described above except that instead of extracting cell-bound
bilirubin with organic solvents and analysis by HPLC, the cells were
suspended in 0.1 mL of 0.2 N NaOH and neutiralized with 0.1 mL of
0.2 N HCI. The radioactivity was measured by liquid scintillation
counting after adding 15 mL of aqueous counting scintiliant

(Amersham).
Results

In this study, uptake is defined as the total amount of bilirubin
associated with the cells including both surface bound and
internalized bilirubin. The results are the mean oi "= net uptake
(total minus non-specific) of the two or three experimental dishzs.
The non-specific uptake was always less than 1.7% of the total
uptake. If not mentioned otherwise, the bilirubin concentration
refers to the total (input) concentration. The term "free bilirubin” is
used to denote the bilirubin remaining after saturating the high
affinity primary binding sites of albumin and as such include both
"free Dbilirubin® in solution and the bilirubin loosely bound to
albumin. The bilirubin-albumin solution were found to be stable for
the time periods used in this study [31] and the isomeric

composition of the bilirubin extracted from the cells was found to
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be the same as the input bilirubin within error limits (1-2% increase
in photoisuners).

Fig. 1 gives the time course of bilirubin uptake by N-115 cells
when the cells are incubated with 100 pM bilirubin at different B/A
ratios. The bilirubin uptake at a B/A ratio of 3 in 10 min is 80
pmole/ug DNA and plateaus at 125 pmole/ing DNA in 40 min. ,
whereas at a B/A ratio of 0.8 the rate is much slower and levels
achieved are much less, < 5 pmole/ug DNA in 90 minutes. Thus, there
is a sharp increase in the initial rate as well as the extent of uptake
with increasing B/A ratio even though the input (total)
concentration of bilirubin is held constant. The results support the
idea that the "free" rather than the albumin-bound form of bilirubin
is responsible for toxicity. Since the stoichiometry of albumin-
bilirubin is 1:1 the concentration of "free bilirubin™ will increase

drastically as the B/A ratio increases from 0.8 to 3.C.

The effect of varying the bilirubin concentration on the initial
rate of uptake of bilirubin by the neuroblastoma cell is given in
Fig. 2. At a B/A ratio of 3, increasing the bilirubin concentration
from 12.5 pM to 100 uM shows no evidence of saturation. A similar
result was obtained at a B/A ratio of 1.5 with concentrations
ranging up to 250 uM bilirubin. The apparent absence of saturation
kinetics in either case likely rules out the possibility of carrier-
mediated transport across the plasma membrane implicated in the
uptake of bilirubin by hepatocytes [17-22]. The concentration of
“free bilirubin® can also be varied by varying the B/A ratio at a

constant total bilirubin concentration. The initial uptakes under
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these conditions are plotted in two different forms in Fig. 3. As
expected, the initial rate decreases rapidly with increasing albumin
concentration almost linearly (probably) up to B/A = 2 and then very
slowly (Fig. 3A). The same data plotted as a function of "free
bilirubin" concentration calculated from the bilirubin-albumin
stability constant of 3.2 x 107M-1 [4] is given in Fig. 3B, and shows
no saturation up to 80 uM of "free bilirubin". (The curve suggests the
possibility of saturation at higher bilirubin concentrations and a
possible explanation for this is that at high B/A ratios the free
bilirubin concentration is so high that it might form small
aggregates, the reactivity of which might be less than that of the
monomeric form. The results in Figs. 2 and 3 along with the known
binding of bilirubin to lipids such as sphingomyelin and gangliosides
with the affinity in the range of 105 - 106 M-1 [9,27,28] argue

against the notion of a bilirubin carrier in N-115 cells.

The apparent equilibrium uptake (limiting vaiues in Fig. 1) as
a function of bilirubin concentration at B/A ratios of 1.5 and 3 are
shown in Fig. 4. The curves are neither linear, expected for passive
diffusion, nor hyperbolic, expected for a normal receptor-ligand
system. The curves are parabolic (or rather part of a sigmoidal
curve) suggestive of cooperative binding of bilirubin to th: cells ( At
B/A = 1.5, a reasonable linear fitting can be done as shown by the
solid line. However, there is considerable deviatiocn from a linear
extrapolation of early points as shown by the dotted lines). The

uptake of [3H] bilirubin by N-115 cells given in Tabis 1, also agree
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with the non linear behavior seen in Fig. 4 effectively rulling out a

diffusion mechanism .

To further characterize the binding we tested reversibility of
binding by trying to extract cell-bound bilirubin with fresh albumin.
Extraction was performed after incubating the cells with bilirubin
for different time intervals and the resuits are given in Table 2. The
uptake is partially reversible and the fraction reversible (extracted)
Aer~reases with an increasing period of incubation of cells with
: in ~n. This indicates that the binding cannot be described by a
si .= receptor ligand system. The effect of temperature on
bilirubin binding is given in Table 3. The temperature insensitivity
of bilirubin uptake at B/A ratio of 1.5 suggests a specific binding to
the cell because non-specific binding is expected to increase with
increasing temperature due to increased concentration of "free
bilirubin" in equilibrium with albumin at higher temperatures [3].
The difference in behavior at B/A ratios 1.5 and 3 could be a

reflection of a compiex binding process.

The effect of pH on bilirubin uptake by N-115 cells at a B/A
ratio of 1.5 is given in Fig. 5. The uptake increases rapidly with
decreasing pH - almost a 10 fold increase in uptake as the pH of the
medium is lowered by 1 unit from pH 8.0 to pH 7.0. Changes in pH are
reported to affect bilirubin deposition in the brain, erythrocytes and
mitochondria [13,14,16,26,34]. One of the factors likely to
contribute to this pH effect is the increased concentration of "free
bilirubin" resulting from the decreased affinity of bilirubin for

albumin with decreasing pH. Decreasing the pH from 7.4 to 7 leads to
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a 4 fold increase in bilirubin uptake by N-115 cells whereas the
expected change in "free bilirubin" concentration is negligible
(16.729 uM at pH 7.4 and 16.738 uM at pH 7 calculated from binding
constants of 3.2 x 107 M-1 at pH 7.4 and 2.8 x 107 M-1 at pH 7 [4])
suggesting that factors other than "free bilirubin” concentration may

be responsible.
Discussion

The mechanism of bilirubin toxicity to the nervous system has
been the subject of numerous investigations over the last few
decades, yet ine area is dominated by speculation rather than
concrete ideas. This is mainly due to the peculiar properties of the
bilirubin molecule. The molecule Iis neither hydrophilic nor
hydrophobic, as indicated by its very poor solubility in aqueous
media at neutral pH and poor to moderate soiubility in organic
solvents [6]. This has given rise to considerable limitation in
experimentation as well as the interpretation of experimental data.
It has also led to the use of a variety of model systems consisting of
bilirubin solutions of varying kinds from supersaturated solutions at
alkaline pH to bilirubin-albumin mixtures of different ratios and a
range of targets from pure lipids and proteins to the whole brain.
Though these studies have provided valuable information on
different aspects of bilirubin action, a complete picture is still
lacking. An important piece of information missing is the nature of
bilirubin interaction with the plasma membrane. Studies with
purified proteins and subceliular fractions have shown that bilirubin

at micromolar concentrations can affect the activity of many
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enzymes of cytosolic, mitochondrial and microsomal origin [2]. The
relevance of these findings in relation to bilirubin toxicity in vivo
requires an understanding of whether bilirubin can cross the plasma
membrane and if so, what intracellular concentrations can be
achieved under clinically relevant conditions. An integrated approach
consisting of the quantification of bilirubin uptake and the
measurement of consequent changes in some biochemical parameters
of toxicity in the same system is desirable. Using a neural cell line
we hnhave shown recently that bilirubin affects mitochondrial
function, protein synthesis and DNA synthesis in intact N-115 celis
and the toxicity is deiermined by the concentration of bilirubin, B/A
ratio and the period of exposure [35,36]. The complementary studies
on the cellular uptake of bilirubin are presented here. In the clinical
situation it is assumed that a B/A of less than one is safe, as the
majority of bilirubin is bound to the primary "tight" binding site of
the albumin molecule. In order to assess bilirubin interaction with
the cell, we have used a B/A greater than 1 which would make

available free bilirubin and/or loosely bound bilirubin [36].

The results in Figs. 1-4 clearly indicate that the uptake of
bilirubin by N-115 cells increases with increasing period of
exposure, B/A ratio and bilirubin concentration at a given B/A ratio
consistent with our earlier results on the measurements of toxicity
parameters under the same experimental conditions [35,36]. While
this suggests that bilirubin enters the cell, the data presented here
are not consistent with a simple transport mechanism. The data can

be explained in terms of a multistep binding with the plasma



63

membrane similar to that proposed for the interaction of bilirubin
with rat brain synaptosomal plasma membrane vesicles [28].
According to this model the interaction occurs in three steps: (i)
bilirubin binding to the polar head group regicn of the membrane, (ii)
insertion of the surface-bound bilirubin into the hydrophobic core of
the membrane, and (iii) membrane induced aggregation of bound

bilirubin on the surface of the membrane.

The unusual rate curve for bilirubin uptake at B/A = 1.5 (Fig. 1)
could be a reflection of the multistep binding process. The effect is
seen at bilirubin concentrations of 50 and 100 uM. Similar rate
curves have been reported for the interaction cf bilirubin with
synaptosomal plasma membrane vesicles and liposomes made of
lipids and proteins extracted from these vesicles [28]. The very low
concentration of free bilirubin at B/A = 0.8 and a much faster uptake
due to a high concentration of "free bilirubin” at B/A = 3 might
explain the apparent normal behavior under these conditions. A
multistep binding mechanism is also supported by the
concentration-dependence of limiting uptake given in Fig. 4 and
Table 1. The parabolic or probably sigmoidal curve is indicative of a
cooperative process reflecting the aggregation of bilirubin on the
membrane at high concentrations. The partial reversibility of
bilirubin uptake, as assessed by the extraction with albumin (Table
2) also favors a multistep mechanisms. The bilirubin displaced from
N-115 cells by albumin mainly represents the bilirubin bound to the
cell surface (polar head groups), the initial step, because the

fraction reversed decreases with increasing period of exposure. The
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remaining non-extractable portion need not be irreversible in the
thermodynamic sense because the dissociation of bilirubin
aggregates and the desorption of bilirubin from the hydrophobic core
of the membrane could be very siow processes as in the case of
some lipids. The half-life for the desorption of membrane
components such as phospholipids and glycolipids is in the order of
days [37.38]. The difference in the effects of temperature on uptake
at B/A ratios of 1.5 and 3 (Table 3) could be a further reflection of
a multistep mechanism. At 50 pi bilirubin and B/A = 1.5, the "free
bilirubin® concentration will be low so that the cell-bilirubin
interaction is likely to be dominated by the initial step(s) whereas
at 100 uM bilirubin and B/A = 3 the aggregation step is likely to be
dominant. The step(s) following the initial binding is entropy driven
as suggested by the increase in uptake with increasing temperature
at B/A = 3. The most probable explanation for this is the penetration
of bilirubin into the hydrophobic interior of the bilayer causing a
disordering of acyl chains (increasing the fluidity). A recent study
has suggested that the entropy gain may be due to the partitioning of
bilirubin intc free spaces in the bilayer [39]. The increased uptake
with decreasing pH (Fig. 5) is also suggestive of hydrophobic
interaction. As the pH is decreased the concentration of bilirubin
monoanion will increase at the expense of bilirubin dianion and
because of the reduced charge on the monoanionic form, penetration
into the hydrophobic interior of the membrane will be favoured.
A multistep binding mechanism including an aggregation of bilirubin

on the surface has been suggested =arlier for the interaction of



65

bilirubin with lipid vesicles and e. throcyte ghosts [22,27,28
40,41].

It is difficult to conclude from the present data on the
question whether bilirubin crosses the plasma membrane and
reaches intracellular targets. Some of the possibilities to be
considered follow. Bilirubin may be confired to the plasma
membrane and elicit the intracellular response by membrane-
mediated transduction of information. Another possibility is that a
fraction of the (plasma) membrane-bound bilirubin is transported
into the cytosol by partitioning into a cytosolic carrier molecule.
The ability of albumin to extract partially the cell-bound bilirubin
(Table 2) and our earlier finding that bilirubin trapped in lipid
vesicles can be extracted with albumin [42] support the idea.
However, the presence of such carrier molecules for bilirubin has
not yet been demonstrated in the nervous system though protein:z
such as Z-protein, glutathione-S-transferase and ligandin have bean
implicated to have such a role in the liver [20,43]. Finally, the
possibility that bilirubin in the plasma membrane reaches
intracellular membranes through membrane recycling or aqueous
diffusion of the monomer as proposed for phospholipids and
cholesterol [37,44] should also be considered. Experiments including
subcellular fractionation of bilirubin-treated cells are in progress
to obtain further insight into the mechanism of bilirubin transport

across the plasma membrane.
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Table 2-1. [3H] bilirubin uptake by N-115 cells at 37°C.
Celis wer=s incubated with the indicated
concentraticns of biiirubin containing a constant
amount of [3H]j bilirubin (28,206 CPM/disi®) for
the indicated pericds and the cell-bound
radicacilivity was measured. The values are given
as Mezn = S.E. of three dishes of cells.
one. of Period of [BH]bilirubin
Rilirubin incubation Uptake
B/A (1LM) (min.) (CFM/ug DNA)
1.5 5 5 7.86 £ 0.59
1.5 150 5 12.32 + 1.26
1.5 5 60 12.78 + 0.28
1.5 150 60 4966 + 1.12
3.0 5 60 19.46 + 2.91
3.0 50 60 58.61 = 1.20
3.0 75 60 68.58 + 1.62
2.0 1060 60 67.84 £+ 2.03
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Table 2-2. Reversibility of bilirubin uptake by N-115 cells at
37°C. For each case, 6 dishes of celis were treated
with 100 uM bilirubin (B/A=3) at 37°C for the
indicat: = pericd. Three dishes were subjected to
uptake measurements by HPLC as usual (Control).
To the remaining three dishes after a bilirubin
washout, 33 uM of HSA was added and incubated at
37°C for 30 min. and then bilirubin remaining
bound to the cell was measured as usual and this
represented the uptake after extraction with
albumin (Residual). The difference between control
and residual uptakes gives the Dbilirubin
extracted with albumin which represenis the
readily reversibie portion of uptake. All uptake
values are Mean = S.E. from three dishes.

Period of Bilirubin Uptake Bilirubin Extracted
Bilirubin (pmole/ug DNA) with Albumin
Treatment
(min)  Control  Residual  pmole/ug DNA % Control
3 26.8 = 1.0 113 = 1.0 15.5 57.8
70 80.5 = 3.1 48.0 = 1.8 32.5 40.4
20 725 + 5.2 43.3 =+ 4.7 29.2 40.3
40 1246 £+ 598 1046 £ 3.4 20.0 16.1
60 132.8 + 8.7 93.0 *456 39.8 30.0
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Effect of temperature on bilirubin uptake by N-115
ceils.The cells were maintained at the indicated
termperature for 2 hours and pH was maintained =t
7.4 by adding appropriate amounts of 40 mM HEPES
to the media. Biiirubin (100 puM at a B/A=3 and
50 pM at a B/A=1.5) was then added to the celis
and incubated at the respective temperature for an
additional 60 min. (B/A= 3) and 90 min. (B/A=1.5).
Cell-bound bilirubin was extracted and measured
by HPLC. The values at B/A= 3 are Mean = S.E from
three dishes while the values at B/A=1.5 are means
from two dishes. The values in parenthesis give

the pH of the medium at the end of incubation with

bilirubin.

Temperature

C

Bilirubin Uptake (pmole / ng DNA)

B/A =15 B/A =3

15

25

37

154 (7.68) 307+ 1.8 (7.84)
9.2 (7.70) 521 + 10.4 (7.74)
15.9 (7.75) 596 + 4.4 (7.98)

14.4 (7.70) 94.0 + 10.7 (7.88)
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Figure 2-1. Time course for the uptake of bilirubin by N-115
cells at 37 C. Celis were incubated with bilirubin for different time
intervals at 37 C and the celi-bound bilirubin was extracted and
measured by HPLC. Each point represents the Mean + S E from three
dishes of cells. 100 uM bilirubin at B/A=0.8 (x), B/A=1.5 (0), and
B/A=3 (), 50 uM bilirubin at B’/A=1.5 (A). The curves fcr B/A=0.8 &
3 are drawn as rectangular hyperbgclas, whereas the curves for
B/A=1.5 are drawn as smootned interpolations because the fitting to
rectangular hyperbola results in a straight line and the deviations
are considerabie.
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Figure 2-2.
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initial rate of uptake of bilirubin by N-115 celis as

a function of bilirubin concentration at constant B/A ratio. Cells
were

min.

dishes of cells fcr

at 37°C and
meast =1 by HPLC.

differ by <18°9%.: for

amo e, g ONA )

incubated with indicated concentrations of bilirubin for 10

the cell-bound bilirubin was extracted and
Each point represents the Mean = S.E. from three

B/A=3 (A), and the mean of duplicates (which
B/A=15 (z).
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Figure 2-3. Initial rate of uptake of bilirubin by N-115 cells as
a function of B/A ratio at a constant concentration of bilirubin,
Cells were incubated with 100 pM bilirubin (and varying albumin
concentration) for 10 min. at 37°C and the cell-bound bilirubin was
extracted and measured by HFLC. Celluiar uptake of bilirubin is
plotted as a function of albumin conceniration (A) and as a function
of free bilirubin concentration (B) Concentration of free bilirubin
was calculated assuming a bilirubin-albumin binding constant of 3.2
x 107 M-1 [4]. Each point represents the Mean = S.E. from three dishes
of cells.
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Figure 2-4. Limiting (apparent equilibrium) uptake of bilirubin
by N-115 cells as a function of biirubin concentration.

Cells were
incubated with indicated concent-ations of bilirubin

for 2 hours at
37°C and the cell-bound bilirubin was extracted and measured by
HPLC. Each point represents the Mean *= S.E. from three dishes of
cells for B/A=1.5 (x) and the mean of duplicates (which differ by
< 14%) for B/A=3 (%). The dotted lines are linear extrapolations from

points with bilirubin concentrations < 50 uM.
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Figure 2-5. Effect of pH or bilirubin uptake by N-115 cells.
Cells were grown as usual, the media was aseptically removed, 100-
200 ulL of sterile 1N HCI or 1N NaOH was added to achieve the
desired pH and the media was gently poured back into the culture
dish. Cells were incubated for 1 hour at 37°C and then 50 uM
bilirubin at B/A=1.5 was added. After an additional 90 min. of
incubation, cell-bound bilirubin was extracted and measuied Dby
HPLC. Each point represents the mean of duplicates (which differ by
< 13%).
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