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Abstract 

Gearboxes are widely used in modern power transmission systems such as wind turbines, 

helicopters, and railway vehicles. Due to inappropriate operation conditions or fatigue 

degradation, faults may develop in gears. If early faults cannot be detected and their 

severity assessed in a timely manner, faults will grow, and gearbox systems will fail 

eventually, which can lead to major economic loss or catastrophic accidents. Detection and 

the severity assessment of faults prior to the failure of gearbox systems can enable 

condition-based maintenance scheduling and thus prevent the sudden failure of gearbox 

systems and reduce maintenance costs. Therefore, it is of great significance to detect faults 

and assess their severity. Vibration-based signal analysis is a good option for the detection 

and severity assessment of gear tooth crack thanks to its advantages, including being easy 

to collect and sensitive to the tooth crack fault. To this end, the objective of this PhD 

research is to develop advanced vibration signal analyzing and processing techniques for 

tooth crack detection and severity assessment. 

Specifically, the research objective is divided into three sub-objectives based on the 

operating condition of gearboxes. First, an improved singular value decomposition-based 

method is proposed for the tooth crack detection and severity assessment when the 

rotating speed of gearboxes is constant. The proposed method is more useful for the 

extraction of tooth crack induced periodic impulses than existing methods. Second, a 

sparse functional pooled autoregression model is proposed for more accurate modeling of 
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nonstationary baseline vibration from a gearbox under variable speed condition. Last, a 

time series model-based method is developed for the tooth crack detection and severity 

assessment under random speed variation. 

The outcome of this research can help us better detect the gear tooth crack fault and assess 

its severity under either constant or variable speed conditions. Condition-based 

maintenance can then be better scheduled to prevent the sudden failure of gearbox 

systems and reduce maintenance costs. This research work has assumed only a single 

channel of vibration data is available for the fault detection and severity assessment. 

Future work will address multichannel scenarios. The fault detection and severity 

assessment under variable load conditions also deserve to be investigated in the future.  
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1 
Introduction 

This chapter contains 3 sections. Section 1.1 introduces the background of this thesis, 

including the basics, operational speed and fault modes of gearboxes, and fundamentals 

of fault detection and severity assessment; Section 1.2 contains a detailed literature review 

of the state-of-the-art of existing signal analyzing and processing methods; Section 1.3 

provides the research objectives, topics, contributions, and organization of this thesis. 

1.1 Background  

1.1.1 Basics of gearboxes  

Gearboxes are widely used in industrial applications, such as conveyors, automobiles, 

wind turbines, helicopters, milling machines, and railway vehicles. Their functions are to 

regulate rotating speed and torque of the power drive train. Fig. 1.1 shows two schematic 

examples of gearboxes used in railway vehicles [1] and wind turbines [2], respectively. In 

railway vehicles, the gearbox is used to transmit power from a traction motor, to decrease 

the speed of the traction motor, and to increase the torque on the wheel [3]. In wind 

turbines, the gearbox is used to transmit power from turbine blades to the generator and 

to increase the rotating speed of the generator rotor [4]. 

Based on the type of gear tooth, gearboxes can be classified into spur gears and helical 

gears [5]. Fig. 1.2 shows the spur gear and helical gear. Spur gears have teeth projecting 
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radially. The edges of each tooth are straight and aligned parallel to the axis of rotation. 

On the other hand, the edges of helical gear teeth are not parallel to the axis of rotation 

but are set at an angle. Spur gears are appropriate for low-speed applications, whereas 

helical gears are usually used in high-speed applications thanks to their smoother 

transmission. This thesis focuses on both spur gears and helical gears. 

Blade

Gearbox

Generator

Traction 

Motor

Gearbox

Wheel

(a)                                                          (b) 

 

Fig. 1.1: Gearboxes used in (a) railway vehicle [1] and (b) wind turbine [2].  

 

Fig. 1.2: Gear tooth-based classification (a) spur gear; (b) helical gear [5]. 

Based on the movement of axes, gearboxes can also be classified into fixed-axis gearboxes 

and planetary gearboxes. Fig. 1.3 (a) shows a typical fixed-axis gear set and Fig. 1.3 (b) a 

planetary gear set. The fixed-axis gear set consists of a gear and a pinion. The gear usually 

means the bigger ones in the gear set whereas the pinion is the smaller one [5]. The axes 

of the gear and pinion are fixed when the fixed-axis gear set operates. On the other hand, 
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the planetary gear set consists of a sun gear, a ring gear, and several planet gears held by 

a carrier. The axes of these planet gears are not fixed and will rotate when the planetary 

gear set operates. The planetary gearboxes have multiple gear pairs in mesh and hence can 

undertake high load torque. Therefore, they are widely used in heavy load applications 

such as wind turbines, helicopters, and milling machines. This thesis focuses on fixed-axis 

gearboxes. Planetary gearboxes are of future studies. 

 

Fig. 1.3: Structure of a fixed-axis gear set (a) and a planetary gear set (b) 

1.1.2 Rotating speed of gearboxes 

The rotating speed of gearboxes can be either constant or variable. In railway traction, the 

gearbox operates under run-up, multiple levels of constant speed, and coast down 

conditions, as shown in Fig. 1.4. In rail transit, whether in urban subway systems or inter-

city transits, the traction gearbox frequently operates under run-up and coast down 

conditions from stations to stations. The run-up and coast down conditions can be 

considered as deterministic speed profiles since they follow deterministic patterns. 

t, Time
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Coast down
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Fig. 1.4: Gearbox operating condition in railway traction 
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The majority of current wind turbines operate under variable speed (VS) [6]. In VS wind 

turbines, the gearbox operates under either constant or random speed conditions, 

depending on the wind speed. Fig. 1.5 shows the speed of the wind turbine gearbox relative 

to wind speed [7]. Four regions are involved. In region 1, the VS wind turbine is not 

working because the wind speed is too low. The VS wind turbine attempts to capture 

maximal wind energy when operating in region 2, typically from a wind speed of 5 m/s to 

14 m/s [7], [8]. The speed of wind turbine gearbox is proportional to the wind speed in 

this region. A wind turbine operates most of its time in this region for maximizing power 

energy generation [7]. In region 3, the speed of wind turbine gearbox is maintained and 

limited to ensure that safe electrical and mechanical loads are not exceeded. The pitch 

angle is adjusted to regulate the input torque on the wind turbine blade and to maintain 

the speed of gearbox at a constant level. In region 4, the wind turbine is cut out through 

mechanical brake when the wind speed is too high. Fig. 1.6 further shows an illustrative 

example of the time waveform of wind turbine gearbox speed [7]. In region 3 when the 

wind speed is higher than rated speed, the gearbox operates under constant speed. In 

region 2 when the wind speed is higher than the cut-in speed but lower than the rated 

speed, the gearbox operates under random speed conditions due to the randomness of the 

wind speed. The speed also has autocorrelation effects due to the inertia of the drive train. 

The transient coast down occurs when the wind turbine changes from region 2 to region 1.  
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Region 1                    Region 2                  Region 3     Region 4

vcut-in                                                     vrated                   vcut-out  

Fig. 1.5: Relationship of gearbox speed – wind speed in VS wind turbines [7] 
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Fig. 1.6: An illustrative example of the time waveform of wind turbine gearbox speeds [7] 

1.1.3 Gearboxes fault modes 

Due to inappropriate operating conditions or simply fatigue [9], faults may develop in 

gears. A fault is defined as “an abnormal condition or defect at the component, equipment, 

or sub-system level which may lead to a failure” in document ISO 10303-226. 

Faults need to be detected and their severity assessed in a timely manner. Otherwise, faults 

will grow, and gearbox systems will fail eventually, which can lead to major economic loss 

or catastrophic accidents. In Denmark 2008, a catastrophic failure of a Vestas wind 

turbine was reported, due to the failure of the main gear which led to a chain reaction of 

components failure [10]. Accident investigation of the gearbox revealed extensive damage 

in the main gear. The teeth of the high-speed gears had been almost completely ground 

down by the high-speed cog wheel. In the North Sea, United Kingdom, 2009, a helicopter 

crashed due to a catastrophic failure of the main rotor gearbox. Sixteen men on board were 

killed [11]. Accident investigations revealed that it was the crack fault which led to the 

catastrophic failure of the main rotor gearbox. 

Generally, gear fault modes include tooth crack, tooth tip chipping, tooth wear, 

misalignment, eccentricity,  etc [12]. Fig. 1.7 shows photos or sketches of 5 fault modes. 

Among these fault modes, tooth crack is one of the most frequent occurring fault modes 

https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/ISO_10303
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[13]. The tooth crack may lead to bending fatigue of the tooth, and the failure of the 

gearbox system. 

(a)                                 (b) 

(c)                                 (d)                             (e)
eccentricity

 

Fig. 1.7: Examples of fault modes (a) tooth crack (b) tooth wear [13], (c) tooth tip chipping, (d) 
misalignment, (e) eccentricity. The eccentricity is defined as the distance between the theoretical 

rotating center and real center. 

The tooth crack consists of three distinctive stages: crack initiation, propagation and 

fracture [13]. Fig. 1.8 shows gear tooth crack at the initiation, propagation, and fracture 

stages. During the crack initiation stage, no gross yielding of the gear teeth occurs. But, 

local plastic deformation may occur in stress concentration regions. This stage ends when 

micro-cracks form inside grains. During the propagation stage, the crack grows across 

grain boundaries in a direction approximately perpendicular to the maximum tensile 

stress. Plastic deformation is confined to a small zone at the leading edge of the crack. The 

sudden fracture occurs during stage 3. It may be ductile, brittle, or mixed mode depending 

upon material toughness and magnitude of applied stress. At this stage, the tooth is 

completely removed from the gear. Note that in the above introduction, we focused only 

on crack which initiates at the root of the tooth and propagates towards the removal of the 

tooth. In reality, a crack may also initiate from other locations and propagate differently 

such as towards the gear rim, depending on the rim and web thicknesses of the gear, and 
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backup ratio (rim thickness divided by tooth height) [14], [15]. Fault diagnosis of these 

types of crack faults is of future study. 

A common way to define the severity of gear tooth crack is based on the ratio between the 

length of the crack and the theoretical total length of a crack at the fracture stage [16]. 

Using this definition, the severity of tooth crack is 0% at the initiation stage and 100% at 

the fracture stage. At the propagation stage, the severity (0, 100)%. For instance, the 

severity of the tooth crack as shown in Fig. 1.8(b) would be around 40%. This thesis focuses 

on the detection of tooth crack and assesses its severity.  

(a)                                     (b)                                      (c)

 

Fig. 1.8: Gear crack stages (a) initiation, (b) propagation, and (c) fracture  

1.1.4 Fundamentals of fault detection and severity assessment 

Fault detection and severity assessment prior to the failure of gearbox systems can prevent 

the catastrophic failure of gearbox systems, as well as enable condition-based 

maintenance and thus reduce maintenance costs. Therefore, it is of great significance to 

detect faults and assess their severity in the early stage of its development.  

Fault detection and severity assessment belong to the condition monitoring (CM) 

discipline which is carried out in conjunction with condition-based maintenance (CBM) 

[17]. Fault detection refers to the identification of when a fault has occurred. Severity 

assessment refers to either quantitatively or qualitatively identify how severe the fault is. 

The severity can be either discrete levels or continuous. The CM includes not only fault 
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detection and severity assessment but also fault isolation and prognosis [18], [19]. Fault 

isolation refers to pinpointing the fault mode and location of the fault. Fault prognosis 

refers to the prediction of remaining useful life (RUL) of a component/system or estimates 

the probability that a component/system can still be functional for a certain future time 

interval [18]. Based on the CM information, CBM optimizes the operational and 

maintenance decision-making to ensure reliability and safety, improve availability, and 

reduce downtime and maintenance costs [20]. 

Accuracy and efficiency are two main aspects to evaluate how good a fault detection and 

severity assessment technique is. The accuracy refers to whether the fault detection and 

severity assessment results deviate from the real machine health status. The efficiency 

refers to how fast the fault detection and severity assessment technique returns a result.  

Fault detection and severity assessment for the tooth crack fault can be achieved by offline 

methods, such as shutting down or even dismantling the gearbox for visual inspection. 

Such offline methods are usually accurate in detecting faults and assessing how severe the 

faults are. However, offline methods are inefficient because they not only disturb the 

normal operation of gearboxes but also bring an additional burden concerning operation 

and maintenance in terms of scheduling such inspection activities. 

Online methods, on the other hand, are non-invasive, therefore being free from the 

aforementioned drawbacks of offline methods. Up to the present, online CM data that 

were widely employed for the gear tooth crack fault detection and severity assessment 

include vibration signals and acoustic emission (AE) [21]. The CM data is regularly 

collected in a certain interval (must be lower than half of the potential fault symptom to 

functional failure interval of the machine). By proper analyzing and/or processing these 

signals, one can accurately detect faults and assess their severity. The vibration refers to 
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the mechanical oscillation phenomenon. The vibration signals may include displacement, 

velocity, and acceleration acquired by laser displacement sensors, encoders, and 

accelerometers, respectively [18, Chapter 2]. Among these three variables, the acceleration 

is the most widely employed due to the maturity and low cost of piezoelectric 

accelerometers. Vibration signals are usually acquired at a rate ranging from 0-50kHz. 

The AE refers to the release of acoustic energy in the form of transitory elastic waves within 

a material via a dynamic deformation process [21]. The AE may also result from 

mechanical oscillations. Unlike vibration signals, AE is acquired in a high-frequency rate 

ranging from 50 kHz to 1 MHz, which means a large data size and more expensive data 

acquisition systems. Another limitation of the AE is the attenuation of the signal during 

propagation. Therefore, an AE sensor must be located as close to the fault source as 

possible [21], which may pose a practical constraint in applying AE. This thesis focuses on 

using the vibration signal for the fault detection and severity assessment of a tooth crack 

fault, given its advantages including easy installation, low cost, and smaller data size 

compared with acoustic emission. 

In general, the accuracy and efficiency of the fault detection and severity assessment 

technique are negatively correlated. For instance, using a larger size of CM data can return 

a more accurate fault detection and severity assessment result, but will cost more 

computational time. Using a more complicated algorithm to process the CM data can 

return a more accurate fault detection and severity assessment result, but such 

complicated algorithm is relatively inefficient. 
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1.1.5 Fundamentals of vibration-based fault detection and severity 

assessment 

Vibration-based fault detection and severity assessment refer to the detection of fault 

induced changes in the vibration signals and quantify such changes for severity 

assessment. Fig. 1.9 shows an example of vibration-based fault detection and severity 

assessment for a fixed-axis single-stage gearbox [23]. An accelerometer is mounted on the 

gearbox casing and used to collected vibration signals (shown as response x(t)). A cracked 

tooth will have reduced meshing stiffness when it is in meshing, and thus once the next 

healthy tooth starts to take over, an impulse (shock) will be excited [12]. This shock will 

be transmitted from the excitation spot to the accelerometer [24]–[26]. The transmission 

path effect may be characterized by the transfer function of the structures along the path 

[27]. In addition to the tooth crack induced impulses, the collected vibration signal also 

contains other vibration components which bring the need to process the vibration signal 

and to single out the signal that represents the fault induced shock.  

 

Fig. 1.9: An example of vibration-based fault detection and severity assessment for a fixed-axis 
single-stage gearbox. A transmission path is shown from the excitation source to the 

accelerometer [23].  

Under constant rotating speed, the collected vibration signals mainly include gear 

meshing components, structural components, crack fault-induced periodic impulses, and 
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measurement noise [24]–[26]. The gear meshing components are induced from time-

varying meshing stiffness of the gear transmission [5], [12]. These components exhibit 

discrete lines in the vibration spectrum with their amplitudes determined by gear meshing 

forces and transmission path effects. The structural components are generated by random 

excitations such as friction forces and tooth surface roughness [28]. These excitations 

transmit to the accelerometer along the transmission path, and thus the structural 

components exhibit broadband in the vibration spectrum. An impulse will be excited when 

the healthy tooth next to the cracked tooth starts to take over [12]. This impulse will be 

transmitted from the gear meshing location to the accelerometer. This impulse will be 

repeated once every revolution, therefore, termed crack fault-induced periodic impulses.  

The collected vibration signals are categorized as cyclo-stationary signals, given that the 

signal mean and variance vary cyclically [29]. The essence of tooth crack fault detection 

and severity assessment is the detection of crack fault-induced periodic impulses in the 

vibration signals and quantify their energy. 

It is necessary to develop fault detection and severity assessment methods not only for 

gearboxes operating under constant speed conditions, but also for gearboxes under VS 

condition. As mentioned in Section 1.1.2, the traction gearbox in rail transit frequently 

operates under run-up and coast down conditions from stations to stations. A method 

capable of detecting faults and assessing severity under run-up and/or coast down 

conditions will be helpful in terms of providing timelier and more reliable fault detection 

and severity assessment results. Meanwhile, a wind turbine operates most of its time 

under random VS profiles [7]. A fault may occur, grow, and potentially lead to a 

catastrophic failure when the gearbox continuously operates under random VS profiles. 
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Therefore, a separate method is needed for the fault detection and severity assessment 

under random VS profiles. 

When the rotating speed is varying, each of these components in the vibration signal will 

be modulated in amplitude and/or in frequency [28]. The gear meshing components and 

crack-induced periodic impulses will be modulated in both amplitude and frequency. The 

structural components will be modulated only in amplitude [30]. Lastly, the measurement 

noise can be assumed independent of speed variations [31]. The collected vibration signals 

are categorized as nonstationary signals, given that the signal mean and variance are 

time-varying and also does not repeat cyclically [28].  

The VS profile is a principal factor that needs to be considered when developing fault 

detection and severity assessment techniques under VS conditions. The VS profile can be 

deterministic or random. If the vibration signal is collected under the run-up or coast 

down process during railway operation as mentioned in Section 1.1.2, the VS profile is 

deterministic for each segment of vibration signals. Note that the rotating speed needs to 

be non-zero. In other words, the data acquisition should start with non-zero speed during 

the run-up process or end with non-zero speed during the coast down process. Otherwise, 

the vibration signal does not contain any gearbox dynamic responses, and no fault-related 

features can be found in the vibration signal. Considering the vibration signals collected 

from wind turbine gearboxes, the VS profile is random. The VS profile could be hugely 

different among each segment of vibration signals. They could stay in a high/low level or 

vary rapidly. The fault detection and severity assessment technique are expected to detect 

and diagnose faults using a segment of vibration signal collected under each of the 

different VS profiles.  
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1.2 Literature review 

This section contains a critical literature review on vibration signal analyzing and 

processing methods for gear tooth crack detection and severity assessment. This section 

is divided into two subsections based on the operating condition of the gearbox, namely 

constant speed and VS conditions.  

1.2.1 Vibration-based fault detection and severity assessment under 

constant speed condition 

In this subsection, we review methods for analyzing and processing the cyclo-stationary 

signals collected under constant speed conditions. Over the past decades, a wide variety of 

signal analyzing and processing methods have been developed for constant speed 

applications. The common goal of these methods is to detect the crack fault-induced 

periodic impulses in the vibration signal and quantify their energy. Based on the 

mathematical theory these methods relied on, we categorized them into general methods, 

resonance demodulation, time series model-based methods (TSMBMs), and singular 

value decomposition (SVD)-based methods. The general methods were mostly reported in 

the 1970s~2000s, whereas the rest of the three categories were reported during the past 

two decades. 

1.2.1.1 General methods 

The most widely employed general methods include various statistical indicators [32] and 

the synchronous average (SA) [33]. Typical statistical indicators include peak-to-peak, 

root mean square (RMS), kurtosis, skewness, and crest factor. In 2005, Samuel and Pines 

[34] reviewed various statistical health indicators for helicopter gearboxes. The SA method 

segments the vibration signal into blocks which have a length equals to the period of the a 
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gear rotating cycle, and then takes the average of them to obtain the periodic waveform 

[35]. The resulting signal is deemed deterministic. The residual signal is then obtained by 

subtracting the estimated deterministic part from the original signal, which constitutes 

the random part. Based on SA, researchers defined many health indicators (HIs)  such as 

the energy ratio between the residual signal and the extracted periodic waveform [34], [36] 

and NA4 [37]. 

The statistical indicators are computationally fast and easy for implementation. However, 

these statistical indicators may suffer from a shortcoming of lacking robustness to noise 

[19]. As for SA, a problem is discontinuity at window boundaries [38]. The SA also requires 

accurate phase information. 

1.2.1.2 Resonance demodulation 

In 2002, Wang [25] proposed a resonance demodulation technique for early gear tooth 

crack detection under constant speed conditions. The technique first conducts SA to 

attenuate random noises. Then, the averaged waveform is band-pass filtered around the 

resonance band of the transmission path. The final step was to calculate the squared 

envelope of the band-passed signal to demodulate the crack-induced periodic impulses. 

Note that it is still necessary to remove the gear meshing components in the resonance 

band. On the selection of optimal band, kurtogram [39] was widely used, which calculates 

the kurtosis of different bandlimited signals and identifies the frequency bands with the 

maximum kurtosis. On the analysis of the envelope signal, Zakrajsek et al. [40] developed 

an NB4 indicator which is the quasi-normalized kurtosis of the analytical envelope. Xu et 

al. [41] defined an envelope harmonic to noise ratio (EHNR) to quantify the crack-induced 

periodic impulses. 
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The selection of an optimal band remains a challenge for the resonance demodulation 

technique. Most of the band selection methods like kurtogram rely on the extraction of a 

metric from the bandlimited signal. Extracting a metric only allows the frequency band 

which maximizes the metric to be identified, e.g. the impulsivity, and does not distinguish 

between the different events that contribute to the impulsivity [31]. 

1.2.1.3 Time series model-based methods 

The TSMBMs are evolving for the fault detection and severity assessment of gearboxes 

[42], [43] during the past few decades. The advantages of TSMBMs include 1) being free 

from physics or analytical information, 2) requiring only a few signals for training, and 3) 

inherent accounting for uncertainties from measurement and operational conditions [44].  

The identification of a baseline time series model to represent the vibration from a healthy 

state is a must for TSMBMs. Fault detection and severity assessment can be achieved 

based on analyzing the residuals obtained from applying the baseline time series model 

on the current vibration signals that are collected under an unknown health state, such as 

examining the whiteness [45], variance [45], or impulsiveness [42]. These methods belong 

to the category of model residual-based methods. Wang and Wong [42] used the 

autoregressive (AR) model for the fault detection and severity assessment of a gear tooth 

crack fault. The crack severity is assessed via examining the kurtosis (i.e., a measure of 

residual impulsiveness) of the baseline AR model. Endo and Randall [46] proposed 

applying the minimum entropy deconvolution (MED) on AR residual signals, forming a 

method called ARMED and demonstrated its effectiveness in detecting spalls and tooth 

cracks. The MED optimally determines a finite impulse response (FIR) filter whilst 

maximizing the kurtosis of the filtered residual signal. McDonald et al. [43] considered 

the periodic nature of the fault induced impulses and proposed a maximum correlated 
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kurtosis deconvolution (MCKD) method. The MCKD method optimally determines an FIR 

filter whilst maximizing the correlated kurtosis of the filtered residual signal. They further 

presented a multipoint optimal MED adjusted method with higher computational 

efficiency than MCKD [47]. Li et al. [48] proposed a sinusoidal synthesis based adaptive 

tracking (SSBAT) which incorporated a sinusoidal constraint of the adaptively estimated 

time series model. They further improved the SSBAT by incorporating MED into adaptive 

tracking [49]. These TSMBMs need the identification of the baseline model only.  

We can also identify model(s) individually or globally for the vibration signals under 

various known fault severities. Fault detection and severity assessment are based on a fit 

measure (e.g., residual mean squared error (MSE)) of each model, or re-estimation of the 

severity variable such that the global model best fits (e.g., minimizing the residual MSE) 

the current testing signal from unknown fault severity. These methods are model residual-

based and thus also belong to the category of model residual-based methods. Sakaris et al. 

[50] presented a vector functional pooled vector autoregression (VFP-ARX) model-based 

method for fault detection and localization of a truss structure. They identified a VFP-ARX 

model to globally represent the vibration signals under various fault locations. The fault is 

detected and localized via re-estimation of the location variable such that the VFP-ARX 

model best fits the current measured vibration signals. Kopsaftopoulos et al. [45] 

presented a VFP-ARX model-based method for fault detection, mode identification, and 

severity assessment of an aircraft skeleton structure. For each fault mode, they built a VFP-

ARX model to represent the vibration signals under various fault locations and severities. 

Fault detection, localization, and severity assessment are based on the re-parameterized 

VFP-ARX models of any damage mode. Fault mode identification is based on evaluating 
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the whiteness of residuals from each VFP-ARX model. The fault mode is identified as the 

one which gives the whitest residual. 

Fault detection and severity assessment can also be achieved using model parameters, 

hence termed model parameter-based methods. These methods require the identification 

of a model to represent the current vibration signals from an unknown health state.  Fault 

can be detected by testing the statistical difference between the parameters of the current 

model and the parameters of the baseline model [51]. For fault severity assessment, the 

parameters of the current model can be treated as health condition features and used for 

severity trending or classification. Cheng et al. [52] identified AR models on intrinsic mode 

function (IMF) from the empirical mode decomposition (EMD). The AR model 

parameters are used as bearing health condition features. Man et al. [53] proposed an 

optimal sinusoidal model to represent the baseline vibration signals, as well as vibration 

signals collected when the gearbox has tooth crack. The crack fault detection and severity 

assessment are achieved via examining the energy of crack induced components in the 

optimal sinusoidal model. The results have shown a good trending of crack propagation. 

Yin et al. [54] further modified the optimal sinusoidal model by reducing the number of 

to-be-estimated parameters. Ma et al. [55] proposed a generalized nonlinear 

autoregressive - generalized autoregressive conditional heteroskedasticity model to 

represent the vibration of bearing. Model parameters are treated as features and are fed 

into a classifier for fault severity classification. These model parameters-based methods 

require the identification of a model during the testing stage, and hence generally 

inapplicable for online implementation. 
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Despite the significant amount of publications, the remaining challenges of TSMBMs 

include 1) the difficulty of selecting a correct model order [56] and 2) the computational 

complexity of model training, especially when the model order gets higher [44]. 

1.2.1.4 Singular value decomposition-based methods  

The SVD-based methods have been widely used for periodic impulse extraction [19-25] 

thanks to their following merits. First, SVD-based methods are non-parametric. They do 

not require pre-defined basis functions [57]. Second, SVD-based methods have high 

computational efficiency. Last, the signal components (SCs) decomposed from SVD are 

free from phase shift and waveform distortion [58].   

The idea behind most reported SVD-based methods for periodic impulse extraction is to 

preserve the SCs with significant singular values (SVs) for signal reconstruction. Zhao and 

Ye [59] studied an SVD-based method for headstock fault diagnosis. They introduced a 

difference spectrum to capture the abrupt change in the singular values, which can reflect 

the boundary between signal and noise. Following this idea, Qiao and Pan [58] proposed 

a correlation coefficient-based selection algorithm to extract abrupt information that 

represents the weak fault feature of rolling bearings. Golafshan and Sanliturk [60] applied 

an SVD- and Hankel-matrix-based de-noising method to the ball bearing time-domain 

vibration signals as well as to their frequency spectrums. The kurtosis ratio of the output 

de-noised signal to raw signal is calculated for selecting SCs. Jiang et al. [61] treated the 

ratios of neighboring SVs as features of rolling-element bearing vibration signals. Zhang 

et al. [62] proposed a time-varying SVD method to enhance periodic impulse extraction. 

The time-varying SVD method applies SVD to the signal within a sliding window to obtain 

a time-varying matrix of SVs that suppresses noises and enhances fault features.  
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The SVs mainly reflect the energy of decomposed SCs. Therefore, most reported methods 

are essentially energy-based, which can highlight high-energy components in the 

measured signal but may ignore weak-energy features caused by early faults. Zhao and Jia 

[57] proposed a reweighted SVD (RSVD) method. This method applies SVD to decompose 

the raw signal into SCs, then uses a periodic modulation intensity (PMI) criterion 

innovatively to measure how influential the periodic impulses are in each SC. However, 

RSVD suffers from two issues: 1) it does not consider interference from non-fault related 

vibration components on the PMI, which leads to a high miss and/or false alarm rate; and 

2) it directly conduct reweighted summation of all SCs with PMI values that exceed the 

threshold for signal reconstruction, which undermines periodic impulse extraction.  

1.2.1.5 Summary  

Table 1.1 summarizes the advantages and disadvantages of the reviewed signal analyzing 

and processing methods for cyclo-stationary signals collected when the gearbox operates 

under constant speed conditions. It is worth to mention that each category of the methods 

has its own advantages and disadvantages. There is no clear optimum. We may not 

conclude that one category of methods should be dominating the others. There is still 

room for further improvement in each category. Many researchers are making efforts on 

advancing each category. 

Given the advantages of the SVD-based method as listed in Table 1.1, we are going to have 

a topic on further advancing the SVD-based method on the fault detection and severity 

assessment under constant speed condition. 
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Table 1.1: Summary of cyclo-stationary signal analyzing and processing methods 

Categories Advantages Disadvantages 

Statistical indicators 1) high computational efficiency 

2) easy for implementation 

1) lack of robustness to noise 

Synchronous average 1) effectively suppress random 
noise 

2) high computational 
efficiency 

3) easy for implementation 

1) affected by the noise-induced 
from discontinuities at window 
boundaries 

2) require accurate rotating 
phase measurement 

Resonance demodulation 1) high computational efficiency 

2) easy for implementation 

1) hard to select an optimal band 

 

Time series model-based 
methods 

1) being free from physics or 
analytical information 

2) need only a few signals for 
model training 

3) inherent accounting for 
uncertainties from 
measurement 

1) difficult to select a correct 
model order 

2) computational complexity of 
model training, especially when 
the model order gets higher 

 

SVD-based methods 1) do not require pre-defined 
basis functions  

2) high computational 
efficiency 

3) free from phase shift and 
waveform distortion 

1) may not extract the weak-
energy features caused by early 
faults 

As mentioned in Section 1.2.1.4, most reported methods are essentially energy-based, 

which may ignore weak-energy features caused by early faults. Zhao and Jia [57] proposed 

a reweighted SVD (RSVD) method which uses a criterion to measure how influential the 

periodic impulses are in each SC. This RSVD method addresses the problem of ignoring 

weak-energy features caused by early faults, but still suffers from two issues: 1) it does not 

consider interference from non-fault related vibration components on the PMI, which 

leads to a high miss and/or false alarm rate, and 2) it directly conduct reweighted 

summation of all SCs with PMI values that exceed the threshold for signal reconstruction, 

which undermines periodic impulse extraction.  
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To cope with these issues that RSVD face, we will propose an improved SVD-based method 

for the extraction of tooth crack induced periodic impulses, and thus for more accurate 

tooth crack fault detection and severity assessment. We will adopt an AR model-based 

approach [42] to remove the baseline vibration components from the raw signal. SVD is 

applied to a residual signal rather than the raw signal; interference from these baseline 

vibration components to the PMI is therefore eliminated. Second, we will select the SCs 

such that the PMI of the reconstructed signal is maximized. Periodic impulses extraction 

is therefore strengthened. Corresponding work will be detailed in Chapter 2. 

1.2.2 Vibration-based fault detection and severity assessment under 

variable speed condition 

In this subsection, we review methods for analyzing and processing the nonstationary 

signals collected under VS conditions. Based on the mathematical theory these methods 

relied on, we categorized them into general methods, discrepancy analysis, time-frequency 

analysis, and TSMBMs.  

1.2.2.1 General methods 

As mentioned in section 1.1.5, the gear meshing components are modulated in both 

amplitude and frequency under VS. Order tracking (OT) is a technique which demodulates 

the frequency modulation (FM). The OT transforms a measured signal from the time-

domain to the angular-domain. Rotating phase measurement, using an encoder or 

tachometer, is required as additional information. In the 1990s, OT techniques included 

the hardware OT and computed OT [63]. Afterwards, Vold and Leuridan [64]–[66] 

proposed a Vold-Kalman filter (VKF) which can extract order waveforms in the time-

domain without phase bias. Pan et al. [67] presented an adaptive version of the VKF. 

Recently, Borghesani et al. [68] proposed a velocity synchronous discrete Fourier 

https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Time_domain
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transform to directly assess the amplitude of synchronous gear meshing harmonics 

without an additional resampling step. Generally, OT cannot demodulate the amplitude 

modulation (AM) induced by VS. When demodulating the FM of gear meshing 

components, OT will induce additional FM to the structural components and crack-

induced impulses which were originally only modulated in amplitude.  

Researchers developed methods to demodulate the AM induced from VS condition, such 

that the nonstationary signals may be converted to cyclo-stationary. Schmidt et al. [69] 

proposed a procedure for the normalization of the AM caused by varying operating 

conditions for the fault detection and severity assessment of gearboxes. The key idea of 

the procedure is to divide the raw signal by its low-passed envelope. Urbanek et al. [70] 

defined a generalized angular deterministic signal which has FM induced from VS, and 

AM induced from both VS and variable load. They presented a demodulation method to 

convert the nonstationary signal into cyclo-stationary. These two works [69], [70] 

assumed an identical AM effect on each gear meshing component which was not realistic. 

Wang et al. [71] presented a multiscale filtering reconstruction method which adopts VKF 

to filter out each gear meshing component first and demodulates the AM effect on each 

gear meshing component. Unfortunately, these demodulation methods [69]–[71] not only 

demodulates operating condition effects but also attenuates fault induced impulses, which 

can weaken the fault induced features and hence undermine the accuracy of fault detection 

and severity assessment. 

The SA was generalized by Abboud et al. [27] in 2016 for the VS case. The generalized 

synchronous average (GSA) method performs the cyclic average on samples pertaining to 

the same speed. The GSA assumed a stationary behaviour within a rotating speed range. 
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A drawback of the GSA is that it needs a long duration of signals for having an accurate 

estimation of deterministic components. 

Various HIs were designed to be sensitive to crack induced periodic impulses but 

insensitive to operating condition variations. Sharma et al. [36] examined the 

effectiveness of various HIs, i.e., RMS, kurtosis, crest factor, FM0, FM4, M6A, NB4, 

energy ratio, NA4, energy operator, on nonstationary signals, and proposed two new HIs, 

namely, modified Rényi entropy, RMS ratio between residual signals and regular 

vibrations. Sharma et al. [72] proposed an RMS-based probability density function for the 

calculation of entropy-based HIs. Grylllia et al.  [73] used cyclo-nonstationary HIs for the 

bearing health monitoring under VS condition. Villa et al. [74] found that the diagnostic 

features (e.g., root mean square) are dependent on the rotating speed and load. The change 

of such dependency can reflect the deterioration of a gearbox. Santos et al. [75] considered 

fault diagnosis of imbalance and misalignment faults under random speed and load 

variation. They extracted numerous features from the vibration signal and fed them along 

with speed and load information into a support vector machine (SVM). Although the 

features they extracted are sensitive to speed/load changes, SVM is expected to learn the 

dependency between these features and the speed/load and still return a good 

classification result. When applying the approach by Santos et al. [75] for gear tooth crack 

detection and severity assessment, we need to extract proper features that are sensitive to 

the gear tooth crack.  

1.2.2.2 Discrepancy analysis 

Recently, Schmidt et al. [76] presented a comprehensive novelty diagnostic method based 

on discrepancy analysis. The method is applicable to the fault diagnosis of a machine 

under distinct operating condition states such as idling, full load, and transient states 
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within a measurement [76]. The method first identifies the OC state of the gearbox by 

assuming that the speed does not vary significantly within a rotating cycle. Secondly, the 

method calculates a negative log-likelihood (NLL) based on machine health condition 

features and the OC state. The NLL can reflect the propagation of the localized gear fault 

well. The novelty diagnostic method may be adequate for smooth random speed variations. 

However, when speed varies rapidly, the vibration signal within a rotating cycle may be 

subjected to significant variations. 

1.2.2.3 Time-frequency analysis 

The time-frequency analysis studies a signal in the joint time-frequency domain  thus can 

comprehensively reveal the characteristics of nonstationary vibration signals [77]. By 

time-frequency analysis, the constituent frequency components of the vibration signal and 

the transient time events in the signal such as fault-induced impulses can be revealed [78]. 

A large volume of time-frequency analysis methods has been presented for the fault 

detection and severity assessment of gearboxes. The most classical methods include short-

time Fourier transform (STFT), Wavelet transform (WT), Wigner Villa distribution 

(WVD), and Hilbert-Huang transform (HHT). Two recent review papers were available by 

Feng et al. [78] and Yang et al. [79]. Notably, Wang et al. [80] applied the WT to gear 

residual signal from a gearbox under a time-varying load condition. Gear residual signal 

is obtained from conducting SA on raw signals. Antoniadou et al. [81] presented a time-

frequency analysis method based on empirical mode decomposition (EMD) and Teager–

Kaiser energy operator. The localized fault of the wind turbine gearbox was detected. 

Wang et al. [82] proposed a matching synchrosqueezing transform (MSST) and presented 

its application in fault detection of a wind turbine gearbox under VS. The MSST can 

qualitatively detect a slight tooth spall through visual observation of the time-frequency 
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spectrum. Feng et al. [83] constructed a time-frequency spectrum via the VKF and Hilbert 

transform. They analyzed vibration signals from a planetary gearbox under a coast down 

speed profile. A sun gear chipping fault was detected by observing the fault characteristic 

frequency on the time-frequency spectrum. 

Although time-frequency analysis methods were widely investigated, each of these 

methods subject to certain limitations. For example, application of WT requires a proper 

selection of wavelet basis [78]; EMD subjects to mode mixing problem when the signals 

have instantaneous frequency trajectory crossings, and requires a higher sampling 

frequency of the vibration signal as cubic spline to fit data and hence it needs more samples 

for fine interpolation [78]. On the other hand, time-frequency analysis only qualitatively 

detects the fault by a subject matter expert and have not quantitatively assessed the fault 

severity. It is required to incorporate other feature extraction methods for quantitative 

fault severity assessment. 

1.2.2.4 Time series model-based methods  

As mentioned in Section 1.2.1.3, the identification of a baseline model to represent the 

vibration from a healthy state is a must for TSMBMs. The accuracy of baseline modeling 

directly determines the success of TSMBMs. Unlike modeling the cyclo-stationary signals, 

modeling the nonstationary signals require time-variant models. 

Few time-variant time series models have been reported to represent the nonstationary 

baseline vibration from rotating machinery operating under VS conditions. Wyłomańska 

et al. [84] proposed a periodic AR for modeling the baseline vibration from a planetary 

gearbox of bucket wheel excavator. This periodic AR model is applicable to the case when 

the operating condition varies periodically. Zhan et al. [85] and Shao et al. [86] developed 

an adaptive AR model (AAR) to model the baseline vibration from a fixed-axis gearbox. 
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The Kalman filter was adopted to adaptively adjust the AR parameters in terms of 

minimizing the residual sum of squares. Heyns et al. [87] constructed a weighted 

ensemble of AR models for modeling the baseline vibration from a fixed-axis gearbox. A 

Bayesian probability scheme was adopted to adaptively determine the weight of each AR 

model. The constructed weighted ensemble of AR models is essentially a special type of 

AAR model. Makowski et al. [88] proposed to use the reflection coefficients of a Schur 

adaptive filter and their derivatives for fault detection of a rolling element bearing. 

Reflection coefficients are adaptively adjusted to minimize the mean squared prediction 

error. These adaptive models require a proper tuning of a convergence rate. Too high of a 

convergence rate results in overfitting, and too low of a convergence rate causes 

underfitting. Yang and Makis [89] used the AR model with exogenous excitation (ARX) to 

represent the baseline vibration from a fixed-axis gearbox under a time-varying load 

condition. They innovatively considered the load information, quantified from a torque 

sensor, as an exogenous added-up excitation to compensate time-varying load effects on 

the baseline vibration. Unfortunately, if we consider the VS as the exogenous part, time-

varying harmonics with their frequencies different from the frequencies of the VS cannot 

be compensated [90]. Using ARX will have large modeling error for VS case. 

Functional pooled (FP) models have been used in the context of SHM [45], [91], [92]. 

Kopsaftopoulos et al. [91] used a vector functional pooled autoregression (VFP-AR) model 

for globally representing the dynamics of a healthy aerospace structure under multiple 

flight states. Hois et al. [51] presented a functional pooled vector autoregression (FP-VAR) 

model-based method for fault detection of a composite cantilever beam under variable 

temperature conditions. Aravanis et al. [93] presented an FP-AR model with an exogenous 

excitation-based method for fault detection of a railway suspension under variable loading 
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conditions.  In [45], [91], [92], vibration signals were collected under different constant 

levels of operating conditions and FP models were identified to represent the vibrations 

under different levels of operating conditions. Belonging to FP models, the FP-AR model 

configures the AR parameters as functions of operating conditions [94]. A more general 

model can be found in [95] incorporating moving average and external excitation terms. 

In addition, vector dependent FP [96] may be involved when multiple operating condition 

variables affect the vibration, and vector AR when modeling multiple channels of signals 

[97]. In statistics, the FP models belong to varying coefficient regression models [98]. In 

the system identification field, the FP models are also be referred as signal-dependent 

models [99]. 

Without loss of generality, we can consider the FP-AR model with its AR parameters 

dependent on VS. After configuring the AR parameters as functions of rotating speed, the 

FP models will have unique spectral content at each speed level. Therefore, the FP models 

can model the complex speed-dependent spectrum contents of the nonstationary baseline 

vibration. 

Identifying an FP-AR model needs parameter estimation and model structure selection 

methods. Model parameters are estimated by the ordinary least squared (OLS) estimator 

[94]. Model structure refers to AR terms and functional spaces that describe the 

dependency between AR parameters and VS. Conventionally, the model structure is 

selected via the two-step Bayesian information criteria (BIC) based method [45], [50], [56]. 

This two-step BIC-based method firstly assumed consecutive AR terms (SAR = {1, 2, …, na}, 

where SAR is a set that specifies AR terms; and na is the maximum lag order of the AR term) 

to simplify the selection of AR terms into a one-dimensional optimization problem, i.e., 

determine an optimal ˆ
an . Such a one-dimensional optimization problem is solved by 
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evaluating enough range of na values and then determining the optimal ˆ
an that minimizes 

BIC. Secondly, the two-step BIC-based method assumed identical sets of functional spaces 

SF,i = SF for ARi S (where SF,i is a set that specifies the functional spaces), which simplifies 

the selection of many sets SF,i for ARi S  into the selection of one set SF. In this step, the 

backward deletion scheme is adopted [100]. The SF is selected by initially starting from a 

high-dimensional set and then sequentially dropping each one of the basis functions until 

no reduction of the BIC is possible. However, the two-step BIC-based method limited the 

modeling accuracy of FP-AR. Firstly, much real-world time series, such as seismology 

waves, radar signals, and speech signals, are generated from a sparse AR process [101]. A 

sparse AR model uses scattered AR terms as predictors, rather than consecutive AR terms. 

The baseline vibration from a gearbox may also be generated from a sparse AR process. 

Thus, using an FP-AR with a sparse set SAR to model the gearbox vibrations may be more 

reasonable than assuming consecutive set SAR. Secondly, the dependency between 

different AR parameters and the VS for ARi S may be very different. They may require 

non-identical sets of functional spaces SF,i for ARi S to achieve accurate regressions. 

Assuming an identical set of functional spaces SF,i for ARi S may be too coarse. 

Following the baseline vibration modeling, we consider the fault detection and severity 

assessment. As mentioned in Section 1.2.1.3, fault detection and severity assessment can 

be achieved based on analyzing the residuals obtained from applying the baseline model 

on the current vibration signals that are collected under an unknown health state, such as 

examining the whiteness, variance, or impulsiveness. Zhan et al. [85] used the kurtosis of 

the AAR model residual and normality hypothesis testing for crack fault detection and 

severity assessment. Shao et al. [86] used the Wilcoxon rank-sum test to exam the 

whiteness of the AAR model residual for crack fault detection and severity assessment. 
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Heyns et al. [87] used RMS of the residual of a weighted ensemble of AR models for crack 

fault detection and severity assessment. Yang and Makis [89] used an F-statistic to exam 

the variance of the ARX model residual for crack fault detection and severity assessment.  

These baseline model residual-based methods may only apply to the cases when the 

testing signals were collected under deterministic speed profiles, for example, the run-up 

or coast down profiles in rail transit. Under random speed variations that typically occur 

in wind turbine gearboxes, the random profile within each data acquisition window could 

be hugely different. They could stay in a high/low level or vary rapidly. A CM system is 

expected to detect and diagnose faults using a segment of vibration signal collected under 

each of these different profiles. These various statistics calculated from the residual of the 

baseline model are still affected by the random speed profiles. Therefore, these methods, 

such as examining the whiteness, variance, or impulsiveness of the residual of baseline 

model, may be ineffective.  

Another category of TSMBAs, namely, model parameter-based methods, is available for 

the fault detection and severity assessment. In the SHM field, Hois et al. [51] presented an 

FP-VAR model-based method for fault detection of a composite cantilever beam under 

variable temperature conditions. Fault detection is based on statistically comparing the 

model parameters from a testing signal with these parameters obtained from the training 

stage. Spiridonakos et al. [102] presented a functional series TAR (FS-TAR) model-based 

mode identification method for a pick-and-place mechanism. FS-TAR models are built for 

each fault mode. Fault mode identification is based on statistically comparing the model 

parameters from a testing signal with these parameters obtained from the training stage. 

Aravanis et al. [93] presented an FP-AR model with an exogenous excitation-based 

method for fault detection of a railway suspension under variable loading conditions. 
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Dimogianopoulos et al. [103] presented a two-stage stochastic pooled nonlinear 

autoregressive moving average with exogenous excitation (P-NARMAX) representations 

to model the relationships among available aircraft signals under varying operating 

conditions (e.g., flight angles). In the first stage, a constant coefficient P-NARMAX 

representation was identified to account for major nonlinearities in the relationship and 

to deliver the initial residuals. In the second stage, multiple stochastic pooled nonlinear 

autoregressive with exogenous excitation (P-NARX) models were identified for each 

health state using training data (assumed available). These health states included healthy 

and multiple faulty states. Online diagnostic of the aircraft is based on online measured 

aircraft signals and recursively estimating a P-NARX model via recursive least square 

(RLS). The parameters of the recursively estimated P-NARX model reflects the current 

health state, and the distance between the estimated P-NARX model parameters from the 

trained model parameters are computed as a fault diagnostic metric. However, these 

model parameters-based methods require the identification of a model during the testing 

stage, and hence generally inapplicable for online CM implementation of gearboxes due to 

the relatively large CM data size. 

1.2.2.5 Time varying singular value decomposition-based method 

 The SVD-based methods were modified for the analysis of nonstationary signals by 

incorporating the short time windowing idea [62], [104]. Technically, the modified SVD-

based method cuts the nonstationary signal into several segments using a sliding short 

time window and then applies SVD to decompose each segment. The sliding window will 

have a certain overlap. Then, the SV series are used as features for fault diagnosis or 

pattern recognition. However, such time varying SVD-based methods have the limitation 

caused by the sliding short time window, that is, there is a tradeoff between time resolution 
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and frequency resolution. If the duration of the window is too long, the method is unable 

to catch the nonstationary time varying characteristics of the signal; whereas if the 

duration of the window is too short, the method is unable to catch the frequency 

characteristics of the signal.  

1.2.2.6 Summary  

Table 1.2 summarizes the advantages and disadvantages of the reviewed signal analyzing 

and processing methods for nonstationary signals collected when the gearbox operates 

under VS condition. Again, each category of the methods has its own advantages and 

disadvantages. There is no clear optimum.  

Given the advantages of time series model-based methods, we are going to have two topics 

on further advancing the time series model-based methods for fault detection and severity 

assessment under VS condition. 

We first aim to improve the accuracy of baseline vibration modeling. As mentioned in 

Section 1.2.2.4, the structure of FP-AR model is conventionally selected via the two-step 

BIC based method [45], [50], [56]. The two-step BIC-based method assumed 1) 

consecutive AR terms, e.g., SAR={1,2,…, na}, and 2) identical sets of functional spaces for 

ARi S , e.g., SF,i = SF. Although these two assumptions simplify the model selection and 

enable the two-step BIC-based method [45], [56], [91], they, however, limited the 

modeling accuracy of conventional FP-AR. To improve the modeling accuracy, this thesis 

will propose a sparse FP-AR model that uses a sparse AR set SAR and non-identical 

functional spaces SF,i. These two assumptions made in the two-step BIC based method will 

be relaxed. Corresponding work will be detailed in Chapter 3. 
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Table 1.2: Summary of nonstationary signal analyzing and processing methods 

Categories Advantages Disadvantages 

Statistical indicators 1) high computational efficiency 

2) easy for implementation 

1) lack of robustness to noise 

Generalized synchronous 
average 

1) effectively suppress random 
noise 

2) high computational 
efficiency 

3) easy for implementation 

1) affected by the noise induced 
from discontinuities at window 
boundaries 

2) needs a long duration of 
signals for having an accurate 
estimation of deterministic 
components 

Order tracking 1) effectively demodulate FM 
effect induced from VS 
condition 

 

1) cannot demodulate the AM 
induced by VS 

2) will induce additional FM to 
the structural components and 
crack-induced impulses which 
were originally only modulated 
in amplitude 

Amplitude demodulation 

 

1) effectively demodulate AM 
effect induced from variable 
operating condition 

1) may attenuate fault induced 
impulses 

Discrepancy analysis 1) applicable for any kind of 
operating condition, e.g., idling, 
full load, and transient 
conditions 

1) assumed insignificant speed 
changes within one rotating 
cycle, thus not suitable when 
speed varies rapidly  

2) need lots of baseline data for 
training 

Time-frequency analysis 

 

1) comprehensively reveals the 
characteristics of nonstationary 
vibration signals 

1) each of time-frequency 
analysis methods subject to 
certain limitations, such as 
mode mixing to EMD, cross 
term to WVD, selection of 
wavelets to WT 

Time series model-based 
methods 

1) being free from physics or 
analytical information 

2) need only a few signals for 
training 

3) inherent accounting for 
uncertainties from 
measurement 

1) difficult to select the model 
structure; incorrect model 
structure will lead to inaccurate 
modeling of nonstationary 
vibration signals 

2) computational complexity of 
model training, especially when 
the model order gets higher 

Time varying SVD-based 
methods 

1) do not require pre-defined 
basis functions  

2) high computational 
efficiency 

3) free from phase shift and 
waveform distortion 

1) tradeoff between time 
resolution and frequency 
resolution 
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For the fault detection and severity assessment, we can use the residuals of the baseline 

model when the testing signals were collected under deterministic speed profiles. However, 

these methods are inapplicable to the cases when the testing signals are collected under 

random speed variations which typically occur in wind turbine gearboxes, as mentioned 

in Section 1.2.2.4.  

We will aim to develop a TSMBM for the gear tooth crack detection and severity 

assessment under the random speed variation. We will identify models on the residuals of 

the baseline sparse FP-AR model under random speed variation. A VFP-AR model that 

considers rotating speed and rotating phase as covariates will be developed for 

representing the impulsive residual signals, given that the rotating speed affects the 

amplitude of tooth crack induced impulses and the rotating phase determines the location 

of these impulses. Multiple VFP-AR models will be built for each level of tooth crack 

severity. Fault detection and severity assessment can, therefore, be based on examining 

the residuals of each VFP-AR model. The final health state can be assessed as the severity 

state of the model which gives the minimal residual energy. Such fault detection and 

severity assessment scheme is computationally efficient and can be applied in an online 

scenario. Corresponding work will be detailed in Chapter 4. 

1.3 Thesis objectives and outline 

The overall objective of this thesis is to develop new vibration-based methods for more 

accurate gear tooth crack detection and severity assessment. Based on the state-of-the-art 

signal analyzing and processing methods as reviewed in Section 1.2, we have the following 

three specific sub-objectives: 
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1) Propose an improved SVD- based method for more effective extraction of tooth 

crack induced periodic impulses from cyclo-stationary vibration signals under 

constant speed applications.  

2) Propose a new time series model for more accurate modeling of nonstationary 

baseline vibration from a gearbox under VS condition. 

3) Develop a time series model-based approach for more accurate gear tooth crack 

detection and severity assessment under random speed variation. 

Our basic assumptions in this thesis are as follows: 

1) Only a single channel of vibration signal is available for the gear tooth crack fault 

detection and severity assessment. 

2) Rotating speed and phase information can be accurately acquired by either 

tachometers or speed estimation techniques. 

3) The load condition of the gearbox is either constant or correlated with the rotating 

speed. 

To achieve the above three specific sub-objectives, we have completed three research 

topics as follows 

In Topic #1, an improved SVD-based method is proposed for gear tooth crack detection 

and severity assessment under constant speed conditions. The shortcomings of the 

reported RSVD method [57] were addressed. First, the improved SVD-based method 

adopts an auto-regression model-based baseline removal approach. SVD is applied to 

decompose the residual signal rather than the raw signal. Interference from non-fault 

related vibration components on the PMI is therefore eliminated. Second, the improved 

method selects the SCs such that the PMI of the reconstructed signal is maximized. 

Periodic impulse extraction is therefore strengthened. An experimental study was 
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conducted. Results show that the improved method outperforms RSVD in terms of fault 

detection and severity assessment without creating a considerable computational burden. 

The materials of this topic have been published partially in a conference paper [105] and 

as a whole in a journal paper [106]. 

In topic #2, a sparse FP-AR model that uses sparse AR terms and non-identical functional 

spaces is proposed. The limitations of the conventional FP-AR model [91] (i.e., the FP-AR 

model with its structure selected by the two-step BIC-based method) were addressed. To 

obtain such a sparse FP-AR model, a new model selection procedure is developed by 

adopting the least absolute shrinkage and selection operator. The sparse FP-AR model has 

been validated using simulation signals from a simulation model for a fixed-axis gearbox 

and experimental signals from two independent fixed-axis gearbox test-rigs. The modeling 

accuracy was measured by mean squared errors and randomness tests of the modeling 

residuals, goodness-of-fit between the one-step-ahead prediction and real gear vibration, 

and time-frequency spectra. Results have shown that the proposed sparse FP-AR model 

has higher modeling accuracy than the conventional one. Meanwhile, the sparse FP-AR 

model was applied for detecting gear tooth crack faults under identical VS profile. Results 

have shown that the proposed method benefits the fixed-axis gearbox in early detection of 

faults and better assessment of fault progressions. The materials of this topic have been 

published partially in two conference papers [90], [107]and as a whole in a journal paper 

[95]. 

In topic #3, a time series model-based method is presented for gear tooth crack detection 

and severity assessment under random speed variation. Specifically, the rotating speed 

and phase are considered as covariates in a VFP-AR model for representing impulsive 

vibration signals. We proposed refined B-splines for mapping the dependency between AR 
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coefficients and the rotating phase. The performance of the presented time series model-

based method has been validated using laboratory signals. The presented method can 

assess 93.8% of the tooth crack severity state correctly, which is better than the novelty 

diagnostic method (73.8%) [76] and SVM-based method (87.7%) [75]. The materials of 

this topic have been documented in a journal paper [109] which is under review. 

The contributions of this thesis are summarized as follows 

1) Proposed an improved SVD-based method for gear tooth crack detection and severity 

assessment under constant speed condition. Validated the improved SVD-based method 

using laboratory signals from a gearbox test-rig. Benchmarked the performance of the 

proposed model with the reported RSVD method [57]. 

2) Proposed a sparse FP-AR model for the representation of baseline vibration from 

gearboxes under VS conditions. Validated the sparse FP-AR model-based fault detection 

and severity assessment for gearboxes under VS condition. Simulation signal and 

laboratory signals from two independent test-rigs are used to validate the performance of 

the proposed method. Benchmarked the modeling accuracy of the proposed model with 

the conventional FP-AR model [91]. 

3) Presented a time series model-based method for the gear tooth crack detection and 

severity assessment under random speed variation. Rotating speed and rotating phase are 

considered as covariates in a VFP-AR model for the representation of impulsive vibration 

signals under random speed variation. Refined B-splines are proposed for the VFP-AR 

model when mapping the dependency between AR coefficients and the rotating phase. 

Validated the proposed VFP-AR model-based method using laboratory signals from a 

gearbox test-rig, and benchmarked its performance with the reported novelty diagnostic 

method [76], and SVM-based method [75]. 
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The rest of this thesis is organized as follows. Chapter 2, Chapter 3, and Chapter 4 give 

details of the three research topics, respectively. Chapter 5 presents the summary and 

future works. 

This thesis is written using the paper-based template which meets the formatting 

requirements of the University of Alberta. 
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2 
An improved singular value decomposition-

based method for gear tooth crack detection and 
severity assessment 

 This chapter focuses on the gear tooth crack fault detection and severity assessment under 

constant rotating speed conditions (the research topic #1 as introduced in Section 1.3). An 

improved singular value decomposition-based method is proposed in this chapter. In 

Chapters 3 and 4, the problem of vibration-based fault detection and severity assessment 

under variable speed conditions will be addressed. The materials of this chapter have been 

published partially in a conference paper [105] and as a whole in a journal paper [106]. 

2.1 Introduction  

Tooth cracks are among the top gearbox failure modes [13].  Tooth crack detection and 

severity assessment in the early stage of cracking may prevent catastrophic failure and 

facilitate condition-based maintenance strategies that reduce downtime and maintenance 

costs, which has great significance for industries [110]. Tooth cracks induce periodic 

impulses in vibration signals [12]. Hence, tooth crack detection and severity assessment 

usually rely on periodic impulse extraction. This chapter presents an approach that 

extracts periodic impulses from vibration signals for early tooth crack detection and 

severity assessment. Gearbox operation conditions, such as rotating speed and load torque, 

are assumed to be constant. 
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During recent decades, a variety of signal processing techniques have been presented for 

the periodic impulse extraction, including various statistical indicators [85], [87], band-

pass filter and envelope spectrum [28], Wavelet transform-based de-noising [111], 

empirical mode decomposition [112], spectral kurtosis [113], [114], spectral correlation 

[115], [116], minimum entropy deconvolution [43], [47], [49], compressed sensing [117]–

[119], and singular value decomposition (SVD)-based methods [57], [60], [120]. Among 

these techniques, the SVD-based methods have been widely used for periodic impulse 

extraction [57]–[62], [120] thanks to their following merits. First, SVD-based methods are 

non-parametric. Unlike other techniques such as wavelet analysis and compressed sensing, 

they do not require predefined basis functions [57]. Second, SVD-based methods have 

high computational efficiency [60]. Last, the signal components (SCs) decomposed from 

SVD are free from phase shift and waveform distortion [58].  

As reviewed in Section 1.2.1.4, the idea behind most reported SVD-based methods [59], 

[61], [62], for periodic impulse extraction is to preserve the SCs with significant singular 

values (SVs). These reported methods are essentially energy-based, which can highlight 

high-energy components in the measured signal but may ignore weak-energy features 

caused by early faults [57]. To address this issue, Zhao and Jia [57] proposed a reweighted 

SVD (RSVD) method. This method applies SVD to decompose the raw signal into SCs, 

then uses a periodic modulation intensity (PMI) criterion innovatively to measure how 

influential the periodic impulses are in each SC. The PMI essentially represents the energy 

ratio between periodic impulses and other components in a signal. SCs are selected when 

their PMI exceeds a predefined threshold. Selected SCs are then added together with 

assigned weights to reconstruct the extracted signal. Simulation and experimental studies 
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in Ref. [57] show that RSVD is more effective than other SV-based methods in selecting 

the correct SCs and highlighting weak and informative features.  

However, RSVD [57] suffers from two issues: 1) it ignores that non-fault related vibration 

components (e.g., gear meshing and structure vibration components) will affect the 

sensitivity of PMI to periodic impulses. These non-fault related vibration components 

exist when the gearbox is healthy. When the gearbox has a tooth crack, vibration signals 

contain both periodic impulses and these non-fault related vibration components. 

Hereafter, we consider the non-fault related vibration components equivalent to baseline 

vibration components. We have found that the PMIs of SCs that are obtained from 

baseline vibration are also high, leading to a high false alarm or miss alarm rate; 2) the 

reweighted summation of SCs undermines periodic impulse extraction. The RSVD selects 

SCs with PMIs that exceed the threshold and conducts reweighted summation of these SCs 

for signal reconstruction. The reweighted summation of these SCs often results in a signal 

with a smaller PMI compared with the original SCs. The reconstructed signals reflect fault 

severity poorly.  Therefore, RSVD has a room for improvement in terms of fault detection 

and severity assessment. 

This chapter proposes an improved SVD-based method that overcomes the above issues 

in two aspects. First, the proposed method adopts an auto-regression (AR) model-based 

approach [42] to remove the baseline vibration components from the raw signal. SVD is 

applied to a residual signal rather than the raw signal; interference from these baseline 

vibration components to the PMI is therefore eliminated. Second, the improved method 

selects the SCs such that the PMI of the reconstructed signal is maximized. The 

reconstructed signal is still a weighted summation of optimal SCs, but not all SCs whose 

PMI exceeds the threshold. Compared with RSVD [57], this new signal selection scheme 
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ensures that the reconstructed signal has a high energy ratio between tooth crack induced 

impulses and other components.  

The remainder of this chapter is organized as follows: Section 2.2 presents fundamentals, 

including SVD, AR modeling, and PMI theories; Section 2.3 proposes the improved SVD-

based method; Sections 2.4 and 2.5 validate the proposed method using simulation signals 

and experimental signals, respectively; concluding remarks are given in Section 2.6. 

2.2 Fundamentals  

This section introduces fundamentals that are utilized later in this chapter, including SVD, 

removal of baseline vibration components via AR modeling, and PMI criterion. 

2.2.1 Singular value decomposition 

SVD of an m×c real matrix A can be formulated as a factorization in the following formula 

[57], [58]  

TA = U V                                                               (2.1) 

where U = [u1, u2, …, um]   Rm×m, and V = [v1, v2, …, vc]   Rc×c are unitary matrices. The 

column vectors within U and V are the orthonormal eigenvectors of AAT and ATA, 

respectively; ∑ is a diagonal rectangular matrix that stores the singular values σ of A in 

descending order, which is given by ∑ = [diag(σ1, σ2, …, σl), 0] Rm×c, where l = min(m, c) 

and σ1 ≥ σ2 ≥ … ≥ σl. 

A given one-dimensional signal x = [x1, x2, …, xN]T (e.g., a measured vibration signal) should 

first be reshaped into a matrix. Many matrix forms are available in the literature, including 

the Toeplitz matrix, cycle matrix, and Hankel matrix [57]. Among them, the Hankel matrix 

is widely used due to its zero-phase shift property. For x, the Hankel matrix can be written 

as follows [60]  
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where m = N-c+1. The parameter m is used to determine the number of decomposed SCs, 

which is usually less than c. 

According to Eq. (2.1), the Hankel matrix A can be expressed as the superposition of m 
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where ui   Rm×1 is the ith column vector of the unitary matrix U, vi   Rc×1 is the ith column 

vector of the unitary matrix V, and σ-matrix is the diagonal rectangular matrix ∑ storing 

the singular values σ of A in descending order. In Eq. (2.3), we assume that the σ-matrix 

is right augmented by 0 column vectors, and the final expression is valid as it is. 

Each sub-matrix Ai in Eq. (2.3) corresponds to an SC xci in the raw signal x. According to 

the construction of the Hankel matrix given in Eq. (2.2), xci can be obtained from Ai by 

averaging along the anti-diagonals, as shown in Fig. 2.1. 

  

Fig. 2.1: Extraction of xci from Ai by anti-diagonals averaging method 
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The SVD-based signal decomposition can be understood as a filter bank approach. The 

obtained SCs are outputs of filters with different frequency bands. The frequency bands 

are unknown ahead of time and adaptive to the signal. Also, the frequency bands of 

different filters may have overlap, which means different SCs may contain the same 

frequency components. 

When it comes to extracting the periodic impulses, the carrier frequency of the periodic 

impulses equals to the natural frequency of the transmission path [12], [24], [25] . Thus, 

these decomposed SCs with their frequency bands included or close to the natural 

frequency will contain the periodic impulses. Note that there may be more than one SCs 

which contain periodic impulses. 

2.2.2 Removal of baseline vibration components via auto-regression 

modeling 

Baseline vibration components are to be removed to reduce their interference to the PMI. 

Many methods are available for fulfilling this purpose, including the time series model-

based approach [42],  frequency domain editing, and time domain subtraction [16]. In this 

chapter, we use the time series model-based approach given that it does not require any 

prior information like gear meshing frequency, and is free from requiring rotating phase 

alignment that is required by time domain subtraction methods. The time series model-

based approach identifies a time series model, e.g., an auto-regression (AR) model, to 

represent the baseline vibration from a gearbox; constructs an inverse filter based on the 

baseline model; and uses the inverse filter to remove the baseline vibration from signals 

collected when the health condition of the gearbox is to be determined. A “residual signal” 

is then obtained. Note that the baseline data is better to be collected at multiple time points 

to account for any variations (e.g., environmental temperature). 
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The AR model is a typical time series model, which is expressed by the formula [42] 

1

an

t i t i t

i

x a x −

=

= +                                                              (2.4) 

where xt and xt-i denote the data points at time t and time t-i, respectively, of a time series 

(e.g., a measured vibration signal); na specifies the order of the AR terms; εt is a zero-mean 

white Gaussian noise at time t; ai represents the AR parameters. Identifying a suitable AR 

model requires parameter estimation and model order selection. Model parameters are 

estimated using the ordinary least squared estimator [108]. The model order is selected 

by minimizing Bayesian information criteria [115]. 

Applying z-transform [121] to Eq. (2.4), we obtain 
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                                         (2.5) 

where X(z) is the vibration signal expressed in the z-domain and e(z) is the zero-mean white 

noise in the z-domain. According to “linear time-invariant (LTI) system” theory, X(z) is 

modeled as the output of an LTI system with transfer function H(z) excited by a zero-mean 

white noise e(z).  

Based on Eq. (2.5), the inverse filter is of the following transfer function [121]:  

1

1

( ) 1
an

i

i

i

H z a z− −

=

= −                                                        (2.6) 

This inverse filter, when applied to a collected vibration signal, can remove the baseline 

vibration components to obtain a residual signal.  
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2.2.3 Periodic modulation intensity 

According to [57], the value of PMI represents the energy ratio between tooth crack 

induced impulses and other components in a given signal xt (e.g., a measured vibration 

signal or SC). The analytical envelope Envt of the xt is obtained as 

( )btEnvt t m tabs x i H x= +                                                        (2.7) 

where im is the imaginary unit, and Hbt represents the Hilbert transform. The mean of Envt 

is then removed from the time series Envt to acquire the zero-mean envelope. Finally, the 

PMI value p is calculated from this zero-mean envelope as follows. 

( )

( ) ( )
Env

Env Env0

R
p

R R




=

−  

                                                     (2.8) 

where τ is the period of tooth crack fault induced impulses; REnv(τ) is the autocorrelation of 

the zero-mean envelope at τ; REnv(0) is the autocorrelation at τ = 0 of the zero-mean 

envelope, which is the total energy of the zero-mean envelope.  

2.3 Improved singular value decomposition-based method 

The improved SVD-based method consists of the following steps for tooth crack fault 

detection and severity assessment. Fig. 2.2 shows a flowchart of the improved SVD-based 

method. 

Step 1: Removal of baseline vibration components via AR modeling. In this step, an AR 

model is first identified using baseline vibration signals. Specifically, baseline vibration 

signals are used to select the AR model order and estimate the AR model parameters. The 

inverse filter is then constructed. For signals collected when the health condition of the 

gearbox is to be determined, applying the inverse filter removes the baseline vibration 
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components and yields a residual signal. With the baseline vibration component removed, 

interference from baseline vibration components to the PMI can be eliminated.  

Step 2: SVD-based decomposition of the residual signal. SVD decomposes the residual 

signal into m SCs. The selection of m is critical to the success of SVD [122]. Miao et al. [122] 

empirically assigned m as 100 for decomposing vibration signals from rotating machinery 

after considering the tradeoff between computational efficiency and effectiveness of SVD. 

We follow their research to select m as 100. 

Step 3: Information evaluation. The PMI that measures how influential the periodic 

impulses are is calculated for each SC. 

Step 4: Fault detection. If any SC has the PMI value that exceeds a predefined threshold 

Th, a tooth crack fault is detected. Otherwise, no fault exists. In such case, Step 5 is skipped, 

and the process ends. We determine Th by decomposing residual signals from baseline 

vibration signals. By extracting the maximum PMI of SCs from multiple segments of the 

residual signal, a statistical distribution for the maximum PMI can be fitted. We can set Th 

at a certain percentile of the obtained statistical distribution. Too low the percentile will 

lead to a high false alarm rate, whereas too high the selected percentile will lead to a high 

miss alarm rate. For instance, a 98th percentile of the distribution means that the allowable 

limit of the false alarm rate is <2%. The determination of Th may vary for different 

applications, and it is up to the users to determine which percentile should be selected for 

their application. In this thesis, we set Th as the 98th percentile of the distribution for 

illustration purposes. 

Step 5: Signal reconstruction. We proposed a new signal reconstruction scheme. The 

scheme first pre-selects the SC(s) with a PMI value that exceeds threshold Th. Suppose pi 

is the PMI value of ith SC, and ( ) ini | , 1,2,...,i hS i p T i m=    represents the set for pre-selected 
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initial SCs. The new signal reconstruction scheme determines a subset 
iniS S  such that the 

PMI value pd of the reconstructed signal d i ci ii S i S
p p

 
= x x   is maximized: 

 
ini

arg max d
S S

S p


=                                                          (2.9) 

The above integer optimization problem can be solved using the forward selection scheme 

[100]. The reconstructed signal is then used for severity assessment. Generally, the higher 

the energy ratio between tooth crack induced impulses and other components, the more 

severe the fault [12]. 

Is there any PMI of SC  

been bigger than Th?

Inverse filter 

constructed by AR 

model

SVD

PMI calculation

AR model 

identification

Baseline vibrationRaw vibration signal xt

Residual signal rt

SCs, xci for i = 1, 2, , m

PMIs for each SC, pi for i = 1, 2, , m

Extracted signal xd

Signal 

reconstruction

Yes, fault detected

No, Healthy

Import raw 

vibration signal

End

Import baseline 

vibration signal

 

Fig. 2.2: Flowchart of the improved SVD-based method 
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Compared with RSVD [57], step #1 is newly adopted. Step #5 is also newly proposed and 

replaces the direct reweighted summation of all SCs with a PMI that exceeds threshold Th. 

When it comes to the online implementation of the proposed SVD-based method, users 

need to follow the steps 1~5 described above. However, the baseline AR model in step #1 

and the fault detection threshold Th in step #4 need to be determined ahead of the online 

implementation. In other words, these parameters need to be determined offline.  

2.4 Experimental study 

This section presents an experimental study with comparative analysis for evaluating the 

fault detection and severity assessment effectiveness and computational cost of the 

improved SVD-based method. 

2.4.1 Experimental signals  

This experiment was designed and carried out by the candidate with the help of other 

members of Dr. Zuo’s research group. The experiment was completed in December 2018 

and details of the experiment were documented in a technical report [123].  

A gearbox test rig in the Reliability Research Lab at the University of Alberta, Canada, was 

used. Fig. 2.3(a) shows the gearbox test rig which consists of a drive motor, bevel gearbox, 

1st stage planetary gearbox, 2nd stage planetary gearbox, 1st stage speed-up gearbox, 2nd 

stage speed-up gearbox, and load motor. We choose the 2nd stage speed-up gearbox as the 

target of our experiment. Fig. 2.3(b) shows the schematic of the target gearbox which has 

two spur gear mesh pairs. The gear and pinion of the first mesh pair have 48 and 18 teeth, 

respectively, whereas the gear and pinion of the second mesh pair have 64 and 24 teeth, 

respectively. The pinion of the first mesh pair was selected as the object gear with its 
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corresponding specification listed in Table 2.1. Fig. 2.3 (c) shows the locations of four 

accelerometers (1000 mV/g sensitivity) labeled as 1, 2, 3, and 4. 

 

 
Fig. 2.3: Experiment setup: (a) gearbox test rig, (b) schematic of the 2nd stage speed-up gearbox, 

(c) four sensor locations [123] 

 

Table 2.1: Object gear specifications [123] 

Parameters Values 

Face width (Inches) 2.0 

Diametral pitch (DP) 6 

Pressure angle (Deg) 20 

Pitch diameter (Inches) 3.0 

Num of teeth 18 

Input Output 

1  

2 

3 

4 

(a)                         

  

  

  

  

 

 

 

(b) 

(c) 

  

Object gear 
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Artificial cracks were seeded at the tooth root. Fig. 2.4 shows the artificial crack that is 

expected to propagate along the gear face width and crack depth simultaneously after its 

initiation [124]. In Fig. 2.4, w denotes gear tooth face width, wo denotes the width of tooth 

crack, q denotes a half-length of the tooth chordal thickness (e.g., circular tooth thickness), 

q0 denotes the depth of tooth crack, and αc is the crack angle. An electric discharge machine 

was used to induce such a crack. The cutter has a thickness of 0.1 mm. The spatial shape 

of the resulting artificial crack is a cubic of size 0.1 mm × wo× q0, and the tip of the crack is 

not as sharp as shown in Fig. 2.4. Five levels of tooth cracks as listed in Table 2.2 were 

considered, as well as the healthy condition. Fig. 2.5 shows the photos of the manually 

damaged gears. For more details on the experiment design, see [123]. 

w

w0

αc

q0

q
 

Fig. 2.4: Gear tooth with root crack [123] 

 

 
Fig. 2.5: Photos of the manually damaged gears, from left to right corresponding to F1 to F5 [123] 
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Table 2.2: Tooth crack fault configurations [123] 

Fault level Parameters 

F1 w0 = 0.2w; q0 = 0.2q; αc = 60° 

F2 w0 = 0.4w; q0 = 0.4q; αc = 60° 

F3 w0 = 0.6w; q0 = 0.6q; αc = 60° 

F4 w0 = 0.8w; q0 = 0.8q; αc = 60° 

F5 w0 = 1.0w; q0 = 1.0q; αc = 60° 

Experimental signals were collected under three categories of operating conditions, 

namely constant condition, variable speed condition, and variable load condition. Under 

the constant condition, both the speed and load are fixed. Under the variable speed 

condition, the speed is time varying and load fixed. Under the variable load condition, the 

speed is fixed and load time varying. For more details on the operating conditions, see 

[123]. In this chapter, only the experimental signals collected under the constant condition 

will be used. The experimental signals collected under variable speed condition will be 

used in Chapter 3. 

Under the constant condition, the object gear runs at a constant speed of 2.953 Hz and a 

constant load of 80 N.m. Sampling frequency fs needs to be higher than 20 times of the 

gear meshing frequency to cover the 10th order harmonic of the gear meshing frequency 

[125]. As the gear meshing frequency fm = 53.154 Hz (i.e., 2.953 Hz × 18), we set fs = 6.4 

kHz which is sufficiently high. Experimental signals under the healthy condition and the 

F2, F3, F4, F5 levels of tooth cracks were used in this chapter. Without loss of generality, 

the signals under F1 level of tooth crack are omitted given that the crack induced signature 

is too week.  The duration of the signal should last 10 cycles of the object gear. Therefore, 

we set the duration as 3s. In total, 50 segments of vibration signals were collected under 

each health condition, and each segment has 19.2 k data points. For more details of the 

data collected from this experiment, see [123]. 
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Without loss of generality, we analyze the vibration signals from the vertical accelerometer 

installed on the bearing cap (Sensor #2). Fig. 2.6 shows the experimental signals under 

each health condition. As shown in Fig. 2.6(b), the observable high-energy components 

are primarily the gear meshing frequency and its harmonics. The periodic impulses are 

not observable and may be located anywhere in the frequency spectrum. We cannot detect 

the faults by observing the time waveform and frequency spectrum. Tooth crack induced 

features were submerged into the vibrations.  

 
Fig. 2.6: Experimental signals: (a)-(e) time-domain waveforms under the Baseline (B), F2, F3, F4, 

and F5 conditions, respectively; (f) -(j) frequency spectrums under the B, F2, F3, F4, and F5 
conditions, respectively 

2.4.2 Performance on fault detection 

We implemented the improved SVD-based method to process experimental signals. 

During Step #1, an AR model with na = 249 was identified using a baseline vibration signal. 

Fig. 2.7 shows the obtained residual signals in time and frequency domains. By comparing 

the residuals and raw signals in the frequency domain (i.e., Fig. 2.7(f~j) versus Fig. 2.6(f~j), 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 
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respectively), we can see that the spikes (mostly in the frequency range of 0-1 kHz) of the 

raw signals have been significantly attentuated after the AR inverse filter. The  amplitude 

of these specturm spikes is around 0.3 m/s2 in the raw signals (i.e., Fig. 2.6 (f~j)), but has 

been reduced to around 0.05 m/s2 in the residual signals (i.e., Fig. 2.7 (f~j)) after the AR 

inverse filter, becoming close to the amplitude (0.03 m/s2) of the noise. The frequency 

spectrum of the residuals (i.e., Fig. 2.7(f~j))  becomes distributed in borad frequency band, 

rather than concentrated in the 0-1 kHz region. These indicate that the baseline vibration 

components were mostly removed. We cannot detect the faults or differentiate the 

severities by observing residual signals in time and frequency domains. Further steps as 

given in Section 2.3 need to be implemented. 

 
Fig. 2.7: Residuals of experimental signals: (a)-(e) time-domain waveforms under the B, F2, F3, 

F4, and F5 conditions, respectively; (f)-(j) frequency spectrums under B, F2, F3, F4, and F5 
conditions, respectively. 

During Steps #2~3, SVD was applied to decompose each residual signal and obtain m = 

100 SCs. Fig. 2.8 shows the first 20 SCs with high PMI values. The remaining 80 SCs were 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 
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not plotted due to page limits. The amplitude of the time waveform is normalized. During 

Step #4, a fault was detected if any SC had a PMI value that exceeded the predefined 

threshold Th. The Th is set as 0.4090, which will be explained later. The Th is shown as a 

dashed line in Fig. 2.8. The improved method detected 4 levels of faults successfully, 

including the earliest fault F2 and did not falsely detect the baseline. As shown in Fig. 

2.8(b), two SCs from the F2 condition have PMIs that exceeded Th. Such number of SCs 

are 2, 5, 3 for F3, F4, and F5, respectively. It is interesting to note that the number of SCs 

which have higher PMIs than the threshold Th does not monotonically increase when the 

fault severity increases. In the future beyond this thesis, further investigations are to be 

conducted to discover the underlying reason.  

For comparison, the RSVD presented by Zhao and Jia [57] was implemented. RSVD 

applies SVD directly on the raw signals. Fig. 2.9 shows the first 20 SCs with high PMI 

values obtained by applying SVD on raw signals. The RSVD used a threshold of Th = 1 for 

fault detection based on analyzing the vibration signals of rotating machinery [57], as the 

dashed line in Fig. 2.9 indicates. To this end, no fault was detected for any of the 4 fault 

levels. Alternatively, after processing multiple segments of baseline vibration signals, the 

threshold Th was set as 0.6253 for fault detection. Using Th = 0.6253 as the dashed line in 

Fig. 2.9 indicates, the RSVD detected F3 and F5 fault levels. In conclusion, using either Th 

= 1 as used by Zhao and Jia [57] or Th = 0.6253 works comparably worse than the improved 

method for fault detection. We were unable to find a Th that meets the fault detection 

requirements when implementing RSVD. 

Next, we examined the repeatability of the improved method when analyzing multiple 

experimental signals. The improved method was used to process 50 segments of 

experimental signals under each health condition.  
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Fig. 2.8: Signal components decomposed from the residuals of experimental signals (a) B, (b) F2, 

(c) F3, (d) F4, and (e) F5. 

(a)                                                                     (b) 

(c)                                                                      (d) 
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Fig. 2.8 (Continued): Signal components decomposed from the residuals of experimental signals 

(a) B, (b) F2, (c) F3, (d) F4, and (e) F5. 

The threshold Th for fault detection was determined by processing multiple segments of 

baseline vibration signals, as mentioned in Section 2.3. The maximum PMI of SCs 

decomposed by the improved method was extracted for each segment under baseline 

condition, as shown in Fig. 2.10 (a). We can observe that the distributions of the PMIs are 

skewed to the right (positive side). Based on how PMI is calculated as given in Eq. (2.8), 

REnv(τ)[-REnv(0), REnv(0)] which leads to the PMI value p[-0.5, +∞]. The upper boundary 

of  and the lower boundaries of -0.5 of the PMI explain why the distribution of the PMIs 

is skewed to the right. The Th was set to be 0.4090, which is the 98th percentiles of the 

fitted lognormal distribution. As for the RSVD method, the maximum PMI is shown in Fig. 

2.10(b) and Th was set to be 0.6253. Note that the obtained threshold is applicable to the 

studied gearbox only. When applying our improved SVD-based method to another 

gearbox, it is necessary to collect sufficient vibration signals; complete the baseline 

(e) 
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removal (Step #1), SVD decomposition (Step #2), and information evaluation (Step #3); 

fit a distribution; obtain a threshold for the gearbox. 

 
Fig. 2.9: Signal components decomposed from raw experimental signals (a) B, (b) F2, (c) F3, (d) 

F4, and (e) F5. 

(a)                                                                     (b) 

(c)                                                                      (d) 



 

58 
 

 
Fig. 2.9(Continued): Signal components decomposed from raw experimental signals (a) B, (b) F2, 

(c) F3, (d) F4, and (e) F5. 

With the threshold Th determined, the fault detection rate was obtained as listed in Table 

2.3. The improved method detects F2 at a rate of 20%, F3 at 46%, F4 at 96%, and F5 at 

100%. A 2% false alarm rate was incurred since we have set the fault detection threshold 

as the 98% percentile of the statistical distribution. By contrast, RSVD missed the 4 fault 

levels when using Th = 1 whereas detects the F2~F5 at a lower rate when using Th = 0.6253. 

RSVD performed worse than the improved method when analyzing the experimental 

signals. 

 

Table 2.3: Fault detection rate 

Fault levels B F2 F3 F4 F5 

Improved method 2% 20% 46% 96% 100% 

RSVD using Th = 1 [57] 0% 0% 0% 0% 0% 

RSVD using Th = 0.6065 0% 2% 34% 18% 50% 

 

(e) 
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Fig. 2.10: Maximum PMI of SCs that were decomposed from baseline experimental signals: (a) 

decomposed from residual signals; probability density curve ~ Lognormal(μ = 1.3224, σ = 
0.2086); (b) decomposed from raw signals; probability density curve ~ Lognormal(μ = -0.9125, σ 

= 0.2008). 

In the following, we provide our interpretation of why the RSVD presented by [57] 

performed worse than the improved method when processing our vibration signals. As 

shown in Fig. 2.9(a), SC #10 under the baseline condition does not show explicit periodic 

impulses but does have a relatively high PMI of 0.43. It is apparent that the PMI is 

sensitive not only to periodic impulses, but also to other sources. To study how the 

sensitivity of PMI to periodic impulses was affected, SC #10 decomposed from the raw 

baseline vibration signal was extracted. Fig. 2.11(a) shows the time-waveform of the 

extracted signal, and Fig. 2.11(b) the frequency spectrum. The obvious frequencies in Fig. 

2.11(b) are the gear meshing harmonics 2×fm = 106.31Hz and 8×fm = 425.23 Hz. No 

periodic impulses are visible. Fig. 2.11(c) and (d) show the envelope in the time and 

frequency domain, respectively. Taking the envelope demodulates SC #10. The envelope 

has a dominated component 6×fm (i.e., 8×fm-2×fm), as shown in Fig. 2.11(d). The 

normalized autocorrelation (i.e., REnv(t)/REnv(0)) of the zero-mean envelope, as shown in Fig. 

2.11(e), consequently shows multiple peaks with an occurrence period of 0.0031s = 

1/(6×fm). The normalized autocorrelation equals to 0.3007 at the period of tooth crack 

fault induced impulses, as indicated by the dashed line in Fig. 2.11(e, f). The PMI value is 

(a)                                                                        (b)                                   
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calculated as 0.3007/(1-0.3007) = 0.4300 based on Eq. (2.8). The above analysis reveals 

that baseline vibration components can interfere the PMI. Such interference disables 

RSVD from differentiating the baseline condition and faulty conditions. By contrast, the 

improved method removes baseline vibration components. Interference of baseline 

vibration components on the PMI is eliminated. Thus, the improved method outperforms 

RSVD on fault detection when processing our vibration signals. 

 
Fig. 2.11: SC #10 decomposed from the baseline raw experimental signal: (a) time waveform, (b) 

frequency spectrum, (c) analytical envelope, (d) frequency spectrum of the envelope, (e) 
autocorrelation of the zero-mean envelope residual, and (f) zoom-in plot of (e) in [0.32 0.36]s. 

2.4.3 Performance on severity assessment 

Severity assessment involves Steps #1-#5 of the improved method. Severity is assessed 

when a fault is detected. The signal is reconstructed via the new scheme and used for 

severity assessment. Take the F4 condition as an example of the signal reconstruction. 

Pre-selection of the SCs results in an initial set of Sini = {15, 38, 37, 11, 12, 18}. Then, the 

forward selection scheme returns a set of S = {15} such that the PMI of the reconstructed 

signal is maximized. The reconstructed signal is the same as SC #15 and has a PMI pd of 

(a)                                                  (b)                                   

(c)                                                  (d)                                   

(e)                                                  (f)                                                                                    
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0.7084. Fig. 2.12 shows the reconstructed signals for each fault condition in the time and 

frequency domain. PMI values of these reconstructed signals show an ascending trend that 

reflects fault severities. The fault induces periodic impulses with an occurrence period of 

~0.338 s (i.e., τ = 1/fr where fr is the rotating frequency). The frequency spectrum of the 

extracted signal under F2 concentrated on a natural frequency region around 0.5 kHz, 

whereas the frequency spectrum of F2 on 0.3 kHz, and the frequency spectrum of F4 and 

F5 on 0.1 kHz.  Such variation of the natural frequency regions may occur because the 

impulses excitation under different damage level has different frequency band. In addition, 

our study is concerned about the natural frequency of the system, included gears, shaft, 

bearing, pillow block, and shell. A gearbox could have a natural frequency lower than 1kHz 

from the observations in Mbarek et al. 2017 [126] and Guo et al. 2014 [127]. Besides, the 

studied gearbox is comparably big in size, and its components are big in size and thus with 

smaller natural frequencies. 

 
Fig. 2.12: Reconstructed signals via the improved method: (a)-(d) time waveforms under the F2, 
F3, F4, and F5 conditions, respectively; (e)-(h) frequency spectrums under the F2, F3, F4, and F5 

conditions, respectively. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

PMI: 0.4562 

PMI: 0.4935 

PMI: 0.7084 

PMI: 1.2679 
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For comparison, the RSVD reported in [57] was implemented. RSVD conducted a 

reweighted summation of all SCs with PMI value exceeds the threshold for signal 

reconstruction. Here, we conducted the reweighted summation on the SCs decomposed 

from residual signals because RSVD did not detect faults when decomposing the raw 

signals. Take the F4 condition as an example to show the reweighted summation. The 

reconstructed signal is a reweighted summation of SC# 15, 38, 37, 11, 12, 18, and has a PMI 

of 0.2437. Fig. 2.13 shows the reconstructed signals under each tooth crack condition in 

time and frequency domains. PMI values of these reconstructed signals do not show a 

monotonous ascending trend. The PMI value of F4 case is the smallest. This implies weak 

severity separability. The frequency spectrum of the extracted signal under the F2 

condition concentrated on two natural frequency regions around 0.1 kHz and 0.5 kHz, 

whereas the frequency spectrum of F3 on 0.3 kHz; the frequency spectrum of F4 on three 

natural frequency regions around 0.1 kHz, 0.5 kHz, and 3 kHz; and the frequency 

spectrum of the extracted signal under F5 on 0.1 kHz.  RSVD aggregated the signal 

components on natural frequencies and constructed a signal with a small PMI. The 

reconstructed signals are poorly reflective of fault severities.   

The repeatability of the method was also studied. Fig. 2.14(a) shows the boxplot of PMI 

value for signals reconstructed via the improved method. Again, the PMI at various fault 

levels shows a good ascending trend that reflects the fault severities. Under the influence 

of noise, PMIs overlapped between neighbour fault levels. To numerically show the 

separability of the 4 fault levels, we trained a linear discriminate analysis (LDA) model 

[100] with the PMI as input and the class label as output.  The number of extracted signals 

under the F2, F3, and F4 health conditions did not equal to 50 due to the fault detection 

rate. If we directly train an LDA model for classification, these health conditions with 
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fewer samples tend to be misclassified more often than the F5 health condition with more 

samples [128]. Thus, we resampled the PMI of the extracted signals under such class 

(similar to the idea of bootstrap [100]) to equalize the sample numbers. The data was then 

randomly partitioned into training and testing datasets where the training set holds 75%, 

and the testing set 25%. Here, we choose the 75%-25% data partition ratio for illustration 

purposes. Users may choose other ratios to achieve the best classification accuracy. The 

MATLAB function fitcdiscr was used to train the LDA model. Fig. 2.15(a) shows the testing 

data along with LDA decision boundaries. Fig. 2.15(b) shows the confusion matrix that 

shows the classification results. Using the reconstructed signals from the improved 

method, we can classify 69.6% of the fault levels correctly. The confusion matrix also gives 

the information of the miss alarm and false alarm rates. The miss alarm rate for each 

severity level is given in the bottom row, whereas the false alarm rate is given on the very 

right-hand column. For instance, the miss alarm rate of severity level F3 is 43.8%. The 

false alarm rate of severity level F4 is 25%. Note that 100% minus the false alarm rate gives 

the confidence level for an assessed severity level. For instance, the confidence level of the 

severity level F3 is 75%. 

For comparison, Fig. 2.14(b) shows the boxplot of PMI values of signals reconstructed via 

RSVD. Due to the reweighted summation, the PMI of the extracted signal under the F3 

condition was smaller. An LDA model was trained to numerically show the separability, 

using the same data resampling and partition methods. Fig. 2.15(c) shows the testing data 

and LDA decision boundaries. Fig. 2.15 (d) shows the confusion matrix that contains the 

classification results. The reconstructed signal classifies 51.8% of the fault levels correctly, 

which is 17% worse than the improved method. 
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Fig. 2.13: Reconstructed signals via reweighted summation: (a)-(d) time waveforms under the F2, 
F3, F4, and F5 conditions, respectively; (e)-(h) frequency spectrums under the F2, F3, F4, and F5 

conditions, respectively. 

 
Fig. 2.14: PMI value of the signals reconstructed via (a) the improved method; (b) the RSVD 

method. The central mark on the box denotes the median value of the repeated measurement, and 
the edges of the box represent the 25th and 75th percentiles. Whiskers extend to the most 

extreme data points, and outliers are plotted as red crosses. 

It is interesting to note that the diagonal numbers are the same in the confusion matrices 

obtained from the two SVD-based methods, except for F4. This is because the reweighted 

summation undermines the PMI of F4 the most, which was shown in Fig 2.13. In the future 

PMI: 0.4532 

PMI: 0.4730 

PMI: 0.2437 

PMI: 1.1939 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(a)                                                                (b)                                   
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beyond this thesis, further investigations are to be conducted to reveal the underlying 

reason why the reweighted summation undermines the PMI of F4 the most.  

 
Fig. 2.15: Fault severity classification results: (a) testing data from the improved method with 

LDA decision boundaries; (b) confusion matrix for the testing data from the improved method; 
(c) testing data from the RSVD method with LDA decision boundaries; (d) confusion matrix for 

the testing data from RSVD. 

The improved method classifies 4 fault severity levels with still a relatively low accuracy 

(i.e., 69.6% for experimental signals, as shown in Fig. 2.15(b)) which is not good enough 

for industrial applications. A reason for this outcome is that this chapter solely relied on 

the PMI criterion of the reconstructed signal for fault severity classification. To improve 

severity classification accuracy, one may need to extract more fault sensitive features (e.g., 

kurtosis and root mean squared) from the reconstructed signals, select more effective 

(a)                                                                               (b)                                   

(c)                                                                               (d)                                   
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features, and use an advanced classifier (e.g., support vector machine). Improving fault 

severity classification accuracy further will be left as one of the future research topics.  

2.4.4 Computational cost 

The computational cost was evaluated. Each vibration signal lasted 3 s and has 19,200 

data points. Table 2.4 lists the central processing unit time consumed to process a 

vibration signal. Step #1 takes 0.06 s, whereas Step #5 takes less than 0.01 s. The 

difference between the improved method and RSVD involves Step #1 and Step #5. These 

computational costs can be ignored in light of the time ~50 s consumed by Step #2.  Thus, 

the improved method does not create a considerable computational burden. 

The improved SVD-based fault detection and severity assessment method is relatively less 

efficient. In many applications where incipient faults do not immediately lead to a 

catastrophic failure of the gearbox system, updating the fault information every minute is 

acceptable. The improved method was implemented in MATLAB 2018a on a desktop 

computer with two Intel 2.4 GHz processors and 16 GB of RAM. Computational efficiency 

can be further improved by implementing the algorithm on a more powerful computer. 

 

Table 2.4: Central processing unit time. Algorithms were coded in MATLAB 2018a on a desktop 
computer with two Intel 2.4GHz processors and 16GB of RAM 

Algorithms Time (s) 

Step #1: AR inverse filter 0.058 

Step #2: SVD 49.968 

Step #3: Evaluate PMI 0.030 

Step #4: Fault detection <0.001 

Step #5: Reconstruct the signal <0.001 



 

67 
 

2.5 Conclusions 

This chapter proposed an improved SVD-based method for tooth crack fault detection and 

severity assessment. First, the improved method adopted an AR model-based baseline 

removal approach to generate residual signals. Then, SVD was applied to decompose the 

residual signals rather than raw signals. Interference from non-fault related vibration 

components on the PMI is therefore eliminated. Second, the improved method selected 

SCs such that the PMI of the reconstructed signal was maximized, rather than directly 

conducting a reweighted summation on all SCs with PMI values exceed the threshold. An 

experimental study has been conducted. Repeatability of the improved method has been 

studied. The results have shown that the improved method outperforms RSVD on fault 

detection and severity assessment and, meanwhile, does not create a considerable 

computational burden. 

Note that the proposed method is inapplicable for some applications where baseline 

vibration signals are not available. But, in many applications, it is not hard to get baseline 

vibration signals. For example, when a new gearbox is installed, vibration signals can be 

collected and saved as a baseline. The improved SVD-based method is useful for these 

applications with available baseline vibration signals.    

This chapter has addressed the problem of vibration-based fault detection and severity 

assessment under constant speed conditions. The proposed method can extract the crack 

fault-induced periodic impulses from the cyclo-stationary vibration signals. Fault 

detection and severity assessment are therefore based on the calculation of feature(s) on 

the extracted signal and feeding them into a classifier for fault detection severity level 

classification.  
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Future studies beyond this thesis include 1) investigate the reason why the number of SCs 

which have higher PMIs than the threshold Th does not monotonically increase when the 

fault severity increases; 2) investigate why conducting the reweighted summation 

undermines the PMI of F3 the most; 3) improve the fault severity classification accuracy 

by extracting more fault sensitive features (e.g., kurtosis and root mean squared) from the 

reconstructed signals, selecting more effective features, and using an advanced classifier 

(e.g., support vector machine).  

As introduced in Section 1.1.2, the rotating speed of gearboxes can be variable, such as 

those gearboxes used in railway traction and wind turbines. In Chapters 3 and 4, the 

problem of vibration-based fault detection and severity assessment under variable speed 

conditions will be addressed.  
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3 
Sparse time series modeling of the baseline 

vibration from a gearbox under variable speed 
condition 

The identification of a baseline model to represent the vibration from a healthy state is a 

must for the time series model-based methods (TSMBMs). The accuracy of baseline 

modeling directly determines the success of TSMBMs. In this chapter, we aim to improve 

the accuracy of baseline vibration modeling under variable speed condition (the research 

topic #2 as introduced in Section 1.3). In chapter #4, we will develop a time series model-

based method for the gear tooth crack detection and severity assessment under random 

speed variation. The materials of this chapter have been published partially in two 

conference papers [90], [107] and as a whole in a journal paper [108]. 

3.1 Introduction  

Vibration-based condition monitoring and health assessment for gearboxes are significant 

in preventing catastrophic failure, enabling condition-based maintenance and thus 

minimizing downtime and/or maintenance costs.  

Gearboxes often operate under variable speed (VS) conditions. For example, wind turbine 

gearboxes operate under VS due to the randomness of the wind [8]. Fans in demand 

ventilation systems operate under VS to reduce operating costs [129]. Under VS, the 
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vibration signals become nonstationary. Nonstationary signal analyzing and processing 

tools are thus in demand for condition monitoring and health assessment.  

Typical nonstationary signal analyzing and processing methods include order tracking 

[130], adaptive filtering [131], generalized synchronous average (GSA) method [27], cycle-

nonstationary tools [132], wavelet analysis [80], [81], empirical mode decomposition [112], 

and time-series model-based method (TSMBM) [85]–[87], [89]. Among these methods, 

TSMBM is promising in processing vibration signals for assessing the health condition of 

a gearbox [12], [34], [110]. Advantages of TSMBM include being free from physics or 

analytical information, and inherent accounting for uncertainties from measurement and 

operational [44]. When applied to gearboxes health assessment, model residual-based 

method [44], [85]–[87], [89] has the following steps:  

a) Identify a time series model to accurately represent the baseline vibration from a 

gearbox (i.e., vibration generated when the gearbox is healthy);  

b) Construct an inverse filter based on the baseline model and use the inverse filter 

to remove the baseline vibration from the signals that are collected when the 

health state of the gearbox is to be determined. The so-called residual signal can 

be obtained, which has a higher signal to noise ratio than the raw signal;  

c) Assess the health condition by analyzing the residual signal, such as using statistic 

indicators [133].  

Among these steps, step (a) is of vital importance. Inaccurate modeling of the baseline 

vibration will cause insufficient or excessive removal of the baseline vibration. 

Consequently, the condition monitoring system with TSMBM embedded may have high 

miss-alarm or false-alarm rate. Therefore, the maintenance cost cannot be reduced, 
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catastrophic failures cannot be prevented, and downtime cannot be minimized. This 

chapter focuses on accurate time series modeling of the baseline vibration. 

As reviewed in Section 1.2.2.4, time-variant time series models like have been reported to 

represent the nonstationary baseline vibration from rotating machinery operating under 

VS conditions, including the periodic AR [84], adaptive AR model (AAR) [85], [86], 

weighted ensemble of AR models [87], Schur adaptive filter [88], AR model with 

exogenous excitation [89], and functional pooled AR model [45], [91], [92]. Unfortunately, 

each of these models has its drawbacks.  

In this chapter, we investigate the FP-AR model with its AR parameters dependent on VS. 

After configuring the AR parameters as functions of VS, the FP models will have unique 

spectral content at each speed level. Therefore, the FP models are capable of modeling the 

complex speed-dependent spectrum contents of the nonstationary baseline vibration. 

Since the rotating speed of gearboxes is measurable via a tachometer or estimation method 

[134], stochastic functional models for non-measurable operating conditions [135] are 

beyond our scope. The functional series time-dependent AR model (FS-TAR) [56] is 

another widely employed approach for nonstationary signal modeling. The FS-TAR model 

has the same model structure with the FP-AR model, but with its AR coefficients 

dependent on time. The FS-TAR is beyond our scope because a TSMBM based on FS-TAR 

will require the speed profile of the testing signal being exactly the same as the speed 

profile during model training, which is hard to fulfill.  

Identifying an FP-AR model needs parameter estimation and model structure selection 

methods. The least squared and maximum likelihood estimators are available for 

estimating model parameters [136]. The least squared estimator can also be computed 

recursively, and thus termed recursive least squared estimator. Both least squared and 
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maximum likelihood estimators are asymptotically Gaussian distributed with mean 

coinciding to the true value. The maximum likelihood estimator achieves lower model 

parameter estimation variance than the least squared estimator. On the other hand, the 

maximum likelihood maximum likelihood estimator has a higher computational cost than 

the least squared method. The least squared estimator is often selected in large data size 

case considering the computational [94]. Model structure refers to AR terms and 

functional spaces that describe the dependency between AR parameters and VS. 

Conventionally, the model structure is selected via the two-step Bayesian information 

criteria (BIC) based method [45], [56], [91]. However, the two-step BIC-based method 

limited the modeling accuracy of FP-AR. Firstly, much real-world time series, such as 

seismology waves, radar signals, and speech signals, are generated from a sparse AR 

process [101]. A sparse AR model uses scattered AR terms as predictors, rather than 

consecutive AR terms. The baseline vibration from a gearbox may also be generated from 

a sparse AR process. Thus, an FP-AR with a sparse set SAR may be more accurate to model 

the gearbox vibrations than assuming consecutive set SAR. Secondly, the dependency 

between different AR parameters and the VS for ARi S may be very different. They may 

require non-identical sets of functional spaces SF,i for ARi S to achieve accurate 

regressions. Assuming an identical set of functional spaces SF,i for ARi S may be too 

coarse. 

To overcome the limitations of the conventional FP-AR model (i.e., the FP-AR model with 

its structure selected by the two-step BIC-based method), a sparse FP-AR model is 

proposed that uses a sparse AR set SAR and non-identical functional spaces SF,i. These two 

assumptions made in the two-step BIC based method are relaxed. To obtain such a sparse 
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FP-AR model, we develop a new model selection procedure by adopting the least absolute 

shrinkage and selection operator (LASSO) [137].  

The main contributions of this study include: 

1) Proposed a sparse FP-AR model for the representation of baseline vibration from 

gearboxes under VS condition. 

2) Validations of the sparse FP-AR model-based fault detection and severity 

assessment for gearboxes under deterministic VS. Simulation signal and 

laboratory signals from two independent test-rigs are used to validate the 

performance of the proposed method.  

The rest of this chapter is organized as follows: Section 3.2 proposes the sparse FP-AR 

model. A new model selection procedure is detailed. Section 3.3 validates the proposed 

sparse FP-AR model using simulation signals and two independent experimental signals. 

Conclusion remarks are given in Section 3.4. 

3.2 Sparse FP-AR model 

This section begins with the basics of the sparse FP-AR model, introduces LASSO, and 

develops a new model selection procedure, and finally lists the model validation procedure. 

3.2.1 Model basics 

The time-invariant AR model has the following difference equation according to [138] 

AR

t i t i t

i S

y a y −



= +                                                          (3.1) 

where yt and yt-i denote the vibration at time t and t-i, respectively; SAR is a set that specifies 

the AR terms; ai stands for the AR parameters which are constant; εt is a zero-mean white 

noise at time t.  



 

74 
 

The FP-AR model extends the time-invariant AR model to time-variant (i.e., operating 

condition-variant) as follows [94]  

( )
AR

t i t t i t

i S

y a y −



= +                                                   (3.2) 

where ωt denotes the rotational speed at time t; ai is a function of ωt.  

Applying z-transform [121] to Eq. (3.2), we obtain 

( )
( )

1
( ) ( ) ( )

1
AR

i

i t

i S

Y z e z H z e z

a z −



= =

− 
                                 (3.3) 

where Y(z) is the nonstationary gear meshing vibration signal expressed in z-domain; e(z) 

is the zero-mean white noise in z-domain. In the viewpoint of “linear time-variant (LTV) 

system” theory, the Y(z) is modeled as the output of an LTV system H(z) excited by a zero-

mean white noise e(z).  

Based on Eq.(3.3), the transfer function of the inverse filter is [121]:  

( )1( ) 1
AR

i

i t

i S

H z a z− −



= −                                                (3.4) 

This inverse filter is rotating speed dependent and with the finite impulse response. 

The dependency ai(ωt) is modeled using the basis function expansions [56]. Reported basis 

functions include discrete cosine transform functions, Legendre polynomials, and harr 

functions, normalized B-spines [56]. Given that the modeling accuracy of the functional 

series expansion method depends on the choice of functional spaces rather than the type 

of basis function [56], we use the Legendre polynomials in our method. Therefore, the 

dependency ai(ωt) is of the form: 

 ( )
,

,

F i

j

i t i j t

j S

a a 


=   
(3.5) 
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where ai,j stands for the AR parameters of projection; SF,i is a set that specifies the 

functional spaces.  

Remarks: i) When other operating conditions vary independently, FP-AR model can be 

extended to the VFP-AR model in which the AR parameters are functions of vectors. Take 

the load lt as an example, VFP-AR is of the form 

 ( ),
AR

t i t t t i t

i S

y a l y −



= +  (3.6) 

where the dependency ai(ωt, lt) is projected into bivariate basis functions of ωt, lt; G(ωt, lt) 

which is resulted from a Kronecker product  of univariate basis functions [45] G(ωt) and 

G(lt) as follows 

 ( ) ( )
,

,, ,
F j

i t t i j j t t

j S

a l a G l 


=   

( ) ( ) ( ),t t t tl l = G G G  

(3.7a) 

(3.7b) 

ii) When the vibration signal y and the VS ωt are sampled in the angular θ domain [89], 

the model can be easily adopted by changing the t into θ. 

The conventional FP-AR model assumed 1) consecutive AR terms, e.g., SAR={1,2,…, na}, 

and 2) identical sets of functional spaces for ARi S , e.g., SF,i = SF. Although these two 

assumptions simplify the model selection and enable the two-step BIC-based method [45], 

[56], [91], they however limited the modeling accuracy of conventional FP-AR. 

To improve the conventional FP-AR model, we propose a sparse FP-AR model that uses a 

sparse set SAR and non-identical sets of functional spaces SF,i for ARi S . The sparse set SAR 

implies that the AR terms are spread out, rather than being consecutive. The non-identical 
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set of functional spaces SF,i for ARi S implies that the dependency ai(ωt) is modeled using 

different basis functions for different ARi S , rather than using the same basis functions.  

3.2.2 LASSO 

The idea behind the LASSO algorithm is to minimize the residual sum of squares while 

penalizing the sum of the absolute value of the coefficients [137]. The LASSO algorithm 

forces insignificant coefficients to be exactly zero and hence performs model selection.  

Suppose that we sampled baseline vibration yt and rotating speed ωt for t=1, 2, …, N from 

a gearbox. Given an initial consecutive AR set ini

ARS  with a maximum lag order of an and an 

initial identical set ini

FS that specifies the functional spaces, we can construct the following 

matrix M that is used as input for identifying an FP-AR model 

1 2 1 1

1 1

1 1

a a a

a a

a a

n n n

t n t n t t t

N n N n N N N

y y y y

y y y y

y y y y







+ +

− − + −

− − + −

 
 
 
 =
 
 
 
 

M                                    (3.8) 

Each row is of the form 
1 1a at n t n t t ty y y y− − + −

 
 

. The first an +1 columns of the 

matrix contain predictors and the last column responses.  

Remark: Eq. (3.8) specifies a matrix constructed from one segment of continuously 

sampled data. For the case of using s number of segments for model identification, s 

number of matrixes can be constructed from each segment and then augmented to 

construct a matrix Me, that is 

1

2

e

s

 
 
 =
 
 
 

M

M
M

M

                                                                    (3.9) 
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Based on the predictors and responses specified in Eq. (3.8), the LASSO estimates 

,
ˆ ˆ

i ja =  a  for ini

ARi S and ini

Fj S  as follows [137]: 

2

, ,

1

ˆ arg min
ini ini ini ini

a AR F AR F

N
j

t i j t t i i j

t n i S j S i S j S

y a y a −

= +    

   
= − +   

   

    
a

a                    (3.10) 

where λ ≥ 0 is a tuning parameter. The squared summation part is the l2 norm of the one-

step-ahead prediction error. The sum of the absolute value of the coefficients is the 

penalized term. Such penalized optimization problem can be solved via the alternating 

direction method of multipliers algorithm [139]. The LASSO returns a sparse FP-AR 

model that uses a sparse AR set and non-identical sets of functional spaces. 

The selection of tuning parameter λ is critical. The λ controls the amount of shrinkage that 

is applied to the estimates. When λ = 0, the LASSO will reduce to the OLS estimator. Too 

large λ will force too many coefficients in [ai,j] for ini

ARi S  and ini

Fj S  to zero, whereas too 

small λ will force a limited number of coefficients to zero. The λ can be selected by either 

the K-fold cross-validation or validation set approach [140]. The K-fold cross-validation 

can “shake” the training data effectively and thus select a good value of λ but needs 

relatively higher computational cost. The validation set approach consumes less 

computational cost than the K-fold cross-validation approach but needs more data for 

validation and easy to be overfitted to the chosen validation data. We use the 10-fold cross-

validation (CV) [140] to select a good value of λ given that the computational cost during 

offline model training is not critical.  

Applying 10-fold CV into time series is argued inappropriate because 1) we should not use 

future data to predict the past and 2) serial correlation in the data [140]. However, a recent 

study [140] has justified the use of standard 10-fold CV without modification when 
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autoregressive models are applied. The two reasons are proved to be largely irrelevant. 

Therefore, we apply the 10-fold CV without modification. In total, 4 steps are followed: 

1) The matrix M is randomly partitioned into 10 equal size subsamples.  

2) Among the 10 subsamples, a single subsample is retained as the validation data, 

and the remaining 9 subsamples are used as training data.  

3) Step 2 is repeated 10 times, with each of the 10 subsamples used exactly once as 

the validation data.  

4) The 10 results from the folds can not only be averaged to produce an estimation of 

mean CV mean squared error (CVMSE) but also be combined to produce a 

standard deviation for CVMSE. 

3.2.3 A new model selection procedure 

To obtain the proposed sparse FP-AR model, we develop a new model selection procedure 

by adopting LASSO. The new model selection procedure has 3 steps, as shown in Fig. 3.1. 

Each step is detailed as follows: 

 

 

Fig. 3.1: Flowchart of the new model selection procedure 

ini

ARS ,

ini

F iS ini

ARi SStep 1: determine initial  and  for  

Step 2: select optimal λ that returns a sparse FP-AR with 

the best model structure 

Step 3: re-train the model using the model structure 

obtained from step 2 
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Step 1: determine initial ini

ARS  and ,

ini

F iS . We consider conservative initial sets so that the 

model terms of the optimal sparse FP-AR model can be selected. In this step, the initial 

ini

ARS  is assumed as a consecutive set, e.g., ini

ARS ={1,2,…, an }, and the sets of functional 

spaces ,

ini

F iS  are given as identical for ARi S , e.g., ,

ini

F iS = ini

FS . These assumptions are the 

same as what made in the conventional FP-AR model [91]. With these assumptions, firstly, 

the initial ini

FS  is empirically determined to be high-dimensional, for example ini

FS = {0, 1, 

2, …, 7} (i.e., basis functions = {1, ωt, ωt
2, …, ωt

7}). We suggest that an order of polynomial 

from 5th to 8th is adequate. Secondly, using ini

FS , the maximum order of AR terms an  is 

selected using BIC: 

( )BIC ln ln
T

aN N n
N

 
= + 

 

e e
                                             (3.11) 

where  1 2, , ,
T

N  =e  is the residual vector, and T denotes the transpose operation. 

This BIC-based method evaluates na in enough large region, for example, na =1, 2, …, 1000, 

calculates the corresponding BIC values and finds the ˆ
an  which minimizes BIC. Then an

is determined as 1.5 times of ˆ
an  so that the ini

ARS  can be conservative. 

Step 2: select the tuning parameter λ that returns an optimal sparse FP-AR with the best 

sparse model structure. In this step, we empirically configure the candidates of tuning 

parameter λ as [0, 1×10-8, 1×10-7, …, 1×10-1]. For each candidate of tuning parameter λ, a 

sparse FP-AR model is obtained, along with its mean and standard deviation of CVMSE.  

The tuning parameter λ is selected as the largest one which has a mean CVMSE within one 

standard deviation of the minimum mean CVMSE. For instance, as illustrated in Fig. 3.2, 

the λ3 gives the minimum mean CVMSE. The mean CVMSE of λ2 is within one standard 

error of the minimum CVMSE, whereas the mean CVMSE of λ1 does not. Hence, λ2 is 

selected as the final value which gives the optimal sparse FP-AR model. The rationale 
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behind is that the larger the tuning parameter λ is, the more coefficients are forced to 0 

and hence the sparse FP-AR model has a smaller number of non-zero coefficients. By 

selecting the largest λ that has not undermined the CVMSE too much, we can control the 

number of non-zero coefficients and hence avoid overfitting. 

λ1              λ2             λ3             λ4

C
V

M
S

E L              S

L

S

 

Fig. 3.2: Illustration of selecting the tuning parameter λ. In this Fig, the central line of the box is 
the mean CVMSE; the edges of the box are the mean CVMSE plus/minus one standard deviation; 

L denotes large; and S denotes small. 

Step 3: re-train the model using the structure obtained from step 2. This step updates the 

model parameters using the OLS estimator. Although LASSO can estimate the model 

parameters and perform model selection simultaneously [137], we find incorporating this 

step can further improve the modeling accuracy. 

3.2.4 Validation of modeling accuracy 

The modeling accuracy is validated using a testing signal. Upon the identification of a 

sparse FP-AR model for representing the baseline vibration of a gearbox, the inverse filter 

is constructed based on Eq. (3.4) and then applied to process the testing signal. We call 

the residual obtained from the testing signal as “residual-of-testing”.  

The modeling accuracy of sparse FP-AR model is firstly measured by examining the mean 

squared error (MSE) of the residual-of-testing which is calculated as  
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2

1

1
MSE

N

t

tN


=

=                                                          (3.12) 

where εt is the residual at the tth point. A model with lower MSE  is more accurate in 

modeling the baseline vibration than those with higher MSE [36, Section 7].  

Secondly, the randomness of the residual-of-testing is examined. The more random the 

residual-of-testing is, the more accurate the model. Ljung–Box test [141] is conducted to 

quantify the randomness. Autocorrelations of a random time series equal to zero. The 

Ljung-Box test statistically tests whether any of a group of autocorrelations of a time series 

is different from zero. The p-value is reported as the probability of being random.   

Thirdly, modeling accuracy is judged by one-step-ahead predictions (OSAPs) and its 

goodness-of-fit with the real gear vibration signal (i.e., simulation signal minus noise). The 

higher the fit is, the more accurate a model predicts the real vibration. The fit value is a 

normalized mean square error as: 

( ) ( )
2 2

, , ,

1 1

fit 1
N N

r t m t r t r

t t

y y y y
= =

= − − −                                     (3.13) 

where yr is the real vibration response; 
ry is the mean value of the real vibration response 

yr; ym is the OSAP. Note that for experimental signals, the real gearbox vibration is 

unknown, and the goodness-of-fit measure is inapplicable. 

Lastly, we present the parametric spectrum S(f, t) of FP-AR models by frozen-time formula 

[56]  

   ( ) ( )

2
2

, 1 s

AR

f
j i

f

i t

i S

S f t a e




−
−



= +                                           (3.14) 

where j is the imaginary part; fs is the sampling frequency; f designating the frequency 

response from 0Hz to fs/2. The non-parametric spectrum of the testing signal is also 
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obtained using MATLAB spectrogram function. We can judge the modeling accuracy by 

comparing the agreement between the parametric spectrum and non-parametric one. If 

the parametric spectrum deviates from the non-parametric spectrum, then the modeling 

accuracy is low. Otherwise, the modeling accuracy is high.  

3.3 Performance evaluation 

This section evaluates the proposed sparse FP-AR model using a simulation signal and 

two independent experimental datasets. All algorithms are coded in MATLAB 2018a and 

implemented on a desktop with two Intel 2.4 GHz processors and 16 GB of RAM. 

3.3.1 Simulation signal 

Based on a simulation model in Ref. [26] for generating vibration signal from a fixed-axis 

gearbox under constant speed condition, we develop a new simulation model that 

considers the amplitude modulation (AM) and frequency modulation (FM) effects induced 

from VS, and incorporates the vibration components from structures. For a one-stage 

fixed-axis gearbox in which the input gear has T number of teeth, the new simulation 

model describes the nonstationary vibration signal yt under VS as follows: 

( )

( ) ( ) ( ) ( )( )

 

1 0

1

1 1

cos 2

cos 2

gear meshin

s
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t i t e t i
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j t j j k t d t

j k noise

defect impulsestructure

g vibr
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ation

y G i T dt

S f t D S t k

   

    

=

−

= =

 
= + + 

 

+ + − +

 

 

              (3.15) 

The first term represents gear meshing component and its harmonics, where I is the 

number of gear meshing harmonics; t is time; Te is the number of teeth; ϕi is an initial 

phase for ith gear meshing harmonic; ωt is the rotating speed of input shaft at time t.  From 

[142], gear meshing harmonics less than 10 times of meshing frequency are significant. 
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Thus, the value of I is recommended to be |1 10I I+   . Under VS, additional AM 

( )i tG   acts on the gear meshing component and its harmonics. Many references [143]–

[145] find that the frequencies of some vibration components rarely affected by the 

variation of rotation speed can be observed in baseline vibration. The amplitude of these 

vibration components is still modulated by the speed. Ref. [144] explained the structures, 

e.g., casing and/or bearing cap, as the source of these vibration components. Hence, the 

second term is added to account for the vibration components from structures, where fj is 

the frequency of jth structure vibration component; ψj is the initial phase for jth structure 

vibration component; and J is the number of structure vibration components.  Following 

by the observations in Ref. [57], the value of J is recommended to be |1 5J J+   . The 

third term represents the periodic impulses induced by localized defects (e.g., tooth crack), 

where Di(ωt) is the amplitude of the ith impulse; K is an integer which denotes the number 

of defect impulses also the number of rotating cycles; Ω-1(k) is the inverse function of Ω(t) 

= 
0

t

t dt = k which determines the time of kth defect impulses occurs. The defect impulses 

are described by an exponentially decaying sinusoid of the following form: 

( ) ( )sin 2t

d rS t e f t −=                                                      (3.16) 

where fr specifies the resonance frequency excited by the impact; α is the decay rate of the 

impulses. The last term represents measurement noise, where εt is the zero-mean Gaussian 

random environmental noise. The parameters are configured as listed in Table 3.1. 

We can obtain the angular domain signal either using hardware order tracking or 

computed order tracking. But we choose to analyze time domain signals directly. This is 

because conducting order tracking is unable to completely demodulate the frequency 

modulation of the nonstationary signals. For vibration components of non-rotating parts, 

additional frequency modulation will be induced by order tracking [27].  
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Table 3.1: Parameters configuration for the simulation model 

We vary the speed profiles continuously with a large difference between maximum and 

minimum values which can reflect a machine operating between various speed conditions. 

Fig. 3.3 shows two segments of baseline vibration, as well as their corresponding speed 

profiles. A gearbox may experience any kind of speed profiles and it is impractical to 

consider all kinds of profiles. We selected a typical testing profile widely used in [76], [146]. 

The selected testing profile is sinusoidal-like and covers a wide range of speed variations. 

In general, the amplitude of the baseline vibration has a positive correlation with the 

rotating speed profile. The left-side baseline vibration and its corresponding speed profile 

are used for training, whereas the right-side for testing. Moreover, the left side of Fig. 3.4 

shows five levels of tooth crack induced impulses with an ascending amplitude Di(ωt) as 

specified in Table 3.1, whereas the right side of Fig. 3.4 shows the corresponding faulty 

vibrations which are a summation of baseline vibration and tooth crack induced impulses. 

The rotating speed of these faulty vibrations follows the profile in Fig. 3.3 (c). We cannot 

Parameter Value(s) Parameter Value(s) 

Te 37 ψ1 π/2 

t 0~7.5 s ψ2 π/2 

Δt 1ms S1(ωt) 0.12ωt
2+0.5ωt+0.3 

I 4 S2(ωt) 0.2ωt
2+0.4ωt+0.2 

ϕ1 π/2 f1 140 Hz 

ϕ2 π/3 f2 180 Hz 

ϕ3 π2/3 fr 140Hz 

ϕ4 π2/3 α 100 

G1(ωt) 0.1ωt
2+0.3ωt+0.2 

Di(ωt) 

Healthy: 0 

G2(ωt) 0.1ωt
2+0.3ωt+0.4 Faulty #1 (F1): 2+ωt 

G3(ωt) 0.2ωt
2+0.6ωt+0.4 Faulty #2(F2): 3+1.5ωt 

G4(ωt) 0.15ωt
2+0.5ωt+0.5 Faulty #3(F3): 4 +2ωt 

εt ~ (0, 1 (m/s2)2) Faulty #4(F4): 5+2.5ωt 

J 2 Faulty #5(F5): 6+3ωt 
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detect the faults by visually observing the time waveform of faulty vibrations. Tooth crack 

induced impulses are submerged into the vibrations. We will apply the TSMBM based on 

a sparse FP-AR model to detect the tooth crack faults.  

 

Fig. 3.3: Baseline vibration (simulation): (a) speed profile of training signal, (b) time waveform of 
training vibration, (c) speed profile of testing signal, (d) time waveform of testing vibration. 

 

Fig. 3.4: Faulty vibrations (simulation): (a) ~ (e) time waveform of tooth crack induced impulses, 
with ascending amplitudes of Di(ωt) as specified in Table 3.1; (f) ~ (j) time waveform of faulty 

vibration signal, corresponding to the fault level F1, F2, …, F5, respectively. 

(a) 

(b) 

(c)  

(d) 

  
Training                                                         Testing 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

(f) 

  

(g) 

  

(h) 

  

(i) 

  

(j) 
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Before the modeling process, normalize and standardize operations are applied to the 

rotating speed and vibration, respectively. The ωt is normalized as follows 

min

max min

t
nt

 


 

−
=

−
                                                            (3.17) 

where ωnt is the normalized speed; ωmax is the maximal speed among the speed profile, and 

ωmin is the minimal speed among the speed profile. Meanwhile, the vibration signal y is 

standardized,  

ys=(y-μs)/σs                                                          (3.18) 

where μs is the sample mean of y and σs the sample standard deviation of y. 

3.3.1.1 Sparse FP-AR modeling 

During the sparse FP-AR modeling, the training and testing signals as shown in Fig. 3.3 

are used. The initial set of functional spaces is configured as ,

ini

F iS = ini

FS = {0, 1, 2, …, 5} (i.e., 

basis functions = {1, ωt, ωt
2, …, ωt

5}). The initial set of AR terms ini

ARS  is determined as {1, 

2, …, 147}. The λ is configured as [0, 1×10-8, 1×10-7, …, 1×10-1]. Fig. 3.5 shows the CVMSE 

under each λ. The minimum CVMSE appears when λ = 1×10-5 and the largest λ = 1×10-4 

which returns a model which has a CVMSE within one standard error of the minimum 

CVMSE. Therefore, λ = 1×10-4 is chosen. Table 3.2 lists a portion of the identified model 

structure and model parameters. Many parameters have been forced to 0, thus returns a 

spare FP-AR model. In total, the sparse FP-AR model has 539 non-zero coefficients spread 

out in the 
,

ˆ ˆ
i ja =  a  for i{1, 2, …, 147} and j{0, 1, 2, …, 5}. 

3.3.1.2 Conventional FP-AR modeling 

For comparison purposes, the conventional FP-AR model is identified. Model parameters 

are estimated using the ordinary least square algorithm, and the optimal model order and 
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functional spaces are selected using the two-step BIC based method [45]. During the 

model AR order selection, the initial set of functional spaces is configured as ,

ini

F iS = ini

FS = 

{0, 1, 2, …, 5} (i.e., basis functions = {1, ωt, ωt
2, …, ωt

5}). The BIC values for each AR order 

na= {1, 2, …, 300} are shown in Fig. 3.6(a). The optimal model order is chosen as na = 98 

when minimizing the BIC. Then, the optimal functional spaces is a 3-dimensional spaces 

{1, ωt
4, ωt

5}, as shown in Fig. 3.6(b). Functional basses {ωt, ωt
2, ωt

3} are consecutively 

dropped based on the backward deletion scheme. In total, the conventional FP-AR model 

has 294 coefficients 
,

ˆ ˆ
i ja =  a  for i{1, 2, …, 98} and j{0, 4, 5}. 

 

 

Fig. 3.5: CVMSE of lasso Fit from simulation study. The CVMSE when λ =0 was not shown due to 
the log x-axis was 0.3305±0.0051 which is the same as the CVMSE when λ = 1×10-8. 

 

Table 3.2: A portion of estimated parameters aij for representing simulation signals 

  t-1 t-2 t-3 t-4 t-5 t-6 t-7 … t-147 

1 -0.3286 -0.0891 0.0567 0.1477 0.0776 -0.0175 -0.0714 … -0.0061 

ωt -0.3621 0.3563 0.9424 0.3903 -0.0631 0 0.1905 … 0 

ωt
2 0 0 -0.6720 -0.7566 -0.2965 0.0039 0.2373 … 0 

ωt
3 0.5262 0 -0.0830 -0.0500 0 0.0559 0 … 0.1039 

ωt
4 0.0296 0 0 0 0 0 -0.0683 … 0 

ωt
5 0.3397 0 -0.1512 0.2720 0.3416 -0.0422 -0.3637 … -0.0928 
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Fig. 3.6: FP-AR model structure selection for the simulation gearbox vibration signal: (a) AR 
order selection and (b) BIC values obtained by backward deletion scheme 

3.3.1.3 Performance comparison 

We evaluate the performance of sparse and conventional FP-AR models in terms of 1) 

modeling accuracy and 2) the benefits that improved model accuracy can bring to the fault 

detection and severity assessment of a gearbox under VS.  

The time waveform of the residuals-of-testing from both models is shown in Fig. 3.7 (b,c). 

For comparison, Fig. 3.7 (a) shows the raw testing signal. We can see that the amplitude 

of residuals-of-testing from both models has decreased due to the removal of components 

in baseline vibration. Meanwhile, the mean and variance of the residuals-of-testing are 

likely time-invariant. In this case, the residuals-of-testing has become stationary.  

Table 3.3 listed the results of sparse FP-AR in comparison with the conventional FP-AR. 

Firstly, the sparse FP-AR model has an MSE of 0.3075, smaller than 0.3346 that the 

conventional FP-AR has, and closer to the irreducible error 0.1880. Secondly, the residual-

of-testing of the sparse FP-AR model has a p-value of 0.2942 from Ljung–Box test. But, 

the conventional FP-AR model has 0.0998. The sparse FP-AR model has a goodness-of-

fit of 51.21% which is higher than 44.27% that the conventional FP-AR has. Fig. 3.8 shows 

(a)                         

 

 

 

(b) 
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the OSAPs of both two models along with the real gear vibration signal. The OSAP from 

the sparse FP-AR model fits better than the conventional one. These imply that the 

residual-of-testing of the sparse FP-AR model is more random than its counterpart. 

Meanwhile, recall that sparse FP-AR has 539 non-zero coefficients and its counterpart 294. 

We conclude that the conventional FP-AR model tends to under-fit due to the smaller 

number of non-zero coefficients. The sparse FP-AR model outperforms the conventional 

FP-AR model in terms of modeling accuracy. Lastly, the sparse FP-AR model paid about 

20 times more than the conventional one in the training stage, and slightly more in the 

testing stage. The higher computational cost in training originates from solving the 

penalized objective function and performing 10-fold CV. The higher computational cost in 

testing originates from the higher number of non-zero coefficients in the sparse FP-AR 

model (539) than its counterpart (294). 

 

Fig. 3.7: Residuals-of-testing in comparing with the raw testing signal, simulation study: (a) raw 
testing signal; (b) residual-of-testing from conventional FP-AR model; (c) residual-of-testing 

from sparse FP-AR model 

Table 3.3: Performance of sparse and conventional FP-AR models from the simulation study 

Models MSE of 
irreducible 
error 

MSE of the 
residual-
of-testing 

Ljung–Box 
test, p-
value 

Goodness-
of-fit, (%) 

CPU time 
in training, 

(s) 

CPU time 
in testing, 

 (s) 

Con FP-AR 
0.1880 

0.3346 0.0998 44.27 84.0 0.10 

Spa FP-AR 0.3075 0.2942 51.21 1785.4 0.13 

(a)  

(b)  

(c) 
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Fig. 3.8: One-step-ahead predication from (a) conventional FP-AR and (b) sparse FP-AR models. 
Simulation study. 

Fig. 3.9 shows the frozen-time spectrums (b, c) obtained from both FP-AR models and the 

non-parametric spectrum (a). The frozen-time spectrum obtained from the conventional 

FP-AR model failed to align with the non-parametric spectrum in the region of [0 s 5 s; 0 

kHz 0.13 kHz] as highlighted in Fig. 3.9 (b). On the other hand, the frozen-time spectrum 

obtained from the sparse FP-AR model aligns well with the non-parametric spectrum. The 

sparse FP-AR model has higher modeling accuracy than the conventional one. 

 

Fig. 3.9: Time-frequency spectrums of simulation signal: (a) non-parametric spectrum of testing 
signal obtained by MATLAB spectrogram function; (b) Frozen-time spectrum obtained from the 
conventional FP-AR model; (c) Frozen-time spectrum obtained from the sparse FP-AR model. z-

axis scales are the same for three plots. 

To show the benefits that improved modeling accuracy can bring to the fault detection and 

severity assessment of a gearbox under VS, we apply the inverse filter constructed from 

the sparse FP-AR model for detecting gear tooth crack faults. Fig. 3.10 shows the obtained 

residuals by filtering faulty vibration signals (shown in Fig. 3.4) using inverse filters 

(a)                                                                (b)  

(a)                                                   (b)                                             (c)  
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constructed from both sparse and conventional FP-AR models. We can visually observe 

that the residuals show an ascending “peskiness” when the fault level increases. 

Meanwhile, residuals from sparse FP-AR models are “peakier” than the residuals from 

conventional one. Next, we will calculate a periodic modulation intensity (PMI) [57] 

indicator to numerically measure how peaky each residual is.  

The value of PMI represents the energy ratio between tooth crack induced impulses and 

other components [57]. The residuals shown in Fig. 3.10 are first converted to angular-

domain through computed order tracking (COT) [63]. Then, PMI is calculated following 

Eqs. (2.7-2.8). 

 

 

Fig. 3.10: Residuals of faulty vibrations (simulation) through inverse filtration: (a)~(e) 
corresponds to F1, F2, …, F5, respectively, and are from conventional FP-AR model. (f)~(j) 

corresponds to F1, F2, …, F5, respectively, and are from sparse FP-AR model. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 



 

92 
 

Fig. 3.11 shows the normalized PMI (NPMI, i.e., PMI value of the residual of faulty 

vibrations divided by the PMI of the residual of baseline vibration) for detecting five levels 

of tooth crack faults. The NPMI from the raw signal failed to detect each fault levels. 

Thanks to the removal of baseline vibration, the NPMI calculated from res-con (i.e., the 

residual of conventional FP-AR model) ascends with the increasing of fault severities, 

especially for F3 to F5. Thanks to more accurate baseline vibration modeling and hence 

more accurate removal of baseline vibration, the NPMI calculated from the res-spa (i.e., 

residual of the sparse FP-AR model) shows a higher NPMI than the conventional one. The 

slope of the NPMI curve from res-spa is steeper than the conventional one, which implies 

that res-spa better assesses the severities of faults. Noticeably, the res-spa can detect F2, 

whereas the res-con failed. We conclude that an improved modeling accuracy ensures the 

residual to contain more fault induced features, and hence benefits the health state 

assessment of a gearbox under VS in early detection of faults and better assess the 

severities of faults. 

 

Fig. 3.11: Normalized PMI for detecting five levels of tooth crack faults, obtained from the 
simulation study. (raw: raw signal; res-con: the residual of conventional FP-AR model; res-spa: 

the residual of conventional FP-AR model.) 

3.3.2 UofA dataset  

The descriptions of this dataset have been given in Section 2.4.1. The experimental signals 

collected under the variable speed condition will be used in this chapter. 
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The speed profiles were configured to be similar to the profile in the simulation signal. The 

load motor generates a constant load level of 80Nm during the experiment. Fig. 3.12 shows 

two segments of baseline vibration, as well as their corresponding speed profiles acquired 

by an encoder. We set the sampling frequency fs = 6.4 kHz. The left-side baseline vibration 

and its corresponding speed profile are used as training data, whereas the right-side as 

testing data. The duration of the testing signal is 15 s which covers more than 30 cycles of 

object gear rotation. 

The left side of Fig. 3.13 shows speed profiles, whereas the right side the time waveforms 

of faulty vibrations collected under five levels (i.e., F1~F5) of tooth crack fault. The speed 

profiles are generally the same. We cannot detect the faults by visually observing the time 

waveform of faulty vibrations. Tooth crack induced features are submerged into the 

vibrations. Signal processing methods need to be employed for fault detection and severity 

assessment. 

 

 

Fig. 3.12: Baseline vibration signals from UofA experiment: (a) speed profile of training signal, (b) 
time waveform of training vibration signal, (c) speed profile of testing signal, (d) time waveform 

of testing vibration signal. 

(a) 

 

 

(b) 

Training                                       Testing 
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(d) 
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Fig. 3.13: Faulty vibration signals from UofA experiment: (a) ~ (e) speed profiles; (f) ~ (j) time 
waveform of faulty vibration signals, corresponding to the fault level F1, F2, …, F5, respectively. 

3.3.2.1 Sparse FP-AR modeling 

During the sparse FP-AR modeling, the training and testing signals as shown in Fig. 3.12 

are used. The initial set of functional spaces is configured as
,

ini

F iS = ini

FS = {0, 1, 2, …, 7} (i.e., 

basis functions = {1, ωt, ωt
2, …, ωt

7}). The initial set of AR terms ini

ARS  is determined as {1, 

2, …, 600} by BIC. The λ is configured as [0, 1×10-8, 1×10-7, …, 1×10-1]. Fig. 3.14 shows the 

CVMSE under each λ. The minimum CVMSE appears while λ=1×10-8 whereas the λ = 1×10-

5 returns a model which has a CVMSE within one standard error of the minimum CVMSE. 

Therefore, λ = 1×10-5 is chosen. Table 3.4 lists a portion of the identified model structure 

and model parameters. Many parameters have been forced to 0, thus results to a spare FP-

AR model. In total, the sparse FP-AR model has 3512 non-zero coefficients spread out in 

the ,
ˆ ˆ

i ja =  a  for i{1, 2, …, 600} and j{0, 1, 2, …, 7}. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

(f) 
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Fig. 3.14: CVMSE of lasso Fit. The CVMSE when λ =0 was not shown due to the log x-axis, and 
was 0.1052±0.0005 which is the same as the CVMSE when λ = 1×10-8. 

Table 3.4: A portion of estimated parameters aij for representing UofA experimental signal 

  t-1 t-2 t-3 t-4 t-5 t-6 t-7 … t-600 

1 -1.1703 0.5790 -0.3906 0.0595 0.1966 0.1476 -0.0102 … 0 

ωt 0.0604 0 0.1009 -0.0872 0 0.0427 0.0047 … 0 

ωt
2 0 -0.0205 0.0471 -0.1321 0 0.0892 0.0815 … 0.0212 

ωt
3 0.2180 -0.0870 0.0206 -0.0315 0 0.0144 0.0187 … 0 

ωt
4 0 -0.0107 0.0182 -0.0018 -0.1373 0 0 … 0 

ωt
5 0 0 0 0 -0.0204 0 0 … 0 

ωt
6 0 -0.0210 0.1134 0 0 0 0 … 0 

ωt
7 0.0166 -0.0393 0 0.0074 0 0.0286 0.0033 … -0.0090 

3.3.2.2 Conventional FP-AR modeling 

During the model AR order selection, the initial set of functional spaces is configured as

,

ini

F iS = ini

FS = {0, 1, 2, …, 7} (i.e., basis functions = {1, ωt, ωt
2, …, ωt

7}). The BIC values for each 

AR order na= {1, 2, …, 800} are shown in Fig. 3.15(a). The optimal model order is chosen 

as na = 400 when minimizing the BIC. The optimal functional space is a 3-dimensional 

spaces {1, ωt
6}, as shown in Fig. 3.15(b). Functional basses {ωt, ωt

2, ωt
3 ωt

4, ωt
5, ωt

7} are 

consecutively dropped based on the backward deletion scheme. In total, the conventional 

FP-AR model has 800 coefficients ,
ˆ ˆ

i ja =  a  for i{1, 2, …, 400} and j{0, 6}. 
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Fig. 3.15: FP-AR model structure selection for the UofA gearbox vibration signal: (a) AR order 
selection; and (b) BIC values obtained by backward deletion scheme 

3.3.2.3 Performance comparison 

Same as the simulation study, we evaluate the performance of sparse and conventional 

FP-AR models in terms of 1) modeling accuracy and 2) the benefits that improved model 

accuracy can bring to the fault detection and severity assessment of a gearbox under VS.  

Fig. 3.16 shows the time waveforms of the residuals-of-testing from both models. The 

amplitude of residuals-of-testing from both models has decreased comparing with raw 

signals. From Fig. 3.16(b, c), the mean and variance of the residuals-of-testing are 

observed to be time-invariant. Thus, the residuals-of-testing has become stationary based 

on the wider sense definition of a stationary signal. 

 

Fig. 3.16: Residuals-of-testing, UofA signals: (a) raw testing signal; (b) residual-of-testing from 
conventional FP-AR model; (c) residual-of-testing from sparse FP-AR model 

(a)                         

 

 

(b) 

(a) 

 

(b) 

 

(c) 
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Table 3.5 lists the results of sparse FP-AR in comparison with the conventional FP-AR. 

These results are in good agreement with the simulation study. First, the sparse FP-AR 

model has an MSE of 0.0710, smaller than the 0.1265 that the conventional FP-AR has. In 

experimental signals, the environmental noise is unknown hence the irreducible error is 

unknown. Second, the residual-of-testing of sparse FP-AR model has a p-value of 

5.489×10-3 from Ljung–Box test, whereas its counterpart has a p-value of 6.165×10-7. The 

OSAPs are not shown since the environmental noise is unknown and hence the real gear 

vibration signal unknown. These results imply that the residual-of-testing of sparse FP-

AR model is more random than its counterpart. Meanwhile, the sparse FP-AR model has 

3512 non-zero coefficients, whereas the conventional FP-AR model has 800. We conclude 

that the conventional FP-AR model tends to underfit due to the smaller number of non-

zero coefficients. The sparse FP-AR model outperforms the conventional FP-AR model in 

terms of modeling accuracy. Lastly, the sparse FP-AR model paid about 10 times more 

than the conventional one in the training stage, and 3 times more in the testing stage. 

Table 3.5: Performance of sparse and conventional FP-AR models from UofA signals 

Models MSE of residual, Ljung–Box test, 
p-value,  

CPU time in 
training, (h) 

CPU time in 
testing, (s) 

Con FP-AR  0.1265 6.165×10-7 2.8 3.1 

Spa FP-AR  0.0710 5.489×10-3 21.2 9.2 

Fig. 3.17 shows the frozen-time spectrums (b, c) obtained from both FP-AR models and 

non-parametric spectrum (a). The frozen-time spectrum obtained from conventional FP-

AR model tends to be stationary (i.e., time-invariant) in the region of [2 13] s, which does 

not align with the non-parametric spectrum. On the other hand, the frozen-time spectrum 

obtained from sparse FP-AR model aligns well with the non-parametric spectrum. The 

sparse FP-AR model has higher modeling accuracy than the conventional one. 
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Fig. 3.17: Time-frequency spectrums of UofA signal: (a) non-parametric spectrum of testing signal 
obtained by MATLAB spectrogram function; (b) Frozen-time spectrum obtained from the 

conventional FP-AR model; (c) Frozen-time spectrum obtained from the sparse FP-AR model. z-
axis scales are the same for three plots. 

We apply the inverse filter constructed from sparse FP-AR model for detecting gear tooth 

crack faults. Fig. 3.18 shows the obtained residuals by filtering faulty vibration signals 

(shown in Fig. 3.13) using inverse filters constructed from both sparse and conventional 

FP-AR models. Residuals from two FP-AR models seem similar. Next, we calculate PMI 

to numerically compare these residuals.  

 

Fig. 3.18: Residuals of faulty vibration signals (UofA signal) through inverse filtration where 
(a)~(e) corresponds to F1, F2, …, F5, respectively, and are from conventional FP-AR model. 

(f)~(j) corresponds to F1, F2, …, F5, respectively, and are from sparse FP-AR model. 

(a)                                              (b)                                              (c)  
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Fig. 3.19 shows the NPMI for detecting five levels of tooth crack faults. The raw signal 

failed to detect each fault levels. The NPMI calculated from res-con ascends in general 

with the increasing of fault severities, especially for F3 to F5. The NPMI calculated from 

the res-spa shows a higher NPMI than the conventional one. The ascending trend of res-

spa is also monotonic, whereas the res-con decreases from F2 to F3 and from F4 to F5, 

which implies that res-spa better assesses the severities of faults. The result is in good 

agreement with the simulation study. 

 

Fig. 3.19: Normalized PMI for detecting five ascending levels of tooth crack faults, obtained from 
UofA signal 

3.3.3 UofP dataset 

This experimental dataset is provided by the University of Pretoria (UofP), South Africa 

and details about the experiments and the data collected are given in [76], [134]. We will 

use this independent experimental dataset to show the applicability of the proposed FP-

AR model.  

Fig. 3.20 shows the experimental setup that contains one step-down and two step-up 

helical gearboxes, an electrical motor and an alternator. The electrical motor drives the 

whole drive train, whereas the alternator generates load torque. The step-up helical 

gearbox (labelled as 6) is selected as the test gearbox, which has one mesh pair. The gear 

and pinion of this gearbox have 37 teeth and 20 teeth, respectively. The input shaft is 
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connected to the gear, whereas the output shaft connected to the pinion of the helical 

gearbox.  

 

Fig. 3.20: UofP experimental setup: 1, Alternator; 2, Support bearing; 3, Helical gearbox; 4, 
Accelerometer; 5, Proximity probe applied to key of shaft; 6, Helical gearbox (Test gearbox); 7, 
Accelerometer (with a sensitivity of 500 mV/g); 8, Zebra-strip shaft encoder and optical switch 

(88 pulses per revolution); 9, Helical gearbox; 10, Electrical motor. [76], [134] 

In addition to the components shown in Fig. 3.20, another tri-axle accelerometer was 

mounted on the target gearbox (labelled as 6 in Fig. 3.20). Fig. 3.21 shows the tri-axle 

accelerometer mounted on the bearing housing of the input shaft. 

 
Fig. 3.21: The 100 mV/g tri-axial accelerometer. The input shaft of the test gearbox is seen and the 

positive x-direction points to the electrical motor. [76], [134] 

At first, 100 data files were acquired from a healthy gearbox. Each data file lasted 20 s. 

The sampling frequency was 25.6 kHz. When collecting each data file, the electrical motor 

(labelled as 10 in Fig. 3.20) drove the transmission train such that the rotating speed of 

the object gearbox followed a sinusoidal-like profile with a period equal to 10s. The 

alternator (labelled as 1 in Fig. 3.20) generated a load torque positively correlated to the 
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speed. Thereafter, the gearbox was disassembled so that the gear can be artificially 

damaged. An initial tooth crack as shown in Fig. 3.22 (left) was machined with the spark 

erosion technique and had the following dimensions: ~0.3 mm high to the tooth root, 50% 

of the tooth width deep, and through the entire face of the tooth. The gearbox was 

assembled with the artificially damaged gear. A run-to-failure experiment was then 

conducted which lasted around 21 days of continuous running. At last, the tooth was 

missing, as shown in Fig. 3.22 (right). During the run-to-failure process, 1400 data files 

were collected with an equal time interval. Each data file was collected under the same 

speed and load conditions as the data files collected under the healthy state.  

 

Fig. 3.22: The gear before and after the run-to-failure experiment. [76], [134] 

In this chapter, the signal from the vibration sensor labelled as 7 will be used. The vibration 

signal was low passed using an FIR filter with a cutoff frequency fc = 3.2 kHz, and then 

downsampled from fs =25.6 kHz to fs =6.4 kHz. The resulting sampling frequency fulfills 

the principle that fs needs to be higher than 20 times of the gear meshing frequency to 

cover the 10th order harmonic of the gear meshing frequency. Fig. 3.23 shows two 

segments of baseline vibration, as well as their corresponding speed profiles of the input 

shaft acquired by the zebra-strip shaft encoder. The left-side baseline vibration and its 

corresponding speed profile are used as training data, whereas the right-side as testing 

data. Except for this baseline vibration, 30 additional baseline data files are selected. Each 

data file follows the speed signal as shown in Fig. 3.23(c). The duration of the training and 
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testing signal is 6.5 s, truncated from the 20 s long signal. This duration lasted more than 

15 cycles of object gear rotation. 

 

Fig. 3.23: Baseline vibration signals from UofP experiment: (a) speed profile of training signal, (b) 
time waveform of training vibration signal, (c) speed profile of testing signal, (d) time waveform 

of testing vibration signal. 

To reduce the data size, 170 faulty data files are selected from the total 1400 data files. The 

selected data files have a time interval of 3 h between consecutive data files, and will be 

used in this chapter. Each data file contains 6.5 s of vibration signal as well as the speed 

signal. The right side of Fig. 3.24 shows the time waveforms of faulty vibrations from data 

file #30, #100, and #170, whereas the left side their corresponding speed profile. We can 

visually observe that the faulty vibration from data file #170 is peakier than the other two. 

3.3.3.1 Sparse FP-AR modeling 

During the sparse FP-AR modeling, the training and testing signals as shown in Fig. 3.23 

are used. The initial set of functional spaces is configured as
,

ini

F iS = ini

FS = {0, 1, 2, …, 7} (i.e., 

basis functions = {1, ωt, ωt
2, …, ωt

7}). The initial set of AR terms ini

ARS  is determined as {1, 

2, …, 963} by BIC. The λ is configured as [0, 1×10-8, 1×10-7, …, 1×10-1]. Fig. 3.25 shows the 

CVMSE under each λ. The minimum CVMSE appears when λ=1×10-4. Meanwhile, λ = 1×10-

3 returns a model which has a CVMSE exceeds one standard error of the minimum CVMSE. 

(a) 

(b) 

(c) 

(d) 

  
Training                                          Testing 
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Therefore, λ = 1×10-4 is chosen. Table 3.6 lists a portion of the identified model structure 

and model parameters. Many parameters have been forced to zero, resulting in a spare 

FP-AR model. In total, the sparse FP-AR model has 3598 non-zero coefficients spread out 

in the ,
ˆ ˆ

i ja =  a  for i{1, 2, …, 963} and j{0, 1, 2, …, 7}. 

 

 

Fig. 3.24: Faulty vibration signals from UofP experiment: (a) ~ (c) speed profiles; (d) ~ (f) time 
waveform of faulty vibration signals, corresponding to faulty data file #30, #100, and #170, 

respectively. 

 

 

Fig. 3.25: CVMSE of lasso fit from UofP experimental signal. The CVMSE when λ =0 was not 
shown due to the log x-axis and was 0.5259±0.0042 which is the same as the CVMSE when λ = 

1×10-8. 
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Table 3.6: A portion of estimated parameters aij for representing UofP baseline vibration 

  t-1 t-2 t-3 t-4 t-5 t-6 t-7 … t-963 

1 -0.1023 -0.1829 0.1631 0.5552 -0.2451 -0.2679 0 … 0.0173 

ωt 0.0956 0.1075 0.1426 -0.1328 -0.2054 0.2097 0.1183 … 0 

ωt
2 0.1205 -0.0423 -0.0870 0 0.1294 -0.0119 -0.1311 … -0.0416 

ωt
3 0 -0.0607 -0.2454 0.0107 0.6043 -0.0042 -0.2012 … 0 

ωt
4 0 0 0 0.0207 0 0 0 … 0 

ωt
5 0 0 0 0 0 0 0 … 0 

ωt
6 0 0 0 0 0 0 0 … 0 

ωt
7 0.0367 0.0210 0.1822 0.1568 -0.2605 -0.0803 0.1251 … 0.0378 

3.3.3.2 Conventional FP-AR modeling 

During the model AR order selection, the initial set of functional spaces is configured as

,

ini

F iS = ini

FS = {0, 1, 2, …, 7} (i.e., basis functions = {1, ωt, ωt
2, …, ωt

7}). The BIC values for each 

AR order na= {1, 2, …, 1000} are shown in Fig. 3.26(a). The optimal model order is chosen 

as na = 642 when minimizing the BIC. Then, the optimal functional space is a 1-

dimensional space {1}, as shown in Fig. 3.26(b). Functional basis {ωt, ωt
2, ωt

3, ωt
7, ωt

6, ωt
5, 

ωt
4} are consecutively dropped based on the backward deletion scheme. Note here 

conventional FP-AR reduces to a classical AR model. In total, the conventional FP-AR 

model has 642 coefficients ,
ˆ ˆ

i ja =  a  for i{1, 2, …, 642} and j{0}. 

 

Fig. 3.26: FP-AR model structure selection for the UofP gearbox vibration signal: (a) AR order 
selection; and (b) BIC values obtained by backward deletion scheme 

(a)                         

(b) 
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3.3.3.3 Performance comparison 

Fig. 3.27 shows the time waveform of the residuals-of-testing from both models.  The 

amplitude of residuals-of-testing from both models has decreased in comparison with the 

raw testing signal. From Fig. 3.27 (b, c), the mean and variance of the residuals-of-testing 

are observed to be time-invariant. Thus, the residuals-of-testing has become stationary 

based on the wider sense definition of a stationary signal.  

 

Fig. 3.27: Residuals-of-testing, UofP signals: (a) raw testing signal; (b) residual-of-testing from 
conventional FP-AR model; (c) residual-of-testing from sparse FP-AR model 

Table 3.7 listed the results of sparse FP-AR in comparison with the conventional FP-AR. 

These results are in good agreement with previous studies. First, the sparse FP-AR model 

has an MSE of 0.3971, smaller than 0.4547 that the conventional FP-AR has. These MSEs 

are larger than that from simulation and UofA signals, which implies that independent 

signals behave differently. Second, the residual-of-testing of sparse FP-AR model has a p-

value of 0.0052 from Ljung–Box test, whereas the conventional FP-AR model has 

8.2800×10-12. Meanwhile, the sparse FP-AR model has 3598 non-zero coefficients, 

whereas the conventional FP-AR model has 642. We conclude that the conventional FP-

AR model tends to underfit due to the smaller number of non-zero coefficients, and the 

sparse FP-AR model outperforms the conventional FP-AR model in terms of modeling 

(a) 

  

(b)  

 

(c) 
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accuracy. Lastly, the sparse FP-AR model consumes about 9 times more CPU time than 

the conventional one in the training stage, and 3 times more in the testing stage.  

Table 3.7: Performance of sparse and conventional FP-AR models from UofP signals 

Models 
MSE of 
residual 

Ljung–Box test, 
p-value, 

CPU time in 
training, (h) 

CPU time in 
testing, (s) 

Con FP-AR 0.4547 8.2800×10-12 1.5 2.8 

Spa FP-AR 0.3971 0.0052 12.5 8.9 

Fig. 3.28 shows the frozen-time spectrums (b, c) obtained from both FP-AR models and 

non-parametric spectrum (a). Since conventional FP-AR reduced to an AR model, the 

frozen-time spectrum is stationary, which does not align with the non-parametric 

spectrum. On the other hand, the frozen-time spectrum obtained from sparse FP-AR 

model aligns well with the non-parametric spectrum by tracking the time-varying 

components. The sparse FP-AR model has higher modeling accuracy than the 

conventional one. 

 

Fig. 3.28: Time-frequency spectrums of UofP signal: (a) non-parametric spectrum of testing 
signal obtained by MATLAB spectrogram function; (b) Frozen-time spectrum obtained from the 
conventional FP-AR model; (c) Frozen-time spectrum obtained from the sparse FP-AR model. z-

axis scales are the same for three plots. 

We apply the inverse filter constructed from sparse FP-AR model for detecting the 

progression of gear tooth crack faults. Fig. 3.29 shows the obtained residuals by filtering 

faulty vibration signals (shown in Fig. 3.24) using inverse filters constructed from both 

(a)                                                  (b)                                           (c)  
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sparse and conventional FP-AR models. Residuals from sparse FP-AR models seem 

“peakier” than the residuals from conventional one.  

 

Fig. 3.29: Residuals of faulty vibration signals (UofP signal) through inverse filtration where 
(a)~(c) corresponds to data file #30, #100, and #170, respectively, and are from conventional FP-
AR model. (d)~(f) corresponds to data file #30, #100, and #170, respectively, and are from sparse 

FP-AR model 

Fig. 3.30 shows the NPMI for assessing the progression of tooth crack faults. Fig. 3.30(a) 

shows the NPMI for 30 data files of baseline vibration, whereas Fig. 3.30(b) shows the 

NPMI for 170 data files of faulty vibrations that are collected with a time interval of 3 h, 

along with smoothing curves obtained by MATLAB spaps() function. The NPMI from 

baseline vibrations oscillates around 1. For detecting tooth crack faults, we can treat the 

maximum NPMI from baseline vibrations as threshold and detect tooth crack fault 

whenever the NPMI exceeds such threshold. For the NPMI from the raw signal, many of 

the NPMIs of faulty data files #1~160 locate below the threshold (1.22). These NPMIs of 

faulty data files #160~170 that has severe faults locate above the threshold. On the other 

hand, the NPMIs from res-con and res-spa of faulty vibrations are above their threshold 

(1.14). Both of them can detect tooth crack faults. This is not surprising because the UofP 

experiment started from an initial crack with a depth of 50% tooth width and through the 
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entire face of the tooth, which is considerably severe compared with the tooth crack fault 

in UofA dataset. Noticeably, thanks to more accurate baseline vibration modeling and 

hence more accurate removal of baseline vibration, the NPMI from res-spa is 0.12 higher 

than its counterpart on average by observing the smoothing curve. This implies that the 

sparse FP-AR model extracts more fault induced features than conventional FP-AR model, 

and hence better assesses the progression of tooth crack faults.  

 

Fig. 3.30: Normalized PMI for detecting the progression of tooth crack faults, obtained from UofP 
signal. (a) healthy data files; (b) faulty days. Smoothing curves were obtained for each NPMI 

under faulty cases. 

The proposed sparse FP-AR model spent about 25 h in training using the UofA signal that 

has 89600 data points, and about 13 h using the UofP signal that has 44800 data points. 

Since this training process is completed offline, the length of time required is not very 

critical. Besides, the computational efficiency can be improved by implementing the 

algorithm in a more powerful industrial computer. The computational time in testing stage 

primarily determines whether the TSMBM based on sparse FP-AR model can be 

implemented in online condition monitoring systems. The inverse filter constructed by the 

sparse FP-AR model spent 9.2 s for processing the UofA signal that has 89600 data points, 

and 8.9s for processing the UofP signal that has 44800 data points. Therefore, the TSMBM 

based on sparse FP-AR model has a potential for the implementation in online condition 

(a)                                        (b) 
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monitoring systems. More importantly, the significant improvement on fault detection 

severity assessment provided by the sparse FP-AR model could easily outweigh the 

additional offline CPU time. 

3.4 Discussions 

When it comes to the online implementation of the TSMBM, users first need to apply the 

inverse filter to process the newly collected signals and then calculate indicator(s) from 

the residual to assess the health condition of the gearbox. The baseline sparse FP-AR 

model needs to be trained ahead of the online implementation. In other words, the model 

training is completed offline, whereas the testing phase is implemented online for gearbox 

health monitoring. 

To reliably estimate the model parameters (i.e., reduce the variance of estimated model 

parameters), the number of data points needs to be at least 10 times greater than the 

number of parameters to be estimated, according to Knofczynski and Mundfrom [147]. 

The parameters of the proposed sparse FP-AR model are reliability estimated. In the 

simulation study, the number of training data points is 7500 which is 25 times the number 

of parameters (i.e., 297). In experimental studies, this ratio of data point over parameters 

is 25.5 when analyzing UofA signals and 12.5 when analyzing UofP signals. 

The TSMBM works theoretically different compared with the generalized synchronous 

average (GSA) method [27]. TSMBM works well with just a few training data, whereas the 

GSA requires relatively more training data for the removal of baseline vibration 

components. 



 

110 
 

3.5 Conclusions  

In this chapter, a sparse FP-AR model is proposed. The sparse FP-AR model uses a sparse 

AR set and non-identical functional spaces. A new model selection procedure by adopting 

the LASSO has been developed for obtaining such a sparse FP-AR model. The sparse FP-

AR model has been validated using simulation signals from a simulation model for a fixed-

axis gearbox and experimental signals from two independent fixed-axis gearbox test-rigs. 

Results show that although the proposed sparse FP-AR model consumes more 

computational time than the conventional FP-AR model, it has higher modeling accuracy. 

We can use the residuals of the sparse FP-AR model for the fault detection and severity 

assessment when the testing signals were collected under deterministic speed profiles. The 

improved modeling accuracy benefits the health condition assessment of a gearbox under 

VS in detecting earlier faults and better assessing the progression of faults.  

This chapter has focused on improving the accuracy of baseline vibration modeling. The 

residuals of the accurate baseline model can be employed for the fault detection and 

severity assessment when the testing signals were collected under deterministic speed 

profiles. However, such baseline model residual-based methods are inapplicable to the 

cases when the testing signals were collected under random speed variations which 

typically occurs in wind turbine gearboxes, as explained in Section 1.2.2.4. Therefore, in 

the next chapter, we will develop a time series model-based method for the gear tooth 

crack detection and severity assessment under the random speed variation. 
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4 
A time series model-based method for gear tooth 

crack detection and severity assessment under 
random speed variation 

In industries (e.g., wind power), gearboxes operate under random speed variations. A 

condition monitoring system is expected to detect faults and assess their severity using 

vibration signals collected under different speed profiles. This chapter presents a time 

series model-based method for gear tooth crack detection and severity assessment under 

random speed variation (the research topic #3 as introduced in Section 1.3). The materials 

of this topic have been documented in a journal paper [109] which is under review. 

4.1 Introduction  

Gearboxes often operate under variable conditions. Vibration-based condition monitoring 

of gearboxes needs to account for such variation of operating conditions (OCs) since the 

OC changes the vibration pattern. 

A few studies have been reported for the condition monitoring of gearboxes under random 

speed variations. Wang et al. [148] proposed a matching synchrosqueezing transform 

(MSST) and presented its application in fault detection of a wind turbine gearbox under 

random speed variation. The MSST can qualitatively detect a slight tooth spall through 

visual observation of the time-frequency spectrum. Villa et al. [74] found that the 

diagnostic features (e.g., root mean square) are dependent on the rotating speed and load. 
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The change of such dependency can reflect the deterioration of a gearbox. Santos et al. [75] 

considered fault diagnosis of imbalance and misalignment faults under random speed and 

load variation. The authors extracted numerous features from the vibration signal and fed 

them along with speed and load information into a support vector machine (SVM). 

Although the features they extracted are sensitive to speed/load changes, SVM is expected 

to learn the dependency between these features and the speed/load and still return a good 

classification result. When applying the approach by Santos et al. [75] for gear tooth crack 

detection and severity assessment, we need to extract proper features that are sensitive to 

the gear tooth crack. Recently, Schmidt et al. [76] presented a comprehensive novelty 

diagnostic method. The method first identifies the OC state of the gearbox by assuming 

that the speed does not vary significantly within a rotating cycle. Secondly, the method 

calculates a negative log-likelihood (NLL) based on machine health condition features and 

the OC state. The NLL can reflect the propagation of the localized gear fault well. The 

novelty diagnostic method may be adequate for smooth random speed variations. 

However, when speed varies rapidly, the vibration signal within a rotating cycle may be 

subjected to significant variations. 

Nowadays, time-series model-based methods (TSMBMs) are widely employed in the field 

of structural health monitoring (i.e., fault detection, localization, mode identification, and 

severity assessment). Advantages of TSMBMs include 1) being free from physics or 

analytical information, 2) need only a few signals for training, and 3) inherent accounting 

for uncertainties from measurement and operational conditions [44], [108]. There is a 

large volume of literature on time series models, including review papers [44], [56].  

For fault detection, TSMBM is based on the identification of a baseline time series model 

for representing the vibration signal under a healthy state and various OCs. 
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Kopsaftopoulos et al. [91] used a vector functional pooled autoregression (VFP-AR) model 

for globally representing the dynamics of a healthy aerospace structure under multiple 

flight states. Hois et al. [51] presented a functional pooled vector autoregression model-

based method for fault detection of a composite cantilever beam under variable 

temperature conditions. Aravanis et al. [149] presented a functional pooled 

autoregression model with an exogenous excitation-based method for fault detection of a 

railway suspension under variable loading conditions. The method can detect the 

suspension stiffness reduction without the measurement of loading conditions during the 

testing stage. Functional pooled (FP) models require measured OC variables (e.g., 

temperature, loading). For time-varying structures without a measurable OC variable, 

time-dependent AR (TAR) models may be employed. Spiridonakos et al. [136] proposed 

an adaptable functional series TAR for representing the vibration signals from a healthy 

pick-and-place mechanism consisting of two coaxially aligned linear motors. Functional 

series are adaptively estimated from the vibration signals. Ma et al. [150] presented a 

kernel recursive extended least-squares time-dependent autoregression and moving 

average method for representing the vibration signals from a healthy beam with a moving 

steel mass sliding on. The method recursively selects the optimal kernel function basis. 

For fault localization, mode identification, and severity assessment, TSMBM is based on 

the identification of time series model(s) individually or globally for the vibration signals 

under various locations, modes, and/or severities. Sakaris et al. [50] presented a vector 

functional pooled vector autoregression (VFP-ARX) model-based method for fault 

detection and localization of a truss structure. They identified a VFP-ARX model to 

globally represent the vibration signals under various fault locations. The fault is detected 

and localized via re-estimation of the location variable such that the VFP-ARX model best 
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fits the current measured vibration signals. Kopsaftopoulos et al. [45] presented a VFP-

ARX model-based method for fault detection, mode identification, and severity 

assessment of an aircraft skeleton structure. For each fault mode, they built a VFP-ARX 

model to represent the vibration signals under various fault locations and severities. Fault 

detection, localization, and severity assessment are based on the re-parameterized VFP-

ARX models of any damage mode. Fault mode identification is based on evaluating the 

whiteness of residuals from each VFP-ARX model. The fault mode is identified as the one 

which gives the whitest residual. Spiridonakos et al. [102] presented a functional series 

TAR (FS-TAR) model-based mode identification method for a pick-and-place mechanism. 

FS-TAR models are built for each fault mode. Fault mode identification is based on 

statistically comparing the model parameters from a testing signal with these parameters 

obtained from the training stage. 

In condition monitoring of gearboxes, TSMBM is limited to the multiple levels of constant 

speed condition [85], [89] and cyclic speed variation [84], [108]. TSMBM has immense 

potential for fault detection and severity assessment of gearboxes under random speed 

variations. Therefore, this chapter aims to develop a time series model-based method for 

the gear tooth crack detection and severity assessment under the random speed variation, 

as well as to benchmark its performance with the novelty diagnostic method [76] and 

SVM-based method [75].  

We first adopt the baseline removal technique [108] to pre-process the raw vibration 

signal and obtain the impulsive vibration signal (Hereafter, we denote the signal after 

baseline removal as the impulsive vibration signal.) with enhanced crack-induced signal 

(impulses) to noise ratio. The rotating speed and phase of a gearbox are measurable using 

an encoder. Therefore, we select the VFP-AR model [45], [91] for the representation of 
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impulsive vibration signals under random speed conditions. The rotating speed and phase 

are considered as covariates in a VFP-AR model, given that the rotating speed affects the 

amplitude of tooth crack induced impulses, and the rotating phase determines the location 

of these impulses. We propose refined bases of spline (B-splines) for mapping the 

dependency between AR coefficients and the rotating phase. The refined B-splines are 

deduced from the periodic B-splines [151] by removing unnecessary bases outside of the 

location of impulses. The refined B-splines are less complex than the periodic B-splines 

and hence can avoid overfitting.  

We consider the tooth crack detection and severity assessment as a multi-state 

classification problem (i.e., classify the healthy and different levels of fault), given that the 

International Organization for Standardization 10816 divides the health condition of 

rotating machinery into discrete levels [152]. VFP-AR models are built for each level of 

tooth crack severity (included the healthy state). Fault detection and severity assessment 

are therefore based on examining the mean squared error (MSE) of VFP-AR model 

residuals. The final health state is assessed as the severity state of the VFP-AR model which 

gives the minimal MSE. The effectiveness of the VFP-AR model-based method was 

validated using a laboratory dataset collected at the University of Pretoria, South Africa. 

The performance of the VFP-AR model-based method is compared with the novelty 

diagnostic method [76] and SVM-based method [75].  

The main contributions of this chapter include: 

1) Rotating speed and rotating phase are considered as covariates in a VFP-AR 

model for the representation of impulsive vibration signals under random speed 

variation. 

2) Refined B-splines are proposed for the VFP-AR model when mapping the 

dependency between AR coefficients and the rotating phase. 
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3) The performance of the proposed VFP-AR model-based method has improved 

accuracy than the reported novelty diagnostic method [76] and SVM-based 

method [75].  

The rest of this chapter is organized as follows: Section 4.2 presents the VFP-AR model-

based gear tooth crack detection and severity assessment method. Section 4.3 validates 

the presented method using a laboratory dataset. Section 4.4 discusses some further 

considerations of the presented VFP-AR model-based method. Conclusions are drawn in 

Section 4.5. 

4.2 VFP-AR model-based fault detection and severity 

assessment method 

This section includes the basics of the VFP-AR model, the proposed refined B-splines, a 

sparse model identification algorithm, modeling accuracy measures, and the overall 

scheme of the VFP-AR model-based fault detection and severity assessment method. 

4.2.1 VFP-AR model basics 

The VFP-AR model was reported in [45], [91]  for representing the dynamics of structures 

under variable OCs. For the representation of impulsive vibration signals under random 

speed conditions, we consider the rotating speed and rotating phase as covariates in a 

VFP-AR model, because the rotating speed affects the amplitude of tooth crack induced 

impulses, and the rotating phase determines the location. The difference equation of such 

VFP-AR model is as follows  

 ( )
 1, ,

,
a

t i t t t i t

i n

y f y  −



= +  
(4.1) 

where yt and yt-i denote the impulsive vibration signal at time t and t-i, respectively; θt {θt 

  R | 0 ≤ θt ≤2π} denotes the phase at time t; ωt denotes the rotational speed at time t; na is 
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the order of autoregressive terms; εt is the white noise at time t. The fi(θt, ωt) is the ith 

smoothing function of phase and rotational speed and is approximated by basis expansion 

approach as follows [100] 

 ( ) ( ),

1

, ,
pn

i t t i j j t t

j

f a G   
=

=  (4.2) 

where ai,j stands for the projection parameters; Gj(θt, ωt) j =1,2,… np is jth basis function 

constructed by phase and rotational speed; np is the number of basis functions. Let G(θt, 

ωt) = [G1(θt, ωt) , G2(θt, ωt) ,…, Gp(θt, ωt)]
T. G(θt, ωt) is of size np×1 and results from the 

Kronecker product (denoted by  ) of the univariate basis functions [45] 

 ( ) ( ) ( ),t t rB t p t   = G G G  (4.3) 

We propose refined B-splines (to be detailed in Section 4.2.2) and augment the refined B-

splines with a constant 1 to obtain GrB(θt). For Gp(ωt), we select Legendre polynomial basis 

functions. These give  

 ( ) ( ) ( ), ,1, , ,
T

per per

rB t k r t k n r tB B  +
 =  G  

( ) 0 1, , ,
T

p

p t t t t
    =  G  

(4.4a) 

(4.4b) 

where r is the degree of the polynomial spline, k and n specify the location of impulses, 

( ),

per

k r tB +  for 0,1, , n=  are basis functions from periodic B-splines (to be detailed in 

Section 4.2.2), and pω is the order of Legendre polynomial basis functions.  

The rationale of augmenting the refined B-splines by a constant 1 is to account for 

deterministic components if any (e.g., the remained baseline components due to imperfect 

baseline removal.) in the impulsive vibration signal. As will be detailed in Section 4.2.2, 

the ( ),

per

k r tB +  for 0,1, , n=  are significant at the rotating phase θt when the cracked 
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tooth is in mesh, whereas  ( ), 0per

k r tB + =  for 0,1, , n=  at the rotating phase θt when 

healthy teeth are in mesh. Without augmentation of a constant 1, fi(θt, ωt) = 0 when 

( ), 0per

k r tB + =  for 0,1, , n= . The VFP-AR model will be unable to represent any 

deterministic components. 

Substituting Eqs. (4.3) and (4.4) into Eq. (4.2), we get a detailed basis expansion form for 

fi(θt, ωt) as 

( ) ( ), , , ,

0 0 0

,
p pn

per m m

i t t i m k r t t i m t

m m

f a B b
 
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= = =

= +                               (4.5) 

where 
, ,i ma and bi,m are the updated projection coefficients, which are equivalent to ai,j in 

Eq. (4.2) for j =1, 2, …, np and np = (n+2)(pω+1). In Eq. (4.5), the right-hand side term is 

resulted from augmenting the refined B-splines with a constant 1. 

Applying z-transform [121] to Eq. (4.1), we obtain 
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( ) ( ) ( )
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
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− 
                                (4.6) 

where Y(z) is the vibration signals yt expressed in z-domain; and e(z) is the zero-mean white 

noise in z-domain. In the viewpoint of the linear time-variant (LTV) system theory, the Y(z) 

is modeled as the output of an LTV system H(z) excited by a zero-mean white noise e(z).  

Based on Eq. (4.6), the inverse filter is of the following transfer function [121]:  

( )
 

1

1, ,

( ) 1 ,
a

i

i t t

i n

H z f z − −



= −                                                (4.7) 

This inverse filter is rotating speed and phase-dependent and with a finite impulse 

response (FIR). 
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4.2.2 Refined B-splines 

The periodic B-splines reported in [151] have bases uniformly placed across the rotating 

phase θt{θt   R | 0 ≤ θt ≤2π}. We propose to refine the periodic B-splines by removing these 

bases outside of the location of tooth crack induced impulses. For example, a gear has K 

teeth and the kth tooth has a crack. The impulses, therefore, locate at the rotating phase 

when the kth cracked tooth and few subsequent teeth (e.g., (k+1)th ,…, (k+n)th) are in mesh. 

In other words, impulses locate only at the rotating phase θt region [2πk/K, 2π(k+n)/K]. 

We propose to remove those bases outside of this region. After these removals, the refined 

B-splines are less complex than the periodic B-splines and hence can avoid overfitting. A 

comparative study will be conducted in Section 4.3.2 to prove the superiority of the refined 

B-splines over periodic B-splines. 

We now show the mathematical details of the refined B-splines. To start with, the open B-

splines given in [151] for θt gives  

 ( ) ( ) ( ) ( )1, 2, ,, , ,
T

B t r t r t K r tB B B    =  G  (4.8) 

where r is the degree of the polynomial spline, K is the number of basis functions, and 

Bi,r(θt) is obtained by means of Cox-de Boor recursion formula [153] 
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where
1 2 1 2 10 2r r K K K r       + + + += = = =   = = = =  is a uniform knot 

sequence with K+r interior knots. A knot vector is said to be open if its first and last knots 
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have multiplicity r+1 [151]. A knot vector is said to be uniform if the knots are equispaced 

[151]. 

To construct a periodic B-splines, the uniform knot sequence for the open B-splines should 

be extended to both ends by r steps (i.e., r 2 K ) as  

1 2 1 2 2 2 1 3

2 2
2r r K r K r K rr r

K K

 
       + + + + + +−  = = = =    = = = = +    (4.11) 

The first and last r number of bases in an open B-splines GB(θt) are then discarded. Based 

on the remaining K number of open B-spline bases, we can construct periodic B-splines 

by adding together r number of bases laying at the beginning and end [151]: 
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Note that the dimension of GpB(θt) becomes K-r. 

We now refine the B-splines given in Eq. (4.12) by removing those bases located outside 

of the impulses in the periodic B-splines GpB(θt). Suppose k {k  N|1 ≤ k ≤ K-r} and  n {n

N|0 ≤ n ≤ K-r} specifies the location of impulses, the refined B-splines become  
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where ( )rB tG if of size (n+1)×1. Note that the kept bases in Eq. (4.13) are consecutive. In 

Eq. (4.13), we have assumed (k+n) < (K-r). When (k+n) ≥ (K-r), bases located in the end 

and/or beginning of the periodic B-splines (e.g., ( ) ( ) ( ), 1, ( ) ( ),, ,...,per per per

K r r t r t k n K r r tB B B  − + − − ) 

may be kept according to the periodic nature.  

Fig. 4.1 shows examples of cubic (r = 3) B-splines with θt {θt   R | 0 ≤ θt ≤2π}, K = 10, k 

= 5, and n = 1. Fig. 4.1(a) shows open B-splines which has 10 bases. The beginning θt = 0 

and end θt = 2π points are not continuously connected, and hence the open B-splines are 
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non-periodic. Fig. 4.1(b) shows the periodic B-splines which have 7 bases uniformly placed 

across θt   [0, 2π]. The beginning θt = 0 and end θt = 2π points are continuously connected. 

Therefore, it has a periodic property. Fig. 4.1(c) shows the refined B-splines which are 

constructed from the periodic B-splines shown in Fig. 4.1(b) by removing those dashed 

line bases and only keeping two solid line bases. It is evident that the refined B-splines 

have a fewer number of bases and are therefore less complex than the periodic B-splines. 

 
Fig. 4.1: B-splines: (a) open; (b) periodic; (c) refined. 

4.2.3 VFP-AR model identification  

Suppose we have available training and validation datasets from a gearbox under each 

known health state. Both training and validation datasets include a segment of impulsive 

vibration signals yt, as well as the synchronous acquired rotating phase θt and speed ωt for 

t = 1, 2, …, N. The speed ωt should cover a wide range of variation. These datasets will be 

(a) 

(b) 

(c) 
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used for identifying a VFP-AR model for the representation of the vibration signal under 

each known health state. 

Given a VFP-AR model with its hyperparameters na, K, k, n, r, and pω, ordinary least 

squared (OLS) estimator returns parameters a = [
, ,i ma  bi,m] for  1, , ai n , 

 0, , n , and  0, ,m p


  using  the training dataset as  
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where the squared summation part is the l2 norm of the predication error, denoted as the 

residual sum of squares (RSS).  

We adopt the least absolute shrinkage and selection operator (LASSO) estimator [108], 

[137] for estimating a sparse VFP-AR model.  
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a             (4.15) 

where λ ≥ 0 is a tuning parameter. The sum of the absolute value of the coefficients is the 

penalty term. Such an optimization problem can be solved via the alternating direction 

method of multipliers algorithm [139]. The λ controls the amount of shrinkage that is 

applied to the estimates. The selection of λ is critical. When λ = 0, the LASSO will reduce 

to the OLS estimator. Too large a λ value will force too many coefficients in [ , ,i ma , bi,m] to 

zero, whereas too small a λ value will force a limited number of coefficients to zero. 

Considering a reasonable amount of computational cost, we use the validation set 

approach [100] to select the λ. Given a candidate set, the λ is selected as the one which 

gives the minimal validation mean squared error (VAMSE) of the residual. 
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Hyperparameters of the VFP-AR model include na, K, k, n, r, and pω. We empirically 

determine the pω = 5, r = 3, and K as the number of target gear tooth plus r. The k and n 

are determined by estimating a sparse VFP-AR model with a given na and the periodic B-

splines, and examining these maximal occurred periodic B-spline bases. For the 

determination of na, the validation set approach [100] is again used and the na determined 

as the minimal one in a candidate set which does not significantly reduce the VAMSE. 

The detailed procedure for model identification is summarized in Algorithm 4.1. 

Algorithm 4.1. VFP-AR model identification 

1: Initialize pω=5, r = 3, and K = the number of target gear teeth plus r  

2: Determination of k and n with using a given (small) na and the periodic B-
splines 

2.1: For a candidate set of λ  

2.2: ⁝ 

⁝ 

⁝ 

Adopt LASSO to return a sparse VFP-AR  

2.3: Re-estimate the sparse model parameters via OLS  

2.4: Apply the estimated sparse model on the validation signal and obtain a VAMSE 

2.5: End For 

2.6: Find the λ which gives the minimal VAMSE and store the corresponding model 

2.7: Determine the k and n based on these maximal occurred periodic B-spline bases. 

3: Determination of na  

3.1: For a candidate set of na 

3.2: ⁝ Repeat the loop given by steps 2.1~2.6. 

3.3: End For 

3.4: Determine the na as the minimal one that does not significantly reduce VAMSE  

4: Output the final sparse VFP-AR model 

4.2.4 Model accuracy measures  

The modeling accuracy is measured using additional validation datasets from a gearbox 

under each known health state. These validation datasets are non-identical to the training 

and validation datasets used in Section 4.2.3. Each validation dataset includes impulsive 

vibration signal yt, as well as its corresponding rotating phase θt and speed ωt for t = 1, 
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2, …, N. Upon the identification of sparse VFP-AR model, the inverse filter is constructed 

based on Eq. (4.3) and then applied to process these validation datasets. We call the 

residual obtained from processing the validation signal as “residual-of- validation”.  

The modeling accuracy of the VFP-AR model is measured by examining three criteria [56], 

[100], [108]: the mean squared error (MSE) of the residual-of-validation, the randomness 

of the residual-of-validation via Ljung–Box test, and comparison between the frozen time 

spectrum of VFP-AR models and the non-parametric spectrum.  

4.2.5 Scheme of the VFP-AR model-based method  

The VFP-AR model-based fault detection and severity assessment method has two phases, 

namely the training phase and testing phase, as shown in Fig. 4.2. The training phase 

needs to be completed offline, whereas the testing phase can be implemented in online 

gearbox health monitoring. During the training phase, the training and validation signals 

collected under each severity level of gear tooth crack and a wide range of the speed 

variation are used. The vibration signals will be preprocessed via the baseline removal 

technique [108] to obtain the impulsive vibration signal yt with enhanced crack-induced 

signal (impulses) to noise ratio. Using these impulsive vibration signals yt, along with 

rotating phase θt, and speed ωt, VFP-AR models are trained following the model 

identification algorithm in Section 4.2.3. 

During the testing phase, these trained VFP-AR models will be used for fault detection and 

severity assessment. In the testing phase, impulsive vibration signal yt, along with rotating 

phase θt, and speed ωt are obtained under unknown health state of the gearbox and 

random speed profiles. Inverse filters from each of the VFP-AR models are applied to 

process the testing signal and to obtain residuals. The final health state is classified as the 

state with an inverse filter that gives the minimal MSE. 
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Note that for a new fault severity level that is different from those that exist in training 

datasets, during the testing phase it will be classified to be the closest state which is in the 

training data. 
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Fig. 4.2: Schematic of the VFP-AR model-based fault detection and severity assessment method 

4.3 Experimental study 

An experimental study with comparative analysis is conducted to evaluate the proposed 

VFP-AR model-based fault detection and severity assessment method.  

4.3.1 Experimental signals 

This experimental dataset is provided by the University of Pretoria, South Africa and 

details about the experiment and the data collected are given in Section 3.3.3. In this 

chapter, the signal from the x-direction of the tri-axle accelerometer (as shown in Fig. 3.21; 

with a sensitivity of 100 mV/g) will be used, as well as the signal from the zebra-tape shaft 

encoder.  

In this chapter, we consider 4 health states, namely, healthy (H), initial crack (F1), 

intermediate crack (F2), and missing tooth (F3). The F1 state corresponds to the gear with 

the initial 50% tooth crack. The F2 state corresponds to the gear that had run 17 days after 
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the initial 50% tooth crack. The F3 state corresponds to the gear that ran right before the 

end of the run-to-failure experiment.  

Under each health state, training, validation, and testing signals were prepared and pre-

processed. In total, 43 data files under each health state were used in which one served for 

training (training signal), two for validation (one used for model identification and the 

other for measuring modeling accuracy), and the rest 40 for testing fault detection and 

severity assessment results. The 43 data files under each health state should be similar to 

one another. Therefore, the training and validation data files were arbitrarily selected from 

the 43 data files under each health state. The preprocessing included low pass filtering, 

downsampling, and baseline components removal [108]. Firstly, these vibration signals 

were low passed using an FIR filter with a cutoff frequency fc = 1.6 kHz. Then, these 

vibration signals were downsampled from fs = 25.6 kHz to fs =3.2 kHz. The chosen fs 

fulfilled the principle that fs needs to be higher than 20times of the gear meshing frequency 

to cover the 10th order harmonic of the gear meshing frequency. Lastly, using an additional 

healthy data file, we identified a sparse FP-AR model with ini

ARS = {1, 2, …, 600} and ,

ini

F iS  = 

{0, 1, …, 7} for the baseline components removal [108]. The raw vibration signals from 

each health condition were filtered with the inverse filter constructed by the sparse FP-AR 

model to obtain impulsive vibration signals. 

For the training and validation signals, we used the first half of the vibration signal in a 

data file only. Such vibration signal lasted 10 s and experienced a full cycle of the speed 

variation. Fig. 4.3 shows the impulsive vibration signals under each health state, along 

with their rotating speed and phase. These signals were used for model validation. The 

training and other validation signals were similar to these signals shown in Fig. 4.3 and 

hence are not plotted. We can observe an increased number of spikes in the time waveform 
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of impulsive vibration signals from health state H, to F1, F2, and F3. The amplitude of 

impulsive vibration signals is also modulated by the rotating speed. 

 

Fig. 4.3: Impulsive vibration signals along with their rotating speed and phase: (a, b) H; (c, d) F1; 
(e, f) F2; (g, h) F3. 

The testing signals were further segmented, such that each testing signal has a different 

speed profile. Specifically, the testing signal only lasted 5 s and has a starting point ps 

randomly sampled from [0.25, 0.5, …, 10] s. Each segment of the testing signal lasted at 

least 10 cycles of the object gear rotation. In total, we have 40 signals under each health 

state for testing the fault detection and severity assessment. Fig. 4.4 shows an example of 

segmentation using the starting point equals 7.5 s. Fig. 4.5 shows a part (5 segments under 

(a)                                                                     (c)  

(b)                                                                     (d)  

(f)                                                                     (h)  

(e)                                                                     (g)  
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each health state; starting point ps = [0.25, 2, 3.75, 5, 7.25] s) of resulted testing signals for 

testing the fault detection and severity assessment.  

 
Fig. 4.4: An example of segmentation of signal for testing the fault detection and severity 

assessment. Dashed rectangle denotes a data segmentation window. 

 

Fig. 4.5: Signals for testing the fault detection and severity assessment. Each row belongs to a 
health state and different columns are different realizations of the random speed profile.  

4.3.2 VFP-AR model-based method  

In this section, we evaluate the presented VFP-AR model-based method for fault detection 

and severity assessment. To prove the superiority of the refined B-splines over periodic B-

splines, we evaluate the performance of using the periodic B-splines as well. Hereafter, 

Starting point ps = 7.5 s 

(H) 

(F1) 

(F2) 

(F3) 
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VFP-AR-R stands for the VFP-AR model using the proposed refined B-splines and VFP-

AR-P for the VFP-AR model using the periodic B-splines. 

The k and n need to be determined during the identification of VFP-AR-R models. We first 

estimated a VFP-AR-P model with a small na = 5 and K = 40 (i.e., the number of teeth 37 

plus r = 3). The k and n were determined by examining the occurrence of periodic B-spline 

bases. To reduce the computational cost, the candidate set for λ was firstly coarsely 

configured as [0, 1×10-9, 1×10-8, …, 1×10-1], and then a refined candidate set for λ was 

created based on the λ in the coarse set which gives a minimal validation MSE. For 

instance, if the λ = 1×10-6 in the coarse set gives a minimal VAMSE, the refined candidate 

set becomes [2×10-7, 3×10-7, …, 1×10-6, 2×10-6, 3×10-6, …, 9×10-6]. The final λ was chosen 

as the one in the refined set which gives a minimal validation MSE. 

Fig. 4.6 shows the occurrence of periodic B-spline bases in the VFP-AR-P model (na = 5, 

K = 40) for health states F1, F2, and F3. Since the vibration signal under the H state does 

not have crack induced impulses, its corresponding VFP-AR model does not need to 

consider phase. In other words, the VFP-AR model for H state reduced to an FP-AR model. 

From Fig. 4.6, the k and n are determined as (24, 1) for F1 state; (24, 2) for F2 state; (24, 

3) for F3 state. These values were determined based on a threshold Th specified as follows 

3h mT  = +                                                            (4.16) 

where µm is the median of occurrence of periodic B-spline bases; and σ is the standard 

deviation of occurrence. These bases with their occurrence higher than the threshold Th 

were selected. For instance, bases #24 and #25 were selected for F1 case. Therefore, the 

corresponding k and n were determined as (24, 1). It is interesting to note that the increase 

of the fault severity leads to an increase of the n. This phenomenon indicates that a more 

severe crack fault will tend to induce an impulse with a longer duration. 
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Fig. 4.6: Determination of k and n for (a) F1; (b) F2; (c) F3. 

The na is to be determined after obtaining the k and n. We configured a candidate set {5, 

10, …, 140} for na. Fig. 4.7 shows the VAMSE of VFP-AR-R models for each health state. 

The na is empirically determined as the minimal one in the candidate set which does not 

significantly reduce the VAMSE. This is based on the consideration of reducing model 

complicity whilst only sacrificing minor and acceptable modeling accuracy. To this end, 

the na is determined (50, 40, 35, 35) for health states (H, F1, F2, F3), respectively. For 

instance, the reduction of VAMSE in H health state becomes insignificant when na gets 

higher than 50.  Therefore, the na is determined as 50 for health state H. 

For comparison, we identify VFP-AR-P models as well. The previously identified FP-AR 

model for H state was kept. The candidate set for λ was configured as [1×10-3, 2×10-3, …, 

3×10-2, 3.2×10-2, 3.4×10-2,…, 6×10-2], and the final λ was chosen as the one in the candidate 

set which gives a minimal validation MSE. We determined the na from a candidate set of 

{5, 10, …, 140}. Fig. 4.8 shows the VAMSE for each health state. The na is determined as 

(35, 35, 35) for health states (F1, F2, F3), respectively. 

(a)                                                                     (b)  

Th                     

Th                       

(a)                                                                     

Th                      

(a)                                                                     

(c)                                                                     
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Fig. 4.7: VAMSE for the determination of na of VFP-AR-R models: (a)H; (b)F1; (c)F2; (d)F3. 

 
Fig. 4.8: VAMSE for the determination of na of VFP-AR-P models: (a)F1; (b)F2; (c)F3. 

Upon the identification of both VFP-AR-R and VFP-AR-P models, the inverse filter was 

constructed based on Eq. (4.3) and then applied to process the additional validation 

signals for measuring the modeling accuracy. Table 4.1 lists the MSE and randomness of 

the residuals. The p-values from Ljung–Box tests were reported, which means the 

probability of being random. It is evident that VFP-AR-R models return a residual with 

smaller MSE and more random than VFP-AR-P models. For the F2 state, the residuals 

from both two models seem not random, which may due to the variation between the 

training and validation signals and testing signal. 

Computational costs were evaluated and listed in Table 4.1. The VFP-AR-R model spent 

less than 6.3 h in training. The training data points are 64000. For four VFP-AR-R models, 

(a)                                        (b) 

(c)                                        (d) 

(a)                                           (b)                                      (c) 
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the maximum time required for training will be less than 25.2 h. The VFP-AR-P models 

spent around 9.1h for each model and less than 36 h for four models. Since this training 

process is completed offline, the length of time required is not very critical [108]. Besides, 

the computational efficiency can be improved by implementing the algorithm in a more 

powerful industrial computer [108]. The computational time in the testing stage primarily 

determines whether the method can be implemented in online condition monitoring 

systems [108]. The inverse filter constructed by the VFP-AR-R model spent less than 2.6 

s for processing the testing signal that has 64000 data points. For four VFP-AR-R models, 

the maximum time required for testing will be 10.4 s. Therefore, the VFP-AR-R model-

based method has immense potential for the implementation of online condition 

monitoring systems. Note that the inverse filter constructed by the VFP-AR-P models 

spent almost 3 times of computational cost than the VFP-AR-R models.  

Table 4.1: Modeling accuracy and computational cost of VFP-AR models. Algorithms were coded 
in MATLAB 2019a on a desktop with two Intel 2.4GHz processors and 16GB of RAM. 

Health 
state 

H F1 F2 F3 

B-splines - periodic refined periodic refined periodic refined 

MSE 
((m/s2)2) 

0.881 1.204 1.172 1.135 1.114 1.203 1.191 

Randomness 
test 

1.55×10-

5 2.85×10-7 
1.56×10-

5 1.11×10-16 0 1.65×10-4 
6.93×10-

3 

Time 1* (h) 1.5 8.9 4.9 7.1 5.2 9.1 6.3 

Time 2# (s) 2.2 6.2 2.4 6.2 2.4 6.4 2.6 

* CPU time in training; # CPU time in testing (i.e., inverse filtration) 

Fig. 4.9 shows the non-parametric spectrum (a, b, c, d) of the validation signals, as well as 

the frozen-time spectrums of VFP-AR-R models (e, f, g, h) and VFP-AR-P models (i, j, k). 

We can see tooth crack induced impulses as vertical lines in these spectrums. The vertical 

lines in the frozen-time spectrums of VFP-AR-R models behave discretely, which are in 

good agreement with the discrete lines in non-parametric spectrums. On the other hand, 
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the vertical lines are continuous in the frozen-time spectrums of VFP-AR-P models. It is 

evident that we can better represent the tooth crack induced impulses using VFP-AR-R 

models. Apart from tooth crack induced impulses, the frozen-time spectrums of VFP-AR-

R models are more sensitive to speed variations, which are in better agreement with the 

non-parametric spectrums than the VFP-AR-P models.  

 

Fig. 4.9: Time-frequency spectrums: (a~d) STFT spectrum of the testing signal obtained by 
MATLAB spectrogram function; (e~h) Frozen-time spectrum of VFP-AR-R models; (i~k) Frozen-

time spectrum of VFP-AR-P models. Note that the VFP-AR model for H state does not need to 
consider phase, and hence the same if using periodic or refined B-splines. z-axis scales are the 

same for all spectrums 

(a)  

 

 

                                        

(b) 

  

   

 

(c) 
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VFP-AR models under known health state were applied to these testing signals for the 

fault detection and severity assessment. For each testing signal, 4 model residuals were 

obtained, and their MSE calculated. The health state is classified as the state of the residual 

which gives minimal MSE. Fig. 4.10 shows the MSE of four residuals obtained by 

processing the testing signals shown in Fig. 4.5. The proposed refined B-splines were used. 

We can see two misclassifications. For comparison, Fig. 4.11 shows results using the VFP-

AR-P models. We can see three misclassifications.  

Fig. 4.12 shows the classification results when processing the 40 testing signals under each 

health state. Using the VFP-AR-R models, we can classify 93.8% correctly. Using the VFP-

AR-P models, we can classify 90.0% correctly. The results not only show the effectiveness 

of the VFP-AR model-based method but also prove the superiority of the proposed refined 

B-splines over the periodic B-splines. 

 

 

Fig. 4.10: MSE of residuals from four VFP-AR-R models. Each row belongs to a true health state 
given on the left-hand side and different columns are different realizations of the random speed 

profile. The dashed circle denotes misclassification. 

(H) 

(F1) 

(F2) 

(F3) 
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Fig. 4.11: MSE of residuals from four VFP-AR-P models. Each row belongs to a true health state 
given on the left-hand side and different columns are different realizations of the random speed 

profile. The dashed circle denotes misclassification. 

 
Fig. 4.12: Classification result: (a) used the proposed refined B-splines; (b) used the periodic B-

splines. 

4.3.3 Comparison with the novelty diagnosis method1 

The novelty diagnostic method presented by Schmidt et al. [76] was applied for 

comparison and will be briefly summarized in this section. The novelty diagnostic method 

first identifies the OC state of the gearbox, with an assumption that speed does not vary 

 
1 The NLL feature extraction work presented in this subsection was completed by Dr. Stephan 
Schmidt and Dr. Stephan Heyns at the University of Pretoria (UofP), South Africa. 

(H) 

(F1) 

(F2) 

(F3) 

                                                                  

(a) Accuracy = 93.8%                                    (b) Accuracy = 90.0% 
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significantly within a rotating cycle. The average rotational speed in one gear rotation is 

calculated as one of the OC features. The spectrogram of each vibration signal in the 

healthy dataset is calculated, and then the data around the gear mesh frequency and its 

five harmonics are extracted as additional OC features. The window length of the 

spectrogram is set to one gear rotation. Afterwards, these OC features are scaled, and their 

principal components extracted as the final OC features. Subsequently, the OC features 

are modelled with a Gaussian Mixture Model (GMM). This is slightly different from Ref. 

[76], where a Hidden Markov Model (HMM) was used. Secondly, a GMM model is used 

for modelling the healthy response of the system in specific operating condition states, 

whereafter a discrepancy measure, namely the NLL, is calculated and used for fault 

detection. The GMM is better suited than HMM for discrepancy analysis under time-

varying operating conditions [154], [155], which was the motivation for using it in this 

work. The NLL is further time synchronous averaged, and the variance of the averaged 

NLL is extracted to serve as a health condition indicator for reflecting the propagation of 

the localized gear fault.  

The novelty diagnostic method needs to train a healthy model on the machine condition 

features associated with each OC state. For training purposes, 60 healthy data files were 

used, which are non-identical to the testing signals #2 for examining the fault detection 

and severity assessment.  

Using the trained healthy model, the variance of the time synchronous averaged NLL was 

calculated for the same testing signals as used in Section 4.3.2. Fig. 4.13 shows the variance 

of the time sync averaged NLL. We can see a clear increasing trend when the tooth crack 

becomes severe. Overlaps are also clear, especially between H, F1, and F2.  
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Fig. 4.13: Variance of the time synchronous averaged NLL 

To quantify the classification accuracy, we trained an SVM using MATLAB function 

fitcecoc [156]. The hyperparameters of the SVM included the types of kernel functions 

(included Gaussian kernel, polynomial, and linear), box constraint value (also referred as 

the cost parameter), kernel-scale value, with or without training data standardization, and 

one-verse-one or one-verse-all algorithms [100]. These five hyperparameters were 

optimized by minimizing 10-fold cross-validation error [100]. The folds on the training 

data were randomly partitioned. Fig. 4.14 shows the training accuracy when all the 160 

health indicators shown in Fig. 4.13 were used. The training accuracy equals to 73.8%, not 

to mention the testing accuracy. Therefore, it is clear that the novelty diagnostic method 

performs comparably worse than the proposed time series model-based method. This may 

due to the assumption that the rotating speed does not vary significantly within a rotating 

cycle. It is also worth to note that the novelty diagnostic method utilizes only the baseline 

data for training, whereas the proposed time series model-based method needs data from 

multiple health states including the baseline data for training. In cases when only baseline 

data is available, the novelty diagnostic method is expected to perform better. 
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Fig. 4.14: Classification result of the novelty diagnosis method. 

4.3.4 Comparison with the SVM-based method 

The SVM-based method presented by Santos et al. [75] was applied for comparison. Fig. 

4.15 shows the scheme of the SVM-based method. The method includes feature extraction, 

feature selection, and SVM classifier. For gear tooth crack detection and severity 

assessment, we extracted proper features that are sensitive to gear tooth crack. Specifically, 

we considered 11 features. They are the variance of the time sync average NLL(as described 

in Section 4.3.3), the mean rotating speed within a testing signal, root mean square (RMS) 

[87], periodic modulation intensity [57], crest factor [157], signal-to-noise ratio [28], 

kurtosis, modified Rényi entropy [36], RMS ratio between residual signals and regular 

vibrations [36], Normality hypothesis test statistics [86], and randomness test statistics 

[45]. We adopted the forward regression scheme [100] for feature selection. The SVM 

model was trained using the MATLAB function fitcecoc and its hyperparameters were 

optimized by minimizing 10-fold cross-validation error. 

 

 
Fig. 4.15: Scheme of the SVM-based method 
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The SVM-based method was applied to the same testing signals as used in Section 4.3.2. 

These testing signals were further randomly partitioned into three subsets, training, 

validation, and testing. Features were extracted from these signals. Forward feature 

selection was achieved by minimizing the validation error. Fig. 4.16 shows the 

classification accuracy applied to randomly partitioned testing subset. We can see the most 

accurate case is 87.7%. From the results, the SVM-based method performs comparably 

worse than the time series model-based method. The inferior performance may because 

the features are still sensitive to speed/load changes, which disables the SVM classifier. 

Another advantage of the time-series model-based method is the requirement of only a 

few signals for model training. Comparably, the SVM-based method performs even worse 

than 87.7% if only a small labelled data size is available for training, e.g., the 10-45-45 

partition case. 

 
Fig. 4.16: Classification result of the SVM-based method using different data partition scheme. 

For instance, 20-40-40 denotes 20% for training, 40% for validation, and 40% for testing. 

4.4 Discussions  

In this chapter, we have assumed that the tooth crack occurs in the same tooth in a gear. 

In industrial applications, the crack fault may occur in other teeth. To address this issue, 

we need to identify the location of crack before conducting the fault detection and severity 

assessment. The crack identification can be done by simply estimating a shifting variable 
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of the rotating phase which representing the angular distance between the crack in the 

newly commissioned gearbox and the training gearbox. Estimating the shifting variable is 

a one-dimensional minimization problem where the objective function is VAMSE of the 

residuals from VFP-AR models.  

The misclassification is conservative when using the time series model-based method. In 

other words, miss-classification occurs only from severe crack state to less severe state, as 

shown in Fig. 4.12(a). In the viewpoint of maintenance and operation, we may tolerate an 

aggressively miss-classification rather than a conservative one. To classify the health state 

more aggressively, we can design a new classification rule rather than using the minimal 

MSE scheme. For instance, if the minimal MSE occurs in the residual from the F1 state 

model, but the MSE in the residual from the F2 state is not significantly greater than the 

minimal MSE, we can still classify the state as F2. The development of new classification 

rules is of future studies. 

4.5 Conclusions  

This chapter presented a time series model-based method for the gear tooth crack fault 

detection and severity assessment under random speed variation. Specifically, we have 

considered the rotating speed and phase as covariates in a VFP-AR model for representing 

impulsive vibration signals. We have proposed the refined B-splines for mapping the 

dependency between AR coefficients and the rotating phase. The performance of the 

presented method has been validated using laboratory signals. The presented method can 

classify 93.8% of the health state correctly, which is comparably better than the novelty 

diagnostic method (73.8%) and SVM-based method (87.7%). 
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5 
Summary and future works 

This chapter summarizes this thesis study and suggests some future works that are worth 

to be investigated. 

5.1 Summary  

Fault detection and severity assessment before the failure of gearbox systems have great 

significance in terms of preventing the sudden failure, as well as enabling condition-based 

maintenance and thus reducing maintenance costs or minimizing downtime. Vibration-

based condition monitoring has been widely employed for gearboxes, thanks to the 

accessible collection of vibration signals and the effectiveness in identifying fault 

information from vibration signals. In this thesis, we focused on the vibration-based gear 

tooth crack fault detection and severity assessment. The objective of this thesis was to 

develop new vibration analyzing and processing methods for the gear tooth crack 

detection and severity assessment. With the new methods, more accurate gear tooth crack 

detection and severity assessment results were obtained. This thesis study considered both 

constant speed and variable speed (VS) conditions. The load condition of the gearbox was 

assumed to be either constant or correlated with the rotating speed.  

We first proposed an improved singular value decomposition (SVD)-based method for the 

gear tooth crack detection and severity assessment under constant speed operation. The 
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SVD-based method has the advantages of being non-parametric, computationally efficient, 

and being free from phase shift and waveform distortion. However, most reported SVD-

based methods are essentially energy-based, which may ignore weak-energy features 

caused by early faults. A recently reported reweighted SVD (RSVD) method used a 

criterion to measure how influential the periodic impulses are in each signal component 

(SC). This RSVD method addressed the problem of ignoring weak-energy features caused 

by early faults. But, the RSVD but still suffers from two issues: 1) it does not consider 

interference from non-fault related vibration components on the periodic modulation 

intensity (PMI), which leads to a high miss and/or false alarm rate; and 2) it directly 

conduct reweighted summation of all SCs with PMI values that exceed the threshold for 

signal reconstruction, which undermines periodic impulse extraction. In our improved 

SVD-based method, we addressed these issues that RSVD face. Specifically, the improved 

SVD-based method incorporates an auto-regression model-based baseline removal 

approach. The SVD is applied to decompose the residual signal rather than the raw signal. 

Interference from non-fault related vibration components on the PMI is therefore 

eliminated. Second, the improved SVD-based method selects the SCs such that the PMI of 

the reconstructed signal is maximized. Periodic impulse extraction is consequently 

strengthened. An experimental study was conducted. Results showed that the improved 

method outperforms RSVD in terms of fault detection and severity assessment without 

creating a considerable computational burden. 

We then investigated the time series model-based methods (TSMBMs) for the gear tooth 

crack detection and severity assessment under the VS condition. In TSMBMs, the 

identification of a baseline model to represent the vibration from a healthy state is a must. 

The accuracy of baseline modeling directly determines the success of TSMBMs. To 
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accurately model nonstationary signals, time-variant time series models are in demand. 

Conventional functional pooled autoregression (FP-AR) model is a good option. However, 

conventional FP-AR assumed 1) consecutive autoregression (AR) terms and 2) identical 

functional space that describes the dependency between AR parameters and rotating 

speed, which limited its modeling accuracy. To improve the modeling accuracy, we 

proposed a sparse FP-AR model for the representation of baseline vibration signals under 

VS condition. The sparse FP-AR model uses a sparse AR set and non-identical functional 

spaces. A new model selection procedure by adopting the least absolute shrinkage and 

selection operator has been developed for obtaining such a sparse FP-AR model. The 

sparse FP-AR model has been validated using simulation signals from a simulation model 

for a fixed-axis gearbox and experimental signals from two independent fixed-axis 

gearbox test-rigs. Results show that although the proposed sparse FP-AR model consumes 

more computational time than the conventional FP-AR model, it has higher modeling 

accuracy. With the sparse FP-AR model, the model residual-based method can be 

employed for the fault detection and severity assessment when the testing signals were 

collected under deterministic speed profiles. The improved modeling accuracy benefits the 

health condition assessment of a gearbox under VS in detecting earlier faults and better 

assessing the progression of faults.  

With the sparse FP-AR model, the model residual-based method can be employed for the 

fault detection and severity assessment when the testing signals were collected under 

deterministic speed profiles. However, the model residual-based method is inapplicable 

to the cases when the testing signals were collected under random speed variations which 

typically occurs in wind turbine gearboxes. Under random speed variations, the speed 

profile within each data acquisition window could be hugely different. They could stay in 
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a high/low level or vary rapidly. A condition monitoring system is expected to detect and 

diagnose faults using a segment of vibration signal collected under each of these different 

profiles. These various statistics, such as examining the whiteness, variance, or 

impulsiveness of the residual of the baseline model, calculated from the residual of the 

baseline model are still affected by the random speed profiles. Therefore, model residual-

based methods may be ineffective when the testing signals were collected under random 

speed variations. 

We presented a time series model-based method for the gear tooth crack fault detection 

and severity assessment under random speed variation. Specifically, we identified time 

series models on the residuals of the baseline sparse FP-AR model under random speed 

variation. We denote the residuals of the baseline sparse FP-AR model as the impulsive 

vibration signal which has enhanced crack-induced signal (impulses) to noise ratio. We 

considered the rotating speed and phase as covariates in a vector functional pooled 

autoregression (VFP-AR) model for representing impulsive vibration signals, given that 

the rotating speed affects the amplitude of tooth crack induced impulses, and the rotating 

phase determines the location of these impulses. We proposed the refined B-splines for 

mapping the dependency between AR coefficients and the rotating phase. The refined B-

splines are deduced from the periodic B-splines by removing unnecessary bases outside of 

the location of impulses. The refined B-splines are less complex than the periodic B-

splines and hence can avoid overfitting. Multiple VFP-AR models will be built for each 

level of tooth crack severity. Fault detection and severity assessment can, therefore, be 

based on examining the residuals of each model. The final health state can be assessed as 

the severity state of the model which gives the minimal residual energy. The performance 

of the presented method has been validated using laboratory signals. The presented 
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method can classify 93.8% of the health state correctly, which is comparably better than 

the novelty diagnostic method (73.8%) and the SVM-based method (87.7%). 

5.2 Future works 

Based on the scope of this thesis, we suggest the following three topics for future study.  

(1) Further advancing SVD-based methods for more accurate fault detection and severity 

assessment 

As mentioned in Section 2.5, two remaining questions exist in the improved SVD-based 

method, which are 1) why the number of SCs which have higher PMIs than the threshold 

Th does not monotonically increase when the fault severity increases? and 2) why 

conducting the reweighted summation undermines the PMI of F3 the most? In the future, 

we will investigate these two questions and find the reasons behind. Meanwhile, the 

improved SVD-based method classifies 4 fault severity levels with a relatively low accuracy 

(i.e., 69.6%) which is not good enough for industrial applications. Another future work of 

this thesis is to improve severity classification accuracy. A feasible technical route is to 

extract more fault sensitive features (e.g., kurtosis and root mean squared) from the 

reconstructed signals, select more effective features, and use an advanced classifier (e.g., 

support vector machine). 

(2) Multivariate baseline vibration modeling 

In this thesis, we analyzed single-channel vibration signals for the gear tooth crack fault 

detection and severity assessment. A more general case is analyzing multichannel 

vibration signals which were collected from different sensor locations and/or directions  

[158]–[160]. Considering multichannel vibration signals offer two advantages: (1) 

Multichannel vibration signals provide more information from different locations and/or 
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directions and hence have much more chances of capturing fault induced features in 

comparison with the single-channel vibration signal; (2) Multichannel vibration signals 

are usually collected simultaneously, which may reveal the correlation of the random noise 

between channels and, therefore, the removal of the correlated random noise become 

possible. 

A future work of this thesis is to develop a multivariate time series model for representing 

multichannel nonstationary baseline vibration signals from a gearbox. The potential 

multivariate time series model would combine the advantages of sparse time series 

modeling [108] and the utilization of multichannel vibration signals. The former has 

shown to have higher modeling accuracy than conventional non-sparse time series 

modeling, whereas the latter enables the removal of the correlated random noise between 

channels. The hypothesis is that a multivariate time series model-based fault detection 

scheme will have a higher fault detection rate than using the sparse single variate FP-AR 

model [108] and conventional (non-sparse) multivariate functional pooled vector 

autoregressive (FP-VAR) model [160].  

(3) Baseline vibration modeling considering rotational speed and phase measurement 

uncertainty 

In this thesis, we have assumed an accurate measurement of the rotational speed and 

phase information. However, the measurement uncertainties of rotating speed and phase 

are inevitable. When using tachometers, factors like torsional vibration [161] and 

quantification error will affect the measurement of rotating speed and phase. When using 

the speed estimation method, estimation uncertainties are usually involved and maybe 

even higher than these uncertainties of tachometer measurement [162]. Merely ignoring 

the measurement uncertainty would result in a biased time series model [163].  
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A future work of this thesis is to consider the measurement uncertainties of rotating speed 

and phase when building either FP-AR models or VFP-AR models. The hypothesis is that 

the model with measurement uncertainties considered will have higher modeling accuracy, 

and thus benefit the fault detection and severity assessment. 

(4) Fault detection and severity assessment under variable load condition  

In this thesis, we have assumed that the load condition of the gearbox is either constant or 

correlated with the rotating speed. In industry, a gearbox may run under variable load and 

constant rotating speed conditions. For example, the gearbox in railway traction may 

experience variable load due to the variable wind resistance. Meanwhile, the operation 

speed of the train is controlled to be constant. 

Different from the variable speed condition, the variable load torque modulates the 

amplitude of vibration signals only. Given this fact, we can design a time series model with 

its phase of zeros (i.e., zeros of the transfer function) constrained, but the amplitude of 

zeros dependent on variable load. Such a time series model is less complex than 

conventional FP-AR models, and still captures the characteristics of vibration signals 

under variable load torque conditions. 

(5) Fault diagnosis of gearboxes 

In this thesis, we have focused on the detection and severity assessment of only the gear 

tooth crack fault which initiates at the root of the tooth and propagates towards the 

removal of the tooth. One of the future works is to consider various fault modes in a 

gearbox, and to develop methods for the gearbox fault detection, severity assessment, and 

fault mode identification.  
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In particular, other types of localized faults in gearbox systems, such as gear tooth crack 

which initiates at different locations, tooth tip chipping and bearing ball crack, also 

generate periodic impulses in the vibration signal. The methods presented in this thesis can 

extract the periodic impulses, and therefore are theoretically applicable for the detection 

and severity assessment of other types of localized faults. However, the fault mode needs 

to be identified before assessing the fault severity. Fault mode can be identified based on 

further distinguishing the patterns of the impulses, such as its duration, amplitude, and 

carrier frequency. Once the fault been detected and its mode identified, fault severity can 

be assessed based on the energy of impulse. 
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